_PERS()NAL
= » s PASCAL

Form The m Atarim ST

S Optimized Systems Software
w A Dlwsmn of ICD, Incorporafed
Rockford, is 6

llinois 61101 (815) 96

A Reference Manual For

Personal Pascal

One Pass
Native Code
Pascal Compiler

Atari 520/1040 ST Version 2
Developed by J. Lohse

This manual is Copyright 1987 by
Optimized Systems Software,
a division of ICD, Inc.
Portions of this manual are Copyright 1985 by
CCD and are reprinted with permission.

Manual revision by
Bill Wilkinson
and
Earl Rice

\

J

All rights reserved. Reproduction or translation of any part of this
manual beyond that expressly permitted by sections 107 and 108 of the
United States Copyright Act is unlawful without the permission of the

copyright owner.

Personal Pascal is a trademark of

Optimized Systems Software,

a division of ICD, Inc.

Atarlis a registered frademark of Atari Corp.
520 ST and 1040 ST are trademarks of Atari Corp.
GEM is a frademark of DRI.

G ——
DISCLAIMER

Neither OSS nor CCD make representations or
warranties with respect to the contents hereof
and specifically disclaim all warranties of
merchantability or fitness for any particular
purpose. This manual and the software it
describes are subject to change without notice.

ACAUTION!!!

If this is the first time you’ve ever used Pascal,
PLEASE don’t try to learn the language from this
manual. It’s not designed as an introductory Pascal
tutorial, and will only make you frustrated (and
probably mad at us). If you are a beginner, we
suggest that you look in a local bookstore for the
following book:

Oh! Pascal!
Doug Cooper and Michael Clancy
W W Norton and Company.

This is the best tutorial we have found. Further, the
terms used are generally the same as in the Language
Reference section of this manual.

If you are an experienced programmer looking for
algorithms, we recommend:

Software Tools in Pascal
Kernigan and Plauger
Addison-Wesley

Algorithms
Robert Sedgewick
Addison-Wesley

ABOUT TECHNICAL SUPPORT

Technical support is a costly part of our business.
We are determined to give the best support we can to
programmers who buy Personal Pascal. Our ability to
do that rests upon two suppositions. The first is that
you already know how to program in Pascal and that
you are genuinely stumped even after referring to your
manual. The second supposition is that you have
actually bought Personal Pascal legitimately and are
entitled to our full support.

Given these suppositions we require two things of
you. First, if you must contact OSS with a technical
question, we strongly recommend that you call our
bulletin board system, since you can leave an example
program along with your question and thus save both
you and OSS time and money. Second, we will ask
you to give us your registration number (with your
message on the BBS) before receiving any technical
assistance.

That means you must mail in your registration card,
because we will only give you technical support if your
number is on file with us.

If you do not have a modem, or if the program in
question is very large, please send a disk and a
description of the problem to:

OSS /ICD, Inc.
1220 Rock Street
Rockford, lllinois 61101

(815) 968-2228 BBS: (815) 968-2229 FAX: (815) 968-6888

PREFACE

This is the second edition of the Personal Pascal
Reference Manual. In addition to presenting the new
features of Personal Pascal version 2, it incorporates
a new layout and an index. Quite frankly, we've been
unhappy with the old Personal Pascal manual from the
beginning. Everything was there, but the lack of an
index and the general arrangement of the manual
begged for improvement. We also got complaints
about the "Backus Naur Formalism" (BNF) we used to
present syntax.

When we started to update the manual, we were ready
to radically re-design it. Good sense prevailed,
however, and we were less rash than we thought we
might be. The sequence of the chapters is more in
the order that Pascal does things. We’ve simplified
explanations and added examples. The longer
explanations are in the appendix, command synopses
are more task-oriented, and the BNF is replaced by
syntax diagrams. We hope this will make life easier
for you as you program in Personal Pascal.

While this manual is not intended to teach anyone
Pascal, we have recognized the needs of the
occasional programmer and included programming
examples in the appendix. This should also help the
experienced programmer become familiar with the
general use of GEM from Personal Pascal.

We hope you enjoy this manual.

The Personal Pascal Reference Manual is divided into
9 sections:

SECTION 1, GETTING STARTED, describes the
hardware required to write programs in Personal
Pascal, and tells you how to get up and running.

SECTION 2, THE MANAGER, introduces you to the
Personal Pascal Manager. The Manager coordinates
Personal Pascal’s functions to make writing and
compiling programs easier. This section shows you
what the Manager does, and how to use it to configure
your programming environment to suit your own
system and preferences.

SECTION 3, THE EDITOR, describes the powerful
GEM-based Personal Pascal Editor. The ability to cut
and paste among as many as 3 files at once makes
short work of program modification and maintenance.

SECTION 4, THE COMPILER, explains the
compiler and its options.

SECTION 5, THE LINKER, describes the Personal
Pascal Linker and its use.

PREFACE

This is the second edition of the Personal Pascal
Reference Manual. In addition to presenting the new
features of Personal Pascal version 2, it incorporates
a new layout and an index. Quite frankly, we've been
unhappy with the old Personal Pascal manual from the
beginning. Everything was there, but the lack of an
index and the general arrangement of the manual
begged for improvement. We also got complaints
about the "Backus Naur Formalism" (BNF) we used to
present syntax.

When we started to update the manual, we were ready
to radically re-design it. Good sense prevailed,
however, and we were less rash than we thought we
might be. The sequence of the chapters is more in
the order that Pascal does things. We've simplified
explanations and added examples. The longer
explanations are in the appendix, command synopses
are more task-oriented, and the BNF is replaced by
syntax diagrams. We hope this will make life easier
for you as you program in Personal Pascal.

While this manual is not intended to teach anyone
Pascal, we have recognized the needs of the
occasional programmer and included programming
examples in the appendix. This should also help the
experienced programmer become familiar with the
general use of GEM from Personal Pascal.

We hope you enjoy this manual.

SECTION 6, PERSONAL PASCAL, describes
Pascal program structure in general, as well as
Personal Pascal’'s Definitions and extensions to the
ISO Pascal standard.

SECTION 7, GEM, introduces the GEM concepts
you need to write professional programs. Alert and
Message Boxes, Menus, Windows and Events are all
covered specifically and thoroughly.

SECTION 8, THE APPENDIX, is a treasure chest
of techniques and information to help you develop the
full power of the Atari ST computer while avoiding
known pitfalls. This section contains tables,
examples, and tested program shells to speed your
programming.

SECTION 9, THE INDEX, cross-references tables,
examples, key words and concepts throughout the
reference manual.

TABLE OF CONTENTS

INTRODUCTION
Disclaimer
About Tech Support
Preface
Where to Look in this Manual
This Table of Contents

Section1: Getting Started 1-1
Make a Backup Copy!! 1-2
Running Personal Pascal 1-3

Section 2: Personal Pascal Manager 2
File Menu 2
Options Menu 2
Special Functions Menu 2-
Configuring Your System 2
Manager Command Summary 2

3

Section 3: The Editor
Using the Editor, What it CanDo 3-2

Editor Command Summary 3-11
File Menu 3-12
Block Menu 3-14
Find Menu 3-16
Mark Blocks Menu 3-17
Options Menu 3-18

Editor Keystroke Summary 3-19

Table of Contents (Continued)

Section 4: The Compiler
Compiler Options
Compiler Directives
Modular Compilation

Section 5: The Linker
Linker Options

Section 6: Language Reference
Definitions
Pascal Elements
Special Symbols
Identifiers
Labels
Constants
Language Directives
Comments
Expressions
Operator Precedence
Result Types of Operators
Pascal Program Format
Block Structure, Scope
Syntax Diagrams (RR Tracks)
Pascal Program Structure
Program Header
Pascal Blocks, Part 1
Declarations
Label Declarations
Constant Declarations
Type Declarations
Simple Types
Structured Types

BIRN
N -

o
—
—

A
N -

[

(o2 e)Neo)Ne)Ne Ne))
BRI A M

(e Fe X3, I
ODOOPRWN2OONOONHWN ON =

QO’O’O’QQOQ?’O’O’O’O’)O’OO”O’)O
NDEADLDEDAEADLWWWNMNONODMNON = 4

Table of Contents (Continued)

Section 6: Language Reference (Continued)

Predefined Subprograms 6-145
Auxilliary Subprograms 6-146
Boolean Function 6-148
Ordinal Functions 6-149
Transfer Functions 6-153
Arithmetic Functions 6-157
Array Translations 6-162
String Management 6-164
File Subprograms 6-170
Text Files 6-181
File Management 6-189
Pointer Management 6-194
Miscellaneous Subprograms 6-196
Machine Access 6-206

Formatted String Conversion 6-214
VT-52 Operations

P
NS
-k
a

Section 7: The Gem Library 7-1
Components of Gem 7-2
Access to Gem 7-4
Alert Boxes 7-7
Dialog Boxes 7-11
Predefined Dialog Boxes 7-46
Menus 7-49
Window Management 7-67
Window Text and Graphics 7-97
Mouse Control 7-123
Event Management 7-133
Messages From Gem 7-166

Miscellaneous GEM Routines 7-183

Table of Contents (Continued)
“

Section 8: The Appendices
Generic TOS System Calls
Character-Oriented 1/0
GEMDOS Disk Operations
Port Configuration (via XBIOS)
Using Get_In_File
Modular Compilation Example
Using a Command Line Interpreter
with Personal Pascal
Creating Desk Accessories
Pascal Compiler Error Numbers
Atari ST Keyboard Codes

L
ST 17 A

whhhN N
N oG =

Section 9: The Indices
General Index 9
Index to Important Notes 9
Index to Important Cautions 9-

9
9

BUY TACKLE BOX ST !l
How to Order Now!

— GETTING OTARTED

REQUIRED HARDWARE

Personal Pascal will work on any Atari ST computer.
The minimum system configuration is a 520ST with a
single-sided disk drive. Developing programs on a
minimum system requires careful planning, but is not
difficult as long as your programs aren’t too long. The
section explaining The Manager contains helpful
suggestions for writing programs on a single-drive
system and for using a RAM disk with Personal
Pascal.

If you have a 1 Meg or larger memory in your ST, a
RAM disk makes the Personal Pascal system very
fast. Just remember to copy your work from the RAM
disk to a physical disk before you turn off your
computer!

If you have a Meg of RAM and a hard disk drive, then
the Personal Pascal system really shines! High speed
and large disk capacity easily handlie even the largest
programs. This combination is the ideal program
development system; practically Programmer Heaven!

Personal Pascal Page 1-1

AK ACK-UP!

This is your OSS House Mother talking!
Listen up!

Before you do anything else, even before you finish
this page, MAKE A BACK-UP COPY OF YOUR
PERSONAL PASCAL DISKETTE! Be sure to open
the write-protect tab first! Did you change your sox
this morning?

Ok. Now that you've made a back-up copy, (You DID
make a back-up copy, didn’t you??!!) put it in a box,
mark it "DANGER!! RADIOACTIVE WASTE!!," and
hide it on the top shelf of your closet! Better yet, put
it in a lead-lined, magnetically-shielded underground
concrete vault!!

Are we paranoid? Yep. You wouldn’t believe how
many panicky phone calls we get from people who
have just trashed their master diskettes. Did you
know it takes at least three days to get a new diskette
to you? You send the old one to us, p/lus money.
When we get the old one, we send the new one to you.
Three days... If everything works right...

You’'ve been warned. If you don’'t make a back-up
now, you're hopelessly masochistic. If you have to
call us because you messed up your only copy of
Personal Pascal, we’ll probably /augh at you, and we’ll
NEVER let you live it down! After all, we didn’t leave
Personal Pascal unprotected so pirates could get it!
We did it so YOU CAN MAKE A BACK-UP COPY!
SO DO IT!!

Personal Pascal Page 1-2

RUNNING PERSONAL PASCAL

Running Personal Pascal is easy. Put your back-up
copy into your disk drive and get a directory. you
should see the following files and folders in the
directory listings of your Personal Pascal diskettes.

PASCAL .PRG {aprogram file}
EDITOR .PRG ({ aprogram file }
COMPILER.PRG { a program file }
'LINKER .PRG { aprogram file}
INFO { a folder}
DEMOS { a folder}

The INFO folder contains additions, including any
bugs discovered since the printing of this manual.
You can "Show" or "Print" any file in this folder.

The DEMOS folder contains demonstrations of the
GEM/Pascal Library and other Personal Pascal
programming examples.

PASCAL.PRG is the Personal Pascal Manager.
Double-click on this file to enter the Personal Pascal
system. Don’t double-click on the other .PRG files,
since they’'re not designed to be run from the desktop.

Once you are in the Manager environment, you can
use Personal Pascal's programming facilities. Turn to
the appropriate section for instructions.

Happy Programming!

Personal Pascal Page 1-3

BLANK PAGE

Personal Pascal Page 1-4

(THE MANAGER)

WHAT THE MANAGER DOES

The Manager coordinates Personal Pascal's editing,
compiling and linking functions. It also allows you to
configure your programming environment to suit your
preferences and your hardware. Once you establish
compiler and linker options and tell the manager what
source files you are using, you can save your working
Iset-up to disk, and the Manager will maintain your
programming environment.

MANAGER COMMANDS

The Manager’'s commands can be invoked using either
the mouse or the keyboard. All Menu functions are
duplicated by keyboard commands using a single
letter or a function key.

SEE: Manager Command summary page 2-15.

The Manager’s dialog boxes require the use of the
mouse to effect most changes, but allow the use of
the keyboard where possible.

CHECK-MARKS

When you invoke a menu option, the Manager puts a
check-mark next to it in the menu. The check-mark
provides an easy way to remember what you did last
during a programming session.

L)

Personal Pascal Page 2-1

THE FILE MENU

The File menu allows you to run the Editor, Compiler,
Linker, or a compiled program. Select the function
you want from the menu, then click on the appropriate
file when the /Item Selector dialog box appears.

EDIT runs the Editor.

COMPILE runs the Compiler.

COMPILE ALL compiles all the source files you have
selected to be compiled in the current session.

SEE: Set Source Files.

LINKER runs the Linker.

RUN PROGRAM presents the Item Selector to
choose a program to run.

QUIT returns you to the desktop.

NOTE: The default file is the last program edited,
compiled, linked or run.

Personal Pascal Page 2-2

THE OPTIONS MENU

The Options menu lets you set compiler and linker
options. It also allows you to define a source file list
for the compiler, and locate Personal Pascal’'s
programs to suit your hardware.

COMPILER OPTIONS
SEE: Page 2-4

LINK OPTIONS
SEE: Page 2-8

SET SOURCE FILES
SEE: Page 2-9

LOCATE PROGRAMS
SEE: Page 2-10

LOAD OPTIONS

All the options you select, including program
locations, can be saved to any file. The file called
called PASCAL.INF is loaded when Personal Pascal
boots, and configures your system according to your
last saved specification. The Load Options function
lets you load your default configuration, or any other
configuration at any time. This lets you configure
your system for several projects and choose among
them easily.

SAVE OPTIONS

When you have your system set to your preference,
click on Save Options to save its current configuration
to any file. If you save to PASCAL.INF, your system
will boot up configured as you defined it.

Personal Pascal Page 2-3

COMPILER OPTIONS

The Compiler is flexible enough to take care of many
of the details involved in putting together different
types of programs. Selectable options reduce the
number of Compiler directives you need to remember
and use.

PROGRAM TYPE

You can compile a GEM program, an ACCessory, or a
TOS program having no GEM functions . Click the
applicable radio button for the type of program you
are compiling. If your program is not an accessory
and uses any of the GEM/Pascal library functions, you
should leave the GEM option selected. Accessories
assume the use of the GEM/Pascal library

NOTE: There are a few special considerations when
writing desk accessories.
SEE: Writing Desk Accessories, in the appendix.

PAUSE AFTER ERRORS

When the compiler encounters an error, it puts an
identifying error number and message into a file, using
the name of the file being compiled, but appending the
extension .ERR. With Pause After Errors selected,

Personal Pascal Page 2-4

COMPILER OPTIONS (Continued)

an alert box will appear on the screen, asking whether
you want to continue the compilation, cancel it and
return to the Manager, or cancel and go directly to the
Editor. If you choose to cancel and go to the editor,
you will see the cursor marking the the error’s
position, and an error message. When you correct
the error, you can run the Compiler directly from the
Editor.

CHAIN TO LINKER

When you check Chain to Linker, the compiler will
automatically run the linker when your program is
successfully compiled. The linker will use the
program type you have specified, GEM, TOS, or
ACC, to link the appropriate Personal Pascal files to
your program.

Personal Pascal Page 2-5

COMPILER OPTIONS (Continued)

FULL DEBUG MODE

When the Full Debug Mode box is checked, the
compiler will include code to support debugging. If
there is an error while your program is running, its
execution will stop and you will be given information
about the error, including:

An error description

The subprogram name

The line containing the error

The current Program Counter value.

NOTE: If an error occurs in the operating system, the
subprogram name UNKNOWN will be displayed.

CLEAR VARIABLES

If the Clear Variables box is checked, the compiler will
generate code to clear all local variables, function
return values, and space returned by the New
procedure.

STACK AND POINTER CHECKING
When the Stack and Pointer Checking option is
checked, the compiler will generate code to check the

Personal Pascal Page 2-6

COMPILER OPTIONS (Continued)

stack and pointers against overflow at run-time. If
such an error should occur while your program is
running, its execution will stop and an alert box or a
text line (for TOS programs) will appear, describing
the error. If you are in full debug mode as well, you
will be given additional information about the error.

SEE: Full Debug Mode, page 2-6.

RANGE CHECKING

When the Range checking option is checked, the
compiler will generate code to check subranges and
array indices at run-time. If a range error occurs
while your progam is running, execution will stop and
an alert box or a text line (for TOS programs) will
appear, describing the error. If you are in full debug
mode as well, you will be given additional information
about the error.

SEE: Full Debug Mode, page 2-6.
PRINT LISTING
When this option is checked, the compiler prints a

listing to the screen as it compiles your program. This
option defaults to its UNCHECKED state.

Personal Pascal Page 2-7

LINKER OPTIONS

PROGRAM TYPE

As with the compiler, you can tell the Linker to link the
appropriate GEM/Pascal files for a GEM program, a
TOS program, having no GEM functions, or an
ACCessory. Click the applicable radio button for the
type of program you are linking. If your program uses
any of the GEM/Pascal library functions, you should
leave the GEM option selected. Accessories assume
the use of the GEM/Pascal library.

NOTE: There are a few special considerations when
writing desk accessories.
SEE: Writing Desk Accessories, in the appendix.

ADDITIONAL LINK FILES

The linker automatically links Pascal object files and
Pascal library files to produce your program. If you
used the Modular compiler directive, {$M}, you can
enter the names of additional files that you want
linked, such as assembly language modules, or other
Pascal object files. You can enter as many file names,
separated by commas, as will fit on the lines given.

NOTE: There is one restriction; a filename may not
extend from the first line onto the second line.

LINK COMPILED OBJECT FILE

When this box is checked, the Linker prompts you for
the name of the file you want linked. The default
filename is the last file edited, compiled or linked in the
current session. As an example; if you had just
compiled a module and wanted to link your master
object file first, you would use this option.

Personal Pascal Page 2-8

MANAGER OPTIONS

SET SOURCE FILES

This menu option lets you define a list of programs to
compile. Its dialog box presents two lists. The left list
is a directory of available files. You can change disk
drives by clicking the appropriate radio buttons; you
can change the path by editing the path name at the
top of the dialog box; you can select a file by clicking
the filenames, using the close box to go up a level in
the directory path; and you can add a highlighted
filename to the compile list by clicking the Transfer
button.

NOTE: The .* button toggles the path between .PAS
and *.*, to show files with any extender.

The right list shows the files you want to compile. To
remove a filename from the list, click on it to highlight
it, then click on the Erase button. When your list is
complete, click the OK button. The Cancel button
closes the dialog without saving the compile list to
memory.

Personal Pascal Page 2-9

MANAGER OPTIONS (Continued)

LOCATE PROGRAMS

This option lets you specify the locations of the
Personal Pascal program and library files. You can
configure your system to expect certain files to be on
disk A, others on disk B, etc. You can even change
the names of the programs that Personal Pascal runs
as the Editor, Compiler or Linker, though we don’t
usually recommend it.

Locate Programs presents a dialog box containing a
directory window, drive selection buttons, and text
lines for path and file names. To locate a file, select
the file to be located, using the mouse in the the
directory window, or by typing the path and file names
on the appropriate lines. Click the OK button to save
the file location, or the Exit button to leave the dialog
without locating the file.

NOTE: For all files except PASLIB and PASGEM, the

.* button toggles the path between *.* and .PAS to
show files with any extender.

Personal Pascal Page 2-10

SPECIAL FUNCTIONS MENU

The Special menu gives you access to the file
functions, Copy, Rename, Erase and Print, without
having to exit to the desktop. These options present a
dialog box containing a directory window, drive
selection buttons, and text lines for path and file
names.

COPY

The Copy option allows you to copy a file from one
directory or disk to another, much as from the
desktop.

The Copy Files dialog box presents two directory lists, -
one for a source directory, and one for a destination

directory. You can change disk drives by clicking the

appropriate radio buttons; you can change file paths

by editing the path names at the top of the dialog box,

you can select a file by clicking the filenames and

close box, and you can copy a highlighted file from

the Source directory to the Destination directory by

clicking the Copy button.

Clicking the Exit button leaves the dialog without
copying a file.

Personal Pascal Page 2-11

SPECIAL MENU (Continued)

RENAME

To rename a file, select the file to be renamed, using
the mouse in the directory window, or by typing the
path and file names on the appropriate lines in the
dialog box. Click the Rename button to rename the
file, or the Exit button to leave the dialog without
renaming the file.

ERASE

To erase a file, select the file to be erased, using the
mouse in the directory window, or by typing the path
and file names on the appropriate lines in the dialog
box. Click the Erase button to erase the file, or the
Exit button to leave the dialog without erasing the file.

PRINT

To print a file, select the file to be printed by using the
mouse in the directory window, or by typing the path
and file names on the appropriate lines in the dialog
box. Click the Print button to print the file, or the Exit
button to leave the dialog without printing the file.

Personal Pascal Page 2-12

LCONFIGURING YOUR SYSTEM

Thanks to the LOCATE FILES option of the Personal
Pascal manager, it is easy to use this package on any
Atari ST system.

Personal Pascal version 2 is large enough that you
can not have all the required files (Manager, Editor,
Compiler, Linker, include files, libraries) on a single
diskette, so it is supplied on a pair of single sided 3.5"
diskettes, compatible with either single sided or
double sided disk drives.

The implication of this is that owners of single drive
systems will have to swap diskettes during the
compile process. We have attempted to set up the
files on these disks in a way optimized for owners of
single drive 520ST systems. In particular, we have
placed the major program modules (Editor, Compiler,
Linker) on the "B" disk. The source modules (include
files) are on the "A" disk. Other files have been
placed on the disks where space is available, in a
logical fashion.

We recommend that single drive users make a fresh
copy of the "A" disk for each Pascal project that they
undertake. The "B" disk may be write protected in
most circumstances. TOS will prompt you to swap
these diskettes at the appropriate times.

If you have two single sided drives, we recommend
that you put the two diskettes ("A" and "B") into the
corresponding drive. Again, you should use a fresh
copy of "A" for each project.

Personal Pascal Page 2-13

CONFIGURING (Continued)

If you have a double sided drive, you may copy all the
files from the two diskettes onto one double sided
diskette. Make a fresh copy of this diskette for each
project.

If you have a RamDisk program, we recommend that
you copy as many files as possible from the "B" disk
to the RamDisk. If your RamDisk is large enough
(e.g., if you have a 1040) you can copy ALL the files
to it. However, we do NOT recommend keeping your
source on the RamDisk. If the Personal Pascal files
are lost from the RamDisk because of power failure or
system crash, they can easily be reloaded. If your
source is on the RamDisk, it might be lost
permanently.

Finally, if you have a hard disk and you are working on
several projects, you may wish to put a copy of the
manager in each project’s subdirectory. Then you can
use "Locate Files" to specify that all the required files
are (perhaps) in a common directory.

In any case, once you have used "Locate Files" (and
other options), you can save your choices in the
current directory, and the manager will automatically
reconfigure the system each time you enter it.

Personal Pascal Page 2-14

COMMAND SUMMARY

Many of the Manager’s functions can be invoked both
by menu selections and keyboard commands. The
following pages present a summary of menu options
and their keystroke equivalents.

FILE MENU
SEE: Page 2-16

OPTIONS MENU
SEE: Page 2-17

SPECIAL MENU
SEE: Page 2-18

Personal Pascal Page 2-15

FILE MENU

Edit [E]
Presents a dialog box asking for a source file to edit,
then runs the Editor.

Compile [C]
Presents a dialog box asking for a source file to
compile, then runs the Compiler.

Compile All [A]
Compiles the source files contained in the compile list

set up with the Set Source Files option of the Options
menu.

SEE: Set Source Files.

Link [L]

Depending upon the Linker options set, presents a
dialog box asking for an object file to link to the
Personal Pascal library files, then runs the Linker.
SEE: Link Options.

Run Program [R]

Presents a dialog box asking for a .PRG or .TOS file to
run.

Quit [Undo]
Returns to the desktop.

NOTE: Pressing the [Alternate] key with E, C, L or R,

is equivalent to Edit, Compile, Link or Run Program
using the last invoked filename.

Personal Pascal Page 2-16

PTIONS MENU

Compiler Options[F1]

Presents a dialog box displaying available compiler
options. Click the appropriate button to select an
option. You can also enter a new temporary directory
path.

SEE: Compiler Options, page 4-2

Linker Options [F2]

Set Source Files [F3]

Presents a dialog box displaying available Linker
options. Click the appropriate button to select an
option. You can also enter additional link file names.

Locate Programs [F4]

Defines the paths used to find Personal Pascal’'s
Editor, Linker, Compiler and library files. The paths
can be saved to the PASCAL.INF file, using Save
Options, to make the configuration the new default at
boot time, or any other ./NF filename to make it
available to Load Options.

Load Options[F5]
Loads the Compiler, Linker and program path options
you have saved to any ./NF file.

Save Options [F6]

Saves the current Compiler, Linker, program path
options, etc., under any ./NF filename.

Personal Pascal Page 2-17

] SPECIAL MENU

Copy [Shift] [F1]
Presents a dialog box with directory windows to copy
a file from one directory or disk, to another.

Rename [Shift] [F2]
Presents a dialog box with a directory window to allow
renaming of files

Erase [Shift] [F3]

Presents a dialog box with a directory window to allow
single files to be erased.

Print [Shift] [F4]

Presents a dialog box to select a file to be sent to the
print device.

Personal Pascal Page 2-18

THE EDITOR h

You can use any editor or word processor to write
your Personal Pascal source code. The only
requirement is that it be able to produce an ASCII text
file. The Personal Pascal Editor is specifically
designed for the programmer. It's a straight-forward
editor with easily used features that make writing
source code pleasant and uncomplicated. The Editor
can load 3 files simultaneously, and its Cut and Paste
features make it easy to move blocks of code from
one file to another. The Search and Replace
functions work quickly, and you can have up to 4
place markers. When you are ready to compile and
link, the Editor will invoke those functions for you.
Most commonly-used options are selectable by both
the mouse and single-character keyboard commands.
Overall, the Personal Pascal Editor provides an
amiable environment in which to edit text files.

Personal Pascal Page 3-1

—USOING THE EDITOR

To enter the Editor from the Personal Pascal Manager,
click on the Edit option of the File menu. To enter it
from the desktop, click EDIT.PRG.

The editor will open with an item selection dialog box.
If necessary, you can change directories or drives by
entering the appropriate specification and clicking the
Close Box or the Drag Bar. Click on the text file you
want to edit, or type a file name to create a new file.
Click the OK button or press [Return] to load or
create the selected file.

When the file is loaded, it will be visible in the work
window. In the upper right corner of the window is a
series of indicators. The left one will display a
highlighted numeral 1, indicating that you are currently
viewing file space number 1. To its right will be two
Close Box symbols, showing that file spaces 2 and 3
are empty.

You can load as many as 3 files at the same time.
The Editor will put each file into the next available
space. The indicators will show you which file space
you are viewing, and the name of the file you are
viewing will appear in the title bar at the top of the
work window. To switch from one file space to
another, click on its indicator.

NOTE: You can’'t view an empty file space. To load
another file, see: Open or New, page 3-12.

Personal Pascal Page 3-2

USING THE EDITOR (Continued)

ENTERING TEXT

To enter text, simply begin typing. The work window
can show a maximum of 76 characters per line. At
the end of that line, the work window begins scrolling
as you enter more text. The maximum length of a line
is 159 characters. When you reach that limit, the
Editor stops accepting characters and you must
press [Return] or [Backspace]. After you press

[Return], you can continue entering text on a new line.

ENTRY MODE
The Personal Pascal Editor can enter text in either
Insert Mode or Overwrite Mode.

Insert Mode causes any text to the right of the cursor
to be moved to the right as you type.

Overwrite Mode causes text to the right of the
cursor to be replaced by the text you enter.

AUTO-INDENTING

The Auto Indent feature of the Options menu allows
you to properly indent your Personal Pascal programs
with a minimum of effort. When this option is
selected, the Editor remembers your last tabbed
indentation and places the cursor in that column when
you press the [Return] key. Each new tab sets a new
margin. To back up, use [Backspace] after [Return].
The Editor will use the previous tabbed margin for
subsequent text.

Personal Pascal Page 3-3

USING THE EDITOR (Continued)
L

TABS

Set tab intervals using Tabsize. Click the option, then
enter the interval you want in the dialog box. Click the
OK button or press [Return] to set the interval to the
number shown. You can choose any reasonable tab
size, but only a tab size of 8 characters shows
correctly when displayed from the GEM desktop.

When Insert Mode is selected, Tab causes the cursor
to move to the next tab position, pushing any text to
its right along with it. In Replace Mode, the cursor
moves to the Tab position without affecting the text.

SAVING A FILE

When you are through editing a file, save it under its
original name using the Save option from the File
menu, or save it under a new name, using Save as.
Save sends a file to disk storage without further
prompting. Save as displays the item selector dialog
box to allow you to select or enter a file name.

SAVING A TEXT BLOCK

You can save a previously marked block of text to a
file by selecting the Save Block option from the Block
menu. The item selector dialog box will appear to
allow you to select or enter a file name, and save the
file.

CAUTION: The block will not be appended to an
already existing file; it will replace the file.

Personal Pascal Page 3-4

USING THE EDITOR (Continued)

LOADING A FILE

Clicking Open, or typing [Alternate] [O], displays the
item selector dialog box. If you select an existing file,
it will be loaded into the next available file space. If
you enter a new file name, the next available file
space will be opened for text input, and the file name
will be displayed in the title bar.

When you Open a file, it is allotted a buffer equal to
the length of the file plus 25,000 bytes. The buffer
size 1s limited only by available memory. If your file is
getting too large, Save it, and Open it again. You will
have another 25,000 byte extension.

CAUTION: If you overflow the available buffer while
entering text, an error will occur.

NEW
New, or [Control] [L], opens a 25,000 byte buffer as
the next available file space.

LOADING A TEXT BLOCK

You can load a file into the text block buffer. Select
Load Block from the Block menu, or type [Alternate]
[L]. The Item Selector dialog box will appear. Select
the file to load. It will be loaded into the block buffer.
You can then use the Paste Block option from the
Block menu, or type [Alternate] [P], to put the text
where you want it.

SEE: Cut and Paste, page 3-7.

Personal Pascal Page 3-5

USING THE EDITOR (Continued)

L

CURSOR MOVEMENT

You can move the cursor on the screen using either
the mouse or the arrow keys. To position the cursor
with the mouse, place the arrow wherever you want
the cursor to be, and press the left button. To move
the cursor with the arrow keys, press the key whose
arrow points the direction you want the cursor to
move.

SCROLLING

Scrolling from page to page and from one end of a line
to the other can be accomplished with the mouse, or
with the arrow keys in conjunction with the [Shift] key.

To scroll with the mouse, use the vertical slider bar for
page-to-page movement, and the cursor for
movement along a line of text. Select the area you
want to view, then place the cursor with the mouse.

The shifted arrow keys move the cursor in this
manner:

[Shift] [Left-Arrow] Beginning of the current line
[Shift] [Right-Arrow] End of the current line
[Shift] [Up-Arrow] Move to the previous page
[Shift] [Down-Arrow] Move to the next page

The cursor can be moved to the top of the text by
selecting the Top option from the Mark menu,
pressing the [Home] key, or by typing [Alternate] [T].
Move to the bottom of the text by selecting Bottom or
by typing [Shift][Home] or [Alternate] [B].

Personal Pascal Page 3-6

USING THE EDITOR (Continued)

CUT AND PASTE

You can copy blocks of text, Move them from one
place to another, or delete them altogether, using the
Mark, Erase and Paste features of the Block menu.

TO MARK A BLOCK OF TEXT

Place the cursor on the first line of the block and click
Mark Block in the Block menu, type [Alternate] [M], or
press the mouse button while holding down the [Shift]
key. Place the cursor on the last line of the block and
click Mark Block, type [Alternate] [M], or press the
mouse button while holding down the [Shift] key. The
selected block will be made bold-faced. This block
will be the current text block until you select or load
another one.

NOTE: You can only mark full lines of text. You
can'’t split a line for block operations.

TO UNDO BLOCK SELECTION

Click on the Hide Block option of the Block menu, or
type [Alternate] [H]. The text will return to the normal
font on the screen.

Personal Pascal Page 3-7

USING THE EDITOR (Continued)

TO PASTE A BLOCK OF TEXT

Mark the block and place the cursor on the line where
you want to put the text and click Paste Block in the
Block menu, or type [Alternate] [P]. The current text
block will be placed in the new location, starting at the
beginning of the line containing the cursor.

NOTE: You can only paste starting at the beginning
of aline. You can't insert text into the middle of a line.

TO ERASE A BLOCK OF TEXT

Mark the block and select Erase Block from the Block
menu, or type [Alternate] [E]. The block will be
removed from the screen, but it will be retained as the
current block.

TO COPY A BLOCK OF TEXT
Mark it, then paste it where you want it.

TO MOVE A BLOCK OF TEXT

Since an erased block stays current until you mark
another one, you can move a block by erasing it and
then pasting it where you want.

Personal Pascal Page 3-8

USING THE EDITOR (Continued)

FIND AND REPLACE

The Find menu has options to allow you to find a
particular string and, if you want, replace it. You can
either replace the next occurrence of a string or
replace all occurrences of it. Searching can be
case-sensitive or not, as you desire.

To find a string, first select Find What from the Find
menu, or type [Alternate] [F]. Enter the string you
want found on the target line in the dialog box. If you
are going to replace the string, enter the new string
on the replacement line. You can either match or
ignore the target string’s case by clicking the
appropriate button. Click the OK button or press
[Return] to enter the Find and Replace information.

After entering the Find What information, you can
search upwards or downwards from the current cursor
position by clicking Find Previous or Find Next in the
Find menu. You can also type [Alternate] [U], for
upwards, or [Alternate][D], for downwards. The search
criteria will remain set until you use Find What to
change them.

When you have found the string you want, you can
replace it with the target string clicking Replace Next
in the Find menu, or by typing [Alternate] [R].

To replace all occurrences of the target string, click

Replace Allin the menu. There is no equivalent
keyboard command.

Personal Pascal Page 3-9

USING THE EDITOR (Continued)

POSITION MARKERS

You can place markers on up to 4 lines so you can
move the cursor to them with a single menu click or
keystroke.

To mark a position, place the cursor on the line you
want, and click Setin the Marker menu to select a
marker.

To return to a marker, click its Goto option in the Mark
menu, or press a function key, 1through 4.

You can reset a marker at any time by placing the
cursor in a new position and clicking the appropriate
Set option in the Mark menu.

CAUTION: Markers are set by LINE NUMBER and
apply in all 3 text buffers.

PRINTING
To print the currently displayed file, click Print File in
the Options menu.

To print a text block, first mark the block, then click

Print Block in the Block menu.
SEE: Cut and Paste, page 3-7.

Personal Pascal Page 3-10

EDITOR COMMAND SUMMARY

Many of the Editor’s functions can be invoked my both
menu selections and keyboard commands. The list
below is a summary of menu options and their
keystroke equivalents.

FILE MENU
SEE: page 3-12

BLOCK MENU
SEE: page 3-14

FIND MENU
SEE: page 3-16

MARK MENU
SEE: page 3-17

OPTIONS MENU
SEE: page 3-18

KEYSTROKE SUMMARY
SEE: page 3-19

Personal Pascal Page 3-11

[HE FILE MENU

NEW [Alternate] [N]

Opens a new 25,000 byte buffer in the currently
displayed file space. The file in the currently
displayed space is cleared and is not saved.

OPEN [Alternate] [O]

Loads a file or creates a new one in the next available
file space. Presents the /tem Selector dialog box.
Sets the buffer to file length plus 25,000 bytes.

SAVE FILE [Alternate] [S]

Saves the currently displayed file under its current
name. There is no prompting dialog box except on the
first Save after New.

SAVE AS No key equivalent

Saves the currently displayed file under a specified
name. The current file name is the default. Presents
the Item Selector dialog box. The default file name is
the last name used for a save.

Personal Pascal Page 3-12

FILE MENU (Continued)

QUIT [Alternate] [Q]

Leaves the editor. If any text has been changed since
the last Save, displays a warning so you can Savel if
you want.

COMPILER No key equivalent

Saves the current text buffers under their current
names and runs the compiler. Does not prompt
before saving.

LINKER No key equivalent

Saves the current files under their current names and
runs the linker. Does not prompt before saving.

Personal Pascal Page 3-13

LOCK MEN

MARK BLOCK [Alternate] [M]

Marks lines of text for cutting and pasting. You must
mark the beginning and end of a block. The block is
presented in bold-face on the screen when the second
mark is placed. Marks whole lines only.

NOTE: Holding the [Shift] key while clicking the
mouse button also performs Mark Block. It is the
most convenient method.

ERASE BLOCK [Alternate] [E]

Removes a marked block from the file space. The
block remains in the paste buffer until another block is
marked.

PASTE BLOCK [Alternate] [P]

Inserts the current text block into the displayed text at
the beginning of the line containing the cursor. You
can’t insert text into the middle of a line.

HIDE BLOCK [Alternate] [H]

Restores a selected, bold-faced block to the normal
screen font. The current text block is not changed.

Personal Pascal Page 3-14

BLOCK MENU (Continued)
L -

LOAD BLOCK No key equivalent

Loads a file into the paste buffer. The paste buffe
becomes the current text block. Presents the /tem
Selector dialog box

SAVE BLOCK No key equivalent
Saves the current text block to a file. Presents the
Item Selector dialog box.

PRINT BLOCK No key equivalent
Sends the current text block to the printer.

Personal Pascal Page 3-15

—FIND MENU

FIND WHAT [Alternate] [F]

Presents a dialog box containing the target and
replacement strings for search and replace functions.
Does not initiate search or replace.

FIND PREVIOUS [Alternate] [U]

Initiates a search from the current cursor position
towards the beginning of text. Uses the target string in
the Find What dialog box.

FIND NEXT [Alternate] [D]

Initiates a search from the current cursor position
towards the end of text. Uses the target string in the
Find What dialog box.

REPLACE NEXT [Alternate] [R]
Use after search to replace the target string at the
current cursor position with the replacement string
specified in the Find What dialog box.

REPLACE ALL No key equivalent

Replaces every occurrence of the target string in the
displayed file with the replacement string specified in
Find What. Prompts for replace with query or replace
without query.

Personal Pascal Page 3-16

MARK MENU

Set Mark 1 No key equivalent.
Set Mark 2 No key equivalent.
Set Mark 3 No key equivalent.
Set Mark 4 No key equivalent.

Set puts place markers in the displayed text, then
when one of these menu items is selected or a

function key is pressed, the cursor will be moved to
the marked line.

F1 Go To Mark 1 [F1]
F1 Go To Mark 2 [F2]
F1 Go To Mark 3 [F3]
F1 Go To Mark 4 [F4]

Clicking one of these options or pressing the
equivalent Function Key moves the cursor to the
appropriate marked text line.

TOP [Alternate] [T] or [Home]
Moves the cursor to the first line of text.

BOTTOM [Alternate] [B] or [Shift][Home]
Moves the cursor to the last line of text.

Personal Pascal Page 3-17

OPTIONS MENU

GOTO LINE [Alternate] [G]
Presents a dialog box asking for a line number.
Moves the cursor to the line number you enter.

NOTE: By using one buffer for a your Pascal source
file and another for the Compiler’'s .ERR error file, you
can find and correct errors easily.

TABSIZE No key equivalent

Presents a dialog box containing the current tab
interval value. Sets the tab interval to the value you
enter.

INSERT [Insert] (Toggles mode)
Selects insert text entry mode. Text under the cursor
will be preserved and pushed to the right as you type.

OVERWRITE [Insert] (Toggles mode)
Selects overwrite text entry mode. Text under the
cursor will be replaced by what you type.

AUTO INDENT No key equivalent

Selects Automatic indentation. When you press
[Return], the cursor will be placed at the same tabbed
margin as the preceding line. To change the tabbed
margin of the current line, use [Tab] or [Backspace].

PRINT FILE No key equivalent
Sends the displayed file to the printer.

Personal Pascal Page 3-18

YST E MMAR

WORDSTAR COMMANDS
The following Wordstar(tm) keystrokes are available
as Editor comands:

[Control] [S] Cursor Left 1 Character
[Control] [D] Cursor Right 1 Character
[Control] [E] Cursor Up 1 Line
[Control] [X] Cursor Down 1 Line
[Control] [R] Cursor Page Up
[Control] [C] Cursor page Down
[Control] [1] Tab

CURSOR CONTROL
The cursor can be controlled from the keyboard using
the arrow keys:

[Left Arrow] Cursor Left 1 Character
[Shift] [Left Arrow] Beginning of Text Line
JRight Arrow] Cursor Right 1 Character
[Shift] [Right Arrow] End of Text Line

[Up Arrow] Cursor Up 1Line

[Shift] [Up Arrow] Page Up

[Down Arrow] Cursor Down 1 Line

[Shift] [Down Arrow] Page Down

Personal Pascal Page 3-19

TEXT FUNCTIONS
These text functions are implemented in the Editor:

[Shift] [Delete] Delete the current text line.

[Tab] Move the cursor to the next tab
position.
[Insert] Toggle Insert/Replace text mode.

Personal Pascal Page 3-20

The Personal Pascal compiler changes source
programs with the .PAS extender into a form that can
be linked with other files. When the Linker is through,
your program can be run from the Personal Pascal
Manager using the Run Program item in the Files
menu, or from the desktop.

If your program compiles without errors, the Compiler
generates a FILENAME.O file. (FILENAME is the
name of the file you are compiling.) This is the file to
link in order to produce an executable program.

If your program contains something that the compiler}]
is unable to translate, the compiler will produce an
error message or put a list of the errors it finds into a
file with the extension .ERR, depending upon your
choice of options. The .ERR file goes into the same
folder as the file being compiled and has the same
name as your .PAS source file. There is a list of all
the error numbers and messages the compiler
produces in the Appendix.

COMPILING A PROGRAM
You can run the Personal Pascal compiler from two
places: the Manager and the Editor. To compile a
program when you are at the Manager level, move the
mouse over the Files menu title and the Files menu
will appear. Move to the Compile or Compile All item
and click the mouse. A dialog box will appear and you
can choose the file you want to compile.

Personal Pascal Page 4-1

MPILER N

Compiler options are selected from the Manager. If
you move the mouse over the Manager’s Options title,
you will see that one of the items available is Complier
Options. If you click on this item, the Compiler
Options dialog box will appear. The options in this
dialog give you extensive control over the Personal
Pascal compiler.

For convenience, the Compiler Options discussion
from the section on the Compiler is repeated here:

PROGRAM TYPE

You can compile a GEM program, an ACCessory, or a
TOS program (no GEM functions). Click the
applicable radio button for the type of program you
are compiling. |f your program is not an accessory
and uses any of the GEM/Pascal library functions, you
should leave the GEM option selected. Accessories
assume the use of the GEM/Pascal library.

NOTE: There are a few special considerations when

writing desk accessories.
SEE: Writing Desk Accessories, in the appendix.

Personal Pascal Page 4-2

COMPILER OPTIONS (Continued)
L —

PAUSE AFTER ERRORS

When the compiler encounters an error, it puts an
identifying error number and message into a file, using
the name of the file being compiled, but appending the
extension .ERR. If Pause After Errors is selected, an
alert box will appear on the screen, asking whether
you want to continue the compilation, cancel it and
return to the Manager, or cancel and go directly to the
Editor. If you choose to cancel and go to the editor,
your file will be reloaded into the first buffer and you
will see the cursor marking the the error’s position,
and an error message. When you correct the error,
you can run the Compiler directly from the Editor.

CHAIN TO LINKER

When you check Chain to Linker, the compiler will
automatically run the linker when your program is
successfully compiled. The linker will use the
program type you have specified, GEM, TOS, or
ACC, to link the appropriate Personal Pascal files to
your program.

Personal Pascal Page 4-3

COMPILER OPTIONS (Continued)

FULL DEBUG MODE

When the Full Debug Mode box is checked, the
compiler will include code to support debugging. If
there is an error while your program is running, its
execution will stop and you will be given information
about the error, including:

An error description

The subprogram name

The line containing the error

The current Program Counter value.

NOTE: If an error occurs in the operating system, the
subprogram name Unknown will be displayed.

CLEAR VARIABLES

When Clear Variables is checked, the compiler
generates code to clear local variables, function return
values, and space returned by the New procedure.

STACK AND POINTER CHECKING

When the Stack and Pointer Checking option is
checked, the compiler generates code to check the
stack and pointers for overflow at run-time. If an error

Personal Pascal Page 4-4

COMPILER OPTIONS (CONTINUED)
L]

occurs while your program is running, its execution
will stop and an alert box or a text line (for TOS
programs) will appear, describing the error. If you
are in full debug mode as well, you will be given
additional information about the error.

SEE: Full Debug Mode,

RANGE CHECKING

When the Range checking option is checked, the
compiler will generate code to check subranges and
array indices at run-time. If a range error occurs
while your progam is running, execution will stop and
an alert box or a text line (for TOS programs) will
appear, describing the error. If you are in full debug
mode as well, you will be given additional information
about the error.

SEE: Full Debug Mode, page 4-4.

PRINT LISTING

When this option is checked, the compiler prints a
listing to the screen as it compiles your program. This
option is UNCHECKED as default.

Personal Pascal Page 4-5

—COMPILER DIRECTIVES

The Personal Pascal compiler accepts a number of
compiler directives. These directives are embedded in
the source as comments. Comments starting with a
dollar sign {$ } are compiler directives.

The directives are made up of a single letter followed
by a plus or minus sign to switch the directive on or
off. One comment can contain more than one directive
if they are separated by commas.

NOTE: There are 2 variations of the Include directive,
{$1}. One of them is followed by a file name, instead of
plus or minus. The use of the {$1} directive with a file
name is the only case in which a space may be
present within a directive.

A compiler directive can be switched on or off
anywhere in the source, unless expressly forbidden in
its description. When a directive is set or reset, it may
be restored to its former state by specifying it with an
equal sign e.g: {$P=}.

EXAMPLES:

{$R-,T-,M-,P+}
(*$R+")
{$! incfile}
{$P-}
...some intervening code...

{$P=}

All of the compiler directives available in Personal
Pascal are explained in the following pages.

Personal Pascal Page 4-6

COMPILER DIRECTIVES (Continued)

L]

{$C+} CLEAR {$C-} = OFF
The Clear directive causes the compiler to generate
code to clear:

Local variables after invoking a subprogram
Dynamic memory returned by New
Initial function return values

NOTE: You can invoke this option from the Clear
variables box in the Compiler Options dialog.

{$D+} DEBUG {$D-} = OFF

This directive causes the compiler to include source
line number and subprogram names in the generated
" code. Run-time errors are then reported by
subprogram name and source line number.

NOTE: This option may only appear at the beginning
of a program.

NOTE ALSO: You can invoke this option from the Full
Debug mode box in the Compiler Options dialog.

{$E+} EXTERNAL ACCESS {$E-} = OFF

The External Access directive controls whether the
compiler makes subprograms accessible to other
modules.

SEE: Modular Compilation, page 4-11, and Appendix.
NOTE: GEMDOS, BIOS, and XBIOS subprograms

can’t be accessed by other modules, but they may be
re-declared in each module without conflict.

Personal Pascal Page 4-7

COMPILER DIRECTIVES (Continued)

{$! FILENAME]} - INCLUDE {$1-} = OFF

The Include directive is used to include another file in
the source at compile time. After reading the include
file, the compiler continues to compile the original file.
The file name may contain a path name and an
extension. The extension defaults to .PAS.

NOTE: Nested include files are not allowed.

B{$1+}- LONG INTEGER B{$!-} = OFF

The Long Integer directive is used to set all /Integer
references to Long integer references. {$L-} makes
Integer references Short_Integer again.

{$M} - MODULAR COMPILATION

The Module directive causes the compiler to compile
a module rather than a main program. When
compiling a module, the main program should be
empty because it never can be executed.

SEE: Modular Compilation page 4-11.

NOTE: This option may only appear at the beginning
of a program module.

Personal Pascal Page 4-8

COMPILER DIRECTIVES (Continued)
S,

{$P} - POINTER RANGE CHECKING

The Pointer Checking directive causes the compiler to
generate code to check pointer ranges before using
them. Pointers are compared to the bounds of the
run-time heap for validity.

NOTE: This option must be switched off when
pointers are used to access the base page or
addresses which are outside the heap.

NOTE ALSO: You can invoke this option from the
Range checking box in the Compiler Options dialog.

{$R} - RANGE CHECKING

The Range Checking directive controls whether the
compiler generates code to check subrange and array
bounds. It also controls whether code is generated to
check the bounds of strings and string parameters.

{$Snumber} - SPACE FOR STACK AND HEAP
EXAMPLE: {$S20} reserves 20 Kbytes.

This directive tells the compiler how much space to
allocate for the stack and heap, (in Kbytes) and may
only appear at the beginning of a program. This
directive is useful when compiling for TOS because all
available memory is allocated to the Stack/Heap
space (because you don’'t need GEM space).

SEE: ${U} - User Memory directive page 4-10.

NOTE: You may not use both the {$S} and {$U}
compiler directives at the same time.

Personal Pascal Page 4-9

COMPILER DIRECTIVES (Continued)

{$T}- TEMPORARY SPACE CHECKING

The Temporary Space Checking directive tells the
compiler to check the stack against the heap for
overlap, and to generate code at the start of each
subprogram to make this check.

{$Unumber} - USER MEMORY
EXAMPLE: {$U20} reserves 20 Kbytes.

This directive lets you specify how much memory you
want left over for the system after the Stack/Heap
space is allocated. (in Kbytes) This is useful when
compiling for GEM if you have a large resource. The
default is {$U10} when compiling for GEM, and this is
enough in most cases, though complex programs may
use 20K or more.

NOTE: If you are chaining programs, you must use
either the {$S} or {$U} directive to allow enough space
for the chained program to load.

NOTE ALSO: You may not use both the {$S} and
{$U} compiler directives at the same time.

Personal Pascal Page 4-10

DULA MP N

Personal Pascal extends standard Pascal by allowing
you to compile program modules separately and link
them later. When developing a large program, you
can write and debug separate modules and then link
them, reducing the time you spend compiling. You
can also use modular compilation to create libraries of
subprograms that you use frequently.

Personal Pascal Page 4-11

MODULAR COMPILATION (Continued)
“

WRITING A MODULE

A module is specified by switching on the Module
directive {$M+} in the first line of a program (before the
PROGRAM declaration). The module can contain as
many subprograms as you wish, but the main body
must be empty. Also, the External Access directive
must be on ({$E+}) when you declare a subprogram
that you want to be accessible outside the module.

If the subprograms in the module do not use the main
program’s variables, the module need contain only
those declarations and definitions required for the
subprograms’ parameters. If the subprograms do use
the main program’s variables, the module must contain
ALL global definitions (TYPE and CONST) and variable
declarations in EXACTLY THE SAME ORDER as they
appear in the main program. You can do this easily by
- creating a file that contains these definitions and
declarations, and then using the {$1} directive to
include it in both the main program and the module.

NOTE: If you change any of these definitions or
declarations, you must recompile all modules and
programs that use them. This makes the Compile All
command very useful.

If you compile the main program with the Full Debug
Mode box checked, you must also compile all other
modules with it checked. If you don't, strange effects
may result if a run-time error occurs.

Personal Pascal Page 4-12

The Personal Pascal linker connects your compiled
Pascal program to other linkable files so that your
program can be run. You can run it either from the
Personal Pascal Manager, using the "Run Program”
item in the Files menu, or from the desktop by
double-clicking its icon.

You will link different files to your program, depending
upon what you are doing. If you are not using link files
or libraries of your own, you still must link your
compiled program to the Pascal Run-time Library and
the GEM/Pascal Library (if you’re linking for GEM) to
make it self-sufficient.

LINKING A COMPILED PROGRAM
You may run the Personal Pascal linker from two
places: the Manager and the Compiler.

To link a program from Manager, select the "Link"
item from the "Files" item. The "Item Selector” will
appear and you can choose the file you want to link.

To link a program immediately after compiling it,
check the "Chain to linker” box in the Compiler
Options dialog. If your program compiles without
errors, the linker will load and link your program
automatically.

Personal Pascal Page 5-1

INKE PTION

Linker options are selected from the Manager. If you
move the mouse over the Manager’s Options title, you
will see that one of the items available is "Linker
Options”. If you click on this item, the Linker Options
dialog box will appear. The options in this dialog give
you extensive control over the Personal Pascal linker.
For convenience, the "Linker Options" discussion
from the section on the Manager is repeated here:

PROGRAM TYPE

As with the Compiler, you can tell the Linker to link
the appropriate GEM/Pascal files for a GEM program,
a TOS program, (no GEM functions) or an
ACCessory. Click the applicable radio button for the
type of program you are linking. If your program uses
any of the GEM/Pascal library functions, you should
leave the GEM option selected. Accessories assume
the use of the GEM/Pascal library.

NOTE: There are a few special considerations when

writing desk accessories.
SEE: "Writing Desk Accessories”, in the appendix.

Personal Pascal Page 5-2

LINKER OPTIONS (Continued)

ADDITIONAL LINK FILES

The linker automatically links Pascal object files and
Pascal library files to produce your program. If you
used the Modular compiler directive {$M}, you can
enter the names of additional files that you want
linked, such as assembly language modules, or other
Pascal object files. You can enter as many file names,
separated by commas, as will fit on the lines given.

NOTE: There is one restriction; a filename may not
extend from the first line onto the second line.

ASK FOR FILE TO LINK

When this box is checked, the Linker prompts you for
the name of the file you want linked. The default
filename is the last file edited, compiled or linked in
the current session.

IMPORTANT NOTE ABOUT LINK FILES:

The Personal Pascal version 2 linker works with files
in 2 formats: its own unique format, and the DRI link
format which is the Atari standard. There is a utility
available from OSS to convert Personal Pascal format
link files to the DRI standard.

SEE: Assembly Language, page 6-142.

Personal Pascal Page 5-3

BLANK
PAGE

Personal Pascal Page 5-4

This Section of the Personal Pascal manual contains a
definition and discussion of Pascal as implemented by
version 2 of Personal Pascal. This is most definitely a
reference manual and not a tutorial, so we must point
you to the books mentioned at the beginning of this
manual if you need help learning to program.
Generally, if you restrict your programming to those
capabilities described in this section and ignore the
GEM interface described in Section 7, you will find
that Personal Pascal version 2 will correctly compile
and execute example and problem programs found in
tutorials and other similar books. You should compile
and link your programs using the TOS options.

This part of the manual explains:

Pascal Definitions

Pascal Program Format

Special Topics

Predefined Pascal Subprograms.

Personal Pascal Page 6-1

PREFACE

For the most part, Personal Pascal conforms to
standard Pascal as that language was formulated by
the International Standards Organization (ISO). In
order to make Personal Pascal more viable in the
interactive environment of ST microcomputers,
however, OSS has implemented several extensions to
the ISO standard. The side effect has been that there
may be a very few areas where Personal Pascal is
unable to accept ISO standard programs. For this we
apologize, but we feel that on the whole the language
is much the stronger for the changes. Certainly
Personal Pascal version 1 quickly became a de facto
standard for Pascal programming on the ST. We
firmly believe that version 2 will be an even better and
more successful product.

The most useful Personal Pascal extensions to the
ISO standard include:

Random Access Files
STRING Data Type
OTHERWISE option in CASE statements
A Generic LOOP Statement
Two sizes of integer variables and constants
Optional Hexadecimal notation for integers
Modular Compilation
Flexible ordering of Declarations.
Assembler, System, and C calls

Personal Pascal Page 6-2

OVERVIEW

There are four major parts to this section of the
Personal Pascal manual: Definitions, Pascal Program
Format, Special Topics, and Predefined Subprograms.

Strictly speaking, the Personal Pascal language is
described in the PASCAL PROGRAM FORMAT part.
That part alone gives a moderately formal
presentation of the language, including syntax
diagrams.

If we had tried to take a formal approach to each
Pascal programming topic, this manual would be three
times the size it is now. Instead, we begin with a
DEFINITIONS section containing less formal
definitions of the basic building blocks of Pascal. We
have also given PREDEFINED SUBPROGRAMS their
own section, even though many of these subprograms
are part of 1SO standard Pascal.

Finally, we have included a section for SPECIAL
TOPICS which discusses features of Personal Pascal
not found in standard Pascal and advanced usages
that did not fit easily into any other categories.

Personal Pascal Page 6-3

EFINI N

Most algorithmic computer languages, for example,
Pascal, C, BASIC, Fortran, Algol and Ada, share basic
concepts such as variables, constants, comments,
arithmetic operators and expressions. This section
explains how Personal Pascal treats these language
elements.

Naturally, every language has its quirks and variations,
and Personal Pascal is no exception. As you read
these Definitions, be alert to the differences between
Personal Pascal and whatever computer languages
you may already know or be studying.

More importantly, the definitions made in this
sub-section are used throughout the rest of this
manual. They are usually not explained further as
they are used, so if you do not have a firm grasp on
these definitions, you will find yourself constantly
turning back to this section as you program.

This section is divided into two major topics: Pascal
Elements and Expressions. The first is obvious: we
need to define and describe the elements of Pascal.
The second is necessary: Computer programming
relies heavily on an ability to "express” a formula or
relationship in terms of underlying building blocks.

ELEMENTS page 6-5
EXPRESSIONS page 6-23

Personal Pascal Page 6-4

—PASCAL ELEMENTS

In one sense, every Pascal program can be broken
down into the individual characters that the
programmer enters in an effort to produce something
"acceptable” to the language compiler. For example,
a number such as 375 may be thought of as being
composed of the characters '3’, '7’, and '5’. But it is
not very productive (and pretty darned silly) to
constantly break programs down this far. Instead, we
will here define the elements that the rest of this
manual treats as the fundamental building blocks of
Personal Pascal.

In a few cases, you could argue that we have
arbitrarily designated something as "fundamental”.
For example, strings are quite clearly a special case
of groups of characters. Nonetheless we think these
6 elements represent a good working list:

SPECIAL SYMBOLS page 6-6

IDENTIFIERS page 6-8

LABELS page 6-11

CONSTANTS page 6-12

LANGUAGE DIRECTIVES page 6-18

COMMENTS page 6-22

Personal Pascal Page 6-5

PASCAL ELEMENTS (Continued)

SPECIAL SYMBOLS

Personal Pascal supports these special symbols:
+ = /1= <> ()11
{ Y., 542 &~

In general, these familiar symbols mean something in
Pascal that is similar to what we usually associate with
them, but remember that they do not act exactly as we
would expect them to in a mathematics formula or an
english sentence. Also, please notice that the
symbols in the last row are actually made up of two
characters each.

Some of the character symbols above have alternate
forms left over from the dark ages when computers
didn’t have keys like { or [. These alternates are:

(* for {
*) for }
(. for [
.) for]
@ for A

Personal Pascal Page 6-6

PASCAL ELEMENTS (Continued)

Personal Pascal also recognizes the words in this list:

AND ARRAY
BIOS C

CONST DIV
DOWNTO ELSE

EXIT EXTERNAL
FOR FORWARD
GEMDOS GOTO

IN LABEL
MOD NOT

OR OTHERWISE
PROCEDURE PROGRAM
REPEAT SET

T0 TYPE

VAR WHILE
XBIOS

BEGIN
CASE
DO

END
FILE
FUNCTION
IF

LOOP
OF
PACKED
RECORD
THEN
UNTIL
WITH

These word symbols are often called reserved words
or keywords because they make up Pascal’s basic
vocabulary and can’t be redefined within a program.

Personal Pascal Page 6-7

PASCAL ELEMENTS (Continued)

IDENTIFIERS

There are two kinds of identifiers: Those you define
yourself (or find in system libraries) and predefined
identifiers.

PROGRAMMER DEFINED IDENTIFIERS

Identifiers allow you to add to Pascal’s vocabulary.
When you define or declare something within a Pascal
program, you give it a name, or identifier, so that you
can later refer to it without confusing Pascal.

All identifiers must begin with a letter, but after that
may contain letters, digits, or the underscore
character (_):

NOTE: Personal Pascal makes no distinction between
lower and upper case letters. "ABC" and "abc" are
the same.

Practically speaking, there is to limit to the number of
characters you can have in an identifier used internally
to a Pascal program, although the real limit is
somewhere between 100 and 120 characters. External
identifiers have smaller limits, however. Pascal
externals have a maximum length of 8 characters. C
language externals have a maximum length of 7
characters.

Personal Pascal Page 6-8

PASCAL ELEMENTS (Continued)

PREDEFINED IDENTIFIERS

Personal Pascal has several predefined identifiers.
They are described more fully later in the Reference
manual:

PREDEFINED DATA TYPES:

Alfa Byte

Boolean Char

Integer Long_Integer
Real Short_Integer
String Text

PREDEFINED CONSTANTS:

False Input
Long_Maxint Maxint
Nil Output
True

Personal Pascal Page 6-9

PASCAL ELEMENTS (Continued)

PREDEFINED PROCEDURES:

BasePage Chain Cmd_GetArg
Delete Dispose Erase

Get Halt Insert
10_Check 10_Result Mark
Message New Pack

Page Put Read

Readin Release ReName
ReSet ReWrite UnPack
Write Writeln

PREDEFINED FUNCTIONS:

Abs ArcTan Chr

Clock Close Cmd_Args
Concat Copy Cos

Eof Eoin Exp
Filename Handle KeyPress
Length Ln Long_Round
Long_Trunc MemAuvail Odd

Option Ord Pos

Pred PwrOfTen Round

Shi Short_Round Short_Trunc
Shr Sin SizeOf

Sqr Sqrt Succ

Trunc

Personal Pascal Page 6-10

PASCAL ELEMENTS (Continued)

LABELS

Labels are very specialized and rarely used in Pascal.
They are used only when non-linear program flow
can’t be avoided in a program, and they require the
dreaded GOTO statement to be useful. Since a major
point of structured programming is to avoid such
indiscretions, this is a rare occurrence indeed.

A label is a decimal digit sequence. The range of
labels in Personal Pascal is 0 to 32767. These are
valid labels:

LABEL 10 ;
LABEL 1;
LABEL 3543 ;

Labels are used only in GOTO statements, such as
GOTO 10 ;

SEE: GOTO statements, page 6-108
Label Declarations, page 6-43

Personal Pascal Page 6-11

PASCAL ELEMENTS (Continued)
e

CONSTANTS

Pascal understands four types of constants: numbers,
characters, logical states and strings.

Because there are different types of numbers, Pascal
breaks the data type NUMBER into three separate
data types, making six classes of constants to be
discussed here. Each of these classes corresponds
directly to one of Personal Pascal’'s fundamental
predefined data types. Further implications of these
types are described in the section titled TYPES. One
consequence is that we tend to make little distinction
between constant data and variables of the same
types. The type classes are:

Strings

Real
Short_Integer
Long_Integer
Boolean

Char

The last four of these are ordinal types - the set of
data they represent is finite and ordered. Real data is
not ordinal because its data set is not finite. Although
the set of all Pascal strings is finite, it is not
considered to be ordered, and so strings are not
ordinal.

Personal Pascal Page 6-12

PASCAL ELEMENTS (Continued)
L]

CHARACTER STRINGS
A character string is one or more printable characters
enclosed within single quotes (’). If you want to use a
single quote within a character string, use two single
quotes ().
All of the following are valid character strings:

'this is a string’

'5 238 test 58 " single quote image’

NOTE: A single character between quotes is usually
considered to be a character constant, not a string.

ALSO: No string may exceed 255 characters in
length.

Personal Pascal Page 6-13

PASCAL ELEMENTS (Continued)
L

REALS

Although Real is not an ordinal type, it does have
order since 1.0 is less than 1.1. You can think of Real
values in Pascal as close approximations of real
values in mathematics but, due to limits imposed by
internal representation, Pascal Real values are a
subset of mathematical reals.

Real numbers may be represented only in decimal
notation, and are made up of two parts: a mantissa
and a scale factor (exponent). The mantissa is either
a decimal integer or a floating point decimal number.
The scale factor is a decimal integer prefixed by an
"e". This e means "times ten to the power". For
example, 2.5e3 is the same as 2.5 times 10 to the
third power (1000), which equals 2,500. Unless a real
number has a scale factor, the mantissa must be a
decimal number with at least 1 digit on each side of the
decimal point. 1e20, 535.0, and 0.4348E-12 are
examples of valid reals.

In Personal Pascal the mantissa has 11 digits of
precision maximum, and the scale factor (exponent)
has a range -38..38. This means that the largest Real
is about 1.0E38, and the smallest (closest to zero) is
about 1.0E-38.

Personal Pascal Page 6-14

PASCAL ELEMENTS (Continued)

ORDINALS:
INTEGERS

Decimal integers may be preceded with a plus (+) or
minus (-) to denote sign, and consist of decimal digits
(’0’..’9’). Personal Pascal assumes that a decimal
integer is positive (+) if you do not specify its sign.

100, -4323, and 0 are examples of decimal integers.
Hexadecimal integers must be prefixed with a dollar
sign ($) or a double quote ("), and consist of
hexadecimal digits '0’..’9’ and 'A’..’F’. The digits 'a’..’f’
are also allowed. These are examples of valid hex
integers:

"64E $AFFE $affe
SHORT_INTEGERS
Short_Integer values are whole numbers ranging
between -32,767 and +32,767 decimal. This number,
32,767 is the value of the predefined constant Maxint.

Hexadecimal Short_Integer values range bétween $0
and $FFFF.

Some examples of valid Short_Integer values are:

0 31000 -743 +2957 $6FFE "1000 $7fff

Personal Pascal Page 6-15

PASCAL ELEMENTS (Continued)

LONG_INTEGERS

Long_Integer values range between -2,147,483,647
and +2,147,483,647 decimal. This number is the
predefined constant Long_Maxint. Hexadecimal
Long_lInteger values range between $0 and
$FFFFFFFF.

Some examples of legal Long_Integer values are:
1000000 -58104 $6a479e "OOFFFFO0O
NOTE: Because integers are signed numbers, while
their hex representation is not, seemingly positive hex

values may be negative integers.
Short_Integer values:

$8000 - $FFFF
are negative, as well as Long_Integer values:

$80000000 - $FFFFFFFF

If the most significant bit is 1, the integer value is
negative.

CAUTION: When a Short_Integer value is used
where a Long_Integer is required, Personal Pascal
automatically extends the Short_Integer, including its
sign. Thus, $FFFF is extended to $FFFFFFFF.

Personal Pascal Page 6-16

PASCAL ELEMENTS (Continued)

CHARACTERS (CHAR)

The value of CHAR data consists of a single ASCII
character. Some examples of valid CHAR values are:

’a, Iz! ’ ;l
You can assign non-printable characters to CHAR
variables using the CHR transfer function, or using the
special Personal Pascal notation: #n.
EXAMPLES:

#48 Is the same as '0’
#13 Is The ASCII 'Return’ character

NOTE: Character constants from #0 to #255 are
legal uses of this notation.

BOOLEAN

This data type has only two values, represented by

the predefined words FALSE and TRUE. For
purposes of comparison, FALSE is less than TRUE.

Personal Pascal Page 6-17

PASCAL ELEMENTS (Continued)

LANGUAGE DIRECTIVES

Language directives are different from compiler
directives. Compiler directives tell the compiler to
perform special tasks such as listing, code generation,
and the like. Language directives notify the compiler of
special situations within your Pascal program.

Personal Pascal supports the ISO standard language
directive FORWARD as well as EXTERNAL, C,
GEMDOS, BIOS and XBIOS directives, all used to
interface to program elements outside the scope of
standard Pascal, such as separately compiled
modules, other languages and the ST operating
system.

Language directives ALWAYS are used after a
PROCEDURE or FUNCTION header, to denote that
the named routine is not followed by the normal Pascal
declarations or body.

SEE: Subprogram Declarations, page 6-84

Personal Pascal Page 6-18

PASCAL ELEMENTS (Continued)

FORWARD

The FORWARD directive allows mutually recursive
subprograms (A calls B which calls A). When you
use the FORWARD directive in a subprogram
heading, you must fully declare that subprogram
somewhere later in the program. When you do, you
need only specify whether it’s a procedure or function
and its identifier. Redeclaration of its formal
parameters is prohibited. An example of a
FORWARD declaration will clarify is use and
usefulness:

PROCEDURE First(i,j:Integer) ;
FORWARD ;

PROCEDURE Second(k,l:Integer) ;
BEGIN

First(k,) ; { calling First }
END ; { end of Second }
PROCEDURE First ;
{ now comes the declaration of what First does.
Notice that no parameters are specified. }
BEGIN
gecond(i,j) ; { calling Second, which calls First }

END ; { end of First}

Personal Pascal Page 6-19

PASCAL ELEMENTS (Continued)

6 —

EXTERNAL

The EXTERNAL directive allows you to reference
subprograms that are in different modules.

EXTERNAL assumes that the subprogram was written
either in assembly language (using the Personal
Pascal register, parameter, and return value
conventions described in the section on Special
Topics) or in Personal Pascal and compiled with the
{M+} modular compilation compiler directive.

CAUTION: In contrast to most Pascal identifiers,
EXTERNAL identifiers ARE case sensitive.
SEE: Modular Compilation page 4-11

o

The C directive allows you to reference subprograms
written and compiled using Digital Research’s C
compiler, or assembly language programs that were
written using the same linking scheme as Digital
Research’s C.

NOTE: Personal Pascal converts the subprogram

name to lower case and precedes it with an
underscore character to meet C conventions.

Personal Pascal Page 6-20

PASCAL ELEMENTS (Continued)

L]
GEMDOS, BIOS, XBIOS

These directives allow you to make direct system calls
to the GEMDOS, BIOS, and XBIOS levels of TOS.
Each directive takes one integer constant as a
parameter, defining which GEMDOS, BIOS or XBIOS
routine you want to access.

As an example, TOS provides XBIOS call number 17
which returns a 24-bit random number each time it is
called. From Personal Pascal, the following function
declaration is sufficient to provide access to that call:

FUNCTION Random : Long_Integer ;
XBIOS(17) ;

Then, in your program, you may may request random
numbers as easily as this:

IF (Random & 3) = 0 THEN
{ this code will be executed 25% of the time }

NOTE: Further examples of these directives are to '
be found in the demo programs on your Personal
Pascal diskettes.

Personal Pascal Page 6-21

PASCAL ELEMENTS (Continued)

COMMENTS

Comments allow you to describe what you’re doing in
a Pascal program without getting syntax errors
because you used English instead of Pascal.
Comments begin with either a left brace, {, orits
alternate, (*, and are terminated by the matching
terminator, } or *). Between these symbols you can
have any number of text lines and the compiler will
ignore them.

NOTE: Comments that begin with '{" must be
terminated with '}’, and ones that begin with '(*’ must
end with '*)’. This matching allows you to nest
comments in Personal Pascal, e.g.:

(* { A comment } within a comment *)

CAUTION: Any comment beginning with {$ will be
interpreted as a COMPILER DIRECTIVE, not to be
confused with LANGUAGE DIRECTIVES as described
above.

SEE: Compiler Directives page 4-6.

Personal Pascal Page 6-22

—EXPRESOIONS

Many places in pascal you will find that the syntax
requires a value. The only values we have described
so far are constants. Variables and Functions also
have associated values, but a value in Pascal is not
limited to a single such element; it can be expressed
as a formula. These formulas are called expressions
and are made up of operands representing values and
operators that manipulate the values.

Personal Pascal Page 6-23

ORDER OF PRECEDENCE

Because operators can introduce ambiguity into an
expression, a standard order of operator evaluation is
needed. This order is called precedence, and is:

First: NOT ~
{negation operators}

Second: * / DIV MOD AND &
{multiplication operators}

Third: + - OR |
{addition operators}

Last: = <> > »>= < <= IN
{relation operators}

Operators on a row have left to right precedence
within the row. Using this precedence table, we see
that 8*4-7, for example, would be evaluated as (8*4)-7
because the "*" operator has higher precedence than
the "-", giving us a final result of 25.

Please keep in mind that the terms negation,
multiplication, addition, and relation do not imply any
specific data type. They merely describe the kind of
action an operator performs on a compatible data

type.

Personal Pascal Page 6-24

RESULT TYPES

If an expression consists of a single operand (i.e. has
no operators) the resulting value is obviously of the
same data type as the operand. When expressions
become more complex, their results can take one of
two forms: numeric or boolean. The form can be
determined from the last operator evaluated. The
tables on the following pages show the data type of
the resultant value when a specific operator is used to
evaluate specific operand types.

ARITHMETIC OPERATORS:
* Multiplication of operands.
+ Addition of operands.
- Subtraction of second operand from first.

Operand Type: Integer, Long_Integer, or Real.

Result Type: If both operands are Short_Integer
the result will be Short_Integer.

If one is a Long_Integer and the other
is an Short_Integer or Long_Integer,
the result will be a Long_Integer.

If one or both operands are Real the
result will be Real.

Personal Pascal Page 6-25

OPERATORS, OPERANDS, and RESULT TYPES

/ Real Division of first operand by second.

Operand Type: Integer, Long_Integer, or Real.

Result Type: Always Real.
DIV Integer Division of first operand by
second.

MOD Modulus of integer division of first
operand by second. The modulus is the
remainder left over after integer division.

& Bitwise AND of operands.
| Bitwise OR of operands.

Operand Type: Short_Integer or Long_Integer.
Result Type: Short_Integer if both operands are

Short_Integer; otherwise
Long_lInteger.

~ One’'s Complement of a single operand.
Operand Type: Short_Integer or Long_Integer.

Result Type: Same as that of operand.

Personal Pascal Page 6-26

OPERATORS, OPERANDS, and RESULT TYPES

L]

BOOLEAN OPERATORS:
AND Logical AND (conjunction) of operands.
OR Logical OR (disjunction) of operands.
NOT Logical negation of single operand.
Operand Type: Boolean.

Result Type: Always Boolean.

RELATIONAL OPERATORS:

= Equivalence of operands.
<> Non-equivalence of operands.
> First operand greater than second.

>= First operand greater or equal to second.
< First operand less than second.
<= First operand less or equal to second.

Operand Type: Any compatible simple types or
STRINGS.

Result Type: Always Boolean.

Personal Pascal Page 6-27

OPERATORS, OPERANDS, and RESULT TYPES
L

SET OPERATORS:

= Set equivalence.

<> Set non-equivalence.

>= First operand equal to or superset of
second.

<= First operand equal to or subset of
second.

Operand Type: SET of compatible base types.

Result Type: Always Boolean.

IN Set inclusion.

Operand Type: First operand of ordinal type T,
second a SET of base type T.

Result Type: Always Boolean.

* Set intersection.

+ Set union.
- Set difference.
Operand Type: SET of compatible base types.

Result Type: Same type as operands.

Personal Pascal Page 6-28

INTRODUCTION

This section presents a moderately formal definition of
the Personal Pascal language. This is where the
structure of Pascal is discussed; we even go so far as
to use syntax diagrams to show you this structure.

This section will let you determine whether Personal
Pascal supports a particular feature or not, but not
every part of the structure of Pascal is discussed
here. For example, the standard predefined
subprograms that are part of any Pascal, such as
ReadlLn and WriteLn are purposely omitted because a
formal presentation of such subprograms would take
up far too much space and not be as readable as the
informal approach used here. Generally, Personal
Pascal implements the standard subprograms as
shown in most Pascal tutorial and reference books.

Before we begin looking at the structure of Pascal we
need to introduce two topics:

BLOCK STRUCTURE page 6-30
SCOPE page 6-31

Personal Pascal Page 6-29

PROGRAM FORMAT (Continued) '
“
BLOCK STRUCTURE

Pascal is a block-structured language. This simply
means that a Pascal program consists of a single
block that may contain within it subprogram blocks,
each of which may contain other subprogram blocks,
to any number of levels. Let us begin by looking at a
trivial but proper Pascal program:

PROGRAM Lazy ;

PROCEDURE Do_Nothing ;
BEGIN

END ;

PROCEDURE Do_More ;
BEGIN
Do_Nothing ;
END ;

BEGIN

Do_More ;
END.

Personal Pascal Page 6-30

PROGRAM FORMAT (Continued)

Do you see the similarities in the three blocks that
make up this program? Each has a header that
serves to give it a name; Lazy, Do_Nothing, and
Do_More, and a BLOCK. In our simple example, each
block shown begins with the word BEGIN and ends
with the word END. In a more typical program, each
block might also include one or more
DECLARATIONS but the BEGIN and END keywords
would always be there. The only trick to this is that
declarations of an outer block always precede the
definition of any inner blocks.

Another way to look at it, as we do in this manual:

The definition, or naming of an inner block is simply
part of the declarations of the enclosing outer block.

Since all declarations must proceed in a certain order,
it's reasonable that inner block declarations are the
last declarations of a block, before the BEGIN...END
portion. Perhaps another topic and example will
help...

SCOPE

SCOPE is shorthand for "What can be referenced or
used where." The What in that expansion is
DECLARATIONS of all kinds. The where is what we
want to explore.

We have mentioned declarations casually, and we will
not explore them in detail for several pages, but for
now let us consider some VARIABLES, as declared in
the example on the next page:

Personal Pascal Page 6-31

PROGRAM FORMAT (Continued)

PROGRAM Prog ;
VAR A,B,C : Real ;

PROCEDURE Proct ;
VAR A,D,E : Long_lInteger ;

PROCEDURE Proci1A
VAR B,D,F : Short_lInteger ;
BEGIN
ShowTypes
END ;

PROCEDURE Proc1B
VAR A,D,F : String ;
BEGIN

ShowTypes
END ;

BEGIN
ShowTypes
N .

PROCEDURE Proc2 ;
VAR A,B,E : Boolean ;
BEGIN

ShowTypes
END ;

BEGIN

ShowTypes
END ;

Personal Pascal Page 6-32

PROGRAM FORMAT (Continued)
L

In the program on the previous page, we have
invented an imaginary predefined subprogram called
ShowTypes that will, when called:

Show the name of the program or subprogram

block that called it.

Show the TYPES of all the variables A, B, C, D, E,
and F as they exist in that block.

Call all inner subprograms in turn, to ensure that
each of them will have an opportunity to use

ShowTypes.

Unfortunately, ShowTypes is indeed imaginary. In
fact, we know of no way within the structure of Pascal
to write or invent such a subprogram. But let’'s
pretend anyway. If ShowTypes worked properly, this

is what we would see:

Name A B

Prog Real Real
Proc1 Long Real
Proc1iA Long Shrt
ProciB Strg Real
Proc2 Bool Bool

C D E

L 2 * &

Real

Real Long Long

F

*k

* &

Real Shrt Long Shrt
Real Strg Long Strg

Real ** Bool

Personal Pascal

*h

Page 6-33

PROGRAM FORMAT (Continued) -

Study the example output table closely. Note that **
indicates an undefined and unavailable variable. Do
you see what has happened?

In each case the subprogram has inherited the
variables of the block that encloses it, excepting that
variables defined within that same subprogram have
priority. The clearest case of this is variable A, which
is defined differently in each subprogram except for
PROC1A where it inherits the long type from PROC1.

Consider variable C, which no subprogram defines
and thus is accessible to all levels. Finally, notice that
no variable is inherited outward, from an inner block to
an enclosing block.

It’s not just the TYPES of variables that are inherited
in this fashion. All declarations previously made by an
outer block are available to any inner block. The
exceptions: Only those identifiers of the same kind
and name that are re-declared in the inner block.

Notice the word previously in the above. In our
example, Proc1A is available to Proc1B, but NOT vice
versa. Pascal does not normally allow FORWARD
REFERENCES, but there are some exceptions to and
ways around this restriction.

Personal Pascal Page 6-34

PROGRAM FORMAT (Continued)

NOTE: By convention, declarations made in the main
program block, as opposed to within subprogram
blocks, are considered global declarations. Unless
redeclared, their scope is global throughout the
program, hence the name.

ALSO: Declarations made in subprogram blocks are
said to be /ocal declarations. However, phrases such
as "local to the declaring block"” apply equally to
subprogram and program blocks, since global is
considered simply a special case of local.

Personal Pascal Page 6-35

PROGRAM FORMAT (Continued)

O —

SYNTAX DIAGRAMS

Once we have the elements of Pascal defined, we
need to explore its syntax. Syntax refers to the
well-defined set of rules that comprise a computer
language. Any language, including English, has rules
of syntax:

understand example for proper without this syntax.

Could you unscramble that to make an understandable
English sentence? If you have trouble, think how hard
it is for a poor Pascal compiler, with its limited brain
power. No wonder we need a set of rules! But what
good are rules if you don’t have a way to describe
them?

It's possible to describe the syntax of Pascal entirely
in English, but it would take an enormous amount of
paper, and the result would be an unreadable mess.
We need a readable symbolic description.

One of the problems in describing a computer
language with symbols is that we tend to want to use
the same symbols in the description that the language
itself uses in its syntax. For example, here is part of
the syntax of Pascal's assignment statement as it
would be described in Backus-Naur form, probably the
most commonly used symbolic form:

assignment ==
variable [[’ value [,value...] ']’] ":=’ value

Personal Pascal Page 6-36

PROGRAM FORMAT (Continued)

Is that clear to you? Which of those square brackets
should you type? What do the other square brackets
mean?

Because of the confusion, we have chosen to use
language Syntax Diagrams. The syntax diagrams
used here are often called Railroad Tracks. With a
little imagination, you can see why. Here is the same
partial description of the assignment in railroad track

form:
variable j [Cvah;D]>

C‘ = —» value

Imagine you are an engine that can only go forward.

Start at the beginning of the diagram at the word
VARIABLE. Every time you see a branch, you can
take it or not. Every time you encounter a symbol or
word that is not part of the tracks, except for the
arrows which are part of the tracks, you collect that
item. All symbols and upper case words are collected
exactly as they are shown in the diagram. Lower case
words are further explained elsewhere, such as the
section on DEFINITIONS.

Personal Pascal Page 6-37

PROGRAM FORMAT (Continued)

Put your engine on the tracks and see what valid
assignment statements you can make. Among many
others, we created these:

variable := value
variable [value] := value
variable [value , value] := value

If this is not clear immediately, try reading some of the
following syntax diagrams. We tend to keep them
simple by using a lot of lower case words that are
explained later with their own syntax diagrams.

Personal Pascal Page 6-38

STRUCTURE

program header

block—» .

In the discussions of block structure and scope, we
have already shown some examples of program
structure. Specifically, each program consisted of the
word Program followed by a name for the program and
then followed by a BLOCK. The word Program
introduces a program’s HEADER, and we need to
discuss that further before proceeding.

Personal Pascal Page 6-39

PROGRAM STRUCTURE (Continued)

PROGRAM HEADER

PROGRAM — name ——>

<

(gb file wvariable l)»76 ;

As the diagram reveals, there can be more to a
program header than the word Program followed by a
name. Specifically, we might enclose one or more file
variables in parentheses before the semicolon that
terminates the header.

Standard ISO Pascal provides for PROGRAM
PARAMETERS. For compatibility, Personal Pascal
allows these parameters, but completely ignores
them, since there is no standardized way in the
TOS/GEM environments to associate particular files
with the given file variables.

CAUTION: If any file variables are given in the
header, they must be properly declared global
variables. The exceptions: In accordance with ISO
Pascal, the file variables /nput and Output are always
available as pre-declared as Text variables.

Personal Pascal Page 6-40

PROGRAM STRUCTURE (Continued)

PASCAL BLOCKS, PART |

declarations —-j

Begin —0)
C)
statement ——& END

We have already noted the general structure of Pascal
blocks: A block consists of optional declarations
followed by a BEGIN...END pair that enclose one or
more statements. The enclosed statements are
separated by semicolons not terminated by them, as
we shall see later.

Until we look at how declarations are made, there is
only one comment to be made here: Note in the
Pascal Program Structure diagram, that the block of
any main program is terminated by a period. As we
will see later, subprogram blocks are terminated by a
semicolon. Aside from the form of subprogram
headers, this is the sole discernible difference in
Pascal's neatly recursive block structure.

Personal Pascal Page 6-41

kb labe! declarations —O)
f‘
'\o constant docl-rationl—b)
(A
b type declarations —>)
fA
\—b variable declarations —b)

N _)
subprogram declaration
‘}

Within any given standard Pascal block, as many as
five different kinds of things may be declared. Label,
constant, type, and variable declarations are all
grouped, in that order, under an appropriate heading
keyword. Subprogram declarations are grouped last,
but each subprogram has its own header to
distinguish it.

SPECIAL FEATURE: Personal Pascal version 2
allows these declarations in any order, with repetitions
of any kind of declaration allowed, so long as each
repetition is preceded by the appropriate keyword.
This makes Include files easier to work with. Note
that, in general, forward references still are not
allowed.

Remember the scope of declarations: All inner blocks
have access to all declarations of the enclosing block,
unless they make a redeclaration of the same name
and kind.

Personal Pascal Page 6-42

DECLARATIONS (Continued)

LABEL DECLARATIONS

LABEL—Q label number —20 ;

The declaration of labels is extraordinarily simple. In
each block, labels local to that block are declared one
after another, with separating semicolons, following
the keyword LABEL.

EXAMPLE:
PROCEDURE Proc1;
LABEL

0 ; (* emergency exit *)
100 ; (* user typing error *)

Personal Pascal Page 6-43

DECLARATIONS (Continued)

CONSTANT DECLARATIONS
CONST

name —& = —-§>

numeric constant

string constant

>

If there are values that do not change throughout the
duration of your program, you might give them names
rather than having them crop up in your program as
magic numbers. Constants given names as described
here are called DECLARED CONSTANTS, or
sometimes PROGRAM CONSTANTS. Using declared
constants offers several advantages, including:

Increased portability

Documentation of implementation-defined values
Setting program-specific bounds and limits.

Personal Pascal Page 6-44

DECLARATIONS (Continued)

Personal Pascal supports two types of declared
constants: Numbers and Character Strings. Declared
constants can be used in several places:

When defining program constants using CONST
When assigning values to variables

When comparing current variable values to
expected ones

In short, wherever an ordinary constant of the same
type can be used.

This is an example of a valid set of constant
declarations:

CONST Minint = -Maxint ;
pi = 3.1415926535 ;
pie = 'pie’ ;
our_wives = 'Bev and Barb’ ;
mole = 6.022E23 ;

A declared constant may not reference itself in its
definition ; for example:

CONST Bad =-Bad ;
is illegal.

NOTE: The symbols '+’ and ’-’ may only be applied

to constant identifiers that refer to numeric constants ;
not character strings.

Personal Pascal Page 6-45

TYPE :
b type name —& = named type ﬁ

~ named type —\

ordinal type —\

structured type \

N)
.

Sooner or later you will want to create your own data
types ; either mixtures or ranges of predefined types,
or a new type altogether. You can do this in the type
definition section of a block. The general form of the
type definition is shown in the railroad tracks above,
but we will break it down further. Before doing so, we
need to look at a topic referred to in several places in
this section, even though its importance won’t be
obvious until later sections where assignments are
discussed.

Personal Pascal Page 6-46

TYPE DECLARATIONS (Continued)

TYPE COMPATIBILITY

Pascal imposes compatibility rules on data types to
insure that data manipulation remains consistent
within a program. This compatibility becomes
important on two occasions: when passing parameters
or when assigning values to variables. Two variables
are type compatible if any one of the following is true:

They are of the same type.
Both are subranges of the same ordinal type
One is a subrange of the other

Both are SETS or PACKED SETS and have the
same ordinal base type.

They are STRINGS of the same declared size.

The additional rules regarding assignment are called
Assignment Compatibility.
SEE: Assignment Compatibility, page 6-105

Personal Pascal Page 6-47

TYPE DECLARATIONS (Continued)

NAMED TYPES

Named types are data types that have a name, either
predefined by Personal Pascal or defined in a
preceding TYPE section in your program. When you
define two variables as the same type by name, you
ensure type compatibility between them.

As shown in the syntax diagram on page 46, you may
define a type as being equal to a named type name.
That is, a type identifier may be made to become
equivalent to another type name.

The predefined Personal Pascal types which may be
used whenever a named type is needed are

Alfa Byte Boolean

Char Integer Short_Integer
Long_Integer Real String

Text

SEE: Examples on the next page

Personal Pascal Page 6-48

TYPE DECLARATIONS (Continued)

Some examples of using named data types in a type
declaration are:

TYPE
payment = Real ;
total = payment;
name = String ;
count = Short_lInteger ;
subcount = count ;

SPECIAL NOTE: Standard Pascal does not define
or support Personal Pascal’'s Short_Integer or
Long_Integer data types. Instead, only the generic
Integer type is defined. By default, Personal Pascal
treats all references to Integer as if the you had coded
Short_Integer. However, you can use the {$|+}
compiler directive to force references to Integer to
become equivalent to Long_Integer. This flexibility
allows you to produce programs which are as
compatible as possible with various other Pascal
compilers. Naturally, variables of type Short_Integer
cause faster program execution and use less memory
than those of type Long_Integer.

Personal Pascal Page 6-49

TYPE DECLARATIONS (Continued)

POINTERS TO NAMED TYPES

A type identifier may also be used to denote a pointer
to an existing named type. Declaring such POINTER
TYPES is easy. Some examples of declaring pointer
types are:

TYPE
Char_Pointer = ACHAR ;
Node_Pointer = ANode ;
Node = RECORD
value : STRING ;
leftchild, rightchild : Node_Pointer ;
END ;

Notice that the Node_Pointer’s domain-type, what it
points to, is defined after the pointer type itself. This
is legal only if the domain definition is in the same
TYPE section as the pointer section. The advantage
is that it's easy to create linked structures, such as
trees and lists.

NEW TYPES

Though not shown in the syntax diagram above, the
term NEW TYPES is used throughout this manual, so
an explanation is in order.

Personal Pascal Page 6-50

o

TYPE DECLARATIONS (Continued)
I

A new type is anything that isn't a namedtype. If you
declare a variable using a type that consists of
anything other than the name of an already defined
type, you are specifying a new variable type.

CAUTION: In standard Pascal, new structured types
are generally not compatible with other named types,
even if they are declared identically. Personal Pascal
is a little more liberal in its type compatibility and
assignment compatibility rules. Some permissible
Personal Pascal record assignments, for example, will
not be portable to other Pascal compilers.

SEE: Referencing Records, Page 6-82

NOTE: Your programming style will become more
elegant, and readable if you define all of your types in
the TYPE section and then use only named types
when declaring variables. One of Pascal's virtues is
the outstanding readability of properly written
programs.

Personal Pascal Page 6-51

TYPE DECLARATIONS (Continued)
ORDINAL TYPES

ordinal name type
enumerated type

subrange type

As the syntax diagram shows, there are three kinds of
ordinal types. The first kind is simply the name of an
already-defined ordinal type. There are six predefined
ordinal types in Personal Pascal:

Byte Boolean Char
Integer Short_Integer Long_Integer

SEE: Definitions, page 6-12 for the ranges of values
these types may take.

In addition, any ordinal types that you create, in
accordance with the rules of this section, become
named ordinal types.

The other two new ordinal types are always

programmer declared: enumerated types and
subrange types.

Personal Pascal Page 6-52

TYPE DECLARATIONS (Continued)

ENUMERATED TYPES

> (:bordin:ljb)—b

An enumerated type is simply a data type whose
elements are each defined with an identifier.

EXAMPLE:

TYPE Rainbow = (Red, Orange, Yellow, Green, Blue,
Indigo, Violet) ;

VAR filter : Rainbow ;
filter := Blue ;

The ordinal, (Ord), predecessor (Pred), and
successor (Succ) values for an enumerated type
depend entirely upon the order in which the elements
are listed in the type definition. In our example,:

Ord(Red) is 0

Pred(Blue) is Green
Succ(Indigo) is Violet
Ord(Violet) is 6

Note that the Ord value of the first element in the list
is 0, not 1.

Personal Pascal Page 6-53

TYPE DECLARATIONS (Continued)

SUBRANGE TYPES

—+» ordinal —» .. —» ordinal —»

Pascal offers an extension to ordinal types that can
also increase the readability of your programs. This
extension is subranges of ordinal types. If you were
manipulating only upper case letters, you could

declare a variable like:

VAR achar : CHAR ;
This does not imply that you are using only upper
case letters. Using a subrange of the Char type can
make this obvious:

TYPE Caps ='A'.."Z’ ;

VAR achar : Caps ;

This form directly implies that you’re using only upper
case letters.

Personal Pascal Page 6-54

TYPE DECLARATIONS (Continued)
L

Both of the constants must belong to the same ordinal
data type, and the first constant, the low boundary,
must be less than or equal to the high boundary of the
subrange. Also note that the constants may be of an
enumerated ordinal type, as shown in this example:

TYPE Reds = Red..Yellow ; { type Color }

SPECIAL NOTE: We stated that Byte was a
predefined ordinal type. Actually, Byte is traditionally
described as a predefined subrange, as though you
had made a declaration such as this:

TYPE Byte = 0..255 ;
Byte simply represents positive Short_Integer values
that can be contained in one byte. In PACKED

ARRAYS or RECORDS, restricted subranges, such
as Byte, may use less memory.

Personal Pascal Page 6-55

—STRUCTURED TYPES _
kb string type ———\

N—s PACKED —)

r

b array type ———ﬂ
\—> record type —-ﬂ
¥> set type —-—\

file type >

The simple data types described above cover
information that Pascal considers as single units, but
we frequently think of more complex information as a
single piece of data. A good example is a checking
account entry. Although it’s one entry, it's made up of
several pieces of information, including:

DATE OF TRANSACTION
TRANSACTION NUMBER
TRANSACTION TYPE
CHECK NUMBER

PAYEE

PURCHASE MEMO

The structured types in Pascal allow you to group
items like this together so that your program can more
closely model human reality.

Personal Pascal supports five different structured
forms of data.

Personal Pascal Page 6-56

STRUCTURED TYPES (Continued)
e

STRINGSs are similar to arrays, but are designed
especially for character data. In addition, Personal
Pascal provides several built-in subprograms and
operators that let you manipulate string data easily.
SEE: page 6-59

The RECORD type allows you to group information of
different data types, as in our checking account
example. Records are very useful when describing
complex information with many attributes.

SEE: page 6-61

The ARRAY groups information of the same data type
together, and is useful when creating lists of similar
data, like test scores.

SEE: page 6-68

The FILE type gives you access to external devices
like disk drives and printers, so you can create and
read data that exists outside your program.

SEE: page 6-71

The SET type lets you collect data into a group which
can then be compared to other groups. Unlike arrays
and strings, sets have no inherent order. A SET has
no first element or last element.

SEE: page 6-74

Personal Pascal Page 6-57

STRUCTURED TYPES (Continued)

All of the structured types but STRING can be
PACKED. Packing a structured type generally
reduces the amount of space occupied by the type,
but often increases the time required to access items
within the structure. If you declare a type as
PACKED, you should keep these rules in mind:

A PACKED ARRAY OF CHAR is not the same as
STRING.

Two structures that are the same except that one
is PACKED and the other is not, are NOT type
compatible, although their components are.

Components of Packed variables may not be used
as actual parameters to VARiable formal
parameters.

The procedures PACK and UNPACK may only be
used with ARRAY type data.

Because the structured types are declared and
accessed differently, each is described in its own
section.

Personal Pascal Page 6-58

STRUCTURED TYPES (Continued)

STRING TYPE

STRING T[- size —» T

Personal Pascal provides a structured data type
designed to manipulate text: the STRING type. It's
similar to PACKED ARRAY OF CHAR but has several
important differences:

A STRING type defaults to a maximum of 80
characters unless its size is declared.

Strings have a length associated with them that
may be equal to or less than a string’s maximum
size.

There are several built-in subprograms that
perform text oriented operations on String
variables.

The comparison operators work on Strings in a
predictable and orderly fashion.

Personal Pascal Page 6-59

STRUCTURED TYPES (Continued)
L

To declare a string’s maximum size, simply place that
size within square brackets after the word 'STRING’ in
the type declaration. For example:

TYPE
footnote = STRING [40] ;
names = STRING[25] ;
biggest_string = STRING [255] ;
standard_string = STRING ; { 80 is default }

NOTE: Strings may not be declared to be longer than
255 characters. There is no such limitation on CHAR
arrays, but the string manipulation routines and
operators do not work with CHAR arrays.

Personal Pascal Page 6-60

STRUCTURED TYPES (Continued)

RECORD TYPE

; @
RECORD —Lb fixed field
variant fiD

END —» ;

A RECORD is a structure made up of fields, each
having its own name and data type. These component
fields may then be referenced using the name of the
record variable and the name of the field.

There are two types of field lists - fixed and variant.
Fixed records are simpler, so let's discuss them first.

Personal Pascal Page 6-61

STRUCTURED TYPES (Continued)

FIXED FIELDS
-

i—» field name) >)
new type

Records which contain only fixed fields are called
FIXED RECORDS. Such records are completely

defined and may not change form while the program is
running. Some examples of fixed RECORD types:

TYPE TransType = (Withdrawal,Deposit, Transfer) ;

DateType = RECORD
mon : 1..12 ;
day : 1..31;
yr:0..99 ;
END ;

Transaction = RECORD
date : DateType ;
trunum,
triD : integer ;
trType : TransType ;
amount : Real ;
END ;

Personal Pascal Page 6-62

STRUCTURED TYPES (Continued)

The identifiers within a RECORD definition have a
very small scope - between the RECORD and the
END - so the following example does NOT create an
error despite the duplicate use of the identifier base:

TYPE Rectangle = RECORD
base,
height : Real ;
END ;

square = Rectangle ;
base = Short_lInteger ;

Personal Pascal Page 6-63

STRUCTURED TYPES (Continued)

VARIANT FIELDS

CASE m type name)

o —
&_.7-’

Fixed records can become cumbersome in certain
situations. Our Transaction record, in the fixed record
example, would be more useful if we could specify
information based on what kind of transaction is being
done. Variant records, containing variant fields, let
you do that easily.

The method used to define a variant field looks a little
like a CASE statement, except that the ELSE and
OTHERWISE options are not legal.

Personal Pascal Page 6-64

STRUCTURED TYPES (Continued)

TYPE member_type = (current, expired,
non-member) ;

DateType = RECORD
mon : 1..12 ;
day :1..31;
yr:0..99;
END ;

phone_list = RECORD { Record begins here. }
name : String ; { This part is fixed. }
age : Short_Integer ;
CASE membership : member_type OF
{ Variant field here. }
current : (renew_date : DateType ;
rank : String ;
dues : Short_Integer) ;
expired : (exp_date,
last_contact : DateType) ;
non-member : (guest_of : String ;
last_contact : DateType) ;

END ; { Record ends here. }

Notice that the phone_list record has both fixed and
variant parts. What makes this record vary is the tag,
membership. When you change the value of tag field
while the program is running, the variant
corresponding to the value of tag field becomes
active, and the record contains the field list specified
by that variant.

Personal Pascal Page 6-65

STRUCTURED TYPES (Continued)

As you might suspect, a variant field must be active
before it's accessible. This means that the tag field’s
value must coincide with the proper variant first.

NOTE: The tag field is optional ; only a tag type is
required. Omitting a named tag field creates a variant
part in which all variants are accessible. In essence,
the variants overlay each other. This is useless in
most cases, but one important use of it is to change
pointer data types, which is otherwise impossible.

The following function peeks at a word-sized
Short_Iinteger memory location:

TYPE IntPtr = AInteger ; { for convenience }
Either = 0..1 ; { small enumerated type }
TwoWay = RECORD

CASE Either OF

0 : (where : Long_Integer) ;
1:(iptr :IntPtr) ;

END ;

FUNCTION IPeek (location : Long_Integer) : IntPtr ;
VAR coerce : TwoWay ; { a funny record! }

BEGIN
coerce.where = location & $FFFFFE ; { to ensure
word address }
IPeek := coerce.iptr? ;
END ;

Personal Pascal Page 6-66

STRUCTURED TYPES (Continued)

Because the variant part of TwoWay is controlled by a
tag type but not a tag identifier, both variants are
always active and may be used at any time.

CAUTION: Unless you ask the compiler to ignore
pointer checking, this example will only work if the
peeked location is within your program’s heap space.
SEE: Compiler Directives, page 4-9

Personal Pascal Page 6-67

STRUCTURED TYPES (Continued)

ARRAY TYPE

, @
ARRAY —» [Cv ordinal type l]
t named type
new type

The array is a structured type, like the record, but its

components have several restrictions. Unlike record
fields:

)

Array components are unnamed.
Array components must all be of the same type.
Array components have an innate order.

Arrays are useful structures because of these
restrictions.

Here are some examples of defining ARRAY types:

TYPE
OneByFour = ARRAY [1..4] OF Short_Integer ;
FourByFour = ARRAY [1..4] OF OneByFour ;
Friends = PACKED ARRAY [1..100]
OF STRING [20] ;

Personal Pascal Page 6-68

STRUCTURED TYPES (Continued)

Frequently you see array definitions of the form:

ARRAY [1..100]

This index-type is a subrange, and does not merely
specify the bounds of the array ; it also says that the
array components will be accessed using
Short_Integer subscripts.

Notice that more than one index is allowed. An array
that has n indices is called n-dimensional.

FourByFour, above, is an example of an array of
arrays. Another example:

TYPE
TicTacToe_3D = ARRAY [1..4,1..4,1..4] OF BYTE ;

Note that the syntax diagram shows that the
index-type may be any ordinal type. In theory, this is
true. In practice, the ST computers do not have
enough memory to handle a declaration of forms such
as this example:

TYPE
Monster = PACKED ARRAY [Long_Integer] OF
CHAR ;

This particular example would require over four billion
bytes of memory for an array of type Monster. In
practice, index-types are virtually always either
subrange or enumerated types.

Personal Pascal Page 6-69

STRUCTURED TYPES (Continued)

ALFA TYPE

Personal Pascal provides one predefined ARRAY
type: Alfa. This type is defined as:

TYPE Alfa = PACKED ARRAY [1..10] OF CHAR ;
Please do not confuse this type with STRING; they
are not they same. Alfa is of limited use and is

provided only to aid compatibility with other less
complete versions of Pascal.

Personal Pascal Page 6-70

STRUCTURED TYPES (Continued)

FILE Type
FILE —=» OF t named type
new type

Of all the data types available in Pascal, FILE may be
the most important because it is the only type whose
data can exist before a program runs, or after it’'s
finished. This is because FILE type is used to
interface between a Pascal program and external
storage devices such as disk drives and printers.

Unlike other variables, a FILE variable doesn’t have a
size associated with it because the external device is
the only limiting factor to a FILE’s size. Declaring a
FILE type is easy:

TYPE

payroll = RECORD
name : string[25] ;
date : Long_Integer ;
amount: Real ;

END ;

tally : FILE OF Integer,

lines : FILE OF String [255] ;

payfile : FILE OF payroll ;

NOTE: The component type of a FILE may not be or
contain a FILE type.

Personal Pascal Page 6-71

STRUCTURED TYPES (Continued)
L]

Declaring a variable of a FILE type creates a buffer
variable of the file’s component type, but doesn’t
immediately make that variable accessible. Before
you can access the buffer variable, the FILE variable
must be associated with an external device. You do
that using the Reset or Rewrite procedures, depending
upon whether the file is to be used for input or output.

The buffer variable exists as temporary storage for a
single component of a file. It increases program
speed because accesses to pieces of a structured file
component are done more quickly when the
component is in a buffer rather than on an external
device.

The only way to transfer data to or from the physical
file is through the buffer variable. As a result, the data
transfer subprograms for FILE type variables always
manipulate the file buffer, either directly or indirectly.

NOTE: Throughout this manual we use the term
FILE IDENTIFIER to collectively indicate the file
variable and so-called buffer variable, neither of which
really resemble conventional variables.

Personal Pascal Page 6-72

STRUCTURED TYPES (Continued)

SPECIAL FILE TYPE TEXT

Text is a type designed specifically for text files. A
Text file is very similar to a PACKED FILE OF Char.
Personal Pascal has special subprograms that
manipulate Text files on a line-of-text basis.

Note: In Personal Pascal, the end-of-line character is
internally represented by the ASCII CR ($0D) and LF
($0A) characters. However, when you Read or Get
the end-of-line from a TEXT file, it’s translated into a
space. The end-of-page character is internally
represented by the ASCII FF ($0C) character, and is
also translated into a space on READ or GET.

Generally, peripherals other than disk files should be
declared as FILEs of type TEXT. For example:

TYPE
printer_type = TEXT ;

Notice that you do NOT use "File of Text" since TEXT
is already a file type.

NOTE: The predefined file variables /nput and
Output are assumed to be of type TEXT.

Personal Pascal Page 6-73

STRUCTURED TYPES (Continued)

L

SET TYPE

SET — OF —» ordinal type —

The SET type provides a structure not available in
most programming languages: a grouping of ordinal
data that has no inherent order. These are examples
of SET definitions:

TYPE Senior = 65..100 ;
Caps=SETOF 'A’..'Z" ;
Retired = SET OF Senior ;
AllChars = SET OF CHAR :

NOTE: In Personal Pascal a set may have up to 128
members. For purposes of sets, type CHAR is
considered to have 128 values (#0..#127). For most
other purposes, CHAR has 256 values (#0..#255).

Personal Pascal Page 6-74

—YARIABLE DECLARATIONS

VARIABLES AND DATA TYPING

Variables are places in memory where values can be
stored. Pascal places these restrictions on the use of
variables:

A variable is associated with a particular data type
and can only be used to store values of that type.

A variable must be declared by name and data type
in a variable declaration or formal parameter list
before you use it.

The scope of a variable is restricted to the block
that contains it, and its lifetime is limited to the time
that the block containing it is actually running.

NOTE: Variables declared in the main program
block also follow this rule: their lifetime is the life of
the running program.

You must declare the data type of every variable that
you use in a Pascal program before you begin to use
it. The variable declaration section is where you do
this. A simple example is:

VAR
income : Integer ; { Integeris the TYPE}
expense : Long_Integer ;

Types can be either a named type or a new type, as
described in the section on TYPES.

Personal Pascal Page 6-75

VARIABLE DECLARATIONS (Continued)

VARIABLE DECLARATIONS
) . - named type
variable name l : {
. New type

At the beginning of a program no variables exist.
Global variables, declared in the program block, are
created first. Memory space is reserved for them, but
they are given no initial value ; they are undefined.
Structured variables are totally undefined because
none of their components are defined. They become
defined when you assign values to them. The lifetime
of global variables is the entire time the program is
running, whether they are ever defined or not, as
noted above.

VAR

When the program calls a procedure or function, the
variables declared in the subprogram are created, and
they exist until the subprogram terminates and returns
control to the main program. If one subprogram calls
another, the variables in the called subprogram are
created, and exist until control returns to the calling
subprogram.

Personal Pascal Page 6-76

VARIABLE DECLARATIONS (Continued)

HOW VARIABLES WORK

The general form used to declare variables is shown
above. Here are examples of variable declarations:

TYPE
Age_Range :0..99 ;
VAR
rbi : Integer ; { named type }

avg,income : Real ; { named type }

games :0..152 ; { newtype}

age : Age_Range; { named type}

name : STRING [20] ; { new type}

Oops : ARRAY [1..40] OF Integer ; { new}

In this example, Integer, Real, and Age_Range are
NAMED types, and the other three are NEW types.

Remember the rules for TYPE compatibility: the array
Oops may not be assigned to or from any other array,
even one which is declared identically, because they
can not have the same TYPE NAME. ELEMENTS of
the Oops array may be used any place an integer
value or variable is required.

Personal Pascal Page 6-77

VARIABLE DECLARATIONS (Continued)

KINDS OF VARIABLES

Pascal offers several ways to access a variable.
Variables can have one name, several names, or none
at all. The following situations create these different
kinds of variables:

Variable declarations and value parameter
declarations allocate new variables with a single
name.

Variable parameter declarations create a synonym
for an already existing variable.
SEE: Procedure and Function Declarations.

The NEW subprogram allocates variables that
have no name. FILE type variables contain an
unnamed buffer variable.

A variable can be made up of several components, as
in the case of a RECORD or ARRAY. In that case, it
is a structured variable and the components are
accessible only as part of the parent, not as separate
variables.

When a variable has a name, as in the first 2 cases
above, its identifier is called the entire variable
because it refers to the whole variable, whether the
variable is simple, having a single component, or
structured. Using its name is only one of the ways to
access a variable.

Personal Pascal Page 6-78

VARIABLE DECLARATIONS (Continued)

Here are all the ways to access variables:
THE ENTIRE VARIABLE:

e.g.. array_name
total_time

BY COMPONENT:

e.g.: answer[4, True]
{ a2-dimensional array }

Matrix [xdim, ydim, zdim]
{ a3-dimensional array }

check.number
{ the number field of a check record }

AS BUFFER VARIABLE FILE POINTERS:
e.g.. datafile? { afile pointer}
AS DYNAMIC VARIABLES:
Un-named variables created by the New subprogram.

e.g.: NEW(charpointer) ; { followed by ... }
charpointer® { a pointer}

Personal Pascal Page 6-79

VARIABLE DECLARATIONS (Continued)

NOTE: The various methods of variable access are
recursive. This can result in variable accesses that are
almost incomprehensible:

x := employees| y].personal.children| z]*.name
This variable access can be explained in English:
Employees is an array of a record type that has a field
called personal. Personal is a record type that has a
field called children. Childrenis an array of pointers to
a record type that has a field called name.

Why such a complex variable access? Well, consider
the complexity of employee records:

We have several employees: - employees|[y]

We have business and personal information about
each employee: - .personal

Some employees have children: - .children[z]

We keep information about each child in a dynamic
record, including the child’'s name: A.name.

Personal Pascal Page 6-80

VARIABLE DECLARATIONS (Continued)

REFERENCING ARRAYS

Arrays can be referenced either whole or by
component. If two variables are of the same array
type, as in:

VAR v1,v2 : ARRAY [1..1000] OF Short_Integer ;

you can assign one to the other with a simple
assignment::

vli=v2;
This statement copies the entire array v2 into v1.

When two variables are of different array types,
assignment between the two can be made if the
component types of the two array types are
compatible:

VAR v3 : ARRAY [1..10] OF Short_Integer ;
v4 : ARRAY [1..5,Boolean] OF Short_Integer ;

v3[8] := v4[2,True] ;
v4[1,False] = v3[1] ;

When accessing arrays by component, the
expressions used to define the indices must be
compatible with the data types of indices In the
example above, v4[False,1] would be invalid.

Personal Pascal Page 6-81

VARIABLE DECLARATIONS (Continued)

REFERENCING RECORDS

As with arrays, records may be referenced either as a
whole or by field. The rules in standard Pascal for
referencing whole records are fairly restrictive.
Consider this example:

TYPE
Rtype = RECORD
ri : INTEGER;
rc : CHAR;
END ;
VAR
Rec1 : Rtype
Rec?2 : Rtype
Rec3,Rec4 : RECORD
ri : INTEGER;
rc : CHAR;
END ;

These assignments are legal:
Rec1:= Rec2 ;
Rec3 := Rec4 ;

These assignments will be flagged by standard Pascal
as errors, but are acceptable to Personal Pascal:

Rec1 := Rec4 ;

Rec3 := Rec?2 ;

Personal Pascal Page 6-82

VARIABLE DECLARATIONS (Continued)

The two record types seem to be completely
compatible: they are the same size, with the same
number and type of fields, even with fields named the
same. Although standard Pascal does not go so far as
to analyze the records’ contents, Personal Pascal
does so. If two records consist of identical root
components, Personal Pascal considers them both
type and assignment compatible.

In any case, record FIELDS of compatible types may
always be assigned. These are always legal:

Rec1.ri := Rec4.ri ;
Rec3.rc := Rec2.rc ;

Remember: The SCOPE of field names is very
limited. They are accessible only within the record
type where they were declared:

VAR
Rec5,Rec6 : RECORD
rc : INTEGER ; (* Look closely!)
ri: CHAR; (" Look closely!)
END
Rec1 := Rec5 ; { Not legal in standard Pascal! }
Rec1.ri := Rec6.rc ;
Recb.ri := Rec4.rc ;

It doesn’t look good, and we certainly don’t

recommend such declarations, but that example is
perfectly legal and will work fine. Messy, isn’t it?

Personal Pascal Page 6-83

DECLARATIONS

_—<: PROCEDURE header
FUNCTION header

directive

block A‘ ;) —
When you write a program, you have some task in
mind that you wish to accomplish. To perform that
task, you break it up into sub-tasks, performed in a
certain order, subject to certain conditions. The

description of these sub-tasks and their order of
performance is called an algorithm.

If you make your Pascal program follow the steps of
your algorithm, then the logical thing to do is write
subprograms that perform the sub-tasks. Of course,
it is logical that sub-tasks are broken down into further
sub-tasks, implemented in turn by other subprograms.
The algorithm is then accomplished by the program
calling subprogram which in turn may call other
subprogams, and so on.

Personal Pascal Page 6-84

SUBPROGRAM DECLARATIONS (Continued)

L~ e

Pascal implements two types of subprograms:

PROCEDUREs and FUNCTIONs. The primary
difference between the two is that FUNCTIONs return
a value of some kind to the caller. It may be more
correct to say that each function has a value, much as
a variable has a value, that may change depending on
what has gone before. The syntax of Pascal requires
that anything with a value must be used in an
expression. PROCEDUREs, on the other hand, may
not be used in expressions and have no inherent
value, so a call to a procedure simply becomes a
statement in the block of a program or subprogram.

Personal Pascal Page 6-85

SUBPROGRAM DECLARATIONS (Continued)

DIRECTIVES

There are two primary forms for declaring
subprograms, as shown in the syntax diagram at the
beginning of this section. The first method is the
simpler: You simply declare the header for a
PROCEDURE or FUNCTION and then follow it with a
language directive.

Since the available language directives FORWARD,
EXTERNAL, C, GEMDOS, BIOS, and XBIOS were
discussed in detail in the section on Definitions, we
won’'t rehash them here. We will note, again, that of
these only the FORWARD directive is supported in
iSO Pascal.

We also suggest that you examine the
GEMSUBS.PAS and AUXSUBS.PAS files for some
examples of these directives in use.

Personal Pascal Page 6-86

SUBPROGRAM DECLARATIONS (Continued)
“

PASCAL BLOCKS, PART 2

declarations T

Begin

o

END

The second and most usual form of subprogram
declaration is so much like writing the main program
that the syntax diagram shows only the word BLOCK
after the appropriate header. As we will note on the
next page, subprogram headers are very different
from program headers, but the BLOCK is identical.

Only the terminating semicolon in place of a
program’s terminating period shows that this block is
a subprogram block.

Remember: a Pascal block is always recursive. The
first thing in the block is DECLARATIONS which can,
in turn, include subprogram declarations, which can in
turn declare still more nested subprogram
declarations.

Personal Pascal Page 6-87

SUBPROGRAM DECLARATIONS (Continued)

PROCEDURE HEADER

PROCEDURE—® name —j
K
e G 2 j

—
\—v;—>

Procedure headers have a deceptively simple looking
syntax diagram. True, for the simplest procedures the
header consists of nothing but the word Procedure
followed by a named identifier, but when a procedure
starts using parameters things can get complex
quickly.

The purpose of parameters is to provide a consistent
way for subprograms to receive or process
information supplied by a caller, whether the main
program or another subprogram. Since procedures,
unlike functions, do not automatically return a value to
the caller, many procedures simply accept
information, process it and quit, returning to the caller.
However, a procedure may modify the information
given it by the caller if one or more of the parameters
is a variable parameter, as described later.

Personal Pascal Page 6-88

SUBPROGRAM DECLARATIONS (Continued)

L

REFERENCING PROCEDURES

A procedure is referenced by the calling program or
subprogram by simply making it a statement
somewhere in the caller’s block. As a specific
example, here is a complete, if somewhat silly,
program with a procedure declaration and reference.
This procedure does not use parameters.

PROGRAM Example ;

(* 'Stars’ simply displays 15 asterisks *)
PROCEDURE Stars ;

BEGIN

WriteLn(1222222222222 X2})

END ;

BEGIN
(* first, call predefined subprogram *)
WriteLn('Here are some stars’) ;
(* then call our own subprogram *)
Stars

END.

Personal Pascal Page 6-89

SUBPROGRAM DECLARATIONS (Continued)

FUNCTION HEADER

FUNCTION —& name —j

f

, &
M(g—b parameter —l) j
(
k. : T: named type
named pointer type & ;—b

The only real difference between a procedure header
and a function header is that a function header ends
with a colon followed by a named type. The type
name that you declare here, or that is declared for you
in the case of predefined functions, describes the type
of value that this function will return. Note that only
the simpler data types may be returned by a Pascal
function. In particular, only named Ordinal and Real
types may be returned, except that a pointer to any
kind of type may also be returned.

Personal Pascal Page 6-90

SUBPROGRAM DECLARATIONS (Continued)

REFERENCING FUNCTIONS

The calling program or subprogram must DO
something with this value, which means that the
function must be called within an expression of some
kind. For most purposes, this means that a function
may be treated as a variable. Here is a simple
program that declares and then calls a function
subprogram:

PROGRAM Demo ;
FUNCTION Square(Number : Integer ;)

: Integer ;
BEGIN
Square := Number * Number
END ;
BEGIN
WriteLn(’7 times 7 is ’, Square(7))
END.

Personal Pascal Page 6-91

SUBPROGRAM DECLARATIONS (Continued)

SUBPROGRAM PARAMETERS

We use the word parameter to mean both the value or
variable or subprogram designator which a
subprogram receives from the caller, as well as the
value or variable or subprogram name given by the
caller. In the last example program, the variable
number is the receiving parameter in the square
function; the value 7 is the given parameter.
Naturally, Pascal has names for these two type of
parameters: ACTUAL and FORMAL:

ACTUAL PARAMETERS

When you call a procedure or function that requires
you to give it one or more values or variables in order
to perform its task, the data you pass are called the
ACTUAL parameters. The number and types of actual
parameters that you pass must match the parameter
list given in the subprogram’s header. In this case,
the word match means to be TYPE COMPATIBLE.

Some types of parameters have special rules, as
discussed further on.

Personal Pascal Page 6-92

SUBPROGRAM DECLARATIONS (Continued)

FORMAL PARAMETERS

&0 VAR

:=& named type j

;0 procedure header
\—-ofunction head

\
\

'

Formal parameters are the variables that you name
and create in the header declaration of a procedure or
function. When a subprogram with formal parameters
is called, the caller must supply values, variables,
pointers or subprogram names, depending on the
declaration of a particular formal parameter.

Technically, formal parameters are not variables. But
from a coding point of view, excepting for subprogram
designators, there is little discernible distinction
between the two. In fact, if you look at the syntax
diagram for variable declarations and compare it to the
top part of the diagram above, the only difference
seems to be where and how often the VAR keyword
appears. But there is a major difference: In the
variable declarations, VAR serves only as an
introductory keyword. In formal parameters, the
presence or lack of VAR distinguishes two completely
different methods of passing parameters.

Personal Pascal Page 6-93

SUBPROGRAM DECLARATIONS (Continued)

VALUE PARAMETERS

When the VAR keyword does not appear ahead of a
parameter’'s name in a subprogram header, the
parameter is said to be a value parameter. During
program execution, Pascal allocates space for a value
parameter and the data passed by the caller is copied
into that space. From that point on, a value parameter
becomes a variable that is indistiguishable for other
variables local to that subprogram.

Note that the above applies for any parameter that is
passed. For example, if you declare an array of 500
strings of 100 characters each, Pascal actually copies
all 50,000-plus bytes! Needless to say, this is a
time-consuming practice, something to be used only
when necessary. For a more efficient method, though
one with other consequences, see the discussion of
variable parameters.

On the other hand, value parameters are usually a
good choice for simpler variable types, since Pascal
tends to generate more efficient code when accessing
such parameters are. In addition, the fact that such
parameters are considered local variables has the
effect of isolating them from the caller. Take a look at
the example on the next page.

Personal Pascal Page 6-94

SUBPROGRAM DECLARATIONS (Continued)

EXAMPLE:

PROGRAM Parameter_Demo_1 ;
VAR v1: Integer ;

PROCEDURE Test_1(v1: Integer) ;

BEGIN
WriteLn('Test entry:’, vi) ;
vi=9;
WriteLn('Test exit: ’°, v1)
END ;
BEGIN
vi=5;
WriteLn('Demo start:’, v1) ;
Test_1(v1);
WriteLn('Demo exit: ’, v1)
END.

If you enter and compile this program for TOS, link it,
and execute it, the results will look something like this:

Demo start: 5
Test entry: 5
Test exit: 9

Demo exit: 5

As this shows, neither the duplicate name, V1, nor the

fact that the parameter is modified within the
procedure affects the variable in the calling program.

Personal Pascal Page 6-95

SUBPROGRAM DECLARATIONS (Continued)
L

VARIABLE PARAMETERS

When the VAR keyword does appear ahead of a
parameter’s name in a subprogram header, the
parameter is said to be a variable parameter. During
program execution, Pascal allocates space only for a
pointer to that parameter and the a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>