Y Y o) o *
T e e
Source-level and

Assembly-level Debugger

For Use With LaserC Ata.ri ST

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of
Megamax, Inc. Printed in the United States of America.

Megamax, Inc makes no warranty of any kind with respect
to this manual or the software described in this manual.
The user assumes any risk as to the quality, performance,
and accuracy or this product. In no event will Megamax,
Inc. be liable for direct, indirect, incidental, or
consequential damages resulting from any defect in the
performance or use of this product.

Copyright © 1988, 1989 Megamax, Inc. All rights
reserved.

LaserC and LaserDB are trademarks of Megamax, Inc.
Atari® and Atari ST® are trademarks of Atari, Inc.
GEMU® is a trademark of Digital Research Corp.
UNIX® is a trademark of AT&T Information Systems.

Contents

I TTOIEHOR. . oo v v snp s sums pm e me ks add bR 1
RECUICIGHIED, » o 5 5% s 500 554 § %6 & o mm o wwia sos s g 2
CHeoking YoIMIONA. . . oo v vussvesrrns mne s uas a5 3
INETAlIAtION. « « v s xs smv i knasaRisBestasmumenmas 4
Conventiong. ... cocvensrnrsvassnesmnussmins 5
TRMEBIITY, ¢ sno coma vma nasa bBetome s vwnynes 7

2 ¢ Source Preparation.o, 8
COMPIUATIGI, v« 5 omon 3 w3y 5588 086549 6 8686 mm s ne 9
LRI, ¢ sma s 9% 5 6860 timumnmmanwn puysessswnds 10
SEATEIDL. « »wc v v vm g Mma Ep s GRS 536 B add B 11

3 «LaserDB Expressions.cocuvuenen.n. 17
Current Line/Scope.covvvveineiannennn 18
ROBTIETIICER o ¢ gt 6 Mmie s 5% 4 $55 5 Bk & wom = oo p 5% 4 18
Extended NamIes: : coooneencrvssrsmsrsessess 19
1< | P T TP 22
TH6 LRI, . o5 anmismamssisbs ansermesons 23
Memory Range Checksum. 24
Line Number Operator. 25

Predeclared Variables. 26

Contents

Processor Registers. . cus . csssnsssisnsanna 27
Predeclared Temporaries. 27
Prinbing Boynals. . oo crv s pvnnesnssns s o83 s s 28
Default Printing Formats. 28
4eUsingLlaserDB...........o, 32
Push ButtonMenuBar....................... 34
Window Usage.ociiiiiiinnnn. .
REFIBIG, ¢ s 5vis 588505 6 0GIRBEE Mk 0 ds 5 s o s 35
Scrolling.oviiiiiiiiii i 35
DO WIIOIW, v« s e s sn 00 s mmed $2 8 55% 3 &5 o 37
Source Mode., 37
AssemblyMode. 38
Window Display.t 38
Setting Breakpoints. 39
Expression Window. 41
Register/Stack Window. 43
o= OO, o ¢ cam 7 pe 1 e s ENESED S RAE T AF 5§65 ¥ 44
Options. . .. oottt e 45
Journmal......... 47

Contents

o] T 49
BregkpOimis c i s csoonncmecassrenerussses enss 55
WHRBHES. vy ram s v s FR% 2309 6088 5A 5 Sun pums = 59
Breeullom, cxssssesnassansnsasamrnomerngsmes 61
I v s hom x m e s mme E mE A E RS BE Y B 61
L = g S 61
DNt . snssnssinincnsnconnramasrnsssas 62
DRI Y. o e v s v e 0 3 BB s BRA B MRE B SR RER ks 62
ReMID. s sesasnsssaasiosmmmenmoweyannss 62
FHRL . cviovvesmnssmssmesnes nmas wassssas 62
TELOB: ¢ sxn i sua s whanin vansommysuy o s 63
RIS s vcow s mvwe s mw v pman sy nRn s Rt B R 5B 64
6eSample Session.ccoiiiiinn.. 65

CHAPTER 1
INTRODUCTION

|

| —

LaserDB is a software development tool which helps to
find logical programming errors by showing the corre-
spondence between a C program’s source code and it's
executable image as it runs. LaserDB allows interaction
with the executable program using names and lines de-
fined in the source. These interactions include tracing
program execution, setting breakpoints at the source-line
level, and printing and setting program variables using C
syntax (C expressions).

In addition to being a source-level debugger, LaserDB is
also a full-featured assembly-level debugger. The disas-
sembly of any GEM executable can be viewed and
scrolled through. Breakpoints can be set on machine in-
structions, and registers and memory can be displayed,
monitored, and set using special extensions to the C ex-
pression evaluator.

LASERDB CHAPTER 1 ¢ INTRODUCTION

LaserDB’s mouse and keyboard multi-window user inter-
face is not exactly like that of typical Atari applications,
but was written such that it does not utilize the GEM-lev-
el routines of the ST's ROM — all window and dialog
functions were written especially for LaserDB. It was
necessary to insulate the debugger from the operating
system as much as possible so that a buggy or ill behaved
target program, perhaps one which calls GEM incorrect-
ly, is not as likely to affect the debugger's operation.
Another advantage, for those who develop for color mon-
itors, is that LaserDB can debug programs which must
operate in low-resolution, as games and graphic
programs often do. LaserDB automatically switches to
medium resolution for it’s own display and then back to
the target’s resolution for it’s screen. This is something
which GEM was not designed to do.

Requirements | LaserDB can be run on Atari ST computers which have
as little as 512Kb of RAM. However, because so much
data must be in memory during a debug session, it is sug-
gested that a system with 1Mb or more of RAM be used
for source-level debugging. There are several ways, dis-
cussed throughout this manual, which can help to con-
Serve precious memory.

LASERDB CHAPTER 1 ¢ INTRODUCTION

Checking Version | The LaserC compiler and linker versions 2.0 or greater

Numbers | are capable of generating debugger information which is
usable by LaserDB. To check the version of the LaserC
compiler or linker (or any other command line utility),
run it from the STDIO window with the -V flag. When
used with no other options, -V will print copyright and
version information. For example, to print the version of
the LaserC compiler, type the following into the Laser.
Shell's STDIO window:

CCOM.TTP -V <ENTER>

Note that <ENTER> refers to the “Enter” key on the key-
pad, not the “Return” key.

The LaserC Development System version 2.0 or greater
is required to use LaserDB’s source-level debugging fea-
tures. The compiler and linker provided with version
1.01 of LaserC do not support debugger information
compatible with LaserDB. For assembly-level debug-
ging, any compiler or assembler can be used. If the link-
er used has the ability to include GEM style symbol in-
formation for global labels into the executable, LaserDB
will use them when showing the disassembled code.

LASERDB CHAPTER 1 ¢« INTRODUCTION

Installation | LaserDB can be installed on a hard disk by copying the
file LDB.PRG into any folder. There are no restrictions
as to the location of LaserDB with respect to the compil-
er or source files. LaserDB uses a configuration file
called LDB.CFG. This file will be automatically created
in the current working directory if it is not found.

Note

Before using LaserDB from a floppy disk, make a
working copy of the distribution disk and store the
original in a safe place.

When developing under the Laser Shell, it may be conve-
nient to make LaserDB a tool so that it can be run simply
by choosing it from the Execute menu. Because of the
way in which LaserDB was created, it can not be made a
RAM resident tool under the Laser Shell (check the
LaserC manual for instructions on adding tools). If there
is not sufficient RAM to debug a program from the Laser
Shell, LaserDB can be run from the GEM desktop by
double-clicking on LDB.PRG.

LASERDB CHAPTER 1 ¢ INTRODUCTION

Conventions | The following conventions are used in this manual:
Cursor The mouse pointer.

Insertion point The typing cursor that appears
in text entry items. Any typing
is inserted at this point.

Press/type Keyboard entry.

Click The mouse cursor is positioned
over an item and either the left
or right mouse button is pressed
and released.

Drag The mouse cursor is positioned
over an item and either mouse
button is pressed and held.
Now the item may be
repositioned by moving the
mouse (an outline of the item
will follow the mouse
movement). When the item has
been repositioned, the mouse
button is released.

Choose Menu items are chosen by
clicking on items or by pressing
keys corresponding to the up-
percase letters in each menu

LASERDB

CHAPTER 1 » INTRODUCTION

item.

Select Non-menu items are selected
with a click. Dialog items such
as radio buttons are capable of
being selected. The term
“Select...” refers to buttons
while “Choose...” refers to
menu items.

Note

This manual assumes that the reader is familiar with
the C programming language and the LaserC lan-
guage implementation. Some parts of this manual as-
sume familiarity with Motorola MC68000 assembly
language programming and the in-line assembler, but
these sections may be ignored if only source-level de-
bugging is required.

LASERDB CHAPTER 1 ¢ INTRODUCTION

T E Text entry is often required, such as when entering C ex-
ext Entry

pressions to print variables. Text entry occurs in editable
text lines, such as the one pictured below.

/ Insertion Point

ﬂ:: 50

Typing is added at the insertion point, which may be
moved left or right with the arrow keys. The
<Backspace> key erases the character to the left of the
insertion point and the <Delete> key erases the character
to the right of the insertion point. The <Esc> key erases
the entire line. The entry line may or may not contain the
‘_’ characters as place holders as shown above, depend-
ing on where it is used. The expression window entry
line does not use ‘_’ while dialog box text entries do.

CHAPTER 2

SOURCE PREPARATION
V’

d

The correspondence between executable code and C
source code is drawn by having the compiler include spe-
cial debugger information into the object file. This infor-
mation tells LaserDB where C source lines begin in the
executable program, what the addresses of global
variables and functions are, and what stack-frame offsets
or registers are used for local variables. In addition, de-
bugger information provides the types of variables, struc-
ture and union field names, enumeration values, and lexi-
cal scope information.

Using this information, LaserDB can hilight the currently
executing source line, evaluate C expressions using the
names defined in the source, and perform other related
functions.

LASERDB CHAPTER 2 * SOURCE PREPARATION

LaserDB can debug programs composed of multiple
source files. The source files are concatenated (in
memory) when they are read by the debugger, so that
each has a unique range of line numbers. Because C
source is related to it’s executable program via source
line numbers, it is best to place C statements on
individual lines in the source files. Files which are
included with the “#include” preprocessor command may,
not be debugged or viewed. Also, no macro definitions
are available to the debugger.

Compilation Depending on the desired method of development, one of
two ways to generate debugger information from source
files may be chosen.

The Compile dialog under the Execute menu of the Laser
Shell version 2.x contains a check box to "Generate
LaserDB information". This item should be checked
before clicking on the OK button.

The command line -Z flag is accepted by the C compiler
CCOM.TTP, and by the compile and link utility CC.TTP.
This option causes the compiler to include debugger
information in the object file.

LASERDB CHAPTER 2 * SOURCE PREPARATION

Note

It is not necessary to generate debugger information
for all component source files of a project. Source-
level information can be large and can use up a signif-
icant amount of memory, especially while linking. Also
during a debug session, the C source files as well as
the debugger information for each file compiled for
debugging is loaded into RAM. For these reasons, it
may be a good idea to be selective about which
source files to compile with debugger information and
to compile the rest without it. To remove debugger
information from an object file, simply recompile it's
source without including debugger information.

Linking | As with compilation, there are two methods of linking
with debugger information. Debugger information is
included in the executable in such a way that the resultant
program can be run as a stand-alone application. It will
however be much larger than usual and should be
relinked without debugger information to produce a final
version of program.

The link dialog used by the Laser Shell version 2.x
contains a check box to "Include LaserDB information in

10

LASERDB CHAPTER 2 ¢ SOURCE PREPARATION

executable”. In addition to including debugger informa-
tion, GEM style symbols will also be included in the exe-
cutable for assembly-level debugging.

The -Z flag is also recognized by the linker LD.TTP
when run from a command line. This option causes the
linker to include debugger information in the executable
program. As with the link dialog, the -Z option also tells
the linker to include GEM symbols for all global names
defined in the executable.

Note

Programs may be compiled and linked from a com-
mand-line shell. The Laser CC.TTP, compile and link
utility, supports the -Z flag.

Startup Once a program has been successfully compiled and
linked with debugger information, LaserDB can be
started. To start debugging from the desktop, double
click on LDB.PRG. To start debugging from the Laser
Shell, use the Execute menu to run LDB.PRG.

11

LASERDB

CHAPTER 2 * SOURCE PREPARATION

LaserDB provides a dialog box at startup in which the
user specifies the executable program to debug along
with other startup information. Provided the standard
LaserC initialization code is included during the link, I/O
redirection commands may be supplied to the target.
This redirection is passed to the target program and ig-
nored by LaserDB. I/O redirection can be specified on
the command line if LaserDB is started from a command
line shell.

LaserDB, Source-level Debugger

Copyright (c)1989 by Megamax, Inc.

A1l rights reserved.

. I Load/Start
arget program to debug (executable):

sample.prg [Ouit |

Target parameters:

Use
Source code folder: :ss:nblu
ot

When started, LaserDB first looks for it's configuration
file LDB.CFG in the current working directory (usually
this is the same folder in which LDB.PRG resides). If
found, it restores all user settings from the last time the

12

LASERDB CHAPTER 2 * SOURCE PREPARATION

debugger was terminated. This user information includes
all settings in the Startup dialog as well as window posi-
tions. If the configuration file is not found, default
settings are applied and a configuration file is created in
the current working directory.

As pictured above, the dialog contains three editable text
lines. The first must contain the executable program to
debug. The file name entered here will be that output by
the linker, and will usually end with .PRG or .TTP. Do
not give a source .C or object .O file name here. The sec-
ond line may contain the optional command line argu-
ments to “main()”. The third line may contain the folder
in which and source files are to be found when debug-
ging in the source mode.

The radio buttons on the right hand side of the dialog de-
termine the desired debugging mode(s).

Source Allow only source-level debug-
ging. All source files which
were compiled with debugger
information will be loaded, and
all source-level information for
these files will be available.
Source files are loaded from the
folder specified in the “Source
folder” item described below.

13

LASERDB

Assembly

Both

CHAPTER 2 ¢ SOURCE PREPARATION

Load only disassembly infor-
mation and GEM style sym-
bols, if available. GEM sym-
bols are used by the disassem-
bler to make the output more
readable.

Load both source-level infor-
mation and assembly-level in-
formation. If this button is se-
lected, the mode can be
changed back and forth be-
tween source and assembly dur-
ing debugging.

When the dialog is set as desired, the “Load” or
“Load/Start” button will initiate the startup sequence.

Load

14

Loads debugger information ac-
cording to the “Use” setting.
The executable program is
loaded and the program counter
is stopped before executing the
first instruction. If debugging
at the source level, this will
mean that no execution will
begin until initiated from the
Execute menu. If the function

LASERDB

CHAPTER 2 * SOURCE PREPARATION

“main()” was compiled with
debugger information, a Step
will be required to begin single-
stepping or tracing.

Load/Start Loads debugger information as
specified in the “Use” setting,
and then loads the executable
program and performs a Step to
enter “main()”. This button
should be used when it is de-
sired that the target run until the
first source line, as when the
file containing “main()” was
compiled with debugger infor-
mation.

Quit Will leave the debugger.

After the configuration file is read, the target's
component source files are loaded. Each source is loaded
from the folder given in the startup dialog. If no folder is
given, the current working directory is assumed. If a
source file is not found, a message is displayed and the
source and the other debugger information for that partic-
ular file is ignored. If assembly level debugging is speci-
fied, the entire executable is read and disassembled to

15

LASERDB CHAPTER 2 * SOURCE PREPARATION

generate instruction address information. This informa-
tion is stored in a very compact way in memory, but if no
assembly-level debugging is required this option should
not be checked. Finally the target executable is loaded
and the debugger is ready go.

Note

If the “Load/Start” button is pressed, the program will
execute until the first source line is reached — this will
be the first function encountered whose source file
was compiled with debugger information, and will only
be the function “main()” if the file containing “main()”
was compiled with debugger information.

16

CHAPTER 3
LLASERDB EXPRESSIONS
'

|

Expressions are used extensively in LaserDB, most
notably to print and set variables. The language accepted
by the debugger's expression evaluator is that of the C
language with some changes designed to facilitate debug-

ging.

Several extensions have been added to the expression
evaluator to make source-level debugging easier and to
facilitate assembly-level debugging. All debugger
functions which use expressions, including watches, con-
ditional breaks, and the expression window, work identi-
cally in either source or assembly mode.

17

LASERDB CHAPTER 3 * EXPRESSIONS

Current Line/ | The current line is the source line or machine instruction
Scope upon which the program counter rests. It is the next line

to be executed when the target is single stepped, traced,

or run. LaserDB indicates the current line in the source
window by hilighting it. In the source mode, the current
source line will be hilighted. Not all source lines will
contain code, as do comments and variable declarations.
Local initializer lines will have code. The current line
can be found by pressing the <Enter> key on the keypad.

The current scope is the lexical scope of the current
statement as defined in the source. Lexical scope refers
to the nesting of variable definitions in files, functions, or
blocks. Expressions are always evaluated with regard to
the current scope.

18

LASERDB CHAPTER 3 * EXPRESSIONS

Identifiers | All names defined in the target's source are accessible to
the expression evaluator, provided the source was com-
piled with debugger information. Names are always used
in expressions exactly as they are declared in the source
code — all characters in a name are significant.

GEM style symbols are included for all global and static
names, even for those files which do not contain debug-
ger information.

Note

The C compiler adds a leading underscore ‘_’ to each
global name and a leading ‘~’ to each static name in-
cluded in the GEM style symbols. Also note that
GEM symbols are limited to a length of eight charac-
ters.

Extended Names The lexical scope rules of C apply according to the
current scope. For example, the program below contains
two declarations of the name “i”.

19

LASERDB CHAPTER 3 « EXPRESSIONS

ot o

int
main()

{
func();
}

func()
{

int i; /*local declaration of i */
1++;

}

; /* global declaration of 1 */

If program execution is halted (i.e. with a breakpoint) in
the function “main()”, any use of “i” in an expression
would refer to the global declaration. If, however, the
program were halted in the function “func()”, “i” would
refer to the local declaration.

A special naming convention has been incorporated to
allow access to global and static variables which are hid-
den by local declarations in the current scope. The
syntax for an extended name is:

\<variable>

For example, if a variable “count” is global, ‘\count” will
refer to the global even if it is hidden by a local variable

20

LASERDB

CHAPTER 3 « EXPRESSIONS

“count” in the current scope. In another example, a static
variable “node” is declared outside of a function. Using
‘\node” will supersede any local declaration of “node”
only when the current scope is in the file which contains
the static declaration for “node”.

Note

When an expression contains a variable which is out
of scope, the printed result of the expression will be
“Out of scope”. When a variable is not found in the
symbol table, “Undefined” is printed.

21

LASERDB CHAPTER 3 * EXPRESSIONS

Literals | The following literals are recognized by LaserDB’s lexi-
cal analyzer: '

Literal Sample

Integer 100 - decimal
0100 - octal
0x100 - hexadecimal

Floating-point 100.0

Character a’
escapes \r' - return
\n' - newline
\t' - tab
\b’ - backspace
v’ - vertical tab
A\N - backslash
\' - single quote
™ - double quote
\digits' - octal constant
String "Hello, world\n"

22

LASERDB CHAPTER 3 « EXPRESSIONS

Type Casting Thq expression eve}‘luato,r’ al‘l‘ows t,ypewca’s,tin‘g to any pre-

defined C type; ‘“char”, “short”, “int”, “long”, “un-
signed”, “float”, and “double” are all legal in cast
operations. Pointer types are also allowed using the “*”
constructor. For example, the following is a valid cast

operator:
(char**) 0x2044

In addition, casts to type defined names and structure tag
names are also supported. Casts to aggregate types like
structures and arrays are not supported.

The expression evaluator does not support function call-
ing, structure passing, or “#define” macro definitions.

23

LASERDB CHAPTER 3 * EXPRESSIONS

Memory Range A memory range checksum may be specified by placing
Checksum | 2 colon between two addresses, representing a start and
end. The syntax is:

<start expression> : <end expression>

The start and end may be any expressions resulting in
pointers, and the result of the expression is type “int”.
The result is an integer checksum of all bytes from the
start address up to the ending address. For example the
expression:

array : array + 100

will perform a checksum on the first 100 elements of
“array”. This operator is useful for watching a range of
memory or to compare two blocks of memory. The
checksum operator has a precedence lower than the C op-
erators and associates from left to right.

24

LASERDB CHAPTER 3 * EXPRESSIONS

Line Number | Another extension to the expression syntax is the line
Operator number operator. The. unary ‘@’ operator interprets an
expression result as a line number in the source window,
and converts it into an address. If no code is associated
with a given line number, the closest match in the source
window is found. If the beginning of the file is reached
and no address found, an error is reported. Note that the
address found depends on the mode. In the source mode;
only source line starts will be found, where as in the as-
sembly mode, machine instruction addresses will be
found. The ‘@’ operator is the same precedence as the
memory checksum operator ‘:’ and is right associative.

25

LASERDB

Predeclared
Variables

CHAPTER 3 * EXPRESSIONS

The debugger maintains a set of internal variables which
are not a part of the target program's variable space.
These predeclared variables all start with a ‘$’ character.

Predeclared variables are:

$text The base address of the target's
text (code) segment. The type
is “int *”,

$data The base address of the target's

data segment (initialized
global and static variables).
The type is “char *”

$bss The base address of the target's
bss segment (uninitialized
globals and static variables).
The type is “char *.”

$end The end of the bss segment.
This is normally the extent of
the program in memory. The
type is “char *”.

$line The line number in the source
window of the current
statement or instruction. The
type is “long”.

26

LASERDB CHAPTER 3 * EXPRESSIONS

Processor Registers | The MC68000 register names “$D0”, “$D1”, ..., “§D7”
and “$A0”, “$A1”, ..., “$A7” are recognized in upper
case only. The names “$PC”, “$USP”, “$SSP”, and
“$SR” are recognized in upper case only and represent
the program counter, the user stack pointer, the supervi-
sor stack pointer, and the status register, respectively.
The data registers are type “long”, the address registers
are type “char *”, the “PC” and stack pointers are type
“int *”, and the status register is type “unsigned int”.

Predeclared | There are 10 predeclared variables which can be used as
Temporaries temporaries during debugging. They are “$0” — “$9”
and are all of type “long”. These are useful for storing
intermediate expression results or for creating pass
counts for watch or break expressions
(see chapter 5, page 44).

27

LASERDB CHAPTER 3 ¢ EXPRESSIONS

Printing Any expression may be optionally preceded by a format
Formats specifier. Formats are similar to the percent (%)

conversions accepted by the C library function “printf().”
They are used to control the way in which an expression
result is printed. The full syntax of a format is:

$<format> [,] <expression>

That is, a ‘%’ followed by a legal format character, fol-
lowed by white space or and optional ‘,” followed by a
debugger expression. For example, the null-terminated
character string “str” can be printed with a “%s”:

%$s str

Notice that without the “%s” format, the pointer value of
“str” will be printed. The allowed formats are:

Format Meanin

%s Print the following expression
as a C style (null terminated)
string.

%c Print the following as an ASCII
character.

28

LASERDB CHAPTER 3 * EXPRESSIONS

%d Print the following as decimal
short, int, or long. Note that
“%1d” is not needed to print a
long, “%d” works for any rep-

resentation.
%0 Print as an octal short, int, o
long. ’
Yox Print as a hexadecimal short,
int, or long.

Formats require no quotes or parenthesis but must appear
before the expression and, either white space or a comma
must separate the format from the rest of the expression.
Some expressions are used by commands that do not
print a result, such as breakpoint expressions. In these
instances, any format will be ignored.

Default Printing | If no format is specified, a type is chosen based on the re-

Formats sultant type of the expression. Types “short”, “int”,
“long”, and “unsigned” are one of “%d”, “%0”, or “%x”,
according to the default format setting (see Options).
Character type defaults to “%c”. All pointers are printed
in hexadecimal. ASCII character strings can be printed
with “%s”, otherwise the value of the pointer will be
printed.

29

LASERDB CHAPTER 3 ¢ EXPRESSIONS

Structures are a special case. If the result of an
expression is a structure, the entire structure is printed,
showing field names and value.

30

LASERDB

Operators

CHAPTER 3 » EXPRESSIONS

The operators recognized by the expression evaluator in
order of precedence are:

primary

16 name literal
$name
I
->

unary

15 ++ --

14 ++ --
& -1~

binary and ternary

13L ! %

12L + -

11L >> <<

10L < > <= >=

9L == l=

8L &

7L A

6L |

5L &&

4L I

3R 2

2R = += -= "= /=
A= Y%= &= |=
>>= <<=

1L ,

special

oL :

OR @

31

predeclared name
subscripting

direct selection
indirect selection

postfix
prefix

multiplicative
additive

shift
inequality
equality/inequality
bitwise and
bitwise xor
bitwise or
logical and
logical or
conditional
assignment

sequential evaluation

memory range checksum
line number

CHAPTER 4
USING LASERDB
—

—dl

The LaserDB screen is divided into window tiles, each
responsible for displaying different information. A
window tile has a display area, and may have a scroll bar
along the right hand side. At the top of the screen is a
menu bar and at the bottom of the screen is a message
line.

LaserDB uses the Atari's alternate screen mechanism for
it's display. The debugger maintains it's own screen
which occupies separate memory from that of the
application. This means that the debugger will not
overwrite the target program's screen, so that each can al-
ternately be viewed while debugging.

The debugger is controlled by choosing menu items or by
interacting in some way with the display. There are nu-

32

LASERDB CHAPTER 4 « USING LASERDB

merous keyboard “shortcuts” to help cut down on hand
movement between the keyboard and the mouse. These
shortcuts are summarized in the appendix.

83

LASERDB CHAPTER 4 ¢ USING LASERDB

Push Button | The menu bar located at the top of the screen does not
Menu Bar | ¢ the typical drop-down menus used by GEM. Menu

commands can be chosen by typing the first letter of the
desired command as displayed in menu, or with the
mouse by clicking on the desired command in the menu
bar.

Some menu items perform an action while others change
the commands in the menu bar. These sub-menus can be
canceled by choosing the “<Esc>” menu item or by
pressing the <Esc> key.

Hext S5+

34

LASERDB CHAPTER 4 » USING LASERDB

Up to four windows may be simultaneously visible on the
screen. The top window contains watch expressions —
debugger expressions which are monitored during pro-
gram execution. The middle window contains the target
program's source code or the disassembly of the target
executable, depending on the mode setting. The
expression window, located at the bottom of the screen,
is where selected expressions are evaluated to print or set.
variables. The register window on the right hand side of
the screen may be displayed or hidden as desired.

Window Usage

Resizing Windows may be resized horizontally as desired to show
more or less of a particular window's contents by
dragging up or down the title bars which lie between two
windows. By decreasing the size of one window, the
above window is made larger. Note that the watch win-
dow title cannot be dragged.

Scrolling Often a window contains more lines of text than can be
displayed in the content area. In this case, scroll bars are
used to position a window over it's contents. Not only
can scroll bars be manipulated with the mouse, but there
are also keyboard shortcuts for line, page, and home/end
scrolling of the source window.

35

LASERDB CHAPTER 4 » USING LASERDB

A scroll bar is composed of two opposing arrows, a page
scroll area, and a thumb. The thumb changes size
according to the number of lines visible in the window.

Up arrow
Up page
Thumb

Down page

Down arrow

Clicking on an arrow moves the window over it's
contents in the indicated direction by one line. Clicking
in the page scroll area moves the window by one page.
The thumb may be dragged to reposition the window
over any part of it's contents.

36

LASERDB CHAPTER 4 » USING LASERDB

Source Window LaserDB operates in one of two modes; source or assem-
bly. The mode may be changed at any time during a
debug session with the Options command, provided both
source and assembly information is present as specified
in the Startup dialog. The mode may also be changed by
pressing “<Ctl>-M”.

register int i
17 printf("This is a sample\n');
19 forl(l=ll;l(1llaa; it) {

i-18;
1+25;

Source Mode In the source mode, only the target C code is displayed in
the source window. Program single stepping, tracing,
and breakpoint setting occur by source lines. In-line as-
sembly is shown as source, and each “asm { }” is treated
as a single statement.

37

LASERDB CHAPTER 4 » USING LASERDB

- D6 80800000
/| D7 80008832

¢ 00042D6A MUU.H D7,- (A7)

880842D6C JSR —funcl.L AB 88B475DA
80042072 ADDO.L #2,R7 A1 88843738
00042074 MOVE.X D7,D8 AZ 00000000
00042076 ADDO.K #2Z,D6 A3 00000068
880842078 MOVE.H DB,-(A7) A4 80B456F6
00842D7A MOVE.X D7,D8 i AS 00842B4A
8084207C i A6 BBB47866

80884ZD7E

-7.560008

>ix 1 PC 080842D6A

BxFFFFFFF6 CCR xNzvC

> i=8 User
Mask: 3

Breakpoint encountered

Assembly Mode | In the assembly mode, the target executable is disassem-
bled into the MC68000 instructions output by the
compiler or in-line assembler. Program stepping or trac-
ing may be performed at the assembly level.

Window Display | The source window contains the concatenation of source
files in the order in which they were supplied to the
linker. Since the order in which object files are linked
determines the order in which code and data are concate-
nated into the executable, the source window accurately
depicts the target's structure. The title bar shows the
source file name which is currently displayed in the

38

LASERDB CHAPTER 4 * USING LASERDB

window.

The window may be scrolled with the scroll bar, or from
the keyboard using the up and down arrows to scroll by
lines, <Shift>-up and down arrows to scroll by pages,
and <Home> and <Shift>-<Home> to scroll to the top
and bottom, respectively, of the window.

There are several indicators associated with the source
window. Line numbers may be shown before each line
of source. The current source line, or the current ma-
chine instruction in the assembly mode, is hilighted. If
the program counter lies outside of the source window,
the hilight will be on the very first line or the very last
line in the window. The current source line or machine
instruction can be brought into view by pressing the
<Enter> key on the keypad.

tting Breakpoints Breakpoints can be set on source lines or machine in-
With The Mouse structions by simply clicking on the desired line. Lines
which have breakpoints are indicated in the source win-
dow by a special character, printed at the beginning of
the line. Clicking on a line which already has a
breakpoint removes the break. The ‘*’ key on the keypad
toggles a breakpoint on the current line, and the ¢/’ char-
acter on the keypad toggles a breakpoint on the top line

39

LASERDB CHAPTER 4 » USING LASERDB

of the window. This is useful for searching and then set-
ting a breakpoint on what was found, since it will appear
on the first line. A maximum of 20 breakpoints may be
set at one time. The window title contains an indictor
“[B]” when breakpoints are enabled, or a “[-]” when
breakpoints are disabled. For more information on
Breakpoints see page 55.

40

LASERDB CHAPTER 4 » USING LASERDB

: It is in the expression window that variables are printed.

EX%)\II.TSCS],IS)VIVI The <Tab> key is used to initiate an expression. When

the <Tab> key is typed, a text entry line will appear in

the expression window. Any legal debugger expression

may be entered (see chapter 3). Once entered, the

<Return>, <Enter>, or <Tab> key will evaluate the
expression.

To print a variable, simply type the following and then
press <Return>:

variable

To assign a value to a variable type:
variable = value

Any valid expression can be printed. The command:
%s variable + 5

will add 5 to the value of variable, then use it as an
address to print a null-terminated string, and

$D0 = *((char*)$Al + 10)

41

LASERDB CHAPTER 4 » USING LASERDB

will cast the value of address register “A1” to a character
pointer, add 10 to this value, and then dereference and as-
sign the character to data register “D0”.

The expression window may be resized and scrolled with
the mouse. Scrolling up reveals a history of the last 20
evaluated expressions and their results. Scrolling may be
done with the scroll bar or by using the ‘+’ and -’ keys
on the keypad while not entering an expression. Clicking
the mouse in the window's content area is the same as
typing <Tab> to start an expression.

Often, the same variable or expression is printed repeat-
edly during execution of the target. To facilitate this, the
up and down arrows can be used while entering an ex-
pression to copy previous expressions into the current
line. Each time the up arrow is pressed, the previous ex-
pression is copied. The down arrow reverses the history.

Note

In addition to the expression history, the Function
keys can be set to often-used expressions for easy
entry. See the section on Options for more
information

42

LASERDB CHAPTER 4 » USING LASERDB

i The columnar window on the right of the screen displays
Reglsmwrﬁazc‘}v(either the MC68000 registers or a hexadecimal dump of
the user stack. The stack dump shows words at positive
offsets from the current stack pointer, either US (user
stack) or SS (supervisor stack). In addition, the current
program counter “PC”, the condition code register
“CCR”, the interrupt mask, and the current mode are
shown. Condition code bits which are set are in upper
case.

Clicking anywhere on the register window toggles
between register and stack display. The keyboard short-
cut “<Ctl>-R” toggles the register window on and off.

43

CHAPTER 5
COMMANDS

|

This chapter describes in detail the LaserDB menu com-
mands, giving examples of how they are useful for de-
bugging.

Dialog boxes may contain push buttons, radio buttons,
editable text lines, and scrolling regions. The mouse is
required to select push buttons, radio buttons, and to
scroll a region. Push buttons which have a thick border
can be selected with the <Return> key. The left and right
arrows as well as the mouse can be used to reposition the
insertion point in an editable text line. The up and down
arrow keys, the <Tab> key, and the mouse can be used to
move the insertion point among text edit lines in a dialog.

44

LASERDB

Options

CHAPTER 5 » COMMANDS

The Options command under the Control menu brings
up a dialog which controls LaserDB user settings. When
chosen the dialog shows all current settings. All items in
this dialog are saved in the configuration file.

Command/Control: Options Journal Calls <Esc>

@
[
B
: —"_| “"" Rl:'x'l:!rs Foetel Y
rassm bly Hide !‘ _I
Hexadecimal
Tab stops 4
Expression Hacros
[/O P VU Fé
F e B F7
i G IR M F8
e o F3
FS Fi8 B
- | :
[
Options are:
Mode Source or Assembly mode
(see page 32).

Line Numbers Show or hide line numbers be-
fore each line in the source
window.

45

LASERDB

CHAPTER 5 - COMMANDS

Registers Shows registers, stack dump, or
hides the window.

Format Determines the default format
for printing expression results
of integer types. “Octal” will
use “%o0”, “Decimal” will use
“%d” and “Hexadecimal” will
use “%x”.

Tab stops This determines where tab
stops are placed. The number
of spaces per tab is entered
here, ranging from 1 — 9.

Expression Macros

Expression macros may be set
to any text representing an ex-
pression. While debugging, a
function may be pressed to
evaluate the associated expres-
sion in the expression window.
This feature is useful for vari-
ables which are frequently
printed.

46

LASERDB CHAPTER 5 - COMMANDS

Journal | A journal of the last 100 source lines or machine instruc-
tions executed is kept by the debugger. The Journal
command displays a list of these lines or instructions.
The journal can be scrolled via the scroll bar and is dis-
missed with the “Cancel” button or the <Return> key.
The keyboard shortcut <Ctl>-J also shows the journal di-
alog.

CnnnandICnntroln ll_xtwns Jnurnal I:alls <Esr.>__ _

Execution Journal
I l:antel; |
28 1 =1i-18;
21 f =1+2,5;
20 1 =1i-18;
21 f =1+%2.5;
208 1 =1-18;
21 f =1¢2.5;
28 1 =1-18;
21 f =1+2.5;
28 1 =i-18;
21 f =1+2.5;
20 1 =1-18;
21 f =1+%+2.5;

47

LASERDB

Calls

CHAPTER 5 * COMMANDS

The Calls command displays a dialog showing the
current calling order of functions and their parameters.
The function calls are listed from the most recent call.
The list can be scrolled and is dismissed with the
“Cancel” button. In the assembly mode, the actual “JSR”
or “BSR” instruction is disassembled.

Conn

and/Contro

115 i

Function Calls

func2(a=8,b=1,c=2) [
main()

Breakpoint encountered

48

LASERDB CHAPTER 5 COMMANDS

Search | The Search command is used to find a string in the
source window, the beginning of a particular source file,
an address or label in the target executable, or any line
number in the source window.

Search for

Line nunber
File name Address/label

62 Pattern : funcl
64 | First (| [Next |
66 |_Last || Prev || Cancel |

Breakpoint encountered

Search for | The collection of radio buttons at the top of the dialog de-
termines the type of search to perform. The desired
search type is selected with the mouse.

Source pattern This search finds a pattern in
the source code. If a match is
found, the appropriate line is
scrolled to the top line of the

49

LASERDB CHAPTER 5 » COMMANDS

source window. In the assem-
bly mode, the address which
most nearly matches the located
source pattern is scrolled to the
top line of the window. The
pattern rules are described
below.

File name This performs a pattern search
similar to the “String” search,
except that the pattern is only
compared to source file names.
If a file name matches the given
pattern, the source file is
scrolled to the top line in the
source window.

Address/label This will locate an address in
the program and scroll the clos-
est match to the top line. If a
number is entered, it is assumed
to be an address. Numbers may
be entered in any format; hexa-
decimal, decimal, or octal, by
using appropriate C literal syn-
tax. For example, 0x2034 will
scroll to that address in the
source window.

50

LASERDB CHAPTER 5 ¢« COMMANDS

If a name is entered, it is as-
sumed to be a GEM symbol
name. The name is converted
into an address and the appro-
priate line is scrolled to the top.
For this type of search to work,
the executable must contain
GEM symbols, and assembly
information must be loaded at
startup.

Line number Finds a line number in the
source window. If found the
window will be repositioned
with the line number at the top
of the window. In the assembly
mode, line numbers are those of
disassembled machine instruc-
tions.

Note

When searching for GEM labels, include the leading
underscore or tilde. Labels in the TEXT, DATA, and
BSS segments may be located.

51

LASERDB CHAPTER 5 ¢ COMMANDS

Occurrence The search is started by selecting one of the occurrence
buttons or canceled with the “Cancel” button. The
“Next”, “Previous”, and “Last” occurrences are only
available when searching for a pattern in the source:

First Finds the first occurrence of the
pattern, or the only occurrence
of a file name, address, or line
number.

Last Finds the last occurrence of the
pattern in the source. The
search is started at the end of
the source and proceeds back-
wards.

Next Finds the next occurrence of the
pattern in the source from the
last successful search. The
shortcut <Ctl>-N can be used
from the keyboard to do a
search next.

Previous Finds the previous occurrence
of the pattern in the source
from the last successful search.
The shortcut <Ctl>-P can be
used from the keyboard to do a
search previous.

52

LASERDB

Search Patterns

Example Searches

CHAPTER 5 - COMMANDS

A form of regular expression is used as a pattern when
searching for a string or file name. Patterns are formed
using the following rules:

A Matches the beginning of a
line.

$ Matches the end of a line.

= Matches zero or more of any
character.

? Matches any single character.

\ A °\’ followed by a single

character matches that
character. This is useful to
match ‘$’ and other special
pattern characters.

[...] A set is string enclosed by
brackets and matches any
single character in the set.

Any other character matches that character.

Here are some example searches using “Source pattern”
as the search method:

53

LASERDB

CHAPTER 5 « COMMANDS

“main
Searches for the beginning of a line followed by “main”.
array?

Searches for the string “array” followed by any single
character.

printf*hello

Will search for “printf” followed by zero or more of any
character(s), followed by “hello”.

Note

As per the C language, all name searches are case
sensitive.

54

LASERDB CHAPTER 5 - COMMANDS

Breakpoints and | Breakpoints are special marks in the target program
Exbressions which will stop it's execution when encountered. ' They
p allow the target to be halted so that variables can be
examined or changed. Breakpoints are also useful for
allowing the program to run quickly to a certain function
or line for subsequent single-stepping or tracing. For ex-
ample, a loop which iterates 1000 times would be diffi-
cult to single step through. Setting a breakpoint on the
line just after the loop and using the Go command will
execute the loop at full speed and then stop.

Breakpoint indicators appear in the source window and
show which lines have breakpoints. The easiest way to
add or remove a breakpoints is with the mouse, by simply
clicking on a line in the source window. Clicking on a
line alternately sets and removes a breakpoint.
Breakpoints can be set in this way whether in the source
or assembly mode.

Breakpoints can also be toggled on the current line using
the “*’ on the keypad, or they can be toggled on the top
line of the window with the ¢/’ key on the keypad.

The Breaks command displays a dialog which lists all
breakpoints and allows for an optional “break expres-
sion” to be added to any breakpoint. Breakpoints here
are indicated by a source line number if in the source

55

LASERDB CHAPTER 5 COMMANDS

mode, or by the address of the breakpoint in memory if in
the assembly mode. Breakpoints may not be added with
this dialog, but they may be removed and their expres-
sions may be edited.

The optional break expression, located in the text entry
line after each breakpoint, is evaluated each time the
breakpoint is encountered. If the expression evaluates to

Breakpoints B

- T
State a3
I Disable | Remove all | [Clear all |

0.8 25 i== 958 [
20
2.8 46

non-zero, the program is halted, otherwise the break is
not taken and program execution continues. Breakpoints
which do not have expressions are always taken.

56

LASERDB CHAPTER 5 * COMMAND

The Breakpoint dialog can be edited freely using the
mouse or the <Tab> or arrow keys. The radio buttons la-
beled “State” can be used to enable or disable all break-
points in the dialog. The source window title contains a
“[B]” when breakpoints are enabled, or a “[-]” when
breakpoints are disabled. The “Clear all” button erases
all edit lines in the dialog and the “Remove all” button
removes the break indicator from all breakpoints, thus
marking them for removal. Individual breakpoints can be
removed or restored by clicking on the break line number
or address to the left of each line. When the dialog is
closed, all breakpoints which contain the breakpoint indi-
cator will remain, the rest will be removed. The “Ok”
button will install the breakpoints and expressions, while
the “Cancel” button will discard any changes.

Pass Counts | A pass count can be placed on a breakpoint by using a
predeclared temporary. It works like this:

Set a breakpoint and bring up the “Breaks” dialog.

Enter in the expression line next to the desired breakpoint
the pass expression, such as

$0++ == 9

Sil

LASERDB CHAPTER 5 « COMMANDS

Close the dialog with “Ok” and make sure “$0” is cleared
to zero by evaluating the following expression in the ex-
pression window:

$0 =0

Now execute in the desired manner. When “$0” reaches
9, the break will be taken. The expression is only evalu-
ated when the break is encountered.

58

LASERDB CHAPTER 5 ¢« COMMANDS

Watches | Watches are expressions which are evaluated and printed
each time the debugger gets control back from the target
program — that is, after a Go, Trace, Next, Step, or
Return (see page 44). Watches allow variables to be mon-
itored, as the target runs. Watch expressions can also
have a “watch termination” condition which will stop
tracing and alert the user when the condition is met.

Watch Expressions

| 0k | |_Cancel |

State
EETITI Disable I | Remove all | | Clear all |

30,
22.5.

-
iy e s
nn
"

(WD OO OV U & C N = D)

Conditions are set by clicking on the line number in the
watch dialog scrolling window. Clicking will rotate
through the three possible conditions; ‘T’, ‘C’, or no con-
dition. If the ‘T’ condition is set, the user will be alerted
with the message “Watch termination”, and any tracing

59

LASERDB CHAPTER 5 - COMMANDS

will stop. If the associated expression is true (non-zero).
If the ‘C’ condition is set, the user will be alerted each
time the result of the expression changes. If no condition
is specified, the result is printed but no message or inter-
ruption of tracing will occur.

The Watch dialog operates identically to the Breakpoint
dialog. The radio buttons labeled “State” can be used to
enable or disable all breakpoints in the dialog. The
“Clear all” button erases all edit lines in the dialog and
the “Remove all” button removes conditions from all
lines. The “Ok” button will install the watches into the
watch window, and the “Cancel” button will discard any
changes.

Note

Remember that Watch expressions are only evaluat-
ed when the debugger screen is entered after coming
back from the target. This means that conditional
watches cannot be used to stop a program during a
Go command. To conditionally stop a program in this
way, see “break conditions.”

60

LASERDB

Execution

CHAPTER 5 « COMMANDS

LaserDB provides a variety of ways to control target exe-
cution. The current mode affects the operation of the ex-
ecution commands. Any mode of execution will be halt-
ed by a breakpoint or by a processor exception.
Execution cannot continue after a processor exception —
the target must be reloaded.

Go The Go execution command
runs the target unhindered by
watch expressions. Break-
points are active if enabled and
break expressions are evaluated
each time they are encountered.
Except for any break expres-
sions encountered, the target
runs at full speed. Execution
can only be stopped by a break-
point, a processor exception, or
with the <Alternate>-<Help>
key combination. Note that
<Alternate> -<Help> will only
work if the PC is not in ROM.

Trace Trace repeatedly executes the
Next or Step command, evalu-
ating watch expressions after
each line is executed (see
below). A small dialog allows
either Next or Step to be cho-

61

LASERDB CHAPTER 5 - COMMANDS

sen. Tracing can stopped by
pressing any key or by clicking
either mouse button. Watch
termination will also stop trac-
ing as described on page 59.

Next Next executes until the next
source line. Function calls are-
executed as one source line and
are not stepped into.

Step Similar to the Next command,
Step, executes until the next
source line. The difference,
however, is that function calls
are stepped into rather than
over.

Return Return will execute until the
current function returns to it’s
caller. It is useful when a
function is accidentally stepped
into.

Flip The Flip command displays the
target's screen. Since the target
is not executing, there may be
no interaction with it. Pressing
any key or either mouse button
returns to the debugger screen.

62

LASERDB

relLoad

Reloading target executable:
sample.prg
Reloading will reset all global variables
and will reset execution to the start.

Breakpoints and Watches will remain.

Target command line!

CHAPTER 5 * COMMANDS

reLoad reads the executable
target from disk back into
memory, resets all uninitialized
program globals back to zero,
and resets the current line to the
first instruction of the program.
reLoad has no effect on break
points, watches, or any other
debugger settings. Note that
the ‘L’ key is used to select this
command from the keyboard
since the ‘R’ is used by Return.

| Load

| [Load/Start,| | Cancel |

63

LASERDB » CHAPTER 5 « COMMANDS

Quitting The Quit command exits the debugger. The configura-
tion file is automatically saved at this time, recording the
current window positions and the user settings from the
Options dialog as well as the settings from the Startup di-
alog.

64

CHAPTER 6
SAMPLE SESSION

| — e

Try this sample session.

Step 1
R
Make a copy of the LaserDB distribution disk and put the

original away.

Step 2
O AR ——
Insert the copy just made and from the GEM desktop,
double-click on LDB.PRG.

65

LASERDB : CHAPTER 6 * SAMPLE SESSION

LaserDB, Source-level Debugger
Copyright (c)1989 by Megamax, 1nc, Load
All rights reserved.

Load/Start

Target program to debug (executable):
sanple.prg

Target parameters:

Use
Source
Source code folder!: fissembl

Step 3
———
When the Startup dialog appears, just press <Return> or
click on “Load/Start”. The configuration file has already
been set for this example. The program being debugged
is SAMPLE.PRG. It was compiled from two source files
called SAMPLE1.C and SAMPLE2.C. When
“Load/Start” is pressed, the executable and the source
will be loaded, and a Step will be executed which will
step from the initialization code info the function
“main()”.

66

LASERDB CHAPTER 6 * SAMPLE SESSION

Conmand:
e

B ou anple T
10

i1 /% The function mainQ)
12 ¥/

13 main()

1

4

15 register int i;

17 printf("This is a sample\n™);
19 for (i

~
-
1 [=h e

Step 4
——
The screen should appear as above. The function
“main()” is ready to be entered.

Choose Execute in the menu bar. ‘E’ from the keyboard
or a mouse click on the word “Execute” will do this.
These are the execution commands.

Now choose Next. The current line will move to the
“printf()” line.

Choose Next again to execute through the “printf()”
function call.

67

LASERDB CHAPTER 6 * SAMPLE SESSION

Choose Flip to see the target’s screen. Any key or a
mouse click will return to the LaserDB screen.

Choose Next. The “for” loop has now begun.

68

LASERDB CHAPTER 6 * SAMPLE SESSION

reLoad <Esc>

i8
11 f; The function main()

12

13 mainQ

14

15 register int i;
16

17 printf("This is a sample\n™;

Step 5
I
Press <Tab> to evaluate an expression. Enter “i” and
press <Return>. This will print the value of the local
variable “i”. It is now zero. Try again, but this time try
to print the global “1”. And again to print the global “f”.

Choose Next, and then Next again. Execution is now
looping. Try printing the variables again and executing
again. The will changed according to the assignments in
the code.

Try printing with a format using “%x 1”. This will print
“1” in hexadecimal.

69

LASERDB CHAPTER 6 * SAMPLE SESSION

Watch Expressions
18 | ok || Cancel |
s ¥

11 /% T State
12 ®/ IETTICH Disable | Remove all | [Clear all |
14 4

W0 ©0 =~ 0N LN B G N b= 6D

> f

-7.500800

>7x 1 .

BxFFFFFFF6 [
Step 6

—

Open the Watch dialog. Go back to the main menu with
the <Esc> item, or type <Ctl>-W directly from the
Execute menu. Enter the three variables as shown
above. Make sure the “Enable” item is selected. Click
“Ok” when done.

Choose Trace and and watch it go. Any key or a mouse
click will stop the trace.

When your through experimenting here, bring back up
the Watch dialog and select “Clear all” to erase all
watches.

70

LASERDB CHAPTER 6 * SAMPLE SESSION

Command/Execute: Go Trace HNext Step Return Flip reload <Esc>

printf("This i 3

for (i =8; i< 1608; i++) {
=i -18;

IR

—]
]

for (i=0; i<1808; i++) {
funci(i);
;untZ(i,i*i,i+2);

-18

> f
-7.500008
>ix 1
BxFFFFFFF6

Step 7
——
Set a breakpoint on the line shown above (on line 24).
Do this by clicking with the mouse anywhere on the de-
sired line. Notice the indicator in the left most column.

Now choose Go. This will execute at full speed the rest
of the way through the loop and stop at the break line.

Try pressing the ‘*’ key on the keypad. Notice that this
is the same as clicking on the current line with the
mouse.

71

LASERDB CHAPTER 6 * SAMPLE SESSION

Choose Next to start the loop, and then choose Step to
enter the function call. Try using Next and Step to get a
feel for how they work.

72

LASERDB CHAPTER 6 * SAMPLE SESSION

Connandlcnntrol ﬂtiuns Journal calls <Esc>
T

Function Calls
I Cancel |

funcl(i=3) 1
func2(a=3,b=4,c=5)
mainQ)

B E o
-18

> f

-7.5000800

>4x 1

BxFFFFFFF6

Step 9
—

Choose Step until the current line is on the “sprintf()” in
the function “func1()”. Then choose Calls, also from the
Control menu. This shows the current function calling
order and the parameters of each. Try this when
“main()” calls “func2()” which calls “func1().”

Now choose Return and try Calls again.

74

LASERDB CHAPTER 6 * SAMPLE SESSION

Execution Journal
=t

53 }
63 funci(a);
[46 funci(i)
Si sprintf(buffer, "4d\n", i);
52 uts(buffer);

53

64 funci(a);

46 funci(i)

51 sprintf(buffer, "Zd\n", 1);
g% ;uts(buffer);

65 }
-18
> f
-7.5000808
>7x 1
BxFFFFFFF6

Step 8
T
Choose Journal from the Control menu. <Ctl>-J is the
shortcut for this command. This shows all source lines
traced or stepped. In the assembly mode, disassembled
instructions are shown here.

73

LASERDB CHAPTER 6 * SAMPLE SESSION

Breakpoints I
[Mj_’i%@ ’ | Ok , || Cancel | |
tate -

%; 1 I Disable | Remove all | [Clear all |

21 8.6 75 1 == 50 ¢

22

23

24 i

26 .

27

28

29 p ||
[i_Expressig| [
-18
> f
-7.50008008
> Zx 1

BXFFFFFFF6
“Breakpoint encountered

Step 10

——

Set a breakpoint on the line shown above and choose Go
or Next until the breakpoint is encountered. Now open
the Breaks dialog by choosing it from the main menu, or
by typing <CtI>-B. The breakpoint on line 25 is the one
just set. Enter the break expression shown above. Close
the dialog with “Ok”. Make sure “i” is less then 50. If it
is greater than 50, enter the followmg expression using
the <Tab> command:

75

LASERDB CHAPTER 6 * SAMPLE SESSION

Choose Go to start execution. The loop will run, evaluat-
ing the expression only when the breakpoint is hit. The
break will only be taken when the expression is true
(non-zero).

76

LASERDB CHAPTER 6 * SAMPLE SESSION

| Regs, &}
0 0088800A
Di 888688683
D2 866868888
D3 06006006
D4 BooeBees
| D5 006000068
- D6 808008808
i1 D7 BBBBODI2
il AB BOB475DA

:1 08949738

A

g;anadznzz
0x000842D8E
D7,-(A7)

||| A2 00BBOEAR
| A3 80800EAD
| | A4 80B456F6

| RS 0BB42BAR

80842D7C ADDO. W A6 00847866

808842D7E MOVE. W US 88847862
= Expressigc b> to e SS 800807554
-7.560008
> Zx 1 PC 88042D6R
BxFFFFFFF6 CCR xNzvC
> =8 User

& | Mask: 3

8
Breakpoint encountered

Step 11
I

Using the Options dialog, switch to “Mode-Assembly”
mode and select “Display-Registers.” All debugger func-
tions as described above work consistently in the assem-
bly mode. <Ctl>-M can be used to quickly change the
mode. Clicking on the register window toggles between
the stack display and the register display. The small
arrow shows the current frame pointer (register A6).
Execution and breakpoints use machine instructions rath-
er than source lines, but otherwise work identically.

77

LASERDB CHAPTER 6 * SAMPLE SESSION

Registers can be used in expressions. For example try
evaluating:

%d $DO

in the expression window. It will print the value of regis-
ter “D0” in decimal format.

78

LASERDB CHAPTER 6 * SAMPLE SESSION

Step 11
S ——

When your through with this sample session, choose
Quit to return to the desktop. The configuration file will
be written out at this time so that all settings will be re-

membered between sessions.

79

e i -y L et 45 B e

APPENDIX
KEYBOARD SHORTCUTS
| — e

Key Meanin

‘+°/*-” (keypad) Scroll the expression window
up/down.

“** (keypad) Set or remove a breakpoint at
the current line.

‘/” (keypad) Set or remove a breakpoint at
the top line of the source win-
dow.

<Ctl>-B Bring up the Breakpoints dia-
log.

<Ct>-C Diaplay the function calls dia-
log.

80

LASERDB

<Ctl>-J

<Ctl>-L

<Ctl>-M

<Ctl>-N

<Ctl>-0O
<Ctl>-P

<Citl>-R

<Ctl>-S
<Ctl>-W

<Enter> (keypad)

<Space bar>

81

APPENDIX * KEYBOARD SHORTCUTS

Bring up the Journal dialog.

Toggle line numbers in the
source window.

Toggle the mode between
source and assembly. This is
available only “Both” was se-
lected at startup.

Search for the next occurrence
of a source pattern.

Open the Options dialog.

Search for previous occurrence
of a source pattern.

Toggle the Register window on
and off.

Bring up the search dialog.
Bring up the Watch dialog.

Reposition the source window
to show the current statement.

Single step execution of the tar-
get — the Step command.

LASERDB

APPENDIX ¢ KEYBOARD SHORTCUTS

Help Get keyboard shortcut help.

Home (shift) Reposition the source window
to the end.

Home Reposition the source window

to the beginning.
Return Issue the Next command.
Up/down arrow (shift)

Scroll the source window

up/down by one line.

Up/down arrow Scroll the source window
up/down by one line.

82

Index
“Assembly” button. 14
“Both” button. 14
“Go” execution. 61
“Load” button: « we: s wmss s smms 14
“Load/Start” button. 15, 16
“Next” execution. 62
“Quit’button. 15
“Return” execution. 62
“Source” button. 13
“Step” execution. 62
“Trace” execution. 61
A 3 s 3
22 a8 w5 s s vans smws s amus 9,11
A
ASSEMDIY. . 5 s s sws swmas s vans 6
Assemblymode. 37
B
Breakpoint indicators. 55
Breakpoint pass count. 57
Breakpoints. 39, 55
C
Coperators.ccovvn.n 31
Calls:dialog. « s wvs s susesanes 48
CCTTP.......covvivnnnn.. 9
CCOMTTIP: : s s voms s somnss 9
Choose. .. .ovvvviiiiieennnn. 5
MR swnissanntzens vsaniia 5
Compilation. 9
Current line. 18, 39
Current sCoOpe.oovvenn.. 18
CHITSOT: & ¢4 455 mein s o man s o 5#53 5

Dialogboxes. 44

Dfagi:cccasscsmsisomasicass 5
E

Expressions. 17,41
G

GEM symbols. 19
I

Identifiers.................. 19

Insertion PoInt. <.« s « s ses s 5
J

Journal dialog. 47
L

LaserDB. .« ;s snsas 55052 s 593 1

ILDTTP........ccovien... 11

LDB.CFG:.: i« cas:n0wms semass 12

IDBPRG.........cccuvenn. 11

Lexical SCOpe.««:: :vusewcnss 19

Line number operator. 25

Linking .. : sses swaas smanas § 10

11 7:1 D Ry W 22
M

Memory checksum. 24

Menu bar: ;o5 cnsmossnaass 34
0

Options. 45
P

Predeclared temporaries. 27

Predeclared variables. 26

Printing formats. 28,29

Processor registers. 27

Quitcommand. 64

R
Register window. 43
Reload dialog. 63
Resizing windows. 35
S
Scrolling windows. 35
Search dialog. 49
Search patterns. 53
SEIECH. : i .omas s s s e-smnie 6
Sourcemode. 37
SEATOIP: o 255 5555 swmias swmns 11
T
Textentry.........cccouven.. 7
Typecasting. 23
W
Watch conditions. 59
Watch dialog. 60

Watches.coicisoswson s 59

Notes

Notes

Notes

Notes

Notes

sieve
28 Suuexec(genme),
iter <= 18; itertt) {

8; i <= size; it+)
flagsh] = true;
8; = szze, it {

rine;
flags[k] = false;
count+t;

Next Step Return Flip

Assembly: TEXT Sean
BBBKFSRZ M D7,D5
88B3FSA4 D.

0803FS5A6

B 0003FSA8

8883FSAA

08B3FSAC . 008

08B3FSAE . 0x868041FCC.L,AB
08B3FSB4 . 8(A8,D6,H)
8883F5B8 M DS, DB

8BB3FSBA . D8, D6

B083FSBC M HBxIFFE,D6
8083FSCO . 0x88EC

8803F5C2 HoHL,D4

B0B3FSC4

ine > prine CCR xnzve
]] User
[o | Mask: 3
Breakpoint encountered Breakpoint encountered
Warch any C variable or View CPU
EXPY‘ESS[O?! registers

LAserDB

Source-level and Assembly-level
Debugging!

m Powerful and easy to use dual mode
debugger —view source code or assembly.

® Debug GEM programs and games —even
debugs low-resolution programs.

m Mouse based user interface —resizeable
windows, scroll bars, button menu bar,
dialog boxes.

m Simple, logical command structure with
numerous keyboard shortcuts.

® Print or set variables with C expressions. Access
global, local, and register variables. Special
syntax extensions to access processor registers.

® Set and remove breakpoints with the mouse!
Optional break expression allows conditional
breaks.

® Watch window allows monitoring of C variables
with option to break execution if a variable
changes.

Reauires Laser C to debug at the source level.
Laser C and LaserDB sold separately.
- Megamax, Inc., 1989

t_Step Return
SRR

Flip reload <Esc>.
S]

Ser break
points with
the mouse

Resize and
scroll win-

dows with
the mouse
;/o‘;‘:ce oF Evaluate C
assembly expressions
to print or
servari-
ables
m Multiple execution modes:
Go Execute until breakpoint or error.
Trace Watch the source or disassembly
while the program runs.
Next Single step to the next source line

or machine instruction without
stepping into function calls.

Step Single step to the next source line
or machine instruction stepping
into function calls.

Return Execute until the current function
returns.

® Execution journal shows a history of source
lines or machine instructions in the order they
were executed.

m View function calls in the order of their activa-
tion on the stack.

Debug any GEM executable bly mode.

|

	20170904143357848_2R
	20170904143747892_Page_01_1L
	20170904143747892_Page_01_2R
	20170904143747892_Page_02_1L
	20170904143747892_Page_02_2R
	20170904143747892_Page_03_1L
	20170904143747892_Page_03_2R
	20170904143747892_Page_04_1L
	20170904143747892_Page_04_2R
	20170904143747892_Page_05_1L
	20170904143747892_Page_05_2R
	20170904143747892_Page_06_1L
	20170904143747892_Page_06_2R
	20170904143747892_Page_07_1L
	20170904143747892_Page_07_2R
	20170904143747892_Page_08_1L
	20170904143747892_Page_08_2R
	20170904143747892_Page_09_1L
	20170904143747892_Page_09_2R
	20170904143747892_Page_10_1L
	20170904143747892_Page_10_2R
	20170904143747892_Page_11_1L
	20170904143747892_Page_11_2R
	20170904143747892_Page_12_1L
	20170904143747892_Page_12_2R
	20170904143747892_Page_13_1L
	20170904143747892_Page_13_2R
	20170904143747892_Page_14_1L
	20170904143747892_Page_14_2R
	20170904143747892_Page_15_1L
	20170904143747892_Page_15_2R
	20170904143747892_Page_16_1L
	20170904143747892_Page_16_2R
	20170904143747892_Page_17_1L
	20170904143747892_Page_17_2R
	20170904143747892_Page_18_1L
	20170904143747892_Page_18_2R
	20170904143747892_Page_19_1L
	20170904143747892_Page_19_2R
	20170904143747892_Page_20_1L
	20170904143747892_Page_20_2R
	20170904143747892_Page_21_1L
	20170904143747892_Page_21_2R
	20170904144047390_Page_01_1L
	20170904144047390_Page_01_2R
	20170904144047390_Page_02_1L
	20170904144047390_Page_02_2R
	20170904144047390_Page_03_1L
	20170904144047390_Page_03_2R
	20170904144047390_Page_04_1L
	20170904144047390_Page_04_2R
	20170904144047390_Page_05_1L
	20170904144047390_Page_05_2R
	20170904144047390_Page_06_1L
	20170904144047390_Page_06_2R
	20170904144047390_Page_07_1L
	20170904144047390_Page_07_2R
	20170904144047390_Page_08_1L
	20170904144047390_Page_08_2R
	20170904144047390_Page_09_1L
	20170904144047390_Page_09_2R
	20170904144047390_Page_10_1L
	20170904144047390_Page_10_2R
	20170904144047390_Page_11_1L
	20170904144047390_Page_11_2R
	20170904144047390_Page_12_1L
	20170904144047390_Page_12_2R
	20170904144047390_Page_13_1L
	20170904144047390_Page_13_2R
	20170904144047390_Page_14_1L
	20170904144047390_Page_14_2R
	20170904144047390_Page_15_1L
	20170904144047390_Page_15_2R
	20170904144047390_Page_16_1L
	20170904144047390_Page_16_2R
	20170904144047390_Page_17_1L
	20170904144047390_Page_17_2R
	20170905074535680_Page_01_1L
	20170905074535680_Page_01_2R
	20170905074535680_Page_02_1L
	20170905074535680_Page_02_2R
	20170905074535680_Page_03_1L
	20170905074535680_Page_03_2R
	20170905074535680_Page_04_1L
	20170905074535680_Page_04_2R
	20170905074535680_Page_05_1L
	20170905074535680_Page_05_2R
	20170905074535680_Page_06_1L
	20170905074535680_Page_06_2R
	20170905074535680_Page_07_1L
	20170905074535680_Page_07_2R
	20170905074535680_Page_08_1L
	20170905074535680_Page_08_2R
	20170905074535680_Page_09_1L
	20170905074535680_Page_09_2R
	20170905074535680_Page_10_1L
	20170905074535680_Page_10_2R
	20170905074535680_Page_11_1L
	20170905074535680_Page_11_2R
	20170905074535680_Page_12_1L
	20170905074535680_Page_12_2R
	20170905074535680_Page_13_1L
	20170905074535680_Page_13_2R
	20170905074535680_Page_14_1L
	20170905074535680_Page_14_2R
	20170905074535680_Page_15_1L
	20170905074535680_Page_15_2R
	20170904143357848_1L

