

HiSoft FORTH
for your Atari ST

System Requirements:
Atari ST Computer with a mouse and a disk drive

Program Copyright © Henry McGeough 1988-90
Manual Copyright © Henry McGeough and HiSoft 1990

HiSoft FORTH for the Atari ST, February 1990

Printing History:
1st Edition February 1990 (ISBN 0 948517 24 7)

Set using an Apple Macintosh™ with Microsoft Word™ & Aldus Pagemaker™

ISBN D T4A517 EM 7

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to HiSoft FORTH and its
associated documentation to copy, by any means whatsoever, any part of HiSoft
FORTH for any reason other than for the purposes of making a security back-up
copy of the object code as detailed within this manual.

HiSoft FORTH

Table of Contents

1 Introduction

1.1 FORTH History 1

1.2 About HiSoft FORTH 1

1.3 Acknowledgements 2

1.4 How to use this manual 2

1.5 Always make a back-up 2

1.6 Registration Card 3

1.7 HiSoft FORTH Disk Contents 4

1.8 The README File 5

1.9 Making a working disk 5

1.10 Files in HiSoft FORTH 5

2 Introducing FORTH

2.1 The Data Stack 8

2.2 FORTH arithmetic 11

2.3 Boolean Operators 13

2.4 The Word 13

2.5 Decisions: IF ELSE THEN 15

2.6 Repetition 17

2.7 The BEGIN Loops 18

2.8 FORTH Variables and Constants 20

2.9 FORTH input/output 21

2.10 Vocabularies 22

Contents HiSoft FORTH Page

3 HiSoft FORTH User Manual 25

3.1 HiSoft FORTH Screen editor 25

3.2 The Terminal 28

3.3 The Shell 28

3.3.1 File Menu 29

3.3.2 Edit Menu 29

3.3.3 Screen Menu 30

3.3.4 FORTH menu 30

3.3.5 Shell Restrictions 30

3.4 The Program Compiler 31

3.5 FORTH as a desk accessory 31

3.6 The Tool Editor 32

3.7 The Ramdisk 33

3.8 The Disk System 33

3.9 Using ASCII Files 35

3.10 Converting block files to/from ASCII files 36

4 HiSoft FORTH Reference 39

4.1 Common FORTH Language Words 39
4.1.1 Glossary Notation 39

4.2 HiSoft FORTH specific features 40

4.2.1 FORTH-83 standard and HiSoft FORTH 40

4.3 FORTH-79 61

4.4 FORTH-83 Standard 63

4.4.1 The Required word set 63
4.4.2 FORTH-83 standard and HiSoft FORTH 63

4.4.3 FORTH-83 Words 64

4.5 ONLY Words 68

4.6 Double Number Extension Set 70

4.7 Floating point 72

4.8 Assembler 74

4.8.1 Loading the Assembler 74
4.8.2 Using the Assembler 75
4.8.3 Assembler Syntax 75
4.8.4 Using HiSoft FORTH with DevpacST 76

Page ii HiSoft FORTH Contents

4.9 Multi-Tasking

4.10 MIDI library

4.11 Graphics

4.12 Atari ST Extensions

5 Direct Operating System Calls

77

79

80

81

83

5.1 GEMDOS 83

5.2 The BIOS 88

5.3 The Extended BIOS (XBIOS) 90

5.4 GEM VDI (Virtual Device Interface) 93

5.4.1 GEM VDI arrays 93

5.4.2 GEM VDI Control Functions 94

5.4.3 GEM VDI Output Functions 98
5.4.4 GEM VDI Attribute Functions 105

5.4.5 GEM VDI Raster Operations 113

5.4.6 GEM VDI Input Functions 115
5.4.7 GEM VDI Inquire Functions 120
5.4.8 GEM VDI Escape Functions 122

5.5 GEM AES 124

5.5.1 GEM AES Application Library Routines 126
5.5.2 GEM AES Event Library Routines 129
5.5.3 GEM AES Menu Library Routines 132
5.5.4 GEM AES Object Library Routine 134
5.5.5 GEM AES Form Library Routines 137
5.5.6 GEM AES Graphics Library 139
5.5.7 GEM AES Scrap Library Routines 144
5.5.8 GEM AES File Selector Library 145
5.5.9 GEM AES Window Library Routines 145

5.5.10 GEM AES Resource Library Routines 150
5.5.11 GEM AES Shell Library Routines 151

Appendix A. Implementation details

A.l Memory Map

A.2 HiSoft FORTH Compiler

A.3 HiSoft FORTH Headers

Contents HiSoft FORTH

153

153

153

154

Page iii

Appendix B FIG 155

Appendix C Technical Support 157

C.l Technical Support

C.2 Upgrades

157

157

Bibliography 159

FORTH Books

ST Books

159

159

Index 163

Page iv HiSoft FORTH Contents

1 Introduction

1.1 FORTH History
Charles H Moore began the development of FORTH in the late 1960s in order
to provide himself with a programming language to use in the field of
Astronomy as well as general purpose programs. Development began on an
IBM 1130 and after tests on different machines and in different languages,
the language was first coded in FORTRAN, then assembly language and then
in FORTH itself.

The first application was in 1971 when Moore implemented a program for
the acquisition of astronomical data at the National Radio Astronomy
Observatory. Moore was sufficiently satisfied with his work that in 1973, with
Elizabeth Rather, the first FORTH programmer, he founded FORTH Inc for
the development of FORTH programs and systems.

As the use of FORTH grew the FORTH Interest Group (FIG) was formed, in
San Carlos, California, with the aim of increasing knowledge of the language.
They published listings in assembler for many different processors. FORTHs
implemented from the listings took the name of fig-FORTH.

In 1979 the FORTH Standards Team published a Standard known as FORTH-
79. The FST issued a revised Standard in 1983. The FORTH-83 Standard
defined a 'Required Word Set' that is the minimum standard of most
commercial FORTHs today.

1.2 About HiSoft FORTH

HiSoft FORTH is a fast 68000 based FORTH for the Atari ST computer. It
supports FORTH-83 Standard, FORTH-79 Standard and fig-FORTH programs.

A full interface to GEMDOS through the BIOS, XBIOS, GEM VDI and GEM
AES functions is included as FORTH words. There is also a FORTH full screen

editor in the main kernel. It also has the ability to handle standard text files,
so that other editors may be used if you wish.

HiSoft FORTH is a 32 bit FORTH with the stack and all arithmetic and

numeric conversion using 32-bit numbers.

HiSoft FORTH is fig-FORTH compatible and will run fig-FORTH programs. It
is also FORTH-83 Standard, after executing forth-83, as set down in the
FORTH-83 Standard by the FORTH standards team.

To run FORTH-79 standard programs execute 79-STANDARD and any
FORTH-79 words that need changing from fig-FORTH will be searched first.
The default FORTH standard is fig-FORTH which allows for most FORTH
programs to be run immediately by HiSoft FORTH.

Introduction HiSoft FORTH Page 1

1.3 Acknowledgements
The source of much of the documentation in the Reference section of this
manual is the document 'FORTH-83 STANDARD' by the FORTH Standards
Team.

To the extent that text from that publication has been used the authors
acknowledge the copyright of the FORTH Standards Team and their consent
to reproduction. Thanks are due to Mr Nicholas Spurrier, George Chkiantz
and Gil Filbey for useful suggestions about the software.

HiSoft FORTH was developed on an Atari 520 ST, using the HiSoft Devpac ST
68000 Assembler by Henry McGeough.

1.4 How to use this manual

Everyone should read the rest of this section as it describes what to do before
using the package.

Section 2 is designed for new-comers to FORTH, although the sub-section on
vocabularies may be useful to experienced FORTH programmers.

Section 3 contains the full details of the HiSoft FORTH built-in words,
together will the differences between the different FORTH standards and
how to use the turtle graphics, multi-tasking and machine language features
of HiSoft FORTH.

Section 4 describes the low-level interfaces to the ST's operating system:
GEMDOS, BIOS, XBIOS, GEM VDI and GEM AES.

Appendix A is a summary of the implementation details of HiSoft FORTH.

Appendix B gives information on the FORTH Interest Group.

Appendix C describes how to obtain technical support. Please read this
before contacting us.

The Bibliography gives details of some recommended FORTH books. For
newcomers to FORTH, we would recommend 'Starting FORTH' by Leo
Brodie.

1.5 Always make a back-up
Before using HiSoft FORTH you should make a back-up copy of the
distribution disk and put the original away in a safe place. It is not copy
protected to allow easy back-up and to avoid inconvenience. This disk may be
backed-up using the Desktop or any back-up utility. The disk is single-sided
but may be used in double-sided drives.

Page 2 HiSoft FORTH Introduction

Before hiding away your master disk make a note in the box below of the
serial number written on it. You will need to quote this if you require
technical support.

Serial No:

1.6 Registration Card
Enclosed with this manual is a registration card which you should fill in and
return to us after reading the licence statement. Without it you will not be
entitled to technical support or upgrades. Be sure to fill in all the details,
especially the serial number and version number.

Introduction HiSoft FORTH Page 3

1.7 HiSoft FORTH Disk Contents

The supplied single-sided 3.5" disk contains these files:

hsforth.prg the complete version of the FORTH including the GEM
shell

hsforth.rsc the resource file for hsforth.prg

forth. P R G a version of the FORTH without the GEM shell but
including the full GEM vocabulary. This is used by the
program compiler as the basis for new versions. It also
can be used instead of HSFORTH if you don't like using
GEM menus.

kernel, prg The smallest version of the FORTH without the GEM
shell and only a minimum GEM vocabulary. This is
described in Section 3.4

readme.txt See below for details.

FORTH.blk The default source file, containing the program compiler
and floating point routines. See below.

a s M. s E Q The source code to the assembler. See Section 4.8.

float.seq The source code to the floating point library. See Section
4.7.

object.SEQ Dick Pountain's well known Object Oriented extensions
to FORTH. See the Bibliography for more sources of
further information.

ubik.seh A Rubik's Cube demonstration program. See Section
3.3.5.

Bo x . s EQ A colour box drawing program.

Hf 8 K. ACC Desk accessory version of HiSoft FORTH. See Section 3.5.

program.SEQ The main program compiler for producing standalone
code. See Section 3.4.

prginit.seq Subsidiary files used by the program compiler

PRG . S EQ

b l k . s EQ Contains words for converting BLK files to SEQ files and
vice versa. See Sections 3.9 and 3.10.

mi d i . s e a A MIDI example file. See Section 4.10.

primes. S E a A FORTH version of the famous Sieve of Erastothenes
benchmark.

Page 4 HiSoft FORTH Introduction

1.8 The README File

As with all HiSoft products HiSoft FORTH is continually being improved and
the latest details that cannot be included in this manual may be found in the
README.TXT file on the disk. This file, if present, should be read at this point,
by double-clicking on its icon from the Desktop and then clicking on the
Show button. You can print it by clicking on the Print button.

The README.TXT file may also be read by any standard text editor.

1.9 Making a working disk
From your back up disk copy these files to a new blank disk:

HSFORTH.PRG HSFORTH.RSC FORTH. BLK

If you wish to use the stand alone program compiler then copy

FORTH.PRG PROGRAM.SEa PRGINIT.SEa PRG.SE8

as well.

If you wish to use the assembler or other extensions immediately, then copy
the appropriate .SEa file (ASM.SEa for example).

Now load HiSoft FORTH by double-clicking on HSFORTH.PRG.

We will store our FORTH programs in the file forth, blk. Initially this just
contains a few screens for re-compiling parts of the system. We need not be
concerned with these yet, but we will need some more space for our own
programs. So type

96 more

This will give us an extra 96k in the screen file, FORTH.BLK. Newcomers to
FORTH should now continue with the quick tour in the next section.

1.10 Files in HiSoft FORTH

HiSoft FORTH provides two methods of storing source code: traditional
FORTH screen-based (or block-based) files and sequential (or ASCII) files.

Screen-based files usually have an extension of .blk; these are the files that
the built-in FORTH editor uses and are great for small programs and whilst
learning the language. For the technically minded, .BLK files are organised
into screens containing 16 lines of exactly 64 characters; there are no end of
line characters but lines shorter that 64 characters are padded with spaces.

Introduction HiSoft FORTH Page 5

Sequential files have exactly the same format as standard ASCII text files and
so you may edit these with any standard text editor such as Tempus 2 or the
editors that are supplied with HiSoft BASIC and DevpacST. They
conventionally have an extension of .SEa. Although such files may not be
edited with the FORTH editor, they have the advantage that they require
much less disk space than .blk files. As such, we have used .SEa files for
most of the source code supplied with HiSoft FORTH.

You do not need to make a firm choice between the two methods of storing
files, because you may convert between them. This is described in detail in
Section 3.10.

Page 6 HiSoft FORTH Introduction

2 Introducing FORTH
This section is intended to provide the FORTH novice with an insight into
using the language; it is not meant to be a full tutorial. To this end many of
the finer points of the language have been left out and it is suggested that the
Bibliography be consulted for further reading on the subject.

This section assumes that you have successfully made a working disk as
described in Section 1.9 and that you have some knowledge of using the BASIC
language.

Okay, so what is FORTH and what makes it so different from other languages
used on today's computers? A simple way of describing it is to compare it
with the English language. If we examine an English dictionary we can see
that it consists of many words, each word usually having a specific
interpretation or meaning.

These words can be combined (in a certain order) to produce many different
types of sentence which again convey a meaning of their own. In turn, we can
combine sentences to form paragraphs, which ultimately can be made into a
complete novel if we so require. The point we are driving at here is that from
relatively few words one can produce an infinitely extensible language.

FORTH to some extent is like English. It too has a dictionary which is
composed of words (yes, that is the correct name). These words are in fact
subroutines which when executed perform a specific task. Words may be
grouped together to form new words, the new word when executed
combining all of the functions of the words making up its definition. This
process can be repeated until you finish up with one word which when
executed runs a complete program.

One of the major beauties of FORTH is that these words can be executed and
tested as soon as they have been created (try doing that with BASIC, Pascal or
C). Another good point of FORTH is that as we create new words which are
placed in our dictionary they become part of the language and not an
independent function. For this reason it is perfectly reasonable to extend the
language by writing new control structures or even a whole new compiler.

Let us make a start by examining the FORTH dictionary. With the system up
and running type in the FORTH word words and press Return.

£$S MAKE SURE THAT YOU TYPE THE NAME IN UPPER-CASE ONLY. YOU
WILL GET AN ERROR MESSAGE IF YOU USE LOWER CASE IN THIS

INSTANCE. This is why HiSoft FORTH will automatically set CAPS LOCK on
when it loads. In fact there is a way to make FORTH ignore the casing of
letters, but as upper case is traditionally used, we'll ignore this for now.

You should see the screen fill with an abundance of apparently-foreign words.
These words are the subroutine names we have already spoke of and if you
look carefully you will see that the word words is among them. When we
typed this in and pressed Return the subroutine corresponding to WORDS
was executed. The result of this, as you have probably guessed, was to list the
dictionary (or vocabulary) to the screen.

Quick Tour HiSoft FORTH Page 7

What exactly happened was that after pressing Return a part of the FORTH
system known as the keyboard interpreter examined the characters you
typed at the keyboard and initially assumed that they formed a valid
dictionary word. It then searched through the dictionary to locate the word
and execute the subroutine associated with it. If it cannot find the word the
keyboard interpreter then checks to see if a number was entered and acts
accordingly (more of this later). If this fails then the interpreter gives up and
issues an error message saying that the word was not defined in the
dictionary. You can try this by typing in some random characters at the
keyboard and pressing Return.

We can now go one step further by typing in several words on one line, for
example:

WORDS WORDS WORDS

and press Return. The dictionary will now be listed to the screen three
times in succession. If you now have a quick look at Sections 3 and 4 you will
see all of the dictionary words listed and explained in detail. It is a good idea
to read through these formal explanations as you meet them in this section
but don't worry if they don't make a lot of sense at first; they will with
practice!

Before we move on to something more ambitious it's worth noting that all of
the words in the dictionary have names made up of UPPER CASE characters
and as such must be referenced in the same way. If you try typing, for
instance,

words

then an error message will be printed on the screen to the effect that FORTH
has not been able to find the word in the dictionary. When you come to create
your own word definitions you are free to use upper- or lower case-characters
as you so desire.

2.1 The Data Stack

FORTH is known as a stack-orientated language. This means that all variables
and constants (i.e. numbers) are passed to the various FORTH words via an
area of memory known as the DATA or PARAMETER STACK. This can be
likened to an office 'in tray' where new items are put on to the top of the pile
of existing papers, and as it is easier to look at the top item rather than
search through the pile, they are usually removed in that order. For this
reason the stack is usually referred to as a L7FO or last in first out stack. The
last item placed on the stack is known as the top of stack or tos with the
next item down being known as NOS (Next item On Stack) and so on. Let's
illustrate this with an example.

Type in the following (we will assume by now that you know that you have to
press the Return when finished):

12 3 5 23 36

Note that the numbers are separated by at lest one space, as a space acts as a
delimeter or separator between FORTH words.

Page 8 HiSoft FORTH Quick Tour

What we have done here is to type in five numbers which the keyboard
interpreter recognises as such. The result is that these numbers are placed
on the data stack in the order that they have been typed in, with the number
36 as the last item entered and therefore with this number as the top of
stack.

If we now type in the FORTH word . (pronounced dot) we will see the top
stack entry (which is 36) displayed on the screen. Repeat this twice more
and we will see the numbers 23 and 5 displayed. If we now continue to type .
(dot) we will see the remaining numbers displayed until we get an error
message printed on the screen. This message informs us that the stack is
empty and that we have tried to remove a non-existent number from the data
stack. What the FORTH word . (dot) actually does is to remove a number
from the top of the data stack and display it on the current output device,
which in this case is the screen. The diagram below shows the stack in
various stages of removing the numbers.

top of stack

Typing:

Displays:

36 23 03

23 05 12

05 03

03 12

12

36 23 3 12 error

(a) (b) (C) (d)

The data stack in FORTH is of fundamental importance to the philosophy of
the language. As already mentioned, any FORTH words that may require
variables or constants to work on obtain these from the stack. It is up to the
programmer to ensure that the correct values and quantity are placed on this
stack prior to a FORTH word being executed or else unpredictable results are
likely to occur.

Due to the stack's importance FORTH provides many built-in words which
can manipulate the stack contents. For instance, we may wish to place a
number on the stack and use it twice in succession. We could if we wish place
the number on the stack twice; e.g. typing 12 12. However this is boring
and would at the very least send a FORTH guru into palpitations! What we
should do is to use the FORTH word dup (DUPlicate). This takes a number
from the top of the stack and duplicates it, placing the original and a copy
back onto the stack as the top and second item.

Quick Tour HiSoft FORTH Page 9

This is illustrated below:

stack empty

Typing:

Displays

1 2

12 12

12

D u P

12 12

stack empty

There are many more words which act upon the data stack contents. The
main ones are described below in pictorial form with each diagram including
a brief description of the function. We will see how these words become
useful in program-writing very shortly.

i) Du P (Copies the top stack entry)

12 12

12

before after

ii) swap (Swaps the top two stack entries)

12 23

23 12

before after

iii) over (The second stack entry is copied to TOS)

12 23

23 12

36 23

36

before after

iv) rot (The third stack entry is removed to TOS)

Page 10

12 36

23 12

36 23

before after

HiSoft FORTH Quick Tour

v) drop (Discards the top stack entry)

12 23

23 36

36

before after

vi) Sp ! (Clears out the stack of all entries)

stack empty
12

23

36

before after

Before we move on to the next section spend a little time putting numbers on
the stack and then trying the words given above to see the effects on the
stack contents. Remember that to put a number on the stack, you need only
to type it in. To display it. use the FORTH word . (dot).

2.2 FORTH arithmetic

FORTH is a somewhat unusual language in the way it handles numbers and
performs mathematical operations on them. Initially HiSoft FORTH deals with
32-bit integer numbers, resulting in a range of -2147483648 to
+2147483647. Thus for most integer calculations, we don't need to worry
about arithmetic overflow unlike implementations that use 16 bit integers.
HiSoft FORTH also has facilities for even larger integers and floating point
numbers: however we recommend that you learn 'ordinary' FORTH before
using these extra words described in Sections 4.6 and 4.7.

The second and perhaps most difficult-to-understand peculiarity of FORTH
number-handling is the way we perform arithmetic. For example, in the
BASIC language if we wished to add two numbers together and print the
result we could write:

print 12 + 48

which would print the result 60 on the screen. To achieve the same result
in FORTH we must type in the following:

12 48 + .

To add together (or perform any other mathematical function) in FORTH we
must place the numbers on the data stack before we carry out the
mathematical operation. This is known as post fix or reverse polish notation
and was used on early electronic calculators. In the example above we place
two numbers 12 and 48 on the stack and then we use the FORTH word +
(plus), which removes the top and second stack entry, adds them together
and places the result of the addition back on to the top of the stack. This
result is then displayed using . (dot).

Quick Tour HiSoft FORTH Page 11

Let's try some further and slightly more complicated examples to gain a little
familiarity with post fix notation. We will show the normal method of writing
the expression followed by the FORTH method. Make sure you try these
examples and perhaps a few of your own, and try to visualise the stack
contents as the operations are carried out.

a) 12 + 34 + 45 = 91 12 34 45 + + .

Notice here that we have to use two + signs. The first stage of the addition by
FORTH is to take the top two stack items and add them together; i.e. 45 and
34 placing the result 79 on the top of the stack. The second plus sign is
then executed by FORTH which again removes the top stack item (now 7 9)
and the second stack item 1 2 , adds them together and puts the final result
9 1 on the stack where it is printed with . (dot) which removes teh result
from the stack.

b) 45 - 12 = 33 45 12 -

C) 68 - 3 + 12 = 77 68 3 - 12 +

or 12 68 3 - + .

In this example, where we are using mixed operators, we must ensure that
we place either the numbers or the operators in the correct order. As you
can see from above there is more than one way to achieve the same result. We
can either place the first two numbers 68 and 3 onto the stack and subtract
them followed by the third number and addition sign. Alternatively, we could
place all three numbers onto the stack in one go and then compute the
expression by first subtracting the top two stack numbers (68 - 3) and then
adding 1 2 to the result.

d) 12 * 6 = 72 12 6 * .

e) 15 / 3 = 5 15 3 / .

These last two examples use the multiply and divide operators of FORTH. The
main point to remember here is that when using the division operator, the
second stack entry NOS is divided by the top stack entry TOS. Also recall that
FORTH is integer-based so if you try to divide a number which would
normally leave a fractional part within the result this fractional part will not
be calculated.

These then are the basic mathematical operators that FORTH provides. The
list is by no means complete but it is impossible to deal with them all in this
short introduction to the language. FORTH also provides certain words which
act upon double-length numbers.

As a final example which incorporates the mathematical and stack
manipulation words examine the expression below and the FORTH solution.
Note how we use the FORTH word swap to rearrange the stack, making our
calculation easier to perform.

(10-4)
=3 2 10 4 - SWAP /

Page 12 HiSoft FORTH Quick Tour

2.3 Boolean Operators
Boolean operators are words in FORTH which compare two stack values in
various ways and place a -1 or 0 on the stack as the result. For example, we
may wish to compare two numbers to see if they are equal in value. To do this
we could write :

10 20 = (TOS would be 0 as the numbers are not equal)

12 12= (TOS would be -1 as the numbers are equal)

The numbers 0 and -1 are also called FALSE and TRUE as they reflect the
identity of the result. In the first example the numbers were not equal
therefore the result of the test was FALSE. In the second example they were
equal so the result was TRUE. We could have tested for the numbers being
not equal to each other using the FORTH word <>. This would return a -1 or
TRUE if the numbers were not equal and a 0 or FALSE if the numbers were
equal.

Other Boolean operators available in FORTH are listed below with short
examples to show their operation.

> (Greater than)

1 6 1 5 > (TOS is TRUE as 16 is greater than 15)

15 1 8 > (TOS is FALSE as 15 is less than 18)

< (Less than)

16 1 5 < (TOS is FALSE as 16 is greater than 15)

15 18 < (TOS is TRUE as 15 is less than 18)

0= (Equals zero)

12 0= (TOS is false as 12 is not equal to zero)

0 0= (TOS is TRUE as 0 is equal to zero)

As with the stack manipulators we have shown only a selection of the Boolean
operators. We will meet these again shortly when we will see their
importance in decision-making and controlling the flow of a FORTH program.

2.4 The Word

We have already stated that a FORTH word is in fact the name of a particular
subroutine which is executed as soon as the word is typed in and Return is
pressed. We have also said that we can string words together to execute a
series of subroutines. Armed with this knowledge it is now time to write our
first FORTH program.

Quick Tour HiSoft FORTH Page 13

Type in the following, taking care with spaces etc. :

: GREETINGS CR ." Hello world" CR ;

When you have typed this in and pressed Return you should be presented
with the by-now familiar o k prompt. If you get an error message instead,
don't panic, just type in the FORTH word COLD and try again (and watch your
spelling and spaces this time). The word CR (Carriage Return) sends to the
output device a new-line control code thereby forcing any subsequent
printing to start at the beginning of a new line.

Now type in greetings and press Return. The screen should clear and the
words Hello world should be displayed with the ok prompt at the
beginning of the next line. If we now list the dictionary by typing words we
should see the word greetings at the top.

We have in fact created a new FORTH word or definition named greetings.
Every time this word is now typed in the Hello world greeting will be
displayed. To understand fully what has happened we must look more closely
at the action of the keyboard interpreter. As we have already mentioned, the
keyboard interpreter scans the input line interpreting (if possible) the text it
finds there. In this case the first thing it meets is the : (colon). This is just
another FORTH word and in fact executes a routine which switches from the
command mode we are working in to the compile mode.

Now the next text word that the keyboard interpreter finds is assumed to be
the name of the new FORTH word we are creating, which in this case is
greetings. This word is then created in the dictionary as the latest entry.
The words which follow the name now have their runtime addresses
compiled into the new definition to form the executable part of the word. In
our example above the word CR is the equivalent of a BASIC print
statement with nothing following it: it causes the cursor to advance to the
next line. The FORTH words . " (dot quote) and " (quote) are analogous to
BASIC'S PRiNTing of a string. Anything that appears between . " and " will be
printed on the current output device.

A•=-j Note that there must be a space between the ." and the first character
of the text string we are printing. The word cR prints a carriage return on
the output device while the ; (semi-colon) ends compilation and returns to
the command or immediate mode.

Another simple but more useful example to illustrate the creating of new
definitions is given below. This calculates the square of a number which is the
top item on the stack.

: S8UARE DUP * ;

This word called sauARE duplicates the top stack entry with DUP and then
multiplies these two numbers, leaving the square of the number as the result
on the stack. Try this with various numbers using . (dot) to display the
result.

Page 14 HiSoft FORTH Quick Tour

2.5 Decisions: IF ELSE THEN

FORTH, like many languages, supports the IF statement which allows
program flow to be controlled depending upon the results of some previous
action. The format of this in FORTH is

i f the value on the top of the stack is TRUE
execute the words that follow

else if the top stack entry was FALSE
execute the following words

then Terminates the structure

The example below illustrates the use of the I F statement in controlling
program flow. Let's say we have an electronic circuit which monitors the
pressure of steam in a pipe connected to a boiler. If the pressure exceeds the
safety limit of 100 psi. then an alarm must be activated and a warning
message displayed on a VDU screen. If the pressure is normal then we
display the psi. We will assume that we have created a FORTH word called
alarm which will ring an external warning bell.

This will be rather more complicated than the previous examples, so it will
be best to enter this program with the screen editor. Each FORTH file is
divided into blocks. We will enter our program into block 10, by using:

10 ED

This will bring up the FORTH screen editor display. If you haven't used the
editor yet, don't worry: just press the I ns key and it will behave like a normal
screen editor: pressing the cursor keys will move the cursor. Backspace will
delete the previous character, de t will delete the next character and Return
will insert a new line.

Also, you will be able to lay out the program in a more structured and
readable way as shown below.

: ALARM 7 EMIT ;

: TEST_PRESSURE
DUP 100 >
IF ALARM CR ." WARNING

ELSE CR ." Pressure is

THEN ;

(Makes a beep

(pressure

PRESSURE OVER

" . ." psi"
LIMIT" DROP

We first of all define the word alarm which uses an existing FORTH word
emit to produce the necessary beep from the loudspeaker (character 7 is the
bell). The main definition is called test_p res SURE and requires the
pressure value on the stack as its input value. Notice the brackets after the
name. These are used to enclose comments in FORTH in much the same way
we would use rem statements in BASIC. In this case we are indicating that
the pressure value must be on the stack before execution of the definition.
Any values that are returned would be indicated after the .The first step
is to duplicate the pressure value with DUP as we will need two copies of the
value for this routine. We then use a Boolean operator > to see if the pressure
is greater than the maximum 100.

Quick Tour HiSoft FORTH Page 15

Note that this test removes the first pressure value from the stack, hence the
reason for the DUP. If this pressure value is greater than 100 (the maximum)
then a TRUE flag is placed on the stack ready for interception by the I r . If
the flag is TRUE we execute alarm,which beeps our loudspeaker and then
prints the warning message on the screen. We finally drop the remaining
pressure value that is left on the stack and the program falls through,
ignoring the else statement, to the then which is the exit from the routine.

If the pressure was within limits the > test would leave a FALSE flag on the
stack which would result in the IF statement not being executed. The
program would fall through to the else part which would print the pressure
on the screen. Notice the . (dot) which takes the remaining pressure value
from the stack and displays it between the two messages. The program exits
via THEN.

To try out these words we will need to compile them. To do this first leave
the editor by pressing F1 0 and then type

10 load

This causes the compiler to start loading the code from block 10. If an error
message is displayed then just type

10 ED

to return to the editor and re-check the program. Now when you type 1 0
load to the interpreter, the messages

ALARM ISN'T UNI8UE TEST_PRESSURE ISN'T UNI8UE

will appear; this is quite normal, the system is just telling us that our old
definitions have been superseded.

Once we have successfully compiled alarm and test_pressure we can try
them out. Using

ALARM

on its own will cause the usual beep (assuming the volume isn't turned
down!).

10 TEST_PRESSURE

will execute our new word with an argument of 10.

Try out this routine with various numbers on the stack and check to see that
it works correctly. Then when you are sure it does what it is supposed to do,
try and map out on a piece of paper the states of the stack as the routine goes
through its various stages. This will be a very useful exercise in helping to
understand the action of the I F statement and the data stack.

Page 16 HiSoft FORTH Quick Tour

2.6 Repetition
FORTH provides several ways for repeating a series of instructions either
with or without conditions. The first of these that we will look at is the D0
loop. This is very similar to the for-next loop that is used in BASIC and
takes the general form shown below:

: L00PTEST1 100 0 DO I . LOOP ;

This routine simply prints the numbers 0 to 99 on the screen. To try this out
you could add this line to screen 10 and uses the same commands as before.

The upper and lower limits of the loop are set by the two numbers placed on
the stack (in this case 0 and 100) with the upper limit being one higher than
the actual number of times we wish the loop to execute. The loop starts with
a value of 0 and executes everything between the words do and loop,
incrementing the loop index at every pass. When the loop index reaches the
limit the loop terminates without making a final pass of the loop body (this is
why numbers are only printed out up to 99). A new word I has been
introduced, which takes the current loop index and places it onto the stack,
where we can print it with . (dot). The loop can be made to count in
increments greater than one by using the FORTH word +L00P i.e.

: L00PTEST2 13 2 DO I . 2 +L00P

This will cause the loop to increment in steps of 2 beginning with 2 and
finishing with 12. The loop fails at this point as the next increment after 12
would be 14 which is greater than the loop limit of 13. We can also make the
loop count backwards if we require by making the loop index negative as
shown below:

: L00PTEST3 1 11 DO I . -1 +L00P ;

Notice here that the stack limits have been reversed with the higher number,
which is now the starting value of the loop, being on the top of the stack. The
loop index is decremented by 1 on each pass until the lower limit is reached.

Finally, we give what may appear at first glance a rather complex example of
nesting loops (placing one loop inside another). This example prints the
multiplication tables from 1 to 10 on the screen in a neat format. It is a good
idea to use another Again pay attention to the general layout of the routine as
it shows a way of writing FORTH programs in readable fashion. It is probably a
good idea to use a new screen (say number 11) for this program.

: TABLES (Prints multiplication tables)
." Number" 10 SPACES ." Multiples" CR (Print heading)

I 8 SPACES

I 9 1 DO ." X" I . LOOP CR
9 1 DO 2 SPACES I . 4 SPACES

• 9 1 DO I J * . LOOP CR

I LOOP ;

• The routine begins by printing an appropriate heading for the tables. We then
use a DO loop to print out the number tables. The actual tables are printed by
using two loops, one nested inside the other. The outer loop sets the initial
table number while the inner value calculates the actual multiplication table
for that number.

I Quick Tour HiSoft FORTH Page 17

I

There are several FORTH words introduced in this example that we have not
met before. The first, spaces, prints onto the output device the number of
spaces indicated by the top stack entry. It is mainly used in formatting text as
in the example here.

We have already met the word I which takes the current loop index and
places it onto the stack.When we are nesting loops, the word J takes the
index of the outer loop (if the loops are nested) and places this on the stack.
There is also a further word K which is not used in this example but places
the index of the outer loop in a three-level nested do loop onto the stack.

There is one more FORTH word relating to the DO loop that is of interest
and that is the word leave. This word is usually used in conjunction with an
i f statement and when encountered forces the loop to terminate
immediately by setting the loop index to its maximum value.

2.7 The BEGIN Loops
FORTH provides several ways of repeating a sequence of instructions based
on the word begin. The first of these is the begin-a gain loop and is
illustrated in the example below.

: INFINITE BEGIN ." This goes on and on and on" AGAIN ;

As can be seen from the example this sets up an infinite loop that cannot be
exited. Its main use is in the main body of a program where the program is
usually of a closed-loop nature. Be warned!! If you type in this example and
execute it you will be able to exit only by resetting the computer and
reloading FORTH.

The second begin loop is the begin-until and takes the general form as
shown below.

begin This marks the beginning of the loop.

Any sequence of FORTH words which form the main body
of the loop. This body should result in the stack holding a
TRUE or FALSE flag which is used by the next phase.

until This word removes the flag from the stack and if it is
FALSE returns to the code after begin thereby executing
the loop once again. If the flag is TRUE the loop is exited
and control continues after the until.

On the next page, there's an example: once again it is probably best to enter
this on a new screen.

Page 18 HiSoft FORTH Quick Tour

: YES_NO (1=yes 0=no)
BEGIN

." Please answer Yes or No Y/N"

KEY 32 OR DUP 121 =
I F -1 1

ELSE DUP 110 =
IF 0 1 ELSE CR ." PLEASE ANSWER YES OR NO (Y/N)" DROP 0

THEN

THEN

UNTIL

SWAP DROP ;

This example reads a character terminated by Return from the keyboard and
tests for a 'yes' or 'no' response. If the response is y or y then a TRUE flag
is placed on the stack. If the response is n or n then a FALSE flag is placed
on the stack. An invalid keyboard entry will cause an error message to be
printed and the loop repeats.

The loop itself begins by printing the keyboard prompt message. The FORTH
word key reads a single character from the keyboard and places the ASCII
value of this key on the stack. We then perform a neat little bit of logical
manipulation by first removing the stack value and bitwise-ORing it with
decimal 32 to convert it to a lower-case character (the result is placed back
on the stack). If the character is already upper-case ASCII then this ORing
makes no difference.

We then Duplicate the stack entry for later use and test to see if it is equal
to decimal 121 (which is the ASCII code for lower-case y. If this test is true
then we place the numbers 1 and 1 on the stack and the routine drops
through to the until where the top stack item is removed (a 1) and is
tested by the until. As this value is TRUE the routine is exited leaving the
last 1 on the stack which indicates a 'yes' response.

If the test for a y fails we then test for a N response by Duplicating the stack
value once more and testing for equality with decimal 110 (lower-case n). If
this is correct we place the numbers 0 and 1 on the stack and fall through to
the until where the 1 is removed from the stack and the loop exited leaving
a 0 (indicating a 'no' response). If the 'no' test fails we can assume that an
invalid key has been pressed. Control will transfer to the second ELSE
statement which then prints an error message, drops the inputted stack data
and places a 0 on the stack. When the until takes this value from the stack
it will cause the program to return to the keyboard entry prompt.

One important point that this program illustrates is in controlling the stack.
It is the programmer's responsibility to ensure that the stack is set up
correctly for parameter-passing to FORTH words and just as important, that
the stack is cleared of all unused values. The stack itself is not infinite in
length and bad stack handling (especially in a loop) can soon fill the stack,
causing the program to crash without warning. If at any time you are not sure
of the contents of the stack but wish to clear it, you can use the FORTH word
S P! which clears all values from the stack.

Quick Tour HiSoft FORTH Page 19

The final begin structure that FORTH uses is the begin-while-repeat
loop.

begin Marks the beginning of the loop.

Any sequence of FORTH words which result in a Boolean
flag on the stack.

while The word while which tests the stack value and if TRUE

executes the next sequence of FORTH words. If the stack
value is FALSE then the loop is terminated.

Any sequence of FORTH words which form the main body
of the loop.

repeat The word repeat returns execution if the main body was
executed to the code after begin.

: spacebar (Tests for space bar)

begin

KEY 32 =

WHILE

space bar pressed." CR

REPEAT

." space bar not pressed . Loop exited" ;

space_bar waits for a keyboard input and tests for the stack value being
equal to ASCII 32 (the space). While this is true the response message is
printed. If we type any other character the loop exits and the exit message is
printed.

2.8 FORTH Variables and Constants

FORTH provides means for predefining variables and constants. A constant
(i.e. a value which will not change once assigned) is declared in FORTH by :-

12 CONSTANT DOZEN

The FORTH word constant assigns the value 12 to the constant name
dozen. This name is added to the dictionary in the same way as a compiled
definition. Typing dozen will return the value 12 to the top of the stack.

A variable is defined in a similar fashion e.g.

70 variable temperature

This time if we type temperature we do not get the contents of
temperature but the address of the contents. If we wish to place the value
of temperature on the stack we have to use the FORTH word a e.g.

Page 20 HiSoft FORTH Quick Tour

TEMPERATURE 3

and then display it with . (dot). We can if we wish combine both of these
functions in one go with the word ? e.g.

TEMPERATURE ?

will display the value of temperature on the screen.

These words a and ? do not have to be used with constants or variables only,
they will work with any memory location e.g.

hex 100 ?

will display the contents of memory location hexadecimal 100. If you try this
type decimal to return to normal decimal number base.

We can modify the contents of variables or memory locations using the word
! (pronounced store) e.g.

50 TEMPERATURE !

A variation on this word is + ! (plus store) which will add a number to the
contents of a variable or memory location e.g.

12 TEMPERATURE +! or -12 TEMPERATURE +!

will add or subtract respectively 12 to the previous value of temperature.

2.9 FORTH input/output
To date we have only dealt with a minor portion of input/output using FORTH
namely the words CR .(dot), key and ." for printing a string. FORTH
has many other commands which provide a very flexible means of providing
input/output which can be configured to practically any I/O device. We shall
begin by examining the most primitive of the output operators, the word
emit, emit takes a number from the stack which represents an ASCII value
and prints it at the current cursor location on the screen. For example,

70 EMIT

Will print the letter f on the screen.

We could string several of these together to print a full word as in:

70 EMIT 79 EMIT 82 EMIT 84 EMIT 72 EMIT

The above will print forth but this is inefficient and can be performed more
easily using ." forth", emit is very useful for printing control characters
or special graphic codes. A more useful FORTH word is type.This requires
an address and a byte count to be placed on the stack prior to its call, type
then prints the count of ASCII characters starting from the address onto the
screen. We can illustrate the use of type by introducing an input operator
EXPECT.

Quick Tour HiSoft FORTH Page 21

expect is the opposite of type and reads keyboard input into the address
and up to the byte count specified on the stack. For example:

PAD 32 EXPECT

will read characters from the keyboard until Return is pressed or the
character count of 32 is exceeded. The characters are stored (in this case) in
an area of memory called the pad , which is a scratch-pad area available to
the user. Now typing

PAD 32 TYPE

will print out 32 characters stored at the address of pad.

2.10 Vocabularies

HiSoft FORTH uses a method of vocabularies proposed by William F. Ragsdale
in the FORTH-83 standard document. It uses a closed vocabulary system, with
all vocabularies compiled into the an only vocabulary. There are two search
orders CURRENT and CONTEXT.

current is the vocabulary into which new FORTH words are compiled

context vocabularies are the vocabularies that will be searched by FORTH
when compiling new words. There are 8 slots for different vocabularies plus a
place for the only vocabulary. The search order is specified at run-time
rather than the time a new vocabulary is created. The search order can be
displayed with the word order. Vocabularies are not immediate as in early
FORTHs.

words Displays list of words.
ALSO Adds vocabularies to search order.

previous Removes a vocabulary from search order
order Displays search order.
definitions Sets up vocabulary for compilation.
V0 CS Displays list of vocabularies.

The following vocabularies are already defined:

ONLY Root vocabulary
FORTH Main FORTH words

FORTH-83 FORTH-83 standard

79-STANDARD FORTH-79 standard

editor Words used by the editor
TOS Atari TOS words inc GEMDOS, BIOS and XBIOS.

GE M Atari GEM words (the AES and VDI)
task Multi-tasking words
GRAPHIC Turtle graphics
shell The Shell. See shell, seb

These are described in detail later in this manual.

Page 22 HiSoft FORTH Quick Tour

I

I

I

I

I

(

!

This completes our short introduction to the world of FORTH. We have in
reality barely scratched the surface of this fast and very flexible language. It is
hoped that in reading this section, your appetite has been whetted to
progress further by exploring the language in greater detail. The Bibliography
gives details of a selection of books that are available on the subject.

(Quick Tour HiSoft FORTH Page 23

1

Page 24 HiSoft FORTH Quick Tour |

3 HiSoft FORTH User

Manual

3.1 HiSoft FORTH Screen editor

HiSoft FORTH comes complete with a full screen editor, resident in memory.
To edit a screen simply type the screen number followed the FORTH word
ED.

e.g. 100 ED

would edit screen 100.

Af w J Be careful of swapping disks while in the editor, as there are 8 disk
buffers. If you are in the editor and you want to swap to another disk, press
the Help key to go into FORTH and type FLUSH. This will save any updated
screens to disk and un-assign the disk buffers; then you can change disks.

Editor words

ED (n)

Edit screen n in 80 column high or medium resolution.

WHERE (blk count)

When FORTH aborts loading a screen it saves the b l k number and the offset
count into the block. If you then type in where it will bring up the editor
with the cursor on the place where the FORTH compiler thinks there is an
error.

LOCATE ()

Used in the form

LOCATE <forth_word>

Finds the source of a FORTH word that has been compiled from a screen.

DATE ()

Stamp the current date and 3 character name abbreviation in the top right
corner of current edit screen. The name can be changed with the following
code:

" JOE" STAMP 1 + 3 CM0VE

User Manual HiSoft FORTH Page 25

To display the current stamp use:

EDITOR STAMP FORTH COUNT TYPE

Perssing Shift F9 in editor will cause the current date to be displayed at
the top right of the current block.

Editor Keys

Once you are in the editor, you can use the cursor keys to move around the
screen. Other keys are as follows:

Return Move to start of a line or, if you are at the start of a line, move
to the next line. When in insert mode this will split the
current line.

Tab Tab forward 4 spaces.

Clr Home 'Wipe' the current screen. This clears the entire screen to
spaces.

Insert Toggle insert mode.

Backspace Move cursor back and delete by one character.

De i e t e Delete the next character and 'pull back' the rest of the line.

Undo Abandon current edit screen.

He LP Execute one line of FORTH, then return to editor. This is a
useful function for getting key values or maths or hex
conversion. You can even use it to run your own FORTH editor
macro programs from within the editor.

A tip: if you try and edit a machine code screen and the screen fills with
garbage,then move to another screen and use the Help key to enter a page
command; the editor will then redraw the screen.

Function Keys

The function keys are used for the following:

F1 Insert line. If a line is pushed off the bottom of the screen it is
saved in a Ik buffer. A whole screen could be saved
in this buffer.

f 2 Delete line. If there is a line in the save buffer then F2 will pull
it back onto the screen at line 15.

F 3 Push line to The Edit line buffer is a Ik buffer that can be used to
Edit line save and restore lines from a block. It is separate
buffer. from the buffer used by the insert and delete line

keys.

f 4 Pull line from Pulls the top line from the Edit line buffer to a block
Edit line at the cursor position,
buffer.

Page 26 HiSoft FORTH User Manual

F 5 Swap the top Only the top line is displayed,
two lines in

Edit line
buffer.

F 6 Copy FORTH This key can be used to copy FORTH screens. It
screens. takes 3 values; source, destination and number of

screens to copy. It will copy overlapping ranges, so
it can be used to shuffle the screens forward for an
extra screen, if you find you need one. If you don't
want to copy any screens or if you press the key by
mistake, press any key to abort, as the copy function
checks for the correct number of input values.

F 7 Next screen. Scroll forward to the next screen.

F8 Prev Screen. Scroll backward to the previous screen.

f 9 Goto screen. Go to the screen number requested.

f 1 0 Exit Editor.

There are also a series of commands that can be accessed by holding down
one of the Shift keys and then pressing a function key, as follows:

S h i f t F 1 'Pull' current edit line from the stack

S h i f t f 2 'Push' current edit line on to the stack

S h i f t F 3 .'Push' current edit line on to the stack

S h i f t f 4 'Pull' current edit line from the stack

S h i f t F 7 'Grab' Block. Pulls the entire block from the line buffer

S h 1 f t F 8 'Put' Block. Pushes the entire block to the line buffer

S h i f t F9 Inserts the system date at the bottom right of screen

s h i f t f 1 0 Exit editor without saving.

By holding down the Shift key as you press the functions keys f 2 - f 3 the
current edit line will be pushed to the top of the line stack.

By holding down the Shift key as you press the functions keys F1 or F4 the
current edit line will be pulled from the line stack.

CTRL- Keys

The editor uses the following control keys:

E Move cursor up.

X Move cursor down.

S Move cursor left.

D Move cursor right.

R Goto previous screen.

C Goto next screen.

Y Delete line.

User Manual HiSoft FOI Page 27

a Clear line.

V Insert mode.

G Delete character.

F Goto next word.

Z Copy line to buffer.

W Paste line from buffer.

T Trash (clear) edit screen.

B (Binary). Treat the block as one 1024 character line
U Split line

N Join line

3.2 The Terminal

HiSoft FORTH uses a scrolling 16 line buffer for text input. The following
keys are used by the terminal:

Key Function

Insert Insert a space.

Delete Delete a character.

Backspace Backspace over character.
< - Move backwards.

- > Move forwards.

Up arrow Scroll edit buffer backwards.

Down arrow Scroll edit buffer forwards.

C I r Home Clear edit line.

Undo Undo edit.

The terminal accepts input from the start of a line up to the cursor.

3.3 The Shell

HiSoft FORTH is supplied with a GEM Shell program. This allows the use of
desk accessories and the use of many FORTH operations from pull down
menus. The source for the shell is supplied and, along with the FORTH
kernel, you can use it to compile a new shell of your own. If you want to make
new menus or dialog boxes, we recommend using a Resource editor, such as
HiSoft WERCS.

Page 28 HiSoft FORTH User Manual

The menus are as follows:

Desk Access desk accessories.

File Use ramdisk and aui t option.

Edit Some editor options.

Screen Work with screens.

forth Use different FORTH Tools.

3.3.1 File Menu

New Clear the ramdisk.

Open... Open file from file selector and read into ramdisk.

Close Clear ramdisk and login disks.

Save Save ramdisk to disk as RAMB L K.

Save as.. Save ramdisk as name selected from file selector.

Exit to DOS Exit to full TOS screen.

To Output... Print a range of Triads. You are prompted to enter
a range of screens. These screens will be printed.
Some other screens may be printed. Only those
knowing the secret of the Triad will know when
and why!

a u i t Quit to Desktop.

3.3.2 Edit Menu

Edit... Edit screens.

Undo Undo current screen.

Cut Cut line to line buffer.

Copy Copy line to line buffer.

Paste Paste line from line buffer.

wipe Wipe current screen.This clears the entire screen to
spaces.

Exit Exit editor.

User Manual HiSoft FORTH Page 29

3.3.3 Screen Menu

List List current screen.

Next List next screen.

p r e v List previous screen.

Goto... Goto a screen.

Ram Select ramdisk as default.

d R 0 Select d r 0 (a :) as default.

d R 1 Select Dr 1 (b :) as default.

d R 2 Select DR2 (c :) as default.

Load . . . Load current screen.

Copy... Copy FORTH screens.

3.3.4 FORTH menu

Words Display words of transient vocabulary.

Order Show context and CURRENT search order.

Forth Set only forth search order.

Forth-79 Set 79-standard search order.

Forth-83 Set forth-83 search order.

GEM Set ALSO GEM.

TOS Set ALSO TOS.

v o c s Show vocabularies.

Tool Edit memory.

Index Display the next 20 screen titles.

Di r Display a directory listing.

CI r Page Clear output screen.

"Triad Print current triad, i.e. print 3 FORTH screens one
of which will be the current screen.

Print Print screen dump.

3.3.5 Shell Restrictions

Because the Shell uses a resource file, you cannot run programs under it
which use their own resource files. Therefore such programs should be run
under forth.PRG rather than hsforth.prg. Alternatively you may use the
Exit To DOS shell command to 'shut down' the shell.

Page 30 HiSoft FORTH User Manual

The shell also has full GEM initialisation and uses the Line-A VT52 clipping.
Thus some graphics oriented programs may not work as expected under the
Shell.

For example, the Rubik's Cube program supplied in ubik. SEa should only be
run from forth.PRG or after shutting down the shell. It may be run after
copying ubik.SEa to the working disk suggested in Section 1.9 using the
following:

fload ubik.blk

It may be compiled to disk using screen 6 of the FORTH.BLK file supplied.i.e.
using:

6 load

3.4 The Program Compiler
The compiler is loaded from FORTH source. To compile a FORTH program as
a stand alone . PRG program perform the following steps :

1. Load compiler, i.e. fload program.SEa

2. Load your program, e.g. 10 load

3. Patch startup e.g. ' myappl startup ! where myappl is the word
which you wish to execute when the stand alone program run.

4. Save the program, e.g. " myprog.prG" prg_Save. This will save the
standalone version as myprog.prg.

Now, when the application is double-clicked from the Desktop, your word
myappl will run.

Initially the compiler is set up to base the code on FORTH.PRG. If your
applicaUon doesn't use the GEM vocabulary then KERNEL.PRG can be made
the basis by changing the code program.SEa from forth, pr g to
kernel, prg. This will make your application about 10k smaller.

You can even use this technique to produce a version of the FORTH Desk
Accessory which does not support the GEM functions.

3.5 FORTH as a desk accessory
The desk accessory version of FORTH that is supplied on the master disk has
8K bytes of workspace, hence the name, hfSk.acc. This works just like a
normal version of HiSoft FORTH except that it does not contain the GEM
shell and you can use it from inside any GEM program.

This section describes how to make a version of HiSoft FORTH that has a
different amount of workspace.

Make sure that the disk that you are using contains forth, prg as well as
hsforth.prg, hsforth.rsc and forth.blk.

User Manual HiSoft FORTH Page 31

Use

to edit screen 4 and this will display the code that will produce a new desk
accessory. You should change the constant 8192 to be the desired amount of
workspace. It is also a good idea to change the file name! Then return to
FORTH by typing f 10 and then enter

4 LOAD

This will then write your new version of FORTH to disk. Naturally you will
need to re-boot your machine to use the desk accessory version.

3.6 The Tool Editor

The Tool Editor allows the viewing and editing of memory or disk.There are
2 ways to invoke the Tool Editor:

• From the Tool menu option

• From the terminal in the vocabulary shell used in the form:

addr TOOL

Once in the Tool Editor you can use the cursor keys to move around and also
the following keys :

F 7 Move back 256 bytes in memory.

F 8 Move forward 256 bytes in memory.

F 9 Goto address in memory.

f 1 0 Exit the Tool Editor.

Help Execute one line of FORTH code.

The F9 option can accept FORTH words to form the address.

e.g. ' page goes to the CFA of page.

10 block loads block 16 into memory and goes to the block buffer. Note
that the input is in hexadecimal.

To Edit a disk block:

1. Use disk to edit direct disk blocks. e.g. disk.

2. Set vocabulary to SHELL e.g. also shell.

3. Edit disk buffer. e.g. 10 block tool.

4. Edit block. (next 4 * 256 bytes).

5. Use update menu option to update and flush block to disk.

Page 32 HiSoft FORTH User Manual

This allows you to use HiSoft FORTH as a disk editor, but you should only do
this if you know what your doing. Also if you going to work on a disk it is
always best to work on a copy.

3.7 The Ramdisk

HiSoft FORTH supports a ramdisk in FORTH free memory. The ramdisk is set
up between Lome mand HIM EMand can be moved to anywhere in memory by
changing the values of these two variables.

It is best to set the difference between Lo MEM and HI MEM to be multiples of
1024 bytes. Some words that are used by the ramdisk are as follows:

RAM ()

Sets disk offset in Sysvar offset to 2160, the base of the ramdisk.

RAMK (n)

Sets ramdisk size to n kilobytes.

RAMCLR ()

Clears the ramdisk.

?RAM (n)

Returns the size of the ramdisk.

MEMORY (n)

Returns size of Free Ram between here and LOMEM.

LOMEM (addr)

Variable containing the lowest address of the FORTH ramdisk.

HIMEM (addr)

Variable containing the highest address of the FORTH ramdisk.

RAMDISK (buff_addr blk_number R/Wflag)

Ramdisk handler used by R/W.

3.8 The Disk System
The HiSoft FORTH Disk system is set up as 11 logical devices of up to 1000
blocks. The Disk system will default to the first .blk file it finds, on the first
access of the disk.

User Manual HiSoft FORTH Page 33

Disk Map

Disk Blocks Drive Usage

DRO 0 -> 999 Disk 0 or Direct access A:

DR1 1000 -> 1999 Disk 1 or Direct access B:

D R2 2000 -> 2999

DR3 3000 -> 3999

D R4 4000 -> 4999

D R5 5000 -> 5999

D R6 6000 -> 6999

D R7 7000 -> 7999

D R8 8000 -> 8999

D R9 9000 -> 9999

10000 -> ramdisk

Typing online from the terminal will show logged on drives.

e.g.

ONLINE

DRO: FORTH.BLK

DR1: MYPROG.BLK

DR2 :

RAM :

DISK ()

This word will set dro and d r 1 to be accessed as direct disk blocks. (360
blocks for single-sided and 720 blocks for double-sided disks). If you use a
disk this way it should only be used for FORTH.

FILE ()

Reset dro and DR1 to file access.

As well as the defaults and direct access there are other words that control
disk access.

_: ()

This word will set the disk to be accessed for file access, e.g.

a : set drive 0.

b : set drive 1.

C : set drive 2 (hard disk).

d : set drive 3 (ramdisk).

$CD (addr)

Change the current Sub-Directory. Use as follows:

Page 34 HiSoft FORTH User Manual

" DOS" CD

Change directory to DOS.

$OPEN (addr)

Set current drive to filename addr. Use as follows:

" MYPROG.BLK" USING

Sets current file stream to myprog.blk.

$MAPS (addr n)

Set drive n to filename addr. For example,

" MYPROG.BLK" 1 MAPS

Sets DR1 stream to myprog . blk.

MAKEFILE ()

Create new file. Use as follows:

MAKEFILE NEWFILE.BLK

This would create a new file called newfile.blk.

MORE (n)

Adds n more blocks to the current file.

LOGOUT ()

Closes all open files. This word is called by BYE.

3.9 Using ASCII Files
This section describes how to use ASCII rather than block-based files with
HiSoft FORTH. Such files have the advantage that they can be read and
written with just about any word processor or program editor. The
recommended file extension for ASCII based FORTH files is .SEQ (short for
sequential).

HiSoft FORTH will even let you invoke your favourite editor once you have
loaded FORTH. Before installing an editor you will need to ensure that you
have returned enough memory to the system for the editor to run. This is
specified by indicating how much memory you which to keep for FORTH's
workspace. For example to keep 100k for FORTH use,

100 1024 * SHRINK

This 100k does not include the size of FORTH itself.

EDINSTALL (addr)

This word is used to set up the name of the file that will be loaded as the
current editor. It takes the address of a string which may include a full
pathname, for example,

User Manual HiSoft FORTH Page 35

" TEMPUS.PRG" EDINSTALL

FEDIT (<name>)

F EDIT is used to invoke a text editor from inside HiSoft FORTH; it should be
followed by the name of the file to edit, for example,

FEDIT MYFILE.SEQ

This will invoke tempus.prg with the command line myfile. seq assuming
that EDINSTALL has been used as above. Note that the file name is specified
after FEDIT and should not be enclosed in quotes. When you exit Tempus you
will be returned to FORTH. We recommend that you not use this from the
Desk Accessory; the machine will probably crash.

FLOAD (<name>)

fload is used to compile an ASCII sequential file. It is the counterpart of
load for block-based files. So with our example file we would have

FLOAD MYFILE.SEQ

fload can also be used within an FLOADed file, or you can useiNCLUDE
instead..

SFLOAD (addr)

$fload is a version of fload that takes an address on the stack rather than a
following string. So we could use

" MYFILE.SEQ" SFLOAD

instead of the example above. In practice, this is more like to be used if the
file name has been stored in a variable or inside a compiled word.

INCLUDE (<name>)

This is equivalent to fload and is normally used inside FLOADed files.

SINCLUDE (addr)

This is a version of include that takes an address rather than the input
string.

3.10 Converting block files to/from
ASCII files

There are a couple of words defined in BLK.SEQ that will let you convert
block files (.BLK) files to ASCII (.SEQ) and vice versa. To load these words,
use

FLOAD MYFILE.SEB

Then, for example, to convert blocks 1 to 10 to of the file myfile.blk to
myfile.seq, you should first load the original file using

Page 36 HiSoft FORTH User Manual

OPEN MYFILE.BLK

and then convert it using

" MYFILE.SEQ" 1 10 BLK>SEa

This could then be compiled using

FLOAD MYFILE.SE8

To convert from an ASCII file to a block file use, for example,

" MYFILE.SEQ" SEQ>BLK

This will produce the file MYFILE.BLK with a two block header containing a
title screen and a load screen. This could then be compiled using

OPEN MYFILE.BLK 1 LOAD

SEQ>blk uses the RAM disk when converting the file.

User Manual HiSoft FORTH Page 37

Page 38 HiSoft FORTH User Manual

4 HiSoft FORTH Reference

4.1 Common FORTH Language Words

4.1.1 Glossary Notation

The glossary definitions are listed in ASCII alphabetical order. There is an
entry for each of the HiSoft FORTH ST words. All cells in this
implementation are 32 bit unless otherwise stated. The FORTH-83 standard
specifies 16 bit, but this is really not very useful on a 32 bit processor.

The glossary is in the following format: on the first line is the name of the
FORTH word, followed by a stack picture and then a pronunciation if
necessary. The stack picture gives a before and after picture of what happens
to the FORTH Data Stack. It reads from left to right, with the parameter next
to the separator line on the left being the top of the stack before the word is
executed and the right most parameter being the top of the stack afterwards.
The next line gives a description of what the word does and what the
parameters are used for. There is also a stack diagram to show the stack
picture in more graphic detail where we think it might be useful.

The different abbreviations used in the stack pictures are as follows:

3 2b 32 bit value

16b 16 bit value

8 b 8 bit value

addr 32 bit address

n number

+ n positive number

d double number (32 bit)

+ d positive double number

u unsigned number

u d unsigned double number

c character

f Boolean flag true = +n (-1); false = 0

Reference HiSoft FORTH Page 39

4.2 HiSoft FORTH specific features

4.2.1 FORTH-83 standard and HiSoft FORTH

As we have said before HiSoft FORTH is largely compatible with other
FORTHs but it has some features that are different to most other
implementation because it returns on a 68000-based computer under GEM.

32 bit cell size
The Standard was written for 8/16 bit computers and assumes a 16 bit stack.
This is wasteful on a processor like the 68000 so HiSoft FORTH uses a 32 bit
stack. This affects common words like ! 'store', @ 'fetch' and 'comma'. Of
course for higher level programming using 32 bits means that you can often
ignore the possibility of arithmetic overflow.

Some words that required a double number but now use a single stack cell
are as follows:

CONVERT (+d1 addrl
<# ()
(+di +d2)

US (+d 0)
H> (32b addr +n)

Strings

+d2 addr2)

Strings are stored with a length byte and a trailing null character. So after

" HELLO"

is executed this will be stored as

5

"H" 72

"E" 69

"L" 76

"L" 79

"O" 79

0

This representation was chosen for ease of passing strings to the ST's
operating system.

Page 40 HiSoft FORTH Reference

Wildcard
When _ (underline) is used in a definition, then this is treated as a wild-card
when the directory is searched. This is used to implement the A:, B:, c:,
d : etc words without having a separate entry for each - the word _: is used
for them all.

Numbers

Hexadecimal numbers may be entered by preceding them with dollar ($). e.g.

$ F F

places 255 on the stack.

To enter binary numbers use the prefix per-cent ['/.)

% 1 0 1

places 5 on the stack.

Glossary

! (32b addr) 'store'

This word stores a 32 bit value at address in memory. In this implementation
of FORTH variables are 4 bytes long or 32 bits.

W! (16b addr) 'w-store'

This word stores a 16 bit value 1 6b at address addr. This is the similar to !
in a 16 bit FORTH.

C! (8b addr) 'c-store'

This word stores a 8 bit value 8 b at address addr. This is the similar to Poke
in the BASIC language.

, (32b) 'comma'

Compile 32 bit number into the next available cell in the dictionary.

W, (16b)

Compile 16 bit number into the next available cell in the dictionary.

C, (8b)

Compile 8 bit number into the next available cell in the dictionary.

(+n1 +n2) 'sharp'

Convert next digit unsigned number and add it to the beginning of the output
string.

#> (32b addr +n) 'sharp-greater'

End formatting of Formatted output string. Drops number remaining on the
stack (usually 0) and leaves appropriate arguments for type. The output
string is generally held in memory just below pad.

Reference HiSoft FORTH Page 41

As the stack is 32 bit the 3 2b takes only one stack cell.

#S (+n 0) 'sharp-s'

Convert all significant digits of unsigned number into the output.

As the stack is 32 bit the number +n takes only one stack cell. #S is typically
used between <# and #>. Note that this is different from 16 bit FORTHs
where this word requires a double.

' (addr) 'tick'

Use in the form

' <name>

Leave compilation address addr of <name>, which must be found within the
the current search order.

In HiSoft FORTH the compilation address is the start of code.

* (n1 n2 n3) 'times'

Take two numbers from the FORTH Data Stack and multiply them together
leave the answer on the stack.

*/ (n1 n 2 n3 n4) 'times-divided'

Leave the ratio n4 = nl * n2 / n3 where all are signed numbers.

*/M0D (n1 n2 n3 quot mod) 'times-divide-mod'

Leave the remainder n5 and quotient n4ofnl * n2 / n3

+ (n1 n2 n3) 'plus'

Leave the sum n3 of nl + n2

+ ! (32b addr) 'plus-store'

Add 32b to value at addr.

+ W! (16b addr) 'plus-w-store'

Add 16b to value at addr.

+ C! (8b addr) 'plus-c-store'

Add 8b to value at addr.

+ L00P (n) 'plus-loop'

Similar to LOOP but allows the increment to be changed. If you make the
increment a negative value then the loop will count backwards.

+ L0AD (n)

Load relative to current block, (blk + n).

+THRU (n1 n2)

Load a range of blocks nl to n2 relative to current block.

e.g. 1 5 +thru if this was loaded from block 10 would load from 11 to 15.

Page 42 HiSoft FORTH Reference

(n1 n2 n3) 'minus'

Leave the difference of n 1 - n 2

-TRAILING (addr +n1 addr +n2) 'dash-trailing'

Reduce character count of a string at addr to omit trailing blanks.

(n) 'dot'

Print signed number with one trailing blank.

() 'dot-quote'

Print all the following text until a " delimiter is reached.

Example:

HELLO () ." Hello World!!!" ;
HELLO <ret> Hello World!!!

.(() 'dot-paren'

Print the following string not including the delimiting) .

Example:

.(Hello World!!!) <ret> Hello World!!!

. R (n1 n2)

Print number nl right aligned in a field of n2 characters wide.

.S ()

Displays the entire stack without changing it.

e.g.

1 2 3 . S

would produce the following output:

TOS top of stack
[3]
[2 1
[1 :

EMPTY bottom of stack

numbers in brackets are stack cells.

/ (n1 n2 n3) 'divide'

Divide n1 by n2 leave quotient n3 on stack.

/MOD (n1 n2 quot mod)

Leave the remainder and signed quotient of nl / n2, with the same sign as
n1.

Reference HiSoft FORTH Page 43

: ()

Use in the form

: <name> ;

Begin compiling colon definition with name <name>.

; (—)

End colon definition.

;S ()

Stop interpretation of a screen.

< (32b 32b)

Begin formatting a number on the stack into a string.

<BUILDS ()

Make a header for does>.

<MARK (addr)

Used at the destination of a backward branch, addr is typically only used by
<resolve to compile a branch address.

<RES0LVE (addr)

Used at the source of a backward branch after either branch or ?branch .
Compiles a branch address using addr as the destination address.

>MARK (addr)

Used at the source of a forward branch. Typically used after either branch or
? branch. Compiles space in the dictionary for a branch address which will
later be resolved by >resolve.

<< (32b n)

Shift left 32b value on stack by n bits.

>> (32b n)

Shift right 32b value on stack by n bits.

>< (16b1 16b2)

Swap the high and low bytes within 16 b1.

>RESOLVE (addr)

Used at the destination of a forward branch. Calculates the branch address (to
the current location in the dictionary) using addr and places this branch
address into the space left by >mark.

>BODY (addrl addr2) 'to-body'

a d d r 2 is the parameter field address corresponding to the compilation
address addrl.

Page 44 HiSoft FORTH Reference

>NAHE (addrl addr2) 'to-name'

addr2 is the name field address corresponding to the compilation address
addrl.

>LINK (addrl addr2) 'to-link'

a d d r 2 is the link field address corresponding to the compilation address
addrl.

>R (32b)

Push a number from the Data Stack to the Return Stack. This should be
balanced with a pull R> within the same definition.

>WR (16b)

Push a 16 bit number from the Data Stack to the Return Stack. This should
be balanced with a pull wr> within the same definition. This is not a standard
FORTH word - it is a HiSoft FORTH extension to provide a facility that would
otherwise not be available because of the 32 bit word size.

a (addr 32b) 'fetch'

This word fetches a 32 bit value from the address on the stack.

Wa (addr 16b) 'word-fetch'

This word fetches a 16 bit value 16b from the address on the stack. This is
similar to a in a 16 bit FORTH.

Ca (addr 8b) 'c-fetch'

This word fetches a 8 bit value 8 b from the address on the stack. This is
similar to Peek in BASIC language.

(n1 n2 f)

Leave a true flag if n1 is equal to n2.

> (n1 n.2 f)

Leave a true flag if n2 is greater than n1.

< (n1 n.2 f)

Leave a true flag if n2 is less than n1.

<> (n1 n2 f)

Leave a true flag if n1 is not equal to n2.

0= (n f)

Leave a true flag if n is equal to zero.

0> (n f)

Leave a true flag if n is greater than zero.

0< < n f)

Leave a true flag if n is less than zero.

Reference HiSoft FORTH Page 45

1+ (d1 d2)

Add one to the top stack value.

1- (d1 d2)

Subtract one to the top stack value.

2+ (d1 d2)

Add two to the top stack value.

2- (d1 d2)

Subtract two to the top stack value.

2* (d1 d2)

d 2 is the result of arithmetically shifting d 1 left one bit.

2/ (d1 d2)

d2 is the result of arithmetically shifting d 1 right one bit.

ABORT ()

Clear data and return stacks and return control to the keyboard without
issuing an OK.

ABORT" (flag) 'abort-quote'

Used in the form

fLag ABORT" ccc"

When later executed, if the flag is true the characters ccc, delimitated by "
(close-quote), are displayed and then abort is executed. If the flag is false
then the flag is dropped and execution continues.

ABS (d ud)

Remove the sign from the top of stack value and leave the absolute value.

AGAIN ()

End of loop structure, always loop back to BEGIN.

ALLOT (d)

Set aside d bytes in the dictionary starting at here. The address of next
available dictionary pointer (dp) is updated.

AND (n1 n2 n3)

Leave the bitwise logical AND of n 1 and n 2 as n 3.

ALSO ()

The transient vocabulary becomes the first vocabulary in the resident portion
of the search order. Up to the last six resident vocabularies will also be
reserved, in order, forming the resident search order.

Page 46 HiSoft FORTH Reference

PREVIOUS ()

The transient vocabulary is replaced by the first vocabulary in the resident
portion of the search order. The last six resident vocabularies are moved up,
in order, forming the resident search order.

ARRAY (n addr)

Create an array of n long words.The first element of an array starts at 0.

For example:

10 ARRAY ELEMENT creates an array of 10 elements
123 2 ELEMENT ! stores 123 in element 2 of array
2 ELEMENT 3 fetches element 2 to stack
2 ELEMENT ? 123 prints element 2, which is 123

WARRAY (n addr)

Create an array of n words. See array.

CARRAY (n addr)

Create an array of n bytes. See array.

ASCII ()

Get following ASCII character on stack.

ASK ()

System input routine, gets a string to input buffer includes history buffer.

ASSEMBLER ()

This vocabulary contains a FORTH 68000 assembler.

AT (x y)

Move cursor to column x and row y.

AUX: ()

Vector output to the modem port.

BASE (-- addr)

User variable containing current I/O radix, in the range 2-72.

BEGIN ()

Marks the beginning of a loop structure.

e.g.

begin ... again (loop always)
BEGIN .. f WHILE ... REPEAT (lOOp while f iS true)
begin ... f until (loop while f is false)

Reference HiSoft FORTH Page 47

BLANKS (addr n)

Similar to fill but preset with a blank space character. We could use it to wipe
our buffer with

buffer.addr 1024 BLANKS

BLK (addr)

User variable containing the number of the mass storage block being
interpreted as the input stream. If the value of Bl k is zero the input stream is
taken from the text input buffer.

BLOCK (u addr)

addr is the address of the assigned buffer of the first byte of block u. If the
block occupying the buffer is not block u and as been updated it is
transferred to mass storage before assigning the buffer. If the block u is not
already in memory, it is transferred from mass storage into an assigned block
buffer. A block may not be assigned to more then one buffer. If u is not an
available block number, an error condition exists. Only data within the last
buffer referenced by block or buffer is valid. The contents of a block buffer
mast not be changed unless the change may be transferred to mass storage.

B0DY> (addrl addr2) 'from-body'

addr2 is the compilation field address corresponding to the parameter field
address addrl.

BUFFER (u addr)

Assigns a block buffer to block u. addr is the address of the first byte of the
block within its buffer. This function is the same as block except that if it is
not in memory it may not be transferred from mass storage. The contents of
the buffer assigned to block u by buffer are unspecified.

CASE (flag)

Use in the form

flag CASE
n1 OF ENDOF

n2 OF ENDOF

n3 OF ENDOF

n4 OF ENDOF

(default code) ENDCASE

Start of a case block select structure. This will do multiple tests to see if any
of the 0 F tests match flag. If there is a match then it will execute the
FORTH words between o f and endof of the true test. If there are no
matches it will execute the code between the last endof and end case.

CFA (PFA CFA)

Convert the parameter field address of a definition to its code field address.

CLREOL ()

Clear from cursor to the end of line.

CLREOP ()

Clear from cursor to the end of the screen.

Page 48 HiSoft FORTH Reference

CMOVE (addrl addr2 n)

CMOVE moves a block of memory from one place to another. Where addrl is
the source block, addr 2 is the destination block and n is the number of bytes
to move.

COMPILE ()

Used in the form

COMPILE <name>

Compile the code field address (CFA) of the non-immediate word <name>
which follows into the dictionary upon execution of the current definition.

CON: ()

Vector output to the console.

CONSTANT (n —)

Make a FORTH word that leaves the number n when it executes.

CONVERT (+d1 addr+1 +d2 addr2)

Convert string at a dd r +1 to double number and add value into +d1 leaving
result +d2, addr2 is address of first non-convertible character.

COUNT (addr — addr+1 count)

If addr contains a count byte followed by some text, then leave the addr of the
text (addr +1) and the count on the stack. This can be used by type to print
a variable to the screen.

CR ()

Do a carriage return and line feed.

CREATE ()

create makes a header for new FORTH words, it is used by : and other
FORTH defining words. The FORTH-83 version is different, see Section 4.4.

CSP (addr)

A System variable temporarily storing the stack pointer position, for
compilation error checking.

!CSP ()

Save the stack position in CSP. Used as part of compiler security.

?CSP ()

Issue an error message if stack position differs from value saved in CSP.

DECIMAL ()

Set decimal number base.

Reference HiSoft FORTH Page 49

DEFER ()

Creates a deferred execution word.

e.g. DEFER CLS
' PAGE IS CLS

would firstly create a deferred execution word CLS the code would then be
patched into CLS by is.

DEFINITIONS ()

Select the transient vocabulary as the current vocabulary into which
subsequent definitions will be added.

DEPTH (+n)+n

is the number of 32 bit values contained in the Data Stack before + n was
placed on the stack.

DO (n1 n2)

Start of do-loop structure, with a loop limit of n1 and an initial index of n2.
The index is incremented by 1 until it equals or exceeds the limit. Executes
words between do and loop on each time through the loop.

e.g.

40 DO... I... LOOP

(loop 4 times, I equals 0 12 3)

4 0 DO ... I ... 2 +L00P

(loop 2 times, I equals 0 2)

0 4 DO ... I ... -1 +L00P

(loop 4 times, I equals 4 3 2 1)

D0ES> (addr) (compiling)

Defines the execution-time action of a word created by a high level defining
word. Used in the form

: <namex> ... <BUILDS D0ES> ... ;

and then

<namex> <name>

Marks the termination of the defining part of the defining word < n a me x > and
then begins the definition of the execution-time action for words that will
later be defined by <namex>. When <name> is later executed, the address of
<name>'s parameter field is placed on the stack and then the sequence of
words between D0ES> and ; are executed.

DP (addr)

User variable containing the address of the dictionary pointer.

Page 50 HiSoft FORTH Reference

DROP (32b)

Drop top stack value.

DUP (32b 32b 32b)

Duplicate top stack value.

?DUP (32b 32b 32b) F83std

-DUP (n n n) fig

Duplicate the top stack value only if non-zero.

EDITOR ()

This vocabulary contains the FORTH editor, the editor is loaded from disk.

ELSE ()

Optional word used between if and then, if the flag tested by I f is false
then execute the words between else and then.

EMIT (c)

Transmit ASCII character c to the selected output device. The user variable
0 uT is incremented for each character output.

EMPTY-BUFFERS C)

Erase and un-assign all block buffers.

ENDCASE ()

Marks the end of a CASE select block structure.

ENDOF ()

Marks the end of an 0 f select block.

ERASE (addr n)

Similar to blanks but this time preset with the value zero or ASCII null. We
could erase our buffer to contain all zeros with

buffer.addr 1024 ERASE

EXECUTE (CFA)

This word executes a FORTH CFA (code field address) on the stack.

EXPECT (addr count)

Transfer characters from the terminal to address, until a Return or the
count of characters have been received. An ASCII null is added to the end of

the text.

Reference HiSoft FORTH Page 51

FILL (addr n char)

You can use fill to fill an area of memory with a character value. If you had a
buffer of 1024 bytes length and you wanted to fill it with the character a
(ASCII 65) then you could use

buffer.addr 1024 65 FILL

to do the job.

FIND (addrl addr2 n)

For a string with a count byte at addrl search for a matching word name
using the transient and resident search orders. If the word is not found then
addr 2 is the string address addrl and n is zero. If found addr 2 is the
matching word's compilation address and if the word is immediate n is set to
1. If the word is not immediate then the word is set to -1 (true).

FLUSH ()

The same as save-buffers but also un-assigns all block buffers.

FORGET ()

Used in the form

FORGET <name>

Delete from the dictionary <name> and all words added to the dictionary
after <name> regardless of the vocabulary. Failure to find <name> is an error
condition. An error condition also exists upon implicitly forgetting a
vocabulary (due to its definition after <name>).

FORTH ()

The name of the primary vocabulary. Execution makes FORTH the transient
vocabulary, the first in the search order, and thus replaces the previous
transient vocabulary.

FORTH-83 ()

The same as forth but chains FORTH-83 standard words into the top of the
FORTH search order. This makes available a FORTH-83 standard system.

FNAME (addr)

Pathname used by system to find forth.blk.

GEM ()

This vocabulary contains ATARI ST GEM calls for use from high level FORTH.

H . (n)

Print top of stack number in the hexadecimal base.

HERE (addr)

Leave the address of the next available dictionary location.

Page 52 HiSoft FORTH Reference

HEX ()

Set hexadecimal (base 16) number base. You can also prefix hexademical
numbers by using $ in ordinary decimal mode. e.g.

$ F F is 255

HOLD (c)

Insert ASCII character into formatted output string, e.g.

46 HOLD

inserts a decimal point.

HOME ()

Move the cursor to the top left hand side of screen.

I (n)

do-loop counter.

J (n)

Nested do-loop counter.

K (n)

Double nested DO-LOOP counter.

IF (f)

Test the flag f on the stack, if it is true execute the words between I f and
THEN.

IS (addr)

Used to patch a code addr into a deferred execution word created by defer.
See defer for example of usage.

KEY (c)

Leave the ASCII value of the next terminal key struck.

L>NAME (addrl addr2) 'link-to-name'

a d d r 2 is the name field address corresponding to the link field address
addrl.

LEAVE ()

Force termination of a DO-LOOP.

LFA (PFA LFA)

Convert the parameter field address of a definition to its link field address.

LINK> (addrl addr2) 'from-link'

a d d r 2 is the compilation field address corresponding to the link field
address addrl.

Reference HiSoft FORTH Page 53

LOAD (u)

Interpret screen u as if it were keyboard input. When finished return control
to the keyboard.

LOGOUT ()

Flush open files to disk and clear disk map.

LOOP ()

End of do-loop loop structure. Loops back to do.

M* (n1 n2 d)

A mixed magnitude math operation which leaves the double number signed
product d of two singed numbers.

M/ (d n remainder quotient)

A mixed magnitude math operator which leaves the signed remainder and
signed quotient from a double number dividend d and divisor n. The
remainder takes its sign from the dividend.

MACRO ()

Makes previously defined word into a MACRO definition. The constraints on
macro words are that must be less than 32 bytes long and must not contain
any relative code.

e.g. To define a macro for 2*

: 2* DUP + ; MACRO

MAKEFILE (addr)

Make new file with filename at a d d r on stack.

e.g.

" MYFILE.BLK" MAKEFILE

would make a new file called myfile.blk.

MAX (n1 n2 n3)

Leave the greater of the two top stack items and discard the other.

MIDI: ()

Vector output to the midi port.

MIN (n1 n2 n3)

Leave the smaller of the two top stack items and discard the other.

MINUS (n1 n2) fig

Leave the two's complement of a number.

MOD (n1 n2 mod)

Leave the remainder of n1 / n2, with the same sign as n1.

Page 54 HiSoft FORTH Reference

MORE (n)

Add n blocks to current disk stream.

N>LINK (addrl addr2) 'name-to-link'

a d d r 2 is the link field address corresponding to the name field address
addrl.

NAND (32b1 32b2 32b3)

3 2 b 3 is the one's complement of the logical AND of 3 2 b 1 and 3 2 b 2.

NAME> (addrl addr2) 'from-name'

a d d r 2 is the compilation field address corresponding to the name field
address addrl.

NEGATE (n1 n2) F83std

Leave the two's complement of a number.

NFA (PFA nfa)

Convert the parameter field address of a definition to its name field address.

NIP (n1 n2 n2)

Drop second stack cell value.

NOT (n1 n2)

Leave the one's complement of nl as n2.

NOR (32b1 32b2 32b3)

3 2 b 3 is the one's complement of the logical OR of 3 2 b1 and 3 2 b 2.

NXOR (32b1 32b2 32b3)

3 2 b 3 is the one's complement of the logical XOR of 32 b1 and 3 2 b 2.

0 . (n) 'O- dot'

Print top of stack number in base 8.

OF (n)

Used with endof, between case and endcase. of will test for a match
between n and the flag before case. If there is a match it will execute the
FORTH code up to the following endof. If not then execution will continue at
the next of or endcase if there are no more Ofs.

Reference HiSoft FORTH Page 55

OK ()

System prompt. This word is deferred and can be changed.

e.g.

: PROMPT

.S 'OK ;

1 PROMPT ' OK 2+ !

would change prompt to user defined word prompt.

' 'OK ' ok 2+ !

would change back to system prompt.

ONLY ()

Select just the only vocabulary as both the transient vocabulary and the
resident vocabulary in the search order.

OR (n1 n2 n3)

Leave the bitwise logical OR of nl and n2 as n3.

ORDER ()

Display the vocabulary names forming the search order in their present
search order sequence. Then show the vocabulary \ into which new
vocabularies will be placed.

OVER (32b1 32b2 32b1 32b2 32b1)

Duplicate the second form top value on the stack and place it on top of the
stack.

PAD (addr)

Leave a pointer to the first byte of a floating scratch pad area.

PAGE ()

Clear screen and home cursor.

PFA (nfa pfa)

Convert the name field address of a definition to its parameter field address.

PICK (+n 32b)

Leave a copy of the +nth stack location, not counting +n itself.

PNAME (addr)

Pathname used by system to find forth.blk.

PRT: ()

Vector output to the printer.

QUIT ()

Clear Return Stack and return control to the keyboard. No message is
displayed.

Page 56 HiSoft FORTH Reference

REPEAT ()

End of loop structure used with while, loop back to begin if while test is
true.

ROT (32b1 32b2 32b3 32b2 32b3 32b1)

Rotate the third value on the stack to the top of the stack.

ROLL C +n — 32b)

The +nth stack value, not counting + n itself is first removed and then
transferred to the top of the stack, moving the remaining values into the
vacated position.

RSP (addr)

A System variable temporarily storing the Return Stack pointer position.

!RSP ()

Save the Return Stack position in rsp.

3RSP ()

Restore Return Stack pointer from rsp.

R> (32b)

Pull a number from the Return Stack to the Data Stack. See > R and R.

R3 (32b) F83std

Copy a number from the Return Stack to the Data Stack. See also >R and R.

R (32b)

Copy a number from the Return Stack to the Data Stack. See also >R and R.

WR> (16b) Non-standard

Pull a 16 bit number from the Return Stack to the Data Stack. See also >WR.

RP3 (addr)

Return the address of the Data Stack.

RP! ()

Initialise the Return Stack from user variable R0.

R/W (buff_addr blk_number R/Wflag)

Reads (if R/Wf Lag is 1) or writes (if R/wf Lag is 0) 1024 bytes from block
blk_number to/from memory address buff_addr. The current stream is
used.

S->D < 16b 32b)

Convert a sign extended 16 bit number into a sign extended 32 bit number.

SAVE-BUFFERS ()

The contents of all block buffers marked as updated are written to their
corresponding mass storage blocks. All buffers are marked as no longer
modified, but may remain assigned.

Reference HiSoft FORTH Page 57

SCAN (c scan)

Return scan code and key value c.

SEAL ()

Delete all occurrences of only from the search order. The effect is that only
specified application vocabularies are searched.

SIGN (n)

If signed number is less than zero insert minus sign at the beginning of a
formatted output string.

STRINGS (n)

Create a string variable of n bytes.

SYSVAR (n addr)

Create a system variable. Similar to USER in fig, see also user in task
vocabulary.

SP3 (addr)

Return the address of the Data Stack.

SP! ()

Initialise the Data Stack from user variable S 0.

SPACE ()

Type one space.

SPACES (+n)

Type +n spaces.

SPAN (addr)

User variable containing the number of characters received and stored by the
last execution of expect.

STATE (addr)

System variable whose value is non-zero when compilation is occurring and
false (zero) when interpreting.

STRLEN (addr addr n)

Find length n of zero terminated string addr.

SWAP (32b1 32b2 32b2 32b1)

Swap the top two values on the stack.

THEN ()

used with I f marks then end of a conditional FORTH block.

THRU (n1 n2)

Load a range of blocks from n1 to n2.

Page 58 HiSoft FORTH Reference

TIB (addr)

Leave a pointer to the first byte of the terminal input buffer. The buffer length
is 80 characters.

TOGGLE (addr b)

Complement the byte value of addr by the bit pattern b.

TOS ()

This vocabulary contains ATARI ST TOS calls for use from high level FORTH.

TUCK (n1 n2 n1 n1 n2)

Duplicate second stack cell value.

TYPE (addr count)

Transmit count characters from addr to the selected output device.

U. (u)

Print unsigned number u.

U . R (u n)

Print unsigned number u in a field of n characters.

U* (u1 u2 ud)

u d is the unsigned product of u 1 times u 2. All values and arithmetic are
unsigned.

U/ (ud u1 remainder quotient)

Leave the unsigned remainder and unsigned quotient from the unsigned
double dividend u d and unsigned divisor u 1.

UNDER (n1 n2 n2 n1 n2>

Copy top of stack under second stack cell.

UNTIL (f)

End of loop structure, test flag f on stack loop back to begin if true.

UPC ()

Use UPC ON to cause all user input to be converted to upper case.

UPDATE ()

Mark the currently valid block as modified, so that if the buffer is needed the
block will be written to mass storage.

UPPER (addr n)

Convert string of n bytes at address addr to uppercase.

VARIABLE (n --)

Make a FORTH word that leaves an address on the stack that points to a
space in memory that is initialised to the value n.

Reference HiSoft FORTH Page 59

VOC-LINK (addr)

A system variable containing the address of a field in the definition of the
most recently created vocabulary. All vocabulary names are linked by these
fields.

W* (16b 16b 32b)

16 bit multiply, faster than * . This word uses MULS to give a fast multiply.

W/ (32b 16b remainder quotient)

Divide 3 2b by 16b and leave quotient and remainder. This word uses the
DIVS opcode to give a fast divide.

WHILE (f)

Test flag f on stack, if it is true then execute the words between while and
repeat.

WORD (c addr) F83std
(c) fig

Parses the next word delimitated by c or the end of the input stream and
stores it with its count byte at address. If the string is longer than 255
characters, the count is unspecified. If the input stream is already exhausted
then the count equals zero. The character count in >i n (F83std) and I N (fig)
is updated to indicate the character after the final delimiter. In FIG-FORTH
the string is left at HERE.

WORDS ()

Display the word names in the transient vocabulary, starting with the most
recent definition.

WTOGGLE < addr w)

Complement the word value at addr by the bit pattern w.

XOR (n1 n2 n3)

Leave the bitwise logical XOR of n1 and n2 as n3.

C () (compiling)

Stop compiling input text and begin executing.

1 () (compiling)

Stop executing input text and begin compiling.

L'l (addr) (compiling) F83std

Use in the form

L '] <name>

Immediate word to compile the compilation address of <name> as a literal
within a definition. The address is left on the stack upon execution of the
definition.

Page 60 HiSoft FORTH Reference

ccompile: (—)

Used in the form

COMPILE] <name>

Causes the word < n a me > that follows to be compiled into the current
definition even if it is immediate.

4.3 FORTH-79 Standard

The following words are changed from fig-FORTH. These words are brought
to the top of the search order when you execute 79-standard.

The vocabulary 79-STANDARD is chained to the FORTH vocabulary. The word
forth is redefined to select the 79-STANDARD vocabulary. To return to the
default system FORTH vocabulary execute

ONLY FORTH DEFINITONS

79-standard also changes the current vocabulary to 79-STANDARD.

?DUP (n n (n))

Duplicate top stack value only if non-zero. This word is the same as - d u p in
fig-FORTH.

>IN (addr)

System variable containing character offset into input buffer. This word is the
same as in in fig-FORTH.

BLANK (addr n)

Write n blank characters to memory starting at addr. This is the same as fig-
FORTH word blanks.

CONVERT (n1 addrl n2 addr2)

Convert string at a d d r 1 +1 to number and add number into n 1 leaving result
n2. addr2 is address of first non-convertible character. This is the same as
(NUMBER) in fig-FORTH.

The FORTH-79 standard actually uses double numbers with this word, this
was not done in this implementation as the stack is 32 bit, so a single stack
cell was used instead.

CREATE (addr)

Create a header that leaves an address when executed. The fig-FORTH system
create is different in 2 ways. Firstly it makes only a header and can not be
executed without following code, secondly because of this it does not leave a
address on the stack.

Reference HiSoft FORTH Page 61

In FORTH-79 and FORTH-83, create can be used to make defining words
with D0ES> e.g.

: VARIABLE CREATE 0 , D0ES> ;

this would define variables like the FORTH-79 variable . In fig-FORTH
create would be replaced by <builds. e.g.

: VARIABLE <BUILDS , D0ES> ;

this would define fig-FORTH variables that would be initialised from the
stack.

FIND (addr)

Find the code field address of name in dictionary. If name can not be found
leaves a zero on stack instead of addr. Used in the form:

FIND <name>

NEGATE (n -n)

Reverse the sign of the top of stack value, (two's complement). This is the
same as the FIG-FORTH word minus.

PICK (n1 n2)

Copy nlth item on the stack to the top. e.g.

1 pick is equivalent to d u p
2 pick is equivalent to 0 v e r

ROLL (n1)

Rotate nlth item to top of stack, e.g.

2 roll is equivalent to swap
3 roll is equivalent to ROT

R3 (n)

Copy top of Return Stack to top of Data Stack. The same as FIG-FORTH word
R .

U/MOD (ud u rem quot)

Divide double number by single giving unsigned remainder and quotient. All
values are unsigned. This word is the same as FIG-FORTH word U/ .

VARIABLE (addr)

Create a 4 byte variable, which returns its address when executed, e.g.

VARIABLE NAME

This is different to the FIG-FORTH word variable as it does not require a
number on the stack to initialise variable.

Page 62 HiSoft FORTH Reference

[
The purpose of the FORTH-83 Standard is to allow for portability of FORTH-
83 Standard Programs in source form among FORTH-83 Standard Systems.
To comply with the Standard a FORTH implementation must include the

r required word set in the vocabulary FORTH, after executing the word FORTH-
83.

I

WORD (c addr)

Read the next word from the input buffer using c as delimiter, or until null.
Leave address of length byte of word. This similar to word in FIG-FORTH, but
the fig word puts the string at here and does not leave the address on the
stack. The addr returned by word is the same as here.

4.4 FORTH-83 Standard

4.4.1 The Required word set

The words of the required word set are grouped to show like characteristics.

(

I

I

I

Nucleus layer

! * */ */M0D + +! - / /MOD 0< 0= 0> 0> 1+ 1-2+ 2- 2/ < = ;
>R ?DUP S ABS AND C! C3 CMOVE CM0VE>C0UNT D+ D< DEPTH
DNEGATE DROP DROP DUP EXECUTE EXITFILL I J MAX MIN MOD

NEGATE NOT OR OVER PICK R> R3R0LL ROT SWAP U< UM* UM/MOD
XOR

Device layer

BLOCK BUFFER CR EMIT EXPECT FLUSH KEY SAVE-BUFFERS SPACES
PACES TYPE UPDATE

Interpreter layer

I

I

I

I

I

I

tt> #S #TIB ' (-TRAILING . .(<# >B0DY >IN ABORT BASE BLK
CONVERT DECIMAL DEFINITIONS FIND FORGET FORTH FORTH-83 HERE
HOLD LOAD PAD SUIT SIGN SPAN TIB U. WORD

Compiler layer

+L00P , ." : ; ABORT" ALLOT BEGIN COMPILE CONSTANT CREATE
DO D0ES> ELSE IF IMMEDIATE LEAVE LITERAL LOOP REPEAT STATE
THEN UNTIL VARIABLE VOCABULARY WHILE L" I ' 1 [.COMPILED]

4.4.2 FORTH-83 standard and HiSoft FORTH

The Standard was written for 8/16 bit computers and assumes a 16 bit stack.
This is wasteful on a processor like the 68000 so HiSoft FORTH uses a 32 bit
stack.

Reference HiSoft FORTH Page 63

Some words that required a double number but now use a single stack cell
are as follows:

CONVERT (+d1 addrl +d2 addr2)

<# ()

U (+d1 +d2)
#S (+d 0)

#> (32b addr +n)

4.4.3 FORTH-83 Words

The following words are changed from FIG-FORTH and FORTH-79 standard.
These words are brought to the top of the search order when you execute
forth-83 in compliance with the FORTH-83 standard.

The vocabulary FORTH-83 is chained to the FORTH vocabulary. The word
FORTH is redefined to select the FORTH-83 vocabulary. To return to the
default system FORTH vocabulary execute

ONLY FORTH DEFINITONS

FORTH-83 also changes the current vocabulary to FORTH-83.

Words unchanged from the FORTH-79 standard are :

->IN ?DUP BLANK CONVERT CREATE R3 WORD VARIABLE

. (() 'dot-paren'

Used in the form:

. (ccc)

The characters ccc up to but not including the delimiting) are displayed.
The blank following . (is not part of ccc. This may be used to include
double quote characters in strings.

. " () 'dot-quote'

Used in the form:

Later execution will display the characters ccc up to but not including the
delimiting " . The blank following . " is not part of ccc.

' (addr) 'tick'

Used in the form:

' <name>

addr is the compilation address of <name>. An error condition exists if
<name> is not found in the currently active search order.

Page 64 HiSoft FORTH Reference

I

I

I

I

I

L'l (addr) 'bracket-tick'

Used in the form:

' <name>

Compiles the compilation address addr of<name> as a literal. When the colon
definition is later executed the addr is left on the stack. An error condition
exists if <name> is not found in the currently active search order.

/ (n1 n2 n3) 'divide'

n 3 is the floor of the quotient of n 1 divided by the divisor n 2. An error
condition results if the divisor is zero.

*/ (n1 n2 n3 n4) 'times-divide'

n1 is first multiplied by n2 producing an intermediate 64 bit result, n4 is the
remainder and n 5 the floor of the quotient of the intermediate 64 bit result
divided by the divisor n 3.

/MOD (n1 n2 n3 n4) 'divide-mod'

n 3 is the remainder and n 4 the floor of the quotient of n 1 divided by the
divisor n 2. n 3 has the same sign n 2 or is zero. An error condition results if
the divisor is zero.

MOD (n1 n2 n3)

n3 is the remainder after dividing n1 by the divisor n2. n3 has the same sign
n 2 or is zero. An error condition results if the divisor is zero.

ABORT" (flag) 'abort-quote'
() (compiling)

Used in the form:

fLag ABORT" ccc"

When later executed, if f Lag is true the characters ccc, delimited by " , are
displayed and then a system dependent error abort sequence, including the
function of ABORT , is performed. If f La g is false the fLag is dropped and
execution continues.

CM0VE> (addrl addr2 u) 'c-move-up'

Move u bytes beginning at address addrl toaddr2. The move begins by
moving the byte at addr1+u-1 toaddr2 +u-1 and proceeds to successively
lower bytes for u bytes. If u is zero nothing is moved.

Reference HiSoft FORTH Page 65

DO (n1 n2)

(sys) (compiling)

Used in the form:

DO ... LOOP

or

DO ... n +L00P

Begins a loop which terminates based on control parameters. The loop index
begins at n 2 and terminates based on the limit n 1. The loop is always
executed at least once.

FIND (addrl addr2 n)

addrl is a counted string. The string contains a word name to be located in
the currently active search order. If the word is not found, a d d r 2 is the
string address addrl and n is zero. If the word is found, addr2 is the
compilation address and n is set to one for immediate words and minus one
for non-immediate words.

LAST (addr)

Leaves the compilation addr of the latest definition. See FIG-FORTH word
LATEST.

LEAVE ()

() (compiling)

Transfer execution to just beyond the next LOOP or+LOOP . The loop is
terminated and loop control parameters are discarded. May only be used in
the form:

DO ... LEAVE . . . LOOP

DO ... LEAVE . . . +L00P

LEAVE may appear in other control structures which are nested within the
do-loop structure. More than one leave may appear within a do-loop.

LOOP ()

(sys) (compiling)

Increments the do-Loop index by one. If the new index was incremented
across the boundary between Li mi t -1 and the Limit the loop is terminated
and loop control parameters are discarded. When the loop is not terminated,
execution continues to just after the corresponding do . sys is balanced with
its corresponding D0 .

Page 66 HiSoft FORTH Reference

+ LOOP (n)

(sys) (compiling)

n is added to the loop index. If the new index was incremented across the
boundary between Limit-1 and the Limit the loop is terminated and loop
control parameters are discarded. When the loop is not terminated,
execution continues to just after the corresponding DO . sys is balanced with
its corresponding DO .

.NAME (addr)

Print the name of word with compilation address addr. See id..

PICK (+n 32b)

32b is a copy of the +nth stack value, not counting +n itself, e.g.

0 p I c K is equivalent to Du P

1 PI c K is equivalent to over

ROLL (+n)

The + nth stack value, not counting + n itself is first is removed and then
transferred to the top of the stack, moving the remaining values into the
vacated position, e.g.

2 roll is equivalent to rot

1 ROLL is equivalent to SWAP

0 roll is a null operation.

RP! (addr)

Initialise Return Stack -with addr.

SP! (addr)

Initialise Data Stack with addr.

S>D (16b 32b)

Convert 16 bit number to 32 bit number.

TIB (addr)

The address of the input buffer. This buffer is used to hold characters when
the input stream is coming from the current input device.

#T I B (addr)

The address of a variable containing the number of bytes in the text input
buffer.

UM* (u1 u2 ud)

ud is the unsigned product of ui times u2. All values are unsigned. This is
the same as u * in FIG-FORTH.

UM/MOD (ud u1 u2 u3)

Leave the remainder u2 and the floored quotient u3 of ud divided by ul.

Reference HiSoft FORTH Page 67

4.5 ONLY Words

These words are in the root vocabulary. They are a minimal word set that
handles vocabulary switching the editor and some utilities.

Vocabularies are normally closed, that is they do not chain to other
vocabularies. To chain a vocabulary use chain. The search order of the
system can be seen using order .

There are 8 context vocabulary slots, which are search when compiling or
interpreting source code. The current vocabulary is used to compile new
code into dictionary. The only vocabulary is special and has its own slot.

All vocabularies are defined in the ONLY vocabulary. To FORGET a vocabulary
you need to be in the ONLY vocabulary.

QX (n)

Quick index, will index 64 screens starting from n . To get the most benefit
from the quick index words it is best to create .blk files in multiples of 64
screens.

NX ()

The same as ax , but uses value in sCR system variable for n .

BX ()

The same as NX , but uses value in SCR - 64 to list previous 64 screens.

SEAL ()

Removes only vocabulary from search order, effectively sealing the system
search order.

CHAIN ()

Chains vocabulary to current vocabulary. This is similar to how a vocabulary
would be defined in FIG. FORTH-83 and 79-STANDARD are both examples of
chained vocabularies.

SYSVEC ()

This word patches system vectors to trap errors back into FORTH. If you
want to use a debugger such as HiSoft MONST or AMONST from DevpacST
then you should not execute this word in your startup screen.

SHRINK (n)

On startup HiSoft FORTH takes all available memory, shrink will return
memory to TOS by only allocating n bytes of user dictionary space.

DESKTOP ()

System word used by desk accessories.

SLOT (addr)

Menu slot address used by desk accessories.

Page 68 HiSoft FORTH Reference

BOOT ()

Used by the system at startup to boot from forth.blk screen 1 .

WORDS ()

List the word names in the first vocabulary of the currently active search
order.

Keys that control words are as follows:

Ct r L- S will pause listing

Ctrl-8 will restart listing

any other key will break listing.

VLIST ()

List the names of definitions in the context vocabulary.

ORDER ()

Show current vocabulary search order, e.g.

ORDER

Context: FORTH ONLY

Current: FORTH

The compiler would search forth and then only and compile new code
definitions into forth.

FORGET ()

VOCS ()

Prints list of vocabularies to screen. The System vocabularies are as follows:

only Root vocabulary
forth Main FORTH words

FORTH-83 FORTH-83 standard

79-STANDARD FORTH-79 standard

editor Words used by the editor
TOS Atari TOS words inc GEMDOS, BIOS and XBIOS.
GEM Atari GEM words (the AES and VDI)
TASK Multi-tasking words
graphic Turtle graphics
shell The Shell. See s h e l l . s e q

Reference HiSoft FORTH Page 69

4.6 Double Number Extension Set

You may enter double numbers by ending a number with a dot (.) e.g.

1234567890.

places this double number on the stack.

These words are provided to 64 bit double numbers.

2! (64b addr) 'two-store'

64b is stored at addr.

23 (addr 64b) 'two-fetch'

64b is the value at addr.

2C0NSTANT (64b) 'two-constant'

A defining word executed in the form:

64b 2C0NSTANT <name>

Creates a dictionary entry for <name> so that when <name> is later executed,
64b will be left on the stack.

2DR0P (64b) 'two-drop'

64b is removed from the stack.

2DUP (64b 64b 64b) 'two-dupe'

Duplicate 6 4b.

20VER (64b1 64b2 64b1 64b2 64b3) 'two-over'

32 b 3 is a copy of 3 2 b1.

2R0T (64b1 64b2 64b3 64b1 64b2 64b3) 'two-rote'

The top three double numbers on the stack are rotated, bringing the third
double number to he top of the stack.

2SWAP (64b1 64b2 64b2 64b1) 'two-swap'

The top two double numbers are exchanged.

2VARIABLE (64b) 'two-variable'

() F79.F83

A defining word executed in the form:

64b 2VARIABLE <name>

A dictionary entry for < n a me > is created and 8 bytes are allotted in its
parameter field. This parameter field is to be used for contents of the
variable. The application is responsible for initialising the contents of the
variable which it creates. When <name> is later executed, the address of this
parameter field is placed on the stack.

Page 70 HiSoft FORTH Reference

D+ (d1 d2 d3)

' d 3 is the sum of d 1 and d 2.

D+- (d1 n d2)

Apply the sign of n to the double number d1, leaving it as d2.

D- (d1 d2 d3) 'd-minus'

d 3 is the result of subtracting d 2 from d1.

D. (d) 'd-dof

The absolute value of d is displayed in a free field format. A leading negative
sign is displayed if d is negative.

D . R (d +n) 'd-dof

d is converted using the value of base and then displayed right aligned in a
field +n characters wide. A leading negative sign is displayed if d is negative.
If the number of characters required to display d is greater than +n, an error
condition exists.

D0= (d fLag) 'd-zero-equal'

fLag is true if d is zero.

D2/ (d1 d2) 'd-two-divide'

d 2 is the result of d 1 arithmetically shifted right one bit. The sign is included
in the shift and remains unchanged.

D< (d1 d2 fLag) 'd-less'

flag is true if d 1 is less than d 2.

D= (d1 d2 fLag) 'd-equal'

flag is true if d 1 equals d 2.

DABS (d ud) 'd-absolute'

u d is the absolute value of d.

DMAX (d1 d2 d3) 'd-max'

d 3 is the greater of d 1 and d 2.

DMIN (d1 d2 d3) 'd-min'

d 3 is the lesser of d 1 and d 2.

DNEGATE (d1 d2) 'd-negate'

d 2 is the two's complement of d 1.

DU< (ud1 ud2 fLag) 'd-u-less'

flag is true if ud1 is less than ud2. Both numbers are unsigned.

Reference HiSoff FORTH Page 71

4.7 Floating point
There is a Floating Point package on disk in the file float, seq . To use
Floating point in your programs type :

FLOAD FLOAT.SEQ

The Floating Point words will then be loaded into the floating vocabulary.

The format used for the floating point is the Motorola fast floating point
format. This is a 32 bit format optimised for the 68000.

FFP bit Format __
MMMMMMMM MMMMMMMM MMMMMMMM SEEEEEEE

31 23 15 7 0

The meaning of the bits is as follows:

M Mantissa 24 bits

S Sign of FFP 1 bit

E Exponent in excess-64 notation 7 bits

The mantissa is coded as a binary fixed-point fraction: it is normalised and
represents a value of less than 1 but greater or equal to .5 .

The sign bit is set for a negative number and cleared for a positive number.

The exponent is a power of 2 used to raise the mantissa to its true value. It is
in excess-64 notation, which means that 64 is added to it, so as it contains
its own sign. It has a range of +63 to -64 and a zero exponent (E+0) would
equal 64.

The range allowed for FFP is as follows:

+9.22337177 x 10**18 > +5.42101070 x 10**-20

-9.22337177 x 10**18 < -2.71050535 x 10**-20

FFP Number Input

Numbers are input with a base 10 exponent. At the time of writing, all
floating point numbers need to have an exponent, even if it is 0 (this would
be E+ 0).

E+_ (n ffp)

E+ (n ffp)

These words are used to input a positive exponent.

Page 72 HiSoft FORTH Reference

(

e.g.

1 .0 E + 1 1 .0 E + 1 0

E-_ (n ffp)

E- (n ffp)

These words are used to input a negative exponent.

e.g.

1.0 E-1 1.0 E-1 0

Here are some example floating point numbers:

1.25 E + 4 -1.25 E + 3 2.333 E-1 0 -100.45 E-0

F+ (ffpl ffp2 ffp3)

add ffpl to ffp2 and leave the result ffp3 on the stack.

F- (ffpl ffp2 ffp3)

subtract f f p2 from f f pi and leave the result f f p3 on the stack.

F* (ffpl ffp2 ffp3)

multiply ffpl byffp2 and leave the product ffp3 on the stack.

F/ (ffpl ffp2 ffp3)

divide ffpl by ffp2 and leave the result on the stack.

F= (ffpl ffp2 flag)

fLag is true if f f p 1 is equal to f f p 2.

F< (ffpl ffp2 fLag)

fLag is true if f f p 1 is less than f f p 2.

F> (ffpl ffp2 flag)

fLag is true if f f p1 is greater than f f p 2.

F0= (ffp fLag)

fLag is true if f f p is zero.

F0< (ffp flag)

fLag is true if f f p is less than zero.

F<> (ffpl ffp2 flag)

fLag is true if f f p1 is not equal to f f p2.

F<= (ffpl ffp2 flag)

flag is true if f f p1 is equal to or greater than f f p 2.

F<= (ffpl ffp2 flag)

fLag is true if f f p1 is equal to or less than f f p2.
Reference HiSoft FORTH Page 73

FABS (ffp +ffp)

Change ffp to its absolute value.

FNEGATE (ffp ffp)

Reverse the sign of ffp.

F. (ffp)

The absolute value of f f p is displayed in a free field format with the exponent
displayed as an E number. A leading negative sign is displayed if ffp is
negative.

e.g.

ALSO FLOATING \ add FLOATING to search order
1.0 E+0 4.0 E+0 F/ \ divide 1 by 4
F. 1.250000E-1 \ print result
F . R (ffp n)

ffp is converted using the value of base and then displayed right aligned in
a field +n characters wide with the exponent displayed as an E number. A
leading negative sign is displayed if d is negative.

4.8 Assembler

The HiSoft FORTH Assembler is contained in the file asm. blk. It is derived
from a 68000 Assembler written by Ken Mantel of California State College,
San Bernadino and placed in the public domain.

Certain modifications have been made, in particular, it has been changed
from 16 bit to 32 bit. Register names have been added and the opcode
execution delayed so as to give a Motorola syntax.

4.8.1 Loading the Assembler

To load the Assembler while in the shell program, click on the Open...
option from the Fi Le menu and then the Loading... option from the
Screens menu.

To load the Assembler from the FORTH command line, type the following:

FLOAD "ASM.SEQ"

The Assembler will now be loaded.

Page 74 HiSoft FORTH Reference

4.8.2 Using the Assembler

To use the Assembler with HiSoft FORTH you have 2 options:

1. CODE Words.

2. In-Line Assembly.

Here is an example of a code word, that puts a number on the stack

CODE NUM MOVE. .L 123 #W , -(A3) RTS. END-CODE

The equivalent using in-line assembly would be

: NUM { MOVE. .L 123 #W , -(A3) } ;

Both of the above would compile the same code and leave 1 2 3 on the Data
Stack when executed.

As HiSoft FORTH uses subroutines and machine code macros for compiled
code, there are no problems switching between FORTH and Assembly code.

4.8.3 Assembler Syntax

The table below documents differences between FORTH and Motorola
Assembler syntax. As the FORTH assembler is made of FORTH words they
need a space (or spaces) to separate individual words.

Motorola

(A2)

(A2) +

-(A2)

8 (A2)

20 CA2,D4.W)

-$11 (A2,A0.L)

. LR $20 (PC)

8 (PC,D1.W)

8 (PC,A0.L)

$FA00 (absolute short)

SFAOOFFOO (absolute long)

#27 (immediate byte or word)

#$ABCD00 (immediate long)

C C R

S R

USP

D0/D3-D6/A2-A3

Reference

FORTH Assembler

(A2)

(A2) +

-(A2)

8 (A2)

20 (A2,D4)

-$1 1 (A2,A0)

$20 (PC)

8 (PC,D1)

8 (PC,A0) . LR

$FA00 ABSW

$FA00FF00 ABSL

27 #W

SABCD00

C C R

S R

US P

DO-DO D3-D6
(MOVEM.)

HL

HiSoft FORTH

A2-A3

(see note)

(see note)

(see note)

Page 75

The Assembler also recognises (s P), (SP) + and - (S P) . 4 (s P) should be
expressed as 4 8(s p) .

Note: The PC-relative instructions require that an absolute address is
provided as the parameter. The Addressing Mode words take this address
and turn it into an offset by deducting the value of here at the point of
execution. The resultant offset must be in the range -32,768 to 32.767.

All opcodes include a . period at the end of the mnemonic. So move becomes
move . .

Source and Destination operands and separated by a , (comma) . The FORTH
word , is redefined for use in the Assembler as D, or A, for addresses.

Here are some examples of FORTH Assembler in use

Motorola FORTH

move.L d0,(a2)+ MOVE. .L DO , (A2)+

cmpi.b #65,dO CMP. .B 65 #W , DO

move d0,-(a3) MOVE, .w DO , -(A3) (,W optional)

asL #2,d1 ASL.2#L,D1

movem.L d2-d4,-(sp) MOVEM. . L D2-D4 , -CSP)

Notice that the syntax is similar, but that the FORTH must be typed in upper
case and spaces must be left between FORTH words.

4.8.4 Using HiSoft FORTH with DevpacST

While the FORTH Assembler is fine for most uses, for larger assembler
programs you may prefer to use HiSoft DevpacST. The Assembler .prg files
can then be loaded by FORTH and combined for stand-alone programs using
the .prg compiler.

To load the assembler file into memory you could use the following FORTH
code

ALSO TOS

VARIABLE BASE-ADDR

: BLOAD (addr)

1+ " " 1+ DUP 3 EXEC DUP 0< 7 7ERR0R

256 + BASE-ADDR ! ;

: HEADER (n)

<BUILDS

4* BASE-ADDR a + ,
D0ES> 3 EXECUTE ;

PREVIOUS

" MYFILE. PRG" BLOAD

1 HEADER CONIN

2 HEADER CONOUT

Page 76 HiSoft FORTH Reference

(

This would load an assembler program, for example the following one, with
two GEMDOS routines, the assembler code would be

myfile:bra exit ; optional exit or startup
dc.L conin-* ; pointer to conin
dc.l conout-* ; pointer to conout

; console output routine
conin: move.w #1,-(sp)

trap #1
addq.L #2, s p
move. I d0,-(a3) ; leave character on stack
rts ; console input routine

conout: move.I (a 3) + , d 0 ; get character from stack
move.w dO,-(sp)
move.w # 2 , - (s p)
trap #1
addq.L # 4 , s p

exit: rts

The word header is used to associate the table at the start of the file with a
given FORTH word. Thus

1 HEADER conin

uses the first entry in the table.

If you use this method make sure to use shrink to return enough memory to
the system.

4.9 Multi-Tasking
HiSoft FORTH supports multi-tasking using a round-robin loop multi-tasker.
This type of multi-tasker is controlled by the user and uses the word pause
to switch between tasks. A task in this case is a FORTH word that can run in
the background, while you are using the computer for other things.

These words are in the task vocabulary.

USER (n addr)

Define a task user variable. Similar to sys_var (system variables). A user
variable is switched with each task. Each task would have its own copy of a
user variable.

PAUSE ()

Switch between tasks in round-robin loop.

LOCAL (addr task addrl)

Allow access to a USER variable in another task. e.g.

BASE TASK1 LOCAL

would return the address of the base user variable in task t a s k 1.

Reference HiSoft FORTH Page 77

ACTIVATE (task)

Wake task and make it execute following code. e.g.

TASK: +CNT0 VARIABLE CNT

: COUNTER

+CNT ACTIVATE

BEGIN 1 CNT + ! PAUSE AGAIN STOP ;

counter would start task + CNT incrementing a count in variable c n t .

SLEEP (task)

Put task to sleep.

WAKE (task)

Set task to wake up on next pass of round-robin loop.

STOP ()

Stop current task.

MULTI ()

Set multi-tasking on.

SINGLE ()

set multi-tasking off.

TASK: ()

A task defining word, see activate for an example of usage.

V: (n)

define vector handler in FORTH, n is an exception vector number. This is
used in place of colon :.

e.g.

36 V: FOUR CR ." Hello World!!!" CR ;V

would set up TRAP #4 to execute print statement. 36 is used because the
trap # instruction vectors are traps 32 to 47.

To test it type

4 #TRAP

;V (—)

used to end vector definition.

#TRAP (n)

executes trap number n.

Page 78 HiSoft FORTH Reference

4.10 MIDI library
The MIDI library provides a few simple words that are slightly easier to use
than the 'raw' operating calls. It is loaded using

FLOAD MIDI.SEQ

and contains the following words:

>M (8b)

Outputs a single byte 8b to the MIDI port.

M> (8b)

Reads a single byte from the MIDI port.

?MI (f)

Returns a non-zero value if a character is waiting to be input from the MIDI
port.

?M0 (f)

Returns a non-zero value if a character may be output to the MIDI port.

KEY.ON (note)

Switches on the given note.

KEY.OFF (note)

Switches off the given note.

KEYS.ON (notel...noten n)

Switches on a range of notes. Just before calling this word you should place
the number of notes on the stack.

e.g.

12 13 14 3 KEYS.ON

switches the 3 notes 12, 13 and 14 on.

KEYS.OFF (notel... note.n n)

Switches off a range of notes; this word works in a similar way to keys . ON.

KCLR ()

Clears all notes.

?MIDI ()

Echoes bytes received from the MIDI port until a key on the computer's
keyboard is pressed.

Reference HiSoft FORTH Page 79

4.11 Graphics
HiSoft FORTH supports Atari graphics using line-A calls. There is also a set of
Turtle graphics words for drawing shapes. These words are in the built-in
graphic vocabulary.

F D (n) 'forwards'

move forwards n pixels.

B K (n) 'backwards'

move backwards n pixels.

RT (angle) 'right-turn'

turn right by angle.

LT (angle) 'left-turn'

turn left by angle.

PD () 'pen-down'

draw line when turtle moves.

PU () 'pen-up' (
don't draw line when turtle moves.

PEN (addr)

Variable used to indicate PEN state.

MVTO (x y) 'move-to'

move to location (x,y) without drawing line.

HEAD (ang Le)

set current heading to angle.

TURTLE (x y head)

Return current x,y location and current heading.

A-LINE (- addr)

Returns the address of the Line-A variables.

PIXEL (x y c)

Return pixel colour c at location x,y.

PLOT (x y c)

Plot point on screen at x,y location in colour c.

DRAW (x y mode)

Draw a line to x,y from current x,y location, use drawing mode.

Page 80 HiSoft FORTH Reference

COLOR (n)

Set colour value for plot.

PLANES (n)

Set drawing planes used by draw, rect and poly, n should be a number
between 0-15 .

RECT (x1 y1 x2 y2)

Draw a filled rectangle with x1, y1 as top left corner and x2, y 2 as bottom
right corner of rectangle.

POLY (addr n)

Draw a filled in polygon using co-ordinates in an word array at addr with n
points. The first point must be repeated as the last point to complete the
polygon.

CLIP (x1 y1 x2 y2 mode)

define clipping rectangle with x1, y1 as top left corner and x2, y 2 as bottom
right corner, mode = 0 for no clip, mode = 1 for clipping.

SPRITE (x y sprite buffer)

draw a sprite at x,y location saving the screen to buffer.

XSPRITE (buffer)

Un-draw sprite by restoring screen from buffer.

COS (angle cos)

Return COSINE c os of angle from look-up table.

SINE (angle sine)

Return SINE sine of angle from look-up table.

4.12 Atari ST Extensions

These words are included to access ATARI routines.

WRAP ()

Set text to wrap at end of line.

UNWRAP ()

Set text to fixed line.

CSRON ()

Turn cursor on.

CSROFF ()

Turn cursor off.

Reference HiSoft FORTH Page 81

[
MON ()

Turn mouse cursor on.

MOFF ()

Turn mouse cursor off.

HOME <)

Home cursor to top left hand corner of screen.

FGND (n)

Set foreground colour to n . The colours set depend on the graphics mode
and the colour palette.

BKGND (n)

Set background colour to n.

Page 82 HiSoft FORTH Reference

5 Direct Operating System
Calls

5.1 GEMDOS

TOS (The Operating System) is the operating system used by the Atari ST. It
is made up of different levels.

The hardware level is the BIOS and XBIOS (Basic Input Output System and
extended BIOS). This allows calls to the hardware plus disk sector and
formatting calls. The next level up is hardware independent level called
GEMDOS. This has file handling calls and gives access to low level operating
system calls.

GEMDOS was developed by Digital Research as a new operating system for
68000 computers; most of the calls emulate those on MS-DOS computers.
There are a large number of calls that are implemented as high level FORTH
words. Below are short descriptions and also the stack parameters before and
after the calls. These should be used in conjunction with more detailed TOS
and GEM documentation. See the Bibliography.

TERM ()

Returns to the program from which it was started.

PTERMRES (size code)

Terminate with a return code, but keep the program's code in memory, size
indicates how much memory from the program start should remain allocated,
code is the return code.

PEXEC (runflag pathname tail environ result)

Load a program from disk, runf Lag indicates 0 = run, 3 = load only.
pathname is a pointer to a pathname of the file, tail points to a command
tail for the program, environ is a pointer to its environment strings. If the
file was loaded the result is the load address. If the file was run the result is

the return code.

PRETURN (code)

Terminate returning a code.

CCONIN (char)

Read a character char from the console.

CCONOUT (char)

Write a character char to the console.

CAUXIN (char)

Read a character from the auxiliary device (modem port).

GEM HiSoft FORTH Page 83

CAUXOUT (char)

Write a character char to the auxiliary device (modem or serial port).

CPRNOUT (char)

Write a character char to the printer.

CRAWIO (char (char))

If c ha r is not $FF (255) then write it as a character to the console, otherwise
return a character (char) from the console with no echo.

CRAWCIN (char)

Read a character from the console with no echo or control character
trapping.

CNECIN (char)

Read character with no echo, but trap AC As and A0.

CCONWS (string)

Write zero terminated string to console

CCONRS (buffer)

Read a line of characters allow line edit

CCONIS (status)

Check the status of the console input device. Returns -1 (true) if character
waiting, else 0 if none available.

CCONOS (status)

Check the status of the console output device. Returns -1 (true) if character
waiting, else 0 if none available.

CPRNOS (status)

Check the status of the printer. Returns -1 (true) if character waiting, else 0
if none available.

CAUXIS (status)

Check the status of the auxiliary input device. Returns -1 (true) if a character
waiting, else 0 if none available.

CAUXOS (status)

Check the status of the auxiliary output device. Returns -1 (true) if a
character waiting, else 0 if none available.

TGETDATE (date)

Returns the current system date on the stack. Bits 0-4 of the result contain
the date, 5-8 contain the month, 9-15 contain the year minus 1980 (up to
2099).

TSETDATE (date)

Set the current system date to date on the stack.

Page 84 HiSoft FORTH GEM

TGETTIME (time)

Return the current system time on the stack. Bits 0-4 contain secondsII. 5-
10 contain minutes, 11-15 contain hours.

TSETTIME (time)

Set the current system time to time on the stack.

SUPER (0 SSP)

(SSP)

When this function is called with a value of zero it returns the supervisor
stack pointer (ssp), which should be saved, it also places the 68000
processor in supervisor mode. HiSoft FORTH and most other programs
usually run in the user mode of the processor. The supervisor mode is used
by the operating system. In supervisor mode you have full access to the
machine's memory, but you need to be careful. To return to the user mode
use the old SSP asa parameter to SUPER.

VERSION (version)

Calling this function returns the version number of GEMDOS.

DSETDRV (drive)

Set the default disk to drive. Values 0-15 indicate drives A-P.

DGETDRV (drive)

Return the value of current drive.

DFREE < buffer drive)

Get information about drive, buffer is the address of a buffer to receive the
information, drive indicates the drive to get the information from. The
buffer is 16 bytes long. It gets 4 values, free space, Total clusters, size of
sector in bytes and size of cluster in sectors.

DMKDIR (pathname)

Create a subdirectory, pathname is the addr of a null (zero) terminated string
for the pathname of the new directory.

DRMDIR (pathname)

Remove a subdirectory.

DCHDIR (pathname)

Change to a different subdirectory.

DGETDIR (buffer drive)

Store the current directory in a 64 byte buffer pointed to by buffer, drive is
the drive to search 0 = current. 1 = drive A, 2 = drive B, etc.

FSETDTA (DTAbuffer)

Set disk transfer address (DTA). The DTA is the address of a 44 byte buffer
used when searching for a file.

GEM HiSoft FORTH Page 85

FGETDTA (DTAbuffer)

Return the address of the current DTA buffer.

FCREATE (pathname attributes handle)

Create a file named by the null terminated string pointed to by the address
pathname. The attributes are as follows

0 Normal file status, read/write

1 Read only file

2 Hidden file

4 System file

8 Volume label, contains disk name

16 Subdirectory

32 File is written and closed

A file handle is returned on the stack. At the time you FCREATE a file, you
can use the file handle without opening the file. A total of 40 files can be open
at the same time.

FOPEN (pathname access handle)

Open a file named by the null terminated string pointed to by the address
pathname. The access modes are as follows

0 Read only

1 Write only

2 Read and write

The function returns a file handle if the access mode is possible, otherwise it
returns an error code, see GEMDOS error codes.

FCLOSE (handle)

Close a file that has been opened fopen given the handle on the stack.

FREAD (handle count buffer return)

Read from a file, handle is an open file handle, count is the number of bytes
to transfer, buffer is the address of a buffer to which the file is to be read.
return is the number of bytes read or a GEMDOS error number.

FWRITE (handle count buffer return)

Write to a file, handle is an open file handle, count is the number of bytes to
transfer, buffer is the address of a buffer which the file is to write to.
return is the number of bytes read or a GEMDOS error number.

FDELETE (pathname)

Delete a file, pathname is the address of a null terminated string pathname
of the file.

Page 86 HiSoft FORTH GEM

FSEEK (count handle mode position)

Move the file pointer, count is a byte count pointer, handle is file handle of
an open file, mode is as follows

0 count forwards from start of file

1 relative count form current position

2 count backwards from end of file

position is the actual position set from the beginning of the file.

FATTRIB (pathname mode attribute)

Read or change the file attributes, pathname is a pointer to a null terminated
string pathname, mode is 0 = get, 1 = set. for attributes .See fcreate.

FFORCE (handlel handle2)

Force handlel to point to the same file as ha n d I e 2.

FSFIRST (pathname attribute return)

Search for the first file which matches the search string pointed to by
pathname. The string can contain the wildcards * or ? . For search file
attributes see fcreate. Before using this call you set up a DTA buffer (see
F s et dta),which this call will return the file size and file name of the file
found, return contains zero if the file is found or the GEMDOS error -33 file
not found.

FSNEXT (return)

Use this call after fsfirst to find another match of the search string.

FRENAME (oldname newname)

Rename a file, oldname is pointer to filename to be renamed, newname is
pointer of new file name to be used.

FDATIME (buffer handle mode)

Get or set a files date or time, buffer is a pointer to a two word (4 byte)
buffer (a time word and a date word), handle is the file handle of an open
file, mode is 0 = set, 1 = get.

MALLOC (count addr)

Allocate memory block, count is number of bytes to allocate and addr is
start of memory block returned by system or an error if negative. If count is
set to -1 then the system will return maximum free memory available.

MFREE (addr error)

Used after malloc to return memory block back to system, addr is a previous
address obtained from malloc. If error =0 then memory was released ok; a
negative value indicates an error.

GEM HiSoft FORTH Page 87

5.2 The BIOS

The BIOS (Basic Input/Output System) is the interface between GEMDOS
and the Hardware of the ST.

GETMBP (p_mpb)

On entry addr p_mpb points to a 12 byte block of memory to be filled in with
the system initial Memory Parameter Block. On return the block is filled in
with three pointers as follows

M PB

MD_addr1 *mp_mfl memory free list

MD_addr2 *mp_ma L memory allocated list

MD_addr3 *mp_rover roving pointer

each pointer points to a structure as follows

M D

MD_addr *m_link next MD or NULL

addr m_start start address of block

addr m_ length #bytes in block

PD addr *m own owner's process descriptor

BCONSTAT (dev flag)

Return character device input status, flag will be false if no characters
available or true if at least one character is available, dev can be one of

0 prt

1 AUX

2 CON

printer, the parallel port

aux device, the RS-232 port

console, the screen

3 midi midi port

* I k b d keyboard port

BCONIN (dev char)

Does not return until a character has been input (busy wait). It returns the
character on the stack. For CON : (dev=2) it returns a scancode in the lower
byte of the upper word.

BCONOUT (dev c)

Output character c to the device dev. Does not return until the character has
been written.

Page 88 HiSoft FORTH GEM

RWABS (rwfLag buf count recno dev error_code)

Read or write logical sectors on a device, r wf I a g is one of

0 read

1 write

2 read, do not affect media-change

3 write, do not affect media-change

buf points to a buffer to read or write, count is the number of sectors to
transfer, recno is the logical sector number to start the transfer at. dev is
the device number. On the ST this is one of

0 Floppy drive A:

1 Floppy drive B:

2 + Hard disks. Networks, etc.

ETEXEC (vecnum vec ved)

vecnum is the number of the vector to get or set. vec is the address to set up
in the vector slot. If vec is -1 then ved is value of vector set. When setting a
vector with this call you should drop the value on the stack, v e c 1 is the
previous value of the vector when setting a vector.

GETBPB (dev bpb_addr)

dev is a device number (0 = drive A: ,etc). Returns a pointer to the BIOS
parameter block for the specified drive. An address of zero a bit position
(0..31) when a drive is available for that bit, or a 0 if not.

KBSHIFT (mode return)

Determines the status of special keys on the keyboard. If mode is -1 you get
the status, a positive value is accepted as the new status. The status is a bit
vector which is as follows

Bit Meaning

0 Right shift key

1 Left shift key

2 Control key

3 alt key

4 Caps Lock on

5 CIr Home

6 Insert

7 Unused

GEM HiSoft FORTH Page 89

5.3 The Extended BIOS (XBIOS)
INITMOUSE (type param vec)

Initialise mouse.

SSBRK (amount)

Save memory space.

PHYSBASE (addr)

addr is the base of physical screen ram.

LOGBASE (addr)

addr is the logical screen base used as the screen base for screen output.

GETREZ (n)

n is the screen resolution.

0 = low resolution 320 x 200

1 = medium resolution 640 x 200

2 = high resolution 640 x 400

SETSCREEN (Logloc physloc rez)

Change the screen parameters for logical base, physical base and resolution. If
a parameter is to be left unchanged a -1 value should be passed on the stack.

SETPALLETE (paletteptr)

Load new colour palette, paletteptr is a pointer to a table of 16 colours
(each colour takes 16 bits). The colours will be loaded at the next VBL
interrupt.

SETCOLOR (colornum colour)

Change one colour, colornum is the colour number (0-15) and colour is the
colour (0-$777) to set.

FLOPRD (buf filler devno secno trackno sideno
count status)

Read one or more sectors from the disk.

FLOPWR (buf filler devno secno trackno sideno
count status)

Write one or more sectors to the disk.

FLOPFMT (buf filler devno spt trackno sideno
interlev magic virgin status)

Format a disk track.

Page 90 HiSoft FORTH GEM

MIDIWS (count ptr)

Output a string to the MIDI port, ptr points to the string and count contains
the number of characters to send-1.

MFPINT (intno vector)

Initialise an interrupt routine in the MFP 68901. intno is the interrupt
number, vector is the interrupt routine address.

IOREC (devno)

RSCONF (speed flowctl ucr rsr tsr scr)

Configure the RS-232 port.

KEYTBL (unshift shift capslock keytab_addr)

Set keyboard table.

RANDOM (24b)

Return a 24 bit random number.

PROTOBT (buf serialno disktype execflag)

Produce boot sector.

FLOPVER (buf filler devno secno trackno sideno

count status)

Verify one or more sectors on a disk.

SCRDMP ()

Output a hardcopy of the screen to the selected printer.

CURSCONF (rate attrib status)

Configure the cursor.

SETTIME (datetime)

Set clock time and date.

GETTIME (datetime)

Return time and date.

BIOSKEYS ()

Restore BIOS keyboard table.

IKBDWS (cnt ptr)

Send commands to intelligent keyboard processor.

J DISI NT (intno)

Selectively disable interrupts on the MFP68901. intno is the interrupt
number (0-15).

JENABINT (intno)

Re-enable interrupts disabled by jdisint.

GEM HiSoft FORTH Page 91

GIACCESS (data access)

Access the registers on the GI sound chip.

OFFGIBIT (bitno)

Set a bit of Port A of the sound chip.

ONGIBIT (bitno)

Clear a bit of Port A of the sound chip.

XBTIMER (timer controL data vec

Start MFP 68901 timer.

DOSOUND (ptr)

Set sound parameters.

SETPRT (config)

Configure printer.

KBDVBASE (kbdvecs_addr)

Return keyboard vector table.

KBRATE (initial repeat)

Set keyboard repeat rate.

VSYNC ()

Wait for video.

PRTBLK (addr)

Output block to printer.

SUPEREXEC (addr)

Set supervisor execution.

PUNTAES ()

Disable GEM AES.

Page 92 HiSoft FORTH GEM

5.4 GEM VDI (Virtual Device
Interface)

The GEM VDI is called from FORTH by placing parameters on the FORTH
data stack. The parameters are in the same order as for C or Assembler. They
also use the Digital Research names for the different functions.

e.g. The C binding for v_gtext is

v_g text(handle,x,y,string)

in FORTH this would be

V_GTEXT < handle x y string)

The above FORTH word would expect 4 values on the data stack the first the
file handle, the second and third the x and y values and the top of stack
would be the address pointer to the string.

Here's the state, of the data stack before and after a v gtext call

TOS

NOS

3rd

4th

before after

String empty stack

X

y

handle

empty stack

Where it is not practical to pass all the required parameters via the data
stack, it is noted under the GEM word stack picture. In this case the GEM
arrays must be filled before the call with any extra values or addresses as
needed.

5.4.1 GEM VDI arrays

The following arrays are pre-defined arrays used by the GEM VDI.

They expect a cell number on the stack and return an address that can used
like a FORTH variable. If the array is a word array then use w! and wa to store
and fetch word values between the array and the stack.

If the array is a long-word array then use ! and a to fetch long-words or 32
bit addresses between the array and the stack.

PB (n addr) address arrav

This is the GEM VDI Parameter block array. It is pre-defined with the
addresses of the other GEM arrays.

GEM HiSoft FORTH Page 93

PB array

CONTRL

I NTI N

PTS I N

I NTOUT

PTSOUT

CONTROL (n addr) word array

INTIN (n addr) word array

PTSIN (n addr) word array

INTOUT (n addr) word array

PTSOUT (n addr) word array

VDISYS ()

call GEM VDI. The VDI arrays must be set up before this call.

>VDI (PB_addr)

This word is the used to pass preset AES arrays to GEM. Otherwise it is
similar to v d i s y s .

5.4.2 GEM VDI Control Functions

V OPNWK (device handle)

The Open Workstation call loads a graphics driver for the application and
returns a device handle. The device is initialised with the parameters from
the workin array. Information about the device is returned in the workout
array.

Output Parameters:

device_handle +n= device handle, 0 = device can not be opened

workin parameters:

0 Device ID number

1 Line type

2 Line colour index

3 Marker type

4 Marker colour index

5 Text face

6 Text colour index

7 Fill interior style

Page 94 HiSoft FORTH GEM

8 Fill style index

9 Fill colour index

10 NDC to RC transformation flag

0 = Map full NDC to RC

1 = Reserved

2 = Use the RC system

workout Parameters:

GEM

0 Maximum width of screen in rasters

1 Maximum Height of screen in rasters

2 Device coordinate units flag

0 = capable of precisely scaled image

1 = not capable of precisely scaled image

3 Width of one pixel in microns

4 Height of one pixel in microns

5 Number of character heights
0 = continuous scaling

6 Number of line types

7 Number of line widths

0 = continuous scaling

8 Number of marker types

9 Number of marker sizes

0 = continuous scaling

10 Number of faces supported

11 Number of patterns

12 Number of hatch styles

13 Number of predefined colours

14 Number of Generalised Drawing Primitives
(GDPs)

15 to

24

Linear list of the first 10 supported GDPs
The number indicates which GDP. -1 indicates

the end of the list. GEM VDI defines 10 GDPs

1 Bar

2 Arc

3 Pie slice

4 Circle

5 Ellipse
6 Elliptical arc
7 Elliptical pie
8 Rounded rectangle
9 Filled rounded rectangle
10 Justified graphics text

HiSoft FORTH Page 95

25 to
34

Linear list of attribute set with each GDP

0 Polyline
1 Polymarker
2 Text

3 Fill area

4 None

35 Colour capability flag
0 no

1 yes

36 Text rotation capability flag
0 no

1 yes

37 Fill area capability flag

0 no

1 yes

38 Cell array operation capability flag
0 no

1 yes

39 Number of available colours

0 continuous device (>32767 colours)
2 monochrome

>2 number of colours

40 Number of locator devices

1 Keyboard only
2 Keyboard and other input

41 Number of valuator devices

1 Keyboard only
2 if another valuator device is available

42 Number of choice devices

1 function keys on keyboard
2 if another keypad is available

43 Number of string devices
1 keyboard

44 Workstation type
0 output only
1 input only
2 input/output
4 metafile output

Page 96 HiSoft FORTH GEM

V_CLSWK (device_handle)

The Close Workstation call terminates the graphic device. If the device is a
printer an update occurs. For a metafile, GEM VDI flushes the buffer and
close the file.

Input Parameters: dev i ce_hand Le

Output Parameters: NONE

V_0PNVWK (handlel handle2)

Allows a single physical device to work as multiple workstations. Each virtual
workstation has access to the whole screen, but the attributes are set
separately.

The input the Open Virtual Workstation is a device handle of an open physical
screen, This can be obtained from the graf_handle call. The WORK IN array
and the workout array are set as in the v„OPNWK call.

Input Parameters:

handlel device handle of an open physical screen

Output Parameters:

handle2 +n= device handle, 0 = cannot open device

V_CLSVWK (device_handle)

Terminates virtual device and prevents further screen output to device.

Input Parameters:

device_handle virtual device handle

Output Parameters: NONE

V_CLRWK (device_handle)

Clear Workstation. Erase screen, form feed printer or output opcode to
metafile.

Input Parameters: dev i ce_hand Le

Output Parameters: NONE

V_UPDWK (device_handle)

Execute all pending graphic commands. For printer drivers you must use this
function to start output. For a metafile, GEM VDI outputs the opcodes.

Input Parameters: devi ce_handle

Output Parameters: NONE

VS_CLIP (handle clip_flag x1 y1 x2 y2)

Enable or disable clipping of GEM VDI. The default is for clipping disabled.

GEM HiSoft FORTH Page 97

Input Parameters:

handle device handle

clip_flag clipping flag
0 = turn clipping off
+n = turn clipping on

xl x-coord of upper right corner to clip

yi y-coord of upper right corner to clip

x2 x-coord of lower left corner to clip

y2 y-coord of lower left corner to clip

Output Parameters:NONE

5.4.3 GEM VDI Output Functions

V_PLINE (handle count —)

Display a 'poly line' on a graphics device. GEM VDI will not display a single
coordinate line. Lines are drawn using the current line attributes:

• colour

• line type
• line width

• end style
• current writing mode

Input Parameters:

handle device handle

count number of vertices i.e. (x,y pairs) to
be drawn

px a r ra y array of coordinates of poly line in the PTs I N word array. This
array must be filled before using this function.

0 PTSIN x-coord of 1st point

1 PTSIN y-coord of 1st point

2n-2 PTSIN x-coord of last point

2n-1 PTSIN y-coord of last point

Output Parameters: NONE

Page 98 HiSoft FORTH GEM

V_PMARKER (handle count)

Draws markers at the points specified in the PTs i n input array. GEM VDI
displays the markers using the current marker attributes:

• colour

• scale

• type
• writing mode

Input Parameters:

handle device handle

count number of vertices i.e. (x,y pairs) to
be drawn

pxarray array of coordinates for the markers in ptsin word array. This
array must be filled before using this function.

0 PTSIN x-coord of 1st point

1 PTSIN y-coord of 1st point

2n-2 PTSIN x-coord of last point

2n-1 PTSIN y-coord of last point

Output Parameters: NONE

V_GTEXT (handle x y string —)

Display graphic text at the x, y alignment point. The default alignment is the
left baseline of the text string or it can be changed with vst_alignment.

Input Parameters:

handle device handle

X x-coord of alignment point of text

y y-coord of alignment point

string address of null terminated string

Output Parameters: NONE

V_FILLAREA (handle count)

Fills a complex polygon specified in ptsin input array. The area is filled
using the current attributes:

• fill area colour

• interior style
• writing mode
• style

GEM HiSoft FORTH Page 99

Input Parameters:

handle device handle

count number of vertices i.e. (x,y pairs) to
be drawn

pxarray array of coordinates for the the area to be filled in ptsin word
array. This array must be filled before using this function.

0 PTSIN x-coord of 1st point

1 PTSIN y-coord of 1st point

2n-2 PTSIN x-coord of last point

2n-1 PTSIN y-coord of last point

Output Parameters: NONE

V_CELLARRAY (handle x1 y1 x2 y2 row_length el_used
num_rows wrt_mode)

Draw a rectangular array defined by the x,y coordinates and the colour index
array in intin. GEM VDI divides the rectangle into cells based on the
number of rows and columns and the colour index array specifies the colour
for each cell.

Input Parameters:

handle device handle

x 1 x-coord of lower right corner

yi y-coord of lower left corner

x2 x-coord of upper right corner

y2 y-coord of upper right corner

r o w_length length of row in colour index array

e L_u s e d number of elements in each row

n um_ro w s number of rows in colour index array

w rt_mod e pixel operation

Output Parameters:NONE

Page 100 HiSoft FORTH GEM

V CONTOURFILL (handle y index

Flood fill area until edge or colour index. If index is negative, the algorithm
searches for any colour other than the seed colour.

Input Parameters:

handle device handle

x x-coord of starting point

y y-coord of starting point

index colour index

Output Parameters: NONE

VR_RECFL (handle x1 y1 x2 y2)

Fills rectangular area with pattern defined by current fill area attributes.

Input Parameters:

handle device handle

x 1 x-coord of upper right corner

yi y-coord of upper right corner

x 2 x-coord of lower left corner

y2 y-coord of lower left corner

Output Parameters: NONE

V_BAR (handle x1 y1 x2 y2

Draw a filled bar.

Input Parameters:

handle device handle

x1 x-coord of upper right corner

y1 y-coord of upper right corner

x2 x-coord of lower left corner

y2 y-coord of lower left corner

Output Parameters: NONE

GEM HiSoft FORTH Page 101

V_ARC (handle x y radius begang endang)

Draw an arc.

Input Parameters:

handle device handle

X x-coord of centre point

y y-coord of centre point

radius radius

begang start angle (0-3600)

endang end angle (0-3600)

Output Parameters: NONE

V_PIE (handle x y radius begang endang)

Draw a pie slice.

Input Parameters:

handle device handle

X x-coord of centre point

y y-coord of centre point

radius radius

begang start angle (0-3600)

endang end angle (0-3600)

Output Parameters: NONE

V_CIRCLE (handle x y radius

Draw a circle.

Input Parameters:

handle device handle

X x-coord of centre point

y y-coord of centre point

radius radius

Output Parameters: NONE

Page 102 HiSoft FORTH GEM

V_ELLIPSE (handle x

Draw an ellipse.

Input Parameters:

y xradius yradius

handle device handle

x1 x-coord of centre point

y 1 y-coord of centre point

xradius radius of x-axis

y ra d i us radius of y-axis

Output Parameters: NONE

V_ELLARC (handle x y xradius yradius begang endang

Draw an elliptical arc.

Input Parameters:

handle device handle

X x-coord of centre point

y y-coord of centre point

xradius radius of x-axis

yradius radius of y-axis

begang start angle (0-3600)

endang end angle (0-3600)

Output Parameters: NONE

V_ELLPIE (handle x y xradius yradius begang endang
)

Draw an elliptical pie slice.

Input Parameters:

h a n d L e device handle

X x-coord of centre point

y y-coord of centre point

xradius radius of x-axis

yradius radius of y-axis

begang start angle (0-3600)

endang end angle (0-3600)

Output Parameters: NONE

GEM HiSoft FORTH Page 103

V_RBOX (handle x1 y1 x2 y2

Draw a rectangle with rounded corners

Input Parameters:

handle device handle

x 1 x-coord of upper right corner

yi y-coord of upper right corner

x2 x-coord of lower left corner

y2 y-coord of lower left corner

Output Parameters: NONE

V_RFB0X (handle x1 y1 x2 y2 --

Draw a filled rectangle with rounded corners.

Input Parameters:

handle device handle

x 1 x-coord of upper right corner

yi y-coord of upper right corner

x2 x-coord of lower left corner

y2 y-coord of lower left corner

Output Parameters: NONE

V_JUSTIFIED (handle x y string Length word_space
char_space)

Output left and right justified graphics text to the workstation.

Input parameters:

handle device handle

X x-coord of alignment point of text

y y-coord of alignment point

string string of text

length length of text in x-axis units

wo rd_s pace inter-word spacing
0 = do not modify spacing
non-zero = allows GEMVDI to modify spacing

c h a r_s pace inter-word spacing

0 = do not modify spacing
non-zero = allows GEMVDI to modify spacing

Output Parameters: NONE

Page 104 HiSoft FORTH GEM

I

I

I

I

I

I

5.4.4 GEM VDI Attribute Functions

VSWR_MODE (handle mode set_mode)

Select writing mode used for drawing operations.

Writing Modes:

1 Replace

2 Transparent

3 XOR

4 Reverse Transparent

Input Parameters:

handle device handle

mode writing mode requested

Output Parameters:

s e t_mod e writing mode selected

VS_COLOR (handle index red green blue -

Sets a colour index to a colour specified RGB combination.

Input Parameters:

handle device handle

index colour index

red red (0-1000)

green green (0-1000)

blue blue (0-1000)

Output Parameters: NONE

GEM HiSoft FORTH Page 105

VSL_TYPE (handle style set_type)

Set line type for polyline operations. The styles are as follows

1 solid

2 long dash

3 dot

4 dash,dot

5 dash

6 dash,dot,dot

7 user-defined

8-n device dependant

Input Parameters:

handle device handle

style requested line style

Output Parameters:

s e t_ty p e line style selected

VSL_UDSTY (handle pattern)

Set user-defined line style to 16 bit pattern word.

Input Parameters:

handle device handle

pattern line style pattern word, 16 bits

Output Parameters: NONE

VSL_WIDTH (handle width set_width)

Set the width of lines for poly line operations.

Input Parameters:

handle device handle

width requested line width

Output Parameters:

set_width line width selected

Page 106 HiSoft FORTH GEM

VSL_COLOR (handle color_index --

Set colour index for polyline operations.

Input Parameters:

set color)

handle device handle

c oIo r_i n d e x requested colour index

Output Parameters:

s e t_c oIo r line colour index

VSL_ENDS (handle beg_style end_style

Sets end style of polyline.

Input Parameters:

handle device handle

b e g_s t yIe end style for beginning point
0 = squared (default)
1 = arrow

2 = rounded

e n d_s t yIe end style for end point
0 = squared (default)
1 = arrow

2 = rounded

Output Parameters: NONE

VSM_TYPE (handle symbol set_type)

Set marker type for polymarker functions.

Marker Types:

GEM

1 dot

2 + plus
3 * asterisk

4 0 square

5 X diagonal cross
6 <> diamond

7-n device dependant

HiSoft FORTH Page 107

Input Parameters:

handle device handle

symbol requested polymarker type

Output Parameters:

se t_type selected polymarker type

VSM_HEIGHT (handle height set_height)

Set polymarker height for polymarker functions.

Input Parameters:

handle device handle

height requested polymarker height

Output Parameters:

s e t_h eight selected polymarker height

VSM_C0L0R (handle color_index

Set colour index for polymarker functions

Input Parameters:

set color)

handle device handle

c oIo r_i n d e x requested polymarker colour

'arameters:

s e t_c o I o r selected polymarker height

VST_HEIGHT (handle height char_width
char_height cell_width cell_height)

Set current graphic text character height.

Input Parameters:

handle device handle

height requested character height

Page 108 HiSoft FORTH GEM

Output Parameters:

c h a r_w i d t h character width selected

c h a r_h eight character height selected

eell_w i d t h character cell width

cell_height character cell height

VST_P0INT (handle point set_point char_width
char_height ceLL_width cell_height)

Set current graphic text character height in printer points. A point is 1/72 of
an inch.

Input Parameters:

handle device handle

height cell height in points

Output Parameters:

s e t_po i n t character height in points

c h a r_h eight character height selected

c e L L_w i d t h character cell width

eell_height character cell height

VST_R0TATI0N (handle angle set_baseline

Request an angle of rotation for character baseline vector

Angle spec:

900

1800-

2700

Input Parameters:

handle device handle

angle requested angle of rotation (0-3600)

Output Parameters:

set_baseline selected angle of rotation (0-3600)

GEM HiSoft FORTH Page 109

VST_FONT (handle font set_font)

Select a graphic character face for graphic text operations.

Input Parameters:

handle device handle

font requested software text face

Output Parameters:

s e t_fo n t text face selected

VST_C0L0R (handle color_index

Set colour index for graphic text operations.

Input Parameters:

-- set color)

handle device handle

coLor_ index requested text colour

Output Parameters:

set color selected text colour

VST_EFFECTS (handle effect set_effect)

Set text special effects for displayed graphic text.

Special Effect Bit Map
0 thickened

1 intensity
2 skewed

3 underlined

4 outline

5 shadow

Input Parameters:

handle device handle

effect special effect word

Output Parameters:

set_ef feet special effect selected

Page 110 HiSoft FORTH GEM

I

I

I

I

VST_ALIGNMENT (handle hor_in vert_in
ve rt_ou t)

Set horizontal and vertical alignment for graphic text.

Input Parameters:

ho r out

handle device handle

h o r_i n horizontal alignment requested
0 = left justified (default)
1 = centre justified
2 = rounded

v e r t_ i n end style for end point
0 = squared (default)
1 = half line

2 = ascent line

3 = bottom

4 = descent

5 = top

Output Parameters:

h o r_o u t horizontal alignment selected
ve r t_o u t vertical alignment selected

VSF_INTERI0R (handle style set_interior

Set the fill interior style used in polygon operations

Input Parameters:

handle device handle

style horizontal alignment requested
0 = hollow

1 = solid

2 = pattern

3 = hatch

4 = user defined style

Output Parameters:

GEM

set_interior fill interior style selected

HiSoft FORTH Page 111

VSF_STYLE (handle style_index set_style)

Set the fill style based on the fill interior style.

Input Parameters:

handle device handle

s t y L e_i n d e x requested pattern fill style index

Output Parameters:

s e t_s t yle pattern fill style index selected

VSF_C0L0R (handle color_index set_color)

Set the colour index for polygon fill functions.

Input Parameters:

handle device handle

coIo r_i n d e x requested fill colour index

Output Parameters:

s e t_s t y L e requested fill colour index selected

VSF_PERIMETER (handle per_vis se t_pe rimeter)

Turns the outline of a fill area on and off. Default is visibility on at Open
Workstation.

Input Parameters:

handle device handle

style visibility flag
0 = invisible

+n = visible

Output Parameters:

s e t_pe rimeter visibility selected

Page 112 HiSoft FORTH GEM

VSF_UDPAT (handle planes)

p f i Ll_p a t must be set up in I n t i n .

Re-define the user definable fill pattern.

Input Parameters:

handle device handle

planes number of planes

Output Parameters: NONE.

5.4.5 GEM VDI Raster Operations

VR0_CPYFM (handle wr_mode psrcMFDB pdesMFDB)

Copy a rectangular raster area from source to destination, ptsin must be
filled in before this call.

Input Parameters:

handle device handle

w r_mo d e logic operation

psrcMFDB address of source MFDB

pdesMFDB address of destination MFDB

The ptsin parameters are specified as follows:

0 PTSIN x-coord of corner of rectangle
1 PTSIN y-coord of corner of rectangle
2 PTSIN x-coord of diagonally opposite corner
3 PTSIN y-coord of diagonally opposite corner

Output Parameters: NONE

VRT_CPYFM (handle wr_mode psrcMFDB pdesMFDB
coLor_index_1s coIor_index_0s)

Copy a monochrome rectangular raster area from source to a colour area.
ptsin must be filled in before this call.

Input Parameters:

GEM

handle device handle

psrcMFDB address of source MFDB

pdesMFDB address of destination MFDB

color_i ndex_1s colour index for Is

c oIo r_i n d e x_0 s colour index for Os

HiSoft FORTH Page 113

pxyarray:

0 PTSIN x-coord of corner of rectangle
1 PTSIN y-coord of corner of rectangle
2 PTSIN x-coord of diagonally opposite corner
3 PTSIN y-coord of diagonally opposite corner

Output Parameters: NONE

VR_TRNFM (handle psrcMFDB pdesMFDB -

Transform a raster area from a standard format to a device specific format or
vice versa.

Input Parameters:

)

handle device handle

psrcMFDB address of source MFDB

pdesMFDB address of destination MFDB

Output Parameters: NONE

V_GET_PIXEL (handle x y pel index)

Get a pixel value and colour index for a pixel at (x,y).

Input Parameters:

handle device handle

X x-coord of pixel

y y-coord of pixel

Output Parameters:

handle device handle

p e I pixel value

index colour index

Page 114 HiSoft FORTH GEM

5.4.6 GEM VDI Input Functions

VSIN_M0DE (handle dev_type mode)

Set input mode for following logical input devices to request or sample.

Input Parameters:

handle

d e v_t y p e

mode

device handle

logical input device
1 = locator

2 = valuator

3 = choice

4 = string

input mode
1 = request
2 = sample

Output Parameters: NONE

VRQ_LOCATOR (handle x y xout yout term)

Get the position of the specified locator device.

Input Parameters:

handle device handle

X initial x-coord of locator

y initial y-coord of locator

Output Parameters:

X final x-coord of locator

y final y-coord of locator

term locator terminator

VRQ_VALUATOR (handle valuator_in --
terminator)

Returns the value of the valuator device. The initial value is incremented or
decremented until a terminating character is found.

Input Parameters:

valuator out

GEM

handle device handle

v a I u a t o r_i n initial valuator

HiSoft FORTH Page 115

Output Parameters:

va I ua t or_o u t valuator out

terminator locator terminator

VRQ_CHOICE (handle ch_in ch_out)

Return the choice status of a selected choice device.

Input Parameters:

handle device handle

c h_i n initial choice number

Output Parameters:

c h_o u t choice number

VRQ_STRING (handle max_length echo_mode echo_x
echo_y string)

Get a string until carriage return or intoUT array is full.

Input Parameters:

handle device handle

ma x_L ength maximum string length

e c h o_mo d e echo mode

0 = no echo

1 = echo

mode input mode
1 = request
2 = sample

e c h o_x x-coord of echo

e c h o_y y-coord of echo

Output Parameters:

string string in I NT 0 UT

Page 116 HiSoft FORTH GEM

VSC_FORM (handle pcur_form_addr)

Re-define mouse cursor form. The Mouse Form is 37 words long and can be
defined as

37 WARRAY M0USE_F0RM

Mouse Form

0 x-coord hot spot

1 y-coord hot spot

2 reserved = 1

3 mask colour index = 0

4 data colour index = 1

5-20 16 words of 16 bit cursor mask

21-36 16 words of 16 bit cursor data

rameters:

handle device handle

pcu r_form_a c dr address of mouse cursor form

Output Parameters: NONE

VEX TIMV (handle tim addr •- otim addr tim conv)

Allow application to patch into timer interrupt vector and perform some
action on each timer tick.

Input Parameters:

handle device handle

t i m_a d d r address of application timer

Output Parameters:

GEM

o t i m_a d d r address of old timer

t im_c o nv milliseconds per tick

HiSoft FORTH Page 117

V_SHOW_C (handle reset

Show mouse cursor.

Input Parameters:

handle device handle

reset reset flag
0 = ignore number of hide calls
+n= normal show cursor

Output Parameters: NONE

V_HIDE_C (handle •

Hide mouse cursor

Input Parameters:

handle device handle

Output Parameters: NONE

VQ_M0USE (handle pstatus x y)

Get the current state of the mouse buttons

Input Parameters:

handle device handle

Output Parameters:

n

pstatus mouse button status

X x position of cursor

y y position of cursor

VEX_BUTV (handle pusrcode psavcode)

Allow application to patch into button change vector and perform some
action each time the state of the mouse buttons change.

Input Parameters:

handle device handle

pusrcode address of mouse button state change code

Output Parameters:

psavcode address of old mouse button state change code

Page 118 HiSoft FORTH GEM

VEX_MOTV (handle pusrcode psavcode)

Allow application to patch into mouse movement vector and perform some
action each time the mouse moves to a new location.

Input Parameters:

handle device handle

pusrcode address of mouse movement state change code

Output Parameters:

psavcode address of old mouse movement state change
code

VEX_CURV (handle pusrcode psavcode)

Allow application to patch into cursor change vector and perform some
action each time the cursor is drawn. The application can take over drawing
of the cursor or perform some action and let GEM VDI draw cursor.

Input Parameters:

handle device handle

pusrcode address of cursor draw code

Output Parameters:

psavcode address of old cursor draw code

VQ_KEY_S (handle pstatus)

Get the current state of the keyboard's control, shift and ALt keys.

bitno effect

0 right shift key

1 left shift key

2 control key

3 Alt key

Input P; irameters:

handle device handle

Output Parameters:

pstatus keyboard status

GEM HiSoft FORTH Page 119

5.4.7 GEM VDI Inquire Functions

VQ_EXTND (handle owflag)

Returns additional device information not included in the Open Workstation
call. If ouf Lag =0 then the VDI returns the same values as an v_opnwk call.
If owflag = 1 then the VDI returns extended inquire values. The values are
returned in the I NT0 UT array.

Input Parameters:

handle device handle

owflag information flag

Output Parameters: NONE

VQ_C0L0R (handLe color_index set_flag rgbO
rgbl rgb2)

Returns either the requested or the actual value of the colour index in RGB
units.

Input Parameters:

handle device handle

color_i ndex colour whose RGB representation is sought

s e t_f Lag Set or actual flag
0=set (i.e. as requested)
l=actual (i.e. as shown on device)

Output Parameters:

r gbO red intensity

r gb1 green intensity

rg b 2 blue intensity

VQL_ATTRIBUTES (handle)

The current settings of all attributes affecting polylines are returned in
in tout and ptsout.

Input Parameters:

handLe device handle

Output Parameters: NONE

Page 120 HiSoft FORTH GEM

VQM_ATTRIBUTES (handle)

The current settings of all attributes affecting polymarkers are returned in
in tout and ptsout.

Input Parameters:

handle device handle

Output Parameters: NONE

VQF_ATTRIBUTES (handle)

The current settings of all attributes affecting fill areas are returned in
in tout and PTSOUT.

Input Parameters:

handle device handle

Output Parameters: NONE

VQT_ATTRIBUTES (handle)

The current settings of all attributes affecting text items are returned in
intout and ptsout.

Input Parameters:

handle device handle

Output Parameters: NONE

VQT_EXTENT C handle string)

Returns a rectangle that encloses the requested string. The coordinates
are returned in ptsout.

Input Parameters:

handle device handle

string address of the string

Output Parameters: NONE

GEM HiSoft FORTH Page 121

VQIN_MODE (handLe dev_type input_mode)

Returns the current input mode for the logical input device: locator, choice
and string.

Input Parameters:

handle device handle

d e v_t y p e logical input device
1 = locator

2 = valuator

3 = choice

Output Parameters:

i n pu t_mod e input mode
1 = request
2 = sample

5.4.8 GEM VDI Escape Functions

V_ESCAPES (handle param_in verts_in func_id ---)

The escape functions perform a wide variety of different functions depending
on the device.

The input parameters must be set up in the I NT in and ptsin arrays. Any
output parameters will be returned in the IN TOUT array.

Input Parameters:

handle device handle

para m_i n number of parameters in IN t i n

vert s_i n number of parameters in ptsin

f u n c_ id function identifier. See table below

Output Parameters: NONE

Page 122 HiSoft FORTH GEM

VDI Escapes

Inquire addressable Alpha character cells

Exit Alpha mode

Enter Alpha mode

Alpha cursor up

Alpha cursor down

Alpha cursor right

Alpha cursor left

Home Alpha cursor

Erase to end of Alpha screen

10 Erase to end of Alpha text line

11 Direct Alpha cursor address

12 Output cursor addressable Alpha text

14 Reverse video off

15 Inquire current Alpha cursor address

16 Inquire tablet status

17 Hardcopy

18 Place graphic cursor at location

19 Remove last graphic cursor

20 Form advance

21 Output window

22 Clear display list

23 Output bit image file

24-59 Unused but reserved

60 Select palette

61-90 Unused but reserved

91 Inquire palette film types

92 Inquire palette driver state

93 Set palette driver state

94 Save palette driver state

95 Suppress palette inquire

96 Palette error inquire

98 Update metafile item

99 Write metafile item

100 Change GEM VDI file name

>100 Unused and available for user extensions

GEM HiSoft FORTH Page 123

As an example of using the v_escapes word, here are some Forth words
implementing some of the escape function identifiers.

: VQ_CHCELLS (handle rows columns)
0 0 \ params = 0, vertices = 0
1 \functionid

V_ESCAPES
0 INTOUT wa \ rows

1 INTOUT US ; \ columns

V_EXIT_CUR (handle)
0 0 2 V_ESCAPES ;

V_ENTER_CUR (handLe)
0 0 3 V_ESCAPES ;

VS_CURADDRESS
1 INTOUT U!
0 INTOUT W!

2 0

(handle row column)

\ column

\ row

\ params = 2, vertices
11 \ function id

V_ESCAPES ;

: VQ_CURADDRESS (handle row colum)
0 0 \ params = 0, vertices = 0
15 \ function id

V_ESCAPES
0 INTOUT W3 \ row

1 INTOUT Wa; \ column

Please refer to GEM documentation in one of the books listed in the
bibliography for more information on the other function identifiers.

5.5 GEM AES

The GEM AES is called from FORTH by placing parameters on the FORTH
data stack. The parameters are in the same order as for C or Assembler. They
also use the Digital Research names for the different functions.

e.g. C binding for menu_bar is

me_breturn = menu_bar(me_btree, me_bshow)

in FORTH this would be

MENU_BAR (me_btree me_bshow me_breturn)

The above FORTH word would expect 2 values on the data stack the first the
addr me_btree, the second the me_bshow value and leave one value on the
stack me_breturn. Data stack before and after a MENU BAR call

before after

TOS m e_b show me_b return

SOS me_b tree

Page 124 HiSoft FORTH GEM

Where it is not practical to pass all the required parameters via the data
stack, it is noted under the GEM word stack picture. In this case the GEM
arrays must be filled before the call with any extra values or addresses
needed.

GEM AES arrays

The following arrays are pre-defined arrays used by the GEM AES. They
expect a cell number on the stack and return an address that can used like a
FORTH variable. If the array is a word array then use w! and wa to store and
fetch word values between the array and the stack.

If the array is a long-word array then use ! and
addresses between the array and the stack.

to fetch long-words or 32 bit

PB (n -- addr) address array

This is the GEM AES Parameter array. It is pre-defined with the addresses of
the other GEM arrays, pb Array:

CONTROL

GLOBAL

INT OUT

ADDR IN

ADD R_0UT

CONTROL (n addr)

GLOBAL (n addr)

INTIN (n addr)

INTOUT (n addr)

ADDRIN (n addr)

ADDROUT (n addr)

GEMSYS ()

Call GEM AES. This call needs the GEM AES arrays set up before the call.

>GEM (PBaddr)

This word is the used to pass preset AES arrays to GEM.

word array

word array

word array

word array

long-word address array

long-word address array

GEM HiSoft FORTH Page 125

5.5.1 GEM AES Application Library Routines

APPL INIT ap_id)

Initialises the application and establishes a number of GEM AES data
structures.

Input Parameters: NONE

Output Parameters:

a p_i d 0 or +n = appl_INIT was ok; this is placed in
the GEM AES global array
-1 = appl_init was not ok.

APPL_READ (ap_rid ap_rlength ap_rpbuff
a p_r return)

Reads a number of bytes from a message pipe.

Input Parameters:

a p_r i d ap_id of the message pipe to read

a p_r Length the number of bytes to read

ap_rpbuff address of read buffer

a p_r return return message 0 = error, n= no error

APPL_WRITE (ap_wid ap_wlength ap_wpbuff
ap_w return)

Writes a number of bytes to a message pipe.

Input Parameters:

a p_w i d ap_id of the message pipe to read

a p_w Length the number of bytes to read

a p_w p b u f f address of read buffer

Output Parameters:

a p_w return return message 0 = error, n= no error

Page 126 HiSoft FORTH GEM

APPL_FIND (ap_fname ap_fid)

Finds the ap_id of another application in the system.

Input Parameters:

ap_f name name of application to find. This string must be
8 characters long. If it is shorter then it should
be padded with spaces.

Output Parameters:

a p_fi d ap_id of found application or -1 = not found

APPL_TPLAY (ap_tpmem ap_tpnum ap_tpscale
ap_tpreturn)

Plays a piece of a GEM AES recording of the user's actions.

Input Parameters:

a p_t p m em address of recording

a p_t p mem the number of user actions to play back

a p_t p s c a Ie a sliding scale (1 to 10,000) of play back speed
50 = half speed
100 = full speed
200 = twice speed

Output Parameters:

ap_tpreturn always returns 1

GEM HiSoft FORTH Page 127

APPL_TRECORD (ap_trmem ap_trcount
)

Records a users interactions with GEM AES.

Each user event uses 6 bytes as follows

ap_t r retu rn

• WORD code for event

0 = timer

1 = button

2 = mouse

3 = keyboard

• LONG value depends on event

timer number of milliseconds elapsed
button low WORD button up = 0, button down = 1

high WORD is number of clicks

mouse low WOFJD mouse's X-coordinate n pixels
high WORD mouse's Y-coordinate in pixels

keyboard low WORD character user typed
high WORD keyboard state

Input Parameters:

a p_t rm em address of recording

a p_t rc o u n t the number of user actions to store

Output Parameters:

ap_trreturn number of user events recorded

APPL_EXIT (ap_xreturn)

Clean up after application is done.

Input Parameters: NONE

Output Parameters:

a p_x return return message. 0 = error, n = no error

Page 128 HiSoft FORTH GEM

5.5.2 GEM AES Event Library Routines

EVNT_KEYBD (ev_kreturn)

Waits for a keyboard event.

Input Parameters: NONE

Output Parameters:

ap_xreturn High WORD = scan code, low WORD = key code

EVNT_BUTTON (ev_bclicks ev_bmask ev_bstate
ev_bmx ev_bmy ev_bbutton ev_bkstate ev_breturn
)

Walts for a mouse button event.

Input Parameters:

ev_b clicks number of mouse clicks to wait for

ev_bmas k mouse buttons to wait for

1 = left button

2 = right button

ev_b state the button state to wait for

0 = down

1 = up

Output Parameters:

GEM

ev_bmx x-coord of mouse

e v_bmy y-coord of mouse

ev_bbutton the mouse button event that occurred

ev_b state the keyboard state when event occurred.bits set
as follows:

1 = Right shift
2 = Left shift

4 = Ctrl

8 = Alt

e v_b return number of times button entered ev_bstate

HiSoft FORTH Page 129

EVNT_MOUSE (ev_moflags ev_mox ev_moy ev_mowidth
ev_moheight ev_momx ev_momy ev_mobutton
ev_mo ks ta t e)

Waits for mouse event.

Input Parameters:

ev_mo flags flag for call
0 = return on entry
1 = return on exit

ev_mo x the x-coord of mouse rectangle

e v_mo y the y-coord of mouse rectangle

ev_mow i d t h the width of mouse rectangle

ev_mo height the height of mouse rectangle

Output Parameters:

e v_momx x-coord of mouse

e v_m o my y-coord of mouse

ev_mobutton the mouse button state when the event
occurred

ev_mo ks t a t e the keyboard state when event occurred. Bits
set as follows:

1 = Right shift
2 = Left shift

4 = Ctrl

8 = Alt

EVNT_MESAG (ev_mgpbuff

Waits for message event.

Input Parameters:

e v_m gpbuff address of 8 word message buffer

Output Parameters: NONE

EVNT_TIMER (ev_tcount)

Waits for timer event.

Input Parameters:

e v_tcount length of time interval in milliseconds

Output Parameters: NONE

Page 130 HiSoft FORTH GEM

1

1

1

I

EVNT_MULTI (ev_mgpbuff ev_mflags ev_mwhich)

Waits for multiple events.

The INt i n array is set up depending on the events that are being waited for.

Input Parameters:

1

1

1

ev_mog pbu f f see EVNT_MESAG

ev_m flags type of events to wait for. Bit settings in hex:
1 keyboard
2 button

4 Ml

8 M2

10 message

1

1

20 timer

ev_bs t a t e the button state to wait for

0 = down

1 = up

1
1 INT_IN ev_mbclicks

2 INT_IN ev_mbmask

1 3 INT_IN ev_mbstate

4 INT_IN ev_mml flags

1 5 INT_IN ev_mmlx

1
6 INT_IN ev_mmly

7 INT_IN ev_mml width

I
8 INT_IN ev_mml height

9 INT_IN ev_mm2flags

1 10 INT_IN ev_mm2x

11 INT_IN ev_mm2y

1 12 INT_IN ev_mm2width

1
13 INT_IN ev_mm2height

1 4 INT_IN ev_mtlocount

1
15 INT_IN ev_mthicount

GEM HiSoft FORTH Page 131

Output Parameters:

e v_mw h i c h the events that occurred (bit settings same as
for ev_mflags)

1 INT_OUT ev_mmox

2 INT_0UT ev_mmoy

3 INT_0UT ev_mmobutton

4 INT_0UT ev_mmostate

5 INT_0UT ev_mkreturn

6 INT_OUT evmbreturn

EVNT_DCLICK (ev_dnew ev_dgetset ev_dspeed)

Sets and gets the speed required for double-clicking.

Input Parameters:

e v_d g e t s e t purpose of call
0 = get current double-click speed
1 = set a new double-click speed

ev_d new new double-click speed (0-4)

Output Parameters:

e v_d speed double-click speed

5.5.3 GEM AES Menu Library Routines

MENU_BAR (me_btree me_bshow

Displays or erases the menu bar.

Input Parameters:

me breturn)

me_b tree addr of menu tree

m e_b show 0 = erase menu

1 = display menu

Output Parameters:

me_breturn 0 = error, -i-n = no error

Page 132 HiSoft FORTH GEM

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

(

MENU_ICHECK(me_ctree me_citem
me_c return)

Displays or erases a check mark next to a menu item.

Input Parameters:

me ccheck

1 me_c tree addr of menu tree
1

me_c item number of object

1 me_c check 0 = erase check mark

1 = display check mark

Output Parameters:

me_creturn 0 = error, +n = no error

MENU_IENABLE (me_etree me_eitem me_eenable
me_e return)

Displays an enabled item in normal brightness and a disabled item in dimmed
characters.

Input Parameters:

me_e tree addr of menu tree

m e_e item number of object

me_e enable 0 = disable item

1 = enable item

Output Parameters:

me_ereturn 0 = error, -i-n = no error

MENU_TNORMAL (me_ntree me_ntitle me_nnormal
me_n return)

Displays menu title in normal or reverse video.

Input Parameters:

m e_n tree addr of menu tree

me_n title number of title

me_nn ormal 0 = reverse video

1 = normal video

Output Parameters:

me_nreturn 0 = error, +n = no error

GEM HiSoft FORTH Page 133

MENU_TEXT (me_ttree
me_t return)

Changes the text of a menu item.

Input Parameters:

m e_titem me ttext

m e_t tree addr of menu tree

m e_t i tern number of object

m e_t t e x t address of text string for menu item

Output Parameters:

me_c return 0 = error, -i-n = no error

MENU_REGISTER (me_rapid me_rpstring me rmenuid
)

Lets a desk accessory set a text string on the desk menu and obtain a desk
accessory id.

Input Parameters:

me_r a p1d desk accessory identifier

me_t item address of desk menu text string

Output Parameters:

me_rmenuid desk menu identifier (0-5)

5.5.4 GEM AES Object Library Routine

0BJC_ADD (ob_atree ob_aparent ob_achild
ob_a return)

Add object to object tree.

Input Parameters:

o b_a tree addr of object tree

o b_a parent number of parent object

o b_a child number of object to add

Output Parameters:

o b_a return 0 = error, +n = no error

Page 134 HiSoft FORTH GEM

OBJC_DELETE (ob_dltree ob_dlobject --

Delete object from object tree.

Input Parameters:

ob dlreturn)

ob dltree

o b_dl_ob j e c
t

o b_a child

addr of object tree

number of parent object

number of object to add

Output Parameters:

ob_dlreturn 0 = error, -l-n = no error

0BJC_DRAW (ob_drtree ob_drstartob ob_drdepth
ob_d rre turn)

Draws an object tree. Clipping of object is set in int_in array.

Input Parameters:

ob_d rtree addr of object tree

ob_d rstartob object to start drawing from

o b_d rdepth level of depth to draw to

Output Parameters:

ob_drreturn 0 = error, -l-n = no error

0BJC_FIND (ob_ftree ob_fstartob ob_fdepth fmx fmy
ob_f return)

Find object under mouse.

Input Parameters:

ob_f tree addr of object tree

ob_f startob object to start searching from

o b_f depth number of levels to search

o b_f m x x-coord of mouse

o b_f my y-coord of mouse

Output Parameters:

ob_f obnum number of object under mouse (-1 = no object)

GEM HiSoft FORTH Page 135

OBJC_OFFSET (ob_oftree ob_ofobject
ob_ofxoff ob_ofyoff)

Calculates the coordinates of object relative to screen origin.

Input Parameters:

ob_o freturn

o b_o ftree addr of object tree

o b_o f o b j e c t object number

Output Parameters:

ob_fobn urn number of object under mouse (-1 = no object)
o b_o f x o f f x-coord of object

o b_o f yo f f y-coord of object

0BJC_0RDER (ob_ortree ob_orobject ob_ornewpos
ob_o rreturn)

Re-order object in object tree.

Input Parameters:

o b_o rt re e addr of object tree

ob_o r ob j e c t object to order

ob_o r n e w po s new position of object

Output Parameters:

ob_o rreturn 0 = error +n=no error Zl
0BJC_EDIT (ob_edtree

ob_ed idx ob edkind
ob_edobject ob_edchar

ob_return ob_ednewidx)

Edit text in g_text or g_boxtext type object.

Input Parameters:

o b_e d t r e e address of object tree

ob_e d ob j e c t object to edit

o b_e dchar character input of user

o b_e d i d x next character position

o b_e d k i n d editor functions (1-3)

Output Parameters:

ob edreturn 0 = error, -i-n = no error

ob ednewiddx next character position after objc_edit

Page 136 HiSoft FORTH GEM

OBJC_CHANGE (ob_ctree ob_cobject ob_cxclip ob_cyclip
ob_cwclip ob_chcLip ob_cnewstate ob_credraw --
- ob_creturn)

Input Parameters:

o b_c tree address of object tree

ob_c object object to change

o b _ c x c I 1 p x-coord of clip rectangle

ob_c y c I i p y-coord of clip rectangle

ob_c w cIi p width of clip rectangle

ob_c h cIi p height of clip rectangle

ob_c newstate new status of object

ob_credraw 0 = no redraw, 1 = redraw

Output Parameters:

ob_c return error, +n = no error

5.5.5 GEM AES Form Library Routines

F0RM_D0 (fo_dotree fo_dostartob fo_doreturn)

Causes the form library to monitor the user's interaction with a form.

Input Parameters:

f o_d o t re e address of object tree

f o_d ostartob first text field to edit, 0 for no start object

Output Parameters:

fo_doreturn 0 = error, +n = no error

GEM HiSoft FORTH Page 137

FORM_DIAL (fo_diflag fo direturn)

Reserves or frees the portion of the screen used for dialog boxes and can
draws an expanding or shrinking box. The INTJN array holds small and
large rectangles for FMD_GROW and FMD_SHRINK.

Input Parameters:

f o_d i fI a g FORM_DIAL action

0 fmd_start reserve screen space
1 fmd_grow draws expanding box

2 fmd_SHRINk draws shrinking box
3 fmd_finish frees screen space and
cause redraw

f o_d ostartob first text field to edit, 0 for no start object
1 INT_IN fo_dilittlx

2 INT_IN fo_dilittly

3 INT_IN fo_dilittlw

4 INT_IN fo_dilittlh

5 INT_IN fo_dibigx

6 INT_IN fo_dibigy

7 INT_IN fo_dibigw

8 INT_IN fo_dibigh

Output Parameters:

f o_d oreturn 0 = error, +n = no error

FORM_ALERT (fo_.adefbttn fo_astring

Displays an alert box.

Input Parameters:

fo_aexbttn)

f o_a d e f b 11 n forms default exit button

0 no default

1 first exit button

2 second exit button

3 third exit button

f o_a string address of string containing alert

Output Parameters:

fo_aexbttn number indicating exit button selected

Page 138 HiSoft FORTH GEM

FORM_ERROR (fo_enum

Displays an error box.

Input Parameters:

fo eexbttn)

f o e n u m DOS Error code

Output Parameters:

fo_eexbttn number indicating exit button selected

FORM_CENTER (fo_ctree)

Centres a dialog box on the screen.

Input Parameters:

f o c t r e e address of object tree dialog

Output Parameters: NONE.

The int_out array contains

1 INT_0UT x-coord of centred object

2 INT_0UT y-coord of centred object

3 INT_0UT width of centred object

4 INT_0UT height of centred object

5.5.6 GEM AES Graphics Library :
GRAF_RUBBERBOX (gr_rx gr_r'y gr_rminwidth

gr_rminheight gr_rreturn gr_rI astwidth
g r_rlastheight)

Draws a rubber box that expands and contracts from a fixed point as the
mouse moves.

Input Parameters:

g r_r x x-coordinate of box

g r_ry y-coordinate of box

gr_rminwidth smallest width

g r_rm inheight smallest height

Output Parameters:

GEM

g r_r return 0 = error, +n = no error

g r_rlastwidth width of box

HiSoft FORTH Page 139

gr_rlastheight height of box

GRAF_DRAGBOX (gr_dwidth gr_dheight gr_dstartx
gr_dstarty gr_dboundx gr_dboundy gr_dboundw
gr_dboundh gr_dreturn gr_dfinishx
g r_d f in i s hy)

Moves a box, keeping the mouse pointer in the same position in the box.

Input Parameters:

gr_dwidth width of drag box

g r_d height height of drag box

g r_d s t a rt x start x-coord

g r_d s t a r t y start y-coord

g r_d bo u n d x x-coord of boundary rectangle

g r_d bo u n dy y-coord of boundary rectangle

g r_d bo u n d w width of boundary rectangle

g r_d bou n d h height of boundary rectangle

Output Parameters:

g r_d return 0 = error, +n = no error

g r_d f i n i s h x x co-ord of box

g r_d f i n i s h y y co-ord of box

GRAF_M0VEB0X (gr_mwidth gr_mheight gr_msourcex
gr_msourcey gr_mdestx gr_mdesty gr_mreturn

Draws a moving box.

Input Parameters:

g r_mw i d t h width of box

g r_m height height of box

g r_m s ou r c e x initial x-coord of box

g r_ms ou r c e y initial y-coord of box

g r_md e s t x final x-coord of box

g r_md e s t y final y-coord of box

Output Parameters:

g r_m return 0 = error, -l-n

Page 140 HiSoft FORTH GEM

GRAF_GROWBOX (gr_gstx gr_gsty gr_gstwidth
gr_gstheight gr_gfinx gr_gfiny gr_gfinwidth
gr_gfinheight gr_greturn)

Draws an expanding box outline.

Input Parameters:

g r_g s t x initial x-coord

g r_gs t y initial y-coord

g r_gs t w i d t h initial width

g r_g s t h e i g h t initial height

g r_g f i nx final x-coord

g r_g f1ny final y-coord

g r_g finwidth final width

9 r_g finheight final height

Output Parameters:

gr_greturn 0 = error, +n = no error

GRAF_SHRINKBOX (gr_sfinx gr_sfiny gr_sfinwidth
gr_sfinheight gr_sstx gr_ssty gr_sstwidth
gr_sstheight gr_sreturn)

Draws a shrinking box outline.

Input Parameters:

g r_s s t x initial x-coord

g r_s sty initial y-coord

g r_s s t w i d t h initial width

g r_s s t h e i g h t initial height

g r_s f i n x final x-coord

g r_s f i ny final y-coord

g r_s finwidth final width

g r_s finheight final height

Output Parameters:

r_sreturn 0 = error, +n = no error

GEM HiSoft FORTH Page 141

GRAF_WATCHBOX (gr_wptree gr_wobject
gr_woutstate gr_wreturn)

Watches a box to see if the mouse pointer is inside.

Input Parameters:

g r_w instate

g r_wp tree address of object tree containing box

g r_w object index of object in tree

g r_w instate box state when mouse pointer (with button
down) is inside it:

$00 NORMAL

$01 SELECTED

$02 CROSSED

$04 CHECKED

$08 DISABLED

$10 OUTLINED

$20 SHADOWED

g r_w outstate box state when mouse pointer (button
down) is outside it. Values as for
g r_w instate.

Output Parameters:

g r_w return mouse pointer position

0 - outside box

1 - inside box

GRA F_SLIDEBOX
g r_sIvh

Keeps a sliding box inside its parent box.

Input Parameters:

(gr_slptree gr_sLparent gr_slobject
-- g r_sIret u rn)

g r_s L p t re e tree containing objects

gr_slparent index of parent in tree

g r_sIob j e c t index of slider in tree

g r_s L v h direction of slider movement

0 - horizontal

1 - vertical

Output Parameters:

g r_sIreturn position of center of slider relative to
parent (0 to 1000)

0 = left or top. 1000 = right or bottom

its

Page 142 HiSoft FORTH GEM

GRAF_HANDLE (gr_handle)

Returns a GEM VDI handle for the opened screen workstation that the GEM
AES libraries use.

Input Parameters: NONE

Output Parameters:

I r handle GEM VDI handle

Information about the system font is also returned by graf_handle in the
I nt_0 UT array, as below:

1 INT_0UT gr_hwchar

2 INT_0UT grhhchar

3 INT_0UT gr_hwbox

4 INT_0UT gr_hhbox

GRAF_MOUSE (gr_mofaddr gr_monumber gr_moreturn
)

Lets an application change the mouse form to one of a predefined set or a
application defined form.

Input Parameters:

g r_mo faddr address of 35 word buffer that contains the
mouse definition block

g r_mo number 0 - arrow

1 - text cursor

2 - hourglass

3 - hand with pointing finger
4 - flat hand, extended fingers

5 - thin cross hair

6 - thick cross hair

7 - outline cross hair

255 - mouse form stored in gr_mofaddr

256 - hide mouse form

257 - show mouse form

Output Parameters:

gr_moreturn 0 = error, +n = no error

GEM HiSoft FORTH Page 143

GRAF_MKSTATE (gr_mkmx gr_mkmy gr_mkmstate
g r_m k ks t a te)

Returns the current mouse location, mouse button state and keyboard state.

Input Parameters: NONE

Output Parameters:

g r_m kmx current mouse x-coord

g r_m kmy current mouse y-coord

g r_m kms t a t e current mouse button state

1 - left button

2 - right button

3 - right and left buttons

g r_m k ks t a t e current keyboard state

bit set: 0 = key up, 1 = key down

1 - right-shift

2 - left-shift

4 - Ctrl

8 -Alt

5.5.7 GEM AES Scrap Library Routines

SCRP_READ (sc_rpscrap sc_rreturn)

Reads the current scrap directory for the clipboard.

Input Parameters:

s c_r pscrap address of buffer for scrap directory

Output Parameters:

sc_rreturn 0 = error, +n = no error

SCRP_WRITE (sc_wpscrap sc_wreturn)

Changes the current scrap directory for the clipboard.

Input Parameters:

s c_w pscrap address of new scrap directory

Output Parameters:

s c_w return 0 = error, +n = no error

Page 144 HiSoft FORTH GEM

5.5.8 GEM AES File Selector Library

FSEL_INPUT (fs_iinpath fs_iinseL fs_ireturn)

Displays the File Selector dialog box and lets the user select a filename.

Input Parameters:

f s_i inpath address of directory path

f s_i i n s eI address of file name

Output Parameters:

fs_ireturn 0 = error, +n = no error

5.5.9 GEM AES Window Library Routines

WIND_CREATE (wi_crkind wi_crwx wi_crwy
wi_crwh wi_crreturn)

Allocates the application's full-size window and returns a handle.

Input Parameters:

w i c r w w

w i _c rk i n d window components. Component bits:
1 NAME

2 CLOSE

4 FULL

5 MOVE

10 INFO

20 SIZE

40 UPARROW

80 DNARROW

100 VSLIDE

200 LFARROW

400 RTARROW

800 HSLIDE

w i _c r w x x-coord of full-size window

w i _c r w y y-coord of full-size window

w i _c r w u width of full-size window

w i _c r w h height of full-size window

Output Parameters:

wi creturn

GEM

the window handle (0-n)
-n = no more windows

HiSoft FORTH Page 145

WIND_OPEN (wi_ohandle wi_owx wi_owy wi_oww wi_owh
wi_o return)

Opens the created window to a specified size.

Input Parameters:

w i_o handle window handle

w i _o w x x-coord of initial window size

w i_o wy y-coord of initial window size

w i _o ww width of initial window size

w i _ow h height of initial window size

Output Parameters:

wi_o return 0 = error, -l-n = no error

WIND_CLOSE (wi_clhandle wi_clreturn)

Close an open window.

Input Parameters:

w i _cIh a n d L e window handle

Output Parameters:

wi_clreturn 0 = error, +n = no error

WIND_DELETE (wi_dhandle wijreturn)

De-allocates the application's window and handle.

Input Parameters:

ui d h a n d I e window handle

Output Parameters:

wi_d return 0 = error. +n = no error

Page 146 HiSoft FORTH GEM

WIND_GET (wi_ghandle wi_gfield wi_greturn)

Gets information on a particular window. The results are returned in the
int_out array.

Input Parameters:

w i _g h a n sIw window handle

w i _g field window field

4 WF_WORKXYWH x.y.width.height
5 WF_CURRXYWH x.y.width.height
6 WF_PREVXYWH x.y.width.height
7 WF_FULLXYWH x.y.width.height
8 WF_HSLIDE gwl = position (O-IOOO)
9 WF_VSLIDE gwl = position (0-1000)
10 WF_TOP gwl = active window
1 1 WF_FIRSTXYWH x.y.width.height
12 WF_NEXTXYWH x.y.width.height
15 WF_HLSIZE gwl = size (1-1000)

-1 (default minimum)
16 WFJVLSIZE gwl = size (1-1000)

-1 (default minimum)

Output Parameters:

w i _g return 0 = error, +n = no errors

Output Fields:

GEM

2 int_out wi_gw 1

3 INT_0UT wi_gw2

4 INT_0UT wi_gw3

5 INT_0UT wi_gw4

HiSoft FORTH Page 147

WIND_SET (wi_shandLe wi_sfield wi_sreturn)

Sets new values for the fields that determine how a window is displayed.

Input Parameters:

w i _s handle

w i _ s f i e Ld

Input Fields:

INT_IN

INT_IN

INT IN

INT IN

Output Parameters:

wi_greturn

window handle

window field

1 WFJKIND su1 see WIND_CREATE
2 WFJVAME address in sw1 and sw2
3 WFJNFO address in sw1 and sw2
4 WF_WORKXYWH x.y.width.height
5 WF_CURRXYWH x.y.width.height
8 WF_HSLIDE swl = position (0-1000)
9 WFJVSLIDE swl = position (0-1000)
10 WF_TOP swl = active window
14 WF_NEWDESK new GEM Desktop

swl and sw2 = address
sw3 = starting object

15 WF_HLSIZE su1 = size (1-1000)
-1 (default minimum)

16 WF_VLSIZE su1 = size (1-1000)
-1 (default minimum)

wi swl

wi_sw2

wi sw3

wi sw4

0 = error, +n = no errors

WIND_FIND (wi_fmx wi_fmy wi_freturn)

Finds which window is under the mouse's X,Ypostion.

Input Parameters:

w i fmx x-coord of mouse

w i _f my y-coord of mouse

Output Parameters:

wi_fretum 0 = error. +n = no error

Page 148 HiSoft FORTH GEM

WIND_UPDATE (wi_ubegend wi_ureturn)

Tell GEM AES that the application is about to update or has finished updating
a window or that the application is about to take control of the mouse.

Input Parameters:

wi_ubegend

wi ureturn

call action

0 - ENDJJPDATE

1 - BEGJJPDATE

2 - END_MCTRL

3 - BEG.MCTRL

y-coord of mouse

Output Parameters:

wi_ureturn 0 = error, -l-n = no error

WIND_CALC (wi_ctype wi_ckind wi_cinx wi_ciny
wi_cinw wi_cinh wi_coutx wi_couty
wi_coutw wi_couth wi_creturn)

Calculates the X and Y coordinates and the width and height of a window's
work area or border.

Input Parameters:

wi_ctype type of calculation
0 = border area

1 = work area

w i _c k i nd window components see win d_create

w i_c i n x input x-coord

w i _c i n y input y-coord

w i _c i n w input width

w i _c i n h input height

Output Parameters:

GEM

wi_coutx output x-coord

w i _c o u ty output y-coord

w i _c o u tw output width

w i _c ou t h output height

wi_creturn 0 = error, +n = no error

HiSoft FORTH Page 149

5.5.10 GEM AES Resource Library Routines

RSRC_L0AD (re_lpfname re_lreturn)

Loads an entire resource file into memory.

Input Parameters:

|re_lpfname | address of resource file name

Output Parameters:

re_lreturn 0 = error, +n = no error

RSRC_FREE (re_freturn)

Frees memory allocated during rsrc_load.

Input Parameters: NONE

Output Parameters:

re_lreturn 0 = error, -l-n = no error

RSRC_GADDR (re_gtype re_gindex
re_gaddr)

Gets the address of a data structure in memory.

Input Parameters:

3

Zl
r e_g return

re_g type type of data structure
0 = tree

1 = OBJECT

2 = TEDINFO

3 = ICONBLK

4 = BITBLK

5 = string
6 = image data
7 = obspec

re_g index index of data structure

Output Parameters:

r e_g addr address of data structure

w i _u return 0 = error, +n = no error

Page 150 HiSoff FORTH GEM

RSRC_SADDR (re_stype re_sindex
re_saddr)

Stores an index to a data structure.

Input Parameters:

re sreturn

r e_s type type of data structure
0 = tree

1 = OBJECT

2 = TEDINFO

3 = ICONBLK

4 = BITBLK

5 = string
6 = image data
7 = obspec

re_s index index of data structure

Output Parameters:

re_s addr address of data structure

re_s return 0 = error, +n = no error

RSRC_OBFIX (re_otree re_oobject)

Converts an object's X and Y coordinates, width and height from character
coordinates to pixel coordinates.

Input Parameters:

re_otree address of object tree

re_oo b j e c t index of object to be converted

Output Parameters: NONE

5.5.11 GEM AES Shell Library Routines

SHEL_READ (sh_rpcmd sh_rptaiL sh_rreturn)

Lets an application determine how it was invoked.

Input Parameters:

sh_rptai I address of command tail

sh_rpcmd address of command

Output Parameters:

s h_r return 0 = error, +n = no error

GEM HiSoft FORTH Page 151

SHEL_WRITE (sh_wdoex sh_wisgr sh_wiscr sh_wpcmd
sh_wptaiL sh_wreturn)

Exits GEM AES or tells which application to run next.

Input Parameters:

s h_wd o e x 0 = return to desktop

1 = run application

s h_w i s g r 0 = text app, 1 = graphic app

s h_w iscr 0 = TOS app, 1 = GEM app

s h_w p c md address of command file

s h_wp tail address of command tail

Output Parameters:

s h_r return 0 error, -i-n = no error

SHEL_FIND (sh_fpbuff sh_freturn)

Locates a filename by following the AES search path.

Input Parameters:

s h_f p b u f f file name buffer

Output Farameters:

s h_f return 0 = error. +n = no error

SHEL_ENVRN (sh_epvalue sh_eparm)

Searches the DOS environment for a parameter and returns the address of its
value.

Input Parameters:

s h_e pva I u e pointer to address of byte following parameter

s h_e pa r m parameter string address

Output Parameters: NONE

Page 152 HiSoft FORTH GEM

Appendix A.
Implementation details

A.l Memory Map

High TPA :
free ram used by GEMDOS Operating system

ram disk (optional)

Free User RAM

Disk Buffers 1028 * 2 = 2056 bytes

Return Stack 2k bytes

Data Stack 256 bytes

Terminal buffer 1360 bytes

User Page 512 bytes

HiSoft FORTH

Main Kernel

Low TPA:

desk accessories, ram disks etc.

A.2 HiSoft FORTH Compiler

H IMEM

LOMEH

HERE

There are a number of different ways to implement the FORTH language. The
traditional method has been to use a little interpreter to read the address of
the next word to execute. This has the advantage of producing compact code,
but the code runs slower than a truly compiled language because of the
interpreter overhead.

HiSoft FORTH uses the Subroutine Threaded method, which produces a sub
routine call to the machine code for each word giving a larger but much
faster program. Fortunately this increase in code size of older versions of
FORTH isn't much of a problem as the ST has much more memory than, say
Z80 or 6502 computers.

Impementation Details HiSoft FORTH Page 153

The header structure for HiSoft FORTH is different because of the subroutine
threading as the CFA is not a pointer but the actual start of FORTH code and
the PFA is only valid with variables and data structures.

When FORTH is compiling (usually between : and ;), it compiles a JSR.L
CFA_of_FORTH_WORD (jump-to-subroutine instruction) for each FORTH
word until it reaches a ; when it compiles an RTS opcode. So that when the
compiled word is executed it makes a series of jumps to different FORTH
words and executes them. When it reaches an RTS opcode it execution ends
and the program continues from the next instruction.

A FORTH compiled word is called a Secondary. The words in the FORTH
kernel (main body of words) could be Secondaries or Primitives. A Primitive
is a FORTH code word that is written in machine code and is executed
directly. A secondary could call another secondary or a primitive, but calls to
secondaries words eventually call a primative to execute some machine code.

A.3 HiSoft FORTH Headers

Each FORTH word has a header usually made by the FORTH word create.
This header comprises of a the name and length of the name found at the
NFA (name field address), a link back to the previous word found at the LFA
(link field address), a pointer to a code field found at the CFA (code field
address), and a place where code or data starts found at the PFA (parameter
field address).

e.g. Header compiled by create <name>

4 bytes

4 bytes

1 byte

1 byte

"N"

"A"

"M"

"E"

Locate field (only compiled code)

LFA link field address (relative)

SYS used by system

NFA length byte

NFA. The FORTH word name is here.This is
padded out to be an even length.

CFA code starts here.

Execute needs the CFA to jump to FORTH code. Each FORTH word
ends with an rts 68000 opcode (Return from Subroutine).

42 VARIABLE FRED

' FRED PFA @ . should print 42

Page 154 HiSoft FORTH Implementation details

Appendix B FIG
(FORTH Interest Group)

The FORTH Interest Group is a useful source of FORTH programs and articles
on FORTH. Membership is £10 per year at the time of writing and
applications for membership, which includes a monthly magazine and access
to an excellent reference library, should be sent to:

FIG (UK)
Membership Secretary
88 Woosehill Lane
Wokingham
BERKSHIRE RG11 2TS

The group also meets at 7pm on the first Thursday of each month at
Polytechnic of South Bank Rm. 408, Borough Rd.

The address of FIG in the USA is:

FORTH Interest Group
P.O. Box 8231

San Jose, CA 95155

Membership in Europe is $42 per year.

FIG HiSoft FORTH Page 155

1
3

Q (D o <D

Appendix C
Technical Support

C.l Technical Support
So that we can maintain the quality of our technical support service we are
detailing how to take best advantage of it. These guidelines will make it easier
for us to help you, fix bugs as they get reported and save other users from
having the same problem. Technical support is available in five ways:

CIX™

Phone

Post

BIX™

GEnie1

our username is (not surprisingly) hisoft. We also have our own
conference just j hisoft. This is the best method as the author of
the FORTH, Henry McGeough is available as hmcg. The Forth
Interest Group also have a conference.

We can offer limited technical support for this product during
our technical hour between 3pm and 4pm, though non-European
customers' calls will be accepted at other times.

if sending a disk, please put your name & address on it.

our username is (still not surprisingly) hisoft. Would UK
customers please use CIX ; it's cheaper for everyone.

our username is (yet again) hisoft.

For bug reports, please always quote the version number of the program (as
given when HiSoft FORTH loads) and the serial number found on your master
disk.

If you think you have found a bug, try and test it with a simple case. It is
always easier for us to answer your questions if you send us a letter and, if the
problem is with a particular program, enclose a copy on disk (which we will
return).

C.2 Upgrades
As with all our products, HiSoft FORTH is undergoing continual development
and, periodically, new versions become available. We make a small charge for
upgrades, though if extensive additional documentation is supplied the
charge may be higher. All users who return their registration cards will be
notified of major upgrades.

Technical Support HiSoft FORTH Page 157

Page 158 HiSoft FORTH Technical Support

Bibliography

FORTH Books

This manual is not intended as a full tutorial. Whilst the reference sections
contain all the information that is included with FORTH implementations,
users who are not experienced FORTH programmers are strongly
recommended to purchase one or more of the introductory texts listed
below.

Title

Starting FORTH

Thinking FORTH

Discover FORTH

Introduction to FORTH

FORTH Programming

System Guide to FORTH

The Complete FORTH

FORTH Techniques

Dr.Dobb's Toolbook of FORTH

Object-Oriented Forth
Implementation of Data Structures
Object-Oriented Forth

Author

Leo Brodie

Leo Brodie

Tom Hogan

K Knecht

L J Scanlon

C H Ting

A Winfield

R Olney & M
Benson

M Ouverson

Dick Pountain

Publisher

Prentice-Hall

Prentice-Hall

McGraw-Hill

HWSams

HWSams

Offette Enterprise

Sigma

Pan Books

M &T books

Academic Press

Dick Pountain BYTE August 1986

These books may be obtained from many good technical bookshops, including
Foyles, Blackwells and Heffers.

ST Books

Most of these book deal with programming in C but the names of the FORTH
routines (and even the parameters) are the same as the C ones.

Title

Computers ST Applications Guide: Programming in C

Computers Guide to the Atari ST Vols 1,2,3

Atari ST Internals

GEM on the Atari ST

Tricks and Tips on the Atari ST

Programmer's Guide to GEM

Bibliography HiSoft FORTH

Publisher

Compute! Books

Compute! Books

Abacus

Abacus

Abacus

Sybex

Page 159

Page 160 HiSoft FORTH Bibliography

Index
!CSP 49 <RESOLVE 44

!RSP 57 = 45

$CD 34 > 45

SFLOAD 36
rNTTVT/'AT T TT~\T7* O /"*

>< 44

$INCLUDE 36 » 44

$MAPS 35 >BODY 44

$OPEN 35 >GEM 125

* 42 >IN 61

*/ 42, 65 >LINK 45

+ 42 >M 79

+! 42 >MARK 44

+C! 42 >NAME 45

+LOAD 42 >R 45

+LOOP 42, 67 >RESOLVE 44

+THRU 42 >VDI 94

+W! 42 >WR 45

. 41 ?CSP 49

- 43 ?DUP 51, 61

-DUP 51 ?MI 79

-TRAILING 43 ?MIDI 79

. 43 ?MO 79

." 43 ?RAM 33

." 64 @ 45

.(43, 64 @RSP 57

.NAME 67 [60

.R43 [j 60, 65

.S43] 60
/ 43, 65 A-LINE 80

/MOD 43, 65 ABORT 46,65

0< 45 ABS46

0= 45 ACTIVATE 78

0> 45 ADDRIN 125

1+ 46 ADDROUT 125

1- 46 AGAIN 46

2* 46 ALLOT 46

2+ 46 ALSO 46

2- 46 AND 46

2/ 46 APPL EXIT 128

2! 70 APPL FIND 127

2® 70 APPL INIT 126

2CONSTANT 70 APPL READ 126

2DROP 70 APPL TPLAY 127

2DUP 70 APPL TRECORD 128

20VER 70 APPL WRITE 126

2ROT 70 ARRAY 47

2SWAP 70 ASCII 47

2VARIABLE 70 ASK 47

79-STANDARD 61 ASM.SEQ 4
; 42,64 ASSEMBLER 47

< 44, 45 AT 47

« 44 AUX47

<> 45 back-up 2
<BUILDS 44 BASE 47

<MARK 44 BCONIN 88

BCONOUT 88

BCONSTAT 88
BEGIN 47

BIOSKEYS 91
BK80

BKGND 82
BLANK 61

BLANKS 48
BLK 48

BLK.SEQ 4
BLK>SEQ 37
BLOCK 48
BODY> 48

BOOT 69

BOX.SEQ 4
BUFFER 48

BX68

C 41

CI41
C@ 45

CARRAY47
CASE 48

CAUXIN 83
CAUXIS 84

CAUXOS 84
CAUXOUT 84

CCONIN 83

CCONIS 84
CCONOS 84
CCONOUT 83

CCONRS 84
CCONWS 84
CFA 48, 154
CHAIN 68
CLIP 81

CLREOL 48

CLREOP 48
CMOVE 49

CMOVE> 65
CNECIN 84

code field address 154
COLOR 81

COMPILE 49
COMPILE] 61
CON 49

CONSTANT 49
CONTROL 94, 125
CONVERT 49, 61
COS 81

COUNT 49

CPRNOS 84

CPRNOUT 84
CR49

CRAWCIN 84
CRAWIO 84

CREATE 49, 61
CSP 49

Page 162

CSROFF81
CSRON 81

CURSCONF91
D+ 71

D+- 71

D- 71

D. 71

D.R71

D0= 71

D2/ 71
D< 71

D= 71

DABS 71

DATE 25

DCHDIR 85

DECIMAL 49
DEFER 50

DEFINITIONS 50
DEPTH 50

desk accessory 31, 36
DESKTOP 68
DevpacST 76
DFREE 85
DGETDIR 85

DGETDRV 85

dictionary 7
DISK 34

Disk Contents 4

Disk Map 34
Disk System 33
DMAX 71

DMIN 71

DMKDIR 85

DNEGATE 71

DO 50, 66
DOES> 50

DOSOUND 92

DRAW 80

DRMDIR 85

DSETDRV 85

ED 25

EDITOR 51

ELSE 51
EMIT 51

EMPTY-BUFFERS 51
ENDCASE 51

ENDOF 51

ERASE 51

Escape Functions 122
EVNT_BUTTON 129
EVNT_DCLICK 132
EVNT_KEYBD 129
EVNT_MESAG 130
EVNT_MOUSE 130
EVNT_MULTI 131
EVNT_TIMER 130
EXECUTE 51

HiSoft FORTH

I

Index

EXPECT 51

FATTRIB 87

FCLOSE 86

FCREATE 86

FD80

FDATIME 87

FDELETE 86

FEDIT 36

FFORCE 87

FGETDTA 86

FGND 82

FILE 34

FILL 52

FIND 52, 62, 66
FLOAD 36

FLOAT.SEQ 4
FLOPFMT 90
FLOPRD 90

FLOPVER 91

FLOPWR 90

FLUSH 52

FNAME 52

FOPEN 86
FORGET 52, 69
FORM_ALERT 138
FORM_CENTER 139
FORM_DIAL 138
FORM_DO 137
FORM_ERROR 139
FORTH 52

FORTH Headers 154
FORTH-79 61

FORTH-83 52, 63
FORTH.BLK 4

FORTH.PRG 4

FREAD 86

FRENAME 87

FSEEK 87

FSELJNPUT 145
FSETDTA 85

FSFIRST 87

FSNEXT 87
FWRITE 86

GEM 52

GEM VDI 93

GEM VDI arrays 93
GEMSYS 125

GETBPB 89

GETMBP 88

GETREZ 90

GETTIME 91

GIACCESS 92

GLOBAL 125

Glossary 41
GRAF_DRAGBOX 140
GRAF_GROWBOX 141
GRAF HANDLE 143

Index

GRAF_MKSTATE 144
GRAF_MOUSE 143
GRAF_MOVEBOX 140
GRAF_RUBBERBOX 139
GRAF_SHRINKBOX 141
GRAF_SLIDEBOX 142
GRAF_WATCHBOX 142
H. 52

HEAD 80

HERE 52

HEX 53

hexadecimal 53

HF8K.ACC 4

HIMEM 33

HOLD 53

HOME 53, 82
HSFORTH.PRG 4

I 53

IF 53

IKBDWS 91

INCLUDE 36

INITMOUSE 90

INTIN 94, 125
INTOUT 94, 125
introduction 7

IOREC 91

IS 53
J 53
JDISINT 91

JENABINT 91

K 53

KBDVBASE 92

KBRATE 92

KBSHIFT 89

KCLR 79

KERNEL. PRG 4

KEY 53

KEY.OFF 79

KEY.ON 79

KEYS.OFF 79

KEYS.ON 79

KEYTBL 91

L>NAME 53

LAST 66

LEAVE 53, 66
LFA 53

link field address 154

LINK> 53

LOAD 54

LOCAL 77

LOCATE 25

LOGBASE 90

LOGOUT 35, 54
LOMEM 33

LOOP 54, 66
LT 80

M* 54

HiSoft FORTH Page 163

M/ 54
M> 79

MACRO 54

MAKEFILE 35, 54
MALLOC 87

MAX 54

MEMORY 33

MENU_BAR 132
MENUJCHECK 133
MENUJENABLE 133
MENU_REGISTER 134
MENU_TEXT 134
MENU_TNORMAL 133
MFPINT 91

MFREE 87

MIDI 54

MIDI library 79
MIDI.SEQ 4. 79
MIDIWS 91
MIN 54

MINUS 54
MOD 54, 65
MOFF 82

MON 82

MORE 35, 55
MULTI 78

Multi-Tasking 77
MVTO 80

N>LINK 55

name field address 154
NAME> 55
NAND 55

NEGATE 55, 62
NFA 55, 154
NIP 55

NOR 55

NOS 8

NOT 55

NX 68

NXOR 55

O. 55

OBJC_ADD 134
OBJC_CHANGE 137
OBJC_DELETE 135
OBJC_DRAW 135
OBJC_EDIT 136
OBJC_FIND 135
OBJC_OFFSET 136
OBJC_ORDER 136
OBJECT.SEQ 4
OF 55

OFFGIBIT 92
OK 56
ONGIBIT 92
ONLY 56

OR 56

ORDER 56

Page 164

OVER 56

PAD 56

PAGE 56

parameter field address 154
PAUSE 77

PB 93, 125
PD 80

PEN 80

PEXEC 83

PFA 56, 154
PHYSBASE 90
PICK 56, 62, 67
PIXEL 80

PLANES 81

PLOT 80

PNAME 56

POLY 81
PRETURN 83

PREVIOUS 47

PRG.SEQ 4
PRGINIT.SEQ 4
PRIMES. SEQ 4
PROGRAM.SEg 4
PROTOBT 91 "
PRT 56

PRTBLK 92

PTERMRES 83
PTSIN 94

PTSOUT 94

PU 80

PUNTAES 92

QUIT 56
QX68
R 57

R/W57
R> 57

R@ 57, 62
RAM 33

RAMCLR 33

RAMDISK 33

RAMK 33

RANDOM 91

README File 5

RECT 81

Registration Card 3
REPEAT 57
ROLL 57. 62, 67
ROT 57

RP! 57, 67
RP@ 57

RSCONF91

RSP 57

RSRC_FREE 150
RSRC_GADDR 150
RSRC_LOAD 150
RSRC_OBFIX 151
RSRC SADDR 151

HiSoft FORTH Index

RT 80

Rubik's Cube 31

RWABS 89

S->D 57

S>D 67

SAVE-BUFFERS 57

SCAN 58

SCRDMP 91

SCRP_READ 144
SCRP_WRITE 144
SEAL 58, 68
SEQ>BLK 37
SETCOLOR 90

SETEXEC 89
SETPALLETE 90

SETPRT 92

SETSCREEN 90

SETTIME 91
SHEL_ENVRN 152
SHEL_FIND 152
SHEL_READ 151
SHEL_WRITE 152
SHRINK 68

SIGN 58

SINE 81

SINGLE 78

SLEEP 78

SLOT 68

SP! 58, 67
SP@ 58
SPACE 58

SPACES 58

SPAN 58

SPRITE 81

SSBRK 90

Stack 8

STATE 58

STOP 78

STRINGS 58
STRLEN 58

SUPER 85

SUPEREXEC 92

SWAP 58

SYSVAR 58

SYSVEC 68

TASK 78

Technical Support 157
TERM 83

TGETDATE

TGETTIME

THEN 58

THRU 58

TIB 59, 67
TOGGLE 59

TOS 8, 59
TSETDATE 84

TSETTIME 85

Index

34

85

TUCK 59

TURTLE 80

TYPE 59

U* 59

U. 59
U.R 59

U/ 59
U/MOD 62
U< 71

UBIK 31

UBIK.SEQ 4
UM* 67

UM/MOD 67
UNDER 59

UNTIL 59
UNWRAP 81

UPC 59
UPDATE 59

Upgrades 157
UPPER 59

upper case 59
USER 77

V 78

V_ARC 102
V_BAR 101
V_CELLARRAY 100
V_CIRCLE 102
V_CLRWK 97
V_CLSVWK 97
V_CLSWK 97
V_CONTOURFILL 101
V_ELLARC 103
V_ELLIPSE 103
V_ELLPIE 103
V_ESCAPES 122
V_FILLAREA 99
V_GET_PIXEL 114
V_GTEXT 99
V_HIDE_C 118
V_JUSTIFIED 104
V_OPNVWK 97
V_OPNWK 94
V_PIE 102
V_PLINE 98
V_PMARKER 99
V_RBOX 104
V_RFBOX 104
V_SHOW_C 118
V_UPDWK 97
VARIABLE 59, 62
VDISYS 94

VERSION 85

VEXJBUTV 118
VEX_CURV 119
VEX_MOTV 119
VEX_TIMV 117
VL1ST 69

HiSoft FORTH Page 165

VOC-LINK 60 WIND_CREATE 145
VOCS 69 WIND_DELETE 146
VQ_COLOR 120 WIND_FIND 148
VQ_EXTND 120 WIND_GET 147
Vg_KEY_S 119 WIND_OPEN 146
vg_MOUSE 118 WIND_SET 148
VQF_ATTRIBUTES 121 WINDJJPDATE 149
VQIN_MODE 122 WORD 60, 63
VQL_ATTRIBUTES 120 Words 7, 60, 69
VQM_ATTRIBUTES 121 WR> 57
VQT_ATTRIBUTES 121 WRAP 81
VQT_EXTENT 121 WTOGGLE 60
VR_RECFL 101 XBTIMER 92
VR_TRNFM 114 XOR 60
VRO_CPYFM 113 XSPR1TE 81
VRQ_CHOICE 116
VRQ_LOCATOR 115
VRQ_STRING 116
VRQ_VALUATOR 115
VRT_CPYFM 113
VS_CLIP 97
VS_COLOR 105
VSC_FORM 117
VSF_COLOR 112
VSFJNTERIOR 111
VSF_PERIMETER 112
VSF_STYLE 112
VSF_UDPAT 113
VSIN_MODE 115
VSL_COLOR 107
VSL_ENDS 107
VSL_TYPE 106
VSLJJDSTY 106
VSL_WIDTH 106
VSM_COLOR 108
VSM_HEIGHT 108
VSM_TYPE 107
VST_ALIGNMENT 111
VST_COLOR 110
VST_EFFECTS 110
VST_FONT 110
VST_HEIGHT 108
VST_POINT 109
VST_ROTATION 109
VSWR_MODE 105
VSYNC 92
W41

W! 41

W* 60

W/ 60
W@ 45

WAKE 78

WARRAY47

WHERE 25

WHILE 60

WIND_CALC 149
WIND_CLOSE 146

Page 166 HiSoft FORTH Index

_
_

_
_

_
_

—
—

_
_

_
u

_
—

—

_
_

_
_

_
_

_
_

-
_

_
_

-
U

_
_

_
_

_
_

_
_

_
_

	Front Cover
	Title and Copyright
	Contents
	Contents 2
	Contents 3
	Contents 4

	1: Introduction
	2: Introducing Forth
	3: HiSoft Forth User Manual
	4: HiSoft Forth Reference
	5: Direct Operating System Calls
	A: Implementation Details
	B: FIG
	C: Technical Support
	Bibliography
	Index
	! - B
	B - E
	E - M
	M - R
	R - V
	V - X

	Back Cover

