


I
You can save time, and save a lot of money by subscribing to

A. .A.L.O.G. Computing Magazine. Save $14 off the cover
price with the convenience of having A.N.A.L.O.G. delivered directly

to your door before it even hits the newsstands. To order use the
handy postage-paid order card located in the back of this magazine!

1 YEAR FOR ONLY $28
SAVE $14 OFF THE COVER PRICE

1 YEAR WITH DISK ONLY $79



NOVEMBER A.N.A.L.O.G. Computing

This month's editorial comes to you from
high up (about 37,000 feet) in the friendly
skies, as I jot down some thoughts about what
it's been like for the past few months, com
muting from my home in Massachusetts to
ANALOG's new offices in Los Angeles. Be
lieve me, it hasn't been easy.

No sooner have I set foot at Logan Inter
national Airport in Boston than it seems I
have to turn around and make another bee
line for the West Coast, banging out a story
or an editorial on my laptop en route to meet
ing publishing deadlines in the City of
Angels.

The wear and tear of rushing from coast
to coast is taking its toll: I've acquired a hag
gard, desperate look from not getting enough
sleep; my body suffers from terminal jet lag;
my fiancee barely recognizes me ("Lee
who?") and a sense of cultural schizophre
nia has taken root due to the extreme polari
ties of the laid-back Southern California
lifestyle and the East Coast grind. I no longer
know whether to order sushi or clam
chowder!

So I've made a decision. In order not to
burn out before my time ("Publishing Tycoon
Commits Hara-Kiri") and to be able to pro
vide the kind of editorial guidance ANALOG
needs to maintain the high standards we've
worked so hard to reach, I'm heeding the
words of Horace Greeley to "Go west." From
now on, I'll make my home where the sun
shines all year-round, where snow and sub
zero temperatures are only a memory. Instead
of Boston Common, I'll roam Griffith Park.
Instead of catching the Sox at Fenway, I'll
down my foot-long hot dogs at Dodger Stadi
um (but still root for Wade Boggs and com
pany). In place of the rocky Massachusetts
coastline and chilly waters of the Atlantic, I'll
sink my feet into Venice Beach's sandy shores
and bodysurf in the moderate Pacific.

And so, like the Clarnpetts, I'm loading up
my truck and moving to Beverly. Hills, that
is. Swimming pools. Movie stars ....Well,
maybe it's not all it's cracked up to be. I'll
have to battle gridlocked freeways, out-of
control smog and the occasional earthquake.
But that's a small price to pay to liberate my
self from the red-eye express, bad airline food
and in-flight movies. Massachusetts, it's been
great, but so long. California, here I come!

by Lee Pappas

3



Con t
F EAT U RES

10
Atari Streamers
Aquickie machine-language routine that

allows you to create vertically scrolling text displays.
bv Brad Timmins

16
Slave II: Nimral's Grace

The sequel to last month's Slave Cellars
of Goigoloth advenulfe. Who is trying to kill Shala?

bv Clayton Walnum

45
Master Memorv Map, Part IV

The memory exploration continues.
loin us on aromp through your computer's RAM and ROM.

bv Robin Sherer

54
Bits 'n' Pieces: POPS

This month ANALOG's electronic wizard
presents ahardware project that'll add four-channel

stereo sound to your Atan computer.
bv Lee. S. Brill/ant, M.D.

68
AUTORUN.SYS Secrets

This machine-language program will help you
design AUTORUN.SYS files that'll do just about anything you want,

bv LeRov Baxter



n t s NOVEMBER 1988
ISSUE 66

(213) 467-2266
(415) 864-3252
(312) 445-2489
(303) 595-4331
(212) 724-7767

Where to Write
All submissions should be sent to: ANALOG

Computing, P.O. Box 1413·M.0., Manchester, CT
06040·1413. All other editorial material (Iellers,
press release, etc.) should be sent lO: Editor,
ANALOG Computing, 9171 Wilshire Blvd., Suite
300, Beverly Hills, CA 90210.

Correspondence regarding subscriptions, in·
c1uding problems and changes of address, should
be sent to: ANALOG Computing, P.O. Box 16927,
I orth Hollywood, CA 91615, or call (818)
760·8983.

Correspondence concerning a regular colUl'nn
should be sent to our editOI'ial address, with the
name of the column included in the address.

We cannot reply to all lellers in these pages,
so if you would like an answer, please enclose a
self·addressed, stamped envelope.

An incorrectly addressed letter can be delayed
as long as two weeks before reaching the proper
destination.

Advertising Sales
Address all advertising materials to:
Paula Thornton - Advertising Production
ANALOG Computing
9171 Wilshire Blvd., Suite 300
Beverly Hills, CA 90210.

Permissions
No portion of this magazine may be reproduced

in any form without wrillen permission from the
publisher. Many programs are copyrighted and
not public domain.

Due, however, to many requests from Atari club
libraries and bullelin·board systems, our new poli'
cy allows club libraries or individually run BBSs
to make certain programs from ANALOG
Computing available during the month printed on
that issue's cover. For example, sofnvare from the
July issue can be made available July I.

This does not apply to programs which specifi·
cally state that they are not public domain and, thus,
are not for public distribution.

In addition, any programs used must stale that
they are taken from ANALOG Computing Maga·
zine. For more infonnation, contact ANALOG
Computing at (213) 858·7100, ext. 163.

Subscriptions
ANALOG Computing, P.O. Box 16927, North

Hollywood, CA 916 I 5; (818) 760·8983. Payable
in U.S. funds only. U.S.: $28·one year, $54·two
years, $76·three years. Foreign: Add $7 per year.
For disk subscriptions, see the cards at the back
of this issue.

Authors
When submitting articles and programs, both

program listings and text should be provided in
printed and magnetic form, if possible. Typed or
printed text copy is mandatory, and should be in
upper· and lowercase wiu, double spacing. If a sub
mission is to be returned, please send a self·
addressed, stamped e9"elope.

For further information, write to ANALOG
Computing, P.O. Box 1413·MO, Manchester, cr
06040·1413.

JE Publishers Representative
6855 Santa Monica Blvd., Suite 200
Los Angeles, CA 90038

Los Angeles
San Francisco
Chicago
Denver
New York City76 Sf Notes

3 Editorial
bv Lee Pappas

6 Reader Comment
7 B-Bit News

66 BASIC Editor "
by Clarton Walnum

81 Batllezone
reviewed by Howard Wen

78 End User
bv Arthur Levenberger

25 Boot Camp
bv Karl E. Wiegers

62 3-in-l Football
reviewed bv Dave Arlington

73 Panak Strikes
This ame around Steve Ulkes aloak oJ

thinking games, plus ~ves us complete renews of Solar Star ond
Drop ~De from Microdllft,
bv Steve Panak

32 Database DELPHI
bv Michael A. Banks

REV lEW S

COL U M N S

o EPA R T MEN T S

36 Game Design WorksholJ
by CraIg Patchett



I am writing this letter because my machine
was recently infected with a virus. The
damage resulting from the infection took
three months to repair. The symptoms start
ed when I was unable to write to the disks
because they were reported as full by the
operating system. This didn't seem logical
since some of the disks had small data files
on them which should not have caused a full
disk message to appear. I started using the
backup disks, but they also became infected
and thus damaged beyond repair. After weeks
of trial and error, neither I nor my friends.
were able to discover what caused the
problem. As a result of helping me, my
friend's system also became infected via disks
used on my system. How far the virus spread
beyond my immediate group is problematic.

I frequently read your magazine and have
not seen any articles forewarning your read
ers of software viruses. I eventually read a
Newsweek magazine article which described
the problem as a software virus. It was as
tounding to find the virus problem being dis
cussed in a periodical which is dedicated to
general news events, especially when the two
computer magazines I read did not mention
them. Since the Newsweek article, I have read
articles in both the Washington Post and TIme.
By the way, the Post dedicated all of page 3
in the Sunday edition to the growing problem.

I think it is your responsibility to keep your
readers informed about computer problems
which could result in months of work being
lost. The damage just to my system could buy
a subscription to ten computer magazines for
the next five years.

It is certain that many of your readers are
as ignorant of the problem as I was. It is also
evident that the problem is large enough to
draw national media coverage. It would be
a disservice to your readers not to give them
information about this problem. Therefore I
request that you keep your readers informed

6

of software viruses, symptoms and cures.
-Ralph Allen

Arlington, Virginia

Is there any wayan Action! compiled pro
gram could be converted to BASIC data state
ments and printed in your magazine? This
would allow more of us Action!-less owners
to enjoy some of those fine programs. I real
ize they are available on your disk version.

-Everett Rantanen
Milwaukee, Wisconsin

Any binary file may be converted to DA1A
statements for use in a BASIC loader or for
typing in by MIL Editor. However, most Ac
tion! programs, after they've been compiled,
are much too large to allow their printing in
the magazine. l-J0 realize that many readers
don't have Action!, but we feel that enough
people are interested in the language to war
rant the inclusion ofan Action! program now
and then. As you mentioned, most of the Ac
tion! programs (not all of them) are availa
ble on the disk version of the magazine. Also,
they may be downloaded from ANALOG's
Atari SIG on DELPHI.

I am Polish, and I am 17 years old. I have
an Atari 800XL computer and a 1050 disk
drive. I want to collaborate with other Atari
users. I also want to exchange Atari computer
magazines. Can you help me?

-Artur Nowakowski
W. Wasilewskiej 5/8

08-110 Siedlce
Poland

There's a problem with Andy Eddy's piece
on GEnie. I am not the SYSOP. I am one of
the SYSOPs. To make it very clear:

There are two contracts for the Atari round
tables (RTs). Darlah holds one, and Atari
Corp. holds the other. On Atari's behalf, I
am the manager of the Atari areas, with 20
members of Atari's staff currently online

there. Darlah, however, supervises all the ac
tivities of the assistant SYSOPs (Marty Al
bert, Mark Booth, Sandy Wilson, Holly
Stowe, Craig Thorn and Atarians John Town
send and Dan Scott).

Darlah works harder for the GEnie RTs
than any SYSOP I've ever seen. She deserves
credit, and listing me as SYSOP is not fair.
I hope you can put something in a future is
sue to fix this. Thanks. -Neil Harris

Atari Corp.

I will be the first to acknowledge the work
that Darlah has done to make the Atari RTs
what they are. Her contributions are every
where. What I meant to say in the article was
that you had taken over the management of
the Atari RTs, but it didn't come out that
way. .. the sun reflected offmy monitor. . .1
tripped on a deadline. My apologies to
Darlah and her associates. -Andy Eddy

The following lines were accidentally delet
ed from the end of Listing 2 of Issue 63's
Train Crazy. Sorry about that.

JI 4007 FOR T=2 TO 17:U=U+128:FOR 0=0 TO
8:NEXT O:SOUND 1,U,8,6:POSITION T,l:?
U6;" [!JVe[;II:NEKT T:POSITION 17,1.

..1)( 4008 ? U6i ll ":POSITION .14 / O:? U6i"
mUelil"

NB 4010 POKE 559,42:POSITION 7,0:? 1t6;"[]j~
~ [!JUe[; ":? U6jllll:SOUND 1.,0,0,,0

AH ~030 ? U6jll srJ!]Re lIiSC+215:? U6i"

FK 4040 ? tlGjll pr~5 rnArL!II:? U6;11I1
ow 4045 ? 116i lt [l!]R mNe~ GaCI3I1:? U6jll

":POKE 559,42:GOSUB 4050
ZX 4047 FOR VV=l TO 15:POSITION 6,4:? lt6;

" ": FOR T=l TO 30: IF PEEK (53
279)=6 THEN RUN

PL 4048 NEXT T:POSITION 6,4:? 1t6;"PI'~S 0
[j~I'Il":FOR T=l TO 30:IF PEEK(53279)=6 T
HEN RUN

RV 4049 NEXT T:NEXT VV:RUN
GZ 4050 IF SC)15000 THEN POSITION 4,8:? It

JW ~~~lla:~.:~~"J:~lil:~~:E~g~~TloN 6,8:? U
6;"GRE~T SCORE":RETURN

GT 4052 IF SC)4000 THEN POSITION 7,8:? lt6

PR ~~~~ttq~it~ti~~~E~~~: POSITION 7,8:1 U6

LO ~~~~Yp~~~~~~~~~I~~~19)=P$[I,I+19)
XK 5001 I=58:X=X-2.4:S=STICK(0)
PG 5002 IF PEEK(53253»0 THEN 10000
XT 5003 IF S=14 OR S=13 THEN 422
JF 5004 IF STRIG(O)=O THEN X=X+l:GOTO 455
FS 5010 POKE 53249,X:IF X(53 THEN GOTO 30

00
OT 5030 GOTO 5000
KG 9000 IF PEEK(53253)=2 THEN SC=SC+200:G

OTO 9002
DF 9001 GOTO 620
WW 9002 RESTORE 9004+LP:RE~D O:POKE DH+25

6*1+0,0:SOUND 1,50,10,8:IF LP=4 THEN C
X=-8:B~=6

RT 9003 IF LP=5 THEN CX=-8:8~=6

GT 9004 D~T~ 20
LW 9005 D~T~ 58
NG 9006 D~T~ 97
HR 9007 D~T~ 133
LS 9008 D~T~ 168
IN 9009 D~T~ 206
VF 'jOl0 POSITION CX+LP+LP,BA:? "ZI1
DH 9011 I=3:U=120:ZX=ZX+3:POSITION 30-TT+

ZX,2:? "(iIjJjl":O=O:FOR Z=V TO 37 STEP 2:
U=U+I0:S0UND 1,U,10,5

VV 9020 PH$(Pl+Z,Pl+Z+19)=P$(I,I+19l:NEXT
Z:I=58

ON 9025 PH$(Pl+34,Pl+53)=P$(I,I+19) :V=34:
GOTO 421

ZZ 10000 IF PEEK(53253)=8 ~ND LP=5 THEN 9
00

GC 10001 IF PEEK(53253»0 THEN 9000
ZV 20000 D=D+37:POKE DH+256*3+D+2,0:POKE
GL ~~~~~6~~:D+l,0:LP=LP+l:0=0:GOTO 421 ~

NOVEMBER A.N.A.L.O.G. Computing



Zap goes your
XE

Ever wonder what would happen if a

lightning bolt hit the power transformer out

side your home one night? Five-hundred

thousand volts of electricity can run through

your XL/XE's power supply. The resulting

fireworks will permanently remove your

home computer from service. The way to

avoid this problem is with the purchase of

surge suppressors. These devices remove the

nasty pops, clicks and spikes from the elec

tricity powering your computer.

Surge suppressors usually plug into a wall

plug and look more or less like an extension

outlet. Your Atari computer's power supply

plugs into the surge suppressor and receives

a calm and steady supply of electricity. Surge

suppressors are also good for your home

stereo, microwave oven and answering

machines, to name just a few. Unfortunate

ly, this means buying many suppressors, one

for each device you want to protect.

CPS Electronics has introduced a novel

new idea in surge suppressors: One unit

covers your entire house. The EG 240R is a

whole home, residential, circuit breaker sur

ge suppressor that mounts to the panel of your

home's circuit breaker box. The unit can also

be fitted into fuse boxes. The EG 240R can

arrest a surge of up to 20,000 amps, which

is enough to send your computer into orbit.

CPS guarantees the unit with a three-year

warranty. The list price is $89.95, and it is

now available.

CPS Electronics

4151-112th Terrace N.

p.o. Box 2460

Pinellas Park, FL 34290-2460

(800) 237-6010



Anyone call a
doctor?

Mad Scientist Software produces mediyal
eduction software to teach medical principles
to students and hospital staff. Their latest
offering is the Advanced Cardiac Life Sup
port (ACLS) package. A four-disk series, the
ACLS system covers EKG training, cardiac
arrest simulations, ACLS terminology and
protocols, and a general quiz to prepare stu
dents for the ACLS certification test. The
ACLS package costs only $109 and is now
available for the XE/XL.

Mad Scientist Software
2063 North 820 West
Pleasant Grove, UT 84062
(801) 785-3028

Stripless XE/XL
Recently Artworx Software released Strip

Poker II for the Atari ST, Apple IIGS and
IBM-PC. You might remember Strip Poker
as a fun and inventive game where your com
puter opponent reveals more than just his/her
hand of poker cards. Artworx seems to have
chosen to not produce an XE/XL version of
this quality product. ANALOG encourages
its readers to write to Artworx to change their
mind about the Atari 8- bit market.

Artworx Software
1844 Penfield Road
Penfield, NY 14526
(800) 828-6573

AL/65
development

tools
Omega Soft has announced a new develop

ment system for the 8-bit Atari home com
puter. Unlike most assemblers, AL/65
compiles 6502 source code into relocatable
code, or code which can be used in other pro
grams. The editor supports full-screen edit
ing, macros and custom character sets.

AL/65 is a complete development system
for only $44.95. The package includes an as
sembler, linker, editor and system utility soft
ware. AL/65 also comes with a
command-line interpreter (CLI), which al
lows developers to use typed commands to
maintain files, launch programs and modify
the development environment.

Omega Soft
P.O. Box 139
Harrelis, NC 28444
(919) 532-2359

Mindscape
signs SSI

In a move to increase its audience, Mind
scape has signed an exclusive publishing
agreement with Strategic Simulations Inc.
(SSI). The agreement gives Mindscape rights
to publish SSI's backlist of strategy/simula
tion titles. Well-known classics like Fortress,
Battalion Commander, Nam and Geopoli
tique 1990 are the first SSI programs to be
published under the new Thunder Mountain
label.

SSI started in the computer war-game mar
ket in 1980, and has held almost half of the
war-game market since. Mindscape has also
licensed Cartel and Cutthroats, Combat
Leader, Galactic Gladiators and Queen of
Hearts. Most of these titles will be available
for the Atari 8-bits.

Mindscape
3444 Dundee Road
Northbrook, IL 60062
(312) 480-7667

Daisy-Dot II
Roy Goldman has created Daisy-Dot II, a

powerful printing system for 8-bit Atari com
puters. The software package allows printing
of near-letter-quality text with Epson and Star
compatible printers. Based on' the original
Daisy Dot, the new system offers higher out
put quality and new formatting features.
Fourteen fonts are included with Daisy-Dot
II, including Roman2 (Times Roman), Ohio
(Geneva), Senator (Helvetica), and Block2
(Modern).

Daisy-Dot II has been put into the public
domain; the entire system can be found on
DELPHI, GEnie and CompuServe. The
double-sided disk and 24-page manual may
be purchased from Roy Goldman for only
$10.

The Daisy-Dot II Accessory Disk is also
available and is priced at only $5. It comes
with TextPro, a word processor for text en
try, eight additional fonts and a utility pro
gram that allows Daisy-Dot II to work with
the AtariWriter.

Roy Goldman
2440 South Jasmine
Denver, CO 80222



Branch
Software

sprouts new
titles

A new company is producing low-cost,
high-quality software for the 8-bit market.
Branch Software has released several new ti
tles, all designed to work on any 48K Atari
8-bit computer with DOS 2.0 or 2.5 installed,

In Blockaid you use your shield to defend
yourself against the fiery ball of Zieweunthu.
After learning how to pronounce Zieweun
thu, you can destroy all the colorful blocks
and advance into the next of 40 rooms, The
game includes a Blockaid Construction Set,
so you can custom design additional screens.
The game even lets you insert your custom
screens into the Blockaid game for future
generations to enjoy.

Trivia Quiz is the improved version of the
public-domain trivia game of the same name.

The new version is filled with ready-to-use
questions, with more companion data disks
on their way.

In Agent 16, a role-playing game, three gi
ant text adventures are stored on one disk.
The central character, Agent 16, is a super
secret spy that tumbles from one deadly
challenge to another. A special menu loader
lets you see all the instructions and back
ground information needed to play Agent 16.

All of the new titles are currently availa
ble and have a list price of less than $20.

Branch Software
2750 Friday Lane
Cocoa, FL 32926
(407) 631-7149

'1,
~...

with trade·in of 1050 Drive
$CALL for your system

with trade-in of 800XL, 1050 Drive
$CALL for your system

,

Hayes 5martmodem $49
Atan 1027 La Printer $79
Okimate 10 w/PIP $99

Slave Drives from $35
Commodore 1702 $135
Software/Books from $1

$335 1040ST Computer
$99 130XE Computer
$59 800XL Computer

5205T Computer
5F354 Drive
1200XL Computer

Atari SX212 Modem $89 Happy Rev. 7.1 $99
256K upgrades Ok from$35 R·Time 8 Cartridge $49
Slar NX·l000 144cps $189 Star NX·2400 24 Pin $389

130XE Computer 5249 XF·551 Drive $179
1802C Color Monitor $189 Magnavo, 80 Mono $99
Avate, 1200HC $99 Avate, 2400HC $199

pr

';f"

I~il'~' $219
NEW

_-~-':..o~~
---,,-~>._ '~""'" . '"""0,.,",,, .,

.,/ 1050 Dnve $139# ;p1i@7:"'$449Atan1025pnnler$79
ATR·8000 64K,5Iaves$199

NEW Atan 850 Interface $69
Koala Touch Tablet $35

C Authorized Dealers for JI,
- COMMODOREIAMIGA
• and ATARI STIXUXE
Computers and Accessories.

lffiWI~~[iI!J.:.1];DJIIi~~~iiilt!ii~m

ith trade-in of 130XE, 1050, 1702 Mon., Np·10 Printer, mode
$CALL for your system

$Cash for your equipment
Thousands of software & book tilles

Plus, MUCH, MUCH MORE!

with trade·in of 800XL
J

1050, 1702, Np·10 Printer, 1200 mdm. 2017 13th Street Suite A
$CALL for your system Boulder, CO 80302

1-303-939-8144

Products - New
5205T FM CPU $499 520 ST FM color sys$819_----------------_512K RAM FM Insliid $199 Atan SF314 Drive $219r-----~--~--------....,Atari 520ST FM SM124monoMonilor$159 5C1224 color Mon. $325 Atari XF.551

CIRCLE #102 ON READER SERVICE CARD.



10

NOVEM8ER A.N.A.L.O.G. Computing



A
tari Streamers is a machine
language utility which uses
player-missile graphics to cre
ate fine-scrolling vertical
character displays. Excluding

inverse characters (which are automatically
unshifted), displays can be made up of any
string of characters desired-that is, upper
case, lowercase and graphics characters in
either single- or double-line resolution.
Even custom-character sets ClUl be dis
played.

Atari Streamers has two entry points.
The first entry point copies your string of
characters into player-missile memory. It
is called by the USR statement:

X=USR(1536,PMADDRESS,
STRINGADDRESS,FONT,LENGTH).

PMADDRESS is the address of the play
er you wish to put your character display
in. STRINGADDRESS is the address of
the string of characters that will be copied
to player memory. The best way to store
your character display is to define it as a
string variable, and then use the ADR func
tion to find its address. FONT is the ad
dress of the character set you wish to use.
It should be set to 57344,which is the ROM
address for the normal character set,but if
you have an altered character set in

memory, or if you wish to use the interna
tional character set (found only on the XL
and XE computers), simply substitute the
address of the character set you wish to dis
play. The international character set is lo
cated at 52224. The last value, LENGTH,
is the length of your string of characters.
In double-line resolution, strings can be a
maximum of 16 characters long. In single
line resolution, strings can be up to 32
characters long.

Excluding inverse
characters, displays
can be made up of

any string of
characters desired.

The second entry point of the routine will
move everything in the player specified one
byte up or one byte down with wrap
around. It is called by the USR statement:

X=USR(1677,PMADDRESS,DIRECTION)

PMADDRESS is the address of the play
er you wish to move. DIRECTION is the
direction you wish to move the player in.
If DIRECTION equals zero, everything in
the player will be moved up by one. If
DIRECTION equals one, everything in the
player will be moved down by one. When
this routine is used in combination with the
horizontal-position registers, you can eas
ily move your character displays anywhere
on screen and over any graphics mode.

The demo program displays and moves
all four players in double-line resolution (if
you wish to change the demo program to
display in single-line resolution, substitute
the lines in the REM statements). The four
missiles are also displayed as a single play
er. This is not difficult since the missiles
are mapped exactly the same way the play
ers are mapped. The only difference is that
the missiles have individual horizontal and
collision registers. Ifyou're going to com
bine the four missiles into a single player
in your own program, remember to line
them up in the correct order-that is, mis
sile three, missile two, missile one, mis
sile zero. They should be spaced two
resolution lines apart. Poke location 623
with 17 to give all players priority over all
playfields and to give all missiles their own
color. You can change the missiles' color
by poking to location 711.

bV Brad Timmins---------
NOVEMBER A.N.A.L.O.13. Computing 11



1 ----------------------------,
;THIS ROUTINE WILL TAKE A CH~RACTER

;STRING AND COPY IT TO PLAYER
;MISSILE MEMORY.i----------------------------------

Listing 2
ORG 1536

j------------------------------
;~T~RI STRE~MERS ML SUBROUTINE
;WRITTEN fOR THE MACRO ~SSEMBLER

;ZERO PAGE EQU~TES

PL~YER: = 203
STRING: = 205
CHRGET: = 207
MOUEP: = 203
MP: = 205

KL 270 X=USRC1677,PM1,1)
LZ 2~0 X=USRC1677,PM3,1)
GL 2~5 fOR T=1 TO 500:NEXT T
UK 300 REM Move Missile and Pla~ers zero
IJ 305 REM and TWO
HI 306 fOR T=l TO 250:NEXT T
SS 307 fOR 1=1 TO 128:REM fORI=O TO 255
10 310 X=USRC1677,PMO,0)
K~ 320 X=USRC1677,PM2,0)
CH 330 X=USRC1677,MISSILE,1):POKE 711,1
HK 340 NEXT I:GOTO 306
JO 4~5 REM *****~T~RI STRE~MERS*****

TN 4~6 REM MACHINE L~NGUAGE SUBROUTINE
EO 500 fOR ~=1536 TO 1766:READ B:POKE ~,B

:NEXT ~

za 505 RETURN
WW 510 DATA 104,104,133,204,104,133,203,1

04,133,206,104,133,205,104,141,230,6,1
04,141,22~,6

TG 520 D~T~ 104,104,141,227,6,16~,0,141,2

28,6,16~,32,141,231,6,173,47,2,201,62,

240
GH 530 DATA 5,16~,16,141,231,6,172,228,6,

177,205,41,127,201,31,176,4,~,64,208,7

IK 540 DATA 201,~5,176,3,56,233,32,141,22

5,6,16~,0,141,226,6,162,3,24,14,225,6

BM 550 DATA 46,226,6,202,208,247,24,173,2
25,6,10~,22~,6,133,207,173,226,6,10~,2

30,6
PD 560 D~T~ 133,208,162,0,160,8,161,207,1

2~,203,230,207,230,203,136,208,245,238

,228,6,173
JQ 570 D~TA 228,6,205,231,6,240,7,205,227

,6,240,2,208,164,~6,104,104,133,204,13

3,206
~Q 580 D~TA 104,133,203,133,205,104,162,2

55,160,255,173,47,2,201,62,240,4,162,1
27,160,126

PM 5~0 D~TA 104,201,1,240,1~,160,0,177,20

5,141,225,6,230,203,177,203,145,205,20
0,202,208

UL 600 DAT~ 248,240,27,138,168,177,205,14
1,225,6,136,177,203,141,226,6,138,168,
173,226,6

YF 610 D~TA 145,205,136,136,202,208,23~,1

38,168,173,225,6,145,205,~6,0,0,O,0,0,

o
HG 620 D~T~ 0,224,2,225,2,0

"

fONT=57344:REM ROM character set
POKE 55~,46:REM POKE 55~,62

POKE 53277,3:POKE 752,1:POKE 623,1

RJ
LM

IW
LG
GM

TW

1 REM ~T~RI STRE~MERS

2 REM BY BR~D TIMMINS
3 REM Substitute the lines in REM
4 REM stateMents for single-line
5 REM resolution Pla~ers.

6 REM COPYRIGHT 1~88 BY ~N~LOG COMPUTI
NG

~H 50 DIM PO$(16),Pl$C16),P2$C16),P3$C16)
, MI$ (16) , CL$ (16)
51 REM DIM PO$(32),Pl$C32),P2$C32),P3$
(32),MI$C32),CL$C32)

DO 60 ? CHR$(125):SETCOLOR 2,0,10:SETCOLO
R 4,0,10

PH 70 GOSUB 500
TJ 80 ~=PEEKCI06)-8:REM ~=PEEK(106)-16

FB ~O POKE 5427~,~:PMB~SE=256*~

EG 100 MISSILE=PMB~SE+384:PMO=MISSILE+128

:PM1=PMO+128:PM2=PM1+128:PM3=PM2+128
ZU 101 REM MISSILE=PMB~SE+768:PMO=MISSILE

+256:PM1=PMO+256:PM2=PM1+256:PM3=PM2+2
56
110
120
130
7

UY 135 REM Position Pla~ers

JT 140 POKE 53248,60:POKE 5324~,61:POKE 5
3250,1~5:POKE 53251,1~6

144 REM Position Missiles
145 POKE 53255,122:POKE 53254,124:POKE

53253,126:POKE 53252,128
CN 150 POKE 704,128:POKE 705,134:POKE 706

,128:POKE 707,134:POKE 711,128
HI 155 REM Define a string of spaces
KT 156 REM the length of the pla~ers,

JG 157 REM to clear out Pla~er-Missile

MG 158 REM MeMor~.

FC 160 CL$="
JS 161 REM CL$="

II

SN
XQ
XW
RL
FH
IR

Listing 1:
BASIC

At
Strea

OX 180 fOR T=O TO 4
WJ 1~0 X=USRC1536,MISSILE+CT*128),~DRCCL$

),fONT,16)
DC 1~1 REM X=USRC1536,MISSILE+CT*256),~DR

CCL$) , fONT, 32)
JY 200 NEXT T
YM 205 REM Define Strings
ID 210 PO$=" StreaMers":Pl$=PO$:P2$=PO$

:P3$=PO$:MI$=" ~tari"
RD 215 REM cop~ strings to Pla~er MeMor~

MU 220 X=USRC1536,PMO,~DRCPO$),fONT,12)
00 230 X=USRC1536,PM1,~DRCP1$),fONT,12)
OH 240 X=USRC1536,PM2,~DRCP2$),fONT,12)
SA 250 X=USRC1536,PM3,~DRCP3$),fONT,12)
JO 251 X=USRC1536,MISSILE,~DRCMI$),fONT,1

0)
PH 255 REM Shift Pla~ers ONE and THREE
IC 256 REM down b~ one to create a
JC 257 REM shading effect.

PLA ;GET UNUSED BYTE
PL~ ;GET MSB Of PLAYER ~DDRESS

sa PL~YER+l

PLA ;GET LSB Of PL~YER ADDRESS
sa PL~YER

PLA ;GET MSB Of STRING
sa STRING+l
PL~ ;GET LSB OF STRING
STA STRING
PL~ ;GET MSB OF CHARACTER SET
STA CHSET+1
PL~ ;GET LSB OF CH~RACTER SET
ST~ CHSET
PL~ ;GET UNUSED MSB Of LENGTH
PLA ;GET LSB Of LENGTH
ST~ LENGTH

;INIT. U~LUES

12 NOVEMBER A.N.A.L.O.13. Computing



LDti UO
STti COUNT
LDti U32
STti MtiX

;TEST FOR SINGLE OR DOUBLE LINE
;RESOLUTION.

LDti 55~

CMP U62
BEQ GETSTR
LDti U16
STti MAXj----------------------------------
;GET ATtiSCII CHARACTER FROM STRING
;AND CONVERT IT TO FIND ITS CORRECT
;ORDER IN MEMORY.
1 ---------------------------,

GETSTR: LDY COUNT
LDA (STRING),Y

;IF CHARACTER IS IN INVERSE,
; UNSHIFT IT.

AND U127
C1: CMP U31

BCS C2

;GRAPHICS CHARACTER 0-31
;ADD 64 TO ITS VALUE.

ORA U64
BNE C3

C2: CMP U~5

BCS C3

;UPPERCASE CHARACTER 32-~5

;SUBTRACT 32 FROM ITS VALUE

SEC
SBC U32

;LOWERCASE CHARACTER ~6-127

iDO NOTHING. THEV ARE ALREADY
;IN THE CORRECT ORDER.

;STORE NEW CHARACTER VALUE IN TEMP.

C3: STA TEMP
LDA UO
STA TEMP+l
j-------------------------------
;MUTIPLI CHARACTER BY 8j-------------------------------
LDX U3
CLC

C4: ASL TEMP
ROL TEMP+1
DEX
BNE C4,------------------------------,
;ADD CHARACTER SET ADDRESS, AND
;PUT THE VALUE IN ZERO PAGE.i------------------------------
CLC
LDA TEMP
ADC CHSET
STA CHRGET
LDA TEMP+1
ADC CHSET+1
STA CHRGET+li---------------------------------
;COPY CHARACTER, FROM ITS ORIGINAL
;ADDRESS, TO PLAYER MEMORY.
i---------------------------------
LDX UO
LDY U8

CPl: LDA (CHRGET,X)
STA (PLAYER, X)
INC CHRGET
INC PLAVER
DEY
BNE CP1
INC COUNT
LDA COUNT
CMP MAX;
BEQ RETURN
CMP LENGTH
BElt RETURN

NOVEMBER A.N.A.L.O.G. Computing

BNE GETSTR;NOT DONE.CONTINUE LOOP.
RETURN: RTS;DONE.GO BACK TO BASIC.

1 __ - ---------------------------,
;THIS ROUTINE WILL MOVE THE PLAYER
;UP OR DOWN WITH RAP.j---------------------------------
PLA ;GET UNUSED BYTE.
PLA ;MSB OF PLAYER.
STA MOVEP+l
STA MP+l
PLA ;LSB OF PLAYER.
STA MOVEP
STA MP
PLA ;UNUSED MSB OF DIRECTION.

;SINGLE LINE RESOLUTION SETUP.

LDX U255
LDY U255

;TEST FOR DOUBLE OR SINGLE LINE
;RESOLUTION.

LDA 55~

CMP U62
BEQ Sl

;DOUBLE LINE RESELUTION SETUP.

LDX U127
LDY U126

;PULL LSB OF DIRECTION OFF STACK, AND
;fIND OUT THE DIRECTION TO MOVE.

S1: PLA
CMP Ul
BEQ MDOWN
i---------------------------------
;MOVE PLAYER UP ONE BVTE AND RAP.j---------------------------------
LDY UO
LDA (MP),Y
STA TEMP
INC MOVEP

UP: LDA (MOVEP),Y
STA (MP),Y
INY
DEX
BNE UP

;DONE.GO RAP LAST BYTE AROUND.

BElt S3i----------------------------------
;MOVE PLAYER DOWN ONE BYTE AND RAP.i----------------------------------

MDOWN: TXA
rAY
LDA (MP),Y
STA TEMP
DEY

S2: LDA (MOVEP),Y
STA TEMP+1
TXA
TAY
LDA TEMP+l
STA (MP),Y
DEY
DEY
DEX
BNE S2;-----------------------------
;RAP LAST BYTE AROUND AND EXIT
;ROUTINE.i-----------------------------
TXA
TAY

S3: LDA TEMP
STA '(MP), Y
RTS

;BYTE FIELD EltUATES

TEMP: DB 0,0
LENGTH: DB 0
COUNT: DB 0
CHSET: DB 0,9
MAX: DB 0

13



Since 1981

Lyco Computer
Marketing & Consultants

130 XE
System

$179 95

D

System
Includes:

-"'-ATARr
520 ST-FM m--
Color )lllD
System _'.

Inlernal - ~_ .

~~~~ded ~~J

$749 95 ~

JllATARr

• Composite
Color
• Green Text
Switch

• Speaker

• Suggested
Use 130 XE

MAGNAVOX
CM-8502

ONLY $459 95

JllATARr
520 ST-FM Computer

~~J_
• Built-in "Q7>

Drive

UEADSrART
-----

[J

I Hi Res color monilor included!

GTS-100
• Atari ST
Drive
• 3.5" DSDD

iNDUS

•
•••

COLOR SYSTEM

Lyco Means Total Service.

I con'l see Why anyone would shop anywhere else. Sclocllon lrom our hllge
In·.lock Invenlory, besl price, service Ihal eDn'l bo beal-we've !lol 11 all here
at Lyco Computer.

Mork "Moc" Bow...r, Solu Monogor

I would po..onally like 10 thonk oil 01 our post customer. ror helping to
moke Lyco Compul.r ona 01 tho lorgest moll order companies and a
'o,,-d.r In tha Industry. Also. I would liko 10 oxlend my personal Invilalion 10
all compulor enlhuslasts who havo nol exoorlp.ncnd Ihe scrvicns Ihal wa pro·
vide. Pleoso coli our Irained sale. slall 01 our loll·hee number 10 Inquire
aboul our diverse producl line and weekly speclels.

First and lor.most our philosophy la to keep obreasl or tho changln~
merkel so thai we can provide you with nOl only faclory.fresh lIlerchnnc11~e
bul elso Ihe newesl models ailered by Iho manufaclurers at Ihe ilbsolule besl
possibla prlcns. We oller Ihe widest selection 01 compuler hardware. sollware
nnd necessorles.

F••I Ir•• to coli lyco II you wont 10 know more obolll 0 porllcular lIem. I
can'l slrOS!\ enough Ihal our loll-fm9 number Is nol jllsl for orders. Many
compnnles hnve 0 loll·freo number for ordorinq, bul II yon jusl walll 10 osk a
quostlon nboul e producl. you have I" mako a loll call. Nol al lyco. Our
Iralnod sales slall Is knowladgeable eboul nil Ihe producls wo sloek and's
happy 10 8nswer (lny questions you mny h:wo. We will do our brost 10 make
suro Ihal Ihe produci you selocl will Iii your appllcallon. Wo elso have Salur·
day hours - one more reason to coli us lor all your computer neods.

Onca you'vo ploced your order wllh lyco, we don't lorgel nbout you.
Our frlondly, professional customor sorvice reprcslJnlallves will-find answers
to your question. about Ihe slalus of an order, warranties, producl avallabili·
ty. or price•.

lyeo Comput., .lock. 0 mulllmlllon dollor Invlntory 0' 'oclory-'r••h
moreh.ndl... Chonee. are we hove eXRelly whal you wanl right In our waro.
houso. And thol meene you'll Qet It le.1. In lacl, ordere oro normally ehlpped
",l1hln 24 hour•. Fr... Shlg'Plng on prepaid ordoro over S50, ond Ihoro ,. no
depa'il required On C,O. . ordero. Air freight or UPS Bluoilled Labol .hlpplng
I. ovolloblo, 100. And oil products corry Iho lUll menu/acfurero' warrDnllos.

TO ORDER, CAll TOll-FREE: 1-800-233-8760
New PA Wats: 1-800-233-8760

Outside Continental US Call: 1-717-494-1030

Hours: 9AM to 8PM, Mon. - Thurs.
9AM to 6PM, Friday - lOAM to 6PM, Saturday

For Customer Service, call 1-717-494-1670,
~ 9AM to 5PM. Mon. - Fri. 'r-:.c..,
~ Or write: Lyco Computer, Inc. l:.-_·_'

P.O. Box 5088, Jersey Shore, PA 17740
C.O.D. Rlak·Free Polley: • full manufacturers' warranties. no sales tax
outside PA • prices show 4% cash discount; add 4% for credit cards. APO,
FPO, inlemallOnal: edd S5 plus 3% lor priorily I 4-week clearance on personal
checks I we check for credil cord !heft I sorry, compalibility nol gueranleed I

return authorization required. due to new product guarantee, return restrictions
apply I price/availability subject 10 change I prepaid orders under $50 in
Conlinental US, add $3.00

.A\.ATARr
HARDWARE

520 RGB $749.95
520 Mono $599.95
520 Keyboard $459.95
130 XE $135.95
GTS 100 Drive $195.95

JOYSTICKS
Tac 3 $9.95
Tac 2 .................•....... $10.95
Tac 5 $12.95
BOss $11.99
3 Way ..........•......•...... $19.99
Winner 909 $24.95
Wic IBM/AP $29.95
I Controller $13.95
Epyx 500XJ $13.95
Kraft KCIII AP/PC $16.95

1-800-233-8760 )-------
CIRCLE #103 ON READER SERVICE CARD.



In/erfacing available
for IBM C 64, Apple

and A/ari

$15995

Panasonic
Office AUlomallon~

1080i n

.~o:~o::M~'\'~ ..• NLO Mode 't,
• Friction & Tractor .~~;;;;;;;;~__..~_

Feed \;.-

~CITIZEN
1200 $149.95
1800 $169.95
MSP·10 $259.95
MSP-4O $289.95
MSP-15E $335.95
MSP-5O $399.95

~~u~~~Oic~ OIQQATA
Unl Okimate 20 $129.95

10BOi Model II $159.95 Oklmate 20 w/cart $189.95

1091I Model II $189.95 180 $219.95
1092i $299.95 182 $209.95
1592 .. $375.95 182 + $225.95
1595. .. $419.95 183 $239.95

3131 .. .. $289.95 292 w/interface $449.95

3151 $459.95 293 w/interface $585.95
KXP 4450 Laser $1649.95 294 w/interface $819.95
1524 24 Pin $529.95 393 $955.95
Fax Partner $579.95 Lazer 6 $CALL
Optical Scanner $859.95 390 $479.95

391 $649.95
320 , $345.95
321 $445.95

Attention
Educational
Institutions:

EPSON~

Myou are not cUrTandy using
our educational service
program, please call our

representatives tor details.

LX800 . $164.95
FX86E $329.95
FX286E $424.95
EXBOO $399.95
LQ500 $339.95
L02500 $789.95
G03500 $LOW
L0850.... .. $525.95
LQ1050 $699.95

SP 180Ai $125.95'
SP 1200Ai $159.95
SP 1200AS RS232 $159.95
SL 80Ai $289.95
MP5420FA $999.95
SP Series Ribbon $7.95
SK3000 AI $339.95
SK3005 Ai $419.95
SPB 10 $CALL
SL 130Ai $599.95

• Quantities Limited

Toshiba
321 SL $489.95
341 SL $659.95
P351 Model II $899.95
351 SX 400 cps $979.95

NX-1ooo $165.95'
NX-1ooo Color $225.95

NX-15 .. .. $289.95
NR-10 .... $319.95
NR-15 $419.95
NB-15 24 Pin $669.95
NX-24OO $309.95
NB24-10 24 Pin $399.95
NB24-1524 Pin $545.95
Laser 8 $1759.95
ND-15 $349.95
NL-10 $149.95
'w/cable purchase

~~@IF SEIKOSHA

~~:~~:~S~180A: !~
: ~ci4cC:SS~~~t t$165 95* ~ \::::iii':'i'-iiii'iii:~~~·Uliii~.~.~'~!
• EZ Font Panel ~ M'

Control .100 cps Draft
• 20 cps NLQ
• Std, Par, and IBM Graphics

Compatible $12595
Quantities

Limited..._--- ----_.
SEIKOSHA

BROTHER
M1109 $159.95
M1509 $335.95
M1709 $459.95
Twinwriter 6 Dot &

Daisy $899.95
M1724L $619.95
HR20 $345.95
HR40 $559.95
HR60 $649.95

..JIJ/J1I1 JIJ/J1I1.....
Access:
Triple Pack $11.95
Leader Board Pack $9.99

Actlvlslon:
Music Studio $19.95
Solid Gold Vol.#1 $10.95

Batteries Included:
Paperclip 80 Col ........ $31.95

Broderbund:
Print Shop $25.95
Print Shop Compan $22.95
Graphic Lib. I, II, III $13.95
Bank 51. Writer. .. $27.95

Electronic Arts:
Pinball Con Set $8.95
Lords of Conquest. . $8.95
Starfleet I $32.95
Chess Master 2000 $25.95
Music Con Set $8.95
Super Boulderdash $8.95
One on One $8.95

Mlcroleague:
Microleag. Baseball ..... $22.95
General Manager. . $16.95
Stat Disk $13.95
'87 Team Disk $13.95

Mlcroprose:
Conflict in Vietnam $22.95
F-15 Strike Eagle $19.95
Kennedy Approach $13.95

Access:
Leader Board $22.95
Tournament #1 $11.95
10th Frame $22.95

Actlvlslon:
Champion. Baseball $22.95
GFL Football $22.95
Music Studio $27.95
GBA Basketball $22.95
Beyond Zork $28.95
Zork Trilogy $27.95

Broderbund:
Superbike Challenge ... $11.95

Electronic Arts:
Arctic Fox . .. $25.95
Starfleet I $32.95
Chess Master 2000 $25.95
Gridiron $32.95
Marble Madness $23.95

Epyx:
Sub Battle Simulator $22.95
World Games $22.95
Wrestling . .. $11.95
Winter Games $11.95

Flreblrd:
Pawn $13.95
Starglider $25.95
Golden Path . . $11.95
Guild of Thieves $25.95
Tracker. .. $11.95

Mlcroleague:
Microleague Baseball .. $33.95
General Manager $16.95
Wrestling $25.95

Mlcroprose:
Silent Service $22.95
F-15 Strike Eagle $24.95
Gunship . .. $28.95

Strategic Simulations:
Phantasie $22.95
Phantasie II $22.95
Wargame Con. Set $19.95
Phantasie III $22.95

SUbloglc:
Flight Simulator II $30.95
Scenery Disk $14.95

Tlmaworks:
Wordwriter 5T $44.95
Partner ST. . $27.95
Data Manager ST $44.95

Unison World:
Art Gallery 1 or 2 ........ $14.95
Print Master . $19.95
Fonts & Borders. $17.95
Art Gallery Fantasy $13.95

We stock over 3, 000
software titles!

Thomson:
230 Amber TTU12" $69.95'
4120 CGA $199.95
4160 CGA $199.95

Blue Chip:
BCM 12" Green TTL $64.95
BCM 12" Amber TTL $69.95

NEC
MUllisync II $589.95

Magnavox:
BM7652 $79.95
BM7622 $79.95
7BM-613 $79.95
7BM·623 $79.95
CM8502 $179.95
CM8505 $199.95
9CM·053 $CALL
CM8762 $245.95
8CM-515 $259.95
CM9043 . .. $CALL
8CM·873 $499.95

Avatex:
12<XJe $65.95
1200i PC Card $65.95
1200p $89.95
1200hcMadem $79.95'
2400 $149.95
2400i PC Card $139.95
'w/cable purchase

Hayes:
Smartmodem 300 $139.95
Smartmodem 1200 $279.95
Smartmodem 2400 $419.95

AvateX
1200E

~
$6595





- - . ---- --=---

:1\llB'~ II II 111





when you're ready to play again. To resume
a saved game from within Slave II, simply
type the command LOAD GAME.

Sometimes, a response to a command will
contain more text than will fit in the text win
dow. When this happens you will see the first
few lines and the computer will beep. When
you've finished reading the text on the screen,
press Return, and the next few lines will be
shown.

Hint department II
The following adventure hints have been

encoded by a forward cycling of the alphabet.
That is, the letter A has been changed to B,
the letter B has been changed to C and so on.
To use the hints, find the question that ap
plies to your problem, and decode the first
hint in the list following the question. If, af
ter decoding the first hint you're still stuck,
decode the next. The last hint in the list is
the solution.

How do I get past the fire?
1) Uifsft b mblf ofbscz.
2) Xbufs Iffqt zpv dppm.
3) Kvnq jo uif mblf boe hfu xfu.

3) Npwf uif xbsespcf.
4) Mppl bu uif bmubs.

How can I get into the king's quarters without
getting arrested?

1) Zpv dbo'u mfu ijn tff zpv.
2) Xbju voujm ift tmffqjoh.
3) Hp bu ojhiu.

What's with the throne?
1) Uifsft tpnfuijoh cfijoe ju.
2) Npwf uif uispof.

How do I get past the steel door?
1) Zpv offe b Ifz.
2) Hfu uif Ifz gspn tpnfpof.
3) Uif qsjftu ibt uif Ifz.

What about registering animals?
1) Zpv ibwf up sfhjtufs zpvs ipstf.
2) Hp up uif tnbmm pggjdf.
3) Ufmm uif nbo up SFHJTUFS XIJUF.

How can I survive being stabbed?
1) Xfbs tpnfuijoh qspufdujwf.
2) Ibwf zpv gpvoe uif dibjo nbjm?
3) Zpv nvtu ibwf uif dibjo nbjm.

How do I turn in the culprit?
1) Gjstu zpv nvtu ibwf fopvhi fwjefodf.
2) Hp up uif qfbdflffqfs.
3) UzqfBDDVTF gpmmpxfe cz uif qfstpo't

obnf.

What are the ten pieces of evidence?
1) Cfgpsf zpv sjef up Ojnsbm't Hsbdf, gjoe

uif ejsu boe mppl bu ju. Uifo mppl bu
uif gppuqsjout.

2) Gjoe uif bnvmfu boe mppl bu ju.
3) Hp joup uif tipfnblfs't tipq boe sfbe ijt

cppl. Epo'u gpshfu up uvso uif qbhf.
4) Sfnfncfs uif cspxo ipstf zpv tbx sjejoh

bxbz? Hp joup uif tubcmft boe mppl bu
uif cspxo ipstf. Uifo mppl bu uif tbeernf.

5) Gjoe tpnf bmf boe hjwf ju up uif nbo
jo uif tnbmm pggjdf. Xifo if tfut epxo
uif tjmwfs cppl, qjdl ju vq boe sfbe ju.

6) Gjoe uif kfxfmsz cpy boe mppl bu ju.
7) Qpvs uif qpjtpofe xjof gspn uif ubolbse.

Gjoe uif gjohfsqsjou Iju boe gjohfsqs
jou uif fnquz ubolbse.

8) Npwf uif xbsespcf boe mppl bu uif
bmubs.

9) Gjoe uif opufcppl boe mppl bu uif
dpwfs.

10) Pqfo uif opufcppl boe sfbe xibu'tjotjef.
How can I get to Nimral's Grace?

1) Ju't upp gbs up xbrnl.
2) Zpv dpvme vtf b ipstf.
3) Qsbz bu uif tubuvf.

How do I get past the guard?
1) Zpv dbo'u ep ju bmpof.
2) Zpv offe tpnfpof gspn uif djuz xjui zpv.
3) Tibmb nvtu bddpnqboz zpv.

How do I read books?
1) Gjstu zpv nvtu pqfo uifn.
2) Tpnfujnft zpv dbo uvso qbhft.

How can I get from night to day or day to
night quickly?

1) Tmffqjoh jt b hppe xbz up qbtt uif ujnf.
2) Zpv nvtu cf jo zpvs sppn up tmffq.
3) Kvtu uzqf HP CFE.

How can I get out of jail?
1) Zpv dbo'u.

How can I get the priest to talk?
1) Uzqf UBML QSJFTD.
2) Zpv ibwf up cf b nfncfs.
3) Sfbe uif cppl jo uif mjcsbsz.
4) Zpv'mm offe tpnf cmbdl qbjou.
5) Qbjou b cmbdl epu po zpvs gpsfifbe.

Where can I get the password?
1) Ibwf zpv gpvoe b xbsespcf zfu?
2) Uifsft tpnfuijoh cfijoe uif xbsespcf.

TH
ES
CR
PZ

s= KM
~ FF

Ii DH

.;.:. YE
GP

~ KF
.S MP....
.t! vz.... Gll

MV
IH
00
SS

ZT

DO

DD
PG

KU

DZ
HZ

HC

HH

JL
YL

OM

10 DIM LS (120)
20 OPEN Ul,8,O "D:LINES,LST"
30 L$="5820 CC~=":LS (10) =CHR$ (34)
40 FOR X=l TO 77:REllD 1l:L$CI0+X)=CHRSC
ll) :NEXT X
50 LSCI0+X)=CHR$C34):? LS:? UljLS
60 L$="5840 DS=":L$(9)=CHR$C34)
70 FOR X=l TO 37:REllD 1l:L$C9+X)=CHR$Cll
):NEXT X
80 L$C9+X)=CHR$C34):? L$:? UljL$
90 L$="5860 E$=":L$(9)=CHR$C34)
100 FOR X=l TO 78:REllD 1l:L$C9+X)=CHR$C
ll) :NEXT X
110 L$C9+X)=CHR$C34):? L$:? UljL$
120 L$="5880 L$=":L$(9)=CHR$C34)
130 FOR X=l TO 35:REllD 1l:L$C9+X)=CHR$C
ll) :NEXT X
140 L$C9+X)=CHR$C34):? LS:? UliL$
150 CLOSE Ul:END
999 REM KKKKKKKKK CC$ DllTll KKKKKKKKK
1000 DllTll 104,104,133,204,104,133,203,
104,133,206,104,133,205,104,104,133,20
7,169,0,141,255,6,170,133,213
1010 DllTll 232,160,0,177,203,209,205,29
8,8,200,192,4,208,245,134,212,96,173,2
55,6,24,105,4,197,207
1020 DllTll 249,20,141,255,6,165,205,24,
105,4,133,205,165,206,105,9,133,206,24
0,211,208,209,169,0,133,212,96
1099 REM KKKKKKKKK D$ DllTll KKKKKKKKK
1100 DllTll 216,104,104,133,204,104,133,
203,164,194,133,205,160,9,177,203,201,
61,240,11,56,233,1,145,203
1110 DllTll 200,196,205,208,240,96,169,3
3,240,244,208,242
1199 REM KKKKKKKKK E$ DllTll KKKKKKKKK
1200 DllTll 104,194,194,141,254,6,104,10
4,141,255,6,165,88,133,203,165,89,133,
204,162,0,236,255,6,240
1210 DllTll 18,165,203,24,105,49,133,203
,165,204,105,0,133,204,232,240,235,208
,233,169,0,170,160,39,145
1220 DllTll 203,136,16,251,232,236,254,6
,240,17,165,203,24,105,40,133,203,165,
204,105,0,133,204,169,0,249,226,96
1299 REM KKKKKKKKK L$ DllTll KKKKKKKKK
1300 DllTll 104,104,104,141,255,6,104,13
3,204,104,133,203,160,9,177,203,201,32
,240,8,200,204,255,6,208
1310 DllTll 244,160,0,132,212,169,0,133,
213,96

NOVEMBER A.N.A.L.O.G. Computing 19



JI 0 REH * BV CLAVTON WALNUH *
* REVISED 7/22/88 *

OZ 1 Nll=11:N12=12:N13=13:N14=14:N15=15:N
16=16:N17=17:N18=18:Nl~=1~:N20=20:N100

0=1000:N6760=6760
WV 2 Nl=1:N2=2:N3=3:N4=4:N5=5:N6=6:N7=7:N

8=8:N~=~:NI0=10:NV=26:NN=5~:SZ=1~:GOTO

5200
SO 3 A=USRCADRCDS',ADRCAS',LENCAS":RETUR

N
JV 4 GOSUB N3:? AS:GOSUB Nll:AS="":RETURN
JV 5 CL=NO:FOR K=Nl TO NI0:CL=CL+CLCX':NE

KT K:RETURN
HN 8 FOR K=255 TO NO STEP -0.5:S0UND NO,K

,NI0,N8:NEKT K:FOR K=N16 TO NO STEP -0
.1:S0UND NO,100,N8,K:NEKT K:RETURN

OV ~ FOR K=Nl TO 1500:NEKT K:RETURN
JI 10 A=USRCADRCES',N5,C' :POSITION N2,C:R

ETURN
ZD 11 CLOSE tU:OPEN UN1,N4,NO,"K:":GET UN

l,A:CLOSE UN1:RETURN
EV 12 ? "I don't understand.":GOTO 1000
BV 40 A=USRCADRCES',Nl,Nl' :POSITION N2,Nl
OK 45 N=NO:S=NO:E=NO:W=NO:U=NO:D=NO:GOSUB

R*NI0:POSITION N2,Nl:GOSUB N3:? U6;AS
:AS="":RETURN

VO 50 AS="Po!b!efbdi":IC41'=-N5:RETURN
EU 51 AS="Uif!t",bWfst!bSf!bqqspbdijOh!gbt

u!!!!!!gspn!uif!xftu=,&,":E=N7:RETURN
ZD 70 AS="Jo! u if! gps ftu": E=N8: N=N12: I (41)

=-R:IC24'=-R:RETURN
BN 80 AS="Cfhjoojoh!pg!b!spbe":N=N~:E=N13

:W=N7:RETURN
DE ~O AS="Jo!uif!gpSftU":N=80:S=N8:W=N12:

IC24'=-R:RETURN
NZ 120 AS="JO!b!d"'fbSjOh":E=N~:S=N7:N=7~:

RETURN
HR 130 AS="PO!b!",poh!spbe":W=N8:E=N15:RET

URN
EC 131 AS="Jo!Uif!ejtubodf!zpv!tff!tpnfpo

f!hb",.!!",pqjoh!bXbz!po!b!espxo!ipstf/U
":GOSUB N4:RETURN

ZU 150 AS="Ojnsb",Ct!HsbdftC!gspou!hbUf":W
=N13:RETURN

IW 160 AS="Jo!b!dpvsuzbse":N=21:E=25:S=Nl
7:CV=Nl:RETURN

KD 161 AS="B!nbO!tufqt!gpsxbse/!!Tib"'b!tb
zt-!!!!!CEp",ops-!nz!efuspUife-!XiZ!bsf
!zpV!!!!ifsf!jo!Ojnsb"'Ct!HSbdfl!(U"

UC 162 GOSUB N4:AS="EP"'OPS!Ublft!Tib"'b!jo
!ijt!bsnt!boe!! !!tbzt-! (Tib"'b-!nZ!",pwf
-!Uibol!Ojnsb"'! !!zpv!bsf!tbgf=CU"

KO 163 GOSUB N4:AS="CKifo!J!ifbSe!pg!zpvs
!dbquVSf!J!dbnf!!up!pggfs!nz!tfswjdft!
UP!zpvs!gbUifs-!!uif!ljOh/CU"

VT 164 GOSUB N4:AS="CDpnf-!Tib",b-!zpVS!gb
nj"'Z!bXbjut!zpv/CEp",ops!",pPlt!bu!zpv/!
CXbssjps-!ZPV!! !!Xj",,,,!ef!sfxbsefe=cU"

HJ 165 GOSUB N4:AS="CHvbset=!!TipX!Pvs!hv
ftu! Up! i jt! ! ! ! ! ! ! ! rvbsu fstl ([I"

HR 166 GOSUB N4:AS="":R=3~:UL=Nl:UI=Nl:EN
T=Nl:ICN5'=-43:ICN7'=-7~:GOTO NI000

LR 170 AS="Po!b!tuSffU":N=N16:RETURN
VR 210 AS="Po!b!tusffu":W=22:N=23:S=N16:R

ETURN
VL 220 AS="Cftjef!uif!djUZ!Xb",,,,":N=24:E=2

1:IC4~'=-R:RETURN

JA 230 AS="Po!b!tuSffu":W=24:S=21:RETURN
SK 240 AS="Cftjef!uif!djUZ!Xb",,,,":E=23:S=2

2:CV=Nl:IC4~'=-R:RETURN

RC 250 AS="Bu!uif!qb",bdf!hbUf":W=N16:E=27
:RETURN

KV 270 AS="Jo!b!ib"'''''':W=25:U=38:N=28:D=4~
:E=30:IC25'=-R:RETURN

BK 280 AS="Jo!uif!Ofbdflffqfst!pggjdf":S=
27:RETURN

BH 2~0 AS="Jo!b!kbj"'!df"'''''':RETURN
JV 300 AS="Jo!b!ib",,,,":W=27:N=31:E=33:S=32

:RETURN
OL 310 AS="Jo!uif!hvbse!sppn":S=30:RETURN
BB 320 AS="Jo!Uif!Spzb",!ejojoh!sppn":N=30

:RETURN
NN 330 AS="Jo!b!ib",,,,":W=30:N=34:S=35:U=44

:I(25)=-R:RETURN
NO 340 AS="JO!Uif!uispof!Sppn":S=33:RETUR

N
DZ 350 AS="JO!Uif!tvqq",z!sppn":N=33:RETUR

N
AO 380 AS "Jo! b! i b",W': N=3~: 5=40: D=27: E=41

:I(25) -R:RETURN
JU 3~0 AS "Zpvs!rvbsufst":S=38:RETURN
JI 3~1 AS "B!tfswbou!foUfst!Uif!sppn!XjUi

!b!!!! !!ubolbse!pg!xjOf/!! CDpvsuftZ!P9
!uif!! !!ljoh-!nZ!HpseIC~':GOSUBN4

PK 3~2 RH=Nl:RETURN
NB 400 AS="Jo!Ojlojl!uif!KftupsCt!rvbSufs

t":N=38:RETURN
TE 410 AS="Jo!b!ib",,,,":W=38:N=42:E=44:S=43

:RETURN
CO 420 AS="Jo!Ep",opsCt!rvbsufst":S=41:RET

URN
ZW 430 AS="Jo!Tib",bCt!rvbsufst":N=41:SH=N

l:RETURN
KW 440 AS="Jo!b!ib",,,,":W=41:N=45:D=33:S=46

:I(25)=-R:RETURN
AO 450 AS="Jo! Epnojt! ui f! Bewjtps ct! rvbsuf

st":S=44:RETURN
FV 460 A$="Jo!uif!ljohCt!rVbsufst":N=44:R

ETURN
PG 4~0 A$="Jo!b!ib",,,,":N=52:E=50:U=27:RETU

RN
UE 500 A$="Jo!b!ib"'''''':W=4~:N=53:E=54:RETU

RN
IL 520 AS="Jo! ui f! di fnjtu ct! ",be": S=4~:RET

URN
OJ 530 AS="Jo!uif!rvffoCt!rvbsufst":S=50:

RETURN
PH 540 AS="Jo!uif!",jCSbSZ":W=50:RETURN
WR 650 AS="Jo!Uif!dbUbdpnet":W=34:N=65:E=

66:S=65:RETURN
TS 660 AS="Jo!uif!dbubdpnet":W=66:S=65:E=

65:N=71:RETURN
GP 710 AS="Jo!b!ebSl!Ufnq",f":N=72:S=66:RE

TURN
BK 720 AS="Jo!b!tupsbhf!sppn":S=71:RETURN
HG 730 AS="Jo!uif!pggjdf!pg!bojnb",!sfhjtu

sz":E=N17:RETURN
UC 740 AS="Bu uif!tipfnblfsCt":W=23:RETUR

N
VG 750 AS="Bu uif!qbxo!tipq":W=21:RETURN
HI 760 AS="Bu uif!tube"'ft":W=N17:RETURN
WH 770 A$="Jo b!tnb"''''!dibqfM'':S=23:RETURN
UR 780 AS="Jo b!ebsl!uvoof",":E=24:CV=NO:R

ETURN
IF 7~0 AS="Jo b!nfbepx":S=N12:E=80:RETURN
OV 800 A$="Jo b!nfbepx":W=7~:S=N~:RETURN
IA 810 A$="Jo.b!ufou":W=N8:RETURN
KD ~OO RESTORE 6120:FOR K=Nl TO NN:READ A

S,A:O=SZ-LENCAS':ISCK*SZ-CSZ-Nl',K*SZ
O'=AS:ICK)=A:NEKT K

VN ~05 RESTORE 6100:FOR K=Nl TO NV:READ A
:VCK'=A:NEKT K

OT '25 GOTO 6280
TK ~50 C=N5:GOSUB NI0
SB ~51 FOR K=Nl TO NN:IF ABSCICK"=R THEN

? hN6;I$CK*SZ-SZ+Nl,K*SZ) :IT=Nl
NO ~53 NEKT K:IF IT=NO THEN? hN6;"Nothin

g"
AB ~54 RETURN
HI ~60 A=USRCADRCES),Nl,Nll):POSITION N2,

Nll:IF N+S+E+W+D+U=NO THEN? UN6;"None
":RETURN

BF ~62 IF N)NO THEN? UN6;"North ";
KU ~63 IF S)NO THEN? hN6;"South ";
LA ~64 IF E)NO THEN? UN6;"East ";
LZ ~65 IF W)NO THEN? UN6;"West ";
VD ~66 IF U)NO THEN? hN6;"Up ";
DV ~67 IF D)NO THEN? UN6;"Down"
ZT ~70 RETURN
JW ~80 C=N14:GOSUB NI0
UL ~81 FOR K=Nl TO NN:IF ICK'=-Nl THEN?

hN6;I$CK*SZ-SZ+Nl,K*SZ):1NV=Nl:NEXT K:
RETURN

AN ~82 NEKT K:IF 1NV=NO THEN? UN6;"Nothi
ng"

AE ~83 RETURN
HA 1000 IF LENCAS')NO THEN A=USRCADRCD$),

ADRC/l.$),LENCA$)):? AS:AS=""
KV 1020 IF UL THEN GOSUB 40:GOSUB ~50:GOS

UB ~60

VF 1040 IF US THEN GOSUB ~50

OP 1060 IF UD THEN GOSUB ~60

UP 1080 IF U1 THEN GOSUB ~80

F1 1100 IT=NO:INV=NO:UL=NO:US=NO:UD=NO:U1
=NO

OB 1120 IF R=N16 AND NOT ENT THEN GOSUB
Nll:GOTO 161:A$=""

ET 1130 IF R=46 AND DV)NO THEN AS="Hvbset
=!Bssftu!uijt!nbo=[I":GOTO 6600

PV 1140 IF DD THEN GOSUB N~:GOTO 7240
JU 1160 IF. R=3~ AND NOT RH THEN GOSUB 3~

l:tll$=.. 11

BC 1165 IF R=N13 AND NOT SE THEN GOSUB 1
31:SE=N1

AE 1166 IF R=42 AND DV)NO AND 1(46)=-R TH
EN GOTO 4606

ZD 1167 IF DV)NO AND I(46)=-R THEN 1C46'=

NOVEMBER A.N.A.L.O.13. Computing



NO
BN 1180 IF TURN/I00=INTCTURN/I00) THEN GO

SUB 6500
EW 1200 IF R=43 AND DV>NO THEN GOTO 6560
TK 1210 IF R=43 AND ICN18)=-40 THEN I(N18

)=-41
OU 1211 IF R<>41 OR I(55)=-Nl OR ICN18)<>

-R OR NK<>NO THEN 1213
OW 1212 AS="Ojlojl!qMvOhft!bllojgf!jolzpv

Sldiftu=(I":GOSUB N4:GOTO 7240
SM 1213 IF R=41 AND ICN18)=-R AND NK=NO T

HEN AS="OjIOjl!tUbct!ZPV-!CVU!Uif!dibj
o!nbjM!!tbwft!zpV=":NK=Nl:GOTO NI000

PT 1214 IF SH AND I(36)<>-N2 AND DV>NO TH
EN M=RNDCNO) :IF X>O.' THEN 6741

JE 1215 IF R<>41 AND NK THEN ICN18)=-40
ZI 1220 IF R=2' THEN CNT=CNT+Nl:IF CNT=N5

THEN 6640
HH 1230 IF R=N5 AND TURN=N8 THEN 6744
GM 1240 TRAP 1240:POSITION Nl,N15:? :? "~
~"; :POKE 752,NO

JU 1260 SOUND NO,N20,NI0,N8:FOR X=Nl TO N
10:NEXT X:SOUND NO,NO,NO,NO:INPUT INS:
POKE 752,Nl

HO 1280 TURN=TURN+Nl:IF TURN>200 AND CV A
ND NOT RG THEN RG=Nl:GOTO 6720

:IJ 1300 IF R=N8 AND INS="E" AND I CN7) <>-N
1 THEN AS="JUCt!upplgbs!up!xbMI/":GOTO

NI000
IP 1340 IF R=N12 AND INS="PRAV" THEN 5060
SW 1360 IF I CNI0) <> -Nl OR INS <> "W" OR R<>

74 THEN 1400
UR 1380 AS="Uif!tipfnblfs!tdsfbnt-! CTupq

!uifjg=!lUibuCtlnz!Cppl=C(I":UI=Nl:ICNl
O)=NO:GOTO 6600

OJ 1400 IF I (33) <>-Nl OR INS <> "E" THEN 14
60

VI 1420 AS=" CTupq-! ui jfg=! ! Uibu! Cp..PI! jt! !
! !!!!!!!!hpWfSonfoulqspqfsuz=CU":I(33)
=NO:UI=Nl:GOTO 6600

SE ~460 L=LENCINS) :IF L=Nl THEN VS=INS:GO
TO 1820

CV 1480 A=USRCADRCLS),L,ADRCINS)) :IF A=NO
THEN GOTO N12

ML 1500 VS=INSCN1,A) :NS=INSCA+N2,LENCINS)
)

EH 1529 IF VS="SAVE" THEN 7060
VU 1540 IF VS="LOAD" THEN 6820
XB 1560 IF LENCVS)<N2 OR LENCNS)<N3 THEN

GOTO N12
FI 1580 IF LENCVS)=N2 THEN VSCN3)="
PD 1600 IF LENCVS)=N3 THEN VSCN4)=" "
DO 1610 IF LENCNS)=N3 THEN NSCN4)=" "
XA 1620 V=USRCADRCCCS),ADRCNS),ADRCNNS),L

ENCNNS))
55 1640 Z=USRCADRCCCS),ADRCVS),ADRCVBS),L

ENCVBS))
NP 1660 IF NS="PAGE" AND Z=25 THEN 1740
LE 1680 IF NSCN1,N4)="HORS" OR NS="BOOK"

THEN? "Refer to it by color.":GOTO Nl
000

BS 1685 IF NS="DOOR" THEN? "Which one?":
GOTO NI000

DE 1700 IF Z=N15 AND NS CN1, NO ="FORE" THE
N 1749

HO 1720 IF V=NO OR Z=NO THEN GOTO N12
ZD 1740 Z=V Cll
KV 1760 IF Z>N16 THEN Z=Z-N16:GOTO 1800
JH 1780 ON Z GOSUB 2020,2540,2730,2'00,2'

61,3020,3080,3205,3245,3300,3380,3580,
3700,3'80,4160,4220

1M 1800 ON Z GOSUB 4601,4681,4740,4780,48
40,4'80

PD 1820 IF VS="N" AND N>NO THEN R=N:GOTO
1'60

BW 1840 IF vS="S" AND S>NO THEN R=S:GOTO
1'60

TC 1860 IF VS="E" AND E>NO THEN R=E:GOTO
1'60

HI 1880 IF vS="W" AND W>NO THEN R=W:GOTO
1'60

GH 1~00 IF vS="u" AND U>NO THEN R=U:GOTO
1'60

OF 1~20 IF vS="I)" AND D>NO THEN R=D:GOTO
1'60

EL 1'40 ? "~NO SUCH DIRECTION!":GOTO NI00
o

NT 1'60 UL=Nl:GOTO NI000
FU 2020 IF R=N12 AND V=N4 THEN AS="UifsfC

t!b!qMbrVf!po!ju/":I(43)=-R:US=Nl:GOTO
Nl1100

KK 2040 IF R=N12 AND V=43 THEN AS="UifsfC
t!xsjujoh!poljU/":GOTO 1000

LA 20611 IF R=N~ AND V=2' THEN ICN3)=-R:US
=Nl:AS="Gppuqsjout=":GOTO NI000

NOVEMBER A.N.A.L.O.G. Computing

WB 2080 IF R=N' AND Y=3 THEN AS="UifzCsf!
bcpvu!tj+f!21/":CLCN8)=Nl:GOTO NI000

BP 2100 IF R=24 AND NSCN1,N3)="GRO" AND I
(35)=NO THEN AS="Uif!hSpVOe!Mpplt!ejtu
vscfel":GOTO NI000

KA 2160 IF R=N5 AND V=42 THEN AS="UifZ!MP
pl!bXgvMMz!nfbo=":GOTO NI000

XL 2180 IF R=N5 AND Y=41 THEN AS="Zpv!tff
luif!gpsftU!UiSPVhi!uif!gMbnft":GOTO N
1000

IF 2200 IF R=N5 ANI) Y=28 THEN AS="Uif!xbu
fS!MPplt!dpMe=":GOTO NI000

CP 2220 IF CICV)=R OR ICV)=-Nl) AND Y=N5
THEN AS="TifCt!CfbvujgVM=":GOTO NI000

SH 2240 IF R=43 AND V=N5 THEN AS="Tif!Mpp
It!ibqqZlUP!tff!zpv=":GOTO NI000

YS 2260 IF R=74 AND V=NI0 THEN AS="Uif!dp
wfs!tbzt; !SPZBH!TJ[FT":GOTO NI000

aN 2280 IF R=76 AND V=N7 THEN AS="JuCt!zp
vst-!evnnz=":GOTO NI000

UW 2300 IF R=76 AND Y=26 THEN AS="JuCt!xf
bs joh l b! tbeeMf/": I (37) =-R: US=Nl: GOTO N
1000

IN 2320 IF R=76 AND Y=37 AND ICV)=-R THEN
AS="Ju!ibt!Uif!Obnf!UpaOFS!pO!jU/":CL

CN5)=Nl:GOTO NI000
VI 2340 IF CR<>22 AND R<>24) OR Y<>4' THE

N 2400
PT 2360 AS="Hput!pg!gMpxfst!ifsf/":IF R=2

4 AND I (35) =NO THEN AS CLEN CAS) +NU ="! !
Gvooz-!uif! !!l!ejSultffnt!ejtuvscfel"

CE 2380 GOTO NI000
SM 2400 IF R=73 AND Y=38 AND I(33)=NO THE

N AS="IfCtlipMejoh!bltjMwfslcppl/":GOT
o Nl11110

VH 2420 IF ICV)=-Nl AND V=33 AND SIL=NO T
HEN AS="Uif!dpwfs!tbzt; !SpZbMlBojnbMt"
:GOTO NI000

XV 2440 IF R=77 AND Y=44 THEN AS="If!MPpl
tlblcju!tjojtufs/":GOTO NI000

LN 2460 IF R=42 AND DV>NO AND CV=N2 OR V=
21) THEN AS="CUibUCt!qsjwbuf!qspqfsuz=
! !Hvbset=C(I":GOTO 6600

PW 2480 IF R=42 AND Y=Nl' AND DV>NO THEN
AS="IfCt!xbudijOh!ZPVlXbsjMZ/":GOTO Nl
000

XU 2481 IF R<>42 OR V<>46 OR ICV)<>-R THE
N 2483 .

DJ 2482 AS="UifSfCt!uif!xpse!EBSLOFTT!cfM
PX! ui f l ! ! gjhvsf! pg! HPMhpMpUi/": CL CNU =
Nl:GOTO NI000

ZQ 2483 IF V=22 AND ICV)=-Nl THEN AS="Uif
!dpwfs!tbzt; !OSJFTUT!PG!HPMHPMPUI":CLC
N')=Nl:GOTO NI00B

GB 2485 IF V=N2 AND ICN2)=-Nl THEN AS="Ui
fsfCt!b!tubS!tibqf!qsfttfeljoUp!! !llui
f!wfMWfu/":CLCN2)=Nl:GOTO NI000

NG 2486 IF V=Nl AND ICV)=-Nl THEN AS="JuC
t!jo!uif!tibqf!pg!b!tUbs/":CLCN10)=Nl:
GOTO NI000

KL 2500 ? "Vou see nothing of interest,":
GOTO NI000

LH 2540 IF ICV)=-R THEN? "VOU CAN'T GET
THAT!":GOTO NI000

SN 2560 IF ICV)=-Nl THEN? "YOU ALREADV H
AVE IT!":GOTO 1100

VI 2600 IF ABS CI CY)) <> R THEN ? "I DON 'TS
EE A(N) '''; NS;" III: GOTO 1100

LC 2610 IF R=42 AND DY>NO AND CY=N2 OR Y=
21) THEN AS=" CU i bu Ct! qs jWbU f! qspq fsuz=
! !HVbset=C(I":GOTO 6600

ZP 2620 LOCATE N2,N18,A:IF A032 THEN? "
YOU CAN'T CARRV ANVMORE!":GOTO NI000

RI 2660 ? "okayt":I(Y)=-Nl:US=Nl:UI=Nl:GO
TO 1000

LL 2680 GOTO N6760
JP 2730 IF R<>41 OR ICN18)<>-41 OR V<>36

OR I(36)<>-Nl THEN 2740
US 2731 AS="If!Ublft!UiflhpMe-!qspnjtft!o

pu!upl!! !nfoujpo!zpV!Xfsfljo!TibMbCt!s
ppn/":I(36)=-N2:UI=Nl:GOTO NI000

OP 2740 LOCATE N2,N8,A:IF A<>32 THEN? liT
HERE'S N'O MORE ROOM HERE l":? : GOTO 110
o

SX 2760 IF I CV) O-Nl THEN? "VOU DON I T HA
VE IT!":? :GOTO 1100

NJ 2780 IF R<>73 OR I(40)<>-Nl THEN 2840
SO 2800 AS="If!ublft!uif!CPUUMf-!bctfounj

oefeMz!! !tfuujOh!epXo!uif!CPpl/"
HN 2820 I(33)=R:IC40)=NO:US=Nl:UI=Nl:GOTO

NI000
IL 2840 ? "Okayt":ICV)=R:US=Nl:UI=Nl:GOTO

NI000
LJ 2860 GOTO N6760
SO 2~00 IF V=NI0 AND ICV)=-Nl AND PG=NO T



HEN ~S=OS:PG=Nl:GOTO N1999
EU 2~20 IF SIL=N9 ~ND V=33 ~ND I(V)=-Nl T

HEN ~S=OS:SIL=Nl:GOTO N1999
PV 2~21 IF V=22 ~ND I(V)=-Nl ~ND NOT NB

THEN ~S=OS:NB=Nl:GOTO N1999
DU 2~24 IF V=N14 ~ND I(V)=-Nl ~ND NOT DI

A THEN AS=OS:DIA=Nl:GOTO N1999
ZJ 2~26 IF V=3~ AND I(V)=-Nl AND NOT GR

THEN AS=OS:GR=Nl:GOTO N1999
LF 2~49 GOTO N6769
RO 2~61 IF R=34 AND V=53 AND I(N12)=-Nl A

ND I(V)=-R AND NOT UNL THEN AS="Uif!l
fZ!lIoMpdlfe!ju/":UNL=Nl:GOTO N1999

LR 2~89 GOTO N6769
UN 3929 IF V=45 AND I (V) =-Nl THEN AS="Tpn

fuijoh!Ub"tuf"t!gllooz!ifsf=":GOTO N1999
KO 3949 GOTO N6769
HU 3989 IF R<>75 OR I(Nll)<>-Nl OR V<>Nll

THEN GOTO N6769
CB 3199 AS="If!Ublf"t!zpIIS!"tXpSe!bOe!Mbz"t!

b!hpMe!! !qjfdf!PO!Uif!dPlloUfS/"
CO 3129 I(36)=R:US=Nl:UI=Nl:I(Nll)=NO:GOT

o N1999
KW 3160 GOTO N6769
Viol 3205 IF R<>28 THEN 3229
01 3219 GOSUB N5:IF CL=N19 AND V=Nl~ THEN

GOTO 6789
SE 3215 AS="ZpII!epo(u!ibWf!fOPllhi!fwjefod

f=U":GOTO N1999
KM 3229 GOTO N6769
IH 3245 IF V=45 AND I(45)=-Nl THEN AS="PII

U! ui f! xjoepxlll": I (45) =N9: I (57) =-Nl: UI
=Nl:GOTO N1999

KV 3269 GOTO N6769
HZ 3390 IF R=43 AND V=N5 AND KS THEN AS="

Tif!sfuIIso"t!ZPIIS!lj"t"tf"t!xjui!hSfbUfS!!
qb"t"tjpO/":GOTO Nl099

UU 3329 IF R=43 AND V=N5 THEN AS="Tif("t!b
!MjuuMf!"tllsqSj"tfe-!CIIU!SfUIIso"t!zplIs!lj
"t"t/":KS=Nl:GOTO Nl090

KU 3340 GOTO N6769
VV 3389 IF R<>31 OR (V<>51 AND V<>N8) THE

N 3549
51 3499 IF CT+N29>TURN OR GD=N4 THEN AS="

UifZ!"tbX!ZpII!bOe!"tUpqqfe!UbMljOh/":GOT
o N1999

UZ 3415 GD=GD+Nl:IF GD>N3 THEN GD=Nl
EK 3429 CT=TURN:IF GD=Nl THEN AS="(OP!POf

!XjMM!cf!hllbSejOh!Uif!qSjOdf"t"t(!rllbsuf
s"t!upOjhiu/("

AB 3440 IF GD=N2 THEN AS=" CUi f! sfhj"tUSbS!
SfbMMZ!Mpwf"t!ij"t!bMf/("

HO 3469 IF GD=N3 THEN AS="(J!ifbs!OjlOjl!
sf"tqpoe"t!xfMM!UP!Uif!!!!qspnj"tf!pg!hpM
e/("

BL 3599 GOTO N1999
KV 3549 GOTO N6769
HN 3589 IF I (NU) <> -Nl OR NS (Nl, N4) <> "FOR

E" THEN 3629
UA 3699 AS="ZpII!qIlU!b!CMbdl!epU!pO!ZpIIS!g

psfifbel":PT=Nl:GOTO N1900
KU 3629 GOTO N6769
EE 3790 IF R<>N12 OR V<>4~ THEN 3749
KT 3729 AS="OSbzfs!bOe!hppe!effe"t!bsf!Uif

!!!!!!!! !"tjodfsHu!gpsn!pg!Xps"tijq/":G
OTO N1999

DV 3749 IF R=N8 AND V=N6 THEN AS="OJNSBM(
T!HSBDF! •. !31!MFBHUFT":GOTO N1999

SW 3769 IF I(N19)<>-Nl OR V<>Nl0 THEN 382
9

ZL 3789 IF PG=Nl THEN AS="LJOH! •.•..•• !"tj
tf!23!!!!!!!!!!!!!!!!! !Rllffo! •..••• !"tj
tf!~":GOTO N1999

OM 3899 IF PG=N2 THEN AS="EpMOpS! ..••. !"tj
tf!21!!!!!!!!!!!!!!!!! !Ojlojl! .•••. !"tj
tf!21":CL(N3)=Nl:GOTO Nl099

JE 3829 IF R=N16 AND V=47 THEN AS="Ju!"tbz
"t;!BMM!bojnbM"t!nll"tu!Cf!!!!!! !!!!sfhj"tu
fsfe!jnnfejbUfMz=":GOTO N1990

TC 3849 IF V=23 AND I(23)=-Nl THEN AS="Hb
udi!gps!TMBWF!JJJ;!UIF!HPET! !!!!!!!!UI
FNTFMHFT/":GOTO N1999

KB 3869 IF V<>33 OR I(V)<>-Nl OR SIL=NO T
HEN 3n9

ZH 3889 AS="CpxxpXIIIIIIIIIIIIILjoh("t!eph
!!!!!! !!!UpqqfSIIIIIIIIIIIIIEPMOPS("t!i
ps"tf!!!! !":CLCN6)=Nl

UP 3~09 AS CLEN (AS) +N1) ="Dbuo jqlllllllllll
IIRYffo("t!qbSblffuU":GOSUB N3:? AS:AS=
'''': GOSUB Nll: GOTO Nl009

EC 3~20 IF V=22 AND I(V)=-Nl AND NB THEN
AS="HfgOfU!!!!!! !CpCCfM!!!!!! lEPMOPS":
CLCN7)=Nl:GOTO Nl009

UD 3~22 IF V<>N14 OR I(V)<>-Nl OR NOT DI
A THEN 3n8

KR 3~24 AS="J!UijOl!Uif! joh!ib"t!Mfbsofe!
uibU!!!!!"tibMb!j"t!Opu uSYMz!ij"t!eblihiU
fS/!J!!!!gfbs!gpS!ifS Mjgf-"

HL 3~25 AS (LEN (AS) +N1) =" b"t! XfMM! b"t! nz! px
o/~":GOTO N1999

BJ 3~28 IF V<>3~ OR I(V)<>-Nl OR NOT GR
THEN 3~U

UW 3~2~ AS="B! cMbdl! epu! po! ui f! gpsfi fbe! j
"t!gsf. !!!rYfOUMZ!Y"tfe!cZ!uif!gpMMpxfs"t
! pg! ! ! ! ! ! HpMhpMPUi! Up"

IS 3~30 AS (LEN (AS) +N1) ="! je fOUjgz! fbd i ! pu
ifs/~":GOTO N1999

AM 3~31 IF V=N15 AND I (V) =-Nl THEN AS="U i
f!rYffo!ib"t!CfUSbZfe!nf/!!J!xjMM!!!!ib
wf!nz!sfwfohf=":GOTO Nl000

LG 3~49 GOTO N6769
IU 3~89 IF R<>N5 OR V<>28 THEN 4920
UJ 4009 AS="U if! xbu fs ("t!"tp! dpMe! ZPY! kynq!

SjhiU! !!!pYu=!!ZpII!bOe!TibMb!bsf!"tpblf
e=":WT=Nl:GOTO N1999

AW 4920 IF R<>N5 OR V<>41 OR NOT WT THEN
4069

AH 4949 AS="Uif!XbUfS!ifMqfe!ZpII!hfu!uisp
IIhi=!)B! !MjUUMf!"tjOhfe-!UipYhi/*":R=N7
:UL=Nl:GOTO 1999

GT 4969 IF (R=N7 AND V=41) OR (R=N5 AND V
=41 AND NOT wn THEN AS="ZpII CWf! Cffo!
cbscfdYfe=U":GOSUB N4:GOTO 7249

RU 4199 IF R=24 AND V=35 AND I(V)=-R THEN
AS="Plbz=":R=78:UL=Nl:GOTO N1999

KH 4192 IF R=34 AND V=53 AND NOT UNL THE
N AS="JU("t!Mpdlfel":GOTO N1999

UN 4104 IF R=34 AND V=53 AND UNL THEN R=6
5:UL=Nl:GOTO Nl000

PN 4195 IF (R=23 OR R=21) AND (V=59 OR V=
N9 OR V=39 OR V=31) AND DV<N9 THEN AS=
"Ju ("t! dMp"t fe! gpS! Uif! 0 jh i u/": GOTO 1909

II 4196 IF R=N17 AND (V=32 OR V=52) AND D
V<N9 THEN AS="JU("t!dMp"tfe!gps!uif!ojhi
u/":GOTO N1999

BU 4119 IF R=23 AND V=59 THEN R=77:UL=Nl:
GOTO Ni999

ZV 4111 IF R=23 AND (V=N~ OR V=30) THEN R
=74:UL=Nl:GOTO Nl099

VM 4112 IF R=21 AND (V=30 OR V=31) THEN R
=75:UL=Nl:GOTO N1909

UE 4113 IF R=N17 AND V=32 THEN R=76:UL=Nl
:GOTO N1999

TG 4114 IF R=N17 AND V=52 THEN R=73:UL=Nl
:GOTO N1999

NO 4115 IF R=3~ AND V=54 THEN AS="ZpY!"tMf
fq!b!Mpoh!Ujnf-!Uifo!xblf/U":GOSUB N4:
GOSUB 6599:AS="":GOTO N1999

SH 4117 IF R=N8 AND V=5~ THEN R=81:UL=Nl:
GOTO N1999

KL 4129 GOTO N6768
FD 4169 IF V=45 AND I(V)=-Nl THEN AS="Hib

uC"t!uibU!bxgYM!ub"tufn!!ZpY(wf!cffO!qpj
"tpofe=U":GOSUB N4:GOTO 7249

LD 4188 GOTO N6769
PZ 4228 IF R=N15 AND I(N5)<>-Nl ~ND V=N8

THEN AS="HfU!Mp"tU-!"tUSbOhfs=":GOTO Nl0
98

LG 4249 IF R=N15 AND I(N5)=-Nl AND V=N8 T
HEN AS="Zpy! ibWf!Uif!qsjodH"t=! !Dpnf! j
o=U":UL=Nl:R=N16:GOTO Nl090

OS ~260 IF (R=75 AND V=48) OR (R=73 AND V
=38) OR (R=28 AND V=27) OR (R=74 AND V
=N~) THEN AS="(Zf"tn(":GOTO Nl099

BO 4289 IF R<>77 OR V<>44 THEN 4429
EM 4399 IF I (N12) <> NO THEN AS=" (Zpy! nY"tu!

hp!opx-!cspuifS/(":GOTO Nl099
HO 4320 IF PT=N9 THEN AS="If!UfMM"t!Zpy!up

!hfU!Mp"tU=":GOTO N1999
GA 4340 AS="(HibU("t!Uif!qb"t"txpse-!cSpuifs

n(":GOSUB N3:? AS:AS="":INPUT PWS
HG 4369 IF PWS="DARKNESS" THEN AS=" CI fs f C

"t!Uif!lfZ-!CspuifS/(":US=Nl:I(N12)=R:G
OTO Nl009

BZ 4380 AS="If!hsbC"t!b!"txpSe!bOe!sYo"t!!!!
!!!!!! !!!zpY!UispYhi=U":GOSUB N4:GOTO
7240

AO 4429 IF R<>43 OR V<>N5 THEN 4480
ZB 4449 IF KS THEN AS=" CTpn fu i jOh!"t f fn"t! U

P!Cf!cpuifsjoh!!!! !!EpMOps/!!IfC"t!cffo
!bWpjejoh!nf/(":CL(N3)=Nl:GOTO Nl009

OR 4460 AS="Ti f! "tbz"t-! (J! bn l qMfb"t fe! ZPY! i
bWf!dpnf!up!wj"tju!nf!upOjhiu/(":GOTO N
1999

GH 4480 IF R=45 AND V=N29 AND DV)N9 THEN
AS=" CU if! 1 joh! UpMe! n f! UP! 1 f fq! bo! fz f l P
o!!!!zpYIII(":GOTO Nl099

FC 4482 IF R=41 AND V=N18 AND I(V)=-R THE
N AS="(J!ifbSe!b!opj"tf!boe!dbnf!Up!efg
foe! ! ! Uif! qs jOd f"t"tl (": GOIO Nl090

NOVEMBER A.N.A.L.O.G. Computing



HO 4484 If (R=42 AND Y=Nl' AND DY}N9) OR
(R=49 AND Y=N18) THEN A$="If(t!hpu!oPU
ijoh!up!tbz/":GOTO NI000

KN 4509 GOTO N6760
TL 4601 If R=34 AND Y=N16 AND I(53)=NO TH

EN A$="U i fs f (t! b! epps! c fi joe! ju=": I (53
)=-R:US=Nl:GOTO NI009

10 4604 If R<}42 OR Y<>21 OR I(46)<>NO TH
EN 4629

EL 4605 If DY<NO THEN A$="UifsfCt!tpnfUij
Oh!Cfijoe!ju=":I(46)=-R:US=Nl:GOTO NI0
00

fI 4696 A$="EpMOPS!ZfMMt-! CHvbset=!!Bssft
u!!!!!!!!Uijt!nbo=Ct.!":GOTO 6600

KV 4620 GOTO N6760
LH 4679 If CR=40 AND Y=N18 AND ICY)=-R) 0

R CR=46 AND Y=N17) OR CR=42 AND Y=Nl')
THEN A$="If!tbzt!opui)Oh/":GOTO NI000

OW 4681 If Y<}57 OR ICY)<>-Nl OR I(56)<>
Nl THEN GOTO N6760

SS 4682 A$="Tpnf!qsjout!nbUdi!b!tfU!jo!ui
f!lju/!!! !UifZCSf!EpMOPSCt/":CLCN4)=Nl
:GOTO NI009

KR 4709 GOTO N6760
Zf 4740 If CR=N6 OR R=N7) AND Y=24 THEN A

$="Uif!USfft!bSf!upp!cVSOfel":GOTO NI0
09

LK 4745 GOTO N6760
JE 4789 If I(35)=N9 AND R=24 AND Y=4' AND

I(34)=-Nl THEN A$="Zpv!vodpwfsfe!b!US
bq! epps=": I (5) =-R: US=Nl: GOTO NI000

KT 4809 GOTO N6760
RR 4849 If I CN19) <> -Nl OR N$ <> "PAGE" THEN

GOTO N6760
SP 4869 If PG}N9 THEN A$="Plbz-!qbhf!jt!U

vsofel":PG=PG+Nl:If PG<N3 THEN GOTO Nl
000

EO 4880 If PG=N3 THEN PG=NO:A$CLEN(A$)+Nl
)="!ZpV!dMptfe!uif!!cppl/":GOTO NI000

LH 4'40 GOTO N6760
UD 4'80 If R<>73 OR Y<>N7 THEN 5020
JR 5000 A$="Uif!nbO!btlt!uif!ipstfCt!obnf

!boe!!!!!uifo!nbslt!jU!jO!b!cppl/":RG=
Nl:GOTO NI000

KK 5020 GOTO N6760
NK 5060 If ICN7) THEN? "Nothing happens.

":GOTO NI000
fR 5080 fOR K=Nl TO 175:S0UND NO,K,N8,N6:

SOUND Nl,K+N2,N8,N6:SETCOLOR N2,NO,14:
SET COLOR N2,NO,NO:NEKT K

RV 5100 SOUND NO,NO,NO,NO:SOUND Nl,NO,NO,
NO:POKE 710,N8

Pf 5120 ? "A voice sa!Js, ";CHR$(34);"Ask
and receive";CHR$(34);"."

RY 5140 ? :? "ONE WORD:";:INPUT C$
NO 5160 If C$="HORSE" THEN? :? "Granted!

":ICN7)=R:US=Nl:GOTO NI000
TK 5180 ? "You have no need for that!":GO

TO NI000
PY 5200 GRAPHICS N18:POSITION N5,N2:POKE

712, N14:? UN6; "~1';\IJ.'IJ": POSITION N3,
N4:? UN6;"NIHRAL'S GRACE"

YN 5220 fOR Y=Nl TO N4:fOR K=N14 TO NO ST
EP -0.45:POKE 712,K:SOUND NO,N20,K,N8:
NEKT K:NEKT Y

DH 5230 POSITION Nl,N10:? UN6;"BY [jIJaYiI!]n
I(J]nU["

UT 5240 SOUND NO,NO,NO,NO:GOSUB 5740
fL 5260 GOSUB 5280:GOTO 5340
Gf 5280 GRAPHICS NO:POKE 710,48:DL=PEEKC5

60)+256*PEEKC561)+N4:POKE DL-Nl,71:FOR
K=2 TO 24 STEP N2:POKE DL+K,N6:NEKT K

JK 5300 POKE DL+Nl',N6:POKE DL+21,N6:POKE
DL+23,N6:POKE 82,NO:POKE 752,Nl

EE 5320 POSITION N3,NO:? "NIMRAL'S GRACE"
:POSITION N',N13:RETURN

GA 5340 POSITION N4,Nl:? "The alarMS are
ringing!":POSITION 24,N2:? "You've res
cued Princess Shala froM"

OJ 5360 POSITION 2,4:? "the Slavers of Go
19o1oth, but !Jou're":POSITION 22,N5:?
"not safe !Jet! A host of savage war-"

EO 5380 POSITION N2,N7:? "riors is crossi
ng the lake in hot":POSITION 22,N8:? "
pursuit!"

LE 5400 POSITION 4,10:? "As !Jou drag Shal
a toward the cover":POSITION 22,11:? "
of the forest, a cloaked figure steps"

UP 5420 GOSUB 5720:GOSUB 5280
KK 5440 POSITION N2,Nl:? "frOM the trees.

A survivor froM":POSITION 22,N2:? "S
hala's aMbushed caravan? You rush"

AR 5460 POSITION 2,N4:? "forward With jO!J
, not noticing the":POSITION 22,N5:? "
odor of oil drifting on the air. The"

NOVEMBER A.N.A.L.O.13. Computing

HQ 5480 POSITION N2,N7:? "dark figure str
ikes a Match and tos-":POSITION 22,N8:
? "ses it into the oil-soaked brUSh."

QE 5500 POSITION N2,NI0:? "As a curtain 0
f flaMe leaps up, !Jou":POSITION 22,Nll
:? "see the insignia of the Cit!J of"

VR 5520 GOSUB 5720:GOSUB 5280
KT 5540 POSITION N2,Nl:? "NiMral's Grace

on the figure'S cloak."
UJ 5550 POSITION 22,N2:? "A traitor frOM

Shala's hOMe cit!J? You"
WK 5560 POSITION N2,N4:? "realize that th

e caravan's aMbush was"
BD 5579 POSI.TION 22,N5:? "planned, that s

OMeone wants Shala out"
PG 5580 POSITION N2,N7:? "of the wa!J.":Po

SITION 24,N8:? "The slavers, worshippe
rs of fOUl"

JK 5600 POSITION N2,N19:? "Golgoloth, are
claMoring into their"

UD 5610 POSITION 22,Nl1:? "boats. An inf
erno blocks !Jour path."

VT 5620 GOSUB 5720:GOSUB 5280
RH 5640 POSITION N4,Nl:? "Great NiMral pr

otect !Jou!":POSITION 24,N2:? "How will
!Jou escape? Who is the"

BN 5660 POSITION N2,N4:? "cloaked assassi
n? Who wants to keep":POSITION 22,N5:
? "Shala frOM her wedding? Can !Jou"

EA 5689 POSITION N2,N7:? "solve the M!Jste
r!J before the assassin":POSITION 22,N8
:? "strikes a fatal blow? You MUst!"

LY 5700 POSITION 23 f N11:? "_W_U'Ji4:U1I:!il
1i1...II:I,,'.11"1.;!:(I1I:a": GOSUB 5720: POKE 8
2,N2:GOTO 5760

DV 5729 POSITION N3,N14:? "press an!J ke!J"
:OPEN UN1,N4,NO,"K:":GET UN1,A:CLOSE U
Nl:RETURN

ff 5740 fOR K=Nl TO 200:NEKT K:RETURN
TR 5769 POSITION N3,N14:?" one MOMent

"
OM 5780 DIM VB$CNV*N4),I$CNN*SZ),A$C169),

DT$CN8),H$CN12),IN$CN16),V$CNI0),N$(Nl
0),C$CN5),U$CN1'),CC$C77),D$C37)

HP 5800 DIH NN$CNN*N4),ICNN),E$C78),CL$(4
2),VCNU),PW$CN8),L$C35)

DT 5819 DIH 0$CN16),CLCNI0)
JR 5815 fOR K=Nl TO NI0:CLCK)=NO:NEKT K
HH 5~09 O$="P I bZ-! jU ct! pq fo/"
YW 5~60 UB$CN1,80)="EKAHLOOKTAKEGET DROPG

IUEOPENUNLOTASTPAWNACCUPOURKISSLISTPAI
NREADGO ENTEDRINTALK"

YB 5'80 UB$(81,104)="HOVEfINGCLIHDIG TURN
REGI"

YI 6000 NN$CN1,~2)="AHULBOK fOOTSTATSHALS
IGNWHITGUARSHOEBLUESWORKEY PAINDIARPAP
ETHROKINGNIKNDOLNDOHNWARDNOTELETT"

HL 6020 NN$C~3,184)="TREESTAIBROWPEACLAKE

DIRTSHOPPAWNSTABSILVSHOVTRAPGOLDSADDRE
GIGRAYALE fIRESLAUPLAQPRIEWINEALTA"

DS 6040 NN$ (185,236) ="PROCATTEGARDCHAPGOS
SOffISTEEBED CHAIKIT TANKSOLDTENT"

DZ 6060 1$ CNU =" ": 1$ CNN*SZl =" ": 1$ CN2) =1
$:GOTO '09

AU 6100 DATA 1,1,2,2,3,3,4,5,6,7,8,',10,1
1,12,13,14,14,15,16,17,18,1',20,21,22

Jf 6120 DATA AHULET,7,JEWEL BOK,42,FOOTPR
INTS,O,STATUE OF NIHRAL,-12,PRINCESS S
HALA,5,SIGN,-8,WHITE HORSE,O

EB 6140 DATA GUARD,-15,SHOEHAKER,-74,BLUE
BOOK,74,SWORD,-l,KEY,O,BLACK PAINT,35

,DIARV,53
UN 6160 DATA PAPER,46,THRONE,-34,KING,-46

,NIKNIK THE JESTOR,-40,DOLNOR,-42,DOHN
IS,-45

AU 6189 DATA WARDROBE,-42,NOTEBOOK,72,LET
TER,78,TREES,O,STAIRS,O,BROWN HORSE,-7
6,ROVAL PEACEKEEPER,-28,LAKE,-5

ER 6200 DATA DIRT,-',SHOEHAKER'S SHOP,-23
,PAWN SHOP,-21,ROYAL STABLES,-17,SILUE
R BOOK,O

VI 6220 DATA SHOVEL,76,TRAP DOOR,O,GOLD P
IECE,O,SADDLE,O,REGISTRAR,-73,GRAV BOO
K,54,BOTTLE Of ALE,32

AK 6240 DATA FIRE,O,SLAUERS,-5,PLAQUE,O,P
RIEST,-77,TANKARD Of WINE,3~,ALTAR IN
WALL,O,PROCLAHATION,-16

PD 6260 DATA SHOP ATTENDANT,-75,GARDEN,O,
SHALL CHAPEL,-23,GOSSIPING GUARDS,-31,
SHALL OFfICE,-17,STEEL DOOR,O

JW 6270 DATA BED,-3~,CHAIN HAIL,31,fINGER
PRINT KIT,52,EHPTV TANKARD,O, DEAD SOL
DIER,-80,TENT,-8

ZL 6280 GRAPHICS NO:POKE 55~,NO:POKE 703,
4:DL=PEEK(560)+256*PEEKC561)+N4:POKE D



L+N29,139
LV 6300 RESTORE 6329:FOR X=NO TO Nl~:READ

A:POKE 1664+X,A:NEHT H
XJ 6320 DATA 72,138,72,16~,1~2,162,10,141

,10,212,141,24,208,142,23,208,104,170,
104,64

RG 6340 POKE 512,128:POKE 513,N6:POKE 542
86,1~2:POKE 70~,NO:POKE 710,N8:POKE 71
2,112:POKE 752,Nl

FI 6360 POSITION Nl,NO:? UN6'" I ":

POSITION Nl,N4:? UN6;" I

UX 6380 POSITION Nl,N10:? UN6~'~"~'~~
D":POSITION Nl,N13:? UN6;"~ I'"

PE 6400 POKE 55~,34:IF DV(NO THEN POKE 70
~,12:POKE 710,NO

HB 6420 IF FLAG THEN UL=Nl:UI=Nl:GOTO NI0
00

WK 6440 R=N5:WT=NO:ENT=NO:DD=NO:DV=Nl:CNT
=NO:PT=NO:UNL=NO:NB=NO:DIA=NO:GR=NO:NK
=NO:SH=NO

HU 6445 CV=NO:SE=NO:RG=NO:PG=NO:SIL=NO:KS
=NO:CT=NO:GD=NO

IC 6460 TURN=Nl: UL=Nl: UI=Nl: A$=''''
NZ 6480 GOTO 1000
FH 6500 DV=-DV:IF DV(NO THEN POKE 70~,N12

:POKE 710,NO:I$[343,357)="SLEEPING DOL
NOR": A$="O jh i u! i bt! g b ...,'lf0/"

HH 6505 IF DV<NO THEN I$ [305, 317) ="SLEEPI
NG KING":I$[362,376)="SLEEPING DOMNIS"

OL 6520 IF DY)NO THEN POKE 70~,NO:POKE 71
0,N8:I$[343,357)="DOLNOR ":A$=
"Ebz... jhiu!ibt!sfuvsofel"

ZI 6525 IF DV) NO THEN I$ [305,317) ="KING
":I$[362,376)="DOMNIS

UH 6540 GOSUB N3:? A$:A$="":RETURN
CO 6560 A$="U if! hvbset! cvstu! jo=! ! ZpV! ! i b

Wf!!!!!!!dpnqspnjtfe!uif!qSjOdftt!cz!c
fjoh!!!!!dbVhiu!jO!ifS!Sppn=U"

LR 6600 GOSUB N4:A$="Zpv[sf!uispxo!jOUP!k
bj ...=":GOSUB N3:? A$:A$="":R=2~:UL=Nl:G
OTO NI000

BK 6640 A$="Tveefo ...z-!ZPv!tff!tpnfpof!uiS
pVhi!Uif!Cbst/!!If!uispxt!tpnfuijoh!bU
!zpV-!boeju!ijut!zpV!jo!uif!ofdl=U"

HB 6660 GOSUB 6700:A$="Bt!Uif!ebsu[t!qpjt
po!xpslt!jut!XbZ!!!!joUP!ZPVS!tztufn-!
zpv!sfdphojtf!!! !!!!zpVS!bUUbdlfs/U"

KD 6680 GOSUB 6700:A$="[Zpv=[-!zpv!tdsfbn
I! [JU!dbO[U!Cf!zpv=[U":GOSUB 6700:GOTO

7240
BO 6700 GOSUB N4:RETURN
XE 6720 IF R=2~ THEN GOTO NI000
AJ 6730 A$="Tveefo ...z-!hVbset!bqqfbS!boe!h

sbq!zpv-!zf ...... joh!tpnfUijoh!bcpvu!opU!s
fhjtUfs.!joh!zpVS!ipstf=U":GOTO 6600

HO 6741 IF R=2~ THEN GOTO NI000
FW 6742 A$="Tveefo ...Z!hvbset!bqqfbS!boe!hs

bc!zpv=!!Tpnfpof!up...e!Uifn!bcpvu!zpvs!
Wjtju!!! !UP!Tib...b[t!cfesppn=U"

TC 6743 GOTO 6600
HU 6744 A$="Zpv[sf!uPP! ...bUf=!Uif!t ...bWfst!

ibwf!!!! !sfbdife!zpv=tj":GOSUB N4:GOTO
7240

PZ 6760 ? "YOU CAN'T DO THAT!":GOTO 1100
KS 6780 GRAPHICS NO:POKE 710,NO:POKE 70~,

NI0:POKE 752,Nl:POSITION N2,N2
HB 6781 ? "Based on the evidence you've d

iscov- ered the assassin has been app
re- II

HT 6782 ? "hended. Unfortunately he had
a lot of acco ...plices and they're eve
n now"

TH 6783 ? "co ...bing the city for you. You
have to leave the city [and a broke

n"
ZA 6784 ? "hearted Shala) and search out

the· only being who can put an end
to"

EZ 6785 ? "the activities of the follower
s of Golgoloth, the diety Ni ...ral hi
...self."

RM 6786 ? "It will be a dangerous ... ission
, but you ...ust succeed if Shala and
the"

HK 6787 ? "rest of the world are ever to
live in peace. The city gates clos
e"

"HD 6788 ? "beh i nd you, and your next adve
nture is only a few steps down the r
oad."

OE 678~ POSITION N14 20:? "Watch for":POS
ITION N4, 22:? "~1wj\IJ.U_'II.i1II'~.W!.!
r;pgw;i.'l"

VE 67~0 GOTO 67~0

QL 6820 TRAP 7040

FP 6840 ? "LOAD FROH [jAPE OR [!JISK";:INPUT
A$:IF A$="D" THEN 6~00

YP 6860 IF A$ <> "T" THEN ? : GOTO 6820
JK 6880 ? :? "CUE TAPE THEN PRESS RETURN

TWICE.":INPUT A$:OPEN UN1,N4,NO,"C:":G
OTO 6920

GY 6~00 OPEN UN1,N4,NO,"D:SLAUE2.DAT":A$=....
IR 6~20 INPUT UN1,R,CV,PG,WT,TURN,ENT,DD,

DY,RH
HB 6~40 INPUT UN1,CNT,SIL,PT,KS,GD,CT,RG
RT 6~50 INPUT UN1,UNL,NB,DIA,GR,SH,NK,SE
BK 6~51 FOR X=Nl TO NI0:INPUT UN1,A:CL[H)

=A:NEXT H
NO 6~60 FOR H=Nl TO NN*SZ STEP SZ:INPUT U

l,U$:I$[X,H+SZ-Nl)=U$:NEHT X
EE 6~80 FOR H=Nl TO NN:INPUT UN1,A:I[H)=A

:NEHT X
XL 7000 IF DY(NO THEN POKE 70~,N12:POKE 7

10,NO:GOTO 7020
DB 7010 POKE 70~,NO:POKE 710,N8
FB 7020 CLOSE UN1:UL=Nl:UI=Nl:? :? :TRAP

1260:GOTO NI000
GJ 7040 ? :? "NO GAHE DATA SAUED!":END
LB 7060 ? "SAUE TO [jAPE OR [!JISK";:INPUT A

$:IF A$="D" THEN A$=",":GOTO 7120
NH 7080 IF A$ <> "T" THEN 7060
NS 7100 ? :? "CUE TAPE THEN PRESS RETURN

TWICE.":INPUT A$:A$=",":OPEN UN1,N8,NO
,"C:":GOTO 7140

NH 7120 OPEN UN1,N8,NO,"D:SLAUE2.DAT"
KW 7140 ? UN1;R;A$iCY;A$iPG;A$;WT;A$;TURN

;A$;ENT;A$;DD;A~'DY;A~;RM
IW 7160 ? UN1;CNT;A~;SIL;A$;PT;A$;KS;A$;G

D;A$;CT;A$;RG
RE 7170 ? UN1;UNL;A$;NB;A$;DIA;A$;GR;A$;S

H;A$;NK;A$;SE
NJ 7171 FOR X=Nl TO NI0:? UN1,CL[X):NEHT

X
GM 7180 FOR X=Nl TO NN*SZ STEP SZ:U$=I$[X

,H+SZ-Nl):PRINT UN1;U$:NEHT X
GR 7200 FOR X=Nl TO NN:PRINT UN1;I[H):NEX

T X
FE 7220 CLOSE UN1:? :? : A$='''': GOTO 1100
BA 7240 GRAPHICS N17:POSITION N4,N4:? UN6

; "wI1Ui!;e'1'tl,J)": POSITION N3, N8:? UN6;"
DO YOU WANT TO"

OU 7260 POSITION N2,NI0:? UN6;"PLAY AGAIN
? [!!l/[j])"

YN 7280 GOSUB Nl1:IF A=ASC["V") THEN RUN
EZ 7300 END

NOVEMBER A.N.A.L.O.13. Computing



J--UI~T-O~R----·--·a--_·-

Light Torch ... Gird Loins
.. .Boot Assembler

bV Karl E. Wiegers
NOVEMBER A.N.A.L.O.13. Computing

25



26

ow many of you
have ever played
a computer ad
venture game of
some sort? I see

a lot of hands in the air. (Great
eyes, no?) And if you've ever
tried to write one yourself,
you quickly discovered that
even a simple adventure
game involves some pretty
sophisticated programming.
The ever-adventurous Clay
ton Walnum once wrote an
insightful three-part series on
how to design and program
your own adventure games.

Blow the cobwebs off issues 39,40 and 41 Clayton's articles told you (among other use
of ANALOG Computing, from early 1986, ful stuff) that the heart of an adventure game
and re-read what Clayton had to say. It's okay, is its "parser." The parser is the program code
I'll wait here until you're done. that lets the computer interpret commands you

Back already? Then you've learned many type and take some appropriate action. It is the
things (or else you were watching Dallas re- parser that gives the computer some appear
runs while you were supposed to be studying). ance of being intelligent. Of course, computers

NOVEMBER A.N.A.L.O.C3. Computing



aren't intelligent in the least; good parser
programmers are.

In reality, parsers are useful for much
more than simply exploring dungeons.
Many kinds of computer applications can
benefit from a user interface that at least
attempts to understand natural language
communications. While it's pretty hard to
get a computer to understand spoken in
structions, the written word can be inter
preted a bit more easily.

In the next Boot Camp or two, we'll see
how a very simple parser can be im
plemented on the 8-bit Atari, using some
assembly language for the time-intensive
parts. You really aren't likely to write a
complete application program in assembler
around this word-searcher nucleus. Hence,
we'll set up a simple BASIC program struc
ture that interfaces to the machine-language
parser routine, to show you how it all fits
together.

Now, what subject area should we use
to illustrate the fine art of parsing? Adven
ture games are kind of passe by now. Wait!
I've got it! Imagine the kitchen of the fu
ture, automatically assembling ingredients
in the quantities and sequence you speci
fy, popping the result into the oven, and do
ing everything for you except eating the
food. Let's write a general-purpose parser
in assembly language, then cook up a BAS
IC program that might be used someday in
Karl's Komputerized Kitchen.

The joy of parsing
There are three main aspects to a natural

language-processing program or parser: 1) to
take the input string apart into separate words
and/or numbers, 2) to attempt to identify the
individual words by looking them up in a
vocabulary list, and 3) to try to understand
what the input "means"; that is, see if the
words identified in the input string constitute
a recognizable instruction that can be execut
ed by the program.

Let's look at all three of these functions in
more detail.

Dissecting the input
The basic idea of natural language process

ing is that the user (who is presumably a hu
man being of some sort) can present
instructions or queries to the computer much
as he would communicate with another hu
man being. I'm sure you recognize how
amazingly complex this kind of communica
tion really is. After all, you use all sorts of
shortcuts in your verbal and written commu-

NOVEMBER A.N.A.L.O.G. Computing

nications, yet other people who know the
same language can usually figure out what
you're trying to say. We have to be pretty crea
tive to do something similar with a
microcomputer.

Take a simple instruction of the sort you
might give to a computerized kitchen when
you want to bake a cake: "Slowly mix in two
cups of brown sugar." Most of you should
have a picture in your mind of what this
means. But how do we get the computer to
understand it?

The first step is to break the input string
into separate words. The simplest way to do
this is to look for blank characters as
delimiters between words. But what if the
program user entered more than one blank
between words, or used a punctuation mark
(comma, semicolon, period, etc.) to separate
words instead of (or in addition to) the blank?
For simplicity, we'll decree that only single
instructions can be entered. This means we
don't have to look for complex sentences such
as, "Melt the butter, then stir in the flour."
So, most punctuation marks can be dis
regarded.

However, we can't just ignore periods.
What if you want to add 3.5 cups of flour?
The period here is really a decimal point in
a number. Obviously, when we split the in
put string into words, we must distinguish
numbers from true words that we'll be try
ing to find in the vocabulary list.

The moral of the story is that the natural
language interface involves some
"preprocessing" of the user's input. This step
discards symbols like certain punctuation
marks and builds a list of words for which
we must search in the known vocabulary. Any
numbers or other anticipated special charac
ter strings will be identified and set aside until
we get to Step 3, in which we try to make
some sense out of the input.

The preprocessor can be a part of the pars
er code itself or it can be a separate routine.
For simplicity in this example, I'll put the
preprocessor into the BASIC program. If ex
ecution time is critical, you would want to
recode it into assembler, but BASIC will be
fine for our purposes.

Do I know yOU?
Once your preprocessing step has come up

with a list of words from the user's input
string, we need to see if the words are
"known" to the program. Your vocabulary
list should be separate from the parser code
itself, since a general-purpose parser routine
could then be used for many applications hav
ing different vocabularies. The limited RAM

BOOT
CAMP

In reality, parsers are uselul
lor much more than simply

exploring dungeons.

27



You have to consider how
much latitude you wish to

give the user regarding
dillerent ways to enter
equivalent commands.

2B

in 8-bit microcomputers can really restrict the
size of the vocabulary in a given program,
because you still need some memory for the
rest of the program.

The simplest approach is to put all the
words you want the program to recognize into
the vocabulary list. Some alternative tech
niques provide more efficient use of memory,
thus allowing larger vocabularies. Have you
ever noticed that some spelling-checker pro
grams appear to require far less memory than
it seems like they need to handle; say, 30,000
words? Data compression methods and clever
algorithms can be used to substantially reduce
the amount of memory consumed by a block
of information. However, we'll leave such
techniques to the experts and stick to the brute
force approach.

Another consideration is how much lati
tude you wish to give the user regarding
different ways he can enter equivalent com
mands. For example, do you wish to distin
guish between uppercase and lowercase
letters? This can be important for proper
names, like in a quiz on U.S. presidents. Do
you want the user to be able to get away with
a certain degree of misspelling? One way to
handle this is to add anticipated misspellings
of particular words to the vocabulary. A more
sophisticated approach uses some algorithm
to determine just how closely words must
match vocabulary entries to be considered ac
ceptable.

In today's example, we'll translate all lower
case letters to uppercase, and the vocabulary
entries will all be in uppercase. Only exact
matches with vocabulary entries will be ac
cepted.

Yet another one of many characteristics of
human, that is, interpersonal communication
is that we tend to be more or less, I mean
pretty much, wordy lots of the time, you
know? Think back to "slowly mix in two cups
of brown sugar." The words "in" and "of"
certainly are superfluous to the meaning of
this instruction. Prepositions and articles (a,
an, the) can generally be ignored without dis
turbing the meaning of an instruction. Hence,
we'll leave them out of the vocabulary. A
word of warning: Be very careful with nega
tion words like "not" and "don't." "Don't
boil the milk" is rather different from "boil
the milk"!

How about words like "slowly" and
"brown"? Adjectives and adverbs like these
can be important, but not necessarily. The
specific application dictates whether the ac
tions to be taken depend on the presence of
modifiers like these in the command string.

Another important aspect of building a
vocabulary is the handling of synonyms. In-

structions to "add flour" and "add sugar" are
obviously different. But are there differences
between "add sugar," "mix sugar," "stir su
gar," "beat sugar," "fold sugar" and so on?
If not, these instructions are all equivalent.
So, even though our parser has to locate the
verb (add, mix, etc.) in the vocabulary, only
one piece of program logic is required to han
dle all these inputs.

A token gesture
Okay, so we've split the input string into

words and found the words in the vocabulary
list. Each word is assigned a numeric value,
or "token." Each category of vocabulary en
tries will have a different set of tokens, and
specific arrangements of tokens will make up
valid instructions. Synonyms are given the
same token.

Listing I illustrates what I mean. This is
an Atari BASIC program that creates the
vocabulary file (VOCAB.DAT) for our com
puterized kitchen example. You can modify
this program to create vocabulary files for
other applications by changing the DATA
statements in Lines 1000-1120. The DIM
statements in Line 100 limit the length of a
single vocabulary entry to 20 characters and
the total length of the vocabulary ftle to 2,000
bytes, but of course you could change these
restrictions.

The first block of vocabulary words (Lines
1000-1030) pertains to ingredients that we
think someone might want to use in describ
ing a recipe. FLOUR is assigned the token
I, SUGAR is 2 and so on. Notice that I'm
regarding BUTTER, MARGARINE and
SHORTENING as equivalent ingredients, so
they all are given the same token, a 5 (Line
1010). In the adventure game sense, these
words correspond to the nouns that could be
entered in a simple two-word command.

Another section of our vocabulary con
cerns operations (verbs) the user might want
to perform while cooking up something tasty.
All of these have tokens in the range 20-29
(Lines 1040-1060). Again, some of them are
considered to be synonymous (MIX, STIR,
ADD, FOLD), and instructions containing
any of these words will be handled in exact
ly the same way by the evaluator part of the
parser.

Vocabulary words with tokens in the 30-39
range refer to the units on some meaningful
numbers that could be part of a command.
These units refer to cooking time (HOURS,
MINUTES) or temperature (DEGREES).
Words with tokens in the 40s are units per
taining to the quantities of ingredients that are
to be added (CUPS, TSP and so forth).

NOVEMBER A.N.A.L.O.C3. Computing



When we actually get to the part of the
parser that determines whether a valid in
struction was entered, the program will be
looking at tokens, not at actual words. Cer
tain patterns of tokens constitute valid com
mands. For example, suppose the instruction
string entered said, ''ADD 2 COCOA." The
parser would tokeruze this into ingredient =
8, amount = 2 (identified as a number), and
operation = 21. However, the parser logic
should recognize that something is missing:
units. ''ADD 2 what COCOA?" Cups?
Ounces? Tablespoons? It makes a difference
in the final product, or so I've heard. Hence,
''ADD 2 COCOA" would be flagged as an in
valid instruction, because no units were
specified. More about the third portion of the
parser next time.

Vocabulary building
Enough preliminaries; let's look at some

more code! I said that Listing 1 is a utility
program for creating a file containing a
vocabulary list. The entire vocabulary list is
treated as one giant character string variable,
VOCAB$. For convenience of editing and for
ease of reading the file, the contents of the
string are written out to the VOCAB.DAT file
in 40-byte records, in Lines 220-300.

The data statements in Listing 1 contain the
individual vocabulary entries and their cor
responding tokens. A complete vocabulary
entry in string VOCAB$ consists of: one
character whose ATASCII value equals the
number of characters in the word (Lines
130-140); the word itself (Line 150); and a
character whose ATASCII value equals the
token value for that word (Line 160). This
method for storing the vocabulary limits you
to 255 unique tokens, but if you needed more,
you could go to a two-byte representation for
the tokens; 65,535 tokens should be adequate.

An example: MARGARINE has a length
of nine characters and a token value of 5. The
vocabulary entry for this word consists of
CHR$(9) (Control-I), MARGARINE and
CHR$(5) (Control-E). Make sense?

Line 1130 marks the end of the vocabulary
data with an exclamation mark and a token
value of O. If the vocabulary searching part
of the parser gets to the end of the vocabu
lary list without a match, a token of 0 is
returned.

The word quest
Next month we'll look at the preprocess

ing and evaluator parts of the parser. For now,
you'll have to settle for something simpler.
Listing 2 is a BASIC program that simply

NOVEMBER A.N.A.L.O.C3. Computing

loads the word-fmder machine-language pars
er routine into RAM, reads the VOCAB.DAT
file into string variable VOCAB$, lets you
enter a word at the keyboard, and tells you
if the word you entered is found in the
vocabulary list. (Enter QUIT to exit.) This
is a useful way to test whether there are any
errors in your vocabulary fIle. For today, List
ing 2 will serve as a framework for illustrat
ing how the machine-language routine
operates.

Line 40 of Listing 2 DIMs the VOCAB$
variable to the actual length of the vocabu
lary file or thereabouts. The 40-byte records
from VOCAB.DAT are read in Lines 140-190.

Oh, yeah, I almost forgot: Boot Camp is
supposed to be about 6502 assembly lan
guage. Well, look at Listing 3. This is the ker
nel of the parser, the routine that searches for
a particular word in the vocabulary file. It
produces only 79 bytes of object code. Short
er than you expected, eh? Well, it really isn't
doing anything particularly fancy. Of course,
if you were to write the entire preprocessor
and evaluator parts of the parser in assem
bly language, you'd be talking about some
serious code. The preprocessor could be
written so as to be generally useful in any
natural language program. However, the
evaluation code is necessarily specific to each
application.

The machine-language routine in Listing
3 is intended to be called from BASIC by
means of the USR function. It is relocatable,
so it can be loaded at any address you like.
Assemble this listing and create a disk file
called PARSER.OBJ.

Listing 2 reads the machine-language code
from PARSER.OBJ. You may recall that bi
nary (object code) files contain six bytes of
header information. Lines 60-80 of Listing
2 read these six bytes and throw them away.
Lines 90-120 read the actual object code and
load it into a string variable called ML$. An
alternative approach is to read the object code
and poke it into some safe place in RAM.
Since the code is relocatable, this can be se
cure anywhere, so long as you know the start
ing address.

The assembly routine uses six RAM loca
tions for specific purposes. Zero-page bytes
$CB-$CE (decimal 203-206) are needed for
the indirect indexed addressing mode, as we
have seen so many times before. Location
$6FE (decimal 1790) contains the length of
the word being sought in the vocabulary; this
serves as input into the machine-language
routine. Location $6FF (1791) contains the
word's token value (or a zero if not found);
this is the parser's output. You can change
these if they conflict with other uses for those

BOOT
CAMP

II you were to write the
entire preprocessor and

evaluator parts 01 the parser
in assembly language, YOU'd

be talking about some
serious code.

29



BOOT
CAMP

It's not a bad idea to do
some error checking to

make sure that the
accumulator contains a "2"

alter the PLA operation.

addresses in your own programs.
To call this machine-language routine, first

poke the length of the target word (in varia
ble WORD$ in Listing 2) into location 1790
(Line 240 of Listing 2). Then call the
machine-language routine with the USR

v function as shown in Line 250, specifying the
addresses of the ML routine itself, the
vocabulary variable string, and the target
word variable string. Faster than a speeding
bullet, the token value for the word appears
at Address 1791, unless the contents of
WORD$ aren't found in VOCAB$, in which
case a zero appears in address 1791. Pretty
simple, eh?

Let's look at the assembly code a little
more closely. Lines 450-530 in Listing 3 il
lustrate how to handle arguments passed from
BASIC to machine language. These, you may
recall, are passed via the stack, in two-byte
chunks. The PLA in Line 450 removes a one
byte counter of how many arguments were ac
tually passed. It's not a bad idea to do some
error checking to make sure that the accumu
lator contains a "2" after the PLA operation;
otherwise, a computer lockup is likely. Next
on the stack are the high byte and low byte
of Argument I (address of VOCAB$), fol
lowed by the high byte and low byte of Ar
gument 2 (address of WORD$).

The searching algorithm is really very sim
ple. It begins by comparing the length of the
target word to the length of the current
vocabulary entry being pointed to by VOCAB
(Lines 680-700, with a branch down to Line
790). If the lengths are different, the words
obviously don't match, so control passes from

Line 810 to label NEXTWORD at Line 1090.
Lines 1100-1320 simply change the contents
of VOCAB to point to the next word in
VOCAB$, by skipping ahead a number of
bytes equal to the length of the current word
plus 2 (one for the length, one for the token).

If the target length did match the current
vocabulary entry length, a character-by
character comparison is done in Lines
820-960. This comparison actually starts with
the last character in the word and works back
wards. If all characters match (Ta-da!) , we
have a hit. Lines 970-1010 fetch the token
value at the end of the current vocabulary en
try, store it at address RESULT ($6FF, 1791),
and return to the BASIC program. If the en
tire vocabulary list is searched with no match,
RESULT contains a zero (Line 710).

Conclusion
So there you have it. A very simple

assembly-language program for searching an
arbitrary list of vocabulary entries to see if
a target character string can be identified.
Next time, we'll see a way to package this
vocabulary searching part of the parser with
preprocessor and evaluator routines in BAS
IC to show just how smart a program has to
be to make Karl's Komputerized Kitchen a
reality.

Acknowledgement
I'm indebted to Dr. Bruce Argyle of Mad

Scientist Software for sharing his parser code
and concepts with me. Thanks, Bruce.

Listing 1: BASIC

IE 10 REM PrograM naMe: VOCAB.BA5
AT 20 REM Utility prograM to build
FL 30 REM vocabulary list file for parser
ZM 40 REM deMO prograM in "Boot CaMp"
BC 50 REM
DO 60 REM by Karl E. Hiegers
BE 70 REM
KD 80 REM First build VOCAB$ string
BG ~O REM
BV 100 DIM TERM$(20),VOCAB$C2000),TEMP$C4

1)

VU 110 A=l:PRINT "Building vocabulary ... "
ZS 120 READ TERM$,TOKEN
AS 130 INLEN=LENCTERM$)
IK 140 VOCAB$CA,A)=CHR$CINLEN)
MO 150 VOCAB$CA+l,A+INLEN)=TERM$
OD 160 VOCAB$CA+l+INLEN,A+l+INLEN)=CHR$CT

OKEN)
AZ 170 IF TERM$="!" THEN GO TO 200
VG 180 A=A+INLEN+2
MU 1~0 GOTO 120
DU 200 REM Then print data to file
PB 210 PRINT "Saving in file .... "
BV 220 OPEN U2,8,0,"D:VOCAB.DAT"
HM 230 MAX=INTCLENCVOCAB$)/41)+1

30

UQ 240 FOR 1=1 TO MAX-l
LV 250 TEMP$=VOCAB$C40*I-3~,40*I)
HV 260 PRINT U2;TEMP$
GG 270 NEXT I
XG 280 TEMP$=VOCAB$C40*MAX-3~,LENCVOCAB$)

)

XE 2~0 PRINT U2;TEMP$
LL 300 CLOSE U2
XM 310 PRINT "All done!"
NH 320 END
EC 1000 DATA FLOUR,l,5UGAR,2,OIL,3,MILK,4
AP 1010 DATA BUTTER,5,MARGARINE,5,5HORTEN

lNG,S
AF 1020 DATA NUT5,6,HATER,7,COCOA,8
HU 1030 DATA EGG,10,EGG5,10
ZC 1040 DATA MIX,21,5TIR,21,FOLD,21,ADD,2

1
5B 1050 DATA HHIP,22,BEAT,22
JR 1060 DATA PREHEAT,23,COOK,24,BAKE,24
AI 1070 DATA HOUR5,31,MINUTE5,32,DEGREES,

32
IV 1080 DATA CUP,41,CUPS,41,C,41
BO 10~0 DATA TEASPOON,42,TEASPOON5,42,TSP

,42,TSPS,42
ZX 1100 DATA TABLESPOON,43,TABLE5POONS,43
UK 1110 DATA TBSP,43,TB5P5,43
PM 1120 DATA OUNCE,44,OUNCES,44,OZ,44,OZS

,44
VF 1130 DATA !, 0

NOVEMBER A.N.A.L.O.G. Computing



:11

Listing 2: BASIC

Listing 3: Assemblv

XA 220 INPUT WORDS
1M 230 IF WORD$="QUIT" THEN STOP
ZL 240 POKE 17~O,LEN(WORD$}
JH 250 X=USR(ADR(ML$},ADR(VOCAB$},ADR(WOR

D$}}
GP 260 IF PEEK U7~1} =0 THEN PRINT "So~~y,

I don't know "iWORD$
BI 270 IF PEEK U7'31} >0 THEN PRINT "Token

fo~ "iWORD$i" is "iPEEK(17~1}
TT 280 PRINT
MU 2'30 GOTO 210

(VOCAB},Y iget next cha~

iand cOMpa~e to
(WORD},V jtarget wo~d

NEXTWORD ino Match,go on
i Matches, check

CYCLE inext cha~

LENGTH ifOUnd! point to
i token va I ue, get

(VOCAB},Y iit, and store
RESULT iin RESULT byte

iall done, so exi

PLA pointer to sta~t

sa VOCAB+l of vocabulary
PLA cha~acte~ st~ing

STA VOCAB
PLA iPointe~ to sta~t

STA WORD+l iof word being
PLA isea~ched fo~ in
STA WORD ivocabula~y list

j------------------------------
icontinue sea~ch With next wo~d

iin the vocabulary
j------------------------------.,

CLC
BCC BEGIN

j-------------------------------
icoMpa~e cha~acte~s in ta~get

iwo~d With those in cu~rent wo~d

iin vocabula~y

j-------------------------------
i
CYCLE

LDA
DEY
CMP
BNE
TyA
BNE
LDV
INV
LDA
STA
RTS

j-------------------------------
iskip to next wo~d by adding
ilength of cu~~ent wo~d to
iPointe~ to vocabula~y list

CLD
BEGIN

LDY ~O

LDA (VOCAB},Y
BNE ANALYZE
STA RESuLT
RTS

j-------------------------------
isea~ch ~outine sta~ts he~e With
inext wo~d being pointed to b~

jVOCAB va~iablei b~anch to label
jANALyZE to look fo~ Matchi if
ino Match, ~etu~n to herei last
i'ent~y' in VOCAB$ has token of
iO, so sto~e that in RESULT and
i~etu~n to BASIC p~og~aMj-------------------------------
i

,-------------------------------,
i
NEXTWORO

CLC
LOY ~o

LOA VOCAB
ADC (VOCAB},Y
STA VOCAB
BCC HOINCl
INC VOCAB+l

NOINCl
CLC
LDA VOCAB
ADC ~2

STA VOCAB
BCC NOINC2
INC VOCAB+l

NOINC2

i-------------------------------
isee if length Matches that of
inext wo~d in vocabulary
j-------------------------------.,
ANALYZE

CMP LENGTH ilengths Match?
BNE NEXTWORD ino, go on
LDY LENGTH jyes,check cha~s

0460
0470
0480
04~0

0500
0510
0520
0530
0540
0550
0560
0570
0580
05~0

0600
0610
0620
0630
0640
0650
0660
0670
0680
06~0

0700
0710
0720
0730
0740
0750
0760
0770
0780
0190
0800
0810
0820
0830
0840
0850
0860
0870
0880
08'30
0'300
0'310
ono
ono
0'340
0'350
0'360
0'370
0'380
0'3~0

1000
1010
t
1020
1030
1040
1050
1060
1070
1080
10'30
1100
1110
1120
1130
1140
1150
1160
1176
1180
11'30
1200
1210
1220
1230
1240
1250
1260
1270
1280
12~0

1300
1310
1320PLA

.OPT OBJ,NO LIST

i
iroutine is o~ged at $600, but is
i~elocatable

*= $0600

·,·VOCAB = $CB
WORD = $CD
LENGTH = $06FE
RESULT = $06FF

·,iThis Machine language sUb~outine

iis designed to be called f~OM a
iBASIC p~og~aM. It takes two
iarguMents: the add~ess of the
ivocabula~~ data st~ing, and the
iaddress of the va~iable that
icontains the wo~d being searched
ifO~, like this:
i
iX=USR(loc,ADR(VOCAB$},A~R(WORD$}

i
iVocabula~~ sea~ching ~outine, to
ibe used as part"of a natu~al

ilanguage pa~se~ p~og~aM

i
iby Ka~l E. Wiege~s

j-------------------------------
iset up a~guMents passed f~OM

iBASIC, into page 0 va~iables

i-------------------------------

0100
0110
0120
0130
0140
0150
0160
0170
0180
01~0

0200
0210
0220
0230
0240
0250
0260
0270
0280
02'30
0300
0310
0320
0330
0340
0350
0360
0370
0380
03'30
0400
0410
0420
0430
0440
0450

NN 10 REM SaMple p~og~aM to deMonst~ate

UD 20 REM vocabula~~ sea~ching fo~ wo~ds

XD 30 REM ente~ed b~ use~

BK 35 REM
AS 40 DIM VOCAB$(280},TEMP$(40},WORD$(20}

, ML$ (7'3)
NN 50 OPEN ~2,4,0,"D:PARSER.OBJ"

FP 60 FOR 1=1 TO 6
EF 70 GET ~2,A

IW 80 NEXT I
PJ ~O FOR 1=1 TO 7'3
CB 100 GET ~2,A

AR 110 ML$(I}=CHR$(A}
FV 120 NEXT I
LP 130 CLOSE ~2

ZY 140 OPEN ~2,4,0,ID:VOCAB.DAT"

OC 150 FOR 1=0 TO 6
RE 160 INPUT ~2,TEMP$
YJ 170 VOCAB$(I*40+1}=TEMP$
GH 180 NEXT I
MB 190 CLOSE ~2
TZ 200 PRINT CHR$(125}
AO 210 PRINT "Ente~ a wo~d (QUIT to exit)

NOVEMBER A.N.A.L.O.G. Computing 31



Data ase

Once you've downloaded
what's accumulated in the
Atari Group's databases,
maybe you'll want to submit
some of your own files.

bV Michael A. Banks

A
s I write this, it's 103 0 outside. The
ground is riddled with crackly brown
stuff that used to be soft green grass.
My air conditioner is chugging away,
giving me occasional pause when the

compressor cuts in and the"1ights dim. (Yes,
I do have a surge protector and lOO-amp serv
ice; the voltage drops are the result of the high
demand of constantly running air condition
ers throughout the neighborhood ...Sigh .)

But that's okay-I'm dealing with it crea
tively. Each problem is a challenge. We have
a ban on watering, so I catch the air
conditioner condensation with a bucket and
use that to water our small flower garden and
large rosebush (Japanese beetles gotta eat

32

too!) And because Southwestern Ohio, where
I live, is particularly hard hit by the drought,
the water is shut off during the day on occa
sion, which makes it tough when I've forgot
ten to stock up on bottled water. But I can
melt a couple trays of ice cubes for fresh
drinking water and go on enjoying my iced
tea without interruption.

So, it's not so bad-in fact, meeting
challenges creatively is kinda fun. But I hope
a cold front moves in soon to help dampen
the effects of Father Sol's fusion plant so I
can turn my creative energies to more in
teresting pursuits ....

Of course, all that's history now, as you
read this. Those of you who live in the tem-

NOVEMBER A.N.A.L.O.G. Computing



Contents:

RT Duffee Cl1ptuee
'iO (YMODEt.j batch)
Help
Exit

The first three items on the menu (Next,
Download and List), I've just explained. Dis
play is like List, except that the file is dis
played wordwrapped and with "More?"
prompts. (Note: List and Display should nor
mally be used only with text files.) Descrip
tion of Group redisplays the current item's
description for your review. Show displays a
list of the files in the group (as you've no
ticed in the preceding description, there can
be more than one file). Set Topic allows you
to select a different database. Help and Exit
are self-explanatory.

All of these commands are available
whether you display the menu or not.

Download commands
To downlOlid a file, simply type DOWN

LOAD, and DELPHI will send the fIle to you
using your default fIle-transfer method. You
can view your current default-file download
method by typing IFX_METHOD.(The
default method is set at the "Set Preferences"
selection at the Atari Group's main menu, via
the SETTINGS selection in Workspace, or
in the SETTINGS area of USING DELPHI).

In multiple-group database items (as in the
"BOOT CAMP #61" example), the first file
is sent, unless you specify a different file by
number.

If you don't want to use your defauit file
transfer method (perhaps you want to try
Xmodem, but your default is Kermit), you
can change it temporarily in one of three
ways:

1. Type DOWNLOAD followed by the
name of the file-transfer method you wish to
use. (Example: DOWN XMODEM.)

2. Type IFlC-METHOD followed by the
name of the file-transfer method you wish to use.
(Example: IFX-METHOD XMODEM.)

3. Type DOWNLOAD MENU to view this
menu:

DOWNLOAD> (Xm, Keemi t, WXm, 'I'm, Duff, RT, YB I

XMODEt-l {12B byte blocks)
Keemi t
WXt·10DEt.j (Windowed Xl-lODEN)
'iMODEM {1024 byte blocks I
Buffer Captuee

Download I-lethod Menu:

Show Files in Geoup
Set Topic
Help
Exit

Set Topic
Submi t
workspace
Help
Exit

ACTION Menu;

Next Geoup!File
Download
List (Unfoemattedl
Display (woed-weapped l
Dcscciption of Geoup

ACTION> (Next, Down, xm, List)

1 f.1AC!65 FILE (Size: 4096 Count: 9)
2 f.1AC!65 FILE (Size: 524B Count: B)

This program copyright 1988 by MALOG computing.

Keywords: PROGRAM. WIEGERS. GRAPHICS, ASSEt-lDLY. JUNE. '61

The Action menu
The ACTION prompt is one of the few

places on DELPHI where a menu is not au
tomatically displayed, even if you are running
with menu prompting. (The ACTION prompt
shows the major commands: "Next," which
takes YOU· to the next file; "Down," which
sends the designated file to your computer us
ing your default download method (more on
this in a bit); "Xm," which initiates an Xmo
dem fIle transfer to your computer; and
"List," which displays the designated fIle as
unformatted ASCII text.)

To see the ACTION menu, type MENU
or ? This menu is displayed:

Karl Wiegers supplies a handful of useful graphics macros in
June's Doot Camp. Please sec ANALOG '61 for complete
documentation.

will have created a temporary subset of the
database that contains only the files match
ing your keyword. You can also narrow or
expand your search, by selecting either com
mand from the database menu.

Once you've read a file's description you'll
be at the ACTION prompt. Here's an exam
ple, of what you'll see (in this case, I typed
DA GEN at the Atari Group's main menu,
to reach the general database, after which I
typed READ BOOT CAMP #61):

<<< ANALOG Ootabases »>

General Interests Henu:

ODASES:Gen> (Die, Read, Set, Exit) REl\O BOOT CAMP 161
Name: BOOT CAl-I? '61
Type: PROGRAM
DlIte: 7-JUN-19BB 20:39 by ANALOG4

Directory of Groups
Relld (and Downlolld I
Search (by Keyword)
Na r row sea reh
Widen seacch

perate zones (and even you in the Southwest,
Texas and Florida) are enjoying cooler
weather and earlier sundowns. And like me,
you're probably spending less time on heat
survival and more on fun and creative ac
tivities.

As I noted in October's column, this time
of the year is a good time to catch up on
progranuning, disk-housekeeping and check
ing out what's accumulated in the Atari
Group's databases while you were on vaca
tion or busy coping with the drought. And,
now that you have the time, maybe you'll want
to share some of your own creativity with
other Atari group members via those same
databases. So, as promised, this month's
column focuses on downloading files from
the Atari database, as well as submitting files
of your own.

Downloading... step by step
If you read October's column, you know

that you must go through two steps prepara
tory to downloading a database file: Select
a database and read the file's description. To
select a database, type DA at the Atari
Group's main menu, then the name of the
database that you wish to access (or, simply
type DA and the first few letters of the data
base name together: DA GEN).

Once you're at the database prompt, type
READ to see the description of the database
item. Now, if you just type READ when you
enter the database, you're going to see the
description of the first (newest) file in the
database. So, you might want to do a direc
tory first (press Return), or search for data
base items by keyword as I described last
month.

in case you missed the October issue,
here's a thumbnail sketch of the search
process: Type SEARCH and a keyword, and
you'll be presented with a list of items con
taining the specified keyword. All
commands-including READ-will then
operate on the selected items; in effect, you

NOVEMBER A.N.A.L.O.G. Computing 33



Database
DELPHI

At this point, you can enter your choice of
file-transfer methods and proceed with the
download. DELPHI will tell you to prepare
your computer to receive the file and provide
any other information necessary (like how to
abort the transfer), then signal you to begin
the necessary procedure to receive the fIle at
your end.

If your terminal software has the capabili
ty, I highly recommend using Xmodem, Ker
mit or Ymodem over ASCII/buffer capture,
even for text files.·There's much less chance
of "garbage" getting into a file with one of
those error-checking protocols.

By the way, if you have a comment on a
file, you can E-mail it to the person who up
loaded the fIle right at the ACTION prompt.
Simply type REPLY, and a DELPHI mail
message will be addressed to the member
name listed as the file's "Owner" (that's the
person who submitted it to the database),
with the subject header filled in. Type your
comments, then CNTL-Z to send the mes
sage, and you're back at the ACTION
prompt.

Submit!
As you know, a major portion of the files

in the Atari Group's databases is contributed
by DELPHI members like you. The files are
placed there through a process called "sub
mitting." At present, you can receive free
time when you submit files (select "Request
Free Upload" at the Atari Group's main menu
for more information).

Before you can submit a file to a database,
the file you wish to submit must be in your

34

Workspace. Files are put in Workspace in one
of three ways: by extracting them from E
mail, by creating them (text files only) with
the CREATE command or by uploading
them.

You can upload mes to your Workspace us
ing almost any fIle-transfer method: ASCII
upload, Xmodem, Kermit, Ymodem, Ymo
dem Batch or WXmodem. The method you
use is up to you. (Type HELP UPLOAD,
HELP XUPLOAD, etc., at the Workspace
prompt for more information on uploading
files.)

Preparing afile for submission
If you're submitting a program or binary

data fIle, you can upload the file with no spe
cial preparation, other than, perhaps, archiv
ing it to save upload and download time.

If you're uploading a text file, there are
several things to keep in mind. For openers,
I recommend that you upload long text files,
rather than try to create them online-the
DELPHI text editors are rather difficult to
use compared with your average word proces
sor. For files which may be read online
even partially-you should keep your line
width (number of columns) down to 70 or so,
to accommodate wordwrap. Also, it's a good
idea to begin any text file with .It (this is a
command that causes DELPHI to display any
text online formatted in the same way you up
loaded it).

Oh yes-text fIles should generally be 7-bit
ASCII.

The submission process
Assuming you have a fIle in your Work

space to submit, the next step is to type SUB
MIT at any database prompt (that's at the
database name prompt, which says DBASES:
and the first few letters of the name of the
database, like this: DBASES:Gen ». Or,
better yet, type SUBMIT at the Workspace
prompt to submit it right after you upload it.

The actual submission process is merely
a matter of responding to a series of prompts,
and you can abort the process at any time by
entering CNTL-C. When you type SUBMIT,

you'll be asked if you are ready to submit a
file. Type Y Next, you'll be asked to enter
the number of fIles you are submitting (usual
ly 1). If you are submitting more than one
fIle, DELPHI will ask if the mes are so relat
ed that they can be entered as a group in the
database. Answer Y

Additional prompts will request the follow
ing information:

The TYPE offile you are submitting. This
tells DELPHI whether the me you are sub
mitting is a Program, Article, etc. If you are
submitting a program fIle, DELPHI will ask
you if the fIle must have a special download
filename (this is normally the same filename
as on your disk).

The TOPIC ofthe file. This is the database
topic under which your submission will be
stored. (You need not be in the database topic
to which you wish to submit a fIle.)

A DESCRIPTION ofthe file. This is the file
description that is displayed when the READ
command is given by members in the data
base. It's a good idea to begin this with .It
on a line by itself, just as you would begin
any text file; that way, the description will
be displayed as you enter it. Make this as
short as possible-but don't scrimp on neces
sary details! (And if the file is archived, be
sure to include this fact, along with the name
of the program necessary to de-archive it.)

The DISPLAYNAME ofthe file. This is the
name that is displayed in the database direc
tory. It can be up to 32 characters in length
and should be as descriptive as possible.

KEYWORDs for the file. You'll have to
select one major keyword from a list of six
keywords established for the database topic
in question (type? at the Keyword prompt
to see this list). After the initial keyword
specification, you can add several keywords
of your own choice. Remember that keywords
are search aids, so think of the major key
words under which other DELPHI members
might search for your fIle. If you're submit
ting a printer utility, you might use the key
words PRINTER, UTILITY, the name(s) of
the printer(s) with which the utility operates
and any other distinguishing features of the
program.

After you've entered the all of this infor
mation, you'll be prompted for the WORK
SPACE FILENAME of the file you are
submitting. If you forget the filename, type
a question mark or press Return at this
prompt; DELPHI will display a list of your
Workspace files.

NOVEMBER A.N.A.L.O.G. Computing



After you have provided all the necessary
information, you will be asked if you wish
the fIle you have submitted deleted from your
workspace. Answer YES or NO, as you wish,
and the submission process will be com
pleted.

The fIle you submit will not be immedi
ately available in the database to which you
submitted it. It is temporarily stored in a spe
cial preview area, to await review by the Atari
group manager. The manager will review
your submission, edit the description or key
words if necessary, and have it in the ap
propriate database and available to all Atari
group members within a day or two.

Conference reminder
Don't forget the real-time conference held

in the Atari Users' Group every Tuesday at
10 p.m., EST. To join, type CO at the SIG
menu, and then type WHO at the conference
menu. You'll see a conference group name,
with a list of the members participating
beneath the group name. The name will be
preceded by a number. To join, simply type
JOIN followed by the number and you're in!
Type to talk. If you get stuck, ask those in
the conference group for help or type /HELP.

Be aGame Designer!
Ever wanted to design your own video

game? You're on! MATRAT (Matthew Rat
cliff) and the ANALOG's Atan Users' Group
are giving you the opportunity to help write
a video game. MATRAT has volunteered to
do the programming, and a thread in the For
um contains all the design elements and sug
gestions to be used in the game. Things are
progressing nicely, and at this point the ac
tion gamers seem to have the upper hand over
the adventure garners. Your input is needed!
To get in on the fun, go to the Forum and
read Message 37596. Then type FOLLOW to
read what everyone else has to say about the
design.

Once you have a handle on what's happen
ing, add your comments with ADD or by typ
ing REPLY 37596.

NOVEMBER A.N.A.L.O.G. Computing

Once the game is under software construc
tion, the thread will be posted in the data
base. Once completed, the game design may
be a feature game and article in ANALOG
Computing.

That's it for now. Next month: An eclectic
mix of tips and tricks. Until then, see you
online!

In addition to having published science fic
tion novels and books on rocketry, Michael
A. Banks is the author ofDELPHI:The Offi
cial Guide and The Modem Reference-both
from Brady Books/Simon & Schuster. Look
for his articles on telecommunications and
tips on using DELPHI in the Atari Users'
Group databases. You can contact Banks on
DELPHI by sending E-mail to membername
KZIN.

Make the
DELPHI Connection!

As a reader of ANALOG Computing, you
are entitled to take advantage of a special
DELPHI membership offer. For only $19.95
plus postage and handling ($30 off the stan
dard membership price!), you will receive a
lifetime subscription to DELPHI, a copy of
the 5OG-page DELPHI: The Official Guide by
Michael A. Banks and a credit equal to one
free evening hour at standard connect rates.
Almost anyone worldwide can access DEL
PHI (using Tymnet, Telenet or other net
working services) via a local phone call.
Make the DELPHI connection by signing up
today!

To join DELPHI:
1. Dial 617-576-0862 with any terminal or PC
and modem (at 2400 bps, dial 576-2981).
2. At the Username prompt, type
JOIN DELPHI.
3. At the Password prompt enter ANALOG.

For more information, call DELPHI Mem
ber Services at 1-800-544-4005, or at
617-491-3393 from within Massachusetts or
from outside the U.S.

DELPHI is a service of General Videotex
Corporation of Cambridge, Massachusetts.
~

35



•

36

by Craig Patchett

NOVEMBER A.N.A.L.O.13. Computing



I take the "ground
up" approach when I
program a game.' the
graphics first, then

the game logic.

Figure 1 - How to create a shape

If darkened, add up bit
value above the square.

., .,
1 -1 (\I..,.NI.O ('\I..,.NI.O
2:1=~ ... t.OM ... O)o:rN ..... WM ... CD'<tN..- 128=1284.2.1 ;;---.:::.l1li----'28.64=19
8+4+1=1~ --~~::~~:~~ ~~:
8+4+2+1=15_ --128+64+32 16=240
2=2 --64=64

::~~~a ::::::::128+32=160
64+16=80

1st 2nd
Character Character

2 keyboard characters
make up this shape.

Alittle character
Perhaps one of the toughest parts of

programming a game is deciding where to
start (you may, however, disagree). The
best thing to do is begin with the most
dominant part of the game, the part that
everything else tends to rely on. For ex
ample, I would start with the maze if I were
doing Pac-Man, the terrain if! were doing
Scramble and the centipede if I were do
ing Centipede. Once these elements are in
place, the rest can be added piece by piece.
It's sort of the equivalent of building a
house floor by floor, starting with the
basement.

Of course, this is only my personal
preference. You may prefer to start with the
framework and then fill in the details (de
sign the game logic first and then do the
graphics). The reason I take the "ground
up" approach is because in most games the
logic relies on the graphics being in place,
so that it can detect collisions and respond
appropriately. Also, it's a lot easier to pro
gram when you can see the results on the
screen.

Needless to say, we'll be programming
our BASIC Invaders example from the
ground up, which means we'll begin with
the invaders themselves. As a result, this
column will be dealing with character
graphics. Please keep in mind that this may
not be the case in your game. Your key ele
ment may use bit-mapped graphics or
PMG. The important thing to take note of
here, then, is not the fact that we're begin
ning with character graphics, but rather the
techniques that we use to implement the
character graphics.

Our first step is to take the invader shapes
we came up with earlier and translate them
into values that the computer can under
stand. As you probably already know, this
is done by treating each shape as a series
of bytes stacked on top of each other. Each
byte consists of eight bits which, like the
dots, can be turned on or off. So we treat
each dot as a bit. Because the invaders are
NOVEMBER A.N.A.L.O.13. Computing

more than eight dots wide, we'll be using
two characters for each invader.

So let's get started. Because this is a rela
tively straightforward process, we'll
single-step through the first invader. The
first invader is shown in Figure 1.

Now that we have our values, we're
almost ready to give them to the computer.
First of all, though, we have to reserve a
place to put them, along with the rest of
the character set. We do this with the fol
lowing program lines:

3150 CB=PEEK(740)-4:POKE
106,CB-4:CA=CB*256

3160 GRAPHICS O:POKE 756
,CB

Now we have 1024 bytes reserved at the
end of memory, and have told the computer
that it will a find a character set there. So
we'd better set one up quickly! To make
things easier, I'll give you the complete pro
gram listing first, and then we'll go over
it line by line:

3030 DIM MLANG$(90)
3050 DIM MOVMEM$(41):GOS
UB 29500:MOVMEM$=MLANG$
3150 CB=PEEK(740)-4:POKE

106,CB-4:CA=CB*256
3160 GRAPHICS O:POKE 756
,CB
3210 H=USR(ADR(MOVMEM$),
57344,CA,1023)
3220 MEM=CA+512:FOR SEC=
o TO 1:GOSUB 32500+10*SE
C:H=USR(ADR(MOVMEM$),ADR
(MLANG$),MEM,LEN(MLANG$)
-1)
3230 MEM=MEM+LEN(MLANG$)
:NEHT SEC
3240 H=USR(ADR(MOVMEM$),
CA+128,CA+640,335)
28999 END
29500 MLANG$="hh~h~h~
h:"l]h~~Ih~
U!Ilm.":RETURN
32500 MLANG$="•••••••ii
~~s~e~Plr~-n •
T-l- -t. ~ e (riin~. -t~0 .
~.~ .": RETURN
32510 MLANG$="-tl -t-'-~
f:IDoLO • .., .. ., •• e•••1! ~~88

11(jj": RETURN

Don't forget that lines 29500 through
32510 come from a previous column. In
case you're wondering about the rest of the
program, here's the complete explanation:

3030; You may remember MLANG$
from the program lines we generated previ
ously. It's used for temporary storage ofthe
machine language routines and character
set data.

3050; MOVMEM$ holds a machine lan
guage routine that we'll be using through
out BASIC Invaders to move things around
in memory. You'll see how it's used later
in this explanation.

3150; You saw this already, but I'll ex
plain in case it wasn't clear. Location 740
points to the top (or end) of memory. Lo
cation 106 points to where the computer
thinks the end of I]1emory is. So, we set a
variable called CB to point to where the be
ginning of our character set will be
(PEEK(740)-4, which is four pages below
the top of memory, with a page being 256
bytes). Then we reset location 106 to point
1024 bytes (256*4) below the character set.

Why? Because the area of memory right
after that pointed to by location 106 isn't
always safe. Anyway, it isn't really that im
portant for you to understand this. Just keep
in mind that this line will reserve memory
for the character set. You may also want
to know that if you're using a program like
BASIC A+, which also changes location
106, then you should change
CB=PEEK(740)-4 to CB=PEEK(106)-4.

3160; The screen is usually kept at the
top of memory, and is right now in the
space we've reserved for our character set.
By using a GRAPHICS command, we
move it down below the new top of
memory. Also, we tell the computer where
our new character set will be.

3210; This line moves the regular charac
ter set to our reserved space, and is an ex
ample of using MOVMEM. In general, the
way to use MOVMEM is with the follow
ing command:

H=USR(ADR(MOVMEM$),FROM,
TO, LENGTH-1)

FROM is the address of the first memory
location you want to move from, TO is the
address of the first memory location you

37



Before you· start complaining that your invader
characters don't look right, keep in mind that
you're looking at them in graphics mode zero.

want to move to and LENGTH is the num
ber of bytes you want to move. So, in our
example, we are moving the 1024 bytes
starting at location 57344 (the address of
the Atari character set) to the memory area
starting at location CA (the address of our
character set).

3220-3230; Now we put our redefined
characters into the new character set. The
graphics characters being at CA +512.
We've already put our character data into
strings in lines 32500 and 32510, so we
GOSUB to these lines, then move the data
from MLANG$ to the character set. No
tice that we once again use MOVMEM.
You'll find that there are a lot of times that
MOVMEM will come in handy, and not
just the ones that we'll cover in this book.

3240; Here's MOVMEM again! Actual
ly, this line isn't really necessary at this
point, but I included it because it follows
along with everything else here. All it does
is move the numbers and uppercase charac
ters into the lowercase part of the charac
ter set. Why? In graphics mode one, you
have to choose between lowercase/graph
ics and uppercase/numbers. We want to be
able to have uppercase, numbers and
graphics at the same time (so we can in
clude the score), so we simply move things
around a little.

28999; That's it folks.
29500-32510; These are just the subrou

tines to set up MOVMEM and the rede
fined characters. See the previous column
on how to set them up.

I know there are a few things that I ha
ven't mentioned yet, and I'll get into them
soon. First, however, why don't we make
sure that this program really works. Run
it, and then try typing CTRL-A, CTRL-B
and so forth, all the way up to CTRL-N
(preferably all right next to each other).
This should give you all our invaders
characters. Now before you start complain
ing that they don't look right, keep in mind
that you're looking at them in graphics
mode zero. We'll be using them in graph
ics mode one, and in a minute you'll see
3B

what they look like in that mode. But first,
it's time to clear up a few things.

In the process of getting all of this up and
working, I've conveniently neglected to fill
in a few of the details. For example, you
may have noticed that the first character we
redefined was all zeros or a blank space.
Why? Try going into graphics mode zero,
and then POKE 756,226. See how the
screen fills with hearts? What we just did
was switch to lowercase/graphics. In lower
case/graphics, there is no space character.
What the computer uses instead is the
heart. So, to avoid this problem, we re
define the heart to be a space. Okay?

Well, that was easy to explain. Next up
is a problem that many people run into
when working with the character set: the
character values. You already know about
ATASCII values, right? Each character is
assigned an ATASCII value between zero
and 255. If you want to find out the value
for a particular character, use the ASC
command from BASIC (PRINT
ASC("E"), for example).

Anyway, each character has a value,
which tends to put the characters in a
specific order. Now it would make sense
that the characters would be stored in this
order in"the character set, right? Of course
it would, but when was the last time a com
puter made sense? Instead, there is another
order for the character set, called the in
ternal order. There is an easy way to figure
out the internal value from the ATASCII
value. The following table shows how to do
it:

TYPE OF CHARACfER ATASCII INTERNAL

Graphics 0-31 Add 64
Uppercase/Numbers 32-95 Subtract 32

Lowercase 96-127 Same

(Anything with a value greater than 127 is
just the inverse of the character with the
same value minus 128.)

All this does is switch the graphics and
uppercase/numbers as far as order is con-

cerned. No big deal, but you have to
remember to use the internal order when
dealing directly with the character set.

One more detail that tends to trip a lot
of people up. Suppose you want to change
a character with an internal value of n, and
the character set begins at CA. Do you start
changing bytes at location CA +n? No, be
cause each character takes up eight bytes
in the character set. That means that the
character starts at CA +n*8. A silly little
detail like this has left a lot of people won
dering what went wrong!

Okay, now it's time to put our invaders
into action. What we're going to do is put
them into a long string and then just print
this string on the screen. Remember,
though, that there are two versions of each
invader. So our string will actually hold two
versions of the invader screen. We'll alter
nately print each version, thus getting some
animation out of the invaders. This will
make more sense after you try it out, so
make the following changes to the previ
ous program:

3939 DIM MLANG$(~9),INU$
(489) , DAT$ (16)
3169 GRAPHICS 17:POKE 75
6,CB+2
5370 INU$=I.":INU$(489)=
1.":INU$(2)=INU$
5389 RESTORE 5410
53~0 fOR LP=O TO 4 STEP
2:READ DAT$:INU$(LP*49+1
,LP*40+16)=DAT$:INU$(LP*
40+281,LP*40+2~6)=DAT$
5400 READ DAT$:INU$(LP*4
9+41,LP*49+56)=DAT$:INU$
(LP*40+241,LP*40+256)=DA
T$:NEl<T LP
5410 DATA "''''''''''''1'' .... ,.I 'i.l 'i.l 'i.l 'i.l 'i.l 'i.l 'i.l 'i , ,
, , ,,.XX~....~~~~,
5429 POSITION 9,9:PRINT
U6 j INU$ (1, 2(0)
5430 POSITION O,O:PRINT
U6jINU$(241,489)
5449 GOTO 5429

You can go ahead and run the new pro
gram and watch the results. When you're
done, here's the explanation of the changes:

3030; We've added two more string vari
ables to this line. INV$ is going to hold the

NOVEMBER A.N.A.L.O.G. Computing



Game
Design

Wor~~~(]Jrn
invaders screens, and we'll use DAn to
help us set up INV$.

3160; We're using a full screen graphics
mode one (GRAPHICS 1+16), and the
graphics/lowercase section of our new
character set.

5370; Okay, now we start setting up
INV$. This line is a tricky way to set the
entire string to hearts, which we've rede
fmed to a space character. Incidentally,
CTRL- will get you the heart character.

5380; In a long program where you'll be
reading different data over and over again,
it's a good idea to RESlDRE the data first,
just to make sure that you won't be read
ing the wrong stuff. That's why this line
is here.

5390-5400; Now things start to get a lit
tle complicated, so let's take a good, close
look at this loop. LP keeps track of the in
vader row that we're working on. We'll be
doing two rows at a time, so we use STEP
2 (there are three types of invaders and two
rows of each). The first thing we do is read
a row of invaders into DAn. Then DAn
gets transferred to two places in INV$
(more about this in a minute). Finally,
another row is read into DAn and then
transferred to INV$, and the loop repeats.

The thing that really needs explaining is
the process of transferring DAn to INV$.
What exactly is going on? Let's look at the
whole thing in English from start to fin
ish. When matching the English explana
tion to the program lines, keep in mind that
the first invader screen starts at INV$ (1,1)
and the second at INV$ (240,240). You
should also be aware that a line on the
screen is twenty characters long, and we
keep a blank line between each row of in
vaders.

Now that you're all geared up for the in
credibly complicated explanation that
you're sure is about to follow, relax. The
first time through, the loop reads a row of
invaders (version one of invader one) and
puts it into the first row of the first screen
and the second row of the second screen.
Then it reads another row (version two of
NOVEMBER A.N.A.L.O.13. Computing

invader one) and puts it into the second row
of the second screen and the first row of
the second screen (by alternating versions
like this, there will be more variety in the
rows).

The next time through the loop, version
one of invader two gets put into the third
row of screen one and the fourth row of
screen two. Then version two of invader
two gets put into the fourth row of screen
one and the third row of screen two. The
third and last time through the loop, ver
sion one of invader three gets put into the
fifth row of screen one and the sixth row
of screen two. Version two of invader three
then gets put into the sixth row of screen
one and the fifth row of screen two. And
that's all there is to it.

5410; Here's the data for the rows. How,
you may be wondering, am I supposed to
type this in? Either that, or you somehow
managed to type it in already and are now
extremely upset that I waited until now to
tell you how. Sorry about that. Anyway, it's
made up of eight CfRL-A/CfRL-Bs, eight
CTRL-C/CTRL-Ds, eight CTRL
E/CTRL-Fs, eight CTRL-G/CTRL-Hs,
eight CTRL-I/CTRLJs and eight CTRL
K/CTRL-Ls. Ifyou type it in after running
the original program, it will make more
sense (since these graphics characters will
look like the invaders).

5420; Now we're ready to get things go
ing on the screen. We first put the cursor
at the top left of the screen. Then we print
the first 240 characters of INV$, which is
the first invader screen.

5430; Now we do the same thing, except
this time we print the second 240 charac
ters ofINV$ or the second invader screen.

5440; Finally, we make it into a loop so
that the invaders will walk in place forever
(or until you press the BREAK key).

So, what do you think so far? Not bad
for BASIC? The problem is, we haven't
really done anything yet. Keeping that in
mind, what you see on the screen is actu
ally extremely slow. By the time the rest
of the program is in place, these moving

invaders would be moving in extremely
slow motion. But is there any way to speed
things up?

Before I answer, think about the fact that
what's slowing us down is the PRINT state
ment. What we need to do is find another
way to get the invaders from INV$ to the
screen. Perhaps I should restate that as
"moving the invaders from the INV$ to the
screen." Does that suggest a solution to
you? If you thought of MOVMEM, give
yourself ten points. Since we can find out
the address of the screen using locations
88 and 89, there is absolutely no reason
why we can't use MOVMEM instead of
PRINT. How much of a speed difference
will it make? Make the following changes
and find out for yourself:

5180 HEH1=PEEK(88)+PEEK(
8~)*256

5420 ~=U5R(ADR(HOVHEH$),
ADR(INV$),HEH1,23~)

5430 ~=U5R(ADR(HOVHEH$),
ADR(INV$)+240,HEH1,23~)
5440 GOTO 5420

Wow, quite a difference, eh? Here's a
brief explanation:

5180; MEMI is the address of screen
memory.

5420; This is the equivalent of the old
Line 5420.

5430; This is the equivalent of the old
Line 5430.

5440; Do it again (and again and again
and).

Once you get over the shock of the extra
speed, notice the ir..vader's color. It may not
be obvious, but it is a different color than
when we were PRINTing them. The rea
son for this is the fact that when we move
characters directly to screen memory, we're
dealing with the internal values rather than
the ATASCII ones. In graphics mode zero,
this means that we don't get the proper
character. In graphics modes one and two,
we either get the wrong character or a
change in color. Change line 5410 to the
following:

39



For some reason, scrolling has become the
BASIC programmer's dream and nightmare.

Despite the great effects it creates, it's not easy
to get scrolling working from BASIC.

~w~~}!~
,IJIJIJIJIJIJIJIJ,K

LKLKLKLKLKLKLKL

Ifyou RUN the program with this change
you'll notice that, despite the fact that we've
changed some of the CTRL characters to
letters, we still get the invader characters
on the screen, only in different colors. To
figure out what's going on, look up the in
ternal values of the characters in Line 5410
and compare them to the internal values of
the CTRL characters.

In graphics modes one and two, only the
values between zero and 63 are used to de
termine the character. By adding 64, 128
or 192 to these values, you simply specify
a different color for the character. You
might like to play around with the charac
ters in Line 5410 to see what I mean. When
you're done, leave them as they are in the
above line. It's nice for each type of invader
to have a color of its own.

Before we go on to the next stage of our
game program, a few words about your
own games. Even though we're using
different colored invaders in this game,
each invader only has one color. What if
you want to use more than one color in
each character? Is it possible? Yes, and
there are a number of different ways to go
about it.

In graphics mode zero, there is some
thing called "artifacting" that will allow
you to have more than one color per
character. In this mode, the dots in even
numbered columns have a different color
than the dots in odd-numbered columns.
Two dots side-by-side make a third color
(white, usually). Along with the back
ground color, this gives you a total of four
colors instead of the usual two. The only
problem is you have to be careful of where
you place your dots. As an exercise, try
redefining a couple of graphics mode zero
characters so that one is all even-column dots,
one is all odd and the other is a mix.

The other way to get multi-color charac
ters is through the use of a special graphics
40

mode called ANTIC mode four. In this mode,
each dot can have one of four colors also, but
you don't have to worry about odd and even.
Also, the dots get their colors from the color
registers, whereas the colors in artifacting
come from a trick, and you can't change one
of them without changing the rest.

To get four colors in ANTIC mode four,
each dot is two bits wide instead of one.
These two bits can hold a value between zero
and three, which specifies the color register.
So, when designing characters in this mode,
you must keep in mind that each dot is two
bits wide instead of one and has three ways
of being "on" instead of one. Otherwise, the
procedure for redefining characters is exact
ly the same. As far as getting to the mode
in the first place, that has to do with Display
Lists, which we'll be getting to in the future.

So much for that. Our next step in
programming our game is to get the invaders
moving back and forth across the screen. Un
fortunately, here we run into a problem. The
only way to move things using character
graphics alone is to move them a whole
character at a time. This means that charac
ters will appear to jump across the screen in
stead of moving smoothly. That's not good.
We want our invaders to move one tiny step
at a time. So how do we solve this dilemma?

Actually, there is a way to do it with charac
ter graphics. If we design eight versions of
each character, with each version being shift
ed to the right one dot, then we can get
smooth movement by switching between
these different versions. Well, this may be a
good solution in some instances, but not in
ours. Don't forget that we're using fourteen
different characters for the invaders and the
invader explosion. Eight versions of each
would mean a total of 112 characters. Not only
is that most of the character set, but it's also
more than the 64 we're allowed in graphics
mode one.

Besides, even if we could have that many,
we would also have to have eight versions of
INV$, which would take up almost 4K of
memory alone. Nope, this technique is just
not going to work for us here. Instead, we're

going to use something that I'm sure you
know about but haven't been able to use much
before: fine scrolling.

Scrolling
For some reason, scrolling has become the

BASIC programmer's dream and nightmare
at the same time. Despite the great effect it
creates in even the simplest programs, it
seems that it's not too easy to get scrolling
working from BASIC. Well, by the end of this
discussion, fine scrolling will be just as easy
as a simple POKE or two.

Instead of spending time looking at exact
ly what fine scrolling is and how it's done,
let's jump right into an example. After we've
got something up and running, we'll come
back and take a look at the details. For now,
delete lines 5420, 5430 and 5440 from the
program we just created, and then add the fol
lowing lines:

~O GOTO 3010
1000 H=USRCADRCHOVHEH$),
ADRCINV$)+S8,HEH1,23~)
1080 S8=240*CS8=0)
1280 IF COARSE=4 OR COAR
SE=-2 THEN CHANGE=-CHANG
E:POKE 17~l,12~-PEEKC17~
1)

1330 SCROLL=SCROLL+CHANG
E
1340 IF SCROLL)15 THEN 5
CROLL=SCROLL-16:COARSE=C
OARSE+2:POKE 17~O,2:GOTO

1360
1350 IF SCROLL(O THEN SC
ROLL=SCROLL+16:COARSE=CO
ARSE-2:POKE 17~O,2

1360 POKE 1788,SCROLL:PO
KE 1787,1
1380 IF PEEKC17~0)()0 TH
EN 1380
13~0 GO TO 1000
3010 POKE 55~,O

3040 DIH VBLOFF$(20):GOS
UB 2~000:VBLOFF$=HLANG$
3160 FOR SEC=O TO l:GOSU
8 31000+10*SEC
3170 H=USRCADRCHOVHEH$),
ADRCHLANG$)lCA-256+~0*SE
C,LENCHLANG~)-l):NEHT SE
C
4000 GRAPHICS 17:POKE 55
~,O:POKE 756,CB+2
5010 DLIST=PEEK(560)+PEE
K(561)*256
5020 POKE DLIST+3,86
5030 FOR LINE=2 TO 12:PO
KE DLIST+4+LINE,22:NEXT
LINE

NOVEMBER A.N.A.L.C.13. Computing



Game
Design

Wor~~~®[]J
5270 SCROLL=0:CHANGE=1:S
B=O:COARSE=O
5200 POKE 55~,34

52~0 POKE 54276,0
5360 POKE 178~,O:POKE 17
~O,O:POKE 17~1,128

5460 GOSUB 31500:H=USR(A
DR(MLANGS),CA-256)
54~0 GOTO 1000
2~000 MLANGS="hU-J1/ \rn
Dbfl\ \rn.": RETURN
31000 MLANGS="ljh_

'0 0 1
A • = .4) I! 0 p,

o i '. 8":RETURN
31010 MLANGS="D~~
el~L...m":RETURN
31500 MLANGS="hht;lh(IJI \rn
.":RETURN

Before I get into an explanation of what we
just did, we need to take a look at exactly
what scrolling is in the first place. "Easy
stuff," you say, "it's just moving things
around on the screen." Yes it is, but it's the
way things are moved that counts. As you
probably know already, you can move charac
ters around the screen simply by printing
them in different positions. Unfortunately, the
kind of movement that results isn't exactly the
smoothest thing in the world, and it's also
very slow.· There's another way to get the
screen to move without actually moving the
objects on the screen. This method involves
something called the "display list," which you
may have heard of, and is the heart of fine
scrolling.

The Atari computers do something that no
other home computer that I know of allows
you to do: put the screen data anywhere in
memory. You can put the whole screen in one
place, or break it up into two or more pieces
and put each piece in a totally different place.
You can even put two or more of these pieces
in the same place, thus making things appear
in two or more places on the screen (think
that one over).

All of this is because of the display list,
which we'll cover in excruciating detail in the
next column. For now, suffice it to say that
you can specify a different screen memory
location for each line on the screen. In a regu
lar graphics mode screen, a location is speci
fied for the first line, and the rest of the screen
is assumed to come right after the date for
NOVEMBER A.N.A.L.O.G. Computing

that line.
Okay, so we've now specified where the

screen memory can be found. Let's suppose
that the number "1234567890" is on the
screen, starting at the top left-hand corner.
What would happen if we now added one to
the screen memory address? Screen memory
would then start at the location that the "2"
is stored in, right? And what effect would that
have on the screen? The "2" will now be in
the top left-hand comer, and the whole screen
would have appeared to shift to the left by one
character (the "I" will have disappeared off
the left-hand side). Similarly, if we had sub
tracted one from the address, the screen
would have shifted to the right by one.

This relatively simple concept is the whole
basis of scrolling. Each time you want to
scroll by one character, you just add or sub
tract one to the screen memory addresses in
the display list (if you don't want a particu
lar line to scroll, you just leave the screen
memory address for that line alone).

What if you want to scroll up or down in
stead of left or right? Let's suppose you were
using graphics mode one, where there are 20
characters on a line. Scrolling up by one
character would then be the same as scroll
ing left 20 characters, and scrolling down one
the same as scrolling right 20. Can you see
why? Adding or subtracting 20 from the
screen memory addresses moves screen
memory to the next or previous line respec
tively, since the lines are stored one after the
other in memory. It's as simple as that.

Fine scrolling
Who cares about scrolling by one charac

ter anyway? Wasn't the whole point of this
column to learn how to scroll by less than a
character, a task called "fine scrolling"? Yes,
and fine scrolling is actually easier than
scrolling by one character (called "coarse
scrolling"). The problem is, you can only fine
scroll by up to two characters (graphics mode
one size). To do more than that, you have to
combine fine scrolling with coarse scrolling.
Before we get into that, however, let's look
at how to fine scroll.

There are actually only two relatively sim
ple steps to fine scrolling. The first is to de
cide which lines you want to fine scroll and
then make some changes to the display list
so that the computer knows which ones too.
The second step is nothing more than a sim
ple POKE to tell the computer how much to
scroll. That's it.

But like I said before, the most you can
scroll a line is two characters horizontally and
two characters vertically. To get continuous
fine scrolling, the trick is to fine scroll by two
characters (although some prefer only to
scroll by one), then coarse scroll by two and
reset the fine scrolling at the same time. This
has no visible effect on the screen (since the
coarse scrolling moves moves the screen two
characters in one direction, and resetting the
fine scrolling moves it two characters in the
opposite direction), but you are no longer at
your fine scrolling limit and can now go
ahead and fine scroll two more characters.
By repeating this process, you can fine scroll
forever if you want to.

Are you suffering from information over
load? Perhaps it's time to go ahead and ex
plain the above program lines, since they give
an example of everything we just talked
about.

90; We're going to start by going off to the
end of the program and getting everything all
set up. The stuff that actually gets done dur
ing the game will come earlier on in the pro
gram listing, because Atari BASIC is set up
to do the things that come early faster.

1000; This is the routine to move the in
vaders from INV$ to the screen. Apart from
moving it to here, we've also changed it so
that the variable SB will determine the screen
version that will be printed. SB is equal to
zero for the first screen (ADR(INV$)+O=
INV$(I,I)) and, for now, 240 for the second
screen (ADR(INV$)+240=INV$(241,241)).

1080; After we print a particular screen,
we want to change SB so that the other screen
will be printed next time around. This line
simply switches SB between zero and 240.
(SB=O) is equal to one if SB=O and 0 if
SB< >0.

41



When you fine scroll horizontally, the computer
makes each scrolling line longer than 20

characters per line.

1280; COARSE is a variable that we use
to keep track of how many characters we've
coarse scrolled by so far. We are only wor
rying about moving the invaders from side
to side at this point, and we want to make
sure that they don't go off the edge of the
screen. So, we change the direction that
they're scrolling in when COARSE gets too
high (they've reached the right-hand limit) or
too low (they've reached the left-hand limit).
CHANGE tells what direction they're going
in and is equal to one for right and minus one
for left. Location 1791 is used in the machine
language scroll routine (called SCROLL) and
also keeps track of direction. It is equal to
128 for right and one for left. We'll be going
into more detail on exactly how SCROLL
works later.

1330; The variable SCROLL keeps track
of the amount of fine scrolling that has been
done. I mentioned before that there is a
memory location that takes care of fine scroll
ing. Actually, there are two. HSCROL at lo
cation 54276 takes care of horizontal scrolling
and VSCROL at location 54277 takes care of
vertical scrolling. As it turns out, our
machine-language SCROLL will take care of
both of these locations, but regardless of this,
you can only POKE them, you can't PEEK
(well you can, but you won't get the same
values you POKEd). That means that you
have to keep track of their values in your own
variables, which is what the variable
SCROLL does.

1340; When we have fine scrolled 16 times,
we will have gone past the fine scrolling limit
and must do a coarse scroll. In this line, we
reset the variable SCROLL (which we will
later use to reset the fine scrolling) and up
date COARSE. Location 1790 tells our
machine-language routine that we want to
coarse scroll by two characters in the direc
tion specified by location 1791 (see line
1280). Having taken care of all of these, we
then skip ahead to line 1360.

1350; If we're scrolling in the other direc
tion, then we want to do the exact opposite
when we've fine scrolled down to zero. We
set the variable SCROLL to 15, update
42

COARSE in the opposite direction, and again
set location 1790.

1390; Location 1789 tells the machine
language routine the value to store in
HSCROL, and if the value in location 1788
is not zero, then the routine knows that some
thing needs to be done.

1380; Now we wait until the routine is
finished.

1390; And then we go back to line 1000 to
do the whole thing all over again with the next
invader screen.

3010; We're going to be making some
changes to the display list, so we turn off the
screen temporarily to avoid a mess.

3040; VBLOFF$ will hold a machine
language routine that is used to turn off our
VBLANK routines. SCROLL is a VBLANK
routine, so we may as well set up and in
troduce VBLOFF now.

3160-3170; Here we set up SCROLL itself.
The way that SCROLL works, it has to be
stored in memory, not in a string. But it has
been designed so that it can go anywhere in
memory, so we'll put it right below the
character set, since we've already made sure
that part of memory is reserved.

4000; Now we actually set up our initial
graphics mode and tell the computer where
the character set is.

5010; We find out where the display list is.
5020; And change the first line (the one

that also tells where screen memory is) to a
fine scrolling line.

5030; Now we change the next 11 lines as
well.

5200; Our changes are complete, so we
turn the screen back on.

5270; Here we initialize our variables (their
uses are explained in the earlier part of the
listing).

5290; This just makes sure that the scroll
ing register is initially zero.

5360; Now we initialize the machine
language routine SCROLL.

5460; This turns on SCROLL. The
CA-256 in the USR command is to tell where
SCROLL is located in memory.

5490; We're all done setting things up, so

go and start the actual movement routine.
29000; This is VBLOFF.
31000; This is SCROLL.
31500; This is SCRLON, the routine to

turn on SCROLL.
If you're curious about SCROLL, the

machine-language routine that we're using
here, you may wish to skip ahead and take
a look at the complete explanation of it. I'm
leaving it until the end because at this point
it should be fairly straightforward as to how
it is used in our program, and there are more
important problems that I'm sure you've al
ready run across that I feel should be ex
plained fust.

Assuming you've made the previous addi
tions to the program and have gotten it run
ning, you're probably wondering what's going
on. After all, the invaders are no longer neat
ly lined up on the screen any more, are they?
Don't worry, you didn't do anything wrong.
The problem comes from the fact that we are
now fine scrolling.

When you fine scroll horizontally, the com
puter makes each scrolling line longer than,
in the case of graphics mode one and two,
20 characters per line. To be exact, it makes
these lines 24 characters long (48 in graph
ics mode zero). Why?

Let's suppose you scroll a normal width
line two characters to the right. What is the
computer supposed to put on the left edge of
that line? The same is true for scrolling to
the left. The computer has to have two extra
characters on either side of each scrolling line
in order to have something to scroll onto the
left or right side of the line. Thus the extra
four characters. When we set up INV$, we
thought there would only be 20 characters on
a line, and that's why the invaders are now
spread all across the screen.

Our solution? We change the program so
that INV$ is set up with 24 characters per line
instead of 20. We'll do this by adding two
spaces at the beginning and end of each line:

1000 X=U5RCADRCHOUHEH$),
ADRCINU$)+5B,HEH1,283)
1080 5B=288*C5B=0)

NOVEMBER A.N.A.L.O.13. Computing



Game
Design

Wor~~~(]J[ID
3030 DIM MLANG$C~O),INU$
(576) , DAT$ (16)
5370 INU$=I.":INU$(576)=
".":INU$(2)=INU$
53~0 FOR LP=O TO 4 STEP
2:READ DAT$:INU$CLP*48+3
,LP*48+18)=DAT$:INU$CLP*
48+33~,LP*48+354)=DAT$
5400 READ DAT$:INU$CLP*4
8+51,LP*48+66)=DAT$:INU$
CLP*48+2~l,LP*48+306)=DA

T$:NEHT LP

Here's the explanation of these changes:
1000-1080; We've added four characters to

each of the 12 lines that make up each screen,
so we have to add 48 (4*12) to the values in
these lines.

3030-5370; An additional 48 characters per
screen, times two screens, means an addition
al 96 characters altogether for INV$.

5390-5400; What have we done here?
We're multiplying LP by 48 now (24*2), have
shifted the beginning position of each row of
invaders by two to give us the extra two
spaces at the beginning of each line, and the
second screen now begins an extra 48 charac
ters into the string.

How do things look now, a little better? As
you can see though, there's still a problem.
As the invaders scroll to the right, a pair of
characters that don't belong appear at the top
left-hand corner of the screen. Before I tell
you why and how to correct it, I'd like you
to think about it. You should be able to come
up with the answer yourself, based on every
thing we've talked about so far.

Give up, or did you figure it out? Either
way, the problem comes from the fact that the
computer is trying to scroll on information
that doesn't exist. When you first set up a
graphics mode, the computer sets aside an
area of memory for use as screen memory.
The memory right before this screen memory
usually holds the display list. Anyway, when
you coarse scroll far enough so that screen
memory now begins before the point it origi
nally began at, you start getting strange stuff
appearing on the screen.

That's our problem now. How do we get
rid of it? We can do one of two things. If we
NOVEMBER A.N.A.L.O.13. Computing

change things so that the first line on the
screen doesn't scroll, and start printing our
invaders on the second line, we'll be okay.
This way, we would be backing up screen
memory into the first line, which we know
is full of spaces.

The other way is to change the initial screen
memory address so that it points ahead in
memory. That way we know the memory be
fore it (which used to be screen memory) is
also full of spaces. Which of these methods
is best? In this case I tend to favor the second,
because it's just a little easier to do and also
because it will come in handy later in the pro
gram. Also, with the first method you don't
get to use the first line for scrolling. As it
turns out, we won't want to anyway, but it is
something to keep in mind. So, without any
further ado, here are the changes necessary
to move the screen memory forward:

5030 L=PEEKCDLIST+4)+44:
POKE DLIST+5,PEEKCDLIST+
5)+CL}255):POKE DLIST+4,
L-256*CL}255)
5049 FOR LINE=2 TO 12:PO
KE DLIST+4+LINE,22:NEHT
LINE
5180 HEHl=PEEKCDLIST+4)+
PEEKCDLIST+5)*256

And, of course, the explanation.
5030; Here we make the changes to the

screen memory address, which is stored at
the beginning of the display list. See next
month's column to have this make more sense
to you.

5040; This is just the old line 5030.
5180; We now find out where screen

memory is from the display list, not the oper
ating system (which is what locations 88 and
89 are for).

Ta-da! We're now all cleaned up and look
ing good. This is all we're going to do with
the invaders for now. It will make life easier
for us later when we're figuring out some of
the logic. As a matter of fact, we won't pro
gram them to move down the screen until
we're almost finished with the program. For
now, it's important that the invaders just go

back and forth forever so that we can keep
them under control.

Even though we're done with the program
ming part of this column, there's still more
do discuss. First of all, I should explain
SCROLL, as promised. SCROLL is a
VBLANK routine to do fine and coarse
scrolling for you. VBLANK stands for Ver
tical BLANK, which happens 60 times a se
cond and is the time during which the
electron beam is on its way from the bottom
of the screen back to the top (see the column
on Video Magic).

During VBLANK, there are no changes
being made to the television screen, so it is
a good time to make changes to the display
list and screen memory. In this case, we're
making changes to the display list. If we did
not make these changes during VBLANK,
the screen would "jump" while you were
making them. Anyway, this is all just to satis
fy your possible curiosity; you don't have to
worry about the details since I've already
taken care of them for you. All that you have
to deal with is how the SCROLL routine is
used.

You've seen in the above program listings
how to set SCROLL up and turn it on. Once
you turn it on, it will just sit and wait for you
to tell it what to do. And how do you tell it
what to do? By setting two or more of five
memory locations. Here are those locations
and their meanings:

1787; This location tells SCROLL when
you want to do something. You set it to one
after you've set the next four locations (em
phasis on the "after").

1788; This location is used to set the
horizontal fine scroll register. Just store the
value you want in the register here (and then
set location 1787 to one).

1789; This is the same as 1788, except for
the vertical fine scrolling register.

1790; This location is used to specify the
number of bytes you want to coarse scroll by.
Set it when you're ready to coarse scroli.

1791; Finally, this location is used to tell
SCROLL what direction to coarse scroll in.
Set it to one for left and up, and 128 for right

43



Game
Design

Wor~~~([)rn

Table 6 MODE 0 1 2 3 4 5 6 7 8 9-11
BYTESIROW 40 20 20 10 10 20 20 40 40 40

NO. OF ROWS 24 24 12 24 48 48 96 96 192 192
TOTAL SCREEN BYTES 960 480 240 240 480 960 1920 3840 7680 7680

TOTAL MODE BYTES
(NORMAL SCREEN) 992 672 420 432 696 1176 2184 4200 8138 8138

(SPLIT SCREEN) - 674 424 434 694 1174 2174 4190 8112

and down.
Every VBLANK, SCROLL will check lo

cation 1787 to see if it's set to one. If it isn't,
then that's all SCROLL does. If it is, then
it takes the values in loclltions 1788 and 1789
and stores them in the fine scroll registers.
Then it checks to see if location 1790 is equal
to zero, in which case it sets location 1787
back to zero and stops. If it isn't set to zero,
then that means you want to coarse scroll, so
it goes through the display list and updates
all the fine scrolling screen memory address
es. Then it sets locations 1787 and 1790 back
to zero and waits for your next command.

Let me answer a question that you may
have: Why can't the fine scroll registers be
changed directly? Why does SCROLL have
to do it? Well, it doesn't. Try making this
temporary change to'our program:

1355 POKE 54276,SCROLL

Now you're changing the horizontal fine
scroll register directly. Do you notice the oc
casional flicker on the screen? That's Why we
use SCROLL for this.

It's now time to take care of a few details
about scrolling that BASIC invaders doesn't
really get into. First of all, our demonstra
tion game does not use vertical fine scroll
ing, and chances are that may not be the case
with a game of your own. We've already seen
that vertical scrolling is basically the saine
as horizontal, with the exception'that we have
to coarse scroll by a whole line instead of one
character.

But there is also another differen~~ be
tween the two. You recall that we ran into the
problem of needing a wider screen for our
horizontal scrolling. The same type of
problem exists with vertical scrolling, except
it is only a problem at the bottom of the
44

screen. The solution is also similar to that
for horizontal scrolling, and it is to add an
extra line at the bottom of the screen, one that
does not scroll.

This line then tends to act as a buffer and
gives the screen a place to get the extra in
formation from. So wnen you're setting up
your display list for a screen that is to be fine
scrolled vertically, remember to add an ex
tra line at the bottom of the screen, one that
isn't set up for scrolling.

The last thing we're going to cover here is
how to set up screens for games like Scram
ble and Eastern Front, where they are much
larger than the display screen. For example,
let's suppose that you want to design a game
in graphics mode one where the entire game
screen is 40 characters wide and 48 charac
ters high (two display screens wide by two
high). First of all, this means that you will
need four times as much screen memory as
a regular graphics mode one screen. How do
you get this memory? One way is to just
reserve it at the top of memory, just like you
reserve space for a character set. There is,
however, an easier way, at least in this case.

In Table 6 you'll find a chart that lists a
whole bunch of information about the vari
ous graphics modes. One of these pieces of
infonnation is the amount of screen memory
tjlat the graphics modes use, and you'll see
that graphics mode one uses 480 bytes
(20*~4). We need enough memory to store
48 lines of 40 characters each, or a total of
1920' bytes.

Looking at the chart again, we see that
graphics mode six happens to use 1920 bytes
for screen memory (usually you won't get an
exact match, so you'd pick whatever mode
came closest without going under). So if we
set up a graphics 'mode six screen, we'll have
the right number of bytes already set up for

us. Of course we will have to change the dis
play list but, as you'll see in next month's
column, that's a piece of cake.

Once screen memory has been set up, the
next step is set up the display list so that ev
ery line (except the last one, remember) is
set to scroll vertically and horizontally, and
also specifies a section of screen memory.
Each of these screen memory addresses will
be 48 bytes past the previous one, since that's
how long our new lines are.

The final step before we actually begin to
scroll is to set up the screen data in screen
memory. This is just a matter of figuring out
how you want the screen to look on paper (or
design it a display screen at a time on the
computer). From there, transfer the data into
a string (remembering that the first 48 bytes
of the string will be the first line of the
screen), and then use MOVMEM to move the
string data into the screen memory.

With all this taken care of, you're now
ready to scroll around your new giant screen.
This is the easy part, since SCROLL takes
care of all the work for you. All you have to
do is tell SCROLL when to scroll, and also
keep track of how far you've scrolled, both
vertically and horizontally, so you don't run
off the edge of your screen. You can do this
very simply by keeping two variables, say
VCOARSE and HCOARSE. At any given
time, these variables should show how many
bytes you've scrolled down and how many
you've scrolled right, respectively (you
should update them every time you coarse
scroll, just like we updated COARSE in our
previous program).

In the case of our example, you don't want
VCOARSE to get greater than 24, or
HCOARSE to get greater than 16. Why not
48 and 40? When VCOARSE gets to 24, 24
lines will have already scrolled off the screen
and there will be 24 lines on the screen, for
our total of 48. Similarly, when HCOARSE
gets to 16, 16 lines will have scrolled off the
screen, and 24 will be on, for our total of 40.
Well, that about does it for fine scrolling,

Of course, I still haven't explained the dis
play list. We'll cover that topic next month.

11M
NOVEMBER A.N.A.L.O.G. Computing



How to read the Memory Map
Beginning users: Read the text that is

printed in bold type only. These memory
locations will be the easiest for you to use
and usually don't involve assembly
language.

Advanced users: Read everything! Many
areas of memory are not of any practical
use, but you can learn a lot about how a
computer works by reading the boring
parts.

the variable number plus 128 of the coun
ter variable. The next two give the line
number that the FOR statement was on,
and the last one gives the offset within that
line of the FOR. These values remain on
the stack until the FOR/NEXT loop is
complete.

There is one exception to the preceding
two paragraphs. A BASIC POP statement
will take the top entry off the stack, be it
a. GOSUB for a FOR/NEXT. You should

the GOSUB was on, and the last one is an
offset into the line so that BASIC knows
where to continue from after the
RETURN.

FOR/NEXT loops are a little more com
plicated; they require 16 bytes to be put on
the stack. The first six bytes give the num
ber (in BCD) that the counter in the loop
can go up to. The second six give the STEP
value (also in BCD). The 13th byte gives

008E,008F
RUNSTK
142,143

This one is a pointer to the runtime stack.
What is a "runtime stack"? Let's start off
with a quick explanation of a stack.

Ever seen a stack of trays in a cafeteria?
Customers take trays off the top; cafeteria
people put trays on the top. If you're not
lucky, there'll be a mad rush of people, and
by the time you get to the stack there will
be none left, and the cafeteria people will
be nowhere to be seen. Well, a computer
stack is the same thing, except it uses
memory locations instead of trays, and
there are no cafeteria people. A special
memory location is used to point to the cur
rent top of the stack.

Now you know what a stack is, so let's
talk about the runtime stack. Runtime just
means that it's used while the program is
running. When you use a GOSUB or a
FOR/NEXT loop, BASIC has to be able
to remember certain things, so it puts them
on the stack until it needs to refresh its
memory. Now you need to know what ex
actly gets put on the stack.

For each GOSUB encountered, four
bytes are put on the stack (they are taken
off when BASIC RETURNs from the
subroutine). The first byte is a zero and
tells BASIC that this is a GOSUB. The se
cond and third give the line number that

NOVEMBER A.N.A.L.O.G. Computing 45



DATLN
182 00B6

List pointer. Contains the location of
the line being LISTed. When you just
type LIST, you find 32767 here.

make sure you POP the stack if you have
to leave a FOR/NEXT loop before it's
fInished or a GOSUB before the RETURN.

Don't forget that the stack is constantly
changing, so its size will vary.

Lastly, since the beginning of the run
time stack is also the end of the string/array
area, BASIC also calls it ENDSTAR.
Okay?

LSTPNT
173,174 OOAD,OOAE

ERRSAV
195 00C3

This location holds the number of the
error that was trapped or caused the
program to stop.

PTABW
201 00C9

Two uses for this one. First, relevant
to the last location, MEMTOP is also
called TOPSTK and points to the end of
the runtime stack. Since the runtime
stack is the last section of memory used
by your BASIC program, MEMTOP is
a pointer to the end of your BASIC pro
gram (which makes sense, right?). The
memory locations from the address in
MEMTOP plus one, aU the way up to the
display list (see SDLSTL [560,561]), are
free for your use (but don't forget that
the value in MEMTOP will change dur
ing program execution, since the run
time stack will be growing and
shrinking) .

For those of you who are still alert,
don't confuse this MEMTOP with the
MEMTOP at 741 and 742. This is the
BASIC MEMTOP; the other is the OS
MEMTOP.

The BASIC cartridge uses locations
146 to 202 for various uses, not all of
which are worthwhile reporting on
with the following exceptions, of course:

You can use DATALN in an error
trapping routine to find out where a
READ error occurred.

100 READ A
110 PRINT PEEK(183)+PEEK(184)*256
1000 DATA 10

DATALN holds the line number of the
DATA statement that was last READ. For
example:

OOCA
BININT
202

When you print a whole bunch of
items and separate them by commas in
the PRINT statement (like PRINT
A,B,C$), they get printed on the screen
with a bunch of spaces in between them,
right? Well, PTABW tells how many
spaces to separate them by. In technical
terms, that means it tells how many
spaces there are between each tab stop
on the screen (see TABMAP [675 to 689]
if you want to set tabs for the TAB key).
It can be set to any value from three to
255 but is initialized to ten. Let's look
at an example:

100 PR INT 1.2.3
110 POKE 201,5
120 PRINT 1,2,3

SYSTEM RESET doesn't restore
PTABW to its original value; GRAPH
ICS doesn't; nothing does. This is a very
durable location.

Pokeing a zero here will cause the
Atari to lock up shop when it encoun
ters a comma in a PRINT statement.

00B7,00B8

OOBA,OOBB

10 FOR 1=1 TO 8
20 READ A
30 ? PEEK(182)
40 NEXT I
50 DATA 1,2,3,4,5,6,7

DATALN
183,184

STOPLN
186,187

Points to the number of the item wi
thin the DATA statement. This means we
are currently reading the first number,
the second, etc. Try this program:

0090,0091
MEMTOP
144,145

FORLN holds the line number of the
current FOR statement encountered.
For example:

100 FOR X=l TO 25
110 NEXT X
120 PRINT PEEK(160)+PEEK(161)*256

FORLN
160,161 OOAO,OOAl

STOPLN holds the line number that
the program was on when the program
stopped, the BREAK key was pressed or
an error was trapped. It is also useful
in error-trapping routines. Now for our
example:

100 TRAP 30000
110 NEXT Y
30000 PRINT PEEK(186)+PEEK(187)*256

If you put anything other than a zero
here, then going into the immediate
mode (i.e., SYSTEM RESET, BREAK
or the program ending) causes the pro
gram currently in memory to erase
itself-yet another fun way to prevent
people from looking at your program (I
personally like this one; it's devious).

Noname
46 NOVEMBER A.N.A.L.O.13. Computing



Afloating point register is just ap[;Jce used to
hold floating point numbers while operations are

performed on them.

These two locations are reserved for BA
SIC, which means they have no specific use
but you should stay away from them.

203-209 OOCB-OODl
These locations are free, free, free for

your use if you're programming in BASIC.
If you're using a different language, check
the accompanying documentation to find
out which page zero locations it leaves free.

Floating point register zero. A floating
point register is just a place used to hold
floating point numbers while operations are
performed on them (it may also hold a par
tial result of an operation). They are all,
including FRO of course, six bytes long,
since they must hold a six-byte BCD
NOVEMBER A.N.A.L.O.G. Computing

The floating point package
The remaining page zero locations from

212 to 255 are used by the OS's floating
point package, a whole bunch of subrou
tines that BASIC uses when doing math and
that kind of stuff. The routines themselves
are stored in the OS ROM, so if you don't
use them at all in your program, these lo
cations will be free. Don't count on it
though, even if you think you're not using
the routines. They can sneak up on you
when you least expect it.

Floating point math uses six-byte BCD,
which was explained briefly under location
VVTP (134,135). See the section in "De
Re Atari" on the floating point package for
more information.

Unfortunately, the listing for the float
ing point package is mighty hard to come
by, so some of these locations are going to
have real short explanations. My apologies
to you, and my thanks to the OS Manual
and Mapping the Atari for the information
I couldn't find anywhere else.

00F3,OOF4

OOED

OOEE

EEXP
237

NSIGN
238

The value of the exponent (E). I suspect
this is the exponent of the floating point
number currently being processed, but this
is only a suspicion.

47

INBUFF
243,244

DIGRT
241 OOFI

The sign of the floating point number
(same suspicion as above).

The sign of the exponent in EEXP (237).

FCHRFL
240 OOFO

CIX
242 00F2

ESIGN
239 OOEF

The first character flag. Your guess is as
good as mine.

An offset into the text buffer pointed to
by INBUFF.

The number of digits to the right of the
decimal point (zero to eight).

Finally something that can be under
stood! There are times when BASIC has
to convert an ATASCII representation of a
number to the corresponding floating point
value (like when you type in X=1000). IN
BUFF points to a buffer used to hold the
ATASCII representation. The result gets
stored in FRO. See LBUFF (1408 to ]535)
for the buffer itself.

00EO-00E5

OODA-OODF

00E6-00EB

FRE
218-223

Floating point Register 2.

FRJ
224-229

This isn't very well documented, but it
appears to be an extra floating point
register.

representation of the number.
FRO is also used by the USR command.

Remember that USR has the format
X=USR (address [,argument][, ... ]) where
X can be any variable and the arguments
are optional. If you want your machine
language routine to give a value to X, you
should store that value in the first two bytes
of FRO (212,213 -low byte and high byte
respectively) before your RTS statement.
BASIC will automatically convert these
bytes into a floating point number and store
it in X (or whatever variable you used for
the call). If you're not using BASIC, you
can use FRO yourself to convert binary
values to floating point and vice versa. Put
the binary number in locations $D4 and
$D5 and then JSR $D9AA to convert to
floating point (the result will be stored in
FRO). To convert back, JSR $D9D2. Note
that you can't use these routines from
BASIC since BASIC is constantly using
FRO and will mess up your values.

A single-byte register used for single
byte calculations.

FR2
230-235

Floating point Register 1. FRJ has the
same format as FRO and is often used in
conjunction with it, especially for two
number arithmetic.

FRX
236 OOEC

00D2,00D3

00D4-00D9

Noname
21O,211

FRO
212-217



Another temporary register.

A temporary register.

RADFLG
251 OOFB

Still another temporary register (will it
never end?).

0200,0201
VDSLST
512,513

To get a DLI going, there are a couple
of things you have to do. First, and most
important, you have to decide what you
want the interrupt to do! Write the routine
to do it, making sure it ends with an RTI
(ReTurn from Interrupt) instruction. Next,
decide which row on the screen you want
it to occur at (it will actually occur at the
end of this row). Go into the display list
and set the leftmost bit (bit seven) of the
instruction for that row. That tells the dis
play list that there is to be a DLI on this
row. Now tell the OS where the DLI rou
tine is by setting VDSLST (low byte and
high byte of the routine address). Finally,
you have to enable the DLIs. Do this by set
ting NMIEN (54286) to 192.

This is the vector for the Display List In
terrupt (DLl) ,which is an NMI, as we dis
cussed in the last location. DLIs interrupt
the screen drawing process so you can do
things like change the screen color halfway
down. They exist entirely for your benefit;
the OS doesn't use them at all.

of interrupt called a Non-Maskable Interrupt
(NMI). What's the difference? Well, there's
an assembly-language command called SEI
(SEt Interrupt disable). It tells the 6502 (the
mnin chip) to ignore IRQ-type interrupts. Un
fortunately, it can't tell the 6502 to ignore the
NMls. They are taken care of by another
chip, called ANTIC, and so ANTIC is where
you must go if you want to ignore NMls.

The NMls consist of the Vertical Blank In
terrupt (VBI) , the Display List Interrupt
(DLl) and the SYSTEM RESET interrupt.
We'll be seeing the interrupt vectors for both
IRQs and NMls in the next few locations,
along with how to use them. An interrupt
vector tells the as where to go when the cor
responding interrupt occu~s (assuming it
hasn't been disabled).

You might also want to look at IRQEN
(53774), NMIEN (54286) and NMIST
(54287) for more information on interrupts.Pages two through four

Locations 512 to 1151, as you will see, are
used by the as as a workspace. Some are
used for variables, some for tables, some
for vectors, some for buffers and some just
for miscellaneous stuff. Now, a few words
on using these locations. Don 'f, unless the
description says you can! A lot of them are
very important to the as, and if you mess
with them, they may cause the computer
to crash, which you don't want to happen.
Keep in mind, though, that no matter what
you do, you can't hurt the computer (un
less you throw it at a wall in frustration).
You'll just hurt your program.

Also, be careful of locations that don't ap
pear to be used. Atari has warned that these
locations may be used in future versions of
the as, so stay away if you want to make sure
your programs will work on all machines.

Let's jump right into page two. The first
42 bytes are used for interrupt vectors, so
we'd better take a quick look at interrupts.
As you remember, we first saw interrupts at
location POKMSK (16). Ifyou don't remem
ber, go back and reread that section. I'll wait
for you here ....

Back again? Okay, so now we have the ba
sic idea of what an interrupt is. The type of
interrupt we saw at POKMSK is called an In
terrupt ReQuest (IRQ). There's another kind

up the stack for the as, BASIC and DOS
(see RUNSTK at locations 142 and 143 for
an explanation of what a stack is). On
powerup (and on SYSTEM RESET), the
stack pointer is set to 511. Each time a
machine-language JSR or PHA (PusH Ac
cumulator on stack) instruction is execut
ed, data is put on the stack and the pointer
moved downward accordingly. When an
RTS or PLA (PuLl Accumulator from
stack) is executed, the corresponding data
is pulled off the stack and the pointer
moved back up. Since the stack pointer
(which is a special location built into the
main part of the computer) is just one byte,
if you try and move it below location 256,
it will wrap back around to Location 511
and vice versa.

OOFE,OOFF

OOFC,OOFD

OOF9,00FA

OOF5,00F6

OOF7,OOF8

FPTR2
254,255

FLPTR
252,253

ZTEMP3
249,250

FPTR2 holds the address of the second
floating point number that the package is
operating on.

Page one
Locations 256 to 511 are called page one

and have a very important use. They make

FLPTR holds the address of the float
ing point number that the package is now
operating on. FLPTR and FPTR2 (to fol
low) point to the addresses where the
results of the current operation will be
stored. The documentation is sketchy
though, so I'm just making an educated
guess.

RADFLG determines whether the
trigonometric functions (SIN, COS, etc.)
are performed in radians or degrees. If it's
zero, then radians are used. If it's six, then
degrees are in fashion. SYSTEM RESET
and NEW both restore RADFLG to radi
ans (zero).

BASIC also calls this location DEGFLG.

ZTEMP4
247,248

ZTEMPI
245,246

4B NOVEMBER A.N.A.L.O.C3. Computing



DLIs are powerful. They can be used to change
colors, to change character sets, even to change

player/missile positions and the fine scrolling
registers.

peripheral such as the disk drive. It is initial
ized to 59314, which just holds a PLA and
an RTI (i.e., the interrupt is used).

IRQ again, for the machine-language BRK
command [which is not the same as the
BREAK key; see POKMSK (16) and
BRKKEY (17)]. It's also initialized to 59314.

Another IRQ, this time for the "serial bus
I/O interrupt." Initialized to 59314 again be
cause it isn't normally used. Both VINTER
and VPRCED's interrupts are processed by
the PIA (Peripheral Interface Adapter) chip.

Here's a quick example from BASIC,
simply reversing the playfield colors half
way down the screen:

100 GRAPHICS 0
110 DLIST=PEEK(560)tPEEK(561)*256
120 POKE DLISTt16, 130
130 FOR MEM=1536 TO 1553
140 READ INSTR
150 POKE MEM, INSTR
160 NEXT MEM
110 POKE 512,0:PoKE 513,6:PoKE 54286
,192
180 LIST
190 DATA 72,173,198,2,141,10,212,141
,23,208
200 DATA 173,197,2,141,24,208,104,64

mers by now, this is most definitely
machine-language country. It's not very
difficult machine language, but it is
machine language.

A few notes now for the machine-language
programmers. Change the hardware regis
ters, not the shadow registers. The shadow
registers are used to update the hardware
registers during VBLANK. Changing them
halfway down the screen won't have any ef
fect until VBLANK kicks in. .

If you're going to have more than one
DLI, then each DLI routine will have to
reload VDSLST to point to the next one.
The last one wiD have to point back to the
first one. Make sure in this case that you
enable the DLIs during VBLANK, or else
they may not execute in the right order.

VINTER
516,517

VBREAK
518,519

0204,0205

0206,0207

This one's an IRQ vector, for an interrupt
called the "serial proceed line interrupt,"
where the word "serial" indicates I/O to a

Use WSYNC (54282) if you're changing
screen colors. When any value is stored in
WSYNC, the next command won't be execut
ed until the TV has finished drawing the cur
rent scan line. If you don't use it, your colors
will change in the middle of a line and will
flicker back and forth. Try it and see for your
self (get rid of "141,10,212" in Line 190 and
change "1553" in Line 130 to "1550").

One other problem with DLIs is that press
ing a key on the keyboard can cause DLI
colors to "jump" down a scan line (try it).
The solution? Well, the easiest is just not to
use the keyboard. For more complex ways
around it, you should consult "De Re Atari."

DLIs are extremely powerful. They can be
used to change colors, to change character
sets, even to change player/missile positions
and the fine scrolling registers; so be crea
tive. Proper use of DLIs can produce a pro
gram that will do things you never thought
the Atari was capable of.

From now on, if! don't tell you what kind
of interrupt it is, it's an IRQ, okay? There's
a whole bunch of these suckers and only so
many ways to say "here's another IRQ."

SO here's another IRQ. This one occurs
whenever a key other than BREAK is pressed
(START, OPTION and SELECT don't count
because they're buttons, not keys). It's initial
ized to 65470, which is the OS keyboard IRQ
routine (it makes sure that only one charac
ter gets printed when you press a key, and
resets ATRACT [77]). If you want to put your
own routine in, this is the place to do it. Keep
in mind, however, that your routine will be
executed before the key code gets converted
to ATASCII (see the OS manual for a list of
key codes).

The following three vectors are used to
control communication between the serial bus
and the serial bus devices (serial refers to the
fact that bits are sent or received one after
the other in succession). A much simplified
explanation of this process follows. You
should consult "De Re Atari" if you need
more details.

The data being sent or received is stored

Make sure that the DATA is correct be
fore you run the program. If it isn't, the
computer might lock up. Here's an assem
bly listing of what those DATA statements
represent:

0600 48 PHA
0601 ADC602 LDA CoLoR2
0604 8DoAD4 STA WSYNC
0607 8D17Oo STA CoLPFl
o60A ADC502 LDA COLoRl
060D 8D1800 STA CoLPF2
0610 68 PLA
0611 40 RTI

Now that you know the basics, let me tell
you a few limitations. First of all, there is
very little time available during a DLI be
fore the next row starts to get drawn. Make
your routine short. Second, because an in
terrupt often occurs while something else
is going on Oike your BASIC program run
ning), you have to make sure that you re
store the accumulator and the X and Y
registers if you use them. Do this by push
ing their values onto the stack before you
use them and then pulling the values back
off before you RTI. Finally, as should be
painfully obvious to you BASIC program-

VPRCED
514,515 0202,0203

VKEYBD
520,521 0208,0209

NOVEMBER A.N.A.L.O.G. Computing 49



The opposite of VSERIN, VSEROR is used
when the I/O bus is ready to send a byte. Its
official name is the "POKEY serial I/O bus
transmit data ready" interrupt vector, which
should make more sense this time. It is ini
tialized to 60048, the address of an OS rou
tine that, logically, moves the next byte in the
buffer to the serial output register (from
whence it gets sent). DOS messes with this
one too, changing it to 6691, the address of
its routine to do the same thing. .

in a buffer. If we're doing output, then a byte
gets transferred from the buffer over to the
serial output register (an interrupt routine
does this). SIO takes it from there and puts
it in POKEY's serial output shift register.
POKEY then picks it up and sends it out one
bit at a time. An interrupt is then generated,
and the whole process starts over. This goes
on until the checksum byte has been sent, at
which time a "transmit done" interrupt is
generated and SIO hands control back to the
main program, which has been waiting pa
tiently all this time.

The process is pretty much the same if
we're receiving data, except in reverse.

INITIAL VALUE
59280
59279
59279
59279

same as before
60175

same as before
60111

59279
59142
59310
59653

Attention BOS owners!
Since a lot of addresses in the new "B"

version of the OS got shifted around, some
of the initialization addresses given aren't
the same in that version (which is now in
a majority of the Ataris out there). Here
are the changes (Figure 9).

Software timers
There are two types of timers in the

Atari: software and hardware. We've al
ready come across the hardware timers (see
VTIMRI-4 [528-533]), and we're about to
learn everything we never wanted to know
about the software timers, which use Lo
cations 536 to 558. But first, a few words
from our author.

There are, of course, differences between
software and hardware timers, and you'll
probably want to know them before you go
running off into timer land. The biggest
difference comes from the names.

VECTOR
VDSLST
VPRCED
VINTER
VBREAK
VKEYBD
VSERIN
VSEROR
VSEROC
VTIMRl-4
VIMIRQ
VVBLKI
VVBLKD

Hardware timers are built into the
POKEY chip; software timers are part of
RAM. The big difference comes in the way
they keep time. You recall from location
RTCLOK (18-20) that a jiffy is Y60 of a se
cond, the amount of time it takes the tele
vision set to fIll the screen. Well, the
software timers count down by one every
jiffy. The hardware timers, on the other
hand, count down by an amount less than

0214,0215

0216,0217

0210,0211

0212,0213

VTIMRI
528,529

VTIMR2
530,531

Interrupt vector for POKEY Timer 1 (see
AUDFI [53760,53761]).

Another long-winded name: the "POKEY
serial I/O bus transmit complete" interrupt
vector. Since I'm sure you're all becoming ex
perts at interpreting these names, it should
come as no $urprise that this vector is used
when all the data has been sent. It is initial
ized to 60113, a routine that, when the check
sum byte is sent (see CHKSUM [49]), sets
the "transmission" done flag at XMTDON
(58) and disables this kind of interrupt.

The following three locations are the in
terrupt vectors for the POKEY timers, all of
which are initially unused and therefore set
to the PLA/RTI combination at location
59314. The timer interrupt occurs when the
associated timer counts down to zero.
. For more information on the POKEY

timers, see the section on timers right before
loc ation 53760.

Interrupt vector for POKEY Timer 2 (see
AUDF2 [53762,53763]).

VTIMR4
532,533

Interrupt vector for POKEY Timer 4 (see
AUDF4 [53766,53767]). This vector only ex
ists in the "B" version of the OS.

VIMIRQ
534,535

Every IRQ vectors through this location on
its way to the individual interrupt routines.
It is initialized to 59126, the address of an OS
routine that looks at IRQST (53774) to de
termine what kind of interrupt occurred and
then jumps through the appropriate vector.

020A,020B

020C,020D

020E,020F

VSERIN
522,523

This is a good one. The "POKEY serial
I/O bus receive data ready" interrupt vector.
It means that this vector is used when the I/O
bus indicates that it has received a byte that
is now waiting in the serial input register,
ready to be moved to a buffer. The routine
in the OS to do this is at 60177, and that's
what VSERIN is initialized to.

VSERIN is also called INTRVEC by DOS,
which changes its value to 6691, a routine in
DOS that does pretty much the same thing
as the one in the OS, except in a different
place.

VSEROR
524,525

VSEROC
526,527

50 NOVEMBER A.N.A.L.O.G. Computing



Ajiffy is 6~ of a second: that's the time it
takes the TV set to fill the entire screen with a

picture.

NOVEMBER A.N.A.L.O.G. Computing

The third system timer, again hampered
by time-critical I/O. This one has problems
of its own through. First of all, the cassette

a jiffy, which you can specify (see Loca
tions 53760 through 53769). So, if you want
to time things that take longer than a jiffy,
use the software timers. Otherwise, go for
the hardware.

This is System Timer 2, of course. When
it reaches zero, it JSR's through CDTMA2
(552,553). And, unless you slept through
the last paragraph, you should already
know that it will not be updated during
time-critical I/O.

see where the name comes from now. In
cidentally, there is also a horizontal blank,
which occurs while the TV has finished
drawing one line and is on its way to the be
ginning of the next. Store any value in
WSYMC (54282) and the computer won't do
anything until the next HBLANK occurs.

Back to VBLANK. There are a few rea
sons why the TV isn't drawing to the screen.
First of all, it gives us a way to time things,
since VBLANK occurs precisely every Yrio of
a second. Secondly, nothing is being drawn
to the screen during this time, so any graph
ics changes made during VBLANK will
result in smooth, instantaneous changes on
the screen. But, perhaps most importantly,
VBI code runs independently of mainline
code. What does that mean? It means that
VBI code is essentially a separate program,
running at the same time as your regular pro
gram! I wrote one VBI program, for exam
ple, that allowed the computer to play music
at the same time I was typing in programs.
Chris Crawford, in his classic Eastern Front
1941 game, used VBI to separate the think
ing process of the game from the tedious stuff
like graphics and user input. That allowed the
computer to think about its next move at the
same time the player was thinking about his
or hers, thus simulating a true one-on-one sit
uation. As you can see, VBLANK is an ex
tremely powerful tool.

Let's take a closer look at what normally
goes on during VBI. First of all, there are
two stages. The first stage is always execut
ed, while the second gets ignored if the time
vertical I/O flag at CRITIC (66) is set. The
first is called "immediate" vertical blank, the
second is "deferred."

VVBLKI is the vector for the immediate
stage, so the OS goes through VVBLKI when
the VBLANK interrupt first occurs. During
this stage the real-time clock (RTCLOK
[18-20]), the attract mode (ATRACT [77],
DRKMSK [78] and COLRSH [79]), and sys
tem timer one (CDTMVl [536, 537]) get up
dated, processed and so forth. Then CRITIC
is checked. If it's set, indicating that the in
terrupt occurred in the middle of a time-

51

0220,0221

021E,021F

0222,0223

CDTMV4
542,543

VVBLKI
546,547

CDTMV5
544,545

handler uses it. Secondly, instead of JSRing
through a vector when it gets down to zero,
it just clears a flag at CDTMF3 (554). So
don't use it during cassette operations and
don't expect it to go anywhere after it's
done.

Let's see. You've already figured out that
this is System Timer 4, that it doesn't work
during time-critical I/O and you may have
guessed that it clears a flag at CDTMF4
(556) when it's done instead of vectoring.
What's left for me to say?

The last of the timers. This one is no
different than the last one except that the
flag it clears is at CDTMF5 (558). But
since you're getting to know these thirigs
so well, I shouldn't have to tell you that.

Since this is the vector for the vBLANK
Interrupt (VBI) , I suppose this is probably
a good time to explain exactly what verti
cal blank is. With all the previous mentions
of jiffies in this book, you should know by
now that a jiffy is Y60 of a second. It is im
portant because that's the time it takes the
television set to fill the whole screen with
a picture. Since the screen can't hold on
to that picture for very long, the TV keeps
drawing the picture over and over again,
even if it doesn't change. It draws it one
line at a time, from top to bottom. When
it gets to the bottom, it stops drawing and
goes back to the top, where it starts all over
again. Now, the important part for us is
when it stops drawing. At that time it tells
the computer, "Hey, I'm not drawing to the
screen anymore," thus generating a verti
cal blank interrupt. You should be able to

021A,021B

0218,0219

021C,021D

CDTMVI
536,537

CDTMV2
538,539

CDTMV3
540,541

This is the first software timer (affection
ately known as "System Timer I"). Every
VBLANK, the value in CDTMVI gets
decremented by one. When it reaches zero,
a flag gets set so the OS knows to JSR
through CDTMAI (550,551). An important
thing to note here is that the decrementing
for this timer (and only this timer) is done
during Stage 1 VBLANK. This means that
CDTMVI (along with RTCLOK [18-20]
and ATRACT [77]) is updated every
VBLANK, no matter what's going on else
where in the computer. The rest of the soft
ware timers, on the other hand, are updated
during Stage 2, which means that during
time-critical I/O (like disk and cassette I/O;
see CRITIC [66]), the other times are not
updated. Unfortunately, the OS knows this
too, so it uses CDTMVI for I/O routines.
So, you see, we have a catch-22 situation
here. Oh, well! If you're doing your own
time-critical routines though, you know
which timer to use.



critical I/O operation, the OS returns from
the interrupt. If it's not, then it's okay to go
on to Stage 2, so we do. When the OS is done
with Stage 2, it vectors through VVBLKD
(548,549) to the user's deferred VBI routine,
and then finally returns from the interrupt
when it's done there.

VVBLKI is initialized to point to SYSVBV
(58463), which contains a IMP instruction
to the OS Stage 1 code (located at 59345 in
the old OS, 59310 in the new one). If you
change VVBLKI to point to your own rou
tine, and you still want the OS code to be ex
ecuted' you should end your routine with a
IMP SYSVBV statement.

Whew, what a lot of mumbo jumbo! Ifyou
managed to plod through all of that, take a
well-deserved rest. When you're done, we'll
take a look at how you can use vertical blank
for your own routines.

Don't worry, there's still more to come on
VBIs! This just seemed like a good time to
formally introduce VVBLKD, the vector for
the user's deferred VBI routine. The OS in
itializes VVBLKD to its "exit vertical blank"
routine (at 59710 in the old OS, 59653 in the
new one). If you use VVBLKD to point to
your own routine, make sure to end that rou
tine with a IMP XITVBL (XITVBL contains
a IMP instruction to the exit vertical blank
routine, which means you don't have to wor
ry about which OS is being used since
XITVBL is at 58466 in both). Note that you
can also avoid the whole entire OS VBI code
by writing your own immediate VBLANK
routine and ending it with a IMP XITVBL
instead of a IMP SYSVBY. Remember that
none of the timers or color registers or any
thing will be updated if you do this (unless
you update them in your routine).

By now you're probably either real excit
ed over the prospect of using VBIs yourself,
or you're asleep. If it's the latter, then you're
not even reading this because your eyes are
closed, so I'm only going to deal with those
52 NOVEMBER A.N.A.L.O.G. Computing

deferred, and ISR SETVBY. Now your VBI
will be up and running:

Here's a simple example that uses location
Chact (755) to make inverse text blink:

PLA
LOA 11$00
STA CDTMV3tl
LOY IIVBLANK&255
LOX IIVBLANKl256
LOA 11$06
STA CDTMV3
JSR SETVBV
RTS

VBLANK LOA CDTMV3
BNE VBLXIT
LOA lI$lE
STA CDTMV3
LOA CHACT
EaR 11$02
STA CHACT

VBLXIT JMP SYSVBV

0600 68
0601 A900
0603 801002
0606 A010
0608 A206
060A A906
060C 801002
060F 205CE4
0612 60
0613 AD2C02
0616 Dorn
0618 A91E
061A 801E02
0610 ADF302
0620 4901
0622 8OF302
0625 4C5FE4

100 FOR MEM=1536 TO 1575
110 READ CODE
120 POKE MEM,CODE
130 NEXT MEM
140 X=USR(1536)
150 DATA 104,169,0,141,29,2,160,16,1
62,6,169,6,141,29,2,32
160 DATA 92,228,96,173,28,2,208,13,1
69;30,141,28,2,173
170 DATA 243,2,73,2,141,243,2,76,95,
228

Make sure that the DATA values are cor
rect before you run the program. If they
aren't, the computer will probably crash and
you'll lose the program.

Here's the assembly-language listing of the
machine code (which is stored in the DATA
statements) :

. The "LDA #$IE" in the preceding listing
is used to specify a half-second interval ($IB
hex equals 30 decimal equals 30 jiffies equals
half a second) for use in blinldng. Make it

of you who are excited, okay? Let's look at
how to write our own VBLANK routines.

The first step is to decide whether you want
your routine to be immediate or deferred.
Most of the time it doesn't matter. There are,
however, the following conditions which will
require one over the other.

1. If you want to change locations that the
OS deferred routine also changes, you obvi
ously want to do so after the OS does. Use
deferred.

2. The maximum amount of time you can
spend in immediate VEl is 2,000 machine cy
cles (see a book on 6502 assembly language
for information on the number of machine cy
cles per instruction). If your routine is go
ing to be long, you should therefore put it in
deferred VBI, which has 20,000 cycles avail
able. If you don't, things are going to look
mighty funny on the screen. If you db use
deferred, do your graphics first, since some
of those 20,000 cycles occur while the screen
is being drawn.

3. If you need your routine to be executed
every VBLANK, regardless of whether time
critical I/O is occurring, use immediate. Be
careful, however, that your routine will not
cause problems with the I/O.

Now that you've decided what it should be
(and you've presumably written it and put it
in memory somewhere), all you need to do
is change VVBLKI or VVBLKD to point to
it. A simple task, right? Not quite. What hap
pens if a VBI occurs while you're changing
the vector? Crash city!

To make sure this doesn't happen, you have
to change the vectors during VBLANK. But
that itself presents a small problem. How do
we get into VBLANK to change the vectors
if we have to change the vectors to get to
VBLANK (good old catch-22 again)? Luck
ily, Atari has thoughtfully provided a VBI
routine that makes the change for you. It's
called SETVBV and is at 58460. To use it,
load the 6502 Y register (LDY) with the low
byte of the address for your routine, and load
the X register (LDX) with the high byte. Then
load the accumulator (LDA) with a six if you
want immediate VBI, seven if you want

0224,0225
VVBLKD
548,549



What happens if a VBI occurs while you're
changing the vector?

Crash City!

NOVEMBER A.N.A.L.O.13. Computing

CDTMF3
554 022A

Unlike system Timers 1 and 2, Timers 3
through 5 merely clear a flag when they count

And now, back to our timers. This is the
flag for CDTMV4 (542,543). See CDTMF3
for more information.

CDTMF4
556 022C

INTEMP
557 022D

CDTMF5
558 022E

INTEMP is used for temporary storage
during the SETVBL routine. As you recall,
SETVBL is at the address stored in 58460.
Heaven only knows what INTEMP is doing
here in the middle of the system timers.

This is the flag for CDTMV5 (558,559).
See CDTMF4 for more information (ha, ha).

53

If you guessed "take the OS Stage 2
VBLANK interrupt routine and put it in my
own deferred VBI routine with the delay
value changed," then give yourself a pat on
the·back.

"But wait! The as Stage 2 VBI routine gets
executed whether I have my own deferred
VBI routine or not," you say, taking me com
pletely by surprise. You're right, though (or
would have been if you had said it). Your
deferred routine, however, happens after the
OSs, so you can just repeat the part that sets
the delay and, since you'll set it after the as
does, yours will be the one that counts. The
part you want is at locations $E87C through
$E897 on page 36 of the OS listing, and lo
cations $E8E8 through $E8EE on page 37
(these locations will be different in the new
OS, but that's irrelevant here). Be aware that
the OS will now be executing this routine
twice and will therefore be decrementing by
two every VBLANK. You should set
SRTIMR to double the delay you want, and
also change your deferred routine so that it
resets SRTIMR if it's equal to zero or one.
That makes sure that the as routine doesn't
reset it before you get a chance to.

SRTIMR
555 022B

down to zero. This is the flag for CDTMV3
(540,541) and is also used by DOS as a time
out flag, so beware of possible conflicts if you
use it.

As with the other two flags, you must set
CDTMF3 when you set CDTMV3. Any non
zero value is okay.

Well, here in the middle of all the timer
stuff is a different kind of timer. As every
body knows, if you hold down a key on the
Atari, it will start repeating, right? And some
thing has to tell the OS how long to wait be
fore starting that repeat and before repeating
it again, right? And can you guess what lo
cation does that? Sure, I knew you could.
SRTIMR is set to 48 every time a key is
pressed. Every Stage 2 VBLANK that the key
is still held down, SRTIMR gets decrement
ed by one. When it reaches zero, the repeat
process starts. It gets set to six, decrement
ed again, the key repeats, it gets reset to six,
and so forth until the key is released. Unfor
tunately, there are no locations that store the
two delay times, so you can't speed up or slow
down the process just by changing a couple
of locations. There is, however, another way
to do it.

As you recall, the initial delay time of 48
is set whenever a key is pressed. As you may
or may not recall, we came across a vector
a few locations ago (VKEYBD [520,521]) that
pointed to the IRQ routine for a key being
pressed. It is in this routine that the delay is
set. So in order to change the delay, you must
essentially take the OS routine, change the
delay value, store your, revised version in
memory and update the vector. You'll find the
OS routine at location $FFBE on page 130
of the OS listing.

How about the other delay, the six jiffy
one, once the repeat is started? If you were
paying attention (and I know you were), you
already know that it gets set in Stage 2
VBLANK. Can you guess what you're go
ing to have to do to be able to set it yourself?

0226,0227

0228,0229

larger or smaller to make the interval longer
or shorter, respectively.

CDTMAI
550,551

CDTMAI is the vector for System Timer
1 (CDTMVI [536,537]). It's initialized to
60400, which is the address of a routine to
set the time-out flag TIMFLG (791). This is
because the OS uses CDTMVI for I/O rou
tines, which is a very good reason why you
probably should use Timer 2 instead.

The as vectors through CDTMAI when
CDTMVI counts down to zero. Ifyou do use
CDTMVI and are setting it for a value greater
than 255 (i.e., setting both the low and high
byte), this presents a potential problem. Since
CDTMVI is updated during VBLANK, and
there is a chance that a VBLANK might oc
cur while you're setting CDTMVl, you
should set the low byte first. You can also use
the SETVBV routine mentioned in the
VBLANK description preceding. Just LDY
with the low byte, LDX with the high; LDA
with the timer number (1-5), and JSR
SETVBY. This will assure that the timer gets
set during VBLANK.

Since the OS JSRs through this vector, you
should end your routine with an RTS in
struction.

Incidentally, CDTMVI reaching zero
generates an NMI, which then does the
vector.

CDTMA2
552,553

Same as CDTMAI, except this one is not
used by the as and is therefore initialized to
zero. Oh, and of course CDTMV2 (538,539)
reaching zero causes the vector through here,
not CDTMVI. But then we already knew
that, didn't we?



NOVEMBER A.N.A.L.O.13. Computing

••
whatever frequency is driving the Data-Out
shift register is also present on the Clock
Out line. But the Clock-In line is bi
directional and may accept an external
clock signal or act like Clock Out and
transmit a POKEY-generated clock signal.
This allows the input shift register or the
output shift register to either accept an out
side clock signal or use an internal clock.

Bits 4, 5 and 6 control the sources of
clock pulses for both the In and Out shift
registers and the directionality of the bi
directional clock, according to Figure 2.
Since POKEY is the internal clock source,
the frequencies generated by its dividers
also appear on the clock lines.

Atari chose to use only asynchronous
communication and clock the shift registers
internally. The OS ignores any external
clocks and does not support synchronous
I/O even though the hardware can. You can
actually disconnect the clock lines in your
serial cable and still use your 1050 disk
drive and printer. I cannot say whether all
peripherals will work this way but these
two will. See the diagrams in Figure 3 for
examples of how POKEY can be con
figured for synchronous or asynchronous
communications.

FIGURE 1: SKCTL

BIT FUNCTION
7 Forces Serial output to 0
6* Serial port parameter selections
5*
4*
3 Changes serial out from 1/0 logic to two-tone
2 Changes from normal to fast POT scan
1 Activates keyboard scanning
o Enables keyboard debounce circuits

and a serial output shift register whose
baud rate is controlled by the sound fre
quency counters. This is similar in concept
to a USART (Universal Synchronous/Asyn
chronous Receiver/Transmitter). Such
devices form the heart of all serial I/O and
modem devices. Certain aspects of the
POKEY control registers were only
glossed over before, and so now is the time
to go into slightly greater detail. Let's look
at POKEY register number 15 or
SKSTAT/SKCTL ($D20F,53775). (See
Figure I.)

You see that bits 4, 5 and 6 control the
USART parameters, determining what in
put and output modes will be used in vari
ous combinations of synchronous/
asynchronous I/O. It is not a very
straightforward proposition here, but
I will try to simplify it. The key to under
standing is to look to the clock lines on the
serial bus. There are two: Clock Out (Pin
2) and Clock In (Pin 1).

Clock Out is relatively straightforward;

POKEY revisited
In the last three installments of "Bits 'n'

Pieces," we spent a long time discussing
how POKEY performs serial output. Sim
ply stated, POKEY contains a serial input
54

bV Lee S. Brilliant

n the never-ending battle between

I AMIGA and ST partisans we hear
rhetoric like:

"Well, I've got 4,000 colors to
choose from!"

"Yeah, but how many can you put up at the
same time?"

"But I've got a blitter chip!"
"So what, I will have one soon too (ha

hal). Besides, my faster clock speed makes
it unnecessary!"

"Okay. Top this: I've got stereo sound!"
Uh-oh. How do you respond to that one?

You could mention the MIDI interface, but
try this retort instead: "Atari gave up that one
with the 8-bit machines because no one ever
used the feature!"

"Say what? The old-fashioned, outdated,
inferior, 8-bit Atari computers had four
channel stereo sound?"

"Yes! In fact, they had three-channel
sound!"

"So, how come I never heard about it?"
"Because until this article, no one ever

knew about it!"
So now you know the subject we will cover

this month. Along the way we will rehash
some old material about POKEY, cover some
new stuff and build the POly Phonic Sound
(POPS) device. So let's rehash!



EXT MEANS AN EXTERNAL CLOCK CONTROLS THESE SHIFT REGISTERS
AND SETS THEIR BAUD RATES.
16-BIT RESOLUTION CAN BE USED FOR FINE TUNING.
* SAME SIGNAL ALWAYS APPEARS ON CLOCK OUT LINE.
** LABLED AS NOT USEFUL BY HARDWARE MANUAL.
*** TWO-TONE MODE CANNOT BE USED BECAUSE CHANNELS 1 & 2 ARE
USED TO MAKE AUDIO TONES AND WILL CONFLICT.

FIGURE 2: POKEY USART Parameters

The important thing to learn from Figure nels 2 and 4 on separate clock lines through
2 is that when only bit 6 is set, POKEY separate amplifiers while playing 1 and 3
Channel 4 will appear on the Clock-Out together on the regular audio output line
line. Here is the potential for four-voice via the TV (or the audio output at the 5-pin
sound in "stereo." Place an amplifier on plug). You need only set bits 5 and 6 of
the Clock-Out line and "play" one voice - SKCTL. This should make AMIGA fans
through the serial port and the others stand up and take notice. The following in
through the TV in "stereo." Moreover, you formation will allow you to produce two
can have trinaural sound by playing Chan- or three-channel sound from your Atari.

Synchl:onous, extecnal clock both directions.
Bits 4,5, & 6.. 0 .

POKEY
CLOCK IN/OlIT.----<-----CHANNEL 4-------->----CLOCK OUT

DATA I DATA
• v I
I I v

SERIN<---->SEROUT

i 1
DATA IN---->--------- ------->----DATA OUT

Schematic
To produce stereo sound you must do the

following things:
1) Plug POPS into the serial bus and the

audio output, and then connect the ampli
fiers to three speakers and turn on the pow
er. The right channel will come out the
"normal" audio line so you can use your
TV for one of the amplifiers on a 400.

2) Set AUDCfL for the proper values for
the kind of sound you want to produce (ie. ,
16-bit or different master clock). Try 0 for
starters (standard setting).

3) Set the bits of SCKTL; 67 (3+[bit
6]64) for two-channel. Without the +3, the
keyboard won't work, and you will need
RESET to recover from POKE 53775 64.

4) Set your AUDC and AUDF values for
volume and distortion on all audio chan
nels. Keep in mind that the signals on the
clock lines are taken off before the control
circuits, so the audio control registers have
no effect. You cannot control the noise con-

55

reasonable 0.5 volts. The 4066 IC is a bank
of electronic switches each of which is con
nected to a resistor, thus the higher the bi
nary code applied, the more resistors are
switched in and the more signal passes
through. The desired volume value is
placed in PORTA, which is configured for
output through the joysticks and controls
the volume of POPS left and center chan
nels. Right channel volume and distortion
are controlled as usual through AUDC
registers.

I have demonstrated this system to users'
groups and it really turns heads, even
among people as jaded as Atari users.
Electronic volume control allows fade-outs

from all voices and can give rise to some
interesting spatial sound effects. Listings 3
and 4 give simple demonstrations of the
abilities of POPS. I have included a
schematic and circuit board for POPS: note
part values, size and polarity of capacitors
and IC orientation.

Power is obtained from a nine-volt DC.
500-milliamp wall supply like the one used
by Atari video games. They are available
in abundance. You may even have one of
these at home! Be sure to note the polarity
of the power plug: + at the tip and - at
the sleeve. POPS is compatible with all
8-bit Atari computers, but the 400 does not
have an audio output line, so you can only
play the right channel through your TV.
Each channel of the amplifier puts out
about half a watt, not enough to shatter
glass but enough to get your wife upset! If
you need more power you can get larger 
amplifiers and power supplies from Radio
Shack.

XMIT & RECV SET BY
CH4. **

FUNCTION

XMIT SET BY CH4
RECV BY EXT CLOCK

XMIT & RECV SET BY
CH4. CH4 ON CLOCK IN

XMIT & RECV SET BY
CH4. **

XMIT CLOCKED BY EXT,
RECV BY CH4.
ASYNC RECV, SYNC XMIT

RECV SET BY CH4. XMIT
SET BY CH2. ***

RECV SET BY CH4. XMIT
SET BY CH2. CH4 OUT
ON CLOCK IN. ***

XMIT & RECV RATES SET
BY EXTERNAL SOURCE
AT CLOCK IN

The POPS device
The POly Phonic Sound (POPS) adap

ter is really nothing more than three sets
of resistors to reduce, balance and control
volume for the three audio amplifiers; the
rest is done with programming. The two
serial port amplifiers incorporate electronic
volume controls that are regulated through
the joystick ports (PORTA) similar to the
POKEY control registers.

Remember that these sound channels
played on the clock lines are logic level sig
nals or five volts. This level of audio will
blow away most amps so you need the
resistors to drop the voltage to a more

CH2

CH2

CH4

CH4

CH4

CH4

EXT

EXT

SEROUT
CLOCK
SOURCE*

CH4

CH4

CH4

EXT

CH4

EXT

CH4

CH 4

SERIN
CLOCK
SOURCE

IN

IN

IN

CH4
OUT

IN

IN

CH4
OUT

IN

BIDIRECT
CLOCK
IN/OUT

Asynchronous I/O
81 t 5-1. Bits 4&6 .. 0

EXT

I----~~;~-------~~;~---->--CLOCKOUT

• I -
I v I

CLOCK lli/OUT----->SERIN-->---SEROUT
(EXT) A I

I v
DATA IN-->----------- ------->----DATA OUT

BIT

III

NOVEMBER A.N.A.L.O.G. Computing

110

101

NOTES:

100

010

011

000

001

654

FIGURE 3: Examples of USART
configuration.



CH 1&2----------->---------AUDIO
CH 3

I
CH 4

tent of the audio, but for most music this
is just fme. The actual value poked into
AUDC2/4 is not important, except you
want the volume component to be 0, so you
won't hear these channels play on the au
dio line or TV: A 0 works great. You con
trol volume by poking the volume level
(0-15) into PORTA. Remember that the
value to POKE into 54016 is the left volume
+ I6*center value. The channels which
come out the normal audio line do use the
AUDC registers and can be used with
noises for percussion sounds or special ef
fects. You cannot use the BASIC SOUND
statement because it resets the special
values POKEd into AUDCTL. Build your
POPS, connect it and try this simple
program:

DATA

I
CLOCK IN/OUT--->SERIN

I
DATA IN----->-------

STEREO

DATA
I
v v AUDIO

SEROUT(----->CLOCK
I
v
----->----DATA

RIGHT

LEFT
OUT

OUT

CHANNEL MODE

CH 3 CH l--->---AUDIO RIGHT

I
CH 4 CH 2

I DATA DATA I
v I v

AUDIO CENTER I I v I AUDIO LEFT
CLOCK IN/OUT--->SERIN SEROUT(------CLOCK OUT

I
I
v

DATA IN----->------- ----->----DATA OUT

POKEY Multi-mode.

1 REM PLAYS 2 POKEY CHANNELS IN STER
EO THROUGH THE AUDIO CHANNEL (OR TV)

AND SERIAL PORT PIN 2.
2 P=PEEK(54018):POKE 54018,P-4:POKE
54016,255:POKE 54018,P:REM INIT POR
TA
5 DELAY=100:POKE 53761,174: POKE 53
767,0:REM INITIALIZE AUDC1&4
10 POKE 53768,O:POKE 53775,67:REM I
NITIALIZE AUDCTL AND SKCTL FOR STER
EO
20 POKE 53760,60:REM PLAY ANOTE ON
RCHANNEL

25 GOSUB DELAY:POKE 53760,O:REM TUR
NOFF
30 POKE 53766,91:PLAY ANOTE ON LC
HANNEL
35 GOSUB DELAY:POKE 53766,0
40 POKE 53760,72:POKE 53766,121:REM

STEREO !
50 GOSUB DELAY:GOSUB DELAY:END
100 FOR S=l TO 300:NEXT S:RETURN

When you POKE SKCTL with 67, you
get Voice 4 from the left channel and 1, 2
and 3 from the right. You can combine
values for 16-bit resolution with half on
right and three-quarters on left. If you fol
low the same steps for two-channel sound,
except you POKE SKCTL with 99 ([Bits
5+6=96]+3), you will get three-channel
sound. Now Voice 2 will play through the
left channel, Voice 4 through the center
channel and Voices I and 3 on the right
channel. You can combine 3 and 4 to good
advantage here. Figure 4 is a block diagram
of POKEY configuration with both two- and
three-channel modes.

Putting it all together
To use the POPS device you need a good

player program. I will make no bones about
it, my programs are only modifications to
56

FIGURE 4:

Enhanced POKEY Player. I chose to modi
fy this program because the player is in
BASIC and machine language; so I could
easily disassemble it and modify it. (Why
reinvent the wheel?) Enhanced POKEY
Player has been around a long time and was
obtainable in the past from the ANTIC
catalog (AP 0147), but has not been listed
lately. You may have to ask for it specially.
The following programs are published with
the author's permission.

After you obtain your Enhanced POKEY
Player, make a duplicate to work from and
put the original away. Never use the origi
nal disk with POPS! You will also need a
separate work disk. Listing 1 is the main
program and consists of a BASIC routine
to load the music ftles and display titles.
Then there is the Player itself, which is
contained in a large string array, PP$, and
some fixed locations in page 6. One sec
tion of the player string is essentially blank
which allows us to insert our different rou-

tines for mono, stereo or trinaural sound
generation (CHI$, CH2 and CH3$).

Listing 2 creates these complex strings.
Type in and save both Listings 1 and 2 on
the separate work disk, and then run List
ing 2 and save as LIST "D:TEMP,"
2000,2300. Load back Listing 1 and
ENTER "D:TEMP." Now resave to your
working POKEY Player disk as "D:PLAY
ER." This new program replaces the origi
nal Player and will list all available music
ftles and flag them as three-channel (*),
two-channel (+) or one-channel. Music
ftles on the original POKEY Player disk
are all labeled *,v, but this new program
requires ftles with extenders 'vIC, ,V2C,
or ,V3C to denote one-, two- or three
channel music ftles. You will need to work
through DOS to change the extenders ac
cording to Table 1. The player is now able
to tell which mode to use and automatical
ly adjust itself according to the ftlename
extenders.

NOVEMBER A.N.A.L.O.13. Computing



rCENTER

----co RIGHT
~SPEAKER

(2

(2

200~f

+ ~LEFT
\ -----;=0 SPEAKER

C2 ~

+9volts

+9volts

+9volts

the power supply is Radio Shack's
# 273-1455.

:----0
+S

\
l~'

1.6M

390K

+ (4

2000~f

16v

Rl

=

<...----~
I.6M , 1:----0

+s

(3

5K:>~---l

RS

820K

390K

AUDI0o- ---.

IN

JOYSTICKS

R2 j.-JWW\J\r-i-<'"

.l~f R3

~
200K

SERIA l I--::;R4::.L-..J\/\M'Vv.......;........
PIN1~ CI

.l~f R3

SERIA l -------------J I--::;R4::.L-.J\2",oAofIJ
K
'Vv"""';"""

PIN 2 ~L......-_Cl Jr'~_~
<.------

S

9 ----.,......-~-_T---..+

dered specially through Radio Shack. Ask
them to special order SK4066B. Finally,

SLP3 . V3C
MUSETTE .V2C
GMARCH .V2C
BLUES . V2C
SLP6 . V2C
PRESTO .V2C
GSONA . V2C
CANTATA .V3C
THEMEVAR.V3C
SCAR .V3C
HUMORESK.V3C
COURANTE.V2C
TPIF .V2C
SLPI .V3C
LONDON .V3C
FEAST .V3C

MINUET2 .V2C
GLAD . V2C
BCS . V2C
SLPS . V3C
PRELUDE .V3C
GOTHOS .V3C
CALLIOPE.V2C
SWISS . V3C
SABRE .V2C
HOLST .VIC
CLAY .V3C
TPIBF .V2C
SCIPIO .V3C
LITTLE .V3C
DMARCH .V2C
WSOLDIER.V2C

FSONA .V2C
ANVIL . VIC
SLP4 . V3C
NELLIE .VIC
GOLDVI .V2C
BMINOR .V3C
SOLDIER .V3C
RIGAUDON.V3C
HBDAY .V2C
CAPRICIO.V3C
TPIAM .V2C
SCHERZAD.V3C
ITALIAN .V2C
CSONATA .V3C
WILLTELL.V3C
SLP2 . V3C
MINUETI .VIC

TABLE 1: Extender List

Notes abolit Enhanced
POKEY Player

Writing music with the POKEY Player
editor requires a couple of notes. POKEY
Player has only three voices, naturally la
beled 1, 2 and 3. POKEY Player Voise 1
uses POKEY chip's Voice 1 and will be the
right channel in POPS. POKEY Player
Voice 2 similarly is POKEY Voice 2 and
is the left channel in three-channel mode,
but in stereo it will come out the right chan
nel along with Voice 1. POKEY Player
Voice 3 is POKEY Voices 3 and 4 com
bined in 16-bit fashion and comes out from
the center channel in three-channel mode
and the left side in stereo.

Only voices from the right channel use
the distortion abilities of POKEY, so you
can always use Voice 1 for percussion or
special effects, but in stereo you can also
use Voice 2. Voice 3 (3/4) usually carries
the melody line because it has the widest
range of note values and can also be used
for really deep bass lines. Not all features
of the POKEY Player editor can be used
by POPS, and for some reason some three
voice music will not play properly on
POPS' three-channel mode, but will do
okay in stereo. Some two-voice programs
can only be played in mono. The list of fIles
on Enhanced POKEY Player are in Table
1 with their proper extenders.

Parts list
The 13-pin Atari Serial Plug (#83-360)

is available from MCM Electronics, 2582
East River Road, Moraine, Ohio 45439;
(800) 858-4330. The resistors, volume con
trols, capacitors, joystick cables and am
plifIers are available at Radio Shack. Not
all resistor values are available at Radio
Shack, however. You may need to combine
resistors such as 220K plus 470K to ap
proximate 800K. Actual values are com
pletely non-critical. The RCA phono jacks,
speakers and cables are also available at
Radio Shack. The 4066 ICs may be or-
NOVEMBER A.N.A.L.O.G. Computing 57



Listing 1:
BASIC
51 10 REM POKEY PLAVER BV CRAIG CHAMBERLA

IN. MODIFIED BV LEE BRILLIANT M.D.
MF 30 G05UB 1000
FH 100 IF PEEK(764) {}255 THEN POKE 764,25

5:POKE 1536,0
KL 110 IF PEEK(1536)=1 THEN 100
IV 120 U=U5RCPP+156):G05UB 10~0:GOTO 100
N5 1000 G05UB 2000:POKE 675,0:POKE 676,1:

POKE 677,0:POKE 678,8:POKE 67~,0:POKE

65,0
HQ 1010 RESTORE 2300:FOR N=1606 TO 1648:R

EAD D:POKE N,D:NEHT N:REM NON-RELOCATB
LE CODE

CW 1020 POKE 752,1:TRAP 1~00:? "I\i----MULT
I CHANNEL MUSIC PLAVER----":OPEN Ul,6,
O,"D:*.V?C":K=O

TF 1030 INPUT Ul, R$: IF R$ (2, 2) ()" " THEN
1070

V5 1040 ? R$ (3, 10) i : IF R$ (12, 12) ="3''' THEN
? "*";

KH 1050 IF R$(12,12)="2" THEN? "+"i
M5 1060 ? CHR$(127)i:K=K+l:GOTO 1030
OJ 1070 CLOSE Ul:POKE 703,4:POKE 752,0:?

"~lIj

KG 1080 IF K=8 THEN ? "NO MUSIC FILES ON
THIS DI5K":FOR DE=l TO 500:NEHT DE

TF 10~0 TRAP 1~50:? "I\iVOUR REQUE5T"i:INPU
T R$:IF R$="" THEN POKE 703,24:GOTO 10
20

CU 1100 F$="D:": F$ (3) =R$: F$ (LEN (F$) +1) ="*
.V?C":OPEN Ul,6t.0,F$

PF 1110 INPUT Ul,R~:IF R$(12,12)="1" THEN
PP$(181,254)=CH1$

VD 1120 IF R$ (12,12) ="2" THEN pp$ (181,254
5B

BITS 'N'
PIECES:

POPS
)=CH2$

AR 1130 IF R$ (12,12) ="3" THEN pp$ (181,254
)=CH3$

55 1140 CLOSE Ul:0PEN Ul,4,0,F$:A=BUFF
FG 1150 FOR K=O TO 2:GET Ul,LO:GET Ul,HI:

L=LO+256*HI
WV 1160 U=U5R(CIO,A,L):IF U}127 THEN POKE

1~5,U:CL05E Ul:GOTO 1~10

TG 1170 U=U5R(PP+~4,K,A):A=A+L:NEHTK
BJ 1180 FOR N=1601 TO 1604:POKE N,O:NEHT

N:? 1I~lIi

IZ 11~0 TRAP 1200:INPUT Ul,R$:? :? R$i:GO
TO 11~0

WT 1200 IF PEEK(1~5){}136 THEN 1~50

TK 1210 TRAP 1~50:CL05E Ul
CZ 1220 U=U5R(PP,PP+180,PP+267,PP+473,PP+

81~,PP+625):POKE 1536,1
AM 1230 RETURN
CJ 1~OO IF PEEK (1~5) =170 THEN ? "I DON I T

KNOW THAT 50NG.":CL05E Ul:GOTO 10~0

QW 1~50 ? "I\iERROR "iPEEK(1~5):A=U5R(PP+15

6)
NN 1~~~ CLR :END
UP 2000 DIM PP$(8~2) CH1$(74),CH2$(74),CH

3$(74),CIO$(34),R~(40),F$(16),BUFF$(FR
E (0) -500)

N5 2005 PP=ADRCPP$):BUFF=ADR(BUFF$):CIO=A
DR(CIO$)

05 2240 PP$(876,876)=CHR$(155):RETURN
MI 2300 DATA 12,24,36,48,244,232,220,208,

1,2,3,4,5,6,7,0,255,254,253,252,251,25
0,24~,108,2,6,108,4,6,108,6,6,160,0

GE 2310 DATA 177,203,230,203,208,2,230,20
4,~6

NOVEMBER A.N.A.L.O.13. Computing



Listing 2:
BASIC

BR 90 OPEN Ul,4,O,"K:"
PZ 100 ? "1\i":LINE=2000:FOR N=l TO ~48:REA

D D
DU 110 IF D<O THEN GOSUB 400:? "1\i":LINE=L

INE+I0:POSITION 2,3:? LINEi" PP$("i (AB
5 (D» i II) =" i CHR$ (34) i : READ D

IL 120 ? CHR$(D)i:NEXT N:GOSUB 400
UT 130 RESTORE ~oo:? CHR$(125):POSITION 2

,3:? "2200 CH1$="iCHR$(34)i:FOR N=l TO
74:READ D:? CHR$(D)i:NEXT N:GOSUB 400

ID 140 ? CHR$ (125) : POSITION 2,3:? "2210 C
H2$="iCHR$(34)i:FOR N=l TO 75:READ D:?

CHR$(D)i:NEXT N:GOSUB 400
LC 150 ? CHR$ (125) : POSITION 2,3:? "2220 C

H3$="iCHR$(34)i:FOR N=l TO 75:READ D:?
CHR$(D)i:NEXT N:GOSUB 400

FG 160 ? CHR$ (125) : POSITION 2,3:? "2230 C
IO$="iCHR$(34)i:FOR N=l TO 39:READ D:?

CHR$(D)i:NEXT N:GOSUB 400
ZZ 170 ? "I\iPRESS lil;~"'I;I:1 TO:":? "LIST I D: T

EHP',2000,2300"
WO 180 GET Ul,K:IF K<>155 THEN 180
EX 1~0 LIST "D:TEHP",2000,2300:END
NV 400 ? :? :? "CONT":POSITION 2,O:POKE 8

42,13:STOP
SH 410 POKE 842,12:RETURN
~R 500 DATA -1,104,164,141,3,6,104,141,2,

6,104,141,5,6,104,141,4,6,104,141,7,6,
104,141,6,6,104

KS 510 DATA 141,14,6,104,141,10,6,104,141
,15,6,104,141,11,6,16~,O,141,O,6,141,l

,6,141,54,6
XV 520 DATA 16~,144,162,5,27,157,54,6,74,

202,208,24~,16~,12,141,60,6,16~,40,141

,6~,6,173,36,2,141,8

AJ 530 DATA 6,173,37,2,141,~,6,16~,7,162,

6,160,-~1,~3,76,~2,228,104,104,104,170

,194,27,157,21,6,27,157,27,27
CN 540 DATA 6,104,27,157,18,6,27,157,24,6

,16"O,27,157,3~,6,27,157,42,6,27,157,

51,6,168,16~,1,27,157,33,6,16~

SK 550 DATA 36,224,2,208,3,16~,48,200,27,

157,36,6,152,27,157,27,30,6,169,166,27
,157,45,6,16~,7,27,157,48,6,~6

VX 560 DATA 104,16~,7,174,~,6,172,8,6,32,

~2,228,169,O,162,7,27,157,O,210,234,20

2,16,24~,~6,-181,0

JH 570 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0

JJ 580 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,9

IF 5~0 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,9,0,0,162,0,32,96,6,232

HO 699 DATA 224,3,208,248,108,8,6,18~,18,

6,-271,133,203,18~,21,6,133,204,222,33

,6,249,2~,27,18~,42,6,208

SF 610 DATA 18,18~,33,6,221,48,6,176,19,1

8~,65,6,41,15,240,3,222,65,6,~6,32,,~,

6,32,192,6
10 620 DATA 133,207,41,248,201,128,208,18

,165,297,41,7,168,185,70,6,24,27,125,3
6,6,27,157,36,6,24,144,227

LP 630 DATA 165,207,41,7,240,218,168,136,
185,54,6,27,157,33,6,188,27,30,6,185,1
0,6,133,205,185,-362,14,6,133

PK 640 DATA 206,165,207,74,74,74,41,15,20
8,19,27,157,65,6,16~,1,27,157,42,6,208

,78,168,136,185,78,6,24
DC 659 DATA 27,125,36,6,27,157,36,6,168,1

8~,45,6,27,157,65,6,177,205,24,27,125,
3~,6,27,157,61,6,224,2,208,13

00 660 DATA 152,24,195,~7,168,177,205,141

,64,6,24,144,26,18~,45,6,41,240,201,16

O,208,17,18~,36,6,201

KG 670 DATA 50,144,10,18~,45,6,41,15,~,-4

52,1~2,27,157,65,6,165,207,41,128,27,1

57,42,6,165,203,27,157,18,6,165
LB 680 DATA 204,27,157,21,6,~6,160,O,165,

207,41,120,208,21,18~,51,6,240,5,222,5

1,6,240,10,18~,24,6
GD 6'0 DATA 133,203,18~,27,27,6,133,204,~

6,201,8,208,13,32,102,6,27,157,45,6,32
,102,6,27,157,48,6,96,201

GD 700 DATA 16,208,17,32,102,6,27,157,51,
6,165,203,27,157,24,6,165,204,27,157,2
7,27,6,~6,201,24,208,-544,7,32,102

\

NOVEMBER A.N.A.L.C.13. Computing

HX 710 DATA 6,27,157,3~,6,~6,201,32,208,2

2,160,6,177,203,153,54,6,136,16,248,16
~,7,24,101,203,133,203

DD 720 DATA 144,2,230,204,~6,201,40,208,7

,32,102,6,141,1,6,~6,201,48,208,7,32,1

02,6,141,6~,6

HH 730 DATA 96,201,56,208,7,32,102,6,27,1
57,27,30,6,96,201,64,208,7,32,102,6,27
,157,36,6,96,140,0,6

AQ 740 DATA ~6,209,223,237,251,9,27,30,44

,65,-634,7~,100,121,149,165,18~,217,24

5,17,59,87,129,27,157,199,241,41,75
JF 750 DATA 121,177,233,33,117,173,1,57,1

41,225,81,165,21,133,245,101,241,97,~,

149,61,229,141,81,21,245
NC 760 DATA 213,20~,205,1,27,253,4~,101,2

0~,61,165,42,234,170,162,154,2,250,~8,

202,162,122,75,84,212,84,68
IQ 770 DATA 52,4,244,1~6,148,68,244,150,1

68,168,168,136,104,8,232,136,40,136,23
2,72,0,-724,0,0,0,1,1

XF 780 DATA 1,1,1,1,1,1,1,1,1,1,2,2,2,2,2
,2,2,3,3,3,3,3,4,4,4,5

RL 7~0 DATA 5,5,5,6,6,7,7,7,8,8,~,10,10,1

1,11,12,13,14,14,15,16,17,1~,1~,21,22

JR 800 DATA 23,25,26,27,28,27,2~,27,31,33

,35,38,39,42,44,47,50,53,56,5~,63,67,7

1,76,7~,84,8~,~5,100

UC 810 DATA 106,112,11~,27,126,134,142,15

2,-814,27,15~,16~,17~,1~0,201,213,1,3,

6,~,12,15,18,22,23,25,26,27,28,27,2~

SD 820 DATA 27,31,33,35,37,40,42,45,47,50
,53,57,60,64,68,72,76,81,85,91,96,102,
108,114,121,128,136

OC 830 DATA 144,153,162,173,182,193,204,2
17,230,243,27,255,119,116,122,131,137,
146,27,0,167,173,185,1~7,206,221,233

BW 840 DATA 245,87,~1,~7,192,108,115,121,

130
FE ~OO DATA 234,234,234,234,234,234,173,0

,6,240,73,216,169,3,141,50,2,141,15,21
0,173,61,6,141,0

WH ~10 DATA 210,173,65,6,141,1,210,173,62
,6,141,2,210,173,66,6,141,3,210,173,63
,6,141,4,210

AC ~20 DATA 173,67,6,141,7,210,173,64,6,1
41,6,210,173,68,6,141,5,210,173,6~,6,1

41,8,210
VK 930 DATA 234,234,234,234,234,234,234,2

34,234,234,234,234,234,234,173,0,6,240
,65,216,16~,67,141,15,210

NG ~40 DATA 162,6,160,3,185,61,6,27,157,0
,210,202,202,136,16,245,173,65,6,141,1
,210,173,66,6,141

HV ~50 DATA 3,210,173,67,6,41,15,141,0,21
1,16~,0,141,5,210,141,7,210,173,6~,6,1

41,8,210
VB ~60 DATA 234,234,234,234,234,234,173,0

,6,240,73,216,16~,~~,141,15,210,162,6,

160,3,185,61,6,27,157
GS ~70 DATA 0,210,202,202,136,16,245,173,

65,6,141,1,210,173,66,6,41,15,133,0,17
3,67,6,10,10

PA ~80 DATA 10,10,5,0,141,0,211,16~,0,141

,3,210,141,5,210,141,7,210,173,6~,6,14

1,8,210
HX ~90 DATA 104,162,16,16~,7,27,157,66,3,

104,27,157,6~,3,194,27,157,68,3,104,27

,157,73,3,104,27,157,72
PK 1000 DATA 3,32,86,228,132,212,16~,O,13

3,213,~6

Listing 3:
BASIC
OH 5 GOSUB 300
GJ 30 FOR 5=0 TO 81:READ A,B:POKE 54016,A

:POKE 53761,B:NEXT 5
ZP 9~ END
RV 100 DATA 15,160,15,160,15,160,31,160,4

7,160,63,160,7~,160,95/160,111,160,127

,160,142,160,157,160,172,160,187,160
HJ 110 DATA 202,160,217,160,232,160,247,1

60,246,160,245,160,244,160,243,160,242
,160,241,160,240,161,224,162,208,163

TJ 120 DATA 1~2,164,176,165,160,166,144,1

67,128,168,112,16~,96,170,80,171,64,17

59



(407) 857-6014

Turbobase:
80 COl. SCREEN!-NEW PRICES!

Winner ANTIC
awards '88

'IBM power without the price ... 1really can't think of any feature associated with running
a business that has been left out-except for the huge prices charged for comparable
software on MS-DOS computers.' -ANTIC, Dec. 'B7
' ... the most time consuming review I have ever done, due to the number of features ..
Turbobase finally gives what B-bit owners have been clamoring for for years; true, power
ful business software ... set up a fully capable business system for less than $1 ,000 ...
customer support is superb ... Practicality-excellent. Documentation-excellent.'

-COMPUTER SHOPPER, Aug. 'B7
' ... one of the most powerful and versatile database programs available ... '

-COMPUTER SHOPPER, Aug. 'BS

COMPARE TO IBM CLONES:
• Capabilily • Complele Documentation • Speed amonQ thousands o\records
• Capacity • $20-$50 Customizations • Ease of learmng (per fealure)
• Remote Terminals • One package/all modules • Number of English error messages

: ~~h~i~tt~~i~~~Rgr' : ~~~~r~~: ~I;?:~~: :~~~~~~~~SE:~;\i~,9t~f~~1~~~~MS DOS,.
• Tiny Footprint • True Integration • Faster Back·up 10 inexpensive floppy
• Not Copy Protected • Free Application Set·up • Complele Invoice/Payments Error Checking
TUlbObase lakes S20,OOO video siore sale from tBM ... 5.\1.. Plainfield. NJ .

Turbobase takes S20,OOO IBM sale for waterbed SIOIe ...A.J~ Phoenix, AZ
Turbobase replaces S37.000 air condilioning applicClrion A.B.. Arron, NH

Until you have Turbobase you don't have a databasel Acorn Users Group

Micromiser is looking for resellers. It you have 2 DO drives, or an MIO ,. ,or hard disk, You qual
Ify tor Iree training, deaier prices, marketing/direct mail help, and myriad customer references
who express extreme satisfaction with Turbobase. Compare the Turbobase "/MIO" configu
ration at $B30 (all hardware & software except printer) with the IBM AT": Immediate RAM
access to 6,000 invoices, or 15,000 Inventory Items, or 50,000 G/L records, or 20,000 payroll
records, or any combination of above! With a hard drive (add only $100) the figures go up!
4,000 addresses too! An unbeatable selling point: replace any component for the cost of a
typical IBM"/Apple" repair billl The smali business market IS yoursl Just ask, "Is IBM"
compatibility worth $20,000 to you?"
TlJRBOBASi": the ai/ i;;o;;e database/buSinesssyStem::3databases"+ ';ord p~ocessor
includes file manager/spread sheeVrelational features/accounting/report generator, G/L,
PIS, AR, Ap, open invoicing/statements, inventory, payroll, mailing, utilities,.all truly intewaled
in one program/manual so slmphfled that we can present complete detal/ed Instructions In
only 700 + pages of superb documentation (third re-write) includes separate Quick Course
and Cookbook + 8 disk sides. Runs on any 48K 8-bit Atan, only 1 drive req. Call today!

Turbobase 5159-Turbo Jr 599 STowners IAsk aboulUltrabase ST IBIW mon-
For XEP-80 col. screen: iror onlyl all Turbobase features + much more
Turbobase 80 5179-Jr 80 5t t 9 w/80 + Ultimate SIMPLICITY and speed
col word processor add 52480 col word
processor alone S49

MICROMISER SOFTWARE, 1635·A HOLDEN AVE., ORLANDO, FL 32809

CIRCLE #105 ON READER SERVICE CARD.

2,48,173,32,174,16,175,0,175,0,175
~Z 130 D~T~ 0,175,0,175,16,175,32,174,48,

173,64,172,80,171,~6,170,112,16~,128,1

68,144,167,160,166,176,165,1~2,164

RP 140 D~T~ 208,163,224,162,240,161,241,1
60,242,160,243,160,244,160,245,160,246
,160,247,160,232,160,217,160,202,160

TN 150 D~T~ 187,160,172,160,157,160,142,1
60,127,160,111,160,~5,160,7~,160,63,16

0,47,160,31,160,15,169,15,160,15,160
FR 300 P=PEEK(54018):POKE 54018,P-4:POKE

54916,255:POKE 54018,P
KD 310 SOUND O,200,10,O:SOUND 1,200,10,0:

SOUND 3,200,10,0
GZ 320 POKE 53775,~~:RETURN

Listing 4:
BASIC

OM 5 GOSUB 300
FJ 10 PITCH=INT(RND(0)*190)+15:CH=INT(RND

(0)*3) +1
FE 20 ON CH GOSUB 100,129,140:FOR DE=l TO

50:NEHT DE:POKE 54016,O:POKE 53761,0
SM 30 FOR DE=l TO 50:NEHT DE:GOTO 10
JL 100 POKE 53760,PITCH:POKE 53761,174:RE

TURN
YG 120 POKE 53766,PITCH:POKE 54016,240:RE

TURN
OZ 140 POKE 53762,PITCH:POKE 54016,15:RET

URN
FW 300 P=PEEK(54018):POKE 54018,P-4:POKE

54016,255:POKE 54018,P:REM JOYSTICKS F
OR OUTPUT

UJ 310 POKE 53775,~~:POKE 53768,O:RETURN

No Fri II s Software 800 E.23rd St. Kearney, Ne. 68847 (308) 234-6250 ~1~~t.

THE CONVERTER
It's Herel Only $19.95(+$2 shipping)

a-bit

Now you can convert your PrintShop
icons to A.wardwsre, Printpower or

Newsroom format. The Converter also
converts Awardware seals to graphics or
vice versa or to Printpower or Newsroom

form. It also has a graphics editor to
allow touchup of the icons or to make

your own icons from scratch.

Also available a1 $19.95(+ shipping)

P.S. Users Utility Disk
Almost a dozen features! A icon viewer

for your PrintShop icons, C¥1 icon
cataloger, border cataloger, font

cataloger, a transfer program for moving
icons from disk to disk, a multi-size label

maker(includes sizes for video
tapes-inside & spine), a bookmark

maker, envelope cachet maker, coupon
maker & more. Currently supports

Ep50n & fully Ep50n compatible printers,
send SASE for details & all printers

supported). $2 shipping covers both
prograns. PrinlShop is a 1rademark of

Brodert'Und Sot1ware, Awarct.¥a'e & Printpo_r
1rademarks of Hi-Tech Expressions, Newsroom is a

trademark of Springboard Sot1ware, nol affiliated
wilh NO FRILLS SOFTWARE.

For 8bit PrintShop and
Printmaster (ST)

Nearly 6000 icons, fonts & borders from
$2 to $23 a disk(group specials available)

FOn1s & Borders 1-4 now $14.95.
ChriB1ian SCenes & Symbols 1 or 2 $19.95 each.

DavkaGraphics 1,2,3(Hebrew icone/fonts) $23 each.
PS GRAPHICS 1 to 7 now $9.95 each.

JACS PS GraphiCS 110 4 $9.95 each (lhe ~LY
aulhorized source for the JACS dsks-).

Budget Graphics 11016 now $4.95 each
Budgel Graphics 17-24 $2 each

NERDS ~P ask sel $15 or $9 each
NERDS Biology set $15 or $9 each

NERDS Chem(periodc table) ask $g
COAT OF ARMS ConB1. Sal now $13

NEWI Beagle Br06. MINIPIX dsks 1,2,3 (200 ieons
per ask) $19.95 each. $49/95 for all 3.

NEWI Fonls & Borders 5 and 6 $14.95 each (116 ready
late November~ Each fonl disk has more lh~ 15
tonts ..,d many bordars(1I3 has fe_s1 borders).

Add $1.50 shipping for first PS/PM dsk ordered, add
$.50 each addtional dsk to max of $5.(US shipping~

Add $1 addlional to C..,adalMexico, $4 olher
counlries. Prices on PslPm disks good 1hru 1966.

Add 4% VISAIMC. checks-2 _k clearance/ Prices
above tor 6-til asks. ST disks add $1 per lille. All
asks nol available for ST. Call or write (SASE $.45

poB1age) for details/printouts. Dlacounls available for
I~ge orders (call/write), ST Icon asks available in

package groups (call/write~

Printmas1er Is a lrademark ot Unison World not
affiliated wilh NO FRILLS SOFTWARE.

ST icon dsks (indvidual asks only, nol package
disks) also contain DEGAS formats of icons.

We also carry a variety of
other ATARI hard/software.

Send SASE for list (only 1 SASE
needed for all areas here, please

specify areas of interest-PS, pgms,etc).
--------6bit-------

ACE OF ACES- $9.25 BRIDGE 4.0-$14.99

BRIDGE 5.0-$17.99 COMPJBRIDGE-$1499

L1NKWORD(1taLFrench.German.~rlSh)S14.99 eo.
Strip Poker-$17.99 Df\T" DISKS 1.2.3 Stl99 eo

PEGGAMON-$9.25 GUDERIAN- $17 .99

GULF STRlKE-$17.99 SPITFIRE '40-S20.99

BLAZING PADDLES-$20.99 TYCOON-Sl1.99

Video Vegas or Rainy Day. Games- S17 .9gea.
221 Baker St-St7.99 221 Boker cose dlSk-St099

Alt.RealitY(Dunoeon~S25.75 IIn.Reolly(cny~S1875
Bt9ot"RK-SI9.99 VIOCO TITLE ~P-SI9 99

TOM"HIIWK-St9.99 GES9ot"STER 2IJOO.S25 79
EPYX 500XJ JOYSltek-S11.97 Spy vs Spy 3·S11.97

A"lnlPower-S9.99 "slro Q-over-S6.49
sesame SI. A"nl Kil-S9.49 celeb Cookbook-S2D.99

Gaunllel-S20.99 "ItO BO"RD 1 MEG·S254 99
to.EWSROOM-S29.99 TR"ILBL"ZER·SI799

-------ST liII8S-------
ArtxJ!I IoAzard-20.99 221 Baker St. S25.75

DEGIIS ELiTE-S38.99 M"RK IoIILU"MS 'C'-SlI9 99
\oIORD PERFECT-SI95 MONITOR M"STER-S4195
H.JNT For Red Oclooor-S3195 OJDS·S2t 99

9JIIOOG-S24.99 IB 40 Trock drlve·SIB9 99
SHIPPING: add S2 first title ordered. add

$1 each added tille. Hardwore-ca!l for

shipping. Add 4% VISA/MC. Call for details

on credit card guarent ee ordering. A"lCes
of outside sof! wore subject 10 chonos

60

CIRCLE #106 ON READER SERVICE CARD.

NOVEMBER A.N.A.L.O.l3. Computing



Attention
Programmers!

ANALOG Computing is interested in programs, articles, and software review sub
missions dealing with the Atari nome computers. If you feel that you can write as well
as you can program, then submit those articles and reviews that have been floating
around in your head, awaiting publication. This is your opportunity to share your knowl
edge with the growing family of Atari computer owners.

All submissions for publication, both program listings and text, should be provided
in printed and magnetic form. Typed or printed copy of text is mandatory and should
be in upper and lower case with double spacing. By submitting articles to ANALOG
Computing, authors acknowledge that such materials, upon acceptance for publica
tion, become the exclusive property of ANALOG Computing. If not accepted for pub
lication, the articles and/or programs will remain the property of the author. If submissions
are to be returned, please supply a self-addressed, stamped envelope. All submissions
of any kind must be accompanied by the author's full address and telephone number.

Send your programs and articles to:
ANALOG Computing
P.O. Box 1413-M.O.

Manchester, CT 06040-1413



3 in 1 Football
Lance Halfner Games
P.O. Box 100594
Nashville, TN 37210
(615) 242·2617
48K disk
$39.95

reviewed bv Dave Arlington

What with the player's strike early in the
1987 season, I once again began my long
quest last fall to fmd a decent football game
for my Atari computer. I was not looking
for an arcade-type football game like
Touchdown Football or Gamestar Football.
I was looking for a strategic football game
that would allow me to coach real NFL
football teams and their players like
Microleague Baseball lets me manage real
baseball players. Unfortunately, up until
late last year, there were no such football
games for the Atari.

There were some attempts before this
year. Gridiron Glory, late of APX and now
from Main ST. Software, was the first to
allow you to use real football teams. I'm
not sure exactly what statistics they used,
but the game was very unrealistic as the
quarters were only eight minutes long and
the computer coach called plays random
ly. Next was Football Strategy from Ava
lon Hill. That game featured 16 historical
NFL teams, mostly Super Bowl par
ticipants. Again the team values used were
hard to judge and did not feature individu
al players. They also didn't seem to have
too much effect on game play, as it was
usually easy for me to beat the computer,
with me taking teams like the (9-7) N.Y. Gi
ants and giving the computer teams like
the (14-0) Miami Dolphins.

The most recent attempt is Computer
Quarterback from SSI. It is sold as a strate
gy football game using generic football
teams. In this respect, it is the best foot-

62

ball game available for Atari, since on
offense you can choose from 36 different
types of plays and 20+ different types of
defenses. The computer coach can also
learn to play better against you if you call
the same types of plays over and over again.
Computer Quarterback also includes a
draft feature where general managers are
given a certain amount of money to spend
on a team to improve certain player posi
tions. However, neither option uses real
NFL teams or players. SSI began to make
available seasons disks with the NFL teams

for an entire year. Currently 1984, 1985 and
1986 seasons disks are available. Again,
however, teams are rated abstractly by po
sition and individual players are not
available.

Which brings us to the star of this
review: 3 in 1 Football from Lance Haff
ner Games. This statistical-based football
game allows you to play with college, NFL,
USFL and WFL football teams with the
rules for college; NFL and USFL being
available to play under. Teams are rated in
many offensive and defensive categories in-

NOVEMBER A.N.A.L.O.13. Computing



-

\
\

\

eluding the types of plays usually called by
the teams. Individual players are rated at
the following positions: quarterback, run
ning back (both running and receiving),
receivers, kickers, punters and return
specialists. Everyone else is rated on a team
basis.

Let's talk about the bad parts of the game
first to get them out of the way. The game
is written in BASIC, as it was translated
from many other computers. Therefore, it
can be very slow at times when loading the
game or the data for the teams. The actual

NOVEMBER A.N.A.L.C.G. Computing

game itself is very fast. There are absolute
ly no graphics in this game, so anyone ex
pecting a fancy display should be
forewarned. It is simple Graphics 0 text,
white on a black background. I can under
stand this as the graphics were foresaken
to use as much memory as possible for the
many options this game has.

You may play against a friend, against
the computer or watch the computer play
itself. On defense, you may choose from
six different formations, each having differ
ent types of effectiveness on certain types

of plays. On offense, you may choose from
14 different offensive plays, or get a quickie
scouting report. As I mentioned above, the
actual game play itself is fast, with an aver
age game against the computer lasting
maybe 15 to 20 minutes. When the com
puter takes on itself, games last about five
minutes. This fast game is nice, as it actu
ally makes the possibility of replaying an
entire season a reality. This would be im
possible with any of the other longer foot
ball games mentioned above.

The game uses very realistic statistics for

63



--------"-=;;""-'---

the players. However, since the game fea
tures no injuries, the program picks the ball
carrier or passer on each play for you. The
player is chosen based on the percentage
of times he actually ran or threw or caught
the ball. This is good in one respect, since
the statistics generated by this game are in
credibly accurate. The bad point is when
it is third and long, all of a sudden, Don
Strock is throwing the ball instead of Dan
Marino. Or you are faced with a third and
one and you do not know whom the com
puter will choose to run the ball on the play.

There are other things that take getting
used to as well. First, all yardage is meas
ured in tenths during the game. For exam
ple, Payton carries on the inside run for 3.7
yards, making it three and 13.3 to go. This
bothered me until I realized that this was
probably more realistic than the other foot
ball games, since rarely does a player in
real life gain exactly three yards or exactly
five yards. This sets up situations in 3 in
I Football where you really do have fourth
and inches to go. And besides, when cal
culating stats at the end of the game, all
yardage is rounded off as in real life to the

64

nearest yard.
Due to an oversight in programming

(probably lost in a conversion somewhere)
time on the clock does not always show all
the necessary zeroes. For example, when
the clock should say 2:08 left in the first
half, it will say 2: 8. This can be confusing
sometimes as you might go from 2:43 to
2:5 on a play, and it looks like the clock
went backwards. Another programming
bug crops up when displaying accumulat
ed seasons' statistics. After looking at the
first team, the program will not allow you
to look at another team without first quit
ting the stat-viewing program and reload
ing it again.

Also, printing statistics to your printer
results in a tremendous waste of paper, as
each screen is dumped in total to your
printer even if it might contain 20 blank
lines. Since there are about five screens of
information, the results of one game can
cross several pages.

After all this, you're probably saying that
this game has some real problems. Au con
traire, man ami. Sure, it has what I con
sider small problems, but most of these are

due in part to being translated from so
many computers and not taking advantage
of all the Atari's features. I feel the game's
pluses far outweigh its minuses. In fact, the
game has so many great features, I'm afraid
I might miss some!

Let's see, I already mentioned how ac
curate the statistics were and how fast the
game plays. Let's get back to the accuracy
of the game first. Players really do perform
as they do in real life. Quarterbacks will
pick out alternate receivers or scramble for
first downs, so your long pass attempt
might only result in a two- or three-yard
gain or loss. When playing against the com
puter, teams playas they do in real life. You
can expect the Rams to keep it on the
ground with their boring philosophy, while
Miami will be sure to air it out quite a bit.
Playing Tampa Bay against Chicago is
usually the mismatch it is in real life.

The computer coach is good. It will run
a lot more if leading in the last quarter, and
throw more if behind. The game features
a two-minute offense in the NFL version,
and you can work the clock by throwing
sideline passes, calling time-outs and run-

NOVEMBER A.N.A.L.O.G. Computing



ning a "hurry up" offense. Games can be
played in either team's stadium or at a neu
tral site as is done for the Super Bowl.

The game keeps a complete record of all
game statistics, and they may be shown on
the screen or on your printer at the end of
the game. The game also includes a statis
tics compiler that will keep track of a
team's record and the accumulated statis
tics for all its games. So not only does the
game play fast enough to complete an en
tire season, but at the end you will have
complete statistics for every team. All this
is included at no extra cost.

I have saved the best for last. How many
teams do you get with the game? 50? 100?
Try almost 600! That's right, almost 600
completely rated and accurate teams with
all the player types and team ratings I've
mentioned above. You get all 28 NFL
teams from 1986, 180 college football teams
from 1986 and 12 WFL teams from 1974.
(Normally the USFL had been included,
but since the USFL did not play in 1986,
the WFL teams were included instead.
Don't ask me why.) You also get 174 of the
best college football teams of all time, in-

NOVEMBER A.N.A.L.O.C3. Comp~ting

cluding the 1967 USC team with 0.1.
Simpson.

And last but not least, you get 96 NFL
teams from past seasons. Or do you? Here
was where I got a big surprise. I just hap
pened to be poking around on the disk with
the old-timer NFL teams when I noticed a
team that was not on the list that was enclosed
with the game. Looking a little closer at the
list that came with the game, I noticed some
team numbers were missing. It turns out that
you actually get not 96, but 189 past NFL pro
football teams on the disk! With all the pro
teams available on this disk, you can replay
every Super Bowl from 1966 to 1982. Tak
ing my hometown Buffalo Bills as an exam
ple of the wide range of teams that are
offered, you can play with the Bills' teams
that are included from 1986, 1981, 1975, 1974,
1973, 1971, the 1-12-1 1968 team with Eddie
Rutkowski, 1966, 1965, 1964 and even the
1948 Buffalo Bills of the AAFC! Imagine, 11
different Buffalo Bills are yours to coach.

If you are a fan of some other team like
the Miami Dolphins, Oakland Raiders or
Dallas Cowboys, you will find an equally
large range of your favorite teams to choose

from. It is really quite interesting to play 1972
Miami with Bob Griese, Larry Csonka and
Jim Kiick against Vince Lombardi's 1966
Green Bay Packers with Bark Starr, Boyd
Dowler and Jim Hornung. All the greats are
here to coach in their prime: Joe Namath,
OJ. Simpson, Jim Brown, Otto Graham,
Walter Payton, Fran Tarkenton and many,
many more.

All in all, you get a total of 583 past and
present, college and pro teams. That alone
makes this game a great value. Add the great
statistical accuracy and your ability to replay
some "dream" football games, and you have
a real winner that is a definite bargain and
a great enjoyment.

Dave Arlington, an Atari devotee since
1983, has recently graduated with anA.S. in
computer science and math. He is rediscover
ing his Atari while looking for "real" em
ployment. He enjoys programming in Action!
and computer simulations of all types. ~

65



,
I or

checksum generated for that line. The lower
window is where program lines are typed and
edited.

When the program's waiting for input, the
cursor will appear at the left margin of the typ
ing window. Type a program line and press
RETURN. The line will be evaluated and
reprinted in the message window, along with
the checksum generated.

If the checksum matches the one in the
magazine, then go on to the next program line.
Otherwise, enter the command E (edit) and
press RETURN. The line you just typed will
appear in the typing window, where you may
edit it. When you think the line has been cor
rected, press RETURN, and it'll be
reevaluated.

Note: You may call up any line previously
typed, with the command E followed by the
number of the line you wish to edit. For ex
ample, E230 will print Line 230 in the typ
ing window. Do not attempt to edit any
program lines numbered 32600 and higher.
These lines fall within the BASIC Editor II
program.

If you're using BASIC abbreviations, the
two versions of the command E work slightly
differently. The command E, without a line
number, will call up the line exactly as you
typed it. When you append the line number,
the line will be printed in its expanded (un
abbreviated) form.

Leaving the Editor
You may leave BASIC Editor II at any time,

by entering either B (BASIC) or Q (quit). If
you type B, the Editor will return you to BAS
IC. Enter LIST to review your work, if you
wish. Note that lines 32600 and above are the
Editor program. Your work will appear be
fore these lines. To return to the Editor, type
GOTO 32600.

Type Q, and you'll be asked if you really
want to quit. If you type 1', the Editor pro
gram will be erased from memory, and you
may then save your work in any manner you
like. If you type N, the Qcommand will be
aborted.

Large listings
If the program you're entering is particu

larly long, you may need to take a break.
When you want to stop, type Q and press
RETURN, then save your work to disk or cas
sette. When you're ready to start again, load
the program you were working on, then load
BASIC Editor II with the ENTER command.
Type GOTO 32600, and you're back in
business.

bV Clavton Walnum

Using the Editor
Take a look at one of the BASIC program

listings in this issue. Notice that each program
line is preceded by a two-letter code. This code
is the checksum for that line; it's not a part
of the program.

To enter a program listing from the maga
zine, load BASIC Editor II with the ENTER
command, and run it. You'll be asked if you
wish to allow abbreviations (see your BASIC
manual). If you do, type Y and press
RETURN. Otherwise, type N.

Note: If you set BASIC Editor II to allow
abbreviations, the program will run slightly
slower.

Your screen will now be divided into two
"windows." The upper window will display
each line after it's processed, as well as the

(8) Save the resultant program with the com
mand LIST "D:EDITORII.LST".

Cassette version:
(1) Type in Listing 1 and verify your work

with Unicheck.
(2) Save the program to cassette with the

command CS'AVE. (Do not rewind the
cassette.)

(3) Clear the computer's memory with the
command NEW

(4) Type in Listing 2 and verify your work
with Unicheck.

(5) Run the program and follow the on
screen prompts. A data file will be written to
your cassette.

(6) Rewind the cassette.
(7) Load Listing I with the command

CLOAD.
(8) Merge the me created by Listing 2 with

the command ENTER "C: ".
(9) On anew cassette, save the resultant pro

gram with the command LIST "C: ':

Disk version:
(1) Type in Listing 1, then verify your work

with Unicheck (see Issue 39).
(2) Save the program to disk with the com

mand SAVE "D:EDITORL1.R4S':
(3) Clear the computer's memory with the

command NEW.
(4) Type in Listing 2, then verify your work

with Unicheck.
(5) Run the program (after saving a back

up copy) and follow all the on-screen
prompts. A data file will be written to your
disk.

(6) Load Listing I with the command
LOAD "EDITORL1.R4S".

(7) Merge the file created by List
ing 2 with the command ENTER
"D:ML.DAT".

Typing in the Editor
To create your copy of BASIC Editor II,

follow the instructions below- exactly.

ASIC Editor II is a utility to help you

Benter BASIC program listings pub
lished in ANALOG Computing. To
simplify the identification of errors,
each program line is evaluated im

mediately after it's typed, eliminating the
need for cumbersome checksum listings.
When you've finished entering a program us
ing BASIC Editor II, you can be certain it
contains no typos.

An option is provided for those who wish
to use standard BASIC abbreviations. Also,
the program retains all Atari editing features.
Finally, for those who prefer to type programs
the conventional way, using the built-in edi
tor, a post-processing mode is available. It al
lows you to check typing after the entire
listing has been entered.

66 NOVEMBER A.N.A.L.O.13. Computing



When you've finished entering a
program using BASIC Editor II, you
can be certain it contains no typos.

The post-processor
Many people may not want to use BASIC

Editor II when entering a program listing,
preferring, instead, the Atari's built-in editor.
For that reason, BASIC Editor II will allow
you to check and edit your programs after
they've been typed.

To take advantage of this option, type any
magazine program in the conventional man
ner, then save a copy to disk or cassette Gust
in case). With your typed-in program still in
memory, load BASIC Editor II with the
ENTER command, then type GOID 32600.

Respond with N to the "abbreviations"
prompt. When the Editor appears on your
screen, enter the command P (post-process),
and the first program line will appear in the
typing window. Press RETURN to enter it into
the Editor.

The line will be processed, and the check
sum, along with the program line, will be
printed in the upper window. If the checksum
matches the one in the magazine, press
RETURN twice, and the next line will be
processed.

If you fmd you must edit a line, enter the
command E, and the line will be moved back
to the typing window for editing.

When the entire listing has been checked,
you'll be asked if you wish to quit. Type Y
and press RETURN. The Editor program will
be removed from memory, and you may then
save the edited program in any marmer you
wish.

Murphy's Law
Anyone who's been associated with comput

ing knows this is the industry Murphy had in
mind. You may fmd that, after typing a pro
gram with BASIC Editor II, it still won't run
properly. There are two likely causes for this.

First, it may be that you're not following the
program's instructions properly. Always read
the article accompanying a program before at
tempting to run it. Failure to do so may present
you with upsetting results.

Finally, though you can trust BASIC Edi
tor II to catch your typos, it can't tell you if
you've skipped some lines entirely. If your
program won't run, make sure you've typed
all of it. Missing program lines are guaran
teed trouble.

One last word: Some people find it an un
necessary and nasty chore to type REM lines.
I don't condone the omission of these lines,
since they may be referenced within the pro
gram (a bad practice, but not unheard ot). If
you want to take chances, BASIC Editor II is
willing to comply.

NOVEMBER A.N.A.L.O.13. Computing

Listing 1.
BASIC listing.

32688 IF FL THEN 32616
32602 DIH LSI1151.5U$11151.C2$121.BSll

~~}A:~~~~:~1~::::~E~~~~~:,~~~11'FL:l:5

~2~g~L~~A::~~:U~~~~~~5?t~i=~~~0~~~~~0~
$:"V" OR U:"II" THEN ABR:l
32606 B$I1):" ", B$ lU51:" ", B$I2) =B$
32616 OPEN IU7,",8,"IEI II ILS':" "IG05UB :I
2662' 5TART=O

~~~~~ r~~iL~~~3~'~~~~ ~3L~~~~~~I~~g~.1
32628 IF LENlL$I(77 THEN? L$11.381:?
L$13'.LENlL$II,GDTO 3262.
32622 ? L$11.3811? LSI3'.761'? LSI77.L
ENlL$11
3262. POKE 752.81POKE 766.8:POKE 55'.3
.,POKE 82.1,POKE 83,3B'P05ITION 8.181?

.. "l,INPUT D17/L$,POKE 766.1
32626 IF lL$="P" OR L$="P"1 AND 5TART:
o THEN P:IIL$:....
JZ6Z8 IF lS':"!:" OR l$="e ll THEM E:l:POS
IT ION 1.18'? 5U$ GOTO 3262.
32638 IF L$="O" UR L$="q" rHEN 325'8
32632 IF L$=· AND P=l THEN 32686
326U IF L$= THEN 326U
32636 IF L$="B" OR L$="b" THEN GRAPHIC
5 81? "TVPE • GOTO 32608' TO CONTINUE'"
END

:~6~~1~~R~=(~2t~~~:~=g:l~~:~2:~~;:;I~~
ON l,',LI5T EL'GOTO 3262.
326.8 5U$=L$,TRAP 3262.:N:UALlL$1
326.2 5TART=l,IF P AND NOT E THEN 326
52
326•• G05UB 3267.,IF NOT ABR DR P THE
N 32652
326.6 POKE 766.8'? CHR$11251'P05ITION
8.3,L=UALlLSI,LI5T L'? I? I? "CONT"IL$
=8$
326.8 P05ITION 8.8IPOKE 8.2.13'5TOP
32658 POKE 8.2,12,A=U5RlADRI5SI.ADRlLS

~i:~iL~~~~~~~3~RlADRlH$I,ADRlL$I.LENlL
$II,CHK5UH=CHK5UHtPEEKI15.21*65536
3265. CHK=CHK5UH-lINTlCHK5UH/6761*6761
:HI=INTlCHK/261:LO=CHK-lHIM261IC2$111:
CHR$IHlt65I,C2S121=CHR$ILOt651
32656 IF NOT P OR E THEN E:8IG05UB 32
662,IF NOT P THEN 32668

3~~~g5~~~~N8~:~~~P:~il~~~I}~~~~T~~~I?
Kt7:? B$ll,381INEKT KIPOKE 83.38
3~~;8C~~~~0~~67~i~:~~0~~.~~~~:5ITION8
32662 G05UB 32702,POKE 766.8:POKE 752.
1'? "I\"IPOKE 82.lIDL=PEEKI560lt256*PEE
K156U ..
3266. POKE DL-l.78IPOKE DLt2.6IPOKE DL
t3.1121POKE DLt.,l12IPOKE DLt 5.112IPOK

~2:~:1~b~~2~r~~~.~~;t:6~~2DLt23.112'PO
KE DL+2•• 65,POKE DL+2S.PEEKI5601,POKE
DLt26.PEEKI5611:POKE 83.,3'iili~~ill!32668 P05ITION 28.81? "

u:POSITION • 7:? .., ,
32670 POSITION 8 11? ..

I I .I.POSITION ~,7

17' •• :"J
32672 POKE 55'.3.,RETURN
3267. GRAPHIC5 8'POKE SS'.8IPOKE 766.1
~~~K~?8~?8i~0~~0:~h~:~~~~~~~0:.:.3'?L
32676 POKE 8.2.1315TOP

~~t:~U:~~~$~:~i~2~~:A~H~~6:~~A~~~~~A~=
682
3%688 RETURN
32682 G05UB 32662'SOUND 8.75.18.8IFOR
K=l TO 20lNEKT K'50UND 8.8.8.0IP05ITIO

~2~':'~0;~V:~~~8~=:~~}~~:0~~1~~;'~US'G
OTO n6U
32686 LINE=PEEKI5THTABl+PEEKC5THTAB+lJ
*256'IF LINE)325" THEN 326'8
326880f5=PEEKI5THTAOt2JI5THTAB=5THTAB

;~~~iP~~~~I;:6~'~~~~~~I~~N~I~:I~~~:~:
v TO aun"/IINPUT A$IIF A$d ..y.. THEN P
05ITION 1.181? B$11.381IGOTO 3262.
326'2 GRAPHIC5 8'? I? I? 'FOR N=32888
TO 32636 STEP %I? KI NEKT K'? "CONT" I PO

~~~~~NpgK~':~~~1~1~A~:~~~~P81' I? I? I
FOR K:32838 TO 3267. 5TEP %.? NINEKT N
11 11 "caNTU, POSITION .,.
326'8 POKE 8.2.1315TOP
326'8 POKE 8.2.1%IGRAPHIC5 8'? .? I? I
FOR K:32876 TO 32782 5TEP %,? KINEKT N
I? I? "POKE 8.2.12"IP05ITION 8.8

32788 POKE '.2.13'5TOP
32782 POKE 16.112'POKE 5377•• 112:RETUR
N

CHECKSUM DATA.
(see issue 39's Unicheck)

Listing 2.
BASIC listing.

CHECKSUM DATA.
(see issue 39's UnicheckJ

67



ecrets
bV LeBov Baxter

•

6B

E
ver wondered how the AUTO
RUN.SYS file worked with BASIC?
Ever wanted to automatically run a
BASIC program that wasn't named
MENU? Ever had a conflict between

the autorun loader and a machine-language

•
••••• routine that the program needed? How about

a two-stage LOAD and ENTER situation? Or
an AUTORUN.SYS for a language other than
BASIC?

I've seen a lot of AUTORUN .SYS makers,
but none have resolved all the questions and
few that will let you autorun any program but
MEND.

I disassembled one of my AUTORUN.SYS
files and delved into its secrets. I made some
changes and eliminated some potential
problems. The result is Listing 1, an AUTO
RUN.SYS maker that is more flexible than
any you've ever seen. It works with any Atari
type DOS (DOS 2.5, MyDOS, etc.) and with
any language.

The secrets revealed
Normally, when BASIC comes up, it

prints the READY prompt on the screen
and then calls the editor to accept a line
from the keyboard. While all the editor
routines are in OS ROM, the designers of
the Atari have allowed us unlimited flexi
bility by putting the address of the editor
routines in a RAM table called HATABS.
By replacing the editor address in
HATABS, we can supply new routines that
make the computer do what we want.

The program is divided into three parts.
The first part finds the vector for the edi-

tor and replaces it with our own. The han
dler table is searched from the bottom up
just in case a new E: handler has been load
ed. The second part is our new (and tem
porary) E: handler routine. It passes back
a command line to BASIC without waiting
for keyboard input, and then resets the E:
handler vector to its original value. The last
part is the BASIC command line itself.
This can be anything that you could type
on one line from the keyboard. You can
change screen margins, change screen
colors, play music, generate a graphics dis
play, load one program and enter another
(and then run them), set up password secu
rity, call DOS-the list is endless and limit
ed only by your imagination.

Getting started
Using MAC/65 or the Atari Assembler

Editor, type in Listing 1 and save it. (You'll
want to use it again many times.) Note that
you can just list Line 10 and edit off the line
number and semicolon to cause the program
to be listed to disk. Next, change CMDLIN
to reflect the BASIC command line you want
executed. In Listing 1, the command line
is: ? "Loading ... MYPROG":RUN D:MY
PROG.BAS." To insert the quote mark into
the BASIC command line, it must be speci
fied by its ATASCII value ($22) as a
separate byte. Your command line can be
a maximum of 119 characters.

To write the AUTORUN.SYS ftle, load
the destination disk into your drive and as
semble Listing 1 to disk with the command:
ASM,,#D:AUTORUN.SYS.

NOVEMBER A.N.A.L.O.13. Computing



I've seen a lot of AUTORUN.SYS makers, but
none that have resolved all the questions

and few that will let you autorun any program
but MENU.

done

routine

iindx next char
itell O.S. OK

i C/R!!

isave C/R
isave M register

irestore C/R to ~

iset status OK

passed to BASIC
",S22,"Loading ••• HV

":RUN ",$22,"D:M~prog.b

YSAU
CHDLIN,Y iget 1 char
US~B iif C/R then
DONE
YS~U

USOI

EDEM ifind 'E:' entr~

TEHP iiri HATABS
HATABS,M ireplace our

routine
iwith the real
vector

TEHP+l
HATABS,M

irestore M reg

US01

i
LDA
STA
PLA
TAM
PLA
LDY
RTS

.BYTE S~B

i
INM

RTS
iHandler table space
NEWT~B

OPEN .WORD 0 isee ~tari OS
CLOSE .WORD 0 iHanual,
GETBYTE .WORD 0 iDeRe ~tari, or
PUTBYTE .WORD 0 iMappng the ~tari

ST~TUS .WORD 0
SPECI~L .WORD 0
JUMP .BYTE 0,0,0

.BYTE 0,0 L1~th b~te
i & Insurance

YS~U .BYTE 0
EDEM .BYTE 0
i
iOur new GETBYTE
NEWGET

LDY
LDA
CHP
BED
INC
LDY
RTS

DONE
PHA
TMA
PHA
LDM
LDA
STA

.,
iset to execute when loaded

*= S02E2
.WORD MAIN

04~0

0500
0510
0520
0530
0540
0550
0560
0570
0580
05~0

05~5

0600
0610
0620
062~

0630
0640
0650
0660
0670
0680
06~0

0700
0710
0720
0730
0740
0750
0760
0770
0775
0780
0785
07~0

0800
0810
0820
0830
0840
0850
0860 i
0870 CMDLIN i
0880 • BYTE "?
PROG",S22
08~0 •BYTE
as",S22
O~OO

ono
0~20

0~30

0~40

NEWTAB&SFF

HATABS loc
E: vector

an~whereior

the table address

S4000

EDEM isave
HATABS,M iand
TEMP
U <NEWT~B ior
HATABS,M

i
iHodif~ the Handler table
H~IN

LDM U36 isearch frOM END
i of table
ELOOP LD~ H~T~BS,M

CHP U'E ifor 'E:' handler
BED CH~NGE

DEM
DEM
DEM
BPL ELOOP

CH~NGE i
INM
STM
LD~

ST~

LD~

ST~

INM
LD~ H~T~BS,M

ST~ TEHP+l
LD~ U }NEWT~B ior NEWT~B/256

ST~ H~T~BS,M

inow transfer ROM table to R~M
LDY U$OO
STY YS~U

MLOOP LD~ (TEMP),Y
ST~ NEWT~B,Y

INY
CPY USI0 i16 BYTES
BCC MLOOP ibranch if {16

inow setup new getb~te routine
LD~ U {NEWGET-l
i or (NEWGET-l)&$FF
ST~ GETBYTE
LD~ U }NEWGET-l
i or (NEWGET-l)/256
ST~ GETBYTE+l

10 iLIST UD:~UTOB~S.SRC

20 i
30 ifor creating ~UTORUN.SYS

40 i
50 iH~C65 source code With
60 iconversions to ~tari ~sseMbler

65 iEditor
70 i
80 iEquates:
~O H~T~BS = S031~
0100 TEHP = SCB
0110
0120
0130
0140
0150
0160
0165
0170
0180
01~0

0200
0218
0228
0230
0240
0250
0260
0270
0280
02~0

0300
0310
0320
0330
0340
0350
0360
0370
0380
03~0

0400
0410
0420
0430
0440
0450
0455
0460
0470
0475
0480

NOVEMBER A.N.A.L.O.G. Computing 69



__ J

$1.95

THE
ANALOG

computing

POCKEl
REfERENCE
"C~RO

c 1985

1'WE' . - - i •
-fll . - i ...-

GOMPLd~TE:POCKET
PROGRA'M·MI NJG AID

ONL~ $7.95 ea.

Unlock your
Atari

16
Pages

ERROR CODES
INTERNAL CODES

PEEK &POKE LOCATIONS
MACHINE LANGUAGE AIDS

GRAPHIC MODE SPECIFICATIONS
BASIC C8MMANDS WITH ABBREVIATIONS

:
!

'ANAl.OG COMPUTING

,--------------------

YES!
po. Box 16927

N. Hollywood. CA 91615

Name _

Address _

Please send me ANALOG
Computing Pocket Reference Cards.
I am enclosing $7.95 per copy.

o CASH 0 CHECK 0 CHARGE

Card #

Exp. date

City _ State _ Zip _ Signature



BOOT UP
TO BIG SAVINGS!, . .

~
--- ,'I, .)

\ 1 YEAR FOR ONLY $28
SAVE $14 OFF THE COVER PRICE

I YEAR WITH DISK ONLY $105

NAME

MONEY BACK ON ALL UNUSED PORTIONS OF SUBSCRIPTIONS IF NOT SATISFIED.

o MAKE CHECK PAYABLE TO L.F.P., INC., P.O. Box 16928, N. Hollywood, CA 91615. Offer expires January
: 25, 1989. Your first issue will arrive in 6 to 8 weeks.

: WATCH FOR IT!
o
o
o
o
o
o.........................................•............................•..........

ZIPSTATE

SIGNATUREEXPIRATION DATE

ADDRESS

CITY

.........................................•.•.............•...•.........•.•.••.••.
o

: 01 YEAR @ $28 - SAVE $14!

FOREIGN - ADD $7 PER YEAR

: 0 1 YEAR WITH DISK @ $79

: FOREIGN - ADD $15 PER YEAR
o

: 0 PAYMENT ENCLOSED 0 BILL ME
: CHARGE MY: 0 VISA 0 MC # _

SAVE TIME AND MONEY
SUBSCRIBE TO ST-LOG

SAVE $14 OFF THE
COVER PRICE WITH
THE CONVENIENCE
OF HAVING ST-LOG
DELIVERED DIRECT
LY TO YOUR DOOR
BEFORE IT EVEN fiTS
THE NEWSSTANDS!
GET THE MOST OUT
OF YOUR COMPUTER

SUBSCRIBE ro
Sr·LOG
rODAYI



B&<t v· ·
3257 Kifer Road JI\.

STORE HOURS

Santa Clara, CA 95051
TUE - FRI lOam - 6pm

omputer ISIOnS SAT - lOam - 5pm

(408) 749·1003 CLOSED SUN - MON

NIEW22 1050 SUPER ARCHIVER CHIP $69.95
8-BIT INTEGRATED CIRCUITS RUN MAC SOFTWARE ON YOUR ST

$3.50 EACH OR 3.00 IN QTY OF 10 $12.00 EACH

!M;M!ASSEN REV A 800 CPU 6502 RAM 6810 ASSEM REV B MAGIC SAC 119.95
BASIC REV A 810 ROM C POKEY XE GATE ARRAY TRANSLATOR 279.95
MPU 6507 800 ANTIC PIA 6502 XL ANTIC MAC ROMS 39.95 .!;~;}~R!PIA 6532 OS ROMS (499B-599B) VCS TIA 444

PRT DRIVERS/FINDER 44.95
~

BASIC REV C
$4.50 EACH OR 4.00 IN QTY OF 10 850 ROM B

1771 FDC XL CPU 14806 GTIA FREDDIE
1050 ROM XL/XE MMU XL DELAY XL/XE OS COMPUTERS , INTERFACE

ATARI 800 100.00 MPP-1150 INTERFACE 54.95

BOARDS WITH PARTS ATARI 800XL 119.95 MPP-1151 INTERFACE 74.95
NEW PRINTED CIRCUIT ATARI 130XE 149.95 ATARI 850 125.00

800 MAIN WITH CHIPS 10.00 800 10K O/S 10.00
800 16K RAM 10.00 800 POWER 5.00

DIAGNOSTICS810 SIDE WITH D/S 15.00 800 CPU W/GTIA 10.00
810 ANALOG 10.00 810 POWER 15.00 1050 DIAG. DISK 20.00 810/1050 DIAG. CART 25.00

SALT 800XL CART 25.00 SALT 400/800 CART 25.00
JOYSTICKS 5-1/4" ALIGNMENT 40.00 3-1/2" SS ALIGNMENT 50.00

ATARI SPACE AGE 14.95 WICO 3-WAY 29.95
ATARI STANDARD (2) 12.00 WICO BAT HNDL 22.00
ATARI TRAK BALL 25.00 NUMERIC KEYPAD 19.95 HAPPY ENHANCEMENT VER. 7 .1EPYX 500 JOYSTICK 19.95 ST MOUSE 45.00

810 OR 1050 - $99.95
MISCELLANEOUS

400/800 POWER PACK 10.00 800 KEYBOARD 40.00
800/810 POWER PACK 15.00 800XL KEYBOARD 25.00 ST INTEGRATED CIRCUITS
KLM 400/800 POWER PACK 5.00 130XE KEYBOARD 35.00 DISK CONTROLLER WD1772 25.00 DMA CONTROLLER 26.00
1030 POWER PACK 10.00 520ST KEYBOARD 75.00 PHOTO COUPLER PC900 2.95 MMU 28.00
800XL/XE POWER PACK 20.00 1040ST KEYBORD 85.00 YAMAHA SOUND CHIP 10.00 VIDEO SHIFTER 26.00
2600 POWER PACK 5.00 314/354 POWER 35.00 6850 ACIA 3.95 GLUE CHIP 28.00
520ST POWER PACK 50.00 1040 POWER PCB 75.00 68000-8 CPU 27.00 68901 MPF 16.00

KEYBOARD CHIP 15.00
DISK DRIVES

I
ATARI 810 140.00 (130.00) ATARI XF551 ATARI XE GAME MACHINE $139.95ATARI 810 on Plate 100.00 ( 90.00) 199.95
ATARI 810 W/HAP 220.00 (210.00) INDUS GT INCLUDES MISSILE COMMAND. FLIGHT SIMULATOR II,
B&C 810 140.00 (120.00) 225.00 BUG HUNT, LIGHT GUN, JOYSTICK, BASIC, AND 64K OF
PRICES IN BRACKETS DO NOT INCLUDE I/O OR POWER PACK

MEMORY WITH A REMOVEABLE KEYBOARD. ADD A
FIELD SERVICE MANUALS DISK DRIVE AND PRINTER FOR A COMPLETE HOME

:-:.:.:.:.;.;.;.;.;.:.;.:
DERE ATARI 400/800, 810 25.00 EACH COMPUTER SYSTEM!. llf: Ilf: :;

:: AHlIl.I :: ATARI 800XL, 850,
;: AI :: ATARI 1025, 1050 20.00 EACH

WE CARRY A FULL LINE OF CARTRIDGES FOR THE XE::~: SAMS 800,800XL,

~t "~ ~OOj $10.00 130XE,1050 19.95 EACH GAME MACHINE.
SAMS 520ST 35.00

SUPER SPECIALS
RECONDITIONED AT ARI MERCHANDISE

All merchandise has been tested and reconditioned and is in like-new condition except where noted. 30 day warranty.

ATARI ATARI 1020 COLOR 600XL (64K) ATARI
BOOKKEEPER

TRAK BALL SPACE AGE PLOTTER/PRINTER $59.95 $14.95 - NO BOX
$9.95 JOYSTICK $29.95 Upgraded to run newer ($19.95 WITH RECON KEYPAD)

JD
40 Columns wide 64K software - includes

SPICE UP THE ACTION IN $5.00 ~ ,r Includes paper and Basic & power supply $24.95 . IN BOX
YOUR ARCADE GAMES! .;-. color pen set (29.95 WITH RECON KEYPAD)

. ""'il'

4 00 (l6K) 1030 800 (48K) NUMERIC DISKETTES

COMPUTER LS MODEM COMPUTER~KEYPAD AS LOW AS 20 CENTS

$2995 - WITH $79.95 $7.95
lO-FOR $4.00

100 FOR $29.95
48K UPGRADE KIT I EXPRESS! I INCL HANDLER DISK USE 1000 FOR $200

$25.00 $29.95 INCL. BASIC CART & WITH BASIC & MOST ARE UNNOTCHED
GET ONLINE TODAY MANUAL BOOKKEEPER WITH OLD SOITWARE

SHI PPI NGIN FORMATI ON - Prices do not include shipping and handling. Add $5.00 for small items ($8.00 Min. for Canada). Add $8.00 for
disk drive. Calif. res. iflclude 7% sales tax. Mastercard and Visa accerted if your telephone is listed in your local phone directory. Orders may be
pre-paid with money order, cashier check, or personal check. Persona checks are held for three weeks before order is processed. C.O.D orders are
shipped via UPS and must be paid with cash, cashier check or money order. International and APO orders must be pre-paid with cashier cheCk or
money order. $20.00 minimum on all orders. All sales are final - no refunds - prices are subject 10 change. Phone orders accepted TUESDAY
THROUGH FRIDAY from 10:00 am to 6:00 pm PST.
We carry a complete line of ATARI products and have a large public domain library. Write or call for free
catalogue. (408) 749-1003 TUE - FRI 10AM - 6 PM

PRICES SUBJECT TO CHANGE WITHOUT NOTICE - ALL SALES ARE FINAL

CIRCLE #104 ON READER SERVICE CARD



....<:> .;.;.;
::::::::::-:.; .

x-:-:

-:«.........
ttt.:~.:~.tt :•.:..:r.:: ..:~.:~ ..:~.::...:~ ..:~ ..:~:;:·..::.:~ ..:~:~.:..:' ..:~ ..:~ ..:~:..::'..:: ..:~ ..:~.,:~;:;:;:;:;:;:;:;:;:;:t
:~:~:~m~(}:~:~:~ :~~~~~~~;:::;~;/~:~:~

~~~.:.~:~:~:::~::::::::

NOVEMBER A.N.A.L.O.13. Computing

by Steve Panak

A
gain we are witness to yet another
software market cycle. As you might
have noticed by now, an alamiing
number of software publishers are
weaning out Atari 8-bit support.

Some new titles, which I'm certain would be
good sellers, and most of which probably
don't require more memory than the XL/XE
series provides, just aren't in our language.
It's getting hard to find two games a month
to examine for you, much less the four or five
I used to be able to play. And though this
sounds like the beginning of the end and is
extremely distressing to Atari newcomers,
there has been an unexpected but welcome
side effect.

I'm starting to see a lot of independent
producers and developers jumping into the
water. And while some of their stuff is good,
some bad and some mediocre, all of it IS sen
sibly priced. The lack of high marketing,
research and development and packaging
costs is passed right on to us, the end users.
This makes it a lot easier for a novice to stock
his library with a lot of games of different
types, where a few years ago he might only
have been able to afford one or two. To make
things even better, the big boys have seen this
market niche as well, making us even bigger
winners as they discount some of their older
games, attempting to milk the few remain
ing dollars from their cash cows. If you pick
and choose wisely, you can't help but be
satisfied.

So keeping these two facts in mind, I think
what we'll do to kick off the holiday season
is to look at some oldies, and a couple of new
games from a new company. I'm going to
start by bringing you all up to date on a few
of the best thinking-man's games available for
the 8-bit. Games which require not fast
reflexes nor superb hand-eye coordination,
but instead ask you to think. And because
they demand more of you, I like them the

best. For you action addicts, if you'll just
hang around until the end, I promise you a
photon fix. And if you're not careful, you
might even learn something before we're
done.

When I think of thinking games, the first
to come to mind is chess. Chess has been
around for hundreds of years and is still com
plex enough to challenge the world's greatest
minds. And when you feel up to the
challenge, your Atari is ready for you, thanks
to the Chessmaster 2000, from Elec
tronicArts, which I consider to be the best
chess game available. In addition to having
one of the most devastating decision-making
algorithms available the program is also the
most attractive, featuring a three-dimensional
playing field which can be modified to your
heart's content. Chock full of features, includ
ing multiple levels of difficulty, the ability to
study the decision-making process and to
print a log of moves, as well as all the stand
ard options like move take-back and board
setup, this grand master is likely to keep you
engaged for months. And if you don't know
how to play, Chessmaster is more than hap
py to teach you. Experts revel in its library
of classic games and the brief history of com
puter chess contained in the generous manu
al. For all these reasons, and many more,
Chessmaster 2000 is the best chess simula
tion on the market and a must for all game
libraries.

Of course if you're a real masochist, you
will probably love any of the many Infocom
titles. These text adventures feature the most
sophisticated grammatical parser available,
and are able to understand complex and com
pound sentences. In fact, they often demand
them. My favorite titles are the Zork trilogy,
Stationfall and Planetjall, Suspended, The
Hitchhiker's Guide to the Galaxy and Leather
Goddesses ofPhobos. And although this list
indicates that I am partial to their comedy and

73



SOLAR STAR A
DROP ZONE ....

74 NOVEMBER A.N.A.L.O.G. Computing



This grand master is likely to keep you
engaged for months. And if you don't know how to play,

Chessmaster is more than happy to teach you.

science-fiction titles, rest assured that, like
a bookstore, Infocom has titles to suit every
one's taste. From mysteries to romances to
adventures, nearly every computer user who
loves a good story will find at least one title
to keep them up at night-all night. And to
make it even easier on the pocketbook, many
of their 8-bit prices have been lowered, some
to a mere $9.95. At that price it's pretty hard
to go wrong.

If you're into word games, there are a cou
ple of titles out there to confound you. The
first which comes to mind is Buzzword. This
game is very similar to the Family Feud tele
vision show (minus the obnoxious Richard
Dawson). In this game, you choose a category
and are then given nine letters which begin
nine words. Also provided are the number of
letters in each word and a pool of available
letters. The object is to guess all the words
in the category and amass the most points.
Different levels of difficulty make for fami
ly fun, as children of all ages can participate.
Many find the game is most fun when played
in a group setting. There are thousands of
words in the hundred or so categories provid
ed in the package-enough to keep the aver
age player active for months. In fact, each
category can be replayed a number of times
before the words will be memorized. Even
though it is a little-known game from a little
known company, Buzzword should not be
overlooked.

The second word game which comes to
mind is Crosscheck from Datasoft. This word
game reminds me of Scrabble, without all the
wooden tiles to lose. Upon further examina
tion though, it is a very original and mul
tifaceted game. Up to four players take turns
placing words on a crossword-style board.
These words are guessed from clues given
at the bottom of the screen. The number of
letters in the word is determined randomly
at the beginning of each player's tum by a roll
of the electronic dice. Different versions of
the game contain different objectives. You can
race to connect two areas of the board or play
for points, with or without a time limit. The
board is huge with a magnify feature allow
ing you to zoom in to place your word in the
best strategic position. And while some of the
clues are simple, additional clue libraries en-

NOVEMBER A.N.A.L.O.G. Computing

sure Crosscheck lovers are not left in the
dark. Truly a diamond in the rough, and
worth a look.

Solar Star
by Glenn Cassim
Drop Zone
by Archer Maclean

Microdaft
19 Harbor Drive
Lake Hopatcong, NJ 07849

Here we are in phase two of this month's
discourse. A look at a couple of new games
from a new company. The new company is
Microdaft (which gets the award for the
stupidest name), and the first game is Drop
Zone. Or should I say the first game is
Defender, as Drop Zone is a copy of Wil
liam's arcade classic nearly verbatim; the
only difference being that you are represent
ed by a man in a spacesuit, rather than by
a sleek star fighter.

In case you didn't catch Defender the first
time around, it is your basic space shoot-'em
up, the main twist being the ruthlessness of
the objects you encounter. Of cOilrse, in Drop
Zone the name8 of all these items have been
changed to protect the guilty. Androids and
Nemesites, Spores and Nmeyes will plague
you as you attempt to rescue your men who
are stranded on a planet being overrun by
aliens.

Using the joystick, you move up and down,
left and right. The space bar releases a smart
bomb, which destroys everything on the
screen, while any other key activates your
cloak, which makes you invisible to the ene
my. The only other key you need to worry
about is the escape key, which pauses the ac
tion when you feel you need a break. There's
not a lot to learn about in this game-no great
secrets. But what it lacks in complexity it
makes up for in sheer difficulty. Each suc
cessive wave of enemy onslaught will tax your
arcade skills to their limits.

The graphics are surprisingly good, given
I've come to expect so little from 8-bit games
of late. The action moves every bit as fast as
any arcade game I've seen, commercial or

otherwise, and the joystick is very respon
sive. The effect as you explode is especially
impressive. The slight manual explains each
control succinctly, making Drop Zone a
pleasant surprise.

Solar Star is a little harder to describe, as
it is one of those rare video games which was
not inspired by or was not a rip-off of some
one else's idea. And as it is new and unusual,
it is also a little harder to like. It might be
described as an electronic game of tag, or it
might not.

The background story concerns a giant
energy grid which is used to supply space
faring vessels with solar fuel. Unfortunate
ly, the computers which were designed to
protect the grid began to do their job a little
too well, depriving ships of much-needed
fuel. Your mission is to gather as many ener
gy crystals as possible, blasting disrupters
(the enemy) until they release a crystal. It's
basically a race against time to complete the
mission before you exhaust your energy.

The screen is divided into four areas. The
top half of the display contains a first-person
point of view as you move about a large grid
which is divided into areas by force fields.
Contact with these fields reduces your ener
gy, and when you're out of energy, your game
is over. The bottom right- and left-hand cor
ners contain overhead views of the grid, in
increasing degrees of magnification. Cen
tered in the bottom of the screen is a readout
area to keep you abreast of the various game
parameters, such as score and speed. This is
a lot to keep track of, and what made it more
confusing was the fact that I used one of the
bottom displays more than the large main
view.

Collect enough crystals, and you'll move
on to the next level. The graphics are pretty
standard stuff, about at the level of the
2600-blocky but fast-moving. The manual
is fraught with misspelled words, but other
wise accurate. I didn't really like this one as
much as Drop Zone, and I can't recommend
it. But I do praise it for its originality.

That's about it for this month. Next month
we'll take a look at the latest SSI simulation
and evaluate it up against a new simulation
from Datasoft.

Until then, happy holidays. ~

75



76

The hard-disk port
on the back of your ST is

really an amazing, and mostly
overlooked, addition to the ST computer.

W
hen the 520ST was first released,
many of today's users were satis
fying their computing needs with
an Atari 130XE or even an old
Atari 800. This was 1985, when

inflation was at its lowest point in years, and
the economy seemed ready for something
new. The Atari 520ST was introduced, and
for the moment it seemed to be the hottest,
newest, sleekest microcomputer on the block.
It had more memory, terrific graphics and a
hard-disk port built in!

The hard-disk port on the back of your ST
is really an amazing, and mostly overlooked,
addition to the ST computer. If you own an
IBM PC or an MS-DOS clone, adding a hard
disk can become fairly difficult. There is no
standard interface for hard disks on the PC,
nor is there one for the Macintosh. So every
hard-disk manufacturer has to determine their
own product specifications, and this has led
to a market filled with 101 varieties of hard
disks. Some hard disks come on an IBM ex
pansion card, some have cables that connect
to the PC's mother board, and some plug into
your floppy-disk port and sit above your nor
mal floppy. They all look a little differently,
sound a little different and operate a little
differently.

The ST, on the other hand, has one DMA
port which is easily used as the standard hard
disk interface. Other people have used this
port to connect optical scanners, laser printers
and local area networks. Since the DMA port
is included on all STs-Mega STs use the
same port-all of the hardware manufac
turer's products have been designed to work
with one another. The issue of adding a hard
disk to an Atari ST could hardly be simpler.

When the ST was first announced at the
winter Consumer Electronics Show in 1985,
there were some rumors that Atari was work
ing with Haba Systems, a computer software
company in Los Angeles, California, that
produced Commodore 64 and IBM PC soft
ware. Haba intended to produce a hard-disk

NOVEMBER A.N.A.L.O.G. Computing



drive for the ST that would be bundled with
some software and a 520ST. The complete
package would be sold as a complete ST de
velopment system for developers. Haba was
also putting together a series of classes on
GEM programming for the ST. A turbulent
year for Atari Corp. was 1985, and because
of one thing or another, Haba's only ST
product became their ST hard-disk drive.

The Haba 10 was a ten-megabyte hard disk
for the ST that sold for less than $600. Haba
received a large amount of publicity for its
announced hard disk mostly because Atari's
more expensive 20-megabyte hard disk was
the only other alternative.

Haba sold a bunch of hard disks, but then
the problems started to flood in. Haba's en
gineers didn't expect the ST's DMA port to
be so electronically unstable. Many 520 and
1040STs wouldn't work with Haba's hard
disk. Haba eventually created an improved
hard-disk interface which worked with all ST
computers.

Then many users found the Haba hard-disk
operating-system software had bugs. Certain
word processors would lose characters within
a document file when the text was saved and
loaded onto the Haba hard disk. The software
problems were never corrected, mostly be
cause Haba was about to go out of business
by the time the problems were identified.

Supra Corp. began offering hard disks for
the ST early on, but their prices were close
to Atari's prices. Supra held the edge on the
hard-disk market with several features not
offered with the Atari or Haba disks. Supra
offered superior operating-system software;
users could create more partitions than the
Atari hard-disk software allowed. Supra also
found Atari's hard-disk boot software in IDS,
which allowed the Supra's hard disks to auto
boot when the ST was first switched on.

Other manufacturers began appearing for
the ST. Astra, Calcom and others began offer
ing well-built, low-cost hard disks for the ST.
In 1987, the price of a hard disk was down

NOVEMBER A.N.A.L.O.I3. Computing

to about $500 for 20 megabytes. Some com
panies even offered their interface cards for
less than $150. With an interface card, any
SCSI (Small Computer Serial Interface) com
patible hard disk could be attached to the ST's
DMA port. SCSI hard-disk drives were be
ing sold in mail-order houses for less than
$250, so if you were not satisfied with any
of the commercial offerings, you could piece
together the components and make your own
hard-disk unit.

Supra has just recently upgraded their
hard-disk interface card to support several
new features. The new card has a calendar
chip which can update the ST system clock
every time the system is switched on. Also
included is an additional DMA output port.
The second port becomes important for the
Atari laser-printer (SLM804) owners who
must plug their laser printer into the DMA
port to print documents. The Supra DMA
port lets you "daisychain" many DMA
devices. The new Supra card is fully SCSI
compatible, so any advertised SCSI drive
should work with it.

ST-Log built its own hard-disk system us
ing a Supra interface card. We started with
some basic components:

Atari 520ST
(with one-megabyte memory upgrade)
Supra Hard Disk Interface card
Seagate 20-megabyte hard disk
(with controller built in)
Power supply
Hard-disk enclosure

The Seagate 20 hard disk costs $250. It
came with an integrated controller, which was
mounted on top of the hard-disk unit. A flat
ribbon cable extended from the controller; it
attached to the Supra interface card. The hard
disk, controller and interface card were
mounted into the front of a Haba hard-disk
enclosure. The nice thing about using the
Haba enclosure was the easy mounting of the
hard disk, and the built-in power supply

Atari 520ST

provided the +5 and +12 volts D.C. power
that the other components needed. These
kind of enclosures are readily available from
most mail-order houses.

A special power cable was created to sup
ply the Supra interface card. The parts to
build the cable were found at a local Radio
Shack store. Total cost was around $10 in
parts.

A cable extends off of the Supra interface
card that attaches to the ST's DMA port
directly. When the power to the drive was
switched on,. we immediately found that the
controller ribbon connector was plugged in
upside-down. With a quick switch of connec
tors, we started the 520ST and the GEM
Desktop appeared instantly.

When you purchase the Supra interface
card, the kit comes with all the disk operat
ing software and a small (26-page) manual.
The disk operating system is completely
GEM based, so it is easy to use and some
what intuitive. The software and interface
card are somewhat sophisticated; when the
forrnattrng utility was started, the program in
dicated the correct type of hard-disk con
troller and drive being used. A couple of
mouse clicks later, the formatting program
was off and running.

A special partition control program was
later used to determine the number of disk
drive partitions that would be used. Supra's
unique software permits up to 12 partitions
to be created. A partition appears on the
GEM Desktop as a separate disk icon, so
sorting your software into groups becomes
easy.

The entire process of building a hard-disk
system and installing the system software took
less than three hours. The project cost was
about $475. ST-Log does not recommend that
you try this yourself, because a fair amount
of technical knowledge is required. However,
with the modularity and easy availability of
all of the parts, it is amazing that more peo
ple don't try it! ~

77



7B

bV Arthur Levenberger

'm late again. My deadline for this

I month's column has come and gone two
days ago. I was all set to sit down tonight
and write the column when I decided to
log onto DELPHI and check out the

latest Atari news and gossip. What a mistake.
Mind you, it wasn't bad. It was, well,

addictive. I've been doing a lot a traveling
lately, so I had fallen behind on the
ANALOG and ST-Log Atari SIGs. I signed
on to DELPHI and have just spent the last
two hours reading messages in the Forum
section of the ST-Log group.

If you want to know what is happening
within the Atari community, talk with
representatives from Atari and other hard
ware/software companies; DELPHI is the
place to be. You can talk directly with the edi
tors and contributors of ANALOG and ST
Log. And best of all, other Atari users are
available to answer questions or share your
opinions with.

Maybe you knew that already. If not, call
DELPHI at (617) 491-3393 and find out how
you can get a user login and begin to take ad
vantage of what is available on-line. Of course
there is more to the DELPHI service than just
the Forum. Files are available for download
ing, electronic mail can be sent and received,
and there is always plenty of excitement wait
ing for you in the ANALOG and ST-Log
groups.

Aquickie
It has happened to me and I'm sure it has

happened to you. You read an ad about a new
piece of software in ANALOG or perhaps a
rave review about a product that you have
been waiting for. So you rush out and buy it.

Once you get it home, you tear open the
package, shove the disk in the drive and boot
the machine. As the program is loading, you
glance at the owner's manual, and there you
see it: "[The software company] makes no
expressed or implied warranty with respect
to the program's quality, performance or fit
ness for use." Then it goes on for another
couple of paragraphs that only a lawyer can
understand.

Most reputable software companies only
warrant the physical media (the disk) and will
replace it if defective. But what if the pro
gram isn't so great? What if it is so difficult
to use that you would never subject your worst
enemy to its use? Or what if the program just
doesn't fit your needs? What do you do? Who
ya gonna call? Program Busters? No. You're
stuck. No two ways about it.

I use a MS-DOS computer quite a bit and
I recently saw an advertisement in a maga
zine that amazed me. The ad was for a
product called Excel, a spreadsheet program
that runs on a Pc. The company is Microsoft,
the largest PC software publisher.

The ad was titled "The Microsoft Excel
Win-Win Guarantee." It read, in part, "If you
find a spreadsheet you like better between

NOVEMBER A.N.A.L.C.13. Computing



If you want to know what is happening
within the Atan community, talk with
representatives from Atan and other

companies; DELPHI is the place to be.
now and January 31, 1990, we'll give you your
money back. No questions asked." Whew!
Can you believe that? I have never seen any
thing like it.

Here is a company that not only stands be
hind their product, but goes as far as guaran
teeing that you'll like it. They guarantee that
Excel will meet your needs. They want you
to be satisfied with the program or you get
your dollars back-without a hassle and for
the next year and a half.

Now, I normally don't write about MS
DOS programs in ANALOG. Neither does
anyone else for that matter. But I just had to
share this with you. Microsoft is to be con
gratulated for having a software policy the
way it ought to be. Can you imagine if Atari
had a policy like that? Can you?

8-bit software
It's no secret that new 8-bit softwar~ is be

coming more difficult to fmd these days. The
fact is, very few companies are publishing
new titles for the Atari computer. Even many
of the "big" companies that have supported
the 8-bit machine in the past, such as Elec
tromc Arts, Batteries Included, OSS, Datasoft
and Synapse, have either gone out of busi
ness or have had their more popular titles
bought by another company.

I just received a new catalog in the mail
from ICD. ICD has been around since 1984
and has had many innovative products for the
8-bit computer. In January of this year, ICD
bought the OSS product line and continues
to publish OSS products and provide support
for them. Following is a brief look at some
of the current ICD family of products.

The P:R: Connection is a flexible, compa,"t
and more economical alternative to the Atari
850 interface. It plugs into the disk drive
(serial) port of any 8-bit Atari computer and
provides two RS-232 serial ports and one cen
tronics parallel port. It takes its power from
the computer, and its serial ports possess the
same signals and functions as the 850 Inter
face, including the R: handler. The P:R: Con
nection sells for $90.

NOVEMBER A.N.A.L.O.G. Computing

The $60 Printer Connection provides a
centronics parallel capability in a very small
package. One end of the ten-foot cable plugs
into any 8-bit computer (the 1200XL requires
a slight modification) and the other end plugs
into a parallel printer jack. No external power
supply is necessary.

Ifyou want to expand the memory on your
800XL or 1200XL to 256K, the ICD Rambo
XL is what you need. This $40 upgrade board
(DRAM chips are extra) not only makes your
800XL or 1200XL a 256Kcomputer but also
makes the memory compatible with that of
the 130XE. This lets you take advantage of
software that can use the extra memory as
well as allow you to use a l28K RAMDisk.
You'll need to be familiar with soldering to
install this upgrade.

For advanced users, ICD offers the Multi
I/o. This product features five functions in
one box. It provides RS-232, parallel and
hard-disk interfaces for your computer. It also
gives you a either a 256K or one megabyte
RAMDisk, of which any amount can be used
as a print spooler. The former sells for $240
and the latter $470.

If you haveanAtari 1050 Disk Drive and
want to upgrade it, the US Doubler chip set
will do the job. The $40 upgrade will give
your 1050 true double-density capability for
greater storage, l80K per disk. Once upgrad
ed, the drive will be compatible with single
density (90K) disks and the dual-density
(l30K) disks. When used with SpartaDOS,
the US Double~ will also triple the I/O speed
of your computer and disk drive.

The SpartaDOS Construciion Set is lCD's
own DOS that is compatible with just about
any disk drive you can use with your 8-bit
Atari. It supports single, dual and double den
sity; 40- and 80-track 5 1,4-inch drives and
eight-inch drives with the Percom or
ATR8000. It supports the 360K Atari XF551
drive and hard disks. The $40 program also
provides date/time stamping of files, sub
directories, a menu-oriented program for
rapid file copying and erasing and more. I
have been using SpartaDOS for several years

and have found it to be the best DOS availa
ble for the Atari 8-bit computer.

SpartaDOS X is a cartridge-based DOS
that includes all of the features of SpartaDOS
and more. This $80 cartridge features multi
file operations, high-speed I/O with US Dou
bler, Indus GT and Atari XF551 drives, the
use of batch files and more. In addition, you
can piggyback another cartridge on top of the
SpartaDOS X and operate just as if you had
booted from disk, except much faster.

The R-Time 8 cartridge has a built-in bat
tery that provides continuous and automatic
date/time stamping of your files. It too is a
piggyback cartridge that permits you to use
another cartridge at the same time. When
used with SpartaDOS, the R-Time 8 works
automatically, tagging each file you create
with the correct time and date. It sells for $70.

ICD is an excellent company, and I can
highly recommend any of their products. If
you would like more information about ICD
products, contact them at: ICD Inc., 1220
Rock St., Rockford, IL 61101; or call them
at (815) 968-2228. Be sure to request their
catalog which, incidentally, looks as classy
as their products.

Rumors
What fun is it reading an "End User"

column without a couple of rumors? I'm not
one to start any rumors, but I am usually
more than happy to pass them on. And with
the way Atari both announces products be
fore their time and also plays things close to
the vest, rumors are never far away.

The latest "hot" rumor concerns a sup
posed ST game machine. That's right, an ST
game machine. I'll call it, for lack of a bet
ter name, the Atari STGS (not very original,
I know). Here are the "facts"(?).

Since Atari is doing a "land office" busi
ness in video games and video-game systems,
it seems only natural for them to come out
with a game system based upon the 68000
microprocessor. This is the very same proces
sor used in the ST, Commodore Amiga and
Apple MacIntosh.

What will the STGS look like? A moment's
consideration leads one to suspect that it will
be rougWy about the size of the 7800 game
machine. It will probably not have a key
board, although it may have an interface for
a keyboard and disk drive. It will use car
tridges for the game software. The price?
How about under $2oo? A 68000-based game
machine is really not a wacky idea. If this

78



EN
US R

product were true, it would be the first
68000-based video game. One of the poten
tial roadblocks for this product, I think, is
the need for at least a dozen game carts to
be available for it upon its introduction. Fur
ther, other companies besides Atari must de
velop games for the STGS for it to be a
success.

This may not be a problem, though. In the
last year, Atari has done an amazing job of
licensing popular arcade video games, as well
as working with third-party game developers
for new game titles. Also consider the an
nouncement at the Summer CES that Nolan
Bushnell and company will be developing
new games for '~tari video-game machines."
But on the other hand, an STGS would re
quire DRAM chips that are currently in short

supply. If no new supply for these chips is
found, the production of ST computers may
suffer as the video-game machines are made.
Further, if a STGS were made, and it became
a big hit, what would that mean to the "game
image" that Atari has earned? Is Atari a game
company or is Atari a computer company?
Can it be both? Has it been both?

All in all, a very interesting rumor.
Here's another one: Atari will introduce a

laptop version of the ST with a built-in hard
disk. This rumor is a little tougher to swal
low than the STGS. The last time Atari dis
played a portable computer, it was an 8-bitter,
with a six-inch (I believe) monochrome,
40-character screen. I think it was called the
XEP and was shown at the first CES after
the Tramiels took over Atari.

Anyway, a portable ST may be a neat idea
for some of us hard-core Atarians, but I don't
think it would be a real challenge for the likes
of Toshiba, Zenith or NEe.

Here's an "oldie but goodie": an Atari CD
ROM player by year's end. Remember the
"under $500" CD-ROM player Atari showed
three years ago? The time was not right then,
but maybe it is now. There's also some talk
of an Atari 80286 PC clone. We'll see.

At the summer CES, Atari's booth was all
video games. There was hardly a computer
in sight, not counting the XEGS. But sever
al independent sources, both inside and out
side of Atari, were talking about what Atari
would be doing at the fall COMDEX (Com
puter Dealers Exposition) in Las Vegas.

The talk centered on space. No, not the an
nouncement of a manned mission to Mars be
ing controlled by Atari ABAQ computers:
floor space! It was said that Atari has some
20,000 square feet of exhibit space reserved
at the upcoming COMDEX. With that much
space at a computer trade show, Atari may
be planning to announce all of the above
products and a dozen more. Stay tuned for
what may prove to be the biggest Atari show
yet seen.

Remember, these are just rumors. They
mayor may not be true. Chances are that,
like most rumors, they are based on fact, but
the final outcome will be somewhat differ
ent than stated here. However, keep in mind
that if we didn't care so much about Atari
computing, we wouldn't care so much about
Atari rumors.

Keep on computing. See you next month.

~

HACK PACK ~ PARROT II
Special OFFER w:"'"An All New Parral sound dlgltizel fal your AlOIi. Parrol II Is a

The Alpha Systems HACK PACK contains all our sophlslicated new hardware device Ihot plugs info your jaysfick
linest producls for making Bock-up copies, porI. Porrolll has two inpuls. One for a microphone and one for a
Analyzing, Underslanding and Prolecllng your powered source such os a lope player. rodia or Camoocl Disk.
Alari programs. II comes camplele wilh Atari The Pawenul Parralll software leIs you record sounds Inlo your computer and ploy Ihem bOck on any
Prolection Techniques (BoOk and Disk I). Advanced Protection Techniques (Book and Disk II). The Alori. ParrolII rurns your compulers keybOard inlo 0 musical Inslrument wilh nine differenl sounds
Chipmunk, The Scanalyzer. The Impersonafor and Disk Pock 1000. Worth over S150. Gellhem 011 covering Ihree aclaves each. The sounds can be anything. a dogs bark. a piano, a camplele drum
for the special price of Just $99.95 sel, a symphony or your own vOice.

At I So· ftwa P otectlon liechnlques Vol I It_ II Parrolll leIs you modIfy fhe sounds on a grophlc dIsplay 10 creote brond new sounds and specialar . re r . . .. . ellecls Besl at all, Ihe sounds and VOiceS can be pUf Inlo your own progroms Ihal can be used on
These Book and DIsk packages defarl fhe most advanced copy prolecllon methods rn use.loday. They any slandord Alarl. Explore Ihe world of digilal sound and music. ONLY $59 95
gUide you through the methods used to creote Ihe proleclron as well os lhe capyrng lechnrques fa gel •
around them. They include Infarmalian on Phreoking· Hocking· On-line security· Block bOxes. Self- Pre-Recorded Sound Disk More pre-recorded sounds for Parrot $".95
deslrucling programs' Pirole bullelln board syslems· logic bombs' New piracy lows' Hardware PARROT II Demo Disk (Does nol requlle Parrot to run) $5.00
dolo keys' Weak seclaring (Phanlam. Fuzzy and unsklbfe seclars) • Ovenilled lrocks • CRe errors •~ a fasl paced, mUIli-ployer Irlvia game thaI mixes queslians
Bonk Select cortrldges.and MUCH, MUCH MORE. The disks Include aulamallc program proleclors, POP·N-ROCKER with real sOngs (dlgilized
Pralection scanners. dIrectory hIding ond more. with Parrot). Be Ihe firsllo rdenllfy the songs and answer Ihe music trivia questions. Pop-N-Rocker
lOOK I and DISK I $2".95 comes wllh Ihree dolo disks and leIs you add new questions so II will never gel old. \bu can use a
lOOK II (Advanced prol8cUon) and DISK II $2".95 Porrot Sound digitizer 10 .add new songs loa! Use any kind of music tram Rack 10 Classlcollo
Special Offer. Order bolh sets for Only $39.95 Nursery Rhymes. Anew conceplln enlertainmenl and.o peneel odd-on for Parrot. $2".95

CHIPMUNK COMPUTEREYES • MAGNIPRINT II + ,,:~
Automatic Disk Bock-Up System. Make penectiy running unpralecled bock-up copies of hundreds of Turn your computer Inlo a digital porIroil sludla. This camplele package leIs
the mosl popular Alari programs. Chipmunk's saphisticaled programming Aulomallcally finds and you caplure, save" print digital images Irom your Video Camera, VCR
REMOVES copy protection Irom most Atari programs. Bock-Up even heavily prolecled programs wllh or TV. COMPUTEREYES hardware plugs dlreclly Inlo your joysllck porls far
eose. Finally. a bock-Up syslem thaI needs no special hardware or skills. easy use. Prlnl your piclure on a 61001 posler. $119.95
(tt you need a fulltisl of whoI Chipmunk copies. call or wrile for our free cOlalog) $34.95 ComputerEyes camera system
scanalyzer Automatically scan & analyze commercial programs. Untock programming secre~ Comes complele with everything above, plus a block and while video
leorn from the masters $29.95 camera and connecling coble. $329.95
Impersonator Cartridge to Disk back up syslem. Creole running bock-UP caples of any cartridge Graphics 9 Sohware - Add a new dimension 10 your COMPUTEREYES GIANT WALL SIZED POSTERS.

I--=.....~-------------____ (Up, to 16K) $29.95 piclures - coplures images In 16 shades 01 grey. $12.00

C EAT Magnlprlnlll +
H Easily Ihe mosl powenul prinl program available loday. Prlnl graphics from almosl any larmal In

Gel more Irom your games with CHEAT Tired 01 spending days Irylng 10 beal a game? Tired 01 gelling hundreds 01 shapes, sizes, and shades. Supporls color prlnflng and leIs you creole glanl posler.;.
sluck jusl when you need onolher life? Cheal is on innovalive new producllhol gives you Ihe chance Magniprlnlll + leIs you slrelch and squeeze, Inverl, odd lexl, adjusl shading and much mare.
you need 10 beal your favarile games. Cheal warks wllh hundreds 01 Alori games 10 give you Works wilh EPSON, NEC, Ciloh, Panasonic. Gemini. Slar, XMMBO 1. and campalible prinlers. (B50
unlimiled lives ar power. End Ihe Iruslrolion and gel hours mare enjoymenllrom your games. (Call or Inlertace ar equivalenl required). $24.95
write Alpha Syslems for our free catalog with a lull lisl althe programs Ihol work with Cheat) ONlY $24.95 Graphics Transformer
BASIC TURBOCHARGER Now you can combine Ihe mosl pawenul fealures of all your graphics pragroms. Creole prinl shop
NOW far Ihe firsllime a BASIC programmer can gellhe power, flexibitity and Incredible speed of icons Irom a Koala pod plclure. from a pholo dlgllized wilh CompulerEyes, ar any piclure IIle.
machine language. BASIC TURBOCHARGER is a book and disk package Ihal conlalns over 150 Graphics Transformer leIs you Shrink, Enlarge and Merge piclures lar unequaled tiexlbility. $22.95
ready 10 use machine language roulines. Complele Inslructians show how 10 add Ihem 10 your own YOUR ATARI COMES ALIVE
BASIC programs 10 gellhese lealures and more: • Smoolh Scrolling' Player/Mlsslle canlrol • load & SAVE MONEY Finally on ollernolive 10 buying expensive compuler add-ons. Your Alori Comes Alive
Sove Piclure files' Sorling and Searching' Special Elfecls Graphics· Incredible Speed' Much, Much shows you how to bullllhem yourself. This 'How-To' book and disk package gives you complele
More' Over 150 programs. You've heard of Ihe power 01 Assembler, now harness II lor your own slep by slep Inslructlons and programs needed 10 buill and conlral Ihese exciling devices and MORE:
needs. $2495 • Ughl Pen' Ughl & Molar Controllers ·Alarm Syslems· \llice Recognition· Environmenlal Sensars-. !; ~ ! ~ 24HOUR 216 374 7469 'Dolo Decoders' Mare Ihan 150 pages. Your Atarl Comes Alive $24.95

• i i _~~~:E~O~:"~~NO~~:~~ 10: AlP": ~rM~I~012S~f DRIVE ~ACEDON"'s 00 44as6 FREE eONus: OELUXE SPACE GAMES (3 gomes

Bo
CIRCLE #107 ON READER SERVICE CARD.

NOVEMBER A.N.A.L.O.G. Computing





When you want to talk Atari

$189
XM·M80~ XUXE Dot Matrix 199.00
XM-M804 ST Dot Matrix 199.00
XDM 121 Letter Qlty. XUXE 209.00
Brother
M-1109 100 cps Dot Matrix 169.00
M-1509 180 cps Dot Matrix 389.00
HR-20 22 cps Daisywheel 339.00
Citizen
1200 120 cps Dot Matrix 149.00
180D 180 cps Dot Matrix 179.00
Premier-35 35 cps Daisywheel .. 549.00
Epson
LX-800 150 cps, 80 col 189.00
Hi-80 4 pen plotter 269.00
FX-850 264 cps, 80 col Call
FX-1050 264 cps, 132 col Call
LQ-500 180 cps, 24-wire Call
LQ-850 330 cps, 80 col Call
LQ-1050 330 cps, 132 col. New
NEC
P2200 pinwriter 24-wire 379.00
P5200 pinwriter 24-wire 599.00
P5300 pinwriter 132 col 799.00
Okidata
Okimate 20 color printer 129.00
ML-182 +120 cps, 80 column .. 229.00
ML-320 + 300 cps, 80 column .. 379.00
ML-390 + 270 cps, 24-Wire .... 539.00
Panasonic
KX-P1080i 144 cps, 80 col 169.00
KX-P1091i 194 cps, 80 col 199.00
Star Micronics
NX-1000 140 cps, 80 column 179.00
NX-15 120 cps, 132 column 319.00
Toshiba
P321-SL 216 cps, 24-wire 499.00

v

Supra
30 Meg Hard Drive $689
LB.
51/4" 40 Track (ST) 219.00
51/4" 80 Track (ST) 279.00
l.e.D.
FA-ST 20 Meg 629.00
FA-ST 30 Meg 869.00
FA-ST Dual Hard Drives Call
Indus
GTS 100 3112" DS/DD (ST) 199.00
GT 1000 5%" DS/DD (ST) 209.00
GT Drive (XUXE) 189.00
Supra
FD-10 10MB Removable Floppy
w/SCSI 899.00
20 Meg Hard Drive (ST) 579.00
20 Meg Hard Drive (XUXE) 689.00

Atari 800XL & XF551
Disk Drive
w/5 Undocumented ROMS Asteroids,
Defender, Missile Command, QIX, Star
Raiders $279
Atari
800XL 89.99
130XE 139.00
XLIXE ENHANCEMENTS
Axlon 32K Mem. Board (400/800) .19.99
Atari 80 Column Card 79.99
MODEMS
Atari
SX212 300/1200 (ST) 89.99
XMM301 42.99
Anchor
VM520 300/1200 ST Dir. Con .... 119.00
Avatex
1200 HC 89.99
2400 159.00
Supra
2400 Baud XUXE or ST 169.00
2400 Baud (no software) 149.00
MONITORS
Magnavox
CM8505 14" Composite/RGBITTL 199.00

INTERFACES
ICD
P:R Connection 61.99
Printer Connection .41.99
Supra
1150 39.99
1151 (1200 XL) 40.99
Xetec
Graphix Interface 38.99
Atari
850 Interface 109.00
COMPUTERS
CMO PACKAGE EXCLUSIVE

COMPUTER MAIL ORDER



· you want to talk to us.
, XLIXE SOFTWARE ACCESSORIES ST SOFTWARE

Access
Leaderboard Golf 13.99
Accolade
Hardball 19.99
Atar!
Atariwriter Plus 35.99
Filemanager 11.99
Music Painter 11.99

LOOS8UNBOXEDXUXE
ROM CARTS

8349 ea. or 5 for 81499
Includes: Space Invaders, Star Raiders, Missile
Command, Asteroids, Pac Man, Galaxian,
Defender, Qix

Atari Program Exchange
Misc. Programs (cassettes) ..... at 1.99
Broderbund
Graphics Library I, II, III 14.99
Printshop 26.99
Datasoft
Alternate Reality (City) 23.99
221 Baker St. 20.99
Electronic Arts
Auto Duel 29.99
Firebird
Guild of Thieves 19.99
Silicon Dreams 19.99
Jewels of Darkness 19.99
Microprose
Top Gunner 16.99
F-15 Eagle Strike 21.99
Silent Service 22.99
Origin Systems
Ultima 4 36.99
Roklyn SPECIAL
Anti-Sub/Journey to Planet ... (ea.) 3.99
Strategic Simulations
Colonial Conquest 24.99
Gemstone Warrior 11.99
Sublogic
Scenery Arizona 14.99
X-Lent
Typesetter 22.99
Printsho Interface 21.99

MD1-M SS/DD 51/4" 8.49
MD2-DM DS/DD 51/4" 8.99
MF-1DDM SS/DD 3112" 11.99
MF2-DDM DS/DD 3112" ...•..... 18.49
Sony
MD1D SS/DD 51/4" 6.99
MD2D DS/DD 5%" 7.99
MFD-1DD SS/DD 3112" 11.99
MFD-2DD DS/DD 3112" 17.99
Allsop Disk' Holders
Disk File 60-51/4" 9.99
Disk File 30-3112" 9.99
Curtis
Emerald 39.99
Safe Strip 19.99
Universal Printer Stand 14.99
Tool Kit 22.99
ICD
BBS Express (ST) 52.99
Sparta DOS Construction Set 28.99
US Doubler/Sparta DOS 47.99
Real Time Clock 48.99
Rambo XL 29.99
US Doubler 28.99

ACCOLADE
Bubble
Ghost
Abacus
PC Board Designer 119.00
Access
Leaderboard Golf 22.99
Activision
Hacker II 28.99
Antic
CAD 3-D 29.99
Avant Garde
PC Ditto 59.99
Batteries included
Degas Elite 37.99

Dataeast
Speed Buggy 24.99
Electronic Arts
Gridiron Football/Auto Duel. (ea.) 26.99
Isgur Portfolio 119.00
Firebird
Silicon Dreams 19.99
The SentrylTracker (ea.) 12.99
Infocom
Beyond Zork 34.99
Metacomco
ISO Pascal 59.99
Microprose
Gunship 28.99
F-15 Strike/Silent Service (ea.) 24.99
Miles Software
ST Wars 24.99
Mind.scape
Road Runner 36.99
Mark of the Unicorn
PC Intercom 79.99
Mark Williams
C 119.00
Paradox
Wanderer (3D) 24.99
Progressive Computer
Graphic Artist 1.5 119.00
Psygnosis
Barbarian/Deep Space (ea.) 25.99
Soft Logik Corp.
Publishing Partner 54.99
Strategic Simulations
Questron II 37.99
Sublogic
Flight Simulator II 33.99
Timeworks
SwiftcalclWordwriter (ea.) 45.99
Partner ST 29.99

TIMEWORKS
Desktop Publisher $7999
Word Perfect Corp
Word Perfect 4.1 179.00

8711

In the U.S.A. and in Canada

Call toll-free: 1-800-233-8950
MEMBlI'I

Outside the U.S.A. call 717-327-9575, Fax 717-327-1217 MMC
Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283 MICROCOMPUTER

CMO, 101 Reighard Ave., Dept. 87, Williamsport, PA 17701 ~~~~'::"';.=-c;;
.wa;''"i••.uuJi·li~iili.lii@i.IMi:l;;_·'''rlJ!.''.';ia;I#.ii'i.';I.~".'IiHii':l •••ni.jl'''.,;i.,....';I.ij[.I••;t·i;[.,i.iil~lil.4i:i'.

POLICY: Add 3% (minimum $7.00) shipping and handling. Larger shipments may require additional charges. Personal and company checks require 3 weeks to clear.
For faster delivery, use your credit card or send cashier's check or bank money order. Credit cards are not charged until we ship. Pennsylvania residents add 6% sales
tax. All prices are U.S.A. prices and are subject to change, and all items are subject to availability. Defective software will be replaced with the same item only. Hardware
will be replaced or repaired at our discretion within the terms and limits of the manufacturer's warranty. We cannot guarantee compatibility. All sales are final and returned
shipments are subject to a restocking fee. We are not responsible for typographic or photographic errors.

CIRCLE #108 ON READER SERVICE CARD.




