

The Game Creator

©MANDARIN/JAWX 1988

JAWX
STOS Basic was developed by:
Frangois Lionet STOS Programmer
Constantin Sotiropoulos ~ STOS Programmer
Frédéric Pinelet STOS Designer
Jacques Fleurance STOS Marketing

MANDARIN

UK design and marketing:

Chris Payne Marketing Manager
Stephen Hill Manual Author

Alan McLachlan Manual Editor

Richard Vanner Project Coordinator
David McLachlan Programming/Graphics

STOS packaging by Ellis, lves and Sprowell Partnership, Wakefield

If you have any difficulty with this product, please write to:
Mandarin Software
Europa House, Adlington Park
Adlington, Macclesfield SK10 4NP

No material may be reproduced in whole or in part without written permission. While every care has
been taken, the publishers cannol be held legally responsible for any errors or omissions in the
manual or the software

ISBN 0 948104 99 6

Contents

M Introduction

Making a back-up
Run-time programs
Using this manual

E Guided tour

The sprites

Moving a sprite
Animation

Manipulating the screen
General graphics

The mouse

The joystick

Sound and music
Sound effects
Displaying text on the screen — windows, fonts, icons
Pull-down menus

E The Editor

The Editor window
The function keys
The control keys
Customising the editor
Loading/saving Basic programs
Running a program
Entering a STOS Basic program
Debugging a program
Multiple programs
Splitting programs in the Editor
System commands
Naming conventions for variables
Types of variables
Arithmetic operations
String operations
Common string functions
Array operations
Memory banks
Types of memory banks
Copying banks
Deleting banks
Saving and loading
Bank parameter functions

— Run-only programs

— Basic programs

— Variables

— Images

— Machine code programs
Loading an accessory
Calling an accessory
Creating an accessory

Sprite commands

The sprite definer

Creating an Animation sequence
Grabbing sprites from the disc
The multipl-mode sprite definer
The SPRITE command

Moving a sprite

Combining horizontal and vertical movements

Animation
Using the-mouse
Reading the joystick
Detecting collisions
— with sprites
— with rectangular blocks
—irregular shapes
Exceeding the 15 sprite limit
Sprite priority
The background
Miscellaneous sprite commands

Music and sound

Voices and tones

The MUSIC command
The Music definer

The music instructions
Envelopes and tremolos
The Envelope editor
Crealing a piece of music
Predelined sound effects
Defining you own effects

Graphics functions

Clearing the screen
Colours

Drawing lines

Fill shapes

Filled types

Special effects

The writing modes
Polymarkers
Multi-mode graphics

The Screen

Multiple screens
Reserving a screen
Loading a screen

The screen as a string
Scrolling the screen
Screen synchronisation
Compacting the screen
Special screen effects

Text and windows

Text attributes
Cursor functions
Conversion functions
Text input/output
Windows
Character sets
- saving space
—using a set from a window
— changing the default set
Icons
- the icon definer

Menu commands

Creating a menu
Making a selection
Icons.
Troubleshooting

Other commands

Control structures
The keyboard
Input/output
Accessing the disc
The printer
Directories

Trigonometric functions
Mathematical functions
Machine level instructions
Miscellaneous instructions

Writing a game

Planning
Programming
Adding graphics
Techniques
Appendices
Appendix A Error messages and codes
Appendix B Runtime creation
Appendix C The STOS Basic floppy discs
— STOS Basic system disc
— Accessories disc
~ Games disc
Appendix D Usmg Assambly language from STOS Basic
ALL, AREG, DREG and TRAP instructions
- Assemhly language interface
- TRAP #4
Appendix E The STOS basic traps
— TRAP #3 (Window functions)
— TRAP #5 (Sprite functions)
— TRAP #6 (Floating point functions)
— TRAP #7 (Music generator)
- The PSG function
Appendix F Structure of memory banks
— sprite bank
—icon bank
— music bank

— screen bank

1 |Introduction

CONGRATULATIONS on buying STOS — The Game Creator. This exciting package
hits anew high in software standards, giving you the ability to design and create arcade-
style games faster and easier than ever before.

The package is based around STOS Basic, an incedibly new
with a staggering 320 commands — many of which have more than one use.

A feature that makes STOS Basic stand out is that it is not a Gem-based language.
This allows it to run much faster than any other Basic on the ST and also takes away
many of the restraints caused by the use of Gem, such as only being able to use one
resolution.

STOS Basic replaces these Gem functions with ones of its own. There are powerful
windowing facilities and easy-to-use file selectors — and drop down menus are simple
1o create.

Supplied with the STOS Basic disc are two other discs containing the accessories
and games. The accessories are what makes STOS really come to life, including
specially-designed programs which work alongside your own program to help speed
up develop The list of ies include a Sprite Definer, Music Editor,
Character Editor, Icon Editor and many more.

The games disc contains three written in STOS Basic — Bullet Train incorporating
fast horizontal-scrolling, Zoltar, a Galaxian-style shoot-'em-up which was written in just
three days, and Orbit, a feature-packed bat-and-ball game.

As you can see, STOS is not just another Basic — it's a full-blown developers' kit
which can be used by people of any age and experience. STOS also has an exciting
future and there are plans fora numberol' emnsmn discs containing new commands.

Whatever your 1g, STOS has ing to offer you. If you
have never written a game be!ura the prospect of creating your first game may be quite
daunting. But do bear in mind that many of the all-time classics like Confuzion, Zenji,
Tetris and Split Personalities — to name but a few are — uncomplicated programs with
one or two features which have entertained computer owners in their thousands. The
strength of your game will mainly be based on your ideas, and not just your program-
ming skil.

Making a back-up

The STOS discs are not protected, which means that you can make back- ups or upload
the discs on to a hard drive if you have one. But please don't give copies to other people.
STOS took two years of intense programming to reach its current state, so the higher
the sales, the greater will be our incentive to develop new extension discs and
accessory programs.

The three discs supplied are your STOS master discs and must be looked after. You
should copy each one on to a new, formatted disc and place the original master discs
safely out of harm's way. So if your discs get damaged, corrupted or even have files
deleted from them, you can go back to the master disc to produce new working copies.

The procedure for making back-ups is as follows:
1 Boot up the Gem Desktop.
2 Place a blank disc into drive A and format it using the menu command.

3 Now place the master disc into drive A and drag the drive A icon on to the drive B
icon.

4 Follow the instructions displayed in the dialogue boxes

5 Repeat actions 2 to 4 for the other two discs. Refer to your Atari ST manuals if you
have trouble copying the discs.

6 Once the copy is complete. store the master discs in a sale place.

Run-time programs

When you have written a program in STOS Basic you may wish to get it published
as a commercial game. This is no problem in STOS - all you have to do is
save your program with a .PRG extension to create a copy which can be booted from
the Gem Desklop, but please ensure that you mention that you have used STOS on the
loading screen. For more technical information about this subject see Chapter 3 and
Appendix B.

We at Mandarin Software are very keen to publish games written using STOS.

Address your c pondence for the of the Manager. Mandarin

i Park, A Macclesfield SK10 4NP. If you decide 1o protect
your game may we suggest that you allow other STOS users to examine and modify
your sprite and music banks? This way your game will be of greater interest to STOS
owners and could ensure higher sales.

We want to build up a vast database of STOS users so that you can benefit from
the input of people all around the country. To help us do this we would urge you to fill
in the registration form enclosed in the STOS packaging so we can find oul what users
want. You also stand to win a prize in our monthly draw

Using this manual

We have dedicated most of the manual around the special functions offered by STOS
Basic. If you have no prior knowledge of Basic, you will need 1o purchase an introductory
text such as Alcock’s lllustrating Basic (Cambridge University Press). In our opinion,
this book gives you an excellent insight into programming Basic. We still feel you can
easily pick up Basic from this manual, but various techniques would nol seem apparent
if you learnt it this way.

The STOS manual is set out in a tutorial fashion. giving you many examples of how
to use each instruclion. Programs have been included to emphasise how certain
instructions can be used to their full effect. There is also a comprehensive appendix
which will explain various technical information to experienced programmers.

When you enter the example programs listed in the manual you must remeémber that
mosl of them are designed to work in the low resolution mode on colour monitors, as
maost commercial games use this mede. However STOS Basic can operate in all three
modes, which means that owners with ome can use the languag

One last point. Try to get into the habit of boting STOS direclly from disc rather than
from Gem. This will free 32k of extra memory for you lo use in your programs.

2 |Guided Tour

STOS Basic has 10 be one of the most powerful versions of Basic which has ever
been written for the Atari ST. It includes a wide range of facilities for sprite
manipulation, screen flipping, and the generation of high quality music. It is also
easily expandable, so you won't be left behind by any future developments.

The quality of STOS Basic as a development system has to be determined
by the quality of the programs which can be produced with it. To provide an
example of what you can achieve with this package, we have supplied you with
three games written entirely using STOS Basic. These can be found on the games
disc. and can be listed and amended like any other Basic program. Although
STOS Basic may seem very games oriented, there are a number of other possible
applications — such as educational software — for which it would also be ideally
suited

In this chapter we'll be giving you a guided tour of just some of STOS Basic's
exceptional features. But first, a plea from the heart. If you have not already made
a backup of this package, jump immediately to the section on MAKING A
BACKUP. Although we at Mandarin will be happy to replace your disc for anominal
handling charge if something goes wrong, you will be deprived of STOS Basic
while it's being re-duplicated.

The sprites

We'll start our tour with a brief look al the STOS Basic sprile commands. These
allow you to move and animale a sprite using simple, easy-to-understand Basic
instructions. There is no poking around in the ST's memory, and you don't need
to know anything aboul the ST's internal workings in order ta use them

Furthermore, STOS Basic comes complete with an excellent Sprite Editor
which can be installed permanently in your ST's memory, and then entered at any
time by pressing just two keys. This enables you to design, test, and modify your
sprites in cne smooth operation.

Let's have a look al the sprite commands in action. Before we can use these

instructions, we will first need to load some example sprites from the Accessory
disc. Place the disc into your drive and type in the line:

load “animals.mbk”

We can now display one of these sprites on the screen using the SPRITE
command:

Similarly we can examine the rest of the sprites by typing in the following and
pressing any key to view each sprite in turn:

for A=1 to 50:sprite 1,100,100,A:wait key:next A

Up to 15 of these sprites can be placed on the screen at any one time. As an
example, enter the line:

for A=110 15:sprite A,1,A*10:wait keynext A

3

Moving a sprite

Now for some movement!

We first draw sprite number 1 on the screen with:
sprite 1,10,100,1

This displays a sprite looking rather like an octopus. This was generated in a
matter of minutes using the STOS Basic Sprite Editor.

Let's add a little movement to this sprite:

The octopus is now moving smoothly across the screen in the X direction. Since
these sprite movements are performed using interrupts, they are therefore able
1o execute P tly of your Basic program. We can prove this by
typing in the following line:

for A=1 to 10000:P=P+1:next A:print P

As you can see, the octopus continued onwards, at the same time STOS Basic
was busy executing the FOR...NEXT loop.

So far, we have only moved our sprite in a simple straight line. We can however,
easily specify a whole list of these movements in exactly the same way.

1,0,100,1
mave x 1,7(1,3,100)(1,-3,100)L"
mave on

When you type in the above commands, the octopus now walks slowly back and
forth along the screen.

The last few examples were restricted to horizontal motions. But there's also
a separate MOVE Y instruction to move the sprite up and down as well. To see
how this works, enter the lines:

move y 1,"(1.3301,-330)L"
move on

Finally, we can combine any sequence of horizontal and vertical motions like so:
sprite 1002
move x 1,°(1,2150)(1,-10,30)L"
move y 1,(3,1,100(3,-1,100)L"
move on
This technique can be used to rush all 15 sprites across the screen in any direction.

Look at the game Zoltar for an impressive demonstration of the speed of these
commands.

Animation

Each of these sprites can be animated automatically with a special ANIM

4

instruction. ANIM displays a list of sprite images on the screen, one after another.
As this feature is performed using interrupts, it can be combined with MOVE to
produce some very effective animation.

Type in the following small example:

sprite 1,100,100,1

box 100,100, 32,132

anim 1,7(1,7042.10%3,101{4,10)L"
anim on

The octopus is now waving its arms about frantically. This is probably because it's
trapped in the box. Let's put it out of its misery and release it, using the MOVE
commands like so:

move x 1,"(1,4,75)1,-4,75)L"
move y 1,7(1,4.24){1,-4,24)L"
move on

Freedom at last! Qur octopus has escaped.

It is important to realise that, like all the sprite commands, ANIM causes no
delay to your current program. For a further example of animation, see the
program on page ¥if.

The STOS Basic sprite commands

SPRITE Draw a sprite

MOVE Start/stop movements

MOVE X Move sprites left and right using interrupts

MOVE Y Move sprites up and down

ANIM Animate a sprite

PUT SPRITE Copy a sprite to the screen

GET SPRITE Make a rectangular section of the screen into
a sprite

UPDATE Update sprites

AUTOBACK Switch off link between sprite background
and real screen

X SPRITE Get X coordinate of a sprite

Y SPRITE Get Y coordinate of a sprite

MOVON Check if sprite currently in motion

COLLIDE Test of sprite collisions

LIMIT SPRITE Limit sprite movements to only part of a
screen

ZONE Test if sprite enters a rectangular section on
the screen

SET ZONE Define one of 128 rectangular zones

RESET ZONE Clear current zones

PRIORITY Change sprite priority

REDRAW Redraw sprite

DETECT Detect pixel under sprite

SYNCHRO y ise sprite with g backgs

A iption of these ir i an be found in Chapter 4

Manipulating the screen

Ifyou thought the sprite commands were impressive, wait until you see the screen
manipulation routines! STOS Basic has the ability to scroll, move and copy parts
of the screen. Put the system disc into the drive and type:

load “\stos\pic pi1”

This loads the litle picture from the STOS Basic folder into the current screen. One
minor snag with these screens is that they each take up over 32k of space on the
disc. Fortunately STOS Basic includes a powerful Screen Compactor accessory
which can cram any screen down to as little as 7k. An example screen in this format
has been placed on the accessory discin the file BACKGRD.MBK. Let's load it into
the ST's memory:

load “backgrnd.mbk"

The above command loaded the screen into one of STOS Basics 16 memory
banks (See Chapter 3). We can now unpack it using the UNPACK command like
this:

unpack 11,physic

The effect of the above instruction was to expand the picture into the current
screen. If you now move the mouse, the picture will be steadily erased. This is
because STOS uses a separate background screen for the sprites. Also note that
the image seems to be flashing. When STOS Basic is first loaded, colour number
2 is initially started flashing. See FLASH for more details. You can turn off this
feature using:

flash off

Let's see what happens when we copy the picture into the sprite background
instead.

flash off
unpack 11,back

If you move the mouse around on the screen as before, the picture will now be
progressively drawn.
‘We can incorporate these instructions into a small STOS Basic program.

Example:

10 clsflash off:unpack 11,back
20 appear back,md(78)+1
30 wait key:goto 10

In this example we've introduced an interesting new instruction called APPEAR.
This command fades between two screens using one of 79 possible effects.
Here's another example, using the FADE instruction:

10 mode 0
20fade 3

30 reserve as screen 15
40 load "\stos\pic.pi1”15
50 fade 2510 15

60 appear 15

Now for something rather different. One of the most impressive features of STOS
Basic s its ability to change the size of any image displayed on the screen. To that
end it provides you with the two instructions REDUCE and ZOOM.

We can demonstrate the REDUCE command by adding the following line to
the program above.

70 reduce physic to 200,50,280,100

This reduced the entire screen to a quarter of its normal size and copied it to the
rectangle starting at 200,50.

As you might expect, the ZOOM command has the opposile effect, and
magnifies a section of the screen. We can see the effect of one of these
instructions by entering the lines:

mode 0:locate 0,0 : print “STOS Basic™
zoom physic.0,32.88.40 to 0,40,319,198

This prints the string STOS Basic, and then expands to fill the screen.

An equally important capability of STOS Basic is to enable you to copy large
sections of the screen from one place to another at high speed. This can be
achieved using a powerful SCREEN COPY function. We can incorporate an
example of this instruction into our program simply by inserting a new line at 40:

B0 screen copy physic,200,50,280,100 to physic,100,50

This places a copy of the miniature screen generated with REDUCE at the
coordinates 100,50

Finally, a few words about the screen scrolling commands. These allow you
toscroll any part of the screen either vertically or horizontally. We can demonstrate
these instructions by inserting the lines below:

80 def scroll 1,50,90 10 250,110,1.0
90 def scroll 2,140,10 to 160,190,0,1
100 scroll 1: scroll 2: goto 100

Now for an example which combines sprites and screens into a single program.
Put the accessory disc into the drive and type:

load “backgrnd.mbk",11
load “animal”:rem Loads the sprites

10 mode 0: flash off

20 unpack 11,back : appear back,30

30 reduce physic to 200,50,280,100

40 sprite 1,130,80,80

50 mave x 1,"320(2.-6,0)L"

60 anim 1,7(5,5)(6,5)(7,5)8.5)(9,5)(10.5)11 5)(12.5)1"
70 move on : anim on : wait key

7

The screen manipulation commands

APPEAR Fade between two screens using a pattern

FADE Fade the present colour palette in single
steps to a new setting

BACK Relurn the address of the sprite background

PHYSIC Return the address of the physical screen

LOGIC Return the address of the logical screen

DEFAULT Return default addresses

REDUCE Reduce the screen in size

ZOOM Expand the screen in size

SCREEN COPY Copy a section of the screen from place to
place

SCREEN SWAP Swap physical screen with logical screen

SCREENS Assign part or all of a screen to a string

DEF SCROLL Define a scrolling zone

SCROLL Scroll part of the screen

GET PALETTE Load the colours of a screen in memary into
physical screen

CLS Clear part or all of screen

WAIT VBL Wait for next vertical blank

UNPACK Unpack a screen in compressed format

PACK Compact a screen lo save memory

See Chapter 7 for a full explanation of the screen instructions.

General graphics

STOS Basic supports a number of the more normal graphics operations such as
CIRCLE, BOX, and POLYGON. One major difference between STOS and other
Basics however, is its ability to change the graphics resolution at any time during
a program, using just a single STOS Basic instruction.

Example:
10 mode O:print “Low resolution™
20 print “Press a key to change graphics modes™
30 wait key:mode 1
40 print “Medium resolution™

Note that for obvious reasons the MODE command has no effect whatsoever on
monochrome only systems.

Another interesting command is SHIFT which rotates the screen pallete
through every possible colour combination. To demonstrate the effect of the
SHIFT instruction type:

shift 100

As you can see, the screen colours are continuosly changed every few seconds.
We can turn SHIFT off with a simple:

shift off

We've saved the best till last. This is the FLASH instruction which allows you to
animate any colour through a sequence of up lo 16 different colour changes. Since
FLASH uses interrupts, it will occur simultaneously with the rest of your program
without affecting it in the slightest. Let's animate colour number O with the line:

flash 1,%(000,5)(333,5)(666,5)(777.5)(555,5)(222.5)

This produces a startling set of multicoloured characters.

The GRAPHICS instructions

POLYMARK Print marker

ARC Draw a circular arc

EARC Draw an elliptical arc

PLOT Plot a point

POINT Determine the colour of a point

DRAW Draw a straight line

BOX Draw a hollow box

RBOX Draw rounded hollow box

POLYLINE Draw a hollow polygon

PIE Draw a pie chart

EPIE Draw an elliptical pie chart

CIRCLE Draw a filled circle

ELLIPSE Draw a filled ellipse

BAR Draw a filled bar

RBAR Draw rounded filled bar

POLYGON Draw a filled polygon

PAINT Contour fill

MODE Change graphics mode

FLASH Set flash sequence

SHIFT Rotate colours.

INK Set ink colour

PALETTE Set all colour assignments

COLOUR Read/write one colour value

GR WRITING Set writing mode

SET LINE Set line type

SET MARK Set marker type

SET PAINT Set fill Type

SET PATTERN Set user-defined fill pattern

CLiP Set clipping rectangle

DIVX Width of mono screen/width of current screen

DIvY Height of mono screen/height of current
screen

CLS Clear entire screen

See Chapter 6 for a complete explanation of these instructions.

The mouse

In many respects the STOS Basic mouse pointer is rather unusual. The most
obvious difference is that it is much more colourful than the one you are used to.
This is largely because this pointer is really just a specialised version of a sprite
The major advantage of this approach is that you can easily set the shape of the
mouse pointer to anything else you like using the CHANGE MOUSE command.

9

Examples:

change mouse 2:rem Change mouse to hand
change mouse 3:rem Change mouse to clock

‘You can also use the instruction te change the mouse into any one of the sprite
images currently held in the ST's memory. We'll now demonstrate this process.
Place the accessories disc in the drive and load some sprites with:
load “sprdemo.mbk”
Now change the mouse to the first of these sprites with:
change mouse 4
and to the second with:
change mouse 5
As you can see, the number used in the above instruction is just the image number
plus four.
Detecting collisions between a sprite and the mouse is easy. You can also test
a specific area to the screen 1o see if the user has entered it with the mouse.
Reading the mouse is equally straightforward, as the position of the pointer is
instantly returned by the X MOUSE and Y MOUSE functions.
Example:
10 locate 0.0:print x mouse,y mouse:goto 10

If you run this program and move the mouse across the screen, ils location will be
continually displayed.

The mouse commands

X MOUSE Return X coordinate of mouse
Return Y coordinate of mouse

MOUSE KEY Test mouse buttons

ZONE See if mouse is in a reclangular zone

SET ZONE Define zone to be tested

RESET ZONE Clear zone definitions

CHANGE MOUSE Change mouse picture

HIDE Remove mouse from screen

SHOW Return mouse to normal

More details of these instructions can be found in Chapter 4.

The joystick

STOS Basic includes a number of simple commands which enable you to test the
movements of a joystick. Place a joystick into the right socket and type:

10 if jleft then print “LEFT"
20 if jright then print “RIGHT™

10

30 if jup then print "UP”
40 if jdown then print “DOWN"
50 if fire then boom 60 goto 10

The joystick commands

Joy Read joystick and test all functions
JLEFT True if joystick moved left

JRIGHT True if joystick moved right

JUP True if joystick moved up

JDOWN True if joystick moved down

See Chapter 4 for more information.

Sound and music

In the bad old days of computing, you were lucky to find the inclusion of a humble
BEEP instruction. The STOS Basic programmer has a much easier time of it. Not
only can you produce high quality soundtracks for your games, but you can also
generate a vast range of other special effects. Furthermore, if you're already an
expert on the subject, STOS gives you complete control over the ST's sound chip.

Creating a piece of music couldn't be easier, as a superb Music Editor is
included for your use as part of the STOS Basic package. Like the Sprite Editor,
this can be loaded into memory, and called at any time straight from the keyboard.
As an example, we've placed a piece of music for you on the accessory disc. Load
this with the line:

load “music.mbk”
You can now play the music by typing:
music 2

This music plays independently of the rest of the STOS system in a similar way
to the Sprite commands.

Let's change the speed of the music with TEMPO:
tempo 10

which slows the tune down to a crawl. Now type:
tempo 100

Fast enough for you? We can also change the pitch of the music. First the music
back to normal with:

tempo 40
Now type:

transpose 30:rem Increases the pitch
and

transpose -20:rem Lowers the pitch

"

Finally. turn the music off using
music off

Further examples of music can be found in Bullet Train.
Sound effects

STOS Basic also supports a number of useful functions for the production of more
basic noises. The simplest of these are the SHOOT, BOOM and BELL commands.
Here are a few examples for you to type in.

for A=1 to 10:boom:wait 5: next A
shoot
bell

In addition 1o the pre-defined effects, you can utilise the noise generalor in
conjuction with the ENVEL command to produce a range of more exotic sounds.

Examples:

click off

volume 16

noise 1

envel 10,100:Rem Aeroplane
envel 10,1000:Rem Helicopter

envel 1,1:rem Reset envelope
envel 14,80 play 14,80

envel 8,40
play 37.40

STOS Basic sound commands

MUSIC Play music defined using music editor
accessory

VOICE Activate/Deactivate individual voice

TEMPO Change speed of music

TRANSPOSE Change pitch of music

VOLUME Set volume of noise

ENVEL Choose shape of note/noise

PLAY Play a single note on one of three voices

NOISE Generate some noise

BOOM Make a BOOM sound

BELL Make a BELL sound

SHOOT Make a SHOOT sound

PSG Access sound chip. Warning: Handle with
carel

See Chapter 5 for more details of these commands.

Displaying text on the screen

If you've used Gem, you'll probably already be familiar with the idea of windows.

Although STOS Basic is not Gem-based, it does incorp ange of

12

windowing operations. These allow you to create a window with one of 16 different
borders anywhere on the ST's screen. Each window can have its own unique
character set which can be slored in a special memory bank along with your
program. Here's a simple example of a STOS Basic window:

windopen 1,33,30,10,12
We can delete this window with the line:

windel 1
Now for a larger example which displays 10 windows on the screen at once.

for i=1 to 10:windopen i,3%i

0.10,i:next i

After this line has executed, the text cursor will be placed in the last window we
have defined. We can switch the cursor to another window using the WINDOW
command like so:

window 1
window 4
indow 7
window 10

Since we don't need these windows any more, we can delete them from the
system using the DEFAULT command:

default

We'll now create a small program which displays four different character sets on
the screen at one time.

First insert the accessory disc into the drive and load the fonts into memory
with the lines:

load “fontl.mbk"™
load “font2 mbk™
load “font3.mbk™

You should then type in the following small program.

10 windopen 1,0,0,9,4,4.3:rem One of 3 system sets
20 windopen 2,10,0,9,4.4,4:rem First new set

30 windopen 3,20,0,9,4,45:rem Second new set
40 windopen 4,30,0,9,4,4 6:rem Third new set

50 input “Window W

60 window w:goto 50

Any of these sets can be used lo replace the three system fonts stored on the
STOS system disc. Just to make things simple, STOS Basic also supplies you with
auseful Font Definer which can be used to any new chai

sets you require.

In addition to the normal characters, STOS Basic includes support for special
16x16 characters called Icons. These can be displayed on the screen using the
ICON$ command, or incorporated directly into menus. We have provided you with
a useful set of examples in the file ICON.MBK on the accessory disc. These can
be printed out using the program below.

load “ICON.MBK~

10 for X=0 to 19

20for Y=0to 4

30 locate X*2,Y*2

40 print icon$ (X*5+Y+1)
50 next Y

60 mext X

Note that just as with the character sets, there's also a Icon definer 1o allow you
to create your icons.

STOS Basic text commands
BORDER Change window border
CDOWN Move cursor down
CuP Move cursor up
CLEFT Move cursor left
CRIGHT Move cursor right
CLW Clear window
CURS Hide/show tex! cursor
SET CURS Set cursor type
DEFAULT Reset windows
HOME Cursor home
ICONS Print an icon at current cursor postion
INVERSE Inverse text
UNDER Underlined text
SHADE Shaded text
LOCATE Set printing position
PAPER Set text background colour
PEN Set text colour
PRINT Print text
USING Formatted text
CENTRE Print centred text
QWINDOW Quick window activation
WINDOW Activate a window
WINDCN Test a window to see if it's active
WINDMOVE Move a windaw
WINDCOPY Copy a window
WINDEL Delete a window
SCRN Get character under cursor
TITLE Set Window title
SQUARE Print square using text coords
XCURS Return X coordinate of cursor)
YCURS Return Y coordinate of cursor)
XTEXT Convert graphic coord to text coord
YTEXT Convert graphic coord to text coord
XGRAPHIC Convert text coord to graphic coord
YGRAPHIC Convert text coord to graphic coord
More details of these instructions can be found in Chapter 8.

Pull-down menus

As we near the end of our tour, we'll give you a brief glimpse at the incredibly useful
STOS Basic menu commands. These enable you to effortlessly create menus

14

which will then work automatically using interrupts. STOS menus may be
composed of either text or icons. Here is a simple example

10 menu$(1)="Menu *

20 menu${1,1}="ltem1"
30 menu$(1.2)="ltem2"
40 menu$(13}="ltem3"

60 A=mnselect: if A<>0 then print “You chose ltem number” A

70 goto 60

STOS Basic menu commands

MENU ON

MENU OFF

MENU FREEZE
MENUS(X)
MENUS(X.Y)

ON MENU GOTO
‘ON MENU ON/OFF
MNBAR
MNSELECT

Start menu

Halt menu

Temporarily stop menu

Set menu litle

Set menu item

Automatic menu selection
Activate/deactivate automatic selection
Menu bar selected

Item selected

More details of these instructions can be found in Chapter 9,

Sofar we've only demonstrated a fraction of STOS Basic's capabilities. As you can
see, STOS Baslc provides you with everylhmg you need to create superb games
Thet

1apters include afull explanation

of all the various commands. The resl is up to you.

3 |The Editor

On loading the STOS Basic package you are initially presented with a display
isting of two sep: i 3

The Editor window

The Editor window is the part of the screen reserved for creating and manipulating
your programs. STOS Basic supports a powerful screen editor which allows you
to alter your program listings directly from the screen. The heart of this system is
the text cursor which indicates the position of the next character to be input. It also
marks the current line. This line can be entered into the editor by pressing the
Return key.

Try typing the line below followed by Return:
print “Hello™

As you type the line, each successive character is printed directly underneath the
text cursor, and this cursor is moved one step to the right. You can now edit this
line by moving the cursor back to the PRINT statement with the Up arrow key. If
you press Return at this peint, the line will be re-executed. Notice how the left and
right arrow keys move the cursor back and forth along the line. Use these keys to
place the cursor over the H, and type:

HELP!

When you press Return this message will be printed on the screen. The current
line can be edited on a character by character basis using the Backspace and
Delete keys. In addition, you can delete the entire line with Shift+Delete and join
two lines together with Control+J.

The STOS Basic editor provides you with two editing modes: Insert mode and
Replace mode. Replace mode is used as the defaull. In this mode, anything you
enter from the keyboard will completely replace the existing text on the screen.

Insert mode is rather different. Instead of overwriting the text, a space for the
new character is automatically inserted into the line at the current cursor position.
Insert mode is indicated by a thicker cursor and can be toggled on or off using the
Insert key. Note that the Replace mode is re-entered whenever the system is reset
by the RUN command. Now for an example showing you how this works in
practice. Type in the following lines of code.

new
10 print “This is a Simple Program™
20 input “What is your name 7";N$
30 print “Hello *;N$

This program can be edited using the arrow keys. Incidently you can also place
the cursor at the current mouse position by clicking on the left mouse button.

As an example, try changing line 20 to:
20 input “What is your Christian name”;N$

17

Don't forget to press the Return key after you've edited the line, otherwise it will
remain unchanged.

To run your new program type in RUN

The function keys

The upper window contains a brief list of the current function key assignments.
Whenever you press one of these keys. the string associated with it will be entered
on the screen. justas if you had typed itin yoursell. You can also assign a separate
set of strings to the shifted versions of these keys, which can be displayed by
pressing Shift

Try entering the following lines:

2 List
17 Prints out the current directory
14 Loads a file from the disc

Shift+{7 Loads all the accessories stored on the current disc
It you play around with these function keys, you may find that the string linked to
key number 1 is conlinually changing. This is because the 1 key is used to hold
a copy of your last editer command
Example:

print "Hello”

1]

i
i

I all this wasn't enough, you can change the function key assigments at any time
with the KEY function (See Chapter 10 for more details).

Example:
keyl(3)="boom™
3
Note that the ' character is used to denote Return.

A list of the current function key assignments is available using the KEYLIST
instruction:

KEYLIST (List the current function key assignments)
KEYLIST prints out a full list of the sirings associated with each of the function

keys. The shifted versions of these keys are given numbers from 11-20. Stop
listing using either the spacebar, £sc, or Control+C

11: KEY LIST" Last line entered into the system.

12: list Lists all or part of a program.

13: listbank' Lists banks used by the program

f4: fload™ bas™ Load a Basic program with the file selector.
15: fsave™ bas™ Saves a file using the file selector.

16: run’ Runs the Basic program.

17: dir Prints out directory of the current disc

18

18: dirS=dir$+\" Selects a subdirectory. See Chapter 10

f9: previous Selects next outer directory.

110:0ff' Turns off sprites.

11:full Sets the editor window to the full screen

f12zmulti 2 Installs two editor windows.

f13:multi 3 Installs three editor windows.

f14:multi 4 Installs four editor windows

f15:mode 0 Enter low resolution mode.

f16:mode 1 Enter medium resolution mode

117:accnew:accload " Deletes the current accessories and loads a
new set off the disc.

f18:default Re-initialise editor screen.

H19:env Change colours used by editor.

f20:key list’ List function keys

The Control keys
The Control keys are a set of commands to the STOS Basic editor which are

execuled directly from the ST's keyboard. Here is a list of the various cantrol keys
and their effects

Help

This displays the complex locking dialogue box as seen below. There are three
distinct parts of this box.

______ Editing program @ 1
Size JWd sljlld s8ZjWd a31Lid &84

end
end
Basic accessories loaded :
fi- fo- f9-
e e -
Faz FaZ tizs B

Remaining memory: 7TA7SEE butes.

The top section contains a list of the programs currently stored in the ST's memory.
STOS Basic allows you to hold up to four Basic programs in memory simultane-
ously

The current program is highlighed using a horizontal bar. This bar can be
moved up or down with the arrow keys. As you move this bar, the top line changes
to indicate the program number which is to be edited. See the section on multiple
programs for more information

The second part of the Help menu displays a list of the accessories inslalled
in the system. These accessories can be executed directly from the help menu by
pressing one of the function keys. A list of these accessories, along with their uses
can be found on page 55

The last line of the help menu displays the amount of memory remaining for
the storage of STOS Basic programs. Normally this will be several hundred
kilobytes on a standard 520 ST, but if you have loaded all the accessories from
the discs. it may well be considerably less.

19

Control+C
When these two keys are pressed al the same lime, any STOS Basic program you
are running will be immediately terminated and the control will return back to the
editor.

Undo
Pressing this key twice redraws the screen and reinitialises the editor. Itis normally

used to enable you to edit a program which has corrupted the editor screen, or
used 1o view a line from which an error has occured and forced the program to stop.

Cir

Clears the editor window. Same as CLW.
Up Arrow

Moves the cursor up one line.
Down Arrow

Moves the cursor down one line.
Left Arrow

Moves the cursor one character to the left.
Right Arrow

Moves the cursor one character to the right.

Return

Enters a line at the current cursor position. Exactly the same effect can be
achieved by double clicking the left mouse button.

Delete

Deletes the character underneath the cursor.
Shift+Delete

Deletes the line under the cursor.

Backspace

Deletes the character lo the left of the cursor, and then moves the cursor one
space to the left.

Home

Moves the cursor to the top left hand corner of the screen.
Esc

Enter multi-mode display. See section on multiple programs for more information.
Spacebar

Suspends a listing, Press spacebar again to resume.

20

Customising the editor

As a default, STOS Basic outputs white text on a black background. You can,
however, use any combination of colours you like for the text and background. The
easiest way of changing these colours is with the ENV instruction which pages you
through 14 different colour schemes. This command is assigned to the shifted 9
key.(Shift+{9)

These colours are retained when you reset the editor using Undo or Default
One major snag with this approach, is that these settings are lost every time you
exit from the STOS Basic system. Furthermore, although 14 different options may
sound quite alot, it's really rather restrictive when you realise that both the text and
the background can be chosen from a palette of 512 colours. This gives you over
260,000 possible combinations.

Fortunately, the STOS Basic package comes complete with a special configu-
ration program which enables you to customise the system to your own individual
requirements. This program can be found on the STOS basic language disc and
is called "CONFIG.BAS". It can be loaded and executed by the line:

run “CONFIG.BAS™

On loading, CONFIG presents you with the following screen:

Befault resalution lin colowr): O N
Default Linguage! (HEEN
Black and White environnement: i »iea
168 Coloar enviromaenent: uun) acio]

11 CEC] e

[2a8] (50a]

~
[y CHErmRE)

You can select any one of the various alternatives by simply moving the mouse
over the appropriate item, and clicking on the left mouse button. If, for example,
you wished STOS Basic to enter medium resolution instead of low resolution on
loading, you would place the pointer over the MEDIUM option and press the left
mouse key. This button would now be highlighted and the LOW option deselected.

You can also use this dialogue to select the colours of the text (PEN), and the
background (PAPER). These are specified using a standard RGB format. Each
digit in the box corresponds to the strength of either the red, green, or blue
components of the colour. These components can take intensities ranging from
0-7. An intensity of zero indi that none of this is to be used in the
final colour, and a value of 7 denotes the maximum In!ensnty These numbers can
be changed by clicking on the + or - boxes.

Supposing you wanted to set the text colour to yellow, and the background
colour to red. In this case, you would set the paper colour to a value of 700, and
the pen to 770. (yellow=red+green).

After you have finished with these colour settings, you now need to save ihem
tothe disc. Before you can do this, you must first enter the second menu by clicking
on the Next Page option. This displays the following dialogue box.

21

Tias Uasic editar garameters - Page 1

Tonction Kegs

o
" u:! . Bas’
fi
i
il
f18:nade |

b
hiH

(SR WO
The secondary menu allows you define the default function key assignments, and
choose a set of accessories which will be loaded automatically along with STOS
Basic. As you move the mouse pointer around on the screen, any function key
definitions you pass over are highlighted. These keys can be changed by simply
clicking on the left mouse button, and then typing in the new definition.

One interesting possibility is to set the function keys to a list of the 20 most
commonly used Basic instructions. This would enable you to type in even the
longest STOS Basic programs extremely quickly.

You can also change the accessory list in exactly the same manner. In this
case you should enter in the name of the file containing each accessory you wish
1o be loaded.

Finally these assignments can be saved to the disc by clicking on the Save on
Disk option. They will now be automatically set every time you load STOS Basic.

Loading/Saving Basic programs

There are two possible ways you can load a Basic program into STOS Basic.
Firstly you can use the normal LOAD option like so:

load “CONFIG.BAS"
(For a fuller explanation of this command see SAVING and LOADING)
This command works fine if you know the name of the program you wish to load,

but often this is not the case. In these circumstances you can use the FLOAD
instruction to choose a file using a special file selector.

FLOAD (Load a file using the file selector)
FLOAD path$
path$ is a string containing the search path. (See DIR)
Example:
fload “* bas”
Choose a Basic file to load. Assigned to 14

22

When you type the above line, a dialogue box will be displayed on the screen. If
you are already familiar with the GEM file selector, this should prove fairly self
explanatory. If not, then the following diagram should make things a little clearer.

LOAD file.
upr
:g gEC‘l BAS e @
CevlEer o g
auIT E]

oo I &]

A:iN\=.bas

As with the equivalent Gem system, you can choose a file by either clicking on one
of the filenames, or typing the name of a file directly into the choice box. This file
can then be loaded by either double clicking on the file itself with the left mouse
button, clicking on the Return box, or pressing Return.

The most obvious difference between this file selector and the Gem version,
is the lack of a scroll bar. Instead, you can page through the directory listing by
simply clicking on the Up and Down buttons. Also, you can now get a directory
listing of the current disc at any time, by clicking on the Dirbutton. This allows you
update the directory after you've changed discs.

Note that the * at the front of an item is equivalent to Gem's symbol in that it
denotes the existance of a folder. You can enter this folder by clicking on the name.
In order to exit back to the outer directory, click on the Previous button

As an example, try loading the CONFIG.BAS file using this file selector.
FSAVE (Save a Basic file chosen with the file selector)
FSAVE path$

FSAVE allows you to save a program chosen from a file selector box. As before,
path$ denotes the type of program you wish 1o save.

Type in the following small program:
new
10 print “Executing Line 107
20 print “Executing Line 20"
30 print “Executing Line 30"

Now enter the line:
fsave “*.bas”
or press function key 15

You will now be presented with the standard file selector. Enter the name of your
new file. As you type, the filename is displayed in the current file box. This text can

23

be edited in the normal way. If you now press Return, your file will be saved to the
disc.

You can test this procedure by erasing the program from memory with
new

You should now hit 14 to execute the FLOAD command, and double click on the
file with your new name. This will then be loaded.

Running a program
RUN (Execute the current STOS Basic program)

The standard method of executing a STOS Basic program is using the RUN
command. There are three versions of this instruction

RUN Run the program starting from the first line.
RUN no Run the program starting from line number no
RUN file$ Load and run the Basic program stored in file$
Examples:

Assuming you saved the example file from FSAVE under the filename TEST.BAS,
load the file with:

load “TEST.BAS™
run

Executing Line 10
Executing Line 20
Executing Line 30

run 20
[Executing Line 20
[Executing Line 30

new

run “TEST.BAS™
Executing Line 10
Executing Line 20
Executing Line 30

Incidentally, you can also use the RUN command from inside a program. This
allows you to chain a number of programs together.

Example:

new
10 print “Executing Test™

20 run "TEST.BAS™

30 print “This line is never executed”

24

Any program executed in this way can be terminated using Control+C. You can
restart such a program with the CONT command.

CONT (Restart a program exited by STOP or Control+C)
CONT re-enters an interrupted program slarting from the next instruction. In order
for the program to be conlinued, it must not have been changed in the interval
between executing the STOP and the CONT.
Example:
new

10 for i=1 to 100000

run
Contral+C Interrupt the program after a few seconds.
cont Restart program in the middle of the FOR..NEXT loop.

Entering a STOS Basic program

STOS Basic supports two different types of instructions, direct and interpreted. A
direct instruction is a command to the editor to perform an action such as listing
or saving a program. Most of these direct commands cannol however, be used
within a Basic program. Only interpreted instruclions such as IF or GOSUB are
allowed.

STOS Basic distinguishes between the two sets of operations by checking the
first few characters of the current line. If these characters form a line number then
you are in interpreted mode, and any direct instructions will cause an error.
Otherwise you are in direct mode. Of course, some instructions such as RUN and
LOAD can be used in either mode.

In this section, we will be covering the direct mode instructions which allow you
to create and modify your STOS Basic programs.

AUTO (Automatic line numbering)

The AUTO is a direct i ion which i prints out a new
line number every time you press Return. This enables you to enter long Basic
programs, without having to continually type in the line numbers. As a default,
AUTO starts off at line 10 and increments the line in units of 10.

Look at the example below:

aute

10 print “Test of AUTO™

2

30 <Return>

un
In order to distinguish between the text generated by the computer, and the text
entered directly from the keyboard, we've underlined any text which has been
typed in by the user. Note how the Return in line 30 was used to exil from this AUTO
statement.

Now type the lines:

25

SBE

<Return>

As you can see, the AUTO command automatically started again from line 30. This
enables you to jump back into direct mode whenever you wish, and then resume
at the point you left off.

It is important to realise that AUTO places you in interpret mode. This means
that any direct mode instructions you try to use will cause an error. These
instructions include all the normal screen editing operations. Therefore, if you
discover a mistake in a line you have just entered, you must exit back to the editor
in order 1o correct it.

Also note that there are a couple of other possible formats to this instruction:

AUTO start Starts automatic line numbering from line number
stan.
AUTO start,inc Starts from line start and increments each succes-
sive line by the number inc.
Examples:
auto 50
50 print “Test of AUTO"
60
10 rem First line
11 rem Second line
12

RENUM (Renumber ali or part of a program)

When you're writing a large program, you often end up having to insert many extra
lines at various points in your routine. Inevitably, this tends to make your program
increasingly messy and hard to read. The RENUM command tidies things up for
you by neatly renumbering any or all the lines of your program. The destinations
of any GOSUBSs or GOTQ instructions in the program are automatically amended
to take these new line numbers into account.

There are four different ways of using this RENUM command:

RENUM Starts by setting the first line in your pro-
gram to 10, and then renumbers each
succeeding line in units of 10.

RENUM number Sets the first program line to number,
and renumbers all the other lines in
increments of 10.

RENUM number,inc Starts at line number and increments
each successive line by inc.

RENUM number, inc, start-end Renumbers lines from start 1o end,
beginning with line number, and incre-
menting each proceeding line by inc.

Note that STOS Basic will not allow RENUM to overwrite any existing parts of the
current program.

Example:

new

10 print “Example of renumber™
20 goto 50

30 gosub 70

0 stop

50 print ~ Destination of goto™
60 goto 30

70 print * Destination of gosub™
80 return

LIST (List the lines of a Basic program to the screen)

The LIST command is used to list part or all of the current program to the ST's
screen. The format of the instruction is:

LIST Lists the entire program.
LIST first- Lists all the lines in the program starting from the line first.
LIST -last Lists the lines from the start of the program to line last.

LIST first-last Lists lines from first to last.

Note that you can temporarily halt the listing at any time by pressing the f
You can also stop the listing completely using either Esc or Control+C. At the end
of the listing, a list of the banks used by the Basic program is appended. The most

common use of the list command, is to list a section of the program on the screen
for subsequent editing. See LLIST

SEARCH (Searches for a string in a Basic program)
SEARCH s$
SEARCH has 1o be one of the most usetul of all the direct instructions, bacause

itallows you to find the position of a string contained within a Basic program. This
'search string can include any STOS Basic instructions.

3100 paper 1:pen D:windopen 1,20,6,40,6,10:curs off:print:centre “Please
insert a disc including™:printcentre”the stos folder.” print

In order to find the next occurrence of the string, you simply type the SEARCH
command on its own:

search

27

You can also restrict your search to a specific part of the program by adding an
optional starting and ending point to the instruction:

SEARCH a$ start-end

start is the line at which the search should begin, and end is the line at which it
should finish.

The reason why this command is so useful is that you can use it to search
through any of the example programs supplied on the STOS Basic disc. Suppos-
ing, for instance, you wanted to see how the sprite editor animated its sprites. All
you need to do, is type the following lines:

load "SPRITES.ACB™

search “anim”

7050 M=0 : gosub 10700 : anim off : sprite off : update : gosub 7325 : loke
start{1)+4,512 : erase B : update off

You can repeat this process to find out the precise locations of all the anim
instructions in the program by just typing

search
Another trick is to start any important sections of your program with a line like:
rem Define sprite
This allows you to find the exact position of your routine at any time without having
1o list through the entire program.
CHANGE (Change all occurrences of a string in a program)
CHANGE a$ TO b§ [,start-end]
The CHANGE command searches through a program and replaces any occur-
rences of the first string with the second. The optional start and end points define
the section of the program which should be changed.
Example:
10 AX158=1
20 for I=110 10
30 AX15B=AX15B+AX158
40 print “The value of variable AX158 is “;AX15B
50 next i

Since we've used a rather horrible variable name in this program, we can now
change all occurrences of AX15B into COUNT using the line:

change “AX158" to “COUNT"
Listing the program now gives:

10 COUNT=1

20 for =1 to 10

30 COUNT=COUNT+COUNT
40 print “The value of variable COUNT is “;COUNT

28

50 next |
See also SEARCH.
DELETE (Delete some or all lines of a program)
DELETE first-last
The DELETE command is used to selectively erase sections of your ﬁaslc
programs. If lines first and /ast do not exist then this delete operation is not
performed.
Example:
new
10 rem Line 10
20 rem Line 20
30 rem Line 30
40 rem Line 40
delete 20-30
list
10 rem Line 10
40 rem Line 40
Typing a line like:
delete 11-31
has no effect.
MERGE (Merge a file into the current program)
MERGE file$
The MERGE command combines a program stored in the file file$ with the current
program. Existing lines will be overwritten by any new lines with the same number.

This instruction is often used to merge a set of subroutines into one complete
program.

Debugging a program

Many Basics include a special TRACE command which enables you to step
through a program one instruction at a time. The STOS Basic version of this
instruction is rather more powerful as it also allows you to track the contents of a
list of variables.

FOLLOW (Track through a STOS Basic program)

There are five possible formats for the FOLLOW command.

FOLLOW If the FOLLOW statement is used on its
own, the program will halt after every in-
struction and list the number of the current
line. The next line in the program can be
stepped through by pressing any key.

29

FOLLOW first-last This version of the instruction only follows
the program when the lines between first
and /ast are being executed.

FOLLOW variable list This takes a list of variables separated by
commas and prints them out after every
instruction has executed. As before, you
can step through the program by pressing

any key.
FOLLOW variable list, first-last Identical to the instruction above, but the
variables are only followed when the lines
firstand J
FOLLOW OFF Turns off the action of the FOLLOW com-
mand.

The FOLLOW instruction has a minimal effect on the current screen, and does not
change the position of the text cursor.

Examples:

new

10 for X=0 to 10
20 for Y=0 1o 10
30 next Y

40 next X
follow X.Y
run

Page through the program by pressing any key. To abort the program simply press
Control+C

Multiple programs

STOS Basic allows you to have up to four programs in memory at any one time.
These may be completely independent of each other. If you suddenly decided to
change the configuration of the editor for instance, you could easily load the
CONFIG.BAS program into a separate segment of the ST's memory without
interfering with your current program.

Example:

new
10 print “This is program number ONE™
run

This is program number ONE

Ifyou now press the Help key you are p with plex looki). The
top line of this menu has the text Editing program : 1. Also, on of the menu lines
is inverted. This line indicates the current program segment and is highlighted by
the program cursor . Try pressing the Up and Down arrow keys. As the program
cursor moves up and down, the program number changes between 1and 4. Move
the program cursor to the second line. The title should now read Editing program
2 You can enter this program segment by pressing the Help key.

Now type:

list
As you can see, the second program space is empty.
Type the following program:

10 print “This is now the second program™
run

This is now the second program.
You can now re-enter the first program again using the Help menu. First press the
Help key, and then press the Up arrow key once. The title line will now indicate that
you are editing program number 1. Exit to this program by pressing Help, and type:
run

This is program number ONE

So far, we've only used two programs in memory. You can however readily
access any of the four programs in exactly the same manner.

MULTI (Display a number of programs simultaneously.)
MULTI n
The MULTI command simplifies the process of using multiple programs by
dividing the editor window into separale segments, one per program. These
programs can be entered with the Help key as before.
Example:
MULTI 2 Splits the editor window in two.
Top section = Window 1 = Program 1
Bottom section = Window 2 = Program 2
This instruction is assigned to Shift+2
MULTI 3 Splits the editor into three sections.
Top section = Window 1 = Program 1
Bottom left section = Window 2 = Program 3
Bottom right section = Window 3 = Program 4
MULTI 3 is assigned to Shift+f3

MULTI 4 Divides the editor into four quarters. Each window has its own
program. Also assigned to Shift+14

Note that n can only take values between 2-4

As a further example, select segment number 1 with Help and type in:

load “CONFIG BAS™
list

Now type:
multi 2

31

which splits the window into two and redraws the listing.
You can continue this experiment by typing in the lines:

multi 3
and
multi 4
Now type in the command:
full
which expands the current window to the full screen.
FULL (Expand current window into the full screen area)

In expanding the current edit window. Full does not effect the status of any of the
other programs.

Splitting programs in the Editor

You can also use the MULTI command to split a single program into a number of
separate sections. This can be done using the Help menu. Position the program
cursor over program 1 and press the left and right arrow keys. As you can see, the
text cursor is moved between four different boxes on the program line. Move the
cursor to the first box and type in 1000 followed by Return. This sets the end point
of the first part of the program to line 1000.

If you now exit back to the editor and type MULTI 2, the program will be split
into two windows. You can choose between these two windows using the mouse
pointer. To see how this works, position the mouse in the top window and click on
the left mouse button. The cursor in this window will immediately start flashing, and
the window will be activated.

Enter the following line:
list

This lists all the lines of the program until the line 1000. If you repeat this process
in the second window, you will generate a listing of the lines 1000 onwards.

Each box on the program line represents a different section of the listing. You
can therefore use this technique to split a program into four separate parts. It is
important to note that this has no effect on any existing segments, and you can
page through each of the programs stored in memory using the Help menu as
usual. All four of these programs can be split in exactly the same way without
interferring with each other.

GRAB (Copy all or part of a program segment into the current program)

The GRAB command allows you to ine a number of ines stored in

p rogram into one program. This enables you to test
each subroutine in your program independently. The syntax of the GRAB
instruction is:

GRAB n Copy program number n into the current program,
where n ranges from 1 to 4. Any attempt to use the

3z

number of the current program in this instruction will
naturally generate an error message.

GRAB n, first-last Only copies the lines between first and last into the
current program.

See MERGE.
System commands
SYSTEM (Exit back to Gem)
The SYSTEM instruction is used to quit from STOS Basic. Note that any programs

loaded in STOS Basic which have not been saved to disc willbe LOST! You should
therefore think carefully before confirming this option with Y.

RESET (Reset the editor)
RESET simply reinitialises the editor and redraws the current screen.
DEFAULT (Reset the editor and redraw current windows)
DEFAULT redraws any currently defined windows on the screen, and resets the
STOS Basic editor. Unlike RESET, DEFAULT can be used either in direct or
interpreted mode. This allows it to be utilised at the end of a Basic pregram to jump

back tothe editor. The effect of this instruction can also be achieved from the editor
by pressing the Undo key twice. Do not confuse this with the DEFAULT function.

NEW (Erase the current program)

This command deletes the current program from the ST's memory. It has no effect
on any other programs stored in different program segments.

See UNNEW.

UNNEW (Recover from a NEW and restore the current program)

UNNEW attempts to recover from the effects of a NEW command, and restore
your gurrent program back from the dead. It will only work providing you have not
entered any further Basic program lines since the original NEW.

Example:

10 rem This line is dead
new

list

unnew

list

CLEAR (Ciear all the program variables)
The CLEAR instruction erases all the variables and all the memory banks defined
by the current program. It also repositions the READ pointer to the first DATA
statement in the program.

33

FREE (Return the amount of tree memary)

FREE returns the number of byles of memary which is currently available for use
by your Basic program. In addition it reorganises the memory space used to hold
your string variables. The technical term for this process is garbage collection.
Unfortunately. the time taken by this procedure varies exponentially with the
number of strings you have defined. This may range Irom mere milliseconds for
small numbers of strings, lo several minutes for large string arrays with several
thousand elements.

Itis important 1o nole thal this garbage collection will also occur automatically
while your program is running. This is potentially a fairly serious problem as it could
lead to your program unexpectedly halting for several minutes. The solution is to
call FREE and force this reorganisation when it will cause the least amount of
harm.

Example:
print free
0736
100 print “Thinking":x=free
Note that FREE is equivalent to the FRE(0) function found in many other Basics
ENGLISH/FRANCAIS (Choose the language lo be used)

Since STOS Basic originates from France, all system messages are provided in
both French and English.

FRANCAIS Uses French for all subsequent dialogue.

ENGLISH Uses English for any messages (Default)
FREQUENCY (Change scan rate from 50 to 60 Hertz)

This function is only useful is you have a medium resolution monitor capable of
scan rales higher than the normal 50 frames per second. If you have a multi-sync
monitor, you can use FREQUENCY to improve the quality of the screen display
considerably. Note that FREQUENCY also changes the frequency of any inter-
rupls used by STOS Basic to 60 times a second. DO NOT USE THIS FUNCTION
WITH A NORMAL TV SET.

UPPER (Change listing mode to uppercase)

Normally, any instructions you type into a STOS Basic program are listed in lower
case, and any variables in upper case. The UPPER directive reverses this format

Example:
new
10 0=10
20 PRINT “The Value of N is “,n
list

10 N=10
20 print “The Value of N is “,N

34

upper
list

10 n=10
20 PRINT “The Value of N i

LOWER (Change Editor mode to lower case)
LOWER returns the listing format back to the default case. Any variables will now

be listed to the screen or printer in upper case, and instructions will be output in
lower case.

Naming conventions for variables

The names of STOS Basic variables need to conform with a number of rules
Firstly, each variable name must begin with a letter. Also, the names must not
contain any of the following Basic keywords

TO, STEP, THEN, ELSE, XOR, OR, AND, GOTO, GOSUB, MOD, AS

All other keywords such as RUN or POKE are, however. perfectly legal
Examples of legal variable names:

A, RUNES, IPOKE, TEST, 2299, C5#

Here are a few examples of illegal names. We've underlined the illegal bits to make
things clearer.

CAST. 5C, SORT, BANDS, MODERN#, TOAD
The maximum length of these variable names is 31 characters. Note that the # and

$ suffixes denote the type of variable.

Types of variables
STOS Basic allows you to use three different types of variables in your programs.
Integers
Unlike most other Basics, integers are used by default. Since integer arithmetic
is generally much fasler than the more normal floating point operations, this
strategy can often improve the speed of Basic programs considerably. Each
integer is stored in four bytes, and can range from:
2147483648 1o + 2147483648
Examples of integer variables:
A. NUMBER, HELLO
Real numbers
These are suffixed with a # character. They correspond directly to the double

precision floating point variables used in other versions of Basic. Each real
variable is stored in eight bytes, and can range between:

35

-1.797692 E+308 and +1.797693 E+307
These real numbers are accurate to a precision of 16 decimal digits
Examples of floating point variables:
P#, NUMBER#, TEST#
String variables

String variables are always suffixed with the § character, and can range from 0-
65500 characters long. They are nol terminated with a chr$(0).

Examples of string variables:

NAMES, TESTS, TEL$
Arrays

Any of the above variable types can be incorporated into a table known as an array
These arrays can be created using the DIM instruction.

DIM (Dimension an array)

DiMis used o set up a table of variables. These tables may consist of any number
of dimensions you like, but each dimension is limited to a maximum of 65535
elements.

Example:
10 dim A${10),B{10,10),C#{10,10,10)

In order to access an individual element in this array, you simply type the array
name followed by the index number enclosed between round brackets (). The
following small example should make this a little clearer:

new
10 dim NAMES{10),AGE(10)

20 for I=D 10 10

30 input “What is your Name";:NAMES{I)
40 input "What is your Age”;AGE(l)
50 next |

60 print “"NAME AGE™

70 print *

80 for =010 10

90 print NAMES(1) AGE(1)
100 next |

Itis important to note that the element numbers of these arrays always start from
zero.

See MATCH and SORT.
Constants
As a defaull, all numeric constants are treated as integers. Any floating point

36

assignments to an integer variable are automatically converted to a whole number
before use.

Examples:

A=3.1411:print A
3
|’||'ill 192

In addition to the usual decimal notation, you can also use either binary or
hexadecimal expressions.

Binary numbers are signified by preceeding them with a % character, and
hexadecimal numbers are denoted by a $ sign. Here are a few examples of the
various different ways the number 255 could be expressed.

Decimal: 255
Hexadecimal: $FF
Binary: %11111111

Note that any numbers you type into STOS Basic are converted into a special
internal format. When you list your program, these numbers are expanded back
into their original form. Since STOS Basic prints all numbers in a standard way,
this will often lead to minor discrepances between the number you entered, and
the number which is displayed in the listing. The VALUE of the number will
however, remain completely unchanged.

Floating point constants are distinguished from integers by a decimal point. If
this point is not used, then the number will always be assumed to be an integer,
even if this number occurs inside a floaling point expression. Take the following
example:

new

10 for i=1 to 10000

20 Ad=AR+1

30 next i
In this program, the “1” in line 20 is stored as an integer. Since the conversion
between integer and floating point numbers takes place each time the line
executes, this program will be inherently slower than the equivalent routine below.

new
10 for i=1 to 10000
20 Ak¥=A#+1.0

30 next |

This program executes over 25% faster than the original one because the
constant in line 20 is now stored in floating point format. You should therefore
always remember to place a decimal point after a floating point constant even if
it is a whole number.

Incidentally, if you mix floating point numbers and integers in an expression,
the result will always be returned as a floating point number.
Example:

print 19.0/2
95

37

print 3.141+10
nn

Arithmetic operations

The following arithmelic operations can be used in a numeric expression.
3 Power
/and* Divide and multiply
MOD Modulo operator (Produces remainder of a division)
+and- Plus and minus
AND Logical AND
| OR
XOR Logical XOR

We've listed these operations in ascending order of their priority. This priority
refers to the sequence in which the various sections of an arithmetic expression
are evaluated. Operations with the highest priority are always calculated first.
Here is an example of how this works in practice.

print 10+2°5-8/4+5%2
This evaluates in the following order:

582 =5'=25

5 =10
B/ =2
10410 =2
202 =18
18+25 =4

I you wanted this to evaluate differently, you would simply enclose the parts of the
expression you wished to execute first in round brackets:

print (10+2)*(5-8/8+5)*2

This gives the result 12°(8"2) or 12°64 or 768. As you can see, the addition of just
two pairs of brackets has changed the sense of the expression entirely.

‘While on the subject of

perati it's worth ioning two useful
functions: INC and DEC.

INC (Add 1 to an integer variable)
INC var

INC adds one to an integer variable using a single 68000 instruction. It is logically
equivalent to the expression var=var+1, but is much faster.

Example:

new

10 timer=0

20 print “Increment A with A=A+1"
30 for =1 to 10000

40 A=A+

50 next |

60 print “Took “timer/50.0;" Seconds™

70 timer=0

80 print “Increment A with INC instruction™
90 for I=1 to 10000

100 inc A

110 mext |

120 print “Took “timer/50.0;” Seconds™;

It should be apparent that the second version of the FOR...NEXT loop executes
considerably faster.

DEC (Subtract 1 from an integer variable)
DEC var
This instruction subtracts one from the integer variable var.
Example:

A=2
dec A
print A
1

String operations

Most modern Basics allow you to add two strings together like this:
A$="STOS"+" Basic™
print AS
STOS BASIC

In addition STOS Basic also lets you perform subtraction with string variables as
well. This operation works by removing all cccurrences of the second string from
the first.
Examples:

pﬁm “STOS BASIC™-"8"

BAIC
pﬁm 'STOS BASIC™-"STOS™

print “ A String of Char acters™" ~
AStringofCharacters

Comparisons between two strings are performed on a character by character
basis using the Ascii codes of the characters.

Examples:
“AA" < “BB"
“Filename”="Filename”
&> A
“HELLD" < “hello”™

Common string functions
LEFTS (Return the leftmost characters of a string)

LEFT$(v$,n) There are two distinct forms of this command. The
first version of LEFTS$ is configured as a function
and returns the first n characters in the string
expression v§.

Examples:

jprint lefi${"STOS Basic",4)
sT08
a$=left${"0123456789ABCDEF",10)

10 input “Input & string”;V§

20 input "Number of characters”;N
30 print leftS(VS,N)

40 goto 10

There's also a different variant of LEFT$ implemented as an instruction.
LEFTS$(v$,n)=t$ This instruction sels the leftmost ncharacters in v§
to t§. If 1§ is longer than n, it is truncated to the
appropriate length. Note that unlike the LEFT$
function v§ must be a string variable rather than an
expression
Example:
10 A$="** Basic™
left$(AS.4)="ST0OS"
30 print AS
un
$T0S Basic
RIGHTS$ (Return the rightmost character of a string)
RIGHT(v§,n) Return the rightmost character in v§. RIGHTS is a
function which reads n characters from the string
expression v§ starting from the right.

Examples:

print right$("STOS Basic™5)
Basic

AS=right${"0123456789ABCDEF",10)

new
10 input “Input a string™;V$
20 input "Number of characters™;N

40

30 print rightS(VEN)

40 goto 10

As with LEFT$ there's also another version of RIGHTS set up as a Basic

instruction.

RIGHTS(vS,n)=t$ Set rightmost n characters of v§1o (§. Note that v§
should always be a string variable, and that excess
characters in t§ are omitted.

Example:

See LEFTS, MID$
MIDS$ (Return a string of characters from within a string expression)

MIDS$(v$,5.n) The MID$ function returns the middle section of
the string v§. s denoles the number of character at
the start of this subslring, and n holds the number
of characlers 1o be fetched. If a value of n is not
specified in the instruction then the characters are
read up to the end of the string v§.

Examples:
print mid${"STOS Basic" 6}
Basic
print mid$(“STOS Basic”.6.3)
Bas
new
10 input “Input a string”":V§
20 input “Starting Position, Number of characters™;S,N

30 print mid${V$,S,N)
40 goto 10

There's also a MID$ instruction.

MID$(v$,s5,n)=t$ This version of MID$ sets n characters in v§
starting from s in the string t$. If a value of nis not
included in this instruction, then the characters are
replaced up to the end of v§.

Examples:
AS="STOS **~
mid${AS.6)="Magic™
print AS
STOS Magic

41

l!lﬁtmj-"ln

print

8’1’03 Basic

new

10 input “Input a Ilmltsﬂ’ill VS

20 input “Input a substring”;T$

30 input "Starting Puniu Number of characters™:S.N
40 mid$(VS.S N)=TS

INSTR (Search for occurences of a string within another string)
INSTR allows you to search for all occurrences of one string inside another. It is
especially useful for adventure games as it enables you to split a line of text into
its individual words. There are two forms of the INSTR function.
INSTFttdS.sS) This searches for the first occurrence of s§ in d§.
It the string is found, then the position of this

substring is retumed by the function, otherwise a
value of 0 is returned.

Examples:
print instr{"STOS Basic”,"ST0S)
:ri-l instr(“STOS Basic™,"S")
::ri-! instr({"STOS Basic™,"FAST")

new

10 input *String to be searched”:D$

20 input “String to be found":S$

30 X=instr{D$.5%)

40 if X=0 then print 85" not found™

50 if X<>0 then print $%;” found at position ~X
60 gota 10

INSTR(d$,s$.p) This version of INSTR finds the first occurrence of
s$ in d$ starting from character number p.

Examples:
print instr{STOS BASIC","S".2)
4

‘You can change the above example to this new form of INSTR by typing the lines:

25 input “Starting position™;P
30 X=instr(D$.5%.P)

Here is an example which splits a line of text separated by spaces, into its
component words.
10 print “Please type a string of characters” : input P$

42

21=0

30 repeat

40 P1=instr{PS,” “P)

50 if P1<>0 then L=P1-P else L=len{P$)-P+1

60 print “Word number “i;" = “:mid${PS,P.L) : P=P141 : inc |
70 until P1=0

Array Operations
SORT (Sorts all elements in an array)
SORT a$(0)

The SORT instruction allows you to sort all the elements in an array into ascending
order amazingly quickly. This array can be composed of either strings, integers,
or floating point numbers. The a${0) indicates the starting point of the table to be
sorted. This starting point must always be set to the first item in the array (item
zero).

Example:

10 dim A(25)
2P=0

30 repeat
L] :lpll “Input a number (0 to stop)™;A(P)
50 inc

P
60 until A(P-1)=0 or P>25
70 sort A(0)
80 for =0 to P-1
90 print A(l)
100 next |

SORT is often used in conjunction with the MATCH instruction to perform complex
string searches.

MATCH (Find the closest match to a vaiue in an array)
MATCH (t(0),s)

The MATCH function searches through a sorted table, and returns the item
number in which the value s was found. If 5 is not found, then MATCH returns a
negative number. The absolute value of this number contains the index of the first
item which was greater than s. Providing the array is of only one dimension, it can
be of type string, integer or real. Before MATCH can be used the array should
always be sorted using the SORT command.

Example:

new
10 read N

20 dim D$(N)
Wforl=1to N
40 read D${l)
50 next |

60 sort D${0)

70 input AS

80 if AS="1" then for I=1to N :

90 POS=match(D${0).AS)

100 if POS>0 then print “found”,D$IPOS).” in record “;POS

110 if POS<0 and abs(P0S)<=N then print AS,"not found. Closest to

“D$(abs(POS))

120 if POS<0 and abs{POS)>N then print AS,"not found. Closest to™;D${N)

130 goto 70

140 data
,"adams™,"asimov”,"shaw","heinlien”,"zelazny","foster",“niven”

150 data “harrison”,”pratchet”,"dickson™

Note that the MATCH instruction could be used in conjunction with INSTR to
provide a powerful PARSER routine which could form the basis of an Adventure
game.

Memory banks

STOS Basic includes a number of powerful facilities for the manipulation of
sprites, screens and music. The data required by these funclions needs lo be
stored along with the Basic program. STOS Basic uses a special setof 15 sections
of memory lor this purpose called Banks. Each Bank is referred to by a unique
number ranging from 1-15. Many of these banks can be used for all types of data,
but some are dedicated solely to one sort of ion such as sprite defini
Every program stored in the ST's memory has its own separate sel of Banks.

There are two different forms of memory bank: Permanent and temporary.
Permanent banks only need to be defined once, and are subsequently saved
along with your program automatically. Temporary Banks however, are much
more volatile and are reinitialised every time a program is run. Furthermore, unlike
permanent banks, temporary banks are erased from memory by the CLEAR
command.

Types of memory bank

[Each memory bank can be one of following different types.

Class Stores Restrictions Type
Sprites Sprite definitions Only bank 1 (1) Permanent
Icons Icon definitions Only bank 2 (1) Permanent
Music Music Only bank 3 (1) Permanent
3D Future 3D extension Only bank 4 (4) Permanent
Set Holds new character sets Banks 1-15 Permanent
Screen Stores a complete screen Banks 1-15 Temporary
Datascreen Stores a screen Banks 1-15 Permanent
Work Temporary workspace Banks 1-15 Temporary
Data Permanent workspace Banks 1-15 Permanent
Menu Menu lines Bank 15 (2) Temporary
Program Machine-code program Banks 1-15 (3) Varies
Footnotes:

(1) Bank is not really general purpose. It is allocated automatically by the
appropriate accessory, or when a bank of this type is loaded.

44

(2) Reserved automatically by MENU commands. Usable by programs which
don't use menus.

(3) Reserved as either Work or Data. Renamed when program loaded into bank.
See LOAD.

(4) Reserved for future expansion.

You can get a list of the status of the Banks which are currently being used by a
program with the LISTBANK command.

LISTBANK (List the banks in use)

LISTBANK lists the numbers of the banks currently reserved by a program. along
with their location and size.

Example:
load "BULLET.BAS™

listbanks

Reserved memory banks:

1 i S:5055000 E:S066500 L:$011500
3 $:5066500 E:S067300

7 $:$067300 E:S069300 L:5002000
8 $:5069300 E:S069B00 L:$D00800
9 $069800 E:$06A200 L:S000700
10 $:506AZ00 E:SOGAS00 1L:3000700
n $:506A%00 E:SO6AFD0

12 S:S06AF00 E:S06C000 L:3001100
13 $:506C000 E:S06FF00 L:SDO3F00

S:= The start address of the bank.
E:= The end address of the bank.
L= The length of the bank.

As a default all these values are printed out in hexadecimal notation. You can,

however, change the format of the listings into decimal using the command HEXA
OFF

HEXA ON/OFF (Toggle hexadecimal listing)

HEXA OFF Sets bank listings 1o decimal notation.
HEX ON Sets bank listings to hexadecimal format
Example:
load “BULLET BAS"
X8 off
listhanks

sprites $:348160 E:419072 L7091
music S:419072 E:A422656 L:3584
422656

progam §:43048 E:43289% L2048
data 543289 34688 L1792

45

10 data L1792
11 data L1536
12 data 5:438016 E:442368 L4352
13 data 5:442368 [E:458496 L:16128

RESERVE (Reserve a bank)

Any banks used by the spriles, music, icons, 3D extensions, and the menus are
allocated automatically by the system. The RESERVE command allows you to
allocate any other banks which you require. Each different type of bank has its own
individual form of the RESERVE instruction,

RESERVE AS SCREEN bank

RESERVE AS DATASCREEN bank

RESERVE AS SET bank,length

RESERVE AS WORK bank length

RESERVE AS DATA bank length

Reserves a temporary bank of memory
for a screen. This bank is always 32k
long.

Reserves a permanent bank of memory
32k long for use as ascreen. This screen
is saved along with your program, so it's
great for title screens. See Chapter 7 for
examples o! this instruction in action.

Reserves a permanent bank of memory
length bytes long for use as a character
set. See Chapter 8.

Reserves a temporary bank for use as a
workspace length byles long.

Reserves a permanent bank of memory
length bytes long for use as a work-
space.

Note that bank may be any number between 1-15. Since banks 1 o 4 are normally
reserved by the system, it's wisest to leave these banks alone. Length is
automatically rounded up to the nearest 256 byte page. The only other limit o the
length of a bank is the amount of available memory.

Type the following lines:

new

hexa off

reserve as screen,5
listbank

Reserved memory banks:

5 screen S: 950016 E: 382784 L: 32768

This reserves bank number 5 as a lemporary screen. Now type:

clear
listbank

As you can see, bank 5 has now been completly erased. In order to create a more

permanent bank, enter:

reserve as datascreen 5

listbank

clear

listbank

Reserved memory banks:

5§ dscreen S: 950016 E: 982784 L: 32768

Bank 5 is totally ur by the clear We'll now ate how this
screen can be loaded with real data.

screen copy logic to 5 Copies the current screen to bank 5.

cls Erase screen

screen copy 5 to logic Copies bank 5 back to current screen, and

For more information about SCREEN COPY see Chapter 7.

Copying banks
When using these memory banks, it's often useful to be able to transfer the

contents of one bank to another. This can be done with a special BCOPY
command.

BCOPY (Copy the contents of a bank to another bank)
BCOPY #source TO #dest

BCOPY copies the entire contents of bank number source into bank number dest.
As usual source and dest can range from 1-15

Example:
BCOPY 5 TO 6 Copies bank 5 into bank 6

BGRAB (Copy some or all banks from a program to the current program)
BGRAB prgno [,b]

BGRAB copies one or more banks stored at program number prgno into the
current program. Program numbers between 1-4 denote one of the four programs
which can be stored in memory at any one time. Numbers from 5-16 represent an
accessory.

If the optional bank number b is not included, then all the banks attached to
program number prgno are copied into the current program, and any other banks
of memory which are linked to this program are erased. Otherwise, the bank
number specifies one bank which is to be transferred into the current program. All
other banks remain unaffected.

This instruction is used to great effect by many of the accessories on the disc.

Deleting banks
ERASE (Dslete a bank)
ERASE b
47

ERASE deletes the contents of a memory bank b. As usual b can range from 1-
15. Any memory used by this bank is freed for use by your program.

Bank parameter functions
=START (Get the start address of a bank)

bs=START(b)

This function returns the start address of bank number b in the ST's memory.

START(b) Returns the start of bank bin the current program
START(prgno,b) Relurns the start of the bank number b in program
prgno.

Note that b can range from 1-15, and prgno from 1-16. Program numbers greater
than 4 refer to accessories

Example:

reserve as screen 10
print start(10)

=LENGTH (Get the length of a bank)
bl=LENGTH(b)

This function returns the length in bytes of bank number b. If a value of zero is
returned by LENGTH, then bank b does not exist.

LENGTH(b) Gets the length of bank b in the current program.
LENGTH(prgno,b) Gets the length of bank b in program number
prgno.

Example:

new

reserve as screen §

print length(5)

32168

erase §
print length(5)
[]

Saving and loading
SAVE (Save part or all of a STOS Basic program)

The SAVE instruction provides a general and straightforward way of saving a
STOS Basic program on to the disc. Unlike the equivalent instruction found in most
other versions of Basic, STOS also allows you to save a variety of other types of
information. This is determined by the extension of the filename used in the SAVE
command. Here is a summary of the various data types, along with their
extensions.

48

Type of E C
Basic programs .BAS Normal Basic program
Accessories .ACB Load using ACCLOAD
Images .PI1, PI2 or PI3| Degas format screen shot.
.NEO Neochrome format. Only in low
resolution.
Memory banks MBK One memory bank.
MBS All current banks.
Basic variables VAR All currently defined variables
Listings .ASC In Ascii format
RUN-ONLY programs|.PRG Executable directly from desktop.

It none of these extensions are used, then STOS adds .BAS to the Filename
automatically, and saves the current Basic program on to the disc. Any existing
program of the same name will be renamed with the extension .BAK.
‘We'll now discuss each of the possible options in a little more detail.

SAVE “Filename.BAS™

This saves the current program on to the disc under the name filename.BAS. If a
file with the same name already exists, this is overwritten.

SAVE “Filename.ACB™

Saves the Basic program as an accessory. This program can be loaded using
ACCLOAD, and accessed from the HELP menu at any time.

SAVE “Filename.P11"[address of screen]
SAVE “Filename.P12"[address of screen]
SAVE “Filename.PI3"[address of screen]

This instruction saves a copy of the screen to the disc in Degas format. The
different extensions indicate the resolution of the image.

P11 = Low resolution
P12 = Medium resolution
-P13 = High resolution

The Screen address is optional. If itis omitted from the statement, then the current
screen will be saved to the disc.

Example:
save “screen.Pl1”
cls
load “screen.PI1”
See LOAD
Any screen saved in this manner can be subsequently edited directly from Degas.
SAVE “Filename.NEO"

Saves a low resolution screen in Neochrome format. This file can be either loaded
into a Basic program, or modified from within Neochrome.

49

This version of SAVE stores the memory bank with number bon to the disc. It can
be loaded back again using LOAD. An example of this function can be found in the
section on LOAD

save “Filename MBS~

Saves all the banks allotted 1o the current program in one large file. See LOAD
“MBK" for more details.

save “Filename.VAR"

SAVE “Filename.VAR" provides you with the ability to save all the currently
defined variables directly on to the disc. Again see LOAD lor an example of this
function.

save “Filename ASC™

Lists the Basic program to afile in Ascii format. This file can now be edited outside
STOS Basic by a wordprocessor or a text editor. Note that the Banks of memory
are not output by this function. We've used this instruction extensively in the
creation of this manual. Most of the included listings are derived directly from the
original programs.

BSAVE (Save a block of memory in binary format)
BSAVE file$, start to end

The memory stored between start and end is saved to the file file$. The data is
saved out as il is in memory with no special formatting. You can use this function
for various tasks one of which would be to save out a character set from bank 5.

bsave “\STOS\8X8.CRO", start (5) to start (5}+length (5)

See BLOAD

Run-only programs
save “Filename PRG™

This option saves a version of your program in a special format which allows it o
be loaded and executed straight from the Gem desklop. In order to use this
function, you should first prepare a disc using the STOSCOPY.ACB accessory.
This makes a copy of the entire \STOS\ directory on the disc. This disc can now
be used 10 hold your run-only program. NEVER SAVE A RUN-ONLY PROGRAM
ON THE ORIGINAL SYSTEM DISC!

When you save one of these programs, two files with the same name are
created on the disc. One file has the extension .BAS and is stored in the \STOS\
folder. The second file lies outside the folder, and has the .PRG extension. It s this
file which can be executed from the GEM deskiop. When a run-only program
terminates or an error occurs, it immediately returns to Gem

As an example. generate a disc with the correct files using a freshly formatted disc

in conjunction with STOSCOPY.ACB accessory. Now load the sprite editor into
memory using the line

50

load “sprites.ach”
Place the save disc into the drive, and type
save "sprites.prg”

Al this point STOS Basic will ask you to confirm that you really wish to save this
program. Enter Y or y at this prompt.

You have now installed a run only version of the sprite generator, which can
bbe executed directly from the Gem desktop. To test this, quit from STOS Basic
using the SYSTEM command, and double click on the file sprites.prg. This file is
now loaded, and the sprite editor is run, just as if you were executing it directly from
STOS Basic. This program can be terminated using the menu option QUIT or
Control+C.

Notes:

1. Any attempt to execute the STOS Basic editor from a run-only program will
crash the ST completely

2. The files PIC.PI1 and PIC.PI3 in the STOS folder contain low and high
resolution pictures which will be displayed automatically during loading. If you
like, you can omit these files from the disc to save space.

3. The default colours used by your program will be the standard cnes used by
the Gem Desktop. and not the normal STOS Basic colours.

4. Any of your own programs installed as RUN ONLY may be freely distributed
or sold providing you acknowledge that they were written in STOS Basic and
use the protect accessory when giving the disc to anyone who has not bought
a copy of STOS Basic.

5. If you place the run-only program in the \AUTO! folder it will load and run
automatically, whenever the disc is booted up.

6. For more information see Appendix B
LOAD (Load part or ali of a STOS Basic program)
The LOAD instruction complements SAVE by allowing you to enter either a

program or data file from the disc. Here is a list of the various types of files which
may be loaded using this command

Type Extensions allowed
Basic programs BAS, BAK, ACB, ASC
Images .NEOQ, .PI1, PI2, .PI3
Memory banks -MBK, MBS

Variables VAR

Machine-code programs .PRG

See SAVE for a fuller discussion of these extensions.

Basic Programs

LOAD “Filename™

51

Loads a Basic program. Assumes the extension “.BAS"
LOAD "Filename.BAS"
Loads a Basic program with the extension “BAS". Identical to LOAD “filename”
Example:
load “config.bas”

n
LOAD “Filename BAK"

Loads a backup of a Basic program created using the SAVE “Filename” instruc-
tion.

LOAD ‘Filename.ACB”

This loads an accessory as a normal Basic program. It can now be edited and
debugged in the usual way.

Example:
load “type.ach™
list

LOAD “Filename.ASC"

This option lets you load an Ascii version of a Basic program, created using either
a text editor, or another version of Basic. Note that this program must have line
numbers, and be in plain Ascii. First Word users should turn the WP option off
Ibefore exporting a program intc STOS Basic. It is important to realize that this
instruction does not erase the current program. Instead the new file is merged with
this program.

The ability to load a Basic program in this formal can be used to allow you to
generate new STOS Basic listings within a Basic program. This has been used by
the sprite editor to dump the contents of a sprite bank onto the disc in the form of
a list of DATA statements.

LOAD “Filename.MBK"[,b]

This loads a single dala file into a memory bank. If the optional destination of this
data is included, then the file is loaded directly into Bank number b, where b can
range from 1-15. Otherwise the file is loaded back into the bank from which it was
saved. Nole thal any exisling data in this bank is erased during this loading
process. Furthermore, the LOAD instruction automatically reserves a bank of the
appropriate type if it has not already been defined.

Examples:
new
load “sprdemo.mbk
load “musdemo.mbk
load “icondemo.mbk
listbank

LOAD “Filename.MBS"

52

Loads a series of banks stored in a single file. These banks are loaded directly into
their original bank numbers. If these banks already exist, the old versions are
erased.

Place a fresh disc into the drive, and type:
save "BANKS.MBS"

new
listbank
load “BANKS MBS~
listbank

As you can see, all three banks have been loaded in one operation.

Variables
LOAD ‘Filename.VAR"

This loads a list of variables stored on the disc using SAVE “filename.VAR". Any
currently existing variables are replaced. Note that this instruction affects ALL the
variables in the program.

Example:

new
10 dim A(100)

20 for X=110 100

30 A(X}=X

40 next X

50 save “numbers.VAR™

[Run this program with a disc in the drive. Now type in:

new
load “numbers.VAR"
flor X=1 to 100:print A(X):next x

See how the array A has been automatically defined by the load operation.
Images

LOAD “Filename.P11°[address of screen]
LOAD “Filename.P12"[address of screen]
LOAD “Filename.PI3"[address of screen]

The above commands load a Degas format picture file from the disc. If the address
of the screen is not included in the statement, then this image will be loaded into
the current screen. Otherwise it will be loaded into the screen at address. Normally
this address will point to the start of a memory bank defined as either a SCREEN
or DATASCREEN.

Remember that PI1 denoles a low resolution screen, PI2 medium resolution,
and Pi3 high resolution.

Example:

Place the disc containing the \STOS folder into your disc drive and type in:

53

cls
If you have a calour menitor you can now type:
mode 0
load “\STOS\PIC.PIT
and for a monochrome monitor:
load “\STOS\PIC.PI3"

These commands load the STOS title screen into the ST's memory.

BLOAD (Load binary information into a specified address or bank)

This function load in binary data without altering the incoming information. There
are two forms of this function.

BLOAD file$.addr The file file$ will be loaded into the address addr.

BLOAD file$, #bank file$ is loaded into bank, thus the address from
which the data resides once it has been loaded is
the slart address of bank. This start value can be
found with the command:

bkaddr = start (bank)

To see an example of this command insert the accessory disc and type in the line:

bload “mouse.ach”, physic

which loads in the mouse accessory at the memory address of the physical
screen.

See BSAVE.

Machine-code programs

LOAD “Filename.PRG".b
This instruction allows you to load a machine-code program into a memory bank
number b. Any program you wish to use in this manner should be stored in TOS
relocatable formal, and must be placed in a file ending with the " PRG" extension.
DO NOT TRY TO USE GEM-BASED PROGRAMS FOR THIS PURPOSE! You
should also avoid accessing any of the memory management functions from
Gemdos. All other functions may be used, providing you take care
‘You can call one of these functions using the CALL instruction like so:

CALL START (Bank number)
See Appendix C for more details.

Note that when you copy a bank containing a program into another bank, this is
automatically relocated for you.

54

The accessories

The STOS Basic accessories are special programs which lie dormant in the ST's
memory until you call them up using the Help key.

ACCLOAD (Load an accessory)

Before you can use one of these accessories you must first load it into memory
using the ACCLOAD command.

accload “name”
ACCLOAD loads the accessory from the file name into memory. Any normal Basic
programs you have entered will be completely unaffected.
Example:

accload “sprites.ACB™

You can use this function to load all the accessories stored on a disc into memory
al once. In order to do this, simply specify a name of *

Example:
accload ***
Note that you can also use CONFIG.BAS to install a list of these accessories

permanently. This is very wasteful of memory and should be used with caution by
users restricled 1o a standard 520ST.

ACCNEW (R all tly installed)

ACCNEW erases all the accessories from memory. It is often used in conjunction
with ACCLOAD to remove any unwanted accessories before loading a new one.

Example:
accnew:accload ™"

See also ACCNB.

Calling an accessory
A list of the accessories curremly available can be found by pressing the Help key
atany time. This displays a list of funci gside the ies. In order
to call the accessory, simply press the apprupnme kay Note that these keys only
call up the accessory from the HELP menu.

The sprite definer

This accessory s stored in the file SPRITES.ACB and provides a quick and
convenient method of creating or ediling lists of sprites. A full explanation of this
program can be found in Chapter 4.

The character definer
The character definer in FONTS.ACB is used 1o create one of 13 user-defined

55

character sets. These sets can be accessed within a STOS Basic window, or can
directly replace the existing character set. See Chapter 8 for more details.

The icon definer
ICONS are special 16x16 characters which can be displayed in maps, or
incorporated into menus. The ICON definer in ICONS.ACB allows you 1o create
up 1o the 255 of these objects.

The music creation utility
MUSIC.ACB holds a powerful and effective tool for composing music or sound
effects that can be used within any STOS Basic program. Any music created with
this utility can operate independently of the rest of the program. See Chapter 5 for
a thorough examination of this accessory.

Compact

The scr is a simple way of Isl g ascreenintoasmall space.
Typical compaction ratios vary from 30 per cent to up to 75 per cent. The
COMPACT ACB accessory pravides an effective method of performing these
compressions, and saving the results on to the disc. These files can then be
expanded with the UNPACK instruction. See Chapter 7.

Scan

Opens a window in the centre of the screen and prompts you for a keypress. The
Scancode and the Ascii code of this key are then displayed.

Ascii

Displays an Ascii table on the screen. Note that the row and column numbers are
in hexadecimal. Convert to decimal using $.

Example:
print $FF
Mouse
As you move the mouse pointer around on the screen, the current X and Y

coordinates are displayed in the Mouse window. To exit from this accessory click
once on either of the mouse keys.

Type
Prints an Ascii file on the disc to either the screen or the printer,

Stoscopy
This accessory copies the \STOS\ folder along with its contents on to a new disc.
Since this function requires you to input the system disc into the current drive, it's
a good idea to set the write protect tab on your copy of the system disc before
executing STOSCOPY. Full instructions are included along with this program.

56

Dump

This accessory allows you to edit the contents of any part of the ST's memory.
[Each byte of memory is displayed in both Ascii and hexadecimal formats. To edit
amemoary location move the cursor over the appropriate point and input your new
data. When you have finished, press Return lo enter the changes into memory.
These changes can be reversed by pressing Undo.

Arrow keys Move the cursor around the current screen.

Insert Displays the last page of data
Home Displays the next page of data.
Enter Enters any changes into memory.
Undo Reverses the changes.

Note that the MENUS allow you to examine and change any of 16 possible
memory banks associated with each of the four editible programs in memory.

Creating an accessory

The only major difference between a STOS Basic accessory and a normal
program is in its ability to be called up using the Help menu. In fact, these
accessories are really just a specialised form of the multiple programs | mentioned
earlier. It's often useful for an accessory to be able to tell whether it is executing
as an accessory or directly as a Basic program. This can be done with the ACCNB
function.

ACCNB (Get accessory number)
ACCNB returns a value of zero if a program is not installed as an accessory, and
a number between 4 and 15 if it is. This number represents the program number
of the accessory.
Example:
new
10 7 accnb
20 wait key
Save this program as an accessory using the line:
save "acctestach”
Now type:

accnew
accload “acctest.ach”

If you run the program directly from the editor then the number zero will be printed
But if you call up the accessory named acctest from the Help menu, the number
which is displayed will be equal to the function key you pressed + 4

Now for a simple example of an accessory.

new
10 windopen 1,22.5,18,4,5
20 curs off

57

4 Sprite commands

STOS Basic allows you to move and animate up to 15 sprites at any one time.
These sprites can represent anything from space ships to monsters, and can be
created using a powerful sprite definer included as part of the STOS package. All
sprite movements and animations occur completely independently of the rest of
the system. This means thal your program can be doing something totally different
whilst the sprites are whizzing around on the screen regardless.

The Sprite Definer

STOS incorporates an extremely impressive sprite definition utility which allows
you to quickly create large sets of sprites for use by your Basic programs. You can
load this designer from the accessory disc with either:

load "sprite.ach”:rem Load as a normal Basic program (Execute with RUN)
or

accnew:accload“sprite™:rem Load as an accessory (Execute from HELP
menu)

Because of the memory constraints on a standard 520 ST you should always
remove all other STOS Basic accessories from the system before using ACCLOAD.
Furthermore, it would also be a good idea to boot STOS Basic directly from the
AUTO folder, as this will save you an additional 32k of memory.

It is important to note that designer runs in LOW resolution only. Don't panic
if you're restricted to a mono monitor! A separate version of the package has been
especially provided for you on the accessory disc — this will happily work in all three
resolutions. Although this may seem a little less powerful than designer, it is still
capable of generating some stunning effects, and indeed many of the example
sprites on the disc were created using just this utility.

If you have enough available memary it's best to install the sprite editor as an
accessory, as this enables you to access it instantly from within your STOS Basic
program by pressing the <HELP><F1> keys.

On startup, designer automatically grabs any sprites which are currently
employed by your program. You then simply remove the title screen with the left
mouse button, and the sprite editor is ready for business.

—h T

59

4 Sprite commands

STOS Basic allows you to move and animate up to 15 sprites at any one time.
These sprites can represent anything from space ships to monsters, and can be
created using a powerful sprite definer included as part of the STOS package. All
sprite movements and animations occur completely independently of the rest of
the system. This means thal your program can be doing something totally different
whilst the sprites are whizzing around on the screen regardless.

The Sprite Definer

STOS incorporates an extremely impressive sprite definition utility which allows
you to quickly create large sets of sprites for use by your Basic programs. You can
load this designer from the accessory disc with either:

load "sprite.ach”:rem Load as a normal Basic program (Execute with RUN)
or

accnew:accload“sprite™:rem Load as an accessory (Execute from HELP
menu)

Because of the memory constraints on a standard 520 ST you should always
remove all other STOS Basic accessories from the system before using ACCLOAD.
Furthermore, it would also be a good idea to boot STOS Basic directly from the
AUTO folder, as this will save you an additional 32k of memory.

It is important to note that designer runs in LOW resolution only. Don't panic
if you're restricted to a mono monitor! A separate version of the package has been
especially provided for you on the accessory disc — this will happily work in all three
resolutions. Although this may seem a little less powerful than designer, it is still
capable of generating some stunning effects, and indeed many of the example
sprites on the disc were created using just this utility.

If you have enough available memary it's best to install the sprite editor as an
accessory, as this enables you to access it instantly from within your STOS Basic
program by pressing the <HELP><F1> keys.

On startup, designer automatically grabs any sprites which are currently
employed by your program. You then simply remove the title screen with the left
mouse button, and the sprite editor is ready for business.

—h T

59

At first glance the sprite designer may seem rather daunting. Once you have
mastered the basic principles however. using it will quickly become second
nature

The screen can roughly be divided into six separate sections. These have
been numbered from 1-6 in the above diagram

Here is a breakdown of their various funclions
1 The system menu

The system menu centains nine icons which control the main features of the
designer. Typical options available from this section are load/save. change size.
and a clever facilty to allow you to design an animation sequence. These
commands can be accessed direclly from the screen by moving the mouse pointer
over the appropriate icon and pressing the left button. A full list of the system icons
can be found on page 64, along with a detailed explanation of each function.

2 The drawing area

This is the area on the screen in which your sprite will be drawn. Peinls can be
plotted at the current cursor position by pressing either the left or the right mouse
butlons. As a default the right key is set to the background. and the left key lo the
colour white. You can change these colours whenever you like using a special
Colour window.

3 The scroll zone

The scroll zone allows you to see the relatwe size of your sprite, and scroll it in all

four This scrolli 1be d at any time by clicking an one of four
different icons which border the zone:

(Serolis the sprite one pixel up)

(Scrolis the sprite to the left)

" (Scrolls the sprite one pixel down)

} (Scrolls the sprite to the right)

4 The colour window
This is divided up into two sets of 16 colours. One set of these colours is for the
left mouse button. and the other is for the right. To select a a new colour for the
mouse, you simply move the mouse pointer over the new colour and press the left
button. Your current choice will now be highlighted on the screen.

5 The tools section

The tools area contains 18 different drawing icons. These include facilities to

60

create circles, ellipses and bars as easily as a single point. There's also an
extremely useful undo feature which immediately reverses the ellects of your last
command

You can choose one of these funclions by simply clicking on the appropriate
icon. The shape of the mouse pointer will now be changed accerdingly lo indicate
the option you have selected. Most functions require you to first sel the dimensions
of an object before it can be drawn on the screen.

You normally specily the size of an item by keeping the left button pressed
while moving the mouse. When you release this button. the object can be moved
about with the mouse. You can now draw as many copies of the design on the
screen as you wish by pressing the left button at any paint in the drawing area
Incidentally. if you want to draw another object you can immediately reset the size
back to zero with the right mouse button.

6 The Selection window

The selection window is used to display all the sprites which are currently installed
in the ST's memory. Several of the system oplions use this window 1o allow you
to choose one of a number of images which are currently held in the ST's memary
You can scroll through these sprites using the following icons:

(Smoothly moves the list back one place)

(Smoothly moves the list forward one place)

(Quickly moves the sprites backwards)

(Quickly moves the sprites forwards)

(Moves to the first sprite in the list)

(Moves to the last sprite in the list)

HE GRS

The tools icons

The tool icons provide you with a comprehensive set of drawing operations which
make it extremely easy for you to design your own sprites.

&1

f (Plot a point)

In order to plot a point at the current mouse position, simply click on either the left
or right mouse buttons. The colour of these points can be independently set from
the colour window.

H (Draw a line)

This draws a straight line in the drawing area using the colour assigned to the left
mouse key. You first stretch the line to the length desired by pressing on the left
button while moving the mouse. When you release this button, the line will be
assigned directly to the pointer, and you can now draw any number of copies on
the screen.

Incidentally, if you move the mouse outside the drawing area, the pointer
reverts 1o an arrow, and can be used to access any of other commands without
interferring with the current setting. This enables you to change the colour of the
line you are defining directly from the colour window. When you move back to the
drawing area, the cursor is immediately replaced by a line in the new colour.

As a general rule, all the drawing options can be employed using the following
technique.

1. Setthe size and shape of the object by pressing the left button at the same
lime as you move the mouse.

2. Release this button to assign the currently defined object to the mouse
pointer.

3. Move the mouse to the position in the sprite where you wish your object to
be placed and click on the left mouse button. You can now repeat this step
several times to draw a number of copies of the object on the screen.

4. Remove the object from the mouse by pressing the right button.

D (Draw a hollow box)

This draws a hollow box which can be expanded and contracted using the left
mouse button as explained above.

'6 (Draw a holiow circle)
L= |

Draws a hollow circle whose radius can be specified by holding on the left mouse
button whilst moving the mouse.

(Draw a holiow ellipse)

Draws a hollow ellipse. The width of the ellipse can be specified by pressing the
left button while the mouse is moved either left or right. Similarly, the height can
bbe set by moving the mouse up or down.

EI (Erase definition)

The clear option erases the current drawing completely. As the effect of this
command is permanent, you are always asked for confirmation before the sprite
is erased. Note that this has no effect on any sprites which have been previously
installed in the ST's memory.

(Fill an area)

Fill paints any hollow section of your sprite with the colour assigned to the left
mouse button. To use this function, move the mouse inside the part of the drawing
you wish to paint and press the left button.

and (Choose fill pattern)
== +

These options allow you to choose which of the many possible fill patterns will be
used by any subsequent drawing operation. The current patter is displayed in a
small box positioned immediately below the TOOL icons.

(Choose the previous fill pattern from the box)

(Choose the next fill pattern from the box)

(Draw a filled bar)

W+

Similar to box but draws a filled bar rather than a hollow box.

(Draw a filled circle)

=

his draws a filled circle which is defined in a similar manner to that used by circle.

(Draw a filled ellipse)

Draws a filled ellipse. See ellipse for more details.

m (Undo the iast change)

Undo is a very useful function indeed! This is because it enables you to instantly
reverse the effect of your last drawing operation from the screen whenever
necessary. Undo can be accessed either from the tools area, or directly from the
keyboard using the <UNDO> key.

(Reduce sprite)

This function allows you to reduce the entire sprite into the top left hand corner of
the screen. The magnitude of the reduction can be set using the left mouse button
Warning! Reduce is not the same as Change size. Instead of simply changing the
definition of the sprite, reduce compresses the actual image. Some of the picture
quality is therefore lost every time you perform this operation. Note that if you
reduce a sprile and don't like the results you can easily return the sprite 1o its
original size with <UNDO>.

(Zoom sprite)

B

Zoom expands the sprite up o twice its initial proportions. As with reduce the size
of the zoom can be easily specified with the mouse. After the sprite has been
expanded, you must always confirm the zoom by pressing the left button. Also
note that you can use this option several times in sucession to enlarge the sprite
1o any size you wish. Do not confuse with change size.

(Reverse sprite)

E3

Reverse mirrors the sprite from left to right

(Invert sprite)

-

The invert icon flips the sprite from top to battom

(Rotate sprite)

-

This rotates the sprite anti-clockwise in 90 degree steps. Note that rotate will only
work if the width of your sprite is exactly the same as ils height.

The system icons

The system icons control all the major features of the system, and allow you to
specify a number of important attributes which define the appearance of your

sprites.

64

I'll deal with these options in turn, starting from the top of the menu line and
continuing to the bottom

Cut and Paste

e

The block icon gives you access to an impressive array of cut and paste
operations. Here is a list of the powerful features supported by this command.

(Return to the main screen)

You can also click on the right mouse button to achieve the same effect

(Block defined)

This option is highlighted if a section of the screen has been previously cut

(Define a block)

You use this option to copy a section of the screen from one place to another. You
first choose the area you wish to cut from the image by enclosing it with a
rectangular box. Press the left button on the corner of this section and move the
mouse cursor 1o specily its size. When you now release this button the block will
be cut, and a copy stored in the ST's memory. If the erase option has been
previously set, the criginal contents of the zone will be cleared from the screen
using the background colour. You can then copy this block 1o any point on the
screen with the mouse.

[C] ™™

If this option is OFF then the background of the block will be transparent
Otherwise it will be OPAQUE.

(Cut and erase)

Erase informs the system that the source image will subsequently be erased from
the screen immediately after a CUT operation is performed.

@ (Grab bottom right)

Grabs the block by its bottom right corner.

(Grab the upper left)

65

Grabs the block using its upper left corner

@ (Grab upper right)

Grabs the block using its upper right comer

@] (Grab bottom left)

Grabs the block using its bottom left corner.

Note that all the usual features of the system such as Undo and Scroll also remain
available within this mode.

Creating an Animation sequence

(Animate menu)

This option enables you to animate a sprite, and then play around with it until you
are happy with the results. Just to make things easier, it automatically displays the
exact string which would be used to achieve the same effect from the ANIM
instruction.

When you enter this mode, the following screen is displayed:

Animation string

" kKN A

w|Epey Thoe | Lone |

3

&
O

The first thing you notice about this screen is that the original systems icons have
been by the following list:

(Return to main menu)

Reverts back to main menu. Also executed by pressing the right mouse button.

66

(Animate 1)

Choose the First of six separate animation sequences.
(Animate 2)

Choose the Second animation (...and so on up to six)

(Erase film)

Erases the whole of the current animation.

(Delete frame)

Deletes a single frame from the animation.

In order to create your animation sequence, you first need to select the number
of frames to be animated. This can be done by simply clicking on the appropriate
sprite in the Selection window with the left mouse button. Your sprite will now be
added lo the current progression, and the string associated with it will be displayed
on the screen. As a default the animation takes place at the centre of the drawing
area. You can however move this display anywhere else you like on the screen
using the mouse,

Controlling the Animation

The effect of the animation is controlled from a special dialogue box positioned to
the immediate right of the selection window. Al the top of the box is a line
comprising of four arrows and a number. The number in the centre indicates the
delay in 50ths of a second between the last image in the sequence and the next
one you select. You can change this number up or down by clicking on the inner
aIrows.

You can also highlight any single animation string using the mouse cursor. The
speed setting of this string will now be altered whenever you press the inner
arrows, allowing you total | over peed of each indivi animation step.

The second set of arrows on the control panel change the speed of the
animation as a whole. They do this by adding or subtracting one unit of time from
all the animation strings you have defined. It is important to note that this option
retains any di each of the stages.

Changing the direction

The second line of the dialogue box lets you change the direction of the animation,
and also provides you with the ability to step through your animation a single frame
at a time. There are three ditferent options available from this section

(Forward animation)

67

Executes the animation string from left to right.

(Reverse animation)

Executes the animation string from right to left.

(Step-by-step animation)

When this is set to ON, clicking on the mouse (while the pointer is outside the
control panel) executes a single animation step.

Displaying a background screen

The final set of options enable you to load a screen in either Degas or Neochrome
format into the background. This can now be displayed along with your animation
using the BACKGRND icon. Warning! These screens overwrite any pictures you
have loaded with the Grab image option.

Grabbing sprites from the disc

(Grab image)

This command enables you to grab sprites directly from a file in either Degas or
Neochrome format.

There are seven possible options.

(Return to main menu)

Returns you back to the main menu

6 (Grab image)

Displays the current picture on the ST's screen. In order to grab a sprite from this
picture you always need to follow the steps outlined below.

1. Define the size of your sprite by enclosing.it with a hollow rectangular box.
As you move the mouse with the left button held down, the dimensions of this
box will expand and contract. When you release the button the dimensions
of the sprite are set to the current size.

2. Move the box over the part of the image you wish to grab.

3. Grab the contents of this box into the sprite bank by pressing the left button.

68

(Grid on/off toggle)

When this toggle is ON the grab can only start on word boundaries. This helps
when grabbing sprites that are snapped onto a boundary.

(Auto insert toggle)

If this option is ON the grabbed sprite will be transfered directly into the store.

(Grab from Neochrome picture)

Reads a Neochrome file off the disc. If the Get Palette option has been selected
then the palette is loaded automatically along with the picture.

(Grab from Degas picture)

Loads a Degas file off the disc. If the Get Palette option has been selected then
the palette is loaded automatically along with the picture.

(Get palette during grab)

Loads the current palette of colours with the settings used by the new picture.

To exit from this mode click once on the right mouse button.
Grabbing a sprite from a program

(Grab from the program file)

This enables you to grab a sprite out of an program stored in a disc file. Unlike Grab
image, this file doesn't have 1o be in any particular screen format at all. It can in
fact, be anything from your favourite commercial game to a sprite file generated
by a different editor.

6 (Grab image)

Select this lo grab a sprite from the loaded file.

Pr (Select and grab from a file)

This erases the current screen and loads part of the file inte the ST's memory. The
contents of this file is now displayed in the form of a screen image.

69

At the bottom of the screen lies the main control panel.

it S T z
w [l [[2|44 PP
=

As you can see, iwo numbers are displayed directly underneath the name of your
file.

This number indicates your position in the file. Note that since the designer loads
each file in 16k chunks, there is no real limit to the size of the file you can inspect
with this function.

W denoles the current screen width, and can vary from 1 (very thin) to 20 (Full
screen). The width can easily be changed by clicking on the icons situated just
beneath the W. You can also redisplay the full screen with the Full icon. The width
option is needed because different games store sprites in different formats. As a
general rule, if the screen you are currently displaying looks like garbage, try
altering its width — you could well be astonished at the resulls.

Searching through the file

On the right of the screen lies two sets of direction arrows which enable you lo
scroll through the file in search of some useful images.

The single arrows move the display through the file either a line (for the up/down),
or a single byte (left/right) at a time. The four double arrows work in units of either
10 lines or 8 WORDS, depending on the direction of the mation.

Once you've found something interesting, you can save the entire screen using
the Save Neochrome or Save Degas options.

You can also grab any individual sprite from this image. First press the right button
to remove the control panel. Now select the sprite with the left button in the same
way as with the grab image command.

Finally there is the Quit option. This returns you to the main menu without erasing
the file you are inspecting. The next time you enter Grab programs, your current
screen will be wailing for you at exactly the same point.

70

The FILE menu

(Disc file menu)

This is the menu which is used to save and load your sprites to the disc. These
spriles are always stored in memory bank number 1. See RESERVE for more
details.

(Use palette)

When this option is ON all files saved will have the current colour palette saved
with them. Files loaded into the editor will change the current palette.

(Load a sprite file)

This loads a set of sprites from the disc. These are placed in bank 1 and replace
any other sprites which were previously occupying this bank. Note that if you have
selected the Palette option, then the palette used by the sprites will be loaded
automatically by this function.

(Merge a sprite file)

This command appends a sprile bank held an the disc to the one which is stored
in memory. Warning: Merge only combines the sprites stored in LOW resolution.
Like Load, the palette will be amended if you have set the Palette option to ON.

{Save)

SAVE saves L contents of sprite bank 1 to the disc. g: Any sprites
you wish to save must first be placed in the sprite bank with the Put Sprite option
bbefore this function is called — otherwise your data will be lost.

(Save as)

Saves your sprites under a new filename.

.

Leaves the sprite designer, losing any sprites you have defined.

(Quit & grab)

QuUIT

£
GRAB

71

This option only makes sense if the designer has been executed as an accessory
Quit & Grab then leaves the definer, and copies the sprites you have defined
straight into the current program

Changing the Hot Spot

(Hot Spot menu)

Each sprite is manipulated on the screen using a special point called the Hot Spot
This can be changed to anywhere inside the sprite using the Hot Spot Menu. To
see the current setting, move the mouse into the drawing area. The hot spot will
now flash continually on the screen

In order to make life easier for you, a number of commonly-used settings have
been assigned to the icons

Set Hot spot to the upper left hand corner of the sprite.

@ e

Set hot spol to the middle of the upper line of the sprite.

Set hot spot to upper right corner.

Bottom left comer.

]

Middle of bottom line.

@ it

Bottom right corner.

-

72

This positions the Hot Spot to the centre. One uselul side effect of this is to indicate
the precise centre of the sprite. By scrolling the sprite using the scroll window, you
can therefore use this feature to neatly arrange your sprite on the screen

Changing the palette

This can be achieved with the RGB option will allows you to specify one of 512
possible shades for each of the 16 available colours

(Alter palette)

To use this fealure, first click on the colour you wish to change in the LEFT colour
window. You can also select the colour by clicking on any individual point in the
drawing area. Now move the Red/Green/Blue sliders to set this colour to a specitic
value. If you wish to reverse the last colour setting you can as usual, click on the
UNDQO option. Finally press the right mouse key 1o return back to the main menu

Changing the size of the sprite

(Set X and ¥ menu)

STOS Basic allows you to use sprites ranging from 16x2 to 64x64 pixels in size.
As a defaull the size is set to 32x32 but this can be changed at any time from the
SET X and Y menu. When you call this option the current size is displayed on the
screen. You can now alter this setting using the scroll window. Note that the width
of the sprite can only be altered in 16 pixel steps. You should also remember that
the HOT SPOT of the sprite is always reset back to the top left corner of the screen,
whenever the SET X and Y function is called

(Squeeze sprite)

It you press on this menu selection the sprite in the edit window will be moved into
the top left-hand corner. This frees the surrounding space and allows you to
shorten the width and height of the spite, thus achieving the smallest size possible.

Placing a sprite into the bank

After you created one of your sprites you mus! always remember to place it into
the sprite bank. This can be done using the slore sprite menu

(Store menu)

Here is a list of the various options.

73

(Erase bank)

Erases the entire Bank. Since erase is very dangerous indeed, you are always
asked for confirmation before this function is executed.

(Delete sprite)

Deletes the sprite picked from the seleclion window. Note this option is permanent
and cannot be undone!

(insert sprite)

+

INS inserts the sprite at the current slot by shifting all the sprites one place to the
right. This makes a space for the new definition in the the memory bank.

(Put sprite)

This copies the sprite you are currently editing into the sprite displayed in the
centre of the selection window. In order lo avoid overwriting your existing sprites,
you should position the first empty slot at the middle of the window before use.
Warning! This option erases any data already stored in the destination sprite.

(Get sprite)

Edits the sprite you have chosen with the selection window.

To save a great deal of menu switching we have included some functions that
allow you to put and get sprites with super speed. When editing a sprite you can
place it into the store by pressing the down arrow key twice, this is the same as
using the put sprite option from the stere menu. To gel a sprite from the store just
press the up arrow key twice.

For real speed you can put the sprite in the editor and then get the next sprite
form the store just by pressing the right arrow key. If you press the left arrow key
then the edit sprite will be stored and the previous sprite will be loaded into the
drawing area.

Using the Sprite designer
So far, we've only concentrated on theory. In this section, I'l be showing you how

the sprite designer can be ulilized to draw an actual set of sprites for use in one
of your own programs.

74

Before we can do anything, we first need to load the sprite editor into memary.
Type the line:

accnew:accload “SPRITE"
Now enter the designer using <HELP><F1>

As an example, we'll be creating a sprite representing a certain well-known
spaceship. Here is a picture of the type of effect we will be aiming for

o

4 »
]
= R s

1
e A0k
q » [Bi=tE o
d 13§ 0
- 3

Drawing an image

We'll start off by selecting the colour of our new sprite. Move the mouse over the
left colour window and choose a nice bright shade for the sprite by pressing the
left button over one of the colours.

We will now draw the large disc which forms a major part of the ship. Click on the
disc option from the tools menu to set the pen 1o a filled circle. Move the pointer
into the drawing area and press the left button as you pull the mouse to the right
This generates an expanding disc on the screen. When the disc is about a third
of the size of the drawing area, release the button to assign it lo the mouse. We
can now place this circle in the centre right of the sprite and fix it into position with
the left mouse button

Now for the so-called primary hull. For this section we'll need 1o draw a filled bar
from the middle of the disc to the edge of the screen. Select the bar option and
move the mouse to the centre of the disc. Now expand the bar by holding onto the
left button while you move the mouse to the left. Release the button when the bar
has reached a reasonable size. We can then push the hull inte positicn and click
on the mouse to set it in place.

Finally, we will produce the two outriggers which are so distinctive of this type of
space ship. First erase the last bar with the RIGHT mouse button. Mow shift the
pointer to the top of the sprite and draw a thin bar passing straight through the
primary hull. This forms a strut which will connect the two outriggers to the main
part of the ship. We can then move the mouse to the top left of the sprite and
generale a thin horizontal bar. Position this in the centre of the strut and click the
left button, and repeat this process at the equivalent point at the bottom of the
sprite. You should now be looking at a picture similar to the one | showed you
earlier.

75

Now try moving the mouse pointer around on the display area and clicking on the
left button. As you can see, the entire animation moves immediately to the new
position.

We will manipulate our animation by moving the mouse to the control window and
clicking on the left and right “A” arrows. These change the speed of the entire
sequence. We can also alter the speed of just ane of the images. Let's choose an
animation to be affected by moving the pointer over an appropriate string. We can
then change the speed of this step by selecting any of the inner most arrows.

Let's invert the animation sequence. If we select the reverse icon with the left
maouse button, the images will now be displayed in revese order and the circle will
appear to contract into nothing.

We can also display the animation against a background screen stored on the
disc. This can be done using the load Degas icon from the control panel.

If we place the STOS system disc in the drive we can now load the title screen (in
PIC.PI1) from the STOS folder. To display the new screen alongside our
animation sequence we then click on the BACKGRND icon. We can then return
to the command screen by pressing the right mouse button

Finally, we should always end our session by making a note of the animation string
on a scrap of paper. This will be needed when we wish to recreate our sequence
using the STOS Basic ANIM instruction. We can now press the right mouse button
to return to the main menu, and save our sequence 1o the disc using the save
option from the file menu.

The multiple-mode sprite definer

For the users who wish to design sprites in medium and high resolutions, we have
included a breakdown of the sprite editor which can operate in all three modes

This can be found in the file SPRITE2.ACB on the accessory disc.
In many respects SPRITE.ACB is just a simpler version of SPRITE, and indeed
many of the basic techniques | discussed earlier will also apply equally well to

either of these two programs. One minor advantage of SPRITE2.ACB is that is
uses considerably less memory than the more powerful SPRITE program

77

Now try moving the mouse pointer around on the display area and clicking on the
left button. As you can see, the entire animation moves immediately to the new
position.

We will manipulate our animation by moving the mouse to the control window and
clicking on the left and right “A” arrows. These change the speed of the entire
sequence. We can also alter the speed of just ane of the images. Let's choose an
animation to be affected by moving the pointer over an appropriate string. We can
then change the speed of this step by selecting any of the inner most arrows.

Let's invert the animation sequence. If we select the reverse icon with the left
maouse button, the images will now be displayed in revese order and the circle will
appear to contract into nothing.

We can also display the animation against a background screen stored on the
disc. This can be done using the load Degas icon from the control panel.

If we place the STOS system disc in the drive we can now load the title screen (in
PIC.PI1) from the STOS folder. To display the new screen alongside our
animation sequence we then click on the BACKGRND icon. We can then return
to the command screen by pressing the right mouse button

Finally, we should always end our session by making a note of the animation string
on a scrap of paper. This will be needed when we wish to recreate our sequence
using the STOS Basic ANIM instruction. We can now press the right mouse button
to return to the main menu, and save our sequence 1o the disc using the save
option from the file menu.

The multiple-mode sprite definer

For the users who wish to design sprites in medium and high resolutions, we have
included a breakdown of the sprite editor which can operate in all three modes

This can be found in the file SPRITE2.ACB on the accessory disc.
In many respects SPRITE.ACB is just a simpler version of SPRITE, and indeed
many of the basic techniques | discussed earlier will also apply equally well to

either of these two programs. One minor advantage of SPRITE2.ACB is that is
uses considerably less memory than the more powerful SPRITE program

77

Another benefit is that the accessory will happily allow you to create I\Ies
containing spritesineach ofthe three Thisis
useful when designing new painters for the mouse

You can load SPRITE2.ACB at any time with the line:
accnew:accload "SPRITEZACB
On startup the screen is split into six seperate windows
® Theinformation line: This is placed at the top of the screen, just undermneath
the menus. It is used lo display any relevant information such as the colour

of the current pen or the size of the sprite.

@ The RGB Window: Click on one of the letters R/G/B lo change the colour
setting used by the mouse for all future drawing operations.

@® The scroll window: This is utilised by the SCROLL option ot scroll the sprite
in all four directions.

® The pattern window: Holds a copy of the currentfill pattern. You can change
it by repeatedly clicking on this window with the left and right mouse buttons
to page through the various possibilities.

@® The sprite display: This displays a full-sized copy of the sprite you are
editing.

@® The drawing window: The drawing window is used to edit your sprite. To
plot a point at the current pointer position simply click on the left button. The
right mouse button can alse be used in a similar fashion to delete a point from
the sprite

Here is a breakdown of the various menu options available from this program.

STOS

Sprites

Displays a title screen. Click the mouse 1o remove.

Quit

Exits from the sprite definer, losing all of your current sprite defir

Quit and Grab

Exits from the definer and incorporates any new definitions into your current
program. This option only works if the definer has been executed as an accessory.

File

Load Sprite Bank

Loads a file containing a list of sprites into bank number one. These can be edited
using the get sprite option.

78

Save Sprite Bank
Saves all the sprites you have defined into a new file on the disc.
Save as...

Saves the bank using a ditferent filename than the one it was originally loaded
from.

BANK
Grab from program
Grabs any sprites used by your current program fro subsequent editing by the

definer. Obviously this option only applies if you have loaded the definer as an
accessory.

SPRITE
Put Sprite

Puts the current sprite into a particular slot and replaces any of the original
contents.

Insert Sprite

Inserts the sprite you are editing into bank 1, without overwriting any of the existing
images.

Get Sprite
Gets a sprite out of the memory bank 1o be edited

Erase Sprite
Erases one of the sprites from the bank.
You can select the sprite used by these functions by clicing the left button over the
appropriate image in the drawing window. These sprites are displayed in groups
of nine. To page through the entire set, simply click on the NEXT and previous
boxes below this window.

Move Sprite

This allows you to assign one of the sprites to the mouse and then see how it looks
when you move it around on the screen

Cinema

The Cinema option enables you to animate your sprites from within the definer.
To choose the sprites which will make up your animation sequence, simply click
on the appropriate images in the drawing area. Then click on the left mouse
anywhere outside this window to start the animation running. You can now change
the speed of the animation with the + or — keys.

79

Previous cinema
Restarts the last animation sequence you defined from the point you left off.

Get from DEGAS
Get from NEO

Grab a sprite from a screen stored on the discin DEGAS or NEOCHROME format.
After you have chosen the file with the file selector, you are then presented with
a list of the currently defined sprites in the bank. Select the one you wish to load
using the left mouse button. Note that the di ions of this sprite the
final size of the image which will be grabbed.

The new screen is now displayed and you can grab the image which is
underneath the mouse cursor by pressing the left mouse button. After you have
finished you can return to the editor by clicing on the right mouse button.

FIX mask

This allows you to select the mask colour used as the transparent index
Fix Hot Point

Click the left button on the appropriate point to set the hot spot of the sprite. The
current spot can be seen flashing on the screen

Fix X and Y Size

This allows you to change the dimensions of the sprite. Click on the scroll arrows
to alter the size

TOOLS

Erase

Erases the currently edited sprite. Does not affect any sprites stored in the bank.
Mirror

Reverses the sprite from left to right.
Flip

Reverses the sprite from lop to bottom.
Scroll

Scrolls the sprite. Click on the arrow keys to screll the sprite in any direction
Paint

Whenever you subsquently click the mouse in an enclosed area in the sprite, this
will be filled with the current fill colour using the pattern you have selected from the
FILL window. Click on DRAW to revert the editor back to normal.

80

Palette

This provides you with a list of the colours available for your use. Click on a colour
to assign it to the current pen.

The SPRITE command

After we have drawn our sprites with the sprite definer, we will obviously need
some way of displaying them on the screen. This can be done using the SPRITE
instruction.

SPRITE (Displays a sprite on the screen)
SPRITE n.xy.p
This displays sprite number n on the screen at coordinates x and y.

nis the number of the sprite, which can range from 1 to 15. It is this number which
will be used to identify the sprite in any subsequent calls to the MOVE and ANIM
instructions.

xand y are the coordinates of the point on the screen where the sprile is to be
drawn. Unlike normal screen coordinates, these can take NEGATIVE values. The
xcoordinate can vary from -640 to +1280, and the y coordinate from -400 to +800.
This allows you to move the sprite off screen without causing an error.

pspecifies which of the images in bank 1 is to be used for a particular sprite. The
only limit to the number of these images is the amount of available memory.

Each sprite has an invisible handle through which it can be manipulated, called
aHot Spot. Whenever we draw a sprite, we always specify its coordinates in terms
of the position of this point on the screen. As a defaull, the hot spot is always set
to the top left hand corner of the image, but this can readily be changed using a
special option from the Sprite definer accessory.

Examples:

A number of example sprites have been placed on the accessory disc for your use.
You can load one of these sets using the LOAD instruction like so:

load “fontset.mbk”
This loads a collection of sprites which depict the various letters of the alphabet
Now let's display some of these sprites on the screen,

mode 0:rem These sprites are designed for low resolution flash off
palette 0,5777,5444

sprite 1,100,100, 6:rem Displays a 1 character at 100,100 as sprite 1
sprite 2,10,50,6:rem Displays another sprite with the same image
sprite 1,100,100,7:rem Change sprite 1 froma1toa2
sprite 3,-10,100,5:rem Demonstrates the use of negative coordinates
It is important to realise that the sprite command effectively does two separate

a1

things: Not only does it draw a sprite on the screen, but it also determines which
image will be associated with each of the 15 sprite numbers. You must therefore
always use this instruction BEFORE maving or animating a sprite.

Moving a sprite

Any of the STOS Basic sprites can be moved across the screen using interrupts,
without affecting the execution of your Basic program in the slightest. The
command which enables you to do this is very powerlul indeed and is called, quite
simply, MOVE. The MOVE instruction

This allows you to assign a complicated series of movements to a sprite, which
will then be executed automatically by STOS Basic every 50th of a second (70th
for high resolution). There are two main versions of this command, one for
harizontal motions, and another for vertical movements. These can be combined
to produce intricate patterns on the screen. Since the two instructions are
otherwise identical, we will concentrate on the MOVE X command first, and then
explain any significant differences between it and MOVE Y.

MOVE X (Move a sprite horizontally)
MOVE X n,m$
This defines a list of horizontal movements which will be subsequently performed

by sprite number n. ncan range from 1-15 and refers to the number of a sprite you
have previously installed using SPRITE.

$ contai of e which together determine both the speed
and direction D| the sprite.

Each of these instructions is split into three separate components.

SPEED

This stipulates the delay in 50ths of a second between each successive sprite
movement. The speed can vary from 1 (very fast) to 32767 (incredibly slow)

STEP

The STEP size specifies how many pixels the sprite will be moved in each
operation. If this step is positive the sprite will move o the right, and if it is negative
to the left. The apparent speed of pends ona ion of the speed
and slep. Large displacements coupled with a moderate speed will move the
sprite quickly but jerkily across the screen. Similarly, a small step size combined
with a high speed will also move the sprite very fast, but the motion will be much
smoother. The faslest speeds can be obtained with a displacements of about 10
(or -10)

COUNT
This designates the number of steps which will be completed in a single

movement. Possible values range from 0 to 32767. If you use a COUNT of 0, the
mation will be repeated indefinitely.

These three elements are placed into the movement string using the following
format: (speed,step,count)

Heie is a simple example which should make this a little clearer. Load a set
of sprites from the accessory disc with:

82

load “fontsetmbk™
Now define sprite 1 using the SPRITE instruction like so:
sprite 1,10,100,1
We can move this sprite with MOVE X:
move x 1,7(1,3.50)"
When we execute the above command, we find 1o our surprise that nothing

happens. This is because we need to first initiate the motion using a special MOVE
ON instruction.

The sprite now progresses steadily across the screen. We can combine any
number of these individual movements into a single MOVE command. They will
then be executed in turn, one after another.

Example:
move x 1,°(1,1,100){1,-1,100)"
move on

This moves the sprite from left to right, and back again.

There are also a couple of other directives available for our use. The most
important of these extensions is the L instruction (for loop), which jumps back to
the start of the list and reruns the entire sequence again from the beginning.

Example:

sprite 1,10,100 5:rem Define Sprite 5
move x 1,°(1,5,60)(1,-5,60)L"
move on

Anocther useful option is the E command which slops the sprite whenever it
reaches a specific position on the screen.

Example:

sprite 1,10,1005
move x 1,7(1,5,30)E100"
move on

The most common use of this instruction is to halt a sprite which has been defined
with a count of zero at a particular point. The following example illustrates this
technique.

sprite 1,10,1005
(1,5,0)E200°

Note that these endpoints will only work if the x coordinate of the sprite exactly
reaches the value you orginally designated in the instruction. If this increment is
badly chosen, the sprite will leap past the endpoint in a single step, and the test
will therefore always fail

83

Incidentally, you can alsoc use an endpoint in conjunction with the L command.
This has the effect of stopping the sprite and then executing the series of
movements again from the start.

Example:

sprite 1,10,100,5
move x 1,°(1,5,30)L100°
move on

In the example above, the ending condition was pretty useless, because the
motion immediately resumes from the point it had reached when the sequence
was terminated. But you can also add an nphonal starlmg position lo the
movement. This returns the sprite back to its ori allows
you to loop the sprite repeatedly through a precise section ul the screen. Here is
an example of this function in action:

sprite 1,-10,100,1:rem Defines sprite 1 off screen
move x 1,”100{1,1,0)L200"
move on

The sprite now starts from 10,100, and slowly progresses to location 200,100
before looping back to 10,100.

See MOVE ON, MOVE Y, MOVE FREEZE, MOVON, ANIM, SPRITE, UPDATE
MOVE Y (Move a sprite vertically)

MOVE Y n,m$

This instruction complements the MOVE X command by enabling you to move a

sprite through a complex series of vertical manoeuvers. As before, n refers to the

number of a sprite you have installed using SPRITE, and ranges between 1-15.

m$ holds the movement string. This uses an identical format to MOVE X, except

that positive displacements now correspond to a downward motion, and negative

steps to an upward movement.

Examples:

load “fontset.mbk":rem Load sprites from accessory disc
sprite 1,100,10 5:rem Install sprite
move y 1,”10{1,1,180)L":rem Loop sprite from 10,10 to 190,10 continually

sprite 1,100,100,1
move y 1,7(1.4,25)(1,-4.25)":Rem moves sprite up and down

See MOVE X, MOVE ON, ANIM, SPRITE

Combining horizontal and vertical
movements

Any list of harizontal and vertical movements may be combined with ease. All you
need to do is to split the movement into separate horizontal and vertical

84

components, and then assign these toindividual MOVE X and MOVE Y instructions.
Here are a couple of simple examples which illustrate this process.

new

load “fontset.mbk™:rem From accessory disc
sprite 1,0,0,22

move x 1.°(1.4.79)(1.-479)L"

move y 1,7(1.4,49){1,-4.49)L"

move on

Now for a slightly larger example:
new
load “fontsetmbk™

5 rem Exploding Title
10cls : click off

30 read C : sprite |.1*16+80,100,C:rem Install sprites in centre of screen
35 rem Set alternate characters moving in different vertical directions
40 if | mod 2=0 then V$="(1,-2.0)" else V$="(1,2.0)"

45 rem Set left half moving left and right half moving right

50 if 1<6 then H$="(1,-2.0)" else H$="(1.2.0)"

55 rem Set up Vertical and Horizontal components

60 move x |,HS : move y LVS

70 next |

80 wait key : boom : move on: Rem Wait for a keypress and move sprites 85 rem
Image Numbers of Sprites which make up title

90 data 40,41,36,40,18.23,22.40,30.24

MOVE ON/OFF (Start/stop sprite movements)
MOVE ON/OFF [n]

Before any sprite movements you have defined by the MOVE X and MOVE Y
commands will be performed, they need to be initiated with this instruction. The
optional expression n, refers to a number from 1-15 which indicates a single sprite
you wish to move. If it is ommitted then all the movement sequences you have
currently assigned, will be activated simultaneously.

Similarly, MOVE OFF kills the movements of the sprites in exactly the same
way. Do not confuse MOVE ON with the MOVON function.

See MOVE X, MOVE Y, OFF

MOVE FREEZE (Temporarily suspend sprite movements)
MOVE FREEZE [n]
This command can be used to temporarily halt some or all of the sprites which are
currently moving. These can be restarted again using MOVE ON. The value nis
optional and specifies the number of a single sprite you wish to freeze.
Example:

load “fontset.mbk”:rem From accessory disc

sprite 100,1
maove x 1,

4,64)(1.-4.64)L"

85

move on
move freeze
move on
=MOVON (Return sprite state)
x=MOVON(n)

This function returns a non zero number if sprite number n is currently in motion
and 0 (FALSE) if it is stationary.

Example:
load “fontset.mbk™:rem From accessory disc
move x 1,”(1,4,0)":menu on
print movon(1)
move off
print movon(1)
De not confuse with the MOVE ON command.
=X SPRITE (Get X coordinate of sprite)
x1=X SPRITE(n)

Returns the current X coordinate of sprite n. This command is frequently used as
away of detecting whether a sprite has collided with the edge of the ST's screen.

Example:
load “fontset.mbk™
sprite 1,0,40,1
move x 1,710(1,1,0)L320"
move on
for i=1 10 100:locate 0.0:print x sprite(1):next i
See also Y SPRITE, X MOUSE, Y MOUSE
=Y SPRITE (Get Y coordinate of sprite)
y1=YSPRITE(n)
This is very similar to the X SPRITE instruction, except for the fact that it returns
its Y coordinate rather than the X coordinate. As usual, n refers to the number of
the sprite and can range from 1-15. This command is often utilised to check
whether a missile has passed off the top or bottom of the screen.

Example:

sp

move y 2,"0{1,1,0)L200"

move on

for i=1 to 100:locate 0,0:print y sprite(2):next i

A further example of this function can be found in the section on collision.

86

See also X SPRITE, X MOUSE, Y MOUSE
LIMIT SPRITE (Limits sprite to a specific area)
LIMIT SPRITE x1,y1 TO x2.y2
Defines the area of the screen on which the sprites will be displayed. Whenever
they move outside this area, they will dissapear from the screen. Note that unlike

LIMIT MOUSE, this command does NOT limit the actual movements of the sprites,
only their visibility.

x1 and y1 denote the top left corner of the zone, and x2,y2 indicate the point
diagonally opposite. All the X coordinates used in this command are automatically
rounded down to their nearest multiple of 16

Example:

load “fontset.mbk”

sprite 1,00,1

move y 1,"0(1,1,0)L200"
move on

limit sprite 100,50 TO 200,150

In order to return the sprites to normal, simply enter a LIMIT SPRITE command
with no parameters like so:

limit sprite

See LIMIT MOUSE, CLIP

Animation

STOS Basic supplies you with a simple command called ANIM which can be
readily used lo animale your sprites. This can be used 1o produce a wide range
of effects from a walking gorilla to an impressive explosion.

ANIM (Animate a sprite)
ANIM n,a$
This enables you to page through a chain of sprite images one after another. This
sequence will be executed at the same time as your sprite is being displayed., even
if it is also being moved using MOVE.

nrefers to the number of the sprite to be animated, and a$ to a list of animation
commands to be carried out.

The string a$ contains the set of instructions to the ANIM command. Each
operation is split into two

IMAGE

This is the image number of the sprite 1o be displayed during each step of the
animation.

a7

DELAY

Specifies the amount of time the image will be held on the screen before the next
image is displayed. This delay is input in units of a 50th of a second (70th for
monochrome systems)

Here is a typical example of how this instruction works in practice

anim 1,7(1,10){2,10)"
This would display image number 1 for 10/50 or a 1/5 of a second, and then flick
to image number 2.

Just as with the MOVE instruction, there's also an L directive which enables

you to repeat these animations.
So we could repeal the above animation continually with:

anim 1,7(1,10)(2,10)L"
Now for a real example of the ANIM instruction. We'll use some of the sequences
utilized by Zoltar for this purpose. Before we can play around with these sprites,
we first need to grab them out of the game. The easies! way we can achieve this

involves a number of separale steps. We start off by loading Zoltar from the Game
disc with:

load "zoltarzoltar.bas™

We then place a fresh disc in the drive, and save the sprite bank in a separate file
like so:

save “zsprites.mbk",1
Finally, we simply erase Zoltar from memory and reload the sprites with:

new

load “zsprites.mbk”
These sprites can now be accessed from within any of our example programs. To
list the images which are currently available, type the following small routine:

10 mode 0: cls : flash off
20 palette $0,5777,53,54,517,5770,8530,$400,555,$333, 11,5734,
$715.5706,5707.5770

30 for i=1 to 30:sprite 1,100,100,i-print i:wait key:next i

Note that the palette command in line 20 was discovered by searching through
Zoltar with:

search “palette §~

It you run this program you will see that images 14 to 18 form a rather nice
explosion. Let's animate this by replacing line 30 with:

120 sprite 3,100,100,
(15,2)(16.2(17.2){18,2)" : anim on

‘We can observe this sequence more clearly if we add an L instruction to repeat
the animation like so:

88

120 sprite 3,100,100,14:anim 3,"(14,2) (15,2)(16.2){17.2)(18,2)L" : anim on
Note this large line number! This is to allow us to expand our program later
Another interesling arrangement can be crealed using the images 2 and 3
which combine to produce one of Zoltar's wiggling missiles
Animale this with
30 sprite 1,160,198, Z:anim 1,”(2,13,1)L":anim on
and move it up the screen using
40 move y 1,"196(1,-4,50)1" : move an

We'll now have a brief look al the sprites used lo make up the spaceships. These
are composed of groups of three sprites starting from image 19

Let's add one of these ships to our current program. Type the lines

50 sprite 2,0,40,9 : anim 2,"(19,4)(20,4)(21 4)L"
60 mave x 2,"(1,4,80)(1,-4,80)1" : move on Z:anim an

When you run this program, the missile fires and the ship moves from left to right
We'll be modifying this program later in the section on collision, so it's a good idea
to save it on a separate disc with a line like:
save “ship.bas”

ANIM ON/OFF (Start an animation)
ANIM ON/OFF[n]
Used to activate a series of animations delined using the ANIM command. n
denotes the number of an individual sprite to be animated. If it is omitted then all
the animation sequences you have created will be initiated at the same time

ANIM OFF [n] stops one or all of the animations begun by ANIM ON.
ANIM FREEZE (Freeze an animation)
ANIM FREEZE [n]
This command temporarily pauses the current animations on the screen. If the
optional n is included, only a single animation sequence will be suspended.

Otherwise all the animations will be frozen. These can be restarted again with the
ANIM ON instruction

Controlling the sprite using the
mouse

The easiest way to give the user control of a sprite is to assign the sprite to the
mouse pointer with the CHANGE MOUSE command. We can then determine both

the position and status of this mouse from within our program using the X MOUSE,
Y MOUSE, and MOUSE KEY instructions.

89

CHANGE MOUSE (Change the shape of the mouse pointer)
CHANGE MOUSE m

This allows you to completely redesign the shape of the mouse at any time. Three
forms are already installed into the system as a default, and are given the numbers
1 through 3. Here is a list of the various options:

Shape

Arrow. (Detault)
Pointing Hand
Clock

wm =3

If you specify a value of m greater than 3, this is assumed to refer to an image
stored in the sprite bank. The number of this image is determined using the
expression I=m-3. Soimage number one would be installed by a value of four, and
image two would be signified by a five.

Here are a few simple examples. Load the sprites from the file fontset on the
accessory disc.

load “fontset mbk”
and assign image 0 to the mouse with:

change mouse 8
Similarly we can sel the mouse to a capital S with the line:

change mouse 43
Anocther powerful option is to change the default definitions for the mouse which
are stored on the disc. These can be found in the file 'STOS/MOUSE.SPR on the
systems disc

You can replace these with another set like this:

@ Definethree sets of sprites, for EACH resolution. If you only want to affect one
resolution, it's best to modify the sprites in SPRDEMO.MBK (from the
accessory disc), as this already contains a bank of sprites in the correct
format.

® Load these sprites into bank 1 using either LOAD or the QUIT and GRAB
options from the SPRITE definer

® Place a copy of the STOS Basic system disc in the drive. DO NOT USE THE
ORIGINAL SYSTEMS DISC FOR THIS PURPOSE! Now type:

bsave “\stos\mouse.spr”,start(1) to start(1}+length{1)

Whenever you subsequently load STOS Basic, the new mouse pointers will now
be automatically utilized by the system.

See also HIDE, SHOW, X MOUSE, Y MOUSE, MOUSEKEY, LIMIT MOUSE
=X MOUSE (Get the X coordinate of the mouse pointer)

x1=X MOUSE

This function returns the current X coordinate of the mouse pointer.
Example:

new
10 home

20 print x mouse

30 wait vbl:rem Stop print interfering with mouse pointer

40 if inkey$="" then 20:rem Wait for keypress from keyboard

=Y MOUSE (Gets the ¥ coordinate of the mouse pointer)
y1=Y MOUSE
This function simply returns the current Y coordinate of the mouse pointer.
Example:
new
10 home
20 print y mouse
30 wait vbl:rem Stop print interfering with mouse pointer
40 if inkey$="" then 20:rem Wait for keypress from keyboard
=MOUSE KEY (Get status of mouse keys)
k=MOUSE KEY
Enables you to quickly test whether one or both of the mouse buttons have been
. It returns one of the following four numbers depending on the current
state of the keys.

Value Meaning

0 It no button has been pressed

1 left button pressed

2 right button pressed

3 both buttons pressed
Example:

10 if mouse key = 1 then print “Left button™
20 if mouse key =2 then print “Right button”
30 if mouse key = 3 then print “Left and Right button”
40 goto 10

See X MOUSE, Y MOUSE

LIMIT MOUSE (Limit mouse to a section of the screen)
LIMIT MOUSE x1,y1 TO x2,y2
Restricts the mouse to the rectangular area defined by the coordinates (x1,y1) and

(x2,y2). x1,y1 denotes the top left hand corner of this box and x2,y2 to the point
diagonally opposite. Note that LIMIT MOUSE always repositions the mouse

91

pointer at the centre of the box. Also, unlike LIMIT SPRITE, the mouse is
completely trapped inside this zone and cannot be moved anywhere else in the
screen.

Example:
limit mouse 50,50 to 250,150

In order to restore the mouse to normal, simply use the instruction with no
parameters like this:

limit mouse
HIDE (Remove mouse pointer from the screen)

This command permits you to remove the mouse poinler from the screen at any
time. A count of the number of occasions you have called this function is
automatically kept by the system. This number needs to be matched by an equal
number of SHOW instructions before the mouse will be returned for your use

There's another version of this i ion which can be with HIDE
ON. This ignores the count completely and ALWAYS hides the mouse. Note that
HIDE only makes the mouse pointer invisible. It does NOT deactivate it fully. You
can therefore readily use the X MOUSE and Y MOUSE functions to read posilion
of the mouse, even if it is totally hidden from view!

Examples:
hide
hide
show
show
show
show
hide on
See SHOW
SHOW (Activate the mouse pointer)
This redisplays the mouse hidden with the HIDE instruction. As with HIDE there's
also a version of SHOW which shows the mouse, no matter how many HIDE
commands have been executed. This is called using
show on

See HIDE for more details.

Reading the joystick

STOS Basic includes six functions which make it very easy for you to detect the
movements of a joystick placed in the right joystick socket.

=JOY (Read joystick)
d=JOY

92

This function retumns a binary number which represents the current status of the
joystick. Each of these bits are set to 1 if the test proves positive and otherwise
zero. Here is a list of the various bits and their meanings:

Bit number Significance

0 Joystick moved up

1 Joystick moved down
2 Joystick moved left

3 Joystick moved right
4 Fire button pressed

Don't worry it you are not familiar with this binary notation as you can also access
each of the directions individually with the functions JLEFT, JRIGHT, JUP,
JDOWN, and FIRE.
Here is a simple example 1o get you started.

load “fontsetmbk":rem From accessory disc

10 rem Move a sprite with a joystick

20 rem Set direction arrays

30 dim DX(15).0Y(15)

40 $=2 : X1=160 : Y1=100

50 for I=1 to 15 : read X.Y : DX({I}=X*S : DY(I}=Y*S : next |

60 sprite 1,X1,Y1,80 : J=joy and 15: X1=X1+DX(J): ¥1=Y1+DY{J) : if joy>15 then

X1=160 : ¥1=100 : goto 60 else 60

70 data 0,-1,0,1,00,-1,0,-1,-1,-1,1

80 data 00,1,0.1,-1,1,1,0,0,0,0,0,00,0,0,00

Note that we've used the variable s to set the sensitivity of the joystick. Reasonable
values range from 1(low) to 5(incredibly high).

=JLEFT (Test joystick movement left)
x=JLEFT

JLEFT returns a value of TRUE (-1) if the joystick has been moved left, otherwise
FALSE (0). It can be used in an IF... THEN statement like this:

if jleft then print “LEFT™
=JRIGHT (Test joystick movement right)
x=JRIGHT

JRIGHT tests the joystick and returns TRUE (-1) if has been moved right,
otherwise it returns a value of FALSE (0).

See JLEFT, JUP, JDOWN
=JUP (Test joytsick movement up)
x=JUP
JUP returns TRUE (-1) if joystick has been moved up, otherwise FALSE (0).

93

See JRIGHT, JLEFT, JDOWN
=JDOWN (Test joystick movement down)
x=JDOWN

The JDOWN function returns the value TRUE (-1) if the joystick has been pulled
down, otherwise it returns FALSE (0).

See JRIGHT, JLEFT, JUP
=FIRE (Test fire button state)
x=FIRE

This function only returns a value of TRUE (-1) if the fire button on the joystick has
been pressed.

See JUP, JDOWN, JLEFT, JRIGHT, JOY

Detecting collisions with a sprite
COLLIDE (Detect collisions between two sprites)
t=COLLIDE(n,w,h)

This provides you with an easy way of tesling to see whether two or more sprites
have collided on the screen. nrefers to the sprite you wish to check and can range
from 0-15, with 0 denoting the mouse pointer. w and h determine the sensitivity
of the test. You can think of w and h defining the width and height of a rectangular
box starting from the Hot Spot of the sprite. Whenever another sprite enters this
box, a collision will be detected.

tis a number in binary format which holds a list of the sprites which have collided
with sprite number n. Each bit in this number represents the status of the
equivalent sprite. So bit 1 indicates sprite 1, bit 5 denotes sprite 5 and soon. lf a
collision occurs between sprite nand another sprite, the bit at the appropriate point
is set to 1. You can test for these bits using the BTST function. If you're not
technically minded, you can save yourself some trouble by adding a statement
like:

print collide(1,10,10)
Place this at an important point in your program. You can now make a note of the
number which is printed whenever a collision takes place. This can be tested for
with a line like:

100 if collide(2.10.10)=6 then boom

Here's an example of this function in action. If you've saved the program we used
in the section on ANIM, you can load this with the line:

load “ship_bas™
Otherwise you will first need to create the file zsprites.mbk in the following way:

94

Load “zoltar\zoltar.bas":rem From the games disc

Place a fresh disc into the drive and type: save “zspriles. mbk"
Erase the program in memory. with: new

Load the example sprites back with load “zsprites. mbk™

You can now enter the program below:

5 rem Initialize screen

10 mode 0: cls : flash off

15 rem Set colours

20 palette $0,5777.53,$4,517,5770,5530,5400,5655,$333 5111,
$734,5715,5706 57075770

25 rem Move and Animate Ship

30 sprite 2.0,40,19 : anim 2,7(19,4)(20,4){21,4)L" : anim on 2
40 move x 2,”(1,6,80)(1,-6,80)I" : move on 2

45 rem Wait for a key press

50 wait key

55 rem Fire Missile

60 sprite 1,160,198,2 : anim 1,"(2,1)3,1)L" : anim on

70 move y 1,"196{1,-4,60)" : move on

75 rem Test for collision

80 if collide(1,10,10)=5 then boom : goto 110

85 rem Test Missile to see if it flys off the top of the screen
90 if y sprite(1)<0 then 50

95 rem Jump Back to test

100 goto 80

105 rem Explosion

110 sprite 3,x sprite(2),40,14

120 enim 3,(14,2){15,2){16,2){17.2)(18.2)" : anim on : move off : sprite 1.-
100,100.2 : sprite 2.-100,100.9 : sprite 3,-100,100,14

Let's now incorporate a user-controlled ship in this scenario with the CHANGE
MOUSE command.

Add the following lines to the program above:

21 limit mouse 0,150 to 319,138:rem Limit mouse to lower part of screen

41 change mouse 10 : rem Change mouse to picture of a ship

.;mlpnl : until mouse key : MX=x mouse : MY=y mouse : rem Wait for mouse
utton

60 sprite 1,MX.MY+4.2 : anim 1,”(21)3,1)L" : anim on

130 move off : sprite 1,-100,100.2 : sprite 2.-100,1009

140 sprite 3,-100,100,14 : goto 30

This gives you a ship which can be moved around with the mouse, which can fire
amissile when you press on the mouse key. You could easily detect collisions with
this ship in a similar way, just by adding a line such as

B1if collide(0.10,10)<>1 then boom
Obviously you would also need to add some sort of aftack capability 1o the
defending ships as welll

‘You should now be in a position to understand the some of the programming
techniques used in Zoltar. Although it may look rather more complicated, the

85

theory behind it is identical. Feel free to load Zoltar from the games disc and play
around with it as much as you like.

Detecting collisions with
rectangular blocks

SET ZONE (Set a zone for testing)
SET ZONE z,x1,y1 TO x2,y2

Defines one of 128 rectangular zones which can then be tested using the ZONE
command for the presence of either the mouse or a sprite. z specifies a number
from 1-128 which represents the zone 1o be created. x1,y1 and x2,y2 denote the
coordinates of the top left and bottom right hand comers of the rectangle you wish
1o check.

See ZONE, RESET ZONE
=ZONE (Tests a sprite to see if it is in a zone)
1=ZONE(n)

This searches for the presence of sprite nin the list of the zones defined using SET
ZONE. ncan range from 0 to 15, with the mouse being indicated by sprite number
zero as usual.

After the function has been called, t will hold either the number of the zone
where the sprite was detected or a value of zero. Note that ZONE only returns the
FIRST zone which the sprite was found. If two or more zones overlap, it is not
possible to determine any other zones the sprite is also inside.

Example:

5 rem Muzak

6 rom Reset zones and clear screen

10 reset zone : cls back : cls physic : mode 0

15 rem Set note type

20 volume 16 : envel 9,5000

25 rem Set fill style to hollow

30 set paint 0,10

forl=0to7:ford=0to7

45 rem Draw box

50 box 1°39,J°24 to (1+1)*39,(J+1)°24 55 rem Define zones
60 set zone *8+J+1,1°39,0°24 1o (1+1)*39,(J+1)"24
T0 nextJ : next |

75 rem Test zone and play note

80 if zone(D) then play zone(0}+20,30

90 goto 80

See SET ZONE, RESET ZONE
RESET ZONE (Erase a zone)
RESET ZONE [z]
This command erases any of the zones created by SET ZONE. If the optional z

96

is included, then only this zone will be reset. Otherwise all the zones will be
deleted.

Detecting collisions with an
irregular shape

=DETECT (Find colour of pixel undemeath sprite)
c=DETECT(n)

This is a very useful command which allows you to ascertain the colour of the
background pixel undemneath sprite n. As usual, n can range from 0 to 15, with a
value of 0 representing the mouse pointer.

After the function has executed, cis returned containing the colour of the point
on the background screen underneath the Hot Spot of the sprite. By bordering an
object with a specific colour, and then testing for this with DETECT, you can easily
spot any collisions between an irregular area and the sprite.

Here is a simple example of this process.
load “zsprites.mbk™:rem See COLLIDE for full details of how to creats this

10 rem Detect demo

20 cls physic : cis back : set line SFFFF.6,0,0

30 ink 2 : arc 160,198,150,0,1800 : ink 0

40 sprite 1.rmd(31414+2.0,2 : wait vbi

50move y 1,"(1,4,1)L" : move on

60 C=detect({1)

65 if C=2 them wait vbl : XS=x sprite(1) : YS=y sprita(1) : box XS.Y$-6 ta
XS+2,YS-2 : boom : goto 40

10t y sprite{1)<200 then 60 eise 40

Another possible application would be to detect the collision of a laser beam with
asprite. This beam could be easily created using the normal DRAW or POLYLINE
commands.

Exceeding the 15 sprite limit

If you've ever seen games like Galaxians or Space Invaders you will probably
consider the 15 sprite limit to be pretty restrictive. Fortunately, although you are
confined to 15 moving sprites, it's easy enough to produce the illusion of dozens
of actual sprites on the screen.

YYou can do this with judicious use of a pair of STOS Basic commands called
PUT SPRITE and GET SPRITE. These allow you to create a number of copies of
asprite at once, and then just grab the cnes you wish to actually move around, as
and when you need them. You can add animation o these fake sprites using the
SCREEN COPY and SCREEN SWAP instructions.

PUT SPRITE (Put a copy of a sprite on the screen)
PUT SPRITE n
Simply places a copy of sprite number n at its current position on the screen. Note

97

that the sprite you have copied is completely unaffected by this instruction.
Here is an example of how this works in practice: Load the sprites in the file
ZSPRITES.MBK (See COLLIDE for details)

load “zsprites.mbk”
Now type in the following small program:

10 palette $0,5777.53,54.$17,5770,5530,5400,$555,5333,$111,
$734,5715,$706.5707.5770

20 1=8: mode 0 : cls : flash off : hide

30 wait vhl : sprite 1,0,1,22 : rem Draw ship on the screen
40 move x 1,"0{1,8,0)e320" : move on : wait vbl

50 X=x sprite(1) : if X mod 16=8 then put sprite 1 : wait vbl
60 if X=320 then I=I+16 else 50

70 if 1<182 then 30 else 90

80 goto 50

90 limit mouse : sprite 1,-100,0,22 : wait key

This fills the screen with dozens of copies of a single spaceship. You can now turn
these ships back into movable sprites a few at a time, using GET SPRITE.

See WAIT VBL, MOVE
GET SPRITE (Load a section of the screen inlo the sprite bank)
GET SPRITE x.y.i [mask]

This instruction enables you to grab any images off the screen and turn them into
sprites. The parameters x and y refer to the stan of the rectangular area to be
captured

idenotes the number of the image to be loaded, and MUST refer to an image which
already exists in the sprite bank. The size of the new image is taken from the
original dimensions you specified using the sprile editor. Also note that the Hot
Spot of the sprite is automatically set to the point x,y. WARNING! This command
will only work if the rectangle you are attempting to grab is completely inside the
borders of the screen.

The optional mask specifies which colour in the new sprite is 1o be treated as
transparent. If this mask is omitted, it will be set to zero. By changing the mask to
adifferent colour you can generate a number of interesling effects. This is because
the mask colour is effectively ORed with the background. A mask of zero will
therefore simply display the area underneath the sprite in the normal way.
Otherwise the OR operation will invariably change the colour of any of the
background which shows through the sprite.

Incidentally, the mask has a rather different action in monochrome mode. All
monochrome sprites are given a special border on the screen. The thickness of
this outline is usually set to a width of one pixel, but you can increase it by including
a higher value as part of the mask.

Examples:

Place the accessory disc in the drive and type

load “sprdemo.mbk”

Now enter the following small program

10 Rem Big Mouse

20 repeat.until mouse key

30 hide:

40 get sprite X mouse.Y mouse.2: change mouse 8:show

This borrows one of the images in the SPRDEMO file and loads it with the section
of the screen undernealh the mouse. It then assigns this sprite to the mouse
We'll now look at a slightly more interesting example involving some sprites
which have been placed on the screen with PUT SPRITE.
Load the file ZSPRITES MBK from your disc. (See COLLIDE for details of how
this data can be created)

load “zsprites.mbk”
Then enter the program:

10 rem Set colours

20 paletie $0,5777.53,$4.$17.5770,5530,5400,$555,5333 $111,
$734,5715,5706.5707.5770

25 rem Define Array P

30 dim P{20)

35 rem Reset Screen

40 hide : off : cls physic : cls back : ink 0

50 rem Copy 20 sprites on the screen

60 sprite 1,510.22 rem Draw ship on the screen

BO X=x sprite(1) : il X mod 16=4 then put sprite 1 : wait vbl
90 if X=320 then move off : gato 100 else 80

100 sprite 1,400.10.23 : wi
105 rem Choose a sprite which hasn't moved

110 S=rnd(18)+1 : if P(S)=1 then 110 else P(S)=1

120 rem Get sprite

130 get sprite 5°16+4,10,21

135 rem Move sprite down

140 sprite 1,5*16+4,10,21 : move y 1,”(1,4,50) : move on
145 rem Erase sprites

150 bar §°16-4.2 to $*16+12,18

155 rem Test if sprite still falling

160 it mavon(1)=0 then 110 else 160

This program places 20 copies of a spaceship on the screen and then animates
each one in turn in an apparent violation of the 16 sprite limit. With a little more work
you could easily expand the above technique to move up lo 15 sprites at a time
Sprite priority

PRIORITY ON/OFF (Change between priority modes)
The priority of a sprite determines how sprites are displayed when they overlap on

the screen. Sprites with the higher pricrity always appear to have been placed in
front of sprites with a lower one. Normally, the priority of the sprites is assumed

99

to be in REVERSE order to the sprite numbers.

You should always remember this fact when assigning numbers to your
sprites. The mouse is effectively sprite number zero and therefore has the highest
priority of all. This explains why the mouse always passes in front of any other
sprites on the screen.

There is however, also a different priority system which can be activated with
the PRIORITY ON command. This gives the highest priority to the sprites with the
largest Y coordinate. So a sprite at 100 would pass above a sprite at 99 and behind
a sprite at 101. In practice this option allows you to create an useful illusion of
ve. Look at the ple below.

load “zsprites.mbk":rem See COLLIDE for details

1 rem Test of priority

Smode 0: cls : flash off : hide

10 priority off:rem Set normal mode

20 sprite 1,160,100,22 : sprite 2,100,94.2

30 sprite 3,100,108,19

80 move x 2."0(1.2.160)L" : move x 3,"320{1,-2.160)L" : move on
50 wait key

60 priority on:rem Set Y mode

In the normal mode both of the moving sprites pass below the ship in the centre.
When you select the Y priority with PRIORITY ON, the sprites are now ranked in
order of their increasing Y coordinales. So sprite 3 moves above sprite 1 and sprite
2 passes behind it

Note that if you want to create the most effective results, it's usually best to
position the Hot Spot of the sprite al its base. This is because the Y coordinates
used by this command relate to the position of the Hot Spot on the screen. Also
notice that the PRIORITY OFF instruction can be utilised to reset the priority back
to normal.

The background

‘Whenever a sprite is moved across the screen, it obscures some sections of the
graphice and reveals others. In order to use this technique, it requires a copy of .
the area underneath the sprite to be held somewhere in the ST's memory. Rather
than allocating a separate chunk of memory for each sprite, STOS Basic keeps
a copy of the entire screen to serve as a background for the sprites.

of this is that the backg screel
and the normal screen must always contain exactly the same image. If they don' l
the sprite will tend to corrupt the area of the screen underneath whenit it is moved.
Therefore all STOS Basics graphics commands usually operate on both screens
simultaneously. You can change this state of affairs at any time using a special
AUTOBACK command.

AUTOBACK ON/OFF (Set screen for graphics operation)

The AUTOBACK command toggles between two different drawing modes. As a
default, all graphics are sent lo both the sprite background and the physical
screen. The autoback feature can be turned off using the AUTO BACK OFF
instruction, which leads to a substantial speed improvement in most of the
graphics commands. Similarly the original mode can be reactivated with a call to
AUTO BACK ON.

Example:

cls

100

on:rem Set
circle 100,100,100:rem Draws a filled circle on both screens.

Now move the mouse around on the circle. As you can see, the circle remains
unchanged.

Let's try drawing the circle with AUTOBACK turned off.

cls
autoback off
circle 100,100,100:rem Draws a filled circle only on PHYSICAL screen.

!f You now move the mouse on the circle, the circle will be steaduy erased. Ths
mouse are baing dfro

screen in which the circle does not exist. By choosmg the oonlenls of ma
backgroundand physical screen carefully, you can produce a number of interesting
effects.

Furthermore, if your program doesn't use either the mouse pointer or the
sprites, you can speed up all the graphics operaticns a great deal by just switching
off the autoback feature using AUTO BACK OFF.

See BACK, PHYSIC, LOGIC

Miscellaneous sprite commands
UPDATE (Change automatic sprite updates)

Usually any sprites you draw on the screen will be automatically redisplayed
whenever they are animated or moved. This feature can be temporarily halted
using the UPDATE OFF command. When the updates are not active, the SPRITE,
MOVE and ANIM commands apparently have no effect. In reality, they are still
being operated on by the sprite instructions, but the results are simply not being
displayed on the screen. You can force any sprites which have moved to be
redrawn at their current positions using the UPDATE command like this:

update
Here is a summary of the three different forms of the UPDATE instruction:

UPDATE OFF Tums off the automatic updating of the sprites. Any
movements or animations appear to basuspended.
UPDATE Redraws any sprites which have changed at their
new positi This can ionally

be substituted for the normal WAIT VBL after a
PUT SPRITE instruction, as it is much faster.

UPDATE ON Returns the sprite updating to normal.
For an example, place the accessory disc in the drive and type:
new

load “sprdemo.mbk™:rem Load some sprites
sprite 1,100,100,1:rem Install sprite at 100,100

101

maove x 1°(1,1,100){1,-1,100)1":rem Maove the sprite to and fro
‘mave on

update off:rem Stop updates

Remember that whilst the sprite in not being updated, it is still moving. We can
demonstrate this by updating the position with:

update

To see how the sprile is progressing across the screen, type in
several more times.

We can now return the sprite movements to normal with:
update
REDRAW (Redraw the sprites)

Redraws all the sprites at their current positions on the screen. Unlike UPDATE
it takes no account of whether the sprite has been changed since the last update.

OFF (Turn off sprites)

This tuns off all the sprite and ions, and the sprites
from the screen. It is often used to reset the editor after you have broken out of a
program with Control+C. As a default it is assigned to function key f10.
FREEZE (Pause sprite and music operations)
Temporarily halts the actions of all the sprite commands and stops any music
which is currently being played. To restart these activities again simply type in the
line:
unfreeze
UNFREEZE (Restart sprite and music operations)

Resumes any sprite movements and music halted by FREEZE.

102

5 [Music and Sound

The Atari ST has a special sound generator which allows you to create a wide
range of different effects. STOS Basic gives you complete control over this
feature, and includes a variety of instructions to produce anything from a simple
beep to a complex sequence of music.

Voices and tones
The ST's sound chip can play up to three notes simultaneously each performed

on a separale Voice. By combining these voices, you can generate attractive
harmonics. The most of the STOS B: is PLAY.

PLAY (Play a note)
PLAY [voice, pitch,duration

Plays a pure note through the loudspeaker of your TV or monitor. Pitch sets the
tone of this sound, ranging from O(low) to 96(high). Rather than just being an
arbitrary number, each of these pitches is associated with one of the notes
(A,B,C,D,E,F,G). See the following table for more details. If you specify a value of
zero for the pifch, the note will not be produced, and PLAY will simply wait for a
time specified by the duration.

Octave

0 1 2 3 4 5 6 7
Note Pitch
Cc 1 13 25 37 49 61 73 a5
C# 2 14 26 38 50 62 74 86
D 3 15 27 39 51 63 75 87
D# 4 16 28 40 52 64 76 a8
E 5 17 29 41 53 65 7 89
E 6 18 30 42 54 66 78 90
F# il 19 3 43 55 67 79 91
G 8 20 a2 44 56 68 80 92
G# 9 21 a3 45 57 69 81 93
A 10 22 34 46 58 70 82 94
A# 11 23 35 47 59 Al 83 95
B 12 24 36 48 60 72 84 96

Duration holds the length of time the note is to be played in 50ths of a second. A
duration of zero indicates that the sound will not be generated.

The optional voice designates which of the three voices the note is to be played
on. Voice can range from 1-3. If it is not included then the note will be sounded on
all three voices at once.

As you can see the notes go up in acycle of 12. This cycle is known as an octave.
Here are a couple of simple examples of this function in action.

new
10 rem Random Music on a single vaice

103

20 click off:rem Turn off keyboard click
30 T=md(96) : P=rnd(32) : play T,P : goto 30

new

10 rem Random Music on all three veices

20 click off:rem Turn off Keyboard click

30 volume 1,14 : volume 2,14 : volume 3,14

40 V=rad(2)+1 : T=md|36) : P=md{40) : play V.T.P : goto 40

new

10 rem Example of Play

20 rem Def ote arays

30 dim A(7).A%(7).B(7).C(7).CH{7)

40 dim D(7),D#(7),E(7),F{7),F#(7)

50 dim G(7),6#7)

60forl=0to 7

T0P=I*12: Cl)=P+1: C#{I)=P+2 : D(l)=P+3 : DiI)=P+4
B0 E(1)=P+5 : F{l}=P+6 : F#{l}=P+7 : G(1}=P+8 : G¥{I)=P+3
90 A(l)=P+10 : AK{I)|=P+11 : B(l}=P+12

100 next |

110 rem Define time variables

120 WN=32 : HN=16 : ON=8 : EN=4 : SN=2 : TN=1

130 rem Turn off key click

140 click off

150 rem Set volume

160 volume 15

170 rem Read note

180 read N,T : if N<O then 230

190 rem Play note

200 play N.T

210 goto 180

220 rem Turn off sound

230 volume 0

240 click off

250 end

260 rem Music

270 data D(3).WN,E{3),WN,C(3),WN,C(2), WN,G(2), WN,-1-1

See CLICK OFF and VOLUME.

VOLUME (Change the sound volume)
VOLUME [v,]intensity
Allows you to change the volume of any subsequently generated sounds.
Intensity refers to the loudness of this sound. It can normally range from 0(silent)
1o 15(very loud). There's also a special setting of 16 for the envelope generator.
See the ENVEL command for more details.
v indicates which of the three voices is to be regulated by the command. This

number can take any value from 1 to 3. As with PLAY, if no voice is specified then
all three voices are affected.

volume 15
play 40,10
volume 5

play 40,10

new
10 for i=D to 15

20 volume i

30 print “VOLUME";i
40 play 60,10

50 next i

See ENVEL, PLAY

CLICK OFF/ON (Turn off keyboard click)

One minor problem you may encounter when using PLAY, is that the keyboard
beeps tend to interfere with the note. Try typing the following line:

volume 10: play 40,1000:rem Generate a tone 20 seconds long

If you now hit one of the keys while the note is playing, the note will immediately
stop. Since this could be very inconvenient, STOS Basic allows you 1o turn off the
keyboard click at any time with the instruction:

click off

As you might expect, the click can be reactivated by CLICK ON. Incidentally, it is
important to note that this problem does nat occur when using music created by
the MUSIC accessory.

The MUSIC command

Although the PLAY command is very useful for the generation of single tones, it's
not really suitable for the creation of real music. The most serious problem with
PLAY is that it delays the entire program for the duration of the note. Whatis really
required is an instruction which would play a piece of music while a program was
doingsomething else. This would allow you to add a soundirack to agame, without
spoiling any of the action. F y, STOS Basic i ap i
of commands which enable you to do precisely that.

MUSIC (Piay a piece of music using interrupts)

Plays some music which has been previously composed using the MUSIC.ACB
accessory. This music is always placed by the system into bank number three.
There are four different forms of the MUSIC statement.

MUSIC N (Play tune number n) The standard MUSIC instruction plays a tune
in bank 3, specified by the number n. Note
that unlike PLAY, the music is played
automatically by the system, without slowing
down your program in the slightest. n can
range from 1 to the number of tunes which are
currently installed (up to a maximum of 32).
Here's a small example to demonstrate this
process.

First load a melody from the accessory disc with the line:

105

You can play this with the MUSIC instruction like so:

music 1

This music will now play in the background independently of the rest of STOS
Basic. You can run, list, or even load a program without interfering with it in any
way. The MUSIC command can therefore be used to add an attractive soundtrack
to any of your programs. Examples of this technique can be found in the games

Zoltar and Bullet Train.
MUSIC OFF (Turn off music)

MUSIC FREEZE (Temporarily
stop a piece of music)

MUSIC ON (Restart a
piece of music)

Example:

The MUSIC OFF command stops a piece of
music which is currently being played. You
can restart this music from the beginning with
MENU ON.

Unlike MUSIC OFF, this instruction only halts
the music temporarily. If itis re-entered using
MUSIC ON, the music is continued from the
point it was frozen. The most common use of
MUSIC FREEZE s to stop a piece of music
before you generate another sound effect
such as an explosion. (See BANG, SHOOT,
BELL, NOISE, ENVELOPE)

MUSIC ON resumes the current music halted
by either the MUSIC OFF or the MUSIC
FREEZE commands.

load “music.mbk":rem If it has already been loaded, omit this step

music 1:rem Play music
music off

music on:rem Restart music from the begining
freeze

music
music on

See TEMPO, TRANSPOSE, ENVEL

TEMPO (Change the speed of a sample of music)

TEMPO s

Allows you to modify the speed of any tune played with the MUSIC command. s
is the new speed, and can range from 1 (very slow) to 100 (very fast).

Place the accessory disc in the current drive and type:

new
load "musdemo.mb“k:rem Load music

music 1:rem Play music

tempo 100:rem Set music playing very fast
tempo 10:rem Start music playing very slow

See MUSIC, TRANSPOSE.

TRANSPOSE (Change the pitch of a piece of music)
TRANSPOSE df

Alters the pitch of a piece of music by adding the value of dfto each note before
itis played. df can range from -90 to +90. Negative numbers lower the note and
posilive numbers increase it. A df increment of 1, by the way, corresponds to a
single semi-tone.

Load the music demo with the lines:

load “music.mbk™

Now play the music and use TRANSPOSE:
music 1
transpose 1:rem Increase the pitch by one semi-tone
transpose 10:rem Increase pitch by 10 semi-tones
transpose -20:rem Lower the pitch by 20 semi-tones

See MUSIC, TEMPO

PVOICE (Return position in music)
p=PVOICE(v)

PVOICE is a special command which allows you to find your position in some
music you are playing. v refers to the voice you wish to test, and p to the position.
Itis important to understand that p is set to a number representing the address of
the note and not to the note itself. If a number of zero is returned by PVOICE, then
no music is being played on voice v. The PVOICE instruction enables you to
determine when the music reaches a particular point and stop it if required.

Example:

Put the accessory disc into the drive and type:
new
10 load “music.mbk™
20 music 2

30 tempo §
40 home : print pvoice(1),pvoice(2),pvoice(3)

50 if inkey$="" then 40
60 music off
This displays a number denoting the note which is being currently played. See how
we used the TEMPO command to slow things down.
‘You can now amend the program to stop the music at a specific stage like this:
30 tempo 40
4 if pvoice{1)=118 then 60
It you run this program, the music is halted when PVOICE(1) reaches position 118.
VOICE (Turn on/off a voice)
VOICE OFF [v]

107

Lets you turn off one or more voices of a tune played by MUSIC. The optional voice
vcan take the numbers from 1-3 and specifies that only a single component of the
music will be suspended. If it is not included then all three voices will be
deactivated.

VOICE ON [v]

Restarts some music halted by the VOICE ON instruction. As before, v indicates
which of the three voices is to be set in motion. If it is not specified then all three
voices are set in motion.

Examples:
Place the accessory disc into the drive and type:

new

load “music.mbk
music 1

voice off 1

voice off 2
voice off 3

voice on 2

voice on 1
voiceon3

The Music definer

STOS Basic includes a powerful accessory in the file MUSIC.ACB. This can be
used to compose a piece of music to be subsequently played with the MUSIC
commands. As this is a rather large program, users of the 520ST should always
remove all other accessories from memory before loading.

accnew:accload “music.ach™
You can now enter the accessory by pressing HELP+F1.

S8 BN WISIC BLOCK TM4LS

) Carrent music (1 0

'—l ek (—l £
This screen consists of {hlea windows which correspond to the three voices.
Each of these wi can hold a P of the music. You can
move between the windows using either the mouse, or the left and right cursor
keys

CHET6T

108

Above these windows is a set of menus and a graphical display of the current
tune in a standard musical notation. Don't worry if you can't read music, as this
window is only there as a convenient aid for those who can. The following diagram
should make the format of the main screen a little clearer.

Musical notes can be entered in any of the three windows just by moving the
cursor to the appropriate point and typing them directly from the keyboard. These
notes are splitinto three distinct parts. The first section consists of the name of the
note, which is input using standard musical notation, and can be one of the
following 12 possibilities:

C.CH.D.DK.EF.F4.G.GF.AALB

We've listed these notes in order of increasing pitch.

The second part of a note is the octave, which can range from 0 (very low) to
7 (very high). The higher the octave, the higher the note.

Finally, each tone has a duration specified in units of a single note. This is set
by the instructions in the table below.

Duration of note Meaning

WN Whole Note

HN Half Note

QN Quarter Note

EN Eighth Note

SN Sixteenth Note

TN Thirtysecondth Note

YYou can also add an additional half note to each of these durations except the SN,
by using the “." character. So QN. is a duration of a quarter of a nate plus a half
—three quarters of a note. Each of these sections are combined into a single string
such as:

FBRTN
You enter these notes by moving the cursor over the vaice window using either
the up and down arrow keys or the mouse, and then typing a command followed
by a Return. You can also use the function keys to move the cursor as follows.

12 Displays the next page of your music

11 Displays the previous page

13 Jumps to the start of the music

14 Jumps to the end

When you require to enter rests into the stave you only have to enter a value of
0 for the note followed by its length.

The music instructions
In addition 1o simple notes, the Music definer also supports a range of other
instructions which can be executed at any point in your music. Here is a list of the
various options.

VOLUME v (Set volume)

Sets the volume of the current voice to v, where vcan vary from 0 (silent) to 15 (very
loud). If this instruction is not used, then a volume of 15 is set as a default.

109

ENVEL e (Set envelope)

Allows you to choose one of a number of ditterent waveforms for your music.
These waveforms determine the shape of the note by changing the volume over
a period of time. e refers to the envelope number. As a defaull eight of these
envelopes are already defined, although these can be readily changed using the
built-in Envelope editor. See the section on this utility for more details. Each piece
of music must contain one of these instructions at the beginning, or the tune will
not be played.

Tremolo t (Set tremolo)
Identical to an envelope except that, instead of the volume being changed, it is the
pitch of the note that is progressively altered. This adds a pleasant waver to the
note. 1 is the number of the tremolo to be used. As with the envelopes, eight of
these tremolos are automatically defined. Existing tremolos can be modified and
new ones created with the Tremolo definer utility.

STOP TREMOLO
Deactivates the current tremolo if one is being used.

NOISE n (Start noise)
Generates a hiss of pitch n at the same time as the notes are being played by the
current voice. The frequency of this sound ranges between 0 and 31. See the
STOS Basic NOISE command for more details.

STOP NOISE (Stop the noise effect)
Turns off a noise created with NOISE.

NOISE ONLY (Plug each note as noise rather than a pure tone)

Plays each note as a noise rather than a pure tone. This can be used to create a
number of interesting percussion effects.

MUSIC (Reset to music)

If the voice has been defined as NOISE ONLY, this returns the voice back to
normal. Do net confuse with the MUSIC command from STOS Basic!

REPEAT n,p (Repeat a section of music)

Repeats the notes starting from the instruction number p to the end of the current
voice. n refers to the number of times the music will be repeated. If a value of 0
is used for n, the music will be played indefinitely. Warning: This instruction must
always be placed before the music to be repealed. If it is placed inside the loop,
then the music will never end, as the repeatis reinitialised every time it is executed.

NTREMOLO t (Set noise tremoic)

Uses the Noise generator rather than a pure tone 1o creale lremolo number 1. The
result is very odd indeed, but might occasionally be useful when used as part of
a soundtrack.

110

NTREMOLO OFF (Noise tremoio off)
Turns the NTREMOLOQ function off.

Envelopes and tremolos

Envelopes control the evolution of the volume of a note over time. These
envelopes can be created using a powerlul utility built into the music definer. You
can use this facility to mimic the sound of a range of different musical instruments.

Tremolos are really very similar to envelopes except that the pitch of the
sound rather than the volume changes during the note. Tremolos can used to
produce a number of interesting vibratto effects. Like envelopes they can also be
edited using a special utility.

The Envelope editor

The Envelope and Tremolo editors are effectively one and the same. They can be
accessed at any time using the FIX ENVELOPE or FIX TREMOLO options from
the tools menu.

Since the two routines are otherwise identical, we'll concentrate on the
Envelope editor. When you enter this, the following screen is displayed

EDITING ENVELOPE WUMBER |

¢ asE l ?ﬂ (m N SIEF 16w m. \ WmgER ilw

\
\
\
\
\
\
\
N
\

FL: previews - - F2: next - - (F! it - - (SPCE} to bear
o st - - o wali

The top of the screen contains a graphical representation of the current
envelope. Below this there are three wi You can movi these using
the cursor keys.

The nature of an envelope is determined by up to eight different phases. These
phases are specified using the information you have entered into the windows.

The Speed window sets the speed of the phase. Possible speeds range from
1 (slow) to 100 (fast). This number indicates the delay between each step of the
waveform. A speed of 100 signifies that the steps will be performed every 50th of
asecond, while a speed of 1 denotes an interval of 100/50 or 2 seconds between
successive stages. In addition, you can also input the commands END or LOOP.
END simply terminates the envelope at the current point. LOOP is rather more
interesting and repeats the entire envelope, which now overlays a continuous
rhythmn on any music you subsequently play.

The Step window inputs the change in the volume 1o be produced in each

i1

stage. Positive numbers increase the volume, while negative numbers decrease
it.

Finally there is the Number setting which determines the number of times each
phase will be executed. This can range from O to 255,

At the start of the session you are presented with waveform number one. You
can move lo the next envelope by pressing f2 and to the previous one with f1.

Now for a simple example. In this we will be defining a new waveform for
envelope 9. Press f2 until the number 9 is displayed at the top of the screen. Move
the cursor to the first row of the Speed window and type in the following lines,
terminated by Return,

L]
30
15

As you can see, an END i is placed a at the end of your
envelope. You should now add the steps of these phases by moving the cursor
to the top of the step window and entering:

2
o
-1

Similarly you can input the number of times each stage should be performed into
the Number window.

The envelope will now be displayed on the screen. This consists of a sharp
increase in volume (attack), followed by a brief period when the volume stays the
same (sustain), and a slow drop (decay). Press the spacebar to hear how this
envelope actually sounds. Now move the cursor to the END statement and
change it to a LOOP. This will repeat the waveform continuously.

The pull-down menus

STOS
ACKNOWLEDGMENTS
Quit Exit to STOS Basic Editor.
QUIT and GRAB Exit to STOS Basic Editor, and load the current
music into bank 3.
BANK
LOAD MUSIC BANK Load a memory bank containing a sample of music

from the disc. Note that this command does not
affect the music currently being edited. This allows
you to merge two sections of music together.

SAVE MUSIC BANK Save the music on to the disc. The name of the file
must end with the extension .MBK.

12

GRAB

ERASE MUSIC BANK

MUSIC
NEW MUSIC

RENAME MUSIC
PUT MUSIC

GET MUSIC

ERASE MUSIC

PLAY MUSIC

PUT and PLAY

PRINT MUSIC

BLOCK
START BLOCK

END BLOCK

Grab some music from the current STOS Basic
program.

Deletes any MUSIC currently stored by the definer.

Deletes the music currently being edited, and asks
for the name of the new tune you wish to create.
Does not affect any of the music held in bank 3.

Changes the name of the current piece of music.

Copies the currently edited tune into one of the 32
different slots in bank 3. Bank 3 is used by STOS
Basictoholdyour musicandis limited toa maximum
of 32k. This should easily be sufficient for all
practical purposes. Since the definer only saves
the data which has been previously installed in the
bank, you must always remember to use the PUT
instruction prior to saving your music to the disc.
OTHERWISE YOUR MUSIC WILL BE LOST
FOREVERI!

This option loads a sequence of music stored in
bank 3 into the music editor. If you change this
music, don't forget to place it into the memory bank
with PUT, otherwise all your amendments will be
lost. Incidentally, GET MUSIC automatically
app any lopes or used by your
compositionintothe existing set. You are, however,
restricted to a maximum of 25 envelopes and
tremolos at a time.

Allows you to delete one of the sections of music
from the bank.

Enables you to play a piece of music you have
stored in the memory bank. If you wish to play the
music you are currently editing, you need to load it
into the bank first using PUT MUSIC.

Permits you to put the current music into bank 3
and then play it using just one operation.

Outputs a listing of the music you are editing to a
printer. All three voices are printed out.

Sets the start of a block at the current cursor
position. All text below this line is subsequently
displayed in inverse.

Sets the end of the block. The section of the muziz
making up this block is inverted. This block can
now be manipulated with COPY BLOCK and
TRANSPOSE BLOCK.

113

CANCEL BLOCK Aborts current block and redisplays the section of
music in normal type.

COPY BLOCK Places a copy of the currently defined block at the
cursor position. This feature can be used to copy
music from one voice lo another.

ERASE BLOCK Erases the part of the music selected using the
START and END BLOCK commands

TRANSPOSE BLOCK Allows you to add or subtract a specific number of
semitones from the music in the current block. The
editor expects you to input a number from -90 to
+90. As with TRANSPOSE from Basic, negative
values lower the pitch and positive values increase
it.

TOOLS
FIX ENVELOPE Enter ENVELOPE Editor.
FIX TREMOLO Edit Tremolos.
ERASE ENV/TREM Delete all envelopes and tremolos from memory.

Creating a piece of music

In order to create some music, first enter the Music Definer using Help+1. Now
move the cursor to the first voice and type:

ENVEL 1

As you press Return, you will be prompted for an eight character name for your
music. In this example you can call the music anything you like. The ENVEL
instruction sets the waveform of the notes which will be played. Up to 16 of these
waveforms are available at any time, and these can be defined using a built-in
envelope editor. Each piece of music needs to have its own envelope setting. If
you omit this instruction the music will not be produced.

Move the cursor to the line below the ENVEL command and type:

D3WN
E3WN
CIWN
C2WN
G2WN

When you enter each line the cursor moves down one place, and the appropriate
note appears on the screen. The Insert key inserts a space at the current cursor
position and moves the rest of the music down a line. Similarly the Delete key can
be used to erase the nole under the cursor

You can now register your music into the memary bank using the PUT option
from the Music menu. This puts the tune into one of 32 different slots. These slots
have numbers ranging from 1-32 and refer to the numbers used by any subsequent
MUSIC command in your program. Move the mouse 1o slot number 1 and press
the left button to install your music into the bank.

In order to listen to this music, you must select the PLAY option. As before you

114

need to choose the name of the music with the mouse.

Press the S key to play the music. If you're a science fiction fan, you may
recognise it as part of the theme from Close Encounters of the Third Kind.

The speed of this piece can be changed while the music is playing by hitling
the + and - keys, and you can alter the pitch with / and *. While the music plays,
each note is displayed on the screen.

After you have finished listening to the music, you can exit back to the main
menu by pressing the Escape key.

SINS MM WSIC mocr Tews

) Corrent msic (4 .
—_— s

{ESC) o Ell £ 0 k=) sen 4 4 & (®) set traspesition
[l) restrts masc / e st b st
Once in step by step mode, any other key rulnl o sormal.

Tempa: M / Transpesition’ 8 / Rormal

(F ym) (v 1m) (¢ 3w

”

wnencncncn)
- =

One minor problem with this tune was that it stopped playing after the last note
STOS Basic includes a useful REPEAT instruction which can be used in this
situation. Move the cursor to the line containing the first note, and press Inser.
Now enter the instruction:

REPEAT 03

The REPEAT command lakes two paramelers. The first number specifies how
many limes the music should be repeated. A value of zero indicates that the music
should be played continuously. The second number helds the starting position of
the notes to be repeated. This figure includes any instructions such as REPEAT
or ENVEL.

Now go to the Music menu and choose the Put and Play option, which
combines the actions of the separate Put and Play menus into a single operation.
When you play the tune, it will be repeated when it reaches the end.

Try adding each of the following instructions inta the music in turn. Place them
just atter the REPEAT command, and test the effect with Put and Play.

NOISE ONLY

Produces a literally off-beat effect

ENVEL 5

Plays the five lones using envelope number 5.

TREMOLO 2

Adds a nice waver to the tone.

You can then save the music using the Save Music option from the Bank menu,

orincorporate it directly into your current program with the QUIT and GRAB option
If you select the latter option you will be returned to the Basic Editor, and your

115

music will be automatically loaded into bank 3. You can now play this sequence
by typing:

music 1
When you've heard enough, turn the music off with:
music off

We'll now provide you with another example which demonstrates how several
different voices can b i produce a pl ic effect. Enter the
Music definer with Help+11 as before.

Move the cursor to the voice 1 window and enter the following. You don't
actually have to type every entry as the last instruction is entered automatically if
you press Return.

VOLUME 15
ENVEL 1

CaON
C40N
Ca4ON
D4ON
E4HN
DAHN
C40ON

Now move the cursor to the second window with the Right arrow and enter the next
voice.

CIWN

‘You can now play this music using the Put and Play option.

Finally, we'll have a brief look at the Music example on the accessory disc.
Place this disc into your current drive, and load the file MUSIC MBK using the Load
Music option.

If you call up the PLAY command, you will find that a piece of music has been
loaded into slot 1 with the name Cuomo. Access this by selecting the music with
the mouse. As usual you can change the tempo and the pitch of the music with the
+- and */ keys respectively.

116

We'll now show you how you can modify the music. Jump back to the main
screen with Escape and load the music into the editor with the Get Music option.
Now move the cursor to the start of the first voice and hit the Insert key.

A space will be inserted into the music, and you should type in the following
command:

TREMOLO 2

Select the Put and PLAY optior new music into th d slol. This
music will be played using tremolo number 2. The difference should be obvious!

Predefined sound effects
In addition to the music commands detailed above, STOS Basic also provides you
with a number of instructions which allow you to generate special sound effects
for your games.

BOOM ¢ a noise ding like an explosion)

As the keyboard click interferes with this sound, it's a good idea to turn it off with
CLICK OFF. You should also halt any music which is currently being played,
because this will be distorted by the boom. Use the command MUSIC FREEZE
for this purpose.

Example:

new
10 click off
20 boom

30 print “You're DEAD!"
40 click on

SHOOT (Create a noise Iike a gun firing)
SHOOQT simply produces a sound of a shot being fired.
Example:

new
10 click off

20 shoot

30 print “You're DEAD!™
40 click off

BELL (Simple bell sound)
Example:
bell
Defining your own effects

So farwe've only looked at the pre-defined effects, but you can also use the NOISE
command and the ENVELOPE instruction to generate a vast range of other useful
sounds.

117

NOISE
NOISE vp

NOISE produces a sound like a rushing wind. The frequency of this noise is set
by the pitch p, where pis a number from 1 (very high) to 31 (very low). v specifies
the voice which the noise is to be played on. If it is not included the noise is output
to all three voices simultanecusly. Note that any noise generated with this
command can be played continually while a program is running — just like the
MUSIC command.

Example:

new

10 click off
20 for i=1to 32
30 noise |

40 wait key
50 next i

The NOISE command really comes into its own when used in conjuction with the
ENVEL instruction.

ENVEL

ENVEL type speed

ENVEL activates one of the ST's 16 different envelopes. These periodically alter
the volume of a sound created with either NOISE or PLAY. type specifies the type
of envelope lo be used and can take any value from 1 to 15. speed ranges from
1 (very fast) to 66535 (very slow) and determines the length of the sound. Before
you can use this feature, you must first set the volume to 16 with VOLUME

Example:

volume 16:rem Set volume

moise 10:rem Create a noise of pitch 10

envel 10,100:rem Shape the sound using envelope 10
envel 10,1000:rem Helicopter sound

As you can see, it is possible to utilise ENVEL 1o produce a number of interesting
effects.

Here is a small program to help you to explore the various possibilities of this
instruction.

10 rem Program to experiment with the NOISE

20 rem and the ENVEL instructions

30 cls 35 locate 0,0 : input “Input langth of the sound from 1-10000”;T
40 locate 0,0 : print “Press a key to scroll through the sounds "

50 click off

60 for J=0 to 15

70 envel J.T

80 for I=110 31

90 noise |

100 locate 10,10 ; print “Envelope™
110 locate 10,11 : prinmt “pitch “;I" *;
120 wait kay

118

130 next |
140 next J
150 input “Continue Y or N™;A$ 160 if AS="Y" or A$="y" then 35

These envelopes can also be used to shape the pure tones generated by a PLAY
command.

envel 8,100
play 37,30

You can explore these effects using the program above by typing the following
lines:

35 locate 0,0: input “Input length of sound from 1-100";T

3 input “Starting envelope 1-15".S

37 if S<1 or $>15 then print “Bad Envelope number * : goto 36
60 for J=S to 15

80 for =110 9 step 3

90 play I.T

Note that the variable t refers to the time the note will be played in 50ths of a
second. When using the above routine, it's always a good idea 1o keep a pen and
paper handy to write down any sounds you want to keep. You will be amazed at
some of the noises which can be achieved with these commands.

As a general rule, NOISE is best suited for the creation of mechanical sounds
such as engines and machine guns. PLAY can generate more unusual effects —
like laser beams and alarms.

See NOISE, PLAY and VOLUME.

119

6 |Graphics functions

Although STOS Basic isn't Gem based, it still supports a wide range of powerlul
graphical functions similar to those provided by the Gem VDI. These include
facilities for drawing rectangles, circles and polygons. In addition, there's also a
special set of commands which make it particularly easy to create programs
capable of running equally well in all three resolutions. To that end STOS Basic
effortlessly allows you to change between low and medium resolution at any time
within your program.

Clearing the screen
CLS (Clear the whole screen)

This instruction clears the entire screen at high speed. Itis usually used to initialise
the screen at the start of a program. CLS has a number of useful extensions which
enable you to erase all or part of a screen stored anywhere in the ST's memory.
A full explanation of these options can be found in Chapter 7.

Colours

The ST allows you to display up to 16 colours on the screen at any one lime. These
colours are chosen from a possible palette of 512. As you might expect, the
number of colours which are available depends on the graphics mode the ST is
currently running in. Each of the 16 colours is referred to by a number called an
index. Here is a list of the various alternatives.

Resolution Mode Maximum no | Colour
of colours Indices
Low 0 16 from 512 0Oto 15
Medium 1 4 from 512 Oto3
High 2 2 from 2 Oto1

Before you can draw something on the ST's screen you first need to specity which
colour you wish to use. This colour can be set using the INK instruction.

INK (Set colour of graphic drawing operations)

INK index

Indexis the number of the colour to be used for all subsequent drawing operations.
Note that index number 2 is slightly unusual, in that it flashes on and off several
times a second. You can produce a similar effect using the FLASH instruction
covered in section 6.7.

COLOUR (Assign a colour to an index)

There is aiso a special COLOUR instruction which allows you to choose which of
the 512 colours is to be used for any particular index.

121

COLOUR index, $RGB
index is the number of the colour to be changed.

$AGB is usually a hexadeci ion which i the exact shade of
the new colour.

This expression consists of three digits ranging from 0 to 7, each of which sets the
strength of one of the primary colours, RED (R), GREEN (G) or BLUE (B) in the
final result. Here are a few examples of this notation:

Comp | form Final Colour
R=0 G=0 B=0 $000 BLACK

R=7 G=0 B=0 $700 BRIGHT RED
R=7 G=7 B=0 $770 YELLOW
R=0 G=7 B=0 $070 GREEN

R=4 G=0 B=7 $407 VIOLET

R=7 G=7 B=7 $777 WHITE

R=3 G=3 B=3 $333 GREY

So if, you want to make colour number 5 yellow, you would type:
COLOUR 557710
When this d, an yed on the screen which

y graphics
already use colour number 5, will be Immedlalaly changod to the new colour
(yellow).

=COLOUR (Read the colour assignment)

There's also a function with the same name, which takes an index number, and
finds the colour value which has been assigned to it. This is used in the following
manner:

c=COLOUR(index)
¢ is any variable and index is the colour number whose shade you want to
determine.

You can use this function to produce a list of the current colour settings of your ST,
like this:

new
10 mcol=16:rem set mcol to 4 in medium res
20 for I=D to meol-1

30 print HEX${colour(l)3)

40 next |

PALETTE (Set the current screen colours)

The PALETTE instruction is really just a rather more powerful version of COLOUR.
Instead of loading the colour values one at a time, the PALETTE command allows
you to install a whole new palette of colours in a single line.

PALETTE list of colours

This list can contain anything up to the maximum number of colours available in
the current graphics mode.

122

To see PALETTE in action, type one of the lines below:
Invert the screen in high res:
PALETTE §777,5000
Use this line for medium res:
PALETTE $000,5700,5746,5534
Use this line for low res:

PALETTE $000,5700,5070,5007.5770,5077.5707.5777,
$300,5030,5003,5330,5033, $303,5333,5345
Drawing lines
PLOT (Plot a single point)
The simplest of the drawing functions provided by STOS Basic, is the plot
command, which sets any point on the screen to a specific colour. The format of
the PLOT instruction is just:

PLOT x.y [.index]
Plots a point at the coordinates x,y.

It value of index isn't included, then PLOT will use the colour which was chesen
using INK.

In order to test this function on a colour monitor type:
new
10 mode 0
20 plot md(319),md(198),md(15)
30 goto 20
POINT (Get the colour of a paint)
As with COLOUR, there is also a function to perform the reverse of this.

c=POINT(x1,y1)
POINT returns the colour of the point at the coordinates x1,y1 in the variable ¢

DRAW (Draw a line)

DRAW is another very basic instruction which allows you to draw a straight line
on the ST's screen. There are two forms of the DRAW statement:

DRAW x1,y1 TOx2,y2 Draws a line between the coordinates x1.y1 and x2,y2
DRAW TO x3,y3 Draws a line from the last line drawn, to x3,y3
Example:

new

5 colour 3,$707:ink 3
10 draw 0,50 to 200,50

123

20 draw to 100,100
30 draw to 0,50

It is important to note that, in order to make DRAW operate at the maximum
possible speed. this instruction has been restricted lo a single line type. Because
of this, any attempt to alter the line style using SET LINE will have no effect
whatsoever.
See also POLYLINE, INK.
BOX (Draw a hollow rectangle on the screen)
BOX x1.y1 TO x2,y2
x1,y1 are the coordinates of the top left hand corner of the box
x2.y2 are the coordinates of the paint diagonally opposite.
Example:
box 10,10 to 200,100

See also SET LINE, INK, and BAR
RBOX (Draw a rounded hollow box)

This is almost identical to BOX, except that the edges of the rectangle are rounded.
As before the format is:

RBOX x1.y1 TO x2.y2
x1,y1is the top right corner of box and x2,y2 is the bottom left corner.

RBOX is very useful for producing Macintosh-like borders around a piece of text
Example:
new
5 colour 3,57:ink 3
10 rbox 156,100 to 245,130
20 locate 20,10: print “testing...”

See SET LINE. INK and RBAR.

POLYLINE (Muiltipie iine drawing)

POLYLINE is a very powerful insiruction indeed as it enables you to generate
complex hollow polygons using just a single line of code

POLYLINE x1,y1 TO x2.,y2 TO x3.y3 ...
Where x1,y1 = coordinates of point 1, x2,y2 = point 2 and x3,y3 = point 3

POLYLINE firstdraws a line from point 1 to point 2, and then another line from point
2 to point 3. It then repeats this procedure, and draws a line between each
successive pair of points until it reaches the end of the list. This means that
POLYLINE is roughly equivalent to the lines.

DRAW x1.y1 TO x2.y2
DRAW TO x3.y3

124

Now type in the following line, which draws a triangle on the ST's screen:
jpolyline 0,20 to 200,20 to 100,100 to 0,20
Notice how I've used four pairs of coordinates to draw three lines. As a general
rule, in order to create a closed polygon, the last group of coordinates should
always be the same as the first.
Also see SET LINE, INK and POLYGON.
ARC (Draw a circular arc)

ARC draws a segment of a circle on the screen. It is specified by:

ARC x1,y1.r.startangle endangle
x1,y1 are the coordinates of the centre of the circle, r is its radius.

Startangle is the angle the arc should be started from, and endangle is the angle
at which it should finish.

Angles are measured in units of a tenth of a degree, and can therefore range from
0 to 3600. Think of a clockface — an angle of 0 would now correspond to the
direction pointed at by the short hand at three o'clock. Also, since STOS measures
all the angles in an anti-clockwise direction, an angle of 900 would be represented
by a time of twelve o'clock, and the maximum angle (3599) would be at
approximately 3.01.

The following program should make this a little clearer:
new
10 draw 100,120 to 190,120
20 for a=0 to 3600 step 10
30 arc 100,120,900.a
40 next a
Notice that this function is also able to produce a unfilled circle:
ARC x1,y1,r,0,3600
Try:
arc 100,100,100,0,3600
See SET LINE, INK, PIE and CIRCLE
EARC (Draw an elliptical arc)

The EARC instruction is very similar to ARC, but produces an elliptical arc rather
than a circular one.

EARC x1,y1,r1,r2 startangle.endangle

x1,y1are coordinates of the centre of the arc, starfangle and endangle the angles
of the start and the end of the arc r1 and 2 specify the size of the two radii of the
ellipse.

If you're not mathematically minded, it may help to consider r2 to be the vertical
ppart of the radius, and r1 the horizontal. When r1 and r2 are the same, the ellipse

125

will be almost identical to a circle. If r2is much greater than rf then the ellipse will
be tall and thin, and if the reverse is true, it will be short and wide.

You can use this function to draw a complete ellipse using:
earc x1,y1,r1,r20,3600

Example:
earc 100,100,30,50,0,3600

Example:

new

10 cls:colour 1,547:ink 1
20 draw 120,119 to 160,119
30 for R1=40 to BO step 40
40 for R2=40 to BO step 40
50 for A=0 to 3600 step 200
60 earc 120,119,R1,R20,A
70 next A

80 next R2

90 next R1

Line Types

So farin our examples, we have restricted ourselves to using solid lines. But STOS
Basic also allows you to use a wide variety of other line styles. These can be used
lo great effect. in anything from the creation of simple diagrams to complex
drawing routines.

SET LINE (Set the line styles)
SET LINE mask,thickness,startpoint,endpoint

Mask is the bitmap for the line, and thickness can range from 1 (very thin) to 40
(extremely wide). Startpoint and endpoint specify one of three styles to be used
at the beginning and the end of every line: 0=SQUARED, 1=ARROWED,
2=ROUNDED.

Mask is a 16-bit binary number which holds a so-called bitmap of the line. In this
system, any points in the line which are to be displayed in the ink colour are
represented by the binary digit 1, and any points which are to be set to the
background colour are represented by a zero.

So a normal line is denoted by the binary number %1111111111111111 and will
be displayed
and adottedlinelike: __ _ _ will be produced by a mask of %1111000011110000
By setting the line mask to numbers between 0 and 65535 it is possible to generate

an almost infinite variety of ditferent line types.

The program below contains a number of examples of this function in action.
new

10 cls: colour 35770 : ink 3
20 set line %1111111111111111,100,1

126

25 rem A large arrow

30 arc 100,199,90,0,1800

35 rem A dotted diagonal line

40 set line %1111000011110000,1,0,0
50 polyline 200,60 to 300,100

55 rem A single large point

60 set line %1111111111111111,2000
70 polyline 100,150 to 100,160

Noatice how we've used POLYLINE instead of DRAW and POINT. This is because
neither of these instructions are capable of using the line styles installed by SET
LINE.

See INK, POLYLINE, BOX, RBOX, ARC and EARC.
Filled Shapes

STOS Basic includes a number of useful instructions to enable you to create a
wide range of filled shapes.

PAINT (contour fill)

The PAINT command allows you to fill any existing hollow surfaces on the ST's
screen with colour. As you might expect, this colour can be sel with the INK
instruction. In addition, you can also use SET PAINT to specify one of a number
of different fill patterns.

PAINT x1,y1
x1,y1 are the coordinates of a point inside the object to be filled.

Look at the following example:

new

10 colour 3,$604:ink 3 ink 3
20 box 0,10 to 100,100

30 box 50,60 to 150,150
0ink1

50 paint 70,70

PAINT will happily fill any surface you like providing it is by
lines. If however, there is a gap in one of these lines, . the fill colour will leak out into
the rest of the screen. The effect of this can be seen by adding line 15 to the above
example:

15 set line %1111000011110000,1,0,0
Incidentally, PAINT corresponds directly to the FILL instruction found in other
versions of Basic. Take care not to confuse the two as the STOS Basic FILL
command has a very different effect!
BAR (Draw a filied rectangle)
This draws a filled bar using the current ink colour.
BAR x1,y1 TO x2,y2

x1,y1 hold the coordinates of the top left corner of the bar, x2,y2 the coordinates
of the corner diagonally opposite.

127

new

10 mode 0

20 X1=md{200):¥1=md(100):W=rnd(100):
H=md(80)

30 ink rd(15)

40 bar X1,Y1 to X1+W,Y1+H

50 goto 20

See also RBAR, BOX, SET PAINT and INK
RBAR (Draw a filled rounded rectangle)
RABAR draws a filled and rounded rectangle on the screen

RBAR x1,y1 TO x2,y2
x1,y1 hold the starting corner of the bar.
x2,y2 hold the coordinates of the corner diagonally opposite.

It you've already typed the BAR example above, you can see how this warks by
changing line 40 to:

40 rbar X1,Y1 to X14W,Y1+H
Refer also to RBAR, BOX ,SET PAINT and INK
POLYGON (Draw a filled polygon)

The POLYGON instruction is identical to POLYLINE except for the fact that it
generates a filled shape rather than a hollow one. As usual the fill colour is set
using INK, and the fill pattern with SET PAINT.

POLYGON x1,y1 TO x2,y2 TO x3,y3 ...

Where x1,y1 are the coordinales of point 1

x2,y2 those for point 2 and x3,y3 those for point 3

Example:
jpolygon 0,20 to 200,20 to 100,100 to 0,20
Now type in lines 10 to 50:

new
10 mode 0

20 ink rnd(15)

30 X1=rnd{200):Y1=rnd(100):H=md(100):
‘W=rnd(30)

40 polygon X1,Y1 to X1+W,Y1 to X1+W/2,
Yi+H 10 X1,
50 goto 20

This program fills the screen with pretty coloured triangles.
Also see POLYLINE, INK, SET PAINT.
CIRCLE (Draw a filled circle)

CIRCLE x1,y1,r
x1,y1 are the centre of the circle and ris its radius.

128

Example:

10 mode

20 ink md(15)

30 X=rnd(200):Y=rnd(100):R=rnd(30)
40 circle X.YR

50 goto 20

See ARC, INK and SET PAINT

PIE (Produce a pie chart)

PIE is used to draw a segment of a circle in the current fill colour. In practice it can
be considered to be a solid version of ARC. Like ARC it needs two angles, which
denote the starting and the ending points of the pie chart respectively

PIE x1,y1,rstartangle endangle

x1,y1 are the coordinaltes of the centre of the chart and r s its radius.
Startangle and endangle range from 0 to 3600, where 0 is 3 o'clock, and angles
increase in an anticlockwise direction.

Example:

10 rem Get free space on single density disc
20 rem Divide by 100 to convert into the range 0-3600 (approx)
30 rem Change to 200 for double sided drives
40 cls: colour 1,5700 : ink 1 : colour 3,570
D=diree
60 D=D/100
70 pen 3: locate 20,2 : print “% Disk space free”
80 pen 1: locate 203 : print “% Disk space used”
0ink3
100 pie 100,110,60,0,0
1M0ink 1
120 pie 100,110,60,0,3600

This program displays the free space on the disc as a pie chart.
See also ARC, INK and SET PAINT.

ELLIPSE (Draw a filed ellipse)

The ELLIPSE instruction is used to draw a filled ellipse in much the same way that
CIRCLE produces a filled circle.

ELLIPSE x1,y1,r1,r2
x1,y1 are the coordinates of the centre of the ellipse.
r? and r2 are the two radii.

You can now type in the fallowing program:

new
10 mode 0

20 ink md(15)

30 X1=rnd{200):Y1=rnd(100}:R1=rnd(90):R2=rnd(30)
40 ellipse X1,Y1,R1,R2

50 goto 20

See EARC, EPIE, INK and SET PAINT.

129

EPIE (Draw an elliptical pie)

This function corresponds directly to the EARC instruction and draws a solid
elliptical pie chart.

EPIE x1,y1.r1.r2 startangle,endangle

x1.y1 are the coordinates of the centre of the segment and r1 and r2 its two radii.
Startangle and endangle range from 0 to 3600, and rotate in an anticlockwise
direction.

It the very idea of an elliptical pie chart seems ridiculous, we've included a couple
of simple examples which may make you change your mind.

epie 100,100,100,20,0,2225
epie 110,110,100,20,2225 3600
As you can see, the use of ellipses lends useful impression of depth to any pie
chart.
It you've already typed in the pie chart ple, try adding the ing lines:
100 epic 200,110,90,10,0,0
120 epic 200,110,90,10,0,3600

Fill types

STOS Basic allows you to use up to 36 different fill styles. These patterns can be
grouped into four distinct types: Solid, dotted, lined, and user-defined. Furthermore,
if you don't find the pattern you like, you can easily create one of your own.

SET PAINT (Select fill pattern)
The SET PAINT instruction has the format:
SET PAINT type, pattern, border
Type can range from 0 to 4.
The effect of the various types can be found by inspecting the table below.

Fill Type Effect

0 Surface is not filled at all

1 Surlace is filled with the current INK colour (solid)

2 Surface is filled with one of 24 dotted patterns

3 Surface is filled with one of 12 lined patterns

4 Surface is filled with a user-defined line pattern
(See SET PATTERN)

The fill pattern is specified using a number, which can range between 1 and 24 or
1 and 12 depending on whether DOTTED or LINED type has been selected. If
neither of these types have been chosen, pattern should be set to 1.

Borderhas just two possible values: 0 and 1. A border of 1 is used to indicate that
the filled surface should be enclosed in a line of the current INK colour,

The following program prints out the fill types associated with each of the different
styles:

130

new

10 rem Print out a list of dotted patterns

15 mode 0

20 for TYPE=210 3

30 if TYPE=2 then LIM=24 else LIM=12

40 for STYLE=110 LIM

50 rem Set fill pattern with style number style and a border of 1
60 set paint TYPE,STYLE,1

70 rbar 0,0 to 310,180

B0 locate 0 4:centre “Type “+str$(TYPE)+" Style ~ + str${STYLE)
90 locate 0,6:centre “Press any key to continue”

100 wait key

110 next STYLE

120 next TYPE

Warning: Do not confuse SET PAINT with SET PATTERN!
See CIACLE, ELLIPSE, BAR, RBAR, PIE, EPIE and POLYGON
SET PATTERN (Set a user-detined fill pattern)

SET PATTERN is used to install the user-defined fill pattern specified with the
instruction SET PAINT.

SET PATTERN address of pattern

Addr fp 1refers to the addi inthe ST's memory where the new pattern
is 10 be found.

Patterns can be stored in either a memory bank, a string or an array of integers.
If you decide to store your pattern in a variable array, then you must always use
the VARPTR instruction to calculate the address of this data, before you call SET
PATTERN.

Sa if the pattern was held in the string P$, you would use the instruction SET
PATTERN VARPTR(PS)

Each pattern is 16 points high by 16 points wide and takes up 16 two byte
words of memory for each colour plane.

But how do you create this pattern in the first place? One particularly easy
solution is to treat your fill pattern as just a 16 by 16 sprite. This allows you to draw
any of your patterns using the sprite definer, and then load this sprite data into your
program in the normal way.

LOAD "PATTERN.MBK"
(Pattern can be any set of 16x16 sprites)

Then all you need to do is work out the address of this data for use by SET
PATTERN. This can be done with the following program:

10 rem Work out size of data

20 if mode=0 then PLANES=4

30 if mode=1 then PLANES=2

40 if mode=2 then PLANES=1

50 rem Get start of sprite information block

60 S=1 : rem Use image number 1. § can be any number up to the eurrent

number of sprites
70 rem Get start of sprite parameter block for image 1
% SP:)+4*(mode+1))+start{1)+4

131

100 rem Get start of sprite parmeter block for image $
110 SPB=SP+{S-1)"8 : POS=leek(SPB)+SP+32*PLANES
120 rem Get location of sprite image

130 POS=leek(SPB)+SP+32*PLANES

140 rem Choose user-defined fill pattern

150 set paint 4,1,1

160 rem Set user pattern to image in pos

170 set pattern POS

180 rem Test new fill pattern

190 circle 100,100,100

If you want to know how all this actually works, please refer to the technical
reference section in Chapter 12

FLASH (Set fiashing colour sequence)
This command gives you the ability to periodically change the colour assigned to
any colour index. It does this with an interrupt similar to that used by the sprite and
the music instructions. The format of the flash instruction is:
FLASH index,”(colour, delay)(colour, delay)(colour, delay)...”
Index is the number of the colour which is to be animated.
Delay is set in units of a 50th of second
Colour is stored in the standard RGB format (See COLOUR for more details)
The action of FLASH is to take each new colour from the list in turn, and then load
it into the index for a length of time specified by the delay. When the end of this
list is reached, the entire sequence of colours is repeated from the start.

Note that you are only allowed to use a maximum of 16 colour changes in any
one FLASH instruction. Here is a small example:

flash 1,7(007.10}000,10)"

This alternates colour number 1 between blue and black every 10/50 (1/5th) of a
second.

Now for something more complex:
flash 0,7(111,2)(333,2){555.2)(777.2)(555,4)
(3334)"

If this gives you a headache, you will be glad to learn that you can turn the flashing
off using the instruction:

Also note that on startup, colour number 2 is a flashing colour. It's therefore a good
idea to turn this off before loading any pictures from the disc.

See SHIFT and INK

132

SHIFT (Colour rotation)

SHIFT allows you to produce startling effects such as the famous Neochrome
waterfall. It does this by rotating the entire palette of 512 colours into the 16 colour
indeces using interrupts.

SHIFT Delay [, Start]

Delay is the delay between each rotation in 50ths of a second.
Start enables you to change only the colours with indeces greater than an initial
value.

It a starting value is not included in the instruction, then the rotation will begin from
colour number 1.

Here is a small example of SHIFT:
shift 10

See also FLASH, PALETTE and COLOUR.
The writing modes

Whenever you draw some graphics on the ST's screen, you normally assume that
anything underneath it will be overwritten. Sometimes this can be inconvenient,
and in this case it's useful to have the ability to choose a slightly different method
of drawing. STOS Basic provides you with a special instruction called GR
WRITING for just this purpose. The format of the statement is:

GR WRITING MODE
Where MODE can take the values from 1 to 4

Replacement mode MODE=1)

This is the default condition. Any existing graphics on the screen will be completely
replaced by anything you draw over them.

Transparent mode (MODE=2)

Transparent mode informs STOS that only the parts of the drawing which are
aclually set to a speciic colour are to be plotted. This means that any points in the
new drawing which have a colour of zero, are assumed to be transparent and are
therefore omitted.

XOR mode (MODE=3)

XOR combines your new graphics with those already on the screen, using a logical
operation known as eXclusive OR. The net result of this mode is to change the
colour of the areas of a drawing which overlap an existing picture. One interesting
side effect of XOR mode is that you can erase any object from the screen by simply
setting XOR mode and drawing your object again at exactly the same place. This
technique can be used to wipe comple: polygons from the screen amazingly
quickly.

Example:
circle 100,100,100

gr writing 3
circle 100,100,100

Inverse transparent (MODE=4).

As you might expect, this mode has the opposite effect of transparent mode, and
only plots points with a colour of zero. All other paints in the new picture are
completely ignored.

Now type in the following small example:

5mode 0

10fori=1to 4

W cls

30 centre “Mode number “+str${i)
40 gr writing |

50 set paint 1,1,1

60 bar 100,50 to 200,150

70 set paint 36,1

80 circle 150,100,50

90 locate 0.4:centre “Press Return to continue™
100 wait key

110 next |

This demonstrates the action of all four writing modes. Incidentally, the reason for
the GR part of the instruction is to distinguish it from a similiar procedure called
WRITING, which is used for the text operations. You should therefore take care
not to confuse the two instructions.

See also AUTOBACK and WRITING

Polymarkers
What are Polymarkers?
Polymarkers are useful facilities normally provided by the Gem VDI, which enable
you to plot lists of objects such as crosses, diamonds and squares as easily as a
single point.

POLYMARK (Piot a list of polymarkers)
This instruction has the form:

¥’
(x1,y1).(x2,y2),(x3,y3) are the coordinates of a list of markers to be printed on the
screen.

Note that all polymarkers are drawn in the current INK colour. The marker type is
assumed to be a “." by default, and can be changed using SET MARK.

Example:

jpolymark 100,100;300,120
This draws two markers at 100,100 and 300,120
See SET MARK and INK.

SET MARK (Set the marker used by polymark)
This allows you to choose the marker used by POLYMARK from a selection of six
different marker types. Each polymarker can be drawn in eight sizes, ranging in
11 point increments from 6 to 83 pixels wide.

SET MARK type, size

Here is a table which illustrates the various possibili

Type Number Marker Used .
1 Point *." Note this marker is only
available in one size.
2 Plus sign “+"
3 Star ="
4 Square
5 Diagonal cross
6 Diamond
Example:
set mark 4,83
polymark 100,100;200,100;300,100

This produces three squares on the screen.

Here is a much larger
each of the eight sizes.

ple which gy all the p marker types in

10 rem Displays all six polymarkers

20 rem in each of their sizes

40 mode 0

50 rem Opens a window

60 windopen 5,0,0,40,12.23

70 centre "POLYMARKS" : locate 0,1 : centre “Press a key™
80 rem Turn off cursor and mouse pointer

90 curs off : hide

100 for =0 to 7

110 restore 240

120 for J=110 6

130 rem Change marker sizes in 11 point increments
140 set mark J1*1146

150 rem Get coordinates of mark

160 read XY

170 rem Draw a marker at X.Y

180 polymark XY

190 next J

60,80,270,80
data 50,145,160,145.270,145

The square polymarkers are especially useful as they allow you to quickly create
large grids on the ST's screen with just a few lines of code.

135

See also POLYMARK and INK

Multi-mode graphics

In order 1o write programs capable of working in all three of the ST's graphics
modes il's essential to be able to determine precisely which mode the ST is
running in at any one time. Also, since some programs need to use a screen with
the maximum possible size, it would be useful to have the ability to change
between low and medium resolution when required. This feature is impossible
using GEM, but in STOS Basic it's easy. To change from a low resolution screen
to medium resolution you simply type:

mode 1

You are now in medium resolution. This instruction can also be placed in a STOS
Basic program.

Example:
10 mode 1
MODE (Change the graphics mode)

MODE n
ncan be either 0 or 1.

Note that since mode 2 requires a special high resolution screen, a value of 2
simply doesn't make sense. Additionally, MODE will generate an error message
it you try to use it on a monochrome monitor.

There is also a MODE function which can be used to read the current graphics
mode at any lime.

Example:

10 if mode=2 then stop:rem This program will not work in high resolution
20 if mode=0 then mode=1: rem Enter medium resolution

30 centre "Medium Resolution™

40 locate 0,4:centre “Press a key”

50 wait key

60 locate 0,4:centre "Press a key”

70 centre “Low resolution”

80 wait key

DIVX and DIVY

Supposing you want to write a single program capable of working in all three
resolutions. There are two problems you will encounter in this situation: The
different number of available colours and the incompatible screen sizes. It's easy
enough to solve the first difficulty just by limiting the number of colours to 2. But
how do you beal the second problem? STOS Basic provides you with an answer
inthe variables DIVX and DIVY which hold two numbers denoting the current width
and height of the display area, expressed as a fraction of those used in mono
mode. Here is a small table showing the values these variables will take in all three
graphics mode.

136

MODE Resolution DIVX DIVY

0 Low 2 2
1 Medium 1 2
2 High 1 1

To draw graphics which look equally good in any resolution, all you now need to
dois to assume the screen is 640 by 400, and divide all your X coordinates by DIVX
and your Y coordinates by DIVY.

Type the following line:
rbox 0,0 to 639/divx,399/divy

This fills the screen with a rounded box whatever graphics mode your ST is
running under.

Now for a rather larger example:

1 rem Simple graphics demo

10cls

20 COLS=15: rem Assume low res at the start
30 rem Now test for medium res

40 if mode=1 then COLS=3

50 rem And for high res

55 if mode=2 then COLS=1

60 X1=rnd(319):Y1=rnd(rnd(199).C TYPE=md(2)
ink

80 if TYPE=1 then X2=X1+W:Y2=Y1+H:box X1/divx,Y1/divy 1o X2/divx, Y2/divy

90 if TYPE=2 then X2=X14W:Y2=Y1+H:rbox X1/divx,Y1/divy to X2/divx,Y2/divy

100 gato 60
CLIP (Restrict ail graphics 1o part of the screen)

The CLIP instruction is used to restrict the actions of all the graphics commands
to a rectangular region of the screen. If you attempt to draw anything outside this
area, your object will be clipped to fit in this rectangle.
CLIP x1,y1 TO x2y2
x1,y1 are the lop left hand corner of the rectangle and x2,y2 are the coordinates
of the corner diagonally opposite this point
Example:

new

10cls

20 clip 50,50 to 150,150

30 box 50,50 to 150,150
40 circle 100,100,100

As you can see, any parts of the circle outside the clipping rectangle haven't been
drawn,

This instruction is often used in conjunction with the STOS windows.
In order to turn the clipping off, simply type:
CUP OFF

137

7 |The screen

STOS Basic includes a powerful set of instructions which allow you to effortlessly
manipulate the size and shape of the ST's screen. These commands can be
utilised to produce some quite stunning effects. In this chapter we will be
examining the various techniques which make this possible.

Multiple screens

STOS Basic holds two screens in memory al any one time. The first is called the
Physical screen, and is the screen which is actually displayed on your televison
set. There is however, also a separate Background screen which is used by the
sprite commands. Normally the only difference between the two screens are the
sprites, which are only drawn on the physical screen. STOS Basic uses this
background to redraw any areas of the screen which are revealed underneath the
sprites when they are moved. See AUTOBACK for more details.

BACK (Address of the background screen)
This variable holds the location of the screen used as the sprite background.
Example:
print back:rem Address of background is 983040 for 1040ST users
458752

PHYSIC (Address of the physical screen)

PHYSIC is a reserved variable which contains the location of the screen currently
being displayed. If you load a different address into this variable, the screen will
be immediately redrawn using the screen stored at the new address.

Example:

print physic

491520 (or 1015808 on a 10405T)
10 resarve as screen 5

20 physic=5

Wcls

The above example reserves a memory bank as a screen and then assigns the
address of this bank to the physical screen. Notice how you are able to use the
number of the bank instead of an address.

When you run this program, the new screen will be cleared. If you now press
the Undo key twice, the screen address will be returned to normal and the original
picture will be restored. Incidentally, the ST's hardware will only let you display a
screen stored al an address which is a multiple of 256 byles. The RESERVE
instruction automatically takes this into account when allocating memory for a
screen.

139

LOGIC (Address of logical screen)

The Logical screen is the screen which is operated on by any of the text or graphics
instructions. Normally this will be the same as the physical screen, but occasionally
i's uselul o use a separate screen to hold an image while it is being drawn. This
allows you to draw one picture while displaying another, and then instantly switch
between them using a special SCREEN SWAP instruction. A similar technique is
used by games such as Starglider to generate impressive flicker free graphics.
See SCREEN SWAP for a simple example of this process.

Example:

back=logic:rem Move the mou:
print back

around and see what happens.

SCREEN SWAP (Swaps the address of the logical and physical screens)

Swaps the addresses of the physical and logical screens. This enables you to
instantaneously swilch the display between the two screens. Look at the example
below.

Wcls

20 X1=50 : Y1=50 : X2=75 : Y2=100 : X3=25 : Y3=100

40 for 1=0 to 244 step 8

50 ink 0

60 palygon X1+1-8,Y1 to X2+1-8,Y2 to X3+1-8,Y3 to X1+1-8.¥1
M0ink 1

80 polygon X1+1,Y1 to X2+,Y2 to X3+1,Y3 to X141,Y1

100 next |

This program moves a triangle across the screen. As the triangle proceeds,
it generates an intense and annoying flicker. You can solve this problem by
displaying the triangle on the screen, only after it has been completely redrawn
Add the following lines to the program above:

30 logic=back
90 screen swap : wait vbl

You should also change:
60 polygon X1+1-16,Y1 to X241-16.Y2 to X3+1-16,¥3 to X1+1-16,Y1

Line 30 places the address of the sprite background into the logical screen.
The triangle is now drawn on this screen without effecting the current image. The
SCREEN SWAP instruction at line 90 then swaps the logical and physical screens
around. This causes the finished version of the triangle to appear on the screen
immediately

The program now erases the old triangle from the invisible logical screen and
redraws it at the next position. The whole process is subsequently repeated and
the triangle apparently smoothly progresses from one side of the screen to the
other. The reason for the change at line 60 incidentally, is simply to take into
account the fact that each screen is used on alternate executions of the loop. This
means that the triangle to be erased will be twice the distance from the current
position as you would normally expect.

Note thal we've intentionally exaggerated the flicker of the above example to
illustrate the screen switching technique. In practice it would be very easy to
reduce this problem considerably even without the use of the SCREEN SWAP

140

instruction. Also notice that as we've used the background screen for our own
purposes, any of the sprite commands will interfere with the animation. Try moving
the mouse while the program runs to observe this effect. Another example of
screen switching can be found in the section on SCREEN COPY.

DEFAULT (Return initial value of one of three screens)

DEFAULT BACK Returns initial value of back
DEFAULT PHYSIC Returns initial value of physic
DEFAULT LOGIC Returns initial value of logic

When you are using mulliple screens, it's easy to lose track of the original screen
addresses. The initial contents of the variables BACK, PHYSIC and LOGIC can
be found at any time using the DEFAULT function. This function is often used at
the end of a program 1o set the screen back to normal.

Examples:

physic=default physic
back=de| back
logic=default logic

Do NOT confuse with the DEFAULT instruction.
Reserving a screen

As you have seen, any STOS Basic program can have a number of different
screens in memory simultaneously. The following instructions allow you to
allocate a memory bank to hold one of these screens.

RESERVE AS SCREEN (Reserve a bank as a lemporary screen)
RESERVE AS SCREEN n
Reserves bank number n as a screen. The size of this bank is automatically set
by RESERVE to 32768 bytes. After you have created a screen in this way, you can
load it with data using either the LOAD instruction or SCREEN COPY.
Example:

10 reserve as screen 5
20 load “stos\pic.pi1”5

Note that this screen is only intended for temporary slorage and is reinitialised
every time your program is run.

See RESERVE and LOAD.
RESERVE AS DATASCREEN (Reserve a permanent screen)
RESERVE AS A DATASCREEN n
The above command is identical to the RESERVE AS SCREEN instruction except

for the fact that it is installed permanently into the ST's memory. Any screen you
define as a DATASCREEN will be subsequently saved along with your program.

141

Example:

reserve as datascreen §
clear
listbanks

See RESERVE (Chapter 3).
Loading a screen

STOS Basic lets you load a screen stored on the disc into either a memory bank
or an address.

LOAD "IMAGE.NEO",scrn
LOAD "IMAGE.PI1"scrn
LOAD “IMAGE.PI2"scrn
LOAD “IMAGE.PI3" scrn

The LOAD command loads a screen into memory from the disc file IMAGE. An
extension of NEO specifies that the file is stored in Neochrome format. Similarly,
extensions of PI1,PI2,PI3 are used to signify a screen in Degas format. Note that
scrn can be either a screen address, or the number of a memory bank.

Example:

10 load “\STOS\PIC.PI1”,PHYSIC
20 wait key
30 default

Here is a larger example which converts screen files from Neochrome format to
Degas format.

10 rem Neochrome to DEGAS converter
20 Fs=file select${"*.NED")

30 if F$="" then stop

40 reserve as screen 5

50 load F$.5

70 print “Press Return to save picture”
80 input “in DEGAS format”™;A$

90 right${F$.3)="P11"

100 save F§.5

110 input “Continue ¥, or N;AS

120 it AS="y" or AS="Y" then 10

GET PALETTE (Set the palette from a screen bank)
GET PALETTE(n)

Loads the colour settings of a screen stored in bank n, and display them to the
present screen.

Example:
10 reserve as screen 5

20 load “STOSWIC.PI1" 5
30 physic=5

40 wait key
50 get palette(S)
60 wait key

CLS (Clear the screen)

In addition to the normal CLS instruction there is also an expanded version which
enables you to erase sections of a screen stared anywhere in the ST's memory.
There are three possible formats of this statement.

CLS scr Clears the screen at scr
CLS scr.col Fills the screen at scrwith colour col

CLS scrcol,x1,y1 to x2y2 Replaces the rectangle al scr at coordinates
x1,y1,x2,y2 with a block of colour cal.

scrrefers to either the address of a screen or the number of a memory bank. cof
can lake any value from 0 to the maximum number of available colours. x1,y.x2,y2
hold the coordinates of the top left and bottom right corers of the rectangle
accordingly. This instruction provides a very fast and effective way of erasing parts
of the screen.

Examples:
cls back:rem Erases the background screen
cls physic,6:rem Clears the physical screen with a block of colour 6
cls back.6,0,0 to 319,50:rem Erases the function key window from back

ZOOM (Magnity a section of the screen)
ZOOM scri x1,y1,x2,y2 TO [scr2,] x3,y3,x4,y4

Magnifies any rectangular section of the screen stored at scri. scrl and scr2can
be either an address, or the number of a memory bank. The coordinates
x1,y1,x2,y2 refer 1o the size of the rectangular area which is to be enlarged.
x1,y1 denote the lop left hand comer of this rectangle and x2,y2 specifies the
location of the corner diagonally opposite.
Similarly x3,y3 and x4,y4 hold the dimensions of the rectangle into which the
screen segment will be expanded.
scr2 is an optional destination screen for the enlarged image. If it is not
specified then the screen will be enlarged into the background held in BACK, and
will then be copied into the current screen. This avoids any problems with the
mouse or the sprites, and also displays the object in one smooth operation.
ZOOM is best suited to ing pictures with rel; ly large exp. of
a single colour. This is because each individual point in the picture is magnified
independently, which produces a noticable grain for large size increases.
An especially useful application of this instruction is in the creation of large
banners on the screen.
Type in the example below:

10 rem ZOOM1

20 rem Set screen attributes

30 cls : mode 0: pen 10: curs off
40 Z3="Zooming!"

143

50 rem Find positian of text
60 locate 0.4 : centre Z§

70 Yi=ygraphic(d) : X2=xgraphic(xcurs) : X1=X2-8%len(Z$) : Y2=Y1+8
B0forl=1t0 7

90 rem Calculate Zoom coordinates

100 X3=X1-16"1 : Y3=Y1-16"1 : X4=)X2+16"] : Y4=YZ+16"|

110 rem Enlarge Text

120 zoom physic.X1.Y1.X2.Y2 to X3,Y2.X4,Y4

130 next |

140 wait key : curs on

This repeatedly enlarges the centred text starting at coordinates 0,4. We've kept
the routine as general as possible o allow you to incorporate parts of it into your
own programs.

We'll now expand this program slightly to demonstrate the page flipping
mentioned earlier.

Add the following lines to the above program.

11 rem Reserve G screens

15 for I=5 to 11:reserve as screen | - cls |: next |
121 rem Enlarge text to screen no |

125 zoom physic.X1.Y1.X2.Y2 to 1+5.X3,Y2.X4.Y4
140 rem Flip between all 6 screens

150 for I=6 to 11:physic=l:wait vbl : wait 5:next |
160 wait 30 : goto 140

You should also alter line 80 to
BOforl=1106

Note that this program reserves six screens 32k long. It will work fine on a standard
520ST, providing you remove all STOS Basic accessories from memory using a
line like:

accnew

In addition, you may also need to load STOS Basic directly on startup, rather than
executing il from within Gem, as this saves you over 32k of memory.

Another common use of ZOOM is to magnify a specific part of an image for
subsequent editing. The program below shows how this might be achieved in
practice.

10 rem Zoom Example 2

20 mode 0

30 reserve as screen 5:rem Reserve a bank for the screen
50 FS=file select${"*.neo").rem Choose a neochrome picture
60 if F$="" then stop

BO flash off:rem Turn off flashing

90 rem Load screen into Bank 5

100 load F$.5: get palette (5)

110 rem Copy screen into Physical screen and Background
130 screen copy 5 to physic : screen copy 510 back

140 rem Draw an expanding Box

150 gr writing 3

160 rem Click on the mouse to pesition Box

170 repeat : until mouse key : X1=x mouse : Y1=y mouse : X2=X1: Y2=Y1
190 wait 40:rem Wait for Mouse key to be released

144

200 repeat

210 box X1.Y1 to X2.Y2

220 X2=x mouse : Y2=y mouse

230 box X1.Y1 to X2,Y2 : M=mouse key

250 until M<>0:rem click on a mouse button to exit
260 rem Make X1,Y1 into the top comner

270 if X1>X2 then swap X1,X2

280 if Y1>Y2 then swap Y1,Y2

290 rem If Right Mouse button pressed

300 rem Zoom Contents of Box to full

zoom X1,Y1,X2,YZ to 0,0,319,199 else box X1,¥1 to X2.Y2 :
M=0 : wait 40 : goto 170

330 wait key

340 goto 130

Much of this program should be self explanatory. Note the lines 140-250. These
use the XOR writing mode to generate a simple expanding box. Feel free to use
this routine in any of your own programs. After this box has been defined, the line
at 320 uses the ZOOM command lo expand its contents into the entire screen.
Incidently, the test for M=T1 is merely to allow you to abort the current expansion
by pressing the right mouse button.

REDUCE (7he inverse of zoom)
REDUCE scr1 TO [scr2,Jx1,y1,x2,y2

Compresses the enlire screen stored at scrf into the box specified by the
coordinates x1,y1,x2,y2. x1 and x2 hold the position of the top left corner of this
box, and X2,Y2 the bottom right. scrf and scr2refer 1o either a screen address or
the number of a memory bank. As with ZOOM, if the optional destination screen
is omitted, the drawing is first placed in the background and then moved into the
physical screen.

Example:

10 rem Reduce Example 1

20 FS=file select${"*.NE0")

30 rem Choose a picture

40 if F$="" then stop

50 mode 0 : flash off : curs off

60 rem Reserve screen and load Picture
70 erase Screserve as screen 5

B0 load F$.5 : get palette (5)

90 rem display 4 copies of picture

100 for =010 1

110 for X=0to 1

120 reduce 5 to X*160,Y*95,(X+1)*153+1,(Y+1)*%
130 next X

140 next Y

150 wait key

160 goto 20

This loads a Neochrome screen into a memory bank and then generates four
smaller copies of it using the REDUCE at line 120,

If you've got the second example of ZOOM handy, you can change it to use
the REDUCE instruction instead, with the line:

145

320 if M=1 then reduce 5 to X1,Y1,X2.Y2 else box X1.Y1 to X2.¥2 : M=0 : wait
40 : goto 170

REDUCE has many possible uses. One idea would be to generale a list of large
icons similar to those utilised in the game STAR TREK. These could be assigned
to a screen zone using SET ZONE, and then selected with the ZONE command
By storing a full-sized version in a compacted format (see PACK), you could then
effectively expand these pictures into the entire screen

SCREEN COPY (Copy sections of the screen)
SCREEN COPY scr1 TO scr2 (Copies ser 10 scrd)
SCREEN COPY scr1,x1,y1.x2,y2 TO scr2.x3.y3

SCREEN COPY is undoubtably one of the most powerful of all the STOS Basic
instructions. This is because it allows you to copy large sections of a screen from
one place to another. As usual scr1 and ser2 can refer to either a screen address
like LOGIC and PHYSIC, or the number of a memory bank. x1,y7 and x2,y2 hold
the dimensions of the rectangular area which should be copied, and x3,y3contain
the coordinates of the destination of this block. Note that the x coordinates used
in this instruction are automatically rounded down to the nearest multiple of 16.
Also the values taken by these numbers can be negative as well as positive. Look
at the table below.

Graphics Mode X Range Y Range

Low -320 to 320 -200 1o 200
Medium -640 to 640 -200 to 200
High -640 to 640 -400 1o 400

Any points in the destination outside the normal screen are simply not copied on
the screen. This is in marked contras! with the BLIT statement supported by other
versions of Basic which crash the ST completely if an illegal screen coordinate is
used.

The best way to see how the various options work is by example. Before you
can enter these examples you first need to do a little preparation. Start off by
reserving a bank for the STOS Basic title screen with the line:

reserve as dalascreen 10
Now place the STOS system disc into your drive and type:

load “\STOS\PIC.PI1”,10 (for low resolution monitors)
or

load “\stos\pic.pi3”,10 (for high resolution monitors)
Since you will be using the SCREEN COPY instruction rather a lot in this section,
you can save yourself some typing by assigning it to one of the function keys like
this:

KEY(10}="screen copy”

This allows you to abreviate any SCREEN COPY statements in subsequent
listings to just f10.

146

Now copy the title in bank 10 into the logical screen using the lines:

cls
screen copy 10 to logic

As you move the mouse around on the screen, you will find that the picture will be
steadily eaten away. This can be avoided by loading the picture into sprite
background as well.

Example:

1Wcls

20 screen copy 10 to logic
30 screen copy 10 to back
40 wait key

It you move the mouse when this program is being run, the screen will no longer
be erased. because the sprite background now contains exactly the same picture
as the logical screen.

By loading a picture into the background alone you can produce another
interesting effect. Try typing:

cls
screen copy 10 to back

Now the title picture is steadily drawn as you move the mouse. Instant artwork!
Now enter the lines:

delete 10-40: rem Do not type in NEW as this will erase bank 10
load “sprdemo.mbk”

10cls : hide
20 screen copy 10 to logic
30 sprite 1,130,0,1
40 move y 1,"(1.1,1)L"
50 move on
60 wait key
Now for some more complicated examples. Type in the following lines:
screen copy 10,0,0,100,100 to logic.0.0
This copies the top left hand corner of the title on to the screen.
You can also use the SCREEN COPY slatement with negative coordinates
screen copy 10,0,0,100,100 to logic,-50,-50
As you can see, only the lower section of the block has been copied to the
screen
Here's one final example of the SCREEN COPY command which enables
you o move a large coloured grid around on the screen using the mouse.
Example:

new
10 mode 0:1=14

147

15 rem Initialise screen and set square markers

20 cls physic : cls back:set mark 4,28

25 rem Draw a grid on the screen

30 for X=110 10 : for Y=1to 9 : ink rd(i}+1: polymark X*28,Y*20
40 next Y : next X

45 rem Reserve a screen and copy the grid to it

50 reserve as screen 10 : screen copy logic to 10

60 hide : curs off:rem Kill mouse and cursor

65 logic=back:rem Set Logical screen to sprite background
70 rem Move the grid

75 repeat

80 cls logic

85 rem Get mouse coords

90 X=320-x mouse"3 : Y=200-y mouse*3:rem Use different values for high
res

95 rem Copy the grid to the current screen

100 screen copy 10,X.Y,X+320,Y+200 to logic,0.0

110 screen swap:rem Swap physical and logical screens
120 wait vbl:rem Synchronise screen

130 until mouse key

140 default:rem Reset Editor window

The screen as a string

STOS Basic includes two special instructions which enable you to load a section
of ascreen into a string, and then manipulate it using the normal string commands.
This data can then be copied anywhere on the screen using a single string
assignment.

SCREENS (Load an area of a screen into a string)
There are two different forms of this statement.
5$=SCREENS$(scrn x1,y1 TO x2,y2)
The SCREENS$ function is used to load an area of the screen bounded by the
rectangle x1,y1,x2,y2 into the string s§. x1,y7 refer to the coordinates of the top
left corner of this box, and x2,y2 to the point diagonally opposite, Just as with the
SCREEN COPY instruction, the X coordinates are automatically rounded down
to the nearest multiple of 16. The expression SCRN can be either the address of
a screen or the number of one of the memory banks.
Example:
AS=screen${physic.0,0 to 319,199):rem Assigns the entire screen to 85
S$=screen${back 50,50 to 100,100):rem A$=area from 50,50 to 100,100
reserve as screen 10
screen copy physic to 10
bS$=screen$(10,0,0 to 160,100):rem Loads BS with top of screen in bank 10

SCREENS$(scrn,x,y)=a$

This instruction copies a screen area from the string a$to the screen scrn, starting
atthe coordinates x,y. As usual scrn can refer to either a screen address or a bank

148

number. Also note that the x coordinates used by SCREENS are always rounded
down to the nearest multiple of 16.

Warning! This command will only work with strings which have been previously
loaded by the SCREENS function. The SCREENS statement provides you with a
fast and efficient way of moving large objects around on the ST's screen.

Examples:
10 S$=screen${physic,0,0 to 100,100)
20 for y=D0 to 3:for x=0t0 6
30 screen${physic.50"x 50"y}=S$
40 next x'next y

This example fills the screen with copies of the top corner of the display.

The classic application of SCREENS is in thy ion of ds for
your games. By building your picture out of a number of prevlously defined blocks,
you can combine these into a wide range of different screens. Furthermore, after
you have stored your blocks inte memary, you can hold each screen as a simple
list of numbers. In practice this simple technique can save you an immense
amount of space.

Example:

5 rem SCREENS example

6 rem Requires Disc containing complete \STOS\ folder in order to run.
10 dim P${10,6)

15 rem Use extension PI3 for MONO MODE.

20 mode 0: curs off : hide :load “\STOS\PIC.P11” back

30 for X=01t0 9

A0 for Y=0to 5

45 rem Copy screen segments into array

50 PSIX, \'l-s:mnﬂh-:u‘n\"n w |x+|mz,|x+1rm
60 next Y

70 next X

80 for X=0to 9

90 for Y=0to §

100 X1=rnd(3):Y 1=rnd(5)

105 rem Copy segments back onto screen

110 screen${physic,X*32,Y*32)=P$(X1,Y1)

120 next Y

130 next X

140 wait key

150 goto 80

In order to make it as easy as possible to draw one of these screens we have
provided you with a special MAP DEFINER program

Scrolling the screen
DEF SCROLL (Define a scrolling zone)
DEF SCROLL n,x1,y1 to x2,y2,dx,dy

DEF SCROLL allows you to deﬁne up to 16 different scrolling zones. Each of these
witt by the variables dxand

149

dy. ndenotes the number of the zone and can range from 1-16. x1,y1 refer to the
coordinates of the top left hand corner of the area to be scrolled, and x2,y21to the
point diagonally opposite.

dx signifies the number of pixels the zone will be shifted to the right in each
operation. Negative numbers indicate that the scrolling will be from right to left, and
positive numbers from left to right.

Similarly, dy holds the number of points the zone will be advanced up or down
during the scroll. In this case negative values of dy are used to indicate an upward
movement and positive values a downward one.

SCROLL (Scroll the screen)
SCROLL n

The SCROLL command scrolls the screen in the direction you have previously
specified with the DEF SCROLL instruction. nrefers to the number of the zone you
wish to scroll.

Example:

10 def scroll 1,0,0 to 320,200,1,0
20 scroll 1:goto 20

Do NOT confuse with the SCROLL instruction used by the window commands.
Now for a larger example:

5 rem Vertical Scrolls

10 input “Step Size?";S:rem Choose scroll increment

11 rem Initialise screen and load background from system disc
20 mode 0 : curs off : hide : load “\STOS\PIC.PI1" back

30 def scroll 1,80,0 to 240,200,0,-S:rem Define scrolling zone 1
40 for Y=0 to 199 step S:rem Scnll saction of the screen

45 rem copy top of screen to

50 screen copy hcm\’mvé to logic,80.200-5

60 scroll 1:rem scroll zone 1

70 next Y

80 goto 40

This loads an image from the STOS system disc and rotates it around on the
screen. The variable S holds the number of points the picture will be moved when
each SCROLL instruction is executed. The larger the value of S, the faster and
jerkier the scrolling. Note line 50. This copies the top section of the screen into the
bottom before it disappears.

Here is another example which demonstrates how horizontal scrolling can be
achieved

and load background from system disc

10 mode 0 : curs off : hide : load “STOS\PIC.PI1" back

20 def scroll 1,080 to 320,120.-16.0:rem Define

scrolling zone 1

30 for Y=0 to 319 step 16:rem Scroll section of the screen

35 rem Copy left section of the screen back to the right

40 screen copy back.Y,80,Y+16,120 to logic,320-16,80 : for W=11to S : next W
:scroll 1

50 next ¥

60 goto 30

150

This uses a very similar technique to the last example except for the fact that
SCREEN COPY rounds all X coordinates down to the nearest multiple of 16. The
example is therefore forced to scroll in units of 16. Despite this the scrolling is still
reasonably smooth, especially at the slower speeds.

Now for a final example which combines a complex series of scrolling zones
to produce a fascinating effect on the screen.

1 rem Screen Scrolling demo

5 rem Needs Stos system disc in drive

10 mode 0 : curs aff : hide : load “\stos\pic.pi1” back
15 rem Define scrolls

20 def scroll 1,0,171 to 320,200,0,-6

30 def scroll 2,0,146 to 320,175,0,-4

40 def scroll 30,122 to 320,150,0,-2

50 def scroll 4,0,72 to 320,125,0,-1

60 def scroll 50,46 to 320,75,0,-2

70 def scroll 6,0.21 to 320,50,0,-4

80 def scroll 7,0,0 to 320,25,0,-4

90 rem scroll screen

100 for Y=0 10 199

110 screen copy back.0,Y,320,Y+6 to logic,0,194

130 scroll 1: scroll 2: scroll 3 : scroll 4 : scroll 5: scroll 6: scroll 7
140 next Y

150 goto 100

Screen synchronisation

Like most microcomputer syslems, the Atari ST uses a memory-mapped display.
This is a technical term for a concept you are almost certainly already familiar with.
Put simply, a memory-mapped display is one which uses special hardware to
convert an image stored in memory into a signal which can be displayed on your
television screen. Whenever STOS Basic accesses the screen it does so through
the medium of this screen memory.

The screen display is updated by the hardware every 50th of a second (70th
in Monochrome mode). Once a screen has been drawn the electron beam turns
off and returns to the top left of the screen, this process is called the vertical blank
or VBL for short. At the same time, STOS Basic performs a number of important
tasks, such as moving the sprites and switching the physical screen address if it
has changed. The actions of instructions such as PUT SPRITE, or SCREEN
SWAP will therefore only be fully completed when the screen is next drawn. Since
a 50th of a second is quite a long time for STOS Basic, this can lead lo a serious
lack of coordination between your program and the screen, which is especially
noticable when the next instruction also manipulates the screen in some way. The
only effective method of avoiding this difficulty is to wait until the screen has been
updated before you execute the next Basic command.

WAIT VBL (Wai for a vertical blank)

The WAIT VBL instruction halts the ST until the next vertical blank is performed.
Itis commonly used after either a PUT SPRITE instruction, or a SCREEN SWAP.
As a general rule, if your program uses sprites or screens and it only works
intermittantly, it's always worth checking to see whether you have omitted the
WAIT VBL.

SYNCHRO (Synchronise scrolling with sprites)

STOS Basic perf all sprit y 50th of d. This i

151

works fine, but occassionally it leads to an irritating synchronisation problem

Supposing you want to place a sprite at a fixed pointon a scrolling background.
Whenever this background moves, the sprite will move along with it. It would be
easy enough lo produce a set of MOVE X and MOVE Y instructions which
precisely followed the movement of the background. Unfortunately, this wouldn't
quite work as the SCROLL instructions would not be executing at the same time
as the sprite movements. The sprite would therefore tend to drift jerkily around on
the screen.

Luckily, STOS Basic includes a useful SYNCHRO instruction which allows
you to move all the sprites on the screen at the exact moment you require. This
enables you to effortlessly synchronise the sprites with a scrolling background.

There are three forms of this instruction:

SYNCHRO OFF Turns off the narmal sprite interrupt which moves
the sprites every 50th of a second

SYNCHRO Executes all the sprite movements exaclly once.

SYNCHRO ON Reverts the sprite movements to normal. The

sprites will now be moved in the normal way every
50th of a second.

We'll demansirate how all this actually works with a small example.
First you need to load some sprites into your micro. Place the accessory disc
into the drive and type:

load “sprdemo.mbk*
You can now type in the program itself:

new

10 rem Demonstration of SYNCHRO

20 mode 0 : curs off : hide : key off

30 rem Load picture from disc

40 load “\STOS\PIC.PI1” back : screen copy back to logic
50 rem Place sprite on the screen

60 rem Start it moving up.

70 sprite 1,144,193,1 : move y 1,°(1,-21)L"
80 rem Turn off sprite interrupt

90 synchro off : move on

100 rem Define Scrolis

110 def scroll 1,80,0 to 240,200,0,-2

120 rem Scroll section of the screen

130 wait 100 : rem Wait for drive to stop
140 for Y=0 to 199 step 2

150 screen copy back,80,Y,240,Y+2 to logic,80,198
160 scroll 1 : wait vbl : synchro

170 mext Y

180 rem Restart from bottom of screen
190 sprite 1,144,193,1 : move y 1.”(1.-21)L"
200 synchro off : move on

210 goto 140

Notice line 160 which moves the Sme up one unit and then scrolls the screen
alongwithit. The WAIT VBLil ttialas it p the syn
process. Try removing it and see what happens.

I've chosen this specific sprite to illusirale an interesting side effect. As the

152

sprite is moved, this specific sprite background peeps through it, rather like a
window. You could use this technique to produce a range of useful special effects

Compacting the screen

STOS Basic comes complete with a useful accessory which allows you to
compact any screen files stored in either Neochrome or Degas format into just a
fraction of their normal size. You can load this program from the accessory disc
using the line:

accnew:accload “compact.ach”

Using the compactor is simplicity itsell. You start off by clicking on one of the LOAD
FILE options. This presents you with a standard STOS file selector which can be
used lo choose a file in the normal way. The screen you have selected is now
loaded into the ST's memory and displayed. To return to the main menu just press
the left mouse button once

If you wish to compact the whole screen, choose the PACK WHOLE SCREEN
option from the Picture menu. The compactor will now attempt lo compress the
screen using a number of different sirategies. As soon as it finds the one which
uses the smallest amount of space, it will compact the file. This file can be saved
either as a memory bank or a raw binary file. The easiest option to use is the
memary bank, as this lets you subsequently load the screen directly into STOS
Basic. You can also use the Quit and Grab option to incorporate the screen straight
into your current Basic program.

In order to compact only part of the screen you begin by selecting the
appropriate option from the Picture menu. Although this section does include a
comprehensive set of instructions, we'll summarise them here for completeness.

1. Click on a mouse button to display the whole picture.

2. Youstart by choosing the left hand corner of the area to be compacted by clicking
on the left button. If you now press the right button and move the mouse, an
expanding box will be drawn. This box encloses the section of the screen you have
currenlly chosen. Similarly, by pressing the left hand button again, you can change
the position of the top comer of this rectangle.

3. After you have selected part of the screen to be compressed, press the spacebar
to compact your image. You can now save this picture on the disc using the Disc
menu as before.

The compaction utility would be useless if there was not some easy way of
restoring the screen 1o ils full size. This can be done using the UNPACK
instruction.

UNPACK (Unpack a screen compacted with the accessory)

UNPACK bnk scr
The UNPACK command restores a compacted screen stored in bank number bnk
into the screen scr. As usual serean refer to either a bank defined as a SCREEN
or DATASCREEN, or a screen address.
Example:

load “backgrnd.mbk:rem Load a compressed screen saved in bank 5

153

unpack 5,back:rem Unpack bank five and load into sprite background
physic=back:rem Set physical screen to sprite background

PACK (Function to pack a screen)
1=PACK scr,bnk

This is just the reverse of the UNPACK command. It's normally easier to use the
SCREEN COMPACTOR accessory, but if you do need to compact a screen within
aprogram, you can use the PACK function. scrrefers to either a screen address
or a bank number containing a screen to be compressed. bnk denotes the bank
which is to be used as a destination. After the pack function has been executed,
1is loaded with the length of the compressed screen.

Example:

reserve as screen 5:rem Reserve space for source
reserve as screen 6:rem Reserve space for destination
load "\stos\pic.pi1” 5:rem Load Title screen from
system disc in 5

L=pack(5,6).rem Pack screen

reserve as data 7.L:rem Reserve space for new screen
copy start(6),start(6)+! to start{7)

save “title.mbk":rem Save compacted screen

Special screen effects
APPEAR (Fade betwsen two pictures)
APPEAR x [y]

The APPEAR command enables you to produce fancy fades between a picture
stored in address x or in bank x, and the current screen. The y value is optional
and refers to the type of fade you wish to use. y can range from 1 to 79. Fades
between 1-72 always result in a COMPLETE image being copied from x to the
screen. Fades from 73-79 leave the final screen slightly different from the original
in bank x.

Type in the example below placing your backup of the STOS system disc into the
current drive.

Example:
10 hide
20 reserve as screen 15
30 if mode=1 then mode=0
40 if made=0 then load “\stos\pic.pi1”,15 else load “\stos\pic.pi3~,15
S0cls
60 input “screen effect™;X
70 curs off
B0 if X=0 then default : end
90 get palette (15)
100 appear 15X
110 wait key
120 curs on
130 goto 50

FADE (Blend one or more colours to new colour values)

This function allows you to produce stunning effects in one simple command.
There are three formats of the FADE command:

FADE speed Fade all colours to black
This version of FADE reduces each colours RBG
vaues by 1 until they reach zero. speed is the
amount of vertical blanks that must occur before
another change to the palete is made.

FADE speed TO sbank Fade the present colours to those of the specified
screen

The current colours are blended into the palette of
the screen stored in bank sbank.

FADE speed,coli,col2, FADE separate colours to a new value

This is the most powerful of the three formats and
allows any colour to be blended into another. Enter
the line:

10 mode O:print “bye bye...":fade 3:wait 7*3

The WAIT command is used after the FADE b the fading g

during interrupt. Thus the program carries on. Because our next line will reset the
colours, i's best to wait until the original fade has been completed. The pause
value for the WAIT command can be calculated by the formula:

wait value = fade speed * 7

Once the above line has been run, the screen s left in total darkness. To bring back
some colour you would enter a line like:

20 cls:print “here | am again!”fade 3, $777,$700

Notice that there are two commas after the speed parameter. This tells STOS
Basic that you don't wish to change the value of colour 0 and this can be applied
to any colour in the palette. Colours 1 and 2 are now faded up to reveal the new
m .
Fade adds flare to your programs and gives them a professional touch similar
to credit screens from films.

Examples:
fade 3:rem press undo twice to see again
reserve as datascreen 15
load “\STOS\PIC,PI1",15
fade 1010 15

fade 5577787715771 8771 57715771 $TT1.5771 8711 8171,
STT1.8171 87718111 5111.8111

155

Pattern Setting
SET PATTERN (Set up the fiil pattern)
SET PATTERN a$

You can set up a user defined fill pattern with this command. a$ must contain
the fill definition which must be a 16x16 block.

Example:

AS=screen${physic,1,1 to 16,16)
set pattern AS

This is in addition to the other SET PATTERN format.

See PAINT, SCREENS$

156

8 |Text and windows

‘STOS Basic allows you to print text on the screen in a number of different ways.
Up to 13 windows can be displayed at any one time, and each of these can have
its own unique set of characters.

Text attributes

Every STOS Basic window has a separate set of attributes, such as the character
and background colours of the enclosed text.

PEN (Set colour of text)
PEN index

The PEN instruction allows you to specify the colour of any text which will
subsequently be displayed in the current window. This colour can be chosen from
one of up to 16 different colours. As you might expect, the number of colours
available varies between the different graphics modes.

Mode Allowable Index numbers
0 (Low) 0-15
1 (Medium) 0-3
2 (High) 0-1
Example:

new
10 mode 0
20forl=0to 15
30penl
40 print “Pen number “;I:space$(10)
50 next |
pen1
As a default, the pen colour is set to index number 1.

See COLOUR, PALETTE, PAPER.
PAPER (Set colour of background of text)
PAPER index

PAPER designates a colour to be used as the background for the text. As with
PEN, index denotes a colour number from 0-15 (0-3 in medium res).

Example:

20 for I=0 10 15

30 paper |

40 print “Paper number ;1;space$(10)
50 next |

60 wait key

70 default

On startup the background of a window is set to colour 0.
See PEN, COLOUR, PALETTE.
INVERSE ON/OFF (Enter inverse mode)
INVERSE ON swaps the text and background colours specified by PEN and

PAPER. The effect of this is to invert any new text which is printed on the current
window.

Example:
new
10 print “This is some text in normal mode”
20 inverse on
30 print “This is some inverted text”
40 inverse off

See SHADE, UNDER, WRITING.

SHADE ON/OFF (Shade all subsequent text)

SHADE highlights any new text on a window by reducing the brightness of the
characters with a mask.

Example:

new

10 mode 1

20 print “Normal Text”

30 shade on

40 print “Shaded Text™

50 shade off
See UNDER, INVERSE, WRITING.

UNDER ON/OFF (Set underiine mode)

This instruction causes the text in the current window to be underlined.
Example:

UNDER ON

UNDERLINED

7 "NORMAL"
NORMAL

See SHADE, INVERT, WRITING.

WRITING (Change text writing mods)

WRITING effect

The WRITING command allows you to change the writing mode used for all future
text output.

Writing mode effect:
1 Replacement mode (Default)
2 OR mode. All characters are merged on the screen with a logical OR.
3 XOR mode. Characters combined with background using XOR.

Example:

new

5 mode 0

10 bar 0,0 to 319,199
20 print “Normal text”

60 print "XOR mode™
70 wait key
B0 default

Do NOT confuse with GR WRITING.

Cursor functions

Any text you output to the screen using the PRINT instruction is always printed at
the current cursor position. STOS Basic includes a range of facilities which allow
you to move this cursor around, and print text practically anywhere on the screen.

LOCATE (Position the cursor)
LOCATE x.y

LOCATE sets the current cursor position to the coordinates x and y. This sets the
starting point for all future text operations on the screen. LOCATE uses a special
type of coordinates known as text coordinates. These are measured in units of a
single character, relative to the top left hand corner of the current window. So the
coordinates 10,10 refer to a point 10 characters down from the top of the window,
and 10 characters across from the left.

Example:

locate 10,10:print “Hi™
The possible range of these coordinates varies depending on the dimensions of
the window you are using, and the size of the character set,

Here is a small table showing the size of the screen in text coordinates in each
of the three graphics modes.

Mode X range Y range
0 0-39 0-24
1 0-79 0-24
2 0-79 0-24

Conversion functions

STOS Basic provides you with a useful set of four functions which readily enable
you to convert between these text and graphic coordinates.

=XTEXT Convert an x coordinate from graphic format to text)
1=XTEXT(x)
This function takes a normal X coordinate ranging from 0-639 (0-319) in low res)
and converts it o a text coordinate relative to the current window. If the screen

coordinale lies outside the window then a negative value is returned. The following
example should make this a little clearer:

new

10 cls:print "Move the mouse about!”

20 repeat

30 X=xtext(x mouse) : if X<0 then 60

40 Y=ytext(y mouse) : if Y<0 then 60

50 locate X.Y : print “*“:rem Print * at current mouse pointer.
60 until mouse key:rem Exit when a mouse button is clicked.
70 default

See YTEXT, LOCATE, WINDOPEN, XGRAPHIC, YGRAPHIC

=YTEXT (Convert a y coordinate from a graphic format to text)
1=YTEXT(y)

YTEXT converts a coordinate ranging from 0-199 (0-399 in high res) into a text
coordinate relative to the current window.

See XTEXT for more details. Also YGRAPHIC, XGRAPHIC, LOCATE

=XGRAPHIC (Convert an x coordinate from text format to graphic)
g=XGRAPHIC(x)

The XGRAPHIC function is effectively the inverse of XTEXT, in that it takes a text
coordinate ranging from 0 to the width of the current window and converts it into
an absolute screen coordinate.

Example:

new

5mode 0:ink 1

10 windopen 1,3,3,30,10

20 print xgraphic(0),ygraphic(0)

30 draw xgraphic(0).ygraphic(0) to xgraphic(27).ygraphic(7)
40 wait key

50 windel 1

Note that there's also an equivalent function for Y coordinates called YGRAPHIC

See XTEXT, YTEXT, YGRAPHIC.

=YGRAPHIC (Convert a y coordinate from text format to graphic coordinate)
g=YGRAPHIC(y)

This function converts a coordinate in text format relative to the current window inta
an absolute screen coordinate.

See XGRAPHIC, XTEXT, YTEXT.

SQUARE (Draw a rectangle at the current cursor position)
SQUARE wx hy border
SQUARE draws a rectangle wxcharacters wide by hy characters high at the cursor
position. border can be any of the 16 possible border types used by the windows.
See BORDER for more details. wx and fy can range from 3 to the size of the
current window. After this instruction has been executed, the tex! cursor is placed
at the top left corner of the new box.
Example:

10 square 10,103
20 print “Square ”

Now for a slightly larger example, which shows off all the 15 different border types:
10¢cis
20 for I=110 15
30 locate 1*2,20-1
40 square 1+3,1+3,1
50 next |
60 goto 60

See BORDER, XTEXT, YTEXT

HOME (Cursor home)

HOME moves the text cursor to the top left hand cormer of the current window
(coordinates 0,0).

Example:
10cls
20 locate 10,10
30 print “Demanstration of *
40 home
50 print "HOME™

See LOCATE, XCURS, YCURS.

CDOWN (Cursor down)

CDOWN pushes the text cursor down one line. The same effect can also be
achieved using the line:

print chr$(10)

161

Example:
print "Example”:cdown:cdown:print “of cdown™
See CUP, CLEFT, CRIGHT.
CUP (Cursor up)

CUP moves the text cursor up by a line, in the same way that CDOWN shifts it
down, This instruction is logically identical to the line:

print chr$(11);
Example:
print “Example”:cup:cup:print “of cup™
See CLEFT, CDOWN, CRIGHT.
CLEFT (Cursor left)

The CLEFT instruction displaces the text cursor one characler to the left. Note that
CLEFT is equivalent to PRINT CHR$(3).

Example:
print “Example”:cleft:cleft:print “of cleft”
See CUP, CRIGHT, CDOWN.
CRIGHT (Cursor right)

CRIGHT has the opposite effect as CLEFT and moves the cursor one place to the
right. An identical effect can be achieved using the line:

Example:

print chr$(9)
print “Example”:cright:cright:print “of cright™

XCURS (Variable hoiding the X coordinate of the text cursor)

XCURS is a variable which returns the X coordinate of the text cursor (in text
format).

Example:
locate 10,0:print XCURS
0

YCURS (Variable hoiding the Y coordinate of the cursor)
YCURS relurns the Y coordinate of the text cursor (in text format).

Example:
locate 0,10:print ycurs.
10

162

SET CURS (Set text cursor size)
SET CURS top,base
The SET CURS instruction allows you to change the size of the text cursor. top
refers to the topmost point of the cursor, and base to the bottom. These values can
range from 1 to the maximum height of a character (normally 8 in medium and low
resolution).
Example:

setcurs 1.8

CURS ON/OFF (Enable/disable text cursor)
This function removes the flashing cursor from the current window. In order to stop
the cursor flashing, CURS OFF deactivates colour number 2. Since the action of
colour 2 is not restricted to a single window, any pictures drawn in this colour will

immediately cease flashing. Similarly, the flashing cursors in every other window
will also be frozen.

Text input/output
CENTRE (Print a line of text centred on the screen)
CENTRE a$

CENTRE takes the string in a§ and prints it in the centre of the screen. This text
is printed on the line currently occupied by the text cursor.

Example:
new
10 locate 0,1
20 centre “This is a centered TITLE"
30 locate 0,3
40 centre “And this is another one™
TAB (Move the cursor to the right)
TAB(n)
TAB is often used in conjunction with the PRINT instruction to space out a line of
text on the screen. The action of the TAB is to move the text cursor n places to the
right before the next print operation. It does this by generating a string of CHR$(9)
characters.
Example:
jprint tab(10);"Example: of TAB™
Example of TAB
Also:

XS$=tab(15)
print X$;"15 spaces to the right”

163

15 spaces to the right
See PRINT, CRIGHT.
SCRN (Return the character on the screen at a specific coordinate)
SCRN(x.y)

SCRN is a function which returns an Ascii character to be found al the text
coordinates x and y relative to the current window.

Example:

new

10 locate 0.0

20 print “Hello™

30 locate 0,10

40forl=0to 5

50 print chr$(sern(l,0));” “:scrn(1.0)
60 next |

See LOCATE, PRINT.
Windows

WINDOPEN (Create a window)

The WINDOPEN instruction enables you to create a window on the ST's screen
There are three possible formats to this statement.

WINDOPEN n.x1,y1.w,h
WINDOPEN n,x1,y1,w,h,border
WINDOPEN n,x1,y1,w,h,border set

nis the number of the window to be opened. Permissible values for n range from
1-13.

x1,y1 are the text coordinales to the top left hand comer of the new window.

w,h specify the size in characters of the new window. Note that the minimum size
of these windows is 3 by 3.

Border chooses one of 16 possible border styles for the new window. See
BORDER for more details.

Set indicates which character set is to be used. This takes the form of a number
which can range from 1 to 16 depending on the sets currently installed in the ST's
memory. The default values for the sets from 1 to 3 are:

Set Size Notes.

1 BxB pixels default set for low resolution

2 8x8 pixels default set for medium resolution
3 B8x16 pixels default set for high resolution

You can happily use all of these sets in each of the three resolutions. Set three in

164

{ can be especially
a useful set of large characters.

tive on a colour monitor as it provides you with

Note: the text coordinates x1,y1 and the window size w,h use the new character
sizes! You can also use the font definition accessory to create your own character
sets. These sets are given numbers ranging from 4-16. See the separate section
on character sets for more details.

Example:

new

10 windopen 1,1,1,39,20 : rem Open a large window

20 windopen 2,10,10,20,5,10 : rem Small window with border 10

30 windopen 3.20,15,20,4,0,1 : rem Open a window using character set one
40 windopen 4,3,10,30,5,3.2 : rem Window with set 2 and border 3

50 windopen 5,10,3,20,55,3 : rem Window with set 3 and border 5

In order 1o test these windows you can use the WINDOW function like so:

window 2
window 4
window 1
window 3
window 5

Here's another example which opens five windows on the screen, each with its
own separale set of attributes.

5 mode 0

10 1t 5

20 windapen 1,1,14+(1-1)*5,39,4,|
30 paper | : ink 1410

40 print "Window “1;" *

50 next |

As before, you can flick between these windows using window:
window 3

See WINDEL, WINDOW, QWINDOW, WINDCOPY, WINDON, WINDMOVE,
Character sets

TITLE (Define a title for the current window)
TITLE a$

The TITLE instruction sets the top line of the current window to the title string in
a$. If the length of this string is less than the width of the window, then it is centred.
This litle will now be displayed along with the window, until it is deleted by using
the BORDER command with no parameter.

Example:
new

5 mode 0
10 windopen 5,1,1.20,10

20 title “Window number 5°
30 wait key

40 border

50 wait key

60 windel 5

See BORDER, WINDEL, WINDOPEN, WINDMOVE, WINDOW.

BORDER (Set the border of the current window)
BORDER n

This instruction allows you to choose from one of 16 possible borders for the
current window. The variable n can take values ranging from 1 to 16. These
borders are made up from the Ascii characters 192 to 255 and can be readily
changed using the FONTS.ACB accessory.

Example:
new
default
10 windopen 55,5.20,10
20 title “Window number 5
30 wait key
40 for I=1 to 16:border Lwait S:next |
50 windel §

Note that if you use the BORDER command on its own, the current border is
redrawn, and any title associated with the current window is erased.

WINDOW (Activate window)
WINDOW n
WINDOW sets the current window to window number n. It then redraws the
window along with any of its contents. This instruction should normally only be
used when a number of windows overlap on the screen. If this is not the case then
it makes rather more sense to use the QWINDOW statement which activates the
window without redrawing it as this command is much faster than WINDOW.
Example:
new
101or =110 13
20 windopen 1145142208
30 next |
Now type in the lines:
un
window 5
window 10
Press undo twice 1o revert the screen o normal.

See QWINDOW, WINDEL, WINDOPEN, WINDON, WINCOPY

166

QWINDOW (Activate window without redrawing it)

QWINDOW n
This function sets the current window to window number n, but does not redraw
the window. It should therefore only be used if you're absolutely sure that the
window has not been overwritten by something else.
Example:

new

10forl=1t0 5

20 windopen 1,1,1*4,15,4 : windopen 145,20,14,154

30 next |

un

qwindow 1

qwindow 5

qwindow 8
Note that because QWINDOW does not have to redraw the contents of the
window, it is considerably faster than the equivalent WINDOW command. Further
examples of this instruction can be found in the accessories supplied with the
package. These can be examined using SEARCH:

load “FONTS.ACB™
search “qwindow”

WINDON (Variable containing number of the current window)
WINDON returns the number of the currently active window.
Example:
new
10 windopen md(12)+1,10,10,10,10
20 print “Window number “;windon,” Activated”
See WINDOW, QWINDOW, WINDOPEN.
WINDMOVE (Move a window)
WINDMOVE x1.y1
WINDMOVE moves both the current window and its contents to a new part of the
screen specified by the text coordinates x1,y1. These coordinates are based on
the character size of the window which is to be moved.
Example:

WINDOPEN 1,0,2.30,10
WINDMOVE 53

See WINDOW, QWINDOW, WINDON, WINDOPEN.
WINDEL (Delete a window)
WINDEL n

167

This function deletes the window number n, and erases it from the screen. If the
window to be deleted is the current window, then the current window will be set to
the window with the next lowest number, and this will be redrawn automatically.
Example:

new

10forl=1to 13

20 windopen 11+5,1+2,10,10

30 next |

A fori=1to 13

50 wait key

60 windel |

70 next |

See WINDOPEN, WINDMOVE, WINDOW, QWINDOW, WINDON, WINDCOPY.

CLW (Clear the current window)
CLW erases the contents of the current window and replaces it with a block of the
current PAPER colour. Note that you can perform a CLW instruction from the editor
by pressing the Clr key (or Shift+Home).
Example:
clw:rem Clears window 0.

SCROLL ON/OFF (Switch window scroliing on and off)
The SCROLL instruction is used to control the scrolling of the current window.

SCROLL OFF tums off the scrolling. Whenever the cursor reaches past the bottom
of the screen it will now reappear from the top.

SCROLL ON restarts the scrolling. A new line is now automatically inserted when
the cursor attempts to reach past the bottom of the screen.

Example:

scroll off
Do NOT confuse this function with DEF SCROLL!
See SCROLL UP, SCROLL DOWN.

SCROLL UP (scroil the current window up)

This instruction moves a section of the current window above the text cursor, one
line up. Anything on the top line of the window is erased.

Example:
scroll up:scroll up:scroll up

Not to be confused with DEF SCROLL.

168

See SCROLL DOWN, SCROLL.
SCROLL DOWN (Scroll the current window down one line)

SCROLL DOWN scrolls the area below the text cursor one line down. As a natural
consequence of this instruction, the bottom line of the window will be overwritten.

Example:
scroll down:scroll down:scrall down

See SCROLL UP, SCROLL.
Character sets

Each STOS Basic window can have its own individual character set. Three of
these sets are provided on the disc as standard, and these can be edited or
changed using the character definer FONTS.ACB

In order to build your own character set, you should first load the font accessory
FONTS ACB. Load this by inserting the STOS accessory disk and typing in the line

accnew: accload "FONTS.ACB”

You can access this at any time by pressing the keys Help+f1. When this utility is
executed, the screen consists of a drop-down menu, along with two windows. The
leftmost of these windows is used to edit a character, and the rightmost window
is used lo select the character to be redefined.

Start off by moving the mouse pointer to the selection window. Notice how the
character underneath the mouse pointer is inverted, and its Ascii code is displayed
atthe bottom of the screen. This character can be chosen by clicking the left mouse
button.

You can now edit your character by moving the mouse cursor into the edit
window, and clicking on either the left or the right mouse buttons. The left button
sets a point at the current cursor position, and the right button erases it.

In addition, you can also manipulate your character using one of the many
options from the tool and draw menus.

After you have finished drawing your new character you can install it into the
current set by moving the mouse back to the selection window, and positioning the
pointer onto the character you wish to change. This character can now be
overwritten with the new data by clicking on the right mouse button.

The final step in the creation of the character set is to save it. There are two
possible alternatives. Firstly you can save the set to the disc in a file with the
extension .MBK. This file can then be loaded at a later dale. You can also load your
set directly into your current program using the Quit & Grab option. This places the
new character set into bank five, and then exits back to the STOS Basic editor.

Here is a summary of the entire process:

Choose a character from the Selection window using the left button.
Edit the character in the Edit window. The left button sets a point. The right
button deletes a point. The Tool and Draw menus manipulate the character.
Install the character in the Selection window with the right mouse button.
Repeal stages one to three until you have completed your new character set.
Save the set using either the Save or the Quit & Grab options from the Disc
menu.
The System menu allows you to select one of four possible sizes for your
characters. Unfortunately, not all of these options are available in all three graphics

Maw M=

169

modes. Look at the following table.

Size Modes allowed

8x8 All.

8x16 High and medium resolutions

16x8 High resolution only

16x16 High resolution only

Before you can call a user-defined character set, you first need to reserve

some space and load this set into memory. This is done automatically by the Quit
& Grab option from the font definer. If you intend to install a number of sets, it's

easiest lo save the sels to the disc, and then incorporate them into your program
by hand.

Saving space
RESERVE AS SET (Reserve a bank of memory for a character set)
RESERVE AS SET n,len

This reserves lenbytes of space in bank number n for a character set. This set can
now be loaded into the bank using a line like:

LOAD “FONT1.MBK".n
Example:

reserve as set 5,4000
load “FONT1.MBK"5

Note that the bank defined using this command is permanent and will be

automatically included with your current program when you save it to the disc. The

file FONT1.MBK is one of three example character sets supplied with the package.

Each additional set is given a unique number ranging between four and nine. The

:::I character set you defined is denoted by the number four, the second by five
so on.

Supposing, for example, you reserve some space for three character sets like so:

These sets would be accessed using the numbers: 4 for bank 6,5 for bank 8,6 for
bank 5. The size of these banks has been set to 4,000 bytes.

You can calculate how large a character set is using the CHARLEN function.
CHARLEN (Getthe length of a character set)

CHARLEN (n)

This function returns the length of a character set specified by the number .

Numbers one to three represent the system sets, and numbers 4 to 16 represent
supplementary sets created using FONTS.ACB.

170

Example:
7 charlen(1)
See RESERVE.
CHARCOPY (Copy a character set into a particular bank)

CHARCOPY s TO b
The CHARCOPY instruction copies character set s to bank number b. Values of
;e(tos.a correspond 1o the system sets, and numbers 4 to 16 denote user-defined
Example:

reserve as set 5,charlen(1)
Reserve bank 5 as set of the same length as system set 1.

charcopy 1105
Copy system set 1 into bank 5.
See CHARLEN, RESERVE.

Using a character set from a window

1. Find the size of the new set using DIR *".mbk". Round this up to the nearest
1,000 bytes just to be on the safe side.

Reserve some space for the set using RESERVE AS SET.

Load your file into this bank with a line like LOAD “filename.mbk”,n where n
is the number of the bank you are using to hold the set.

Repeat phases 1 to 3 for each new set.

Open a window using WINDOPEN. Set the character set number value to 3
plus the number of your set. Note you can avoid stages 1 to 3 when installing
a single character set by choosing the Quit & Grab option from the font
definer.

wr

oa

Example:

reserve as 5,4000: rem Assumes set is Bx8
load “"FONT1.MBK" 5: rem Load example font into bank 5

Type in the following program. It creates a window, and outputs the entire
character set on to it.

new
10 windopen 1,1,1,38.23,1.4
20 for |=32 to 255

30 print chr$li;

Simple isn't it.
If you like, you can edit this set using the FONTS.ACB accessory. Now for a

171

somewhat larger example which displays five different character sets on the
screen at once

new
dir "*.mbk"

reserve as set 5,5000
load “FONT1.MBK"5
resenve as set 6,5000
load “FONT2.MBK".6

10 rem Multiple character set example.

20 rem Displays 5 character sets on the screen at once
30 rem Mode 1 looks rather better then mode 0.

40 rem Remove line 50 for mono monitors

50 mode 1:cls

60forl=1105

70 rem Define windows using WINDOPEN

80 if 1<4 then windopen 1,(1-1)*26+1,0,26,12,1, else windopen ,(I-
4)°26+1,12.26,12),)

90 rem Output all printable characters in window

100 for J=32 to 255

110 print chr${J);

120 next J

130 next |

140 goto 140

Changing the default sets

When STOS Basic is loaded, it automatically installs three system sets into the
ST's memory. These sets are stored in the STOS folder under the following
names:

8X8.CRO (Default set for low resolution)
8XB.CR1 (Default set for medium resolution)
8X16.CR2 (Default set for high resolution)

If you change the contents of these files, you can modify the default character set
for your particular resolution and the ST will boot up using your own customised
character set

In order to do this you need te follow the following procedure:

® Create your new set using the FONTS.ACB accessory.

® Load yoursetinto bank 5 of the current program using the Quit & Grab option.

® Place a copy of your system disc into the drive, and type one of the three lines
below, depending on the resolution you normally use.

Low resolution bsave "STOS\8X8.CRO",star(5) to start(5)+length(5)
Medium resolution bsave "STOS\BXB.CR1" start(5) to start(5)+length(5)
High resolution bsave {STOS\8X16.CR2",starl(5) lo stari(5)+length(5)

As a demonstration of this technique, load the file FONT1.MBK into the FONT
accessory using the Load File option from the Disc menu. Now use the QUIT &
GRAB option to return to the editor. Insert your copy of the STOS Basic system
disc into the drive. DO NOT USE YOUR ORIGINAL SYSTEM DISC FOR THIS
PURPOSE! Type in one of the three lines above to set the default set for any of

172

the three possible resolutions.

When you reboot the copy of the STOS Basic disc, STOS will now load and
use the new font

Note that STOS Basic can also load up to six supplementary sets as well.
These should have the extensions .CR4 to .CRS, and can be accessed using the
character set four te nine resp: ly. Otherwise the method used to
save them is identical to that explained above. If some of these extra sets have
been loaded, the numbers of any new sets you define need to be incremented
accordingly.

Note that the size of these sets is determined when you created them with
FONT.ACB. This means you can readily use any of these six supplementary sels
for all three graphics modes.

Icons

The STOS Basic Icons are a group of uselul 16 by 16 characters, stored in bank
number 2. These icons can be output to the screen at the current curser position
using PRINT. This allows you to use them to create complicated backgrounds for
your games. You can also incorporate icons directly into a menu. See Chapter 9
ior more details. We've provided a special set of icons especially for your use in
the file ICONDEMO.MBK.

ICONS$ (Generate an icon at the current cursor position)
ICONS(n)

In order to output an icon to the screen you simply print a string containing a
CHR$(27) character followed by CHR$(n), where n is the number of the icon you
wish to draw. This string can be generated directly using the ICON$ function.

Example:

new
load “ICON.MBK™
10forX=01ta 19

201or Y=0TO 4

30 locate X*2, Y*2

40 print icon$(X*5+Y+1)
50 next Y

60 next X

Also:

print chr$(27}+chr$(5)
This is equivalent to print icon$(5)

The icon definer

This is very similar to the font definer accessory, but rather less involved. It can be
loaded using the line:

accnew:accload “ICONS.ACB™
You can now access this accessory from the editor at any time using Help+f1. On

slartup you are presented with menu and two windows. The bottom window
occupies the entire width of the screen and is used to select an icon to be edited

173

9 ([Menu commands

STOS Basic provides you with a number of clever facilities for creating and
manipulating on-screen menus. Although these menus may look rather different
to their Gem equivalents, they are considerably more powerful. They are also a
great deal easier to use. The best way to explain the commands is by writing a
complete program which is developed in this chapter.

Creating a menu

Betore you can incorporate one of these menus into a program, you first need to
define the menu titles which will be displayed on the screen. This is done with the
MENUS command.

MENUS$
MENUS(x)=title$ [,paper,pen]

Title$ holds the title of your menu, and paper and pen are the colours of each
heading and background respectively. The value of x denotes the number of the
menu whose title you wish to create.

These menus are given numbers from 1 to 10 starting from the left hand corner
of the screen. Here is a simple example which constructs a menu consisting of just
two titles: ACTION and MOUSE.

new
10 menus (1)="ACTION
20 menu$ (2)="MOUSE"

You can now specify alist of options to be associated with each of these litles using
a second form of the MENU$ command.

MENUS(x,y)
MENUS(x,y)=OPTIONS [paper,pen]

The variables X and Y in this instruction refer to the title number, and the option
number of the menu line. The string option$ represents the menu text. You can,
however, use any string you like for this purpose.

Type the following lines into your program:

25 rem Action menu

30 menus (1,1)="Quit”
35 rem Mouse menu

40 menu$ (21)="Arrow™
50 menu$ (2.2)="Hand"
60 menu$ (23)="Clock”

This will determine the various alternatives for the ACTION and the MOUSE
menus. If you try to run this program as it stands, nothing happens. The reason

175

9 ([Menu commands

STOS Basic provides you with a number of clever facilities for creating and
manipulating on-screen menus. Although these menus may look rather different
to their Gem equivalents, they are considerably more powerful. They are also a
great deal easier to use. The best way to explain the commands is by writing a
complete program which is developed in this chapter.

Creating a menu

Betore you can incorporate one of these menus into a program, you first need to
define the menu titles which will be displayed on the screen. This is done with the
MENUS command.

MENUS$
MENUS(x)=title$ [,paper,pen]

Title$ holds the title of your menu, and paper and pen are the colours of each
heading and background respectively. The value of x denotes the number of the
menu whose title you wish to create.

These menus are given numbers from 1 to 10 starting from the left hand corner
of the screen. Here is a simple example which constructs a menu consisting of just
two titles: ACTION and MOUSE.

new
10 menus (1)="ACTION
20 menu$ (2)="MOUSE"

You can now specify alist of options to be associated with each of these litles using
a second form of the MENU$ command.

MENUS(x,y)
MENUS(x,y)=OPTIONS [paper,pen]

The variables X and Y in this instruction refer to the title number, and the option
number of the menu line. The string option$ represents the menu text. You can,
however, use any string you like for this purpose.

Type the following lines into your program:

25 rem Action menu

30 menus (1,1)="Quit”
35 rem Mouse menu

40 menu$ (21)="Arrow™
50 menu$ (2.2)="Hand"
60 menu$ (23)="Clock”

This will determine the various alternatives for the ACTION and the MOUSE
menus. If you try to run this program as it stands, nothing happens. The reason

175

for this is that STOS Basic first requires you to use a special command to star your
new menu running.

MENU ON
Add the following line to make the program work properly:
70 menu on

MENU ON has a number of possible extensions. These allow you lo choose any
one of 16 different borders for your menus. You can alse use this function to
change the current menu style.

STOS Basic supports two distinct types of menu Drop-down menus and pull-
down menus. Drop-down menus are sel the mouse touches the
menu line, whereas pull-down menus also require you lo press the left mouse
button as well. The full definition of the MENU ON statement is therefore:

MENU ON [border][.mode]

border can range from 1 to 16.

mode is either 1 for a drop-down menu or 2 for a pull-down menu.

If you want to use pull-down menus in your program, you can replace line 70 with:
70 MENU ON 52

This generates a pull-down menu with border type 5. There's also a number of
other useful options:

MENU OFF

Permanently switches off the entire menu and clears the menu from the ST's
memory.

MENU FREEZE

Temporarily freezes the action of the menu. The menu can be restarted with
MENU ON.

MENUS(title,option) OFF

This instruction disables one of the list of menu items under fitle. Any further
attempts to call this entry are completely ignored.

MENUS$(title,option) ON
Reverses the effect of the above instruction.

STOS stores all your menus in bank number 15. This bank should therefore only
be reserved when these menus are not required in your program.

Making a selection
The menu you have prepared is now ready foruse. It can be read using the two
reserved variables: MNBAR and MNSELECT.

176

MNBAR and MNSELECT

MNBAR holds a number denoting the menu title you have chosen, while
MNSELECT contains the number of the specific option you have highlighted with
the mouse. You can see how this works by entering lines 90-110:

90 OPTION=mnbar : CHOICE=mnselect

100 print “Title Number “;0PTION; ~ Selection ~ Number”;
CHOICE

110 goto 90

It you run this program, the title number and the option number you have selected
will be displayed to the screen.

This code can be expanded into a real program, by replacing the lines 100
onwards with:

100 if OPTION=
110 if OPTION:
120 goto 90

nd CHOICE=1 then menu off : stop
and CHOICE<>0 then change mouse CHOICE

Line 100 tests the menu to see if you have decided to exit from the program. The
action of line 110 is to check whether you wish to swap the mouse pointer. It can
then use this information to alter the pointer type with a CHANGE MOUSE
instruction

ON MENU

The last example was fairly simple. But supposing you wanted 1o write a routine
with a larger and more complicated series of menus. In this case, your pragram
would need to use a long list of IF.. THEN statements to deal with each and every
possibility. Inevitably this would make your program both unwieldy and hard to
change. It would therefore be better if there was an easier way of handling these
menus.

Fortunately STOS Basic includes a special ON MENU statement which
provides you with a painless method of managing even the largest menus. It does
this by automatically jumping to one of a list of line numbers, depending on the title
you have chosen.

ON MENU GOTQ line1 [line2]...
is broadly equivalent lo the line:
ON MNBAR GOTO line1[line2)..

One major difference between the above instruction and ON MENU is that ON
MENU is performed using interrupts. This allows your program to execute another
task at the same lime as your menus are being tested.

Example:
new
10T=0
20 menu$ (1)=" ACTION"
30 menu$ (1,1)="COUNT~
40 menu$ (1,2)="0QUIT"
50 menu on
60 on mnbar goto 90
BO T=T+1 : goto 80
90 if mnselect=1 then locate 0,1: print T : goto 60

177

100 if mnselect=2 then stop

‘When you run this program, it first creates a menu, and then checks whether this
menu has been accessed. It now reaches line 80 and repeatedly adds 1 to the
variable T. Since line 60 is never executed again, playing around with the menu
has no effect whatsoever. Try replacing line 60 with

B0 on menu goto 50
70 on menu on

In this case the menu will function perfectly, despite the fact that the program is
sill stuck atline 80. Furthermore, every lime you choose COUNT, you will find that
the value of the variable T has increased.

This appears to prove that line 80 is running at the same time as line 60. What
is really happening is that the menus are being tested by STOS Basic 50 times a
second using an interrupt similar to that utilised by the sprite commands.

The entire process is set in motion by the ON MENU ON instruction. As you
might expect, there’s also a ON MENU OFF command which turns the menus off.
You can use this on menu routine in conjunction with any sequence of Basic
instructions you like, providing they make no attempt to input or output information
to the screen.

Up until now the examples have been fairly trivial. We will therefore go on to
describe how a STOS Basic menu can be incorporated into a real program. To that
end, we'll produce a small, but useful version of Doodle, directly comparable to
that found on the ST startup disc. As before, we will begin by defining the menu:

new

3 mode 0

5 rem Action menu

10 menu$ (1)=" ACTION
20 menu$ (1,1)="DRAW"
30 menu$ (1,2)="0UIT"

35 rem Pen menu

40 menu$ (2)=" PENS "

50 menu$ (2,1)="Small”
60 menu$ (2.2)="Medium"~
70 menus (2.3)="Large”
75 rem Colour menu

80 menu$ (3)=" COLOUR ~
90 for I=110 16

100 menu$ (3,1)="<six spaces>".I-10
110 next |

Atfirst glance lines 90 to 110 seem to produce a menu consisting of nothing more
than blank spaces. Butif you look more closely you'll see that we're actually setting
the paper colour of each line to the value of I-1. This neatly turns our spaces into
abar of the appropriate colour —a technique which is used to great effect by many
of the accessories on the disc.

Note that in order to keep things as simple as possible, we've assumed that
the maximum number of colours available is 16. People with mono monitors
should therefore delete line 3 and alter line 90 to:

Sforl=1t02
‘You must now activate the menu using the MENU ON command.

178

Before you can continue, you need to decide precisely where the program should
go when each of the menu titles are selected. In this example we've placed the
routines starting at 200, 400 and 600 respectively.

150 on menu goto 200,400,600
160 on menu on
170 goto 170

When a menu item is chosen, line 150 will automatically execute the routines at
either 200, 400 or 600 depending on whether the titles ACTION, PEN or COLOUR
were picked. Incidentally the reason for the line at 170 is to give STOS Basic
something to do while the program is waiting for the menu to be used.

We'll now examine the ACTION routine at lines 200-400 which effectively
forms the heart of the Doodle program. ACTION gives you a choice between two
ditferent alternatives: Exit or Draw. If you select the Exit option then the program
should simply return to the editor.

199 rem Actions
240 M=mnselect
250 if M=2 then menu off : stop

The second possibility is that you might wish to actually do some drawing on the
screen. It's easy enough to detect whether this feature has been chosen using a
simple IF..THEN statement.

260 rem If item 1 not picked go back to menu loop
270 if M<>1 then 150

Now comes the drawing routine itself which is rather more complicated. We will
bbegin by specifying precisely what we want the program to do and then see how
this effect will be achieved. What we require is a small routine to input the position
ofthe mouse, and then draw a filled circle at the appropriate coordinates whenever
the left mouse button is pressed. In order to enable the user to draw continuous
lines, this process should be repeated until the drawing routine is terminated with
the right button.

280 rem Draw until right mouse button clicked

290 repeat

300 rem Wait until a mouse button has been pressed

310 repeat: M=mouse key : until M<>0

320 rem If left button then draw a circle of radius SIZE*S
330 if M=1 then X=x mouse : Y=y mouse : circle X.Y SIZE*S
340 until mouse key=2: rem Check for right mouse

390 goto 150

The code to deal with the other two menu items is very simple indeed since it only
has to read the menu using mnselect and then use this to set either the size or the
colour of the pen.

399 rem SIZE = size of pen

400 SIZE=mnselect : goto 150

539 rem C = Colour of pen

600 C=mnselect : if C>0 then ink C-1
610 goto 150

The initial value for SIZE needs to be set to one. There also needs to be another
line to prevent a flashing text cursor in the top left hand corner of the screen.

179

85 size=1
130 curs off : clw : rem Get rid of the flashing cursor and clear screen

Another problem is that the drawing operations can occasionally clash with the
menu. In extreme cases this can lead to almost total destruction of the menu line
itsell. There are two things that can be done to avoid this difficulty. Firstly you can
turn off the menus during the drawing operations using MENU FREEZE.

As an additional safeguard, it's also a good idea to restrict the mouse to the
part of the screen below the menus with the LIMIT MOUSE command. This stops
you from accidentally obliterating large sections of the menu line with part of your
drawing

200 menu freeze : rem Switch off menu

210 rem Limit mouse to below menu. Madify for use in high or medium res
220 limit mouse 0,22 to 300,180

350 u on : rem Restart menu

360 limit mouse : rem Remove mouse limit

Finally, the mouse pointer has a completely different effect depending on whether
you are drawing a circle or calling one of the menus. We therefore changed the
mouse pointer to a hand within the drawing routine, to avoid any possibility of
confusion

230 change mouse 2 : rem Change mouse to hand
370 change mouse 1: rem Change mouse back to arrow

Icons

So far, all the menus we have created have been composed of text. However you
can also incorporate icons into a menu:

MENUS(1)=ICON$(2) Loads the title number with icon two.
MENUS$(2,1)=ICONS$(3) Associates icon 3 with option 1 of titie 2.

To demonstrate how this works, there are some icons for the Doodle program in
the file ICON.MBK. This should first be loaded from the editor using LOAD
“ICON.MBK".

You should now replace lines 50 to 70 with:

50 menu$ (2.1)=icon$(3j:rem Small circle
60 menu$ (2.2)=icon${2):rem Medium-sized circle
70 menu$ (2.3}=icon${1).rem Large circle

These lines substitute the original PEN menu with a set of three icons representing
the various possible pen sizes. When you execute this program, these icons can
be accessed with the mouse in exactly the same way as a normal menu.

The previous example could form the basis of quite a powerful drawing utility. Here
are a few of the possible ways you could expand it.
1. Add a Disc menu to allow the loading and saving of pictures via the disc. (Use

something like LOAD F$+".NEO" or SAVE F$+".NEO" where F§ is the name
of your file)

180

BN

5.
6.
e

. Improve the resclution of your picture by using points instead of circles.
. Add an eraser
. Replace the hand pointer with cross-hairs. This can be achieved by using the

Sprite Editor program to generalte a sprite of the appropriate shape, and then
calling change mouse using the image number plus 4

Add routines to draw other objects such as boxes or ellipses

Implement a cut and paste feature using SCREEN COPY.

Change the size of parts of the picture using ZOOM or REDUCE.

Troubleshooting

As you have seen, using menus from STOS Basic is normally very easy indeed
Even the best of us however, can occasionally make a mistake, and when this
happens it may help to check the following list of common problems.

Problem: The Menu flickers and dies every time you try to call it with the
mouse.

Solution: You have ordered a menu out of sequence. Check the menu
definitions.

Problem: The menu doesn't appear in your program.

Solution: You may have forgotten to use the MENU ON command

Problem: ON MENU doesn't work.

Solution: Check whether there is an ON MENU ON statement. Also make

sure the program isn't attempting to perform Input or Qutput to
the screen while ON MENU is active

181

182

10 |Other commands

Up until now we have concerned ourselves with many of the more exciting features
of STOS Basic. But like all versions of the Basic language, STOS also includes a
variety of more mundane facilities which allow you to do a range of useful things
such as accessing the ST's screen, keyboard or disc.

The aim of this chapter is therefore to provide you with all the information you
need to familiarise yourself with the nuts and bolts of the STOS Basic system.
Whenever possible. We have included any major di b STOS and
standard Basic. This should make it fairly easy to convert programs written in most
other dialects of Basic for use with this package. Since the scope of this manual
cannot extend to providing an in-depth tutorial on Basic itself, we have provided
a number of worked examples which should prove useful even for a complete

beginner.

Control Structures
GOTO (Jump to a new line number)
GOTQis probably the most commonly used of all the Basic instructions. The action

of a GOTO is to transfer the control of the program from the current line number,
10 @ new one.

GOTO line number Where line number can be any line in your Basic
program.
GOTO expression expression can be any allowable STOS Basic

expression involving either variables or constants.
Technically this is known as a computed goto.
Example:
new
10 goto 30
20 print “This line is never printed”

30 print “Now executing line 30™
Mow for an example of a computed GOTO.

new

10 JUMP=10

20 goto JUMP*2+20 : rem same as goto 40
30 print “This line is never printed™

40 print "Jumped to line “.JUMP*2+20

This example is really a rather bad piece of programming, because any mistake
you make in line 10 or 20, could lead to your program jumping somewhere totally
unforseen. Furthermore, these computed golos are invariably far slower than
normal ones, and make it almost impossible to renumber your program. They
should therefore be used with extreme caution.

Users of other Basics should note that STOS Basic does not support any form

183

of labels. This means that you should remember to place a number at the start of
each and every line. See AUTO

It you absolutely have to use labels in your program, you can simulate them
with a computed goto like so:

100 LABEL=120

100 goto LABEL

110 goto 110

120 print “Label reached”

Finally, GOTOs should NEVER be used to jump inside a FOR...NEXT loop, as
this will lead to a NEXT WITHOUT FOR error.

See also ON GOTO
GOSUB (Jump to a Subroutine)

This is very similar to GOTO, but has the additional bonus of enabling you to jump
back where you started with a RETURN instruction. The most commen use of
GOSUB is to allow you to split a program into smaller, more manageable chunks,
known as subroutines. As with GOTO, there are two ditferent forms of the GOSUB
instruction.

GOSUB line Jump to the subroutine at line.

GOSUB expression Jump to the subroutine at the number given by the
result of expression

Example:
new
101=1
20 gosub 40
30 goto 20
40 print “You have called this gosub ;|;"times™
S0inc |
60 raturn

This demonstration was trivial, but if you have a look at some of the programs on
the disc, you will find many real examples of just this sort of subroutine.

RETURN (Return from a GOSUB to the next instruction)

RETURN exits from a subroutine, and jumps back 1o the statement after the initial
0SuB.

Example:
new
10 gosub 100:print “Returned”
20 end
100 print “Inside Gosub™:return
POP (Remove the RETURN information after a GOSUB)
The POP instruction removes the return address generated by a GOSUB and

allows you to leave the subroutine without having to execute the final RETURN
statement.

184

Here is an example of this instruction in action:

new

101=1

20 gosub 40

30 goto 20

40 print “You have called this gosub ~;
50 inc | : if 1>100 then pop:goto 70

60 return

70 print “Gosub terminated after ;1-1;” Times”

times™

See ON GOSUB

FOR...NEXT (Repeat a section of code a specilic number of times)

This is the classic way of repealing parts of a Basic program. The format of the
instruction is:

FOR var=start TO finish [STEP inc]
list of instructions
NEXT [var]

Whenthis loopis first entered, varis loaded with the value of start. The instructions
between the FOR and the NEXT are now performed until the NEXT is reached.
The NEXT instruction increments var by either inc, or 1, depending on whether the
optional STEP has been included. The loop counter is now tested. If varis either
greater than finish (for positive increments), or less than finish (for negalive sleps),
the loop is terminated, and the instruction after the NEXT is executed. Otherwise
the loop is restarted from the top.

Here are a couple of examples of FOR.. NEXT loops.
for 9=1 1o 100 step 10:print O:next 9

new
10 for =32 to 255
20 print chr$(a);
30 next a

new

10 for R1=20 to 100 step 20
20 for R2=20 to 100 step 20
30fora=0to3

0i

a
50 ellipse 160,100,R1,R2
60 next a
70 next R2
80 next R1

See how we've placed a number of FOR...NEXT loops inside each other. This is.
known as nesting. STOS Basic will permit you to nest anything up to a maximum
of 10 FOR...NEXTs in this way. Unlike some other Basics, STOS Basic does not
allow you to replace lines 50-70 with “NEXT I,R1,R2". All NEXT instructions should
be placed directly at the correct point in the program.

185

WHILE...WEND (Repeat a section of code while a condition is true)

This instruction enables you to repeat a series of instructions until a specific
condition has been satisfied.

WHILE condition
list of statements
WEND

The condition can be any set of tests you like, and can include the constructions
AND and OR. This check is always performed at the start of the WHILE loop. The
list of statements between the WHILE and the WEND will be only be executed if
this condition is true.

Type the following example:

new

10 input “Type in a number”:X
20 print “Counting to 117

30 while X<11

40inc X

50 print X

60 wend

70 print “Loop terminated”

The number of times the WHILE loop in this program will be executed depends on
the value you input to the routine. If you type in a number larger than 10, you will
find that the loop is not entered at all.

As a rule, these WHILE loops should therelore only be used when a list of
statements needs to be repeated 0 or more times. The program above is
effectively equivalent to the fellowing routine written in standard Basic:

new
10 input “Type in a number™;X
20 print "Counting to 117

30 if X>=11 then 70

40 inc X

50 print X

60 goto 30

70 print “Loop terminated”

It should be readily apparent that the program with the WHILE statement is much
easier to read than the one which used GOTO. Each WHILE instruction in your
program should be matched by exactly one WEND statement. See
REPEAT...UNTIL

REPEAT...UNTIL (Repeat a section of code until a condition is satisfied)

This pair of statements is similar to WHILE...WEND except that the test for
completion is made at the end of the loop rather than the beginning. Furthermore,
the action of the UNTIL is to continue g the loop until the
condition is FALSE. The format of this instruction is:

REPEAT

186

list of statements
UNTIL condition

where condition is a list of conditions, and the list of statements can be any set of
Basic instructions you like.

Here is a small example, taken from the Doodle program in Chapter 9:

10 repeat

20 M=mouse key : rem test to see if mouse button pressed
30 until M<>0

40 print “You clicked on the mouse button™

we could have used a WHILE.. WEND construct in this program instead. This
would have changed the routine to:

10 M=mouse key

20 while M=0

30 M=mouse key

40 wend

50 primt “You clicked on the mouse button”™

In this case, we would have had to use an extra instruction to test for the mouse
key at the start of the loop.

Since a REPEAT...UNTIL loop always executes at leas! once, this was not
needed in the first example. As with WHILE... WEND, you should always remember
to match each REPEAT with an UNTIL.

STOP (Stop running the program and return to the Editor)

This command stops the current program running and returns to the editor. It can
be used at any point in your program.
Example:

new

10 input “Input & number between 1 and 100 (0 to stop)”;N

20 it N=0 then stop

30forl=1to N

40 print Il

50 next |

60 gota 10

Note that unlike END, a program terminated with STOP can be restarted with
CONT, providing it has not been altered in the meantime using the editor.

END (Exit from the program)

This instruction exits from a program and returns to the editor. Programs which
have been terminated using END cannot be subsequently restarted using CONT.

See STOP.
IF ... THEN [ELSE] (Choose between alternative actions)

The IF..THEN instructions allow you to make decisions within a Basic prograrh.
The format is:

187

IF conditions THEN 1 [ELSE |
conditions can be any list of tests including AND and OR

Statements1 and statements2 can be either lists of STOS Basic instructions, or
line num| .

The action of the IF..THEN instruction is to execute the instructions in
statements1 if the conditions are true. If the oplional ELSE statement is included,
then will be perf when the condition is false. Oth control
will pass to the line after the IF... THEN instruction. The following example program
demonstrates most of the various pessibilities

10 input “Input a number”;N

“Positive”; else print “Negative™;
40 if (N/2)"2=N then print ~ and Even™ : goto 60

50 if (N/2)*2<>N then print * and 0dd”

i ue Y or N“;AS

70 if AS<>"Y" and AS<>"y
80 print “Never executed”
90 stop

Note that STOS Basic restricts these IF.. THEN statements to a single line. See
NOT, TRUE.FALSE

ON...GOTO (Jump to one of a list of lines depending on a variable)
ON var GOTO line1 line2,line3...

The ON GOTO instruction allows your program to jump to one of a number of lines
depending on the value of the variable var. If vartakes a value of 1, for instance,
the instruction is identical to a simple GOTO Jine1. Similarly, if var holds a 2 then
the program will branch to /ine2, and so on. In order to have an effect, the
ON...GOTO statement requires var to hold a figure between 1 and the number of
possible destinations. Look at the following small example

new

10input “Input a number “;N

20 on N goto 50,60,70,80

30 print “You input a number either less than 0 or greater than 4*
40 goto 10

50 print “You input the number ONE™ : goto 10

60 print "You input the number TWO" : goto 10

70 print “You input the number THREE™ : gato 10

B0 print "You input the number FOUR™ : gato 10

Note that the variable used for N must always be an integer
See GOTO, GOSUB, ON GOSUB
ON...GOSUB (GOSUB one of a list of routines depending on a var)
ON var GOSUB line1 line2.line3..
This is identical to ON...GOTO except thal it uses a gosub rather than a goto to

jump to the line. When the subroutine has finished executing, it should use a
RETURN to jump back to the next instruction after the ON...GOSUB statement.

188

Example:

new

10 input “Input @ number “;N

20 on N gosub 50,60,70

40 goto 10

50 print “Subroutine ONE™ : return
60 print “Subroutine TWO" : return
70 print “Subroutine THREE" : return

See also GOSUB and ON GOTO
ON ERROR GOTO (Trap an ERAOR within a Basic program)

This command is used to allow the detection and correction of errors which occur
within a STOS Basic program. Take, for instance, the fallowing routine:

10 input “Input a positive numbi
20 print “The Square Root of “:N;
30 goto 10

“:S0R(n)

This program works fine until you try to type in a negative number. When this
happens an error is generated, as you are not allowed to calculate the square root
of any number less than 1. STOS Basic therefore returns you to the editor, and
prints out the error message ILLEGAL NEGATIVE OPERAND in line 20.

‘You can avoid this problem by trapping the error with an ON ERROR GOTO
instruction. The format is:

ON ERROR GOTO line
Where line is the location of your new error correction routine.

line refers to the location of a routine which will be executed whenever an error
occurs. You can also use an expression for this purpose, but this is generally rather
abad idea as the expression is only evaluated once, when the ON ERROR GOTO
instruction is first initialised.

Example:

10 on error goto 50

20 input “Input a positive number”;N

30 print “The square root of “;N;” is “;sqr(N}

40 goto 10

50 print

60 print “I'm afraid you can only take the square root of a
positive number”

70 N=abs(N)

80 resume 10

In order to turn the action of ON ERROR GOTO off, you simply type the line: ON
ERROR GOTO 0

See RESUME, ERRN, ERRL, ERROR
RESUME (Resume execution of the program after an error)

This instruction is used from within an error trap created by ON ERROR GOTO.

189

The action of RESUME is to jump back to the part of the program which caused

the problem, after the error has been corrected by your routine. You should

NEVER attempt to use GOTO in this context.

RESUME has three possible formats:

RESUME Jump back to the stalement which caused the
error and try again

RESUME NEXT Jump to statement following the one which
generated the error. %
RESUME |ing time Jump 1o line number.

See ON ERROR GOTO. ERROR, ERRL, ERRN

ERRN (Reserved variable containing the number of the last error)

When an error occurs, ERRN is automalically loaded with the error number. This
can be printed out using a line such as:

PRINT ERRN

ERRL (Reserved variable holding the location of last error)
ERRL contains the line number of the last error which occurred
Here is a small example
10 rem Error test routine
20 on error gato 50
30 rim | appear to have made a slight mistake!
40 stop
50 print “ERROR NUMBER “errn;” at line “;errl
60 resume next

See also ERRN, ERROR and ON ERROR GOTO

ERROR (Generate an ERROR and return to the STOS Editor)

The action of the ERROR command is to actually generate an error. This may

sound rather crazy, bul it's often quite useful. Supposing you have created a nice

little error handling routine which is able to cope with any possible disc errors.
error 2

Quits the program and prints out an out of memory error.

The most common form of this instruction is:
eror erm

This uses the ERRN function to print the current error condition.

By testing the ERRAN for the errors your program can correct, you only need
to revert back to the editor when absolutely necessary.

190

BREAK (Tumn on or off the Control+C Break key)

Normally you can interrupt a program and return to the editor at any time by
pressing the two keys Control and C. Although this is useful when you're
debugging a program, it would be very dangerous lo allow this function to operate
in a commercial games program, as it would make it extremely easy for an
unscrupulous person to steal some of your code. You can therefore tumn this
function off using a special BREAK OFF command.

As you might expect. you can also reactivate the Break keys using:
break on

But be warned: NEVER run a protected program unless you have made a backup
copy on the disc first. Otherwise if the program gets stuck in a loop, you could easily
end up losing several hours of your work.

The keyboard

KEY (Function to assign a string to a lunction key)

Any of the 10 function keys can be assigned a string of up to 64 characters long
using the KEY command.

KEY(x)=a$
Assigns string a$ to key number X

a$ is the string which will be returned whenever key X is pressed. X is a number
from 1 1o 20, where the numbers between 11-20 represent a shifted version of the
normal function keys

Example:

1 rem Reassign function keys. Warning! In order to get the

2 rem default assignments back, you will need to reboot STOS Basic!
10 for 1=11t0 20

20 read AS

30 key (1)=A%+""

40 next |

50 input “Press a function key”;F§

60 print “Function key number “;F$

70 goto 50

80 data “one”,"twa","three”, "four","five™,"six","seven","eight”,“nine”
90 data “ten”,"eleven”,"twelve","thirteen","fourteen", "fifteen",“sixtesn™
100 data “seventeen”,"eighteen”, " nineteen”,"twenty”

It you now run this program, and press a function key, the number of the key you
pressed will be printed on the screen.

See also KEY LIST and FKEY
INKEYS$ (Function to get a keypress)

The INKEYS function allows you to test whether a key has been pressed al any
time, without having to interrupt the action of the program. INKEY$ is used in the

191

following way.
K$=INKEY$

where K$ is the string variable which will be used to hold the key which has been
pressed.

If the user presses a key, then K§ will contain the Ascii character which has
been input, otherwise K$will be set to the empty string *". Ascii values range from
0-255 and represent a standard code used to hold all alphanumeric characters.
It is important to note that some keys, such as the cursor keys, and the function
keys, use a rather different format. These must therefore be read using a separate
SCANCODE function.

Example:
new
10 while K$=""
20 KS=inkey$
30 wend
40 print “You pressed the “;K$:" Key with an
Ascii code of ";asc(KS)
50 K$="": goto 10

See CLEAR KEY and SCANCODE

SCANCODE (input the SCAN CODE of the last key input with INKEYS)
SCANCODE is used in conjunction with INKEYS to test whether the user has
pressed a key which does not return an Ascii code. If INKEY$ detects that such
a key has been input, it returns a character with the value 0. When this happens
you should use the SCANCODE function to determine the internal code associated
with this key.

Try typing in the following small example:

40 if asc(KS)=0 then print “You Pressed a key with no ASCII code.”

50 print “The scancode is“;scancode

60 K$="": goto 10

CLEAR KEY (initialise keyboard butfer)
Whenever you type a character on the ST's keyboard, its Ascii code is placed in
an area of memory known as the keyboard buffer. It is this buffer that is read by
the INKEY$ function. At the start of a program the buffer may well be full of
unwanted information. It's therefore generally a good idea to remove all this
garbage first using CLEAR KEY.
Add line 5 to the program in the previous example.
5 clear key

See PUT KEY,INKEY$

192

INPUTS$(n) (Function to input n characters into a string)
INPUTS$ reads n characters from the keyboard, waiting for each one, and then
loads them into a string. As with INKEYS, these characters are not echoed back
on the screen.
X$=INPUTS(n)

X§$ represents any string variable and n is a number denoting the length of the
string 1o be input.

Example:
new
10 clear key
20 print "Type in ten charactars™
30 CS=input$(10)
40 print “You typed in the string “;C$

It is important not to confuse INPUTS with INPUT, as the two instructions are
completely different.

Also note that there is a special version of INPUT$ which is used to access the disc.

FKEY (Read the function keys directly)

FKEY is a special form of the INKEYS$ function which can be used to test the
function keys directly without having to tediously use SCANCODE. Whenever a
function key is pressed, FKEY returns a number between 1 and 20. Numbers
greater than 10 indicate that the key has been shifted, and a value of zero means
that no key has been pressed.

FKEY is often used in conjunction with ON...GOSUB to jump to one of a
number of subroutines depending a function key chosen by the user.
ON FKEY GOSUB line1,line2 line3...

See KEY, KEY LIST

WAIT KEY (Wait for a keypress)
The action of WAIT KEY is simply to halt the program until the user hits a key.
Example:

new
10 print “Press a key™

KEY SPEED (Change key repeat speed)
KEYSPEED repeatspeed, delay

This instruction allows you to tailor the speed of the keyboard to your own particular
laste. repeatspeed is the delay in 50ths of second between each repeated

193

character. Delay is the time in 50ths of a second between pressing a key. and the
start of the repeal sequence.

PUT KEY (Put a string into the keyboard buffer)

This function is used to load a string of characters into the keyboard buffer
Carriage returns can be included in this string using the * character. The most
common use of PUT KEY is to call up a direct mode command after a program has
terminated.

Example:
10 put key “new "
When this line is executed, the program erases itself from the ST's memory. It does

this by placing a “new” into the keyboard buffer, which is then performed direclly
from the editor when the program ends

Input/output

INPUT (input a number or some text into a siring variable)

INPUT provides you with a standard way of inputting information into a variable.
There are two possible formats for the instruction:

INPUT variable list variable listcanbe any list of variables separated
by commas.
INPUT “Prompt"variable list ~ Prompt may be any string of characters you
like.
When you execute an INPUT instruction, the ST displays a ? and waits for you to
enter the required information from the keyboard. If an optional prompl has been
included, then this will be printed out instead of the “?".

Example:

new

10 input A

20 print A
I you now run this program and type in the number 10, the lollowing dialogue will
ensue. In order to distinguish between your input, and the compulers output,
We've underlined anything entered from the keyboard.

n
710
10
If more than one variable has been specified in the list, these should be entered
as in the example below.
new
10 input AB,CS
20 print AB,CS
We'll now show you some sample dialogue of this program in action
un
?
15 40 string of characters

Notice how we've separaled the three values typed in with acomma. Any commas
input as part of a string will therefore effectively split the string in twa. In some
circumstances this might be a major inconvenience, so STOS Basic includes a
useful LINE INPUT instruction which allows you to use a Return instead of a
comma as the separator.

Here's another example, showing the action of the prompt

new
10 input "Enter your age:";A

20 input "Enter the month, and the year of your birth:";M$,Y
30 input "Enter your christian name and surname:”;C$,5§
40 print “Age
50 print “Month MS;” Year="Y
60 print “Name = “;C$,5$

wn

Enter your age:26

Enter the month, and the year of your birth:July, 1961
Enter your christian name and surname:Stephen, Hill
Age = 26

Month = July Year = 1961

Name = Stephen Hill

Incidentally, if you're used to another version of Basic, you should note that the :
between the prompt and the variables, cannot be replaced by a .. See INPUT# and
LINE INPUT

LINE INPUT (input a list of variables separated by a Return)

Line input is exaclly the same as INPUT. except that it uses a Return instead of
acomma to separale each variable you type in.

Example:

new
10 line input AB,CS
20 print AB,CS

un

0

na

7 Hello
10 20 Hello

See INPUT, LINE INPUT#
PRINT and ? (Print a list of variables of the screen)

The PRINT ion has precisely the ite effect as INPUT, and prints the
contents of a list of variables at the current cursor position on the ST's screen

PRINT list of variables
The list of variables can include any mixture of strings or numbers. These variables

are separated by either a ; or a .. If a semi-colon ; is used, the_n the data will be
printed immediately after the last variable you output using print. If. however. a

195

comma is used, the cursor will be positioned a number of spaces ahead. Normally
the cursor is moved downwards one line every time a print instruction is executed.
This line can be suppressed by placing either of the separators at the end of the
PRINT. Note that PRINT can be abbreviated to a ?. This will be expanded in full
in any program listings.

Example:

new

10 print “This is the story of the Hitchikers Guide to the Galaxy™
20 A=10 : B=20 : CS="Thirty"

30 print A.B:CS

40 print 10,20*10,"Hel";

50 print “lo”

See also USING, LPRINT and PRINT#

USING (Formatted output)
The USING statement is used in conjunction with PRINT to provide fine control
over the format of any printed output.

USING takes a special format string. Any normal alphanumeric characters in
this format string will be simply printed out, but if you include one of the characters
~#+-.;* then one of several useful formatting operations will be performed.
PRINT USING format$;variable list
Note the semi-colon between the format string format$ and the list of variables.

~ (Shift+#) This is used to format strings. Any occurrences of the ~ are replaced
by a character from the following string.

Example:
new
10 print using “This is & ~~~~~ demonstration of USING";"Small”
20 print using “1st Letter:~ 2nd Letter:~ 3rd Letter~";"Basic™
If you now type:
n’

these lines will be displayed on the screen.
This is a small demonstration of USING 1st Letter:B 2nd Letter:a 3rd Letter:s

Specifies the number of digits to be printed out from a numeric variable. If this
number is greater than the size of the variable then excess # characters will be
replaced by spaces.
Example:

new

10 print using “##H";314211

20 print using "# # # # # ¥7,123456

30 print using "#HH#¥";56
When you run this program it will print out the following lines on the ST's screen.

196

an
12345
56

+ This adds a plus sign to a number if it is positive, and a minus sign if it is negative
Example:

new

10 print using “+##7;10

20 print using “+¥#";-10

run
displays:

+10
-10

- This only includes a sign if the number is negative. Positive numbers are
preceded by a space.

Example:
new
10 print using “-#4";10
20 print using “-#4";-10
un

displays:

10
-10

. Places a decimal point in the number, and centres it.
Example:

print using “Pl is #.4#%",3.1415526
Plis3.181

; Centres a number but doesn't output a decimal point.
Example:

jprint using “Pl is ####",3.1415926
Plis3

* (Shift+6) Prints out a number in exponential form.
Example:

PRINT USING " Here is a number A™;12345.678
Here is a number 1.23345678E5S

See also FIX

187

Disc access: sequential files

The Atan ST supports two different types of disc files: Sequential files and random
access files

Sequential files are designed to be used for accessing long lists of information
at atime. These files only allow you te read information back from the disc in the
precise order it was written. This means that if you want to change just one piece
of the data in the middle of the file, you would need to read in the whole file up to
and including this value, and then wrile the entire file back to the disc. STOS Basic
allows you lo access sequential files for either writing, or reading, but never for both
at the same time.

Before you can use one of these files. you first need to open a channel to the
file, using OPEN IN or OPEN OUT. You can think of one of these channels as a
pipe running from the ST's memory fo the file. This pipe is created whenever you
open the channel, and can be used to transter information to and from a disc file,
using the INPUT#, or PRINT# instructions respectively. Look at the following small
example

new

10 open out #1,"file.seq™

20 input “What is your name”;N$
30 print #1,N$

40 close #1

This creates a file called FILE.SEQ containing your name. In order to read this
information back from the file, type in the lines:

new

1 open in #1,"fileseq”

2input #1,NS

3 print “I remember your name. It is “;N$
4close 11

Notice how both these programs perform three separate operations.

® Open the file using either OPEN IN or OPEN OUT

@® Access the file with INPUT#, or PRINT#

@ Close the file with CLOSE. Note that if you forget to do this, any changes
to the file will be lost!

These three steps need to be completed in exactly this order, every time you
access a sequential file. Now for a somewhat larger example

new

10 rem Choose between reading and writing routines
20input”Doyouwanttoread afile <R>, write afile <W> or stop <RETURN>";AS
30 if AS="R" or AS="r" then 190

40 rem If the user simply press Return then exit

50 if AS="" then stop
60 rem OPEN file "BIRTHDAY .SEQ" for output

70 open out #1,"birthday.seq”

80 rem Input a name and a birthday

90 input “Input the name of your friend or to stop™F$

100 rem if name = close file and jump to main routine
110 if F$="" then close #1 : goto 20

120 print FS;™'s Birthday is” : input BS

130 Rem Separate items by a comma for use with INPUT#

198

140 print #1,FS;",";BS

150 rem Get another birthday
160 goto 80

170 rem Reading routine

gs for WHOLE file. Assumes i of 100 bi ¥
190 open in #1,"birthday.seq”
200 rem open file for reading
210 dim F$(100),8$(100)
220 rem set item number to zero
2301=0
240 rem read file until end
250 print “List of birthdays”
260 print ™ ==za="
270 repeat
280 rem read birthdays
290 input #1,F${1),BS{1)
300 inc |
310 until eof(1)
320 rem print birthdays
330 for J=01o I-1
340 print FS${J),BS(J)
350 next J
360 rem clos
370 close #1
380 goto 20

e and go back to start

This program creales a small database consisting of a list of the names and
birthdays of your friends. The first half of the routine loads the information into the
file BIRTHDAY.SEQ. If this file already exists on the disc, it is erased. You are then
prompted to input a list of names and birthdays which are stored on the disc.

The second part of the program opens this file, reads its contents, and displays
them on the screen. For more information on sequential files see OPEN IN. OPEN
OUT, CLOSE, INPUT#, PRINT#, LINE INPUT#, INPUTS(#Channeln), LOF,
POF, EOF

Disc access: random access files

Random access files are so called because you can access the information stored
on the disc in any random order you like. In order to use these files you first need
to understand a little bit of theory.

All random access files are composed of units called records, each with their
own unique number. These records are in turn split up into a number of separate
fields. Every field contains one individual piece of information. When you use
sequential files, these fields can be any length you wish, as the file will only be read
in one direction. Random access files, however, always require you to specily the
maximum size of each of these fields in advance.

Supposing you wanted lo produce a file containing a list of names and
telephone numbers. In this case you could use the fields:

Field Maximum length
SURNAMES 15
NAMES 15
CODE$ 10
TELS 10

You could now define these fields using a line like:

199

field #1,15 as SURNAMES, 15 as NAMES, 10
as CODES.10 as TELS

Il's important to realise that the strings specified by the FIELD instruction can also
be used as normal string variables. This allows you to read and write information
to any particular field. For example:

SURNAMES="HILL" :rem Loads the surname inta the field SURNAMES.
TESTS=SURNAMES:PRINT TESTS

After you've loaded your record with information, you can write it onto the disc
using the PUT command.

Example:
put#1,10
Loads data into record 10 of file opened on channel 1.
Similarly, you can read a record using the GET instruction.
get#1,10
Example:

10 rem Ope “NAMES.RAN" for random access

20 open #1,°R","names.ran”

30 rem Assign field strings

40 field #1,15 as SURNAMES,15 as NAMES, 10 as
AREAS,10 es TELS

50 rem Choose between reading and writing

60 input “Do you want to read a number <R>, write a number <W>, or exit
<Return>";AS

70 rem exit program if <RETURN> entered. Close file first!
80 if AS="" then close #1 : end

90 if AS<>"W" and A$<>"w" and A$<>"R" and

AS<>"r" then 60

100 rem Get number of record

110 input “Record Number 7°;N

120 rem Exit if negative number entered

130 if N<0 then 60

140 if A$="R" or A$="r" then 270

150 rem Routine to write telephone numbers

190 input “Enter the area code 7”;AREAS

200 input “Enter the telephone number 7", TELS
210 rem Store record at position N on disc

put #1,N

230 rem Goto main routine

240 goto 60

250 rem Reading routine

260 rem Read record at N into fields

270 get #1,N

280 rem Print fields

290 print “Record number “;N
300 print

310 “Name:";NAMES,SURNAMES
320 print “Telephone number:”;AREAS,TELS
330 goto 60

For more information see FIELD, PUT#, GET#, OPEN and CLOSE
OPEN OUT # (Open a file for output)
OPEN QUT #channel file$[.atiribute]

The OPEN OUT instruction is used to open a sequential file for writing using
PRINT#. If this file already exists on the disc it will be erased. Channelis a number
between 1 and 10 by which the file will be referred to in all subsequent operations.
File$ can be any string holding the name of the new file to be opened. The optional
attribute allows you to specily the file type to be used. See DIR FIRSTS for more
details. Note that any attempt to read a file opened by OPEN OUT will cause an
error.

See CLOSE, OPEN IN, POF LOF.EOF and PRINT#
OPEN IN # (Open a file for input)
OPEN IN #channel file$

OPEN IN is used to open a file for reading. This file is only available for reading,
so if you try to write to a file open using OPEN IN, an error will occur. Channel
denotes a number ranging from 1 to 10 which is used by the instructions
INPUT#,LINE INPUT# and INPUT$ (#channel.count) to specify which file is to be
read.

See OPEN,CLOSE INPUT# LINE INPUT#,INPUT$(#channel,n), EOF, POF and
LOF

OPEN # (Open a channel o a random file or a device)
There are four forms of this instruction:

OPEN #Channel,"R" file$ (Opens a random access file)

OPEN #Channel,"MIDI" (Opens a channel to the MIDI interface)

OPEN #Channel,"AUX" (Open a channel to the RS232 port)

OPEN #Channel,"PRT" (Open a channel for the printer) (assumes it's plugged in
the parallel port)

Example:

10 open #1,"AUX"

20 for =0 to 10

30 print #1,"STOS BASIC™
40 next X

50 close #1

This program prints out ten lines of text on the device connected lo the RS232 port.
It your printer uses the parallel port change line 10 to:

201

10 open #1,”PRT”
Similarly you can input information from a device such as a modem with a line like:
30 input #1,AS:print AS

When accessing these external devices. all the normal input statements are
available for your use, including INPUT$ and LINE INPUT

See PORT, CLOSE, PUT, GET, FIELDS
CLOSE # (Ciose a file)
CLOSE #channel
This function closes the file associated with a channel. If you forget to close a file
after you have finished with it, any changes you have made to the file will be
completely ignored.
Example:
close #1
PRINT # (Print a list of variables to a file or device)
PRINT#Channel variable list
This command is identical to the normal print instruction, but instead of displaying
the information to the screen, it outputs it to a file or output device specified by the
channel.
Example:
print #1,"Hello™
As with PRINT you can abbreviate PRINT# to 7#.
Example:
7#1,"Hello Again™
See also OPEN IN, OPEN OUT, OPEN, PRINT, USING
INPUT # (input a list of variables from a file or device)
INPUT #Channel,variable list
INPUT# reads information from either a sequential file, or a device such as the
MiDlinterface. The format of the instruction is identical to its screen equivalent. As
belore it expects each piece of data in the file to be separated by a comma. INPUT
can only read up to a maximum of 500 characters worth of data at any one time.
If your data is larger than this, you should always use the INPUTS instruction
instead
LINE INPUT # (Input a fist of variables not separated by a ",")

LINE INPUT # has two possible formats:

202

LINE INPUT #Channel,variable list

or

LINE INPUT #Channel,separator$,variable list.

This function is identical to INPUT#, but it allows you to use another character

instead of a comma to separate the individual items of data on the disc. If no
separator$ character is included, then <Return> is assumed.

INPUTS (Inputs a number of characters from a device)
INPUT$ (#Channel.count)

This reads count characters from the device or file connected to channel

EOF # (Test for end of file)
EOQF (#Channel)
EOQF is a useful STOS Basic function which tests to see the end of a file has been
reached al the current reading position. If it has, EOF returns a result of true,
otherwise false.

LOF # (Length of open file)
LOF(#Channel)

This simply returns the length of an open file. It makes no sense to use this function
in conjuction with devices other than the disc.

POF # (variable holding current position of file pointer)

POF(#Channel)

The POF function changes the current reading or writing position of an open file,
for example:

pof(#1)=1000

This sets the read/write position to 1,000 ch s past the start of the file. Oddly

enough POF can be used in this way to provide a crude form of random access
when using sequential files! The reason this works is simply that disc drives are
inherently random, and all sequential operations are effectively simulated using
random access.

FIELD # (Define record structure)

FIELD #channel, length1 AS field1$,
length2 AS field2s......

FIELD allows you to define a record which will be used for a random access file
created using the OPEN #channel,"R" command. This record can consist of up to
16 alphanumeric fields and be up to 65535 bytes in length.
Example:

FIELD #1,15 as SURNAMES, 15 as NAMES, 10 as CODES,10 as TELS

203

See OPEN, GET, PUT, CLOSE
PUT # (Output record R 1o a random access file)
PUT#channel R

PUT moves a record from the ST's memory inte record number R of a random
access file. Before use, the contents of the new record should first be placed in the
field strings defined by FIELD, using a statement such as:

SURNAMES$="HILL"

Although you can write existing records in any order you like, you are not allowed
to scatter records on the disc totally at random. This means that if you have just
created a file, you can'l type in something like:

put #1,1
jput #1,5

Inthis case, the PUT #1,5 instruction will generate an errar, as there are no records
in the file with numbers between 1 and 5.

See also OPEN, GET, FIELD$
GET # (Input record R from a random access file)
GET #Channel,R

GET reads record number R stored in a random access file opened using OPEN.
It then loads this record into the field strings created by FIELD. These strings can
now be manipulated in the normal way.

Example:

10 open #1,"R","test’

20 field #1,10 as NAMES
301=1

40 input “Name?";NAMES
50 if NAMES="" then 50
put#ll

MWinc|

goto 40

90 input “Record number?”;R
100 if R<0 then close #1 : end
110 get 1R

120 print NAMES

130 goto 90

Note that you can only use GET to retrieve records which are actually on the disc.
If you try to grab a record number which does not exist, an error will be generated.

PORT # (Function to test if channel waiting)
PORT(#Channel)

The PORT function tests to see if an input device connected to a channelis waiting
for you to INPUT some information from it.

204

X=PORT(#channel)

If channel is ready to output some information, then X will be set to -1 (true), and
otherwise it will be zero (false).

The printer
There is also a separate set of instructions for use with the printer.
LLIST (Print part or all of a program on a printer)

This just lists your program to the printer. The syntax of the LLIST instruction is
exactly the same as that of LIST.

Example:
LLIST 10 Outputs line 10 to the printer.
LLIST 10-100 Lists the lines from 10 to 100 to the printer.
LLISTLists your entire program.
See LIST
LPRINT (Output a list of variables to the printer)
As PRINT but sends your data to the printer instead of the screen.
Example:
Iprint “Hello™
See PRINT , USING, PRINT#
LDIR (List a directory to the printer)
Lists the directory of the current disc to the printer. See DIR, for more details.

LISTBANK (Print a list of the banks used by your program on the printer)

Lists the status of all the banks used by the current program using the printer. See
LISTBANK

HARDCOPY (Screen dump)

This instruction dumps a copy of all the graphics on the screen to the printer.
Identical to pressing the Alt+Help keys from the editor. Note that people with Epson
compatible printers should first set the correct printer type. Since this requires you
to access the ST's inner workings directly, we've included an example routine for
this purpose in the technical reference section as an example of the TRAP
instruction.

WINDCOPY (Window dump)
Unlike HARDCOPY this command prints out the text in the currently open window.

As you would expect, it is much faster than the graphics dump produced by
HARDCOPY.

205

Directories

DIR (Print out the directory of the current disc)
DIR [PATHS] ['W]

This function lists all the files on the current disc. If the optional path$ is specified,
only the files which salisfy a certain set of conditions will be displayed. This path
string can contain any one of the following six parts:

The Name of a drive terminated by a *

The name of a folder to be listed. (Enclused belween two “\" characters)

A slrmg of characters which will be in every fi 1o b]
" denoling that any string of up to eight characters will do.

A “?"which au|omancally matches with any single character in the filename.

A " which sep from an

It the optional /W is added then the files will be listed across the page
Examples:
DIR “A:*.BAS™:rem Lists...
on the disc.
DIR "\STOS\".*":rem Lists... lists all files in the folder STOS

DIR \STOS\".CR?":rem Lists list all the available
character sets.

lists all Basic programs

DI Rs (Set the current directory)

This reserved variable can be used to find or change the default directory used for
all disc operations, such as ioading and saving

Example:

DIRS="ST0S"
DIR (Displays the

s in folder STOS)

DIR FIRSTS (Get first file in directory satisifying path name)
DIR FIRST$(path$,llag)

This function returns a string containing the name and parameters of the first file
on the disc which satisfies the conditions in the pathname path$. The flag contains
a number of binary bits which indicate the type of files to be searched for. The
format of this flag is:

Bil 0 Normal Read/Write files

Bit 1 Read only files

Bit 2 Hidden files

Bit 3 Hidden system files

Bit 4 Volume labels (The name of the disc)

Bit 5 Folders

Bit 6 Files which have been written to and closed

If you aren’t sure which type of files you want to list, you can find all the files on the
disc by setting the flag to -1.

If no file exists on the disc malching your specifications, then DIR FIRSTS will
return a null string. Otherwise it will hold the following 42 character parameter
block.

206

Characters Usage

0-12 Filename

13-21 Length of file

22-32 Date file saved

3341 Time file saved 42 : file type

See DIR NEXT$ for an example of this function in action.
DIR NEXT (Get the next file satistying current path)

DIR NEXTS$ returns the next file found using the path specified by DIR FIRSTS. It
can only be used after a DIR FIRSTS instruction has been executed. The string
returned by this function is in exactly the same format as the one generated by DIR
FIRSTS. As before, if the string returned by the function is empty, then there are
no more files in the current path.

Example:

new

10 input “Input paths™|
NS=dir first${PS, N$="" then end

30 print “Files matching the path string ";P$

33 print

35 print “Names”;space${B);"Size";space$|5)," Date”;

space${7);"Time";space$(5);" Type”

40 print

3

50 print NS

60 repeat

70 NS=dir nexts
BO print N§

90 until N$=""

In order to print a list of the all the files on the disc, simply run this program with
apath of ™"

Also see DIR FIRSTS, PREVIOUS, DIR, DIR$
PREVIQUS (Sats the current path up cne directory)

This function can be used lo move the search path up to the next outer
subdirectory.

Example:
dir$="ST0S
dir
previous
dir
See DIRS
DRIVE (Variable containing the number of the current drive)

DRIVE is a variable ining a number rep ing the drive vou are currently
using, with 0 denoting drive A, 1 indicating drive B elc.

207

Example:
print “Current DRIVE is “;drive
drive=1
print “Current DRIVE is ~;drive
See DRIVES, DRVMAP
DRIVES (String variable hoiding current drive)
This function holds the letter representing the drive.
Example:
print “Current drive is “;drive$
drive$="B"
print “Current drive is “;drive$
DRVMAP (Variable hoiding a list of the drives connected)
DRVMAP holds a binary number denoting the number of the drives connected.
[Each binary digit in the number holds the status of one of the drives, starting with
bit 0. If the bit at a particular position is sel to one, then the appropriate drive is
attached to the computer. So:
Bit 0= Drive A
Bit1=Drive B
Bit2=Drive C
Example:
print bin${drvmap.26)

Note that, drvmap always assumes a minimum of two drives, even if you're only
using a standard ST.

DFREE (Variable containing the free space on the current disc)
DFREE holds the amount of free space remaining on a disc.
print dfree
MKDIR (Create a folder)
MKDIR folder$
This function creates a folder with the name foider$.

Example:

mhkdir “TEST
dir

RMDIR (Delete a foider)
RMDIR folder$
RMDIR deletes an empty folder from the disc.

208

Example:
rmdir “TEST
dir
KILL (Erase a file from the disc)
KILL file$
This function deletes a file with the name file$ from the current disc. If file$ contains
the characters *" or “?" a series of files will be erased. You should be very careful
when you use this function as anything you kill is wiped from the disc permanently.
RENAME (Rename a file)
RENAME old$ TO new$
The RENAME function allows you to change the name of a file. old$ refers to the
existing name, and new$ to the new name. If a file already exists with the new
name you have chosen, an error will be generated.
Example:
rename “DUMP.ACB" to "EXAMINE.ACB”
This renames the DUMP.ACB accessory.

Trigonometric functions

DEG (Convert an angle expressed in radians to degrees)

DEG converts angles expressed in radians into the form of degrees. A degree is
approximately equal to 57 radians.

Example:

print DEG(0)
5156.62015618

See RAD
RAD (Convert a radian expressed in degrees to radians)

RAD 1 P in degrees i i Aradianis ap y
equal to 57 degrees.
Example:
print RAD(5156.62015618)
90
See DEG

These functions all use so called radian measure. One radian is equal to 360/2°P|
or approximately 57 degrees.

SIN (Sine)
SIN(angle)

Calculates the sine of the angle. Note that this function always returns a floating
point number, so if you wish to assign the return value to a variable, this must
always be of the type double precision

Examples:

Pé=sin(pi/2)
print sin{pi/4)

See ASIN.HSIN and Pl
cos (Cosine)
COS(angle)

Returns the Cosine of the number in angle as a floating point number. All angles
are measured in radians.

Q#=cos(pi/2)
print cos(pi/é)

See ACOS, HCOS and PI
TAN (Tangent)
TAN(angle)
Generates the Tangent of the angle.

Examples:

Ré=tan(pi/3)
print tan(pi/a)

See ATAN, HTAN and PI
ASIN (Arc sine)
ASIN(number)

This function takes a number between -1 and +1 and calculates the angle in
radians which would be needed to generate this value with SIN

So if X#=SIN(ANGLE) then ANGLE=ASIN(X#).
Examples:

A#=asin(1)
print asin(0.5)

See SIN, HSIN(), PI()
ACOS (Arc cosine)
ACOS(number)

ACOS reverses the action of COS in the same way that ASIN inverts the SIN
function.

210

Example:

B#=acos(1)
print acos{0.5)

See COS, HCOS(). PI()
ATAN (Arc tangent)
ATAN(number)
Generates the arctan of number. See TAN HTAN, Pl
Example:

Cé=atan(0.5)
print atan(0)

HSIN (Hyperbolic sine)
HSIN(angle)
Returns a double precision number denoting the hyperbalic sine of an angle.
See SIN, ASIN

HCOS (Hyperbolic cosine)
HCOS(angle)
Returns a double precision number denoting the hyperbolic cosine of angle.
See also COS, ACOS

HTAN (Hyperbolic tangent)
HTAN({angle)
Returns a double precision number denoting the hyperbolic tangent of angle.
See also TAN, ATAN

PI (A constant r)
This function returns the number called Pl which represents the result of the
division of the diameter of a circle by the circumference. Pl is used by most of the

el 1 o late angles.

Mathematical functions

LOG (Logarithm)
LOG(y#)

This function returns the logarithm in base 10 (log10) of Y# as a double precision
number.

211

Examples:

print log(10)
Vi#=log(100)

LN (Natural Logarithm)
LN(Y#)
LN calculates the natural or naperian logarithm of Y#.
Examples:

print In{10)
Rit=In(100)

The action of LN is exactly opposite to that of EXP
EXP (Exponential function)
EXP(Y#)
Returns the exponential of Y# as a double precision number.
Examples:

print exp(1)
TEST#=exp(In(100}))

=SQR (Square root)
X=SQR(Y)

SQR calculates the number which must be multiplied by itself to get the value of
b 4

X=sqr(4)
Returns a value of 2 in X.
Example:

10 input “input a positive number “;N

20 print “The square root of ;N;” is “;sqr{N)
30 goto 10

ABS (Absolute value)
ABS(y)
ABS retumns the absolute value of y, taking no account of the sign of the number.
Example:
|'It1illl abs(-1),abs(1)

212

INT (Convert floating point number to an integer)

INT(y#)
This rounds down the decimal value of y and converts it into a whole number.

Examples:
print int(1.25)
1

print int(-1.25)
-2

SGN (Find the sign of a number)

SGN(y)

This allows you to find the sign of the number or expression in y. The function
returns one of three possible values:

-1il Y is negative
0if ¥ is zero
1Y is positive

10 input X

20 if sgn(X)=-1 then print “Number is upthn
30 if sgn(X)=D then print “Number is zero”

40 if sgn(X)=1 then print “Numb positive”
50 goto 10

MAX (Get the maximum of two values)

MAX(x.y)

The MAX function compares two expressions and returns the largest. These
expressions can be composed of numbers or strings of characters, providing you
don't try to mix different types of expressions in one instruction.

So

print max(10,4)
is ok retuning10

and
print max(*Hello™,"Hi")
is also legal returning Hi
But you can't however use something like:

print max(10,"HI")
See MIN
MIN (Return the minimum of two values)

MIN(X.Y)

MIN returns the llest of the two expressions you sp These

213

can consist of strings, integers or real numbers. However you must only compare
values of the same type.

Examples:
print min(10,4)
:rinl min(“Hello™,"Hi")
Hello
See MAX
SWAP (Swap the contents of two variables)
SWAP(X.Y)

This swaps the data between any two variables of the same type. For instance:

new
10 A=1: B=100

20 CS="Left" : DS="Right"”
30 print A.B,CS.D$

40 swap A.B

50 swap C$,D8

60 print A.B.CS,DS

DEF FN (Create a user-defined function)

DEF FN is a useful function which enables you to create your own user-defined
functions for use within a STOS Basic program.

The syntax of this function is:
DEF FN name [(variable list)]=expression

name is the name of the function you wish to define.

variable listcan be any list of variables separated by commas. These variables are
local 1o the function. Any variables you use in the function will be automatically
substituted for the appropriate local variables whenever necessary. Also note that
variables of different types can be mixed within a single function.

FN (Call a user defined function)
FN name [(variable list)]
FN is used to execute a function defined by DEF FN,
Examples:
new
10 def fn SQ (X}=X*X
20 input “Input & number”

30 print “The square of
40 goto 20

“in SQ (i)

new
10 def fn DEG (R)=R*pi/180

20 print sin{tn DEG (45))

new

10 def fn SEGMENT (AS.X.Y}=mid$(AS.X.Y)
20 print fn SEGMENT ("Hello” 2.3

See how we've always placed the DEF FN statement in the pregram before it is
used.

RND (Random number generator)

AND(y)

RND is used to generate a random integer between 0 and y inclusive. If y is less
than zero, RND will return the last value it produced. This is very useful when
debugging a program.

Examples:
10 plot md(640/divx-1),md(400/divy-1) 20 goto 10
print “Dice throw is a “;rnd(6)
LET (Load some information into a variable)

Used o assign a variable to a specific value. The use of LET is always optional and
can be omilted whenever you like.

Examples:

let A=1
let AS="Hello"+" "+"there”

FIX (set precision)
FIX(n)

This procedure fixes the precision of any real numbers which are to be printed on
the screen. There are three possibilities.

I 0<n<16 then ndenales the number of figures to be output atter the decimal point
It m>16 the printout will be proportional and any trailing zeros will be removed.

If n<0 then all fioating peint numbers will be displayed in exponential format, and
the absolute value of n (ABS(n)) will determine the number of digits after the

decimal point.
Examples:
fix (2):print PI Limits the number to two digits after the point.
fix(-8):primt PI Forces exponential mode with four figures
after the point.
fix(16):print PI Reverts to the normal mode.

String Functions

215

UPPERS (Convert to upper case)
UPPERS$(n$)
This function converts the string in n$ into upper case (capitals).
Example:

jprint upper$(“StoS BaSic")
STOS BASIC

Do not confuse this with the editor command UPPER
LOWERS (Convert to lower case)

LOWERS(n$)

LOWERS translates all the characters in n$ into lower case.

jprint lower${"Stos Basic”)
stos basic

This function should not be confused with the editor directive LOWER.
FLIPS$ (invert String)

FLIP$(n$)

FLIPS reverses the order of the characters in the string n§.

Example:

print flip${"STOS Basic”)
cisaB SOTS

SPACES (Create a siring tull of spaces)
" SPACES(n)
SPACES$ generates a string containing n spaces.
Example:

print space${20)] :Spaces”
: Spaces

STRINGS (Create a string full of a$)
STRING$(a$.n)
STRING$ creates a string of N characters using the first character of the string a$.
Example:
print STRINGS(“The cat sat on the mat”,10)
TITTrTTTT

216

Note that STRINGS(" . X) is identical to SPACES(X)
CHRS$ (Return Ascii character)
CHRS(n)
Creates a string containing the character with the Ascii code N.
Example:

print chr${66)
B

ASC (Get Ascii code)
ASC(a$)
This returns the Ascii code of the first character of the string in a§:
Example:

print asc(“B")
66

LEN (Get length of string)
LEN(a$)
LEN calculates the current length of a string of characters held in a$. All the
characters of a string are counted, even if they are not visible on the screen. So
LEN(CHR$(27)+CHR$(27)) will give the number 2.
Example:

print len(*123456787)
8

Do not confuse with LENGTH.

VAL (Convert a string to a number)
VAL(xS)

VAL returns the value of a number stored in the string x$. If x§ does not contain
a number then VAL will be zero.

Example:
10 input “Input a number~;AS
20 A#=val(AS)
30 if A#=0 then print AS;” is NOT & number™ : goto 10
40 print “The square root of ";A%," is ";sqr(A#)
STRS$ (Convert number to string)

STRS$(n)

217

This function converts a number in a string of characters. STRS can be very useful
since some functions, such as CENTRE, do not allow you to use numbers as an
parameter.

Example:

centre "Memory left is “+str${free)+" bytes”
Do not confuse STRS with STRINGS

TIMES$ (Get time)

TIMES$ holds a string oontalnlrlg the current time in hours, minutes and seconds
using the format “HH:MM:SS"

10 time$="10:50:00"
20 print time$
30 goto 20

This string is updated by STOS once every 50th of a second. See also TIMER,
ATES

DATES (Get Date)

This stores the current date as a string of characters in the format “DD/MM/YY YY"
where DD represents the day, MM the month and YYYY the year.

Example:
print date$

Note that if you don't have a clock card fitted, this date must be set directly using
a statement like:

DATES="03/06/1988"
See also TIMER and TIME$

FILESELECTS (Select a file)

This is a very powerful feature which enables you to call up a fancy dialogue box
to select one the files on the disc.

The syntax of this function is:
$=FILE SELECT$(path$ [itle$ [border]])

path$ can be any string containing the search pattern which will be used to display
the possible files.

titie§ is a string containing the title of the dialogue box.
border is a number from 1 to 16 denoting the border style which is to be used.

After completion of the dialogue, FILE SELECTS$ returns either the name of the file
or an empty string if the QUIT option was chosen.

218

Examples:
new
10 X$=file selects{™.*")
20 print X$
print file select$(** BAS")
See also FSAVE and FLOAD.

Machine level instructions
HEXS$ (Convert number to hexadecimal)
HEX$(n)

HEX$ converts a number into a string of characters in hexdecimal notation. There
are two possible formats of this instruction.

X$=HEXS$(x)
Loads x$ with number x expressed in base 16

X$=HEXS$(x,n)
Loads x$ with the first n digits of x, where n can range from 110 8.

Examples:

print hex${calour(0))
print hex$(65536)

$10000
print hex$(65536.,8)
$00010000

BINS (Convert number to binary string)
BINS(x)

BIN$ generates the string of binary digits equivalent to the number x. As with
HEX$, you can choose whether ta generate all the digits or only a few.

Example:
print bin${255)
F11111111
print bin$(255,16)
%0000000011111111
The precise syntax of the BINS function is:
x$=BIN$(x) Where x is the number to be converted to binary.
or

x$=BINS$(x,y) When x is the number to be used, and y the number of digits in the
string which will be loaded into x$. y can range between 1 and 31

219

ROL X,Y (Rotate left)
ROL is a Basic version of the ROL instruction from 68000 assembly language. The
effect 1o 1o take the binary representation of a number in y. and rotate it left by x
places.
Example:

The number 136 is represented in binary by

%10001000
Type in:
X=136
rolb 1.X

This will give the number 17 or binary %00010001

As you can see, the entire number has been shifted to the left, with the highest 1
bbeing rotated into the lowest position. The reason for the ".b", is to instruct STOS
to treat this number as an 8-bit byte. You can also specily the sizes " W" (word) and
“.L" (long word)

Note that this procedure expects the number to be shifted to be held in a simple
variable and not an expression.

Examples:
A=1

ol 1,A
print A
2

A=32768
rol.w 2A
print A

1

It ROL is used without “.B"," W",0r".L" then “.L" is assumed. Providing you use
reasonably sized numbers ROL can be effectively considered as a very fast way
of multiplying a number by a power of 2.

ROR (Rotate right)
ROR XY
This is similar to ROL but rotales the number in the opposite direction.
Example:

A=8

ror LA
print A
4

Note that ROR can be used as a very fast way of dividing a number by a power
of two.

220

BTST (Test a bit)
BTST(X.Y)
This function allows you to test the binary digit at position x in the variable Y. As
with the functions ROR and ROL, y must be a single variable and not an
expression. If the bit at x is set to 1, then the value of BTST will be true, otherwise
it will be false.
Example:
new
10 input “Enter a number”;N
20 input "Enter a bit to be tested”;B
30if B<0 or B>31 then end
40 print “Bit Number ;B
50 if btst{B,N) then print ~ is a one ” else print “is a zero”
60 print bin${N,32)
80 goto 10
See also BCHG, BCLR, BSET
BSET (setabitto 1)
BSET(x.y)

BSET sets the bit at position yto 1in the variable x. As before x must be a simple
variable rather than an expression.

Example:
A=D
bset 8.A
print A
56
BCHG(x,y) (Change a bit)
BCHG(x,y)

This procedure changes bit number yin the variable . If this bit is currently a 1 then
the new value will be a zero, and vice versa.

Example:

A=)
behg 1,A
print A
2

behg 1.A
print A
0

BCLR (Clear a bit)
BCLR(x.y)

221

BCLR sets bit number y in variable x 1o a zero.
Example:
A=128
belr 7.A
print A
0
PEEK (Get byte at address)
PEEK(address)
This function returns the 8 bit byte stored at address. Technically-minded readers
will be interested to note that PEEK gets information from the ST's memory while
in supervisor mode. This means that you can happily type in something like:
print peeki(0)

POKE (Change byte at address)
POKE address,x
Loads address with the number from 0-255 stored in x. You may use this function
to change the contents of any part of the ST's memory. But be warned that this
function is dangerous. If you poke around indiscrimantly you will aimost certainly
crash the ST completely.
Example:

poke physic+1000,255
Pokes a blob on the ST's screen

DEEK (Get word at address)
DEEK(address)

This function reads the two-byte word at address. This address MUST be even
or an address error will occur.

As with PEEK, you can use DEEK to access any part of the ST's memory including
the { that are y i

Example:
print deeki0)

DOKE (Change word at address)
DOKE address,value
DOKE loads a two byte number between 0 and 65535 into address. In
knowledgeable hands this function can be very useful, but since even the best of

us make mistakes, you should always remember to save a copy of your programs
to the disc before attempting to use this function in a new routine.

222

Example:
doke physic+1000,65535
LEEK (Get long word at address)
LEEK(address)
The LEEK function returns the four-byte long word stored at address. Like DEEK,
the address used with this function must always be even. Note that if bit 31 of the
contents of address is set, the number returned by LEEK will be negative.
Example:
print leek(0)
LOKE (Change iong word at address)
LOKE address,number
LOKE loads address with a four-byte long word specified by number.
Example:
loke physic+10000,SFFFFFFFF

Indiscriminate use of this function can lead to the ST crashing completely, so take
care.

VARPTR (Get address of a variable)
VARPTR(variable)

This function returns the location in the ST's memory of a variable. Each of the
different types of variables are stored in a different way.

Integers: VARPTR returns the location of the value of the variable.
Example:

print A
1000

Real numbers: VARPTR returns the location of two long words which contain the
value of the variable in the IEEE double precision format.
Strings: VARPTR points to the first character of the string. Since STOS Basic
does not end its strings with a character 0, you must obtain the length of the string
using something like: DEEK(VARPTR(AS$)-2), where A$ is the name of your
variable. You could also use LEN(A$) of course.

COPY (Copy a memory block)
COPY start finish TO destination

This command is used to rapidly move large sections of the ST's memory from one

223

place to another. Start is the address of the start of the block of memory to be
moved, and finishis the address of the end. Destination points to the first memory
location of the destination.
Note that all these addresses MUST be even.
Example:
copy logic,logic+10000 to logic+10000
This copies one part of the screen to another.
FILL (Filt memory block with a longword)
FILL start TO finish longword
FILL capies a specific long word into a section of memory.
start is the beginning of the block and finish the end. longword is the data which
will be copied into each set of four memory locations between startand finish. Note
that it's also possible to use the number of memory BANK as the start or finish
location.
Example:
fill logic to logic+32000,$22334455 Displays a series of lines on the screen.
fill 1o 2,0 Fills bank 1 with 0.

Incidentally, if start and finish are specified as an address, these values MUST be
even.

=HUNT (Find a string in memory)
X=HUNT(start TO end, A$)

This command is used to allow you to search through the ST's memory for a
specific character string.

start is the position in the ST's memory of the start of the search, and end is the

address of the end. On completion of this routine X will hold either O (if the string
in A$ was not found) or the location of A$.

WAIT (wait in 50ths of a second)
WAIT x
This function suspends a STOS Basic program for x 50ths of a second. Any
functions which use interrupts, such as MOVE and MUSIC will continue to work
during this period, with the sole exception of ON MENU GOTO.
Example:
wait 50

This waits for one second.

224

TIMER (Count in 50ths of a second)

TIMER is a reserved variable which is incremented by one every 50th of a second
Here is a small example showing how this is used.

Example:
new
10 print “Started”
20 timer=0
30 if timer<500 then goto 30
40 print “Finished”

NOT (Logical NOT operation)
NOT(x)

This function changes every binary digitin a number from a 1 to a0 and vice versa.
Since True =-1 and False=0, NOT(True)=Failse.

Examples:
print not{-1)

new
10 if not{true)=false then print “False™

Miscellaneous instructions
REM (Remark)
Any text typed in after a REM statement will be completely ignored by STOS Basic.
You can therefore use this instruction to place comments at appropriate points in
your programs. Note the apostrophy character; ', is an abbreviation for rem.
Example:
10 rem This program does absolutely nothing
DATA (Piace a list of data items in a STOS Basic program)
The DATA statement allows you to incorporate lists of useful data directly inside
a Basic program. This data can be loaded into a variable using the READ
instruction. The format of the DATA statement is:
DATA variable list.
Each variable in the list is separated by a comma.
Example:
10 data 1,23,"Hello™
Unlike many other Basics, the STOS version of this instruction also allows you to
use expressions involving variables, So the following lines of code are perfectly

acceptable

225

10000 data $FF50,$890
10010 data %1111111111111,%1101010101
10020 data A

10030 data A+3/2.0-sin(B)

10040 data “Hello™+"There™

Note thal the A in line 10020 will be input as the contents of variable A, and not the
Ascii character A. Similarly the expression at line 10030 will be evaluated during
the READ operalion using the current values of A and B.

Incidently, DATA must always be the only instruction on a line
See READ, RESTORE.

READ (READ some data from a DATA slalement into a variable)
READ list of variables

READ allows you to input some data stored in a DATA statement into a list of
variables. It starts off with the first data statement in the program, and then reads
each subsequent item of data in turn. As you might expect, the variable used in
each READ instruction must always be of the same type as the information stored
in the current DATA statement

Example:

new
10for I=110 10
20 read A

30 next |

40 data 1

50 data 2.3

60 rem

70 data 455,78
80 data 9,10

Note that STOS Basic also lets you use complex expressions in a DATA
statement.

Example:
new
10T=10
20 read AS,B,C,DS
30 print AS,B,C.DS
40 data “String”,2,T*20+rnd(100),"STOS"+"Basic”
READ uses a special pointer to determine the location of the next piece of data to
be inpul. This pointer can be changed at any time in the program using the
RESTORE instruction.
See RESTORE. DATA.
RESTORE (Set the current READ pointer)
RESTORE line

This instruction changes the line number at which a subsequent READ operation

226

will expect 1o find the next DATA statement. There are two forms of this instruction

RESTORE line Set start of DATA statements from line
RESTORE expression Calculate line number and set read pointer to this
line.

It a data statement does not exist at the line specified by RESTORE, an
appropriate error message will generated.

Example:

new
10 restore 1000+language*10
20 read AS

30 print AS

40 end

1000 data “Engli
1010 data “Francais™

francais

run

Francais
english

run

English

See also READ, DATA
TRUE (Logical TRUE)

This function returns a value of -1, which is used by all the conditional operations
such as IF._THEN and REPEAT...UNTIL to denote true.

10if -1 then print “Minus 1 is TRUE"
20 if TRUE then print “and TRUE is “;TRUE

See FALSE, NOT

FALSE (Logical FALSE)
Whenever a testis made such as X>10, avalue is produced. If the condition is true
then this number is -1, otherwise it is zero. The FALSE function therefore
corresponds to a value of 0.

Print FALSE
0

See TRUE.

227

228

11 | Writing a game

There are no real rules on how you should go about programming a game. but
there are many points which can help in its design and development.

Planning

The mostimportant part of game writing is the initial specification and its planning.
First decide what you want the game to do then layout every detail so that you have
a complete picture of your desired end product. If you don't plan the game it will
take much longer lo write than if you had. Remember: Fools rush in where angels
fear to tread

Planning techniques

The intial idea may come fairly quickly —but the more interesting features may lake
a while to come. Use a thesaurus to help you find more references to your game
idea. We used one while trying to think up a name for Orbit. Starting with the word
ball we soon found an apt and ariginal name.

Say you wanted lo create a game to be called Haunted House. You could start
by looking up ghost or ghoul, and then move from section to section gathering
together useful ideas which you may be able to incorparale into your games.

Once the ideas for the game have been laid out on paper, you can then start
modularising sections. This means looking at your game idea and deciding which
parts are independent areas that don't rely on other sections of the game to work.
Take for example the game Orbit: The ball that bounces around the screen would
be one module, the player's bat another and the bricks a further one.

Another aspect of planning are the screen designs. Screens in the game must
be accurate and designed to use STOS Basics commands to their best benefit.
A badly laid-out screen will cause numerous problems during programming and
a screen re-vamp will probably be necessary wasting valuable time.

Programming

This section of the game development will take most of the time and is a very
critical stage. Programming is an art, requiring patience and logical thinking. You
will find that your skill will improve as you write more and more programs. The
emphasis with game programming is speed — a super animated space game is no
use if the response to the player is too slow.

The key word in programming is structure. All structured programs should be:
® Readable Easy to follow logic

® Reliable They do what was intended

@® Adaptable For possible later modifications

Write the modules from the planning section as subroutines, thus crealing a

229

Adding graphics

Computer graphics can transform simple game ideas into professional, well-
presented products. The graphics help lo creale a new world of reality and thus
complement the programmer’s skill. The major problem with adding graphics to
agame is usually the fact that the programmer cannot draw very well. This has
therefore produced a new wave of jobs in the games industry for graphic artists.
Get help from a friend who is good at art if your own talents don't stretch very far.

Graphics can be split into sections:

Pictures

STOS Basic can load in files saved from Neochrome and Degas. Both these
programs are widely used and are exceptionally well-designed.

Geometry

This is more a mathematical form of graphics and you really don't need any artistic
qualities. Using STOS Basic's drawing commands you can create images on a
coordinate based system.

Sprites

These are very important in the production of a game and can give great animation
effects that will bring your game to life. The size and number of sprites are
important factors to consider when writing a game.

Techniques

You will find that there are various ways to program a single situation. In this
section we will list various techniques that explain how to get the very best
perfermance from STOS.

Speedy sprites

Most games require a lot of speed so that numerous sprites can be whizzed
around the screen. The sprites in STOS Basic are software sprites —which means
that the computer has to do all the work of calculating where on the screen they
must go and also posistion them. The main thing to remember is that small sprites
can be moved around faster than laige ones.

So when you're deciding whal size sprites to have in your game, ponder on the

following points:

Numbers If you only have a couple they can be large. But if
youintendon using all 15 they will have to be small.
If you need many sprites in a game then use the
copy techniques discussed in Chapter 4.

Size As we said above, the bigger the sprites are the

slower they move. If agame has missiles in it these
would be small narrow sprites which take up little
of the computer's time.

231

Adding graphics

Computer graphics can transform simple game ideas into professional, well-
presented products. The graphics help lo creale a new world of reality and thus
complement the programmer’s skill. The major problem with adding graphics to
agame is usually the fact that the programmer cannot draw very well. This has
therefore produced a new wave of jobs in the games industry for graphic artists.
Get help from a friend who is good at art if your own talents don't stretch very far.

Graphics can be split into sections:

Pictures

STOS Basic can load in files saved from Neochrome and Degas. Both these
programs are widely used and are exceptionally well-designed.

Geometry

This is more a mathematical form of graphics and you really don't need any artistic
qualities. Using STOS Basic's drawing commands you can create images on a
coordinate based system.

Sprites

These are very important in the production of a game and can give great animation
effects that will bring your game to life. The size and number of sprites are
important factors to consider when writing a game.

Techniques

You will find that there are various ways to program a single situation. In this
section we will list various techniques that explain how to get the very best
perfermance from STOS.

Speedy sprites

Most games require a lot of speed so that numerous sprites can be whizzed
around the screen. The sprites in STOS Basic are software sprites —which means
that the computer has to do all the work of calculating where on the screen they
must go and also posistion them. The main thing to remember is that small sprites
can be moved around faster than laige ones.

So when you're deciding whal size sprites to have in your game, ponder on the

following points:

Numbers If you only have a couple they can be large. But if
youintendon using all 15 they will have to be small.
If you need many sprites in a game then use the
copy techniques discussed in Chapter 4.

Size As we said above, the bigger the sprites are the

slower they move. If agame has missiles in it these
would be small narrow sprites which take up little
of the computer's time.

231

Scrolling the screen

When using the SCROLL command you must be aware of the limitations caused
by horizontal scrolling. Because of the vast number of calculations that the
computer has to make while scrolling the screen horizontally, it leaves little time
for anything else. The fastest way to scroll the screen left or right is to scroll it on
16 bit (word) boundaries by steps of 16 pixels.

Another point to emphasise is that the larger the area to scroll, the slower the
scroll speed

Collisions

When a game is running in full swing it is imperative that your program is checking
collisions as often as possible. It you check only once a second in a shoot-'em-up
style game then missiles will fly past aliens without killing them. Using the SET
ZONE command you can set up various areas of the screen and then ask the
computer which zones your sprites are in. This saves a lot of work and is a very
powerlul feature.

Examining code

If you feel that you cannot understand the best way to link together commands,
it's a good idea to follow through the games listings supplied with STOS. Al three
games were written by the author of STOS Basic so they are pr\me examples of
well written code. Use the SEARCH ¢ te find y
reading and examining this cede you will learn various short cuts aHd lechnlques

Optimising your programs

When your program is near to completion you may wish lo save memory and
increase speed. Here are a couple of examples to show you how to optimise your
code.

10 for A=1 to 10

20 print A

30 next A
This can be optimised to:

10 for A=1 to 10:print A:next A
The new line will save memory because lines 20-30 are not required and the loop
speeds up. The commands are all related, being enclosed as a loop, so it makes
sense to group them on to a single line.
The line:

10 A=A+1
can be oplimised to:

10inc A

Here we see the use of the INC command rather than the standard Basic A=A+1
expression. It saves memory and increases spi

232

Appendix A

Error messages

An error occurs when STOS Basic cannot continue with the program and thus
reports this fact to you with a brief statement describing what is causing the
problem. Errors can also be generated when commands are typed in direct mode

Many of the errors are obvious and the statement does its job informing you, but
some are slightly more cryplic and need a little more explanation - hence the need
for an error appendix

The errors are listed in alphabetical order so that you can find your entry easily and
each errors corresponding code is listed with it. This code is crealed and stored
in ERRAN.

Error name Error code

Address error 32
An odd memory address or invalid address has been accessed using the peek and
poke commands.

Animation declaration error 58
The ANIM string command has not heen properly set

Array already dimensioned 28
An array has been re-dimensioned al the error line.

Bad date 55
The user has tried to set the date with illegal values using the DATES$ function

Bad file format 1
A file to be loaded cannot be recognised by STOS as it is not of the correct format.

Bad filename 53
A filename has been used in an input/output procedure which is not legal. An
example of this would be LOAD™.

Bad screen address 43
Ascreen address has been used which isinvalid for a proper screen start address.
The address must be on a 256 byte boundary.

Bad time 54
The user has attempted to set an illegal time using the TIMES function

Bank 15 already reserved 80
This bank is already reserved and must be erased if you wish lo reserve it for
another purpose.

233

Bank 15 is reserved for menus 81
Menus are used in the current program and thus you cannot use this bank for
anything else.

Break 17
You have pressed Control +C. If you were in a program then STOS returns you
to the editor mode.

Bus error 31
Aninternal error has occurred possibly due 10 incorrect addressing using the peek
and poke commands

Can't continue 2
STOS cannot continue from the previous break. This mainly happens when a
program is stopped and a line is altered thus resetting all variables.

Can’t renum 1
STOS has attempted to renumber a section of your pregram and this action would
result in a conflict of line numbers.

Character set not defined 73
A character sat has been referenced which does not exist.

Character set not found . 18
You have tried to access a character set which does not yet exist.

Direct command used

A command which is only available from direct mode has been used within the
program.

Disc error 52

The Atari ST returns TOS disc errors back to STOS and when it's not too sure
exactly what error has occurred it will produce this error.

It's best ts K your drive is d, the disc is valid and the command
you processed was legal.
Disc full 51

The disc has run out of space.

Disc Is write protected 50
STOS cannot write out information to the current disc because it is physically write
protected. Move the tab on the disc, or use another disc.

Division by zero
A number has been divided by zerc and cannot be handled by STOS Basu:

Drive not connected 83
The current drive is not available. Check your leads and power.

Drive not ready 49
A disc drive is not ready for use.

End of file 64

The end of a file on a disc has been reached.
Extension not present

84
This occurs when you try to run a program which incorporates a new STOS Basic
command without loading the relevant extension file first.

234

Field too long 66
The size of the record you have created with FIELD is greater than 65535 bytes
It's also possible that you have used more than the maximum of 16 fields.

File already closed 63
An attempt to close a file is aborted because it is already closed.

File already open 62
An attempt to open a file is aborted because it is already open.

File not found 48
You have tried to load or open a file for reading and it is not on the current disc.

File not open 59
The program is trying to transfer data to or from a file but the file has not been
opened

File type mismatch 80
A file command has been used which does not correspond with the correct filing
system. The error would occur when you try and use the GET and PUT statements
on a sequential file.

Flash declaration error 67
The FLASH command has been called incorrectly.

Follow too long 9
STOS has been told to trace too many parameters.

For without next
A FOR command does nol have its mandatory NEXT instruction listed later in thn
program.

lllegal direct mode 14
A command input in direct mode is not recognised by STOS.

lllegal function call 13
You have tried to use a function with an illegal set of parameters.

lllegal Instruction 82
When STOS is running a machine-code program this error will occur if it finds that
the code is invalid.

lllegal negative operand 47
Some functions cannot process negative numbers, for example SQR(-1).

lllegal user-function call
The list of parameters you input does not malch the list you specified in the DEF
FN command.

In/out error 16
An error has occurred during an input/output operation.

Input string too long 61 +65

An incoming string is too long for a dimensioned variable. Or you may have tried
1o INPUT # a line more than 500 characters long.

235

Line toolong 6
You have attempted to enter a line more than 700 characters long. STOS can
cope with many things but a line this size s rather excessive and poor programming
slyle

Memory bank already reserved 41
An attempt to reserve a memory bank has failed because it has already been
reserved.

Memory bank not defined as screen 42
Acommand has accessed amemory bank which must be reserved as screen and
thus cannot find the information required

Memory bank not reserved 44
A memory bank has been accessed and is not reserved for any use.

Menu not defined 79
The MENU ON command has been called but no menu has yet been set up.

Movement declaration error 57
The MOVE instruction has not been set correctly.

Music not defined 75
Music cannol be played because there isn't a tune in memory,

Next without for 23
STOS has come across a NEXT instruction which has no FOR. Thus STOS does
not know where to loop back to

No data on this line 33
The RESTORE instruction has tried to restore a line of data. In this case the line
did not include a data command.

No more data 34
The READ statement cannot get any more data because all of the DATA lines
have been read. In other words, you're out of dala.

No more text buffer space 74
If you open over 10 windows the size of a full screen in either mode 1 or mode 2
then the space reserved for the data in each window gets used up and causes this
error.

Non declared array : 18
An array has been referenced which has not been set up with the DIM instruction.

Not done 0
A procedure has been attempted but due to some condition the job was not carried
out. Quitting the file selector and returning to the editor is an example of this error.

Out of memory 2+8
STOS has no mare memory left for allocation. Take out all accessories and excess
programs to free more memory.

Overfiow error 21
A calcultion has exceeded the size of a variable.
Pop without gosub 37

The POP instruction cannot be executed outside of a subroutine.

236

Printer not ready 10
The printer is not on line so STOS cannot output any data. Check all connections
and the power switch of the printer.

Repeat without until 26
A REPEAT instruction exists but has no corresponding UNTIL

Resolution not allowed 45
This occurs on high-resolution monitors when the MODE instruction is used. It
happens on colour monitors when you try to enter high resolution

Resume without error 38
A RESUME instruction cannot be executed unless an error has occurred

Return without gosub 36
The program has reached a RETURN instruction but no GOSUB has been used.

Scrolling not defined 86
The SCROLL command has been used but STOS does not have the information
necessary 1o scroll the screen. See DEF SCROLL.

Search failed 5
A string has been searched for in the current program but STOS found no
reference 1o it.

Sprite error 56
Parameters for a SPRITE command have been set which do not fall inside the
required limits

String is not a screen block
A string has been used in the SCREEN$ command which has not been dasngnsd
as a sprite block string.

String too long 30
A string has exceeded the limit of 65000 characters.

Subscript out of range 85
A subscript has been accessed which is not dimensioned 1o the called size. Here
is an example: DIM A$(10):A$(12)="HELLO"

Syntax error 12
The syntax (grammar) of the error line or statement is not correct. You must look
up the correct syntax in the manual or in the reference card.

System character set called 77
You have attempted to replace a system character set with a custom character set.

System window called 76
The system windows have been used in one of the window commands. These
windows are 0, 14 and 15.

This line already exists 4
The Autoe function reports this error when it comes across a line which is already
in your program.

This line does not exist 3

This error occurs when you have tried to delete a line which does not exist so the
delete operation is aborted.

237

Too many gosubs 35
STOS cannot store any more RETURN addresses.

Type mismatch 19
Anillegal value has been assigned to a variable. For : A$=12 should read
Ag="127.

Undefined line number
This error will happen when you try to GOTO, GOSUB or RESTORE a line whlch
does not exist in the program.

Until without repeat 27
The UNTIL instruction has no repeat command listed later in the program.

User function not defined 3
A user function has been accessed which has not been set up using DEF FN.

Wend without while
AWEND instruction has been encountered without a matching WHILE mmmand

While without wend
The WHILE instruction has no mandatory WEND instruction listed later in lhe
program.

Window already opened 69
An attempt to open a window has failed because it is already open.

‘Window not opened 70
You have referenced a window which does not exist.

Window parameter out of range 68
One of the window's parameters is not valid and must be set to a legal value.

Window too large 72
A window cannot be opened because it is 100 big.

Window too small Il

An attempt to open a window has failed because it is too small. The minimum size
is 3x3.

238

Appendix B

Creating a runtime disc

The follow-procedure will allow you to create a disc from which you can boot any
STOS Basic program without having to load STOS Basic first

1 The first thing to do is format a blank disc and then load up STOS Basic

2 Load in the accessory STOSCOPY ACB with the command
accload "STOSCOPY.ACB”

Press the HELP key and select the STOSCOPY accessory by pressing the
appropriate function key. This accessory will now copy the required files from
your STOS Basic masler disc onto the newly formatted disc.

3 Now load in your Basic program
Type:
save “myprog.prg”

The name myprog can be changed to any eight character string for the
filename but the extension of .prg must be included. STOS will now ask you
to insert a disc containing the STOS folder, into drive A. This, of course, is
the disc which has the system files copied onto it by STOSCOPY

4 STOS saves out your program in a special format so that it now becomes a
proper .PRG file, executable from Gem,

5 If you want your file to auto boot — in other words load when you switch on
the computer — you must create a folder called AUTO. You then copy your
file into the AUTO folder and whenever you insert this disc into drive A and
turn on the ST, your program will automatically load and run.

Commercial STOS Programs

When a runtime file has been generated, it still requires protecting if it is to be
released commercially — otherwise you'll be giving away a complete copy of STOS
Basic at the same time. On the STOS Basic disc is a file called PROTECT.BAS,
this is used to save out a special version of the Basic which does not include the
editors commands — which means that other ST owners cannot change your
program or write their own STOS Basic programs by typing NEW.

The three main rules for STOS programs which are to be commercially released
are:

® You must protect all programs using the PROTECT BAS program.

® The program must state that it was was written in STOS Basic. A specially-
designed sprite with the STOS logo can be found in the SPRDEMO.MBK file

239

and a STOS icon logo is available in the ICONS.MBK file. You could also use
the picture files from within the STOS folder.

@® The program must be your own work and not copied in part or whole from the
Basic files enclosed on the Accessories and Games discs. No royalty is

payable to Mandarin Software — so you are free to do what you like with any
games you write.

Adding a title screen

A runtime file searches the STOS felder for a degas picture file — called pic.pi1 or
pic.pi3 when it boots up. If it finds the required file it will spin it onto the screen in
the same fashion that STOS Basic does when it loads its own title page. This gives
your program a professional look and something to display while it loads up all the
system files

Running other files

ONCE the runtime copy of your program has loaded it can run any other Basic
program with the command:

run “demo.bas”

The file demo.bas will then be loaded into memory and run.

THE following file would set MODE 0 and then load up the Sprite editor.
10 fade 3 : wait 21: mode 0 : run “sprite.bas”

Of course you must save sprite.bas onto the same disc and make sure it's a .bas
file. Using this technique you can generate integrated suites of programs.

Send it to Mandarin

Mandarin Software are always looking out for new and exciting programs, so if you
develop an original, top quality product — or have any interesting ideas — we will
be pleased to hear from you. Send your disc with a stamped addressed envelope
to:

The Software Manager, Mandarin Software, Europa House, Adlington Park,
Adlington, Macclesfield SK10 4NP.

240

Appendix C

The STOS Basic floppy discs

We have included three single density discs in the STOS Basic package, each of
which hold vital data, from the Basic language itself to a space shoot-'em-up
game. We were not able to finalise the running order for the discs by the time this
manual went to press, so you may find that some of files may not be on the disc
as specified below but they will be on one of the discs. You may even find that there
are additional files on the discs for your use.

Disc 1 (STOS Basic system disc)

This is the most important of all the three discs and must be backed-up (see
Chapter 1). On this disc lies all the system files that STOS loads up, and if various
files get deleted then your STOS Basic won't be able to function. The list below
explains what each file is for and informs you it files can be changed to your liking

BASIC.PRG

Double clicking on this file will take you into STOS Basic from the Gem Desktop.
PROTECT.BAS

This program protects run-time pi for ial release by g the

editor from the copy of STOS Basn: it saves to disc. (see Appendix B).

CONFIG.BAS

Use this program to set up the system defaults which dictates the environment that
STOS Basic bools-up into.

FOLDER 1 : AUTO (Auns STOS on boot up)

START.PRG
This file loads up STOS when the system is booted from a complete reset.

FOLDER 2 : STOS (Hoids all the system files)

There are various files included in this folder, many of which are vital to STOS. It's
best if you don't store any files in the folder — just keep it as it is.

The files in the STOS folder can be split into categories. The main belt of files
are the .BIN files which contain the code that the functions from STOS call.

BASIC.BIN
Contains all the control code that makes STOS operate.

FLOAT.BIN

The floating point maths functions. This file can actually be deleted or simply
stored in another folder if you only want to use integer values. Doing so releases
15K of memory. See Chapter 3 on variables.

SPRITES.BIN
Code to control the sprites

241

MUSIC.BIN
Code for the music instructions

WINDOW.BIN
Code for the window manager routines.

RUN.BIN

The data in this file supplies STOS with the necessary code to allow runtime files

to be saved. If you remove this file from the STOS folder you will be unable to save
PRG files

COMPACT.EXA

This is not a .BIN file but something very similar — an extension file. Extension files
are picked up by STOS and the new commands in the file are added to the existing
list. This file holds the commands for compacting and uncompacting screens.

The next files are environment files which can be allered 1o suit your needs

8X16.CR2, 8X8.CR0 and 8X8.CR1
These three files are the system character sets that are used by STOS when it
boots up. All three files can be altered (see Chapter 8).

MOUSE.SPR
The mouse pointer sprites are held in this file and can also be altered

PIC.PI1 + PIC.PI3

These are two DEGAS pictures which STOS picks up depending which resolution
you are in. The picture is then spun into view and the rest of the STOS system files
are loaded in. You can customise your copy of STOS Basic by changing these
pictures to whatever you like (See Appendix B for more details).

Disc 2 (Accessories disc)

On this disc are various accessory files which can be used in conjunction with
STOS Basic and he program that you are developing. We have included many
such accessories, all of which help speed up program development

Some of the accessories load and save data. in these cases we have included
example files to show what can be accomplished with these particular accessories

Here is a list of the files on the disc. explaining the purpose of each program. The
accessories have a .ACB extension and any data files for the accessory will be
listed below it.

SPRITE.ACB

This is the sprite definer program which allows you to draw graphics sprites for
your program. You can load and save data, grab sprites directly from memory or
adiscand itis also possible to grab sprites from Neochrome or Degas pictures and
even from commercial games

We have supplied five files which can be loaded into this sprite editor. these
are as follows:

ANIMALS.MBK

In this file you will find frames that make up three animated creatures: an octopus,
monkey and a dog.

242

DROID.MBK
This data file contains animation frames for a superbly designed android.

SPRDEMO.MBK

There are various sprites in this file and you are welcome to use them in your own
programs. This file includes a STOS Basic logo which we would like you to include
on the title page of your programs.

BACK.MBK

The sprites in this file are to be used in the MAP.ACB accessory but can be edited
in the sprite editor

FONTSET.MBK
In this file there is a font of large characters thal can be printed out and animated
using the sprite commands.

SPRITE2.ACB

The file SPRITE.ACB is designed to work in low resolution only, thus programs
that work in medium and high resolution cannot use it. We have therefore supplied
aversion which works in all three modes. The only three files that you can load into
this version are SPRDEMO.MBK, FONTSET MBK and BACK MBK

MUSIC.ACB

This accessory allows you to develop tunes which you can incorporate in your
programs.

MUSIC.MBK
Conlains an example of music created by the MUSIC.ACB accessary

FONT.ACB
An accessory which can be used to create characler sels.
FONT1.MBK, FONT2.MBK and FONT3.MBK
These three files are fonts which have been created using the font accessory
Please feel free to use them in your programs.

ICON.ACB

Ancther accessory which allows you to create images — in this case il gives you
the power lo creale icons.

ICON.MBK

This is an example file created from ICON.ACB and you are free to use any of them
in your programs.

COMPACT.ACB

Whole or parts of a screen can be compacted into a special format using this
accessory.

BACKGRND.MBK

An example of a compacted screen. See UNPACK for more details on how to
unpack this file.

243

MAP.ACB

Information for map-based games can be generated with this program. Sprite data
can be loaded or grabbed and then used to represent the various blocks that make
up a background map.

MAP.MBK
This file contains a ready made map and can be loaded into the MAP.ACB
accessory. The sprites for the map are contained in the file BACK.MBK.

DUMP.ACB

With this accessory you can dump out the contents of program's memory banks.
It lists it in hexadecimal notation and as ASCII characters.

TYPE.ACB

A file can be loaded in and printed to the screen or printer with this accessory. The
incoming dala is not formatted in any way.

MOQUSE.ACB

The coordinates of the mouse pointer are reported by this accessory. This enables
you to find out the x,y coordinates of various areas of a Neochrome or Degas
screen.

ASCII.ACB

A table of the ASCII characters is listed with this accessory file, enabling you to
determine codes quickly.

SCANASCI.ACB

Keycodes and key scancodes can be found using this small but useful utility.

Disc 3 (Games disc)

The Games disc contains three folders, each of which contain a Basic game.
These games are:

BULLET TRAIN
In this game you guide a train along a series of tracks avoiding dead end junctions
and blasting rail trucks out of your path. The game shows off just how fast STOS

Basic can be made to run with the super-fast horizontal scrolling, coordinated
animation and fantastic sound.

ORBIT
Another example which displays STOS in all its true colours. Quick reactions are

required to play this highly skilled game. Not only do you have 20 challenging
levels to play but you can also design and add your own screens.

ZOLTAR

The versatility of STOS is really demonstrated in this game. From the user-friendly

244

menu system 1o the powerful designer which allows you to create new waves of
alien attack patterns.

To run the above games go into STOS Basic and load one in and then type the
RUN command. You can also list and edit the programs.

Here is a list of the files on the games disc and a description of what each one is
for.

FOLDER 1 : BULLET

BULLET.BAS '
This is the BULLET TRAIN Basic file which you must load from STOS Basic if you
wish to play it.

FOLDER 2 : ORBIT

ORBIT.BAS
This file is the one you load into STOS when you want to play the Orbit game.

LEVEL1.0RB - LEVEL20.0RB

These are the 20 screens that have been designed for the ORBIT game and you
can edit any one of them or even add new screens by running the ORBIT.BAS
program and using the built-in editor.

FOLDER 3 : ZOLTAR

ZOLTAR.BAS
Load this file and type RUN to play the ZOLTAR game.

PHASE1.ZOL - PHASES.ZOL
These files are the five pre-defined levels which can be altered and many more
levels can also be added.

All the accessories and games on the three discs are written in STOS Basic - and
you will learn a great deal by examining the listings with the help of commands like
SEARCH.

Please feel free to modify any of these programs to suit your needs — and either
send us or tell us about the finished results. You never know — we may want to
incorporate your program in a future release of STOS.

245

246

Appendix D

Using Assembly Language
STOS Basic includes many facilities which allow you to combine assembly
language routines with your Basic programs. Usually this isn't really necessary,
but sometimes a litle machine-code can work wonders even in a language as
powerful as STOS Basic.
CALL (Calis a machine-code program)
CALL address
CALL allows you to execute any assembly language program held in the ST's
memory. address can be, either the absolute location of your cede or the number
of one of STOS Basic's 16 memary banks.
Calling a machine-code program
1 Reserve some memory for your routine using RESERVE AS DATA
Example:
RESERVE AS DATA 7.10000
The above command reserves 10,000 bytes in bank 7 for your routine. Note
that this only needs to be done once as these DATA banks are always saved

along with your Basic program. Alternatively, you can also place your code
in a previously defined string variable, p itis

2 Load the program using a line like:
load “file.prg™,7

This program must be in TOS relocatable format in order to be usable from
STOS. Also note that the extension used for the file should always be PRG
and that any other extensions will generate an error message. Never try o
call a Gem program from STOS Basic or the system will crash completely!

3 Pass any input parameters using the pseudo variables DREG(0)- DREG(7)
and AREG(0)-AREG(6)

4 Call your program using a line like:
call 7

Your program may st itly change any 68000 registers
it likes with the sole exception of A7, and must always be terminated with an RTS
instruction. It must never call the Gemdos traps SET BLOCK, MALLOC, MFREE,
KEEP PROCESS or any other memory management function.

247

Machine code control instructions

AREG (Vvariable used to pass information o the 68000's address registers)

AREG(r)

AREG is an array of six PSEUDO variables which are used to hold a copy of the
first six of the 68000's address registers. This enables you to pass information to
and from a machine code function executed by either the CALL or the TRAP
instructions.

r may range from 0-6 and indicates the number of the address register which is
stored in the variable.

Whenever the CALL or the TRAP commands are executed, the contents of this
array are loaded cally into address reg AQ-AB. At the end of the
function call they are loaded back with any new information which has been placed
in these registers.

See DREG, TRAP and CALL

DREG (Variable used to pass information to the 68000's dala registers)

DREG(r)

This is an array of seven elements which hold a copy of the contents of the 68000
data registers. The number rrefers to the register number and can range from 0-
7 for registers DO-D7. See TRAP for an example of this function in action.

TRAP (Calls a 68000 trap function)

TRAP n [,parameters]

TRAP allows you to call one of the numerous 68000 TRAP functions. These traps
are really just large libraries of language which are avail
from a single machine-code instruction. You can utilise the TRAP command to
give you complete control over the inner workings of your STOS Basic programs.
However you should remember that you are effectively programming in machine
code. This meansthat f you play around with the TRAP instructionindiscriminately,
you will almost certainly CRASH the ST.

n refers to the number of the TRAP and may range from 0 to 15. Not all of the 16
possible TRAPs have been currently installed into the STOS system. Here is a list
of the available numbers:

0,1,13,14 (The Gemdos functions)

3,4,5,6,7 (The STOS functions)

Alist of the various Gemdos functions can be found in any good book of machine-
code programming on the ST.

The optional parameters specify the data which is to be placed on the 68000's

stack before the TRAP function is executed. As a default these are assumed to
be of size WORD.

248

You can set the size directly from the TRAP instruction using a statement such as
W.expression (Sets the size 1o WORD)
L expression (Sets the size to LONG WORD)

expression can be any list of WORDS or LONG WORDS which need to be loaded
onto the stack when the function is called

One uselul bonus is that you can also include a string variable in the expression
such as AS$. In this case only the ADDRESS of the string is placed on the stack,
and a chr$(0) is automatically added to the end of the variable to convert it into the
correct format. Another way of passing information to the TRAP is using the
PSEUDO registers AREG and DREG. See the appropriate section on these
functions for more details

Here are a few simple examples of the TRAP function in action.
trap 14,33 4:rem Set printer type to EPSON
dreg(0)=44:dreg(1)=100:dreg(2)=100: trap 5:rem Move mouse to 100,100

STOS Assembly language Interface

STOS provides a wide variely of powerful facilities for the assembly language
programmer. These allow assembly language routines to be directly incorporated
into STOS Basic programs. Two sets of STOS functions are included. The first of
these is basically an expanded version of Gemdos and uses system TRAP
number 4. Unlike Gemdos, any parameters are passed to the TRAP using
registers. The function number is placed in register DO and any other data in
registers D1 and A0. After the routine has executed, these registers return the
results, if any, of the call. All the other registers are unchanged. Here is a list of the
various TRAP 4 routines

$0 SCONIN Get a character from the keyboard.
Input Parameters DO = $0
Qutput Parameters Bottom byte of DO.W holds Ascii code of key, Top

byte contains SCANCODE
$01 SCONIN with ECHO Get a character from the keyboard and print it on

the screen.
Input Parameters DO = $1
Qutput Parameters Bottom byte of DO.W holds Ascii code of key, top
byte contains SCANCODE
$02 SCONOUT Prints a character contained in D1 onto the screen
Input Parameters DO = $2
D1 = Ascii code of the character lo be printed
QOutput Parameters NONE
Example:
MOVE #2.00

249

MOVE #"B",D1

TRAP #4
RTS

This prints a “B” onto the screen

$03 READLINE

Input Parameters

Qutput Parameters

Reads a a string from the keyboard

DO = §3

D1 = Maximum number of characters to be input
A0 = Address of Buffer to hold string

A0 = Pointer to BUFF

Note that this is almost identical to the READLINE function of Gemdos. Like the
Gemdos function CONTROL+C aborts the program

Example:
MOVE #3,00

LEA LEN(PC),AD
MOVE.B #20,d1

TRAP #4
RTS

LEN: DCW D
BUFF: BDF 20,0

On return, LEN contains the number of characters in the string.

$04 SPRT

Input Parameters

Output Parameters
$05 SPRINT LINE

Input Parameters

Qutput Parameters

Prints out a character in DO to the printer.

DO = $4
D1 = ASCII character

DO = 0 if an error has occurred.

Prints a line of text on the screen.
Can use standard escape codes.

DO = $5
AD = Address of string to be printed

NONE

Note that the string must be terminated by a zero.

Example:
LEA ADR(PC),AD
MOVE #5,00
TRAP #4
ADR: DC.B 27,ST0S"0
$06 SPRINT VID Print a line of text of the screen. This is identical to

Input Parameters

SPRINT LINE except for the fact that escape
codes are not translated.

DO =$6
AD = Address of string to be printed

250

Output Parameters NONE

$07 BINHEX Converts a binary number in DO to an Hexadecimal
string pointed to by AQ.
Input Parameters DO = §7
D1 = number to be converted
QOutput Parameters A0 = Address of hexadecimal string
Example:
MOVE #7,D0
MOVE #$FFFFA304,01
#4
MOVE #5,00
TRAP #4
RTS
$08 HEXBIN Converts a Hexadecimal string pointed to by AQ
into a binary number returned in DO
Input Parameters DO = $8
AOQ = Address of hexadecimal string
Qutput Parameters DO = Binary result
$09 BINDEC Converts a Binary number in D1 into a Decimal
string pointed to by AQ
Input Parameters DO = $9
D1 = number to be converted
Output Parameters AO = Address of decimal string
$0A DECBIN Converts a decimal string pointed to by AO into a
binary number returned in DO
Input Parameters DO = $A
A0 = Address of decimal string
Output Parameters DO = Binary result
$0B UPPER Converts a string of characters pointed to by AQ
into upper case
Input Parameters Do = $B
A0 = Address of string
Output Parameters A0 = Address of upper case slring
$0C EXIST Searches the current drive to see if the file name
pointed to by AQ is on the disc.
Input Parameters DO =$%C
AD = Address of filename (terminated by 0).
Output Parameters DO = Contains the length of the file, or -1 if file not
found

251

$OF CLS Clears the ST's screen

Input Parameters DO = $F
Output Parameters NONE
$10 LOCATE Moves the cursor to desired postion on the screen
Input Parameters DO = $10
D1 =Top half of D1 holds X coord, and bottom half
holds Y coord
Qutput Parameters DO = None
Example:
MOVE #510,00
MOVE #5000A0006.01
TRAP #4
RTS

This positions the cursor at 10,6

$11 BREAK This function prints out the contents of registers
DO-D7 and AC-A6 in hexadecimal

Input Parameters DO = §11

Output Parameters DO = None

Note DO is printed out as D0"4 by this function.

Example:
MOVE #511,00
TRAP #4
MOVE #0.00
TRAP #4
$12 READ Reads a file from the disk
Input Parameters DO = §12
A0 = Pointer to Parameter Block
Parameter Block = Pointer to input BUFFER
filename
Output Parameters DO = -1 if the file does not exist
Example:
MOVE #512,00
LEA ADR(PC),AD
TRAP #4
ADR: DC.L STOCK
DC.B "FILE.DAT"0
STOCK: BOF 1000.0

252

$13 WRITE Writes a file to the disc

Input Parameters DO = $13
D1 = No of bytes to be written
A0 = Pointer o Parameter Block
Parameter Block = Pointer to input BUFFER

filename
Qutput Parameters DO = -1 if the file does not exist
Example:
MOVE #513,00
MOVE.L #10,01
LEA ADR(PC),AD
TRAP #4

RTS
ADR: DC.L BUFF
DC.B “TEST.DAT"0

BUFF: DC.B "ABCDE12345"
$14 CHDRIVE Change the current drive
Input Parameters DO = $14
D1 = Drive no (0.. 3)
Output Parameters DO = NONE
$15 CHDIR Change the current directory
Input Parameters DO = $15
AO = pointer to string containing the pathname
Qutput Parameters DO = NONE
$16 MKDIR Install a new subdirectory on the disc
Input Parameters DO =816
A0 = pointer to string containing the new directory
name
Output Parameters. DO = NONE
$17 RMDIR Delete a subdirectory
Input Parameters DO = $17
A0 = pointer to string containing the name of the
directory to be erased.
Qutput Parameters DO = NONE
$18 KILL Erases a file or group of files from the disc
Input Parameters DO =$18

AQ = pointer to string containing the name or the
pathname of the file(s) to be erased.

Output Parameters DO = NONE

253

$19 ASCIl

Input Parameters

QOutput Parameters
Example:
MOVE #$19,00
MOVE #512,D1
LEA BUF(PC).AD
TRAP #4
RTS
BUF: BUFFER

$1A FLOPR

Input Parameters

Qutput Parameters
Example:
MOVE #$1A.00

Dumps a buffer containing ASCII text to the printer
Only bytes between $20 and $7F are printed out
Any other characters are replaced by a "

DO = $19 D1 = number of bytes to be printed
A0 = Address of print butfer

DO = NONE

Reads one or more sectors from the disc

DO = $19

D1 = Read parameters. Lowes! word contains the
starting sector, the next byte helds the number of
seclors to be read, and the top byte of D1 is set to
the drive number (0,1,2)

A0 = Data Buffer

DO = NONE

MOVE.L #50001000B,D1

LEA BUF(PC),AD
TRAP #4

RTS BUF:

BDF 1000.0

$1B FLOPW

$1C MUL32

Input Parameters

QOutput Parameters
Example:

MOVE #$1C,00
LEA R(PC).AQ
TRAP #4

RTS

R:DC.LO

DC.L SA0000 SFF

Wriles one or more sectors to the disc. parameters
identical to the above call, except that DO contains
function no $18.

Multiply two 32 bit numbers together

DO = $1C

AO = Address of a buffer area containing 1 long
word for the resull, and 2 long words holding the 2
numbers to be multiplied.

DO = Result of calculation

254

On return both DO and R contain the result. (§09F60000 in the example above)

$1D DIVa2

Input Parameters

LONG WORD
LONG WORD
LONG WORD
LONG WORD
LONG WORD

Qutput Parameters

Example:

MOVE #$1D,00

LEA BUF(PC),AD
TRAP #4

RTS

BUF:DC.LO

DC.L SFFFFFFFE20,0

$1E DIV64
Input Parameters

LONG WORD
LONG WORD
LONG WORD
LONG WORD
LONG WORD

Output Parameters

$FFFF SET USER

Input Parameters

Qutput Parameters
Example:

MOVE #-1,00
LEA USR,AD
TRAP #4
RTS

32 by 32 bit division.
DO = $1D
AQ = pointer to a buffer containing 5 long words

0
DIVIDEND
DIVISOR
0
0

ER AT
(RN

D0 =0if an error has occurred, non zero if no error
D1 = Result

A0 = pointer to 2 long words containing the quotient
and the remainder of the division

Performs a 64/32 bit division
DO = $1E
AD = pointer to a buffer containing 5 long words.

1 = Bottom half of DIVIDEND
2 = Top Half of DIVIDEND

3 = DIVISOR

4=0

5=0

D0 =0if an error has occurred, non zero if no error
D1 = Result

A0 = pointer to 2 long words containing the quotient,
and one long word holding the remainder of the
division.

Install a user defined function,

DO = $FFFF
A0 = Address of the start of the new routine

DO = NONE.

255

USR: MOVE #0,-(SP)

User function

MOVE D0,D3

RTS
§$1F USER Calls the user function defined by SET USER
Input Parameters DO = $1F
Qutput Parameters Up to you.

256

Appendix E

The STOS Basic Traps

STOS Basic was written in a very modular way. Each separate group of Basic
functions was implemented using a special set of 68000 TRAPs, placed on the
STOS system disc. The Traps can be found in the files:

WINDOWS BIN (TRAP #3)
SPRITES BIN (TRAP #5)
FLOAT BIN (TRAP #6)
MUSIC BIN (TRAP #7)

These files are installed by STOS Basic into memory whenever it is loaded. The
advantage of this approachis to allow the machine code programmer unprecedent
access to the heart of the STOS Basic system. You can call up most of the more
interesting features of the package such as sprites or music directly from
assembly language. You should be very careful when using these functions asit's
quite easy to make a serious mistake and crash the system. Also note thatit's good
practice to avoid accessing a function from machine code at the same time as it
is being utilised by the Basic as this can lead 1o unforseen errors.

The window functions (Trap 3)

TRAP 3 supports a list of TRAP functions which make it very easy to create and
manipulate STOS windows from within an assembly language program. Instead
of using the stack, these routines require all their information to be placed in one
or other of the 68000's registers. The function number is stored in register D7 and
any additional data is loaded into D0-D1 and AQ. If the function returns any results,
these will be passed to your program in either A0 and DO. Warning! Some of these
functions automatically redraw all the sprites on the ST's screen! You can avoid
this by using the UPDATE OFF command from Basic.

Here is a list of the various functions:

No. Name Action Parameters
0 CHROUT Print a character DO=Character to be output

in current window
1 PRINT STRING Prints a string of A0=Pointer to string

characters in window String is terminated by 0
2 LOCATE Move text cursor D0=X coordinate (TEXT)

D1i=Y coordinate. See LOCATE

3 SET PAPER Sel paper colour DO=Colour index of paper
4 SETPEN Set text colour DO=Colour number of pen

257

20

21

22

23
24

26

TEST SCREEN Find character
under cursor

INIT WINDOW Initialize a window

STOP INTER Stop interrupts
used by windows

WINDON Aclivale window

DEL WINDOW Delete window

INIT MODE Initialise a screen

in a new resolution

GET BUFFER Get address of

keyboard buffer

WINDCOPY Print current window

on printer
GET CURRENT Get current window no
FIX CURSOR Change size of cursor
START INTER Start window interrupts

QWINDOW Activate window
quickly

GET CURSOR Get position of text
cursor

CENTRE Prints centred text
string on the screen

SET BACK Change address of
sprite Background

AUTO INS Opens a space in the
current line and places
a character in it

JOIN Joins current line with
following line

SMALL Displays a small cursor

CURSOR

TALL CURSOR Displays a thick cursor

Relurns with character in DO

DO NOT CALL
DO=Window number

DO=Window number

DO=Length
AD=Address

Returned in DO

DO0=Top D1=Bottom D2=0
DO NOT USE

DO=Window number
Returns

Top byte of DO=X coordinate
Bottom byte of DO=Y

AO=Address of slring
to be printed

AOD=Address of new Background

DO=Character to be output

MOVE
WINDOW

SET ICON
ADR

Move a window to new DO=Window number
position D1=X coord, D2=Y coord (Tex!)

Sel address of ICONS AO=Address of ICON BANK

258

28 GET CHARSETGel address of DO=Set number
character sel Returns address in DO

29 SET CHARSET Set new address of DO=Set number

characler set AO=Address of new set
30 BORDER Change the border of DO=New Border (0-16)
the current window
31 TITLE Add a title to the AO=Address of a slring
current window for title (terminated with 0)

32 AUTOBACK Identical to Basic
ON version.

33 AUTOBACK See Basic version

OFF

35 XGRAPHIC Convert X coord DO=Text coord

from text te graphic Returns converted coord in DO
36 YGRAPHIC Convert Y coord DO=Text coord

from text to graphic Returns converted coord in DO
37 XTEXT Converts X coord DO=Graphic coord

from graphic to text Returns converted coord in DO
38 YTEXT Converts Y coord D0=Graphic coard

from graphic to lext Returns converted coord in DO
39 SQUARE Draws a square at DO=Border (0-16)

current cursor D1=Width (Minimum 3)

position D2=Height (Minimum 3)

The sprite functions (Trap 5)

The STOS Basic sprite commands are performed using a special section of the
STOS system called the SPRITE MANAGER. This handles all the interrupt-driven
movements and animations which make STOS Basic so amazingly powerful. You
can communicate with this process frem machine code by using a simple set of
TRAP 5 instructions. These take the function number in register DO, and read the
various parameters in the other registers. Note that only registers DO-D1 and AQ
are modified by this TRAP.

No Name Action Parameters

1 INIT MODE Initialise the sprite
generator 10 a new

resolution
2 CHANGE Change the address of AO=Address of new sprite
BANK the sprite bank. See bank
Pn for more details
3 CHANGE Change limits of the ~ D1=X Coord of Leftmost limit
LIMITS display area used by D2=X Coord of Right limit

the sprites. (Called D3=Y Coord of Top limit
by LIMIT SPRITE) D4=Y Coord of Bottom limit

259

SYNCHRO

PRIORITY

POS SPRITE

SPRITES
ON/OFF

SPRITE

ON/OFF

SPRITE

MOVES

ON/OFF

MOVE ON/
OFF

MOVE INIT

ANIMS
ON/OFF

ANIM ON/OFF

INIT ANIM

UPDATE

Tumns on/off synchro-
nisation of sprites and
background (See

SYNCHROQ from Basic)

D1=1 for SYNCHRO ON
D1=0 fro SYNCHRO OFF

Switch between normal D1=1 for PRIORITY ON

& Y coordinate priority
(See PRIORITY from
Basic)

Get position of sprite
Returns X coord in DO
and Y coord in D1

Redraws or remove all
sprites on screen

Redraws or removes
one sprite on screen

Draws a sprite

Starts or stops all
sprite movements

Starts or stops one
sprite movement

Defines a sprite
movement Egivalent
to MOVE X and
MOVE Y

Same as function 10
for animations

Same as function 11
but for animations

Define an animation
sequence.

Redraw any sprites
which have changed
since last update

260

D1=0 for PRIORITY OFF

D1=Sprite number

D2=1 for Redraw
D2=0 for erase

D2=1 for Redraw
D2=0 for erase
D1=Number of Sprite

D1i=Number of sprite

D2=X coordinate of sprite
D3=Y coordinate of sprite
D4=Image number of sprite

D2=0 for STOP
D2=1 for FREEZE
D2=2 for START

D2=0 for STOP
D2=1 for FREEZE
D2=2 for START
D1=No of sprite

AOD=Address of movement
string terminated by a zero
(in same format as Basic)
D1=No of sprite

D2=0 for MOVE X

D2=1 for MOVE Y

AO=Address of animation
string terminated by 0

(in same format as Basic)
D1=Number of sprite

20

21

22

23

24
25

26

27

28

29

30
kil
32

SHOW

HIDE
CHANGE
MOUSE
MOUSE
MOUSEKEY
SCREEN TO
BACK

BACK TO
SCREEN

Show mouse D1=0 for SHOW ON
D1=1 for SHOW

Hide mouse D1=0 for HIDE ON
D1=1 for HIDE

Changes mouse image D1=No of new image
Gel mouse coordinales Returns X coord in DO
Y coord in D1

Gel mouse button Returns status in DO
returns

Copies physical screen
1o sprite background

Copies sprite background
to physical screen

DRAW MOUSE Redraw mouse on screen

SET ZONE

ZONE

CHANGE
BACK

STOP MOUSE
DRAW
SPRITES
START INTER
STOP INTER
LIMIT MOUSE

SCREEN
COPY

Set test zone D1=No of zone
D2=Leftmost limit in X
D3=Rightmost limit in X
D4=Top limit in ¥
D5=Bottom limit in Y

Test zone D1=Sprite to be tested
Returns zone number it was
found in or 0 in DO

Change address of AO=New address
sprite background

Stop the mouse moving
on the screen

Redraws all the sprites
on the screen

Starts sprite interrupts DO NOT USE!

Stops sprite interrupts NEVER USE THIS FUNCTION!

Limit mouse to area on D1=X coord of Left corner

screen D2=Y coord of Left corner
D3=X coord of Right corner
D4=Y coord of Right corner

As STOS Basic AO0=Address of source screen
Al=Address of dest screen
D1/D2=(X.Y) of rectangle to be

Copi
D3/D4 (X,Y) of destination
DS5/D6 (W,H) of zone to be copied

261

35

36

37

39
40

42

43

45

46

47

ICON Put Sprite

PUT SPRITE Puts Sprite in
background screen,
providing it is
already displayed

INIT ZONE Initialise test zones

GET SPRITE Equivalent to the Basic
instruction

REDUCE Reduce a screen

INIT FLASH Initialise colour flashes

FLASH Set up a flash
sequence

ZOOM Enlarges a section of
the screen

APPEAR Fades between two

screens

MOVE MOUSE Changes the
coordinatesof
the mouse

MOVON
is in motion

SHIFT Shifts the palette of

colours.

REDRAW
function.

262

Checks whether sprite

Identical to the Basic

D1=X coord of sprite
D2=Y coord of sprite
D3=No of lcon
address of sprite data

D1=Number of sprite

D1=X coordinate of new sprite
D2=Y coordinate

D3=Pointer to sprite to be copied
D4=Mask

AO=Address of source screen
Al=Address of destination
D1=X coord of reduced screen
D2=Y coord of reduced screen
D3=Width of reduced screen
D4=Height of reduced screen

D1=No of colour to be flashed
AO=Flash string terminated by
a zero. See FLASH from Basic

AO=Address of source screen
Al=Address of destination
D1=X coord of top left corner
D2=Y coord of top left corner
D3=Width of the section
D4=Length of the section
DS/D6=Coordinates of dest
A2/A3=Size in X and Y of dest

AO=Address of source screen
Al=Address of dest screen
D1=Type of fade (1-80)

Di=New X coordinate
D2=New Y coordinate

D1=No of sprite
Returns 0 in D1 if sprite is not
moving and 1if the opposite is true

D1=Speed in 50ths of a second
D2=Colour the rotation is to
be slarted al.

Floating point extension library

This gives the programmer access to a wide variety of floating point operations
and uses numbers in the |IEEE 64-bit format between 10 E-307 to 10 E+308. These
routines corruplt registers D0-D4 and AD-A1. As belore, the function number is
loaded into DO betore calling the appropriate routine.

The first parameter should always be placed in registers D1-D2, (with D1
containing the bettom half of the number, and D1 holding the top half. If a second
parameter is required, this should be put into registers D3-D4 using the same
format. You can now execute the function using a TRAP #6 instruction.

$00 ADFL Adds two floating point numbers together
Example:

MOVE #0,00

MOVE.L #53FF19999,D1 + First no in D1-D2

MOVE.L #$9999999A,02

MOVE.L D1,03 ; Copy 1st no into

MOVE L D3.D4 i 2nd no

TRAP #6

RTS

On return DO.L and D1.L contain the result.

$01 SBFL Subtract one floating point number from another
Parameters used identical to ADFL

$02 MLFL Multiply two floating point numbers

$03 DVFL Divide two floating point numbers

$04 SINFL Takes the SIN of the number in D1-D2 and places
itin DO-D1.

$05 COSFL Takes the COS of the number in D1-D2 and places
itin DO-D1.

$06 TANFL Takes the TAN of the numberin D1-D2 and places
itin DO-D1.

$07 EXPFL Takes the Exponential of the number in D1-D2 and
places it in DO-D1

$08 LOGFL Calculates the naperien log of the number in D1-
D2 and returns the result in DO-D1

$09 LOG10FL Calculates the base 10 log of the number in D1-D2
and returns the result in D0-D1

$0A SQRFL Takes a number in D1-D2 and returns the square
of itin DO,D1

$0B ATOFL Takes an Ascii string pointed to by A0 and converts
it into @ number in floating point format in DO-D1

$0C FLTOA Takes an FP number in D1-D2 and converts it into
an Ascii string

263

Input Parameters

Output Parameters

MOVEL #53FF19999,D1
MOVE.L #99999999A,D2

DO = $0C

D1-D2 = The FP number to be converted,

D3 = A digit representing the number of digits after
the decimal point in Ascii.

AD = The painter to a buffer for the string

The length of the Ascii string (not including the final
Q)

A0 = A pointer to the string of Ascii characters
terminated by a 0.

; Load 1.1 into D1-D2

MOVE #$C,00
LEA BUF({PC).A0
MOVEW #50031,03 ; 1 Digit after the DP
TRAP #6
MOVE #5,00 + Print the number on the
TRAP " i screen.
RTS
BUF: BDF 1000,0
$0D FLTOIN Convert a FP number in D1-D2 into an integer in
Do
$OE INTOFL Convert an integer in D1 into an FP no in DO-D1
$09 EQFL Compares the two numbers in D1-D2 and D3-D4.
If they are equal then DO contains a 1, otherwise it
contains a zero.
$10 NEFL Compares the two numbers in D1-D2 and D3-D4.
Ifthey are not equal then DO contains a 1, otherwise
it contains a zero.
$11 GTFL Compare two numbers and return a 1 in DO if the
first is greater than the second.
$12 GEFL Test if greater than or equal
$13LTFL Test if less than
$14 LEFL Test if less than or equal
$15 ASINFL Calculate the Arc Sin of no in D1-D2 and return it
in DO-D1
$16 ACOSFL Calculate the arc cos
$17 ATANFL Calculate the arc tan
$18 SINHFL Calculate the hyperbolic sin
$19 COSFL Calculate the hyperbolic cos
$1A TANFL Calculate the hyperbolic tan
$1B INTFL

Get the integer part of D1-D2 and place the result
in DO-|

264

$1C POWFL Calculate X*Y where X isin D1-D2 and Y is in D3-
D4. As usual the result is in DO-D1

The music generator

Like the sprite definer, there is also a special music generator which functions
completely independently of the rest of STOS Basic. This can be called from any
of your machine code programs by using a TRAP 7 instruction. To access these
routines, place the function number in DO. Note that only registers DO and A0 are
modified by these commands.

The music Traps (Trap #7)

No. Name Action Parameters

0 INIT SOUND Resets sound generator
and kills music

1 START MUSIC Staris playing some AO=Address of music
music

2 STOP VOICE Stops the music D1=Number of voice
played on a single voice

3 RESTART Resumes playing a D1=Number of voice voice
VOICE single voice stopped
by STOP VOICE
4 FREEZE Freezes some music

5 UNFREEZE Resumes some music
frozen with FREEZE

6 CHANGE Change speed of musicD1=New speed (0-100)
TEMPO

7 START INTER Start music interrupts DO NOT USE
8 STOP INTER Stop music interrupts DO NOT USE

9 TRANSPOSE Change pitch of music D1=Number of semi tones
by a number of

semi lones
10 GET VOICE Get position of in a D1=Number of voice Returns
voicwe position in DO
PSG (Access Prog sound gt)

PSG(r)

The Atari ST incorporates a special piece of circuitry which it uses to generate the
wide range of different sounds which can be played through your monitor or
television sel. This circuitis built around a single microchip known as the YAMAHA
YM 2149. It p the ing general it

265

® 3 separate frequency generators (One for each VOICE)
® 1 noise generator (Used by STOS Basic's NOISE command)
@ 15 different volume levels (See VOLUME)

e 16 lopes (Ac by ENVEL)

The precise sound produced by the circuit is determined by the contents of 14
different SOUND REGISTERS numbered from 0-13. You can access these
registers directly using the PSG command. PSG is effectively an array which holds
acopy of the current contents of the sound registers. Whenever you assign avalue
to one of the elements in the PSG array, this will be automatically loaded into the
appropriate register.

Example:
print psg(1)

WARNING: This function is DANGEROUS! Incorrect usage can cause serious
damage to any disc in the current drive. This is because part of the sound chip is
also ulilised by the ST's disc system. You should therefore lake exlreme care
when attempting to use this command.

Here is a brief list of the various sound registers and their uses.
Register Function

Bits 0-7 set the pitch in units of a single step for voice 1

Bits 0-3 set the size of each frequency step.

Fine control for voice 2. Format as Register 0

Coarse control for voice 2. As register 1

Controls pitch of voice 3 in the same fashion as register 0
Coarse control of the pitch of voice 3

Bits 0-4 control the pitch of the noise generator. The higher the value
the lower the tone.

Control register for sound chip.

Bit 0: Play pure note on voice 1 ON/OFF (1 for ON, 0 for OFF)
Bit 1: Voice 2 tone ON/OFF

Bit 2: Voice 3 tone ON/OFF

Bit 3: Play NOISE on voice 1 (1 for ON, 0 for OFF)

Bit 4: Voice 2 noise ON/OFF

Bit 5: Voice 3 noise ON/OFF

8 Bits 0-3 control volume of voice 1. If bit 4 is set to one then the
envelope generator is being used, and the volume bits are ignored.
Since this corresponds to a volume of 16, this explains why you
need to set VOLUME to 16 before you can use the ENVEL

BN BWN =D

~

command.
9 As Register 8 but for Voice 2
10 As Register 9 but for Voice 3
1 Bits 0-8 provide fine control of the length of the envelope
12 This register provides coarse control of the length of the envelope
13 Bits 0-3 choose which of the 16 possible envelope types is to be
used.

266

Appendix F

Structure of the sprite bank

All of the STOS Basic sprites are stored in bank number 1. It begins with a block
of general information about the sprites. This designales the number of sprites in
each resolution and their position in memory relative o the start of bank 1

Oftset from start
of sprite bank

0

4

16
18
20

Meaning
Sprite identification code $19861987

4-byte offset to address of sprite parameter block in low
resolution

4-byte offset to address of sprite parameter block in
medium resolution

4-byte offset to address of sprite parameter block in high
resolution

Number of sprites in low resolution
Number of sprites in medium resolution

Number of sprites in high resolution

After this section comes a list of special SPRITE PARAMETER BLOCKS. These

hold specific i

1 about each i sprite and are 8 bytes in length.

Typical sprite parameter block

Oftset from start
of sprite bank

22
26
27
28
29
30

Sprite 1 parameter block
4-byte offset to sprite 1 data
Width of sprite 1 (in units of 16)
Height of sprite 1

X Coordinate of hotspot

Y Coordinate of hotspat

Sprite 2 parameter block...

Finally comes the data which makes up the actual design of the sprites.

267

Here is a diagram which illustrates ils structure.
The Sprite Data Block
Data for Mask (one bit plane)
Sprite Data (organised in Bit Planes)
Although these sprites may look rather complicated, remember that you can

design and manipulate STOS Basic sprites without ever needing to know anything
about how they are really stored in memory.

Structure of the icon bank

All STOS Basic icons are stored in bank number 2 using the following format:

Offset from start

of bank 2 Meaning

0 $28091960 This is the icon bank ID number

4 Number of icans in bank

6 Start of data for icon 1. This is 84 bytes long, and uses
the same format as the LINEA sprites.

92 Start of data for icon 2

166 Start of data for icon 3

Structure of the music bank

STOS Basic places all its music data in Bank number 3. Here are full details of how
this information is stored in the ST's memory.

Offset from start

of Music Bank Meaning

o $13480157 This is the identification code used to
indicate a Music bank

4 Offset from start of the bank to music number 1 Set
to zero if no music with this number

8 Offset to music number 2

124 Offset to music number 32.
(Maximum of 32 pieces of music)

128 Length of this memory bank.

132 Name of Music 1 (8 letters)

140 Name of Music 2 (8 letters)

380 Name of Music 32

268

388 Start of Music 1
388+Length Music 1 Start of Music 2

elc

Inside the music definitions

Each piece of music starts off with its own individual header block. This contains
the definitions of all the envelopes and tremolos you have used, along with
information about the position of the various voices which make up the music.

Music Header

Byte Number Contents

0 $19631969 This is the Identification code used to indicate
that the data is music.

6 Oftset to Music in voice 1

8 Offset to Music in voice 2

10 Offset to Music in voice 3

12 Definition of first tremolo/envelope (36 bytes
long)

48 Definition of second I P

Start of voice 1

The Music commands

Each note is stored as a two-byle word ranging from 0-32767. The lower half of
this word contains the pitch of the note (0-96). See PLAY for more details. The
upper byte holds the length of the note in 50ths of a second. The Music commands
are held in either two or four bytes. In order to distinguish them from normal notes,
the highest bit of these commands is set to 1. Here is a list of the various
commands and the numbers used lo represent them in the music.

Number Size Command Meaning
$8000 2 bytes END . Signifies end of music for this voice
$A000 2 bytes MUSIC Uses pure tones for music

$A100 2 bytes NOISE ONLY Uses noise for music
$A200 2 bytes STOP NOISE Turns off noise

$A3xx 2 bytes NOISE xx Plays noise with pitch xx
$A400 2 bytes STOP Stop Mixing Tremulo with noise
NTREMULO

269

$A500 2 bytes STOP ENVEL Stop using current Envelope

$AG00 2 bytes STOP Stop using current tremolo
TREMOLO

SATxx 2 bytes VOLUME xx Set volume of sound to xx

$C000 4 bytes NTREMULO Mix TREMULO with noise. Bytes 23
held offset to tremulo definition

$C100 4 bytes ENVEL xx Use ENVEL xx. Bytes 23 hold offset
to envelope definition.

$C200 4 bytes TREMULO xx Use TREMULO xx. Bytes 2-3 hold
offset to tremulo definition

$C3nn 4 bytes REPEAT nn.note Repeat music starting from note, nn
times. Note held in bytes 2-3.

Screen banks

The format of the screen banks is very straightforward indeed. The first 32000
bytes of this memory hold the actual screen data, and the next 16 words from
number 32000 to 32032 contain a copy of the colour sellings for this screen. Note
that the bytes from 32032 onwards are free, and can be used for your own
purposes.

270

STOS Basic Commands

Command
ABS e R
ACCLOAD ..
ACCNB
ACCNEW .
ACOS ...
ANIM ..
ANIM FREEZE .
ANIM ON/OFF

Page
212
55

AUTO s
AUTOBACK ON/OFF

BACK .
BAR ..
BCHG

BCLR ..
BCOPY
BELL .

CHANGE ...

CHANGE MOUSE ..
CHARCOPY
CHARLEN .

COLLIDE
COLOUR .
CONT

271

Command Page
caory 223
cos 210
CRIGHT 162
cup 162
DATA 225
DATES 218
DEC 39
DEEK 222
DEF FN 214
DEF SCROLL 149
DEFAULT 33,141
DEG 209
DELETE 29
DETECT ... 97
DFREE 208
DIM . 36
DIR ...206
DIA FIRSTS 206
DIR NEXT

DIRS

FIELD #
FILESELECTS .
{ A11 ——
FIRE

FIX ...
FKEY .
FLASH
FLIPS
FLOAD ..
ji, [e—
FOLLOW

Command Page Command Page
FOR..NEXT . Rk

FRANCAIS

FREE

FREEZE .

FREQUENCY

FSAVE
FULL.
GET# ...
GET PALLETTE
GET SPRITE ..
GOSUB .

GOTO ...
GR WRITING
GRAB

MENUS$(title ,option)OFF
MENUS{titie option)ON

ON ERROR GOTO
ON MENU

LIMIT SPRITE
LINE INPUT #
LINE INPUT

272

Command Page
POLYMARK .. il

0P ...
PORT # .
PREVIOUS
PRINT # .
PRINTand? ...
PRIORITY ON/OFF

TIMER ...
TIMLE
TRANSPOSE
TRAP ...

RESERVE AS DATA TRAUE i o wvia

RESERVE AS DATASCREEN UNDER ON/OFF

RESERVE AS SCREEN . UNFREEZE ..

RESERVE AS SET .. UNNEW

RESERVE AS WORK UNPACK

R UPDATE
UPPER

RESTORE i UPPER:

RESUME . USING

RETURN

RIGHTS

RAMDIR

RND

ROL

ROR

RUN

SCREEN COPY
SCREEN SWAP

273

274

Index

Image to the mouse

Backups

Line numbering ..
Menu selection
Sprite updates.
Colour
Screen
3 Backing up
Icon Definer . 56, 173 Automatic ... s D2
Music Defines 56, 108 Progs 32
Removing from memory Run-only programs .56
Screen Co STOS Basic... 1,3
Sprite Definer .20
Aclivale Bank parameler functions .48
Cursor ... Bank
44
44
.44

Address registers ...
Aeroplane sound 12

Allocating a memory bank 46
Animating a sprite ..

Barder styles ...
Break
Bullet train ...
Calling
ly language
Direct ions from a program
Arrays .. i3 Machine-code program
ing of 43 Centred text ..
Sorting of .. i S Centring the sprite definition ..

Chaining together
Changing

Contents of a memary location ..
Colours of a sprite
Cursor size
Default character sets .
Default mouse shapes

Assembly language Drive ...

Assembly language interface .. Graphics modas

Ass| Hot Spot .
Colour to an index Language

275

Mouse pointer ...
Pitch of the music

Control keys ...
Control structure

.18
183, 184, 185,

RGB sprite colours) 186, 187, 188
Shape of the mouse 90 Control+C 20,234
Size of a sprite ... Control+d
‘Speed of music Ci i

Sprite mask

Menu

String
Text writing mode

Music ..
Sprite motion .
Splile with the joyst

functions
Coﬂvsn

Number 1o a string
String 1o a number
Copying

Circular arc......
Clearing Sections of memory
55 Sprites 1o the screen
Editor window 20 Copyright 2
¥ butter right distribution terms 240
Screen C address

Sprite from screen .

User-defined functions .
User-defined pattern.

Commercially releasing your programs .. 239
Communications with extem
devices

Collisions batween sprites ...
Collisions with irregular shapes 97
rites ...

Different screen sizes

i an array 36
Direct

[234

Mode 25
D 206

Directory listings
Disabling a menu .
Disc
Di

Disc operations ...
Displaying a sequence of sprite images ...87
Distribution terms 239

Character on the screen..
Colour underneath sprite .

memory
Exceeding the 15 sprite limit ...

277

Gemdos traps248 Sprite into the memory bank
G | graphics 8 User-defined pattern
Generate Instant artwork

Error Intensity of sour

Strings. mode

Y 23 a program

Get a specific number of characters 183 Inverse
Get and Pul sprite: Example of 99 Text 158
Get cursor position . Transport writing mode ... 134
Gel palette from the screen . Invert string 216
Get the address of a variable 223 Joystick e 92
Get the colour of a point.... i
Gel the length of a character set 170
Gelling a keypress ...

Glossary of slandard Basic
Gort
Grabbing

Sprites from the screen .
Sprites from a program ..

Language changing .
Large characters ...
Last error

Leaving
STOS Basic ..

Definer ...
Incorporating icons into a menu
Incrementing a variable .
Ink colour .

Lo

Machine code
Calling of program
Programs.
Running of .

Sprite 81

g the screen 143

Makers Chanolnglneshapeol v e

Making a backup , list of
Cursar The limiting of ...
Finding its position
Manipulating C
Screen ...

Screen asa smm -

Setting limits .
Absolute value Use of .
Floating point to integer Move spril
Logari Move until

value
Minimum value

your program .
‘OR mode (text)
Orbit

Multi-sync ...
mol

Mouse
Buttons: i

Buttons: The reading of

Changing

279

Physical screen

zone: Inside of
Redrawing the sprites
Reduce

Example of .

Screen .
Paositioning the text cursor .. Releasing some memory59, 241
Print at cursor control Remove

Printer
Listing a program to ...
Prinf

y from memory ...
Mouse pointer from the screen

4
Asci file 56
.32
32
25
w17
24
20
Listing 27
Loading 51
Machine code ...54
232
g 191

B¥kaky

ng
Running a machine code program
Running a program
Saving

Basic

280

Colour of screen .. 2
Colour of a sprite §
Colour of text ... 157
Current window 166
Cursor size ... 163
Flashing colour sequence 2

anclslon of real numbers in printouts . 215
Size of a sprite .73, B

Manipulating
Manipulation commands, list of

Size, diﬂ;.;unl

L

Zooming
Screen$: Exa""ﬂ'e of...
Scrolling

SHringc.c....
Programs in the editor
Sprite

Adding 1o the bank ...
Bmuroumi

Ghaﬂul‘g the colours
Changing the mask
Changing the RGB colours
Changing the size...
Clsumn from screen ..

281

Creation
Definer
Definer tools
Defining in all mree modes ...
Demonstrations i
Designer: The use of 73

Structure
Of screen banks ... M. 270
Of the icon bank ... 268
Of the music bank 268

Of the sprite bank ..

Drawing of ...
Finding its position ..
From manochrome and medium

resolution ...

Subdirectories
Subroutines
Subtracting two stri v
Suites of programs

’ P-4
206, 207, 208

Grabbing from the disc.. 68 Swapping

Grabbing from the progra Screens ..

Grabbing from the screen .. ud Variables

Images, updating of ... 101 Y ise scrolling with sprites 151

Installing into the memory bank............. 76 System

Limiting visability 87 C a3

Ma: 80, 98 Dise........

Mono monitors, use of Table of note values . 103
3 163

Techniques.

: Horizontal 82
ietion of 87

Vertical B4

List of Sevso 14

Start points

Starting an animation ...

Finding a word within

Typing an Ascil file
text

Functions

1 input

L ing the screen

Spiitting
a

Updating sprite images
listings

User-defined

131 For a keypress
214 For a vertical bl
, 170,171,172 For aime

Animator 76
A b 246
% 174

89

	Page_000.jpg
	Page_001.1.jpg
	Page_001.2.jpg
	Page_001.3.jpg
	Page_001.4.jpg
	Page_001.5.jpg
	Page_001.jpg
	Page_002.jpg
	Page_003.jpg
	Page_004.jpg
	Page_005.jpg
	Page_006.jpg
	Page_007.jpg
	Page_008.jpg
	Page_009.jpg
	Page_010.jpg
	Page_011.jpg
	Page_012.jpg
	Page_013.jpg
	Page_014.jpg
	Page_015.jpg
	Page_016.jpg
	Page_017.jpg
	Page_018.jpg
	Page_019.jpg
	Page_020.jpg
	Page_021.jpg
	Page_022.jpg
	Page_023.jpg
	Page_024.jpg
	Page_025.jpg
	Page_026.jpg
	Page_027.jpg
	Page_028.jpg
	Page_029.jpg
	Page_030.jpg
	Page_031.jpg
	Page_032.jpg
	Page_033.jpg
	Page_034.jpg
	Page_035.jpg
	Page_036.jpg
	Page_037.jpg
	Page_038.jpg
	Page_039.jpg
	Page_040.jpg
	Page_041.jpg
	Page_042.jpg
	Page_043.jpg
	Page_044.jpg
	Page_045.jpg
	Page_046.jpg
	Page_047.jpg
	Page_048.jpg
	Page_049.jpg
	Page_050.jpg
	Page_051.jpg
	Page_052.jpg
	Page_053.jpg
	Page_054.jpg
	Page_055.jpg
	Page_056.jpg
	Page_057.jpg
	Page_058.jpg
	Page_059.jpg
	Page_060.jpg
	Page_061.jpg
	Page_062.jpg
	Page_063.jpg
	Page_064.jpg
	Page_065.jpg
	Page_066.jpg
	Page_067.jpg
	Page_068.jpg
	Page_069.jpg
	Page_070.jpg
	Page_071.jpg
	Page_072.jpg
	Page_073.jpg
	Page_074.jpg
	Page_075.jpg
	Page_076.jpg
	Page_077.jpg
	Page_078.jpg
	Page_079.jpg
	Page_080.jpg
	Page_081.jpg
	Page_082.jpg
	Page_083.jpg
	Page_084.jpg
	Page_085.jpg
	Page_086.jpg
	Page_087.jpg
	Page_088.jpg
	Page_089.jpg
	Page_090.jpg
	Page_091.jpg
	Page_092.jpg
	Page_093.jpg
	Page_094.jpg
	Page_095.jpg
	Page_096.jpg
	Page_097.jpg
	Page_098.jpg
	Page_099.jpg
	Page_100.jpg
	Page_101.jpg
	Page_102.jpg
	Page_103.jpg
	Page_104.jpg
	Page_105.jpg
	Page_106.jpg
	Page_107.jpg
	Page_108.jpg
	Page_109.jpg
	Page_110.jpg
	Page_111.jpg
	Page_112.jpg
	Page_113.jpg
	Page_114.jpg
	Page_115.jpg
	Page_116.jpg
	Page_117.jpg
	Page_118.jpg
	Page_119.jpg
	Page_120.jpg
	Page_121.jpg
	Page_122.jpg
	Page_123.jpg
	Page_124.jpg
	Page_125.jpg
	Page_126.jpg
	Page_127.jpg
	Page_128.jpg
	Page_129.jpg
	Page_130.jpg
	Page_131.jpg
	Page_132.jpg
	Page_133.jpg
	Page_134.jpg
	Page_135.jpg
	Page_136.jpg
	Page_137.jpg
	Page_138.jpg
	Page_139.jpg
	Page_140.jpg
	Page_141.jpg
	Page_142.jpg
	Page_143.jpg
	Page_144.jpg
	Page_145.jpg
	Page_146.jpg
	Page_147.jpg
	Page_148.jpg
	Page_149.jpg
	Page_150.jpg
	Page_151.jpg
	Page_152.jpg
	Page_153.jpg
	Page_154.jpg
	Page_155.jpg
	Page_156.jpg
	Page_157.jpg
	Page_158.jpg
	Page_159.jpg
	Page_160.jpg
	Page_161.jpg
	Page_162.jpg
	Page_163.jpg
	Page_164.jpg
	Page_165.jpg
	Page_166.jpg
	Page_167.jpg
	Page_168.jpg
	Page_169.jpg
	Page_170.jpg
	Page_171.jpg
	Page_172.jpg
	Page_173.jpg
	Page_174.jpg
	Page_175.jpg
	Page_176.jpg
	Page_177.jpg
	Page_178.jpg
	Page_179.jpg
	Page_180.jpg
	Page_181.jpg
	Page_182.jpg
	Page_183.jpg
	Page_184.jpg
	Page_185.jpg
	Page_186.jpg
	Page_187.jpg
	Page_188.jpg
	Page_189.jpg
	Page_190.jpg
	Page_191.jpg
	Page_192.jpg
	Page_193.jpg
	Page_194.jpg
	Page_195.jpg
	Page_196.jpg
	Page_197.jpg
	Page_198.jpg
	Page_199.jpg
	Page_200.jpg
	Page_201.jpg
	Page_202.jpg
	Page_203.jpg
	Page_204.jpg
	Page_205.jpg
	Page_206.jpg
	Page_207.jpg
	Page_208.jpg
	Page_209.jpg
	Page_210.jpg
	Page_211.jpg
	Page_212.jpg
	Page_213.jpg
	Page_214.jpg
	Page_215.jpg
	Page_216.jpg
	Page_217.jpg
	Page_218.jpg
	Page_219.jpg
	Page_220.jpg
	Page_221.jpg
	Page_222.jpg
	Page_223.jpg
	Page_224.jpg
	Page_225.jpg
	Page_226.jpg
	Page_227.jpg
	Page_228.jpg
	Page_229.jpg
	Page_230.jpg
	Page_231.jpg
	Page_232.jpg
	Page_233.jpg
	Page_234.jpg
	Page_235.jpg
	Page_236.jpg
	Page_237.jpg
	Page_238.jpg
	Page_239.jpg
	Page_240.jpg
	Page_241.jpg
	Page_242.jpg
	Page_243.jpg
	Page_244.jpg
	Page_245.jpg
	Page_246.jpg
	Page_247.jpg
	Page_248.jpg
	Page_249.jpg
	Page_250.jpg
	Page_251.jpg
	Page_252.jpg
	Page_253.jpg
	Page_254.jpg
	Page_255.jpg
	Page_256.jpg
	Page_257.jpg
	Page_258.jpg
	Page_259.jpg
	Page_260.jpg
	Page_261.jpg
	Page_262.jpg
	Page_263.jpg
	Page_264.jpg
	Page_265.jpg
	Page_266.jpg
	Page_267.jpg
	Page_268.jpg
	Page_269.jpg
	Page_270.jpg
	Page_271.jpg
	Page_272.jpg
	Page_273.jpg
	Page_274.jpg
	Page_275.jpg
	Page_276.jpg
	Page_277.jpg
	Page_278.jpg
	Page_279.jpg
	Page_280.jpg
	Page_281.jpg
	Page_282.jpg
	Page_283.jpg

