@I&mesu@g@fﬁlj

1S{s

Holmes & Duckworth

H & D Base

USER’S MANUAL

MiRACe

4055 W. Shaw. #108
Fresno, CA 93711
(209) 227-8369

Created by .
Chester Holmes & Oliver Duckworth .

COPYRIGHT NOTICE

Copyright © 1986 by Mirage Concepits, Inc.

The software is furnished under a License Agreement or nondisclosure agreement, The software may be used
or copied only in accordance with the terms of the agreement.

TRADEMARKS

Holmes & Duckworth and H & D Base are registered trademarks of Mirage Concepts, Inc.

Atari 520ST and TOS are registered trademarks of Atari Corp.

dBASE Il is a registered trademark of Ashton-Tate, Inc.

GEM is a registered trademark of Digital Research, Inc. u

DISCLAIMER

Mirage Concepts, Inc., reserves the right to revise this publication and to make changes in it from time to time

without obligation of Mirage Concepts, Inc. to notify any person or organization of such revision or changes. .
The screen illustrations in this book are meant to be representative, not exact duplicates of those that appear on

the monitor.

REV. A, January 1986
ii

A Note From the Authors

| am quite pleased (and honored) to have the opportunity of speaking with you once
again. Your gestures of trust, as demonstrated through the continuing support of our
programmes, have proven to be most undeniably encouraging to both me and my
co-conspirator, Mr. Chester Holmes.

It was encouragement of this nature which inspired Holmes and me months ago to
take on our most ambitious project to date. Our feeling was that a substantial
relational database language had to be developed for the Atari ST line of computers
if they were ever to establish their rightful position of usefulness in the business
environment.

In talking with many of you about a package of this type, we found that the name of
one long-established product came up time and time again. The product? “dBASE
II" -- a name which has become almost synonymous with the term “relational
database language” in the vocabulary of computer users around the world. Even
now, after an initial release that occurred over four years ago, thousands upon
thousands of “dBASE” programs are sold every month.

Why has “dBASE 1" been so phenomenally successful? There are, undoubtedly, a
number of reasons, not the least of which are that it was the first program of its type,
that it is both powerful and relatively easy to use, and that it is easily adaptable to an
unlimited number of applications (thousands are commercially available).

It quickly became apparent that any program we were to develop should duplicate
many of the fine qualities of “"dBASE 1", and include, if possible, the facilities for
executing "dBASE II” command and data files. In addition, we were convinced that
the language could be appreciably improved, especially in light of the unique
capabilities afforded with the new Atari machines.

With these criteria in mind, we began months ago to develop the code that would
eventually become H & D Base. | must say at this point that it was one of the most
difficult, and therefore rewarding tasks Chester and | have ever undertaken.

We chose to write H & D Base in the FORTH programming language. We did so
because the structure of FORTH most closely approximates that of the relational
database language we envisioned. We used as a basis the 200 commands which
are part of H & D Forth (written by Chester and | and released by Mirage in 1985).

H & D Base

A TR ST . e oA A TSI 5N 5T
Authors’ Note, cont.

To the 200 original FORTH commands, we eventually added approximately 75 more
during the programming of H & D Base. These 75 actually form the core of H & D
Base, and are the ones which are detailed in this manual. The remainder are
documented in a file on the Program Disk and can be used by professional
programmers (who have purchased the "Developer’s Kit" from Atari).

If you are already familiar with “dBASE 11" you will find H & D Base to be very similar
in regards to programming with it. It is comprised of the best features of versions 2.3
and 2.4, and corrections have been made to some of the most critical shortcomings
characteristic of all versions of the "dBASE II" program.

Chester and | have developed H & D Base to a point where it most assuredly
matches, and, in many cases, surpasses the capabilities of “"dBASE 11" | find it
necessary to say, however, that we do not for a moment presume that our task has
been completed. We have every intent of continually tinkering with the program in an
effort to enhance its performance.

Editor’s Note: We will make every effort to keep you informed of any enhancements
made by Messrs. Holmes & Duckworth to H & D Base. Please return your “Program
Registration Card” so that we will have your address on file for this purpose.

Holmes, by nature, is more content with lavishing in the laboratory in an attempt to
establish absolute programming perfection than he is with taking a few short
moments of time to place his thoughts on paper. The duty of documenting the
procedures for properly executing this package has fallen, therefore, upon my
shoulders. | do hope that | have been equal to the task.

Please drop a note with your comments on the programme to either Chester or
myself in care of Mirage. We will make every effort to reciprocate.

As always, | wish you the very best...

Oliver Duckworth

CONTENTS

CHAPTER ONE - INTRODUCTION

TEPROGHAN: . - E s e e e 1-1
A Relational Database Language
The Nature of H & D Base
System Requirements
Specifications
The Program Serial Number
Copying the Program: Your Rights and Ours
Replacing the Program
Registering the Program
Supporting the Program
Transferring the Program to a Hard Disk
Using Non-H&D Base Files
Supplementary Programs

R AN e e e e Ry e 1-5

. Organization

The FORTH Language
Printing the FORTH Manual
Typographic Conventions

DSING THERBOGRAM == . . ot o i s o s vp s g 1-8
The Command Level
The “ok" Prompt
Command Syntax
Command Entry Short-Cut
The Program Level
Help!
The Control Key
Cursor Movement Keys
The Escape Key

CHAPTER TWO - STARTING-UP

B N THE B I . o e b fyvime s P s 2-1
. COPYINGTHEPROGRAMDISKccoiiiiiinnnn 2-2
Formatting a Blank Disk
The Copy Process
EOADING-THERHOGRAM .. i - . .o G et b s v - 2-4

<

H & D Base

S TR SR SRR 3+ I A e B
Table of Contents, cont.

THE DATRDISK: 3570, ol (S ey, T 2-5
A Word of Caution
Loading the Data Disk

CHAPTER THREE - BEGINNING COMMAND TUTORIAL

INSBODUGRION: - i o o SR i b kv e e, o W i 31
Welcome
Starting a Session
Turning On the Printer
The ERASE Command
Using Alternate Drives
The QUIT Command

CREATINGADATRBABE i iivoovs s e s it s 3-3
The CREATE Command
File Name Parameters
"DAT" Files
Entering a Database Structure
Database Structure Parameters
Another Form of the Create Command
Modifying the Structure of a Database

LT T V| B e R e Pt e S e e e 37
The USE Command

ENTERING INFORMATION INTOADATABASE. 3-8
The APPEND Command

Entering Information

Cursor Control Commands

Miscellaneous Key and Control Functions

Moving to the Next Record

Exiting the APPEND Mode

Another Form of the APPEND Command

Inserting Records Into a Database
CHANGING INFORMATIONINADATABASE 3-12

Record Numbers

The EDIT Command

Cursor Control Commands

Miscellaneous Key and Control Functions

The BROWSE Command

Cursor Control and Function Commands

vi

H & D Base

N R oy s R S S TR S S A o S R
Table of Contents, cont.

REVIEWINGADATABASE. co0ivivaunns

The Record Pointer

The DISPLAY Command

Expanding Commands

Alternate Forms of the DISPLAY Command
The LIST Command

The GOTO and GO Commands

The SKIP Command

PURGING A DATABASE OF UNWANTED RECORDS

The DELETE Command
Marking Records for Deletion
The RECALL Command

The PACK Command

INTERACTINGWITHTHESYSTEM

The ? Command

LT T B e R BB S e R e S et

CHAPTER FOUR - INTERMEDIATE COMMAND TUTORIAL

INT MR == o o R iy s . R s n A

The FOR Statement

T [R e o S e, Lo R o e oo e

Expression Parameters
Elements of Expressions

CONSTANTS 0 e v s s

Numeric Constants
String Constants
Logical Constants

MR AR . e e R

Data Field Variables

Memory Variables

The STORE Command

The RELEASE Command

The DISPLAY MEMORY Command

B TRl s SR I T T e gl e

Arithmetic Operators
Relational Operators
Logical Operators
String Operators

vii

H & D Base

B e
Table of Contents, cont.

BUNCTIONS S i i s IR 0, ined TR 4-18
Blank String Function
Date Function
Decimal Place Function
Deleted Record Function
End-of-File Function
File Function
Integer Function
Integer to String Function
Number to Character Function
Rank Function
Record Function
String Length Function
String to Integer Function
Substring Function
Substring Search Function
Trim Function
Type Function
Uppercase Function
Function Summary
SUMBARIY - . it T o o D o A SR G TR 4-23

CHAPTER FIVE - ADVANCED COMMAND TUTORIAL

viii

TR TN o o e s T e et B o A s 5-1
CORYING A TRTRBREE - ., i e P e 5-2
The COPY Command

The COPY STRUCTURE Command
Alternate Forms of the COPY Command
MODIFYING A DATABASESTRUCTURE 5-4
The MODIFY STRUCTURE Command
MODIFY STRUCTURE: Data Not Resident
MODIFY STRUCTURE: Data Resident
The APPEND FROM Command
The DELETE FILE Command
The RENAME Command
RAPID ALTERNATIONOFDATA e, 59
The REPLACE Command
The REPLACE WITH FOR Command

H & D Base

Table of Contents, cont.

PLACINGADATABASEINORDER. 5-12
The SORT Command
Ascending and Descending Order
Sorting on More Than One Field
The INDEX Command
“NDX" Files
Using an INDEX File
FINDING INFORMATIONINADATABASE 5-18
The LOCATE Command
The FIND Command
GENERATING REPORTS FROMADATABASE 5-21
The REPORT Command
“FRM" Files
The REPORT FORM Command
COUNTING DATABASE RECORDS AND
TOTALING THEIRCONTENTSo itteeavinaaie s 5-26
The COUNT Command
The SUM Command
The TOTAL Command
WORKING WITH MULTIPLEDATABASES 5-29
Primary and Secondary Files
The SELECT Command
The JOIN Command
The UPDATE Command
The RANDOM Option
CHANGING H & D BASE CHARACTERISTICS 5-34
SET Commands
SET TO Commands
RESETTINGTHEPROGRAMccciiiiuuiinns 5-4
BUMMARY . o i b o e e R e e 5-42

CHAPTER SIX - PROGRAMMING TUTORIAL

e e o] T o o Rt R Al A O S S 6-1
ESTABLISHINGACOMMANDFILE 6-2
The Nature of a Command File
The MODIFY COMMAND Command

H & D Base

BT R e S S T
Table of Contents, cont.

THECOMMANDFILEEDITOR0iciiiiinrninnnennes 6-3
Cursor Movement
Miscelleneous Key and Control Functions

ENTERINGACOMMANDFILE.¢c0cieuuaniennns 6-5
RUNNINGACOMMANDTFILEt 6-6
The DO Command
ENTERING NOTES, REMARKS, ANDTEXT 6-7
The NOTE and * Commands
The REMARK Command
The TEXT Command
MAKING CHOICESANDDECISIONS 6-10

The IF...ELSE Command
Simple Decisions
Two Choice Decisions
Multiple Choice Decisions
REPEATING ARROCESS < .« . . . - e e s 6-13
The DO...WHILE Command
The LOOP Command
Using the DO.. WHILE Command as a Counter
NESTEDCOMMANDFILES. ' . . 0 el i 6-15
Nested DO Commands
The RETURN Command
ENTERING DATA DURING THERUNOF APROGRAM 6-17
The WAIT Command
The INPUT Command
The ACCEPT Command
DISPLAYING TEXT AND DATA AT
ALTERNATESCREENLOCATIONScccvinnn. 6-19
Row, Column Coordinates
The @...SAY Command
The @ Command: Erasing Text
The @...SAY Command: Expressions
The @...GET Command
The @...GET...READ Command
The APPEND BLANK Command
The @...GET...PICTURE Command
Saving an @...GET Format

DISPLAYING TEXT AND DATA AT
ALTERNATE PRINTER LOCATIONS
The @...SAY...USING Command
The EJECT Command
USING MACROS IN ACOMMANDFILE
The AMPERSAND (&) Symbol
LEAVING ACOMMANDFILE
The CANCEL Command
The QUIT Command
The Escape Key

PRINTING ACOMMANDFILE

The LISTCOMMAND Command
HEEREUEING S = o e
L i e e T R L

CHAPTER SEVEN - REFERENCE

APPENDICES

APPENDIX A - “The Nature of a Database” .
APPENDIX B - “‘Using Non-H&D Base Files”
APPENDIX C - “H&D Base File Structure” . .

INDEX

H & D Base

Table of Contents, cont.

Xi

Chapter

1

INTRODUCTION

A Relational
Database
Language

The Program

H & D Base is a relational database management language for
the Atari ST series of computers. As an extemely powerful
information handling tool, the program easily adapts to the
needs of both casual and concentrated computer users.

Because H & D Base is a relational database, it is capable of
more than simply filing and retrieving. A relational database
program can compare, contrast, and manipulate the fields and
records of multiple files which are relative to one another.

The Nature of
H & D Base

Keep in mind that H & D Base is a database management
language. When you arrive at its “Command Level," there are
no screens or menus -- only a prompt which reads “ok". From
this point, it is your task to build the files, screens, menus, and
programs that fulfill your particular need. The process can be
as simple or as complex as you desire it to be; it's all up to you.
Programming with' H & D Base can be fun, rewarding, and
even profitable!

System
Requirements

* Atari 520ST Computer

* Atari SF354 Single Sided Disk Drive (1 or 2) or
Atari SF314 Double Sided Disk Drive (1 or 2) or
Atari SF317 Hard Disk Drive

* Atari SC124 Monochrome Monitor or
Atari SC1224 Color Monitor (Low or Medium Res.)

* Printer (Optional)

Introduction

The Program, cont.

Specifications BRBOONas P Bl 5 v s e R Limited Only By Disk
CNIaciom por BeCOM. ... L35 S v o s s s 2000 Maximum
FIMOEDSr BIOOI. . v s s A S e 97 Maximum
o T R R e e e S 254 Maximum
NUMSIIGIBERPROY i ol s oo o mehacae 5 asimiaee e Sk am 8 Digits
Character Stringlength0. 254 Characters Max.
Commandianelengtho i ceione e 254 Characters Max.
ReportHeadsrblengthc.coaioiniie 254 Characters Max.
T T e s TN < e 100 Characters Max.
ExpressionsinSUMCommand.ccouunnn.. 5 Maximum

The Program
Serial Number

A program serial number has been stamped on the label
adhered to your Program Disk. The number allows us to
instantly identify what program you are using, when it was
released, and what version it is. DO NOT REMOVE THIS
LABEL OR ALTER THE SERIAL NUMBER. IT WILL VOID
YOUR WARRANTY.

When communicating with Mirage Concepts concerning your
program, always refer to the serial number on the Program
Disk.

Copying the
Program: Your
Rights and Ours

The H & D Base Program Disk is not copy protected in any
manner. We expect and encourage you to make as many
copies as you wish, provided they are for your own personal use
only.

Please honor the rights of this company and the programmers
we represent by making every effort to see that unauthorized
copies of the program do not fall into the hands of those who
have not paid for the right of using them.

If you are aware of any person distributing unauthorized copies
of H & D Base, please notify us immediately at (800) 641-1441
or (800) 641-1442 in California. For calls originating outside the
US: (209) 227-8369.

Introduction

The Program, cont.

For policies and prices on multiple copies of H & D Base for
corporate or educational use, contact Mirage Concepits.

Replacing the
Program

If the program disk fails to perform properly at any time, and the
problem can be isolated to the disk itself, a new Program Disk
will be issued to you UPON RECEIPT OF YOUR DEFECTIVE
ONE. There is no charge for this service if the program is in
warranty, but a copy of your sales receipt must accompany the
defective disk in order to verify the date of purchase. A service
charge of $10.00 must accompany any Program Disk out of
warranty.

Registering the
Program

If you would like information sent to you regarding any enhance-
ments which are made to H & D Base fill-out the “Software
Registration” card included in the package and send it directly
to Mirage Concepits.

Supporting the
Program

For answers to special questions regarding this, or any Mirage
Concepts software program, customer support personnel are
available from 1:00pm to 5:00pm (Pacific) Monday through
Friday at (209) 276-1485.

Transferring the
Program to a Hard
Disk

Because H & D Base is not copy protected, you can transfer it
to a hard disk drive without fear of malfunction. To do so, simply
copy the files “HDBASE.PRG" and "HDBASE.HLP" from the
Program Disk to your hard disk drive using the standard
DESKTOP functions. For further information, see “SET
DEFAULT" in the “Reference” section.

1-3

Introduction

B e o ey
The Program, cont.

Using Non-H&D You may use "dBASE II" files (both COMMAND and DATA) and

Base Files data files from many other database management programs
with H & D Base. The instructions for doing so are covered in
‘Appendix B."

Supplementary A H & D Base COMMAND FILE (program) has been included

Programs on the Program Disk. The program is fully operable and may
useful to you as you learn how to properly interact with the
system.

The COMMAND FILE can be easily spotted from the Atari
DESKTOP due to a “CMD" suffix which follows its name.

The instructions for running a COMMAND FILE are covered at
the beginning of the “Programming Tutorial.”

1-4

The Manual

Organization

This manual provides step-by-step instructions on how to make
use of the full capabilities of the H & D Base program. It is
divided into nine basic sections.

The first of the nine sections, the “Introduction,” deals primarily
with logistics. Itis here that you will find information on what type
of computer system you must have to run H & D Base, how
much data it will handle, what is included in the package, how
to receive information on future program updates, and what to
do if you have any problems with the disk or the actual H & D
Base program.

The second section deals with “Starting Up” -- the process of
actually getting the program up and running on your particular
system. Because of the ease with which the Atari 520ST oper-
ates, this section is quite brief.

The first three sections of the manual are the "Beginning,
Intermediate, and Advanced Command Tutorials.” They are
logical, step-by-step training guides for the commands in the H
& D Base programming language which do not deal with
creating an actual program or “Command File."

Once you have mastered the correct application of each data-
base command, you will want to proceed to the “Programming
Tutorial” It will teach you how to mold H & D Base instructions
into useful programs (or “Command Files").

The best way to learn how to use H & D Base is to review all
tutorial sections from beginning to end, taking special care to
type-in each example as it is covered.

The “Reference” section, which follows the tutorials,is, per-
haps, the most important section of the entire manual. It is the
one place you can look for all of the various forms a particular
command, function, or operator can take.

Introduction

A AN SRS S TSR | V., 15T SR SR S AR R M o
The Manual, cont.

The “Tutorial” and “Reference” sections are followed by an
‘Appendices” which includes supplemental information which
may be optional to your particular application of the H & D Base

program.

e S i e ST i
The FORTH H & D Base has been written with the H & D Forth program-
Language ming language. A total of over 300 FORTH commands are

included in this system, approximately 75 of which execute
functions particular to the database. The remainder of the
commands can be used by programmers familiar with FORTH
to accomplish a myriad of supplementary functions such as
accessing the “GEM" interface of the Atari (windows, menus,
dialog boxes, etc.).

Important Note: You must purchase the “520ST Developer's
Kit” from Atari in order to understand how to apply the supple-
mental “GEM” commands to the system. Without the “Devel-
oper's Kit," the task is virtually impossible.

Because these additional FORTH commands have no bearing
on the majority of H & D Base owners, they are not docu-
mented in this manual. They are, however, thoroughly reviewed
in a text file on the H & D Base Program Disk.

Printing the The name of the file which documents all commands not cov-
FORTH Manual ered in this manual is “HDFORTH". If you would like to either
review or print that documentation, follow these steps carefully:

1.) Load the TOS Operating System (if it is not in ROM).

2.) Insert your H & D Base Program Disk in a drive and “double
click” on that drive's icon. A directory will appear.

3.) "Double click" on the file named “"HDFORTH". A dialog box
with the words “Show”, “Print”, and “Cancel” prompts will
appear.

Introduction
uretr o e T S T o U 1) TS i S L AN i o L 2 IS s B W i

The Manual, cont.

4.) If you would like to view the instructions on your computer’s
screen (only), “Click” on the box which says “Show".

5.) If you would like to print a copy of the instructions, “Click” on
the “Print” box.

Typographic In this manual, there are a number of commands to which

Conventions qualifying statements or expressions may be added. For exam-
ple, the simple H & D Base command “DISPLAY” might look
like this:

DISPLAY (scope] [FOR {exp}) (OFF]

It is important for you to understand the difference between
upper and lower case entries, which qualifiers you can add to
certain commands, and the form the qualifiers must be in for
them to work properly.

1.) Uppercase Entries
Anything which appears in uppercase is a H & D Base
command or prompt.

2.) Lowercase Entries
Anything which appears in lowercase is something that you
typein.

3.) Entries in Square Brackets |........)|
Anything which appears in square brackets is a part of the
command which is optional.

4.)Entriesin Braces {........ }
Anything which appears in braces is a part of the command
which is to be filled in with real information. They are also
used to bracket field names and file names.

5.) {CR}
Anytime this symbol appears, it means to press the carriage
return key on the keyboard ("Return”).

Using the Program

The COMMAND
LEVEL

The words you will be using to create and manipulate the
information you type into H & D Base will be entered in what is
referred to as the “COMMAND LEVEL." Most of the words, or
“COMMANDS” will remove you from the COMMAND LEVEL
allowing you to accomplish a certain task or purpose in relation
to a particular database. Once that task has been accom-
plished, the program will return you to the COMMAND LEVEL.

The "ok’ Prompt

H & D Base uses an “ok” prompt to tell you that you are at the
COMMAND LEVEL. It appears at the end of the line prior to the
line where the cursor is resting. When you first enter the pro-
gram, it will be on a line all by itself.

Command Syntax

You can enter a H & D Base command anytime the “ok”
prompt is resident. If the COMMAND (or COMMANDS) you
have entered adhere to all of the proper H & D Base syntax, an
“ok” prompt will appear after that line of code when you press
{CR}.

If a question mark appears in place of the “ok” prompt when
you press {CR}, it means that the command was entered
incorrectly and must be re-entered.

In some instances, "Error Messages” will appear giving you
some indication of the nature of the problem the system
encountered.

Command Entry
Short-Cut

You may enter just the first first four letters of a COMMAND if you
so choose, as long as that COMMAND is not the first word on a
line. For example:

“DISPLAY STRUCTURE" is the same as “DISPLAY STRU"

Introduction

Using the Program, cont.

This form of the command is not acceptable:
“DISP STRU"

COMMANDS which have been abbreviated properly will be
executed as if you had typed-in entire words. Note: You may
type in more than four letters, but it you do, they must all be
correct.

The PROGRAM
LEVEL

In working with H & D Base at the COMMAND LEVEL, you are
allowed to enter and execute just one COMMAND at a time.
Additionally, there is no way to keep track of and store the order
of the COMMANDS that were entered.

You may do all of these things at the PROGRAM LEVEL of H &
D Base. While at this level you can build complex “programs”
which are nothing more than a series of COMMANDS which
have been placed in a particular order and stored in a COM-
MAND FILE. That file may be run over and over again, accom-
plishing the same task with each run.

Help!

H & D Base includes an on-screen HELP system which you
can access at any time while using the program. The HELP
system includes a brief overview of each command and the
proper syntax you must enter to activate that command.

To get HELP regarding a specific command while at the COM-
MAND LEVEL of the program, enter the word “HELP" followed
by a blank space and the name of the command you need
HELP on. For example, you can get HELP with the “LIST"
command, by pressing:

HELP LIST {CR}
When you press {CR}, the information you requested will

appear on the screen. Press the “Escape Key” {ESC} to return
to the program.

1-9

Introduction
TP MY 5 SR 1 T TR SR e e I T L
Using the Program, cont.

Note: The file “HDBASE.HLP" must reside on the disk in the
default drive or the HELP command will not work.

The CONTROL Many of the functions that H & D Base performs are done so

Key through the use of the “Control Key" which is located on the left
of the keyboard, second row from the bottom. The “Control
Key" will always be used in association with another key on the
board.

When a command like this appears in the manual:

{CTRL:S}

it means that you should hold down the “Control” key (as if it
were a “Shift” key) while pressing the other key in the sequence
(in this case, an “S").

Cursor Movement When using certain H & D Base functions, you will have fre-

Keys quent cause to move the cursor within the confines of a particu-
lar record. The keys which control the basic movements of the
cursor are:

1.) {UP ARROW} or {CTRL-E}
Moves the cursor one field up

2.) {DOWN ARROW} or {CTRL-X}
Moves the cursor one field down

3.) {LEFT ARROW} or {CTRL-S}
Moves the cursor one character to the left

4.) {RIGHT ARROW} or {CTRL-D}
Moves the cursor one character to the right

5.) {HOME}
Moves the cursor to the first character in the record

Introduction

The ESCAPE Key

Using the Program, cont.

The “Escape” key {ESC} is located in the upper left corner of
the Atari keyboard. It is used in H & D Base to terminate the
execution of a command (or commands) in an “emergency”
situation.

Important Note: The {ESC} key should be pressed during
operations which involve “read” operations only (such as DIS-
PLAY and LIST). If you press the {ESC} key during the execu-
tion of any command involving a “write” operation (such as
PACK, APPEND FROM, JOIN, and UPDATE), errors in data
transfer and/or storage will undoubtedly occur.

Chapter

2

STARTING UP

Booting the System

Turn the components of your computer system "ON" and insert
the TOS “System Disk” (the one that came with your computer)
into your disk drive (drive "A” if you have two). Make sure the
"Write Protect Tab” in the upper right corner of the disk is in the
“protected” position (open or up) when you insert it. You should
be able to see through the hole.

The disk will spin for a number of seconds followed by the
appearance of the Atari DESKTOP on the screen.

Note: If your machine contains the TOS Operating System in
ROM, the Atari DESKTOP will appear automatically when you
turn the computer “ON.” There is no need to load the operating
system from a disk.

Copying the Program Disk

Before doing anything with H & D Base, we strongly encourage
you to make a copy of the Program Disk. The process involves
“Formatting a Blank Disk” and “Copying the Program”.

Formatting a
Blank Disk

Remove the TOS “System Disk" from your drive. Insert a blank
disk in its place (if you have two disk drives, put the blank in
drive “B"). Make sure the "Write Protect Tab” in the upper right
corner of the disk is in the “unprotected” position (closed or
down). You should not be able to see through the hole.

Format the blank disk for use with your system by moving the
cursor to the icon for drive “B" and pressing the /eft button on
your mouse. The icon will turn black when it is selected.

Now move the mouse pointer to the Menu Bar. The “FILE”
menu will drop down. Select the “FORMAT" item from the
“FILE" menu by clicking on it with the left button on your mouse.

The system will paint a dialog box warning you that it is going to
overwrite the disk in drive “B”. Make sure it says "Drive B"! Click
on the “OK" The dialog box for formatting will appear. Set the
FORMAT to SINGLE SIDED and click the FORMAT box. When it
is done, click on "Exit"

The Copy Process

2-2

Insert the H & D Base Program Disk in drive "A”, and a blank,
formatted disk in drive “B". The "Write Protect Tab” onthe H & D
Base Program Disk should be in the “Protected” position (open
or up), while the same tab should be in the “Unprotected”
(closed or down) position on the blank disk.

From the Atari's DESKTOP, select the disk “A" icon with your
mouse and "drag” it to the disk “B" icon. A "COPY" dialog box
will appear. Click the “COPY" answer button.The disk will now
begin to copy. If you have only one disk drive, you will be asked

Starting Up

e S R AT - I 5T A SRS SR S P
Copying the Program Disk, cont.

to switch disks two or three times during the process. The
original H & D Base Program Disk is your "Source” or “A" disk,
and the copy is your “Destination” or "B” disk.

When the copying process is completed, you will return to the
COPY dialog box. Click on the “EXIT" button, and you will be
returned to the DESKTOP. Remove the original copy of H & D
Base from your drive and place it in a secure storage area for
safe keeping.

Loading the Program -

Load the TOS Operating System in the manner described
above (“Booting the System"). When the Atari DESKTOP
appears on the screen, remove the "“System Disk” from your
drive and insert the H & D Base Program Disk in its place.
Double “click” on the drive "A” icon and the H & D Base icon
will appear. It is the one that says “HDBASE.PRG" under it.
Double “click” on it and the program will load into the computer.
The process of loading has been completed when the disk
drive stops spinning and an H & D Base |.D. appears on the
screen.

Underneath the H & D Base |.D. you will see a prompt which
reads “ok”, It indicates (as previously described) that you are at
the “COMMAND LEVEL" of the H & D Base program.

The Data Disk

A Word of Caution Theinformation (data) you enter into H & D Base should not be
stored on the Program Disk. This guards against accidental
over-write and prevents unwarranted wear on the most impor-
tant element of your system (the Program Disk).

Loadingthe Data Once the H & D Base has been loaded into your computer,

Disk remove the Program Disk from the drive and replace it with a
formatted data disk. We suggest that you do so even if you
have a two drive system.

Chapter

3

BEGINNING COMMAND TUTORIAL

Introduction

Welcome

Welcome to the Beginning Command Tutorial. In this section,
we will be laying the foundation for your effective use of the H &
D Base program. We assume nothing on your part except the
fact that you have read through, and studied carefully the
Introduction and Starting Up sections of this manual. We also
strongly encourage you to review “Appendix A" in the back of
this manual which deals with the nature of a database manage-
ment system -- especially if this is your first experience with this
type of program.

Starting a Session

Before you begin, turn on all the elements of your computer
system and load the H & D Base program as instructed in the
“Starting Up” section of this manual. If you have done every-
thing correctly, an “ok” prompt will appear on the screen. It
indicates that you are at the COMMAND LEVEL of the pro-
gram. Before proceeding, we recommend that you remove the
Program Disk and insert a data disk in the appropriate drive.

Turning On the Anytime you would like to have the program “display” its work
Printer (and yours) on your printer as well as your screen, enter:
SET PRINT ON {CR}
To turn the printer “off," enter:
SET PRINT OFF {CR}
The logic behind these commands will appear in a subsequent
section of this manual.
The ERASE If you would like to clear the screen of all text at any given time,
Command enter this command:

Beginning Command Tutorial
I T s TS RS 7 S TR, S, =
Introduction, cont.

ERASE {CR}

All text will disappear and the cursor will reposition itself to the
upper left corner of the screen.

Using Alternate
Drives

Whenever you enter the name of a file to be used in relation to a
certain command, H & B Base assumes that the file resides on
the data diskin the drive that the program was loaded from. You
may indicate to the program that a file resides on a disk in an
alternate drive by prefacing the file name with the letter which
represents that drive followed by a colon.

For example:
USE People (File located on default drive)
USE B:People (File located on “B" drive)

The “SET DEFAULT” command allows you to choose an alter-
nate disk drive that the program will access when searching for
files which appear without a designated drive letter preceeding
them.

The QUIT
Command

You are not instructed anywhere in the tutorial how to exit the H
& D Base program. This is because we have no way of deter-
mining where your sessions will begin and end in relation to the
text.

To exit the program from the COMMAND LEVEL, simply enter
this command:

QUIT {CR}

You will be returned to the Atari's DESKTOP.

Creating a Database

The CREATE For the purpose of demonstration, our first task will be to create
Command asimple database. While at the program’s COMMAND LEVEL,
enter the following:
CREATE {CR}
It can be in either upper or lower case, it makes no difference.
After pressing {CR}, these words will appear:
ENTER NEW FILE NAME:
File Name You may enter any name you want, provided that it falls within
Parameters the following parameters:
1.) It must start with a letter (not a number)
2.) It can be up to 8 characters long
3.) It cannot have any colons and/or spaces
Let's name our demonstration database “People”. It makes no
difference if itis entered in upper or lower case, but we suggest
that you do a combination of both (upper and lower).
To the prompt “ENTER NEW FILE NAME", type:
People {CR}
‘“.DAT” Files When you have done so, H & D Base will create a file named

“People.DAT". The trailer which follows “PEOPLE" (.DAT)
stands for “database file,” and will appear after the name of
every database you create.

Beginning Command Tutorial

L N
Creating a Database, cont.

Entering a
Database
Structure

Database
Structure
Parameters

The program will now ask you to enter the “Structure” of your
new file via a screen which looks like this:

ENTER THE FIELDS FOR THE NEW DATABASE:

NAME - NAME OF FIELD, MAXIMUM LENGTH = 10

TYPE - CHARACTER (C), NUMERIC (N), OR LOGICAL (L)
LENGTH - MAXIMUM LENGTH = 254

DECIMALS - NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT
FIELDNO. NAME,TYPE,LENGTH,NO. OF DECIMAL DIGITS

01

You are being prompted to enter information regarding your
new database. The information must be entered as detailed on
the screen; e.g., the NAME followed immediately by a comma,
followed immediately with the TYPE, followed immediately by a
comma...and so on.

The parameters for database structure are as follows:

1.) The NAME of each field in the database:
Enter a name to describe the category of information which
the field is to contain. Parameters for field names are as
follows:
A.) 1-10 characters
B.) Upper and/or lower case
C.) Must start with a Letter
D.) Cannot contain spaces
E.) Can contain digits and embedded colons

2.) The TYPE of data to be stored in each field:
Enter one of the following three characters:
A.)"C" = Character Field
A field containing letters, numbers, or symbols, or
a combination of letters, numbers, and symbols
B.) “N” = Numeric Field
A field containing entries which are all numeric
C.) "L’ = Logical Field
A field containing only “Y” for “YES", “N" for “NO,
“T" for “TRUE", or “F" for “FALSE".

Beginning Command Tutorial

Creating a Database, cont.

3.) The LENGTH of each field (number of characters):
Enter any number of characters from 1 to 254.
Note: If the field is numeric, and decimal places are speci-
fied, the decimal point will occupy one character position.

4.) The number DECIMAL PLACES in each numeric field: Enter
any number of characters (from 1 to 8) to the right of the
decimal point (not including the decimal point itself).

Note: You need to specify the number of DECIMAL PLACES
only on fields which are numeric.

Our sample “People” database will consist of the following six
fields:

“Name” - C - 30 Characters - 0 Decimals
“Address” - C - 30 Characters - 0 Decimals
“City” -C -20 Characters - 0 Decimals
“State"” -C - 2 Characters- 0 Decimals
4Zip' -C - 5Characters - 0 Decimals
“Amount” - N - 7 Characters - 2 Decimals

Enter them at this time. When you are to a point where you
would begin to enter information in field #7, simply press {CR}.
This signals the program that there will be only six fields in your
database.

When you are finished, the screen should look like this:

ENTER THE FIELDS FOR THE NEW DATABASE:

NAME - NAME OF FIELD, MAXIMUM LENGTH = 10

TYPE - CHARACTER (C), NUMERIC (N), OR LOGICAL (L)
LENGTH - MAXIMUM LENGTH = 254

DECIMALS - NUMBER OF DIGITS TO RIGHT OF DECIMAL POINT
FIELD NO. NAME, TYPE, LENGTH, NO. OF DECIMAL DIGITS
01 Name,C,30

02 Address,C,30

03 City,C,20

04 State,C,2

05 Zip,C,5

06 Amount,N,7,2

07 {CR}

3-5

Beginning Command Tutorial

e R
Creating a Database, cont.

Another Form of
the CREATE
Command

There is one other form of the CREATE command which is
available to you in H & D Base.

CREATE FROM - This command creates a new file whose
structure is determined by the data in the records of the old file.

For information on its correct use, consult the “Reference”
section of this manual.

Modifying the
Structure of a
Database

If, before you enter actual data into a database, you would like to
change the structure of the database, there is a command
which will do so:

MODIFY STRUCTURE

One word of caution: If you modify the structure of a database
which has data in its records, all of that data will be erased.

For information on the correct use of the MODIFY STRUCTURE
command, consult the Advanced Command Tutorial or Refer-
ence sections of this manual.

Using a Database

The USE Once a database has been created, its structure is stored on the

Command data disk along with all of the other files you have established.
Therefore, before you can add or manipulate the records of a
particular database, you must first tell the program which file
you want to work with. The USE command fills this purpose.

When you want to select a database file for use, make sure you
are at the COMMAND LEVEL then type:

USE {filename}

You do not have to include the "“DAT" trailer. (If you don't, the
program will insert it for you.)

The program will pause for an instant, and the “OK" prompt will
reappear. Its appearance signifies that the file has been suc-
cessfully “opened,” and any command entered from this point
on will be executed in direct relation to the file you specified. It
will stay “"open” until you USE another file, CLEAR memory
(covered later), or QUIT the program.

Enter the following at this time:
USE People {CR}

This will allow us to access the demonstration file we created in
the first portion of this tutorial.

3-7

Entering Information
Into a Database

Once you have completed the task of creating a database, you
can begin entering information into it. This is the process of
"APPENDING,” and it is a simple concept to understand.

You cannot add information to a database if you have not told
the program which database it is you want to work with. You
must USE a database before you can APPEND to it.

The APPEND We are currently using our sample database named "“People.”
Command To add information to it, type:

APPEND {CR}

This screen will appear:

RECORD 00001
NAME
ADDRESS :
CITY

STATE

ZIP

AMOUNT

The cursor is positioned on the first character of the first field of
the next available record in the file. Because there are no
records in our sample file, this is the first record.

The length of each field is defined by colons marking the
beginning and end of the field.

3

Beginning Command Tutorial

\ . Entering
Information

Entering Information Into a Database, cont.

To enter data into a particular field, simply type-in the informa-
tion and press {CR}. If you attempt to enter more characters
than the field will hold, an automatic {CR} will be issued by the
program (it will also “"beep”). To leave a field blank, press only
{CR}.

Because the first five fields were defined in the CREATE proc-
ess as “Character” fields, you may enter any character in them
that you desire. Attempt to enter anything other than a number
inthe "AMOUNT" field, however, and you will be prevented from
doing so. This is because the field was defined as a “Numeric”
field when it was first created. Notice that all entries in this type
of field are “right justified” upon pressing {CR}.

Cursor Control
Commands

A number of cursor control commands have been provided for
use while in the APPEND mode. They are detailed in the
Introduction to this manual.

Miscellaneous
Key and Control
Functions

There are a number of APPEND functions which are activated
through the use of “Control Key" sequences. They are as
follows:

1.) {CTRL-Y}
Deletes from cursor position to end of field

2.) {CTRL-G} or {DELETE}
Delete character under cursor

3.) {BACKSPACE }
Delete character to left of cursor

4) {CTRL-W}
Exit - Save

5.) {CTRL-Q}
Exit - No save

39

Beginning Command Tutorial

o s m e e e e e e e e o e
Entering Information Into a Database, cont.

Note: Some of the control functions you will learn about in other
sections of this manual will not work in the APPEND mode. The
list above is the complete list of applicable commands for the
APPEND mode.

Enter the following information into our “People” database at
this time:

Smith, Paul 5487 Oak St.

San Diego, CA 92376 $267.92
Jones, Alice 9227 E. Sample #108

Miami, FL 39857 $ 67.98
Zachry, Mike 746 Lover's Lane

Denver, CO 85678 $957.00
Dow, Tony 1987-B E. 19th.

New York, NY 01004 $4.59
Clark, Bill 657 S. Main

Portland, ME 00648 $ 34.95

If you make a mistake, use the cursor control features men-
tioned above and edit what you can, but don't worry about
getting everything in exactly right. You can work on that later in
the actual EDIT section.

Moving to the
Next Record

Once you have pushed {CR} from the /ast field in the record (in
this case the "AMOUNT" field), the program will automatically
go on to the next record. Once you have advanced to the next
record inthe APPEND mode, you cannot go back to a previous
record.

Exiting the
APPEND Mode

You can exit the APPEND mode in three ways:

1.) Press {CR} while the cursor rests on the first (non)character
of a completely blank record

Beginning Command Tutorial

Another Form of
the APPEND
Command

Entering Information Into a Database, cont.

2.) Press {CTRL-W} -- (Any information in that record will be
saved)

3.) Press {CTRL-Q} -- (Any information in that record will not be
saved)

When you are finished entering the information for our sample
database, “exit" the APPEND mode in one of the manners
described above.

There is one other form of the APPEND command which is
available to you in H & D Base.

APPEND FROM - This command takes the information from
another database and merges into that of the one in use.

For information on its correct usage, consult the Advanced
Command Tutorial or Reference sections of this manual.

Inserting Records
into a Database

Records can be inserted into a specific location in a database
file (instead of being added to the end) using the INSERT
command. This command is useful for keeping a SORTED
database in order.

For information on the INSERT command, consult the "Refer-
ence’ section of the manual.

3-11

Changing Information

In a Database

Correcting or updating the information in the records of a
database is simple with H & D Base. The two commands
reviewed in this section, EDIT and BROWSE, are used precisely
for this purpose.

Record Numbers

Every record in a file has a “"Record Number" which is associ-
ated with it. The number corresponds to the order in which the
record was entered into the database (unless the file has been
SORTED).

The very first name and address you entered into our sample
database (“People”) became “Record #00001" You entered
five names, so there are five records in the file numbered
consecutively from #00001 to #00005.

While at the COMMAND LEVEL, type-in the following:

USE People {CR}
(Note: If you are continuing from an earlier portion of this

tutorial, it is actually not necessary to enter the USE command
with each new phase.)

The EDIT
Command

The first of the two commands we will review in this section is the
EDIT command. There are two ways you can use the command
to access the precise record of the database you want to EDIT:

1.) Enter just the following:
EDIT {CR}.

Inresponse, the program will place the current record on the
screen.

Beginning Command Tutorial

Changing Information In a Database, cont.

2.) Enter the EDIT command followed by the number of the
record you want to EDIT:

EDIT {Record Number} {CR}

In response, H & D Base will place the desired record on
the screen.

For demonstration purposes, enter the following:
EDIT {CR}

The first record of our “People” database should appear on the
screen (it was the “current” record).

RECORD 00001

NAME :Smith, Paul
ADDRESS :5487 Oak St.
CITY :San Diego
STATE :CA:

ZIP :92376:
AMOUNT : 267.92:

Cursor Control
Commands

A number of cursor control commands have been provided for
use while in the EDIT mode. They are detailed in the Introduc-
tion section of this manual.

Miscellaneous
Key and Control
Functions

There are a number of EDIT functions which are activated through
the use of “Control” key sequences. They are as follows:

1.) {CTRL-T}
Delete from cursor position to end of field

2) {CTRL-Y}
Delete line

3-13

Beginning Command Tutorial
R R 5 G PO B 5 T v N W B M. 157 T § i B |
Changing Information In a Database, cont.

3) {CTRL-G} or {DELETE} .

Delete character under cursor

4.) {BACKSPACE}
Delete character to left of cursor

5.) {CTRL-U}
Delete record toggle

Pressing {CTRL-U} marks a record for eventual deletion (a
prompt appears at the top of the screen). The record is not
deleted at the time the command is entered. For further
information, consult the section on “Packing a File" at the
end of this Beginning Tutorial.

6.) {CTRL-A} or {CTRL-R}
Save record - Back up to previous record

7.) {CTRL-F} or {CTRL-C}
Save record - Advance to next record

8.) {CTRL-W}
Exit - Save changes

9.) {CTRL-Q}
Exit - Do not save changes

Special Note: Atari has chosen to designate {CTRL-C} as the
code for exiting from a program and returning to the DESKTOP.
Itis “hard wired," but can be overriden (to a certain degree) by
software programmers. If you press {CTRL-C} two or more
times in rapid succession, you will automatically exit H & B
Base and return to the DESKTOP. We suggest, therefore, that
you get in the habit of using either {CTRL-F} or the {DOWN
ARROW}.

You might want to spend a few minutes working through our
sample database using the control commands outlined above.
If you make any changes in the data of a record, be sure to
change it back before moving to another. When you have
satisfied your curiosity, press {CTRL-Q} to exit the EDIT mode.

Beginning Command Tutorial

The BROWSE
Command

Changing Information In a Database, cont.

The second of the two commands we will review in this section
is the BROWSE command. As opposed to the EDIT command
which allows you to EDIT but one record at a time, the BROWSE
command places a number of records (or parts of records) on
the screen still allowing you to edit any one of them at will.

There are two ways you can use the BROWSE command:
1.) Enter just the following:
BROWSE {CR}

Upon pressing {CR}, the first 19 records of the file will
appear on the screen. Each will occupy one line.

If the number of characters in all fields (combined) is greater
than 80, part of the record will not be displayed on the
screen. It is beyond the right margin. You may access the
information with the commands outlined below.

2.) If you would like to edit only a certain field or fields of your
database, you can enter the command:

BROWSE FIELDS {Name of field/s}

If you are entering more than one field, separate each name
with a comma.

As an example, let's BROWSE the "Name”, “City” and
“Amount” fields of our “People” database. Enter the follow-
ing from the program’s COMMAND LEVEL:

BROWSE FIELDS Name, City, Amount {CR}

When you press {CR} the program will list only the field or
fields you specified in the command.

3-15

Beginning Command Tutorial
M S i RO Al SS9\ BE S P e L o
Changing Information In a Database, cont.

Cursor Control
and Function
Commands

3-16

Except for {CTRL-T} and {CTRL-Y}, you may use the same
cursor movement commands and function commands that you
did in the EDIT mode. In addition, the following three com-
mands are activated:

1.) {CTRL-B}
Scroll the screen one field to the right

2) {CTRL-Z}
Scroll the screen one field to the left

3.) {CTRL:N}
Insert a line (for a new record)

Spend a few minutes now using the BROWSE function. If you
make any changes, be sure to change them back. When you
are finished, press {CRTL-Q} to return to the program's COM-

MAND LEVEL. .

Reviewing a Database

The ultimate goal of all database operation is to display the data
in a file in any number of different forms -- upon demand.
Because that is so, the DISPLAY and LIST commands are the
foundations of the entire H & D Base system.

EENTESS W i o B
The Record When, from the COMMAND LEVEL, you specify a database for
Pointer manipulation with the USE command, a “pointer” (arrow) is

placed in memory on record #00001. In most cases, this
“pointer” stays at the “top” of the file or is reset to that point
when it exits a given mode. (You will learn how to move the
“Pointer” later in this section.)

ESRAAIs!
The DISPLAY Take a look at our sample database and see which record the
Command “pointer” is on. From the COMMAND LEVEL enter this new

command:
DISPLAY {CR}

This record will appear on the screen:

00001 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92

It is record #00001, the first record in the file. Because you are
using the DISPLAY command, you can do nothing more than
just look at it. You are returned to the COMMAND LEVEL
automatically.

Bl
Expanding One of the most powerful features of H & D Base is the ability it
Commands gives you as a user to add further definition to commands such

as DISPLAY. Such definition can take a number of forms, two of

Beginning Command Tutorial
B
Reviewing a Database, cont.

which are covered below. Perhaps the most powerful of all
expansion tools is the ability the program has to evaluate
“expressions” ({exp}). You will review expressions in the /nter-
mediate Command Tutorial of this manual.

Our purpose here is to give you just an overview of how com-
mands can potentially be expanded. We will be looking at two
of the more common forms as they relate to a command like
DISPLAY.

1.) DISPLAY {field}

You may perform an action in relation only to a certain field
(or fields) of a database with a qualifier like “ {field } "

Our sample database named “People” has 6 fields in each
record. In order to DISPLAY only the “Name” field we would
enter:

DISPLAY Name

A command DISPLAYING three fields might read:
DISPLAY Name,City,Zip
2.) DISPLAY {scope}

The word {scope} is used to tell the program the range of
application for the COMMAND it is used in conjunction with.
It can take three forms:

ALL
All records in the file

NEXT n
Next n records including the current record

RECORDn
Only record n

Used in relation to the DISPLAY command, the correct form
of each command would read:

3-18

Beginning Command Tutorial

Reviewing a Database, cont.

ALL - (Ex: DISPLAY ALL)
Displays all records in the file

NEXT n - (Ex: DISPLAY NEXT 5)
Displays the next 5 records including the
current record

RECORD n - (Ex: DISPLAY RECORD 3)
Displays record #00003

Let's experiment for a moment with just one of the DISPLAY
commands reviewed above. Enter the following:

DISPLAY ALL {CR}

Instead of displaying just one record, all five will appear on the

screen.
00001 Smith, Paul 5487 Oak St.
San Diego CA 92376 $267.92
00002 Jones, Alice 9227 E. Sample #108
Miami FL 39857 § 67.98
00003 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.00
00004 Dow, Tony 1987-B E. 19th.
New York NY 01004 § 4.59
00005 Clark, Bill 657 S. Main
Portland ME 00648 $ 34.95 ok

With a file which has a large number of records in it, the first 15
records of the file will appear when the DISPLAY ALL command
is entered. In order to DISPLAY the next 15 records of the
database, you would press any key on the keyboard. You would
break out of the DISPLAY mode at any time by pressing the

{ESC} key.

3-19

Beginning Command Tutorial
A A 5 T P55 0 W 5 5 e i e 2 S
Reviewing a Database, cont.

Alternate Forms
of the DISPLAY
Command

In this tutorial, we have touched on just a few of the forms the
DISPLAY command can take. Others include:

1.) DISPLAY STRUCTURE
Displays the structure of a database

2.) DISPLAY MEMORY
Displays the contents of all memory variables

3.) DISPLAY FILES
Displays the disk directory

4.) DISPLAY STATUS
Displays current files open, index files, keys, and SET
parameters

5.) DISPLAY COMMAND {File}
Displays a command file

It will be very important for you to carefully study the “Refer-
ence” section of this manual in order make full use of the
powerful commands we've briefly reviewed in this DISPLAY
section.

The LIST
Command

3-20

The LIST command is almost identical to the DISPLAY com-
mand with one important difference. If you enter:

LIST

without any qualifying statements after it, the entire file will be
displayed (as opposed to one particular record with the DIS-
PLAY command). In addition, the file will be listed from begin-
ning to end without stopping.

You may manually pause the listing by entering {CTRL-S}. To
continue after doing so, press {CTRL-Q}. To break out of the
listing all together, press the {ESC} key.

Beginning Command Tutorial

Reviewing a Database, cont.

Other than that, you will have no trouble in substituting the word
LIST for the word DISPLAY in any of your statements.

You may want to take a few minutes at this time to return to the
section which covers the DISPLAY command and rework the
examples there using the word “LIST" instead of "DISPLAY" in
the statements.

The GOTO and GO You can place the "pointer” on any record you want by entering

Commands

The SKIP
Command

one of these commands:

1.) GOTO [RECORD) #
Places the “pointer” on the specified record

2.) GOTO TOP
Places the "pointer” on the first record of the file

3.) GOTO BOTTOM
Places the “pointer” on the last record of the file

Note: The word “GO" can be substituted for "GOTO" in the
command if you so desire.

If you would like to move the “pointer” to the next record in the
file, type:

SKIP {CR}

You may SKIP ahead (or back) more than just one record. Use
this command:

SKIP +n or SKIP-n
There must be a space after the the word “SKIP".

To move the pointer from record #00001 to record #00005 type:

3-21

Beginning Command Tutorial

Reviewing a Database, cont.

SKIP +4 {CR} .

To move the pointer back to record #3, type:
SKIP -2 {CR}
Now experiment with moving the “pointer” about the file with

GOTO and SKIP statements. To determine your position in the
file, DISPLAY the record after each move.

3-22

Purging a Database
of Unwanted Records

The DELETE We encourage you to regularly purge outdated records from

Command your databases. This will cause the program to work faster and
allow your storage device to handle a greater number of current
records (among other things).

There are three ways that records can be DELETED from a file.
Two of them are covered here:

1.) Press {CTRL-U} while in the EDIT or BROWSE modes

To delete the record upon which the cursor is resting while in
the EDIT or BROWSE modes, simply press {CTRL-U}. A
"DELETED" prompt will appear at top of the screen.

2.) Enter this command while at the COMMAND LEVEL:
DELETE {scope}

Ex: DELETE ALL
Deletes all records

Ex: DELETE RECORD 3
Deletes record #00003

Ex: DELETE NEXT 5
Deletes next 5 records beginning
with current record
The third form of the DELETE command, which is:
DELETE FOR {exp}
allows you to DELETE just the records satisfying a certain term

or condition. It uses the "FOR {exp}" statement covered in the
Intermediate Command Tutorial.

3-23

Beginning Command Tutorial

B = VECEE IS S U
Purging a Database of Unwanted Records, cont.

Marking Records When the DELETE command is entered, the specified file (or
for Deletion files) is not actually removed from the database. It is marked for
removal with an asterisk by its record number.

Lets DELETE a record at this time. From the COMMAND
LEVEL, enter:

DELETE RECORD 1 {CR}

With that accomplished, DISPLAY the records in the file with
this command:

DISPLAY ALL {CR}
All five records will be displayed on the screen. Note that record
#00001 has been marked for deletion with an asterisk opposite

its number.

Special note: Records marked for deletion can be displayed
and edited, but they cannot be copied, appended, or sorted.

S SR TR R e
The RECALL There are three ways that you can “undelete” or RECALL
Command records which have been marked for deletion:

1.) Press {CTRL-U} while in the EDIT or BROWSE modes
To RECALL the deleted record upon which the cursor is
resting (while in the EDIT or BROWSE modes), simply press
{CTRL-U}. The “DELETED" prompt will disappear from the
top of the screen.

2.) Enter this command while at the COMMAND LEVEL:

RECALL {scope}
Ex: RECALL ALL

Undeletes all records which have
been deleted

3-24

Beginning Command Tutorial

Purging a Database of Unwanted Records, cont.

Ex: RECALL RECORD 3
Undeletes deleted record #00003

Ex: RECALL NEXT 5

Undeletes next 5 records begin-
ning with current record (if any or all
of them had been previously
deleted)

The third form of the RECALL command, which is:

RECALL FOR {exp}
allows you to RECALL just the records satisfying a certain term
or condition. It uses the {exp} statement covered at the begin-
ning of the Advanced Command Tutorial.
When the RECALL command is entered in relation to a previ-
ously deleted record or set of records, the asterisk which

appeared by that record's number is removed.

We have one deleted record in our file -- record #00001. Let’s
RECALL it at this time. From the COMMAND LEVEL, enter:

RECALL RECORD 1 {CR}

With that accomplished, DISPLAY the records in the file with
this command:

DISPLAY ALL {CR}
All five records will be displayed on the screen. Note that the

asterisk opposite record #00001, which had marked it for
removal, has disappeared.

. The PACK

Command

The command which physically removes from the file all
records marked with an asterisk for deletion is:

PACK

3-25

Beginning Command Tutorial
R A T S PR A T e A T Tl = S
Purging a Database of Unwanted Records, cont.

3-26

Besides completely eliminating records marked for deletion,
the PACK command subtracts one digit from the record num-
ber of any record whose number is greater than that of a record
which has been deleted.

After PACKING a file, information from a record which had
previously been deleted cannot be retrieved in any manner.

Important Note: The PACK function is one of the most tenuous
that the system performs. We strongly suggest, therefore, that
you make a "Back-up” copy of a database file before you PACK
it. In addition, never press the “Escape” key {ESC} during a
PACK; it will most assuredly cause an error in data transfer.

Interacting With the System

Before concluding the Beginning Command Tutorial, we must
cover one last item which will be important for you to under-
stand before starting the next section. It involves the correct
procedure for interacting directly with the system.

The ? Command

H & D Base provides one simple command which allows you to
access the mathematical and memory functions of the
machine. This command is a “question mark” (7).

Touse H & D Base asiif it was a calculator, enter a question mark
followed by a quantity or mathematical function you want evalu-
ated. Upon pressing {CR}, the answer appears on the next
line. Enter two question marks followed by a function to be
evaluated and the answer will appear on the same line.

The ? Command:
Math

Give it a try. Enter the following from the COMMAND LEVEL:

?1+1{CR}
?10-6 {CR}

?75°5 {CR}
27 66/6 {CR}

Note: If you are unfamiliar with the meaning of the mathematical
symbols used in the statements above, consult the Intermediate
Command Tutorial or “Reference” sections of this manual.

When you have finished, the screen should look like this:

2141

20k

?710-6

40k
775*5250k
77 66/6 11 ok

3-27

Beginning Command Tutorial
L e
Interacting With the System, cont.

The question mark command displays answers to a mathemati-
cal operation to the same number of decimal places as the
maximum in the numbers entered (limit = 8).

To demonstrate the fact, enter the following:
?99/7 {CR}
?99.00/7 {CR}
?99/7.0000 {CR}

Now check to see if the screen doesn't look like this:

799/5

? 14 ok
799.00/7
?714.14 ok
799/7.0000
7 14.1429 ok

The question mark (?) command can also be used to display
the contents of certain fields of a database. To demonstrate,
make sure the data disk with our sample database "People” is
in the drive and enter the following:

USE People {CR}

GOTO 3 {CR}

? Name {CR}

GOTO BOTTOM {CR}

? Name,City,Amount {CR}

When you finish, the screen will look like this:

USE People ok

GOTO 3 ok

? Name

Zachry, Mike ok

GOTO BOTTOM ok

? Name, City,Amount

Clark, Bill Portland 34,95 ok

3-28

Summary

This concludes the Beginning Command Tutorial of H & D
Base. In it you have learned how to interact with the program
using some of the most primary statements of the programming
language.

In many cases, you were shown only the most basic applica-
tions of the words we covered. To make use of the full of H & D
Base in regard to these (and other) commands, you must study
the “Reference” section of this manual carefully.

The next section deals with “Expressions” -- the phrases which
“pack the punch” of the H & D Base program.

3-29

Chapter

4

INTERMEDIATE COMMAND TUTORIAL

Introduction

Congratulations on having completed your review of the Begin-
ning Command Tutorial. We trust that you feel as though you are
well on your way to mastering the H & D Base programming
language.

You are about to begin the Intermediate Command Tutorial. Itis
called Intermediate not because it follows the Beginning Tutorial
with a logical presentation of more advanced commands, but
because it is essential that we present the information provided
in it before we can proceed any farther.

This section covers "Expressions” - one of the most powerful
elements of H & D Base. “"Expressions” give you the ability to
expand many of the basic commands covered in this Tutorial and
manipulate your databases in a virtually limitless number of ways.

Unfortunately, there is no way for us to document completely all
the forms each of the commands can take. Experimentation
will, therefore, be your best teacher. The process can be as
complicated as you make it. The deeper you dig, the harder it
becomes. Good luck!

Before beginning this section, it is necessary to introduce the
statement to which they are most closely tied. That statement is
“FOR".

The FOR
Statement

The FOR statement is used to determine which records of a file
satisfy the terms of a qualifying “expression” ({exp}). For exam-
ple, using the DISPLAY command you could take a look at only
the records of our sample “People” database with “CA" in the
“State” field, or all the records with a number in the "Amount”
field greater than “100".

The correct form of the statement when applied to any given
command is:

{COMMAND} (FOR {expression}]

Expressions

The real power of any given “FOR" statement is in the “Expres-
sion” which is appended to it. When you have mastered their
application, you have passed a major hurdle in learning H & D
Base.

Expression
Parameters

First the parameters for entering such statements:
1.) They can be entered in upper and lower case letters.
2.) They can be up to 254 characters long.

3.) At the PROGRAM LEVEL of the program, if a command is
longer than 80 characters, place a “tilde” sign (~) atthe end
of the last full word of a line, press {CR} and continue the
command onthe nextline. The program will read it all as one
command. The tilde is not necessary while at the COM-
MAND LEVEL of H & D Base.

Note: Those of you who have worked extensively with other
database languages know that a semi-colon is normally used in
this situation. The nature of FORTH does, unfortunately, neces-
sitate the change.

Elements of
Expressions

Elements which may be included in an “Expression” are:

1.) CONSTANTS
A.) Numerical Constant
B.) Character String Constant
C.) Logical Constant

2.) VARIABLES
A.) Data Field Variable
B.) Memory Variable

Intermediate Command Tutorial
(T R e S S P s TR e SRR 1o R Tt LT i R A ST)

3.) OPERATORS
A.) Arithmetic
B.) Relational
C.) Logical
D.) String

4.) FUNCTIONS

Expressions, cont.

We will cover each of the four in the remainder of this Intermed-

ate Tutorial,

4-3

Constants

A “Constant” is a data item which always has the same literal
value -- regardless of where it appears. It is exactly what it says.
A constant can take three forms: a numerical constant, a char-
acter string constant, or a logical constant.

Numeric
Constants

A “numeric constant” is no more than a single number (or
numbers) such as “1" or “12345"

For purposes of demonstration, enter the following from the
COMMAND LEVEL of H & D Base:

? 12345 {CR}

The numbers “12345" are returned to the screen when you
press {CR}. The computer determined that they were
“numeric constants” and returned their literal value to the
screen.

Now enter:
? ABCDE {CR}
What do you get? A “question mark” (?), indicating that a

“syntax error" has occurred. Letters by themselves are not
constants and cannot be interpreted as such by the computer.

String Constants

A “string constant” is any printable character and/or spaces
which appear between a set of matching quotes (single or
double) asin “ABC D/*X + 12 34%$#@". Note: The ampersand
(&) must receive special handling if it appears in such a state-
ment. (Consult the Reference section.) .

Intermediate Command Tutorial

Constants, cont.

Enter the following:
? "ABCDE" {CR}
Instead of a “Syntax Error” it returns “ABCDE” This is because it

was in quotes and the computer interpreted it as a “String
Constant.”

Logical Constants A “logical constant” is a value representing “True" with “T", “t",

"Y", or"y", and “False” with “F", “f", "N", or “n".
Enter:

7T {CR}
According to what we've learned so far, a “syntax error” should
be issued. Itis not. In its place, a ".T." appears. This is because
any of the eight characters listed above, when entered without

quotes, is interpreted by the computer as a “logical constant”
and a “true” (.T.) or “false" (.F.) value is issued.

4-5

Variables

A “Variable" is any data item whose value may change. There
are two types of variables: “Data Field Variables" (representing
information contained in the field of a record), and “"Memory
Variables" (representing information which is stored in special
sections of the computer’s memory).

Variables may look exactly like constants, but differ in that they
are not “literal” or “permanent” but are instead “representative”
and “transitory”.

Data Field
Variables

4-6

Each of the names given to the fields in the databases you
designis a "Data Field Variable." That's because it represents a
data value which may change.

If you recall, there are six fields in our sample database called
“People”. They are “Name”, "Address”, “City”, "State”, “Zip”,
and “Amount”. Each is a “Data Field Variable."

Take a look at the contents of one of the fields by entering the
following from the COMMAND LEVEL of the program:

USE People {CR}
? Name {CR}

The computer returns the name “Smith, Paul” It is the informa-
tion from the NAME field of the record #00001 of the database.
Why record #00001? Because that's the record the “pointer”
was on when you entered the command. Note that the word
“Name" is a variable; it represents a value which, at some time,
may change.

If you had entered the command “? Name" without first specify-
ing a database to USE, the error prompt “Invalid Name or
String” would have been returned.

Intermediate Command Tutorial

Variables, cont.

Memory Variables Chester and | reserved an area of the computer’s memory for

you to place temporary information in while using the program.
We divided that memory into 150 boxes of up to 254 characters
each (maximum of 3000 characters total for all variables), and
allow you to place a name on the outside of each box. These
names are “Memory Variables.”

Naming Memory
Variables

The rules for naming “Memory Variables" are the same asthose
for naming fields of a database; e.g., they must start with an
alphabetic character, can be no longer than 10 characters, can
have embedded colons and numbers, and may include no
spaces. We suggest that you begin the name of all “memory
variables" with the letter “M" as an indication of their nature.

The STORE
Command

To place data into a “memory variable,” you can use the STORE
command. Its full form is:

STORE {exp} TO {memvar}

Enter this sequence of commands. It will demonstrate some of
the functions of the STORE command:

STORE 5 TO Mnumber1 {CR}

STORE 10 TO Mnumber2 {CR}

STORE "This is a String Constant” TO Mstring {CR}
? Mnumber1 {CR}

? Mnumber2 {CR}

? Mnumber1 * Mnumber2 {CR}

? Mstring {CR}

4-7

Intermediate Command Tutorial

Variables, cont.

4-8

When you finish, the screen should look like this:

STORE 5 TO Mnumber1 ok Line 1
STORE 10 TO Mnumber2 ok Line 2
STORE "This is a String Constant™ TO Mstring ok Line 3
? Mnumber1 Line4
50k Line 5
? Mnumber2 Line 6
10 ok Line 7
? Mnumber1 * Mnumber2 Line 8
50 ok Line 9
? Mstring Line 10
This is a String Constant ok Line 11

Line-by-line, this is what occured:

Line 1 — You stored a numeric constant (5) to a memory varia-
ble named "Mnumber1"

Line2 — You stored a numeric constant (10) to a memory
variable named “Mnumber2"

Line3 — You stored a string constant (“This is a String Con-
stant”) to a memory variable named “Mstring”

Line4 — You asked for the contents of “Mnumber1" to be
placed on the screen

Line5 — The program placed the contents of “Mnumber1” on

the screen

Line6 — You asked for the contents of “Mnumber2” to be
placed on the screen

Line7 — The program placed the contents of “Mnumber2”
on the screen

Line8 — You asked the program to multiply the contents of
“Mnumber1” and “Mnumber2” and place the result
on the screen

Line9 — The program placed the results of the computation
in Line 8 on the screen

Line 10 — You asked for the contents of “Mstring” to be placed
on the screen

Line 11 — The program placed the contents of “"Mstring” on the
screen

Intermediate Command Tutorial

The RELEASE
Command

Variables, cont.

You may want to take a few moments to experiment with creat-
ing “memory variables” and placing miscellaneous values into
them.

You may “dump” (or eliminate) a “memory variable” and the
data in the box it represents by entering this command:

RELEASE {Memory Variable }
To clear the computer of all "“memory variables,” enter:
RELEASE ALL
When you do so, all “memory variables” are erased.

“Memory Variables” are also cleared with the "QUIT" and
“CLEAR" commands which are covered elsewhere in this manual.

The DISPLAY
MEMORY
Command

Any time you would like to look at all of the boxes of memory
containing information, you may enter this command:

DISPLAY MEMORY (You can also LIST MEMORY)

The “memory variable” names will appear on the screen along
with their data type and contents. At the bottom you will be
shown the number of variables (out of 64) you have used and
how much of the computer's memory they occupy.

You may SAVE “memory variables" to a file for future use with
the SAVE TO command. They may be retrieved with the
RESTORE FROM command. Information on these commands
is included in the “Reference” section of this manual.

4-9

Operators

“Operators” are manipulations that H & D Base can perform on
your data. There are four basic types of operations:

1.) Arithmetic
2.) Relational
3.) Logical
4.) String

We will cover each briefly in this section.

Arithmetic
Operators

4-10

Perhaps the most familiar of all “Operators” are those which are
*Arithmetic.” There are four of them:

p Iy s :Multiply
2 :Divide
3) + :Add

4) - :Subtract

Parentheses () are used to group a series or operations
together.

Because the use of these symbols is so common, we will not
spend a great deal of time at this point teaching you how they
operate.

Itis, however, important for you to realize the fact that manipula-
tions are performed in a sequence of precedence which will
always return the same value for phrases like:

10*10+ 10

Isthe answer here “110" orisit “200"? It depends on what order
the calculations are being performed in.

Intermediate Command Tutorial

Operators, cont.

The order of precedence is:
1.) Anything in parentheses
2.) Divide and Multiply

3.) Add and Subtract

When “Arithmetic Operators” have equal precedence (as in
“Divide and Multiply"), they are evaluated from left to right.

Some examples:

195/26*14 +9 114 (divide, multiply, add)
195/(26* 14+ 9) = .5228 (multiply, add, divide)
195/26*(14 +9) = 172.5 (add, divide, multiply)

Relational
Operators

“Relational Operators” make comparisons then generate logi-
cal results (“True" or “False"). Action is then taken based on that
result.

There are seven “Relational Operators.” They are:

:less than

:greater than

:equal to

:not equal to

‘less than or equal to
:greater than or equal to
:substring is within string

N =
—

N O AW :
Ay AANILVA
v

The use of the first six is simple and straight forward. For
example, type in the following from the COMMAND LEVEL of
the program:

USE People {CR}

LIST FOR Zip = 92376 {CR}
LIST FOR Amount > 100 {CR}
LIST FOR Zip < > 92376 {CR}

4-11

Intermediate Command Tutorial

TP N TS RS F S SO . o e T ey
Operators, cont.

When you have finished, the screen should look like this:

USE PEOPLE ok

LIST FOR Zip = 92376

00001 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92 ok

LIST FOR Amount > 100 ok

00001 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92

00003 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.00 ok

LIST FOR Zip < > 92376

00002 Jones, Alice 9227 E. Sample #108
Miami FL 39857 $ 67.98

00003 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.00

00004 Dow, Tony 1987-B E. 18th.
New York NY 01004 $ 4.59

00005 Clark, Bill 657 S. Main
Portland ME 00648 $ 3495 ok

Take a moment to think about what occurred. When you
entered a LIST command with its qualifiers, the program
searched through the file to see if any record satisfied its terms.
Any record that did returned a logical “True” and was, therefore,
LISTED on the screen.

The seventh “Relational Operator” is somewhat different from
the other six. It is called a “Substring Operator,” and is repre-
sented with a dollar sign ($). With it, you can search for a string
of characters or variables within another string. The correct
form of the command reads:

{substring} $ {string}

When instituted, the program searches the {string} on the right
for the {substring} on the left.

4-12

Intermediate Command Tutorial

Operators, cont.

To see how it works, type in the following:
USE People {CR}
LIST FOR “Lover” $ Address {CR}
LISTFOR “4" $ Zip {CR}

When you finish, the screen should look like this:

USE People ok

LIST FOR “Lover" $ Address

00003 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.00 ok

LIST FOR “4" $ Zip ok

00004 Dow, Tony 1987-B E. 19th.
New York NY 01004 § 4.59

00005 Clark, Bill 657 S. Main
Portland ME 00648 $ 34.95 ok

The program found the substring “Lover” in the "Address" field
of record #00003, and the substring “4” in the "Zip" field of
records #00004 and #00005 and returned a logical “True” for
those records.

Spend a few moments experimenting with “Relational Opera-
tors” as they relate to our sample “People” database.

Logical Operators

“Logical Operators” take a single true-false value, or acombina-
tion of true-false values, and returns one true or false result.

There are three "Logical Operators” (listed in order of prece-
dence within an expression):

.NOT.
.AND.
.OR.

As with “Mathematical Operators,” parentheses () are used for
grouping.

4-13

Intermediate Command Tutorial

S R N e T T A S AR e L TR
Operators, cont.

“Logical Operators,” when used with H & D Base, must have a
blank on either side of them.

These are valid expressions which include “Logical Operators”:
LIST FOR STATE = “NY" .AND. ZIP = “01004"

When entered, the program searchs for any record with
“NY" in the STATE field. When it finds one, it looks at the
ZIP field for “01004". If it appears, it determines that that
particular record delivers a logical “True” to the state-
ment. For any record which does not match both of the
qualifiers, the program delivers a logical “False” to the
statement.

LIST FOR ZIP >50000 .OR. AMOUNT <10

In response to this command, the program searchs for
any record with a number in the “ZIP” field which is
greater than “50000" or any record with a number in the
"AMOUNT" field which is less than “10". Any record
which satisfies either of these statements is deemed to be
logically “True”. Any record which satisfies neither of the
statements is deemed to logically “False."

Let’s apply these two statements to our “People” database at
this time. Enter the following from the COMMAND LEVEL of the
program:

USE People {CR}

LIST FOR State = “NY” .AND. Zip = “01004" {CR}
LIST FOR Zip>50000 .OR. Amount < 10 {CR}

4-14

Intermediate Command Tutorial

S TR SRS 2 S O - RS] P S A w01 ST,
Operators, cont.

. When you finish, the screen will look like this:

USE People ok
LIST FOR State = “NY”" .AND. Zip = "85678"
00004 Dow, Tony 1987-B E. 19th.
New York NY 01004 $ 459 ok
LIST FOR ZIP > 50000 .OR. Amount <10
00001 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92
00003 Zachry, Mike 746 Lover’s Lane
Denver CO 85678 $957.00
00004 Dow, Tony 1987-B E. 19th.
NewYork NY 01004 $ 459 ok

Record #00004 was the only record in the file for which a logical
“True” was generated when it was compared with both sections
of the first LIST statement. To the second statement, three
records, #00001, #00003, and #00004 were deemed logically

. “True” because they satisfied the terms of either of the LIST
statements applied to them.

Take a few moments to experiment with applying “Logical
Operators” to the data in our “People” database.

In a manual of this type it is very difficult to fully cover the nature
of the “Logical Operators” .AND,, .OR., and .NOT. You may
want to refer to a computer text with a section on “Logical
Operators” in it for further revelations.

String Operators There are two operators you can use to manipulate “Strings.”

The are:
1) =+ :String concatenation (exact)
2) — :String concatenation (moves blanks)
. In layman's terms the word “concatenation” means taking

something and sticking it on the end of something else. As used
in H& D Base, it means to take one string and put it on the end
of another.

4-15

Intermediate Command Tutorial

o R N e
Operators, cont.

The correct forms for “String Operation” are:

{string} + {string}
for “exact” concatenation, and:

{string} - {string}

for aconcatenation which moves trailing blanks of the first string
to the end of the combined strings.

“Trailing blanks” are the spaces of a field which are not filled with
entered data. For example, the “Name” field of our sample
database “People” was designed to hold up to 30 characters.
The name “Smith, Paul” in record #00001 of the file fills just 11
characters of the field. There are, therefore, 19 “trailing blanks”
in the “Name" field of that record.

Any “trailing blanks" of the first field in this command will appear
between the strings if you use the “ + " form of the command.
They will appear after the new combined string if you use the “-"
command.

To demonstrate, enter the following from the COMMAND

LEVEL of H & D Base:
? “MISSIS " + “SIPPI" {CR}
? “MISSIS " . “SIPPI” {CR}
USE People {CR}

? City + State {CR}
? City - State {CR}

4-16

Intermediate Command Tutorial

T RS B DT e T T A e A RS e
Operators, cont.

. The screen should look like this when you finish:

7 “MISSIS " 4+ “SIPPI"
MISSIS SIPPI ok

? "MISSIS " - “SIPPI"
MISSISSIPPI ok

USE People ok

? City + State

San Diego CA ok

7 City - State

San Diego CA ok

There is a way to eliminate trailing blanks altogether. The func-
tion which does so is called TRIM, and it is detailed in the next
section.

417

Functions

Some of the functions you will eventually want to perform on your
databases are very difficult (or impossible) to perform using the
regular arithmetic, logical, and string operators we've discussed
in this section. The programmers of H & D Base have identified
many of these operations and included in the language a num-
ber of special FUNCTIONS that you may use.

At this time, we will give you just an overview of the FUNCTIONS
available to you. We will not included step-by-step examples for
each command. Consult the Reference section for further infor-
mation.

FUNCTIONS can be run from either the COMMAND LEVEL or
the PROGRAMMING LEVEL of H & D Base. To use one of the
FUNCTIONS described below from the COMMAND LEVEL,
enter a question mark (7) followed by a space and the FUNC-
TION. The parenthesis () in the formulas must be used.

Blank String
Function

SPACE(nnn)
This function returns a character string of nnn spaces. Example:
STORE SPACE(10) TO Mstr

The memory variable “Mstr" will now be a 10 character string of
blanks.

Date Function

4-18

DATE()

This FUNCTION will generate a character string that contains the
date stored in the Atari computer (as established in the DESK-
TOP) in the format XX/XX/XX. The characters should be entered
exactly as shown (without anything between the parentheses).

Intermediate Command Tutorial

Decimal Place

Functions, cont.

DEC({numeric expression },{decimal places})

Function
This function sets the decimal position of the { numeric expres-
sion} to the number specified in {decimal places}.
T e i P | St ey TR e o gt T S RS S e e S s

Deleted Record z

Function
This FUNCTION delivers a logical “True” (.T.) if the current
record has been marked for deletion, and a logical “False” (.F.)
if has not.

e o eTe

End-of-File EOF

Function
This FUNCTION is used to determine if the end of the file has
been reached. It delivers a logical “True" (.T) if it has, and a
logical “False” (.F.) if it has not.

File Function FILE({ “flename”/variable/expression })
This FUNCTION will tell you if a certain file exists on the disk. It
will generate alogical "True" (.T.) if itis, and a logical "False” (.N.)
if it isn't.

s

Integer Function

INT({numeric expression})

This FUNCTION takes a number with decimals and eliminates
everything to the right side of the decimal point.

To “round off" a number with a decimal to the nearest whole
number, use this form of the INT FUNCTION:

INT(value + .05)

4-19

Intermediate Command Tutorial

P SR S RN, B SIS S SN S
Functions, cont.

Integer to String STR({expression/variable/number}, {length},{decimals})
Function

This FUNCTION converts a number (or contents of a numeric
variable) into a string with a specified length and a specified
number of digits to the right of the decimal point. The length you
specify must be large enough to hold at least all the digits plus
the decimal point.

Number to CHR({number})
Character
Function This FUNCTION vyields the ASCIlI character equivalent of a

specified number.

Rank Function RANK ({string})

This FUNCTION is used to return the ASCII value of the first
character of a string.

Record Function #

This FUNCTION delivers the record number of the current file.

String Length LEN({variable/string})

Function
This FUNCTION tells you how many characters there are in the
string you name. Note: If a character field variable name is
used, it will tell you how many characters are in the entire field.

String to Integer VAL({char string})
Function
This FUNCTION converts a character string (or substring) into a

4-20

Intermediate Command Tutorial

Functions, cont.

number of equal quantity. The string can be made up of digits, a
sign, and up to one decimal point.

Substring
Function

$({expression/variable/string}, {start}, {length })

This FUNCTION allows you to select certain characters from a
string or character variable. You must specify the starting posi-
tion and the length.

Substring Search
Function

e e e R e e e el
@({variable 1/string 1},{variable 2/ string 2})
This FUNCTION will tell you the beginning position of one string

within another string. If the first string does not appear in the
second, a value of “0” will be issued.

Trim Function

TRIM ({string})

This FUNCTION is used to eliminate all trailing blanks in the
contents of a string variable. The correct form for doing so is:

STORE TRIM {variable} TO {new variable}

Type Function

TYPE({expression})

This FUNCTION yields a single character string that contains a
“C", "N", “L”, or “"U" depending on whether the data in the
expression is “Character”, “Numeric”, “Logical”, or "Unde-
fined” (respectively).

Uppercase
Function

I({variable/string })

Intermediate Command Tutorial
T T T T - DA Y AN i W SRRy S T T T T T

Functions, cont.

This FUNCTION changes all the lower case alphabetic charac-
ters in a string or string variable into upper case characters.

feae——= s L LSS LT e
Function Each of the FUNCTIONS described in this section is covered in
Summary detail in the Reference section of this manual. After you have

finished reviewing all sections of the Tutorial, we suggest that
you turn to the Reference section and work carefully through
the examples listed there.

4-22

Summary

The Intermediate Command Tutorial you have just completed
was written to give you just an overview of the forms that H & D
Base "Expressions” can take. As we said at the beginning of
the section, there is no way that we can possibly cover all
aspects of their operation. Suffice it to say that just about any
task you want done can be accomplished in some manner.

For further information, study the Reference section or one of
the fine books which have been written as companions to the
"dBASE II" program. Above all, experiment -- it will be your best
teacher.

In the next section of the manual, the Advanced Command
Tutorial we will continue basically where the Beginning Com-
mand Tutorial left off. Its purpose will be to increase your vocab-
ulary of important H & D Base commands.

4-23

Chapter

9

ADVANCED COMMAND TUTORIAL

Introduction

This is the Advanced Command Tutorial. In it, we will attempt to
broaden the scope of what you can do with H & D Base by
giving you an overview of a number of important system com-
mands.

The first section will cover the procedures for copying data-
bases and for modifying their structures. It will continue with the
commands for rapidly altering data in a database, and for
placing information in alphabetic or numeric order. Instructions
for finding information in a database, generating reports, and
performing various arithmetic functions are covered in the latter
part of the section, and it concludes with techniques for interact-
ing directly with the system and properly closing all files.

Take your time! Enter each example and make sure you under-
stand how a particular command is used. For further informa-
tion on any command, consult the Reference section of the
manual.

5-1

Copying a Database

The COPY It is possible to duplicate an entire database (data and all) with

Command the COPY command of H & D BASE. The most important
application of this command is the “back-up” of your data files.
WE STRONGLY ENCOURAGE YOU TO MAKE REGULAR
BACK-UPS OF YOUR DATA FILES TO PROTECT AGAINST
ACCIDENTAL DATA LOSS.

The basic form of the COPY command is:
COPY [scope) TO {filename}

The process is simple and straightforward. While at the COM-
MAND LEVEL, follow this procedure:

1.) USE the file you want to COPY from

2.) Enter "COPY TO" and the name of the new file you want to
COPY to

The file will be copied (you will be updated as to its progress),
and you will be returned to the COMMAND LEVEL.

Note: When you COPY to a filename which already exists, all
data in that file is destroyed.

Let's copy our sample “People” file to a new file named “Temp”.
Make sure the disk with our “People” file is in the drive and enter
the following:

USE People {CR}
COPY TO Temp {CR}

Once you have entered the second {CR}, the file will be copied
and you will be returned to the COMMAND LEVEL. To see the
results of your efforts, enter:

USE Temp {CR}
DISPLAY ALL {CR}

Advanced Command Tutorial

Copying a Database, cont.

Al five records of our sample “PEOPLE" file will appear on the
screen.

e = = e SE S
The COPY If you would like to copy just the structure of a file to a new one
STRUCTURE (not the data), simply enter the following from the COMMAND
Command LEVEL:

COPY STRUCTURE TO {filename }
To demonstrate, type-in the following:

USE People {CR}

COPY STRUCTURE TO Temp1 {CR}
USE Temp1 {CR}

LIST STRUCTURE {CR}

Note that you now have a new file named “Temp1”, but there are
no recordsin it.

Alternate Forms
of the COPY
Command

There are other forms of the COPY command in H & D Base
which are available to you. They include:

COPY TO {file name} SDF
COPY TO {file name} DELIMITED
COPY TO {file name } STRUCTURE EXTENDED

Instructions for their use are included in the “Reference” section
of this manual.

5-3

Modifying a

Database Structure

The MODIFY
STRUCTURE
Command

Once you have built a database structure with the CREATE
command, there is a chance that you will want to alter it in some
manner. This can be done with the MODIFY STRUCTURE
command. If no data has been entered, the process is a simple
one. ltis just a bit more difficult if there is information on file.

MODIFY

STRUCTURE:

Data Not
Resident

We will begin our discussion here with the command sequence
for altering the structure of a file into which no data has been
entered. :

Please Note: This sequence of commands should not be used
to change the structure of a database into which information
has already been entered as it destroys all data in the file when it
is executed.

The MODIFY STRUCTURE process is carried out as follows:

1.) Fromthe COMMAND LEVEL, USE the file whose structure
you want to alter.

2.) Enter the command "MODIFY STRUCTURE”

3.) To the question “Do you want to continue?”, enter “Y" for
i T

B

The file's structure will appear on the screen. Alter it to your
new specifications with the same cursor control and func-
tion codes you learned in the EDIT section of this manual.
Note: {CTRL-N} will insert a new field in the structure.

5.) When you are finished press {CTRL-W} to save the
changes and return to the COMMAND LEVEL of the pro-
gram. ;

Advanced Command Tutorial

e e e
Modifying a Database Structure, cont.

Let's alter the structure of the new demonstration file “Temp1”
that we created in the section immediately prior to this one. If
you recall, there is no data in it at this time.

Enter the following from the COMMAND LEVEL:

USE Temp1 {CR}
MODIFY STRUCTURE {CR}

A list of the fields and their accompanying information will
appear on the screen. Let’s change the name of the “Zip” field
to “Zipcode”. Use the cursor control keys to move the cursor to
the “Z" in “ZIP", and enter the word “Zipcode” over it. Now
press {CTRL-W} to save the change and return to the COM-
MAND LEVEL of the program.

Take a look at the new structure of our “Temp1” file. Enter:
DISPLAY STRUCTURE {CR}

Note that the name “Zipcode” has replaced “Zip” in that field.

MODIFY The process of modifying the structure of a database into which
STRUCTURE: data has already been entered involves copying the structure of
Data Resident the file to be altered to a temporary file, changing that structure,

and transferring the data of the original file to the new one.

Important Note: You cannot change the name of an existing
field with the process detailed below. If you do, the data from
that field will be lost.

If you recall, our sample database named “People” has five
records in it. Let's alter it's structure even though it has informa-
tion in it. Enter the following from the COMMAND LEVEL.:

USE People {CR}

COPY STRUCTURE TO People1 {CR}
USE People1 {CR}

MODIFY STRUCTURE {CR}

5-5

Advanced Command Tutorial

R . AR S0 585 OV SRS VG i 5 i
Modifying a Database Structure, cont.

The structure of our new file "People1” should be onthe screen.
Using the cursor control commands, move to the first blank
record on the screen (field #7). In the corresponding fields,
enter this information:

NAME = Due
TYPE =.C
WIDTH = 8

DECIMAL PLACES = (No Entry)

Press { CTRL-W} when you are finished. You have just added a
seventh field to our database, an 8 digit character field named
“Due’

The APPEND
FROM Command

To transfer the information from one database to another, you
may use a special form of the APPEND command you learned
about in the Beginning Tutorial. APPEND FROM takes all of the
records from one database and adds them to the bottom of a
destination database for every field with a matching name.

Before executing the APPEND FROM command, we strongly
encourage you to make “Back-ups" of both files in case of data
transfer error. One further word of caution: Do not use the
“Escape” key to abort the APPEND FROM process; its use
could cause serious problems.

Because all of the field names of our source file (“People”)
appear in our destination file ("People1”), we can execute the
APPEND FROM command without the loss of any data. To do
so, type:

APPEND FROM People {CR}
A copy of all the records in the source file is now transferred to

the destination file. The information on the source file (“People”)
remains intact.

Take a look at our new “Peoplet” file with the DISPLAY ALL
command. You will find that it consists of five records, each with

Advanced Command Tutorial

Modifying a Database Structure, cont.

seven fields (instead of six as in the file "People”).

Note: There are two other commands that facilitate the transfer
of data from one file to another. They are the UPDATE and JOIN
commands and they covered at the end of this Advanced
Command Tutorial section.

There is one last (optional) step which can be carried out. In
most cases you will want to delete the original file and change
the name of the new one to match that of the old. You may do so
with the DELETE FILE and RENAME commands.

The DELETE FILE To delete a file, simply enter this command:
Command
DELETE FILE {filename}
Execution of this command will eliminate the designated file
and there will be no way of retrieving it.
As applied to our on-going demonstration, enter the following
from the COMMAND LEVEL:
DELETE FILE People {CR}
When the process has been completed, you will be prompted
on the screen.
Note: If you attempt to DELETE a file with any other “trailer”
than “DAT", you must include the “Trailer” in the DELETE
statement.
S -
The RENAME The command used for changing the name of a file is
Command RENAME. In its proper form, it reads:

RENAME {oldfile} TO {newfile}

57

Advanced Command Tutorial

Modifying a Database Structure, cont.

When we apply this syntax to our example we come up with a
command that reads:

RENAME People1 TO People {CR}

Enter it at this time. You may check to see that the process was
properly executed by DISPLAYING the file named “PEOPLE",
and trying to DISPLAY a file named "PEOPLE1".

5-8

Rapid Alteration of Data

In an earlier section of this manual you learned how to edit one
record at a time using the EDIT command. There are times,
however, when you will want to change the information in a
certain field of a record, group of records, or all records to the
same value (or a value that has been derived from a calculation
involving the information in fields of a record). These things can
be accomplished with the REPLACE command.

The REPLACE
Command

The REPLACE command, in its simplest form reads:
REPLACE [{scope}] {field} WITH {exp}

Inlayman’s terms, this phrase is saying “Throw out what is in this
field of these records, and replace it with this.”

Lets take a moment to examine the various elements of this
command.

1.) {scope}

Using the {scope} expression in relation to the REPLACE
command, you can specify a certain portion of the data-
base to be replaced. It can take three forms:

ALL
(Ex: REPLACE ALL)
Replaces a certain field in all records in the file

NEXT n

(Ex: REPLACE NEXT 5)

Replaces a certain field in the next 5 records including the
current record

RECORD n
(Ex: REPLACE RECORD 3)
Replaces only record 3

Advanced Command Tutorial

B e .
Rapid Alteration of Data, cont.

2) {field}

With this portion of the statement you are telling the pro-
gram which field it is you want to REPLACE.

3.) WITH {exp}

The WITH {exp} statement is used to tell the program what
the information is that you want placed in the fields you've
chosen above.

Used with the REPLACE command, the WITH {exp} state-
ment could look like any of the following:

REPLACE ALL Zip WITH “99999"
This statement would place the numbers “99999" inthe ZIP
field of all records.

REPLACE NEXT 3 Address WITH “NONE"
This statement would place the word “NONE" in the
ADDRESS field of the next 3 records.

REPLACE RECORD 5 Amount WITH "223.96"
This statement would place the number “223.96" in the
AMOUNT field of record #5 only.

Try your hand at replacing information at this time. Our sample
database, “People”, has a field named “Due” which was added
toits structure in an earlier lesson. There is no information in the
“Due’ field of any record in the file. Let’s put the date “12/31/88"
in the “Due" field of all the records.

To do so, enter the following from the COMMAND LEVEL of the
program:

USE People {CR}
REPLACE ALL Date WITH “12/31/88" {CR} .

5-10

Advanced Command Tutorial
eSS SR S e SO e L e S s G P e e 3

Rapid Alteration of Data, cont.

. The program will carry out your command with the entry of the
last {CR}. You can check its work by entering:

LIST Due {CR}

There will be nothing on the screen but a column of “12/31/
88"s.

The REPLACE There is another form of the REPLACE command that it will be
WITH FOR good for us to review at this point. It is:
Command

REPLACE ({scope}) {field} WITH {exp} [FOR {exp})

Note that it is the same as what we've already covered except

for the “FOR {exp}" trailer. In layman's terms (once again), it is

saying: “Throw out what is in this field of these records, and
. replace it with this if this is true."

Suppose that we wanted to change the due date of all our
accountsto "06/01/87" except those which are in California. We
would enter the following:

REPLACE ALL DUE WITH “06/30/87" FOR STATE < > “CA"

Hopefully you can begin to see what a powerful statement this
becomes with the myriad of command combinations it allows.

5-11

Placing a Database

In Order

The records you enter into a database are commonly entered in
random order. It is possible to put them into either alphabetic or
numeric order with two commands available in H & D Base.
The two commands are SORT and INDEX.

The SORT
Command

The SORT command creates an entirely new file which has
been placed in either ascending or descending order accord-
ing to the information in one particular (key) field. The correct
syntax for the command is:

SORT ON {fieldname} TO {filename} (ASCENDING])
(DESCENDING])

You may specify any field of a database to SORT on. This is your
“Key" field, and it is identified in the above command as
{fieldname}. The {filename} portion of the command refers to
the name of the new file you want to create.

Ascending or
Descending Order

You may SORT a file in either ASCENDING or DESCENDING
order by tagging on the appropriate word to the end of the
phrase. (Note: If you do not specify that you want the file in
either ASCENDING or DESCENDING order, the program will
assume that you want itin ASCENDING order).

You may recall that we entered the records of our sample
database named “People” in random order. Take a look at it by
entering:

USE People {CR}
LIST {CR}

Advanced Command Tutorial

Placing a Database In Order, cont.

The screen will look like this:

USE People ok

LIST

00001 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92

00002 Jones, Alice 9227 E. Sample #108
Miami FL 39857 § 67.98

00003 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.00

00004 Dow, Tony 1987-B E. 19th.
New York NY 01004 $ 4.59

00005 Clark, Bill 657 S. Main
Portland ME 00648 $ 34.950k

Now let's create a file named "Psort” which is a sorted version of
the original. We will place the file in alphabetic order using as
our “Key" field the one called “Name". Enter the following:

SORT ON Name TO Psort {CR}
The program will create the new file, SORT the recordstoiit, and
return to the COMMAND LEVEL. The original file will not be
altered in any manner.

To check its work, enter the following:

USE Psort {CR}
LIST {CR}

5-13

Advanced Command Tutorial

O R a5 BT 1P S ST T
Placing a Database In Order, cont.

This screen, reflecting the changes, will appear:

USE Psort ok

LIST

00001 Clark, Bill 657 S. Main
Portland ME 00648 $ 34.95

00002 Dow, Tony 1987-B E. 19th.
New York NY 01004 $ 4.59

00003 Jones, Alice 9227 E. Sample #108
Miami FL 39857 $ 67.98

00004 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92

00005 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.00

Note that the records are in sorted order according to the
entries in the "Name" field, and that the record numbers have
been changed to reflect that order.

Note: You may use the “Escape” key {ESC} to “break out” of
the SORT. It will not harm the original file in any way.

Sortingon More There are times when you will want to SORT on more than one
Than One Field field. For example, you may want to create a file which has all of
your entries in order by “City” within their respective "States”.

The correct form for doing so is:

SORT ON {fieldname} + {fieldname} TO {filename}
(ASCENDING] (DESCENDING])

To SORT on several key fields, start with the /east important key
and end with the most important key.

The correct form for a statement which places a file in order by

5-14

Advanced Command Tutorial

Placing a Database In Order, cont.
“Cities” within “States” is:
SORT ON City + State TO Psort {CR}

Once you have created a new, sorted version of a file, you might
want to DELETE the original and RENAME the new one to its
name.

There are a number of drawbacks to the SORT process. Three
of the major ones are: 1) The process is very time consuming, 2)
Because you are creating an entirely new file, it takes up a great
deal of your disk storage space, and 3) If you add any records to
afile which has been SORTED, you must RE-SORT it if you want
the new records placed in their proper positions.

The INDEX

. Command

You can overcome (to a degree) these problems by INDEXING
the file instead of SORTING it. When you enter the command to
INDEX a file, the program creates a new file, but places in that
file only the record numbers of the original file in sorted order
according to the field you designated. From that point on, when
you USE the original file in relation to the INDEX file, it will seem
as though the file has been SORTED, except the record num-
bers will not be in order.

The correct form of the INDEX statement is:
INDEX ON {key} TO {filename}
The “Key" field can be no longer than 100 characters and you

cannot INDEX a “Logical” field. You can INDEX on more than
one field using the form learned at the end of the SORT section.

Let’s take a look at how it works. Our “People” sample file

5-15

Advanced Command Tutorial

S R R 5 WU 0 B P S TR R - EURS o S
Placing a Database In Order, cont.

remains in random order (by “Name") at this time. In order to
create an INDEX file for it which “keys" in on the “Name" field,
enter:

USE People {CR}
INDEX ON Name TO Nameind {CR}

“.NDX" Files

With the entry of this simple command, an INDEX file named
“Nameind” is created. All INDEX files carry the trailer “NDX".
Therefore, it you do a directory of your disk our new INDEX file
appears as "Nameind.NDX".

Using an INDEX
File

5-16

The correct form used for telling the program that you want to
USE an INDEX in relation to the file from which it was created is:

USE {filename} INDEX {indexname} [, {indexname})...
When we place our example in this form, we get:
USE People INDEX Nameind {CR}

Enter it at this time. Now LIST the program. The screen should
look like this:

USE People INDEX Nameind ok

LIST

00005 Clark, Bill 657 S. Main
Portland ME 00648 § 34.95

00004 Dow, Tony 1987-B E. 19th.
New York NY 01004 $ 4.59

00002 Jones, Alice 9227 E. Sample #108
Miami FL 39857 $ 67.98

00001 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92

00003 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.000k

Advanced Command Tutorial

R 5 P RO 55 e R W S R 5 A WD
Placing a Database In Order, cont.

Note that everything appears as if the the file had been
SORTED, except that the record numbers are still in their origi-
nal entry order.

Some special thoughts on the INDEX command:

1.) If you APPEND, EDIT, REPLACE, or PACK a file while using
an INDEX file with it, the program will update the INDEX as
you go along to reflect any changes.

It will continually update more than one INDEX at a time if
you designate more than one index file with the USE com-
mand.

2

~—

If you execute any of the above commands and you are not
using any one (or all) of the INDEXES which have been
created for the file being manipulated, the INDEXES will
have to be recreated.

w

The fastest way to locate a certain record in a file is to use the
FIND command (see below). This command can only be
used if a file has been INDEXED and that INDEX is being
USED in association with it.

4,

—

You may use the “Escape” key {ESC} to “break out” of the
indexing routine. It will not harm the datafile in any way, but
the INDEX file will be useless.

5.) An understanding of the “SET INDEX TO" command cov-
ered in the “Reference” will be helpful.

517

Finding Information

In a Database

There are two commands you can use to locate a particular
record in a file. One can be used at will, while the other must be
used only in relation to an INDEX file. The former is the LOCATE
command, and the latter is the FIND command.

The LOCATE
Command

When you are looking for specific data in a file that is not
indexed on the “Key" you are interested in, use the LOCATE
command. When instituted, it searches a file for the first occur-
ance of a string of characters that you have specified.

The correct form of the LOCATE command is:
LOCATE [{scope}] FOR {expression}

If you want to search the entire database between the current
pointer location and the end of the file, you do not have to
specify the {scope}. If you want to search the entire file, specify
*ALL" In order to LOCATE data in a character field (“C"), your
entry should be enclosed in quotes.

The “Zip” field of Record #00004 of our “People” database
consists of the numbers "01004" (our {expression}). To
LOCATE that record, enter:

USE PEOPLE {CR}
LOCATE ALL FOR Zip=01004 {CR}

The program will LOCATE the first occurance of “01004" in the
“Zip” field and place its accompanying record number on the
screen. Fromthis point you may either 1) Look at the record with
the DISPLAY command or 2) proceed searching for another
occurance of “01004" in the file by entering:

Advanced Command Tutorial

Finding Information In a Database, cont.

CONTINUE {CR}

If H & D Base does not find another match, or if there was no
match in the entire file, one of these prompts will appear:

END OF LOCATE
END OF FILE ENCOUNTERED

You will be returned to the COMMAND LEVEL of the program.

Because our demonstration file contains only five records, the
LOCATE function was carried out quite rapidly. You will find,
however, that it can be an alarmingly slow process if there are a
large number of records in the file. To locate records quickly,
use the FIND command.

The FIND
Command

The FIND command is very similar to the LOCATE command
except that it can only be used when a database has been
indexed and that index file is in USE. The proper syntax for the
command is a simple:

FIND {character string}

The “character string” can be any number of alpha or numeric
characters (it must begin with the first character of the field). You
do not have to use quotes around it (as you did with the LOCATE
command). The “case” of the letters you search for will make a
difference; e.g., “MIKE" is not a match to “Mike”.

Let's locate the number “01004" once again in our sample
database using the FIND command. Remember, you must
USE the "PEOPLE" database in relation to an index on the
NAME field in order for the FIND command to work properly.
We will create an index named “Zipind" which “keys" on the
“Zip" field of the database.

5-19

Advanced Command Tutorial

R R o AN T R T W ot s o AR 5 7 e
Finding Information In a Database, cont.

Enter:

USE People {CR}

INDEX ON Zip TO Zipind {CR}
USE People INDEX Zipind {CR}
FIND 01004 {CR}

The program will search for the first occurance of the numbers
“01004" in the “Zip" field of the “People” database and return
you to the COMMAND LEVEL if it finds a match. From that point
you can 1) View the record with a DISPLAY command, or 2)
View any more occurances with a DISPLAY NEXT n command.

If no identical match is found during a FIND, the prompt “NO
FIND" will appear on the screen.

5-20

Generating Reports

From a Database

Often times you will want to display or print all or part of the
information in a database in a form which is much easier to
assimilate than that which is produced by a simple LIST or
DISPLAY command. This is especially true if the information is
to be used by someone who is unfamiliar with how to “read”
unformatted data text.

The REPORT
Command

With H & D Base, you can format the data into a “REPORT"
which includes a page heading, the fields you specify, their
respective column headings, column totals, etc. The
“REPORT" form you create can be stored in a special file and
used over and over again to produce the same results (with
different information).

We will cover each step of the REPORT process as we create a
REPORT with the information in our “PEOPLE" database. To
begin, enter the following:

USE People {CR}
REPORT {CR}

The program will respond with this prompt:

ENTER REPORT FORM NAME:

“.FRM” Files

Enter the name that you want the REPORT “Form” to be stored
under. It will become a file on your disk with the trailer “FRM".

Let's call our REPORT “PReport”. Enter it and press {CR}.
When you do, these prompts will appear:

5-21

Advanced Command Tutorial

S e S S AT P T s o oo T T P S T T
Generating Reports From a Database, cont.

5-22

DEFAULT OPTIONS: LEFT MARGIN (M) = 8, LINES/PAGE (L)
= 57, PAGE WIDTH (W) = 80
ENTER OPTIONS:

You are being asked if you would like to change the left margin,
lines/page, and page width default settings. The parameters
the program defaults to are:

1.) LEFT MARGIN: 8
2.) LINES/PAGE: 57 Lines
3.) PAGE WIDTH: 80 Characters

Your REPORT will be formatted to these defaults if you simply
press {CR} at this point. If you would like to change them, they
must be entered in this form before you press {CR}:

M = {left margin}, L = {lines/page}, W = {page width}
{CR}

For example, to change the left margin to 10", the lines/page to
“50”, and the page width to 70", you would enter:

M =10,L = 50, W = 70 {CR}
Note: The width is used for centering purposes only.

Do not change the default parameters -- just press {CR}. Once
you have done so, a prompt asking whether or not you want a
“Page Heading” will come on the screen. A “Page Heading” is
aword or phrase which will appear (centered) at the top of every
page of the REPORT. It's maximum allowable length is 80
characters.

Enter “Y" for “YES”. You will then be asked for the heading. Enter
“PEOPLE REPORT" and press {CR}.

A prompt asking if you would like your REPORT to be double
spaced will now appear. You may either enter “Y" for "YES" or
“N” for “NO". For demonstration purposes, enter “N” {CR}.

The next prompt which appears concern “Totals." If you indicate
that you do want “Totals”, the program will add the contents of a

Advanced Command Tutorial

N P it B 8 o S R T TS e -
Generating Reports From a Database, cont.

. selected numeric field (or fields), and place that total at the
bottom of the field’s column.

If you answer “YES" to the “Totals” question, a "Subtotals?”
question will appear. Answering “YES" to the "Subtotals” ques-
tion will produce a REPORT which lists subtotals for sets of like
records within a database. You will be asked a number of
qualifying questions if you enter “Y" to this command. (For more
information consult the Reference section.)

For demonstration purposes, enter “Y" to the “Totals?” question
and "N" to the “Subtotals?” question.

With H & D Base, you can specify which fields of the database
you would like to include in your REPORT, how much of each
field you want to show, and what you want the title at the top of its
column to read.

. The screen which facilitates these questions looks like this:
coL WIDTH,CONTENTS
001

Enter the number of characters of the first field you want to
display (any number of characters up to 254). If you enter less
than the total possible in the field, it will wrap around to the next
line.

Whatever number you enter should be followed with a comma
and the name of the field you want listed. It can be any field in
the database, regardless of the type. Your entry is recorded with
a {CR}.

Before proceeding, you will be asked for the heading you would
like centered at the top of the column of information you just set
up. Any heading which is less than 60 characters is acceptable

. (in some instances, part of a heading will wrap around to the
nextline. A {CR} records your response. If you do not want any
heading above the column, simply press {CR} without enter-
ing any characters.

5-23

Advanced Command Tutorial

I AR S T 3065 T L7, .) W P S AT st 0 L o2
Generating Reports From a Database, cont.

5-24

Once you have entered the width of field #1, its name, and the
column heading, you will be asked if you want to TOTAL the field
(ifitis a “numeric” field and you previously answered “YES" to
the "Totals" question).

The same set of questions will be asked for fields #2, #3, and so
on. You may put up to 24 fields in a REPORT, but you will find the
results distressing if the total number of characters your
REPORT requires per line exceeds that which your particular
printer is capable of reproducing (usually 80 or 132). Experi-
mentation required...

When you have entered the information for all the columns of
your REPORT, press {CR} instead of typing in another
column’s width. (Note: If you intend to produce a “hard copy”
(printed version) of the REPORT, make sure your printer is ready
for action). Your REPORT will be generated at this time.

And now for a demonstration. The program should be at a point
where it is ready for you to enter the fields of the REPORT. Enter
the following information:

Field: Width: Name: Column Heading:
001 30 NAME NAME

002 20 CITY CITY

00 37 AMOUNT AMOUNT

At the beginning of field #004, just press {CR}. This REPORT
will appear:

PAGE NO 00001
(DATE)
PEOPLE REPORT

NAME CITY AMOUNT
Smith, Paul San Diego 267.92
Jones, Alice Miami 67.98
Zachry, Mike Denver 957.00
Dow, Tony New York 4.59
Clark, Bill Portland 34.95
TOTAL 1332.44

Advanced Command Tutorial

Generating Reports From a Database, cont.

Notes and Observations:

1.) Thisfile would bein sorted order had we USED it in associa-
tion with an index “keyed” on the “"Name” field before
executing the REPORT command.

2.) ltis possible to dress this form up to a certain degree. For
example, there is a command for justifying titles. For infor-
mation on how to do so, consult the Reference section.

Once you have set-up a REPORT in the manner described
above, that REPORT is saved in a file with a "FRM" trailer
eliminating the need to go through this whole process in the
future.

The REPORT
FORM Command

Forinstance, our demonstration file is now on the disk under the

name “PReport.FRM". You can generate a REPORT from it or

any file with the "FRM" trailer by entering this command:
REPORT FORM {formname }

As applied to our demonstration REPORT file, the command,
when entered, reads:

REPORT FORM PReport {CR}

For details on its application, consult the Reference section of
this manual.

5-25

Counting Database Records
and Totaling Their Contents

It is a simple matter to see how many records there are in any
given database. Just enter the command “DISPLAY STRUC-
TURE" and look for the prompt which reads “NUMBER OF
RECORDS?". It's listed right there.

The COUNT
Command

5-26

Suppose, however, that you need to COUNT the number of
records in a database which meet a specified condition (or
conditions). This is also possible with H & D Base.

The full form for the COUNT command is:
COUNT ({scope}] (FOR {conditions}) (TO {memory variable})

This command can be used with none, some, or all of the
modifiers deliniated by brackets. If you enter just the word
COUNT {CR}, it counts all the records in the database. The
{scope} can be limited to one or a specified number of
records, and the {condition} can be any complex expression
(as discussed in the Intermediate Command Tutorial). The result
of the COUNT is displayed on the screen, and can also be
stored in a {memory variable}.

There are five records in our sample database named “People”.
Three of the five have numbers in the AMOUNT field which are
greater than “100" Let's see if we can get the program to
COUNT these records.

Enter the following:

USE People {CR}
COUNT FOR Amount> 100 {CR}

Advanced Command Tutorial

R A NS U T SN A TN e SR
Counting Database Records and Totaling Their Contents, cont.

The SUM
Command

In just a few seconds, the result of the COUNT will appear on
the screen in this form:

COUNT = 00003

You may stop the COUNT at any point be pressing the
“Escape” key {ESC}.

The COUNT command can be used only to determine the
number of records in a file which satisfy a certain conditon.
There is another command which adds together the numbers
in a particular numeric field (or fields) in all (or specified)
records. The command is SUM.

The correct syntax for the entire SUM command is:

SUM ({scope}] {exp} [,{exp}] [FOR {condition})
(TO {memvar})

We have but one numeric field ("Amount”) in our sample data-
base named “People” To get a total of the numbers in all the
‘Amount” fields of our file, enter:

USE People {CR}
SUM Amount {CR}

The computer will work for a moment, then display the total on
the screen (in this case, “1332.44").

You may total up to five numeric fields. If more than one field is
being totaled, separate each with a comma. The records
totaled can be limited by using the {scope} and/or conditional
expressions after the “FOR”

The SUM function can be brought to a halt at any point by
pressing the “Escape” key {ESC}.

5-27

Advanced Command Tutorial

B L~ = SURRE O
Counting Database Records and Totaling Their Contents, cont.

The TOTAL There is one more command provided by H & D Base which

Command can be used for adding up numbers in a database. The com-
mand is TOTAL. Although you will not be given step-by-step
instructions on how to use it at this point, it is important for you to
know that it exists.

The TOTAL command is used primarily for eliminating detail
and providing summaries of information. It works very much
like the “"Sub-Total” feature of the REPORT command, except
that the results are placed in a database rather than being
printed out.

For details on the TOTAL command, see the Reference section.

5-28

Working With
Multiple Databases

The work you have done with H & D Base to this point has been
performed in relation to only one data file (.DAT) at a time. You
have learned to specify precisely which data file with the "USE
{file}" command.

To work with a different database, you simply entered another
“USE {file}" command. Upon doing so, the first file was
closed, and the second was opened. The record “pointer” was
placed at the first record in the newly-opened file.

There will be times when you will want to USE a second file
without losing your place in the first. In other words, you will
want to have two data files open at the same time. This is
possible with H & D Base.

Primary and The first data file you open with a USE command is called the

Secondary Files “"PRIMARY" file. The second is appropriately called the “SEC-
ONDARY" file. The sequence of commands for USING a “PRlI-
MARY" file and then a “SECONDARY" file is:

USE {name of primary file}
SELECT SECONDARY
USE {name of secondary file }

The SELECT After establishing a “PRIMARY" and “SECONDARY"” file in this
Command manner, you can toggle between the two with this command:

SELECT (PRIMARY or SECONDARY])

From this point, the commands you issue will be performed in
relation to either the “PRIMARY" or “SECONDARY” data file,

5-29

Advanced Command Tutorial

L e RS . HET A A A A S e L
Working With Multiple Databases, cont.

depending upon which one you choose with the SELECT
statement.

Information can be transferred from one area to the other using
“P" and “S" as prefixes for field names. If you are in the
“PRIMARY" area, use the “S." prefixes for field names you need
from the SECONDARY area. If you are in the “SECONDARY"
area, use the "P" prefix for field names you need from the
“PRIMARY" area.

For example:
USE People (The PRIMARY file)
SELECT SECONDARY
USE Product (The SECONDARY file)
SELECT PRIMARY
DISPLAY Name (A field in the PRIMARY file)

DISPLAY S.Product (A field in the SECONDARY file)
DISPLAY Amount (A field in the PRIMARY file)

The JOIN
Command

5-30

You can combine two databases (the PRIMARY and SECOND-
ARY files) to create a third database. This is accomplished
through the use of the JOIN command. In its full form, it reads:

JOIN TO {newfile} ON {exp} (FIELD {list})

When executed, this command positions the “pointer” on the
first record of the PRIMARY use file and then evaluates, one-by-
one, every record of the SECONDARY use file to see if it
matches the specified “expression.” For every match, a new
record is added to a completely separate third database ({new-
file}).

The optional list of FIELDS that you may add to the basic
statement specifies which FIELDS from the PRIMARY and/or
SECONDARY files you want transferred to the {newfile}. You
may specify any FIELD included in either (or both) USE files.
Note: We suggest that you preface the name of each FIELD
with either a “P” or "S.” depending upon whether the FIELD isin
the PRIMARY or SECONDARY use file.

Advanced Command Tutorial

Working With Multiple Databases, cont.

If you choose not to list the specific fields you want included in
the {newfile}, the program will transfer all the fields of both files
(including fields with the same names).

Here is a sample JOIN command sequence:

USE People

SELECT SECONDARY

USE Product

JOIN TO Third FOR State = “CA” FIELD PName,
P.Address,P.City,P.State,P.Zip,S.Product, PAmount

Two special notes regarding the JOIN command:

1.) Depending on the size of the two databases involved, this
command can take an extremely long time to execute.

2.) If the “expression” you use is too “loose” (e.g., its parame-
ters are too large), there may be a very large number of
“matches” that are made. This may cause size of the {new-
file} to increase to unmanageable levels.

The UPDATE
Command

Data can also be transferred from one database file to another
using the UPDATE command. This type of update does not use
the PRIMARY/ SECONDARY format.

The basic format of the command is:

UPDATE FROM {database} ON {Key} (RANDOM]
(ADD {field list}] (REPLACE {field list})
(REPLACE {field} WITH {from field})

Prior to running this command, both database files to be used
(the USE database file and the FROM database file) must be in
order using the same {key} (unless the RANDOM statement is
used -- see below). The USE database file can be either
SORTED or INDEXED, while the FROM database must be
SORTED.

5-31

Advanced Command Tutorial

A LSSty PP ¥ B < S R PO R R MV L S 547 R
Working With Multiple Databases, cont.

5-32

Assuming that we are working with a USE database file named
“People”, and a FROM database file named "Product”, prepa-
ration for running the UPDATE command would be as follows:

USE Product

SORT ON Product TO Prodtemp
DELETE FILE Product
RENAME Prodtemp TO Product
USE People

INDEX ON Name TO Nameind
USE People INDEX Nameind
UPDATE FROM Prodtemp TO...

Although greatly simplified, this is what occurs when the com-
mand is run (with all SORTS or INDEXES completed and in
USE): The program compares the contents of the {key} in the
USE database file against the contents of the {key} in the
FROM database file. If the contents are exactly the same, the
remainder of the command is executed on the field (or fields) of
the USE database file. If the information in the {keys} do not
match, the record is skipped and the search for matches con-
tinues.

When {key} matches are found, there are three options which
can be performed. We will review each briefly.

The "ADD {field list}" option will add the contents of a specified
field (or fields) in the FROM database file to the contents of a
field (or fields) with the same name in the USE database file. An
example:

UPDATE FROM Invoice ON Name ADD Total
The "REPLACE {field list}" option will replace the contents of a
specified field (or fields) in the USE database file with the
contents of a field (or fields) with the same name in the FROM
database file. An example:

UPDATE FROM Invoice ON Name REPLACE Rec:By

The “REPLACE {field} WITH {from field}" option will replace

Advanced Command Tutorial

Working With Multiple Databases, cont.

the contents of a specified field (or fields) in the USE database
file with the contents of any field (or fields) in the FROM data-
base file.

UPDATE FROM Invoice ON Name REPLACE Last:Act
WITH Date

The RANDOM
Option

If you choose to “tack on" the optional “RANDOM" statement to
the end of the entire command, the FROM database file does
not have to be SORTED. The USE database file, however, must
be INDEXED (not SORTED) and that INDEX must be in USE.
Although it accomplishes the task in a different manner, the
results of including the RANDOM statement in the UPDATE
command are the same in all respects.

5-33

Changing H & D Base
Characteristics

H & D Base provides a number of “SET" commands which
control how the program interacts with your system. Some SET
commands are merely toggle switches which register a default
of either "ON" or “OFF". Others allow you to enter specific
values. All SET commands can be quickly and easily changed

from either the COMMAND LEVEL of the program or from «

within a COMMAND FILE.

Each of the SET commands which serves as a simple “ON/
OFF" toggle, along with its default value and a brief description,
is listed below.

Enables the bell which rings when a field has been
filled during various functions or when data of the

The volume of the bell can be altered from the Control

SET BELL (Default = ON)
ON/OFF
ON:
wrong type is entered
OFF: Disables the bell
NOTE:
Panel of the Atari DESKTOP
i
SET CARRY (Default = OFF)
ON/OFF

ON:

OFE:
NQOTE:

Carries data from the record just entered forward to the
new record when in APPEND

Does not carry data forward -- shows just blank record
Used for entering a large number of records which
contain the same information in many of the fields

Advanced Command Tutorial

A RIS A A iR AP G ST e AT
Changing H & D Base Characteristics, cont.

SET CONFIRM (Default = OFF)

ON/OFF
ON: When a field has been filled in APPEND, EDIT, or
READ, waits for a {CR} to be issued from the keyboard
before continuing
OFF: Continues to next field automatically when current field
is full
R SR e T T e e B T S SRR ST T T,

SET CONSOLE (Default = ON)

ON/OFF
ON: All output is sent (echoed) to the screen
OFF: No outputis sent to the screen
EEEETw—— e
SET COLON (Default = ON)
ON/OFF
ON: Uses colons on the screen to show the length of a field
during AT...GET, APPEND, and EDIT functions
OFF: Nocolons on the screen
T e . S e S T R S T A

SET DELETED (Default = OFF)

ON/OFF
ON: Records marked for deletion with an asterisk cannot be
located with the FIND commands nor processed by
any command that allows the NEXT phrase (such as
LIST, LOCATE, COUNT, etc.)
OFF: Records marked for deletion can be located and dis-
played (but not COPIED or APPENDED)
= == S S e TSt T T Ay ST
SET ECHO (Default = OFF)
ON/OFF

ON: Allcommands which come from COMMAND FILE are
also being sent to the screen

OFF: Commands from COMMAND FILE are not being sent
to the screen

Advanced Command Tutorial
(R R S ey e e AR 1 T e S e e TR SRR T SE e e

Changing H & D Base Characteristics, cont.

SET EJECT (Default = OFF)
ON/OFF

ON: The REPORT command will eject a new page before
beginning a new report
OFF: A new page will not be ejected

SET ESCAPE (Default = ON)

ON/OFF
ON: Allows a user to use the "Escape Key" {ESC} to break

out of the execution of a COMMAND FILE
OFF: Disables the "Escape Key"

SET EXACT (Default = OFF)

ON/OFF
ON: Requires that character strings match exactly (exclud-

ing trialing blanks) in expressions and the FIND com-
mand

OFF: Allows matches to be made on the basis of the length of
the second string

NOTE: When "OFF", "ABC" is a match to "ABCDEFG”

SET FORTH (Default = OFF)

ON/OFF
ON: FORTH Program Language commands available

OFF: FORTH Program Language commands not available

SET LINKAGE (Default = OFF)

ON/OFF
ON: Moves the record pointers in PRIMARY and SECON

DARY files simultaneously (in increments) in associa-
tion with commands that allow {scope} (LIST,
REPORT, SUM, etc.)

OFF: Makes PRIMARY and SECONDARY record pointers
work independent of one another

5-36

Advanced Command Tutorial

SET PRINT
ON/OFF

Changing H & D Base Characteristics, cont.

(Default = OFF)

ON: All output is sent (echoed) to the printer
OFF: Output is not sent to the printer

SET RAW ON/OFF

(Default = OFF)

ON: DISPLAYS and LISTS records without spaces between
fields

OFF: DISPLAYS and LISTS records with an extra space
between fields

SET TALK
ON/OFF

(Default = ON)

ON: Displays the results of commands on the screen
OFF: Does not display the results of commands on the
screen

The following SET commands require that you enter a certain
value (as opposed to simply toggling between "ON" and
YOFFY):

SET ALTERNATE
TO {filename}

The SET ALTERNATE TO command is part of a two-step proc-
ess for writing everything that is normally written on the screen
to a disk file as well. The file will be stored with a “TXT" trailer,
indicating that it is a “Text File.”

To establish a "Text File,” enter the following:

SET ALTERNATE TO {filename }

5-37

Advanced Command Tutorial
e et
Changing H & D Base Characteristics, cont.

When you want all of the information appearing on the screen to .
also be sent to the specified Text File, enter:

SET ALTERNATE ON
To turn the flow of information “off," enter:
SET ALTERNATE OFF

The information in a text file can be edited, printed, etc. with the
aid of a word processor or text editor.

SET COLORTO (Default = 0)
{number of
character color} Text can be displayed in four different colors using the Atari ST
series of computers. The colors, assuming that you have not .
altered them from the Control Panel of the DESKTOP, are white
(the default color), black, red, and and green. They will appear
as different shades of grey on a black and white monitor.

To change the color of the characters being typed or displayed
on the screen, enter “SET COLOR TO" followed by one of the
following numbers:

0 = White
1 = Red

2 = Green
3 = Black

All text entered or displayed from that point on will appear in the
color you specified. Note: You may not be able to see black
letters at all.

SET DATE TO (Default = System Date)

{mm/dd/yy}
The DATE function of H & D Base displays the date stored in the

Atari system. The command for doing so is:

5-38

Advanced Command Tutorial

Changing H & D Base Characteristics, cont.

SET DATE TO {mm/dd/yy}

The date must be entered in the form shown (mm=month,
dd=date, yy = year).

When you enter a date with this command, you are resetting the
date stored in the Atari.

T e R T —

SET DECIMAL TO In REPORT, the default number of decimal places used in a

{n} numeric field is 2. You may change that number with this SET
command.

SETDEFAULT TO {Default = Boot Drive}

{drive}

Whenever you enter the name of afile to be used in relationto a
certaincommand, H & D Base, assumes that the file resides on
the data disk in the drive that the program was loaded from. You
may indicate to the program that a file resides on a disk in an
alternate drive by prefacing the file name with the letter which
represents that drive followed by a colon.

For example:
USE People (File located on default drive)
USE B:People (File located on “B” drive)

The “SET DEFAULT" command allows you to choose an alter-
nate disk drive that the program will access when searching for
files which appear without a designated drive letter preceeding
them.
A sample "SET DEFAULT” command:

SETDEFAULT TO C:

The trailing colon is optional.

5-39

Advanced Command Tutorial

B e
Changing H & D Base Characteristics, cont.

SET FORMAT TO
[SCREEN)
[PRINT)
[{format file}]

(Default = SCREEN)

SCREEN: Sends output of @ commands to the screen

PRINT. Sends output of @ commands to the printer

{formatfile}: Uses format previously created for APPEND,
EDIT, INSERT, and CREATE commands

SET HEADING TO
{string}

This SET command adds a second page heading to a
REPORT. It can be up to 60 characters long.

SET INDEX TO
{index file}
(,{index file},...
{index file})

This command opens (or creates and opens) up to seven index
files for use in relation to the database file currently resident. It
can be used to keep a number of INDEXES updated during
functions like APPEND, EDIT, etc.

The first index file named is considered to be the “Master
Index.” The database file will be in indexed order according toit,
and it is the one which will be used in all FINDS.

If an index file is already in use when this command is instituted,
that index file will be closed before the new one is opened.

If you enter just “SET INDEX TO {CR}", all indexes will be
released.

SET MARGIN TO
{nnn}

This command can be used to change the left margin on the
printer during the printing of a REPORT. The number entered
can be no larger than “254".

Resetting the Program

When you first enter the H & D Base program, all files are
closed and no memory variables are active. As you use the
program, however, miscellaneous files are opened, and mem-
ory variables are established.

There will be times when you will want to make sure that all the
information in the database files you have been using is prop-
erly stored. One of those times is when you leave the program;
another is when you have data that you are simply afraid of
losing; the third is when you want to start over without leaving
the program.

There are two ways that you can close all files and release all
memory variables. The first is to simply leave the system with
the QUIT command (discussed at the start of the Beginning
Command Tutorial). The second is by entering this command:

CLEAR
This command closes all database files and releases all mem-
ory variables. Use it whenever you want to proceed with a

“clean slate”.

An alternate form of the CLEAR command is “CLEAR GETS".
Its use is discussed in the Reference section of this manual.

5-41

Summary

This concludes the Advanced Command Tutorial. In it you have
been shown how to use some of the more advanced statements
of the H & D Base programming language.

In many cases, you were shown only the most basic applica-
tions of the words we covered. To make use of the full of H & D
Base in regard to these (and other) commands, you must study
the Reference section of this manual carefully.

In the next section, we will show you how to set up H & D Base
COMMAND FILES (programs), so that you can automate your
information process.

Chapter

PROGRAMMING TUTORIAL

Introduction

To this point, you have learned how to use a number of powerful
commands which allow you to manipulate the information in
your databases in a limitless number of ways. In using the
commands, you were allowed to enter, and the computer acted
upon, just one instruction at a time. The process was somewhat
awkward, and time consuming to be sure.

The real power of H & D Base comes into play when you form
the commands you have learned into a program (or COM-
MAND FILE) which, when run, accomplishes the same task or
purpose over and over again.

This section will teach you how to put the commands you have
learned in the proper order, how to make choices regarding
them, how to get certain instructions to repeat themselves, and
how to access sub-files of commands.

6-1

Establishing a
Command File

The Nature of a
Command File

H & D Base provides users with a method of saving a set of
frequently used command sequences in order to alleviate the
necessity of entering but one command at a time. A set of
command sequences is called a COMMAND FILE and is
saved on the disk with a "“CMD" trailer.

When executed with a DO command, the program starts with
the first statement, executes it, then continues in a likewise
manner until the end of the file is encountered.

The MODIFY
COMMAND
Command

COMMAND FILES can be created and modified with most text
editors and/or word processors which produce standard “text
files," and one such “sub-program” has beenincludedinH & D
Base for that express purpose.

You can access the elementary text editor of H & D Base by
typing in the following command:

MODIFY COMMAND {file}

Let's start forming a COMMAND FILE named “Comfile1” at this
time. To do so, enter the following:

MODIFY COMMAND Comfile1 {CR}
When you do, a screen with a dashed line across the top will

appear. This signifies that you have entered H & D Base'’s
“Command File Editor”

The Command File Editor

Upon entering the MODIFY COMMAND statement from the
COMMAND LEVEL of the program, you automatically enter
what is referred to as the “Command File Editor” It is actually a
program within a program and has been designed expressly
for the purpose of entering and editing COMMAND FILES. You
may liken it to a very simplistic word processor.

To enter a program with the “Command File Editor” type in a
line of code and press {CR}. If you attempt to enter more
characters on a line than will fit without pressing {CR}, the
program will issue the carriage return for you and place the
cursor at the beginning of the next available line. (Note:
Remember that a “tilde” sign (~) must appear at the end of
each line for any single command which must continue on the
succeeding line.)

Cursor Movement

You may use the following cursor movement commands while
in the “Command File Editor":

1.) {UP ARROW} or {CTRL-E}
Moves the cursor one line up

2.) {DOWN ARROW} or {CTRL-X}
Moves the cursor one line down

3.) {LEFT ARROW} or {CTRL-S}
Moves the cursor one character to the left

4)) {RIGHT ARROW} or {CTRL-D}
Moves the cursor one character to the right

5) {HOME} or {CTRL-O}
Moves the cursor to the first character in the Command File

6.) {CTRLK}
Moves the cursor to the last character in the Command File

Programming Tutorial
B T PR
The Command File Editor, cont.

In addition, you may use your “mouse” for positioning the
Cursor.

Miscellaneous
Key and Control
Functions

6-4

There are a number of functions in the “Command File Editor”
which are activated through the use of “Control Key"
sequences. They are as follows:

1) {CR}
Inserts aline
2) {CTRL-Y}

Deletes a line and moves all lines up

3.) {CTRL-G} or {DELETE} or {RIGHT BUTTON ON MOUSE}
Delete character under cursor

4.) {BACKSPACE} or {LEFT BUTTON ON MOUSE }
Delete character to left of cursor

5) {UNDELETE}
Undelete last Backspaced character

This command will “undelete,” beginning at the current
cursor position, a character or set of characters which have
been deleted with the “Backspace” key only. Use it for
moving all or part of a command from one line to another.
(Limit: 256 characters)

6.) {CTRL-W}
Exit - Save

7.) {CTRL-Q}
Exit - No Save

Note: Some of the control functions you will learn about in other
sections of this manual will not work in the “Command File
Editor” The list above is the complete list of applicable com-
mands.

Entering a Command File

To get you started in learning how COMMAND FILES work and
how the Command Editor operates, let's enter a COMMAND
FILE at this time. While in the Command File Editor, type the
following exactly as it appears:

USE People {CR}

LIST {CR}

COUNT FOR Zip>50000 TO Mzipnum {CR}

? {CR}

DISPLAY “THERE ARE " Mzipnum “ RECORDS IN THE FILE
WITH ZIPCODES LARGER THAN 50000" {CR}

? {CR}

DISPLAY "WE DID IT!" {CR}

RETURN {CR}

When you have finished, return to the COMMAND LEVEL of the
program by pressing {CTRL-W}. In pressing {CTRL-W}, the
contents of the Command File Editor is stored on the disk under
the name you specified when you entered that mode (along
with a "“CMD." trailer). You should now have a file on your disk
named “Comfile1.CMD".

6-5

Running a Command File

The DO
Command

The use of any COMMAND FILE can be instituted from the
COMMAND LEVEL of the program with this statement:

DO {command file name}

In entering the COMMAND FILE name, you do not have to
include the "CMD" trailer.

Let's run our COMMAND FILE named “Comfile1.CMD" at this
time. To do so, enter the following:

DO Comfile1 {CR}

Each of the commands we registered will be executed in the
order they appear, producing the following on the screen:

DO COMFILE1
00001 Smith, Paul 5487 Oak St.
SanDiego CA 92376 $267.92
00002 Jones, Alice 9227 E. Sample #108
Miami FL 39857 § 67.98
00003 Zachry, Mike 746 Lover's Lane
Denver CO 85678 $957.00
00004 Dow, Tony 1987-B E. 19th.
New York NY 01004 § 4.59
00005 Clark, Bill 657 S. Main
Portland ME 00648 $ 34.95
THERE ARE 2 RECORDS IN THE FILE WITH ZIPCODES LARGER THAN
50000

WE DID IT! ok

If you made any mistakes in entering the program, the system
more than likely returned an “Error Message” on the screen. If
that happened, re-enter the Command File Editor, correct the
problem, and re-run the program from the COMMAND LEVEL

using the "DO” statement.

Entering Notes,

Remarks and Text

There are a number H & D Base commands which allow you to
include comments in the body of your program. Some will be
displayed on the screen when the program is executed, and
some won't.

The NOTEand *
Commands

There are two commands which are used for placing com-
ments in a program which are not to be displayed when that
program is run. They are:

NOTE and f

When either one appears as the first entry on any line in a
COMMAND FILE, the rest of that line is ignored when the
program is run. For example, our sample COMMAND FILE
(“Comfile1”) might be set-up as follows:

NQOTE **** *This program counts records in the*****

NOTE **** *file with zips larger than 50000* *** *

USE People {CR}

LIST {CR}

COUNT FOR Zip >50000 TO Mzipnum {CR}

? {CR}

DISPLAY “THERE ARE “ Mzipnum " RECORDS IN THE
FILE WITH ZIPCODES LARGER THAN 50000" {CR}

? {CR}

DISPLAY “WE DID IT!" {CR}

* This is the end of the routine

Note: The asterisk (*) is often used by programmers to tempo-
rarily disable a line of commands. Remember, anything which
appears after it is ignored when the program is run. (A blank
space must appear between the asterisk and the first character
of the line.)

6-7

Programming Tutorial
T e o S
Entering Notes, Remarks and Text, cont.

Two ways have been provided in H & D Base for you to place
text (only) in your programs that will be displayed on the screen
when the program is run. Which one you use depends primarily
upon the length of the text you want included.

The REMARK
Command

e g

For short amounts of text that you want displayed on the screen
(or printer), use the REMARK command. When it appears as
the first word on a line, anything which follows it will be dis-
played on the screen when the program is run. The string does
not have to be enclosed in quotes. (Remember that a total
command line can be no longer than 255 characters.)

For example, if these two lines were included in a command file:

REMARK Are you getting tired yet?
REMARK ‘Are you getting tired yet?"

they would be displayed as:

Are you getting tired yet?
“Are you getting tired yet?"

when the program is run.
Note: REMARK is very much like this statement:
? {“string"}
The major difference is that in the statement above, you must

use quotation marks around the text to be displayed. With the
REMARK command, they are not needed.

The TEXT
Command

6-8

If you have a large amount of text you would like to have
displayed when your program is run, use the TEXT command.
When entered, the word “TEXT" must appear on a line by itself.
The characters you want displayed on the screen or printer
should begin on the next line of the program. They may con-

Programming Tutorial

Entering Notes, Remarks and Text, cont.

. tinue through an unlimited number of lines. To conclude the
sequence, enter the command ENDTEXT on the first line below
the last characters of your text.

For example:
TEXT
Four score seven years ago, our Fathers brought

forth upon this continent a new nation.
ENDTEXT

will appear as the following when the program is run:

Four score seven years ago, our Fathers brought
forth upon this continent a new nation.

Making Choices

and Decisions

The IF...ELSE
Command

There will be many times within a program that you will want
certain functions executed only if specific conditions are met. In
other instances, you might want to establish two (or more)
different program directions depending upon how the data is
interpreted.

It's like saying, “If it is sunny today then | am going to the lake.”
Or, in the second sense, “If it is sunny today | am going to the
lake, if not, | am going to stay home and read a book.”

The command which facilitates this decision-making function is
IF...ELSE. In it's full form, it reads:

IF {exp}
{commands}
(ELSE
{commands}]
ENDIF

The manner in which you apply the formula will depend on
whether you are making a simple decision or one to which there
will be two or more alternative responses.

Simple Decisions

If, at some point in your COMMAND FILE, you would like the
program to make a simple decision to which only one course of
action may be taken, you need not use the optional “"ELSE"
statement at all. The command would look like this:

IF {exp}
COMMAND #1
COMMAND #2
COMMAND #3...

ENDIF

Programming Tutorial

Making Choices and Decisions, cont.

When the “IF" statement is encountered by the H & D Base
program, it will determine if the “expression” {exp} is logically
“True” or “False” If it is “True,” the program will execute any
command which falls between it and the “ENDIF” statement. If
it is “False” it will skip any command falling between the “IF"
and “ENDIF" statements and continue from that point.

Here is an example using our sample "PEOPLE" file:

USE People

IF State = "CA”
DISPLAY Name

ENDIF

When run with a “DO” command from the COMMAND LEVEL
of H & D Base, this program will display the contents of the
“Name” field in the first record of the file if the letters “CA"
appear in the “State” field.

You may place as many commands as you please between “IF"
and “ENDIF" statements, and they do not have to be indented.
You may find it helpful to do so, however, as an aid for determining
the beginning and ending points of the IF...ENDIF statement.

Two Choice
Decisions

If there are two different courses of action that depend upon a
certain condition or conditions being “True” or “False,” you must
insert an "ELSE" statement somewhere between “IF” and
“ENDIF".

Consider the following example:

USE People

IF State ="“CA”

DISPLAY Name
ELSE

DISPLAY Amount
ENDIF

When run with a “DO” command from the COMMAND LEVEL
of H & D Base, this program will display the contents of the

6-11

Programming Tutorial

P A RS Ve L S e PR TSI s o
Making Choices and Decisions, cont.

“Name” field in the first record of the file if the letters “CA”
appear in the “State” field. If the letters “CA” do not appear in
the "Name” field, the program will display what is in the
“Amount” field.

Multiple Choice
Decisions

6-12

At times, you will want your program to make a choice from a list
of alternatives (as in a "menu"). This is made possible inH & D
Base through the use of “nested” “IF...ELSE...ENDIF" state-
ments.

A “nested” statement is one whose beginning and end fall
completely within the confines (beginning and end) of another
like statement. In this statement, there are two “nested"”
“IF...ELSE" statements:

IF {exp}
COMMAND #1
COMMAND #2 ...

ELSE
IF {exp}

COMMAND #1
COMMAND #2 ...
ELSE
IF {exp}
COMMAND #1
COMMAND #2 ...
ELSE
COMMAND #1
COMMAND #2 ...
ENDIF
ENDIF
ENDIF

This particular form could be used in a menu to which there
were four options (A, B, C, & D). A different course of action by
the program for each choice.

Note: You must have an "ENDIF" for each “IF" or the program
will not work properly.

Repeating a Process

The DO...WHILE
Command

There will undoubtedly be times when you'll want a program (or
part of a program) to repeat itself without intervention on your
part. This is easily accomplished in H & D Base with this
command:

DO WHILE {exp}
[COMMAND #1)
(COMMAND #2)
(COMMAND #3)

ENDDO

When the DO...WHILE command is encountered by H & D
Base, it evaluates data against the expression and delivers a
logical “True” or a logical "False." If the result is a "True" value,
any command between the DO WHILE and ENDDO are per-
formed. When the ENDDO is reached, flow of the program
goes back to the DO WHILE command and data is evaluated
against the "expression” once again. The process continues
until a “False” value is returned by the DO WHILE statement at
which point the program skips to the ENDDO and proceeds
from there.

Note: If a value of “False” is never delivered by the “DO WHILE"
statement, the program will loop forever.

Here is a sample DO WHILE statement:

USE People

DO WHILE State = “CA”
DISPLAY
SKIP

ENDDO

This program will list the records of our sample “People” file with

the letters “CA" in the “State” field until a non-"CA" field is
reached.

6-13

Programming Tutorial

Repeating a Process, cont.
The LOOP If you would like to return to the DO...WHILE statement before
Command reaching the ENDDO, use the LOOP command.

For example:

USE People

DO WHILE State = “CA"
IF Zip< >92376
LOOP
ENDIF

DISPLAY

ENDDO

This program will list all records of our sample “PEOPLE" file
with the letters “"CA" in the “State” field and any numbers
besides “92376" in “Zip" field.

Note: It is generally an unwise practice to use the LOOP com-
mand as it is difficult to track program “flow” when it is resident.

Using the DO If you want a process to be repeated just a certain number of
WHILE Command times, create a variable to serve as a counter and add “1" to it
as a Counter each time through. For example:

STORE 1 TO Mcounter
DO WHILE Mcounter > 20
([COMMAND #1)
(COMMAND #2)
(COMMAND #3)
STORE MCounter + 1 TO Mcounter
ENDDO

6-14

Nested Command Files

Nested Do
Commands

H & D Base allows you to open and run a COMMAND FILE (or
files) from within another COMMAND FILE. To carry it one step
further, you may also run a COMMAND FILE within a COM-
MAND FILE, within a COMMAND FILE, within a COMMAND
FILE, and so forth (up to 16 levels deep). This is accomplished
by “nesting” the DO statement for one file within the statements
of another.

For example, you can design a COMMAND FILE which is
nothing more than just a menu which initializes the running of a
number of separate COMMAND FILES (one for each possible
choice on the menu). The part of the program we are interested
in might look like this:

IF Mchoice = ‘A"
DO Genledger
ELSE
IF Mchoice = “B"
DO Receive
ELSE
IF Mchoice = “C"
DO Payable
EESE
IF Mchoice = “D"
DO Payroll
ENDIF
ENDIF
ENDIF
ENDIF

There are two ways that the execution of a COMMAND FILE is
halted and control is returned to the COMMAND FILE which
“called” it:

1.) The end of the file is reached

2.) A“RETURN" statement is encountered

Programming Tutorial
R AN S A e VMO TR s o PTA Tl
Nested Command Files, cont.

The RETURN The RETURN command “closes” a COMMAND FILE and

Command returns control to the COMMAND FILE that called it. If it was not
called by another COMMAND FILE, control returns to the
COMMAND LEVEL of the program.

The RETURN command can appear anywhere in a COM-
MAND FILE. It is not always necessary for you to include a
RETURN statement at the bottom of COMMAND FILES, butitis
a good programming practice.

6-16

Entering Data During the

Run of a Program

In many instances, the programs you write will require a certain
degree of interaction with the people running them. You may
ask them to enter specific data or register their choice to a
number of options (as in the menu sample in the last section).

There are three commands which H & D Base provides for you
as a programmer to use in such cases. They are:

1) WAIT(TO)
2) INPUT TO
3.) ACCEPTTO

We will cover each command briefly at this time.

The WAIT
Command

WAIT (TO {memvar}]

The WAIT command brings to a complete halt the operation of a
program and places the word "WAITING" on the screen. Oper-
ation of the program resumes when any single key is
depressed.

Ifthe command appears along with the “TO {memvar}" option,
the character inputed by the user is stored to the {memvar}
specified. If the character is one which is non-printable (such as
{CR}), a blank is entered into the variable.

Example:

WAIT TO Mtemp

Programming Tutorial
B s
Entering Data During the Run of a Program, cont.

The INPUT INPUT (“prompt") TO {memvar}
Command

The INPUT command, like the WAIT command, stops the
operation of a program and waits for information to be entered
by the user. Instead of a “WAITING" prompt, however, you as
the programmer have the option of defining your own custom-
ized prompt. The prompt will appear on the screen.

An additional difference is that more than just one character (of
any data type) may be entered and stored to the variable. The
type of variable it is will be determined by the nature of the
information entered. Character strings must be entered in
quotes or square brackets. The INPUT command is used most
commonly for the entry of numbers.

Example:

INPUT “ENTER THE NUMBER OF NAILS HERE" TO Mnails

The ACCEPT ACCEPT (“prompt”] TO {memvar}

Command
The ACCEPT command operates almost exactly like the INPUT
command with one notable difference. Any type of data may be
entered (no quotes are necessary), although all information will
be stored as character data. Note: Numbers should be entered
using the INPUT command.

Example:

ACCEPT "ENTER THE ADDRESS HERE" TO Maddress

6-18

Displaying Text and Data at
Alternate Screen Locations

The prompts which are associated with the “?”, “INPUT”", and
"ACCEPT"” commands we have covered so far are displayed by
the program flush to the left margin of the screen, one line below
the last entry. Itis possible (and quite simple) with H & D Base to
move those prompts to alternate screen locations.

Row, Column
Coordinates

The screen of your Atari ST computer is divided into 25 rows
(horizontally) and 80 columns (vertically). Rows are numbered
consecutively from “0” to “24", and Columns are numbered
consecutively from “0" to 79" Each intersection of a Row and
Column is referred to as a “coordinate” and is displayed as two
numbers separated by a comma. In this example: “14,68", the
number “14" represents row “15" and “68" represents column
"69". Therefore, “0,0” represents the upper left corner of the
screen and “24,79" the bottom right corner of the screen.

The @...SAY
Command

The command which accomodates the placement of prompts
at alternate screen locations is:

@ {coordinates} [SAY {“prompt”}]

This command will position the prompt at the screen coordi-
nates you specify.

Take a look at how it works. From the COMMAND LEVEL of the
program, enter the following:

ERASE {CR}

@ 2,30 SAY “WHERE ARE YOU?" {CR}
@ 19,10 SAY “OVER HERE!"” {CR}

@ 19,21 SAY “I FOUND YOU! {CR}

6-19

Programming Tutorial
A SRR R T TR T T T R N R e T S
Displaying Text and Data at Alternate Screen Locations, cont.

The @ Command: The"“@...SAY" command can be used for erasing all or part of a

Erasing Text

line. To do so, enter the command followed by the coordinates
of the first character of the line you want erased. Do not use the
“SAY" option. When you press {CR}, it will erase that character
and every character which follows it on the line.

Try it. Enter:

@ 2,30 {CR}
@ 19,15 {CR}

The @...SAY
Command:
Expressions

6-20

You have the option of using the "@" command in association
with an “expression,” asin:

@ {coordinates} (SAY {exp}]

This form is used to show the value of an expression comprised
of one or more variables (data field or memory). For example,
enter the following:

ERASE {CR}

USE People {CR}

@ 15,10 SAY Name {CR}
SKIP {CR}

@ 20,20 SAY Amount*2 {CR}

When you are finished, the name "Smith, Paul” and the amount
“135.96" should appear at two different positions on the
screen.

Note: If the variable/s you specify in the statement do not exist,
an error will be returned.

Note: One form of the "@...SAY" command can be used to
display the data in a specified format. That form is:

@ {coordinates} [SAY {exp}) (USING “format”)

@
[

Programming Tutorial

B A R T e e R R R -
Displaying Text and Data at Alternate Screen Locations, cont.

Information on how to apply it is included near the end of the
"Programming Tutorial”

The @...GET
Command

The value (only) of a variable can also be displayed through the
use of the "@...GET" statement:

@ {coordinates} [GET {var})

This command will cause the program to place the contents of a
data field or memory variable on the screen at the specified
location. It can also be used in association with the “SAY”"
command asin:

@ {coordinates} [SAY {exp}) (GET {var})

For example, type in the following from the COMMAND LEVEL
of H & D Base:

ERASE {CR}

USE People {CR}

@ 14,10 GET Address {CR}

@ 15,10 SAY "ADDRESS: " GET Address {CR}

When you are finished, two addresses should appear on the
screen -- one without a prompt and one with a prompt.

With the information you've been given to this point, it might
seem that there is very little difference between the “@...SAY"
and “@...GET” commands. There is, and the difference is a
command called “READ".

The @...GET
READ Command

The “@...GET" command should only be used in conjunction
with the single-word command READ which may follow it any-
where in the COMMAND FILE. For example:

@ 14,10 GET NAME
READ

6-21

Programming Tutorial
SN <o s RS 1 o R L Bt D e S
Displaying Text and Data at Alternate Screen Locations, cont.

6-22

When the READ command is encountered, the cursor reverts
to the first “@...GET" statement in the COMMAND FILE and
you are allowed to alter the information in that variable. With a
{CR}, the new data s recorded, and the cursor is moved to the
next “@...GET" statement you entered and the process is
repeated (and so forth).

Note: A READ statement will only process “@...GET" state-
ments which appear after any previous READ (or the beginning
of the file).

Give it atry to see how it works. Enter the following as a follow-up
to the last example we used:

READ {CR}

The cursor will revert to the beginning of the first address on the
screen and you will be allowed to edit it. If you do not want to
make any changes, simply press {CR}. Edit it if you like, and
press {CR}. Now do the same thing on the second ADDRESS
field. When you press {CR} this time, the information is saved to
the file. Press {CR}, then type in the command “DISPLAY
{CR}" to check your work.

Note: One of the following commands must appear after every
64 “@...GET” statements:

READ
ERASE
CLEAR GETS

You may use the “@...GET” and "READ" statements for enter-
ing as well as editing the information in variables. To do so,
simply create a record with no information in it. When you do,
the “@...GET" statement will pull up only the blank fields you
specify allowing you to enter “new” information into them.

Programming Tutorial
I R S S R 11 A A RS ST AT ¥ 5
Displaying Text and Data at Alternate Screen Locations, cont.

. The APPEND The command for creating a record without any information in it
BLANK Command is:

APPEND BLANK

When run, it creates a blank record, adds it to the bottom of the
data file, and places the record pointer on it.

Here is a sample COMMAND FILE which demonstrates the
techniques described above:

ERASE

USE People
APPEND BLANK

@ 10,10 GET Name
@ 11,10 GET Amount
READ

. When this little program is run, it will add a record to the bottom
of our sample database file named "People,” with user-speci-
fied information in the “Name” and "Amount” fields. The rest of
the fields will be blank.

The @...GET... The “@...GET" command can be used in one final form:
PICTURE
Command @ {coordinates} [SAY {exp}] (GET {var})

(PICTURE {format})

Using this form of the "@...GET" statement, you can create a
template which will be used when the data is displayed.

The format may take a form something like this:
@ 10,5 SAY “Date: " GET DATE PICTURE “99/99/99"
Assuming that the “Date” field is blank, it will appear on the

screen as:
Date: [|/

6-23

Programming Tutorial
i S S ST 1 A WO S AT e
Displaying Text and Data at Alternate Screen Locations, cont.

6-24

This format will allow up to six numbers to be entered, and the
slashes (/) cannot be moved or erased. When stored in the field
of a file, the slashes will appear.

Note: Data field variables must be large enough to include the
data and any additional symbols included in the template or the
data will be truncated.

These five characters may be used in defining the types of
information which will be accepted by “PICTURE" statements:

:Allows only numbers to be entered

((Same as #1)

:Allows only alphabetic characters to be entered
:Allows any character to be input

:Converts any character input to uppercase

EEE oo
SO
TX > %O

Here are some samples of the ways some of these could be
applied and what their output would appear like:

1) COMMAND: @ 1,1 SAY "PHONE NUMBER"” GET
MPhone PICTURE “(999)999- 9999 i
DISPLAY: PHONE NUMBER:()
INPUT. Only numbers can be entered

2.) COMMAND: @ 1,1 SAY “LAST NAME" GET Mname PIC-
TURE “AAAAAAAAAAAAAAAAAAAA’
DISPLAY: LAST NAME:
INPUT: Only alpha characters can be entered

3.) COMMAND: @ 1,1 SAY "NAME" GET MName PICTURE
S

DISPLAY: NAME: .

INPUT. Any alpha character input will be forced to

upper case

You may put other characters in the template if you like, but they
will be interpreted literally (as with the slashes used above).

Programming Tutorial

RS S S S SR S SRR 5 I TR A
Displaying Text and Data at Alternate Screen Locations, cont.

Saving an
@...GET Format

The “@...SAY...USING" command is very similiar to the
“@...GET...PICTURE” statement. Consult the “Reference” sec-
tion for further information.

Hopefully, it is becoming obvious to you how all of these com-
mands fit together. The primary use of the “@...SAY" command
is to put titles and prompts on the screen. The "@...GET"
statement is used to enter or alter information. Together they
form the basic elements of construction for program menus and
screens.

Any COMMAND FILE which contains only “@...SAY...GET"
commands and comments (preceded by asterisks) can be
saved (with {CTRL-W}) and used as a template for future
interaction with a database. This allows you to override the
standard form to which the program defaults when in the
APPEND, EDIT, and INSERT modes and create custom
screens for those purposes. For example, you can display
special prompts, and allow users to interact only with data in
specified fields of a record.

All COMMAND FILES are stored on the disk with a “CMD"
trailer. In order to use a COMMAND FILE in the manner
described above, you must change that trailer to “FMT" to
signify that it is to be used as a Format File. Use the RENAME
command to do so.

When you want to use your custom data template instead of the
standard one supplied by the system, enter the following from
the COMMAND LEVEL of H & D Base (or include it in a
COMMAND FILE):

SET FORMAT TO {filename}
With this command entered, the format detailed in the

{flename} you specified will be used in the APPEND, EDIT,
AND INSERT modes.

6-25

Displaying Text and Data at
Atlernate Printer Locations

You learned earlier in this manual that the command “SET
PRINT ON" sends information to the printer as well as the
screen. The "SET FORMAT TO PRINT" command sends infor-
mation to the printer instead of the screen. If you had instituted
either of them before entering the examples in this “Program-
ming Tutorial,” you would now have a number of pages of print
with text and data scattered about them.

You may format the appearance of information on your printer
much like you did for that which appeared on the screen. With
this ability, you can set up files to print checks, invoices, pur-
chases orders, and other standard forms.

The
@...SAY...USING
Command

Use the "@...SAY...USING” command to format information
being sent to the printer. In its full form it reads:

@ {coordinates} SAY {var/exp/“string” } [USING {“format”})

It is applied exactly as if the output were being sent to the
screen. You have the option to print the current value of a
variable, the result of an expression, or a literal string prompt
message.

The USING portion of the statement is much like the PICTURE
command (discussed previously), except that the exclamation
point (1), which converts all lower case letters to uppercase,
cannot be used.

There are a few limitations regarding printer output that you
should be aware of:

1.) GET and PICTURE phrases should not be used.

Programming Tutorial

e e T
Displaying Text and Data at Alternate Printer Locations, cont.

. 2.) READ commands cannot be used.

3.) Coordinates must be in order. A statement which sends
information to line #19 must appear before a statement
which sends information to line #20. The same holds true
for information sent to any single line.

4)) Do not use the “SET PRINT ON” statement as a replace-
ment for “SET FORMAT TO PRINT".

The “coordinates” of your particular printer will not, more than
likely, match those of your screen. Some units print 10 charac-
ters per inch (horizontally), while others do 12. On the other
hand, some printers print 6 lines per inch (vertically), while
others will include 8.

Find out how many characters per inch (horizontally and verti-
cally) your machine prints (in your printer's manual). Then mea-

. sure from the left side and top of the paper where you want a
particular piece of information to appear. Multiply the width
measurement by the number of characters per line your
machine prints to get the “Column” coordinate, and the heighth
measurement by the number of lines per inch your machine
prints to get the "Row” coordinate.

Note: Neither the “Row"” nor the “Column” coordinates can be
larger than 255.

Here is just a section of a COMMAND FILE which uses informa-
tion from a database to fill-in the fields of a check on the printer:

SET FORMAT TO PRINT
@ 8,38 SAY Date
@ 12,10 SAY Payee
@ 12,65 SAY Amount
@ 13,10 SAY Address
@ 14,10 SAY City
. @ 14,25 SAY State

@ 14,29 SAY Zip

6-27

Programming Tutorial
RN v R S5 17 e N W Sl A T S e $ 90, v
Displaying Text and Data at Alternate Printer Locations, cont.

The EJECT
Command

6-28

The EJECT command causes the printer to do what is called a
“form feed” -- a fancy term for ejecting the page and reposition-
ing itself at the top of the next one. This can only be accom-
plished if the printer has already been activated with a "SET
PRINT ON" or “SET FORMAT TO" command.

The length of the form ejected is set through a dial which
appears somewhere on your printer. It should be set to match
the length of the form you are using.

If you are printing a number of forms, filling each with informa-
tion supplied by a different record, put your “@...SAY” com-
mands in a loop with the EJECT command at the bottom. When
run, it will eject the form in the printer, reposition itself at the top
of the next form, and set the coordinates back to “0,0".

As applied to our above example, a loop of this type would read:

USE Accounts
SET FORMAT TO PRINT
DO WHILE .NOT. EOF
@ 8,38 SAY Date
@ 12,10 SAY Payee
@ 12,65 SAY Amount
@ 13,10 SAY Address
@ 14,10 SAY City
@ 14,25 SAY State
@ 14,29 SAY Zip
SKIP
EJEGE
ENDDO

If you attempt to print information beginning at coordinates
which come before those of the last statement run, an auto-
matic EJECT will be issued.

Using Macros In
a Command File

The Ampersand Whenever an ampersand (&) followed by the name of a charac-
Symbol ter string memory variable is encountered in a command
includedina COMMAND FILE (only), H & D Base replaces the
ampersand and memory variable name with the memory varia-
ble's character string. Thisis referred to as “Macro Substitution.”

One of the most useful applications of this “pseudo-function” is
in the handling of complex expressions which are used over-
and-over again in a program. The expression can be stored in a
string memaory variable and called back at will with the amper-
sand followed by the name of the variable.

For example, here is a commonly-used routine for rounding
numbers:

INT(Mnum + .005)*100)/100
It can be stored to the memory variable “Mround” like this:
STORE “INT((Mnum + .005)*100)/100" TO Mround
and brought back in a program like this:

STORE 65/3 TO Mnum
DISPLAY &Mround

This small program would divide 65 by 3, then place a rounded
version of the answer on the screen.

Another common use of “Macro Substitution” is in association
with a FIND command in sequences where a string is entered
into a variable then located within a database.

Macros can be used only with string memory variables (not
data field variables), in COMMAND FILES only.

6-29

Leaving a Command File

Once the last command in a COMMAND FILE has been read
and acted upon, you are automatically returned to the COM-
MAND LEVEL of the program (assuming that the COMMAND
FILE was not nested). At times, you will want to “break out” of a
COMMAND FILE before you reach that last command.

There are a number of statements you may use. If the COM-
MAND FILE you are “breaking out of" is not “nested," the
RETURN command (covered above) will deposit you at the
COMMAND LEVEL of the program.

=5 - L= e
The CANCEL To return to the COMMAND LEVEL of H & D Base from any
Command COMMAND FILE (nested or otherwise) at any time, use the
command:
CANCEL
=
The QUIT To return to the Atari DESKTOP from any COMMAND FILE,
Command include this command in your program:
QuIT

Both the CANCEL and QUIT statements must be included in
the body of a program and cannot be issued from the keyboard
during the "run” of a COMMAND FILE.

The ESCAPE Key To terminate the execution of a COMMAND FILE from the
keyboard during its “run,” press the “Escape Key" {ESC}. You
will be returned to the COMMAND LEVEL of the program. .

Printing a Command File

One H & D Base command has been included expressly for
the purpose of generating a print-out of a COMMAND FILE.
That command is:

DISPLAY COMMAND {command file name }
When entered from the COMMAND LEVEL of the program, this
statement will print out a copy of the designated COMMAND
FILE on the printer. Make sure the printer is set for printing
before attempting to execute this command.
You may substitute the word LIST for DISPLAY.

Note: You may list only files with the “CMD” trailer using this
command.

Programming —
Helpful Hints

You may find the following points useful as you design and code
your H & D Base COMMAND FILES:

1.) Plan the whole file out on paper before you begin. Deter-
mine what the problem is that you want to solve with the
program first, then define the steps (in order) that need to
be taken to solve that problem.

2.) As you enter the actual code, break up specific tasks into
sections and work on one section at a time.

3.) Talk to yourself. Use the NOTE (or *) statement frequently
within a program to indicate what is happening at a partic-
ular point.

4.) Indent lines of code freely as an aid for determining the
flow of the program.

5.) As an aid to the debugging of your programs, place WAIT
statements at the end of routines. Execution of a program
will pause when the statement is reached allowing you to
more easily to determine which routine it is that is causing
an error.

6.) Don't take the easy way out. Free use of commands like
CANCEL are “cop-outs”. Program to a logical conclusion.

7.) Provide as many error traps as you possibly can. Never
over-estimate the intelligence of the people who may be
using your programs.

8.) When run, a question mark (?) appearing on a line by itself
in a COMMAND FILE will generate a blank line on the
screen. Use it for spacing-out displays.

Programming Tutorial
R S S BRI N o I R A M SR
Programming — Helpful Hints, cont.

9.) Usethe ERASE command frequently. Seldom does it hurt
to make sure the screen is clear.

10.) As you write your program code, you might find it helpful

to enter all commands in upper case letters, and all file
names, variable names, etc. in lower case letters.

6-33

Summary

This concludes the Programming Tutorial portion of the manual.
It has been our purpose in this section to acquaint you with the
nature of H & D Base COMMAND FILES, and most of the
statements which are commonly used in conjunction with them.

Please understand that we have not discussed every single
form that each of the commands can take. In addition, there are
a number of commands which have not been covered at all in
this, or any other part of the H & D Base tutorial. Most of them
are so specialized that you will have little cause to ever use
them. That does not diminish, however, the importance of you
continuing your studies from this point with a careful examina-
tion of the “Reference” section of this manual.

We have included a COMMAND FILE on your Program Disk
which is fully operable and contains many of the statements
we've covered in this section. It may be useful for you to examine
it carefully.

We do hope that you enjoy the time you spend programming in
H & D Base, and that the hours you put in now will render
solutions which will save you many more in the future.

‘ & Chapter

7

REFERENCE

Introduction

Thisis the Reference section ofthe H & D Base manual. Init you
will find concise procedural listings for all of the program’s
commands, functions, and operations. A number of examples
are also included.

The Reference is not intended to be a substitute for the four
tutorial lessons which precede it. A thorough study of that
section is mandatory for a proper understanding of the H & D
Base program and how it operates.

Use this Reference section at those times when you can't quite
remember how a tutorial lesson instructed you to accomplish a
certain task. It will also be handy to check on alternate com-
mand forms that have not been previously covered.

The Reference begins with an overview of the symbols which
are used extensively in this section. It continues (and con-
cludes) with a discussion of each command (in alphabetic
order). The miscellaneous functions and operators of H & D
Base are included in that alphabetic listing, but are grouped
(respectively) under the titles “FUNCTIONS" and "OPERA-
TORS”

Additional information can be found in the APPENDICES por-
tion of this manual.

We trust that you will find this Reference section both handy and
helpful.

Symbol Definitions

{command} or
{statement}

{char string} or
{cstring} or
{string}

{delimiter}

{exp}

{exp list}

{field list} or
{list}

Many of the commands reviewed in the Reference section
which follows include special symbols as part of their formats. In
order to make use of the full potential of H & D Base, it is
important for you to understand the meaning of these symbols.
They are listed alphabetically.

A {command} or {statement} is any valid H & D Base instruction.

Examples: REPORT, INDEX, IF...ENDIF

These statements stand for “Character String” A character
string is any character or characters which are enclosed in
matching quotes (single or double).

Examples: “ABCD", '112@3#4$5%'

A {delimiter} is a special keyboard character which is used to
punctuate information. There are three valid {delimiters}. They
are: commas (,), single quotes (), and double quotes (").

Example: Doe,John,234 Maple,Akron,0OH,43567,758-8765

Stands for "expression.” An expression can be composed of
numbers, functions, field names or character strings. They
must be listed in a prescribed manner. (See the Intermediate
Command Tutorial for further information.

Example: $(‘barney’ + &MLast,n,10)

Stands for “expression list.” An expression list is a series of valid
expressions separated by commas.

Example: (4 +1),(M10),(MLast = “Smith")

A field list” (or “list”) is a series of record field names separated
by commas.

Example: Name,Address,City,State,Zip

Reference

{file} or {file

name}

{form file }

{index file}

{key}

{memvar}

{memvar list}

{n}

{scope}

Symbol Definitions, cont.

Either of these symbols stands for any valid H & D Base file
name. Rules for the creation of valid file names are included in
the first section of the Beginning Command Tutorial.

Examples: NAMES or INVNTORY

{form file} is used to represent the name of a report form file of
the type “FRM". For further information consult the “REPORT"
command in the Reference section.

Example: Salesrep.FRM

An {index file} of the type “NDX" is created when the INDEX
command is executed in relation to a "Key" field (or fields) in the
USE file. For further information, consult the “INDEX" com-
mand in the Reference section.

Example: Zipind.NDX

A {key} is the field/s or expression/s that a file is indexed upon.
There may be several indexes for any given database, each
using different {keys}.

Example: INDEX ON Zipcode TO Zipind (“Zipcode” is the {key})

{memvar} represents any “memory variable.” Memory varia-
bles represent values which may be changed, and are stored in
a reserved area of the computer’s memory.

Example: STORE “Smith” TOMLast (“MLast" is amemory variable)
Stands for a list of memory variables (separated by commas).
Example: Mem1,Mem2,Mem3

n represents a literal number. They cannot be derived from
calculations or obtained from memory variables.

Examples: 2or 1234567890
Invalid: ABCDE or (2 + 1234567890)

{scope} refers to the range or extent of action that a command
may take. There are five valid forms represented by the
{scope} symbol:

Reference
O s S e e B T B R A T e S L S i Gl el

Symbol Definitions, cont.

1.) ALL - Every record in the file

2.) NEXT n - The next n records in the file including the current
record (n must be a literal value)

3.) RECORD n - Only record n (n must be a literal value)

4.) FOR {exp} - Any record as long as the {exp} returns a
“True” value

5.) WHILE {exp} - Any record until the first record which
returns a “False” value to the {exp}

{skeleton} {skeletons} are abbreviated or wild card representations of file
names (or groups of file names). They can also be used in the
same manner with memory variables (or groups of memory
variables).

Two characters may be substituted for characters in the name/s
of files and memory variables. They are the question mark (?)
and the asterisk (*). A question mark in a filename (including
the “trailer”) or {memvar} indicates that any character can
occupy that position.

Examples: Names.DAT = N??7?.DAT
Names1.DAT and Names2.DAT = Names?.DAT
Temp.DAT and Temp.NDX = Temp.???

An asterisk indicates that any character can occupy that posi-
tion plus all the positions in the filename before the asterisk (to
the beginning of the name), after the asterisk (to the end of the
name), or between the asterisk and the next listed character/s.

Examples: *.DAT = Names.DAT and Ledger.DAT
Names.* = Names.DAT and Names.NDX
. = Names.DAT and Ledger.NDX
N*.DAT = Names.DAT and Numbers.DAT
N*.* = Names.DAT and Numbers.NDX

Any symbol not covered in this section is particular to a specific
command and will be discussed along with the rest of the
material on that command.

?

FULL FORM: ? [{explist}]
?? [{exp list})

PURPOSE: Used to show the value of an expression or list of expressions.

OVERVIEW: The "?" and "??" commands are specialized forms of the
DISPLAY command (equivalent to “DISPLAY OFF {exp}").
They can be used in association with memory variables, data-
base fields, constants, or functions.

If no expression is specified, the “?" will produce a blank line

. when outputted.

The double question mark command (“??") behaves like a
single question mark command (“?") except that no line feed
and carriage return is done before the expression is printed.
This can be used in command files to output more than one
expression to the same output line.

If a SET RAW ON command is in effect, then no spaces will be
placed between items in a list; otherwise one space separates
items.

EXAMPLE #1: Various applications of the question mark command:

72+2

4 0k

USE Names
ok

DISPLAY City
Miami ok

? City

‘I' Miami ok

&

FULL FORM:

&{cstring memvar}

PURPOSE:

Used for placing the stored value of a character string memory
variable in a command

OVERVIEW:

EXAMPLE #1:

EXAMPLE #2:

Whenever an ampersand (&) followed by the name of a charac-
ter string memory variable is encountered inacommand, H & D
Base replaces the ampersand and the memory variable with
the value of that variable. Note: Ampersands can be used in
COMMAND FILES only.

The name of the variable must appear immediately after the
ampersand (no spaces).

Substituting an ampersand for a character string memory variable:

STORE “Frank” TO MFirst ok
USE People ok

INDEX on Name TO Nameind ok
00005 RECORD(S) INDEXED ok
Use People INDEX Nameind ok
FIND &MFirst ok

DISPLAY Name

00001 Frank Williams ok

If you desire to append characters to the value of the variable
when it is displayed you may do so. If they are to appear
immediately following the value of the variable a period (.) must
separate them. In all other cases, simply use one or more blank
spaces.

A substitution with additional characters:

STORE “B:" TO MDrive ok
USE &MDrive.Names ok

Reference
N O o W B v i oias (s T o S T T e S i | R P W e e B

&, cont.

These commands would USE a file called “Names” which is
located on the “B” drive.

If an ampersand is not followed by a valid memory variable
name, no expansion is attempted and the ampersand remains
in the command line.

@

FULL FORM: @ {coordinates} [SAY {exp} [USING {format}])
(GET {variable} ([PICTURE {format})
B o= ————]
PURPOSE: Used to format console screen or printer output
OVERVIEW: This the most powerful command available for displaying spe-

cific, formatted information on the screen or the printer. It can
take a variety of different forms, depending upon how it is used
in conjunction with the SET FORMAT TO, ERASE, EJECT,
CLEAR, USING, and GET statements. All of the combinations
are discussed below.

{Coordinates} are screen or printer “intersections” and are
represented by numbers for a particular “row” and a particular
“column” in this manner: “row,column’.

The Atari monitor coordinates have a “row” range of 0-24, and a
“column” range of 0-79 (25 rows by 80 columns). Printers
ordinarily have both a “row” and a “column” range of 0-254. A
coordinate pair of 0,0 represents, therefore, the first character
location on the upper left corner of the display or printer. The
pair 20,30 represents the 21st line and the 31st column -- and so
forth.

Coordinates may also be numeric memory variables and
numeric expressions in addition to literals (as above), as long as
they are integer values.

The SET FORMAT command is used to specify whether output
is sent to the screen or the printer. Note: SET FORMAT TO
SCREEN is the default.

When the FORMAT has been SET TO the SCREEN, the "@"
command causes data to be displayed on the screen. "@"
commands may be issued in any order to the screen. For

Reference
PR s A el 7 D 5 T g o e T L SRR T - b T T U e T o SR P |

@, cont.

example you can “SAY" something to row 23 before you “SAY”
something to row 5. The same is true for column designations
(as long as they are being displayed on the screen).

When a SET FORMAT TO PRINT command has been issued,
the “@" command causes data to be printed on the printer. “@"
commands to the printer must be output in order; e.g., outputto
row 5 must be issued before any that is sent to a row with a
larger number (like row 23). The same is true for column desig-
nations. If an attempt is made to issue information to a row or
column with a number lower than that previously displayed (on
that page), the printer will eject a full sheet of paper before
printing it.

When in the SET FORMAT TO SCREEN mode, an ERASE
command will clear the screen of all information that was previ-
ously on it, as well as release all the GETs (see below), and reset
the coordinates to “0,0". When in the SET FORMAT TO PRINT
mode, an EJECT command issues a page feed and resets the
coordinates to “0,0".

The SAY phrase is used to display an expression which is not to
be altered by subsequent editing (such as a prompt). The
optional USING sub-phrase (see below) is used to format the
expression emitted by the SAY phrase. SAY phrases may be
used on either the screen or the printer.

The GET phrase displays the current value of an existing field
variable or memory variable. As opposed to a SAY, this value is
subject to alteration (through the READ command). The
optional PICTURE sub-phrase (see below) may be used with a
GET phrase to allow special formatting and validation of the
data as it is entered (see the READ command for further infor-
mation). If no PICTURE clause is given, the data type (charac-
ter, numeric or logical) forms an implicit PICTURE.

If the data type of the field variable or memory variable in the
GET islogical, the data validation allows only the characters 'T’,
'F’,'Y", 'N', and their lower case equivalents to be entered.

A maximum of 64 GETS can be active at any given time. Either
the ERASE command or the CLEAR GETS command may be
used to release the existing GETS.

Reference
[F = i e S ot IR T e R I A SRR e I e S = R T S

@, cont.
GETS are only recognized when the SET FORMAT TO
SCREEN command has been issued.
A READ command must be issued in order to “fill" the GETS
with the desired information (SET FORMAT TO SCREEN only).
Normally, a number of “@" commands are issued along with
GET phrases and a READ command is issued to allow editing
or data entry into the GET variables.
EXAMPLE #1: The proper structure for using the READ command in associa-
tion with @...GET statements:
With a database:
USE Names
APPEND BLANK

@ 10,15 SAY “Name " GET Name

@ 12,15 SAY “Address " GET Address

@ 14,15 SAY “City " GET City

@ 14,40 SAY "State "' GET State PICTURE “II"

@ 14,52 SAY "Zip " GET Zip PICTURE "'99999"

@ 16,15 SAY “Account Number " GET acct:num PICT “99999" READ

The USING and PICTURE options are templates which can be
used to indicate which characters are to appear on the screen
or page (and what form they are to appear in). USING can only
be used in relation to the SAY command, and PICTURE can
only be used in relation to the GET command.

The following table defines the characters (and their functions)
which can be used in these templates:

FORMAT ‘“SAY...USING" ‘GET...PICTURE"

CHAR. FUNCTION FUNCTION

#or9 Causes the next number to be Allows only a digit

output (1,2,...,8,9,0) and the characters

G WG and " (a space)
to be entered

X Outputs the next character Allows any character to be
entered

A QOutputs the next character Allows only alphabetic charac-

ters to be entered
$or* Outputs either adigitora$or * No effect
instead of leading zeros

| No effect Converts lowercase alpha char-
acters to uppercase

7-10

Reference

EXAMPLE #2:

EXAMPLE #3:

EXAMPLE #4:

@, cont.

Any character which does not appear in this chart is “non-
functional” and will be inserted into the variable if used.

A sample @...SAY...GET...PICTURE statement:

@ 10,1 SAY 'ENTER DATE: MM/DD/YY' GET MDate PICTURE '99/99/99'
READ

The message 'ENTER DATE: MM/DD/YY' is displayed, fol-
lowed by “ [/ [", (assuming that there was no value to the
variable “MDate" prior to issuance. When the READ command
is issued, the program will allow only digits to be entered
(example: 04/25/88).

A sample @...SAY...USING statement with a “Floating Dollar”
template:

@ 18,45 SAY MHours* MRate USING '$$$$$.99'

This “@" command could be used with either the screen or the
printer since it has no GET phrase. It could be used to print the
amount on a set of payroll checks. The dollar signs will be
printed as long as there are leading zeros in the value to be
printed.

If “MHours" = 10, and "MRate" = 5.00, then '$$$50.00" will be
displayed. This is the “Floating Dollar” feature and is valuable
for printing checks whose values cannot be easily altered.

Commas may be used in the integer part of a picture. If there
are no digits in the value to the left of where they appear, they will
be replaced by the picture character in front of them.

Using memory variables as coordinates:

SET FORMAT TO PRINT
GO TO TOP
STORE 7 TO MCount
DO WHILE .NOT. EOF
IF MCount =50
EJECT
STORE 7 TO MCount
ENDIF
@ MCount,12 SAY Name USING “XXXXXXXXXX000XXXKXXXKX"
@ MCount,48 SAY Address USING “JX00COCOOOONKXXXXXX
@ MCount,64 SAY City USING “XX00000C0000000CKK
@ MCount,B8 SAY State USING ‘XX’

7-11

Reference

@, cont.

7-12

@ MCount, 104 SAY Zip USING “XXXXX'
STORE MCount + 1 TO MCount
SKIP

ENDDO

RETURN

This COMMAND FILE, when run, will print a record on a single
line then skip to the next record and do the same until the end of
the file is reached.

When the FORMAT has been SET TO the SCREEN and neither
a SAY or a GET phrase is used, then the remainder of the line
indicated by the coordinates is erased. For example, the com-
mand “@ 22,0" will clear the entire 22nd line.

The last form of the SET FORMAT command is: SET FORMAT TO
{formatfile}. When itisin effect and a READ command has been
issued, the "@" commands are READ from the predesigned
{format file}. In this manner, the user may design the screen into
a format for more specialized purposes. Note: The use of format
files is not necessary for use of “@"s, since “@"s may reside in
COMMAND FILES. See READ for more information.

Accept

FULL FORM: ACCEPT (“{string}"] TO {memvar}

PURPOSE: Prompts user to input a character string into a specified mem-
ory variable. Does not necessitate the use of quotes.

OVERVIEW: This command works very much like the INPUT command in
that it facilitates the entry of character strings into memory
variables from the keyboard. The main difference lies in the fact
that the string does not have to be entered with quotation marks
around it. ACCEPT makes a "CHARACTER" memory variable
out of whatever is entered.

The command will create the memory variable and store the
input to it.

If a prompt (“{string}") is included in the phrase, it is displayed
on the screen. You may use single quotes or double quotes to
delimit the prompt string, as long as both the beginning and the
ending delimiters correspond.

If a carriage return is entered in response to an ACCEPT
request, a single blank space will be placed in the specified
memory variable.

EXAMPLE #1: An ACCEPT command with a prompt:

ACCEPT “ENTER COMPANY NAME" TO MName

ENTER COMPANY NAME Ajax ok

DISPLAY MEMORY

MName (C) Ajax

TOTAL 01 VARIABLES USED 00005 BYTES USED ok

Append

FULL FORMS:

1.) APPEND

2.) APPEND BLANK

3.) APPEND FROM ({file} (FOR {exp}) (SDF) (DELIMITED)
(WHILE {exp})

PURPOSE:

Used to add records to a database

OVERVIEW:

EXAMPLE #1:

7-14

The APPEND command, in all three of the forms listed above,
adds records to the “bottom” of the database in USE. The only
other command which can be used to add records to a data-
base is INSERT, a command which places but one record at a
time at a specified position.

The first form of the APPEND command, in which there are no
qualifying clauses, allows users to enter data opposite each
field name in the USE file's structure. Any number of new
records may be created from the keyboard in such a manner.
The APPEND mode is terminated when a carriage return is
entered as the first character of the first field of a record.

A simple APPEND:

USE People ok
DISPLAY STRU

STRUCTURE FOR PEOPLE.DAT
INDEX IN USE: NONE

NUMBER OF RECORDS: 5
PRIMARY SELECTED

FIELD NAME TYPE LENGTH DEC
01 NAME Cc 030

02 ADDRESS C 030

03 CITY C 020

04 STATE C 002

05 ZIP C 005

06 AMOUNT N 007 2

Reference
R A R A e B 1 T e T, e VU S e SO s 2 e e]

Append, cont.
TOTAL BYTES: 00095 ok
APPEND
RECORD 00006

NAME: Howard, Roy
ADDRESS: 6587 N. Benton

CITY: Chicago
STATE: IL
ZIP: 48967

AMOUNT: 345.76

RECORD 00007
NAME: {CR} ok

If the database in USE is an indexed database and the index file
is in current use, then the index file/s specified in the USE
command is automatically updated when the new records are
appended (except for APPEND BLANKS). Any index file asso-
ciated with that database which is not in use when the database
is APPENDED must be re-indexed.

If the SET CARRY command is activated (turned "ON"), all of
the data from a record will be carried over to the next record.
Changes canthen be made inthe new record. This is extremely
useful if successive records share a great deal of common data.

If a SET FORMAT TO {format file} is in effect, APPEND will use
the “@" commands from the specified format file to format the
screen and restrict access (if desired) to certain fields in the
record.

The second form of the APPEND command is APPEND
BLANK. When this command is issued, one record, filled com-
pletely with blanks is appended to the USE file. This record can
then be filled by the EDIT, REPLACE, or READ statements.

The third form of the APPEND command allows you to add
records to a file from a completely different file. The {file} can
be another H & D Base file, a “System Data Format" file (SDF),
or afile whose contents have been separated with a “delimiter”

If the optional SDF or DELIMITED clauses are not used, the

FROM file is assumed to be a standard H & D Base database
file. When executed, the structures of the USE and FROM files

7-15

Reference

Append, cont.

EXAMPLE #2:

EXAMPLE #3:

7-16

are compared and fields which occur in the records of both files
are taken from the FROM file and appended to the USE file.
Padding and truncation are performed as appropriate to force
the FROM data items into the USE file's structure.

If the optional FOR phrase is also used, the program will
append only the records of the FROM file for which a certain
condition {exp} is true. The procedure will continue until the
end of the FROM file is reached. The fields used in the expres-
sion must reside in the file receiving the new records.

This example demonstrates an APPEND FROM {file} FOR
{exp}:

USE Names
LIST Zip,Acct:Num

00001 FL 10235
00002 IL 76926
00003 AZ 58938
00004 WA 38769
00005 TX 02678
00006 AZ 58397
00007 CA 10003
00008 NV 20835
00009 CO 69361
00010 MA 48376 ok

COPY STRU TO Temp ok
USE Temp ok
APPEND FROM Names FOR State = “AZ" .AND. Acct:Num > 58500 ok

LIST
00001 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

If the SDF clause is used, the records to be transferred are
assumed to be in “System Data Format" (see Appendix B).

APPENDING with the information from a “System Data For-
mat” file:

USE Names ok

APPEND ALL FROM Test. TXT SDF ok

Many computer languages generate files where character
strings are enclosed in delimiters (usually single or double

Reference

Append, cont.

quotes) and fields are separated by commas. These files are
referred to as "delimited.” If the DELIMITED clause is used
along with the APPEND command, the records taken from the
FROM file are assumed to be delimited and are appended
accordingly. The program removes the delimiters and commas
from them and stores the data in a structure standardtoH & D
Base.

For further information on the transfer of SDF and DELIMITED
files, consult Appendix B.

The APPEND command is especially useful when it is neces-
sary to expand/contract fields or add/delete fields from an
existing database. Using the CREATE command, set up a new
database containing the desired structure and then APPEND
the old database to the new. Fields which appear only in the
new database will be filled with blanks.

717

Browse

FULL FORM: BROWSE [FIELDS {field list})

PURPOSE: Used to view and/or edit a database file in a full screen “win-
dow” format

OVERVIEW: When the BROWSE command is executed, the data from up to

20 records is displayed on the screen -- one line per record. If
the total number of characters in the fields of the records are
greater than 80, part of the data will be beyond the right edge of
the screen. The screen should, therefore, be considered as a
“window” into a database. You can scroll backwards and for-
wards through the records and you can pan left and right
through the fields of the database. Any data can be edited with
the standard full-screen editing method.

If no {field list} is supplied, BROWSE will show all fields in the
same order as the structure.

These are the control keys which will work with the BROWSE
command:

1.) {UP ARROW} or {CTRL-E}
Moves the cursor one field to the left
2.) {DOWN ARROW} or {CTRL-X}
Moves the cursor one field to the right
3.) {LEFT ARROW} or {CTRL-S}
Moves the cursor one character to the left
4.) {RIGHT ARROW} or {CTRL-D}
Moves the cursor one character to the right

5.) {HOME}
Moves the cursor to the first character in the record
6.) {CTRL-B}

Scrolls the screen one field to the right

Reference
e S B S B A A S R R SR e
Browse, cont.

7.) {CTRL-Z}
Scrolls the screen one field to the left
8.) {CTRL-N}
Inserts a line (for a new record)
9.) {CTRL-G} or {DELETE}
Delete character under cursor
10.) {BACKSPACE}
Delete character to left of cursor
11.) {CTRL-U}
Delete record toggle
12.) {CTRL-A} or {CTRL-R}
Save record - Back up to previous record
13.) {CTRL-F} OR {CTRL-C}
Save record - Advance to next record
14)) {CTRL-W}
Exit - Save changes to current record
15.) {CTRL-Q}
Exit - Do not save changes to current record

Special Note: Atari has chosen to designate {CTRL-C} as the
code for exiting from a program and returning to the DESKTOP.
Itis "hard wired,” but can be overridden (to a certain degree) by
software programmers. If you press {CTRL-C} two or more
times in rapid succession, you will automatically exit H & D
Base and return to the DESKTOP. We have included {CTRL-C}
only as a convenience for those who use it extensively in other
programs.

7-19

Cancel

FULL FORM: CANCEL

PURPOSE: Used to halt the execution of a COMMAND FILE

OVERVIEW: The CANCEL command can only be used in a COMMAND
FILE. It is used to bring a halt to all COMMAND FILE opera-
tions. Control returns to the COMMAND LEVEL of the program
when it is encountered.

EXAMPLE #1: The use of CANCEL in a COMMAND FILE:

7-20

DISPLAY “ARE YOU READY TO QUIT?"”
INPUT “ENTERY ORN " TO X
IF X
CANCEL
ENDIF

The INPUT command is asking for a “Yes" or “No" answer. If the
response is “Yes" ('Y', 'y’, 'T', or 't"), then the “IF X" line of the
command file will be satisfied (since “X" will be logically
.TRUE.) and the CANCEL command will be executed.

Clear

FULL FORM: CLEAR [GETS)
S =
PURPOSE: Used for resetting the system
o
OVERVIEW: When the CLEAR command is issued from either the COM-

MAND or the PROGRAM LEVEL of H & D Base, everything is
completely reset. All databases in USE are closed and de-
selected, all memory variables are released, and the PRIMARY
work area is re-selected.

If the optional “GET" (or “GETS") statement is used in associa-
tion with the CLEAR, all of the GETS which have been set up by
the “@" command are cleared. The screen is left as is. Note:
The “ERASE" command will accomplish the same purpose
with one notable differance: The screen is erased.

It is a good programming practice to include a CLEAR com-
mand at the beginning of all COMMAND FILES to insure a
“clean slate” (unless the COMMAND FILES are "nested").

Continue

FULL FORM:

CONTINUE

PURPOSE:

Used to resume the execution of a LOCATE command

OVERVIEW:

The CONTINUE command can only be used in association
with the LOCATE command. When encountered, it resumes the
LOCATE operation. See LOCATE for more information.

Copy

FULL FORMS:

1.) COPY ({scope}) TO {file} (FIELD {field list}) [FOR {exp}]
{SDF] [DELIMITED (WITH {delimiter}]]
[WHILE {exp})

2) COPY STRUCTURE TO {file} (EXTENDED) (FIELD
{fieldlist})

PURPOSE:

Used for copying the records (all or part) or structure (all or part)
of the database in USE to another file

OVERVIEW:

EXAMPLE #1:

You may specify the {scope} of the records to be copied
(default = all records). The destination {file} specified in the
command is created if it does not exist. If a file already exists
with the same name, all information in that file is destroyed.

If the optional FIELD clause is not used, all fields will be copied.

A simple COPY:

USE Names ok

COPY ALL TO Temp

00010 RECORDS COPIED ok
USE Temp ok

LIST Name,Acct:Num

00001 HOWARD, ROY 10235
00002 THOMAS, BRENDA 76926
00003 MURPHY, VINCE 58938
00004 ALIMBO, JENNY 38769
00005 HAMILTON, JOHN 02678
00006 HORMAN, EILEEN 58397
00007 CUCUK, CHERYL 10003
00008 ZACHRY, DAVE 20835
00009 FAORO, ASHLEY 69361
00010 MADDEN, KRIS 48376 ok

If the optional FIELD clause is used, the name of a field (or list of
fields) must be supplied. Only the specified fields will be copied
to the destination {file}. The new structure will be made up of
only those fields specified by the FIELD clause.

7-23

Reference
I) ey R P A e e R ey e G e, o N G e L s

Copy, cont.

EXAMPLE #2: A COPY in which only specified fields are transferred:

USE Names ok

COPY ALL TO Temp FIELDS Name,City,State
00010 RECORDS COPIED ok

USE Temp ok

DISPLAY STRU

STRUCTURE FOR TEMP.DAT
INDEX IN USE: NONE
NUMBER OF RECORDS: 10
PRIMARY SELECTED

FIELD NAME
01 NAME
02 cITy

03 STATE

LENGTH DEC
030
015
002

OOO-%
m

TOTAL BYTES: 00048 ok

Three fields of the ten records were copied to “Temp” from
“Names”.

If the SDF clause is specified, the file in USE is copied to the
destination file in System Data Format. This is a format which
can be used (or adapted for use) by a number of data proces-
sors other than H & D Base.

If the optional DELIMITED keyword is included in the com-
mand, the destination file will have all of its character string type
fields enclosed in double quotes (no quotes for numeric fields)
unless an alternate delimiter is specified using the "WITH"”
subphrase. The fields will be separated by commas. Note: This
is the converse action to a delimited APPEND.

EXAMPLE #3: Transferring information to a file DELIMITED with single quotes
and commas:

USE Names ok
COPY RECORD 8 TO Temp FIELDS Name,City,State,Acct:Num DELIMITED
8 RECORD(S) COPIED ok

Thisis what the new record #1 (old record #8) looks like DELIM-
ITED:

“CUCUK, CHERYL","San Jose",“CA","94687",10003

7-24

. EXAMPLE #5:

Reference

EXAMPLE #4:

Copy, cont.

COPYING information to a file DELIMITED by characters other
than double quotes:

USE Names ok
COPY ALL TO Temp DELIWITH @ ok

If you use either the DELIMITED or SDF options, the destination
{file} will be created with a “TXT" trailer. In all other cases, the
destination {file} will have a “DAT" trailer.

Inthe second form of the command, the one which includes the
“*STRUCTURE" statement, only the structure of the H & D Base
file in USE is copied to the destination file. The structure of the
destination will include only the fields you specify if you choose
to append “FIELD {fieldlist}" to the COPY STRUCTURE
phrase.

The COPY STRUCTURE EXTENDED command will copy the
structure of the database in USE to the designated {file} as
records. This allows you to examine the structure during the
execution of a program.

The EXTENSION of a database file structure:

USE People ok
DISPLAY STRU

STRUCTURE FOR PEOPLE.DAT
INDEX IN USE: NONE
NUMBER OF RECORDS: 5

PRIMARY SELECTED

FIELD NAME TYPE LENGTH DEC
01 NAME C 030

02 ADDRESS Cc 030

03 CITY C 020

04 STATE Cc 002

05 ZIP Cc 005

06 AMOUNT N 007 2
TOTAL BYTES: 00094 ok

COPY STRUCTURE EXTENDED TO Temp
00004 RECORD(S) COPIED ok

USE Temp ok
DISPLAY STRU

STRUCTURE FOR TEMP.DAT
INDEX IN USE: NONE

7-25

Reference
1 N W w17 T Ll e e e e e e e

Copy, cont.

NUMBER OF RECORDS: 4
PRIMARY SELECTED

FIELD NAME TYPE LENGTH DEC
01 NAME Cc 010

02 TYPE C 001

03 LENGTH N 003

04 DEC N 003

TOTAL BYTES: 00018 ok

LIST

00001 NAME C 030 0
00002 ADDRESS C 030 0
00003 CITY C 020 0
00004 STATE Cc 002 0
00005 ZIP c 005 0
00006 AMOUNT N 007 2 ok

7-26

Count

FULL FORM:

COUNT ({scope}) [FOR {exp}) [TO {memvar}]
(WHILE {exp})

PURPOSE:

Used for counting records in a USE file

OVERVIEW:

EXAMPLE #1:

The COUNT command is used to determine how many records
there are in a file (or part of a file). The results of a COUNT are
displayed on the display in this form: “COUNT = xxxxx"

The COUNT command can also be used to determine how
many records in a file satisfy a certain condition or set of
conditions. The optional “FOR {exp}” clause is used for this
purpose.

A FOR statement in association with a COUNT command:

USE Names
LIST ok

00001 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

00004 ALIMBO, JENNY 9376 Main
Seattle =~ WA 99876 38769

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678

00006 HORMAN, EILEEN 2E. Plaskett Ct.
Phoenix AZ 87356 58397

00007 CUCUK,CHERYL 746 Manhassett Lane
SanJose CA 94687 10003

00008 ZACHRY, DAVE P.O. Box 93876
Reno NV 93713 20835

00009 FAOROQ, ASHLEY 8467 Quinton
Denver CO 82076 69361

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376 ok

COUNT FOR Zip:Code > 50000
COUNT = 00006 ok

7-27

Reference
e e L T S e T T T A P AR N R] P T

Count, cont.

Users have option of returning the results of the COUNT to a
memory variable as well as the display. If the “TO {memvar}”
clauseisincluded inthe COUNT statement, the integer count is
placed into a memory variable. The memory variable will be
created if it did not exist prior to this command.

EXAMPLE #2: The results of a COUNT are stored in a memory variable as well
as displayed on the screen:
USE Names ok
COUNT TO MZip FOR ZIP > 50000
COUNT = 00006 ok
? MZip
6 ok

The COUNT command will count deleted records if SET
DELETED is “OFF," and ignore them if SET DELETED is “ON."

7-28

Create

FULL FORMS: 1.) CREATE [{filename})
({filename} FROM {filename})

2.) CREATE FOLDER {folder name}

e T e g e e N R I T Y|

PURPOSE: Used to establish a database file of the type . DAT" and to create
a “folder” on the default drive

e ===’

OVERVIEW: The first form of the CREATE command is used to establish the

structure of a new H & D Base data file. After issuing it from the
COMMAND LEVEL of the program, the user is prompted for
the structure of the new file. The stucture includes the name of
the file, and the name, type, length, and number of decimal
places of each field to be included in it.

The prompts appear in the following order:
FILENAME:

1.) Must start with a letter (not a number or symbol)
2.) Can be up to 8 characters long
3.) Cannot include any colons and/or blank spaces

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE,LENGTH,DECIMAL DIGITS
001

The information for each field must be entered as specified;
e.g., each piece of information separated with acomma (and
no spaces). It is not necessary to include a decimal place
designation.

1.) NAME: A character string of up to 10 characters; alpha or
numeric characters and colons only. Must begin
with an alphabetic character.

7-29

Reference :
.5 VAR =55, T i M R PR S
Create, cont.

2.) TYPE: Three types possible -- character (“C"), numeric
(“N™), or logical (“L")

3.) LENGTH: The length of the field -- any number from 1 to
254. Logical data may only be one character in
length.

4.) DECIMAL DIGITS: Any number from 1 to 8, as long as
the number is at least one digit less than the total
width of the field. You need to specify the number
of decimal digits only on fields which are numeric
in nature.

The process is terminated when a {CR} is issued instead of the
name of a field. The empty file is stored under the name
specified upon entry with a "“DAT" trailer.

EXAMPLE #1: The creation of a simple database file:
CREATE

ENTER NAME OF NEW FILE: Names

ENTER THE FIELDS FOR THE NEW DATABASE:

NAME - NAME OF FIELD, MAXIMUM LENGTH = 10

TYPE - CHARACTER (C), NUMERIC (N), OR LOGICAL (L)
LENGTH - MAXIMUM LENGTH = 254

DECIMAL - NUMBER OF DIGITS TO LEFT OF DECIMAL POINT

FIELDNO. NAME,TYPE,LENGTH,NO. OF DECIMAL DIGITS

01 Name,C,30
02 Address,C,20
03 City,C,15

04 State,C,2

05 Zip:Code,C,5
06 Acct:Num,N,5
07 {CR} ok

USE Names ok

DISPLAY STRUCTURE

STRUCTURE FOR NAMES.DAT
INDEX IN USE: NONE
NUMBER OF RECORDS: 0
PRIMARY SELECTED

FIELD NAME TYPE LENGTH DEC
01 NAME o] 030
02 ADDRESS C 020
03 CITY C 015
04 STATE Cc 002
05 ZIP:CODE Cc 005
06 ACCT:NUM N 005

7-30

Reference

EXAMPLE #2:

EXAMPLE #3:

Create, cont.

TOTAL BYTES: 00078 ok

A database file so created must be USED before it can be
manipulated in any manner.

The “CREATE {filename} FROM {filename}" command, is
used to establish a new file by reading the structure of the
FROM file. The contents of the FROM file must be input by the
COPY STRUCTURE EXTENDED command.

A file CREATED from the structure of another file:

USE Names ok

COPY STRUCTURE EXTENDED TO Temp ok
CLEAR ok

CREATE Clients FROM Temp ok

The second form of the CREATE command is “CREATE
FOLDER {folder name}" Itis used to CREATE a "folder" onthe
the default drive. The command is very much like the “New
Folder” command which can be executed from the Atari
DESKTOP Once a new “folder” has been created, data files of
similar content can be stored in it (for example, all mailing list
files or all payroll-related files). For further information see the
“SET FOLDER" command.

The creation of a FOLDER:
CREATE FOLDER Payroll ok

7-31

Delete

FULL FORMS: 1.) DELETE ({scope}] [FOR{exp})
(WHILE{exp})

2.) DELETE FILE {filename}

B

PURPOSE: Used to mark a record for deletion or to eliminate a file

=

OVERVIEW: The first form of this command marks for eventual elimination all
records which fall within the specified {scope}. Note: The
default {scope} is the current record only.
Records marked for deletion will include an asterisk between
the record number and first field when displayed.
If the optional “FOR" is used, only records which satisfy the
{exp} will be marked for deletion.

EXAMPLE #1: The “FOR" clause in association with a DELETE:

7-32

USE NAMES ok
DELETE ALL FOR Acct:Num >50000
00004 DELETION(S) ok

LIST

00001 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00002 *THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00003 *MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

00004 ALIMBO, JENNY 9376 Main
Seattle WA 99876 38769

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678

00006 *HORMAN, EILEEN 2E. Plaskett Ct.
Phoenix AZ 87356 58397

00007 CUCUK,CHERYL 746 Manhassett Lane
SanJose CA 94687 10003

00008 ZACHRY, DAVE P.O. Box 93876
Reno NV 93713 20835

Reference

Delete, cont.

00009 *FAORO, ASHLEY 8467 Quinton
Denver CO 82076 69361

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376 ok

The RECALL operation can be used to “undelete” records
marked for elimination with the DELETE command.

Records are not physically deleted until a PACK command is
executed. Until that time, records marked for deletion can be
displayed, but they cannot be COPIED or SORTED. Note: See
the SET DELETED command for further information.

In the second form of the DELETE command, the designated
{filename} will be removed from the disk drive where it resides,
and the space it was occupying will be released to the operat-
ing system for reassignment. If, however, the {filename} is
currently in use, the file will not be deleted and an error mes-
sage will be generated. If a “trailer” is not specified, the pro-
gram assumes that it is a file of the type "DAT"

Once a file has been DELETED, there is no command available
in H & B Base to retrieve it.

7-33

Display

FULL FORMS:

1.) DISPLAY ({scope}]) [FOR {exp}] [{exp list}] (OFF)]
(FIELDS {list})
[WHILE <exp>]

2.) DISPLAY STRUCTURE

3.) DISPLAY MEMORY

4)) DISPLAY FILES [ON {disk drive }] [LIKE {skeleton})

5.) DISPLAY STATUS

6.) DISPLAY COMMAND {command file }

PURPOSE:

Used to show data, database structure, memory contents, files,
system status, and the commands of a COMMAND FILE

OVERVIEW:

7-34

The real purpose of any database management system is the
DISPLAY of stored information in a wide variety of forms. This
command is, therefore, one of the basic building blocks of H & D
Base. The first form of the command allows you to DISPLAY all or
part of the database in USE. If neither a {scope} nor a FOR
{exp} is specified in the command, only the current record can
contribute information for display. If {scope} is not specified and
there is a FOR {exp}, then all records in the database may
contribute to the display. If both the {scope} and FOR clauses
are specified, then only those records that satisfy the FOR's
conditional expression can contribute information for display.

As for fields, they are all displayed unless: 1) an {exp list}
clause is used, or 2) you list the fields. Valid expressions may
consist of data fields, memory variables, or any valid literal
number, character or logical value.

The number of each record will appear before the information
of the record displayed unless the optional “OFF" is included in
the statement. DISPLAY FIELDS {list} allows you to use (and
DISPLAY) field names that are otherwise ambiguous i.e., STA-
TUS, FILE, STRUCTURE.

Reference

EXAMPLE #1:

EXAMPLE #2:

EXAMPLE #3:

Display, cont.

Assuming that there are more than 15 records which satisfy the
conditions of the entire DISPLAY statement, the command,
when executed, will DISPLAY the first 15 records then pause.
Press any key to continue to the next 15 (to the end of the file). To
return to the COMMAND LEVEL of the program during a
display, press the “Escape” key {ESC}.

The LIST command is identical to the DISPLAY command
except that LIST does not wait after each 15 records and its
default {scope} is ALL records.

The DISPLAY of selected fields of a {scope} of records:

USE NAMES ok
DISPLAY NEXT 5 FIELDS Name,$(City, 1,4),Acct:Num
00001 HOWARD, ROY Miam 10235

00002 THOMAS,BRENDA Chic 76926
00003 MURPHY, VINCE Phoe 58938
00004 ALIMBO, JENNY Seat 38769
00005 HAMILTON, JOHN Dall 02678 ok

The DISPLAY of all records in a file which satisfy a list of
{expressions}:
USE NAMES ok

DISPLAY ALL FOR (City ="“Phoenix" .AND. State="AZ") .OR. Zip:
Code > =93713 OFF

MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

ALIMBO, JENNY 9376 Main
Seattle WA 99876 38769

HORMAN, EILEEN 2 E. Plaskett Ct.
Phoenix AZ 87356 58397

CUCUK, CHERYL 746 Manhassett Lane

SanJose CA 94687 10003 ok

In the second form of the DISPLAY command, “DISPLAY
STRUCTURE", only the STRUCTURE of the database in USE is
displayed.

The DISPLAY of a file's structure:

USE Names ok
DISPLAY STRU

STRUCTURE FOR NAMES.DAT
INDEX IN USE: NONE
NUMBER OF RECORDS: 10
PRIMARY SELECTED

7-35

Reference

Display, cont.

EXAMPLE #4:

EXAMPLE #5:

EXAMPLE #6:

7-36

FIELD NAME TYPE LENGTH DEC

01 NAME Cc 030 .
02 ADDRESS Cc 020

03 CITY c 015

04 STATE Cc 002

05 ZIP:CODE Cc 005

06 ACCT:NUM N 005

TOTAL BYTES: 00078 ok

The third form of the DISPLAY command (“DISPLAY MEM-
ORY") allows you to look at the state of all current memory
variables. Their names and values are DISPLAYED.

The DISPLAY of all current memory variables:

STORE 'OLIVER' TO MName ok
STORE 2468 TO MOrder ok
STORE Y TO MLog ok

DISPLAY MEMORY

MNAME (€) OLIVER
MORDER (N) 2468

MLOG = T

TOTAL 03VARIABLES USED 23BYTESUSED ok

The fourth form of the DISPLAY command, “DISPLAY FILES",
is used to provide a listing of the "DAT" files on either the default
disk drive or an alternate {disk drive }. Relevent statistics on the
files are also displayed.

The “LIKE {skeleton}" phrase allows other types of files to be
displayed.

The DISPLAY of all “DAT" files on drive “B":
DISPLAY FILES ON B LIKE *.DAT

The DISPLAY of all files on drive “C” beginning with the charac-
ters "ACCT":

DISPLAY FILES ON C LIKE ACCT".*

DISPLAY STATUS, The fifth form of the DISPLAY command,
allows you to show any files that are in USE (primary and
secondary) along with any index files and “"Key" expressions
that are in use. DISPLAY STATUS also shows the current set-
tings of all SET commands.

Reference
) = 4 Vel UIC G o SRR e S L e e L . A el e I S D TR e R

Display, cont.

Using the “DISPLAY COMMAND {command file}" form, you
can list the commands of the specified {command file} on the
screen. The commands will also be sent to the printer if “SET
PRINT" has been turned “ON". This is the handiest way to get a
listing of the code which comprises a COMMAND FILE.

7-37

Do

FULL FORMS: 1) DO {file}
2.) DOWHILE {exp}
{statements}
ENDDO
3.) DO CASE
CASE {exp}
{statements }
CASE {exp}
{statements}
CASE {exp}
{statements}
[OTHERWISE]
{statements}
ENDCASE

PURPOSE: Used to either initiate the execution of a COMMAND FILE or to
perform a group of commands over and over

OVERVIEW: When the first form of the DO command ("DO {file}") is either
entered from the keyboard or encountered in a COMMAND
FILE, the COMMAND {file} specified in the statement is
opened and the commands of that {file} are executed.

The process continues until one of three situations occurs:

1.) The end of the file is reached.
2.) ARETURN command is encountered.
3.) A CANCEL command is encountered.

In situations #1 and #2, control is returned to either the COM-
MAND LEVEL of the program or the COMMAND FILE which
called it. In the case of a CANCEL command being encoun-
tered, all COMMAND FILES are closed and control automati-
cally returns to the COMMAND LEVEL.

Reference

EXAMPLE #1:

. EXAMPLE #2:

Do, cont.

COMMAND FILES can contain “DO” statements which intitate
the execution of other COMMAND FILES. They can be
“nested” up to 16 levels deep. In the "DO WHILE {exp}”
command, if the {exp} evaluates as a logical “true”, the state-
ments following the DO are executed until an ENDDO state-
ment is encountered. If the {exp} evaluates to a logical "false”,
control is transferred to the statement following the ENDDO
statement. If there is an IF “inside” a DO WHILE, then an
ENDDO may not occur before the ENDIF.

A simple “DO WHILE {exp}" command sequence:

DO WHILE .NOT. EOF
DISPLAY Company
SKIP

ENDDO

The third form of the “DO" command is “DO CASE". It is an
extension of the DO command and takes the form shown
above. It can best be described as a series of “IF...ENDIF"
statements.

When a “DO CASE" is encountered in a COMMAND FILE, the
program will examine the expression of the first CASE to deter-
mine if it is logically “true”. If it is, the statements after it will be
executed. When the next phrase beginning with “CASE" is
reached, it will skip to the ENDCASE. If more than one CASE is
true, only the first one will be executed.

Ifthe first CASE is evaluated as logically “false” according to the
{exp}, the program will move to the next CASE. If none of the
CASES are “true”, the DO CASE will be exited with none of the
{statements} being executed. If the optional OTHERWISE
clause is present and none of the CASEs are “true”, the {state-
ments} in the OTHERWISE clause will be executed. There is no
limit to the number of CASE phrases that a DO CASE may
contain, but you are limited to 16 “nested” DO CASES.

A DO CASE command comparing strings:
Command File:

STORE ‘Mike’' TO MName
DO CASE

7-39

Reference
R e A R e R T T S i O N R e AR T U g IR T e

Do, cont.
CASE MName = “Tom”
STORE 1 TOMT
CASE MName = "Sue"”
STORE 2 TOMT
CASE MName = “Mike"
STORE 3 TO MT
ENDCASE
DISPLAY MEMORY
Results:
MNAME (C) Mike
MT (N 3
TOTAL 02 VARIBLES USED 20 BYTES USED ok
EXAMPLE #3: A DO CASE command comparing strings using OTHERWISE:

Command File:
STORE ‘Mike’ TO MName

DO CASE
CASE MName = “Tom”
STORE 1 TOMT
CASE MName = "Sue"”
STORE 2 TOMT
CASE MName = “Fred"”
STORE 3 TOMT
OTHERWISE
STORE 4 TO MT
ENDCASE
DISPLAY MEMORY
Results:
MNAME (C) Mike
MT N 4

TOTAL 02 VARIBLES USED 20BYTES USED ok

Edit

FULL FORM: EDIT [n)
SRR ===}
PURPOSE: Used to alter the data in a database

OVERVIEW:

The EDIT command allows the user to alter the contents of the
records in a database. If the command is entered without the
optional [n) (for record #), the program will place the contents of
the current record on the screen. If a record # is specified, that
record will appear on the screen.

The following control and cursor movement keys can be usedin
the EDIT mode:

1.) {UP ARROW} or {CTRL-E}
Moves the cursor one field up
2.) {DOWN ARROW} or {CTRL-X}
Moves the cursor one field down
3.) {LEFT ARROW} or {CTRL-S}
Moves the cursor one character to the left
4)) {RIGHT ARROW} or {CTRL-D}
Moves the cursor one character to the right
5) {HOME}
Moves the cursor to the first character in the record
6.) {CTRL-Y}
Deletes line
7.) {CTRL-T}
Deletes from cursor to end of line
8.) {CTRL-G} or {DELETE}
Delete character under cursor
9.) {BACKSPACE}
Delete character to left of cursor
10.) {CTRL-U}
Delete record toggle

7-41

Reference
S i R | SR T, Tl s S L R D A e e PR e

Edit, cont.

11) {CTRL-A}or {CTRLR} .
Save record - Back up to previous record
12.) {CTRL-F} or {CTRL-C}
Save record - Advance to next record
13.) {CTRL-W}
Exit - Save changes
14.) {CTRL-Q}
Exit - Do not save changes

Special Note: Atari has chosen to designate {CTRL-C} as the
code for exiting from a program and returning to the DESKTOP.
Itis “hard wired,” but can be overridden (to a certain degree) by
software programmers. |f you press {CTRL-C} two or more
times in rapid succession, you will automatically exit H & D
Base and return to the DESKTOP. We have included {CTRL-C}
only as a convenience for those who use it extensively in other

programs.
If a “SET FORMAT TO {file}" is in effect, EDIT will use the “@" .
commands from the format file to form the screen display and

control the data that may be changed. Otherwise, EDIT dis-
plays all fields in tabular form.

If the file EDITED is being used with an associated index file (or
files), the program will adjust the index if the “Key" field is
altered. Any index file not selected when its “Key" is altered will
not be updated and must be recreated.

7-42

Eject

FULL FORM: EJECT

PURPOSE: Used to issue a form feed on the printer

OVERVIEW: If “SET PRINT” is “ON", or the “"FORMAT has been SET TO
PRINT”, this command will cause the printer to eject the page
(form feed).

Ifthe "@" command is being used to do direct page formatting,
the EJECT command also zeros the line and column registers.

Refer also to the “SET EJECT ON/OFF" command.

7-43

Erase

FULL FORM: ERASE
PURPOSE: Used to clear the console screen
OVERVIEW: When this command is issued either from the COMMAND

LEVEL or PROGRAM LEVEL of H & D Base, the screen is
cleared and the cursor is placed in the upper left corner.

If it is issued when one or more “@" commands are “active”
and the FORMAT is SET TO the SCREEN, all GETS and PIC-
TURES will be cleared from memory.

7-44

Find

FULL FORM: FIND {char string} or {‘char string’ }
e
PURPOSE: Used to locate a record in an indexed database
—— e =
OVERVIEW: The FIND command is the fastest way to search for information

in a database. When itis issued, H & D Base will locate the first
record in an (actively) indexed database with the same contents
in the “Key" field as those specified in the {char string}. The
database must be indexed, the appropriate index must be in
USE, and the {char string} must appear in the “Key" string.
(See the INDEX section for further information on "Keys").

. EXAMPLE #1: Two applications of FIND:

USE Names ok

INDEX ON Zip:Code TO Zipind ok
USE Names INDEX Zipind ok
FIND 49039 ok

DISPLAY

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678 ok

STORE 02815 TO MTemp ok
FIND &MTemp ok
DISPLAY

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376 ok

If the “Key" field is “Character” in nature, the FIND will operate

even if it is given only the first few characters of the field. For

example, “DUCK" may be entered when searching for “DUCK-

WORTH?". If, however, another entry with the same four begin-

ning letters appears in the file before "DUCKWORTH", that

record will be placed on the screen (example: “DUCK-
. INGTON").

EXAMPLE #2: A FIND using only the first few characters of a field:
USE Names ok

7-45

Reference

Find, cont.

7-46

INDEX ON Name to Nameind ok
SET INDEX TO Nameind ok
FIND ZACH ok

DISPLAY NAME OFF

ZACHRY, DAVE P.O. Box 93876
Reno NV 93713 20835 ok

If the index is “Keyed" to a numeric field, the found record will be
the first record whose key is arithmetically equal to the object of the
FIND.

Note: For indexes keyed on both characters and numbers, the
FIND object is a character string with or without quotation
marks. Quotation marks only become necessary for character
strings if the original key had leading blanks. In that case, the
exact number of leading blanks should be inside the quotes.

Itis possible to use a memory variable as the object of a FIND. To
do so, use "Macro Substitution.” The {memvar} must be placed
after the FIND command using the ampersand symbol (&) in this
form: FIND &{memvar }. For more information, see “&"

Once a record in a database has been located using the FIND
command, it can be processed just as any other database
record using a variety of H & D Base commands. Commands
which cause movement of the database (like DISPLAY, COPY,
etc.) will process the found record first and proceed to the next
record in sequence, based upon the key.

If no record exists whose key is identical to the {char string} the
message: “NO FIND" will be displayed on the screen and the
record number function “#” will return the value of zero.

If the found record is not the one which was desired, but one
which appears before it, use the SKIP or “LOCATE FOR {exp}"
commands to see if any more matches exist.

If SET EXACT is “ON”, FINDS will only be made if there is a
character for character match for the ENTIRE key (except for
trailing blanks).

IF SET DELETE is "ON" the FIND will ignore any record which
has been marked for deletion by the DELETE command.

Functions

FULL FORM:

Does not apply

PURPOSE:

Used to perform special purpose operations in expressions

OVERVIEW:

Some of the operations necessary for the effective manipulation
of data can only be performed through the use of the special
purpose FUNCTIONS available to you in H & D Base. They can
be run from either the COMMAND LEVEL or the PROGRAM-
MING LEVEL of H & D Base. The parenthesis () in the formu-
las must be used.

This section provides a brief summary of each of those func-
tions. They are listed alphabetically.

Blank String
Function

SPACE(nnn)
This function returns a character string of nnn spaces.
STORE SPACE(10) TO MStr

The memory variable “MStr” will now be a 10 character string of
blanks.

Date Function

DATE()

This FUNCTION will generate a character string that contains the
date stored in the Atari computer (as established in the
DESKTOP) in the format XX/XX/XX. The characters should be
entered exactly as shown (without anything between the paren-
thesis). The character string always has a length of 8 characters.

? DATE()
12/15/85 ok
SET DATE TO 01/01/86 ok

Reference
AR e L M AR TR RS P R T T SR R iR S A T T e 4

Functions, cont.

? DATE()
01/01/86 ok

The date stored in the Atari system can be changed from the
Atari DESKTOP or by using the SET DATE TO command.

Decimal Place DEC({numeric expression }, {decimal places})

st This function sets the decimal position of the {numeric expres-

sion} to the number specified in {decimal places}.
STORE 35.768 TO MNum ok

? DEC(MNum,2)
35.76 ok

Deleted Record i

o s This FUNCTION delivers a logical “True” (.T.) if the current
record has been marked for deletion, and a logical “False” (.F.)
if has not.

USE People ok
DELETE RECORD 1
00001 DELETION(S) ok
2+

.T. ok

SKIP ok

DISPLAY #

00002 ok

7+

.F. ok

End-of-File EOF

it This FUNCTION is used to determine if the end of the file has
been reached. It delivers a logical “True” (.T) if it has, and a
logical “False” (.F) if it has not.

USE People ok
?EOF

.F.ok

GOTO BOTT ok
SKIP ok

? EOF

.T.ok

7-48

Reference

. File Function

Functions, cont.

FILE({*‘filename’’/variable/expression})

This FUNCTION will tell you if a certain file exists on the disk. It
will generate alogical “True” (.T.) ifitis, and alogical “False” (.\N.)
ifitisn't.

DISPLAY FILES LIKE *.*

RECS BYTES DATE TIME
ADDACCT.CMD Not a data file 2314 11-28-85 06:48 pm
NAMES.DAT 00010 2818 01-05-86 12:45pm
NAMEIND.NDX Not a data file 6444 01-06-86 01:15pm
LEDGER.DAT 00015 2453 12-24-85 11:24pm ok
? FILE(“Names.DAT")
.T. ok
? FILE("People.DAT™)
.F. ok

===

Integer Function INT({numeric expression})
This FUNCTION takes a number with decimals and eliminates
everything to the right side of the decimal point.
To “round off" a number with a decimal to the nearest whole
number, use this form of the INT FUNCTION:
INT(value + .5)
7 INT(123456.789)
123456 ok
STORE 123456.789 TO MNum ok
? INT(MNum)
123456 ok
? INT(123456.789 + .5)
123457 ok
ek Ty S
Integer to String STR({expression/variable/number}, {length}, {deci-
Function mals})

This FUNCTION converts a number (or contents of a numeric
variable) into a string with a specified length and a specified
number of digits to the right of the decimal point. The length you
specify must be large enough to hold at least all the digits plus
the decimal point.

7-49

Reference
[T e R S T T I e T T e i L Vel A A e Y G SR e

Functions, cont.

? 8TR(12,3,1)

1.20k

? STR(123456789,10,5)
1234.56789 ok

STORE 123.50 TO MT
ok

?"8$" +STR(MT,6,2)
$123.50 ok

Number to CHR({number})
(l'::haraf:ter This FUNCTION vyields the ASCIl character equivalent of a
unction o
specified number.

? CHR(65)
Aok
? CHR(36)
$ok

Rank Function RANK({string}) .

This FUNCTION is used to return the ASCI| value of the first
character of a string.

? RANK("A”)
65 ok
? RANK("$BM%K@B")
36 ok

Record Function #

This FUNCTION delivers the record number of the current file.

USE People ok
DISPLAY Name

00001 CUCUK, CHERYL ok
T4

10k

GOTO BOTT ok

DISPLAY #

10 ok

?7 #10 0k

7-50

Reference

String Length
Function

Functions, cont.

LEN(variable/string })

This FUNCTION tells you how many characters there are in the

string you name. Note: If a character field variable name is

used, it will tell you how many characters are in the entire field.
STORE “abedefghijkimnopgrstuvwxyz” TO MAlpha ok

7 LEN(MAIpha)
26 ok

USE Names ok
GO 7 ok
DISPLAY

00007 CUCUK,CHERYL 746 Manhassett Lane
SanJose CA 94687 10003 ok

String to Integer
Function

VAL({char string})

This FUNCTION converts a character string (or substring) into a
number of equal quantity. The string can be made up of digits, a
sign, and up to one decimal point.

If the character string begins with numeric characters but also
contains non-numeric characters, the value generated by the
VAL function will equal the leading numeric characters.

7 VAL(*123")
123 ok

? VAL("ABC")
0ok

7 VAL(“123ABC")
123 ok

? VAL("123ABC") + VAL("456DEF"")
579 ok

The ampersand symbol (&) can also be used to convert strings
to numeric values (only in COMMAND FILES).

Command File:

STORE 123.25" TO MNum
? 10.25 + &MNum

Results:
133.50

7-51

Reference
A e e A e ST T e Ty B ¢ AN R e D S O Ay L e it e

Functions, cont.

Substring $({expression/variable/string}, {start}, {length})
Function

This FUNCTION forms a character string which is comprised of
all or part of another string. The new string begins from the
character in the position specified by {start}, and continues for
{length} number of characters. {start} and {length} must be
literals, variables, or expressions.

? $("abcdefghijkimnopgrstuvwxyz',1,5)

abcde ok

? $("'abcdefghijklmnopqgrstuvwxyz’ ,6,10)
fghijklmno ok

STORE 6 TO M1 ok

STORE 10 TO M2 ok

? §("'abcdefghijkimnopgrstuvwxyz' ,M1,M2)
fghijkimno ok

USE Names ok
LOCATE FOR $(Name,9,5) = “JENNY"
RECORD 00004 ok
DISPLAY
00004 ALIMBO, JENNY 9376 Main
Seattle WA 99876 38769 ok .

When this function is used to generate a “Key" for indexing, the
specifiers must be literals.

Substring Search @({variable 1/string 1}, {variable 2/string 2})
Function
This FUNCTION yields an integer which represents the begin-
ning position of one string within another string. If the first string
does not appear in the second, a value of “0” will be issued.
? @(""'m","abcdefghijkimnopgrstuvwxyz")
130k

? @("xyz","abcdefghijkimnopgrstuvwxyz'')
24 ok

Trim Function TRIM({string})

This FUNCTION is used to eliminate all trailing blanks in the .
contents of a string variable. It should be used in this form:

STORE TRIM({variable }) TO {variable}

7-52

Reference

Functions, cont.

STORE “MISSISSIPPI " TO MState ok
7 LEN(MState)

340k

STORE TRIM(MState) TO MState ok

? LEN(MState)

11 0k

Note: This function must not be used in the INDEX command.

Type Function

TYPE({expression})

This FUNCTION yields a single character string that contains a
“C", *N", “L", or "U" depending on whether the data in the
expression is “Character”, “Numeric”, “Logical”, or "Unde-
fined” (respectively).

STORE 123456789 TO MNumber ok
STORE “ABCEDFGHI" TO MString ok
STORE Y TO MLogic ok

? TYPE(MNumber)

N ok

? TYPE(MString)

Cok

? TYPE(MLogic)

L ok

Uppercase
Function

I({variable/string })
This FUNCTION changes all the Jower case alphabetic charac-
ters in a string or string variable into upper case characters.

? |(“aBcDeFgHiJKLmNoPgRsTuVwXyZ™)
ABCDEFGHIJKLMNOPQRSTUVWXYZ ok

7-53

GO or GOTO

FULL FORMS: 1.) GOTO (RECORD)] {n}
2.) GOTO TOP
3.) GOTO BOTTOM

PURPOSE: Used to re-position the record pointer

OVERVIEW: When executed, this first form of this command postions the
pointer to record {n}. The word "GO" can be substituted for
“GOTO" at will, and the word "RECORD" is completely
optional.

EXAMPLE #1: Re-positioning the pointer with the “GOTO {n}” command:

USE Names ok
DISPLAY

00001 HAMILTON, JOHN 2387 W. Benedict
Miami FL 27865 10235 ok

GOTO 5 ok
DISPLAY

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678 ok

GO RECORD 10 ok
DISPLAY

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376 ok

In the second form of the “GOTO" command ("GOTO TOP")
places the pointer on the first record in the file (TOP). “GOTO
BOTTOM” places it on the last record in the file (BOTTOM).
Important note: When the file has been indexed, these are first/
last records according to the "Key " used to index the database.

Help

FULL FORM: HELP {command}

PURPOSE: Used in situations where a short explanation of a particular H &
D Base command is needed.

OVERVIEW: The proper syntax for any H & D Base command (along with a

short explanation of its execution) can be obtained by entering
“HELP {command}" from the COMMAND LEVEL of the pro-
gram. {command } can only be the first whole word of any H &
D Base statement.

When executed, the program will search the default drive for a
file named “HDBASE.HLP". When it is found, the information it
includes regarding the specified {command } will be placed on
the screen. In some instances, the information regarding a
particular command will not fit completely on one screen. If this
is the case, press any key to move to the next screen. If the
{command} is not included in the “HELP" file, or the "HELP"
file does not reside on the disk in the default drive, an error
prompt will appear on the screen.

Note: The “HDBASE.HLP" file is included on your Program

Disk. We suggest that you transfer it to each of your Data Disks
when they are first formatted (if you intend to use it regularly).

7-55

If

FULL FORM:

IF {exp}
{commands}
(ELSE
{commands}]
ENDIF

PURPOSE:

Used for the conditional execution of a command or set of
commands

OVERVIEW:

EXAMPLE #1:

When an IF command is encountered in a COMMAND FILE,
the {exp} is evaluated as either “true” or “false”. If evaluated
“true”, the commands following the IF are executed. If the
{exp} is evaluated “false”, the program skips to the ENDIF and
continues from there.

If the optional ELSE statement is included and the {exp} evalu-
ates as “true”, the commands following the ELSE are skipped.
If “false”, the commands following the ELSE are executed.

IF commands may be nested to any level. Note: Statements
must nest properly. For example, an IF with a nested DO WHILE
must not end (with an ENDIF) before the DO WHILE ends.

A sample IF statement using the optional ELSE clause:

USE Ledger
DO WHILE .NOT. EOF
IF BALANCE >0
{any statement}
SE

{any statement}
ENDIF
SKIP
ENDDO

Index

1.) INDEX ON {expression} TO {index file name}
{ASCENDING} {DESCENDING }

Used to create an index file for a database

The first form of the INDEX command is used to create an index
file of the type “NDX" which contains pointers to the records in
the USE file. When used in association with the USE file, the
records of the USE file appear to be in sorted order. The USE
file, however, is not physically changed.

The {expression} used is called the “Key".

Sorting may be done in either ascending (the default) or
An INDEX file must be selected for use with the database from
which it was created. The form:

USE {database filename} INDEX {index filename (,index
flename, index...) }

FULL FORMS:

2.) INDEX
AT
PURPOSE:
OVERVIEW:

descending order.
EXAMPLE #1:

A simple ascending INDEX on a character field:

USE Names ok

INDEX ON Name TO Nameidx
10 RECORDS INDEXED ok
USE Names INDEX Nameidx ok
LIST

00004 ALIMBO, JENNY 9376 Main
Seattle WA 99876 38769

00007 CUCUK,CHERYL 746 Manhassett Lane
SanJose CA 94687 10003

00009 FAORO, ASHLEY 8467 Quinton
Boston MA 02846 69361

7-57

Reference
b o S D A BN SRR R SN R T TR) s DL L |

Index, cont.

Dallas TX 49039 02678

00006 HORMAN, EILEEN 2 E. Plaskett Ct.
Phoenix AZ 87356 58397

00001 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00008 ZACHRY, DAVE P.O. Box 93876
Reno NV 93713 20835 ok

00005 HAMILTON, JOHN 728 Downey Place .

You may INDEX on more than one field by using the command
in this form:

INDEX ON {field #1} + {field #2} + {field #3} TO {file}
{field #1} receives the highest priority -- {field #3 } the lowest.

EXAMPLE #2: An INDEX on a more involved {expression}:

USE Names ok

INDEX ON City + Name TO Cityidx
10 RECORDS INDEXED ok

SET INDEX TO Cityidx ok

LIST

00009 FAORO, ASHLEY 8467 Quinton
Boston MA 02846 69361

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678

00001 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00006 HORMAN, EILEEN 2E. Plaskett Ct.
Phoenix AZ 87356 58397

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

00008 ZACHRY, DAVE P.O. Box 93876
Reno NV 93713 20835

00007 CUCUK,CHERYL 746 Manhassett Lane
SanJose CA 94687 10003

00004 ALIMBO, JENNY 9376 Main
Seattle WA 99876 38769 ok

Any number of INDEX files may be created for a database. Any
INDEX which is in USE during an APPEND, EDIT, REPLACE,

7-58

Reference
P T S Ve S e S R SRt e o) Sl o sl ot N e Py e R

Index, cont.

READ, or BROWSE will automatically be updated if a change
has been made to the “Key”. Any INDEX not in USE will not be
updated and must, therefore, be RE-INDEXED.

INDEXING allows very rapid location of database records by
specifying all or part of the “Key” by means of the FIND com-
mand. (See FIND).

Refer also to the “REINDEX" and “SET INDEX" commands.
Two notes of caution:

1.) Do not use the TRIM function as part of an INDEX "Key"
This will create INDEX “Keys" of variable length which is
illegal. All INDEX “Keys" must be equal in length.

2) If the “$" or “STR" functions are used as part or all of a
“Key”, they must have literal numbers (not variables or
expressions) as their length parameters.

The second form of the INDEX command (“INDEX") INDEXES
the current record to the INDEX files in use. This allows an
INDEX to be built which does not include all the records in a
database.

7-59

Input

FULL FORM:

INPUT [“{cstring}") TO {memvar}

PURPOSE:

Used to place user input into memory variables

OVERVIEW:

EXAMPLE #1:

The INPUT command can be issued from either the COM-
MAND or PROGRAM LEVELS of H & D Base. It is used to
facilitate the entry of expression values into memory variables.

If the optional {cstring} is used, the characters are displayed
on the screen as a prompt message before the input is
accepted. User response (up to 254 characters) is placed in
{memvar}. If the {memvar} does not exist when the INPUT
command is encountered, it is created.

The “type" of the {memvar } is determined from the type of data
that is entered. Character strings must be delimited with either
single or double quotes. A response of this type results in a
{memvar} of “"Character” type. If a numeric expression is
entered, the {memvar} will be “Numeric” type. If a "T" or “Y"
(for “True" or “Yes") is entered, {memvar} will be a “Logical”
variable with the value TRUE; if an “F” or “N" (for “False" or
“No")is entered, {memvar} will be a “Logical” variable with the
value "FALSE" Note: the TYPE function may be used to deter-
mine the type of the entry.

INPUT should be used to enter numeric and logical data only.
The ACCEPT command is a more convenient way to enter
character strings.

INPUTS with prompts:

INPUT “AMOUNT OF SALE" TO MSale 285.46 ok
77 MSale 285.46 ok

INPUT “ENTER T OR F” TO MRes T ok

?? MRes .T. ok

Insert

FULL FORMS:

1.) INSERT [BEFORE]

2.) INSERT BLANK (BEFORE]

PURPOSE:

Used to add a record among other records in a database

OVERVIEW:

EXAMPLE #1:

The first form of the INSERT command is a specialized form of the
APPEND command which is used to place a single record at a
position in a database other than at the bottom. Its primary use is
to keep a file which has been SORTED in the proper order.

When issued, the user will be prompted for input values in the
same manner as the APPEND mode (the same cursor and
control functions apply). When the process has been com-
pleted, the record is INSERTED into the file at a position follow-
ing the current record and all following record numbers are
adjusted. If the {BEFORE} option is specified, the record is
INSERTED at a position before the current record and all record
numbers which follow are adjusted.

A record INSERTED into a database file after the current record.

USE Names ok
LIST

00001 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

00004 ALIMBO, JENNY 9376 Main
Seattle = WA 99876 38769

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678

00006 HORMAN, EILEEN 2E. Plaskett Ct.
Phoenix AZ 87356 58397

00007 CUCUK,CHERYL 746 Manhassett Lane
SanJose CA 94687 10003

7-61

Reference

Insert, cont.

00008 ZACHRY, DAVE
Reno NV 93713

P.O. Box 93876
20835

00009 FAORO, ASHLEY 8467 Quinton
Denver CO 82076 69361

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376 ok

GOTO RECORD 7 ok

INSERT

RECORD 00008

NAME :FRUMP, YAGO

ADDRESS :1987 Woodley

CITY :Houston

STATE TX:

ZIP:.CODE :42103:

ACCT:NUM :58367: ok

LIST

00001 HOWARD, ROY
Miami FL 27865

2387 W. Benedict
10235

00002 THOMAS, BRENDA 87 Laurel - Apt. #5

Chicago IL 48976
00003 MURPHY, VINCE
Phoenix AZ 87356
00004 ALIMBO, JENNY
Seattle WA 99876
00005 HAMILTON, JOHN
Dallas TX 49039

76926

987-B Hallowell
58938

9376 Main
38769

728 Downey Place
02678

00006 HORMAN, EILEEN 2E. Plaskett Ct.

Phoenix AZ 87356
00007 CUCUK, CHERYL
SanJose CA 94687
00008 FRUMP, YAGO
Houston TX 42103
00009 ZACHRY, DAVE
Reno NV 93713
00010 FAORO, ASHLEY
Denver CO 82076
00011 MADDEN, KRIS
Boston MA 02815

58397

746 Manhassett Lane
10003

1987 Woodley
58367

P.O. Box 93876
20835

8467 Quinton
69361

24 S. Broadway
48376 ok

As in the APPEND mode, if “SET CARRY" is SET “ON" when
the INSERT command is instituted, the information in the pre-
vious record is carried over to the new record.

If “SET FORMAT TO {file}" is in effect, INSERT will use the “@"
commands from the format file to form screen display and allow
control of the screen and the data that will be appended.
Otherwise, INSERT displays all fields in tabular form.

7-62

Reference
) (e T A T PO 100 A N T g L L. A P O, O SR T 10

Insert, cont.

Notes on the “INSERT {BEFORE }" command:

1.) Any INSERT which is conducted on a large, non-indexed
data base should be avoided as it must rewrite most of the
file which takes a great deal of time.

2.) Any INSERT which is conducted on an indexed file will
produce the same results as if it were being APPENDED.

The second form of the INSERT command is “INSERT BLANK
(BEFORE)" It works identical to the first form except that it
automatically INSERTS a blank record into the designated
position instead of allowing you to enter information.

7-63

Join

FULL FORM:

JOIN TO {file} FOR {expression} (FIELDS {field list})

PURPOSE:

Used to create a database composed of matching records from
two other databases

OVERVIEW:

IMPORTANT
NOTES:

The JOIN command can be used to create a third database
using the records from two existing databases (PRIMARY and
SECONDARY) whenever the terms of a certain {expression}
are met.

Once the PRIMARY and SECONDARY databases have been
determined, and the PRIMARY database is in USE, the JOIN
command may be issued. It positions the program to the first
record of the PRIMARY USE file and evaluates the “FOR
{expression}" against each record in the SECONDARY USE
file. Each time the {expression} yields a “True” result, a record
is added to the new database. The new record is comprised of
all fields of both the PRIMARY and SECONDARY databases
unless the optional FIELDS clause is included (limit = 97 total).
In that case, only specified FIELDS are included.

When all records of the SECONDARY file have been evaluated
against the first record of the PRIMARY file, the PRIMARY file is
advanced one record, and all records of the SECONDARY file
are evaluated against the {expression} once again. The proc-
ess continues until every record of the PRIMARY file has been
evaluated against every record of the SECONDARY file.

1.) The JOIN command takes a great deal of time to execute,
especially when the databases involved include a large
number of records.

2.) Thereis a strong possibility that the new database will be of
unmanageable proportions if the specified {expression}

Reference
(Rl i R IOk e RN A s 2 e e i i e e R S S A |

Join, cont.

. allows aninordinate number of matches to be made. Do not
make it too “loose.”

3.) We strongly suggest that the name of a field used in any part
of a JOIN statement include as a prefix to its name either a
“P” (for a PRIMARY field) or an "S." (for a SECONDARY
field). This will prevent any confusion on the program’s part
regarding the location of the field you are specifying.

EXAMPLE #1: A sample JOIN command:

USE Names ok

INDEX ON Name TO Nameind ok
SET INDEX TO Nameind ok
DISPLAY STRU

STRUCTURE FOR NAMES.DAT
INDEX IN USE: NAMEIND.NDX
KEY: NAME

NUMBER OF RECORDS: 10
PRIMARY SELECTED

. FIELD NAME TPE LENGTH DEC
01 NAME Cc 030
02 ADDRESS Cc 020
03 CITY Cc 015
04 STATE Cc 002
05 ZIP:CODE Cc 005
06 ACCT:NUM N 005
TOTAL BYTES: 00078 ok
SELECT SECONDARY ok

USE Ledger ok
DISPLAY STRUCTURE
STRUCTURE FOR LEDGER.DAT

INDEX IN USE: NONE
NUMBER OF RECORDS: 15

SECONDARY SELECTED

FIELD NAME TYPE LENGTH DEC

o1 ACCT-NUM N 009

02 CUR:CHGS N 009 2

03 BALANCE N 009 2
. TOTAL BYTES: 00028 ok

SELECT PRIMARY ok

JOIN TO Temp FOR P.Acct:Num = S.Acct:Num FIELDS
P.Name,S.Cur:Chgs, S.Balance ok

7-65

Reference
I e o e T R N e o o e R e S e o s = S T A

Join, cont.

USE Temp ok
DISPLAY STRUCTURE

STRUCTURE FOR TEMP.DAT
INDEX IN USE: NONE
NUMBER OF RECORDS: 9
PRIMARY SELECTED

FIELD NAME TYPE LENGTH DEC

01 NAME Cc 030

02 CUR:CHGS N 009 2

03 BALANCE N 009 2
TOTAL BYTES: 00049 ok

LIST

00001 ALIMBO, JENNY 1083.36 8327.73
00002 CUCUK, CHERYL 267.92 10826.62
00003 FAOROQ, ASHLEY 356.01 9367.62
00004 HAMILTON, JOHN 105.83 2039.46
00005 HOWARD, ROY 4.29 83.83
00006 MADDEN, KRIS 9.37 728.98
00007 MURPHY, VINCE 52.27 2898.86

00008 THOMAS, BRENDA 8291.92 102930.83
00009 ZACHRY, DAVE 26.00 372.50 ok

FULL FORMS:

List

1.) LIST ({scope}) [FOR {exp}) ({exp list}) (OFF) [FIELDS
{list}] (WHILE <exp>])

2) LISTSTRUCTURE

3) LISTMEMORY

4.) LIST FILES (ON {disk drive}) (LIKE {skeleton})
5) LIST STATUS

6.) LISTCOMMAND {command file}

. PURPOSE:

Used to show data, database structure, memory contents, files,
system status, and the commands of a COMMAND FILE.

OVERVIEW:

===

The first form of the LIST command is the same as the DISPLAY
command with two notable exceptions:

1.) The {scope} defaults to ALL records
2.) LISTINGS are continuous (no pause after 15 records)

If “SET DELETED” is “ON”, LIST will show only non-deleted
records.

All other forms of the LIST command, including LIST MEMORY,
LIST FILES, LIST STRUCTURE, and LIST COMMAND {com-
mand file}, work work exactly the same as the DISPLAY com-
mand.

7-67

Locate

FULL FORM:

LOCATE ({scope}] (FOR {exp})

PURPOSE:

Used for finding a record in a database which matches a
certain condition

OVERVIEW:

EXAMPLE #1:

When the LOCATE command is issued, the program searches
the USE database sequentially for the first record whose data
satisfies (e.g., delivers alogical “True”) to the specified {expres-
sion}. If one is found, the number of that record is displayed on
the screen (if TALK is SET “ON").

The CONTINUE command may be used to reinstitute the
search. You may, however, execute other H & D Base com-
mands between the LOCATE and the CONTINUE. CONTINUE
ignores the {scope} issued with the LOCATE and continues to
the end of the file.

Reinstituting a LOCATE with the CONTINUE command:

USE Names ok

LOCATE FOR Acct:Num > 50000
RECORD: 2 OK

DISPLAY

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926 ok

CONTINUE
RECORD: 3 ok
DISPLAY

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938 ok

CONTINUE
RECORD: 6 ok
CONTINUE
RECORD: 9 ok
CONTINUE

END OF LOCATE ok

Reference
A WS 203505 ST B W B SR T
Locate, cont.

If no record matching the {expression} is found, an “END
OF LOCATE" message will be displayed, and the record
pointer will be left in a position opposite the last record in the
file. If the “NEXT n” clause (an option of {scope}) is speci-
fied, and no record which matches the {expression } can be
found within the {scope} of the NEXT, the message “END
OF LOCATE" will be displayed. The pointer will be posi-
tioned opposite the last record scanned.

Note: The LOCATE command works faster on a file that is
USED without an INDEX file.

7-69

FULL FORM:

Loop

LOOP

PURPOSE:

Used as an escape mechanism for DO WHILE groups.

OVERVIEW:

EXAMPLE #1:

The LOOP command can only be used in a H & D Base
COMMAND FILE as part of a DO WHILE group. It is used to
shorten the DO WHILE loop which, if large, can be time con-
suming when run or may contain commands which are to be
skipped at times.

When a LOOP command is encountered in the body of a DO
WHILE, the remainder of the commands in the DO WHILE are
skipped and program flow is returned directly to the DO WHILE .
statement. The commands comprising the body of the DO
WHILE are then executed once again (if the {exp} is still “True”).

A DO WHILE statement with an embedded LOOP:

Command File:

USE Names
STORE 'T' TO MCont
DO WHILE .NOT. EOF .AND. MCont ="T"
IF Acct:Num > 50000
STORE 'F' TO MCont
LOOP
ELSE
DISPLAY
SKIP
ENDIF
ENDDO

Something in the body of the DO WHILE must eventually
change to deter flow of the program from the LOOP command .
or the looping process will continue forever.

Modify

FULL FORMS: 1) MODIFY STRUCTURE
2.) MODIFY COMMAND [{file})

PURPOSE: Used to alter the structure of a database or to enter/edit the
instructions of a COMMAND FILE

OVERVIEW: The MODIFY STRUCTURE command is used to change the
structure of a H & D Base data file ("DAT"). Any type of change
may be made, including the addition and deletion of fields and
the alteration of their parameters (NAME, TYPE, LENGTH,
NUMBER OF DECIMAL DIGITS). Important Note: Any data
resident in the USE file when the MODIFY STRUCTURE com-

. mand is executed will be lost.

The database file MODIFIED with this command is the one in
USE when it is issued from the COMMAND LEVEL of the
program. When instituted, the existing structure of the database
is displayed on the screen. Changes may then be made at will.

These are the cursor and control keys which will work with the
MODIFY STRUCTURE command:

1.) {UP ARROW} or {CTRL-R} or {CTRL-A}
Moves the cursor one field up
2.) {DOWN ARROW} or {CTRL-C} or {CTRL-F}
Moves the cursor one field down
3.) {LEFT ARROW} or {CTRL-S}
Moves the cursor one character to the left
4) {RIGHT ARROW} or {CTRL-D}
Moves the cursor one character to the right
. 5.) {CTRL-E} Moves the cursor one
section of field to left
6.) {CTRL-X}
Moves the cursor one section of field to right

7-71

R R AR N R TSIy X SOt o Tl

Reference

Modify, cont.

EXAMPLE #1:

7.) {CTRL-G} or {DELETE}
Delete character under cursor
8.) {BACKSPACE}
Delete character to left of cursor
9.) {CTRL-Y} or {CTRL-U}
Deletes field and moves all lower fields up
10.) {CTRL-N}
Moves all lines down to make room for new field
1) {CTRL-W}
Exit - Save changes
12)) {CTRL-Q}
Exit - Do not save changes

Special Note: Atari has chosen to designate {CTRL-C} as the
code for exiting from a program and returning to the DESKTOP.
Itis "hard wired,” but can be overridden (to a certain degree) by
software programmers. If you press {CTRL-C} two or more
times in rapid succession, you will automatically exit H & D
Base and return to the DESKTOP. We have included {CTRL-C}
only as a convenience for those who use it extensively in other
programs.

As noted previously, the MODIFY STRUCTURE command
deletes all of the data resident in the USE file when it is exe-
cuted. To modify the structure of a file with data, without harm-
ing that data, COPY the structure to a work file, USE the work
file, make the modifications, and APPEND the old data to the
work file. To conclude, DELETE the original file and RENAME
the work file.

The process for MODIFYING a STRUCTURE without losing the
data:

USE People ok

COPY STRUCTURE TO Temp ok
USE Temp ok

MODIFY STRUCTURE ok
APPEND FROM People ok
DELETE FILE People ok
RENAME Temp TO People ok

All records marked for DELETION will not be copied.

Reference
[T A s Tt MR g A 178 & 0 | S P et E o R D | W v Al |

Modify, cont.

The second form of the MODIFY command, “MODIFY COM-
MAND ({file}], is used for editing COMMAND FILES. It can be
issued only from the COMMAND LEVEL of H & D Base. If the
file you specify does not exist, H & D Base will create it for you at
this point.

The editing of a COMMAND FILE is facilitated through the
“Command File Editor”, a very simplistic word processor
whose mode is entered automatically when the MODIFY COM-
MAND statement is registered. These are the control keys
which will work with the “Text Editor":

1.) {UP ARROW} or {CTRL-E}
Moves the cursor one line up
2.) {DOWN ARROW} or {CTRL-X}
Moves the cursor one line down
3.) {LEFT ARROW} or {CTRL-S}
Moves the cursor one character to the left
4) {RIGHT ARROW} or {CTRL-D}
Moves the cursor one character to the right
5) {HOME} or {CTRL-O}
Moves the cursor to the first character in the Command
File
6.) {CTRL-K}
Moves the cursor to the last character in the Command
File
Y HCR}
Inserts a line
8.) {CTRL-Y}
Deletes a line and moves all lines up
9.) {CTRL-G} or {DELETE} or {RIGHT BUTTON ON
MOUSE}
Delete character under cursor
10.) {BACKSPACE} or {LEFT BUTTON ON MOUSE}
Delete character to left of cursor
11.) {UNDELETE}
Undelete last backspaced character
12)) {CTRL-W}
Exit - Save changes
13.) {CTRL-Q}
Exit - Do not save changes

7-73

Reference

Modity, cont.

7-74

In addition, you may use the “mouse” for positioning the cursor.

Up to 77 characters per line can be entered. If a statement
consists of less than 77 characters, a {CR} will enter the
statement, and move the cursor to the next line. If an attempt is
made to enter a statement with more than 77 characters, part of
the statement will automatically be “wrapped-around” to the
next line (whole words only). A statement which does not fit
entirely on one line must have a "tilde” (-) somewhere between
the last character in the line and the right margin. Note: This is
true only with COMMAND FILES. Atthe COMMAND LEVEL of
the program, “tildes” at the end of continuous lines are not
necessary. Just keep typing and the command will automati-
cally wrap around to the next line.

To exit the “Command File Editor” and save any changes made
in the program it contains, press {CTRL-W}. The file will be
stored on the disk with a "CMD" trailer (unless you have speci-
fied an alternate trailer). Use {CTRL-Q} to exit if changes are
notto be saved.

Note or *

FULL FORMS:

1.) NOTE ({any characters}]

2.) * [{anycharacters})

PURPOSE:

Used to make notations in the body of a COMMAND FILE
which will not be displayed when the file is “run”

OVERVIEW:

EXAMPLE #1:

The NOTE command facilitates the placement of programming
comments within the body of a COMMAND FILE. It differs from
the REMARK command, in that {characters} specified do not
appear on the screen or printer when the program is executed.

A series of NOTES within the body of a COMMAND FILE:
Command File:

NOTE File Name: GLWORK.CMD
NOTE Programmer: Chester Holmes
NOTE Revision Number: 3.2

NOTE Date of Last Revision: 11/25/85

{any statements }

An asterisk (*) serves the same purpose as “NOTE". It is often

used by programmers to disable a line (or lines) of commands
for testing purposes.

7-75

Operators

FULL FORM: (Does not apply)
S ———
PURPOSE: Used for manipulating data

OVERVIEW: There are four basic types of operators in H & D Base:
1.) ARITHMETIC OPERATORS:
There are four "Arithmetic Operators”:
+ :Addition
—_ :Subtraction

* :Multiplication
/ :Division

Parentheses () are used for grouping.
Order of precedence:

First: Parentheses, functions
Second:* ,/

Third: + ,—

Fourth: Relations

2.) RELATIONAL OPERATORS

~—

There are seven “Relational Operators”:

:Less than

:Greater than

:Equal to

:Not equal to

:Less than or equal to
:Greater than or equal to
:Substring is within string

BYAAINLYVA
IRY;

7-76

Reference
R A SR IR 5.5 2B TG W o Tn T WA R =
Operators, cont.

3.) LOGICAL OPERATORS

There are three “Logical Operators”:

.NOT. :Boolean "NOT”"
.AND. :Boolean "AND"
.OR. :Boolean “OR"

Parentheses () are used for grouping.
Order of precedence:

First:-. INCIT:

Second:.AND.

Third: .OR.

STRING OPERATORS

=

There are two “String Operators™:

+ :String concatenation

— :String concatenation
(Trailing blanks of first string moved to end of
blanks in second string)

Parentheses () are used for grouping.
Order of precedence:
First: Parentheses, functions

Second:Relations, $(substring operator)
Third: + , — (Concatenation)

Pack

FULL FORM: PACK
PURPOSE: Used to eliminate records marked for deletion
OVERVIEW: The PACK command purges from the USE file all records

marked for deletion by the DELETE command. Once it has
beenissued, there is no way to bring back the deleted records.

If an INDEX file (or files) is being used in association with the
USE file at the time the PACK is instituted, they will be rein-
dexed. Any INDEX file not in USE will not be reindexed.

Records which have been marked for elimination with the
DELETE command do not necessarily have to be “dumped”
through a PACK. At times, it may be beneficial to include them
in the database. Remember, records marked for deletion are
not COPIED, APPENDED, or SORTED, but they are
COUNTED.

If it becomes important to know whether or not the record being
processed has been marked for deletion, the following series of
commands may be helpful:
LOCATE FOR {exp}
DO WHILE .NOT. EOF
IF .NOT. *
(COMMANDS)
ENDIF

CONTINUE
ENDDO

They will skip over a record that has been deleted and continue
processing with the next record. Note: Another method of
avoiding the inadvertant use of deleted records is to SET
DELETED “"ON"

Reference
i 2 at T e e T ke s L PR VS T s, Tt O ™ i e o L 2 DT
Pack, cont.

. The COPY command can be used to achieve the same pur-
pose as a PACK. When an old file is copied to a new file,
DELETED records are not transferred.

Note: The PACK command is one of the most taxing functions
the program performs. It is important, therefore, that nothing
interrupt its execution. Of special concern is the “Escape” key.
Never press it during a PACK because data transmission errors
will undoubtedly occur.

7-79

Quit

FULL FORM: QUIT
PURPOSE: Used to terminate the operation of H & D Base
OVERVIEW: The QUIT command, when issued from either the COMMAND

or PROGRAM LEVELS of the program, closes allfiles, clears all
memory, and returns control to the Atari DESKTOP.

Read

FULL FORM:

READ

PURPOSE:

Used for accepting data into GET commands

OVERVIEW:

When a READ command is encountered within the body of a
COMMAND FILE, the program enters the full-screen mode to
allow the entry and/or edit of variables which had previously
been identified and displayed by “@" commands with GET
phrases. While in this full-screen mode, the cursor can be
moved to any of the GET variables. Changes made to those
variables on the screen are entered into the appropriate data-
base fields or memory variables.

These are the cursor and control keys which will work with the
READ command:

1.) {UP ARROW} or {CTRL-E}
Moves the cursor one field up
2.) {DOWN ARROW} or {CTRL-X}
Moves the cursor one field down
3.) {LEFT ARROW} or {CTRL-S} or {BACKSPACE }
Moves the cursor one character to the left
4)) {RIGHT ARROW} or {CTRL-D}
Moves the cursor one character to the right
5.) {CTRL-W}
Exit - Save data (including all changes)
6.) {CTRL-Q}
Exit - Save data (except changes to data field variables)

The READ command can only be used when the FORMAT has
been SET to the SCREEN. The sequence usually begins with
the issue of an ERASE com mand (which clears the screen),
followed by a series of “@...SAY ...GET" commands which
serve to format the screen. The READ command, which con-

7-81

Reference

Read, cont.

EXAMPLE #1:

cludes the sequence, allows information to be entered or edited
in the GET statements. If no READ command appears, the
GETS will not be executed and will remain “open.”

Variables to be used with “@" commands and edited using
READS must be either data field variables or character string
memory variables. Memory variables must be pre-defined
before the “@" command is issued. Note: There will be times
when you will want to create a memory variable with nothing in
it. To do so, use the "BLANK STRING" function.

If another series of “@"” commands is issued after a READ
command, they must be followed with their own READ. This
READ will place the cursor on the first GET variable following
the last READ.

A'@...SAY...GET...READ" sequences in the same COMMAND
FILE:

ERASE
STORE "EDIT MODE " TO MHead1
STORE * " TO MHead2
@ 3,40-((LEN(MHead1))/2) SAY MHead1
@ 4,40-((LEN(MHead2))/2) SAY MHead2
STORE Y TO MYesNo
DO WHILE MYesNo
STORE SPACE(30) TO MName
@ 7,15 SAY “Name to Edit: " GET MName
READ
FIND &MName
@715
IF .NOT. #=0 @ 7,15 SAY “ Name: " GET Name
@ 9,15 SAY " Address: " GET Address
@ 11,15 SAY “ City: " GET City
@ 11,48 SAY “State: " GET State PICTURE “!!"
@ 11,59 SAY “Zip: " GET Zip PICTURE "99999"
@ 13,15 SAY “Account Number: " GET Acct:Num PICTURE *'99999"
READ
ENDIF
@ 17,15 SAY “Continue? (Y/N) " GET MYesNo
READ
@ 17,15
ENDDO

If the “SET FORMAT TO {format file}" command has been
issued, READ will cause all of the “@" commands in the format
file to be executed, thus formatting the screen, allowing editing of
all GET variables. Notice that this technique is a tailorable substi-
tute for the EDIT command when at the COMMAND LEVEL.

Recall

The RECALL command, when issued in relation to a record (or
records) in the USE file, removes the record (or records) from

FULL FORM: RECALL [{scope}) [FOR {exp}]) (WHILE {exp})
e
PURPOSE: Used to “undelete” records marked for deletion
OVERVIEW:

the “marked for deletion” status.
EXAMPLE #1: The DELETION and RECALL of records:

USE Ledger ok

DELETE ALL

00015 DELETIONS ok

RECALL RECORD 3

1 RECORD(S) RECALLED ok

GOTO RECORD 3 ok

T#

iF

RECALL ALL FOR Acct:Num < > 48376
00013 RECALL(S)

LIST NEXT 5

00001 20029 5.95 89.38
00002 58938 52.27 2898.86
00003 10003 267.92 10826.62
00004 99288 28.26 7822.22
00005 *48376 9.37 728.98

7-83

Reindex

FULL FORM: REINDEX
PURPOSE: Used to re-create an INDEX file
=l

OVERVIEW: The REINDEX command is exactly the same as the “INDEX on
{exp} TO {index file name}", with one notable exception. With
REINDEX, the {exp} (or "Key”) and the name of the “TO {file}"
need not be entered. REINDEX uses the “Keys” from the
INDEX files currently in use and completely rebuilds the “TO
{file/s}"

EXAMPLE #1: The use of the REINDEX Command:

USE PEOPLE INDEX NAMEIND ok
REINDEX

Release

FULL FORM: RELEASE ({memvar list})
(ALL)
[ALL LIKE {skeleton})
[ALL EXCEPT {skeleton}]
Eemssss
PURPOSE: Used to get rid of unwanted memory variables
== =
OVERVIEW: The RELEASE command eliminates (or “dumps”) memory vari-
ables in order to free space for the creation of new memory
variables.
Using the various forms of the command, users may RELEASE
all memory variables, specific memory variables, or memory
variables included (or not included) in a particular {skeleton}.
EXAMPLE #1: Typical RELEASE statements:

DISPLAY MEMORY

MEMDUCK (C) Donald

MLEGHORN (C) Foghorn

MEMGHOST (C) Casper

MRUBBLE (C) Barney

MEMBUNNY (C) Bugs

MJETSON (C) George

**TOTAL 06 VARIABLES USED 36 BYTES USED ok

RELEASE MemGhost,MJetson ok
DISPLAY MEMORY

MEMDUCK (C) Donald

MLEGHORN (C) Foghorn

MRUBBLE (C) Barney

MEMBUNNY (C) Bugs

**TOTAL 04 VARIABLES USED 24 BYTES USED ok

Remark

FULL FORM: REMARK [any characters])

PURPOSE: Used in the body of a COMMAND FILE to register a comment
which will appear on the screen when the program is “run”

OVERVIEW: The REMARK command facilitates the placement of text in a
COMMAND FILE which will be displayed on the output device
when the program is “run.” Note: It can also be issued from the
COMMAND LEVEL of the program, but serves little purpose.

A blank space must appear between the command and the first
character in the string. The string can be no longer than 254
characters. There is no limitation on the type of characters .
which may be used in (any characters).

The NOTE or “*" commands should be used to put comments
ina COMMAND FILE which will not be displayed on the screen
when the program is “run’,

EXAMPLE #1: REMARKS at the beginning of a COMMAND FILE:

Command File:

REMARK H & D BASE TEMPLATES

REMARK Written by Chester Holmes & Oliver Duckworth
REMARK © Copyright 1986, All Rights Reserved

?

?

{commands}

Rename

FULL FORM: RENAME {original file name} TO {new file name}

PURPOSE: Used to give a file a new name

OVERVIEW: The RENAME command facilitates the change of a file's name.
Three-character “trailers” (file type such as "DAT", "NDX", efc.)
must be used unless both the {original file} and {new} file are
of the type "DAT".

EXAMPLE #1: RENAME ACCTPAY1 TO ACCTPAY2 ok

EXAMPLE #2: RENAME B:REPORT.FRM TO REPORT.BAK ok

7-87

Replace

FULL FORM: REPLACE ({scope}] {field} WITH {exp}
(,{field} WITH {exp}) (FOR {exp}] (WHILE {exp}]
S
PURPOSE: Used for the rapid alteration of data in a database
OVERVIEW: This command is used to REPLACE the contents of specified
data fields of the file in USE with the new data. One or more
fields can be REPLACED using the same command.
If no {scope} is supplied in the command, REPLACE acts only
on the current record.
EXAMPLE #1: The REPLACEMENT of the contents of two fields in all records

of a database:

USE Ledger ok

LIST ok

00001 20029 5.95 89.38
00002 58938 52.27 2898.86
00003 10003 267.92 10826.62
00004 99288 28.26 7822.22
00005 48376 9.37 728.98
00006 00012 356.90 12872.90
00007 76926 8291.92 102930.83
00008 20835 26.00 372.50
00009 02678 105.83 2039.46
00010 83789 3893.29 68278.28
00011 10235 4.29 83.83
00012 38769 1083.36 8327.73
00013 69361 356.01 9367.62
00014 20835 10.50 175.00
00015 82919 2.98 29.95 ok
REPLACE ALL Balance WITH Cur:Chgs + Balance,Cur:Chgs
WITHO

00015 REPLACEMENT(S)

LIST

00001 20029 00.00 95.33
00002 58938 00.00 2051.13

00003 10003 00.00 11094.54

Reference

Replace, cont.
00004 99288 00.00 7850.48
00005 48376 00.00 738.35
00006 00012 00.00 13229.80
00007 76926 00.00 111222.75
00008 20835 00.00 398.50
00009 02678 00.00 2145.29
00010 83789 00.00 72171.57
00011 10235 00.00 88.12
00012 38769 00.00 9411.09
00013 69361 00.00 9723.63
00014 20835 00.00 185.50
00015 82919 00.00 3293 ok

Ifa REPLACE is executed on an INDEX “Key" and the INDEX is
in USE, the index file will be properly adjusted. Any such
INDEXES not in USE when the REPLACE is executed will not
be updated. When a REPLACE is done on an INDEX "Key", the
record which has been altered will most likely move to a differ-
ent position in the file. The new “next record” will, therefore, not
be the same as the old "next record".

“Keys” should not be REPLACED with "NEXT n" as the
{scope}.

The REPLACE command can be used in relation to field varia-
bles, but not memory variables.

Note: If you are using PRIMARY and SECONDARY databases,

you can REPLACE a field only in the currently SELECTED
database.

7-89

Report

FULL FORM:

REPORT (FORM {form file}) [{scope}) (TO PRINT) (PLAIN]
(FOR{exp}] (WHILE{exp})

PURPOSE:

Used to generate a report from the information in a database

OVERVIEW:

H & D Base gives users the ability to generate reports (either on
the screen or on paper) which display data in a defined manner.
The REPORT command is used for this purpose.

REPORT will list the data from the USE database in columns,
and give users the option of including a header at the top of
each page of the REPORT, headers above each column of
data, and totaled numeric fields (all or part). An optional second
header can be added using the “SET HEADER" command.
The page number will always be listed in the upper left corner of
the page along with a date.

The data displayed in each column of a REPORT is not neces-
sarily just the information from a particular field of a record
(although that is the most common use). The data is actually
generated from an {expression} which can include not only
field names, but memory variables and literals as well.

The “FOR {exp}" phrase allows only the records which meet
the conditions of the {exp} to be REPORTED. The TO PRINT
phrase sends the REPORT to the printer as well as the screen.
The {scope} of the REPORT defaults to ALL unless otherwise
specified.

The optional PLAIN command creates a REPORT that can be
inserted into a text file generated by a word processor. When
included in the statement, the command causes page numbers
and the date at the top of each page in the report to be
suppressed. Page headings are inserted into the H & D Base

Reference

REPORT FORM

Report, cont.

report only at the beginning of the report. The ejection of a page
at the beginning of the REPORT can be suppressed with the
SET EJECT "OFF" command.

The process of formatting a particular REPORT need only be
done one time. Once all the specifications have been entered,
H & D Base stores them in a “FORM" file (type "“FRM”) on the
data disk, and allows you to use that format over and over again.
Include the optional "FORM {file name}" clause to do so.

Note: After a “FORM" file has been created and stored to disk,
the “FORM" can be altered using the MODIFY STRUCTURE
command.

The prompts below are listed as they appear when the format of
a REPORT is being entered. The number opposite each
prompt corresponds with an explanation of that part of the
process.

1.) USE {database filename}
2.) REPORT

3.) REPORT FORM NAME:

4.) DEFAULT OPTIONS: LEFT MARGIN (M) = 8, LINES/PAGE (L) = 57,
PAGE WIDTH (W) = 80
ENTER OPTIONS:

5.) DO YOU WANT A PAGE HEADING (Y/N)?
PAGE HEADING CAN BE 60 CHARACTERS OR LESS
ENTER HEADING:

6.) DO YOU WANT TO DOUBLE SPACE BETWEEN LINES (Y/N)?

7.) DO YOU WANT TO TOTAL SPECIFIED NUMERIC FIELDS (Y/N)?
DO YOU WANT TO SUBTOTAL SPECIFIED NUMERIC FIELDS (Y/N)?
ENTER FIELD OR EXPRESSION TO SUBTOTAL ON (60 CHAR. MAX)

DO YOU WANT ONLY A SUMMARY REPORT (Y/N)?
DO YOU WANT EACH SUBTOTAL ON A SEPARATE PAGE (Y/N)?
ENTER A HEADING FOR SUBTOTALS (40 CHARACTERS OR LESS)

8.) FIELD INFORMATION:
COL WIDTH,CONTENTS
o1
ENTER HEADING:
DO YOU WANT TO TOTAL THIS FIELD (Y/N)?

7-91

Reference
3 T T ST I ahts sy 273 vt 5
Report, cont.

EXPLANATIONS: 1.) The USE File

The file the REPORT is to be generated on must be in USE
before the REPORT command is issued. Any valid H & D
Base database file (type “DAT") can be used.

2.) The REPORT Command

<

Entered without any qualifiers, “REPORT” will cause a new
format to be created using as a basis the information from
the database file in USE. If no database file had been
previously specified, a prompt will appear asking for the
name of a database file.

It is not necessary to specify a USE file if the optional
“FORM {form file}" clause is included in the REPORT
command. Its name is included in the {form file}.

3.

—

Report Form Names

The parameters for naming REPORT FORMS are the same
for all H & D Base files; e.g., they must start with alpha
characters, can be up to 8 characters long, and cannot
include any colons or blank spaces.

Each FORM will be stored as a file with a “FRM" trailer.

4,

—

Default Options

The defaults for the printing of a REPORT are:
Left Margin (M) = 8
Lines/Page (L) = 57
Page Width (W) = 80

If you want to use those defaults, just press {CR}. To
change them, use this form:

M = {left margin}, L = {lines/page}, W = {page width} .
{CR}

7-92

Reference

5.

6.)

7)

Report, cont.

For example:

ENTER OPTIONS: M = 10, L = 50, W = 70 {CR}
Note: Page Width is used for centering page headings only.
Page Headings

A “Page Heading" is a title which will appear centered at
the top of every page of the REPORT. Its maximum length is
80 characters.

Double Spaced Reports

REPORTS will be “Double Spaced” if a “Y" for “YES” is
registered to this prompt.

Totals

Totals for specified columns of data which is numeric in
nature will appear at the very end of the REPORT if you so
choose with this option. Specify which columns you desire
totals for in #9 (below).

If (and only if) an affirmative response is registered, you will
be asked if you would like to subtotal specified numeric
fields.

7.1) Subtotals

Subtotals can be generated for records of like data in
a particular field of a database. Headings can be
specified not only for columns, but for subtotal
groups as well. The subtotal heading includes the
“Key" of the like data. Column totals will automati-
cally appear at the end of the REPORT. Important
note: The USE file should be indexed on the field to
be subtotaled and that index should be in USE when
the REPORT command is initially issued.

If an “affirmative” response is registered to the subto-
tals prompt, these additional PROMPTS will appear:

7-93

Reference

Report, cont.

8.)

7.11)

7.12)

7.13)

7.14)

ENTER FIELD OR EXPRESSION TO SUBTOTAL ON
(60 CHAR. MAX.):

The name of the field to be subtotaled.

DO YOU WANT ONLY A SUMMARY REPORT ONLY
(Y/IN)?

You may choose to exclude the actual data from the
file and list only the headings, subtotals, and totals.
This is referred to as a "Summary Report.”

DO YOU WANT EACH SUBTOTAL ON A SEPARATE
PAGE (Y/N)?

A page eject at the end of each group of like records
can be specified at this point.

ENTER A HEADING FOR SUBTOTALS (40 CHAR-
ACTERS MAX):

This heading will appear at the top of each group of
like records. The contents of the field of those records
will appear following the heading.

Example:
Orders for part number 11187
“Orders for part number” is the heading entered.

The program defaults to two decimal places. The
“SET DECIMAL TO" command can be used to
change the number of decimal places.

Field Information

You must specify the width and content {expression} of
each column to be included in the REPORT. They must be
entered in this form:

{width},{exp} {CR}.

The width registered here can be smaller than, equal to, or

Reference

Report, cont.

larger than the actual width generated by the {expression}.
If it is too small, data will be “wrapped around” to the next
line. If it is too big, trailing blanks will be displayed (a waste
of space).

The contents of the column is an {expression} which may
be comprised of fields from the USE database, memory
variables, and literals. Up to 24 columns can be entered.

A heading can be placed at the top of each column. If no
column heading is desired for this particular column, sim-
ply press {CR}.

There are a few special characters which may be used in
column headings. A semicolon (;) will break the heading at
the semicolon and resume the display on the next line. If a
heading is too long to fit within the number of spaces
allowed for it, it will be broken at the last blank (if possible)
and resumed on the next line. If the title is preceded with a
“< " the title will be left-justified in the column. Likewise, a
“>" will right-justify the title.

The “"DO YOU WANT TO TOTAL THIS FIELD (Y/N)?"
prompt will only appear if an “affirmative” answer was regis-
tered to the “DO YOU WANT TO TOTAL SPECIFIED NUM-
BERIC FIELDS (Y/N)" prompt (#7) and the column being
defined is numeric in nature. Totals for each column speci-
fied will appear at the very end of that column.

When a “carriage return” (alone) is issued instead of a * { width }
and {expression}”, the format process is terminated. The
REPORT will display on the screen (and printer if specified), and
the format will be saved under the name specified when the
process was begun (trailer “FRM").

Before a REPORT is printed, a page is ejected. This may be
suppressed with the SET EJECT “OFF” command. The SET
HEADING TO command allows an additional page heading to
be added to the top of every page of a REPORT during a single
“run” of the program. (The heading must be set each time a
new H & D Base run is initiated.) The additional heading will
appear above the normal page heading. The same is true for

7-95

Reference
| Nl e e, Fr B o A NN Wt P) v 0 o B L T WA T B T]

Report, cont.

the SET DATE TO command. The date of the report may be
changed or omitted by use of this command. See the SET
command for more information.

EXAMPLE #1: A simple REPORT:

USE Names ok
LIST

00001 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

00004 ALIMBO, JENNY 9376 Main
Seattle = WA 99876 38769

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678

00006 HORMAN, EILEEN 2E. Plaskett Ct.
Phoenix AZ 87356 58397

00007 CUCUK,CHERYL 746 Manhassett Lane
SanJose CA 94687 10003

00008 ZACHRY, DAVE P.O. Box 93876
Reno NV 93713 20835

00009 FAORO, ASHLEY 8467 Quinton
Denver CO 82076 69361

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376 ok

REPORT

REPORT FORM NAME: BasicRep

DEFAULT OPTIONS: LEFT MARGIN (M) = 8, LINES/PAGE (L) = 57,

PAGE WIDTH (W) = 80

ENTER OPTIONS: {CR}

DO YOU WANT A PAGE HEADING (Y/N)? Y
PAGE HEADING CAN BE 60 CHARACTERS OR LESS
ENTER HEADING: Current Customers

DO YOU WANT TO DOUBLE SPACE BETWEEN LINES (Y/N)? N

DO YOU WANT TO TOTAL SPECIFIED NUMERIC FIELDS (Y/N)? N

FIELD INFORMATION:

coL WIDTH,CONTENTS

0} 20,Name

ENTER HEADING: Customer

02 10,City

ENTER HEADING: City

03 5,State

ENTER HEADING: State

04 5,Zip:Code

ENTER HEADING: Zip

05 7,Acct:Num

ENTER HEADING: Account

06 {CR}

PAGE NO. 00001
12/15/85

7-96

Reference
e e Tl e e e Rt il S L i S L T S]

Report, cont.
. Current Customers

Customer City State Zip Account
HOWARD, ROY Miami FL 27865 10235
THOMAS, BRENDA Chicago IL 48976 76926
MURPHY, VINCE Phoenix AZ 87356 58938
ALIMBO, JENNY Seattle WA 99876 38769
HAMILTON, JOHN Dallas X 49039 02678

HORMAN, EILEEN Phoenix AZ 87356 58397
CUCUK, CHERYL San Jose CA 94687 10003

ZACHRY, DAVE Reno NV 93713 20835

FAORO, ASHLEY Denver CO 82076 69361

MADDEN, KRIS Boston MA 02815 48376 ok
EXAMPLE #2: A REPORT with Totals and Subtotals:

USE Ledger ok

INDEX ON Part:Num TO Partind
12 RECORD(S) INDEXED ok
SET INDEX TO Partind ok

LIST ok

00002 McKINLEY'S B 00194 .89 3.56
00005 MIKE'S AUTO 1 00194 .89 .89
00008 RESPONSIVE 143 00194 .89 172.66
00001 STANDARD 10 20029 5.95 59.50
00007 GUARANTEE T 20029 5.95 41.65
00011 COASTAL 104 28947 14 14.56
00004 PROGRESS 14 38372 1.39 19.46
00010 FARMINGTON 30 38372 1.39 41.70
00003 VALLEY 26 59839 7.45 193.70
00009 BARTON'S 66 68269 1.79 118.14
00012 UPTOWN 48 68269 1.79 85.92
00006 AJAX 18 73020 10 1.80 ok

SET HEADING TO “Acme Distributors™ ok
REPORT

REPORT FORM NAME: SubRep
DEFAULT OPTIONS: LEFT MARGIN (M) = 8, LINES/PAGE (L) = 57,
PAGE WIDTH (W) = 80
ENTER OPTIONS: {CR}
DO YOU WANT A PAGE HEADING (Y/N)? Y
PAGE HEADING CAN BE 60 CHARACTERS OR LESS
ENTER HEADING: Part Order Summary
DO YOU WANT TO DOUBLE SPACE BETWEEN LINES (Y/N)? N
DO YOU WANT TO TOTAL SPECIFIED NUMERIC FIELDS (Y/N)? Y
DO YOU WANT TO SUBTOTAL SPECIFIED NUMERIC FIELDS (Y/N)? Y
ENTER FIELD OR EXPRESSION TO SUBTOTAL ON (60 CHAR.

MAX)

:Part:Num
. DO YOU WANT ONLY A SUMMARY REPORT (Y/N)? N
DO YOU WANT EACH SUBTOTAL ON A SEPARATE PAGE (Y/N)? N
ENTER A HEADING FOR SUBTOTALS (40 CHARACTERS OR LESS)
:Orders for part number
FIELD INFORMATION:
COL WIDTH,CONTENTS

7-97

Reference

Report, cont.

01 15,Customer
ENTER HEADING: < Customer Name
02 8,Quantity

ENTER HEADING: > Quantity; > Ordered
DO YOU WANT TO TOTAL THIS FIELD (Y/N)? Y

03 {CR}
PAGE NO. 00001
12/25/85
Acme Distributors
Part Order Summary
Customer Name Quantity
Ordered
Orders for part number 00194
McKINLEY'S 4
MIKE'S AUTO 1
RESPONSIVE 143
SUBTOTAL
148
Orders for part number 20029
STANDARD 10
GUARANTEE 7
SUBTOTAL
17
Orders for part number 28947
COASTAL 104
SUBTOTAL
104
Orders for part number 38372
FARMINGTON 30
PROGRESS 14
SUBTOTAL
44
Orders for part number 59839
VALLEY 26
SUBTOTAL
26
Orders for part number 68269
BARTON'S 66
UPTOWN 48
**SUBTOTAL"*
14
Orders for part number 73020
AJAX 18
SUBTOTAL
18

TOTAL

Restore

FULL FORM: RESTORE FROM {file} (ADDITIVE)
R e e gt
PURPOSE: Used to remember saved variables
=S =
OVERVIEW: RESTORE performs the opposite function of the SAVE com-

mand. A set of memory variables stored on a disk in a file of the
type “MEM" can be read back into the system using the
RESTORE command. Allmemory variables which were defined
previous to the execution of the RESTORE command are
deleted when it is issued.

If the ADDITIVE phrase is included, memory variables already
. defined are not released, but are appended with those from the
“MEM” file.

EXAMPLE #1: Memory variables SAVED to a file then RESTORED:
| DISPLAY MEMO

MSTRING (C) A1B2C3D4E5
MNUBER (N) 12345
MLOGIC T

TOTAL 03VARIABLESUSED 00027 BYTES USED ok
SAVE TO MFile ok

RELEASE ALL ok

DISPLAY MEMORY

TOTAL 00 VARIABLES USED 00000 BYTES USED ok

RESTORE FROM MFile ok

DISPLAY MEMORY

MSTRING (C) A1B2C3D4E5

MNUBER (N) 12345

MLOGIC L) T

TOTAL 03 VARIABLES USED 00027 BYTES USED ok

7-99

Return

FULL FORM: RETURN

PURPOSE: Used to terminate a COMMAND FILE and return to the calling
file or COMMAND LEVEL

OVERVIEW: The RETURN command, when encountered by the program
within the body of a COMMAND FILE, causes control to be
returned either to the COMMAND FILE which called it or to the
COMMAND LEVEL (if the file was called from the keyboard).

The RETURN command is equivalent to encountering the end
of a COMMAND FILE.

It is a good programming practice to include a RETURN com-
mand as the last executable line of any COMMAND FILE.

7-100

FULL FORM:

Save

SAVE TO {file} (ALL LIKE {skeleton}]

PURPOSE:

Used to write current memory variables to a file for future use

OVERVIEW:

EXAMPLE #1:

The SAVE command stores all currently defined memory varia-
bles to a file of the type “MEM” These memory variables may
be returned to the active memory of the computer using the
RESTORE command.

The command SAVES all current memory variables unless the
{skeleton} clause is included. With it, you can specify a certain
group of memory variables to be stored (see {skeleton} in
“Symbol Definitions” at the beginning of this section).

SAVING and RESTORING memory variables:

STORE “A1B2C3D4E5" TO MString ok
STORE 12345 TO MNumber ok
STORE Y TO MLogic ok

DISPLAY MEMO

MSTRING (C) A1B2C3D4E5

MNUBER (N) 12345

MLOGIC (g

TOTAL 03 VARIABLES USED 00027 BYTES USED ok

SAVE TO MFile ok
CLEAR ok
DISPLAY MEMORY

TOTAL 00 VARIABLES USED 00000 BYTES USED ok

RESTORE FROM MFile ok
DISPLAY MEMORY

MSTRING (C) A1B2C3D4E5

MNUBER (N) 12345

MLOGIC g~k

TOTAL 03 VARIABLESUSED 00027 BYTES USED ok

7-101

Select

FULL FORM:

SELECT (PRIMARY])
(SECONDARY]

PURPOSE:

Used to switch database work areas

OVERVIEW:

EXAMPLE #1:

7-102

H & D Base allows users to select one of two different database
areas to work in. This facilitates operations such as the update
of one database with the data of another and the comparison of
the data in two databases (to name a few). The two areas are
called the “PRIMARY" and "SECONDARY" work areas. The
SELECT command serves as a “toggle” between them.

When H & D Base is first entered, the PRIMARY area is active.
All work is done in this PRIMARY area unless a SELECT SEC-
ONDARY instruction is issued. If (and when) it is selected, all
work is conducted in the SECONDARY area (and so forth). A
different database may be USED in each of the areas. This
permits the concurrent usage of two databases at once. H & D
Base commands that cause movement of the database (i.e.
GOTO, SKIP, REPORT, SORT, COPY, LIST, DISPLAY and others)
affect only the currently selected database. The REPLACE
command will only affect variables in the currently selected
database. The DISPLAY STRUCTURE command will display
the structure of the currently selected database only.

USING PRIMARY and SECONDARY databases and perform-
ing miscellaneous commands on them:

Command File:

SELECT PRIMARY

USE Names

GOTO TOP

SELECT SECONDARY

USE Ledger

LOCATE FOR S.Acct:Num = P.Acct:Num

Reference
e B ot L e R s A AR A0S S e 3 S L= A at e\ Tl SRR S|

Select, cont.

SELECT PRIMARY
? Name,S.Acct:Num,Balance

This command file displays a client's name, balance, and
account number -- information pulled from two different data-
bases.

The SET LINKAGE "ON" command allows all sequential com-
mands (those that have a {scope} parameter) to perform posi-
tioning on both the PRIMARY and the SECONDARY databases.
(Refer to the SET LINKAGE command in this Reference section).

When both database areas have databases in USE, an expres-
sion entered may use data field variables from either area. Ifthe
field name in both regions are the same for a desired variable,
the variable must be prefixed with a “P" or “S." to denote which
database it is to come from.

7-103

Set

FULL FORMS: 1.) SET {parameter} (ON]
(OFF)

2.) SET {parameter} TO {option}

e e
PURPOSE: Used for changing the configuration of H & D Base

S e ey
OVERVIEW: H & D Base provides a number of “SET" commands which

control how the program interacts with your system. There are
two types of SET commands. The first are merely toggle
switches which register a default of either "ON" or “OFF". The
second allows you to enter specific values. All SET commands
can be quickly and easily changed from either the COMMAND
LEVEL of the program or from within a COMMAND FILE.

Each of the SET commands which serves as a simple “"ON/
OFF” toggle, along with its default value and a brief description,

is listed below.
SET BELL (Default = ON)
ON/OFF
ON: Enables the bell which rings when a field has been
filled during various functions or when data of the
| wrong type is entered
OFF: Disables the bell
NOTE: The volume of the bell can be altered from the Control
Panel of the Atari DESKTOP
SET CARRY (Default = OFF)
ON/OFF

ON: Carries data from the record just entered forward to the
new record when in APPEND

OFF: Does not carry data forward -- shows just blank record

NOTE: Used for entering a large number of records which
contain the same information in many of the fields

Reference

SET CONFIRM
ON/OFF

SET CONSOLE
ON/OFF

SET COLON
ON/OFF

SET DELETED
ON/OFF

SET ECHO
ON/OFF

SET EJECT
ON/OFF

Set, cont.

(Default = OFF)

ON: When a field has been filled in APPEND, EDIT, or
READ, waits for a {CR} to be issued from the keyboard
before continuing

OFF: Continues to next field automatically when current field
is full

(Default = ON)

ON: All output is sent (echoed) to the screen
OFF: No output is sent to the screen

(Default = ON)

ON: Uses colons on the screen to show the length of a field
during AT...GET, APPEND, and EDIT functions
OFF: Nocolonsappear

(Default = OFF)

ON: Records marked for deletion with an asterisk cannot be
located with the FIND commands nor processed by
any command that allows the NEXT phrase (such as
LIST, LOCATE, COUNT, etc.)

OFF: Records marked for deletion can be located and dis-
played (but not copied or appended)

(Default = OFF)

ON: Allcommands which come from COMMAND FILE are
also sent to the screen.

OFF: Commands from COMMAND FILE are not being sent
to the screen.

NOTE: Very useful for debugging COMMAND FILES.

(Default = OFF)
ON: The REPORT command will eject a new page before

beginning a new report
OFF: A new page will not be ejected

7-105

Reference

Set, cont.

SET ESCAPE
ON/OFF

SET EXACT
ON/OFF

SET FORTH
ON/OFF

SET LINKAGE
ON/OFF

SET PRINT
ON/OFF

SET RAW ON/OFF

7-106

(Default = ON)

ON: Allows a user to use the “Escape Key" {ESC} to break
out of the execution of a COMMAND FILE
OFF: Disablesthe “Escape Key”

(Default = OFF)

ON: Requires that character strings match exactly (exclud-
ing trailing blanks) in expressions and the FIND com-
mand.

OFF: Allows matchesto be made on the basis of the length of
the second string.

NOTE: When “OFF", "ABC" is a match to "ABCDEFGH"

(Default = OFF)

ON: FORTH Program Language commands available.
OFF: FORTH Program Language commands not available.

(Default = OFF)

ON: Moves the record pointers in PRIMARY and SECON
DARY files simultaneously (in increments) in associa-
tion with commands that allow {scope} (LIST,
REPORT, SUM, etc.).

OFF: Makes PRIMARY and SECONDARY record pointers
work independent of one another.

(Default = OFF)

ON: All output is sent (echoed) to the printer
OFF: Output is not sent to the printer

(Default = OFF)

ON: DISPLAYS and LISTS records without spaces between
fields

OFF: DISPLAYS and LISTS records with an extra space
between fields

Reference

Set, cont.

TO {filename}

SETCOLORTO
{number of
character color}

SET TALK (Default = ON)
ON/OFF
ON: Displays the results of commands on the screen
OFF: Does not display the results of commands on the
screen
S T e
The following SET commands require that you enter a certain
value (as opposed to simply toggling between "ON" and
“ORE:
s Sre e T R e e e e el e e m—
SET ALTERNATE The SET ALTERNATE TO command is part of a two-step proc-

ess for writing everything that is normally written on the screen
to a disk file as well. The file will be stored with a "“TXT" trailer,
indicating that it is a “Text File."

To establish a Text File, enter the following:

SET ALTERNATE TO {filename}

When you want all of the information appearing on the screen to
also be sent to the specified Text File, enter:

SET ALTERNATE ON
To turn the flow of information “off,” enter:

SET ALTERNATE OFF

The information in a text file can be edited, printed, etc. with the
aid of a word processor or text editor.

(Default = 0)

Text can be displayed in four different colors using the Atari ST
series of computers. The colors, assuming that you have not
altered them from the Control Panel of the DESKTOP, are white
(the default color), black, red, and and green. They will appear
as different shades of grey on a black and white monitor.

To change the color of the characters being typed or displayed

7-107

Reference
R S g ORGSR ATy e s £ T o T L U ST T el = R

Set, cont.
on the screen, enter “SET COLOR TO" followed by one of the
following numbers:
0 = White
1 = Red
2 = Green
3 = Black
All text entered or displayed from that point on will appear in the
color you specified. Note: You may not be able to see black
letters at all.
SET DATE TO (Default = System Date)
{mm/dd/yy}

The DATE function of H & D Base displays the date stored in the
Atari system (set on the Control Panel of the DESKTOP) unless
you override it with this command.

The date must be entered in the form shown (mm =month,
dd =date, yy = year).

When you enter a date with this command, you are resetting the
date stored in the Atari.

SET DECIMAL TO In REPORT, the default number of decimal places used in a
{n} numeric field is 2. You may change that number with this SET
command.

SETDEFAULT TO {Default = A}

{drive} .
Whenever you enter the name of a file to be used in relation to a

certaincommand, H & D Base, assumes that the file resides on
the disk in the default drive. You may indicate to the program
that a file resides on a disk in an alternate drive by prefacing the
file name with the letter which represents that drive followed by
acolon.

For example:

USE People (File located on default drive)
USE B:People (File located on “B" drive)

The “SET DEFAULT" command allows you to choose the

7-108

Reference

SET FOLDER TO
{folder name }

SET FORMAT TO
(SCREEN])
(PRINT)
({format file})

SET HEADING TO
{string}

SET INDEX TO
{index file}
[,{index file},...
{index file})

Set, cont.

default disk drive that the program will access when searching
for files which appear without a designated drive letter preceed-
ing them.

A sample “SET DEFAULT" command:

SET DEFAULT TO C:
The trailing colon is optional.
(Default = \)

The SET FOLDER command opens a “folder” on the disk in the
default drive which has been created either from the Atari
DESKTOP or using the CREATE FOLDER command of H & D
Base. A “folder” is a storage area for like files somewhat akin to
a disk partition. If a particular FOLDER is specified using this
SET command, the files specified in any command issued from
H & D Base will be searched for, and written to the “folder” Any
file which is stored in a “folder” cannot be accessed unless that
“folder” has been specified using this SET command.

To terminate the use of a folder enter this command:

SETFOLDERTO \
(Default = SCREEN)

SCREEN: Sends output of @ commands to the screen

PRINT: Sends output of @ commands to the printer

{formatfile}: Uses format previously created for APPEND,
EDIT, and INSERT commands

This SET command adds a second heading to a REPORT. The
{string} can be up to 60 characters long.

This command opens up to seven index files for use in relation
to the database file currently resident. It can be used to keep a
number of INDEXES updated during functions like APPEND,
EDIT, etc.

The first index file named is considered to be the “Master

Index.” The database file will be inindexed order accordingto it,
and it is the one which will be used in all FINDS.

7-109

Reference
[P S T . S RSN e) T i) Bl S [N G I s e S b= SN

Set, cont.
If anindex file is already in use when this command is instituted,
that index file will be closed before the new one is opened.

If you enter just “SET INDEX TO {CR}", all indexes will be
released.

SETMARGINTO This command can be used to change the left margin on the
{nnn} printer during the printing of a REPORT. The number entered
can be no larger than "254".

7-110

Skip

FULL FORM: SKIP [+ {literal number})
(—{literal number})
=
PURPOSE: Used for moving the record pointer in a database
=i

OVERVIEW: The SKIP command is used for moving the pointer forward and

backward through the records of the USE database. Move-

ments are executed relative to the current record position.
EXAMPLE #1: Miscellaneous applications of the SKIP command:

USE Names ok
LIST NEXT 5

00001 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938

00004 ALIMBO, JENNY 9376 Main
Seattle WA 99876 38769

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678 ok

GOTO TOP
SKIP ok
DISPLAY

00002 THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926 ok

SKIP 3 ok
DISPLAY

00005 HAMILTON, JOHN 728 Downey Place
Dallas TX 49039 02678 ok

7-111

Sort

FULL FORM:

SORT ON {expression} TO {file} [ASCENDING]
[DESCENDING]

PURPOSE:

Used for generating a database thatis SORTED on the contents
of a particular field

OVERVIEW:

EXAMPLE #1:

7-112

When the SORT command is issued, a new database {file} is
created using the records of the USE file. The records in the
new file are placed in alphabetic or numeric order according to
the contents of {expression}. That order can be either
(ASCENDING] (the default) or (DESCENDING]. The USE file is
not altered in any way, and remains “active” when the process
of creating the new {file} has been completed.

Note: Records which have been DELETED are not transferred
to the new {file}.

Because a completely new file is created using all (or nearly all)
of the records of the original, make sure there is adequate room
on your data disk for the new file before issuing the SORT
command.

A simple SORT (DELETED records not transferred):

USE Names ok

DELETE ALL FOR Acct:Num > 50000

00005 DELETIONS ok

LIST

00001 HOWARD, ROY 2387 W. Benedict

Miami FL 27865 10235
00002 *THOMAS, BRENDA 87 Laurel - Apt. #5
Chicago IL 48976 76926

00003 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938
00004 *ALIMBO, JENNY 9376 Main

Seattle WA 99876 38769

Reference
RS PR L R S N e RS S Sl g S s e A A e R e T

Sort, cont.

Dallas TX 49039 02678

00006 HORMAN, EILEEN 2E. Plaskett Ct.
Phoenix AZ 87356 58397

00007 *CUCUK, CHERYL 746 Manhassett Lane
SanJose CA 94687 10003

00008 *ZACHRY, DAVE P.O. Box 93876
Reno NV 93713 20835

00009 FAORO, ASHLEY 8467 Quinton
Denver CO B2076 69361

00010 MADDEN, KRIS 24 S. Broadway
Boston MA 02815 48376 ok

. 00005 *HAMILTON, JOHN 728 Downey Place

SORT ON Name TO Namesort
SORTING FILE - PLEASE WAIT ok
USE Namesort ok

LIST

00001 FAORO, ASHLEY 8467 Quinton
Denver CO 82076 69361

00002 HORMAN, EILEEN 2E. Plaskett Ct.
Phoenix AZ 87356 58397

00003 HOWARD, ROY 2387 W. Benedict
Miami FL 27865 10235

00004 MADDEN, KRIS 24 S. Broadway

Boston MA 02815 48376
00005 MURPHY, VINCE 987-B Hallowell
Phoenix AZ 87356 58938 ok

If the "Key” {expression} is “character” in nature, the records
of the SORTED file will appear in order according to their
respective ASCIl code number. In ASCIl order, upper case
letters are less significant than lower case letters. Therefore, in
ascending order, "DUCKWORTH" will appear before “Duck-
worth".

All INDEXES files (type "NDX") are automatically closed when
the SORT command is issued.

You may SORT on any number of fields by using the command
in this form:

SORT ON {field #1} + {field #2} + {field #3} TO {file}
{field #1} is the field of highest priority -- {field #3} the lowest.
EXAMPLE #2: SORTING a database on a number of "Keys”:

USE Names ok
SORT ON City + State + Zip TO Names1

7-113

Reference

Sort, cont.

The INDEX command is very much like the SORT command.
The major difference is that a SORT physically changes the
order of the records in a file. In most cases, using INDEX will
allow greater freedom and speed than SORT.

7-114

Store

FULL FORM: STORE {exp} TO {memvar}

PURPOSE: Used for placing values into memory variables

OVERVIEW: The STORE command computes the value of the {exp} then
stores that value in a memory variable {memvar}. If the {mem-
var} does not exist at the time the command is issued, H & D
Base will create it automatically.
You cannot STORE values to database field variables. Use the
REPLACE command for that purpose.

. The RELEASE command may be used to “dump” the contents

of a {memvar} (or group of {memvars}).

EXAMPLE #1: Miscellaneous STORE commands:

STORE 5367 TO MNum ok

STORE ““Holmes & Duckworth ™' TO MName ok
STORE “T" TO MYesNo ok

STORE MName + STR(MNum,5) TO MCombo ok

DISPLAY MEMORY
MNUM (N) 5367
MNAME (C) Holmes & Duckworth

MYESNO (U .T
MCOMBO (C) Holmes & Duckworth5367
SeTOTALSS 04 VARIABLES USED 00051 BYTES USED

7-115

Sum

FULL FORM: SUM ({scope}] {exp} [,{exp list}] [TO {memvar list}]
[FOR {exp}] (WHILE {exp})

PURPOSE: Used for totaling fields in a database

OVERVIEW: The SUM command is used for adding together numeric
expressions (usually fields) of the database file in USE. Totals
can be generated from {scope} records (default = ALL), or
from selected records (using the optional (FOR {exp}] clause.

You may SUM up to five {expressions} with any one command
using the form “SUM {exp},{exp} {exp}.{exp}.{exp}" The
values will be returned to the screen in this form: {value}
{value} {value} {value} {value}.

EXAMPLE #1: Miscellaneous SUM commands:
USE Ledger ok
LIST ok
00001 20029 5.95 89.38

00002 58938 52.27 2898.86
00003 10003 267.92 10826.62
00004 99288 28.26 7822.22
00005 48376 9.37 728.98
00006 00012 356.90 12872.90
00007 76926 8291.92 102930.83
00008 20835 26.00 372.50
00009 02678 105.83 2039.46
00010 83789 3893.29 68278.28
00011 10235 4.29 83.83
00012 38769 1083.36 8327.73
00013 69361 356.01 9367.62
00014 20835 10.50 175.00
00015 82919 2.98 2995 ok

SUM Cur:chgs

14494 .85 ok

SUM Balance
226844.16 ok

SUM Cur:chgs,Balance

Reference
R RN AR U s LA Cu s 100 o 4 S e i e MR A A S A PR L
Sum, cont.

14494.85 226844.16 ok
SUM Cur:chgs + Balance
241344.01 ok

LIST FOR Acct:Num > 80000

00004 99288 28.26 7822.22
00010 83789 3893.29 68278.28
00015 82919 2.98 29.95 ok

SUM Cur:chgs,Balance FOR Acct:Num > 80000
3924.53 76130.45 ok

If the optional TO clause is included in the statement, the SUM
will be stored to the designated {memvar } as well as displayed
on the screen. If the specified {memvar} doesn't exist when the
SUM command is issued, it will automatically be created.

EXAMPLE #2: Storing SUMS to memory variables:

USE LEDGER ok
SUM Cur:chgs,Balance TO MCharge,MBalance ok
STORE MCharge + MBalance TO MTotal ok

. DISPLAY MEMO
2 MCHARGE (N) 14494.85
MBALANCE (N) 226844.16
MTOTAL (N) 241344.01

“*TOTAL** 03 VARIABLES USED 00024 BYTES USED

7117

Text

FULL FORM:

TEXT
{text}
ENDTEXT

PURPOSE:

Used for displaying blocks of text without the need of special
formatting

OVERVIEW:

EXAMPLE #1:

7-118

When the TEXT statement appears in the body of a COM-
MAND FILE, all text between it and a concluding ENDTEXT
statement is transferred as it appears directly to the screen or
printer (depending on the SET status).

If an ampersand symbol (&) is included in the text, it will not be
expanded (see “&"). If a "tilde” (~) is included at the end of a
line of text, the beginning of the next line will be "moved up” to
fill the blanks between it and the right margin. Use the TEXT
command as a handy alternative to multiple "@...SAY"s or
question marks (?).

Command File:

TEXT
Four score and seven years ago, our Fathers brought forth upon this
continent a new nation, conceived in liberty and dedicated to the propos-
tion that all men are created equal.

USE Names
INDEX on Name to Nameind

112@3#4%67 *8(9)0
ENDTEXT

Total

FULL FORM:

TOTAL ON {key} TO {database} (FIELDS {list}] (FOR {exp}]
(WHILE {exp})

PURPOSE:

Used for generating a database which includes subtotals for
like records

OVERVIEW:

The TOTAL command produces results which are very similar to
the subtotal capability of the REPORT command. With the
TOTAL command, however, subtotals are placed in a {data-
base} instead of appearing on the screen or printer. The USE
database must be either SORTED by the {key } or INDEXED on
the {key}.

When issued, the TOTAL command will create a record in the
TO {database } for each unique value of {key } appearing in the
USE database. Fields of that record which are numeric in
nature will be TOTALED.

If the TO {database} already exists when the TOTAL command
is issued, its structure will be used to determine which fields of
the USE database will be transferred. In other words, any fieldin
the USE database which does not have a matching field in the
TO database will not be transferred.

If the TO database does not exist when the TOTAL command is
instituted, the structure from the USE database will be copied to
the TO file. Records which have been combined from the
information of two or more records of the original (USE) data-
base will have TOTALED numeric fields and data from the last
record of the like {key} in all other fields.

If the optional “FIELDS {list}" clause is included, only the
numeric fields listed in it will be TOTALED.

7-119

Reference
| e U e R R TS,] e R T TR B R e SRR

Total, cont.

The TOTAL command can also be used to remove duplicate
records from a database. Because non-numeric fields in
"FIELDS {list}" are not totaled, duplicate records with the same
{key} will be eliminated.

EXAMPLE #1: A photographer has received orders from a number of clients,
some of which are for the same picture. How many of each
picture to print?

USE Orders ok
DISPLAY STRUCTURE

STRUCTURE FOR FILE: ORDERS.DAT
INDEX IN USE: NONE

NUMBER OF RECORDS: 10

PRIMARY SELECTED

FIELD NAME TYPE LENGTH DEC
01 NAME o] 030

02 PICTURE c 003

03 NUM:ORD N 003

TOTAL BYTES: 00037 ok
INDEX ON Picture TO Picind ok

SET INDEX TO Picind ok

LIST OFF

Montgomery Plaster % 4

Ajax Fireworks 14 5

Keller Fireplace 14 1

Truffle's 50 7

Frantz Muffler 88 14

Ingram Tool & Die 156 3

Cutler Television 254 2

Trophy Heaven 254 19
Autosound 254 8

Mickey and Joe's 419 4 ok

USE Pictotal ok
DISPLAY STRU

STRUCTURE FOR FILE: PICTOTAL.DAT
INDEX IN USE: NONE

NUMBER OF RECORDS: 0

PRIMARY SELECTED

FIELD NAME TYPE LENGTH DEC
01 PICTURE Cc 003

02 NUM:ORD N 003

TOTAL BYTES: 00007 ok

USE Orders INDEX Picind ok

Reference

Total, cont.
TOTAL ON Picture TO Pictotal
7 RECORDS COPIED ok
USE Pictotal ok
LIST OFF
7 4

14 16

50 7

88 14
156 3
254 29
419 4 ok

Note condensation of orders for pictures #14 and #254.

7121

Update

FULL FORM: UPDATE FROM {database} ON {key} (ADD {field list}]
(RANDOM] [REPLACE ({field list}} ({field} WITH {from-field}]

PURPOSE: Used for modifying a database with data from another database
—r———
OVERVIEW: Using the UPDATE command, data in the USE database file

can be modified using the information from an alternate {data-
base}. When run SEQUENTIALLY (without specifying the
[RANDOM)] option), the program compares the contents of the
{key} in the first record of the USE database file against the
contents of the {key} in first record of the FROM database file.
Whenever two {keys } match, the remainder of the the UPDATE
command is executed on the record of the USE database file. It
then compares the first record of the USE database with the
second record in the FROM database. If the value of the {key}
inthe FROM database is greater than that of the USE database,
the USE database advances one record. These "hopscotch”
comparisons continue until the bottom of one of the files is
reached. When the [RANDOM)] option is included in the
UPDATE statement, the program executes an internal FIND
command to search for matches. Suffice it to say that the same
results will be obtained regardless of which form you use.

Depending upon which way the UPDATE is done (SEQUEN-
TIALLY or RANDOMLY), the following steps must be taken
before the UPDATE command is actually issued:

SEQUENTIAL:

The USE file must be either SORTED or INDEXED (with the
INDEX in USE) on the same {key} as the FROM database.
The FROM file must be SORTED (not INDEXED) on the same
{key} as the USE database.

7-122

EXAMPLE #1:

RANDOM:

Reference

Update, cont.

The {key} is assumed to be a single field in the FROM file, a
field that can match INDEXES in the USE database. The
FROM file does not have to be SORTED. The USE database
must be INDEXED (not SORTED) on the {key}, and the

INDEX must be in USE.

An application of the UPDATE command:

USE Autos ok

SORT ON Auto:Num TO Newautos ok
USE Newautos ok

DISPLAY STRUCTURE

STRUCTURE FOR NEWAUTOS.DAT
INDEX IN USE: NONE

NUMBER OF RECORDS: 4
PRIMARY SELECTED

FLD NAMETYPE LENGTH DEC
001 AUTO:NUMC 008

002 ON:HANDN 005

003 COSTN 010 002
TOTAL BYTES: 00024
LIST

00001 BUIK778811 2150.00
00002 DATS14985 1200.00
00003 PACK56789 1895.00
00004 STUD123414 2300.00

USE Invntory ok

INDEX ON Auto:Num TO Invidx
SET INDEX TO Invidx ok
DISPLAY STRU

STRUCTURE FOR INVNTORY
INDEX IN USE: INVIDX

KEY: AUTO:NUM
NUMBER OF RECORDS: 6
PRIMARY SELECTED

FLD NAMETYPE LENGTH DEC
001 AUTOC pIEE =y

002 AUTO:NUMC 008

003 ON:HANDN 005

004 COSTN 010 002

TOTAL BYTES: 00037

LIST

ok

ok

7-123

Reference

e M ST ERN £ re SREIR R L A Aa s
Update, cont.

00003 BUICK ELECTRA BUIK7788 7 2150.00
00004 DATSUN 510 DATS1498 2 1075.00
00002 PACKARD DELUXE PACKS5678 5 1895.00
00001 STUDEBAKER STD. STUD1234 9 2300.00
00005 TOYOTA SR5 TOYO7390 6 1675.00
00006 VOLKSWAGON BUG VOLK1872 3 1550.00 ok

UPDATE ON Auto:Num FROM Newautos ADD On:Hand REPLACE Cost

ok

LIST

00003 BUICK ELECTRA BUIK7788 18 2150.00
00004 DATSUN 510 DATS1498 T 1200.00

00002 PACKARD DELUXE PACKS5678 14 1895.00
00001 STUDEBAKER STD. STUD1234 23 2300.00
00005 TOYOTA SR5 TOYO7390 6 1675.00
00006 VOLKSWAGON BUG VOLK1872 3 1550.00 ok

7-124

Use

FULL FORM:

USE
USE [{database file})

USE {database file} INDEX {index file} [, {index file}...]

PURPOSE:

Used for opening a database for future operations

OVERVIEW:

EXAMPLE #1:

The USE command is used to tell H & D Base which {database
file} is to be opened for potential manipulation. The {database
file} must exist before the command is issued.

If a database file is already in USE when the command is
executed (with or without a specified {database file}), it is
automatically closed (unless it is re-chosen in which case it is
closed and reopened). An INDEX file (or files) previously cre-
ated for use with a particular database can be opened by
entering the command in this form:

USE {database file} INDEX {index file} [, {indexfile}...)

Up to seven index files may be USED with a {database file} at
the same time. The first {index file} specified is the “Master
Index.” All FINDS will use only this INDEX and the database will
be in order according to the “Master Index." All of the {index
files} specified in the statement will automatically be updated
anytime their “Keys" are modified (by the APPEND, EDIT,
REPLACE, READ, or BROWSE commands).

Applications of the USE command:

USE ok

USE People ok

USE Names INDEX Nameind ok

USE Names INDEX Nameind, Cityind, Zipind ok

7-125

Wait

FULL FORM:

WAIT (TO {memvar})

PURPOSE:

Used to pause in a program, usually for input purposes

OVERVIEW:

EXAMPLE #1:

7-126

When the WAIT command is encountered in the body of a
COMMAND FILE, a "WAITING" prompt appears on the screen
and all operations come to a complete halt.

The depression of any single key on the keyboard causes the
continuation of command execution. If the optional “TO {mem-
var}" clause is specified, the character which is represented by
the pressed key will be entered into the {memory variable}.

If the key which is pressed is non-printable (i.e., RETURN, LINE
FEED, or any other {CTRL} character, the value of the {mem-
var} is set to a blank.

Note: Because only one character can be entered, it is not
necessary to press <CR>.

An application of the WAIT command:

WAIT TO MWait
WAITING 2 ok
? MWait

20k

Ina COMMAND FILE:

USE Names ok

DO WHILE .NOT. EOF
DISPLAY OFF
7" PRESS ANY KEY”
WAIT
SKIP

ENDDO

APPENDICES

Appendix A

@ The Nature of a Database

Definitions

Data - Significant items of information.
Database - A large collection of data.

Database Management System - A program for setting up and
manipulating a database.

Relational - The ability of a Database Management System to
manipulate two files concurrently.

How a Database is

. Organized

The information which has become such an important part of our
daily lives is most commonly kept on FORMS. A FORM is a piece
of paper upon which is printed a number of titles prompting us to
fill-in information required by an individual or organization.

Each title, and the calibrated line which follows it, is a FIELD of
information which the individual or organization feels important
to store on you and the rest of the people which complete that
particular FORM.

When you filla FORM out, it becomes a RECORD of information
which pertains solely to you. For example, when you first visited
your doctor’s office, he had you fill out a FORM. When finished,
it was no longer a FORM, it was a RECORD which dealt
exclusively with information on you, his patient.

RECORDS which have been filled out on the same FORM are
grouped together in a storage facility called a FILE. Your doctor
undoubtedly has a number of filing cabinets full of records
pertaining to all of his clients. One of those cabinets contains the
“Patient FILE” which he accesses in order to update your
health RECORD, prepare a special mailing, or send out bills.
Another might contain the “Prescription FILE" or the “Medicare
FILE” (and so on).

A1

Appendices

A 2 0y S T R AR o P - S R L i
The Nature of a Database, cont.

A Computer The structure of a computer database uses all of the compo-

Database nents discussed above. Users enter the specifications of a
FORM on the screen which is comprised of a number of differ-
ent FIELDS. There are no limitations on what the FIELDS can
deal with (people, places, things, etc.), and few limitations on
how large they can be.

Information is entered on this blank FORM, creating an individ-
ual RECORD with each completed FORM. The number of
RECORDS a DATABASE user can enter is limited only by the
size of each RECORD and the capacity of his or her disk drive.
Information entry can be done in any number of sittings, in
random order. The RECORDS are placed in a FILE on the disk
drive which is identified by a special name defined by the user.
Any number of FILES can be created.

Once entered, the information included on the RECORDS in
this FILE can be manipulated in a virtually limitless number of
ways. It can be listed (in random or sorted order), reviewed
selectively, edited, appended, printed, and more and more.
Various reports can also be generated using it.

SLEE S
A Database The creation and manipulation of a DATABASE in such a man-
Management ner is accomplished through the use of a "Database Manage-
System ment System.” No two "Database Management Systems" are

the same. Some have rigid, non-alterable FORMS, while others
simply don't provide the breadth of functions needed to proc-
ess data properly.

H & D Base is a "Database Management System.” It can do all
of the things described above -- and much more. With H & D
Base the commands which perform the manipulation of data
can be grouped together into “programs,” which, when run,
perform the same task over and over again. H & D Base is also
unique in that it is “Relational " It can process the data from two
different FILES at the same time.

Appendix B

Using Non-H & D Base Files

Introduction

If you have COMMAND FILES which were developed for use
with “dBASE II” or data files which were generated by an
alternate database management system, there is a good
chance they will transfer to H & D Base (and vice-versa). The
critical issue is whether or not the files can be set-up in either
“SDF" (System Data Format) or “DELIMITED" formats.

SDF and
DELIMITED
Files

A file which is stored in “SDF” format has all of its fields on one
line with a {CR} at the end of the line. Note: It is assumed that
{CR}contains both a {CR} and aline feed. Example:

AJAX 2345S.Maple Akron OH48378 748.95{CR}
“DELIMITED” files have commas between each field and
delimiters (usually single or double quotes) around all fields

which are “Character” in nature. A {CR} also appears at the
end of the line. Example:

“AJAX " ,"2345S.Maple " “Akron”,“OH",“48378", 748.95{CR}

Receiving Files

Totransfer afileto H & D Base, first make sure that file isin either
the “SDF" or “DELIMITED" format. Note: All “"dBASE II" COM-
MAND FILES are “SDF” in nature.

If the file comes from another Atari ST database program, just
insert the disk on which it is stored into the drive. If the file comes
from a database program on another computer, it must be sent
to the Atari via a modem or direct connect cable (you must have
communications software packages on both machines to do
s0).

If the file transferred is a “dBASE II" COMMAND FILE, chances

A-3

Appendices

SRR A S B e e ST L TR N S A i L)
Using Non-H & D Base Files, cont.

are that it will load in and run with the “DO {command file}"
statement. If not, check these possible causes:

1.) H & D Base uses a “tilde” (~) at the end of the first line of
commands which are longer than one line. These tildes
must be replaced with semi-colons (;).

2.) There can be no embedded {CTRL} characters (except
{CR}Ys)

3.) The first word in any H & D Base command cannot be
abbreviated. They must be whole words.

If the file transferred is a data file with information in either the
“SDF” or “DELIMITED” format, you must first CREATE a data-
base with a structure identical to the one from which it was sent.
When finished, enter one of these two sequences:

SDF:
USE {Name of H & D Base File}
APPEND ALL FROM {Name of SDF File} SDF

DELIMITED:
USE {Name of H & D Base File}
APPEND ALL FROM {Name of DELIMITED File} DELIM-
ITED

The information should now reside in the H & D Base data file.

Sending Files In order to transfer a H & D Base data file to another database
program, first format it in “SDF" or “DELIMITED” format using
the "COPY" command. These are the correct forms:

SDF:
USE {Name of H & D Base File}
COPY ALL TO {Name of SDF File} SDF

Note: You may copy specific fields and records using the COPY
command as outlined in the “Reference” section.

Appendices

R o B B S e TR S N e M IR e
Using Non-H & D Base Files, cont.

. DELIMITED:
USE {Name of H & D Base File}

COPY ALL TO {Name of DELIMITED File} DELIMITED

Note: You may copy specific fields and records using the COPY
command as outlined in the “Reference” section. You may also
specify an alternate delimiter. If an alternate delimiter is not
specified, double quotes will be used.

If the file is to be used in another Atari ST database program,
just load that program and proceed. If the file is to be used with
a database program on another computer, it must be sent to
that computer via a modem or direct connect cable (you must
have communications software packages on both machines to
do so).

All COMMAND FILES generated by H & D Base are in “SDF"
format and should be able to be run by the “dBASE II" program

. on other computers. If problems arise, check to make sure that
no “tildes” (~) appear at the end of the first line in continuous
line commands. In “dBASE II” they must be semi-colons.

A-5

DATA FILE
HEADER

Appendix C
H & D Base File Structure

BYTE CONTENTS DESCRIPTION
0-3 4 Bytes Date (YYMMDD) - Right Justified
47 32 Bit Number Number of Records
89 16 Bit Number Number of Fields

10-11 16 Bit Number Record Size

12-31 20 Bytes Reserved (Password)

32-51 20 Bytes Field Descriptor #0

52-7 20 Bytes Field Descriptor #1

1992-2011 20 Bytes Field Descriptor #97

Appendices

A R T T I T R AT a5, A e .5)
H & D Base File Structure, cont.

. DATA FIELD
DESCRIPTOR

| . BAT (2k)

BYTE CONTENTS DESCRIPTION
0-10 11 Bytes Field Name - First Chr. = Count
1" 1 Byte Field Type = C,N,or L (0,1,2)
12-13 16 Bit Number Field Data Offset to Beg. of Buffer
14 1 Byte Field Length
15 1 Byte Field Decimal Count
16-19 4 Bytes Reserved for Future Use
INDEX HEADER & 0-1 02 Index Code
2-3 Key Length (+ 1 if odd)
4-5 Number of Blocks (BAT)
6-105 Key Expression (str)
106-109 (Reserved)
110-111 1st Block # in Index
112-113 2nd Block # in Index
114-115 3rd Block # in Index Block
— Allocation
" " Table
2028-2029 960th Block # in Index

A-7

Appendices

TN a0, NS AR e V550 A2 IR B N~ B e e
H & D Base File Structure, cont.

INDEX BLOCKS CONTENTS CONTENTS

(4'() (4 BYTES) LENGTH = KEY (+ 1 IF ODD)
Numbgr of Keys (Blank)

(Immed'ately In This Block

followlng the Record # Key Expression in ASCII (with Count)

INDEX HEADER &

BAT) Record # Key Expression in ASCII (with Count)

Last Record # Key Expression in ASCII (with Count)

Index

Function, 7-50

& Command, 6-29, 7-6, 7-46, 7-51, 7-118

* Command, 6-7, 6-32, 7-75

* Function, 7-48

.CMD Files, 6-2, 6-5, 6-6, 6-25, 6-31

.DAT Files, 3-3, 5-7, 7-25, 7-29, 7-33, 7-36

.FMT Files, 6-25, 7-12

.FRM Files, 5-21, 5-25, 7-3, 7-92, 7-95

.MEM Files, 7-99, 7-101

.NDX Files, 5-16, 7-3, 7-57, 7-113

.TXT Files, 5-37, 7-25, 7-107

? Command, 3-27, 6-32, 7-5

@ Command, 6-19, 7-8, 7-15, 7-21, 7-42, 7-43,
7-81,7-118

Sign (See "Tilde Sign")

A

ACCEPT Command, 6-18, 7-13
ADDITIVE Command, 7-99
AMPERSAND Command (See “&")
APPEND Command, 3-8, 5-34, 6-23, 7-14, A-4
ASCII, 4-20, 7-50, 7-113
ASTERISK Command (See “*")
AT Command (See “@")
Advanced Command Tutoral, 5-1
Allocation Table, Block, A-7
Alternate

Drives, 3-2, 7-15, 7-108

Set, 5-37, 7-107
Append

Blank, 6-23, 7-14

Control Keys, 3-9

From, 5-6, 7-14, 7-15
Arithmetic Operators, 4-10, 7-76
Ascending Order, 5-12, 7-57, 7-112
Atari

Developer's Kit, iv, 1-6

GEM, 1-6

TOS Operating System, 1-6, 2-1, 2-4

B

BLANK Command, 6-23
BROWSE Command, 3-15, 7-18
Back-up, Files, 5-2, 5-6
Before, Insert, 7-61
Beginning Command Tutorial, 3-1
Bell, Set, 5-34, 7-104
Blank String Function, 4-18, 7-47, 7-82
Blank

Append, 7-14

Insert, 7-61
Blanks, Trailing, 4-16, 7-53
Block Allocation Table, A-7
Blocks, Index, A-7
Boot, System, 2-1
Bottomn, 3-21, 7-54
Browse, Control Keys, 3-16

C

CANCEL Command, 6-30, 6-32, 7-20, 7-35
CASE Command, 7-39
CLEAR Command, 5-41, 7-21
CONTINUE Command, 5-19, 7-22, 7-68
COPY Command, 5-2, 7-23, 7-79, A-4
COUNT Command, 5-26, 7-27
CREATE Command, 3-3, 7-29
Carry, Set, 5-34, 7-15, 7-62, 7-104
Change
Information, 3-12, 3-15
Characteristics, 5-34
File Name, 5-7
Character
String, Definition, 7-2
Color, 5-38, 7-107
Field, 3-4
Characteristics, Program, 5-34
Clear
Gets, 7-21
Screen, 7-44
Close, Command File, 6-16
Colon, Set, 5-35, 7-105

—

H & D Base

Index, cont.

Color, Set, 5-38, 7-107
Command File

> BT A-15

Accept Data, 6-18

Cancel, 6-30, 7-20

Choices, 6-10

Closing, 6-16

Data Input, 7-126

Debug, 6-32

Decisions, 6-10

Doing, 7-38

Echo, 5-35

Editor, 6-2, 6-30, 7-73

Endif, 6-10

Endtext, 6-9

Enter, 6-5

Enter Data, 6-17

Establish, 6-2

Exiting, 7-100

General, 1-8

If, 6-10

Input Data, 6-18, 7-60

Leave, 6-30

List, 7-67

Modify, 6-2, 7-71, 7-73

Nature of, 6-2

Notes, 6-7, 7-75

Print, 6-31, 6-67

Quit, 6-30

Remarks, 7-86

Remarks in, 6-8

Repeat, 6-13

Return, 8-15

Run, 6-6

Text, 6-8, 7-118

Waiting, 7-126
Command Files, “"dBASE", A-3
Command Files, Nested, 6-15, 7-39
Command Level, 1-8
Command

Definition, 7-2

Expanded, 3-17

Nested, 6-12

Short Cut, 1-8

Syntax, 1-8

Concatenation, 4-15
Confirm, Set, 5-35, 7-105
Console, Set, 5-35, 7-105
Constants
General, 4-4
Logical, 4-5
Numeric, 4-4
String, 4-4
Control Key, 1-10
Control Keys
Append, 3-9
Browse, 3-16, 7-18, 7-18
Command File, 6-4, 7-73
Edit, 3-13, 7-41
Modify, 7-71
Read, 7-81
Coordinates, Row & Column, 6-19, 6-26, 6-27,
6-28, 7-8
Copy
Database, 5-1
File, 7-72 ‘
Program, 1-2, 2-2
Structure, 5-3, 7-25
Counter, Do...While as a, 6-14
Create
Folder, 7-29, 7-32, 7-109
Report, 5-21
Cstring, Definition, 7-2
Cursor Control
Command File, 6-3, 7-73
Edit, 7-41
General, 1-10
Modify, 7-71
Read, 7-81

D

DELETE Command, 3-23, 7-32

DISPLAY Command, 3-17, 7-5, 7-34

DO Command, 6-6, 6-11, 7-38

DO WHILE Command, 6-13, 7-39

Data Disk, Loading, 2-5 .
Data Field Descriptor, A-7

Data Field Variables, 4-6

Data File Header, A-6

Data Files, Alternate, A-3

H & D Base
o e e - e
Index, cont.

Data
Accept, 6-18, 7-13
Carry, 7-104
Definition, A-1
Disk, 2-5
Display on Printer, 6-26
Edit, 3-12
Enter, 3-8, 6-17
Input, 6-18, 7-60
Insert, 7-61
Operators, 7-76
Replacing, 5-9, 7-88
Database Management System, A-1, A-2
Database
Append From, 5-6
Browse, 7-18
Copy, 5-2
Count Records, 5-26
Create, 3-3, 7-29
Definition, A-1
Design, 6-32
Find Records, 5-18, 5-19
Modify Structure, 5-4
Nature of, 1-1, A-1
Order, 5-12
Organization, A-1
Primary, 7-64, 7-89, 7-102
Re-Name, 7-87
Relational, 1-1, A-1
Reports from, 5-21
Review, 3-17
Secondary, 7-64, 7-89, 7-102
Select, 7-102
Sort, 5-12
Structure Parameters, 3-4
Total, 5-26
Use, 3-7,7-125
Databases
Join, 5-30, 7-64
Multiple, 5-29
Select, 5-29
Date Function, 7-47
Date, Set, 5-38, 7-96, 7-1-8
Decimal Place Function, 4-19, 7-47
Decimal, Set, 5-39, 7-108

Default, Set, 5-39, 7-108
Definitions, Symbol, 7-2
Delete

Field, 7-105

File, 5-7

Records, 7-83

Set, 7-46
Deleted Record Function, 4-19, 7-48
Deleted, Set, 5-35, 7-28, 7-33, 7-67, 7-78,

7-105
Delimited Files, 7-15, 7-24, A-3
Delimiter, Definition, 7-2
Descending Index, 5-12, 7-57, 7-112
Descriptor, Data Field, A-7
Disk Drive, Alternate, 7-108
Disk

Format, 2-2

Program, 2-5
Display

Command File, 6-31, 7-37

Data with @, 6-19

Erase, 7-44

Fields, 7-35

Memory, 4-9, 7-36

Records, 7-35

Status, 7-35

Structure, 7-35

Text & Data, 6-19

On Printer, 6-26
Do While as Counter, 6-14
Do While, Loop, 7-70
Drive, Default, 5-39
Drives, Using Alternate, 3-2
dBASE Il Files, A-3

E

EDIT Command, 3-12, 7-41, 7-82
EJECT Command, 6-28, 6-28, 7-43
ELSE Command, 6-10, 6-11, 6-15, 7-56
ENDDO Command, 6-13, 7-39, 7-39
ENDIF Command, 6-10, 6-15, 7-56
ENDTEXT Command, 6-9, 7-118

ERASE Command, 3-1, 6-33, 7-9, 7-44, 7-81

Echo, Set, 5-35, 7-105
Edit, Control Keys, 3-13, 7-41

H & D Base

Index, cont.

Edit, Cursor Control, 7-41

Editor, Command File, 6-2, 6-3, 7-73

Eject, Set, 5-36, 7-43, 7-91, 7-95, 7-105

Elements of Expressions, 4-2

End of File, 5-19, 6-15

End of File Function, 4-19, 7-48

End of Locate, 5-19, 7-69

Erase Text, @ Command, 6-20

Error Messages, Program, 1-8

Escape Key, 1-11, 5-14, 5-17, 5-27, 5-27, 6-30,
7-35,7-79, 7-106

Escape, Set, 5-36, 7-106

Exact, Set, 5-36, 7-46, 7-106

Exiting the Program, 5-41

Expanding Commands, 3-17

Expressions, 3-18, 4-2, 4-2, 4-2, 4-4, 5-30,
5-31, 6-20, 7-116

Expressions, Definition, 7-2

Expressions, List, 7-2

Extended, Copy Structure, 7-23, 7-25, 7-31

F

FIND Command, 5-17, 5-19, 6-29, 7-45
FOR Command, 4-1, 5-11, 7-4, 7-23, 7-27, 7-32
Field

Browse, 7-18

Character, 3-4

Copy, 7-23

Copying, A-5

Data Descriptor, A-7

Database, A-1

Display, 7-35

General, 3-18

Key, 5-12, 5-14, 5-15, 5-18, 5-25, 7-3, 7-36,

7-42, 7-45, 7-54, 7-57, 7-84, 7-89, 7-113,
7-123,7-125

List, 7-2

Locate, 5-18, 7-68

Logical, 3-4

Numeric, 3-4

Replace, 7-88

Report, 5-23, 7-95

Specify, 5-30

Total, 7-119

Sum, 7-116

File Function, 4-19, 7-49
File Header, Data, A-6
File
Back-Up, 5-2
Back-up, 5-6
Closing, 5-41
Command, 6-2
Copying, A-4
Create, 3-3, 7-29
Database, A-1
Definition, 7-3
Delete, 5-7
Delimited, 7-15, A-3
Display, 7-36
Edit, 3-12
End of, 4-19
Form, 7-3, 7-91
Index, 5-15, 5-16, 5-17, 5-40, 7-45, 7-57,
7-69, 7-78, 7-84, 7-109, 7-123
Name Parameters, 3-3, 7-29
Pack, 3-25, 7-78
Plan, 6-32
Primary, 5-29, 5-36, 7-21
Re-Name, 7-87
Rename, 5-15
Report Form, 5-21
Secondary, 5-29, 5-36
Sort, 7-112
Structure, A-6
Sum, 7-116
USE, 7-31
Update, 5-31, 7-122
Use, 7-125
Using Alternate, A-3
Files
“CMD", 6-2, 6-5, 6-6, 6-25, 6-31
“DAT", 3-8, 5-7, 7-25, 7-29, 7-33, 7-36
“FMT", 6-25, 7-12
“FRM", 5-21, 5-25, 7-3, 7-92, 7-95
“MEM", 7-99, 7-101
“NDX", 5-16, 7-3, 7-57, 7-113
“TXT", 5-37, 7-25, 7-107
Files, List, 7-67
Files, Non-H & D Base, 1-4
Floating Dollar, 7-11

H & D Base
R e

Index, cont.
Folder Clear, 5-41, 7-21
Create, 7-29 Picture, 6-23
Set, 7-31, 7-109 Read, 6-21, 7-81
Form File (See “FRM File")
Format File, Set Format to, 5-40, 7-12, 7-15, H
Fgrriza'tT o e BN HELP Command, 1-9, 7-55
Disk, 2.2 Hard Disk, Program Transfer, 1-3
Set, 5-40, 6-25, 6-27, 7-8, 7-12, 7-15, 7-42, Header, Index. A7
7-43,7-62, 7-81, 7-82, 7-109 Header, Set, 7-90
System Data, 7-15, 7-24 Heading, Set, 5-40, 7-95, 7-109
Forms, Record, A-1
Forth I
Programming Language, iii, 1-6, 5-36, 7-106 IF Command, 6-10, 6-15, 7-56
Manual, 1-6 INDEX Command, 5-15, 7-57
Set, 5-36, 7-106 INPUT Command, 6-18, 7-60
From, Append, 7-14, 7-15 INSERT Command, 7-61
Function Index Blocks, A-7
#,7-50 Index File, 5-17, 7-69, 7-78, 7-84, 7-123, 7-125
*, 7-48 Index Header, A-7
Blank String, 4-18, 7-47, 7-82 Index
Date, 4-18, 7-47 File, 7-3, 7-45
Decimal Place, 4-19, 7-48 Master, 7-109, 7-125
Deleted Record, 4-19, 7-48 Set, 5-17, 5-40, 7-59, 7-109
End of File, 4-19, 7-48 Insert
File, 4-19, 7-49 Before, 7-61
Integer, 4-19, 7-49 Blank, 7-61
Integer to String, 4-20, 7-49, 7-59 Record, 3-11
Number to Character, 4-20, 7-50 Integer Function, 4-19, 7-49
Rank, 4-20, 7-50 Integer to String Function, 4-20, 7-49, 7-59
Record, 4-20, 7-50 Interacting with System, 3-27
String Length, 4-20, 7-51 Intermediate Command Tutorial, 4-1
String to Integer, 4-20, 7-51
Substring, 4-21, 7-52, 7-59 J
Substring Search, 4-21, 7-52
Tim, 4-21, 7-53, 7-59 JOIN Command, 5-30, 7-64
Type, 4-21, 7-53
Uppercase, 4-21, 7-53 K
Key, 5-12, 5-14, 5-15, 5-18, 5-25, 7-3, 7-36,
G 7-42,7-45, 7-54, 7-57, 7-84, 7-89, 7-113,
7-123, 7-125

GEM (See “Atari GEM")
Key, Control, 1-10
GET Command, 6-21, 6-26, 7-8
GO Command (See “GOTO Command”) K‘;yéyf,af:ﬁ Yillh el 517, 528, 030,58,
GOTO Command, 3-21, 7-54 g
Get

H & D Base

Index, cont.

L

LIKE Command, 7-35, 7-101
LIST Command, 3-20, 7-35, 7-67
LOCATE Command, 5-18, 7-68
LOOP Command, 6-14, 7-70
Linkage, Set, 5-36, 7-103, 7-106
List

Command File, 6-31, 7-67

Field, 7-2

Files, 7-67

Memory, 7-67

Status, 7-67

Structure, 7-67
Literal Number, n, 7-3
Load

Data Disk, 2-5

Program, 2-3
Locate, Continue, 5-19, 7-22, 7-68
Logical

Constants, 4-5

Operators, 4-13, 7-77

Variable, 5-15

Field, 3-4

M

MODIFY Command, 6-2, 7-71
Macro Substitution, 6-29, 7-46
Manual, Typo Conventions, 1-7
Margin, Set, 5-40, 7-110
Master Index, 7-125
Memory Variable

Close, 5-41

General, 4-7, 7-3

List, 7-3

Release, 4-9, 7-85

Restore, 7-99

Save, 7-101

Store, 4-7, 7-115
Memory

Display, 4-9, 7-35

List, 7-67
Memvar (See “Memory Variable”)
Modify

Command File, 6-2, 7-73

Structure, 3-6, 5-4, 7-71
Multiple Databases, 5-29

N

NOTE Command, 6-32, 7-75
Name
Database, 3-4
File, 3-3
Nested Command Files, 6-12, 6-15, 7-39
Number to Character Function, 4-20, 7-50
Numbers
Record, 3-12
Rounding, 6-29, 7-49
Numeric Constants, 4-4
n, literal number, 7-3

0

OK Prompt, 1-8
OTHERWISE Command, 7-39
Operators
Arithmetic, 4-10, 7-76
General, 4-10, 7-76
Logical, 4-13, 7-77
Relational, 4-11, 7-76
String, 4-15, 7-77
Order
Ascending, 5-12
Descending, 5-12

e

PACK Command, 3-25, 7-78
PICTURE Command, 6-23, 6-26, 7-8, 7-10
PLAIN Command, 7-90
Paper, Eject, 7-43, 7-79, 7-95, 7-105
Parameters

Database Structure, 3-4

Expression, 4-2

Report, 5-22
Pointer, Record, 3-17, 3-21, 7-54, 7-111
Precedence

Arithmetic, 7-76

Logical, 7-77

String, 7-77

H & D Base

Primary Database, 5-29, 5-36, 7-21, 7-64,

7-89, 7-102
Print

Command File, 6-31, 6-67

Set, 5-37,6-27, 7-37, 7-43, 7-106

Set Format to, 5-40, 6-27, 7-9, 7-109
Printer

Eject Paper, 5-36, 6-28, 7-43, 7-81, 7-95,

7-105

Set Margin, 5-40

Turn On, 3-1, 5-37, 7-106
Process, Repeat, 6-13
Program (See “Command File")
Program

Characteristics, 5-34

Command File, 1-8

Command Level, 1-8

Copy, 1-2, 2-2

Debug, 6-32

Disk, 2-5

Error Messages, 1-8

File Structure, A-6

Hints, 6-32

Level, 1-9

Loading, 2-3

Manual, 1-5

Quit, 3-2, 7-80

Register, 1-3

Replace, 1-3

Reset, 5-41, 7-21

Serial Number, 1-2

Specifications, 1-2

Supplementary, 1-4

Support, 1-3

System Requirements, 1-1

Transfer to Hard Disk, 1-3

Typo Conventions, 1-7

Use, 1-8
Programming Tutorial, 6-1

Q

QUIT Command, 3-2, 5-41, 6-30, 7-80
Question Mark Command (See “?")

Index, cont.

R

RANDOM Command, 5-33, 7-122
RE-SORT Command, 5-15
READ Command, 6-21, 6-27, 7-10, 7-81
RECALL Command, 3-24, 7-33, 7-83
REINDEX Command, 7-59, 7-84
RELEASE Command, 4-9, 7-85
REMARK Command, 6-8, 7-75, 7-86
RENAME Command, 5-7, 5-15, 7-87
REPLACE Command, 5-9, 7-88, 7-115
REPLACE, Fields, 5-32
REPORT Command, 5-21, 7-90
RESTORE Command, 7-99
RETURN Command, 6-15, 6-16, 7-38, 7-100
Rank Function, 4-20, 7-50
Raw, Set, 5-37, 7-5, 7-106
Record

Browse, 7-18

Copy, 7-23, A-4

Delete, 3-23, 7-78, 7-112

Display, 7-35

Find, 5-17, 5-19, 6-29, 7-45

Function, 4-20, 7-50

Goto, 7-54

Index, 7-57

Insert, 3-11, 7-61

Locate, 5-18, 7-68

Pointer, 3-17, 7-54, 7-111

Recall, 3-24, 7-33, 7-83

Skip, 7-111

Undelete, 7-83

Update, 5-31, 7-122
Records

Count, 5-26, 7-27

Joining, 5-30

Pack, 3-25, 7-78

Sort, 5-12, 7-112

Sum, 5-27

Total, 5-26
Relational

Database, A-1

Operators, 4-11, 7-76
Release, Memory Variables, 5-41
Replace, Using &, 7-6
Report

H & D Base

Index, cont.

Additional Heading, 5-40, 7-90, 7-109
Form (See “FRM"),
Set Decimal, 5-39, 7-108
Set Margin, 7-110
Subtotals, 7-93
Summary, 7-94
Totals, 7-93
Reset, System, 7-21
Round Off Numbers, 4-19, 6-29, 7-49

Row & Column Coordinates, 6-19, 6-26, 6-27,

6-28, 7-8

S

SAVE Command, 7-101
SAY Command, 6-19, 6-24, 7-8, 7-118
SDF Format (See “System Data Format")
SELECT Command, 5-29, 7-102
SET Command, 5-34, 7-104
SKIP Command, 3-21, 7-111
SORT Command, 5-12, 7-112
STORE Command, 4-7, 7-115
SUM Command, 5-27, 7-116
Scope, 3-18, 5-9, 5-18, 5-26, 7-3
Screen
Display, 5-35
Erase, 7-43
Set Format to, 5-40, 7-8, 7-12, 7-81, 7-109
Secondary Database, 5-29, 5-36, 7-64, 7-89,
7-102
Sequential Order, 7-122
Serial Number, Program, 1-2
Set
Alternate, 5-37, 7-107
Bell, 5-34, 7-104
Carry, 5-34, 7-15, 7-62, 7-104
Colon, 5-35, 7-105
Color, 5-38, 7-107
Confirm, 5-35, 7-105
Console, 5-35, 7-105
Date, 5-38, 7-96, 7-108
Decimal, 5-39, 7-108
Default, 5-39, 7-108

Deleted, 5-35, 7-28, 7-33, 7-46, 7-67, 7-78,

7-105
Echo, 5-35, 7-105

Eject, 5-36, 7-43, 7-91, 7-95, 7-105
Escape, 5-36, 7-106

Exact, 5-36, 7-46, 7-106

Folder, 7-31, 7-109

Format, 5-40, 6-25, 6-27, 7-8, 7-12, 7-15,

7-42,7-43,7-62,7-81,7-82, 7-109
Forth, 5-36, 7-106
Heading, 5-40, 7-90, 7-95, 7-109
Index, 5-17, 5-40, 7-59, 7-109
Linkage, 5-36, 7-103, 7-106
Margin, 5-40, 7-110
Print, 3-1, 5-37, 6-27, 7-37, 7-43, 7-106
Raw, 5-37, 7-5, 7-106
Talk, 5-37, 7-107
Skeleton, 7-4, 7-35, 7-101
Specifications, Program, 1-2
Statement, Definition, 7-2
Status
Display, 7-36
List, 7-67
Store, Spaces, 7-47
String Constants, 4-4
String Length Function, 4-20, 7-51
String Operators, 4-15, 7-77
String to Integer Function, 4-20, 7-51
String, Definition, 7-2
Structure
Copy, 5-3, 7-23, 7-31
Display, 7-35
List, 7-67
Modify, 3-6, 7-71
Parameters, 3-4
Substitution, Macro, 6-29, 7-46
Substring Function, 4-21, 7-52, 7-59
Substring Search Function, 4-21, 7-52
Subtotals, Report, 5-21, 7-93
Summary, Report, 7-94
Support, Program, 1-3
Symbol Definitions, 7-2
Syntax, Command, 1-8
System Data Format, 7-15, 7-24, A-3
System Requirements, 1-1
System, Reset, 7-21

H & D Base

g

TEXT Command, 6-8, 7-118

TOS Operating System, 1-6, 2-1, 2-4

TOTAL Command, 5-28, 7-119

Talk, Set, 5-37, 7-107

Text, Erase, 6-20

Tilde Sign, 4-2, 6-3, 7-74, 7-118, A-4, A5

Top, 3-21, 7-54

Totals, Report, 5-21, 7-93

Trailing Blanks, 4-16, 7-53

Trim Function, 4-21, 7-53, 7-59

Tutorial
Advanced Command, 5-1
Beginning Command, 3-1
Intermediate Command, 4-1
Programming, 6-1

Type Function, 4-21, 7-53

Typographic Conventions, 1-7

U

UPDATE Command, 5-31, 7-122

USE Command, 3-7, 5-16, 5-29, 7-31, 7-125
USING Command, 6-25, 6-26, 7-8, 7-10
Undelete, 3-24, 6-4, 7-33, 7-83

Update, Random, 5-33

Uppercase Function, 4-21, 7-53

\'

Variable, Logical, 5-15
Variables, 4-6

w

WAIT Command, 6-17, 7-126

WHILE Command, 7-4, 7-23, 7-27, 7-32
Word Processor, 6-2

Word Wrap, 7-74

Index, cont.

PROGRAM . HIGHLIGHTS:

| e Over 275 FORTH Commands (Including “calls”
. tothe GEM® Interface — Atari “Developer’s
Kit” Required)

Comprehensive Manual: Introduction,
Starting-up, Tutorial, Reference, Appendices,
& Index Sections Plus Handy Command Card

* On-Screen “Help” System ¢ Includes Sample Mailing List Program (Written
o Elementary Text Editor in H & D Base)

¢ Powerful Report Generator with Saved Reports e Maximum Records/File: Limited Only by Disk
* Sort on Any Field to Any Level Capacity

» Compatible with “dBASE II"® Command Files e Maximum Fields/Record: 97

¢ Compatible with all “SDF” and “Delimited” Data Files *® Maximum Characters/Field: 250

e Not Copy Protected e Maximum Characters/Record: 2000

H & D Base is a Relational Database Management System which allows novice and expert users alike to mani-
pulate any type of data through the use of straight-forward, English-like commands. For the novice, H & D Base
is an interactive data storage and retrieval package suitable for maintaining phone directories, club rosters,
genealogies and more. For experienced users, it is a system development package containing its own programming
language. A skilled programmer can use H & D Base to create a system for handling inventories, accounts
payable and receivable, client lists, and other programs which would normally be written in more cumbersome
languages. Regardless of the level of user expertise, H & D Base is the perfect tool for data management,

Atari 520ST®

Minimum One Drive
(Single/Double Density or Hard Disk)

80 or 132 Column Printer

Written by Chester Holmes and Oliver Duckworth for:
- o
MiRACe

4055 W. Shaw #108 * Fresno, CA 93711 » (209) 227-8369

¥ “Atari 520ST" is a registered trademark of Atari Corp. ~ ® "dBASE II" is a registered trademark of Ashton-Tate, Inc.
® “CEM" is a registered trademark of Digital Research, Inc.

