TYNE & WEAR

< T

Issue 19

January/February 1996

TWAUG NEWSLETTER

BRING YOUR EIGHT UP TO DATE

COMPUTER SOFTWARE SERVICES THE BLACK BOX

mmmhnmmr«ummmulmsum 1t is & T-shaped
mummumndunm—ummmmmaml 36XE. Conaoctors for

both types of conpusens aro built into the BLACK BOX 20 80 adspler boards are necossery. A cartridge port ds
wvailabis on the board ieelf for 130X wers.

The BLACK BOX provides many The four primary fi

* RS-232 serial modem port

* Parallel printer port

* SASI/SCSI hard disk port

* Operating System enhancements

The BLACK BOX i $199.95 for the besic unk, and $249.95 with = omboard 64K prizser buffer. Shippiag xnd
Handling extra.

THE FLOPPY BOARD

Our latost and gromest product. The FLOPPY BOARD s an add-n expansica board for the BLACK BOX
Inerface, 1t allows iho mo of (he same inexpenaivo flogpy drivo mecbanieme wod in [EM compmiess. Tho

f

BOARD aro ow BLACK
of protectod diska for 3.5 joch fatmat. Inchuded with the FLOPPY BOARD
hmmmmumhmuﬂrmu;m-hummmuumw
tranafer flles to and froem your 8-bit.

‘The FLOPPY BOARD is only $149.95 phus shipping & handling,

THE SUPER ARCHIVER Il

The SUPER ARCHIVER 1! exits and copics all onhanced density programe phos rotsine ail the featurcs of the
SUPER ARCHIVER.

The SUPER ARCHIVER 11 s caly $90.95 pius shipping $ hendling, NOTICE: ummmmm
ARCHIVER you may upgrade to S.A.II for caly $29.95 phes shippiag/handling, Software cly.

THE BIT WRITER

Tho Saper Archiver BIT WRITER e capable of duplicating oven the **uncopysbls’* Hlectronic Arts and Syaspae
Syn-serics, which employ 34 full sector tracks. The BIT WRITER mwst be wod with the SUPER ARCHIVER

The BIT WRITER is caly $79.95 phus shipping/handling.

CONTACT COMPUTER SOFTWARE SERVICES PO BOX 17660 ROCHES-
TER, NEW YORK 14617 USA

ORDERING LINE: (716) 429-5639 FAX: (716) 247-7158

Page 2

TWAUE

NEWSLETTER

We regret to inform you that
we need to increase the sub-
scription fee, from your next
renewel date.

We have tried to keep the fee

The new subscription
rate is as follows:

HOME 1 COPY £2.50
- DO- 6 COPIES £12.50
EUROPE 1 COPY £2.50
- DO -6COPIES £13.50
ELSWHERE 1 COPY £3.50
- DO -6 COPIES £16.00

We are very sorry about this
increase.

Next issuc will be ready by
mid-March.

ISSUE CONTENT

EDITORIAL

DON'T LET BASIC BUG YOU
Basic Tutorial

by Mike Bibby

256 UPGRADE FOR THE 600XL
with Diagram by Jeff Popp
REVIEW OF PRINT-WORKS
Document processor for the 1029
printer by Alastair G.Fraser
ATARI ASSEMBLER COURSE
by John Demar

SYNFLLE +

FOR SALE SECTION
ADVERTS

for OHAUG and LACE

DISK CONTENT

ADVERT for

CHAOS! COMPUTERS
ADVERT for

MICRO DISCOUNT

22

23
28
33

£y

35

Page 3

TWAUG NBWSILIBTTIBR

DON'T LET BASIC BUG YOU
Part 2 computer’s output, as it is
By Mike Bibby called, was ;Im:hllzn Pﬂn;cld out
. on paper rather on the
'I'h&? BASIC Tutorial for screen as it is now.
beginners.

B efore we start, let me give
you a warning. The

computer will do exactly as you
tell it but only what you tell it.
It’s a very literal machine and
in this respect is like my
daughter on a mischievious
day:

‘When asked to put on her
Ppyjamas for bed she did
exactly as she was told. Of
course, I hadn’t asked her to
take her other clothes off first,
had I? You can imagine the
results...

Similar things happen with
the computer. Say we want the
computer to calculate 2+2. Not
only do we want it to do the
sum but we want it to tell us
the answer when it’s done it.

We instruct the Atari to write
things on the screen with the
Basic word PRINT. This is a
relic from the days when the

So, to see the answer to 2+2,
type:
PRINT 2+2 [Return]

Note that you don’t need the
= sign as you do on a
calculator. [Return] takes care
of that. Before continuing try a
few simple additions.

Just as the computer does not
allow you do use O for 0, so it
does not permit to use x for
multiply. The computer uses
the symbol * instead.

For example try:
PRINT 4*3 [Return]

Minus (-) is straightforward.
you'll find it sharing a key
with an underline character and
a vertical arrow. Divide,
however, uses an oblique stroke

For example,
PRINT 12/4 [Return]
Though this may seem at first

Page 4

TWAUG NBWSILIBTTIEBIR

DON'T LET BASIC BUG YOU continued
a little odd to you, you have division, then finally addition
met it when dealing with and subtraction.
fractions: 3:4 is equivalent to Now try:
the fraction 3/4. PRINT 2/3
Try: PRINT 10000+10000*10000
PRINT 3/4 [Roturn] PRINT 1/1000
From now on I am going to If you have done this

assume that you accept that
before the micro can act on
your instructions, they must be
sent to it by [Return]. I may
therefore omit [Return] from
my examples. Make sure that
you don't. Before experiment-
ing with further sums of your
own devising, I'd like you to
try the following sequence:
PRINT 2+8-3
PRINT 4*8/2
PRINT 4*8+2
PRINT 4*(8+2)
If you think carefully about
the results you'll see that the

of sums in the order you
learned at school. You do
whatever is inside brackets
first, then multiplication and

correctly, your screen should
display:

PRINT 2/3
0.666666666

READY

PRINT 10000*10000* 10000
1E+12

READY
PRINT 1/1000
1.0E-03

The point to stress here is that
the computer works to a limit
of accuracy. For example, 2/3
is not exactly 0.666666666.
The error is well under a

Page 5

TWAUG NBWSLBTTBIR
DON'T LET BASIC BUG YOU continued

millionth, though. Still, it must
be borne in mind.

Similarly, with especially
large or small numbers, the
computer saves space by
storing them using a scientific
notation called exponent
format. Here, for example,
instead of printing out the
answer to 10000*10000* 10000
as 1000000000000, it print out
the result as 1E+12.

For E, which stands for
exponent, you should read
*‘multiplied by 10 to the power
of”*. For example, 1E+12
means *‘1 multiplied by 10 to
the power of 12" which, if
your maths is up to it, gives
you the correct answer.

If you don’t follow all this,
don’t worry. I've only covered
it to warn you about odd
looking results to your sums
which might pop up and
confuse you.

Now let’s try to get the
computer to print out some
words. Let’s get it to print out

Hello. If you cast your mind
back to your schooldays (and
for some of us that’s an awful
long throw), you'll remember
that when someone says
something you surround what
that person says with quotation
marks (or quotes, for short),
such as: He said, “‘Hello"’.

In Basic, of course, we don't
say words, we PRINT them,
but we do surround them by
quotes. We omit, however, the
comma and full stop.

Try:

PRINT *“‘Hello’’ [Retarn]
and the computer should print
out Hello.

Notice that the quotes are not
printed. So to get the Atari
Basic to print out a message on
its screen we just use PRINT
followed by the message
surrounded by quotes.

The message inside the quotes
is called a string - since the
micro considers it to be just a
string of letters - or a string
literal. The latter is because the

Page 6

TWAUG NBWSLBTTER
DON'T LET BASIC BUG YOU continued

computer prints out literally, or
exactly, what is between the
quotes.
So:
PRINT “‘Hello”’
PRINT ** Hello*’
PRINT ** Hello*’
give different outputs since in
each, different numbers of
spaces precede the Hello.
Actually, strings do not have
to be words. They can be any
combination of symbols,
including numbers. Just keep
them in quotes:
Try the following:
PRINT “*4*3"*
PRINT 4*3
This should convince you that
the computer does print out

Experiment with printing out
various messages on the screen.
How long can you make them?
Try lower case words as well.

At the moment the computer
is resp g to our d
as soon as we send them by
pressing [Return] but in a
calculation or task requiring
several steps this can be reather
tedious.

It would be more satisfactory
to give the computer a whole
sequence of instructions that it
could get on with rather than
spoon-feed it step by step.

This is possible.

Such a sequence of
instructions is called a
program.

Before we begin lo write our

strings - that is what is b
the quotes - literally. When the
calculation is in quotes the
computer simply echoes the
sum on the screen. When the
calculation is not in quotes, the
computer prints out the answer.

own p
lar mind, but gh
to give you a quiet glow of
satisfaction. Firstly, let’s
discuss what we did so far.
We learned that to “‘talk’’ to
the computer we had to speak
to it in a language it already

Page 7

TWAUG NRBWSLEBITTRR
DON'T LET BASIC BUG YOU continued

understood, called Basic. We
also learned how to get the
Atari to do sums for us and to
print out messages, or strings as
they are known.

One Basic word we used quite
frequently was PRINT, which
instructs the micro to write or
print things out on the screen.
For instance, to do the sum 4+4
we typed:

PRINT 4+4 [Return]
where [Return] means you
should press the Return key -
this sends the message we have
typed to the computer.
Hopefully it then responds by
printing the correct answer, 8.

Similarly, we could do
subtraction, multiplication and
division - the symbols for
which are -, * and / respec-
tively. Notice particularly the
division symbol.

‘We also learned that to print
out messages we had to
surround them with quotes, as
we do when recording speech.
So, to print the message

“‘GOOD MORNING"’ on the
screen we type:

PRINT ‘‘GOOD MORN-
ING’’* [Return]

which causes the message to
be written on the screen. Now
we can use lower case or small
letters, so we can print **Good
Morning’* by using:

PRINT “‘Good Morning’®
[Return]

providing we use our Caps
properly.

Notice that PRINT itself
remains in capitals. This is
because it is a special Basic
word - a keyword. For the
Atari to realise that it has a
special meaning, it must be
written in capitals, as must all
other Basic words. For the
moment, stay in capitals all the
time - this will prevent you
from falling into this error.

So far we have given the
computer one instruction at a
time, which it carried out
i diately after we p
Return (assuming we'd typed it

4

Page 8

TWAUG NEBWSILIBTTBIR
DON'T LET BASIC BUG YOU continued

correctly).
Sometimes, though, we want
to give the micro a series of

2. Prints out IS
3: Prints out EASY
in sequence, without stopping

instructions and then tell it to to ask us what to do next. Such
carry them out. For i a of i ions is
suppose we want the message: called & program. Notice also
PROGRAMMING that the sequence is numbered -
s after all, the computer needs to
know the order in which to
w:msv the screen. With carry themm out.
ppear on . Wi s
our step-by-step method, we Na:rotlett 8 write a program to
would have used: prn
PRINT **PROGRAM- PROGRAMMING
MING** Is
[Return] BASY
PRINT ““IS** V\t’:;er: on the ri:shtblin-::“s
with the first attempt, but thi
R 1 . time, let’s try numbering our
PRINT *‘EASY instructions as we enter them.
[Return] First of all type:
But, as you'll see if you try it, NEW [Return]
this doesn't produce the NEW is a Basic keyword that

required effect, since each
successive instruction spoils the
layout. We need to give the
computer the instructions so
that it:

1. Prints out PROGRAMMING

clears out the computer’s
memory. If you don’t do this
the program you are typing in
might get jumbled up with a
previous one - you'll see more
clearly how this can happen

Page 9

TWAUG NEBWSILBTTIBR

DON'T LET BASIC BUG YOQU continued
later. computer actually does remem-
You probably think that you ber “.m s
haven’t got a program in at the Now type:
moment, but use NEW anyway, 20 PRINT “‘IS*‘[Return]
because it is possible that you 30 PRINT ‘‘EASY*‘[Return]
:mghl h"l‘:::m"ed a line or What I'm going to ask you to
wo by chance. do next should test your faith in
Then type: me! Clear the screen by typing:
10 PRINT “‘PROGRAM- [Shift+Clear]
MING All your typing should should
[Return] have disappeared, but don’t
Notice two things: worry - your work hasn’t been
® The first instruction is number| | Wasted. Because of the line
10, not number 1. In computing| bers, the p has kept
we tend to number our instruc-| | a list of yur instructions in its
tions in steps of ten for reasons| memory.Toseelhelist.type:
that will become blindingly|
obvious later. We call the num-| LIST[Return]
ber of an instruction its linel | and your program should

number,
® The computer didn't im-|
mediately carry out the instruc-|
tion - it didn't print out PRO-]
GRAMMING after we pressed|
Return. This is because of the
line number. It tells the com-|
puter that what follows isn't to|
be done immediately but is just]
to be remembered for later as it}
is just one in a series of]
instructions. I’ll prove that the]

reappear. We'll call it Program
1:

An important point coming up
now. We have entered a

Page 10

TWAUG NEBWSLEBTTRR
DON'T LET BASIC BUG YOU continued

program (a numbered seq
of Basic instructions) into the
Atari’s memory and have got
the computer to display those
instructions with LIST. We
have not, however, told the
computer to do these
instructions. It’s like having
written a shopping list - you
still have to go to the shops
and turn your list into reality.

So to get the computer to
actually do, or as we say, run
the program in its memory, we
type:

RUN[Return]

and, if we’ve typed it in
properly, we should see printed
out:

PROGRAMMING

Is
BASY

If you've managed it,
congratulations on running
your first program. (If not,
don’t worry, it’s probably some
simple error. List your program
and look for the mistake. You

might actually have a message
telling you that there is an error
in a particular line. What we’re
about to do next, although it
assumes that you have been
successful so far, will in fact
show you how to correct your
mistakes.)

Now let’s try to alter our
program so that it prints out:

PROGRAMMING

Is
SIMPLE

If you look back at the first
program you will see that you
need to alter line 30.

Changing line 30 couldn’t be
simpler - just type in the new
line 30, remembering to start
with the line number 30, then
press Return. The latest version
will replace the old version in
the computer’s memory.

To demonstrate this, type:

30 PRINT “‘SIMPLE**
[Return]

Page 11

TWAUG NEBWSILEBTTER
DON'T LET BASIC BUG YOU continued

and then:
LIST[Return}

You should obtain Program I
which is:

-

An examination of this listing
should reveal that the new
éversion of line 30 has indeed
replaced the old one. (Notice
also éthat we didn't precede
LIST with a line number - we
wanted the micro to do it
immediately.)

As a final proof that our
ammendment has been
accepted, type:

RUN[Return]

You should now get the
revised message. If you
accidentally type line 10 as:

10 PINT *‘PROGRAM-
MING"’
then, when you tried to run it

you would get an error
message.

To rectify such mistakes,
simply retype the correct
version &of the line 10 and
press Retumn to enter it into the
computer.

There are more sophisticated
ways of correcting, or editing,
a line, but they can wait for a
while. For the moment éwe
shall simply retype the line,
with its line number, and press
Return. Of course, if you
notice a mistake while you are
entering a line, use the Delete
key to erase it, then continue
typing from that point.

So far I have given you just
two programs to run. However,
using these models, you can
print out virtually any message
you want on the screen. Just
use line numbers in increments
of 10, each line printing out
part of the message you want
out on the screen, by enclosing
it in quotes after PRINT.

An important point about this
series is that I'm going to give

Page 12

TWAUG NIBWSILIBITTRIR
DON'T LET BASIC BUG YOU continued

you lots of !

to type in. Virtually all of them
have two things in common:

L] They make vital teaching|
points (otherwise they wouldn’t]
be there in the first place).

® The output - that is, whatl
appears on the screen - is triviall
in content and in many cases|
there are far easier ways of|
doing it.

Programming is a skill like
driving - you can only improve
by doing it, not reading about
it. Please carry out the
examples, however silly or
obvious they may seem to you.

Also, and this is far more
important, I want you to go
beyond the programs - try to

g run riot.

You’ll learn far more from
your own examples than you
will by merely echoing mine.
And the good thing is that you
get such prompt feedback from
a computer. If what you write
isn’t acceptable you’ll soon get
an error message.

So what I'd like you to do
now is to spend a good time
writing simple *‘message”’
programs for the computer to
run. For some reason, in my
experience in computing
classes the messages tend to
become quite scurrilous.
There’s one thing I've never
been too sure of - is it slander

alter, adapt and extend them, or libel when it appears on a
just to see what happens. vDbUu? be
: Remember, type NEW before
Adopt an experimental "
ap;n?)z:h and a healthy each new program, and use line
ism for my _ bers for each instruction.
ments. If you are wondering It's also good policy to LIST
whether something will work, your program before you RUN
g0 ahead and try it - you can’t n,]ust}omakesumthmalhs
hurt the computer from the as you intentl.
keyboard, so let your Now suppose we intend to

Page 13

TWAUG NEWSLBTTEIR
DON'T LET BASIC BUG YOU continued

alter Program II so that it
printed out the message:

PROGRAMMING

1S
RATHER

SIMPLE

We need a line in there
between 20 and 30 to print out
RATHER. Well, 25 is a
number between 20 and 30, so
let’s try:
25 PRINT ‘‘RATHER‘*
[Return]
If you list it you'll see that the
program has now become
Program III:

Program I
So line 25 has *‘crept in"*
between 20 and 30. Even
though we entered it out of
order, the Atari stores it in

memory in its correct
numerical position. Try running
the program as final
confirmation.

This ability to insert lines into
programs is the reason our line
numbers go up in steps of 10
when we are writing programs
- it leaves us plenty of spare
line numbers in between for
when we are patching them up.

Now enter Program IV:

U
Program IV
remembering to press Return
after typing each line.

Now LIST it. Is there a
phantom line 25 in there? If so,
you didn’t type NEW after the
last program - the lines 10, 20
and 30 of the latest program
have replaced those lines in the
old program. But as the new
program doesn’t have a line 25,
the old one remains to ruin
your program. The moral is to

Page 14

TWAUG NIBWSILBITTRR
DON'T LET BASIC BUG YQU continued

use NEW before entering a
new program. If you have got
an unwanted line 25, don’t
worry - you can easily get rid
of it by typing:

25[Return]

This will delete the line since
you replace the old line 25 with
a new line which contains

hing - which the comp
then **forgets’’. This method
holds good for deleting any
line from a program - simply
type out the line number, then
press Return.

I'd better explain what line 10
does: It clears the screen. I
don’t want to devote much
space to it here, so let’s just
accept it for the moment -
we’ll explain it fully later in
the series.

You'll soon see that it works
when you run the program.

Now let's try to print out our
message with blank lines
between. We can use a line
containing just PRINT to
obtain a blank line, so Program

V should do the trick:

The output you will get is:
HELLOOUTTHERE

That is, each successive string
is printed after the preceding
one. The semicolon stops the
next string being printed on a
new line, *‘gluing’* it to the
end of the previous string
printed.

Notice that since there are no
spaces inside the strings, none
appear between the words

Page 15

TWAUG NBWSILIBTTRIR

DON'T LET BASIC BUG YOU continued
when they are printed out impressive.
together. So far all our programs have
Try to get the message to merely copied back onto the
appear legibly by rewriting the screen what you have typed in.
program with appropriate This program shows how, with
spaces in the strings. Also the addition of one line (line

notice that you can obtain the
same output, far more simply,

Program VII
However, as I said above, the
programs I present to you are
for making teaching points,
which does not necessarily
imply showing you the most
efficient methods.

Experiment with joining up
the output of successive PRINT
statements with the use of the
semicolon until you feel
confident about it.

And now for something
completely different.

Try running Program VIII. I
think the effect is pretty

60), you can obtain a huge
increase in the amount of
output. It is this ability, to
repeat a simple operation
rapidly, that gives the Atari
much of its power.

Program VIII

If things are happening a little
too fast for you, you can
temporarily suspend action by
pressing:

[Control] + 1
This freezes the action until
you press:

[Control] + 1

Page 16

TWAUG NRBWSILIBTTRIR

DON'T LET BASIC BUG YOU continued
once more. repeating itself. This is bad
‘What is happening is that the Ptogxamfning practice -
computer follows lines 10, 20, compulsively introspective

and 30 and prints out:

I (line 10)

FEEL (line 20)

DIZZY (line 30)
followed by two blank lines. It
then encouters line 60, which
tells it to go back to line 10. It
duly does so and prints out:

I (line 10)

FEEL (line 20)
and so on, until it reaches line
60, when it goes back to line
10 and so on ad infinitum.
Notice that when the screen is
full, it scrolls up to make more
room.

Now the name for such a
condition in a program, where
you keep on repeating lines of
code (as the program lines are
known), is a loop.

‘We say here that we are in an
unconditional loop because we
haven’t given the program any
conditions for it to cease

computers are not useful
machines!

To stop such unconditional
loops you have to interrupt
them from *‘outside’* by
pressing the Break key. As
you'll see, you get a message
telling you which line the
program stopped at.

If you want to have some fun
with an unconditional loop, try
Program IX. It repeatedly prints
out an arrow composed of
asterisks such as:

*
dedek
Fededkdek

e e dedede e

which will scroll upwards off
the screen.

Page 17

TWAUG NBWSLEBTTER
DON'T LET BASIC BUG YOU continued

Program IX

always naughty, can you see
what else is going wrong with
Program X?

® In next issue we'll discover|
new ways to Create programs.

By Jeff Popp

Iremember a while back see-
ing a survey that showed the
percentage of the 8-Bit Atari
market that each model held.
The 600 XL held a lowly 2%.
Ok, it was a low end machine,
made for the folks that weren't
able to drop the bucks to get
something more powerful.
Some mail order houses are
now offering 600’s for $29.99,
and many units are being sold.
Should thease Atarians remain
locked into a 16K, TV hook-up
only world? No, I say! They
should be able to hack and
torture their computers just like

Page 18

BY serr pore

FIGURE 1.

- —

FIGURE 2.

TWAUG NEWSILBTTRIR
256K UPGRADE FOR THE 600XL continued

the rest of us. It was in this
light that the 256K upgrade for
the 600XL was born.

‘When this mod is installed in
conjunction with the monitor
mod, it will make your 600
everything a 130XE is and
more, in a smaller package!
Kits for both of these mods are

ilable from Best El
in San Jose, CA. (408)243-
6950.

Claus Bucholz designed the
first 256K upgrade for the
800XL and later modified it to
be 130XE compatible. This cir-
cuit for the 600XL is an adap-
tion of Claus’ 800XL mod, and
will operate with the ramdisk
autoboot program written by
him, anyone interested in the
internal workings of this mod
should get Claus’ article where
he describes the cicuit in detail.
The 800XL uses 64K x 1
memory chips, and the 41256
memory chips used in the
upgrade are directly pin com-
patable. No such luck with the
600XL. However, the 256K

chips can be utilized with only
minor modifications. The
address lines of the 256K chips
(A0-A8) do not match up with
the address lines of the 16K x
4 chips used in the 600, but
this dosen’t matter, since the
computer won’t care where it
puts something as long as it
can find it there later. On to
the meat of the mod...

This is a fairly complicated
mod, and good soldering skills
are a must. Please do not
attempt this mod unless you are
experienced in this kind of
procedure. Take your time and
double check your work as you
go, since troubleshooting this
thing can be a real pain!

The parts needed for this
mod are:

1. 8 ea. 41256-15 memory chips

2. 1ea 74LS153 Dualdto 1

multiplexer

3. 1 ea. 74LS139 2 to 4 decoder

4. 1 eca. 33 ohm 1/4 watt resistor

S. A foot or 3 of 30 gauge insulated

wire,

Page 19

TWAUG NEBWSILEBTTEBIR

256K UPGRADE FOR THE 600XL continued

If U9 has a part No of
0012296, you will also need:
6. 1 ea. 74LS158 Quad inverting 2
to 1 multiplexer
7. 1 ea 74LS393 Dual 4-bit
counter.

The first step is to open up
the 600 and pull the RF sheild.
Remove the chips and sockets
at Ull and U12. Bend up the
following pins so that they do
not enter the sockets and hang
out in free space.

US pin 3

U6 pins 9, 10, 11, 12, 13, 14

U18 pins 8, 9, 10

U21 pins 12, 13, 14, 15, 16

Piggyback 4 of the 41256
chips, soldering all of the pins
together except for 2 and 14.
Bend these straight out and clip
off the thin part as shown in
figure 1.

Repeat the process for the
second set of 4 chips.

U1l and U12 will now refer
to to the spot on the board
where the chips are placed,

while U11 A, B, C, D and U12
A, B, C, D will refer to the two
stacks of chips, A being at the
bottom and D at the top. Solder
a piece of wire about 2 inches
long into each of the following
holes:

Ull pins 2, 3, 15, 17

U12 pins 2, 3, 15, 17.

These will be used later.

Now very, very, carefully, sol-
der in place the two stacks of
memory chips into Ull and
U12 so that pin 8 of the stacks
goes into the spot on the circuit
board allowed for pin 9 of the
origional memory chips, bend-
ing up pins 1 and 16 of the
stacks so that they do not enter
the holes below them.

Jumper U11A-D pin 16 into
Ul1 pin 18.

Do the same with U12A-D.

Now the rough part...

Follow the wiring hook-up
shown in the schematic of
figure 2.

Got all that done?

Page 20

TWAUG NEBWSLEBTTRR
256K UPGRADE FOR THE 600XL continued

Take a break! You deserve it!

The Address lines feeding US
and U6 on the 600 are different
than those on the 800XL so we
have to make them match up.
Carefully cut the traces going
to the following pins:

US pins 6, 10, 13

U6 pins 3, 6

You're coming down the
home stretch!! Don’t quit now
or you'll have a 600XL door-
stop. (No you didn't start with
onel)

Jumper between these places
on the solder side of the circuit
board:

U3 pin 24 to US pin 6

U3 pin 21 to US pin 13

U2 pin 1 to US pin 10

U2 pin 2 to U6 pin 3

U2 pin 3 to U6 pin 6

U18 pin 8 to U18 pin 10

Lastly, on the part side of the
board, jumper the bent up pin 3
of U5 to the non-bent up pin
25 of U3. Cover the ram stacks
and any exposed connections

with strips of electrical tape to
avoid shorting to the RF shield.

Hook up the board to your TV
(or monitor if you have the
monitor upgrade), plug in the
power supply, hold your breath,
turn on the power switch and
run!

Really, don’t worry, chances
are very small that something
will even get warm. See if the
unit will boot up. If it does,
then run the on-board memory
test. You should see three lines
of memory test blocks instead
of the single line you're used
to. Be sure to boot while
holding down the option key
because with BASIC enabled,
you'll only see two and a half
lines of blocks.

To fully test the extended
memory, you will need to load
the ramdisk program, or a
130XE program that uses the
extra bank of memory.

Believe it or not, you're done!
Go get some sleep!

Page 21

TWAUG NEBWSLEBTTER
PRINT-WORKS- FOR ATARI 1029

Reviewed

by Alastair. G. Fraser
f you are sitting with a big
lour-printer, or the latest
laser-job, this article is not for
you. But if you are the average
impecunious Atari owner, who
has seraped his way up to a
disk drive and a 1029 printer,
this program opens up new
horizons. After years of tolerat-
ing the limitations of the 1029,
‘‘Print-Works, the Document
Processor for the Atari 1029
Printer’, gave me some very
pleasant surprises. When you
load the program, pressing
*‘Option™’, you come onto the
‘Editor” screen, ready to start
work. The number of charac-
ters free is shown, also the
ds for ing,
etc. The *‘Inverse’” key opens
up a list of over 100 symbols,
including the ‘‘Pound” sign,
which you can put into your
document, and which will be
printed exactly as you see
them. Press *‘Inverse’® again to

return to the *‘Editor”’ screen.
Press “‘Esc” for the command
line, which appears at the bot-
tom of the screen, showing
FILE, PRINT, HELP, SET-
TINGS. The horizontal arrow
keys will move the highlight to
your desired heading, then
“‘Return”. ‘“HELP" accesses
the disk to bring up 21 varia-
tions to help your layout, and
pressing any key takes you to a
further screen for working with
blocks of text. ‘*SETTINGS”
Gives you variations of
Fonts,(3) types of script,(Ita-
lics, Outline, Shadow,Etc)
margins, justification, etc, etc, -
arrow keys move the cursor.
“PRINT** When highlighted,
press ‘‘Return’’, and you see
PRINT, SHOW, PREVIEW,
PRINTER, which lets you see
exactly how your document
will look, and scroll 80 cols,.
Press ‘‘Return’’ again and your
printing! Instructions for other
printers(printer driver pro-
grams) are included, also in-
structions for importing text

Page 22

TWAUG NBWSLEBTTER

PRINT-WORKS- FOR
ATARI 1029

ATARI ASSEMBLER
COURSE

files from other proccessors, in
a comprehensive manual. All in
all, I find this program excel-
lent, and have only one slight
criticism:- I cannot find a
method of formatting disks
within the program, so you
need to keep a number of
formnued disks available. This

llent program is availabl
from: Micro-Discount 265
Chester Road, Streetley, West
Midlands, B74 3EA Tel 0121
3535730 Fax 0121 3521669
Price 4 Pounds 95p

ATARI ASSEMBLER
COURSE

By John Demar.

‘Why Assombly Language

‘P better understand the need
for Assembly Programming,
let's compare the different
types of programming
languages: interpre-ted, com-
piled, and bled. The

first category. When an inter-
preted language runs, each
command is examined and con-
verted to its machine code
quivalent and then d
Because of this ‘‘one-at-a-
time’’ method, these languages
tend to be slower but require
less memory. Also, the
language itself requires
memory (8K in the case of
Atari BASIC) even with no
program loaded into the com-
puter! Some languages, like
Forth, have a very fast yet
small interpreter. Others like
Pascal are larger and slower.
The closest a language can
come to the speed of machine
code is a truly compiled
language, such as ACTIONI,
that generates the ‘‘native
code” of the computer itself
(the 6502 microprocessor in
our case). Compiled languages
differ from interpreted

language we are most familiar
with, Atari BASIC, falls in the

languages in the way they are
translated into machine code.
Unlike an interpreter, a com-

Page 23

TWAUG NRBWSILIBTTIRIR
ATARI ASSEMBI ER COURSE continued

piler generates the equivalent
machine code for the complete
program before it is run.
Although this step takes extra
time, it needs only to be done
once and the resulting
machine-code equivalent pro-
gram will run much faster
every time. Lastly, assembled
language i ls a means of wntmg

code. but we have t.he use of
words to represent the lowest
level operations of the micro-
computer. The operational
codes or ‘‘Op-codes are repre-
sented as three-letter symbolic
words or ‘‘mnemonics”. Un-
hke the other types, assembly
ge allows the progr

mer to optimize the speed, size,
and ummg of a program by
talking in the computers own
words. These advantages will
easily justify the longer deve-
lopement time in many applica-
tions, such as games, where
timing is intricate, the size
must be minimized and,
naturally, it has to be fast!

Atari System Architecture

In order to design good soft-
ware with your Atari Com-
puter, you need a good under-
standing of the hardware.
R A blv 1

deals directly with the machine
itself, you will become good
friends with ‘*ANTIC’’,
“‘GTIA", ““POKEY"’, and the
“‘PIA’". These chips are the
work-horses of the Atari and
help out the 6502 with the
various duties of the computer
system. We will get into more
detail with them through out
the course.

For now:

Read: “DE RE ATARI”,

Chapter 1, (note figure on page
1-3).

6502 CPU Description

Page 24

TWAUG NBWSLBTTER
ATARI ASSEMBI ER COURSE continued

BIT BIT BIT BIT BIT BIT BIT BIT
5 4 3 2 1 o0

(TTITTIT]

ACCUMULATOR

LIT T T T 1T

X INDEX REGISTER

PROCESSOR STATUS REGISTER

PROGRAM COUNTER HIGH

Page 25

TWAUG NEBWSLEBTTER
ATARI ASSEMBLER COURSE continued

LITTT T T 11

PROGRAM COUNTER LOW
STACK POINTER
6502 Microprocessor process status register. As its
. name implies, the *‘P*’ register
Internal Registers holds the status of many con-
Registers - A, X,Y ditions in the CPU. Each bit in

A ‘‘register’ is a memory
cell, internal to the micropro-
cessor, in which eight *‘bits”
or binary digits are stored. The

il is the regi
where data must be stored to be
operated upon. The ‘X’ and
“Y" registers are normally
used to keep data for indexing
into memory or as a counter in
a loop.

Processor Status Register.

The next most important
register in the 6502 is the

this register is a flag, either a
“I” or a *0”, that may be
used as a test for branching or
looping in a program.

The symbolic letter for each
status flag is shown in the
figure above within correspond-
ing bit of ‘‘P” register. The
“C" or ‘‘carry” flag is set
(equal to one) when an arithme-
tic operation results in a value
greater than 255 (the highest
value for 8 bit numbers). The
*“Z" flag is set when an ope-
ration results in a value equal to

Page 26

TWAUG NBWSLBTTER
ATARI ASSEMBIER COURSE continued

zero. The “I" flag is used
during an ‘‘interrupting” or
time-sharing portion of the pro-
gram. The D" flag is set
when ‘‘decimal’’ arithmetic is
used and reset to *‘0" for
*‘binary’’ math. The ‘B’ flag
is set when the 6502 Break
command has occurred. The
*X"" flag is not used.

The *“V** flag is set when an
operation results in a value
greater than +127 or less than
-128 and is used for signed
arithmetic. The N’ flag, or
negative flag, is equal to the
seventh bit of a result; this is
also used for signed arithmetic.
Each of the status bits may be
changed in a program except
for the break flag.

Program Counter - PC,

The program counter holds
the value of the memory loca-
tion where the next machine
code instruction is located. It
has a *‘high” and *‘low’" byte
so that 64K bytes of memory
can be ‘‘addressed’’ with the

16 bits. Also, the “PC” is
changed by the CPU as a result
of a branch, jump, or subrou-
tine in the program so that the
next operation is found. We
will see some other uses of the
program counter later on.

Stack Pointer - S

The Stack is another very
useful aspect of the 6502 CPU.
It is located in memory on
‘‘Page-One’ (hex 0100 to
OIFF) and is reserved for the
the 6502 and the programmer
for limited usage. The stack
begins at the end of page-one
(hex O1FF) and is filled on a
last-in, first-out basis. The
Stack Pointer holds the location
of the “‘top** of the stack.

Review of Binary and
Hex Math.

Because we are dealing
directly with the microproces-
sor itself, it is very important to
understand the operations of
binary numbers and their hexi-
decimal equivalents. We can
review this briefly during the

Page 27

TWAUG NEWSLIBTTIRIR

ATARI ASSEMBLER
COURSE continued

SYNFILE + cont.

session if there are questions.
But, get a good understanding
before we begm A very good
tutorial appears in the ‘‘ANA-
LOG"™ magazines in the col-
umn ‘‘Boot Camp™ by Tom
Hudson. If you can get hold of
copies of this American maga-
zine, you will find them a mine
of information.
SYNFILE+

(KNOWLEDGE IS NEVER
OLD, ITS ALWAYS CUR-
RENT. 7his old article is
warth resding).
There are actually four dif-
ferent files that together make
up one SynFile+ datafile. The
files can be identified by their
extenders. They are .TBL,
.CNF, DX, and .Dxx. The.
TBL file contains a description
of the database form. The
.CNF file contains the number
of records and disks. The .IDX
file is the current index data.
And, the Dxx files are the
actual data files.

THE .TBL FILE

The .TBL file is actually
made up of three tables and
two numeric entities. The three
tables are the Definitions table,
the Name table and the Special
Data table. Each table is hea-
ded by a two byte length entry,
and then the data bytes. If the
table has a zero length, there is
only a length entry.

THE DEFINITIONS
TABLE

The first table, the Definitions
table, consists of a sequence of
eleven bytefield definitions.
There is one entry for each
field in the database. The for-
mat of each entry is:

Byte # Use

0 screen column position

1 screen row position

2-3 field name offset

and name length

4 field type byte
5 field data length

Page 28

TWAUG NBWSLEBTTER

SYNFILE + continued
6 field mask length tion of the field. If it is set, the
7 field special of fset field is right justified. There
(low 8 bits) are eleven field types in Syn-
File+ and each has a number
8 field data offset associated with it. They are:
(low 8 bits) ID number Field Type
9 field data offset 0 ASCI field
(high 3 bits) 1 floating point
field special offset 2 cumulative computed
(high 5 bits) 3 table look-up
10 field decimal position 4 dollar
The first two bytes simply 5 record number
give the row and column posi- 6 date
tion of the start of the field .
name. The screen is 40 col- 7 integer
umns by 21 lines and 0,0 is the 8 counter
upper left hand corner. 9 conditional
The field name is actually 10 computed

stored in the second data table.
The low 11 bits of this 16 bit
entry are the offset to the field
name in the Name table. The
high 5 bits are the field name
length.

The low four bits of the field
type entry, identify the field
type. The high bit of the field
type is a flag for the justifica-

The field data length is the
length of the data stored in the
disk record. For ASCII fields, it
is one greater than the field
mask length. For floating point,
cumulative, dollar and com-
puted fields, it is 6 bytes. For
table look-up and conditional
fields, it is one byte. All other
fields have a data length of 2

Page 29

TWAUG NBWSLETTRR
SYNFILE + continued

bytes.

The field mask length is the
length of the mask (underlines)
for the characters respectively.

The special offset is 13 bits
split between byte 7 and 9.
Byte 7 has the low 8 bits of
data, and the Special Data table
has the high 5. It is used by
computed, cumulative, con-
ditional and table look-up
fields. The counter field also
uses this entry, but not as a
pointer. Counter fields use it as
the increment for the field.

The field offset is 11 bits
long. The low 8 bits are stored
in byte 8, and the high 3 bits
are stored in the low 3 bits of
byte 9. This is the offset from
the start of the record to the
start of the data from this field.

The field decimal position is
just that. It tells SynFile how to
display floating point numbers.
The current version of SynFile
only uses the low 4 bits of this
byte.

The others are reserved for

future use. If the value of this
byte is 15, the field will be
displayed in floating point,
which is - however - the Atari
FP ROM formats the number.
For any other value, SynFile
will force the display of a
decimal point and N digits to
the right of the decimal.
THE NAME TABLE

The Name table contains all
the field names. Each field
name is stored as a text entry,
with no delimiters or separators
between entries. The names
may NOT be stored in the
same order as the fields entries
in the Definitions table(this
may occur if the form is edited
in the CREATE module of
SynFile).

THE SPECIAL DATA
TABLE

The Special Data table con-

tains all formulas and table

look-up field datas.
FORMULAS

Formulas for computed,

Page 30

TWAUG NBWSLEBTTRR
SYNFILE + continued

cumulative, and conditional
fields are stored as a sequence
of command tokens. The
CREATE module parses the
user entered formula, and con-
verts it to a tokenized RPN
formula. As retrieved, all com-
mands use the top 1 or 2
entries from the stack. If the
high bit of a token is set, then
the field referenced is an in-
teger(16 bit data) field, a
FLOAT will automatically be
executed on the field when the
data is retrieved. The command
tokens are:

TOKEN VALUE
COMMAND

0 + (add the top two values)

1 - (subtract the top value

from second value)

2 *

3/

4 LOG (take the natural LOG

of top number)

5 LOG10 (take the common

log of top number)

6 EXP

7 EXP10

8 ABS

9 SORT

20 numeric constant

30 = (set true flag if

top 2 entries are equal)

31>

32<

33 <>

34>=

35 <=

126 current data

127 END (end of

formula flag)

Numeric constants(20) are
stored in 6 byte internal float-
ing point representations of the
number. Entries 30 to 35 are
used to compare 2 numbers on
the stack for use in conditional
operations.

To interpret a computed field,
use the special data offset to
set a pointer to the formula.
The retrieve tokens one byte at

Page 31

TWAUG NBWSLLBTTRR
SYNFILE + continued

a time until the END token is
found. The value on the top of
the stack at that time is the
result of the calculation.

TABLE LOOK-UP

Table Look-up entries are
stored in packed entries(the
lenght of the entries is equal to
the length of the longest entry,
not to the mask length). The
field data for a table look-up
field is the table entry number.
The first byte of a look-up
table is the number of entries in
the table, and the second byte
is the length of the entries in
the table. Each entry is stored
as a text string (with no length
byte) and is right justified in
the table with underline charac-
ters (ASCII 95) as filler on the
left.

CONDITIONALS

Conditional entries are a
combination of formula entries
and table look-up entries. The
special offset for a 2 entry
look-up table. Immediately
after the look-up table data is

the formula data for the con-
ditional field. The last thing in
the .TBL file are two numeric
entries. Each entry is 16 bits
long(2 bytes, stored low byte,
high byte). The first entry is
the field count, the second
entry is the total record length
in bytes. The record length is
one greater than the sum of the
field data lengths.
THE .CNF FILE
The .CNF file contains eight
entries. Each entry is 16 bits
long(2 bytes, stored low byte,
high byte). The entries are:
1 The length of the index
array entries
2 the total number of records
in the datafile
3 the number of data disks in
the datafile
4 the number of active records
in the datafile
5 the current record number
6 the number of index fields
7 the current value of the

Page 32

TWAUG NIBWSILIBTTEIR
SYNELE + comins

counter field
8 the sort direction
(ascending - descending flag)
THE .IDX FILE

The length of the .IDX file
varies with the total number of
records in the file, and the
length of the current index.
(Both these numbers are in the
.CNF file). The first 32 bytes
of the .IDX file are the current
index field. There are 16 two-
byte entries, the first byte of
each entry is the field number,
the second is the length of the
index data for that index entry.
Any unusued entries have un-

defined Yalues, usually 0.

Various Atari hardware includ-
ing:

Upgraded 130XE,

1050 Disk Drives with various
upgrades, i.e.:

U.S. Doubler, Happy, Laser,
Quad Board.

Other items also available in-
cluding Touch Tablet and Light
Gun

Ring John Tel 0191 2626897.

Atari XMM801 Printer in per-
fect working order. Reason for
selling, surplus to requirements.
Price 40 pounds or nearest
offer.

Contact: G. Lewsley,

Tel 01482 856179

Armstrad PCW 9512 Personal
Computer Word Processor in-
cluding Printer, in perfect
working order.

For more information -

Ring Max Tel 0191-5866795

Page 33

TWAUG NEBWSLETTER

LA

As a member of LACE you will
receive a monthly newsletter and
have access to a monthly meeting.
They also support the ST with a
good selection of PD software.

The membership fee is
£8.00 annually

Write to:

Mr Roger Lacey

41 Henryson Road,
Crofton Park, London,
SE4 1HL

OH.AUG.

The OL’HACKERS ATARI
USER GROUP INC.
O.H.A.U.G. is an all 8-bit user group
in the STATE of NEW YORK U.S.A,
They are producing a bi-monthly disk
based newsletter. The disk comes with
its own printing utility, which lets you
read the content of the disk and also
print the content in columns,

They have a large PD Library

Contact: Mr. A.Pignato
O.HA.UG.
3376 Ocean Harbor Drive

Ocecanside, N.Y.
USA

11572,

_DISK CONTENT
This issue disk and progams has been
submitted by Robert De Letter.

The content of side A:

There are four games on this side of
the disk.

1 - Climber, use joystick to move the
climber. Press fire button to lift his
legs when those spiders get close,
touch these insects and you loose a
life. Easy to follows.

2 - Unicom, a ball game, use joystick
to move racket.

3 - Whipping Top, use joystick to
move top and press fire button to stop
Top.

4 - Expedition, guide plane though
maze, easy to follow.

5 - Joystick Type, instruction on
screen.

Also demo’s for music and colours.
Side B: There are four COM files:

1 - Cuttlemania 2 - Into Deep

3 - Submission and Nadral, had no
time to check them, don’t know how
they play.

Page 34

TWAUG NEBWSILIBTTIRIR

CHAOS! COMPUTERS
PO BOX 30
MANCHESTER M19 2DX
Telephone: (0161) 737 1946

THE HYPER DRIVE

Upgrade your ATARI 1050
disk drive with a HYPER
DRIVE enhancement from
CHAOS! COMPUTERS.

The HYPER DRIVE is an
easily installed hardware &
software package for the
ATARI 1050 which will enable
your disk drive to back-up most
disks protected by unreadable
or badly formatted sectors.
Most copied disks can then be
loaded on any 1050, whether
enhanced with a HYPER
DRIVE or not. The HYPER
DRIVE enhancement also
offers fast reading, writing,
formatting and copying in sin-
gle, medium or true double
density formats (j,e. it is com-
patible with RANA, PERCOM
and VDUS double density
drives, and will read .S
DOUBLER type format).

Fitting the HYPER DRIVE

coudn’t be simpler and requires
no special tools or soldering. It
simply plugs into socket on the
1050 circuit board. And with
our VERSION II software
package and full 28 page
manual, it is one of the most
versatile disk drive enhance-
ments /copiers you can buy.
HYPER DRIVEs are available
exclusively from CHAOS!
COMPUTERS at a special
intro-ductory price of just
£30.00 each. Please make Che-
ques/Postal
Orders payable to ‘P.
*. Prices are subject
to change, from time to time,
due to component costs, SO
wherever possible please

Page 35

TWAUG NEBWSLETTER

MICRO-DISCOUNT

Offers. .
The complete Mail Order
service for Atari 8 Bit
XL/XE users :

ATARI

ount
265 Chester Road.
Tel Streetly Fax
West Midlands. 0121 352 1669
0121353 5730 B74 3EA.

England

Page 36

