
Addendum

Libraries

Lattice C 5.5 for the Atari ST /STEm
By HiSoh and Lattice, Inc.

© Copyright 1992 HiSoft. All rights reserved.

Program:
designed and programmed by HiSoft and Lattice, Inc.

Manual:
written by Alex Kiernan.

This guide and the Lattice C program diskettes contain proprietary information

which is protected by copyright. No part of the software or the documentation may be

reproduced, transcribed, stored in a retrieval system, translated into any language or

transmitted in any form without express prior written consent of the publisher and

copyright holder(s).

HiSoft shall not be liable for errors contained in the software or the documentation or

for incidental or consequential damages in connection with the furnishing, performance

or use of the software or the documentation.

HiSoft reserves the right to revise the software and/or the documentation from time

to time and to make changes in the content thereof without the obligation to notify

any person of such changes.

Hi 86ft
High Quality Software

Published by HiSoft
The Old School, Greenfield, Bedford MK45 SDE UK

First Edition, March 1992 - I SBN 0 9485 1 7 57 3

Table of Contents

Introduction

acc.h

_addheap

STACK

aes.h

rc_center

wind_set

cookie.h

getcookie

putcookie

cpx.h

CPX functions

cpx_button

cpx_ca/1

cpx_close

cpx_draw

cpx_hook

cpx_init

cpx_key

cpx_m 1 , cpx_m2

cpx_timer

cpx_wmove

XControl utility functions

CPX_Save

Contents

J

J

Add memory to the malloc heap

Set size of stack for a desk accessory 2

3

Centre one rectangle within another 3

Set window attributes 4

Find cookie in BIOS cookie ;ar

Put cookie in BIOS cookie ;ar

6

7

1 0

JO

11

CPX button event handler 1 1

CPX interaction handler 1 2

CPX termination handler 13

CPX redraw event handler 14

CPX event pre-emption handler 15

Main CPX entry point 1 6

CPX keyboard event handler LU

CPX mouse rectangle event handler 21

CPX timer event handler 22

CPX window move event handler 22

23

Save CPX configuration information 24

Lattice C 5_5 Page i

Get_ Buffer Get pointer to static CPX buffer 25

getcookie Locate cookie jar entry 25

GetFirstRect, GetNextRext Obtain XControl rectangle 2�

MFsave Save/restore application mouse pointer 27

Pop up Manage CPX popup menus 28

rsh_fix Fix-up RCS2 style object tree 30

rsh_obfix Fix-up single object 31

Set_Evnt_Mask Set event CPX message mask 31

Sl_arrow Implement s/ider arrows 32

S/_dragx, Sl_dragy Slider dragging control 34

SI_ size Size elevator of scroll control 36

Sl_x, S/_y Update slider position 37

Xform_do CPX form handler 39

XGen_Aiert Generate CPX error 41

ext.h 42

core/eft Estimate remaining memory 42

delay, sleep Wail for time to elapse 43

findfirsl, find next Find directory entry 44

ftimlolm Convert time structures 45

getcurdir Get current directory 46

getdate, setdate Get/set system date 47

getdfree Get free disk space 48

getdisk, setdisk Get or set current disk drive 48

getftime, setftime Get/set file time/date 49

getlime, setlime Get/set system lime 5J

ftw.h 51

ftw Walk a file tree 51

Page ii Lattice C 5.5 Contents

ieeefp.h

_FPCfpcr

FPCmode

fpgetmask, fpsetmask

fpgetprecision, fpsetprecision

fpgetround, fpsetround

fpgetsticky, fpsetsticky

osbind.h
Bconmap

DMAread

DMAwrite

EgetPalette

EgetShift

EsetBank

EsetColor

EsetGray

EsetPalette

EsetShift

EsetSmear

Getrez

Maddalt

Mxalloc

NVMaccess

Pexec

stdlib.h

getopt

spawn

52

Floating point eo-processor configuration 53

Current moth mode 54

Get/set exception mask

Get/set precision

Get/set rounding mode

Get/set accrued exceptions

Get/Set AUX: device mapping

Read sectors from DMA device

Write sectors from DMA device

Get contiguous entries from TT CLUT

Get current video shift mode

Get/set colour lookup bank

Get/set colour entry

Get/Set grey mode

Set contiguous entries of TT CLUT

Set current video shift mode

Get/Set smear mode

Find current screen mode

55

5S

57

58

59

59

t{)

61

62

63

64

65

trl

67

68

69

70

Inform GEMDOS of alternative memory 71

Allocate block of from preferred pool 71

Read/Write non-volatile memory 73

Create/Execute process 74

76

Get option letter from argument vector 76

Launch new process 78

Contents Lattice C 5.5 Page iii

string.h 80

bcmp, bcopy, bzero BSD memory block operations 00

index, rindex Find character 81

sys/stat.h 82

fstat Get status of file handle 82

umask Get/set file creation mask 83

time.h 84

slime Set current system time 84

unistd.h 85

exec Overlay current process 85

vfork Spawn new process 86

vdi.h 87

v_pgcount Set number of copies for laser printer 87

vq_extnd Extended Inquire BB

v_bez Draw bezier curve ro

v_bez_con Control GDOS bezier facilities 92

v_bez_fi/1 Draw filled bezier curve 93

v_bez_qual Set bezier quality 94

v_flushcache Flush FSM font cache 94

v_ftext Draw graphics text 95

v_getoutline Get FSM outline 95

v_killoutline Kill FSM outline 96

v_loadcache Load FSM font cache from disk 96

v_savecache Save FSM font cache to disk 97

v_set_app_buff Reserve bezier workspace 97

vq_vgdos Obtain GDOS version number 98

vqt_advance Inquire FSM advance vector 99

vqt_ cachesize Inquire FSM font cache size 100

Page iv Lattice C 5.5 Contents

vqt_devinfo Inquire device status information 1 01

vqt_f_extent Find size of graphics text 1 03

vqt_f_name Return font name and index 1 04

vqt_get_tables Obtain pointer to GASCII tables 1 05

vst_arbpt Select arbitrary point size 1 06

vst_error Set FSM error mode 1 07

vst_scratch Set FSM scratch allocation mode 1 08

vst_setsize Set cell width to arbitrary point size 1 09

vst_skew Set FSM font skewing angle 1 1 0

Contents Lattice C 5.5 Page v

Page vi Lattice C 5.5 Contents

Introduction

This manual describes the additional header files and functions
supplied as part of Lattice C 5.50, over and above those documented
in Volume's II and Ill.

All the information is ordered by header file which includes both
additional header files and additional functions or functionality for
functions declared within the header file.

acc.h

The acc.h header file includes definitions to support the generation
of desk accessories. It provides two functions: a macro for setting the
stack size and the function which enables memory to be made
available for malloc () .

_addheap

SYNOPSIS

#include <acc . h>

_addheap (pt r , s ize) ;

void * pt r ;
size_t size ;

DESCRIPTION

Add memory to the malloc heap

point e r to base of heap
size of stack for DA in bytes

The _addheap function is used to add memory to the local heap for
use in a desk accessory. This is needed because a desk accessory may
not legitimately call Malloc (the OS memory allocator) due to the
way in which desk accessories are run.

The pt r parameter is the base of a heap which should be used,
whilst size gives its size in bytes. Note that the base of heap
should be word aligned in order to ensure that the memory is suitable
for any purpose which malloc () may require.

Library Lattice C 5.5 Page 1

_add heap () may be called as often as needed in a single program,
but must only be called once for any particular block. Note that once
the memory has been allocated to the heap manager using this call
the memory may not be used for any other purpose.

EXAMPLE

#include <acc . h>
#include <aes . h>

void
main (void)

{
static long heap [1 6384 / sizeof (long)] ; / / 1 6K heap

_addheap (heap , sizeof (heap)) ;
appl_init () ;

}

STACK

SYNOPSIS

#include <acc . h>

STACK (size) ;

size_t size ;

DESCRIPTION

Set size of stack for a desk accessory

size of stack for DA in bytes

The S TAC K () macro is used to provide the necessary external
definitions to change the size of a stack in a desk accessory from the
default of 4Kb. It must be used outside any function as it includes a
definition for a global variable.

The single parameter size specifies the number of bytes which the
size of the stack is to be set to.

Note that there is no way in which a desk accessories stack may be
changed at runtime.

Page 2 Lattice C 5.5 Library

EXAMPLE

#include <acc . h>

STACK (1 6384) ;

void
main (void)

{

}

aes.h

11 set t h e stack to 1 6Kb

aes.h is the AES interface file. Within this there is one additional
function for 5.5, rc_c e n t e r (), and additional functionality forTI
and MegaSTE TOS via the WF _C O L O R and WF _DCO L O R win d_ s e t
operations.

rc_center Centre one rectangle within another

SYNOPSIS

#include <aes . h>

rc_center (rect1 , rect2) ;

const GRECT * rect 1 ;
GRECT * rect2 ;

DESCRIPTION

source rectangle
t h e target rectangle

This function is used to centre r e ct2 within r e c t 1 . Note that if
r e c t2 is larger than r e c t 1 then the final rectangle will lie outside
re et 1 .

SEE

rc_const rain , rc_equal , f orm_cent e r

Library Lattice C 5.5 Page 3

wind_set Set window attributes

SYNOPSIS

#include <aes . h>

res = wind_set (handle , request , x, y , w , h) ;

int handle ;
int request ;
int x;
int y ;
int w ;
int h ;

DESCRIPTION

window handle
paramet e r to set
x co - o rdinate of rectangle
y co - ordinate of rectangle
wid t h of rectangle
height of rectangle

This function sets a particular window attribute. Note that although
the binding lists 4 (in t) parameters only as many as are required
need be passed . The actions of the function are defined by the
r e q u e s t parameter:

Name
WF_NAME

WF_INFO

WF CURRXYWH
WF

-
CXYWH

Page 4

Action
This sets the name or title of the window. Note
that due to the 16 bit nature of the binding, the
address character pointer passed must be split
into it's high and low words. The ADDR macro is
provided for this purpose. Alternatively the non
portable wind_t i t l e function may be used.

This sets the information line of the window. Like
WF _NAME the ADDR macro may be used to
perform the word splitting required. Alternatively
the non-portable wind_info function may be
used.

Set the current position and size of the window
including borders. All four parameters are
required. Note that if as a result of this call the
window size increases in either direction, or if a
new part is uncovered then a redraw message
will be sent to you by the AES. If you must always
redraw as a result of this call then, rather than
simply redrawing you should send yourself a
redraw message which the AES will merge with
any it may have generated automatically.

Lattice C 5.5 Library

WF HSLIDE

WF _VSLIDE

WF_TOP

WF_NEWDESK

WF_HSLSIZE

WF_VSLSIZE

WF_COLOR

WF_DCOLOR

X contains the current position of the horizontal
slider between 1 and 1 000. 1 is the left most
position. Note that you should take into account
the length of the slider bar when adjusting this
value.

x contains the current position of the vertical
slider between 1 and 1 000. 1 is the top most
position. Note that you should take into account
the length of the slider bar when adjusting this
value.

The window specified by handle is the window
which you want the AES to place on top (i.e. make
the active window).

This is used to change the object tree for the
Desktop to draw. Like WF _NAME the ADDR macro
may be used to perform the word splitting
required. The first object to draw should be
passed as the w parameter.

Alternatively the non-portable wind_newdesk
function may b e used. I f you use this call, you
should call it again prior to terminating with a
(x, y) parameter of NULL to reinstate the default
Desktop's tree.

x contains the size of the horizontal slider (1 to
1 000) or -1 for the default square box.

X contains the size of the vertical slid er (1 to 1 000)
or -1 for the default square box.

set topped window part indicated by X to colour
wordy, untopped tow.

set default topped window part indicated by x to
colour word y, untopped to w. Note that
applications should not use this call, WF _COL OR
should be used instead, if required.

The window colour types (WF _COL OR and WF _ DCOLOR) are extensions
present in IT and MegaSTE TOS. The window part whose attribute is
to be changed is passed in x, the 'topped' AES colour word in y and
the 'untopped' colour word in w. The window parts are as follows:

Symbol
W BOX

W_TITLE

W CLOSER

W NAME

Library

Meaning
Window parent object

Parent of closer, name and fuller

Close box

Mover bar

Lattice C 5.5 Page 5

W FULLER

W_INFO

W DATA

W WORK

W_SIZER

W VBAR

W_UPARROW

W_DNARROW

W_VSLlDE

W VELEV

W HBAR

W_LFARROW

W_RTARROW

W HSLI DE

W HELEV

Full box

Info line

Holds remainder of window elements

Application work area

Sizer box

Parent of vertical slider elements

Up arrow

Down arrow

Vertical bar

Vertical elevator

Parent of horizontal slider elements

Left arrow

Right arrow

Horizontal bar

Horizontal elevator

The 'topped' and 'untapped' colour values are standard AES object
colour words, i.e.

Border
colour
15- 12

Text
colour
1 1 - 8

Transparent I
Opaque
7

F i l l
pattern
6 - 4

F i l l
colour
3 - 0

Note that if either parameter has the value -1 then that part is
unchanged.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_get , wind_title , wind_info , wind_newdesk

cookie.h

cookie.h provides facilities for examining and modifying the BIOS
cookie jar. The cookie jar is a predefined area of memory which is set
aside for system information (e.g. the _CPU cookie), or for auto
folder/CPX communication (e.g. the BELL cookie).

Page 6 Lattice C 5.5 Library

getcookie Find cookie in BIOS cookie jar

SYNOPSIS

#include <cookie . h>

status=getcookie (cookie , pvalue) ;

int stat u s ;
long cookie ;
long * pvalue ;

0 if cookie not present
cookie to search for
pointe r to value found

DESCRIPTION

The g e t c o o kie function searches the BIOS cookie jar attempting to
locate the named c o o kie . If the cookie is found then the value is
stored in the location pointed to by pvalue, if pvalue is non-NULL.
Note that typical cookie names are 4 character identifiers, so the
Allow multi-character constants (- cm) option must be used if they are
to be specified as character constants, e.g. '_CPU'.

The various system cookies, which you may wish to interrogate, are
as follows (note that the identifiers C PU etc. are defined in the
cookie.h header file):

_CPU the bottom 2 digits of the main processor number (e.g.
$0 for 68000, $lE for 68030)

FDC This gives an indication of the highest density floppy
unit installed in the machine. The high byte of its value
indicates the highest density floppy present:

0 360Kb/720Kb (double-density)
1 1 .44Mb (high-density)
2 2.88Mb (extra-high-density)

The low three bytes give an indication of the origin of
the unit, the value Ox415443 (' ATC') indicates an Atari
line -fit or retro-fitted unit.

_FPU This gives an indication of any floating point unit
installed in the machine. Only the high word is used at
the time of writing. The bits are used as follows (when
set):

Library

0 1/0 mapped 68881 (e.g. Atari's SFP004)
1 68881 /68882 (unsure which)
2 If bit 1 == 0 then 68881, else 68882
3 68040 internal floating point support

Lattice C 5.5 Page 1

FRB 'Fast RAM Buffer'. This is used on the TT to give the
address of a 64K buffer in ST RAM that all ACSI
devices performing DMA can use, when transfers to
TT RAM are requested. It is not present if there is no
fast RAM.

_ MCH This gives the machine type; it consists of a minor
number (low word) and a major number (high word) as
follows:

Major Minor Machine

0
1
1
2

0
0
16
0

520/1040 or Mega ST
STe
Mega STe
TT

Normally you should use the more specific cookies
given above, in case some one has added a 68030
processor to an STe, for example.

One possible use for this cookie is to detect the
presence of the extra TT serial ports .

_SND This is bit oriented as follows:

bit 0 1 if ST style GI/Yamaha chip available
bit 1 1 if TT /STe style DMA sound available

_SWI The STe and TT have internal configuration switches;
this gives their value.

_VDO the major/minor part number of the video shifter. At
present the least significant word is always zero and
the high word is one of:

0 ST
1 STe
2 TT

Note that the absence of a cookie indicates nothing about the state of
a resource; the host machine may have a 68030, 68882 and high
density floppy fitted with no indication from the cookie jar.

RETURNS

The function returns 0 to indicate that no cookie could be found, or
non-zero if the cookie was found. If p v a l u e is non-NULL then the
value of the cookie is stored in the location pointed to by p v a l u e .
The external variable, c o o k i e , i s also initialised to the number
of the cookie, if found, filthe jar.

Page 8 Lattice C 5.5 Library

SEE

put cookie

EXAMPLE

#include <cookie.h>
#include <stdio . h>

I * Check what machine we are running on * /
void s how_machine (void)

{

}

long mch=O ;

getcookie (_MCH , &mch) ;
switc h (mch>> 1 6) {

case 0 :

}

put s ("520 / 1 040 o r Mega ST") ;
break ;

case 1 :
swit c h (mch&Oxffff) {

case 0 :
puts ("STE") ;
break ;

}

case 1 6 :
puts ("Mega STE") ;
b reak ;

default :
puts ("Unknown") ;
break ;

break ;

case 2 :
puts ("TT") i
break ;

default :
puts ("Unknown") i
break ;

Library Lattice C 5.5 Page 9

putcookie Put cookie in BIOS cookie jar

SYNOPSIS

#include <cookie . h>

statu s=putcookie (cookie , value) ;

int statu s ;
long cookie ;
long value ;

DESCRIPTION

0 if could not insert cookie
cookie to in s e rt
value t o give inserted cookie

The p u t c o o kie function places the named cookie into the BIOS
cookie jar. If the cookie existed previously it is replaced, otherwise
the a new cookie entry is created for the cookie. If no cookie jar is
present then one is created and the necessary support code installed
(e.g. on pre-TOS 1.06 machines).

When choosing a name for a cookie note that all names starting with
an _ in the high byte are reserved for use by Atari. Also, if a program
is to use this function it must terminate and stay resident (TSR)
otherwise the machine may crash badly at a later point.

RETURNS

The function returns 0 to indicate that the cookie could not be
installed for some reason (e.g. not enough free memory), or non-zero
otherwise.

SEE

getcookie

cpx.h

To support the new Atari control panel (XControl) Lattice C 5.5
provides support for generating CPXs, the modules loaded by
X Control. These provide an extremely flexible range of user interface
options, built into XControl, reducing the size and workload of the
individual CPX.

Page 10 Lattice C 5.5 Library

CPXs are designed for controlling a function of the computer, they are
not an application or desk accessory, although they share many of
the restrictions of desk accessories. Writing a CPX is not easy, it is
strictly a pastime for the experienced programmer who understands
both the calling mechanisms used and the call-back processes which
occur in such a highly event driven situation.

Because of the restrictive nature of the interface to XControl a CPX
must use the Type based stack alignment (- aw) option of the compiler,
and must ensure that all functions both have, and are called in the
scope of a prototype.

CPX functions

The CPX functions are functions which must be supplied by your CPX
application. Most of these are optional, and needed only for event
CPXs, however every CPX must have c p x_i n i t (this is the CPX
equivalent of a normal program's main) .

Note that a discussion of event and form CPXs is beyond the scope of
this document and the reader is directed to the disk examples for
form CPXs, or to Atari's documentation and examples for event CPXs.

cpx_button CPX button event handler

SYNOPSIS

#include <cpx . h>

cpx_but ton (mrets, nclicks , event) ;

MRETS *mret s ;
short nclick s ;
short * q uit ;
s hould t e rminate t h e CPX

DESCRIPTION

mouse parameters f rom event
numbe r of clicks for event
set non - zero if this event

c p x_b u t t o n () is called by XControl when a mouse button event
occurs. m r e t s points to an MRETS structure which gives details of the
mouse event. The definition of MR ETS is:

typedef struct

short x;
short y;

Library

X co-ordinate of click
Y co-ordinate of click

Lattice C 5.5 Page 11

short buttons;
short kstate;

} MRETS;

button state
keyboard modifier state

n c l i c k s gives the number of clicks which the AES detected. The
* q u it parameter is only used if you wish this event to terminate the
CPX; if this is required * q u i t should be set to 1 , otherwise left
unmodified.

Note that this function is only required for event CPX's.

RETURNS

None.

EXAMPLE

void __ stdargs saveds
cpx_button (MRETS *mret s , short nclicks , s h o rt * q u it)

{
extern OBJECT t ree [] ;
int obj ;

obj = obj c_find (t ree , ROOT , MAX_DEPTH , mrets->x , mrets - >y) ;
switch (ob j)

}

cpx_call

SYNOPSIS

#include <cpx . h>

CPX interaction handler

flag= cpx_call (rect) ;

short flag ;
GRECT * rect ;

DESCRIPTION

z e ro if CPX has finished
XCont rol rectangle

c p x_c a l l () is called by XControl after c p x_i n i t () returns. It is
used to set up the work area of the CPX. Optionally the CPX may
then call Xfo rm_do () to manage the user interface.

Note that this function is required for both 'form' and 'event' CPX's.

Page 12 Lattice C 5.5 Library

RETURNS

c p x_c a l l () should return 0 if it has finished processing events (in
the case of an Xf o rm do () based CPX), or non-zero to indicate that
XControl should continue to dispatch events via the CPXINFO hooks.

EXAMPLE

int __ stdargs __ saveds
cpx_call (GRECT * rect)

{

}

s h o rt button ;
int q u it = 0 ;

11 Try t o find t h e cookie desc ribing t h e configu rat ion
if (! xcpb - >getcookie (MY_COOKI E , (long *) &cookie)) {

f orm_alert (1 , cookie_miss ing) ;
return o;

}
11 I n itialise location of f o rm wit hin CPX window
t ree [ROOT] .ob_x rect - >g_x ;
t ree [ROOT] .ob_y = rect - >g_y ;

o b j c_d raw (t ree , ROOT , MAX_DEPTH , rect - >g_x , rect - >g_y ,

rect - >g_w , rect - >g_h) ;

return 1 ;

cpx_dose CPX termination handler

SYNOPSIS

#include <cpx.h>

cpx_close (f lag) ;

short f lag ; non - zero if WM_CLOSE message

DESCRIPTION

c p x_c l o s e () is called by XControl whenever a WM_CL O S E or
AC_CLOSE message is received. On return from this function the CPX
must ensure that no outstanding memory is Malloc () 'd.

Library Lattice C 5.5 Page 13

We strongly recommend that CPX's never allocate any memory via
M a l l o c () . Note that you should treat WM_CLOS E as an OK action,
whilst AC CLOSE should be treated as a Cancel action.

f 1 a g is a parameter indicating whether the message was an
AC_CLOSE or a WM_CLOSE, it is non-zero to indicate the latter.

Note that this function is only required for event CPX's.

RETURNS

None.

EXAMPLE

void __ stdargs __ saveds
cpx_clos e (short f lag)

{
if (flag) / * non - z e ro indicate s an OK type event * /

update_setting s () ;

}

cpx_draw

SYNOPSIS

#include <cpx . h>

cpx_d raw (clip) ;

GRECT *clip ;

DESCRIPTION

CPX redraw event handler

d i rtied rectangle to red raw

c p x_d raw () is called by XControl whenever a WM_REDRAW message
is received so that the CPX may redraw the dirtied rectangle given
by c l i p . In order to do this correctly it should 'walk' the rectangle
list using the XControl utility functions G e t F i r s tR e c t () and
Get NextRect () .

Note that this function is only required for event CPX's.

RETURNS

None.

Page 14 Lattice C 5.5 Library

EXAMPLE

void __ saveds __ stdargs
cpx_d raw (GRECT *clip)

{
extern OBJECT t ree [] ;

clip = xcpb - >GetFirstRect (clip) ;
while (clip)
{

obj c_d raw (t ree , ROOT , MAX_DEPTH ,
clip - >g_x , clip - >g_y , clip - >g_w , clip - >g_h) ;

clip = xcpb - >GetNextRect () ;

}
}

cpx_hook

SYNOPSIS

#include <cpx . h>

CPX event pre-emption handler

override = cpx_hook (event , msg , mrets , key , nclicks) ;

short override ; non - z e ro to inhibit default
event handling

short event ; event mas k
short *msg ; AES event message buffe r
MRETS *mret s ; mouse paramete r s
short *key ; key retu rned
short * nclicks ; number of button clicks

DESCRIPTION

c p x_h o o k () is called by XControl immediately after receipt of an
event from evnt_mu l t i () . It may be used to dispatch messages in a
manner not normally available from XControl.

e v e n t gives the event mask supplied to e v n t_m u l t i () . m s g is a
pointer to the received message packet. m r e t s points to an MR E T S
structure which gives details o f the mouse event. The definition of
MRETS is:

typedef struct
short x;
short y;

Library

X co-ordinate of click
Y co-ordinate of click

Lattice C 5.5 Page 15

short buttons;

short kstate;

} MRETS;

button state

keyboard modifier state

* n c l i c k s gives the number of clicks which the AES detected; note
that this parameter may be modified if required. * k ey gives the key
detected (if any); again this parameter may be modified if required.

Note that this function is only required for event CPX's.

RETURNS

c p x_hook () should return 0 to continue with the default CPX event
handling, or non-zero to inhibit it.

EXAMPLE

short cpx_hoo k (short event , short *msg , MRETS *mret s ,
s h o rt * key , s hort * nclic k s)

{

}
ret u rn 0;

cpx_init

SYNOPSIS

#include <cpx.h>

Main CPX entry point

CPXINFO * cpx_init (xc pb) ; main CPX e n t ry point

XCPB •xcpb ; XCont rol parame t e r block

DESCRIPTION

c p x_i n it () is the main CPX entry point. The routine is called at
boot time and also whenever the user invokes the CPX. A pointer to
the XControl parameter block is passed in x c p b to the routine. The
parameter block contains the following information:

typedef struct {

short hand le;

short booting;

short version;

short SkipRshFix;

Page 16

AES' VDI workstation handle

non - zero if booting

XControl version number

zero if resource should be fixed up

Lattice C 5.5 Library

char *reserve1;

char *reserve2;

reserved

reserved

void (*rsh_fix) (...);

void (*rsh_obfix) (...);

short (*Popup) (-) ;

void (*Sl_size) (...);

resource file fixup routine

OBJECT fixup routine

popup menu handler

size slider routine

X - position slider routine

Y - position slider routine

arrow slider handler

void (*Sl_x) (...);

void (*Sl_y) (...);

void (*Sl_arrow) (...);

void (*Sl_dragx) (...); X-drag slider handler

Y-drag slider handler

XControl form_do ()

void (*Sl_dragy) (...);

short (*Xform_do) (...);

GRECT * (*GetFirstRect) (...) ; get first redraw rectangle

get next redraw rectangle

set XControl event mask

generate XContro l a lert

save CPX configuration

GRECT * (*GetNextRext) (...);

void (*Set_Evnt_Mask) (...);

short (*XGen_Alert) (...);

short (*CPX_Save) (...);

void * (*Get_Buffer) (...);

short (*get cookie) (...);

short Country_Code;

get pointer to CPX buffer

get value from cookie jar

country code of XControl

save mouse form void (*MFsave) (...);

XCPB;

Most of the fields in this structure are pointers to XControl utility
functions, which are all described below. The remaining fields are
used as follows:

handle

booting

ve rsion

SkipRshFix

Count ry_Code

Library

The physical workstation handle obtained via
g raf_handle () .

Non-zero if this call to c px_init () is part of
the XControl initialisation sequence. Note that
a CPX must have the CPX BOOT I N I T or
CPX_ SETONL Y flag set in the CPX header for
this call to be made.

The version number of X Control which is
active. At the time of writing the version
number is 0.

Zero if resource should be fixed up. Note that it
is up to the user to make this flag non-zero after
any one-shot initialisation has been performed.

Country code of country for which X Control was
compiled. Note that the values used are
identical to those in the external variable
_count ry.

Lattice C 5.5 Page 17

RETURNS

c p x_i n i t () must return a pointer to a structure of type C PXIN FO.
This has the definition:

typedef struct {

short (•cpx_call) (...);

void (*cpx_draw) (...);

void (*cpx_wmove) (-.);

void (*cpx_timer) (...);

void (*cpx_key) (...);

void (*cpx_button) (...);

void (*cpx_m1) (...) ;
void (*cpx_m2) (...);

short (*cpx_hook) (...) ;
void (*cpx_close) (...);

CPXINFO;

CPX invocation routine

CPX redraw routine

CPX window moved routine

CPX timer event routine

CPX keyboard event routine

CPX button event routine

CPX mouse rectangle event 1

CPX mouse rectangle event 2

CPX event pre-emption hook

CPX termination routine

With the exception of the c px_c a l l () these fields are only used by
'event' CPXs and should be NULL for 'form' CPXs.

If the call to c p x _ i n i t () was made as part of the XControl
initialisation sequence (i .e . the x c p b-> b o o t i n g flag is non-zero)
then the CPX should return the value N ULL if no further events
should be dispatched via it (i.e. XControl may relinquish the CPX
header memory), or the value (C PXIN F O *) 1 if further events are
required.

Otherwise the CPX should return a pointer to a s t a t i c C PX I N FO
structure containing pointers to the relevant handlers. Note that
under no circumstances may an automatic structure be used for this
purpose.

The details of the handler functions are contained elsewhere in this
section.

Page 18 Lattice C 5.5 Library

EXAMPLE

#include <cpx.h>
#include <acc.h>

XCPB *xcpb; /* XControl Parameter Block */

CPXINFO * __ stdargs __ saveds
cpx_init(XCPB * Xcpb)
{

}

static long heap[16384/ sizeof(long)]; /*heap space*/

xcpb = Xcpb;

if (xcpb->booting) {
I*

}

* Try to find our cookie
*I
if (xcpb->getcookie(MY_COOKIE,(long *)&cookie)) {

}
return (CPXINFO *) 1; /* to keep going */

else {

}

static CPXINFO cpxinfo = {cpx_call} ;

appl_init (); /* initialise private tables */

if(!xcpb->SkipRshFix) {

}

xcpb->SkipRshFix=1;
_addheap(heap,sizeof(heap)); /* only once */

return &cpxinfo;

Library Lattice C 5.5 Page 19

cpx_key

SYNOPSIS

CPX keyboard event handler

#include <cpx.h>

cpx_key(kstate, key, event);

short kstate;
etc.)

state of modifiers (Ctrl, Alt

key pressed short key;
short *quit; set non-zero if this event

should terminate the CPX

DESCRIPTION

c p x_ k ey () is called by XControl when a keyboard button event
occurs. k ey gives the key pressed; the bottom eight bits are the
ASCII code for the character. The top eight bits are the scan code for
the key. The k s t a t e parameter gives the state of the shift keys
depressed; this is a bitmap with the following meanings:

Name Value Meaning
K_RSHIFT OxOOOl Right shift key depressed

K_LSHIFT Ox0002 Left shift key depressed

K_CTRL Ox0004 Ctrl key depressed

K ALT Ox0008 Alt key depressed

The * q u i t parameter is only used if you wish this event to
terminate the CPX; if this is required * q u i t should be set to 1 ,
otherwise left unmodified.

Note that this function is only required for event CPX's.

RETURNS

None.

EXAMPLE

void __ stdargs __ saveds
cpx_key()
{

extern OBJECT tree[];
int obj;

Page 20 Lattice C 5.5 Library

obj = objc_find(tree,ROOT,MAX_DEPTH,mrets->x,mrets->y);
switch(obj)

}

cpx_m J, cpx_m2 CPX mouse rectangle event handler

SYNOPSIS

#include <cpx.h>

cpx_m1(mrets, quit);
cpx_m2(mrets, quit);

MRETS *mrets;
short *quit;

mouse parameters from event.
set non-zero if this event
should terminate the CPX

DESCRIPTION

c p x_m 1 () and c p x_m2 () are called by XControl when a mouse
rectangle event occurs. m r e t s points to an MR ETS structure which
gives details of the mouse event. The definition of MRETS is:

typedef struct {
short x; X co-ordinate of click
short y; Y co-ordinate of click
short buttons; button state
short kstate; keyboard modifier state

} MRETS;

The * q u i t parameter is only used if you wish this event to
terminate the CPX; if this is required * q u i t should be set to 1 ,
otherwise left unmodified.

Note that this function is only required for event CPX's.

RETURNS

None.

Library Lattice C 5.5 Page 21

EXAMPLE

cpx_timer

SYNOPSIS

#include <cpx.h>

cpx_timer(quit);

short *quit;

DESCRIPTION

CPX timer event handler

set non-zero if this event
should terminate the CPX

c p x_ time r () is called by X Control when a timer event occurs. The
* q u it parameter is only used if you wish this event to terminate the
CPX; if this is required * q u i t should be set to 1 , otherwise left
unmodified.

Note that this function is only required for event CPX's, also note
that 'form' CPXs cannot handle timer events. If such events are
necessary then you should design your CPX as an 'event' CPX.

RETURNS

None.

EXAMPLE
I
I

cpx_wmove

SYNOPSIS

#include <cpx.h>

cpx_wmove(rect);

GRECT *rect;

DESCRIPTION

CPX window move event handler

XControl rectangle

c p x_wmove () is called by XControl on receipt of a window moved
message. re et contains the new window position and size.

Page 22 Lattice C 5.5 Library

RETURNS

None.

EXAMPLE

void __ saveds __ stdargs
cpx_wmove(GRECT *rect)
{

}

extern OBJECT tree[];

tree[ROOT].ob_x
tree[ROOT].ob_y

rect->g_x;
rect->g_y;

XControl utility functions

XControl provides a number of utility functions for use by a CPX;
these functions are all accessed using indirect function calls. The
address of the functions are contained in a parameter block passed to
the c px_i n it () function.

Within the following discussion, the mechanics of the calling are
ignored, although this is almost always of the form:

xpcb->Xform_do(...);

where x p c b is the pointer passed to c p x_in i t () .

Library Lattice C 5.5 Page 23

CPX_Save Save CPX configuration information

SYNOPSIS

#include <cpx.h>

err = CPX_Save(void *ptr, num);

zero if error occurred
data to be saved.

int err;
void *ptr;
long num; number of bytes to write

DESCRIPTION

C PX_S ave() is used to write any configuration information, which
the user has requested be saved, back to the CPX file. pt r is used to
point to the area of memory which holds the configuration
information block, whilst n u m gives the number of bytes to be
written.

This information is always saved directly into the .CPX file at the
start of the data section, overwriting whatever is already there. As
such the executable must be carefully constructed to ensure that this
is the case. This can be done by ensuring that the very first file
which is linked contains the initialised configuration block in the
far data section (as shown below). Note that on subsequent reloads
the contents of this block will reflect the last saved values.

RETURNS

The return value is non-zero on success, otherwise 0 to indicate a
fa ilure .

EXAMPLE

#include <cpx.h>

XPCB *xpcb;

struct {
int config1, config2, config3;

} __ far configuration = {
0 , 0 , 0 ; /* note this must be initialised */

};

xpcb->CPX_Save(&configuration, sizeof(configuration));

Page 24 Lattice C 5.5 Library

Get_Buller

SYNOPSIS

#include <cpx.h>

ptr = Get_Buffer();

void *ptr;

DESCRIPTION

Get pointer to static CPX buHer

pointer to 64 byte buffer

Get_B u f f e r () returns a pointer to the 64 byte buffer in the CPX
header, available for use by the CPX as static data. Because a CPX
is normally reloaded on each execution, settings are normally
forgotten between executions. By careful use of this buffer this need
not occur.

RETURNS

The function returns a pointer to the 64 byte static buffer.

getcoolcie Locate cookie jar entry

SYNOPSIS

#include <cpx.h>

status=getcookie(cookie, pvalue);

short status;
long cookie;
long *pvalue;

DESCRIPTION

0 if cookie not present
cookie to search for
pointer to value found

The g e t c o o k i e function searches the BIOS cookie jar attempting to
locate the named c o o k i e . If the cookie is found then the value is
stored in the location pointed to by pvalue, if pvalue is non-NULL.
Note that typical cookie names are 4 character identifiers, so the
Allow multi-character constants (- c m) option must be used if they are
to be specified as character constants, e.g. '_CPU'.

Library Lattice C 5.5 Page 25

You should use this routine rather than the runtime library version
when looking for a cookie from a CPX. Typically a cookie may be
used by an AUTO folder TSR to indicate where the CPX may find the
configuration data used by the TSR.

RETURNS

The function returns 0 to indicate that no cookie could be found, or
non-zero if the cookie was found. If pva lue is non-NULL then the
value of the cookie is stored in the location pointed to by pvalue .

GetFirstRect, GetNextRext

SYNOPSIS

#include <cpx.h>

rdrw = GetFirstRect(rect);
rdrw = GetNextRext();

GRECT *rdrw;
GRECT *rect;

DESCRIPTION

Obtain XControl rectangle

intersecting GRECT for redraw
dirtied rectangle

When an event CPX must redraw due a to WM_R EDRAW message the
CPX must obtain the rectangle list via these operations.

RETURNS

A pointer to a GRECT to redraw or NULL.

Page 26 Lattice C 5.5 Library

Mfsave Save/restore application mouse pointer

SYNOPSIS

#include <cpx.h>

const int MFSAVE, MFRESTORE;

MFsave(saveit,mf);

short save it;
MFORM *mf;

DESCRIPTION

MFSAVE or MFRESTORE
mouse form buffer

MFs a v e () is used to save/restore a mouse pointer. If for example a
CPX wishes to switch to a flat-hand pointer whilst dragging, it must
restore the pointer to the application shape after the call.

s a v e i t is a flag indicating whether the mouse pointer is to be saved
or restored and has the values MFSAVE or MFR ESTORE. mf is a pointer
to an MFORM structure in which the mouse pointer is saved to/restored
from.

RETURNS

None.

EXAMPLE

#include <cpx.h>

XPCB *xpcb;

MFORM mf;

xcpb->MFsave(MFSAVE, &mf);
graf_mouse(BUSY_BEE, NULL);

xcpb->MFsave(MFRESTORE, &mf);

Library Lattice C 5.5 Page 27

Pop up

SYNOPSIS

#include <cpx.h>

Manage CPX popup menus

select = Popup(items, num_items, default_item,
font_size,button, world);

short select;
const char *items[];
short num_items;
short default_item;
short font_size;
const GRECT *button;

const GRECT *world;

DESCRIPTION

item selected, or - 1
pointer to array of strings
number of items
the default item, or - 1
3
GRECT of button used to
invoke popup.
GRECT of bounding box

The P o p u p () call is used to display and interact with popup menus.
A pointer to an array of strings is passed, giving the names of the
elements, in i t erns . Each string should be padded at the start with
two spaces, and then the lengths padded to the length of the longest
string plus 1, with spaces.

The number of elements in the array is passed in n urn_ i t ern s .
d e f a u l t_i t ern gives the current selection, this item will be marked
with a check mark; note that if you require no default item, pass the
value -1.

The f o n t_s i z e variable should always indicate the large font be
used, this is equivalent to the constant IBM in aes.h. b u t t o n is used
to indicate the rectangle of the button which caused the popup to
appear. This is used to ensure that the menu which pops-up is
correctly centred on the original item.

wo rld gives the bounding box within which the popup is to appear.
This ensures that it cannot, for example, popup outside the main CPX
window. Typically this box will be the size of your entire CPX form
(i.e. 256 " 176 pixels).

RETURNS

The function returns the number of the string which the user selected
or -1 if the operation was cancelled (clicked off the popup).

Page 28 Lattice C 5.5 Library

EXAMPLE

static char *items [] {
poptext_1,
poptext_2,
poptext_3,
poptext_4,

};

GRECT clip, world;
short curitem, obj;

switch (button) {
case popup:

I*
* Obtain rectangle of popup activation button

* and call the popup draw/ handle routine.

}

*I
objc_xywh(tree, button, &clip);
obj = xcpb->Popup(items,

sizeof(items)/ sizeof(items[O]), curitem,
IBM, &clip, &world);

/*
* If an object was actually selected, then update
* our settings.
*I
if (obj!=NIL)

curitem=obj;

I *
* Redraw the popup button.
*I
objc_draw(tree, ROOT, MAX_DEPTH, ELTS(clip));
break;

Library Lattice c 5.5 Page 29

rsh_fix Fix-up RCS2 style object tree

SYNOPSIS

#include <cpx. h>

rsh_fix(num_objs, num_frstr, num_frimg, num_tree,
rs_object, rs_tedinfo,
rs_strings, rs_iconblk,
rs_bitblk, rs_frstr,
rs_frimg, rs_trindex,
rs_imdope);

int num_objs;
int num_frstr;
int num_frimg;
int num_tree;
OBJECT *rs_object;
TEDINFO *rs_tedinfo;
char *rs_strings[];
ICONBLK *rs_iconblk;
BITBLK *rs_bitblk;
long *rs_frstr;
long *rs_frimg;
long *rs_trindex;
struct foobar *rs_imdope;

DESCRIPTION

number of objects
number of free strings in
number of free images
number of trees
pointer to first OBJECT
pointer to first TEDINFO
pointer
pointer
pointer
pointer
pointer
pointer
pointer

to
to
to
to
to
to
to

string table
first ICONBLK
first BITBLK
free strings
free images
tree index
image structures

r s h_ f ix () is used to fix up an RCS 2 style embedded resource file.
All of the parameters are designed to be passed directly from the
.RSH file created by RCS 2. Because CPX resources are always based
on the 8x16 pixel font, normally D E RCS is used to do this fixup at
compile time.

Note that if you are using this function you must ensure that it is done
only once. This is achieved using the S k ip R s hFix flag, which on the
first call to the CPX will be zero. Note that you must set this to 1
manually after performing any initialisation.

RETURNS

None.

Page 30 Lattice C 5.5 Library

rsh_obfix fix-up single object

SYNOPSIS

#include <cpx.h>

rsh_obfix(tree, curob);

OBJECT *tree;
int curob;

DESCRIPTION

the object tree to convert
the object number to convert

The r s h_o b f i x () is used to fix up a single object within a tree in a
similar manner to r s r e obf i x () . This function is intended for use
in fixing up resources which are not suitable for r s h_f i x () . When
using WERCS/DERCS none of these functions are required.

RETURNS

None.

Set_Evnt_Niask Set event CPX message mask

SYNOPSIS

#include <cpx . h>

Set_Evnt_Mask(mask, m1, m2, time);

short mask;
MOBLK *m1;
MOBLK *m2;
long time;

DESCRIPTION

events to receive
mouse rectangle 1
mouse rectangle 2
time delay to wait for

S e t E v n t M a s k is used to initialise the event mask for event CPXs.
mask givesthe required mask (MU_KEYBD I MU_BUTTON I ... etc.),
m 1 and m2 give the mouse rectangles, whilst t i m e gives the
e v nt_m u l t i delay parameter in milliseconds.

Library Lattice C 5.5 Page 3 1

SI_ arrow Implement slicler arrows

SYNOPSIS

#include <cpx.h>

Sl_arrow(tree, base, slider, arrow, change, min, max,
pvalue, direction, rdrw);

OBJECT *tree;
short base;
short slid er;
short arrow;
short change;
short min;
short max;
short * pvalue;
short direction;
void (*rdrw)(void);

DESCRIPTION

pointer to tree
the base of the slider
the elevator of the slider
the arrow clicked on
requested change value
m1n1mum value possible
maximum value possible
pointer to current value
VERTICAL or HORIZONTAL
pointer to redraw function,
or NULL

Sl_a rrow () is used to control the action of the arrows on a slider bar
when the user clicks on an arrow. t r e e is a pointer to the resource
tree containing the slider control, base gives the object number of the
base of the slider object (within which the slider operates), s l id e r
gives the object number of the elevator (the object which does the
sliding) . a r r o w is the object number which is to be highlighted
during this operation, or N I L to indicate no highlighting is required.

c h a n g e gives the amount by which the value should change for each
'click' on the arrow (±1) . d i r e c t i o n gives the direction in which
the slider is to operate. This should have the value V E R T I CA L or
HOR I ZONTAL as defined in aes.h.

p v a l u e is a pointer to the current setting of the control, this value
will be updated as a result of this call. m i n and m a x give the
maximum and minimum values for pvalue. For a VERT I CAL slider
the minimum value is towards the bottom of the tree, whilst for a
H O R I Z O N TAL one it is towards the left of the tree; if you need the
sliders to operate in an inverse manner, simply swap the m a x and
min values in the Sl_a r r ow () call.

Page 32 Lattice C 5.5 · Library

In order to make the slider 'active', i .e . have the information
presented updated during the operation, r d rw should point to a
function which redraws the window contents based on the setting of
* pvalue . If you do not require continuous updating, simply pass the
value NULL.

This function may also be used to implement paging (i.e. when the
user clicks on the base of the slider) . This is effected by passing a
value larger than ±1 as the change factor.

RETURNS

None.

EXAMPLE

MRETS mk;
short ox, oy, value 0 ;

switch (button) {
case uparrow :
case dnarrow:

I*
* User is manipulating one of the arrow keys, so
* call the XControl arrow handling code.
*I
xcpb - >Sl_arrow(tree, base, slider, button,

button == uparrow?-1: 1,
max, o, &value, VERTICAL, redraw);

break;

case base :
I*
* This is a click on the bar behind the slider,
* i . e . a page up or page down request .
*I
graf_mkstate(&mk . x, &mk . y, &mk . buttons, &mk . kstate);
objc_offset(bell_box, bell_slider, &ox, &oy);

I*
* Decide whether it was up or down and move by the
* number of lines in a window less 1, this ensures
* that you can always see what was at the limit of
* the window before the action.
*I
ox = (mk . y < oy) ? - (NLINES - 1) (NLINES-1);

Library Lattice C 5.5 Page 33

}

xcpb->Sl_arrow(tree, base, slider, - 1, ox,
max, 0 , &value, VERTICAL, redraw);

break;

SI_ clragx, SI_ clragy

SYNOPSIS

Slicler dragging control

#include <cpx.h>

Sl_dragx(tree, base, slider, min, max, pvalue, rdrw);
Sl_dragy(tree, base, slider, min, max, pvalue, rdrw);

OBJECT *tree;
short base;
short slid er;
short min;
short max;
short *pvalue;
void (*rdrw)(void);

DESCRIPTION

pointer to tree
the base of the slider
the elevator of the slider
minimum value possible
maximum value possible
pointer to current value
pointer to redraw function,
or NULL

S l_d ragx () and S l_d r agy () are used to control the action of the
user dragging the elevat o r of a slider bar control.

t r e e is pointer to the resource tree containing the slid er control,
b a s e gives the object number of the base of the slider object (within
which the slider operates), s l i d e r gives the object number of the
elevator (the object which does the sliding).

p v a l u e is a pointer to the current setting of the control, this value
will be updated as a result of this call. m i n and m a x give the
maximum and minimum values for p v a l u e . For a VERT I CAL slider
the minimum value is towards the bottom of the tree, whilst for a
HOR I Z O N TAL one it is towards the left of the tree; if you need the
sliders to operate in an inverse manner, simply swap the m a x and
m in values in the S l_d ragx () /Sl_d ragy () call.

Page 34 Lattice C 5.5 Library

In order to make the slider 'active', i .e . have the information
presented updated during the operation, rd rw should point to a
function which redraws the window contents based on the setting of
* pvalue . If you do not require continuous updating, simply pass the
value NULL.

RETURNS

None.

EXAMPLE

short value = o ;
MFORM Mbuffer ;

switch (button) {
case slider:

I*
* Slider is being dragged, again just call the
* XControl routine to do most of the work.

}

*I
xcpb - >MFsave(MFSAVE, &Mbuffer);
graf_mouse(FLAT_HAND, NULL);
xcpb - >Sl_dragy(tree, base, slider, max, 0 , &value,

redraw);
xcpb->MFsave(MFRESTORE, &Mbuffer);
break;

Library Lattice C 5.5 Page 35

Sl_size Size elevator of scroll control

SYNOPSIS

#include <cpx.h>

Sl_size(tree, base, slider, range, visible, direction,
min_size);

OBJECT *tree;
short base;
short slider;
short range;
short visible;
short direction;
short min_size;

DESCRIPTION

pointer to tree
the base of the slider
the elevator of the slider
total number of items
number of visible items
VERTICAL or HORIZONTAL
minimum pixel size of slider

Sl_s i z e () is used to adjust the size of a slider within the base so
that. it is proportional to the amount of data present. t r e e is pointer
to the resource tree containing the slider control, b a s e gives the
object number of the base of the slider object (within which the slider
operates), s l i d e r gives the object number of the elevator (the object
which does the sliding). d i r e c t i o n gives the direction in which
the slider is to operate. This should have the value V E R T I CA L or
HOR I ZONTAL as defined in aes.h.

r a n g e is the total number of items which are available, whilst
v i s ible gives the number of such items which are visible at any one
time. min_s i z e is used to fix a minimum pixel height/width for the
slider, typically this will have the value 1 or 2. A situation in
which a larger size may be desirable is if the slider has some text
embedded in it.

RETURNS

None.

Page 36 Lattice C 5.5 Library

EXAMPLE

#include <aes . h>
#include <cpx . h>

short range;

xcpb->Sl_size(tree, base, slider, max + NLINES, NLINES,
VERTICAL, 2) ;

Sl_x, Sl_y

SYNOPSIS

#include <cpx . h>

Update slider position

Sl_x(tree, base, slider, value, min, max, rdrw);
Sl_y(tree, base, slider, value, min, max, rdrw);

OBJECT *tree;
short base;
short slider;
short value;
short min;
short max;
void (*rdrw)(void);

DESCRIPTION

pointer to tree
the base of the slider
the elevator of the slider
new value
minimum value possible
maximum value possible
pointer to redraw function,
or NULL

S l_x () and S l_y () are used to reposition the elevator of a slider
control at the program's request. Typically these calls are used when
the user is not manipulating the slider control directly, but some
related action requires that the slider be updated.

t r e e is pointer to the resource tree containing the slider control,
b a s e gives the object number of the base of the slider object (within
which the slider operates), s l i d e r gives the object number of the
elevator (the object which does the sliding).

Library Lattice C 5.5 Page 37

value is the new setting required for the control; note that this is not
a pointer as in other CPX slid er calls. m i n and m a x give the
maximum and minimum values for p v a lue . For a V E RT I CAL slider
the minimum value is towards the bottom of the tree, whilst for a
H O R I Z O N TAL one it is towards the left of the tree; if you need the
sliders to operate in an inverse manner, simply swap the m a x and
m i n values in the S l_x () /Sl_y () call.

In order to make the slider 'active', i.e. the information presented is
updated during the operation, rd rw should point to a function which
redraws the window contents based on the setting of * pvalue. If you
do not require continuous updating, simply pass the value NULL.

Note that this does not update the on screen slider, this must be
accomplished manually (if required) by an ob j c _d raw () call.

RETURNS(*}

None.

EXAMPLE

short value = o ;
GRECT clip1 , clip2;

value - -;
objc_xywh(tree, slider, &clip1);
xcpb->Sl_y(tree, base, slider, value, max, 0 , redraw);
objc_xywh(tree, slider, &clip2);
rc_union(&clip2, &clip1);
objc_draw(tree, ROOT, MAX_DEPTH,

clip1 .g_x, clip1 .g_y, clip1 .g_w, clip1 . g_h);

Page 38 Lattice C 5.5 Library

Xlorm_do

SYNOPSIS

CPX lorm handler

#include <cpx.h>

res = Xform_do(tree, startob, msg);

short res
OBJECT *tree;
short startob;
short *msg;

exit object index
object tree of the form
editable object to start with
message buffer

DESCRIPTION

This function is used to let the user fill in a form or dialog box
displayed within the XControl window. The t r e e parameter is the
address of the form; note that the size of this form should be exactly
256*1 76 pixels. XControl needs to know which editable text item to
display the initial text cursor; this is passed in the s t a r t o b
parameter. If there are no editable text fields, or you wish to start
editing at the first editable field then 0 should be used.

m s g is a pointer to an 8 entry s h o rt array which is used to hand-off
messages which XControl wishes the CPX to handle. The messages
generated are:

msg [O]

VIM_REDRAW

AC CLOSE
WM=CLOSE

CT KEY

Library

Action
Part of the X Control window needs redrawing in a
manner which it cannot handle.ln order to do this
correctly it should 'walk' the rectangle list using the
XControl utility functions GetFirstRect () and
GetNextRect().
The window is being closed, either explicitly
(WM _CLOSE) or implicitly (AC _CLOSE). At this time
the CPX must be certain that no outstanding
memory is Malloc () 'd. We strongly recommend
that CPX's never allocate any memory via
Malloc () . Note that you should treat WM _CLOSE as
an OK action, whilst AC CLOSE should be treated as
a Cancel action.

-

A key was pressed; msg [3] contains the keycode of
the key. Note that only non-printing keys are
returned (Fl-FlO etc.), but since other keystrokes
are used by the editable text handler cursor keys,
Tab etc. can never be returned.

Lattice C 5.5 Page 39

RETURNS

This function returns the object index of the item that caused the
dialog to finish (e.g. that of an OK button). Your program can then
compare this with the values in the resource header file. Note that
the value returned may be negative indicating that the exit object
was double clicked in which case the bottom 15 bits should be
masked off to find the true exit button. Also the exit object is not
automatically de-selected when Xf o rm_do returns, so you should do
this manually.

If the special value -1 is returned this indicates the the CPX should
examine the m s g array for a message which XControl wishes the
CPX to handle.

EXAMPLE

int __ stdargs saveds
cpx_call(GRECT *rect)
{

short button;
int quit=O;

do {
int double_click;
short msg[8];

I*
* Waiting for a reply
*I
button = xcpb->Xform_do(bell_box, 0, msg);

I* Check if we have a double click item *I
if ((button I = -1) && (button & Ox8000)) {

double_click = 1;
button &= Ox7FFF;

}
else

double_click=O;
I*
* If it wasn ' t a button then try to turn it into
* one.
*I
if (button == -1) {

switch (msg[O]) {
case AC_CLOSE: I* ac_close means cancel *I

Page 40 Lattice C 5.5 Library

button=bell_btcance l ;
break ;

case WM_CLOSED : /* wm_close means o k */
button=bell_btok ;
break ;

}
}

switc h (button) {

}
} while (! qu it) ;

return o ;
}

XGen_Aiert

SYNOPSIS

Generate CPX error

#include <cpx . h>

const int FI LE_ERR ;
const int F I LE_NOT_FOUND ;
const int MEM_ERR ;
const int SAVE_DEFAULTS ;

ok = XGen_Ale rt (id) ;

s ho rt ok ;
non - zero
short id ;

z e ro if u s e r cancelled , else

id of XCont rol alert

DESCRIPTION

XGe n_Ale rt is used to generate an alert centred within the XControl
window. The number of the alert required is passed in id.

id

SAVE_DEFAULTS

MEM_ERR

FILE ERR

FILE_NOT_FOUND

Library

Meaning

Save Defaults?

Memory allocation problem

File 1/0 error

File not found

Lattice C 5.5 Page 4 1

RETURNS

A zero value is returned to indicate the user selected cancel, or non
zero otherwise. Note that alerts with only one button always return
a non-zero value.

EXAMPLE

#include <ose r r . h>
#include <cpx . h>

void proc e s s_e r r (int fd)

{
if (fd== - EFI LNF)

xcpb - >XGen_Ale rt (FI LE_NOT_FOUND) ;
else if (fd <O)

xcpb - >XGen_Ale rt (FI LE_ERR) ;

}

ext.h

ext.h provides compatibility macros and functions for portability to
other Atari C compilers. It is not recommended that any of these
functions are used in your own programs, instead they should only be
used if required when porting software.

coreleft Estimate remaining memory

SYNOPSIS

#include <ext . h>

max = co releft () ;

size_t max ; maximum block in system heap

DESCRIPTION

This function returns the size of the largest block available in the
system heap. Note that this is not the same as the maximum memory
available, there may be some additional non-allocated blocks
available .

RETURNS

As noted above

SEE

Malloc

delay, sleep

SYNOPSIS

#include <ext . h>

delay (ms) ;
s leep (s) ;

size_t ms ;
size_t s ;

DESCRIPTION

Wait for time to elapse

pause for ms milliseconds
paus e for s seconds

milliseconds t o wait
seconds to wait

These functions wait for a specified period of time to elapse. d e lay
i s passed a parameter, m s, giving the number of milliseconds to wait
for, whilst sleep is given the number of seconds, s .

Note that unlike similar calls under UNIX®, these calls d o not
suspend the process, instead they 'busy-wait' .

RETURNS

None

SEE

cloc k , d ifftime

Library Lattice C 5.5 Page 43

lindlirst, lindnext find directory entry

SYNOPSIS

#include <ext . h>

e r r = findfirst (n ame , info , att r) ; Find first
d i rectory e n t ry
e r r = findnext (info) ; Find next d irectory e n t ry

int e r r ;
st ruct ffblk * info ;
const char * n ame ;
int att r ;

DESCRIPTION

0 if successful
file information area
f ile n ame o r pat t e rn
file att ribute bit s

These functions search a directory for entries that match the
specified file name or file name pattern. The f i n d f i r s t function
locates the first matching file. Then successive calls to f i n d n e x t
locate additional matching files. Each f i n d n e x t call must be given
the file information that was returned on the preceding call to
f indf irst or f indnext .

The n a m e argument must be a null-terminated string specifying the
drive, path, and name of the desired file. The drive and path can be
omitted, in which case the current directory will be searched. You
can use the GEMOOS * and ? characters for pattern matching in the
name portion. For example, x y * . b will locate files in the current
directory that begin with xy and have b as their extension.

The at t r argument specifies which file types are to be included in
the search. The following bits are used:

B i t Meaning
FA RDONLY Read-only flag

FA H I DDEN Hidden file flag

FA_SYSTEM System file flag

FA_LABEL Volume label flag

FA_DIREC Subdirectory flag

FA_ARCH Archive flag

Page 44 Lattice C 5.5 Library

The i n f o argument points to a file information structure as defined
in the ext. h header file. For GEM DOS, this is the same as the
GEMDOS DT A structure:

struct ffblk {

} j

cha r ff_ rese rved [21) ;

char ff_attrib ;

sho rt ff_ftime

short ff_fdate ;

long ff_fsi ze ;

cha r ff_name [14) ;

RETURNS

reserved

actual file attribute

file time

file date

file size in bytes

file name

If the operation is successful, a value of 0 is returned. Otherwise, the
return value is -1, and further error information can be found in e r rno
and OSERR.

SEE

Fsfirst , Fsnext , getf n l , e rrno , _OSERR

ftimtotm

SYNOPSIS

#include <ext . h>

tm = f t imtotm (ft) ;

st ruct tm *tm ;
st ruct ft ime *ft ;

DESCRIPTION

Convert time structures

conve rt t ime st ructu re s

pointe r to st ruct t m
pointe r to st ruct ft ime

f t i m t o t m converts a file time structure (st r u c t f t ime) to the
ANSI time s t r u c t t m . Note that the pointer returned is that
shared by gmt ime and l o c a l t ime, a call to either one will destroy
the results of the previous call.

RETURNS

A pointer to a structure of type st ruct tm is returned containing the
converted time.

Library Lattice C 5.5 Page 45

SEE

ftunpk , utpac k , gmt ime

getcurdir Get current directory

SYNOPSIS

#include <ext . h>

error = getcurdir (d rive , pat h) ;

int e r ror ;
int d rive ;
char * pat h ;

DESCRIPTION

0 if successful
drive code
point s to path area

This function gets the current directory path for the specified disk
drive. The drive codes are 0 for the current drive, 1 for drive A, 2 for
drive B, and so on.

Note that the path area must be large enough to contain the
expected path (FMS I Z E is a safe value) . The returned string will
contain the entire path, including the drive name of the device.

RETURNS

If the operation is successful, the function returns 0. Otherwise it
returns -1 and places error information in er rno and _ OSERR.

SEE

Dgetpat h , getcd , getcwd , e rrno , _OSERR

Page 46 Lattice C 5.5 Library

getdate, setdate

SYNOPSIS

#include <ext . h>

getdate (cu rdat e) ;
setdat e (newdate) ;

st ruct date * c u rdat e ;
st ruct date * n ewdat e ;

DESCRIPTION

Get/set system date

get cu rrent system date
set cu rrent system date

pointe r to c u rrent date
pointer to date to be set

These functions manipulate the system date. g e t d a t e fills in the
structure of type d a t e passed to it with the current system date.
s e t d a t e is passed a similar structure containing the date which you
wish to set. The structure d a t e has the type:

struct date {

} j

short da_year;

char da_day;

cha r da_mon;

RETURNS

None.

SEE

year

day

month

gettime , sett ime , s t ime , Tgetdat e , Tsetdate

Library Lattice C 5.5 Page 47

getdfree

SYNOPSIS

#include <ext . h>

getdfree (d r ive , info) ;

int d rive ;
s t ruct dfree* info ;

DESCRIPTION-

Get free disk space

d rive code , 0 => c u r rent
disk informat ion

This function obtains information about the specified disk drive,
including the amount of free space available. If a 0 is passed as the
drive number, information is obtained about the current drive. The
df ree structure is defined in ext.h as follows:

struct dfree {

} ;

unsigned long df_avail;

unsigned long df_total;

unsigned long df_bsec;

unsigned long df_sclus;

RETURNS

None.

getdisk, setdisk

SYNOPSIS

#include <ext . h>

d rive = getdisk () ;
bmap = setdisk (d rive) ;

int d rive ;
int bmap ;

DESCRIPTION

number of free clusters

clusters per drive

bytes per sector

sectors per cluster

Get or set current disk drive

d rive code
bitmap of mounted d r ives

The s e t d i s k function changes the current drive code. Drive code 0
corresponds to drive A, code 1 is drive B and so on.

Page 48 Lattice C 5.5 Library

The g e t d i s k function gets the current drive code, using the same
codes as setdisk .

RETURNS

The function s e t d i s k returns a bitmap of mounted drives, bit 0
corresponds to drive A, bit 1 is drive B and so on.

The function g e t d i s k returns the code of the currently selected
drive.

SEE

chgds k , Dsetd rv , Dgetd rv , getcd , getdsk

getftime, setltime Get/set file time/date

SYNOPSIS

#include <ext . h>

e r r
e r r

getft ime (f h , c u rtime) ;
setft ime (f h , newt ime) ;

get file t ime
set file t ime

int e r r ;
int f h ;

0 if successful
handle of file

st ruct ftime * c u rt ime ;
st ruct ft ime * n ewtime ;

pointe r to c u rrent t ime
pointe r to t ime to be set

DESCRIPTION

These functions manipulate the time and date stamp of the file
referenced by f h . g e t f t i m e fills in the structure of type f t i m e
passed to it with the current file time. s e t t i m e is passed a similar
structure containing the time which you wish to set. The structure
f t ime has the type:

struct ftime {

} j

u nsigned ft_hour : 5;

u nsigned ft_min : 6;

u nsigned ft_tsec : 5;

u nsigned ft_year : 7;

u nsig ned ft_month : 4;

u nsigned ft_day : 5;

Library

hour

minute

seconds

year - 1980

month

day

Lattice C 5.5 Page 49

RETURNS

If the operation is successful, a value of 0 is returned. Otherwise, the
return value is -1, and further error information can be found in e r rno
and _OSERR.

SEE

c hgft , Fdat ime , getft

gettime, settime

SYNOPSIS

#include <ext . h>

gett ime (cu rt ime) ;
sett ime (newt ime) ;

st ruct t ime * c u r t ime ;
st ruct t ime * n ewtime ;

DESCRIPTION

Get/set system time

get c u r rent system t ime
set cu rrent system t ime

pointe r t o c u rrent t ime
point e r to t ime to be set

These functions manipulate the system time. g e t t i m e fills in the
structure of type t i m e passed to it with the current system time.
s e t t ime is passed a similar structure containing the time which you
wish to set. The structure t ime has the type:

struct time {

} ;

unsigned cha r ti_min;

unsigned cha r ti_hour;

unsigned cha r ti_hund;

unsigned cha r ti_sec;

RETURNS

None.

SEE

minute

hour

hundredths - always 0

seconds

getdat e , setdat e , st ime , Tgetdat e , Tsetdate

Page 50 Lattice C 5.5 Library

ftw.h

ftw.h contains only one function, ftw () . This function enumerates the
members of a directory calling a user defined function for each
member.

hw

SYNOPSIS

#include <ftw . h>

e r r = ftw(root , fn , maxdir) ;

int e r r ;
const char * root ;
int (*f n) (path , stat , type) ;
int maxd i r ;
const char *pat h ;
st ruct stat * st at ;
int type ;

DESCRIPTION

Walk a file tree

e rror status
root of d i rectory t ree
function called
maximum d irectory depth
path of c u r rent f ile
poin t e r to stat block
type of f ile encountered

ftw is used to recursively traverse a directory structure. The search
starts at p at h with the function f n called for every file/directory
encountered. maxd i r gives the maximum number of o p e n d i r calls
which will be made, if the depth of the tree exceeds this value then
the performance of the routine will be considerably reduced.

The string passed to f n , p a t h , gives the path of the file currently
being considered, whilst s t a t contains a pointer to a st ruct stat
giving information about the file (see s t at) . The t y p e parameter
gives further information on the file:

Symbol Meaning
FTW F normal file

FTW D directory

FTW_DNR unreadable directory

FTW NS unreadable file info

Note that if the value is FTW N S then the s t a t struct will not
contain useful information.

-

Library Lattice C 5.5 Page 5 1

The value returned by f n decides whether the tree walk is to
continue or be terminated; the function should return zero to continue
the traversal, or non-zero to terminate.

Note that f t w visits a directory before visiting any of its
descendants.

RETURNS

The function returns the value from the last call to the user function
fn, i.e. zero on success.

SEE

opend i r , stat

EXAMPLE

#include <ftw . h>

int f n (const char * pat h , st ruct * x , int y)

{

}

put s (pat h) ;
return o ;

int main (void)

{

I * t o continue t h e t raversal * /

return ftw (" " , fn , 20) ;

}

ieeefp.h

The ieeefp .h header file includes definitions for manipulating the
math eo-processors of the Mega STE and TT. These functions and
variables allow the precision and rounding modes of the chips to be
set and examined .

Page 52 Lattice C 5.5 Library

_FPCipcr

SYNOPSIS

Floating point eo-processor configuration

#include <ieeefp . h>

long _FPCf pc r ; e o - processor configu ration

DESCRIPTION

The _FPCf p c r variable is used at program startup time to initialise
the rounding and precision of the maths eo-processor. The value is
formed by ORing the required flags together. The flags are:

Symbol
FP_RN

FP_RZ

FP_RM

FP RP

FP_PX

FP_PS

FP PD

FP_X_BSUN

FP_X_SNAN

FP_X_OPERR

FP X OVFL

FP X UNFL

FP_X_DZ

FP X I NEX2

FP_X_INEX1

Meaning
round to nearest

round toward zero

round toward minus infinity

round toward minus infinity

extended precision

single precision

double precision

branch/set on unordered exception

signalling not a number exception

operand error exception

overflow exception

underflow exception

divide by zero exception

inexact operation exception

inexact decimal input exception

Note that you should set only one of F P _RN , F P _RZ, F P _RM and
FP _RP, equally you should set only one of FP _PX, FP _PS and FP _PO .

Note that changing this variable using anything other than a global
initialisation will have no effect.

The default value of this variable is FP _RN I FP _PX. Note that if you
enable any of the exceptions you must install a suitable exception
handler.

Library Lattice C 5.5 Page 53

SEE

f pget round , fpset round , fpgetprecision , fpsetprecision ,
fpgetmas k , f psetmask

FPCmode Current moth mode

SYNOPSIS

#include <ieeefp . h>

int _FPCmode ; math s evaluation package

DESCRIPTION

The _FPCmode variable is initialised by the startup code to indicate
how floating point maths is performed. The following values are
used:

Value
1

2

4

- 1

0

Meaning
eo-processor 68881 installed

eo-processor 68882 installed

68040 installed

1/0 based 68881 installed

No maths eo-processor present

This variable is consulted by the auto-detecting maths routines to
decide on how evaluation should proceed.

Your program may wish to interrogate this variable at program
startup to ensure that sufficient maths hardware is available for
your application, rather than have the user suffer a mysterious
crash later on!

Page 54 Lattice C 5.5 Library

lpgetmask, lpsetmask Get/ set exception mask

SYNOPSIS

#include <ieeefp . h>

typedef enum f p_except f p_except ;

mask fpgetmask () ; get except ion mask
mas k fpsetmas k (ne) ; set exception mask

fp_except mask ; old except ion mask
f p_except ne ; new exception mask

DESCRIPTION

The f pgetmask and f p s e t m a s k functions manipulate the exception
mask of the maths eo-processor. f p g e t m a s k returns the current
setting for this, whilst f p s e t m a s k changes the exception mask to
the value indicated by n e, returning the old value. The values used
are:

Symbol Meaning
FP_X_BSUN branch/ set on unordered

FP_X_SNAN signalling not a number

FP X OPERA operand error

FP_X_OVFL overflow

FP_X_UNFL underflow

FP X DZ divide by zero

FP_X_I NEX2 inexact operation

FP X I NEX1 inexact decimal input

Note that these functions have no effect when the software IEEE
emulation is being used, also beware that the standard runtime
libraries include no support for dealing with exceptions, hence if you
enable any you must install a suitable exception handler.

RETURNS

f p g e t m a s k returns the current exception mask. f p s e t m a s k returns
the old exception mask.

Library Lattice C 5.5 Page 55

SEE

_FPCmode , fpget sticky , fpsetstic k y

lpgetprecision, lpsetprecision

SYNOPSIS

Get/ set precision

#include <ieeef p . h>

typedef enum f p_prec f p_prec ;

prec
prec

fpget round () ;
fpset round (n p) ;

f p_prec prec ;
f p_prec np ;

DESCRIPTION

get c u rrent precision
set n ew p recision

old p recision
new p recision

The fpget p r e c i s ion and f p s e t p r e c i s ion functions manipulate
the precision setting of the maths eo-processor. f p g e t p r e c i s i o n
returns the current setting for this, whilst f p s e t p re c i s io n changes
the precision to the value indicated by np , returning the old value.
The values used are:

Symbol
FP PX

FP_PS

FP_PD

Meaning
extended precision

single precision

double precision

Note that these functions have no effect when the software IEEE
emulation is being used.

RETURNS

fpget r o u n d returns the current precision. f p s e t round returns the
old precision setting.

SEE

fpget round , fpset round

Page 56 Lattice C 5.5 Library

lpgetround, lpsetround Get/set rounding mode

SYNOPSIS

#include <ieeef p . h>

typedef enum f p_rnd f p_rnd ;

rnd f pget round () ;
rnd fpset round (n r) ;

get c u r rent rounding mode
set new rounding mode

f p_rnd rnd ;
fp_rnd n r ;

DESCRIPTION

old rounding mode
new rounding mode

The f p g e t r o u n d and f p s e t r o u n d functions manipulate the
rounding bits of the maths eo-processor. f p g e t r o u n d returns the
current setting for this, whilst f p s e t r o u n d changes the rounding to
the mode indicated by n r, returning the old value. The values used
for these modes are:

Symbol
FP_RN

FP RZ

FP_AM

FP RP

Meaning
round to nearest

round toward zero

round toward minus infinity

round toward minus infinity

Note that these functions have no effect when the software IEEE
emulation is being used.

RETURNS

fpget round returns the current rounding mode. fpset round returns
the old rounding mode.

SEE

f pgetprecision , fpsetprecision

Library Lattice C 5.5 Page 57

fpgetsticky, fpsetsticky

SYNOPSIS

Get/set accrued exceptions

#include <ieeef p . h>

typedef enum f p_except f p_except ;

prec fpgetsticky () i get acc rued exception byte
prec fpsetsticky (ne) ; set acc rued except ion byte

f p_except prec ; old acc rued e xception byte
f p_except ne ; new accrued exception byte

DESCRIPTION

The f p g e t s t i c k y and f p s e t s t i c k y functions manipulate the
accrued exception byte of the maths eo-processor. f p g e t s t i c k y
returns the current set of accrued exceptions, whilst f p s e t s t i c k y
changes the current value to n e . Note that these functions are
'sticky' because the eo-processor never clears any of the bits, hence
you may zero the word prior to a calculation and then afterwards
collect the total of the problems which occurred. The values used to
represent the exception conditions are:

Symbol Meaning
FP_X_BSUN branch/ set on unordered

FP_X_SNAN signalling not a number

FP_X_IOP invalid operation

FP X OVFL overflow

FP_X_UNFL underflow

FP_X_DZ divide by zero

FP X I NEX inexact operation

Note that these functions have no effect when the software IEEE
emulation is being used.

RETURNS

f p g e t s t i c k y returns the current accrued exception byte.
f p set sticky returns the old accrued exception byte.

Page 58 Lattice C 5.5 Library

SEE

fpgetmas k , f psetmask

osbincl.h

With the advent of the TT and Mega-STE two new TOSes are
available, 2.xx and 3.xx. To cater for these new machines additional
OS calls are available in osbind.h .

Sconmap Get/Set AUX: device mapping

SYNOPSIS

#include <osbind . h>

val = Bconmap (devno) ;

long val ;
int devno ;

DESCRIPTION

return value
B I OS device number

B c o n m a p is used to control the mapping of the AUX: device (BIOS
device 1) which is initially set to the ST compatible serial port.
Valid device assignments on the TT are:

devno

-2

-1

6

7

8

9

Meaning
Return pointer to struct bconmap

Read existing setting

Select ST-compatible serial port

Select modem 2 (SCC channel B)

Select serial 1 (3-wire TT MFP)

Select serial 2 (SCC channel A)

Note that these device assignments are specif ic to the TT; other
hardware will use different assignments.

RETURNS

As noted above.

Library Lattice C 5.5 Page 59

SEE

Bconin , Bconout , Bconis , Bconos , I orec , R sconf

DMAread Read sectors from DMA device

SYNOPSIS

#include <osbind . h>

e r r = DMAread (sector , count , buff e r , devno) ;

long e r r ;
long secto r ;
int count ;
void * buffe r ;
int dev11o ;

DESCRIPTION

e rror status
first sector to read
number of sectors t o read
poin t e r to buffe r
DMA device id

DMAread is used to read count sectors from the DMA device given by
devno starting at s e c t o r into memory. The values of devno are:

devno

0 - 7

8 - 15

Meaning
ACSI devices 0-7

SCSI devices 0-7

buff e r is a pointer to a suitable memory block. Note that reads from
ACSI devices must specify a memory block in system RAM. If a
transfer to alternative RAM is required it may be possible to use the
memory pointed to by _FRB provided the _f l o c k system variable is
suitably managed.

RETURNS

DMAread returns 0 normally, or a non-zero error code.

Page 60 Lattice C 5.5 Library

DMAwrite Write sectors from DMA device

SYNOPSIS

#include <osbind . h>

e r r = DMAwrit e (sector , count , buff e r , devno) ;

e rror status long e r r ;
long sector ;
int count ;
const void * buff e r ;
int devno ;

first sector t o write
numbe r of sectors to write
pointe r to buffer
DMA device id

DESCRIPTION

DMAwri te is used to write count sectors from the DMA device given
by devno starting at s e c t o r from memory. The values of devno are:

devno

0 - 7

8 - 15

Meaning
ACSI devices 0-7

SCSI devices 0-7

b u f f e r is a pointer to a suitable memory block. Note that writes to
ACSI devices must specify a memory block in system RAM. If a
transfer from alternative RAM is required it may be possible to use
the memory pointed to by _FRB provided the _ f l o c k system variable
is suitably managed.

RETURNS

DMAread returns 0 normally, or a non-zero error code.

Library Lattice C 5.5 Page 6 1

EgetPalette

SYNOPSIS

#include <osbind . h>

Get contiguous entries from TT CLUT

EgetPalet t e (num , count , palette)

int num ;
int count ;
short * palette ;

DESCRIPTION

initial CLUT e n t ry to modify
number of CLUT ent ries
pointe r to new CLUT entries

EgetPalet t e copies the contents of a contiguous set of the TI CLUT
registers into the array pointed to by p a l e t t e . n u m gives the first
entry to copy, whilst c o u n t gives the number of entries. The CLUT
entries are encoded in the following manner:

bits 15-12 bits 1 1 -8 (Red) bits 7-4 (Green) bits 3-0 (Blue)

Unused ffi ll2 R1 Rl G3 G2 G1 GO B3 B2 B1 BO

R 0 represents the least-significant bit of the red component of the
colour, R 3 the most-significant. Similarly, G O -G3 give the green
component and 80-83 the blue component. Note that this (and the
other TI specific palette calls) do not use the ST compatible method
of encoding the colour as per Setpalette .

RETURNS

None.

SEE

Setpalet t e , Setcolor , E setColo r , E s etPalette

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Laffice C 5.5 Library

EgetShilt

SYNOPSIS

#include <osbind . h>

mode = EgetShift()

int mode;

DESCRIPTION

Get current video shih mode

video shift register value

The E g e t S h i f t call returns the current setting of the TT video
shifter. The meaning of the bits within the value are:

Bit 15 Bit 1 2 Bits 10-8 Bits 3-0
Smear Grey 000 STlow Current colour
mode mode 001 ST medium bank

010 ST high
100 TT medium
110 TT high
1 1 1 TT low

RETURNS

The call returns the current value of the video shifter.

SEE

Setscreen, Getrez, EsetSmear, EsetShift, EsetGray,
EsetBank

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Library Lattice C 5.5 Page 63

EsetBank Get/set colour lookup bank

SYNOPSIS

#include <osbind . h>

old = EsetBan k (new)

int old ;
int new ;

DESCRIPTION

old active colour bank
colou r bank to select

E s e t B a n k selects which of the 1 6 CLUTs (colour lookup table) is
active. If the value passed is negative the active CLUT is not
changed and the old value is simply returned.

RETURNS

The call returns the old active CLUT number.

SEE

Setpalet t e , E s etPalet t e , EgetPalett e

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Page 64 Lattice C 5.5 Library

EsetColor Get/ set colour entry

SYNOPSIS

#include <osbind . h>

old = E setColo r (num , color)

int old ;
int num ;
int color ;

DESCRIPTION

old TT CLUT value
TT CLUT ent ry t o modify
new colou r value

E s e t C o l o r sets the absolute colour entry n u m to the value given by
color . The encoding used for colo r is as follows:

bits 15-1 2 bits 1 1 -8 (Red) bits 7-4 (Green) bits 3-0 (Blue)

Unused R3 R2 R1 R> G3 G2 G1 GO B3 B2 B1 BO

R O represents the least-significant bit of the red component of the
colour, R 3 the most-significant. Similarly, GO-G3 give the green
component and 80-83 the blue component. Note that this (and the
other TT specific palette calls) do not use the ST compatible method
of encoding the colour as per Setcolor.

If colo r is negative then the colour is not changed and the old value
is returned.

RETURNS

The old value of the TT CLUT entry is returned.

SEE

Setcolo r , EsetPalette , EgetPalette

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Library Lattice C 5.5 Page 65

EsetGray

SYNOPSIS

#include <osbind . h>

old = EsetGray (new) ;

int old ;
int new ;

DESCRIPTION

Get/Set grey mode

old g rey scale mode
new g rey scale mode

E s e tGray is used to read/write the IT video hardware's grey mode
bit. When grey mode is set, the bottom eight bits of the palette value
are used as one of 256 possible grey levels. n ew is zero to select colour
mode, +ve to select grey mode, or -ve to simply return the old setting.

RETURNS

The old grey scale value.

SEE

EsetShift , EgetShift

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Page 66 Lattice C 5.5 Library

EsetPalette Set contiguous entries of TT CLUT

SYNOPSIS

#include <osbind . h>

EsetPalett e (num , count , palette)

int num ;
int count ;
short * palett e ;

DESCRIPTION

int ial CLUT ent ry to modify
number of CLUT ent ries
pointer to new CLUT entries

EsetPalette sets the contents of a contiguous set of the TT CLUT
registers. num gives the first entry to modify, whilst count gives the
number of entries. palette is a pointer to an array of count CLUT
entries encoded in the following manner:

bits 15-12 bits 1 1 -8 (Red) bits 7-4 (Green) bits 3-0 (Blue)

Unused R3 � R1 RJ G3 G2 G1 GO B3 B2 81 80

RO represents the least-significant bit of the red component of the
colour, R 3 the most-significant. Similarly, GO-G3 give the green
component and 8 0-83 the blue component. Note that this (and the
other TT specific palette calls) do not use the ST compatible method
of encoding the colour as per Setpa�ette.
RETURNS

None.

SEE

Setpalet t e , EsetColo r , EgetPalette

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Library Lattice C 5.5 Page 67

EsetShilt

SYNOPSIS

#include <osbind . h>

old = EsetShift (new)

int old ;
int new ;

DESCRIPTION

Set current video shift mode

old s h if t mode regi s t e r value
old s h ift mode registe r value

The E s e t S h i ft call is used to change the setting of the TT video
shifter. The meaning of the bits within the values are:

Bit 15 Bit 12 Bits 10-8 Bits 3-0
Smear Grey 000 Sf low Current colour
mode mode 001 ST medium bank

010 ST high
100 TT medium
110 TT high
1 1 1 TT low

RETURNS

The call returns the old value of the video shifter.

SEE

Set s c reen , Get rez , EsetSmear , EgetShift

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Pa{:le 68 Lattice C 5.5 Library

EsetSmear Get/Set smear mode

SYNOPSIS

#include <osbind . h>

old = E setSmea r (new) ;

int old ;
int new ;

DESCRIPTION

old sme a r mode
new smear mode

E s e t S m e a r is used to read/write the TT video hardware's smear
mode bit. When smear mode is set, the video hardware displays
video pixels with value 0 as the last non-zero colour rather than
colour zero itself. This can be used to change the colour of a filled
polygon by only changing its outline rather than via a complete re
fill. n ew is zero to select colour mode, +ve to select grey mode, or -ve
to simply return the old setting.

RETURNS

The old smear value.

SEE

EsetShift , EgetShift

CAVEATS

This function requires that the program is running on a TT.
Applications which use this call should check the high word of the
_ VDO cookie for the value 2 before attempting it.

Library Lattice C 5.5 Page 69

Getrez Find current screen mode

SYNOPSIS

#include <osbind . h>

res = Get rez () ;

int res ; c u r re n t screen mode

DESCRIPTION

Get rez returns a coded value for the current screen mode. The values
currently returned in res are:

Value
0

1

2

4

6

7

RETURNS

As noted above.

SEE

Screen mode
Low resolution (320x200x4)

Medium resolution (640x200x2)

High resolution (640x400xl)

IT medium resolution (640x480x4)

IT high resolution (1280x1024xl)

IT low resolution (320x480x8)

v_opnwk , Setsc reen

CAVEATS

You should not use this function except as indicated under v _opnvwk.
If you do rely on this function your application will, in general, not
work on large screen monitors or on future extended screen modes.

If your application needs to know the size of the screen, the number of
bitplanes, or other mode specific information it should interrogate
the AES or VDI for the information rather than relying on hard
coded constants based on the result of this call.

Page 70 Lattice C 5.5 Library

Maddalt

SYNOPSIS

Inform GEMDOS of alternative memory

#include <osbind . h>

e r r = Maddalt (st a rt , size) ;

int e r r ;
void * start ;
long s ize ;

DESCRIPTION

0 or e rror code
start of memory block
size of memory block

This call is used to inform GEMDOS of the presence of alternative
RAM; it should not be needed unless you have added custom memory
to the system which is not detected by the BIOS at boot time. s t a rt
is pointer to the block of memory, whilst s i z e gives the number of
blocks in the block.

RETURNS

Maddal t returns 0 for success, or a GEMDOS error code.

SEE

Mxalloc

Mxalloc Allocate block of from preferred pool

SYNOPSIS

#include <osbind . h>

base = Mxalloc (amount , mode) ;

void * base ;
long amount ;
int mode ;

DESCRIPTION

base of block allocated
amount of memory requested
memory type preference

The M x a l l o c function is used to obtain blocks of memory from a
preferred GEMDOS free memory pool.

Library Lattice C 5.5 Page 7 1

The amount of memory required is passed in amount , and the base of
the block allocated is returned in b a s e . If no memory is available a
N U L L pointer is returned. The m o d e parameter gives the type of
memory the application is interested in receiving and has the
values:

Mode
0

2

3

Meaning
ST RAM only

alternative RAM only

either, ST RAM preferred

either, alternative preferred.

To determine the size of the largest free block in the system of a
given type, the value -1 may be used for amo u n t , when the pointer
returned should be cast to a long value giving the size of the block.
Note that it is the size of the largest free block that is returned, and
not the total free memory in the OS pool.

RETURNS

M x a l l o c returns the base of the memory block to use or N U L L if
insufficient memory was available. If a mo u n t is equal to -1 then the
size of the largest block is returned.

SEE

Mf ree , Mshrin k , Malloc

CAVEATS

This call was added in TOS 2.0. An application may detect the
presence of alternative memory (aka fast memory) by interrogating
the _ F R B cookie, which will only be present on machines with
alternative RAM.

Page 72 Lattice C 5.5 Library

NVMaccess Read/Write non-volatile memory

SYNOPSIS

#include <osbind . h>

e r r = NVMacce s s (op , start , count , buff e r) ;

int e r r ;
int op ;

e rror status
ope ration to perform

int start ;
int count ;
char * buffe r ;

first location t o read /write
number of bytes to read /write
pointe r to buffe r

DESCRIPTION

NVMac c e s s is used to access the non-volatile memory in the Atari
IT's real time clock. o p gives the operation which is to be performed
and has the following values:

op Meaning
0 Read NVM data

1 Write NVM data

2 Reset and initialise NVM

s t a rt gives the first of c o u n t bytes which should be read/written
from/to buffer .

RETURNS

NVMaccess returns 0 normally, or a non-zero error code.

CAVEATS

At the time of writing no public entries within the non-volatile
memory have been committed by Atari. All locations are reserved for
use by Atari.

Library Lattice C 5.5 Page 73

Pexec Create/Execute process

SYNOPSIS

#include <osbind . h>

error = Pexec (mode , pat h , tail , env) ;

long e r ro r ;
short mode ;

e rro r return
Pexec mode

const char * path ;
const char * t ail ;
const c h a r *env ;

pat h of p rog ram to execute
command line
poin t e r to environment

DESCRIPTION

P e x e c provides facilities for a program to create basepages, load
programs and execute them.

p a t h is a pointer a string giving the filename of the program to
execute. If p a t h does not specify a drive the current drive is used,
similarly if no pathname is specified the current path is used. Note
that any filename extension must be explicitly specified.

t a i l is a pointer to a length prefixed string, i.e. t a i l [O] contains
the length of the string starting at t a i l [1] , the total length of the
string (including the length byte) may not exceed 1 26 bytes. Note
that when copying this string GEMDOS copies 126 bytes or up to a
NUL character, which ever is first.

e n v contains a pointer to the environment to be passed to the child
process. If this pointer is N U L L then the child inherits a copy of the
parents environment. GEMDOS obtains a block of memory using
Malloc into which it copies the child processes environment.

The m o d e parameter determines what function the command
performs. The following mode values are allowed:

Value
0

3

Page 74

Meaning
Create a basepage, load program into the basepage,
execute program returning program's termination
code when the program completes.

Create a basepage and load program into it. The value
returned is the address of the base page created.

Lattice C 5.5 Library

4

5

6

7

Execute program already loaded. For this mode path
and env are unused (pass NULL for these). tail holds
the address of the program to execute. The value
returned is the program termination code. Note that
the TP A and environment are not freed after running
the program.

Create a basepage. For this mode p a t h is unused
(pass NULL for this), tail and env have there normal
meanings. The value returned is the address of the
base page created.

Execute program already loaded. For this mode path
and env are unused, and tail holds the address of
the program to execute. The value returned is the
program termination code. Unlike mode 4, the TP A
and environment are freed after executing the child
process. Note the warning below about this mode.

Create a basepage. For this mode pat h holds the
program load flags as set in the executable file's load
bits. tail and env have their normal meanings. The
value returned is the address of the base page created.
Note the warning below about this mode.

Note that the b a s e p a g e structure is described in the C library
manual and also in the basepage.h header file.

RETURNS

Pexec returns values dependent on the mode argument. For all modes
a longword negative value is an error indication, positive values are
as indicated above. Note that when P e x e c returns an exit code from
a program it has executed the top 1 6 bits are zero, you may also find
it useful to note that if a program is aborted via C t r 1 - C then the
return code is OxfteO.

SEE

Pte rmO , Pterm , P t e rm re s , Mshrink

CAVEATS

P e x e c mode 6 is only available on GEMDOS version 0.21 (TOS 1 .4)
and above. P e x e c mode 7 is only available on GEMDOS version 0.24
(TOS 2.0) and above.

Library Lattice C 5.5 Par::�e 75

stdlib.h

getopt

SYNOPSIS

Get option letter from argument vector

#include <stdlib . h>

c = getopt (a rgc , a rgv , opt st ring) ;

int c ;
int a rgc ;
const char * argv [] i
const char *opt s t ring ;

extern char *optarg ;
extern int optind ;
extern int opt e r r ;

DESCRIPTION

a rgument c h a racte r
argument count
argument vector
st ring containing valid opt s

pointe r t o option a rgument
index of next a rgument
error message sett ing

The g e t o pt function returns the next option letter in a r g v which
matches a letter in o pt s t r i n g . opt s t r i n g contains all the option
letters which are to be recognised, optionally followed by a colon (:)
when an argument is required by the option. Such an argument may
either be concatenated with the option letter, or be the next
argument. The external variable o p t a r g is set to point to any such
argument. If the colon is doubled (: :) then the argument is optional
and if present must be concatenated to the option letter, if no
argument was present then optarg will be NULL.

The external variable o p t i n d is used to track the next a r g v index
which g e t o p t will use and is normally initialised to 1 by the first
call to g e t o p t .

When all options have been processed (i.e. the first argument which
does not start with a ' - '), or the special delimiter ' - - ' has been
encountered the value -1 is returned and and the ' - - ' argument
skipped .

When an unrecognised option is encountered, or an argument option is
omitted where one was expected, an error message is printed on
s t d e r r and the value '? ' returned. The printing of error messages
may be disabled by setting the external variable opt e r r to 0.

Page 76 Lattice C 5.5 Library

Note that unlike a r g o p t , g e t o p t does not recognise a ' / ' as an
option prefix.

RETURNS

The value of the character obtained as an option, '? ' for an invalid
option or -1 if no more arguments are available.

SEE

argopt , main

EXAMPLE

I *
* parse t h e command lines :
* myprog - x - ypdq - z - g moo blah
* /

#include <stdlib . h>

int main (int argc , char *argv [])

{
int c ;
char *file , * status
int x=O , z=O ;

NULL ;

while ((c=getopt (argc , argv , " xy : : zg : ")) ! = - 1)
switch (c) {

Library

case ' x ' :
x++ ;
break ;

case ' z ' :
z++ ;
break ;

case ' y ' :
if (optarg)

statu s=optarg ;
break ;

case ' g ' :
f ile=optarg ;
break ;

Lattice C 5.5 Page 77

}

}

case ' ? ' :
abort () ;
break ;

f o r (; optind<argc ; optind++)
process (argv [optind] , x , z , status , file) ;

ret u r n o ;

spawn

SYNOPSIS

Launch new process

#include <stdlib . h>

error spawnl (mode , prog , a rgo , _ , argn , NULL) ;
e r r o r spawnv (mode , prog , argv) ;

error spawn le (mode , prog , argo , ... , argn , NULL , e nvp) ;
e r ro r spawnve (mode , prog , argv , envp) ;

error s pawnlp (mode , p rog , argO , ... , argn , NULL) ;
e r ro r spawnvp (mode , prog , argv) ;

e r ro r spawnlpe (mode , prog , argo , _ , a rgn , NULL , envp) ;
e r ro r spawnvpe (mode , prog , argv , envp) ;

error code int error ;
int mode ;
const char * prog ;
const char * a rgO ;
const char * a rgn ;
const c h a r * a rgv [] i
const char * envp [) ;

execut ion mode of prog ram
prog ram name

extern int _aecl ;

DESCRIPTION

argument #0
a rgument #n
a rgument vector
environment pointers

Extended command lines f lag

The s p awn . . . family of functions provide the most control over the
creation of processes. The mode parameter specifies how the named
program is to be launched.

Page 78 Lattice C 5.5 Library

The values of this are:

Symbol

P WAIT

P NOWAIT

P OVERLAY

Meaning

Spawn process and wait for child to terminate,
returning termination code.

Spawn process concurrently, termination code
available from wait. This is equivalent to fork ...

Overlay current process. Does not return. This is
equivalent to exec ...

Note that P _NOWA I T is not supported by GEMDOS, so the calling
process actually waits for the child to terminate before continuing.
Also the P O V E R LAY mode is not available from GEMDOS and is
simulated by the s p aw n ... family function terminating via _e x i t
after execution; this mode is designed for use with v f o r k .

Details o n the various modes o f this command are a s under the
f o r k ... family of functions.

RETURNS

The return code is as specified above for a successful execution,
otherwise the specified program file cannot be found, a -1 return is
made, and additional error information can be found in e r r n o and

OS ERR.

SEE

Pexec , _exit , exec ... , fork ... , vfo r k , wait

Library Lattice C 5.5 Page 79

string.h

string . h is the ANSI string definitions file. To support other pre
ANSI platforms some additional string and memory functions are
avai lable .

bcmp, bcopy, bzero

SYNOPSIS

#include <st ring . h>

x = bcmp (a , b , n) ;
s bcopy (f rom , to , n) ;
s bzero (to , n) ;

void *to ;
const void *f rom ;
size_t n ;
const void * a , * b ;
void * s ;
int x ;

DESCRIPTION

BSD memory block operations

Compare two memory bloc ks
Copy a memory block
Zero a memory block

dest ination pointe r
source poin t e r
numbe r o f byte s
b l o c k pointers
retu r n point e r
return value

These functions manipulate blocks of memory in various ways. The
bcmp function is identical to the memcmp function and compares two
blocks of memory. The b z e ro function zeroes the nominated block of
memory; note that unlike the m e m s e t function it is not possible to
change the value which is used for the initialisation. The b c o p y
function copies the area from one location to the other in the same
manner as the ANSI m e m c p y function; note that f r o m and t o are
transposed with respect to memcpy .

RETURNS

As noted above.

SEE

memcmp , memcpy , memset

Page 80 Lattice C 5.5 Library

index, rindex

SYNOPSIS

#include <st ring . h>

p index (s , c) ;
p rindex (s , c) ;

char * p ;
const char * s ;
int c ;

DESCRIPTION

Find character

f ind c haracte r in st ring
f ind last characte r in st ring

updated st ring pointe r
input st ring poin t e r
character to be located

The i n d e x function scans the input string to find the first occurrence
of the character specified by argument c. The r i n d e x function scans
the input string to find the last occurrence of the character specified
by argument c .

Note that these functions are almost identical to the ANSI s t r c h r
and s t r r c h r functions, however these functions never match the
trailing \ 0 .

RETURNS

A N U L L pointer is returned if the input string is empty or if the
specified character is not found.

Library Lattice C 5.5 Page 8 1

sys/stat.h

fstat

SYNOPSIS

#include <sys / types . h>
#include <sys / stat . h>

ret = fstat (fd , statbuf) ;

int ret ;
int fd ;
st ruct stat * st atbuf ;

DESCRIPTION

Get status of file handle

0 if successful
f ile handle of file
stores information about file

The f s t at function returns UNIX-style file status information about
the file specified by f d . The buffer returned is defined in sys/stat.h
as follows:

struct stat {

dev_t st_dev;

ino_t st_ino ;

} j

unsigned short st_mode;

short st_nlink;

sho rt st_uid;

short st_gid;

dev_t st_rdev;

off_t st_size;

time_t st_atime;

time_t st_mtime;

time_t st_ctime ;

disk drive number

inode number (not used)

file mode flags

number of links (always 1)

user id (not used)

group id (not used)

same as st_dev

file size in bytes

time of last access

time of last modification

time of c reation

Note that the header file sys/types.h must be included prior to
sys/stat .h as this defines the types d e v_t , i n o_t , d e v_t and
off_t .

RETURNS

On success, the f st at function returns 0.

Page 82 Lattice C 5.5 Library

umask

SYNOPSIS

#include <fcntl . h>

old = umas k (mas k)

int old ;
int mask ;

DESCRIPTION

Get/set file creation mask

existing mask setting
desired setting for f ile mask

umask sets the file mode creation mask to its argument and returns
the previous value of the mask. The default value is 0 (all
permissions available). In practice this function is only useful when
called as u ma s k (S_IWR I TE) to create read only files by default,
since that is the only UNIX® style protection bit implemented by
GEMDOS.

RETURNS

The old value of the file mask is returned

SEE

chmod , c reat , Fc reat , open

Library Lattice C 5.5 Page 83

time.h

stime

SYNOPSIS

#include <t ime . h>

e r r = stime (t ime)

int e r r ;
const t ime_t * t ime ;

DESCRIPTION

Set current system time

error return
pointe r to t ime

The s t ime function changes the current time and date in the system
clock to the value pointed to by t ime .

RETURNS

The function returns 0 on successfully changing the time, or -1 to
indicate an error, with further information in e r rno .

SEE

Tsetdat e , Tset t ime , t ime , ut ime

Page 84 Lattice C 5.5 Library

unistd.h

exec Overlay current process

SYNOPSIS

#include <unistd . h>

e rror execl (prog , argO , arg1 , _ , argn , NULL) ;
e rror execv (prog , argv) ;

e rror execle (prog , argO , arg1 , _ , a rgn , NULL , envp) ;
e r ro r execve (prog , a rgv , envp) ;

e rror execlp (prog , argO , a rg 1 , _ , argn , NULL) ;

e r ro r execvp (prog , argv) ;

e rror execlpe (prog , argO , arg1 , _ , a rgn , NULL , envp) ;
e rror execvpe (prog , argv , envp) ;

int error ;
const c h a r * p rog ;
const c h a r * argO ;
const char * a r g 1 ;
const char * a rg n ;
const char * a rgv [] ;
const char *envp [] ;

extern int _aecl ;

DESCRIPTION

e r ro r code
prog ram name
a rgument #0
argument #1
a rgument #n
a rgument vector
environment pointers

extended command lines flag

These functions m1m1c the UNIX® process overlay commands.
GEMDOS does not actually support this, so the implementation
spawns a child, terminating (via _e x i t) on return. This family of
functions are designed for use with the vfo r k function.

Details on the various modes of this command are as under the
f o r k ... family of functions.

Library Lattice C 5.5 Page 85

RETURNS

If the call succeeds the function never returns. If the specified
program file cannot be found, a -1 return is made, and additional
error information can be found in e r rn o and _OSERR . Note that you
must call the wait function in order to obtain the completion code
from the child process.

SEE

Pexec , _exit , fork , spawn , vfork , wait

vfork Spawn new process

SYNOPSIS

#include <unistd . h>

pid = vfork () ;

int pid ; process id of c h ild o r z e ro

DESCRIPTION

v f o r k is used to create new processes. Under UNIX f o r k creates a
new concurrent process, v f o r k simulates this by 'borrowing' the
parents address space until a call to e x e c ... is made.

v f o r k returns 0 in the child's context and (later) the process id of the
child in the parent's context.

When using v f o r k you must be careful that you do not alter the
context of the parent process in the child. The child process must not
return from the function which called v f o r k , if this were to happen
the parent process would then return to a stack frame which had
been deallocated by the child.

If the call to e x e c ... should fail then the child must call e x i t ,
rather than e x i t which would otherwise close the standard l/0
files .

RETURNS

vf o r k returns 0 in the child's context and (later) the process id of the
child in the parent's context.

Page 86 Lattice C 5.5 Library

SEE

exec ... , fork ... , spawn ... , wait

EXAMPlE

#include <unistd . h>
#include <stddef . h>

int main (int a rg c , ch a r * argv [])

{
if (! vfork ())

execl (argv [1] , argv [1] , NULL) ;
else

execl (argv (2] , argv [2]) , NULL) ;

}

vdi.h

vdi . h includes all the binding routines which are available for call
the GEM VDI. There are many new functions available for use either
with GDOS or FSM-GDOS.

v_pgcount Set number of copies for laser printer

SYNOPSIS

#include <vdi . h>

v_pgcount (handle , n) ;

int handle ;
int n ;

DESCRIPTION

device handle
numbe r of additional copies

v _pg count is used to change the number of copies generated by laser
printer driver from the default of 1 . The parameter, n , gives the
number of additional copies which are required. .

This function requires that GDOS, Font-GDOS or FSM-GDOS is
loaded .

Library Lattice C 5.5

RETURNS

None.

SEE

v_clear_disp_list , v_cl rwk , v_opnwk

vq_extnd Extended Inquire

SYNOPSIS

#include <vdi . h>

vq_extnd (handle , f lag , work_out) ;

int handle ;
int f lag ;
short *work_out ;

DESCRIPTION

wo rkstat ion handle
O=normal ; 1 = extended inquire
values returned

This function can be used to return the information returned by the
v_o p nw k or v_o p n vw k calls (if f l a g = = O) or additional values if
f l a g = = 1 . The w o r k_ o u t array must have room for at least 57
shorts. The values returned when f l a g = O are detailed under
v_opnwk. The values returned when f lag==1 are as follows:

work_out [O]

work_out [1]

wor k_out [2)

work_out [3]

work_out [4]

wo rk_out [5]

Page 88

Type of screen:

0 = not screen.
4 = 'normal' screen with common graphics and
character memory.

Other values are not applicable to the ST.

Number of background colours available.

Text effects supported. See v s t_ef f e c t s .

Scaling o f rasters:

0 = scaling not supported.
1 = scaling supported.

Number of planes available.

Lookup table supported

0 = table supported.
1 = table not supported.

Lattice C 5.5 Library

work_out [6]

work_out [7]

work_out [8]

work_out [9]

work_out [1 0]

work_out [1 1]

work_out [1 2]

work_ out [1 3]

work_out [1 4]

work_out [1 5]

wo rk_out [1 6]

work_out [1 7]

work_out [1 8]

work_out [1 9]

wo rk_out [20]

work_out [44]

Library

Performance factor. Number of 1 6x16 pixel
raster operations per second.

Contour fill capability:

O = no.
1 = yes.

Character rotation ability:

0 = none.
1 = multiples of 90 degrees only.
2 = any angle.

Number of writing mode available.

Highest level of input mode available:

0 = none.
1 = request.
2 = sample.

Text alignment capability flag:

O = no.
1 = yes.

Inking capability flag:

O = no.
1 = yes.

Rubber-banding capability flag:

O = no.
1 = rubber-band lines possible.
2 = rubber-band lines and rectangles possible.

Maximum vertices for polyline, polymarker or
filled area (-1 = no maximum).

Maximum index for intin (-1 = no maximum).

Number of keys on the mouse.

Styles available for wide lines:

O = no.
1 = yes.

Writing modes available for wide lines:

O = no.
1 = yes.

Clipping enabled flag:

O = no.
1 = yes.

Reserved.

Lattice C 5.5 Page 89

SEE

work_out [45]

work_out [46]

work_out [47]

work_out [48]

work_out [49]

work_out [56]

v_opnwk , v_opnvwk

v_bez

SYNOPSIS

#include <vdi . h>

First X co-ordinate of clipping rectangle

First Y co-ordinate of clipping rectangle

Second X co-ordinate of clipping rectangle

Second Y co-ordinate of clipping rectangle

Reserved.

Draw bezier curve

v_bez (handle , count , xy , bezarr , extent , totpt s , totmoves) ;

int handle ;
int count ;
const short * xy ;
const char *bezarr ;
short extent [4] ;
short *totpt s ;
short *totmoves ;

wo rkstat ion handle
numb e r of vertices
array of vertices
array of vertex desc riptors
extent of resultant bezier
total point s in polygon
total moves in polygon

DESCRIPTION

v b e z is used to draw an unfilled bezier curve on the device
referenced by h a n d l e . x y points to a set of (x, y) co-ordinate pairs,
whilst b e z a r r lists the attributes of each of the corresponding
points. The following bits are used in b e z a r r:

B i t
0

0

Page 90

Value
0

1

Meaning
Point begins a polyline section.

Point is the first point of a set of 4 bezier
points in the sequence: first anchor point, first
control point, second control point, second
anchor point.

1 Point is a jump point; the current point is
moved to this point without a joining line

Lattice C 5.5 Library

The total number of points in the resulting polygon is returned in
t o t pt s, whilst the total number of moves in the resulting polygon is
returned in totmoves. The bounding box of the polygon is returned in
ext e n t .

This function requires that Font-GOOS o r FSM-GOOS i s loaded.

SEE

v_pline 1 v_bez_f ill

EXAMPLE

#include <aes . h>
#include <vdi . h>
#include <osbind . h>

short work_out [57] ;
ShOrt WOrk_in [1 1] = { 0 I 1 J 1 J 1 J 1 1 1 J 1 I 1 J 1 1 1 J 2 } j

main ()
{

short h , j un k ;
short pt s [8] 1 extent [4] , totpts , t otmoves , act ;

appl_init () ;
work_in [O] = Get rez () + 2 ;
h = g raf_handle (& j u n k , &j u n k , &j unk , &j unk) ;
v_opnvwk (wo r k_in , &h 1 wo rk_out) ;
v_bez_on (h) ;
v_bez_qual (h , 1 00 1 &act) ;

pts [0] = 1 00 ;
pt s [1] = 1 00 ;

pt s [2] = 1 00 ;
pt s [3] =400 ;

pt s [4] =400 ;
pt s [5] = 1 00 ;

pts [6] =400 ;
pt s [7] =400 ;

v_be z (h , 4 1 pts 1 " \ 1 \ 0 \ 0 \ 0 " 1 extent , &totpt s ,
&totmoves) ;

Library Lattice C 5.5 Page 9 1

}

v_bez_off (h) ;
v_clsvwk (h) ;
appl_exit () ;

v_bez_con

SYNOPSIS

#include <vdi . h>

Control GDOS bezier facilities

qual = v_bez_con (handle , onoff) ;

int qual ;
int handle ;
int onoff ;

DESCRIPTION

maximum bezier depth
workstation handle
1 to enable , 0 to d isable

v_b e z_c o n is used to enable or disable GOOS bezier capabilities.
The o n o f f parameter is 0 to disable bezier facilities or 1 to enable
them. Note that two macros are provided for this purpose,
v_bez_on () and v_bez_off () .

Note that failure to disable bezier facilities prior to closing the
(virtual) workstation may cause the VDI to crash.

This function requires that Font-GOOS or FSM-GOOS is loaded.

RETURNS

When enabling bezier operation a value, ranging from 0 to 7, is
returned giving the maximum bezier depth, with 2qual giving the
number of line segments used to make up the curve.

SEE

v_set_app_buff , v_bez , v_bezfill

Page 92 Lattice C 5.5 Library

v_&ez_fill

SYNOPSIS

#include <vdi . h>

Draw filled bezier curve

v_be z_fill (handle , count , xy , bezarr , extent , totpt s ,
totmoves) ;

int handle ;
int count ;
const short *xy ;
const char *bezarr ;
short extent [4) ;
short *totpt s ;
s h o rt * totmoves ;

workstation handle
numbe r of vertices
a rray of vertices
array of vertex desc riptors
extent of resultant bezier
total points in polygon
total moves in polygon

DESCRIPTION

v b e z f i 1 1 is used to draw a filled bezier curve on the device
referenced by h a n d l e . xy points to a set of (x, y) co-ordinate pairs,
whilst b e z a r r lists the attributes of each of the corresponding
points. The following bits are used in b e z a r r:

B i t
0

0

1

Value
0

1

Meaning
Point begins a polyline section.

Point is the first point of a set of 4 bezier
points in the sequence: first anchor point, first
control point, second control point, second
anchor point.

Point is a jump point; the current point is
moved to this point without a joining line

The total number of points in the resulting polygon is returned in
t o t p t s, whilst the total number of moves in the resulting polygon is
returned in totmoves. The bounding box of the polygon is returned in
e x t e n t .

This function requires that Font-GOOS o r FSM-GOOS i s loaded.

SEE

v_pline , v_bez

Library Lattice C 5.5 Page 93

v_bez_qual Set bezier quality

SYNOPSIS

#include <vdi . h>

v_bez_qual (handle , percent , actual) ;

int handle ;
int percent ;
short * actual ;

DESCRIPTION

workstat ion handle
speed / quality percentage
actual percentage selected

v_b e z_q u a l sets the bezier speed/quality trade-off parameter as a
percentage of the quality (hence 1 00% is best quality but slowest) .
The quality factor is passed in p e r c e n t as .a value from 0 to 100. The
value selected by GDOS (approximated to the 8 levels available) is
returned in actual.

This function requires that Font-COOS or FSM-GDOS is loaded.

SEE

v_bez , v_bez_fill , v_set_app_buff

v_flushcache

SYNOPSIS

#include <vdi . h>

v_flushcache (handle) ;

Flush FSM font cache

int handle ; workstation handle

DESCRIPTION

The v_f l u s h c a c h e call empties the FSM font caches. This function
requires that FSM GDOS is loaded.

SEE

v_loadcach e , v_savecache

Page 94 Lattice C 5.5 Library

v_ltext Draw graphics text

SYNOPSIS

#include <vdi . h>

v_ftext (handle , x , y , st r) ;

int handle ;
int x ;
int y ;
const c h a r * st r ;

DESCRIPTION

wo rkstation handle
x co - o rdinate of start
y c o - ordinate of start
characte r s to output

This function is identical to the normal VDI v _g t e X t function,
however the text drawn takes into account the remainder values
from vqt_advance, resulting in more accurate spacing.

v _getoutline Get FSM outline

SYNOPSIS

#include <vdi . h>

v_getoutline (handle , e h , component) ;

int h andle ;
int eh ;
f sm_component_t *cpt ;

DESCRIPTION

workstation handle
characte r to obtain outline
FSM component pointe r

This function requires FSM-GDOS for operation and obtains a pointer
to the outline for the character c h .

A pointer to the character outline is returned in c o m p o n e n t . A
description of the f s m_com p o n e n t_t data structure is beyond the
scope of this document.

This function requires that FSM-GDOS is loaded.

SEE

v_killout line

Library Lattice C 5.5 Page 95

v _killoutline Kill FSM outline

SYNOPSIS

#include <vd i . h>

v_killout lin e (handle , component) ;

int handle ;
f sm_component_t * c pt ;

DESCRIPTION

workstat ion handle
FSM component poin t e r

This function requires FSM-GDOS for operation and releases the
memory occupied by the FSM component (obtained via
v _ge t o u t l ine) .

This function requires that FSM-GDOS is loaded.

SEE

v_getoutline

v _loadcache

SYNOPSIS

#include <vdi . h>

Load FSM font cache from disk

e r r = v_loadcache (handle , name , mode) ;

int e r r ;
int handle ;
char * name ;
int mode ;

DESCRIPTION

non - zero if an e r ro r occu r red
workstat ion handle
f ile name
o t o append , 1 to replace

v_loa d c a c h e is used to restore a font cache previously saved using
v _ s a v e c a c h e . n a m e specifies the file which is to be loaded,
normally this should have a . F S M extension. m o d e specifies
whether the file replaces or appends to the existing font cache. If
the value is 0 the file is appended, otherwise the font cache is
replaced.

This function requires that FSM-GDOS is loaded.

Page 96 Lattice C 5.5 Library

SEE

v_savecache , v_flushcache

v_savecache

SYNOPSIS

#include <vdi . h>

Save FSM font cache to disk

e r r = v_savecache (handle , name) ;

int e r r ;
int handle ;
char * name ;

DESCRIPTION

non - zero if an e rror occu r red
workstation handle
f ile name t o save cache in

v _ s a v e c a c h e is used to save the font cache for reloading by
v_l o a d c a c h e . n a m e specifies the file which in which the cache is
to be saved, normally this should have a .FSM extension.

This function requires that FSM-GDOS is loaded.

SEE

v_loadcache , v_flushcache

v_set_app_buH

SYNOPSIS

Reserve bezier workspace

#include <vdi . h>

v_set_app_buff (buff e r , npara) ;

void * buffe r ;
int npara ;

DESCRIPTION

pointe r to buffe r
number o f paragraphs

This call makes the nominated memory block available for use by
the GDOS bezier extensions. If this call is not made, a default 8K
buffer is allocated by GDOS.

Library Lattice C 5.5 Page 97

buff e r is a pointer to the memory block, and n p a ra is the number of
paragraphs available in the block (a paragraph is 1 6 bytes of
memory).

Note that no workstation handle is passed. This function requires
that Font-GDOS or FSM-GDOS is loaded.

SEE

v_bez_con

vq_vgdos

SYNOPSIS

Obtain GDOS version number

#include <vdi . h>

v e r = vq_vgdos () ;

unsigned long ve r ; GDOS revision marker

DESCRIPTION

This function indicates what version of (or whether) GDOS is
loaded. GDOS is the part of GEM that was left out of the ST's ROMs;
it provides the ability to load fonts from disk, load printer drivers
and use device-independent co-ordinates.

The values returned by the function are:

Symbol
GDOS_FNT

GDOS_FSM

GDOS_NONE

Meaning
FONT GDOS is loaded. This is the same as FSM
GDOS with the font scaling module removed.

FSM GDOS is loaded. This indicates that all
FSM functions are available.

No GOOS is present. Note that there is no code
to indicate a pre-FSM release of GOOS, this is
indicated by any other value.

You should always use this function to determine whether GDOS is
loaded, otherwise the system will crash if you use a facility not
provided by the ROM (such as opening a physical workstation).

SEE

v_opnwk , vq_gdos

Page 98 Lattice C 5.5 Library

vqt_aclvance Inquire FSM advance vector

SYNOPSIS

#include <vdi . h>

vqt_advance (handle , e h , advx , advy , x rem , yrem) ;

int handle ;
int eh ;
short *advx ;
short * advy ;
short *x rem ;
short *yrem ;

DESCRIPTION

workstat ion handle
charact e r
X advance value
X advance value
X remain d e r (modulo 1 6384)
Y remaind e r (modulo 1 6384)

This function returns the X and Y advance values for the character c h
in a d v X and a d v y respectively, together with any fractional
advances in x r e m and y r e m . Note that this function takes into
account the current rotation, specified by vst_rot ation .

This function requires that FSM-GOOS i s loaded.

SEE

vst_rotation

Library Lattice C 5.5 Page 99

vqt_ cachesize Inquire FSM font cache size

SYNOPSIS

#include <vdi . h>

vqt_cachesize (handle , which , size) ;

int handle ;
int which ;
long * size ;

DESCRIPTION

workstation handle
cache t o obtain size of
size of selected cache

vqt_c a c h e s i z e obtains the size of one of the FSM caches. The size
of the cache required is dictated by the wh i c h parameter; this is 0 to
find the size of the largest space in the bitmap cache, or 1 to find the
size of the largest space in the data structure cache. The size of the
selected cache is returned in size .

This function requires that FSM-GDOS i s loaded.

SEE

v_f lu shcache , v_loadcache , v_savecache

Page 100 Lattice C 5.5 Library

vqt_devinlo Inquire device status information

SYNOPSIS

#include <vdi . h>

vqt_devinfo (handle , devnum , exist s , name) ;

int handle ;
int devnum ;
short *exist s ;
char * n ame ;

DESCRIPTION

workstat ion handle
device number t o invest igate
non - zero if device exists
n ame of device (if present)

v q t _d e v i n f o is used to ascertain whether a particular driver ID
has been installed and what driver is associated with it. h a n d l e
contains a workstation handle for the device. On return e x i s t s is
non-zero if the device exists, whilst n a m e contains the ASCII name
for the device.

This function requires that Font-GDOS or FSM-GDOS is loaded.

SEE

v_opnwk , v_opnvwk

EXAMPLE

/ *
* Obtain a l l valid wo rkstation IDs a n d print o u t t h e
* name o f t h e i r d rive r
* I

#include <aes . h>
#include <vdi . h>

#def ine MAX_SCREEN_I D 1 0
#define MAX_WORKSTATION_ID 1 28

int main (void)

{
short h , exist s ;
char name [1 28] ;
int i , dev ;
short wo rk_in [1 1] , wor k_out [57] ;

Library Lattice C 5.5 Page 10 1

}

appl_init () ;
f o r (dev = 1 ; dev <= MAX_WORKSTATION_I D ; d ev++) {

for (i= 1 ; i<1 0 ; i++)

}

work_in [i] = 1 ;
work_in [O] = dev ;
wor k_in [1 0] = 2 ;
if (dev <= MAX_SCREEN_ID) {

h=g raf_handle (&h , &h , &h , &h) ;
v_opnvwk (work_in , &h , work_out) ;

}
else

v_opnwk (wo r k_in , &h , wo r k_out) ;
if (h) {

vqt_devinfo (h , dev , &exist s , name) ;
if (exist s)

}

printf (" ID=%d , \ " %s \ " \ n " , dev , name) ;
if (dev<=MAX_SCREEN_I D)

v_clsvwk (h) ;
else

v_clswk (h) ;

retu rn appl_exit () ;

Page 102 Lattice C 5.5 Library

vqt_l_extent Find size ol graphics text

SYNOPSIS

#include <vdi . h>

vqt_f_extent (handle , st r , pt s) ;

int handle ;
const char * s t r
s h o r t * pt s ;

workstation handle
st ring to f ind s ize of
values returned

DESCRIPTION

This function returns the screen area needed to display a string of
graphics text using the current text attributes, taking into account any
remainders indicated by vqt_ad v a n c e . This gives how much screen
area will be used if v _ f t e x t is used to display that string. The
diagram below shows how the points that mark the boundary of the
string are numbered:

4 3

j Hello John I
1 2

The pt s array, which should be large enough to hold 8 shorts will be
returned as follows:

pts [O] x co-ordinate of point 1 .

pt s [1] y co-ordinate of point 1 .

pts [2] x co-ordinate of point 2.

pts [3] y co-ordinate of point 2.

pts [4] x co-ordinate of point 3.

pts [5] y co-ordinate of point 3.

pts [6] x co-ordinate of point 4.

pts [7] y co-ordinate of point 4.

This function requires that FSM-GOOS is loaded.

Library Lattice C 5.5 Page 103

SEE

v_ftext , vqt_advance

vqt_f_name

SYNOPSIS

#include <vdi . h>

Return font name and index

index=vqt_f_name (handle , num , name , isfsm) ;

int index ;
int handle ;
int num ;
char name [32] ;
short * isfsm ;

DESCRIPTION

t h e font index
wo rkstation handle
font number
font name
non - z e ro if FSM outline font

This function returns the name of a font and its font index. The
function that changes the current font, v s t_f o n t , requires a font
index which should be obtained using vqt_f _n ame.

The font numbers that are passed in the num parameter start at 1 and
are followed by 2, 3, etc until the number of loaded fonts. The number
of loaded fonts is returned by the v s t _1 o a d _ f o n t s call. Font
number 1 is the system font.

The n a m e parameter must point to a buffer of at least 32 characters
which will be filled in to give the font name.

The i s f s m flag is set to 1 by the binding to indicate that the selected
font is an FSM outline font. If the font is a bitmap font then 0 is
returned.

This function requires that Font-COOS or FSM-GDOS is loaded.

RETURNS

This function returns the font index.

SEE

vqt_name , vqt_f_extent

Page 104 Lattice C 5.5 Library

vqt_get_tables

SYNOPSIS

Obtain pointer to GASCII tables

#include <vdi . h>

vqt_get_tables (handle , gascii , style) ;

int handle ;
short * *gascii ;
short * * style ;

workstat ion handle
pointe r t o GASCI I table
poin t e r t o style table

DESCRIPTION

v q t_g et_t a b l e s returns the addresses of two tables, which are
used internally by FSM-GDOS to translate ASCII characters passed
to v_g t e x t into a short word which is recognised by the FSM
character generator. These translations are contained in the g a s c i i
table. This table contains 223 entries with the first entry giving the
translation for character 32, the second for character 33 etc.

The second table, s t y l e , gives information on which font file the
character was generated from. When a character is generated the
FSM module selects either the main, symbol or Hebrew font based on
this table, the values of which are:

Value
0

1

2

Meaning
From main font file

From symbol font file

From Hebrew font file

These tables may then be used by the application to access fonts
available in the FSM character sets by modifying the values stored
there.

This function requires that FSM-GDOS is loaded.

SEE

v_gtext

Library Lattice C 5.5 Page 1 05

vst_arbpt Select arbitrary point size

SYNOPSIS

#include <vdi . h>

set = vst_a rbpt (handle , point , ch_w , c h_h , cell_w , cell_h) ;

int set ;
int handle ;
int point ;
short * c h_w ;
short *ch_h ;
short * cell_w ;
short * cell_h ;

DESCRIPTION

point size selected
wor k s t at ion handle
requested point size
characte r width
c h a racter height
cell width
cell height

This function selects an arbitrary point size for an FSM font. This
differs from the v s t _p o i n t call which will only allow the sizes
mentioned in the EXTEND . SYS file to be selected.

This function requires that FSM-GDOS is loaded.

SEE

vst_point

Page 106 Lattice C 5.5 Library

vst_error Set FSM error mode

SYNOPSIS

#include <vdi . h>

vst_e r ro r (handle , mode , e r r) ;

wo rkstat ion handle
e r ro r mode

int handle ;
int mode ;
short * e r r ; pointe r to e rror variable

DESCRIPTION

v s t_e r ro r configures the way in which FSM errors are reported.
The default, m o d e = = 1 , places FSM error messages on the screen. If
v st_e r r o r is called with mode==O then future errors are placed in
the e r r variable. The following error codes are used:

Value Meaning
0 No error

1 Character not found in font

8 Error reading file

9 Error opening file

1 0 Bad file format

1 1 Out o f memory I cache full

-1 Miscellaneous error

An FSM error may be generated by any of the following calls:

v_ftext () , v_gtext () , v_j u s t if ied () , v_opnvwk () ,
v_opnwk () , vqt_advance () , vqt_extent () , vqt_f_extent () ,
vqt_f_name () , vqt_font info () , vqt_name () , vqt_widt h () ,
vst_arbpt () , vst_font () , vst_height () , vst_load_font s () ,
v st_point () , vst_setsize () , vst_un load_fonts ()

This function requires that Font-GDOS or FSM-GDOS is loaded.

Library Lattice C 5.5 Page 1 07

vst_scratch Set FSM scratch allocation mode

SYNOPSIS

#include <vdi . h>

vst_sc ratch (handle , mode) ;

int handle ;
int mode ;

workstation handle
sc ratch buff e r mode

DESCRIPTION

v s t s c r at c h sets the manner in which the size of the VDI effects
buffer (used by effects such as bold, italic etc.) is calculated. The
mod e parameter should have one of the following values:

Value
0

1

2

Meaning
Account for effects on FSM fonts when calculating
buffer size

Ignore FSM fonts when calculating buffer size

Allocate no scratch buffer (hence making any effect
use illegal)

This function requires that Font-GDOS or FSM-GOOS is loaded.

SEE

vst_effects

Page 108 Lattice C 5.5 Library

vst_setsize Set cell width to arbitrary point size

SYNOPSIS

#include <vdi . h>

set =

vst_set s ize (handle , point , ch_w , c h_h , cell_w , cell_h) ;

int set ;
int handle ;
int point ;
short * c h_w ;
short *ch_h ;
short *cell_w ;
short *cell_h ;

DESCRIPTION

point s ize selected
wo rkstat ion handle
requested point size
characte r width
character height
cell widt h
cell height

v s t_s e t s i z e sets the graphic text character width in points. This
allows an arbitrary set size to be used for the character width. Note
that the next call to v s t_po i n t , v s t_a r b p t or v s t_h e i g h t will
override any set size set by this call. This function requires that
FSM-GOOS is loaded.

SEE

vst_arbpt , vst_h e ight , vst_point

Library Lattice C 5.5 Page 1 09

vst_skew Set FSM font skewing angle

SYNOPSIS

#include <vdi . h>

set = vst_skew (handle , s kew) ;

int set ;
int handle ;
int skew

DESCRIPTION

s k ew value selected
workstation handle
angle of s kew required

v s t_s k ew sets the skew used when generating characters, note that
this is independent of the skewing generated using v s t_ef f e c t s .
The s kew value (between -900 and 900) represents the number of wths

of a degree by which the characters are to be skewed. Negative
values produce skews to the left, positive values skews to the right.
This function requires that FSM-GOOS is loaded.

RETURNS

The function returns the skew value actually set.

SEE

vst_effects

Page 1 10 Lattice C 5.5 Library

Notes

	add-lib001_Page_01
	add-lib001_Page_02_1L
	add-lib001_Page_02_2R
	add-lib001_Page_03_1L
	add-lib001_Page_03_2R
	add-lib001_Page_04_1L
	add-lib001_Page_04_2R
	add-lib001_Page_05_1L
	add-lib001_Page_05_2R
	add-lib001_Page_06_1L
	add-lib001_Page_06_2R
	add-lib001_Page_07_1L
	add-lib001_Page_07_2R
	add-lib001_Page_08_1L
	add-lib001_Page_08_2R
	add-lib001_Page_09_1L
	add-lib001_Page_09_2R
	add-lib001_Page_10_1L
	add-lib001_Page_10_2R
	add-lib001_Page_11_1L
	add-lib001_Page_11_2R
	add-lib001_Page_12_1L
	add-lib001_Page_12_2R
	add-lib001_Page_13_1L
	add-lib001_Page_13_2R
	add-lib001_Page_14_1L
	add-lib001_Page_14_2R
	add-lib001_Page_15_1L
	add-lib001_Page_15_2R
	add-lib001_Page_16_1L
	add-lib001_Page_16_2R
	add-lib001_Page_17_1L
	add-lib001_Page_17_2R
	add-lib001_Page_18_1L
	add-lib001_Page_18_2R
	add-lib001_Page_19_1L
	add-lib001_Page_19_2R
	add-lib001_Page_20_1L
	add-lib001_Page_20_2R
	add-lib001_Page_21_1L
	add-lib001_Page_21_2R
	add-lib001_Page_22_1L
	add-lib001_Page_22_2R
	add-lib001_Page_23_1L
	add-lib001_Page_23_2R
	add-lib001_Page_24_1L
	add-lib001_Page_24_2R
	add-lib001_Page_25_1L
	add-lib001_Page_25_2R
	add-lib001_Page_26_1L
	add-lib001_Page_26_2R
	add-lib001_Page_27_1L
	add-lib001_Page_27_2R
	add-lib001_Page_28_1L
	add-lib001_Page_28_2R
	add-lib001_Page_29_1L
	add-lib001_Page_29_2R
	add-lib002_Page_01_1L
	add-lib002_Page_01_2R
	add-lib002_Page_02_1L
	add-lib002_Page_02_2R
	add-lib002_Page_03_1L
	add-lib002_Page_03_2R
	add-lib002_Page_04_1L
	add-lib002_Page_04_2R
	add-lib002_Page_05_1L
	add-lib002_Page_05_2R
	add-lib002_Page_06_1L
	add-lib002_Page_06_2R
	add-lib002_Page_07_1L
	add-lib002_Page_07_2R
	add-lib002_Page_08_1L
	add-lib002_Page_08_2R
	add-lib002_Page_09_1L
	add-lib002_Page_09_2R
	add-lib002_Page_10_1L
	add-lib002_Page_10_2R
	add-lib002_Page_11_1L
	add-lib002_Page_11_2R
	add-lib002_Page_12_1L
	add-lib002_Page_12_2R
	add-lib002_Page_13_1L
	add-lib002_Page_13_2R
	add-lib002_Page_14_1L
	add-lib002_Page_14_2R
	add-lib002_Page_15_1L
	add-lib002_Page_15_2R
	add-lib002_Page_16_1L
	add-lib002_Page_16_2R
	add-lib002_Page_17_1L
	add-lib002_Page_17_2R
	add-lib002_Page_18_1L
	add-lib002_Page_18_2R
	add-lib002_Page_19_1L
	add-lib002_Page_19_2R
	add-lib002_Page_20_1L
	add-lib002_Page_20_2R
	add-lib002_Page_21_1L
	add-lib002_Page_21_2R
	add-lib002_Page_22_1L
	add-lib002_Page_22_2R
	add-lib002_Page_23_1L
	add-lib002_Page_23_2R
	add-lib002_Page_24_1L
	add-lib002_Page_24_2R
	add-lib002_Page_25_1L
	add-lib002_Page_25_2R
	add-lib002_Page_26_1L
	add-lib002_Page_26_2R
	add-lib002_Page_27_1L
	add-lib002_Page_27_2R
	add-lib002_Page_28_1L
	add-lib002_Page_28_2R
	add-lib002_Page_29_1L
	add-lib002_Page_29_2R
	add-lib002_Page_30_1L
	add-lib002_Page_30_2R
	add-lib002_Page_31_1L
	add-lib002_Page_31_2R
	add-lib002_Page_32_1L
	add-lib002_Page_32_2R

