

FONTZI™

by MEOCEFT, inc.

Entire Contents
Copyright © 1988 NEOCEPT, Inc.
All Rights Reserved

Written By Mike Fulton FONTZ!

Table of Contents

Preface
Tech Support i
Acknowledgements v
Copyright Notice v
Warning To Software Pirates vi

Chapter 1: Overview

Introduction 1
What is GEM? 1
What is a Font? 2
What Features Does FONTZ! Have? 3
Make a Backup Disk! 9
The README.DOC File 4
FONTZ! & Hard Disk Drives 4
Loading FONTZ! 4
FONTZ! & GDOS 5
Getting Started 6
Your First Time With FONTZ! 6
Chapter 2: FONTZ! Commands
Desk Menu 7
File Menu 8
Edit Menu 16
Draw Menu 20
Character Menu 25
Global Menu 30
Scale Menu 37
Options Menu 42

Keyboard Commands 47

FONTZ! NEOCEPT

Chapter 3: Applications

Creating A New Font 49
Creating A New Pointsize 50
Creating Fonts For Different Devices 50
Notes On Scaling In General 51
Creating And Using A Logo 52
Converting Macintosh Fonts 55
Converting Amiga Fonts 58
Converting DEGAS Fonts 60
Converting Hippo Fonts 60
Appendix
Using Fonts 63
The ASSIGN.SYS File 65
GEM Font Definition 69
Why FONTZ!?7? 83
GEM Font Sheet 88

Index 89

Written By Mike Fulton FONTZ!

Technical Support Policy*

NEOCEPT will provide unlimited free telephone technical
support for all registered owners of FONTZ! In order to qualify
for this, you must send in your warranty card, with all
information included.

We regret that we are unable to provide an unlimited toll- free
technical support telephone line, but it simply is not possible to
do so and still maintain our policy of low priced software.
- However, if you do not wish to telephone, be assured that we
will respond to any and all written requests for help from
registered owners as quickly as possible.

In the interest of saving both ourselves and the user needless
expense and trouble, we ask that you please restrict your
questions to subjects which are either not specifically covered in
this manual or which are not covered in sufficient detail. In the
event that the answers to your questions are contained in the
manual, you will be simply be directed to the proper section. So
for your sake and ours, please read the manual thoroughly.

Also, please have your FONTZ! manual handy, along with
your FONTZ! diskette, when you call. If possible, please have
your computer booted up with FONTZ!, or be ready to run the
program while talking to us.

NEOCEPT, Inc.
547 Constitution, Unit A
Camarillo, CA 93010

Technical Support Line: (805) 482-0313

Other information: (805) 482-4446
Monday- Thursday, 10:00am to 5:00pm PST.

* subject to change without notice.

FONTZ! NEOCEPT

Acknowledgements

I’d like to offer some very special thanks to some very
special people. Without their help, this program might not have
been possible.

First I’d like to thank Bernice Fulton, my mother. She
originally loaned me the money I needed to purchase my Atari
ST development system, way back in the olden days of Summer
1985, and has been very patient in waiting for me to pay her
back. Thanks Mom!

I’d also like to thank Roger & Beverly Hillman, of Cal Com.
I used to work at Cal Com’s Southern California retail store, and
they were often very helpful in many ways. Thanks Guys!

Jerome Broekhuijsen, Doug Keller, and Matthew Stern all
deserve thanks for being kind enough to aid me in my research
into the Macintosh font file format. Without their help, this
very important feature of Fontz! might not have made it into
the program.

I’d like to thank Harjit Singh for his generall encouragement
and friendship, and his occasional help. Thanks a bunch,
Haji- Com!

I’d like to thank the officers and general membership of the
Atari Computer Association of Orange County. This is an Atari
users group I’ve been lucky enough to be associated with for
about 4 years now. Many people in the club made helpful
suggestions of some kind or another to me regarding this
program.

Finally, of course, I’d like to thank my co- workers here at
NEOCEPT, especially Shelby Moore III.

Thanks, Everyone!
Mike Fulton

(iv)

Written By Mike Fulton FONTZ!

Copyright Notice
FONT?Z! is copyrighted (¢) 1988 by NEOCEPT, Inc..

When you open any of the sealed portions of this package,
you are accepting the licence agreement for this package. This
licensing agreement states, among other provisions, that you may
use this program, either on the original diskette or on back-up
copies, on a single computer at a time. Selling, giving away, or
otherwise distributing copies of this program and/or its
documentation is a federal offense! If the possibility of being
caught, sued, and prosecuted does not deter you from this, then
let me tell you an even stronger reason.

NEOCEPT is taking a large risk in offering high-end products
for the Atari ST at a fraction of the cost of similar products for
other computers. We hope that by pricing these products to fit
more people’s budgets, we will sell more of them, allowing us to
make up the difference with increased sales. This philosophy of
bringing new technology to everyone by lowering the price and
inproving the ease of use can only continue if we have the
support of all of you Atari ST enthusiasts. To put it simply, if
you illegally distribute or accept copies of this program, you are
removing NEOCEPT’s incentive to produce and upgrade the
software products you need on the Atari ST. Remember, the
Atari ST community is like a living organism, and for it to stay
healthy and grow, we must all do our part. Please take note that
we do not say this because we think that all Atari users are
software pirates. We doubt very much if the percentage is much
different than for any other computer, but since the Atari ST
market is smaller, each individual pirate has a bigger impact.
Help us help you -- be honest.

In the event you should sell your original copy of the
FONTZ! program and documentation, you must either destroy all
duplicate copies of the FONTZ! software and documentation, or
give them to the new owner.

Shelby Moore I11-President

(v)

FONTZ! NEOCEPT

Warning to Software Pirates

This program represents a lot of time and effort on the part
of the programmer, and to sell or give away copies of this
program is the same as stealing hard-earned money out of his
pocket. If that fact, and the fact that it is illegal, doesn’t deter
you from distributing copies of FONTZ!, you may wish to know
that the programmer is a large, strong man who will get quite
angry and possibly very violent if he encounters someone with
an illegal copy of his program. You might think, "He can’t hit
me or anything, that would be against the law!" My response to
that line of thinking is that it’s an convenient time to be
worrying about the law. Think twice. Some bad things can

happen when you break the law. Other things can get broken,
too.

Written By Mike Fulton FONTZ!

Introduction

Congratulations on your purchase of FONTZ!, a GEM Font
Editor for the Atari ST computer. FONTZ! is designed to allow
you to create and modify GEM text font files, as well as convert
fonts into GEM format from other formats. These fonts can then
be used with any Atari ST program which allows the use of
standard GEM fonts.

As you read this manual, keep in mind that we have tried to
keep things at a level where everyone will be able to keep up.
However, if you are a beginner on the Atari ST or on computers
in general, then you will probably run into things which you do
not understand, or terms and expressions that you have not
heard before. When this happens, you should please be patient.
It is often very difficult to explain things in a way that puts each
concept in order. Please just read on, and somewhere farther
into the manual things should become more clear. Very often, it
is not even necessary to completely understand something to be
able to use that part of the program. Think of it as a math
problem with several variables, until you get all the way to the
end, you might not know what they all mean, but at the end,
you will

What is GEM?

Simply put, GEM is a program which is built-into your
Atari ST computer. It is responsible for keeping track of
windows, drop-down menus, dialog boxes, and graphics
(including text) on the screen or other devices such as a printer.
The ability of GEM that we are most interested in is that it can
use a number of different sizes, styles, and typefaces of text
characters. This text output ability provides a great deal of
flexibility and power. The purpose of FONTZ! is to allow you to
create and modify text characters to be used by GEM.

(Pagel)

FONTZ! NEOCEPT

What is a Font?

The term font, and some other terms, are very often used
incorrectly within the computer world when compared to what
the same terms mean in the typographic world. So before we
get too far along, let’s define a few of the terms which relate to
different styles and sizes of text, so that everyone will be sure
that we are talking about the same thing.

The first term is typeface. This term is used to refer to any
number of different-sized sets of letters which have a common
design to all of the lines and curves that make up each character.
A few examples of different typefaces are shown below.

This is Dutch This is Thames
This is Swiss This is Typewriter

The term typestyle is sometimes used in place of typeface,
but this is not actually correct. The term typestyle actually
refers to such special variations of a typeface, such as boldface,
or italics The different styles of text which GEM can print text
with are shown below. (To keep from having to have a
complete set of characters in each style, GEM creates these styles
from the original style of the characters.) Typestyles are also
sometimes refered to as text effects.

Plain Text Style Boldface Iralics/Skewed.
Underlined Jutlined Light

A fontis a complete set of characters of a given typeface in a
single size and style. A font family is a set of different sized
fonts of the same typeface and typestyle.

That should be enough to get you started. But if at any time
in this manual we use a term which you do not understand, look
in the index at the end of the manual to see if there are any
other references to that term.

(" Page2)

Written By Mike Fulton FONTZ!

What Features Does FONTZ! Have?

One of the most important features of FONTZ! is the ability
to load font files from the Apple Macintosh and Commodore
Amiga computers and convert them into GEM format. Both
computers, especially the Macintosh, have many different text

fonts available, and now you can use those fonts on your Atari
ST.

FONTZ! also allows Atari ST users to convert font files from
several non-standard font file formats used on the ST. You can
load and convert font files created for the original version of the
DEGAS paint program, from Batteries Included. You can also
load and convert font files which are in the format used by
Hippopotamus Software for their HippoWord word processor.
Finally, you can load font files which are used by the paint
programs N-Vision, from Audio-Light Software, and
Paintworks, from Activision, and convert them into standard
GEM format. Of course, you can also load and edit fonts which
are already in GEM format.

Other features of FONTZ! include the ability to scale fonts to
different sizes and GEM devices. You have the ability to cut
and paste entire characters, or even just parts of them! You can
even merge all or part of a character into another character.
FONTZ! allows you to control every single aspect of the font
being edited, from its size to the special effects information used
by GEM to create style variations like boldface and underlining.
There are even several special drawing tools for drawing lines,
circles, boxes, and more, to aid you in creating your characters.
All this and more!

Make a Backup Disk!

FONT?Z! is not copy- protected, for your convenience, and we
suggest that the first thing you do is make a backup of your
original FONTZ! disk. Refer to your Atari ST manual if you

(Page3d)

FONTZ! NEOCEPT

need instructions on how to do this. Once you are done, you
should put your original FONTZ! disk away in a safe place and
work only from your backup copy. Please do not abuse our
policy of non-copy protected disks.

FONTZ! & Hard Disk Drives

If you own a hard disk drive, you will probably want to put
FONTZ! onto it. You must copy the files FONTZ.PRG,
FONTZ.RSC, and SAMPLE.FNT to the hard disk. Although
FONTZ! will work from any disk drive and folder, I suggest
putting the program in the same directory as your GEM font
files. This will make things easier to work with.

The README.DOC File

Because some things can change between the time this
manual was produced and the time when you actually purchase
FONTZ!, there will be a file called README.DOC on your
FONTZ! diskette which will contain any last minute information
about the program. To read this information, simply load the
file into your favorite word processor, such as NEOCEPT’s
WordUp, or print it to the desktop or your printer by
double- clicking on the icon in the window, and then choosing
"Show" or "Print" in the alert box that appears.

Loading FONTZ!

First start out by inserting your FONTZ! disk into one of
your disk drives. If you have installed FONTZ! onto a hard disk
drive, turn it on and let it come up to speed. After your disk
drives are turned on, turn on your computer. If it was in drive
A:, the FONTZ! disk will automatically open a window when the
GEM desktop comes up. The FONTZ! program is named

(Paged)

Written By Mike Fulton FONTZ!

FONTZ.PRG on your disk, so simply double-click on the icon
with that name, and the program will load into memory and
execute. If you are using a hard disk, then open a window for
the drive and folder where you have put FONTZ!, and then
double-click on the FONTZ! icon. (Of course, most of you have
figured all of this out by yourself, and we didn’t need to tell you
any of it.)

FONTZ! is designed to be used only in medium or high
resolution. If you try to load the program in low resolution, you
will get a message telling you that it can’t be done. Using high
resolution on the monochrome monitor is the preferred method
of using FONTZ!, but medium resolution also works quite well.
If you have both monitors available, we suggest you use the
program in medium resolution only when working on fonts
designed for the medium resolution screen.

FONTZ! And GDOS

In case you don’t know already, let me tell you that GDOS is
the portion of GEM which is responsible for allocating areas of
the computer’s memory for font data and GEM device driver
programs (which tell the computer how to access a device, such
as a printer or the display screen) which will be loaded from
disk, as well as making sure GEM graphics commands get to the
correct device. This is all it does, and it is not actually
responsible for using fonts once they are loaded. Currently, the
version of GEM which is built into the Atari ST does not include
a complete implementation of GDOS. It does not allow for
loading either fonts or device drivers from disk, but simply
handles screen graphics functions using only the ST’s built-in
fonts. In order to have the full capabilities of multiple fonts and
devices through GEM, GDOS must be loaded from the AUTO
folder of your boot disk at system start-up time.

For the most part, FONTZ! does not require that GDOS be
loaded into your Atari ST. Most of the functions of FONTZ! will

(Page5)

FONTZ! NEOCEPT

work in the same way regardless of if GDOS is present or not.
However, there are a few functions in the program which do
require that GDOS be loaded for them to work. And some other
functions will not work at full power without GDOS loaded into
the computer. These functions will have notes to this effect in
their descriptions in this manual

Getting Started

Once FONTZ! is loaded into memory, it will open its
windows and put a title box on the screen. Simply click either
of the mouse buttons anywhere on screen and this box will go
away. Now you are ready to begin.

Your First Time With FONTZ!

The very first time you load FONTZ!, you may want to start
out by exploring through the menus in order to gain a minimal
level of familiarity with the program. Let’s load a font into the
program so that you have something to play with. Start out by
moving the mouse up to the FILE menu. Click on the Load
GEM Font option. A standard GEM file selector box will
appear on the screen. Find the file named SAMPLE.FNT and
select it by double-clicking the mouse on its name, or by typing
in the name and hitting the [Return] key.

Once the sample font has been loaded, the program will
display it, with the characters all in one long row, in the top
window on your screen. Since the font is too large to fit in the
window all at once, you may use the scroll bars and arrows of
the window to look at different parts of the font.

Now you may want to simply take a tour of FONTZ! to see

all of its features. Go through the menu choices and get yourself
familiarized with all of the program’s features. Have Fun!

(Page6)

Written By Mike Fulton FONTZ!

FONTZ! Menus

Each of the many choices available in the FONTZ! menu bar
are described in this section. Please note that some of the func-
tions in the menus can also be performed by pressing a certain
special key, for your convenience. In these cases, the key is
named along with the menu entry. Also, some keyboard-only
commands are described in the appropriate places.

Desk Menu

This menu is at the top left corner of the
screen. Any GEM desk accessories which
are loaded into your system are accessible
through this menu.

About Fontz!

Snapshot NEO/DEGAS
Control Panel
Install Printer

About FONTZ!

Choosing this menu choice will display the FONTZ! title box on
the screen, as shown below. Simply click either mouse button
and it will go away.

N FONTZI M

Version 1.03 (611Spm, 2/725/868)

[An Atari ST GEM Font Editor |

© Copyright 1988
NEOCEPT™
All Rights Reserved

Written by Mike Fulton
With help from Shelby Moore III

Fontz!
Fontzt Fontz!

(Page?7)

FONTZ! NEOCEPT

File Menu
This menu contains all of the disk file | Load GEM Font

operations which are available in | L0ad HIPPO Font
FONTZ! Load Macintosh Font

Load Aniga Font

Save GEM Font
Save Paintworks Font

Quit Fontz!

A Warning About Loading Font Files:

Do not attempt to load font files in other formats besides
what the menu choice indicates, as this can cause the system
to crash. Fontz! will always attempt to insure that the font
is in the expected format before actually using it, however,
it is possible for something to sneak through.

File Not Saved Warning

If you attempt to load a font file, either one already in GEM
format or one in another file format, and your presently
loaded file has not been saved since you last changed
something, then an alert box will warn you that you haven’t
saved your font, as shown in figure #1. At this point, you
can choose to load the new font anyway, or you can cancel
so that you can save the font.

Attention!
The Current font has
not been saved!

L3
| Load New] | Abort |

Figure #1, Font Not Saved Alert Box

(Page8)

Written By Mike Fulton FONTZ!

Load GEM Font -- F9

This option lets you load either GEM fonts or fonts saved in
the N- Vision/Paintworks format. Since these two formats are
very similar to each other, the FONTZ! program is able to
determine which of these formats the font is in and acts
accordingly.

The user should keep in mind the fact that each GEM device,
such as the monochrome and color display screens, or different
types of printers, has its own resolution, and the font files for
that device must match that resolution in order to produce
correct results. GEM fonts created or edited and then saved with
FONTZ! include information to indicate the resolution of the
device the font is designed to be used with.

When you load a GEM font which does not have this
information in it already, FONTZ! will inform you with a dialog
box, as shown in figure #2.

This font does not have information which specifies the
resolution of the GEM device it is supposed to be for.

Judging from the other information in the font header,
this font appears to have a vertical resolution of
876 dots per inch.

Unfortunately, the horizontal resolution cannot be
calculated from the font header information.

In the dialog box which appears after this one, please
choose the correct device for this font. (The default
choice will be a monochrome, High-rez screen.)

R

Figure #2, Font Resolution Information Not Found Dialog Box

(__Paged)

FONTZ! NEOCEPT

Device: High-Rez, 098 * 898 DPI
Filename = [::\BHLTIBHI.FNTk

| Low Rez Screen | | Med Rez Screen | ERTLITAAN

[SLM8B4.SYS | [Hot svailable! | | Hot fvailabie! |
[ot Available! | [Hot fvailable! | | Hot fvailable! |

| 5ot gvailable! | [Hot Available! | | Uninstalled |

please Enter The Resolution For Horizantal) ...
fin Uninstalled Device Here ertical! ...

Figure #3, Set Font Device Dialog Box

After this, you will be asked in another dialog box to tell
FONTZ! what the correct device is for this font, as shown in
figure #3. The default device will be the monochrome screen.
If this is not correct, and the correct device is shown as one of
the choices, simply choose that device. For more information on
this dialog box, see the Set Font Device menu choice
description.

If the pointsize setting does not match the size of the font for
the device you have chosen, then another dialog box will appear
and show you the height of the font in points, and the current
pointsize setting, and ask you if you want to reset the pointsize
setting to match the font height, as measured in points. This is
shown in figure #4.

(Pagel0)

Written By Mike Fulton FONTZ!

The pointsize setting of this font is
not equal to the font height, measured
in points for this device. Do you want
to recalculate the pointsize setting to
match the font height?

Current Pointsize: 836
Font Height in Points: 038 S

Recalculate Don't Change

Figure #4, Recalculate Pointsize Dialog Box

Load Hippo Font

This option lets you load font files which use the format used
by the programs HippoWord and HippoPixel, from Hippo-
potamus Software, and automatically converts them into standard
GEM format.

FONTZ! will always convert fonts from Hippo format into
monochrome screen fonts. You can use the Scale Font To A
Different Device function to create fonts for other devices once
you have converted the font. See the section of this manual
titled Converting Hippo Fonts for more information on this
subject.

Load Macintosh Font

This allows you to load font files from the Apple Macintosh
and automatically convert them into standard GEM format.
However, you should know that there are a few conditions on
your abilities to do this.

First of all, there are two kinds of font files commonly used on
the Apple Macintosh, screen fonts and LaserWriter fonts. A

(Pagell)

FONTZ! NEOCEPT

LaserWriter font file is basically a set of small programs written
in the Postscript page description programing language, and is
designed to be used with the Apple LaserWriter and other
Postscript Laser Printers. At this time, FONTZ! cannot load this
type of font.

Screen fonts can be loaded by FONTZ! with just one
restriction: The font file must contain only one size of one
typefaee. Let me explain what I mean by that. Fonts on the
Macintosh are kept in Macintosh Resource Files, which are very
similar to the resource files used by GEM programs on the ST.
However, these Macintosh Resource files can contain a few more
different types of data than their GEM counterparts. Besides
data such as icons, menus, or dialog boxes, these resource files
are also used to contain Macintosh fonts. To be used with
FONTZ!, Macintosh Resource files which contain more than one
font or other types of information must first be separated into
smaller files with only font information for one size and typeface
each.

FONTZ! will always convert fonts from Macintosh format into
monochrome screen fonts. You can use the Scale Font To A
Different Device function to create fonts for other devices once
you have converted the font. Note: See the section of this
manual entitled Converting Macintosh Fonts to get more
information about this subject.

Load Amiga Font
This option lets you load standard format Amiga font files and
automatically convert them to GEM format.

FONTZ! will always convert fonts from Amiga format into
monochrome screen fonts. You can use the Scale Font To A
Different Device function to create fonts for other devices once
you have converted the font. Note: See the section of this
manual entitled Converting Amiga Fonts for more information
on this subject.

(Pagel2)

Written By Mike Fulton FONTZ!

Load DEGAS Font

This option allows you to load font files created with the font
editor which was included with the original version of the
DEGAS paint program, from Batteries Included, and
automatically convert them into GEM format.

This option applies ONLY to fonts designed for use with the
original version of DEGAS. Fonts which have already been
converted with the font converter program included with the
newer version, entitled DEGAS Elite, are in standard GEM
format already, and should be loaded with the Load GEM Font
menu option. As a general rule, older-style DEGAS fonts will
have a file size of about 2050 bytes.

FONTZ! will always convert fonts from DEGAS format into
monochrome screen fonts. You can use the Scale Font To A
Different Device function to create fonts for other devices once
you have converted the font. Note: See the section of this
manual entitled Converting DEGAS Fonts for more
information on this subject.

Save GEM Font -- FI0

This option saves the font currently being edited as a standard
format GEM font. In order to use this font, you must include
the filename in the ASSIGN.SYS file and reboot your system
with GDOS. (See the section of this manual titled Using GEM
Fonts.)

Although GEM font files can legally use any valid TOS
filename, Atari has come up with some general rules to follow in
creating font filenames. The idea is that a standard way of
naming font files will make them easier to deal with. The
format for a font filename using the guidelines laid down by
Atari is shown below.

AT xxyyzz.FNT

(Pagel3)

FONTZ! NEOCEPT

The AT’ portion of the name indicates that the file is an Atari
font. The ’xx portion of the name is an abreviation of the font’s
typeface name, such as the examples shown below. Also,
sometimes both the ’AT’ and ’xx’ portions are used together to
have an abreviation of the typeface name.

SS -- Swiss TR -- Dutch (Times Roman) TP -- Typewriter

The ’yy portion of the filename is used to indicate either the
font’s pointsize for proportional fonts, or the pitch (the number
of characters which fit in one inch horizontally) for fonts which

are monospaced, and must be an integer number ranging from
00 to 99.

The ’zZ part of the filename is used to indicate which GEM
device the font is supposed to be used with. Some current GEM
devices have the following codes (Resolution in dots per inch
horizontally and vertically shown in parenthesis):

"EP" Epson FX/Compatible Printer (120*144)
Spe Star NB/Compatible Printer (180*180)
"NP" NEC P6/P7/Compatible Printer (360*360)
LB Atari SMMB804 Printer (160*72)
"LS" Atari SLM804 Laser Printer (300*300)
"ME" Atari GEM Metafile Device (254*254)
. High or Low Resolution Screen (90%90)
*LO" Low Resolution Screen (45*45)
CG* Medium Resolution Screen (90*45)
“HI" High Resolution Screen (90%90)

Of course, these are just general guidelines, and you are not
restricted to using them. If you want to use other rules for
naming your fonts, go right ahead. However, if you use your
own filename rules, you should keep a list with all the
information about all of your fonts, and include this list if you
distribute fonts that you name in your own way.

(Pageld)

Written By Mike Fulton FONTZ!

Save Paintworks Font

This option saves the font currently being edited in the format
used by the Paintworks and N- Vision paint programs. You
should note that not all fonts created or edited with FONTZ! can
be used with these programs, however. Both programs allocate
only a limited amount of memory to use to hold a font. Some
fonts, such as those larger than 36 point, may require more
memory than these programs make available. Unfortunately,
there is no way to find out if a font is too large to be used with
these programs except to try it.

Quit

This option allows you to leave the FONTZ! program, and
return to the GEM Desktop. If you have not saved your work,
then before actually leaving, you will be shown an alert box
telling you so, as shown in figure #5. If you have not saved
your work, you should cancel the QUIT and do so now, and then
quit. If your work is saved, then the program will exit
immediately.

Font not saved.
Quit Program?

8

Figure #5, Font Not Saved Warning Alert Box

P ————
(Pagels)

FONTZ! NEOCEPT

o ch to Buff
This menu contains all the ar to burrer
options in FONTZ! for cutting Paste Buffer to Char

Merge Buffer into Char
and pasting blocks or entire |wen ol atn ol

charcters, as well as options for Cut Block to Buffer
changing the character being Paste Block in Char
edited and the offset value of the Merge Block into Char

currently edited character. Change Character 0fset

Enter ASCII Value to Edit

Cut Char to Buffer -- FlI

This option copies the entire character currently being edited
into a copy buffer. This can then be copied into another
character, replacing it altogether. Or, it can be pasted into a
character as a block. When you cut a character, a message will
inform you that it has been saved in the cut buffer.

Paste Buffer to Char -- F2

This option copies the contents of the copy buffer into the
character currently being edited. By using the cut option to cut
a character to the copy buffer, and then this option to paste it to
another character, you can copy characters to one another. The

width of the character is always reset to the width of the copy
buffer.

Merge Buffer Into Char -- F3

This option merges the contents of the copy buffer with the
character currently being edited. The resulting character will
have pixels set where either the original character or the copy
buffer had pixels set. The width of the character is left
unchanged if the character is wider than the contents of the copy
buffer. If the copy buffer is wider than the character, the
character is expanded to contain the entire copy buffer.

(Pagelée)

Written By Mike Fulton FONTZ!

Cut Block to Buffer -- Shift Fl

This allows you to copy a rectangular block of the character
into the copy buffer. You move the mouse to the top left corner
of the block, and then click the left mouse button. While holding
the mouse button down, you move the mouse to the bottom
right corner of the block, and release the button. While you
move the mouse, the screen will show a rectangle outline to
indicate where the block is located. If you decide to cancel, press
the right mouse button and hold it down before you release the
left mouse button.

Paste Block In Char -- Shift F2

This allows you to paste the contents of the copy buffer back
into the character currently being edited. You move the mouse
to the box of the character where you want the top left corner
of the block in the copy buffer to go into the character, and click
the left mouse button. Clicking the right mouse button cancels
the operation.

If the the block contained in the copy buffer is wider than
the area available between the box you have chosen and the
right edge of the character, you will be asked if you want to cut
off the block at the edge of the character, or if you want to
make the character wide enough to accommodate the block.
Simply choose whichever is appropriate for your needs.

Merge Block Into Char -- Shift F3

This option works exactly the same as the Paste Block Into
Char option, except that it merges the block in the copy buffer
into the character, instead of replacing that portion of the
character with the block. The resulting character will have
pixels set where either the original character or the copy buffer
had pixels set. Any pixels which were clear in both the original
character and the copy buffer will be left clear.

(Pagel7)

FONTZ! NEOCEPT

If the the block contained in the copy buffer is wider than
the area available between the box you have chosen and the
right edge of the character, you will be asked if you want to cut
off the block at the edge of the character, or if you want to
make the character wide enough to accommodate the block.
Simply choose whichever is appropriate for your requirements.

Change Character’s Offset Value -- Alt-0O

This brings up a dialog box, as shown in figure #6, which
shows you the current offset value for the character currently
being edited, and allows you to enter a new offset value. If the
font being edited does not have a offset table enabled, this option
is disabled. (The offset value indicates how far to the left or
right to move before actually printing the character. See the
GEM Font Definition section for more information about
offsets.)

The offset value indicates the amount
by which GEM will move to the left
(for negative values) or to the right
(positive values) before printing

the character. See your Fontz! manual
for more information about offsets.

(Current offset value: 0068 |
New offset value: 0088 &

[Cancer] [0k]

Figure #6, Change Character’s Kern Value Dialog Box

(Pagel8)

Written By Mike Fulton FONTZ!

Enter ASCII Value to Edit -- F7

This option displays a dialog box, as shown in figure #7,
which displays the lowest and highest characters in the font, and
allows you to type in the ASCII value of the character that you
want to edit. If you click on the OK button, the edit display will
switch to the new character.

You can also choose characters with ASCII values ranging
from O to 127 by simply pressing the corresponding key on the
keyboard. Characters with ASCII values outside of this range
must be selected with the menu choice or with the following
method.

You also have the option of selecting a character to edit by
double-clicking on it in the font display window. However, if a
character has a width of zero, it can not be selected in this
fashion unless it is the last character in the font or unless it is the
first of several characters with zero width at the very end of the
font.

Edit Next Lowest Character -- Shift F9
Edit Next Hightest Character -- Shift FI10

These keystroke commands save the changes to the current
character, and then move up or down to the next character in
the font to place it in the edit buffer.

Please enter the ASCII value for

Low char: 832, High char: 127
ASCII Value to Edit: 865

[Cancel] [ok]

Figure #7, Enter ASCII Value of Character To be edited.

(Pagel9)

FONTZ! NEOCEPT

DRAW Menu Color 8 (erase)

This menu contains all of the
drawing functions which are fjglgfwhfgtf@ww

available in the FONTZ! program. Draw Line
The use of each function is Draw Box Frame
described below. Draw Filled Box
2 Pt. Circle
3 Pt. Circle
3 Pt. fArc

2 Point Disk
3 Point Disk
3 Pt. Pie Slice

Color 0 (erase)

This function sets the current drawing color used for all
drawing operations to 0, or erase mode. A checkmark will
appear in the menu next to this choice to indicate if it is active.

Color 1 (draw)

This function sets the current drawing color used for all
drawing operations to 1 or draw mode. A checkmark will
appear in the menu next to this choice to indicate if it is active.

Draw Line

Draws a straight lines between two points. After choosing
this option, you move the mouse into the edit window. First you
click with the left mouse button on one point and hold it down,
and then a rubber line appears on screen until you move the
mouse to the 2nd point and release the button. When you
release the button, a line is drawn between the two points. To
cancel, press the right mouse button before releasing the left
button.

(Page20)

Written By Mike Fulton FONTZ!

Draw Box Frame

This option draws an outline, or frame, of a box, instead of a
filled one. Upon choosing this option, you will be shown a
message telling you what to do, as shown in figure #8. You click
the mouse on the top left corner of the box, and hold the left
mouse button down until you have moved to the bottom right
corner. When you release the mouse button, lines are drawn in
the appropriate drawing color between all neighboring corners to
make a box frame. To cancel, press the right mouse button
before releasing the left button.

Click on the top left
corner, move the mouse to
the bottom right corner
and release the button.

Figure #8, Block Definition Message Box

Draw Filled Box

This option works like the Box Frame option, except that
the box is filled in, instead of being an outline. The box will be
cleared or filled, according to the current drawing color.

2 Point Circle

This option will allow the user to draw a circle within his
character. You will be shown a message, as seen in figure #9,
telling you what to do. Simply click on the centerpoint with the
mouse and hold the left mouse button down. Now when you
move the mouse a circle outline will be drawn to indicate where
the circle will be drawn. The centerpoint of the circle may be
anywhere within the character, and the circle itself may as big as
can fit on screen. When you release the mouse button, the circle

(Page2l)

FONTZ! NEOCEPT

will be drawn in the current drawing color. Only those portions
of the circle which would be inside the character will be put into
the circle. To cancel, press the right mouse button before
releasing the left button.

Click on the centerpoint of
the circle, and with the
button held down, move the
mouse to attgin the desired
size,

Figure #9, 2 Point Circle Instructions Message

3 Point Circle

This option will draw a circle defined by 3 points along the
circumference. A message box, as shown in figure #10, will
instruct you to click on 3 points within the character which fall
somewhere on the outside perimeter of the circle, in
counter-clockwise order. A marker will be placed on screen to
indicate each point as it is entered. After all 3 points have been
entered, the program will compute the radius and centerpoint
and draw the circle using the current drawing color. To cancel,
press the right mouse button before entering the third point.

3 Point Arc

This draws an Arc between three points. You will be
prompted to click on 3 points within the character which fall
somewhere on the arc. A marker will be placed on screen to
indicate each point as it is entered. After all 3 points have been
entered, the program will compute the radius and centerpoint
and draw the arc intersecting all three points, using the current
drawing color. To cancel, press the right mouse button before
entering the third point.

(" Page22)

Written By Mike Fulton FONTZ!

Click on three points on
the circunference, in
counter-clockwise order.

Figure #10, 3 Point Arc/Circle Instructions Message Box

2 Point Disk

This option is basically the same as the 2 Point Circle
command, except that the interior of the circle is filled in, using
the current drawing color, instead of being outlined only. To
cancel, press the right mouse button before releasing the left
button. This function can be slow, so please be patient. Hitting
the right mouse button while drawing the disk will cancel, but

the portion of the disk which has already been drawn will still
remain.

3 Point Disk

This is basically the same as the 3 Point Circle command,
except that the interior of the circle is filled in, using the current
drawing color, instead of being outlined only. To cancel, press
the right mouse button before entering the third point. This
function can be slow, so please be patient. Hitting the right
mouse button while drawing the disk will cancel, but the portion
of the disk which has already been drawn will still remain.

3 Point Pieslice

This option is very similar to the 3 Point Arc option, except
that the area between the arc and the centerpoint of the circle of
which the arc is a part will be filled in, like a slice of pie. You
will be prompted to click on 3 points within the character which
fall somewhere on the arc. A marker will be placed on screen to

(Page23)

FONTZ! NEOCEPT

indicate each point as it is entered. After all 3 points have been
entered, the program will compute the radius and centerpoint
and draw the arc intersecting all three points, using the current
drawing color. To cancel, press the right mouse button before
entering the third point. This function can be slow, so please be
patient. Hitting the right mouse button while drawing the disk
will cancel, but the portion of the disk which has already been
drawn will still remain.

Fast Drawing Mode -- Shift F4

This is not a menu choice, but pressing this keystroke will
turn off and on the instruction boxes described in this section for
the various drawing functions. When you have gained some
familiarity with how the drawing operations work, you can turn
off the instruction boxes so that you do not have to wait for
them to go away each time you choose a drawing function.

A Note Regarding Circle & Arc Draw Functions:

Because the screen locations representing the character in
the editing grid must be scaled down to the appropriate locations
within the character, and because the arc and circle drawing
commands require several mathematical calculations to compute
the centerpoint coordinates and radius values, there is sometimes
a small amount of error in the points where the circles or arcs
are drawn and where you wanted them to be drawn. This is
unavoidable, and fortunately is usually only a pixel or two off at
most. You may wish to experiment somewhat to become
familiar with how the drawing routines work.

(Page24)

Written By Mike Fulton FONTZ!

Character Menu

This menu contains a number of options for Make Inverse
working on the individual character which Eﬁfr

is currently being edited. All of these |mmcmmmcnnn.
operations, such as rotate, flip, shift, and so Flip ¢ &

on, effect the entire character. Flip ¢

Add Columm
Remove Column

Make Inverse -- Alt-1

This option inverts all of the pixels in the the character into
the opposite color. All of the pixels in the character which are
set to 1 are set to 0, and all of the pixels which are set to O are
set to 1.

Clear -- ClIr/Home
This option sets all of the pixels in the character to 0,
clearing the entire character.

Fill -- Shift Clr/Home
This option sets all of the pixels in the character to 1, filling
in the entire character.

Flip Left-Right

This option flips all of the pixels in the character from the
left side to the right side and vice versa, making the character
into a mirror-image of the itself.

(Page25)

FONTZ! NEOCEPT

Flip Up- Down

This option works like the Flip Left- Right option, except in
the vertical direction. All the pixels at the top are moved to the
bottom, and vice versa, making the character into an upside
down version of itself.

Shift Up -- Up Arrow

This option shifts all of the pixels in the character up by a
specified number of rows. The very top row is moved to the
bottom of the character, the next to the top row is moved to the
top, and so on.. A dialog box will appear, as shown in figure #11,
and allow you to enter the number of steps to shift the character.
You can also change the direction of the shift by clicking on one
of the arrows. Also, hitting the Up- Arrow key will shift the
character by one step without calling up the dialog box.

Shift Down -- Down Arrow

This option works in a similar manner to the Shift Up
function, except that it shifts in the down direction. Also,
hitting the Down- Arrow key will shift the character by one step
without calling up the dialog box.

[€] — [®] # Steps: 881|k
[Cancel | L0k |

Figure #11, Shift Character Dialog Box

(Page26)

Written By Mike Fulton FONTZ!

Shift Right -- Right Arrow

This option works in a similar manner to the Shift Up
function, except that it shifts in the right direction. Also, hitting
the Right- Arrow key will shift the character by one step
without calling up the dialog box.

Shift Left -- Left Arrow

This option works in a similar manner to the Shift Up
function, except that it shifts in the left direction. Also, hitting
the Left- Arrow key will shift the character by one step without
calling up the dialog box.

Rotate Clockwise -- Shift Right Arrow

This rotates the character in a clockwise direction, using the
bottom left corner of the character as a base point. The top of
the character is moved to the right side, the bottom to the left
side. The left of the character is moved to the top, and the right
of the character is moved to the bottom. If the character is not
as wide as it is tall, then the top of the character is clipped off at
the edge of the character when it is rotated.

Rotate Counter-Clockwise -- Shift Left Arrow

This rotates the character in a counter-clockwise direction,
using the top right corner of the character as a base point. The
top of the character is moved to the left side, the bottom to the
right side. The left of the character is moved to the bottom, and
the right of the character is moved to the top. If the character
is not as wide as it is tall, then the bottom of the character is
clipped off at the edge of the character when it is rotated.

(Page27)

FONTZ! NEOCEPT

Add Column -- Insert

This allows you to add a column to the character currently
being edited. You will be shown an alert box, as shown in
figure #12, and be asked if you want to add the column to the
left or right side of the character, or if you want, you can cancel.

Which Side?

Colunns: 881| k

Figure #12, Add Columns Dialog Box

Remove Column -- Control-Delete

This allows you to delete a column from the character
currently being edited. You will be shown an alert box, shown
in figure #13, and be asked if you want to delete the column
from the left or right side of the character, or if you want to
cancel.

(Page28)

Written By Mike Fulton

FONTZ!

elete Colunmns

Which Side?
|_Left | | Right |

Colunns: B84

&

[(Cancel] [0k]

Figure #13, Delete Columns Dialog Box

(Page29)

FONTZ!

NEOCEPT

Global Menu

This menu contains options which
affect the entire font which is
being edited. You can change the
special effects info, add or delete
entire rows from the font, and
more!

Font Name/ID/Pointsize -- F8

Font Hame/ID/Pointsize

Special Effects Info

Set Font Device

Change Hi/Lo Characters
v 0ffset Table Enabled

Add Row(s) To Font

Remove Rows(s) From Font

This brings up a dialog box, as shown in figure #14, which
displays the settings for the font’s name, ID number, and
pointsize setting, as well as the font alignment line values. The
range of characters is displayed for you, and the font height is

shown in both rows and points.

Low char: 832, High char: 127
Font Height in Rows: 815
Font Height in Points: 012

ID Number: 08060 Pointsize: 812

Name: Athens

Ascent Line
Half Line
Base Line

Descent Line

[Cancer] []

Figure #14, Change Font ID#, Name, & Other Parameters Dialog Box

(Page30)

Written By Mike Fulton FONTZ!

You can change the Font’s ID number by typing in a
different value. The font’s typeface name is also shown, and can
be changed. You can also change the pointsize setting to
whatever you want. However, we very strongly recommend
that you always have the pointsize setting match the font height,
as measured in points. Otherwise, it can cause problems with
some programs that expect the font height and pointsize settings
to match.

You can change the values for the font alignment lines
simply by typing in new values. These are the ascent line, half
line, baseline, and the descent line. (They are shown in the order
they occur, as you go down from the top of the font. The
baseline is measured from the very top of the font, and the other
lines are offsets, in rows, from the baseline. See the section of
the Fontz! manual entitled GEM Font Definition for more
information on what these settings actually do.)

Special Effects Info -- Shift F8

This option allows you to set the values in the GEM font
header of the font currently being edited which are used by
GEM for special effects. A dialog box will appear, as shown in
figure #15, and show you the current settings for the Boldface
Factor, Underline Size, Skewed Text mask, and Light Text mask,
as well as the right and left offset values (used for skewed text),
and allow you to change them. Simply type in your desired new
values. See the section titled GEM Font Definition for more
information on what these settings actually do.

Set Font Device

This option displays a dialog box, as shown in figure #16,
and allows you to set the device for which the font being edited
is intended. The name of each currently installed GEM device
driver will be shown in its own separate button. The resolution
of the currently selected device will be shown at the top of the
box. You can also set the font to the resolution of a device that

(Page3l)

FONTZ! NEOCEPT

[A11 values are in Hexidecimal |

Boldface Factor = Saaaq
Underline Size = $8881 *
Light Text Mask = $5555
Skewed Text Mask = $5555
Left 0ffset = $0001
Right Offset = 50004

Figure #15, Text Effects Settings Dialog Box

Device: High-Rez, 098 * 898 DPI
Filename = c:\CHLTIBHI.FNTk

|Low Rez Screen | [Med Rez Screen |l High Rez Screen
[SLMBB4.SYS | [Kat Available! | [Hot fAvailable! |

[Hot Available! | [Hat Avaiiabie! | [Hot gvailable! |
[Hot Available! | [Hot Available! | | Uninstalled |

Please Enter The Reselutien For Horizantal) ...
fin Uninstalled Device Here ? Yertical ...

[Cance] []

Figure #16, Set Font Device Dialog Box

(Page32)

Written By Mike Fulton FONTZ!

is not currently installed by clicking on the "Uninstalled Device"
button and entering the resolution of that device, measured in
the number of dots per inch. (Unless you click on the
"Uninstalled Device" button, you are not allowed to enter the
resolution.) When you are done, click on "OK" or "Cancel" to
exit the dialog box.

If you choose a new device, FONTZ! calculates how many
rows are required at the resolution of that device to make a font
the same height as the font’s current pointsize setting. If the
font’s height in rows does not match the result, meaning the font
is too tall or too short for the pointsize setting, then another
dialog box will appear, as shown in figure #17. This will tell you
the calculated pointsize and the current pointsize, and ask you if
you want to reset the pointsize setting to match the calculated
pointsize. If you want, you can choose to leave the pointsize at
the current setting. However, we do not recommend this unless
you are certain that you know what you are doing.

If you change the ASSIGN.SYS file between the time you
start your system and when you load FONTZ!, then the device
entries in the Set Font Device dialog box may not be complete,

The pointsize setting of this font is
not equal to the font height, measured
in points for this device. Do you want
to recalculate the pointsize setting to
match the font height?

Current Pointsize: 836
Font Height in Points: 838

Figure #17, Match Pointsize Dialog Box

(Page33)

FONTZ! NEOCEPT

or completely accurate. Please always reset your system after
changing the ASSIGN.SYS file. FONTZ! attempts to determine
if the file has been changed, but this is not always possible.

Change Hi/Lo Characters In Font

This option displays a dialog box, as shown in figure #18,
and allows you to change the lowest and highest characters in the
font. If you change the high character to a higher value, or the
low character to a lower value, then the font header is changed
to indicate the new characters, but each of the new characters
will have a width of zero pixels. Also, you cannot enter a low
character value that is higher than the high character value, or
vice versa. Doing so will cause an alert box to appear and warn
you.

(The user should be aware that it will probably be necessary
to use the Enter ASCII Value To Edit option to access some
of these new characters, because of their zero pixel width.)

If you delete characters from the font, then the data is
actually cleared and those characters are gone forever. It is
therefore recommended that you delete characters only after
saving a complete version of the font.

Low chari 0832, High char: 127

New Low Character ASCII Value: 832
New High Character ASCII Value: 127

1 "

Figure #18, Change High and LowCharacters in Font Dialog Box

(Page34)

Written By Mike Fulton FONTZ!

Enable/Disable Offset Table

This option allows you to enable or disable the horizontal
offset table for the font. A checkmark in the menu indicates
when an offset table is enabled.

Most characters in most fonts will have offset values of zero.
And in many fonts, all the characters have offset values of zero.
In these cases, the offset table serves no purpose and just takes
up memory and disk space, so this option allows you to enable or
disable the font’s offset table to avoid this. If no previous offset
table exists and you enable one, a new table is generated with
values of zero for each character. If the font you are editing
had an offset table when you loaded it, but you later disabled it,
then choosing this option again will restore it.

Add Row to Font -- Shift Insert

This allows you to add a row or number of rows to the font
currently being edited. A dialog box will appear, as shown in
figure #19, asking where to add the rows, and how many rows to
add, from 0 to 999. Simply click on "Top" or "Bottom" and
enter the number of rows. Now click on "OK" to add them, or
on "Cancel". The user should note that adding or deleting rows
from the font will affect the font height as measured in points.
You may want to change the pointsize setting after adding or
deleting rows from the font.

Delete Row from Font

This allows you to delete a row from the font currently
being edited. A dialog box will appear, as shown in figure #20,
asking where to delete the rows, and how many rows to delete,
from 0 to 999. Simply click on "Top" or "Bottom" and enter the
number of rows. Now click on "OK" to delete them, or on
"Cancel". The user should note that adding or deleting rows
from the font will affect the font height as measured in points.
You may want to change the pointsize setting after adding or
deleting rows from the font.

(Page35)

FONTZ! NEOCEPT

R
Top
Steps: 861
[Botton |

Figure #19, Add Rows To Font Dialog Box

Top
Steps: 001
Bottom

k
[Cancel] [ox]

Figure #20, Delete Rows From Font Dialog Box

(Page36)

Written By Mike Fulton FONTZ!

Scale Menu

This menu contains all of the special ch!gffont ttg . ¢ %
font scaling features of FONTZ! ke b L
You can scale to different pointsizes, Scale Font to a
different device resolutions, or even Different Device

by some arbitrary amount. =~ [TTorToomsooossoooooseseees
Scale Font by a
Certain Percentage

Scale Font To A Different Pointsize -- F4

Using this function, you can scale the entire font to a
different pointsize. A dialog box will appear, as shown in figure
#21, and show you several choices of common sizes. You can
either click on one of these sizes, or on Custom Pointsize. If you
click on Custom Pointsize, then you can enter your custom
pointsize and FONTZ! will scale to that size. Click on OK or
Cancel to exit the dialog box.

Current pointsize: 812
(6] 8] (18] (12] [14]
(18] [(2e] (24] [28 | [32 |
(36] [4z] [48] [56] [64]
(72 (s8] [84] [96] [128]
Custom Pointsize: 812|

o] [

Figure #21, Scale Font To A Different Pointsize

(Page37)

FONTZ! NEOCEPT

Once you have selected the new size, the font will be scaled
in both the x-axis and y-axis by the ratio of the font height for
the size you’ve selected over the current font height.

Scale Font To a Different Device -- F5

By using this function, you can scale the entire font to the
resolution used by a specified device. This allows you to do
things such as create a printer font from a screen font. (Or vice
versa, for that matter.) A dialog box will appear, as shown in
figure #22, with the current device highlighted and its resolution
shown. Now you just choose the name of the device you want
to scale to, and the resolution for that device will be displayed.
If the device you want to scale to is not one of those listed, but
you know the device resolution, then you can choose the
Uninstalled Device button and the dialog box will change to
allow you to enter the resolution for the device, for both the
horizontal and vertical directions.

When you scale a font to a different device, you can also
change the pointsize. This allows you to do things such as
scaling a 24 point monochrome screen font to a 12 point printer
font. Often, the amount of scaling can be reduced by using such
methods, making the results more pleasing. If you want to
change the pointsize as well as the device, simply type in the
new pointsize at the bottom of the dialog box before you hit the
OK button, otherwise simply leave it alone and the font will be
scaled to the same pointsize for the new device.

When you hit the OK button, the font will be scaled to the

correct size for the device and pointsize you have chosen. If
you hit Cancel then the font will not be changed.

(Page38)

Written By Mike Fulton FONTZ!

Scale Font To What GEM Devic

Device: SLM384.SYS, 388 * 386 DPI

[Low Rez Screen | [Med Rez Screen | [High Rez Screen|]
SLM804,SYS | HETA.SYS | [Hot gvailable! |

k : :
[Hot Available! | | Hot Available! | | Hot fvailable! |

[Hot Aveilable! | [Hot fvailablie! | | Uninstalled |

please Enter The Resolutian For Horizontal: 0%0
fin Uninstelled Device Here 2 Yertical: 630

Font Pointsize To Scale To: BlSI

Figure #22, Scale Font To A Different Device dialog box

Scale Font By a Certain Percentage -- F6

Using this function, you can scale the entire font by some
arbitrary value in either or both directions. A dialog box will
appear, as shown in figure #23, and allow you to enter in the
amounts by which to scale the font. You can enter separate
amounts for horizontal and vertical scaling. Vertical scaling will
affect the font’s pointsize setting, and it will be recalculated
using the current device resolution and the new height of the
font in rows. Click on OK to scale the font or on Cancel if you
change your mind.

(Page39)

FONTZ! NEOCEPT

Enter the amounts by which
you Want to scale the font.

Horizontal Amount: 1.8831 X

Vertical Amount: 1.000 x
R

Figure #23, Scale Font By A Certain Percentage Dialog Box

A Note Regarding The Scale Functions

First of all, you should realize that the scaling functions are
a fast and easy way to create a starting point for a particular size
of a font. Except in a few rare cases when scaling from one
device and pointsize to a different device and pointsize, the
resulting font after scaling will need to be touched up in order to
be considered finished by most people’s standards. However, you
must consider that improving a font where the characters are
already the correct size and general shape is much easier than
creating an entire font from scratch.

Also, it is an unfortunate reality that you cannot accurately
scale fonts to exact pointsizes on lower-resolution devices. For
example, the low-rez and medium-rez screen fonts are based on
45 dots per inch, vertically. If you wanted a 12 point font for
either device, it would have to be 7.5 rows tall. (A point is
1/72" of an inch, a measurement used in typography & printing.
And 12/72 points is equal to 7.5/45 rows.) Since you can’t have
half a row, you have to round off to the nearest integer number.
But using 7 rows at 45 rows per inch is equal to only 11.2 points,
or a pointsize of 11. And 8 rows at 45 rows per inch is 12.8

(Paged0)

Written By Mike Fulton FONTZ!

points tall, which rounds off to a pointsize of 13. See the
problem? In cases like these, you’ll have to accept that the
smaller pointsizes may not be exactly the right height. This can
occur with any device with a vertical resolution of less than 72
dots per inch, since a row will be larger than 1 point tall. In
these caes, set the pointsize to what you need, even if the font
height is slightly off.

One thing you should always do after scaling a font is check
the special effects information. The best settings for these values
are not always directly proportional to the font size, especially
the Boldface factor, so scaling these values will not always
provide the best results. Check them by hand using the Special
Effects Info function and change them if you think it is
necessary.

It is best to avoid scaling a font down if it is possible. This
is because information is lost when you are scaling down and the
results can be unpredictable. If you are using fonts which have
thick strokes to the characters, or if you only scale down by a
small amount, then scaling to a smaller size can be successful, but
otherwise, it is best to avoid scaling down to smaller sizes. When
you are enlarging a font, the worst side effect is that the result
may be blocky and require touching up. For this reason, we
suggest that you start out with creating smaller sizes and work
your way up, rather than doing things the other way around.

(Pagedl)

FONTZ! NEOCEPT

Options Menu
This menu contains choices which Font Conversion Options

allow you to change several s g
settings about how the program gl;;glg;sg‘l,:g ﬁ::s
works. @ —===000000 e

bet Device Resolution

Font Conversion Options

This option brings up a dialog box, as shown in figure #24,
which lets you set several options for converting fonts from
non- GEM formats. You can set the lowest and highest
characters to be converted by simply typing in their ASCII
values. The default setting is to convert characters with ASCII
values from 32 to 127. You can also choose if the font name and
ID number should be reset or not whenever a font is converted.
Setting this option to keep the font name and ID number of the
previous font is useful when you are converting several font
sizes of the same typeface into GEM format. It saves you from
having to re-enter the font’s name and ID number for each size.

When converting fonts from DEGAS,
Macintosh, Hippo, or Amiga format
do you want to...

Keep current Font ID # [Yes | l[TH
Keep current Font Name [Yes | l[TH
Lowest Character to Convert:832|

Highest Character to Convert:127 R

[Cancel] [k]

Figure #24, Font Conversion Options dialog box

(" Paged2)

Written By Mike Fulton FONTZ!

Grid Display Size -- Alt-G

This option displays a dialog box, as shown in figure #25,
which allows you to set the size of the boxes used in the edit
grid. You can set the boxes to be any size from 3 to 20 pixels
wide and tall. Since the width and height of the boxes can each
be set separately, you can adjust the size of the editing grid to fit
your own tastes.

Please enter the display grid size
(valid sizes are from 3 to 28 dots)

Vertical Grid Size: ag]
Horizontal Grid Size: @

[Cancel] [Cx]

Figure #25, Edit grid size adjustment dialog box

Display Font Lines -- Alt-L

This option toggles the display of the ascent line, halfline,
baseline, and descent line in the font display window. An
example of the display window, with and without these lines
displayed, is shown in figure #26. (These terms are all defined in
the section titled GEM Font Definition.) An example of the
Edit window with these lines shown is shown figure #27.

ABGBE;

Figure #26, Display window with and without font lines.

(" Page 43)

FONTZ! NEOCEPT

Desk File Edit Draw

(860,0888) | ASCII

<-=- Ascent Line

€== Half Line

K

[H<-- Baseline

T
T

IRENEN Inn -
llllll -1 < Descent line

Figure #27, Font Lines in Edit Window

Get Device Resolution

This option allows you to determine the resolution, in dots
per inch, of all of the currently installed GEM devices, including
the display screen, printers, or plotters. For this option to work
with anything but the screen devices, GDOS must be loaded into
your system, and the device you wish to test must be named in
your ASSIGN.SYS file. Also, the device driver file must be in
the correct drive and directory. A dialog box will be displayed,
as shown in figure #28, and show you the resolution of each
device, expressed as a number of dots per inch, both horizontally

and vertically. When you are done looking, click on the OK
button to exit the box.

If you change the GEM device driver entries in the
ASSIGN.SYS file between the time you boot your system and
loading FONTZ!, you may get an error message, as shown in
figure #29, when you load the FONTZ! program. If you do,
some of the currently installed GEM devices may not appear in
the dialog box shown in figure #8, or in the dialog boxes for the
Set Font Device and Scale Font To A Different Resolution

(Pagedd)

Written By Mike Fulton

FONTZ!

Device #82
Device #83
Device #84
Device #21
Device #22
Device #31

Low-Rez
Medium-Rez
High-Rez
FX80.SYS
NB15.SYS
META.SYS

x 00845 DPI
x 80845 DPI
x 08838 DPI
x 8144 DPI
x 8188 DPI
x 8254 DPI

Figure #28, Display GEM Devcies Resolution Dialog Box

functions. As a general rule, any time you alter the ASSIGN.SYS
file, you should reset your computer system so that the new
configuration in the file becomes recognized by the GEM VDI
system. Otherwise, programs which try to use the information in
the ASSIGN.SYS file will not have the current information. See
the section of this manual titled The ASSIGN.SYS File for

more information.

(Pageds)

FONTZ!

NEOCEPT

Error!

The special GEM file, ASSIGN.SYS, has
been changed since your system was
started up. One of the GEM Device
Drivers which was listed in ASSIGN.SYS
at system start-up time is no longer
listed, or the GEM device ID # has been
changed. Please don't change or delete
names from the ASSIGN.SYS file before
using the Fontz! program. Whenever

you change the ASSIGN.SYS file, you
should re-start your system immediately
aftermards, so that the device driver
names and font names match those which
are currently recognized by GEM.

Figure #29, ASSIGN.SYS File Changed Dialog Box

(Paged6)

Written By Mike Fulton FONTZ!

FONTZ! Keyboard Commands

Pressing a key on the main part of the keyboard will save
the currently edited character, and then move that character into
the edit buffer. Combinations with the [Control] key and
another key will move that control character into the edit buffer,
after saving the currently edited character. Shown below is a
summary of all of the available keyboard commands in FONTZ!
Aside from these functions, all other keystrokes should either
move a new character into the edit buffer, or produce no effect.

Fl -- Copy edit buffer to copy buffer

F2 -- Replace edit buffer with copy buffer

F3 -- Merge copy buffer into edit buffer

F4 -- Scale font to new pointsize

F5 -- Scale font to new device and/or pointsize

F6 -- Scale font by percentage

F7 -- Enter ASCII value of character to edit

F8 -- Edit Font’s Typeface name/Pointsize/ID number

F9 -- Load GEM font

F10 -- Save GEM font

Shift FI -- Copy block of edit buffer to copy buffer

Shift F2 -- Replace portion of edit buffer with copy buffer
Shift F3 -- Merge copy buffer into portion of edit buffer
Shift F4 -- Toggle fast mode for drawing/cut & paste functions
Shift F8 -- Edit Special Effects parameters

Shift F9 -- Save edit buffer, move to next lower character
Shift F10 -- Save edit buffer, move to next higher character
Enter -- Save edit buffer to character, continue editing
Undo -- Undo changes to edit buffer since character saved
Insert -- Insert column(s) into edit buffer character

Shift Insert -- Insert rows into font

ClIr/Home -- Clears all pixels in edit buffer

Shift Clr/Home -- Sets all pixels in edit buffer

Up Arrow -- Shift all pixels in edit buffer up 1 row

Down Arrow -- Shift all pixels in edit buffer down 1 row
Right Arrow -- Shift all pixels in edit buffer right 1 column

(Paged7)

FONTZ! NEOCEPT

Left Arrow -- Shift all pixels in edit buffer left 1 column

Shift Right Arrow -- Rotate character 90 deg. counter-clockwise
Shift Left Arrow -- Rotate character 90 deg. clockwise

Control Delete -- Delete columns from edit buffer

Alternate- G -- Change Edit Grid size

Alternate-1 -- Inverse edit buffer

Alternate- L -- Show/Hide font alignment lines

Alternate- O -- Edit character offset value

Many of these keystrokes are the same as some of the GEM
drop-down menu choices. In these cases, the drop-down menu
will show you what the cooresponding keystroke for that
command is. But in order to shorten things, symbols are used to
indicate the Control, Shift, and Alternate keys. These symbols
are explained below.

A = Control Key
W = Alternate Key
Shft = Shift Key

(Paged8)

Written By Mike Fulton FONTZ!

Creating a New Font

Creating a new font can mean one of several things. It might
mean creating a new size of an existing typeface. It might mean
creating a printer font from a screen font, or vice versa. Or, it
might mean creating an entirely new typeface and size. If you
are interested in creating a new size of an existing typeface, then
skip down to the section titled Creating A New Size. If you
are interested in creating a font for a different device, such as
making a printer font from a screen font, then skip down to the
section titled Creating Fonts For Different Devices. Still
with us? Good! If you want to create an entirely new typeface
and size, read on.

When FONTZ! is first loaded, you will need to load a font
file before you can do anything. Even if you want to create an
entirely new font, instead of working on an old one, you must
load a font to start from. There are several reasons for this, but
it all comes down to the fact that it’s much easier to start from
an existing font than generate all the information for a new font
from scratch, for both the program and the user.

The SAMPLE.FNT file on your FONTZ! disk is a very basic,
simple font, designed to be used only as a starting point when
creating new fonts. By scaling it to different pointsizes and/or
devices, you will be able to make it into a good starting point for
any size font you want to create from scratch.

Another way of creating a new font is to convert a font from
another file format into GEM format. Obviously, the closer you
start to what you want your finished result to be, the less work
you’ll have to do. See the sections of this manual on converting
fonts for more information.

(Page49)

FONTZ! NEOCEPT

Creating A New PointSize

If what you want to do is create a new size of font from an
existing font, then you can do it in one of two different ways.
First, if you know what size you want to create, you can use the
Scale Font To A Different Pointsize command to scale the
font to the new size. See the section on the Scale menu choices
for more information.

If you don’t know what pointsize you want to end up with,
you can use the Scale Font By A Certain Percentage
command. This will let you scale the font by a value that you
enter into the dialog box. You can also change the relative
width by entering a different value for the horizontal scaling, in
case you want to make the characters wider overall or narrower
overall. See the section on the Scale menu for more information.

If you used Scale By A Certain Percentage with different
values for the horizontal and vertical directions, then you have,
in effect, created a new typeface. For example, you might scale
a 18 point "Swiss" font by 1.0x vertically and 1.5x horizontally,
producing what you might call "Swiss Extended" or "Swiss
Wide" instead of "Swiss". In fact, if you do something like this,
you should definitely give the result its own unique font name
and font ID number.

Creating Fonts For Different Devices

Each font is designed to be used with a device that has a
certain resolution. This because if printers, for example, used
the same fonts as the screen, it would not take full advantage of
the printer’s higher resolution. (You may wish to go take a look
at the sections titled Using Fontsand The ASSIGN.SYS File
before continuing with this section.) FONTZ! will allow you to
take a font intended for one device, and scale it to the
appropriate size for a different device.

(Page50)

Written By Mike Fulton FONTZ!

Let’s say that you have a 24 point Dutch screen font, and
you need to create a 24 Point Dutch printer font that matches it.
You can do this by choosing the Scale Font To A Different
Device choice from the Scale menu. This will allow you to
choose a different device from among those which are currently
installed, or you can enter the resolution of a device which is not
currently installed. If you want, you can also change the
pointsize for the font to be created. When you are done making
your choices, FONTZ! will create a new font which will be the
correct size for the device and pointsize you have selected.

Notes On Scaling In General

Once the font has been scaled, it will probably need to be
fixed up a bit. This is because scaling a font only makes sure
that everything is the right size; it will get the correct general
shapes of the characters, but it cannot do the fine detail work to
make everything as pretty as it could be. You will have to edit
the character information to make things look better. The
degree to which this will be necessary depends on the taste of
the person doing it, and by how much the font was scaled.

In order to reduce the amount of retouching that a font will
require after scaling, it is recommended that you always try to
scale to a larger size if possible. Scaling to a smaller size is
possible, but it causes a loss of information which can be difficult
to fix. If you must scale downward, try to do so by as little as
possible, and please remember that parts of characters that are
only a dot or two in width or height may be lost in scaling.

After you have scaled a font to a different device and/or
pointsize, it is recommended that you do not change the width of
a character unless you are certain you know what you are doing.
This is because the idea is for the different sized fonts of the
same typeface to be proportionally correct to one another. If
you change the width of characters, then things might not be
correct from one size or device to another any longer.

(" Pagesl)

FONTZ! , NEOCEPT

When you scale a font to a different pointsize and/or device,
it is often worth your time to investigate all of the different
completed fonts of that same typeface (fonts of different devices
as well as different pointsizes) before deciding which font to
scale. For example, if you want to create a 12 point Typewriter
printer font to match your 12 point Typewriter screen font, you
may discover that scaling your 18 point Typewriter screen font
to a 12 point Typewriter printer font provides better results than
scaling the 12 point Typewriter screen font. Or if you want to
create a 24 point Swiss screen font, you may discover that
scaling your 18 point Swiss printer font provides better results
than scaling the 12 point Swiss screen font. Experiment with
scaling all of the available fonts to the desired size and device
before you decide on which one to keep. This way, you can
reduce the amount of retouching to the absolute minimum
required to make the font look correct.

Creating And Using A Logo

A logo is actually nothing more than a special character
which has been changed to have a special design or picture
instead of a letter. By including a logo as part of a font, you can
use it by simply typing in that character where you wanted the
logo to appear. (Because a logo is a character within a GEM font,
it is subject to the same rules as GEM fonts. See the section
titled Using Fonts for more information about this.)

First of all, you should choose a character to contain the
logo. You can choose a character from an existing font and
include the logo as part of the overall font. Or you could give the
font containing your logo its own unique name and id number,
and delete the regular characters from it so that only the logo
remains. (This has the advantage of not taking over a character
in your regular font. You can also have more than one logo in a
font. Since a logo is just a character, you could have as many
different ones in a font as you have characters available.)

(Page52)

Written By Mike Fulton FONTZ!

If you decide to include a logo character in a font which also
has regular characters in it, choose a character that is not
commonly used in most text, avoiding numbers, letters, and
punctuation marks. You might try brace or bracket characters.
The character should also be able to be typed in using regular
keystrokes available from any program capable of using the font.
Also remember that the logo will be restricted to the overall
height used by the rest of the font, unless you add rows to the
entire font.

If you put your logo or logos into a font by themselves, then
it is suggested that you start with the letter "A" and go up from
there, since it will be easily remembered and accessed. You
should also delete the other characters from it to avoid wasting
memory and disk space. Finally, give the font its own font id
number and font name, such as "Logos".

To create your logo, simply choose the character which will
contain it and get it into your editing window. (If you choose a
character with zero width, you should add some columns to it
right off the bat, or you won’t be able to edit anything!) Once
you have the character in your edit window, all you have to do
is edit the dots in it to create your logo design. All of the
drawing and editing tools of FONTZ! can be used for this
purpose. You can even cut blocks or characters to be copied into
your logo. When you are done, make sure that your design is
saved into the font by choosing another character to edit. Or
you can simply save your font from the FILE menu.

Don’t forget that printer fonts must also contain versions of
the logo if the logo is to be used on a printer. You can do this
using the following method. Create your logo for the screen
font. Save this out to disk if you haven’t already. Now scale the
font to the printer device. If your font contains only logos and
you haven’t previously created and saved a printer font, then
you can save it now as a printer font (or after touching up the
details) and you are done. If your font contains regular
characters also, and you do not have a printer font already, save

(Page53)

FONTZ! NEOCEPT

now and you are done. If your font contains regular characters
and you already have a printer font for it, then save the font
using a temporary name like TMP.FNT. Go to your logo
character, and cut it into the copy buffer using the F1 key. Now
load your printer font and go to the same character and paste in
your logo using the F2 key. Save the printer font. If you have
more than one logo, then reload the TMP.FNT file, and repeat
for each character. Have fun!

(" Page 54).

Written By Mike Fulton FONTZ!

Converting Macintosh Fonts

Although the FONTZ! program converts Macintosh font
files into GEM font format and sets all of the GEM font
parameters automatically, there are certain parameters which
may need to be adjusted by the user in order to be provide the
best results. This is because some of the parameters in the GEM
font definition do not have exact counterparts in Macintosh
fonts, and vice versa.

First of all, Macintosh font files do not have Top Line and
Bottom Line definitions. Instead, the Ascent Line is the topmost
line of the font data, and the Bottom Line is the bottommost line.
When FONTZ! converts a Macintosh font into GEM format, the
Top Line and Ascent Line values are set to the same number, as
are the Bottom Line and Descent Line values.

With GEM fonts, the blank spaces between the Top Line and
the Ascent Line and between the Descent Line and the Bottom
Line are used to determine the spacing between different lines of
text. But since the Macintosh Font does not have Top Line and
Bottom Line parameters, there is another value used to specify
the space between lines. But in many Macintosh fonts, this
value, called the Leading value, is set to zero and the blank space
used to separate lines of text is actually built into the font infor-
mation. In this case, the Ascent Line and Decent Line values
may not actually show up on the correct rows of the font, and
you should change them as required. Otherwise, you may need
to add some empty rows to the top and/or bottom of the font in
order to keep lines of text printed in that font from sitting right
on top of each other.

Also, the Macintosh font definition does not use the Half
Line value that GEM fonts do. FONTZ! attempts to generate a
value for the Half Line setting, but it is merely an approximate
value, and may need to be changed by the user to be correct.
Remember that the Half Line should fall across the top of most
lowercase letters.

(Page55)

FONTZ! NEOCEPT

One very important thing to remember is that the Macintosh
fonts do not have a pointsize parameter. This is generated by
the conversion routine from the height of the font. But it will
not match the pointsize used on the Mac. Keep this in mind.

Macintosh fonts do not have special effects information such
as underline or bold face values. During the conversion, these
values are generated for the GEM font using constants or
according to the size of the font being converted, but they may
need changing. Use the Special Effects Info option to change
these values.

Finally, Macintosh fonts are designed for a screen resolution
of 72 dots per inch (dpi) horizontally and 72 dpi vertically. But
GEM fonts for the High resolution Atari ST screen are based on
90 dpi horizontally and 90 dpi vertically. For the most part, you
do not need to worry about this small difference, because
FONTZ! automatically sets the pointsize to be correct for the
Atari ST screen. Since the dots are square on both the Mac and
the ST, the only difference will be the pointsize setting.

Some of you may be asking the question, "Where do I get
Macintosh fonts?" The answer is that there is a large number of
places. First of all, if you have a modem, you should be able to
find a fair selection of fonts on Macintosh-based bulletin board
systems. Also, commercial telecommunications systems such as
Genie or CompuServe that have Macintosh sections often have
literally hundreds of public domain or shareware Macintosh
fonts. Another idea is to find a Macintosh User’s Group in your
area that has a public domain software library.

There are a few more things to keep in mind when you
download font files for the Macintosh. Macintosh fonts are
stored in Macintosh Resource Files. These are similar to the
* RSC files used by the Atari ST, except they can contain more
different types of information, including fonts and desk accessory
programs. A program for the Macintosh called Font/DA
Mover can be used to separate Macintosh fonts and desk

(Page 56)

Written By Mike Fulton FONTZ!

accessories from a resource file into separate files. This is
important, because FONTZ! expects a Macintosh font file to be a
Macintosh resource file with just one font of one size and style
in a file. Anything else may not work or all but the first font
may be ignored. Finally, there are some special file compression
programs which are commonly used on the Macintosh, such as
Stufflt or PackIt III (which are somewhat similar to ARC on
the ST), and if you download font files which have been
compressed using one of these programs, FONTZ! will not be
able to recognize it as a Macintosh font file.

Another route to obtaining Macintosh fonts is the Magic Sac
cartridge, from Data Pacific. This is a Macintosh emulation
cartridge for the Atari ST. Combined with Data Pacific’s
Translator One disk drive adapter, you can run Macintosh
software and read and write Macintosh disks on your Atari ST.
You could obtain the Mac fonts using the Magic Sac, and then
after making sure there was only one font size and style per file,
you could use a file conversion utility to transfer the files to ST
disk format.

The method of transfering font files which used in creating
and testing FONTZ! was to have two computers connected
together via modem or null-modem cable. One would be an ST
using an ST terminal program supporting Xmodem protocol,
such as Flash or Interlink. The other would be a Macintosh or
ST running Magic Sac using a terminal program for the
Macintosh with MacBinary Xmodem protocol (often simply
called MacBinary, this is a special version of Xmodem for the
Macintosh which makes sure that Macintosh-created files are
recognized correctly.) At this point, you simply download the
file(s) from the Mac computer to the ST computer using the
MacBinary Xmodem protocol. If you only have access to one
computer, you might upload the file using Magic Sac to another
computer running a BBS, switch to ST mode, and then download
it back again, as long as the font files are uploaded from the
Macintosh using MacBinary Xmodem. Note that the MOVER
program included with the Magic Sac for transfering files does

(Page57)

FONTZ! NEOCEPT

not use MacBinary format, and so will not work correctly in
moving font files to be used with FONTZ!. Another program
for use with the Magic Sac called Transverter is supposed to
support MacBinary file transfers, but we have not tested it at
this time. Future version of FONTZ! may recognize either file
format. Please see your README.DOC file on the FONTZ! disk
for more information about this.

Please respect the fact that there are several companies which
market fonts for the Macintosh. These fonts are not public
domain, and even if you legally obtain them, you cannot legally
distribute them without permission from the company.

Converting Amiga Fonts

Although the FONTZ! program converts Amiga font files
into GEM font format and sets all of the GEM font parameters
automatically, there are certain parameters which may need to
be adjusted by the user in order to be completely accurate. This
is because some of the parameters in the GEM font definition do
not have exact counterparts in Amiga fonts, and vice versa.

First of all, Amiga font files do not have Top Line and
Bottom Line or Ascent Line and Descent Line definitions. The
Baseline parameter is given, however, so the Top Line and
Bottom Line values for the GEM font are determined using this
value and the total height of the font. The Ascent Line is set to
the same value as the Top Line, and the Descent Line is set to
one less than the Bottom Line. Also, the Amiga font definition
does not use the Half Line value that GEM fonts do. FONTZ!
attempts to generate a value for the Half Line setting, but it is
merely an approximate value, and may need to be changed by
the user to be correct.

Amiga fonts do not have special effects information such as a

light text mask value or skewed text mask value. During the
conversion, these values are generated for the GEM font using

(Page S8)

Written By Mike Fulton FONTZ!

constants or according to the size of the font being converted,
but they may need changing. Use the Special Effects Info option
to change these values.

Finally, one very important thing to remember is that the
Amiga fonts do not have a pointsize parameter. This is
automatically generated by the FONTZ! conversion routine from
the height of the font to be correct for the Atari ST
monochrome screen device. Usually the filename of the Amiga
font file will contain the pointsize, so keep in mind that the
pointsize of the converted font will most likely not match the
pointsize used on the Amiga, even though the actual size of the
characters is not changed.

Where do you get Amiga fonts? As with Macintosh fonts,
the answer is that there is a large number of places. First of all,
if you have a modem, you should be able to find a fair selection
of fonts on Amiga-based bulletin board systems. Also,
commercial telecommunications systems such as Genie or
CompuServe that have Amiga sections often have literally
hundreds of public domain or shareware Amiga fonts. Another
idea is to find a Amiga User’s Group in your area that has a
public domain software library.

Unlike Mac fonts, Amiga fonts come in files of one size and
style each, like the Atari ST. Also unlike Mac fonts, Amiga font
files which have been compressed to save disk space and file
transfer time often use a format which is compatible with the
ST. A public domain program called ARC is the most popular
such file compression utility on both the Amiga and Atari ST. If
you download files which have been ARC-ed on the Amiga, you
can use ARC on the ST to de- ARC them. These files usually
end with ".ARC"

As with the Macintosh, there are several companies which
market fonts for the Amiga. Please respect the fact that these
fonts are not public domain, and even if you legally obtain them,
you cannot distribute them.

(Page$59)

FONTZ!) NEOCEPT

Converting DEGAS Fonts

Although the FONTZ! program converts DEGAS font files
into GEM font format and sets all of the GEM font parameters
automatically, there are certain parameters which may need to
be adjusted by the user in order to be completely accurate. This
is because DEGAS fonts are very simple, and do not have the
many parameters of the GEM font definition. These parameters
have to be created on the fly by the conversion routine, and you
may wish to change them.

First of all, DEGAS Fonts are always 16 lines high, so
FONTZ! uses constant values to set the GEM font parameters.
The Baseline and Top Line settings are always set to the 13th line
from the top. The Ascent Line value is set to 12. The Half Line
value is set to 7. The Descent Line value is set to 2. The
pointsize setting is always set to 13. The special effects
information is also set, but you may want to change it.

Where can you get DEGAS fonts? If you owned the original
DEGAS program, you probably already own several. Typesetter
ST and Typesetter Elite, from Xlent Software, also used
DEGAS-style fonts, and came with several styles. Besides this,
many Atari ST BBS systems have DEGAS style fonts in their
download sections, and most Atari ST user’s groups will have
public domain software libraries with at least some DEGAS
format fonts.

Converting Hippo Fonts

Although the FONTZ! program converts Hippo font files
into GEM font format and sets all of the GEM font parameters
automatically, there are certain parameters which may need to
be adjusted by the user in order to be provide the best results.
This is because Hippo fonts do not have many of the parameters
of the GEM font definition, and these parameters have to be

(Page60)

Written By Mike Fulton FONTZ!

created on the fly by the conversion routine, and you may wish
to change them.

First of all, Hippo font files do not have Top Line and
Bottom Line or Ascent Line and Descent Line definitions. The
Baseline parameter is given, however, so the Top Line and
Bottom Line values for the GEM font are determined using this
value and the total height of the font. The Ascent Line is set to
the same value as the Top Line, and the Descent Line is set to
one less than the Bottom Line.

Also, the Hippo font definition does not use the Half Line
- value that GEM fonts do. FONTZ! does generate a value for the
Half Line setting, but it is merely an approximate value, and
may need to be changed by the user to be correct.

Hippo fonts do not have special effects information such as a
light text mask value or skewed text mask value. During the
conversion, these values are generated for the GEM font using
constants or according to the size of the font being converted,
but they may need changing. Use the Special Effects Info
option to change these values.

Finally, one very important thing to remember is that the
Hippo fonts do not have a pointsize parameter. The Hippo font
assumes the height of the font in rows is the same as the
pointsize, but since this is not true for GEM fonts, FONTZ!
calculates the correct pointsize setting for the Atari ST
monochrome screen.

Where can you obtain Hippo format font files? FONTZ! has
this conversion option mostly for the benefit of users of the
HippoWord word processor. If you use this program now, or in
the past, then you should have a number of fonts in this format,
and now you can convert them to GEM format for use with
programs such as NEOCEPT’s WordUp word processor.
Unfortunately for Hippopotumus Software, this program and
font format never caught on with the larger portion of the Atari

(Pageé6l)

FONTZ! NEOCEPT

ST world, so it may be difficult to locate fonts in this format on
bulletin board systems or commercial telecommunications
systems, or in user’s group’s public domain software libraries.

(" Page62)

Written By Mike Fulton FONTZ!

Using Fonts

How do you go about using fonts created and edited with
FONTZ! with your programs? There are three main
requirements. Number one, you must boot your system with
GDOS.PRG in the AUTO folder of your startup disk, with the
ASSIGN.SYS file in the main directory of the same disk. The
number two requirement is that the font filename be listed in the
ASSIGN.SYS file along with the appropriate device. Lastly,
the program must be capable of loading and using standard GEM
fonts. Many different types of programs load and use GEM
fonts, but the most common applications are word processors,
desktop publishing, and drawing packages of various types. If a
program does not use GEM fonts, then you will probably not be
able to use fonts created or converted with FONTZ! with that
program. (Programs can either use GEM to perform output, or
access the output device directly. Unless a program uses GEM to
perform its output, it will probably not use GEM fonts. And
unless the publisher rewrites the program to do so, it is
extremely unlikely that there is any way to make it use GEM
fonts.)

1) Some of the fonts I have installed are not available
from my program.

This can be caused by one of four things. You may not have
enough memory left over after the program is loaded for GEM
to be able to load all of the fonts named in the ASSIGN.SYS
file. When this happens, GEM will load as much as it can. Some
devices, such as the Atari SLM804 Laser Printer, require a large
amount of memory to work (over 1 megabyte for the SLM804!),
and this will reduce the number of fonts that you can load. There
isn’t much you can do about this except to remove any
unneccessary desk accessories which might be present and restart
your system. Some of the fonts you have listed in the
ASSIGN.SYS file may not be required for this program, so you
could change your ASSIGN.SYS file so that GEM will not load
them, leaving more memory for the fonts you really do need. Or,
you could add more memory to your computer system.

(Page63)

FONTZ! NEOCEPT

Another possbility is that the fonts may have been loaded
into memory without any problems, but your program might
only recognize a certain number of different typefaces (fonts
with the same 1D number). For example, if a program has only
5 menu spaces for typeface names, then any typefaces past #5
will not be available while in that program. You should contact
the publisher of that program regarding the problem to see if an
update is available.

Three, while the font’s filename might be listed in the
ASSIGN.SYS file now, was it there when the computer was
turned on or last reset? The ASSIGN.SYS file is only read
once, when the computer is turned on or reset. If you make
changes to it, they do not take affect until you restart your
system. Also, make certain that all of the font filenames in your
ASSIGN.SYS file are spelled correctly and match the files you
actually have available.

Four, all of your font files and device driver programs must
all be together in the same folder on the disk, and this disk and
folder must be named in the ASSIGN.SYS file. If they are not,
GEM will not find them. See the section entitled The
ASSIGN.SYS File for more informtion about this.

2) The name of one (or more) of my fonts is listed twice
in my program.

GEM keeps track of different fonts by two ways: font id
number and pointsize. Normally, all of the different sizes of the
same typeface will have the same font id number. Or at least
they are supposed to. But if for some reason they do not, then
you can get the same font listed twice in your menu. Check to
see what sizes are available for each of the two entries for that
font, and then check those sizes with FONTZ! to make sure that
all of the sizes have same font id number and font name. (For
consistancy, you should make sure the font names match exactly,
in regards to uppercase & lowercase letters.) Change the font id
number of any sizes that are incorrect. You may want to keep a
list of the sizes you have for each font, with the font name and

(Page64)

Written By Mike Fulton FONTZ!

font ID number. A template for keeping such a list can be
found at the end of this manual. Feel free to make photocopies
of this page of the manual in order to keep track of your fonts.
If you keep track of what fonts you have from the very
beginning, you’ll save yourself a great deal of confusion later.

Another possibility is that you have a font which does not
have the correct name. Try looking at both of the fonts to see if
they are the same typeface, or different ones. If they are
different sizes of the same typeface, then the problem is the font
id number, but if they are different typefaces, then the problem
is that one (or more) of the fonts has the wrong typeface name.
You will have to use FONTZ! to look at the names and font id
numbers and change them if necessary. Only fonts with the
same id number should have the same typeface name.

3) I have all my fonts installed, but some programs don’t
use them at all, or don’t use some of them.

First of all, if your program does not seem to use your
installed fonts at all, then chances are that this program does not
use standard GEM fonts. Some programs which use multiple
fonts use their own format for fonts instead of the GEM format.
In this case, you should refer to the manual for that program to
determine the options available to you. Also see the answer to
question #1 for more information.

The ASSIGN.SYS File

The ASSIGN.SYS file is a special file used by GEM to keep
track of the names of the available GEM devices, and the fonts
which go with them. This section has some technical
information about GEM and the ASSIGN.SYS file for those who
are interested.

What’s a GEM device, you ask? A GEM device can be

several things, such as a printer, a plotter, or the display screen.
The GEM system that is in the Atari ST has built-in programs

(Page65)

FONTZ! NEOCEPT

for running the standard display screens. However, when it
comes to other devices, such as printers, there could be many
different kinds, such as the Atari SLM804 Laser Printer, Epson
LQ-1000, or Atari SMM804 Dot Matrix Printer. Each of these
printers has its own protocol for accomplishing its functions. And
since GEM must be able to run a variety of such devices, it’s
impractical to have built-in programs for each one. It would
simply take up too much memory.

To get around this, GEM is capable of loading programs
which tell it how to run these various sorts of output devices.
Such programs are called device drivers. When GEM needs to
use a device, it loads the device driver program from disk into
memory. This way, the program does not take up memory until
it is required.

GEM graphics output is always printed with the graphics
mode of that device, how else? And GEM graphics text is also
done the same way. Think of each character of text as being a
little picture that gets put into the page individually. And since
different devices can have very different resolutions, each one
must have its own set of font files for proper output of text,
with the characters especially designed for the resolution of that
devicie. Otherwise, the character data would have to be scaled to
be the correct size or the characters would be printed in the
wrong size, compared to everything else on the page. Either
method results in a loss of quality.

Obviously, GEM must have a way of keeping track of what
device driver programs are available, as well as knowing which
font files go with which device. This is where the ASSIGN.SYS
file comes in. It is a simple text file in a fairly simple format
which lists all of this information for GEM. GEM reads this file
when your system is started at powerup or reset time, and stores
the information for later use. The format of this file is the
subject of the rest of this section.

(Page66)

Written By Mike Fulton FONTZ!

ASSIGN.SYS File Format

The first thing you do in the ASSIGN.SYS file is specify the
disk drive and directory where the device driver programs and
font files will be found. This is done with a line at the very
beginning of the file like this:

Path = C:\GDOS.SYS\

This directory path can be a maximum of 64 characters
long, and must be the very first non-comment line within the
ASSIGN.SYS file. (Comments begin with ";" and you can start
a comment anywhere in the line, including at the very
beginning. Everything on a line following a comment marker is
ignored by GEM when it reads the file.)

The next thing you have to do is to identify your GEM
devices. Each particular type of device has a certain range of
numbers which it uses for identification, allowing more than one
device of the same type to be available at once by using different
ID numbers within the proper range. The various devices and
their ranges are shown below.

01-10 -- Screen Device

11-20 -- Pen Plotters

21-30 -- Printers, including Laser
31-40 -- Metafile

41-50 -- Polaroid Palette Camera
51-60 -- Graphics Tablets

You identify a device in the ASSIGN.SYS file by starting a new
line with the ID number of the device, followed by the
complete filename of the device driver program. You can also
use one of two optional modifiers after the device ID. These will
affect how GEM will obtain that device driver program. Valid
modifiers are:

r - Load Driver at GDOS Initialization and keep in memory.
p - Device driver is located in Atari ST ROM chips

(Page 67)

FONTZ! NEOCEPT

After a device driver name, you list all of the font files
which will be associated with that device id number, each on a
separate line. All of the non-comment lines following will be
interpreted as font filenames, until you reach another device
driver id number and filename or the end of the ASSIGN.SYS
file.

An example of a ASSIGN.SYS file is shown below. Notice
that all of the device id numbers are in numerical order. Also
notice that the screen device id numbers have a "p" added to
them, indicating that these device driver programs are built into
the computer, and do not need to be loaded from disk. The
example has three different fonts installed, all from the same
typeface (Swiss, in this case), for the default screen, high
resolution screen, and Epson FX-80 printer. Note that since the
02 & 03 SCREEN.SYS devices have no fonts listed after them,
no loaded fonts will be available to these devices.

Path = C:\GDOS.SYS\

Olp SCREEN.SYS ; Default Screen fonts
ATSS12HI.FNT

ATSS18HI.FNT

ATSS24HI.FNT

02p SCREEN.SYS ; Low Rez Screen
03p SCREEN.SYS ; Mes Rez Screen
04p SCREEN.SYS ; Hi Rez Screen

ATSS12HI.FNT
ATSS18HI.FNT
ATSS24HI.FNT
21 FX80.SYS ; Epson FX-80 & compatibles
ATSS12EP.FNT
ATSS18EP.FNT
ATSS24EP.FNT

31 META.SYS

4

(Page 68)

Written By Mike Fulton FONTZ!

GEM Font Definition

GEM fonts have certain attributes which you should be
aware of when you are creating or editing them. This section
will give you a basic working knowledge of these attributes.

Font Alignment Lines

First of all, there are several kinds of special lines which help
to define a font, and which are used to help align individual
characters and lines of text with one another. These lines are,
strictly speaking, imaginary ones. But even though you can’t see
them, they affect the whole font and individual characters
nonetheless. GEM can use any of these lines in aligning text
output, so it is important that the values for them must be set
correctly. It is important that you read the definitions for all of
these values if you intend to change any of them.

GEM Font Line Definitions

TopLine
JAscentline [|
Half Line

Baseline
|.Descentline|
BottfomnlLine

'

1

1 pom 2 \ 7 1

— Cell Width —
Figure #30, GEM Font Line Definitions example

(" Page 69)

FONTZ! NEOCEPT

The lines you need to be familiar with are the Ascent line,
the Descent line, the Half line, the Baseline, and also the Top
Line and Bottom Line. See figure #28 for an example of these
lines in a typical font.

TOP LINE: The Top Line is the very top row of the font data.
In the GEM font header information, the setting for the Top
Line is equal to the distance, in pixels, from the top row of the
font to the baseline row of the font, including the baseline row.
(See BASELINE, below.) The actual height of the font, in
pixels, can be determined by adding together the Top Line and
Bottom Line values.

BOTTOM LINE: The Bottom Line is the very bottom row of
the font data. In the GEM font definition, the setting for the
Bottom Line is equal to the distance, in pixels, from the top row
of the font to the baseline row of the font, not including the
baseline row. (See BASELINE, below.)

BASELINE: The Baseline is an imaginary line which runs
against the bottom, or base, of all or most of the characters in a
font, except those characters which have descenders. Figure #28
shows where the baseline is in relation to the other lines and the
main part of the character.

With a GEM font, the Baseline and Top Line parameters
both specify how far, in pixels, the Baseline row is from the
very top row of the font. In the GEM font file header definition,
the Baseline setting is not given by itself, but is determined from
the Top Line setting, which gives the distance in pixels from the
top of the font to the Baseline. So, the Baseline and Top Line
definition values are the same, because they both specify the
distance between one another.

In FONTZ!, the Top Line/Baseline parameter may be

changed in the Change Font ID#/Name/Pointsize dialog box,
where it is shown as "Baseline."

(Page70)

Written By Mike Fulton FONTZ!

ASCENT LINE: The Ascent line is an imaginary line which
runs against the highest point of all or most of the capital letters
in a font, along with some lower case letters such as "bld".

In a GEM font definition, the Ascent Line parameter
specifies how far, in pixels, the Ascent line is from the baseline,
including the baseline row. This value must be less than or equal
to the Top Line/Baseline setting.

Please note that because the Ascent Line value is the distance
from the baseline, reducing or increasing the value for the
Baseline parameter will affect where the Ascent Line falls within
the font. If you want the Ascent Line to remain where it is
when moving the Baseline, you must also increase or decrease it
by the same amount as the Baseline.

DESCENT LINE: The decent line is an imaginary line which
runs against the lowest point of all the letters in a font which
have descenders, such as the lower case letters "ypgq".

In the GEM font definition, the Descent Line parameter
specifies how far, in pixels, the Descent Line is from the
Baseline, not including the Baseline row itself. This value must
be less than or equal to the Bottom Line setting.

Please note that because the Descent Line value is the
distance from the baseline, reducing or increasing the value for
the Baseline parameter will affect where the Descent Line falls
within the font. If you want the Descent Line to remain where
it is when moving the Baseline, you must increase it when
decreasing the Baseline, by the same amount, or decrease it by
the same amount as the Baseline’s increase.

HALF LINE: The Half Line is an imaginary line which runs

against the highest point of most of the lower case letters in a
font, such as "geqrop", and so on.

(Page71)

FONTZ! NEOCEPT

In the GEM font definition, the Half Line parameter
indicates how far, in pixels, the Half Line row is from the
Baseline row of the font, including the baseline. This value
should be less or equal to the Ascent Line.

Please note that because the Half Line value is the distance
from the Baseline, reducing or increasing the value for the
Baseline parameter will affect where the Half Line falls within
the font. If you want the Half Line to remain where it is when
moving the Baseline, you must increase or decrease it by the
same amount as the Baseline.

Special Note: The Ascent, Descent, and Half lines are counted
as offsets from the baseline because this is the GEM standard for
this. It would be easier for some people if these lines were
defined as being a certain position down from the top of the
font. However, for those people who were more knowledgable,
this would be a problem. Please remember to change these
other values if you change the baseline parameter.

(Page72)

Written By Mike Fulton FONTZ!

Character Cell

Besides the font alignment line definitions, there are other
parameters which affect how GEM uses a font. The character
cell is basically a box which is wide enough and tall enough
contain any letter within the font. See figure #30 for an
example of these parameters. These values are automatically
maintained as required by FONTZ!, and the user does not need
to worry about setting them.

CELL WIDTH: This value defines the width of a box which
can contain any single character in the font, from the widest one
to the thinest one, including any positive horizontal offset values
(see the GEM Font Header section for more information about
horizontal offsets).

CELL HEIGHT: This value defines how tall the character cell
is. The parameter is equal to the height of the font.

CHARACTER WIDTH: This value defines the width, in pixels,
of the portion of a character cell which is actually used by a
particular character.

CHARACTER HEIGHT: This value defines the height, in
pixels, of the portion of a character cell which is actually used by
a particular character.

(Page73)

FONTZ! NEOCEPT

GEM Font Header

For any programmers who may be interested, this section
will explain the differences between the original GEM font
specification from Digital Research, and the extended GEM font
specification created by NEOCEPT. If you aren’t a programmer,
this section won’t make any sense at all, but the information is
not really important for non-programmers anyway. This
extended definition was created to address some of the
shortcomings in the original definition which became apparent
during the creation of FONTZ!. First, let’s show a C language
definition of the modified font header structure defintion.

/t

* FONTDEFS.H -- Font structure definitions
* Written By Mike Fulton

*/

#define FONT_MAGIC (OxFEED)

typedef struct gemfont
{

int face_id; /* id # for font */

int pointsize; /* Font's official pointsize setting */
char font_name [32]; /* Name for font */

int low_char:; /* Lowest char within font */

int hi char: /* Highest char within font */

int top_line; /* Distance from top of font to baseline */
int ascent:; /* Distance from baseline to ascent line */
int half line; /* Distance from baseline to half line */
int descent; /* Distance from baseline to descent line */
int bottom; /* Distance from font bottom to baseline */
int widest; /* Width in pixels, of widest character */
int cell width; /* Width in pixels, of box to hold all chars */
int left off; /* Left offset for skewed text */

int right off; /* Right offset value, used for skewed text */
int bold mask; /* Shift mask for bold text effect */

int underline; /* Height of underline, in pixels */

int light_mask; /* Mask for light text */

int skew_mask; /* Shift mask for skewed text effect */

int flags:; /* Font format flag word */

long h_offset; /* Offset to kern table, if present */

long char_offset; /* Offset to X-position/width table */

long char_addr;
int form_ width;
int form_height;
long next font;
int magic;

int pwidth;

int pheight;

} GEMFONT:

Offset within file to start of raster data */
Width, in bytes, of one row of font */
Height, in pixels, of font (starts at 1) */
Pointer to next font. (0 in disk file) */
Magic number should = $FEED */

If MAGIC # valid, Pixel width in Microns. */
If MAGIC # valid, Pixel height in Microns. */

(Page74)

Written By Mike Fulton FONTZ!

Now let’s look at all of the different parameters in the font
header, and define what each one is supposed to mean.

int face_id;

This parameter is used to contain the font ID number that
GEM uses to make sure that different pointsizes of the same
typeface are recognized as all one typeface. Each different size
of the same typeface must have the same face_id setting.

int pointsize;

This contains the pointsize setting of the font. This is the
height of the font, measured in points, as it would appear on the
device the font is intended for. A point is 1/72 of an inch.

char font_name[32];

This is a 32-byte string containing the Typeface name of the
font. All 32 bytes must be included in the header, but the name
does not have to use all 32 bytes as long as it is null-terminated
(ends with a byte set to zero).

int low_char;
This is the ASCII value of the lowest character within the
font. It must be lower than or equal to the hi_char setting.

int hi_char;
This is the ASCII value of the highest character within the
font. It must be higher than or equal to the Jow_char setting.

int top_line;
This is the distance, measured in rows, from the topmost
row of the font to the baseline of the font.

‘int ascent;

This is the distance, measured in rows, from the ascent line
row of the font to the baseline of the font.

(Page75)

FONTZ! NEOCEPT

int half_line; ~
This is the distance, measured in rows, from the half line
row of the font to the baseline of the font.

int descent;
This is the distance, measured in rows, from the descent line
row of the font to the baseline of the font.

int bottom;
This is the distance, measured in rows, from the bottom row
of the font to the baseline of the font.

int widest;
This parameter contains the width of the widest character to
be found within the font.

int cell_width;

This parameter contains the width of a box which could
contain any single character within the font. (The actual width
of the widest character, plus any positive horizontal offset value
for that character.)

int left_off;

This parameter is used in creating the skewed text style.
Basically, it tells how many pixels are added to the left of the
character when skewed text is used.

int right_off;

This parameter is used in creating the skewed text style. It
tells how many pixels are added to the right of the character
when the skewed text style is used.

int bold_mask;

This is the number of times to move to the right and reprint
the character when the bold (sometimes called thickened) text
style is used. The character is printed once at the specified
position, and if the bold style is active, it moves one pixel to the
right of the previous position and prints the character again. It
repeats this as many times as this value tells it to. Note that this

(Page76)

Written By Mike Fulton FONTZ!

can make a character into an unreadable blob when the bold
style is used if this value is incorrectly set to too large an
amount.

int underline;

This value contains the height of an underline to be drawn
under the characters, at the descent line, when the underline
style is active. For example, if the underline value is 5, then a
line 5 pixels tall will be drawn at the descent line underneath the
character.

int light_mask;

This value contains a mask which will be used when
printing light style text. A logical AND operation is performed
using the character and the mask value, and the result is what
gets printed on screen. The mask is logically shifted to the left
for each successive row of the font, so that it does not remain
constant from one row to the next.

int skew_mask;

This value contains a mask that is used, along with the left
offset and right offset values, to determine how and where to
shift a character when the skewed text style is used.

int flags;
This value is a bit-mapped flag for several parameters about
the font.

bit value description

0 1 Set if default system font

1 2 Set if horizontal offset table used

2 4 Set if font raster in Motorola format
clear if font raster in Intel format.

3 8 Set if font is mono-spaced.

int h_offset;
In a disk file, this is the offset from the start of the file to
the horizontal offset table, if one is present. If no horizontal

(Page77)

FONTZ! NEOCEPT

offset table exists, then this value should be ignored. Once
loaded in to memory, this value is changed to a pointer to the
memory address where the horizontal offset table was loaded.

The horizontal offset table contains an entry for each
character in the font which specifies how many pixel spaces
(positive or negative values are allowed) to add to the character
position before actually printing the character. The flags
parameter must have the proper bit set for this table to be
active.

long char_offset;

In a disk file, this is the offset from the start of the file to
the start of the character offset table, which contains the
horizontal position of each character within the font raster data.
For example, if the character "a" starts at 653 pixels from the
left edge of the font raster, then the character offset table will
contain 653 for that character. Each entry in the table is an
integer value (2 bytes). The table starts at the lowest character
in the font, and contains one more entry than the number of
characters in the font. You can determine the position of an
entry in the table by subtracting the low_char value from the
ASCII value of the character you are interested in. You can
find the width of any character by subtracting the value for that
character from the value of the character that follows it. (Which
is why the table has one extra entry at the end.)

Once loaded into memory by GEM, this value is changed to
a pointer to where GEM loaded this table.

long char_addr;

In a disk file, this is the offset from the start of the file to
the start of the actual character information for the font. The
font data is stored as a ST machine-specific single- plane raster
form and must be an even number of bytes long. See a GEM
VDI programming reference for a description of this format.
Once loaded into memory by GEM, this value is changed to a
pointer to where GEM loaded the character data.

(Page78)

Written By Mike Fulton FONTZ!

int form_width;
This parameter specifies the width, in bytes, of the character
information raster form.

int form_height;

This parameter specifies the height, in rows, of the character
information raster form. The total size, in bytes, of the
character information form can be determined by multiplying
this value by the form_ width value.

long next_font;

In disk file, this value is not important and is usually set to
zero. Once loaded into memory, this value contains a pointer to
the next font header currently loaded into the computer’s
memory.

Note: The following parameters are the ones added by
NEOCEPT to create the extended GEM font format.

int magic;

This is a magic number parameter which is used to
determine if the extended font header is valid or not. If the
extended header is to be considered valid, this value must be set
to $FEED.

int pwidth;

If the magic parameter is valid, then this contains the width,
measured in microns (1/1000 of a millimeter), of a pixel on the
device for which the font is intended. For some resolutions, this
value may be rounded off slightly.

int pheight;

If the magic parameter is valid, then this contains the
height, measured in microns (1/1000 of a millimeter), of a pixel
on the device for which the font is intended. For some
resolutions, this value may be rounded off slightly.

(Page79)

FONTZ! NEOCEPT

Now let’s take a look at the original GEM font header
specification from Digital Research so that we can see what the
differences are.

/* FONTDEFS.H -- Font structure definitions */

typedef struct gemfont
{

int face_id; /* id # for font */

int pointsize; /* Font's official pointsize setting */

char font_name [32]; /* Name for font */

int low_char; /* Lowest char within font */

int hi_char; /* Highest char within font */

int top_ line; /* Distance from top -of font to baseline */
int ascent; /* Distance from baseline to ascent line */
int half_line; /* Distance from baseline to half line */

int descent; /* Distance from baseline to descent line */
int bottom; /* Distance from font bottom to baseline */
int widest; /* Width in pixels, of widest character */

int cell_width; /* Width in pixels, of box to hold all chars */
int left off; /* Left offset for skewed text */

int right off; /* Right offset value, used for skewed text */
int bold mask; /* Shift mask for bold text effect */

int underline:; /* Height of underline, in pixels */

int light_mask:; /* Mask for light text */

int skew_mask; /* Shift mask for skewed text effect */

int flags; /* Font format flag word */

longh_offset; /* Offset to kern table, if present */

long char_offset; /* Offset to X-position/width table */

long char_addr; /* Offset within file to start of raster data */
int form_width; /* Width, in bytes, of one row of font */

int form_height; /* Height, in pixels, of font (starts at 1) */
long next_font; /* Pointer to next font. (0 in disk file) */
} GEMFONT;

As you can see, there is actually very little difference
between the two specifications. The entire content of the
original specification is left unchanged in the new version, and is
simply added to at the end to make up the new extended font
header definition.

The additions to the font defintion were introduced to
overcome one significant shortcoming in the original defintion,
namely that there was no way to determine what device
resolution a font was supposed to be used with. The only way
that fonts were designated as being for different devices was by
using different filenames which specified the device.
Unfortunately, this method is prone to tampering from ignorant
or malicious users and still does not specify the actual resolution
of the device.

(Page80)

Written By Mike Fulton FONTZ!

There are three new parameters in the font definition. First
of all, there is a magic number which serves to determine if the
font has the extended header or not. Since the portion of the
font following the header is usually the character
x- position/width table, and we don’t want to accidentally get
values from here as our two other parameters, there needs to be
a way to determine if the new parameters are valid. Therefore,
we use a "magic" number of $FEED to indicate that the font has
an extended format header. If the magic number of the font is
set to $FEED, then the following two parameters indicate the
width and height, respectively, of a pixel on the device for
which the font is intended.

By including information for the pixel size in the font, it
makes it far easier to keep track of a number of things. While
some of these might be of use mainly to a font editor program
such as FONTZ!, they also have some uses by more general
applications programs. First of all, it makes it possible to detect
large discrepancies between the actual size of a font and its
specified pointsize, an important thing for an editor. It also
allows an application to make sure that the correct fonts are
installed. It would also allow a program designed to create
ASSIGN.SYS files to determine which fonts would work
correctly with a particular device. I have seen some strange
printouts from people who had set up their ASSIGN.SYS file so
their printer was using the same fonts as their screen display.

Having this information in the font header facilitates scaling
and transfering fonts from one pointsize and device to other
pointsizes and devices. For example, the standard 24-pin printer
resolution is 180x180 dots per inch, while the screen resolution is
90x90dpi. Obviously, this means fonts for a 24-pin printer need
to be twice as wide and twice as tall as screen fonts to be correct
for that device. When you have a number of devices to keep
track of, it gets very difficult to keep track of the fonts for each.
Let’s say you wanted to create a 24 point screen font by scaling a
12 point printer font. Having the device resolution for the font
allows you to determine that no scaling is even necessary,

(Page8l)

FONTZ! NEOCEPT

because a 12-point font at 180x180dpi is the same size as a
24-point font at 90x90dpi. Knowing the device resolution allows
you to scale between different devices and pointsizes
simultaneously, which means less manipulation of the font raster
is required. Of course, the information regarding the device &
resolution could be entered by the user. But it would be
necessary for it to be entered each time a font is loaded by a
program which used this information, and why should the user
have to put up with keeping track of this when it could easily be
included in the font in the first place?

Of course, because this specification is a bit different from
the original, there may be concerns about compatibility.
However, we have discovered that as long as the offsets to the
character offset table, horizontal offset table, and raster data are
set correctly to account for the different header size, GEM does
not seem to care about the additional parameters. We have
tested fonts for both the screen and various printers (Epson FX,
Citizen 224, NEC P7, & Atari SLM804) with the extended
format with WordUp, DEGAS Elite, Easy- Draw, Paint-Pro, and
Microsoft Write, as well as with test programs which we have
written ourselves. In all cases, we have not discovered a single
point of incompatibility with our new extended font header
format. (We do, however, regcognize the possibility of a
problem if a program was attempting to load fonts itself using
constants for the positions of the various parts of a font instead
of using the offset values from the header. But at this time, the
only program with this possibility that we know of is the
Paintworks/N- Vision program, and it wants only GEM fonts
with the header in Motorola format. So, when the FONTZ! font
editor saves a font for use with Paintworks, it reverses the
header into Motorola format, strips the horizontal offset table
and extended portion of the header, saves the font this way, and
then restores this information afterwards.)

Mike Fulton, Author of FONTZ!

(Page82)

Written By Mike Fulton FONTZ!

Why FONTZ!?7?? A Note From The Author

During the creation of this program, some people have asked
me why I was creating a GEM font editor. Well, if you are
interested in the answer, set your time machine back to January
1984. 1 was just starting to gain a decent level of programming
skill with my 8-bit Atari 400 computer when Apple had the
famous "Super Bowl" commercial for their new Macintosh
computer. It was very intriguing, so shortly thereafter I went
down to my local Apple dealer to have a look. If you didn’t
happen to see it, you missed a beauty. It depicted the Macintosh
as being the reason the year 1984 wasn’t going to be like the
famous novel 1984. As far as I know, the 1984 Super Bowl
telecast was the only time it was ever shown.

One reason I was fascinated by the Macintosh was the way it
let you use many different sizes and styles of text. I’ve been a
photographer longer than a computer programmer, and I’m
often involved in putting together multi- projector slide
presentations. To create title slides, I had been using sheets of
rub-on letters and individually rubbing each letter of each title
onto a sheet of paper. While this could produce excellent results,
it was very time consuming and difficult. The possibilities that
the Macintosh provided were very interesting.

There was just one problem. The Macintosh, although being
hailed by Apple as "the computer for the rest of us," was priced
out of the range of many of us, including myself. There was a
special student discount at several colleges across the country, but
my school was not included and I was out of luck.

In July 1984, Jack Tramiel purchased Atari from Warner
Communications. It wasn’t long before rumors began to surface
that Atari would announce a computer that would compete with
the Macintosh as far as speed and power were concerned, but be
priced far below the Mac’s price level. The Atari ST turned out
to be that computer, and its price was at a level I could handle.

(Page83)

FONTZ! NEOCEPT

At the time of its release, there were promises that GEM
Paint, GEM Draw, and GEM Write would soon be out for the
Atari ST. These programs would supposedly do with GEM on
the ST as much as or more than the programs I’d envied on the
Macintosh. However, time dragged on, and to this day, these
programs have not been released in the U.S. for the Atari ST.

Eventually, Easy- Draw, an object-oriented drawing package
from Migraph, was released. It was the first program
commercially available for the ST to use the standard GEM font
format. For me, Easy-Draw had one very significant
shortcoming: only one typeface was included with the program,
although it supported up to five different typefaces in several
sizes. Still, the promise of more typefaces to come gave me
something to look forward to. A few other ST programs had
been allowing multiple fonts, such as DEGAS and TYPESETTER
ST, but these were using fonts converted from the Atari 8-bit
computers, and they were incompatible with the GEM standard
and other programs. (And actually, while they allowed the use of
different fonts, you could still only have one loaded at a time.)

Another program which could use standard GEM fonts was
PaintPro, from Abacus Software. It came out in August 1986,
but did not include any fonts with the package. Nothing else
appeared until an improved version of the DEGAS paint
program was released in the fall of 1986, titled DEGAS Elite.

DEGAS Elite used standard GEM fonts, but to allow you to
use the older DEGAS fonts with the new program, a special
conversion program was included. It let you load in an
older-style DEGAS font and save it out in standard GEM format.
You even had a choice of creating fonts with various
combinations of double and half width and height. However, the
larger sizes were simply expanded versions of the smaller ones.
And while the original DEGAS program included an editor for
its fonts, DEGAS Elite did not have such an editor for the new
fonts after they had been converted to GEM format.

(Page84)

Written By Mike Fulton FONTZ!

Another problem was that even if you liked the fonts
converted to GEM format, the program created screen fonts only.
If you wanted to use them with a program to create printouts,
such as Easy-Draw, they would not print correctly, because of
the resolution differences between the screen and the printer.

At this time, I’d had my Atari ST for about a year and a
half, and the font situation was nowhere as good as it should be.
Although GEM on the ST has virtually the same multiple font
capabilities as the Macintosh, there was only a few programs and
fonts to take advantage of them. The biggest problem seemed to
be that software companies whose programs used fonts wanted
to do things their own way, and be incompatible with everything
else, rather than use the compatible, and usually more capable,
GEM font format. Maybe this was because of the small number
of fonts available in GEM format. Maybe they simply couldn’t
figure out the right way to do things, because although the
documentation has always been there, it isn’t always that easy to
understand. I don’t know why they didn’t use GEM fonts right
off, but they didn’t. (At the least, I think they should have made
fonts which followed the GEM standard, even if they used them
their own way, instead of using GEM. That way the fonts at least
would be compatible with future programs.)

I do know that a lot of people seemed to blame the GDOS
portion of GEM for their own problems and misunderstandings. I
know I blamed a number of things on GDOS myself for awhile,
when a program I was working on didn’t work right. But I later
found out that there were other things I was doing wrong, and
GDOS had nothing to do with my trouble. Certainly GDOS did
have some initial problems, but not nearly to the extent
suggested by the amount of complaints. The mere fact that
there were already a few programs available which used GEM
fonts should have suggested to people that their problems, or at
least some of them, were their own fault, and not that of GDOS.
This goes for those people who complained about there not
being a "finished version" of GDOS as well.

(Page85)

FONTZ! NEOCEPT

At any rate, I got tired of waiting for someone else to supply
fonts and font editors, and so on. "The best way to get
something done is to do it yourself." Right? Whatever.
Anyway, I started looking into figuring out the GEM font
format. This was an aspect of programming the ST that I hadn’t
yet looked into. As I said before, the documentation wasn’t
always easy to understand, but I eventually gained a fair level of
understanding about how things were supposed to work.

About this time I began to think about converting Macintosh
fonts over to GEM format. After all, if there were all of these
Macintosh fonts available, it would be foolish to simply ignore
them. With this in mind, I bought the best book I could find
about programming the Macintosh and started learning as much
as I could about its font format. Eventually, I had the method of
converting Macintosh fonts to GEM format figured out.

Somewhere down the line, Hippopotamus Software had
released a word processor called HippoWord which used multiple
fonts, using their own method of doing things. To take
advantage of the fonts in this format, I started work on a
program to convert Hippo fonts to GEM format.

While 1 was figuring out how to convert Hippo fonts, I got
the idea that I may want to create a single program to handle all
of these conversions, instead of several smaller ones. That would
make it easier and faster to do a number of conversions at the
same time, and make the program more efficient. So, I decided
to integrate all of my small programs into a somewhat larger one.
I took the main portion of one of my previous programming
efforts to use as a shell, and plugged my font conversion routines
into it. I called this early program FONTZ!

After I got this program together and working, I started
thinking of making my own font editor program. The only
problem was that I didn’t really know the best way to approach
this type of program. For one thing, this whole deal was starting
to get far beyond the level of a simple program intended for

(Page86)

Written By Mike Fulton FONTZ!

personal use, which was how I had orlgmally envisioned the
conversion programes.

I started out by making a list of features that I’d want to see
in a character editor. I sat down with some paper and just
started writing things down. I asked friends for their opinions.
Eventually, I had a general idea of what types of features should
be in the program.

Throughout the creation of FONTZ! there have been some
features which were thought up and implemented into the
program in just a few minute’s time. Other features which
originally took many days or even weeks to completely figure
out and implement have been removed in favor of something
else. All in the interest of improving the program overall, of
course. So many changes have been made in this program that I
long since lost track of them all. Since it is my practice to keep a
current listing printout of a program that I am working on, this
program has kept my printer very busy. I’ve used up several
boxes of printer paper and quite a few printer ribbons as well.

I hope you find this program useful. It’s certainly been an
interesting experience creating it. I suppose the next few
months after FONTZ! is released will indicate what kind of
impact it will have. At the time I write this, several
long- awaited products which use GEM fonts are expected to be
out soon, including NEOCEPT’s own WordUp word processor.
Hopefully, FONTZ! will allow users to get the most out of these
programs. At the very least, it can allow practically every
Macintosh font and Amiga font to be used on the ST. Since this
amounts to hundreds of different sizes, styles, and typefaces, it
should go a long way in eliminating the over-extended absence
of a large number of fonts on the ST.

Thanks,
Mike Fulton, Author of FONTZ!

(Page87)

FONTZ!

NEOCEPT

GEM Fonts

Font
Filename

Font
Name

Font

ID Number

Font
Pointsize

(Page88)

Written By Mike Fulton FONTZ!

Index

About FONTZ! 7

Add column 28

Add row 35, 36

Amiga 3,12

Arc 22

Ascii value 45, 34

Ascent line 30, 31, 43, 69, 71, 75

ASSIGN.SYS File 13, 31, 34, 44, 63, 64
- description of... 65, 66, 67
- sample 68

Backup disk 3

Baseline 30, 31, 43, 69, 70
BBS57, 59, 60, 61

Boldface 2, 3, 31, 32
Boldface factor 31, 40, 76
Bottom line 43, 69, 70, 76
Box frame 3, 21

Change Horizontal Offset 44
Character cell

- Cell Height69, 73

- Cell Width 69, 73, 76

- Char Height 69, 73

- Char Width 69, 73
Character Offset Table 78
Character Raster Form 78
Circle 3.21.22
Clear character20
CompuServe 57, 59, 60, 61
Converting Amiga fonts 12, 58
Converting Degas fonts 13, 60
Converting Hippo fonts 11, 60
Converting Macintosh fonts 11, 55, 56, 57, 86
Copy block 17
Copy character16

(Page89)

FONTZ! NEOCEPT

Cut block17
Cut character 16

DEGAS 3,13

DEGAS Elite 13, 84

Delete column 28, 29

Delete row 35, 36

Descent line 30, 31, 43, 69, 71, 76
Desk menu 7

Device driver S, 18, 66, 67
Drawing color 20

Draw line20

Easy- Draw 82. 84. 85
Edit Next Highest Character 19
Edit Next Lowest Character 19

Fast Drawing Mode 24
File menu 8
Fill character 25
Filled box 21
Filled Circle/Disk 23
Flip - left/right 25
Flip - up/down 26
Font
- alignment lines 30, 31, 43, 69, 70, 71, 72
- conversion options 42
- description of... 2
- device 10
- family 2
- filenames 13, 14
- header definition74-82
- id number 30, 31, 42, 63, 54, 75
- installing fonts 63-65 (See ASSIGN.SYS)
- lines, display of... 43
- name 30, 31, 42, 63, 64, 75
- pointsize 10, 11, 29, 30, 69
- using fonts 63-65

(" Page 90)

Written By Mike Fulton FONTZ!

Font/DA mover 56

GDOS 5,18, 63, 85
GEM
- description of... 1, 65
- devices 5, 14, 31, 32, 38, 39, 44, 65, 66
- font sheet 64, 88
- resource files 12, 56
Genie Information Service57, 59, 60, 62
Get Device Resolution 44
Global Menu 30
Grid Display Size 43

Half Line 30, 31, 43, 69, 71, 76
Hard Disk 4

High Character34, 42, 45, 75
Hippo 3,11

Horizontal Offsets 35, 44, 76
Horizontal Offset Table 35, 76

Installing Fonts63-65 (See ASSIGN.SYS)
Inverse 25
Italics/Skewed 2, 31

Keyboard Commands 47, 48

Left offset 31, 32, 76
Light text 2, 31
Light text mask 31.32.:76
Load

- Amiga font 12

- DEGAS font 13

- GEM font 6, 9

- Hippo font 11

- Macintosh font 11

- PaintWorks/N- Vision font 6,9
Logo

- Creation of 52

(Page9l)

FONTZ!

NEOCEPT

- Using a Logo 52,53
Low Character 19, 34, 42, 75

Macintosh 3,12, 83
- Resource files 12, 52, 57
Magic Sac 57, 58
Merge Character 16
Merge Block 17

New Fonts 49, 50, 51
N- Vision 9

Options Menu 42
Outlined 2

Paintworks 9

Paste Block 17

Paste Character 16
Pieslice 23, 24

Pixel Height 74, 79, 81, 82
Pixel Width 74, 79, 81, 82
Pointsize 10, 11, 15, 30, 37, 75

Quit 15

Right Offset 3l, 32, 76
README.DOC 4
Rotate 27, 28

SAMPLE.FNT 4, 6
Save
- GEM font 13
- Paintworks font 15
Scale
- By Percentage 39, 50
- Notes About... 40, 51, 52
- To Device 38, 39, 50, 51
- To Pointsize 37, 50

(Page92)

Written By Mike Fulton

FONTZ!

Set Font Device 10, 31, 32
Skewed Text 31
Skewed Text Mask 31, 32, 40, 76
Shift

- Down 26

- Left 27

p
Special Effects Settings 31, 32

Technical Support iii
Top Line 30, 43, 69, 70
Typeface 2
Typestyle2

Underlined 2,31

Underline Size 31, 32, 40, 77
Underlining 2, 3

Uninstalled Device 10, 32, 33
Unsaved File Warning 8, 15
User Groups 57, 59, 60, 62

WordUp 4, 61, 82, 87

(Page93)

