THE U.K. = PRICE £1.00
\SSUE 7

COMPUTER OWNERS CLUB

INDEPENDENT USER GROUP

IN THIS ISSUE

)

JA

COMPUTER OWNERS CLUB

INDEPENDENT USER GROUP

CLUB CHANGES

There have been a few changes in the
club officers since the last newsletter,
unfortunately Chris Barlow has left us and
moved on to other things, but his position as
President has been taken over by Ron Lewy
and the editorship of the newsletter is now
the responsibility of Roy Smith. The other
major change that has occured is that the
membership fee has been increased to £4.00
this is to cover increased costs of producing
the newsletter and the recent increase in
postal charges. However, we still feel that this
15 good value for the service we provide to
members and we hope that you feel the same
and will continue to support the club.
Remember it is your club and you are
welcome to contribute at any time to the
contents of the newsletter, be your
contribution a mega five page article, or just
a few line programming tip!

For those of you whose interest in a Light
Pen and the RTTY terminal unit was kindled
by the last issue, perhaps you would like to
know that both are now available in kit form
from Maplin Electronic Supplies. The Light
Pen includes a printed circuit board, but not
the pen holder, and the TU1000 unit has
everything in the kit except the case. The
Light Pen is £10.95 and the TU1000 is £49.95.

The main article in this issue is all about
machine code interrupts, both the Display
List and the Vertical Blank types, with useful
routines which can be tacked on to your
programs. Another useful article gives an
ultra fast routine to search a string of
characters. Following on from last issue’s
article about printing out Graphics 8 pictures,
the Compressor is a program to compress
the picture data so that each picture takes up
less room. Our teach vourself machine code
tutorial continues and several adventures are
reviewed in our regular adventure column.
Plus software reviews, new library software,
‘Did you Knows' and other regulars.

Finally, don't forget that the higher the
membership the better the club will become,
the newsletter can expand futher (some may
have noted that issue 6 was increased to 32
pages) and other benefits could be
considered (maybe buying disks in bulk so
that members can get them cheaply). So if
you have friends who read your copy of this
newsletter why not talk them into joining,

2 Ultra Fast String Search

Looking for a fact or a figure and need to find it fast! This
machine code routine does just that.

4 Little Silver Box

Design for a relay box so that you can
access the big wide world.

6 The Compressor

A discussion of data compression techniques with some
programs to save Graphics 8 pictures efficiently.

8 Adventure into the Atari

Our regular adventure column features software reviews
and clues.

10 Cracking the Code

Part 3 of this teach yourself machine code series.

1 3 Trapdoor

An excellent two player game of strategy
and fun for all the family.

1 5 Special Offers
Some super bargains for you to purchase
on special offer.

16 Software Library

All the latest programs sent in by members
for the benefit of other members.

1 8 Interrupts

First part of two giving an explanation, with working
examples, of Vertical Blank and Display List Interrupts.

25 Flip

An exceedingly fustrating game with very good graphics.

28 Interface
A selection of interesting queries
received from members.

30 Reviews

Landscape and Gyruss are subject
to the critical eye.

31 Read All About It —

Reviews of many of the books available on Atari subje

: fﬂ;h\% ".'_E:hi’m

cts.

SUBSCRIPTION RATES

s

then they, as well as you, can benefit. cheques/postal orders are to be made
b UK and Ireland ©oaa i, v ... £4.00 payable to the ‘U.K. Atari Computer Owners
ORI R . s e s £7.00 Club’. Overseas membership is also available
c.ﬂinn's Qutside Europe (Surface)............. £7.00 at slightly higher rates. Overseas members
Editor Roy Smith Outside Europe (Airmail)ouuuu. £10.50 who use the Library service should include
i i Fovr ; 3 h ext nies to co t ;
Tedm’!cal Edftor o Ron Lewy The above prices are in English Pounds e) CoRT ISR
TQChm.CaI Editor Keith Mayhew Sterling and include postage and packing. ADVERTISEMENTS
Ari Editor Peter B!a‘:k“?ﬂfe A subscription/membership fee to join the Please note that the club cannot be held
Adventure Editor Steve Hillen U.K. Atari Computer Owners Club is just legally responsible for claims made by
Photography John Attfield £4.00 for four issues of the club magazine. All advertisers.
COVER: Planetfall is a trademark and is copyright Infocom Inc., 55 Wheeler Street, Cambridge, MA 02138, US.A
Copyright: “The UK ATARI COMPUTER OWNERS CLUB" is an independent users group and is in no way affiliated with ATARL All material is subject to world wide Copyright protection, and
reproduction ar imitation in whole or part is expressly forbidden. All reasonable care is taken to ensure accuracy in preparation of the magazine but the UK ATARI COMPUTER OWNERS CLUR

cannol be held legally responsible for its contents, Where errors occur, corrections will be published as soon as possible afterwards, Permission to reproduce articles or listings must be sought from the
UK ATARI COMPUTER OWNERS CLUB, ATARI (and any other Atari product mentioned in the magazine) is a trademark of ATARI CORPORATION.

By Keith Mayhew '

This ultra fast, short machine code routine, just over 100
bytes long, will search and compare for a set of given characters
anywhere in memory. If a match is found then the relative
position from the start of the search is returned. This routine
| could be used in a program for many purposes, such as
| searching for a correct spelling in a word-processing package or
| spelling checker type program. Although this program is capable

of searching anywhere in memory, it is shown in the demo
BASIC listing searching within a BASIC string for a specified
string of characters, and this is probably the most likely way it
would be implemented. This program can also search for literally
any character at all i.e. space, control, and graphic characters
| anywhere in memory including the O.S. ROM.

How to use it

| To find the first occurence of the set of characters to be

| found, called the sub-string, in the specified area of memory,
called the main string, you simply have, as a BASIC statement,

: | the following line:

X=USR(ADR(SEARCHS),A1,L1,A2,1 2)

Where Al and L1 are the address and length of the main

| string and A2 and [2 are the address and length of the sub-

| string. The address of the machine code is found by

| ‘ADR(SEARCHS)’ in the above line, where the machine code is

held within a string called ‘SEARCH$’. The machine code could
| equally be fixed in memory e.g. page six (1536) onwards. Please
| note that the length of the sub-string (L2) must be less than 256
| as this greatly simplifies and speeds up the routine, and it is

|| extremely unlikely that the sub-string would need to be greater

| than this anyway.

Upon the first call to the routine where the four parameters
are passed (A1,L1,A2L2) then the program will return to BASIC

Listing 1

10 DIM M$(500),54(255)

20 ? CHR$.125)}"Please wait while sachine code"
3ﬂ ', "is read into 'm'.;.“

40 GOSUB 31808

50 M$="THIS IS THE STRING THAT WILL BE SEARCHED FOR A HA
TCH BY THE MACHINE CODE."

40 ? 37 37 "Flease enter the characters you wish"
70 ? "to find in the following stringl"

80 7 37 M$

90 INPUT 5%

100 L1=LEN(H$)1L2=LEN(SS)

110 A1=ADR(M$):A2=ADR(S$)

120 ¥=USR(ADR(SEARCHS),Al1,L1,A2,L2)

130 TF X=0 THEM 200

140 GOSUE 1000

150 X=USR(ADR(SEARCH$)+71)

160 IF X=0 THEN 200

170 GOSUB 1000

180 GOTO 150

200 ? 37 3? “End of search.."i? 37 17 {GOTO 40
1000 FEM Print results.

1010 ? 7 1? "Match fourd at position “3X

1020 ? 37 "String from there reads"

e

with the variable (*X’) containing the relative position in the
string of the first occurence. Note that if, for instance, the sub-
string was found at the beginning of the main string then ‘1’
would be returned, i.e. it is in the first position of the string. This |
convention was used so that it is directly compatible with =
BASIC's strings, where the first character is also designated the
position ‘1", If you are searching outside of BASIC's strings then
to compute the address of the match vou would add the
returned position to the main string’s address minus ONE, as
the first position is actually zero. £
If a string search fails, i.e. it does not find an exact match for
the sub-string, then the value of zero is returned in the variable
(X). If a match is found, i.e. X is greater than zero, then a
second search can be implemented to continue from the last
position by a second entry point in the routine, to see if a -
second match can be found. This can be repeated for as long as

X is greater than zero to find as many matches as there actually |

are in the main string. The Second call is of the form:
X=USR(ADR(SEARCHS$)+71)

Listing 1 is a demonstration of a string search incorporating
the two ‘USR’ calls to find all the matches in the main string.
Type in the program double checking the DATA statements.
When you are satisfied you have made no errors, save the
program to cassette or disk in the usual way i.e. CSAVE or
SAVE“D:SEARCH.BAS”. Run the program and take note of
how fast it finds all the occurences of the specified sub-string. If
you want to use the machine code in your own programs then
‘LIST’ the appropriate line numbers to cassette or disk using:
LIST*C:",31000,32130 or LIST“D:SEARCH.LST",31000,32130.
This can then be ENTERed over another program. Experiment
with the demo listing to find different sections or lengths of the
string, so that you are familiar with how to change the
parameters.

1030 ? Ms(X,L1)

1040 RETURN

31000 REM Load ‘SEARCHS$' with machine code,
31010 DIM SEARCHI(109)

31020 FOR I=1 TO 109

31030 READ X

31040 SEARCH$(I,I)=CHR$(X)

31050 NEXT I

31060 RETURN

32000 DATA 104,104,133,204,104,133,203,104
32010 DATA 141,241,6,104,141,240,4,104
32020 DATA 133,206,104,133,205,104,104,141
32030 DATA 242,4,240,74,169,1,141,243
32040 DATA 6,149,0,141,244,6,238,240

32050 DATA 6,208,3,238,241,6,160,0

32060 DATA 177,203,209,205,208,18,200,204
32070 DATA 242,6,208,244,173,243,6,133
32080 DATA 212,173,244,6,133,213,96,104
32090 DATA 238,243,6,208,3,238,244,46

32100 DATA 230,203,208,2,230,204,173,244
32110 DATA 6,205,241,6,208,208,173,243
32120 DATA 6,205,240,6,208,200,167,0

32130 DATA 133,212,133,213,96

ULTRA FAST STRING SEARCH

Listing 2

0100 jMritten by Keith Maghew.

0110 }Relocatable machine code.

0120 }Search for a sub-strinag,

0130 }in 2 m2in string,

0140 jCalled from BASIC by!

0150 }X=USR{ADR(SEARCHS) ,A1,L1,AZ,L2)
0160 jWhere Al is the address of the
0170 jmain string and L1 is its

0180 }lerath, similarly for the

0190 jsub-strirm} A2 and L2,

0200 $If 0 is returred strirQ was

0210 jrot found, Second entry point
0220 jcontinues search for the next

0230 joccurence of the strirg called byl
1240 $X=USR(ADR(SEARCH$)+71)
0250 1= $CB
0240 STRING x= 42
0270 SUESTR x= x24+2
0280 x= $046F0
0290 STRMGL x= 242
0300 LEN X+
0310 PNTR x= *+Z
0320 x= $0600
0330 FLA
0340 FLA
0350 STA
0340 FLA
0370 STA
0380 PLA Strirg lemath HI,

0390 STA STRNGL+1 store.

0400 Strirg lerqth LO,

0410 STRNGL store.

0420 Sub-strirg pointer HI,
0430 SUBSTR+1 store,

01440 Sub-strirg pointer LO,
0450 SUESTR stora,

0440 Sub-string length HI,
0470 Sub-string lermth LO,
0480 LEN Store LO byte,

0490 NOTFMD If zero then not found,
0500 $01 Set pointer

Irdirect pointers
to the two striras.

Main strirg lenath.
Sub-string lengths
Fosition in string,
Locate in page &
Clear stack.
String pointer HI,
STRING+1 store,

Strirg pointer LO,

STRING store.

You may notice that when the program is run it takes a few
seconds to load the machine code search routine (held in the
DATA statements), but once this is achieved the actual use of
the routine is extremely fast as you will see. The program will
then display the main string (M$) and will ask you to enter a
group of characters for it to find. First enter THEM’, the
program will report ‘End of search’ as no match was encoun-
tered, note that the first three characters i.e. ‘THE' do appear in
the main string and so does ‘THE M’ but these are not detected
because the space is a significant part of the string. Now try
entering a character or a group of characters which are in the
main string, the program will tell you that a match was found
and what position in the string it occured and it will also print
the rest of the string from that position. If there was more than
one occurence of your chosen character(s) then all of these will
be printed out in a similar manner. You may find it useful to
know that when the program finds a large number of matches,
you can use CONTROL 1 to pause the listing of the results and
press CONTROL 1 again to resume.

The program DIMensions M$ and S$ to 500 and 255
respectively. This as far as S$ is concerned is its maximum
value, but M$ can be as large as the free memory in your
machine will allow. To give you an idea of the speed of the

machine code routine, you could place more characters into M$

STA FNTR
LDA 00
STA PNTR+

to 1/
and HI
byte to zero.

INC STRNGL Increase strimg

ENE SEARCH length by

INC STRNGL+1 one.s
0570 }Search for sub—string,
0580 SEARCH LDY $600 Set index to zero.
0590 LOOP1 LD& (STRING),Y Get nain character.
0600 (SUBSTR),Y Compare to other.
0610 MXTCHR If not equal try next.
0620 Increment index
0630 LEN and compare to lergth,
1640 LOOF1 go back if not at end.
0650 jFourd sub-string.
0460 Set BASIC
0470 yariaple
0480 equal to
0690 pointer
0700 and return to BASIC.
0710 jEntry for continuing search.
0720 CONT FLA Just clean stack,
0730 jPoint to newt position in
0740 jthe main strira,
0750 NXTCHR INC PNTR
0740 SKIF1
0770 FNTR+1
0780 SKIF1 STRING Increment
0790 SKIFZ string pointer
0800 STRING+L by one.
0B10 SKIFZ PNTR+1 Compare pointer HI
0820 STRNCL+1 to string HI.
1830 SEARCH If not equsl go back.
1840 PNTR Compare pointer LD
0850 STRMGL to strirg LO.
0840 SEARCH If not equsl go back.
0870 jStrinc not found.
0880 NOTFND LDA ##00
1890 STA 212
1200 STA 213
0910 RTS

Increment
pointer
by one.

AIERREREREER

Store zero

in BASIC
variable.
Return to BASIC.

on line 50 or you could dimension M$ to a larger number (a few |
thousand) and then set the last few characters to something, |
say, your name! For example try the following changes:

10 DIM M$(2000),5$(255)
55 M$(1196,2000)="KEITH”

When this is RUN the program will print M$, unfortunately,
now very long! It will contain a series of dummy characters from
the full stop after ‘CODE’ to the name ‘KEITH’ this is because
you have not told BASIC to clear these characters. When you
are asked to enter the characters you wish to find, type
‘KEITH’, and it should find it very quickly, giving you an indi-
cation of its speed searching through two thousand characters.

Listing 2 is the machine code which includes comments for

. those of you who wish to follow the flow of the routine.

If this article seems familiar, then it's probably because you
are a reader of ‘Practical Computing’ magazine. This article was
published in the October 1984 edition in the ‘Open File’ section.
Our thanks to Mr. Jack Schofield for publishing it and for
supporting Atari computers in general through the pages of
Practical Computing, there aren't many editors who bother with
things Atari these days.

i

THE LTTLE SIYER BOX |

by Paul Griffey - Bath

Have you ever been asked, while showing a non-computer
addict your beloved system, “Yes, but what do you use your

| computer for?” This question often causes the loading of your

latest game, with mega graphics, to be aborted. But now with

this Relay Box you need no longer be ashamed. It will enable

your computer to communicate with the outside world, and here
are a few ideas to start you off. You could use it as a
programmable alarm clock to operate your radio, TV etc., or
you could have a security system to control the lights in your
house when you go out in the evening. Maybe you could make a
system with floats and micro switches fitted to the ‘TRIGGER’
inputs, and a pump to control the level of water in a tank, or a
system for the disabled that uses their TV and a joystick to
operate curtains, open the front door or call for assistance.

From any

Design

The Relay Box was designed to be as simple as possible
using readily available components. As shown in figure 1, the
supply is taken from the cassette output on the power pack and
provides 9V dc. The reason for using this supply and not the
computer’s own 5V supply is two-fold. Firstly for isolation there
is less chance that a high voltage spike from the relays will find
its way into your computer. The second reason is because of
components. The majority of 5 volt relays will not handle
voltages at adequate currents. The 9 volt supply enables a 6-12
volt relay to be used. MAPLIN can supply a suitable relay
(YX98G) which is rated at 5A,240V AC, 30V DC.

| Construction

When a program ‘POKES’ a number to a joystick port the

| corresponding pin switches to logic 1 (5V). The relevant
| transistors amplify the signal and drive the relay, switching the

external circuit. Figure 1 shows the circuit required to drive one
relay. The prototype had four relays, which is the maximum that
can be driven from one joystick port. It was built on veroboard
and housed in an aluminium box. Construction should be
straightforward but care should be taken on the following points.

| When making the lead for the 9 volt supply, ensure the negative

L00 REM SET UP PACTL

110 DI AS(1)

120 PORTA=54016

130 PORTE=54017

140 PACTL=3401€

150 PECTL=34019

160 REM SET BIT Z OF PORT A CONTROL REGISTER TO ‘0’ & AL
LOW ACCESS TO DATA DIRECTION RECISTER

17¢ POKE PACTL,36

180 REM SET PORT & TO ALL QUTFUTS

190 POKE PORTA,255

200 REM SET EIT 2 CF PORT A CONTRCL REGISTER TC ‘17 & AL
LOW ACCESS TO DATA REGISTER

210 POKE PACTL,40

220 REM OFERATE FELAYS IN A BINARY COUNT SEQUENCE

230 FOR I=1 TO 13

240 POKE PORTA,L

%02 "1

260 REM PRESS RETURN FOR MEXT NUMEER
270 INFUT A$

280 NEXT I

290 POKE PORTA,0

300 STOF

Listing 1.

side is connected to the OV rail, otherwise if the cassette is used
at the same time, the transformer will be shorted out! Ensure
diodes across the relay are inserted correctly as these suppress
the high voltage spikes from the relays when they change state
(these spikes can be 1000s of volts!). Figure 2 shows how to
connect the board to the port.

Testing

Connect the circuit to the cassette supply but don't insert
the ‘D’ plug into the front port. The relays should all be de-
energised. If all is well, connect the +9V rail to one of the inputs

wio o ain 8 n ale 4 nlo

Eay
)
aas

ey

&= . L . N7

Gy STt S

on the plug (see fig 2) and the associated relay should now
operate. Repeat this test on all four inputs. Now insert the plug
into the port and boot your computer with BASIC. If the blue
screen does not appear on your TV switch off IMMEDIATELY
and check the circuit. All of the relays should be energised and

| now you are ready to énter the programs.

| Software
| The setting up of the ports has been covered in a previous
| article (Issue 3), but to start you off I have shown a couple of

| NOTE: In this program, anything which is underiined, should be entered
| in “INVERSE”.
| Listing 2.
110 REM ¥PORT_CONTROLX
130 REM RESET FORTS
130 POHE 54018,5461PDKE SA019,564F0KE 54016, 04FOKE 54017,
0:FOHE 54018,603POKE S4019,40
150 REM WHICH FORTS?%?
160 CRAPHICS 0iSETCOLOR 2,5,3:DIN A$(S)
170 TRAF 170
180 ? 1? “Wnich joystick port do you wish to usefor the
relay box (1-4)"}
190 INFUT RELAY
200 IF RELAY<1 OR RELAY>4 THEN 180
210 TRAP 210
220 ? 1?7 "Mhich port do you wish to use for the joystick
(1-4)"}
730 INPUT JOYSTICK
240 IF JOYSTICK<1 OR JOYSTICIC4 THEM 220
250 IF JOYSTICK=RELAY THEN ? " The jouystick & relays can
't operate from the same port !"iGOTO 180
260 TRAF 0
270 REM SET WP PORT FOR QUTFUT
280 IF RELAY=1 OR RELAY=Z THEM PORT=34014
290 IF RELAY=3 OR RELAY=4 THEN PORT=54017
300 POHE PORT+2,54
310 IF FELAY=1 OR RELAY=3 THEN POME PORT,15
320 IF RELAY=2 OR RELAY=4 THEN POKE PORT,240
330 POKE PORT+2,4603FOKE PORT,O0
340 ? 17 "THE PORTS HAVE BEEN SET."
330 ? "Plug the relays into port “RELAY
3460 ? "Flug the joystick into port "}JOYSTICK
70 ? " Then press any key"
380 POKE 764,255
| 390 IF PEEK(764)=255 THEN 390
| 400 REM DISFLAY STATUS
410 CRAPHICS 18

simple programs. The first will check the operation of the four
relays connected to port 1, and the second will show you how
to control individual relays selected from a menu.

Warning

Please exercise caution if you intend to switch Mains
appliances. Do not try to control large inductive loads. |
Suppression will be necessary in the form of a 0.047 microfarads |
250V AC capacitor (MAPLIN FF55K), across the contacts of
the relay.

420 7 $63" move joystick left and right to selact the re

1zy and press fire to change state

430 POSITION 2,637 #b63"off off off off"

440 POSITION 2,717 46)"RL1 RLZ L3 RLA"

AS0 REM SELECT RELAY

440 RELAY=1

470 IF STRIG(JOYSTICK-1)=0 THEN 580

480 A=STICK(JOYSTICK-1)

490 IF A<>7 AND A<>11 THEN 470

500 IF A=7 THEM 330

510 RELAY=RELAY-13TF RELAY<1 THEN RELAY=4

520 COTO 540

530 RELAY=RELAY+1!IF RELAY>4 THEN RELAY=1

S40 POSITION 2,747 #43"RL1 RLZ RL3 RLY"

550 POSITION RELAY®4-2,7:.7 #4)"RL"JRELAY

560 IF STICK(JOYSTICK-1)=15 THEN 470

570 GOTO 540

580 REM CHANGE STATE 1=0N 0=OFF

590 FOSITION RELAYZ4-Z,6

600 ON RELAY GOTO 610,630,650,470

610 RLI=1-RU1MIF RL1 THEM 480

420 GOTO 490

430 RL2=1-RL 2!TF M 2 THEN 480

440 COTO 690

450 RL3=1-FL3:IF RL3 THEN 480

660 COTO 690

4710 RLA=1-RLAIIF NOT RLA THEN 490

680 7 363" 0N "1G0TC 710

490 7 363" of f"

700 REM FIND VALLE FOR PORT

710 VALUE=RL1+RLZx2+R1L Ix4+RLAXB+RL1X146+R1 Z¥324R1LIx644+RLA
- X128

720 FOHE PORT,VALUE

730 IF STRIG(JOYSTICH-1)=0 THEN 730

740 COTO 470

SAVING GRAPHICS 8
SCREENS EFFICIENTLY

If you have been working with
| graphics 8 mode on your ATARI you
| will certainly be aware of one of the
major DRAWbacks (pun intended!) of
using high resolution graphics, to save a
single screenful requires around 8K of
storage space. This represents around
60 blocks of cassette storage or 62
sectors of disk space. The usual method
of saving a screenful of data to a device,
is simply to ‘PUT’ every single byte of
the screen data to the device exactly as
it exists in memory, as shown in
Program 1.

{SREN seeaey ««PROGRAN 1..0ususe

2 REM Save Screen with no compression
10 DIM F$(15)

20 PRINT "Which File-3";: INPUT F$
100 BRAPHICS B+16:COLOR 1

110 PLOT 0,0:DRAWTD 319,191

120 PLOT 0,191:DRAWTD 31%,0

130 BOSUB 26000:STOP

26000 REM Dump Screen Data.....
26100 OPEN #1,8,0,F%

26200 SS=PEEK(BB) +25b3PEEK(BY)

26210 ES=55+7480

26300 FOR [=55 TO ES

26310 Y=PEEK(I)

26320 PUT 41,)

26400 NEXT I

26300 CLOSE #1:RETURN

This demo routine simply opens the
screen in mode 8 and then draws an X
across the width of the picture. It then
asks you for the filename to save this
artistic masterpiece. Those of you who
are fortunate enough to be blessed with
the luxury of a disk drive, can enter the
usual D:FILENAME, but those who use
a cassette only, should type C:. The
program then determines the start and

1 REN secannas PROGRAM 2....40s.

2 RER Load Screen with no compression
10 DIM F$(15)

20 PRINT "Which File->";: INPUT F$
100 GRAPHICS 8+16:COLOR 1

110 BOSUB 27000

1000 BOTO 1000

27000 REM Load Screen Data.....
27100 OPEN ¥1,4,0,F$

27200 S5=PEEK (8B)+2561PEEK(BY)

27210 E5=55+7¢680

27300 FOR 1=85 T0 ES

27310 GET #1,X:POKE I,X

27400 NEXT 1

27500 CLOSE &1:RETURN

by Ron Levy

end memory locations of the screen and
then proceeds to dump the data, one
byte at time, to your output file. This is
the principle used by virtually all
graphics eight or drawing or graph
storage systems, and is pretty
straightforward. To reload a particular
file Program 2 can be used.

If you examine the file you have just
created you will see that it is nearly all
empty spaces, or zero bytes. Of the
7680 bytes saved only about 5% in this
case are actually non-zero values! One
improvement which has been made by
some GRAPHICS 8 utilities is to
incorporate a machine code routine to
save and reload the data. This relieves
the time factor to a certain extent on
disk systems, but the problem of

I e PROGRAM 3....... ;

2 REM Save Screen with cospression VI
10 DIN F${13)

20 PRINT "Which File-}";:INPUT F$

100 BRAPHICS 8+146:COLOR 1

110 PLOT 0,0:DRANTO 319,191

120 PLOT 0,191:DRAWTD 319,0

130 GOSUB 260003:5TOP

26000 REM ...,.Dusp Screen Data.....
26100 OPEN #1,8,0,F$

26200 S5=PEEK(BB)+255¥PEEK(89)

26210 E5=55+7480:C=0

26300 FOR I=55 TO ES

26310 Y=PEEK(I)

26320 IF X>0 OR C>254 THEN PUT #1,C:PU
T #1,X:C=1:60T0 26400

26330 C=C+l

26400 NEXT I

26500 CLOSE #1:RETURN

inefficient use of storage space still
persists.

The solution is to have a routine
which, when it comes across a series of
blank bytes on the screen simply counts
these zero bytes and puts one byte to
the output file whose value represents
this count. Now type in and RUN
Program 3.

L REN:. coviea s PROGRAM 4...00ues

2 REM Load Screen with cospression VI
10 DIM F$(15)

20 PRINT "Which File-)";:INPUT F$
100 BRAPHICS B+16:COLOR 1

110 GOSUB 27000

1000 BOTD 1000

27000 REMLoad Screen Data.....
27100 OPEN #1,4,0,F$

27200 SS=PEEK (88) +2563PEEK (89)

27210 P=55:TRAP 27500

27300 BET #1,C:6ET #1,X

27310 P=P+C:POKE P, X

27400 BOTO 27300

27500 CLOSE 41:RETURN

You should notice that, in
comparison to the first example, very
few blocks or sectors of data were
saved. In fact, for this particular shape
on the screen, only 7! You may at this
stage doubt that this will actually work,
but just type in Program 4, rewind your
tape if you are using cassette, and RUN
it.

If all has gone well, you should now
have the cross back on your screen.
Two advantages of this system should
now have become apparent. Firstly, |
have reduced the storage file size to an

eyl i PR

S

® i

P whealh Ay

. L T

incredible 10% of its former size, and
secondly, because we are only restoring
the bytes with data in them, the picure

| is redrawn at incredible speed!

In practice, however, you will not
usually achieve such amazing results
since our example picture was a very
simple one. The more ‘dense’ the
picture, the less efficient the new system
will become, for it relies on compacting
the contiguous block of zero bytes
which represent blank areas on the
screen.

So How Does It Work?

The computer stores a graphics
eight screen in a continuous block of
memory, roughly 8K of bytes
somewhere near the top of memory (the
locations 88 and 89 tell us exactly
where). When a graphics 8 screen is
first called, it starts as a blank screen,
| none of the pixels are lit, and this is
achieved by making all the screen bytes
zero in value. When you plot a point on
the screen the computer determines
which of its memory locations
corresponds to the particular pixel you
| want to be lit, and alters its value
| accordingly. Each byte of screen data
contains the information for eight pixels
of the display, one per Bit. | won’t go
into the precise way in which this
| happens since this has been covered in
| previous articles, but it is sufficient to

remember that if a screen data memory
| location is greater than zero then one or

more of the corresponding pixels will be

lit, but if it is zero then that small part of

- | the screen (eight dots wide) will be

blank.

Our compressor Program 3 looks at
each of the screen memory locations in
succession, and tests it to see if it
contains zero. If it does, then it
increments the zero byte count (variable
C) and then loops back to look at the
next byte. Once a non-zero byte has
been found the program takes the value
in C (the zero byte counter), and sends
it to the output device, followed
immediately by the non-zero screen byte
which it found. It then resets the zero-
bytes found variable (C) and repeats the
operation, stopping when the end of the
screen data has been reached.

The result is an output file which is a
block of pairs of numbers, the first of
| each corresponding to the number (if
| any) of contiguous zero bytes, and the
| second being an actual screen data
byte. In practice, because of a short-cut
| I have taken to speed up the loading of

this file, if there were no zero bytes on a
| particular pair then the first byte would
be equal to 1.

As you may appreciate, since this
program relies upon blocks of blank
locations, the more dense the picture is,

| the less efficient it will be. Take the
| extreme example where there are little

2 | or no zero bytes, we would be storing

two bytes for every one screen byte! In

COMPRESSOR

1 REM +svuuee PROGRAM Sussnneas

2 REH Save Screen with cospression V2
10 DIN F$(15)

20 PRINT "Which File-)>";sINPUT F$
100 GRAPHICS B+16:COLOR !

110 PLOT 0,0:DRANTD 319,191

120 PLOT 0,191:DRANTD 319,0

130 6OSUB 26000:5T0P

26000 REM +.v..Duap Screen Data.....
26100 OPEN #1,8,0,F%

26200 SS=PEEK (881 +2568PEEK (B9)

26210 E5=55+7680:C=0

26300 FOR 1=58 TO ES

26310 X=PEEK(I)

26320 IF X=0 THEN C=C+1:1F C=255 THEN
PUT #1,0:PUT #1,255:C=0:60T0 26400
26330 IF X0 AND CX0 THEN PUT #1,0:PUT
#1,C:C=0

26340 TF X20 THEN PUT #1,X

26400 NEXT I

26500 CLOSE #1:RETURN

practice, however, most line drawings or
graphs use only a tiny percentage of the
surface area of the screen, and so will
benefit greatly from this method of

2 REM Load Screen with compression V2
16 DIM F$(15) {
20 PRINT "Which File->";:INPUT F$

100 GRAPHICS B+16:COLOR 1

110 GOSUR 27000

1000 OTO 1000

27000 REMLoad Screen Data.....
2710G OPEN #1,4,0,F$

27200 SS=PEEK (BB} +2568PEEK (89)

27210 P=858-1:TRAP 27300

27300 GET #1,X

27310 IF X=0 THEN BET #1,X:P=P+X:60T0
27400 '

27320 P=P+1:POKE P,X

27400 6OTO 27300

27500 CLOSE #1:RETURN

compression, typically being reduced to
around 10% to 30% of their original
storage space. The most remarkable
point about this method is its sheer
simplicity - just a couple of extra
commands more than the usual way of
dumping a graphics eight screen to a
storage file.

There is however another way of
compressing this type of data, you could
simply place a zero into our output file
to indicate that the next number is one
which tells how many successive zeros
were found. Program 5 will save a
picture using this method, and Program
6 will restore the picture.

Although at first sight this second
method seems to be much more
efficient, in reality this is a mare
complex matter to decide. If you used
Program 5 and Program 6 on very
rarified pictures such as graphs or line
drawings, then you would find that you
were storing three bytes for almost
every non-zero screen byte you came
across. A zero flag, a byte indicating
how many zero bytes were counted and
then the actual screen data byte. On
pictures with very dense portions, you
will find that this second method really
comes into its own, with a considerable
advantage over the first (Programs 3 &
4). You will need to experiment in order
to develop a ‘feel’ for which method to
use in particular situations.

Using the Programs i

You will notice that in my examples | |
have kept the working parts of the i
programs as subroutines with high line
numbers. Only the line numbers 26000
and above need be placed into your
own programs, and you simply equate
F$ to the storage device and file name
(if applicable) such as “C:" or “D:
filename.ext.” Any device which can
read and write data could be used, even |
the RS232 ports. Using the 850 interface |
you could transfer the pictures between |
any two Ataris, even via telephone if
you have a modem!

Use of the compressor programs
need not be restricted to graphics 8 bt
screens either, since any data which has |
such intermittent blocks of zeros could
benefit from it’s application.

[am quite sure that these cannot be
the only good methods of compressing
graphics 8 data - you may know of
some yourself. One way which might
work is to store some form of table of :
numbers first, which perhaps could itself |
be a bit-map of the function (zero '
counters or data bytes) of each of the
stored bytes. The possibilities are many
and varied, and I would be very
interested to hear of any ideas you may
have. Any novel or useful alternatives
will be printed in future issues. So put
your thinking caps on!! I would also like
to hear of any uses you have for data
compression apart fram graphics data.

|
-

e A

Last issue I suggested that this

| column could be a mix of reviews and
hints. Since [received no contrary

| submenitions, that is what it's going to
| be. So, on with the reviews ...

The Incredible Hulk
by Scott Adams. (24K tape £9.95, 48K
disk with graphics £19.95)

Unlike the original SAGA’s, this
adventure has Micro-Painter quality
pictures that occupy most of the screen.
There is no annoying flicker, and the
| artwork just has to be seen to be

| believed. The graphics display is toggled
with the text display by just touching
the keyboard, so the last few commands
| can be reviewed, as can the place

all share a similar screen display, which
is very “Scott Adams-ish” in that the
descriptions of rooms are limited, in the
main, to names and objects present.
However, the parsers on these
adventures are very fast, as is the
updating of the screen display.

Waxworks is one of the their more
recent titles, and the scenario is that
you have dozed off unnoticed by the
Waxworks attendant, who has
inadvertantly locked you in. Upon
waking, you realise that it would be
safer for you to escape as soon as
possible! A cursory glance around the
leisure lounge reveals a few useful
objects that help in your exploration.

e sl il

ol i

Lomips el A U) v

S TP
e

S

%

hld %

o
3
B

T
S

B

>

descriptions.

The object of the game is that you,
either as Bruce Banner or his alter ego,
the Hulk, must retrieve 13 gems and put

| them in the correct place. You start as

Bruce Banner, tied hand and foot to a

| chair. Once you escape, vou find you
are in a spherical dome, where to
venture outside gets you crushed by the

| high gravity. Of course, there is & way

round this problem, as there is around

the killer bees, the underground room
and eventually even the Chief Examiner
who sits critically watching your
progress (or lack of it). Interestingly
enough, when you are killed, you end
up in a limbo state whereby you can
descend to your starting place without
penalty. This feature is much
appreciated!

As you would expect, this is by no
means an easy adventure. However, the
first six or so gems are very easily
retrieved - then the problems start! The
only grouse about this otherwise
excellent program is that Scott Adams
has used the same miserable parser as
was in his other 13 adventures.
Response time is of course slow in the
disk version because each picture is
loaded separately.

Blade of Blackpoole
by Sirius (48K Diskette)

The Blade of Blackpoole is semi-
graphic, fantasy-type adventure
published by Sirius Software in the
States, and costs around £25. The
object of the game is to recover the
magical sword, MYRAGLYM, and
return it to the altar from whence it was
stolen. When [purchased this
adventure, | was assured by the shop
assistant that it was one of the hardest
of its kind available. As it happened I
| was stumped by one particular problem

| in the early stages of the game for a

couple of months. Once that was solved
I completed it within a few days.

B BB

P opTp

rﬁfgrgr".._

,

i T v, 2 =

G B -

— R e
iy D P

T
Batg

Fes

%

By Steven Hillen

The graphics (or pictures) are quite
good, but if you have ever seen the
graphics for Sands of Egypt vou will not
be impressed. Articles used within the
adventure are drawn on the screen
when dropped, and erased when taken
up again. Instructions given to the
program can be in multiple format (i.e.
drop shield and rope), very much like
Infocom adventures, but not as
complex. You can talk to the characters
that vou meet in the adventure, and it is
a good idea to talk to everything you
meet (even plants).

Another good feature is that by
entering an empty return, the graphics
disappears leaving a screen full of your
previous locations. This is a good idea if
you have forgotten to map your course
and wish to look back. Also, it can be
plaved as a text only game, and pressing
return again gets the picture back.

For anyone starting out in
adventures, this is probably the one for
you as a second or third game, But for
anyone who has just battled their way
through the Zork trilogy or something
similar, it will be a disappointment.

| would like to thank Mr. A. Lusher
for sending me the review of Blade of
Blackpoole which I have printed above.

Waxworks
by Channel 8 Software. (16K cassette
£9.95)

Channel 8 now supply a large series
of 16K adventures, all on cassette. They

Obviously, this is quite a challenge as
certain exhibits are out to stop you.

As a summary then, this is a very
novel setting for an adventure and the
game is written with professional pride.
If you are limited to a 16K cassette
system, then these are without doubt
the best adventures out, beating the
Other Venture series hollow. Lastly
thanks go to Channel 8 for allowing me
to use a review copy.

Snowball
by Level 9. (32K cassette £9.90).

If you are into large adventures, this
is the one for you. Data compression
techniques have enabled Level 9 to
create an adventure with over 7000
rooms! Don't worry though - you do
not need to visit every single one of
them, but mapping this game out could
take some time! The especially good
thing about this adventure is the detail
of description for each location - it is
easy to imagine yourself as the hero,
Kim Kimberley. The adventure booklet
supplied with the game gives the
background galactic scene. Snowball 9
is the inter-stellar transport ship carrving
thousands of human colonists from
Earth - you are on the ship to ensure
that all goes well.

The game starts with your being
awoken from cryogenic suspension.
Obviously something is wrong! Once
you have escaped from the coffin, and
avoided the now homicidal robots, you
must endeavour to switch Snowball 9
back to autopilot, as someone has
aimed the ship at a star. The solution to
this adventure is devious indeed, and
Level 9 are to be congratulated on firstly
writing such an excellent adventure, and
secondly for including a “Help”
envelope. If you are really stuck
somewhere, then you can mail a letter
in this envelope for a free clue. Also,
Level 9 supply excellent Hint Sheets for
those of you who, like me, have little
perseverance.

bt J

b

!I':s!-' o

ol b itbaiof sl

s

A
by

S e
Skt Ll

s

L

PTG Yau

Time"”, their latest release. In this
adventure, you are required to obtain
objects from 9 different time-zones,
ranging from pre-history to the far
future, in order to defeat the evil

an amusing method of operation.
Level 9 cassettes have separate

have any problems loading, then they
may be rectified. For value for money
adventures have yet to be bettered.

allowing me to have review copies.

Planetfall
by Infocom. (32K disk £35.95)

This is quite simply, the best
adventure | have ever played. The
superb parser eliminates most
rephrasing problems, and is also very
fast in responding. Once again, the
room descriptions are exceptionally
graphic, and there is a great deal of

to detail is unusually meticulous and
| overall the game is very enjoyable.

the Stellar Patrol, on board the

Blather. As you note from the diary

escape from the destruction of both
| Blather and the Feinstein.

escape pod once you have landed on
one of the two visible islands on a

sea. If you survive this, you go down

collect access cards to permit you to
use elevators, underground railways,

If this sort of Scii is not your scene
then perhaps you should try “Lords of

Timelords. Your time-travel machine is a
cavernous grandfather clock which has
versions on either side, and.if you still
ask to be notified so that the problem
and excellent after-sale support, Level 9

Again, a word of thanks to Level 9 for

humour within the program. Attention

You are a lowly Ensign 7th Class in
Feinstein under the command of Ensign
supplied in the game package, you and
| Blather do not get on. Blather is in fact
intent on de-meriting you. Luckily, if you

can avoid being thrown into the ship’s
brig for punching Blather, you alone can

As you attempt to move out of the
nearby planet, the pod topples into the

with flu before being able to explore the
deserted complex. To do this, you must

Lt

and teleport booths. Floyd, a robot you
discover is a good friend and eventually
gives his life for you - so take good care
of him!

Infocom have collected a superb
series of logical puzzles together, along
with humorous and realistic characters
and events in producing this excellent
package. Even though it is rather
expensive, it is worth every penny, for
even non-adventuring friends of mine
have commented that it is an extremely
playable and enjoyable game.

Adventure Call

Now to the section of this column
that is reserved for your queries and
solutions to adventures. The number of
replies | received since the last issue
comfortably failed to reach double
figures. Understandably, this was not
too pleasing, but thanks go out to those
who did write in. Remember that |
would like to hear from you if you have
an adventure problem or if you've
solved an adventure, or even if you've
just got suggestions for the column, e.g.
vou might like to see how to write
adventures. But please let’s have a little
more response!

~ unless you really want to know.

Right then, I've come up with a little
coding routine that will prevent you
from finding out answers to problems

Hopefully this will prevent unwanted
clues from spoiling games you have not
yet attempted.

All you have to do is type in the 3
lines listed below, save a version out to
cassette or disk, and then look through
to the clue you want, typing this in as
line 30 TEXT$=" characters...” The
Adventurer who supplied a clue is
named alongside. Finally, there is a list
of questions that as of now are
unanswered. If you can answer any,
please write in so | can print solutions in
the next issue. The decoding routine is
as follows:

10 DIM TEXT$(100),MC$(21): FOR A=1
TO 21:READ D:MC$(A)=CHR$(D):
NEXT A

20 DATA 104,104,104,168,136,104,133,
204,104,133,203,177,203,73,6,145,203,
136,16,247,96

40 X=USR(ADR(MCS$),LEN(TEXTS$),
ADR(TEXTS)):?CHR$(125):7: ?TEXTS$

Answered Questions

Pyramid of Doom.
Where is the iron glove? (Solution by
P. Lister).
30 TEXT$="OH&RNC&DI /» &QORN
&RNC&DIHCU”

Earthquake San Francisco 1906
How do you free yourself after the first
earthquake?
30 TEXT$="SUC&ETIQDGT&@TIK
&SHBCT&DCB”

Suspended
Can you get over the first step?
30 TEXT$="SUC&TGKV&@ TIK&USD
&USVVJ _ &TIK”

Mystery Fun House
What are spectacles for?
30 TEXT$="JIMM&GR&KOTTIT”
Stuck with mermaid?
30 TEXT$="JIMM&GR&NCT&NGOT"
Stuck in Pit?
30 TEXT$="KIPC&RTGKVIJOHC"

Unanswered Questions
Starcross

How do you remove the rod from the

sphere without using the gun?

Golden Voyage
Can't find enough small stones to make
second stone tablet.

Savage Island Pt2
Can’t kill dinosaurs nor change back
from neanderthal.

Escape from Pulsar 7
Can'’t remove cups from Captain’s cabin
ceiling.

Sands of Egypt
What is the command that gets vou
out of the boat once you have the
ladder?

Earthquake 1906
How do you get past the opera house?

Feasibility Experiment
Can't get past guard in the mine.

Ten Little Indians
Can't do anything with couch or wall
safe.

WW.
I
" '2:' |
)
0
lllmmllllli
o™y

I
A
sl

HIlIlIIliII'"

i
I

I
Il

.
|
Iill“lll!m

By Keith Mayhew and Roy Smith

Hopefully, the first two parts of this series
have given you a good grounding of the
basics of the machine and a brief insight into
the mathematics of binary and hex numbers.
From this point we can move on to some
examples and explanations of Assembly
Language programs. We assume that you are
the proud owner of an Assembler package
such as the ATARI Assembler/Editor
cartridge for which all of our listings will be
written, but if you own a different one then
we shall give a brief idea on how to convert
the few offending commands. If you do not
have an Assembler, you really do need one if
you intend to write seriously in Assembly
Language. As an alternative to buying a
commercially available Assembler, there are
two available from the Club’s software library
through the donation scheme at £1.00 per
copy (‘USERCOMP' is highly recommended).

All examples given in this and future
articles are only intended to be fully working
programs if they are listed with line numbers.
Programs without these are purely to aid
learning and will generally not work as they
stand.

Mnemonics.

All of the 6502's instructions are given
three-letter labels called mnemonics. The
reason for this is simply as an aid to your
memory so that you do not have to
remember a string of numbers but only a
short letter sequence. When using an
Assembler you are in fact writing in
mnemonics and when the program is
‘assembled’ it is converted into its numerical
equivalents or the actual ‘machine code’. So,
Assembly Language is Machine Code written
in an easy to remember format.

Getting Started!

The first mnemonic we will discuss is the
instruction ‘LDA’. This means LoaD the
Accumulator. In other words when this
instruction is executed a number between 0
and 255 will be deposited into the A register
| of the 6502. Where the number actually

| comes from is determined by the operand

| byte(s), remember from Part 2 that the
instruction 'LDA’ is an op-code and the bytes
following it are it's operand bytes. The op-
code ‘LDA’ can be used in many different
addressing modes, the simplest is ‘immediate’
addressing:

LDA #40

Here we have loaded ‘A’ with the decimal
number 40. The ‘#' symbol informs the
assembler to produce an op-code which will
mean ‘load the accumulator in immediate
mode’. It would be more usual to write the
| instruction as:

LDA #828

This has exactly the same effect as the
previous example, only here we have written
40 decimal as 28 hex i.e. $28, where the ‘¢’
means hex.

The lowest number that can be loaded
into ‘A’ is 0 and the largest is 255 or $FF
| (remember the ‘A’ register is an eight bit

register). When this line is assembled by the

Assembler it converts our mnemonic code

into a single hexadecimal number, so that our
| line would look like this:

$39 $28

Where $39 is the op-code and $28 is the
operand byte. Note most Assemblers omit
the '$' symbol. These two numbers, $39 and
$28, would be stored into sequential memory
locations ready to be executed. It is a point
worth remembering that commercial
Assemblers usually produce the machine
code listing in hex format, so becoming
familiar with hex notation is essential.
Consider the following:

LDA $28

You've probably spotted that the ‘#'
symbol is missing, this is because we are no
longer using immediate mode but we are
using zero-page or short addressing. In this
mode the data to be loaded into ‘A’ is found
at the memory location of $28, and as this is
a number below 255 or $FF it will fall in the
first page of memory (page 0).

For example if the contents of memory
location $28 was $6B, then $6B would be
read from location $28 and placed in ‘A’
(once again the number read can only be
between 0 and 255). When our line is now
assembled the operand byte remains the
same but as a different addressing mode is
being used then a different form of the op-
code is produced thus:

3A5 $28

Supposing the data, $6B, was not to be
found in page 0 but was located somewhere
else in memory, we would need to use
absolute addressing to access it. In this case
two operand bytes would be needed to cover
the complete memory from 0 to $FFFF. Note
that the programmer does not need to
identify between these modes as once the
specified location exceeds page 0 then the
Assembler automatically uses absolute
addressing. Let's suppose location $24E5
contains our data, $6B, then to load this into
the ‘A’ register we would write the following:

LDA $24E5

Once again, when assembled, the op-code
will be different because of the mode change
and also an extra byte will be added for the
extended addressing area, as shown below:

$AD $E5 $24

As you can see the op-code is SAD but
the address has been assembled back to
front, so that the low byte is placed first then
the high byte next. This is done because the
6502 expects them in this form, but note that
the friendly Assembler allows you to write
them the normal way round.

It is worth noting that the Assembler will
always produce a pair of hex digits for each
byte, so that although you are allowed to
write a hex number in an odd number of
digits the Assembler will pad out the leading
zero for you. For example:

LDA $5 will be assembled as $A5 $05.

LDA $B3C will be assembled as $AD $3C $0B.

We have shown the accumulator being
loaded in three addressing modes, as you
know there are more than this but we will
come to these later. The other two registers,
‘X' and 'Y’, are loaded in exactly the same
manner as the ‘A’ register except that

|
0%

i
il
il
mmmmm

|
I

Part 3

different mnemonics are used i.e. LDX’ and
‘LDY". For example:

LDX #$E4 (Loads ‘X’ in immediate mode).
LDY $3B (Loads ‘Y' in page-0 mode).
LDX $6E43 (Loads ‘X' in absolute mode).

Store it away

Now we have seen how to load some data
into these three registers, we will now show
the instruction to store that data into
memory. Once again, all three registers have
their own mnemonic and they are: ‘STA’,
‘STX' and ‘STY'. Note that unlike ‘load’, the
data must be stored in a memory location, so
obviously immediate mode cannot be used.
The following examples show these
instructions in the other two addressing
modes we have covered so far:

STA $12 (Store ‘A’ in location $12).
STX $4C5F (Store ‘X' in location $4C5F).
STY $10EB (Store 'Y’ in location $10EB).

Here we have stored ‘A’ in page-0 mode
and ‘X' and 'Y’ in absolute mode. Suppose
we wish to store a number into a specific
location, we would go about it by loading the
number into a register and then storing that
register into the desired location, as shown
below:

LDA #§60
STA $0400

We have loaded ‘A’ with our number i
($60) in immediate mode and then stored that
information into a location ($0400).

Now suppose that we wish to move some
data from one location to another. It would
look like this:

LDX $7E43
STX $030B

Here we have loaded ‘X’ with the data in
location $7E43 (in absolute mode) and stored
it at $030B. In these two examples, where we
have stored some data and moved some
data, the registers used could just as well
have been any of the three (‘A’, ‘X’ or Y’).

Logically speaking

Included in the instruction set of the 6502
are three logical operators with which
numbers can be manipulated.

These instructions are ‘And’, ‘Or’ and
‘Exclusive-Or’. Their mnemonics are ‘AND’,
‘ORA’ and ‘EOR’ respectively.

These three op-codes only operate with
the ‘A’ register and not with the ‘X' and Y’
registers, Note, due to the standard that all
6502 mnemonics have three letters, the ‘Or’
function is designated 'ORA’ for convenience. |

The purpose of the ‘AND’ instruction is to
reset specific bits in the ‘A’ register to a ‘0".
The *AND’ function has four possible states,
these are:

—_—_-00
411
vlivlviv]
= =]
wiwnwn
—_—_ooo

As you can see the result of ANDing two
bits together is only ‘1" if both the bits are ‘1",
If this principle is extended to cover 8-bits (1
byte) then we can use the results to obtain
the bit pattern we desire.

| 10110010
| AND 01110100 (byte 2).
00110000 (result).

Here we have ANDed byte 2 with byte 1
to get our result. Referring to the table, and
working our way from right to left; taking bit
zero of byte 1 and byte 2 we have 0 AND 0
which results in 0, next we have bit 1 from
| both bytes, giving 1 AND 0 =0, then 0 AND
;1=0, etc. until we have completed all eight
| bits.
{ Byte 2 is often referred to as a ‘mask’
which acts like a sieve, where a ‘1" in the
mask is like a hole through which the bits of
byte 1 pass. Looking at our example you can
see that the bits in byte 1 above a ‘1’ in byte
| 2 are copied into the result, also where a ‘0
| is in the mask a ‘0’ is in the result.
| Suppose we wish to ensure that bits 5
| and 7 in the ‘A’ register are reset to zero,
| then we would use the following mask:

01011111

ANDing this mask onto the ‘A’ register,
no matter what bit pattern was there,
because of the zero's in bits 5 and 7 of the
mask, the result will also have zero in bits 5
and 7, and the other bits will remain the
same.

‘ The result of the ANDing is automatically
returned into the ‘A’ register. Suppose the ‘A’

| register was loaded with the binary pattern:

10011010 which in hex is 9A, and was

ANDed with our mask of: 01011111 (5F hex)

so that bits 5 and 7 are zeroed to give the

| result of: 00011010 (1A hex).

LDA #39A
AND 4§5F
STA $067D

Here we have loaded ‘A’ with $9A which
is the hex equivalent of our original bit
pattern. We have ANDed it with our mask,
$5F, so the result is $1A which is now in the
‘A’ register.

Then we store our new bit pattern into a
memory location at $067D. We have used
immediate mode to load the ‘A’ register and
to ‘AND' the mask, but we could have used
any of the three addressing modes described
so far,

The second logical operator ‘OR’, is used
to set specific bits in the result to a ‘1", The
‘OR’ function has four possible states:

(byte 1).

| From this table you can see that when

| two bits are ORed together, the result is

| always one except in the case of both bits

| being zero’s. Here is an example showing two
bytes being ORed together:

01011100
OR 01101001 (byte 2).
01111101 (result).

You can see that only bits one and seven
| of bytes 1 and 2 contain matching zera’s thus
| giving ‘0’ in the result. Suppose the

| accumulator contains the byte: 10100011 (A3
| hex) and we wish to ensure that bits 6, 5, 2
and 0 are set to a ‘1’ then we would need to
OR it with the following byte: 01100101 (65
hex) where bits 6, 5, 2 and 0 have a ‘1’ in
them. Conversely the other bits must be ‘0’s
so that the result will be a copy of those bits
from the first byte. The result of ORing these
| two bytes is: 11100111 (E7 hex), this is

| automatically returned into the ‘A’ register.

(byte 1).

CRACKING THE CODE

We would write this in assembler thus:

LDA #8A3
ORA #865
STA $4B0OD

This loads the ‘A’ register with $A3, ORs
it with §65, giving the result $E7 in the ‘A’
register, which is then stored in location
$4BOD.

The final logical operator is ‘Exclusive-Or’
which is used to toagle specific bits of the
accumulator between the two possible states
i.e. ‘0" and ‘1", In other words if the bit was a
‘0" and it was toggled then it would become a
‘1", if it was toggled again then it would revert
back to a ‘0". The four possible states of the
Ex-OR function are:

(= =

nnnn

bits are the same, i.e. ‘0E~0 zmd'lEx
OR 1’. The bits to be toggled are Ex-ORed
by a ‘1" in the appropriate bit of the second
byte. Thus if we have 11111111 (FF hex) as
the second byte then Ex-ORing any byte will
invert every bit in it, this is called the
complement, here is an example of a
complement:

00101110
EOR 11111111 (byte 2).

11010001 (result).

Nole that the result is the exact opposite
of the first byte, and also that if it was Ex-
ORed with $FF again then the result would
lead us back to our original byte. Similarly if
we only wish to toggle specific bits then we
only set those bits in the second byte, here is
an example:

00011101
EOR 10000000

10011101

In the above example only bit 7 has been
toggled with all the other bits remaining as in
byte 1. If this result was Ex-ORed with byte 2
again then bit 7 would be toggled back to a
zero giving the original byte 1. In assembly
language:

(byte 1).

(byte 1).
(byte 2).

(result).

LDA #81D
EOR #880
STA $35E0
EOR #$80

We have loaded the accumulator with
$1D, toggled bit 7, then stored the result
($9D) in location $35E0, and finally toggled bit
7 back to give $1D in the ‘A’ register again.

More or Less?

In Part 2, we showed some examples of
adding unsigned binary numbers and we
mentioned that when the result of adding two
8 bit numbers together is greater than 8 bits,
then the ninth bit is placed into the carry flag.

The 6502 does not have an instruction
which will add together 2 bytes directly,
ignoring the carry flag. Instead, the 6502 has
the instruction ‘add with carry’, whose
mnemonic is ‘ADC’, which will add 2 bytes
together and also add the contents of the
carry flag to the result, i.e. adds nothing if
C=0 and adds one if C=1. Suppose we wish
to add 28 hex to 14 hex, then the first
instruction would be to load the accumulator
with $14 and then add with carry $28, note
we could have loaded with $28 and then
added $14, as it would be the same result.

LDA #§14
ADC #3528

Notice that ‘ADC’ has been used in the
immediate mode and the result is stored back

into the accumulator, as are all operations on

the accumulator,

The result of adding these two numbers
together could be one of two answers, the
reason for this is that the state of the carry
flag is taken into account and we did not
know if it was cleared or set i.e. ‘0" or ‘1.
Therefore to ensure we end up with the
correct result we must clear the carry flag
before adding the numbers together, the
instruction to do this is called ‘clear the
carry’, whose mnemonic is ‘CLC’, So, the
proper version of this program now reads!

CLC
LDA #$14
ADC #328

If the result of an addition is less than 256
(decimal) then only eight bits are used and
the carry flag, the ninth bit, will be set to
zero again. |

With a result of greater than 255 the carry | =
flag will be set to a one. If we are doing an
addition of more than eight bits then this
previous state of the carry flag must be taken
into account.

Now we will write a program which will
take two sixteen bit numbers and add them
together, storing the result as another sixteen
bit number, note that the result could
actually be a seventeen bit number (including
the carry) but we shall ignore this in our
example as the two numbers will be
reasonably small and therefore not generate a
seventeenth bit, ‘

In our example the first sixteen bit
number is stored in two eight bit locations,
$0600 and $0601 with the low byte stored
first, and the second number is in locations
$0602 and $0603.

The sixteen bits of the result will be
stored in locations $0604 and $0605 with the
seventeenth bit still in the carry. The
program first clears the carry so that it is |
zero and then adds the two low bytes of each
sixteen bit number together storing the
accumulator into the low part of the sixteen
bit result, as follows:

CLC

LDA $0600
ADC 30602
STA 30604

Now we must do the same for the two high
bytes storing them back into the high byte of the
result. We will not clear the carry this time |
because we know that whatever the result,
whether it is more or less than 255 the correct
carry will be transfered into the sum of the high
bytes, so the rest of the program would read:

LDA $0601
ADC $0603
STA $0605

At this point the carry flag would reflect
the status of the seventeenth bit, normally
zero if the two sixteen bit numbers are small
enough.

Let us assume that the first number is
$14F9 and the second number is $311A, the
contents of the first four locations will now
be:

$0600=$F9
30601 =814
$0602 =$1A
$0603 =831

Adding the two low bytes together we
have §F9+$1A = §113. The $13 will be in the
| accumulator and the ‘1 is in the carry flag.
| The two high bytes added together give
| $14+$31 = $45, but as the carry flag is now
| set another one is added to this byte to give
| $46 in the result with no carry in the
seventeenth bit (the carry flag). So, locations
$0604 and $0605 will contain $13 and $46
| respeclively and so the result will be $4613.
The same technique can be used for even
larger additions if necessary, e.q. 24, 32 bits
etc. If when adding two numbers a carry is
generated for the highest bit, i.e. the result
exceeds the number of bits being used, then
vour program could check for this state and
indicate an overflow error, using an
instruction which will be covered later.
As with addition there is no instruction
that will subtract two bytes directly, but there
| is an instruction that will ‘subtract with carry’,
| whose mnemonic is ‘SBC’ which will subtract
two bytes and also subtract the complement,
or opposite, of the carry flag. If we wish to
subtract $05 from $2A we would load the
accumulator with $2A and then subtratt with
carry $05, but as in the case of addition
where we clear the carry first, we need to set
the carry to one. With the carry set, the
complement of this is subtracted from our
| result, i.e. zero is subtracted leaving us with
| the desired answer.
The following program subtracts $05 from
$2A and first sets the carry with the ‘SEC’
command to ensure the correct result:

SEC
LDA #82A
SBC #8305

You may be asking yourself why you do
not clear the carry and let the 6502 subtract
that directly rather than setting the carry to

| one and then subtracting the complement,

| which is also zero? The answer lies in the

| fact that the 6502 can only perform addition,
and therefore has to use the twa's
complement of the number to be subtracted
i.e. the negative of that number, and adds it
to the contents of the accumulator. The
following shows the ‘subtraction’ of the two
numbers:

00101010 ($24)
(+) 11111011 (-$05) two's complement of $05.

(1) 00100101 ($25 ignoring carry of one).

We can see that in a non-borrow sub-

| traction, i.e. a small number from a large
number, the carry is left set as a

| consequence and is interpreted as ‘subtract
zero' by any further subtractions. So
remember that in subtractions when the
carry flag is set to one it means ‘subtract
zero’ and when the carry is cleared to zero it
| means ‘subtract one’.

Let’s subtract two sixteen bit numbers
and see how the carry flag performs. We will
subtract $32CA from $6B12. The main
number is stored in locations $0400 and
| $0401 and the number to be subtracted from
| this is stored in locations $0402 and $0403,
the result will be left in locations $0404 and
$0405. The first part of our program sets the
carry then subtracts the two low bytes and
| stores the number in the low part of the
| result:

SEC

LDA $0400
SBC §0402
STA $0404

CRACKING THE CODE

Thus the accumulator was loaded with
$12 from location $0400 then $CA from
location $0402 was subtracted from the
accumulator and the result, which is $48 is
stored in location $0404. Because the number
we subtracted was larger than the
accumulator’s contents, a borrow of one was
made from the high byte so that the $12
became $112 (the one that was borrowed is
worth 256 decimal or $100), thus when $CA
is subtracted from $112 the answer is $48
and to indicate that a borrow occured the
carry flag would be cleared. The second part
of the program will subtract the two high
bytes in locations $0401 and $0403 leaving
the result in location $0405, again we do not
have to worry about the condition of the
carry in the program as it will be treated
correctly by the 6502 in the next subtraction:

LDA $0401
SBC $0403
STA $0405

Here the accumulator is loaded with $6B
from location $0401 and $32 is subtracted
(location $0403) from the accumulator leaving
an answer of $39, but a further one is
subtracted due to the carry being zero (one
is the complement of zero), so the result is
$38 which is stored in location $0405. The
final result of subtracting $32CA from $6B12
is therefore $3848.

Decimal Mode

As mentioned before the 6502 has a
decimal mode and is activated when the ‘D’
flag of the processor status byte is set to one.
This is achieved by using the instruction
whose mnemonic is ‘SED’ or ‘set the decimal
mode’, to revert back to the normal binary
mode the ‘CLD’ instruction is used which
‘clears the decimal mode'. The ‘CLD’
instruction should be used if you are unsure
which mode you are currently in, thus
ensuring that any additions or subtractions
do occur in binary mode. Once the decimal
mode has been cleared there is no need to
use the ‘CLD’ command again unless you
have used decimal arithmetic in your
program. Here is an example of decimal
mode addition:

SED

CLC

LDA #5848

ADC #%$25

STA $0580

CLD

The program starts by ensuring decimal

mode is set and that the carry is cleared for
the addition. The accumulator is loaded with
$48 and $25 is added to it and the result is
stored in location $0580, and finally we clear
the decimal mode so we are back to binary
for further arithmetic. Because the decimal
mode has been implemented the two
numbers $48 and $25 are added together just
like a normal sum. So 5 is added to 8 giving
13 where the 3 is placed in the low half of the
accumulator and the one is carried
automatically into the high part of the sum,
s0 we now have 4 plus 2 plus our carry of
one equalling 7. So the result is $73. This
internal carry between the high and the low
parts has no effect on the carry flag. But any
external carry generated from a decimal
addition is treated in exactly the same way as
for binary addition and is added into the next
calculation. Subtraction follows the same
rules as for binary subtraction and once again
an internal carry is made automatically.

Up and Down

If we wish to only add or subtract one at

a time, such as a counter, then instead of
loading the accumulator with the previous
number, either setting or clearing the carry
then performing the addition or subtraction
of one, then storing the result back into the
counter, we could use one of the increment
or decrement instructions. These instructions
apply to the X’ and ‘Y’ registers and any
memory location. The increment instructions
will add one to the contents of the register or
location and the decrement instructions
subtract one. If when using the increment
instruction the result exceeds $FF then the
result will ‘wrap around’ to zero and start
again. Conversely, when using the decrement
instruction it wraps around from zero to $FF.

The three increment instructions are
‘INX, ‘INY’ and ‘INC’ which are increment
the ‘X’ register, increment the ‘Y’ register and
increment a memory location respectively.
The three decrement instructions are ‘DEX’,
‘DEY’ and ‘DEC’ which are decrement the ‘X’
register, decrement the ‘Y’ register and
decrement a memory location respectively.
The state of the carry flag is not important
before one of these instructions is
implemented.

Move It

There are six instructions that allow us to
transfer data quickly between the ‘A", X', ‘Y’
and stack pointer (SP) registers. As we
know, only the accumulator can be used for
operations such as addition, subtraction and
logica! operations, so it is useful to be able to
transfer the contents of either the ‘X’ or ‘Y’
registers directly into the accumulator to
perform the necessary operations rather than
storing it in memory and then loading it back
into the ‘A’ register. The two instructions that
perform this function are “TXA’ and ‘TYA',
which mean transfer the X’ register into the
‘A’ register or transfer the ‘Y’ register into
the ‘A’ register respectively. There are
another two instructions to return the data
back into the X’ or ‘Y’ registers. These are
‘TAX' and ‘TAY’, which mean transfer the *
register into the ‘X' reaister or transfer the
‘A’ register into the Y’ register
respectively.

Lastly there are two specialised
commands that transfer to and from the ‘X'
and ‘SP’ registers. The “TSX’ instruction
transfers the stack pointer into the X’
register so that it can be examined and the
‘TXS’ instruction is used to transfer the
contents of the ‘X’ register into the stack
pointer to set it to a specific value. However
these two instructions are not used very
often if at all in a program because the
computer uses the “TXS’ instruction to set
the stack pointer to $FF at power up, and
should therefore not need to be altered.

Nothing To Do

The most unusual command in the 6502
instruction set is the ‘NOP’ instruction which
actually means ‘no operation’ and the 6502
puts it's feet up for a while when this
command is executed! No, seriously though,
this command can be used as a ‘debugging
aid’ to replace an instruction held in memory
so that when the ‘NOP’ instruction(s) are
encountered the program will ‘skip’ over
them without crashing or corrupting the
program.

In the next issue we will complete the
instruction set for the 6502 and hopefully
start on some programming techniques.
Finally we suggest after reading this far, you
perform a ‘NOP' operation and go and put
your feet up!

by Bob Askew — Northampton
Every so often a game appears that on first glance looks like

; many other games you've seen before, but looks can be
| deceptive. Trapdoor is such a game. When the screen is drawn | f

| and you see the ladders leading to different levels, you think,
| “Ohl! Yes, this is familiar”. But once you and your partner start

| playing (it's a two player game), you can see some inovative

| thought has been put into the game.

Each player has his own little man who must be moved from 15

| the bottom left hand side of the screen, up the series of ladders
| to the top right hand side, to retrieve a flashing red ball which
| can then be bounced back down the ladders to try and squash
| your opponent. Each player is allowed to move up to 6 spaces
| at a time, which is decided by a push of the fire button which
| stops a rotating dice at the top of the screen. Once you have

| made your move however, you may have landed on a trapdoor.

| This is no worry unless your opponent, on his throw lands on a
| square above which is situated a “Keyswitch”, if he does he can

| jump up and activate the switch, the result of this is that the
| trapdoor you are standing on opens, and you fall through. If you

are unfortunate enough t¢ be on a trapdoor which has other

trapdoors in line with it on lower levels, all trapdoors will open
| and you will fall even further. If you or your opponent lands
| below a keyswitch, just by jumping up and activating the

) keyswitch gives a second throw of the dice, even if nobody is

- | standing on a trapdoor.

8 Trapdoor is not just a race to the red ball, but a game of
strategy too, a game of wits and cunning which will keep the
whole family entertained for hours.

NOTE: In this program, anything which is underlined, should
be entered in “"INVERSE".
1 REM 2TRAP DOORX is 3 2 player 2 joystick ‘board’ qame.
Flayer 1-WHITE Flayer Z-ELACK.
2 REM OBJECT-To squash opponent,by moving from START(bot
tom left)to FINISH(top rient)and throwing ball;hitting h
in
3 REM MOUVES-Rotating ‘clock’(1-8)irdicates plagers turn.
(white or black) Stop clock with trig’
4 REM Clock will show No.of permitted moves.Move in any
direction(ro backiracking,unless by edge)in same sove.
5 REM SWITCHEOXES-If(at end of move),you’re under switch
box,you #ay turn switch off(push stick wp),
4 FEM If opponent on 2 TRAFDOOR he falls through!Switchb
ox will turn offs The more trap doors you dare land on

3

7 REM the slower your ‘clock’. BALL-#ay be th
rown(press trig’),if player can reach it

8 REM EXTA MOVES-Awarded by turning switch off,or,havirg
reached ball, 'Missed’balls reappear on moving

9 GRAPHICS 17:K=PEEK(B8)+PEEK(89)x254:1.=400CE=FEEK(742)
X754-1780

10 DIM V(2):DIM A$(12)1A3="TRAP DOOR "iFOR A=0 TO Sii:

FOHE CE+A,PEEK(S7344+A) tHEXT AIFOHE 712,6

15 FOR A=B TO 127:READ BIPOKE CE+A,BINEXT AFOR A=0 TO 3
11READ BIPOHE CE+208+A,BINEXT APOHE 709,196:FPOHE 718,18

20 POKE 711,03POKE 708,140:FOR C=1 TO 12:FOR B=4 TO 7:P0

KE K-26,BIPOSITION 5,137 #6)A%(1,C)IFOR G=1 TO SiREAD F
30 SOUND 0,F,10,9:S0UND 1, (F>0)x(F-5),10,4:FOR A=1 TO 7}
NEXT ASNEXT GINEXT BAINEXT CIFOSITION 8,417 #63"EY"

40 POSITION 5,917 #63"bob askew"$FOR A=1 TO 39:READ BiSO

D 0,B,10,9150UND 1,(E»0)%(E=-5),10,4}FOR C=1 TO LMEXT

0iFOR A=3 TO 23 STEF 4iCOLOR 1iPLOT 0,AIDRAMTO 19,AINEXT
A

70 FOKE K+39,1401FDHE K+78,1943F0R C=1 TO 2iD=20:FOR X=1
T0 Si0=D-4%A=TNT ((RND(D)%9)+1) %2 E=TNT ((RND(0)xX)+1) %4~
1

80 FOR B=E TO B+D STEF 4:COLOR 130:PLOT A,BINEXT BINEXT
XINEXT CICOLOR 1633PLOT 1,3IDRAWTO 1,630=K+4405M=X

90 FOR B=7 TO 19 STEP 41A=INT((RND(0)x9)+1)x2-1:C0LOR 16

JIPLOT A,BIDRAWTO A,E+3INEXT BIA=K+31FOR B=0 TO 13

91 POKE A+B, (PEEX(A+E+40)C>194 AND RND(0)<0,2)%46B8INEXT B

95 FOR B=4 TO 20 STEP 4:FOR A=0 TO 19:LOCATE A,E-1,HILOC
ATE A,B+3,C

96 IF He=l AND C<-130 AND RMD(0)<0,3 THEN COLOR 4iFLOT A,
B

97 NEXT ASNEXT BSPOKE K+400,03POKE S59,341FOKE X,137:U=0
1T=01F=61G=63V(1)=121V(2)=121COTO INT(RND(0)%Z)+98

98 5=010=X1J=C+1921N=N10=F \Z=T1GOSUE 2501G0TO 300

99 5=110=MiJ=F IH=X10=G1Z=UG0SUB 250:G0TO 300

250 POKE 77,0iR=(5)x1921D=0A=INT (RND(0)x8)+1

235 A=A+l iA=A-(A=9)2BIPOSITION 1+(5)x17,0%? $463CHRS(AHAE
+(8)x96)

260 SOUND 0,30+V(5+1),10,2:F0R C=1 TO V(S+1)INEXT CIFOKE
53761,041F STRIG(S)=0 THEN RETURN

280 GOTO 255

300 I=STICK(S)

305 IF I=7 AND 0<>8 AND PEEK(0+21)>0 AND 0+1CE THEN E=0
$0=0+110=6160T0 L

306 IF I=7 AND 0=8 AND (PEEK(D+21)=63 OR PEEK(0+21)=194)
THEN 0=63GO0TO 305 ,

310 IF I=11 AND (B AND PEEK(0+19)30 AND 0-1<E THEN E=
0:0=0-110=7160T0 L

315 IF I=11 AND O=8 AND (PEEK(0+19)=65 OR PEEK((+19)=194
) THEN 0=71GOTO 310

320 IF I=14 AND G=8 AND O-20<E AND (PEEM(0+1)=1%4 OR FE
EK(0+1)=63) THEN E=0:0=0-20:10=4:COT0 L

330 IF I=14 AND PEER(C-20)>-0 AND (0-200E AND O<CHH59 THE
N E=010=0-2010=8C0TO L

340 IF =13 AND CH20>E AND (PEEK(0+20)=131 OR PEER(0+20
)=J) THEN E=010=0+2010=8:0=0-(FEEK(0+20)=63)x21CG0T0 L
330 GOTO 300

400 POKE E,Z1Z=PEEK(0){IF PEEK(W)=131 OR PEEK(})=0 THEN

- POKE Wyd

405 D=D+11POKE 0,0+RIPORE (0=H)x0,137
410 IF PEEK(K+39)=0 THEM POKE K+39,140:FOR C=9 TO 0 STEP
~0,51S0UND 0,15,2,C3NEXT C

TRAPDOOR

412 SOUND 0,4T<12)%32,1,431F I>12 THEN SOUND 1,(0-K)/2,1
0,8

A20 FOR C=H+40 TO K+440 STEP 80IIF C=0 OR C+19=0 THEN E=
O+ (PEEK(0+21)=68)

490 NEXT CIFOHE 53761, 0:POSITION 1+(S)x17,037 $63CHR$(48

+A-D+{S)x96) IFOR C=1 TO 405HEXT CIPOKE 53763,0

495 GOTO 300+(A=D OR 0=K+59)%200

S00 V(5+1)=0(5+1)-(A-D){TF Z=J THEN Z=(S=0)xUSIF § THEN
2T

502 IF PEEK(0+20)=194 THEN V(S+1)=V(5+1)+(V(5+1)<37)x3
503 E=00A=011F PEEK(D-40)=£8 THEN GOTO S50

505 IF D=H+59 THEN POKE 0,26+RIGOTO 800

510 FOR C=1 TO 993NEXT CiIF 5=0 THEN X=0iF=R:T=Z1GOTO 99
520 IF S THEN H=03G=QiU=ZiGOTO 78

350 A=A+131F A=200 THEN 510

560 GOTO S50+(STICK(S)=14)x50

380 IF 5=0 THEN X=0iM=HIF=QiT=Z:GOTO 98

590 IF § THEN M=0iX=NiG=RiU=Z3GOTO 99

600 B=81FOKE 0-20,E+RIFOKE 0,0350UND 0,150,12,81FO0R C=1

TO 30INEXT CIFOKE 0-20,0iPOKE 0,B+RIFOKE 0-40,197

610 FOR C=1 TO 20INEXT CIFOKE 53761,03POKE 0,0+R1GOTO 58
0+(PEER (W+20)=194)x120

700 FOR C=1 TO 99INEXT CiJ=B+(S=0)x1921A=0+20

705 FOR A=A TO A+(FEEK(A+B0)=194)%B0 STEF BOINEXT A

706 GOTO 705+(FEEK(A)=65)%2

707 A=A-BOIFOR A=A TO W-20 STEF -BOIFOKE A,Z21iFOR C=15
T0 0 STEF -0,5:S0UND 0,90,1Z,CINEXT CINEXT A

710 A=DIFOR W=H TO W+60 STEF 20:A=A+1IPOKE W,JIFOKE W-20
y (A=3)3221350UND 0, (W-K)/2,10,8IF0R C=1 TO 93NEXT CINEXT
H

715 IF PEEK(WZ0)<>63 THEN 710

720 SOUND 0,100,265 J=H2iPOKE W, JSPOKE W-20,05F0R C=1 T

0 200NEXT CIPOKE 53761,00A=H-601F0R C=1 TO 991MEXT C

730 FOR A=A TO A-(PEEK(A-80)=Z21)x80 STEF -BOIFOKE A,194
SFOR C=30 TO 1003S0UND 0,C,6,63NEXT C

740 NEXT ALGOTD 730+(FEEK(A)<»221)%20

750 POKE S3761,01G0TO 580

800 A=A+1IIF A=40 THEN 580

801 IF INT(A/2)=A/2 THEN POKE K+39,12iFOR C=13 TO 0 STEF
-1150UND 0,15,10,C3NEXT C

803 FOKE K+39,1401G0T0 (STRIG(S)=0)%5+800

805 FOR A=26 TO Z8IFOKE K+59,ARIFOR C=1 TO Z0INEXT CINE
XT AIPOKE K+39,0:E=0H=18

810 D=INT (RND{(0)x2)+11A=K+38+(D=1)x20:I=(D=1)

820 POKE A,1401D=D+(D=1)+(D=2)-(D=2)-(D=4)1IF A=K+3b6 OR
A=K+37 THEN POKE 0,26+R

822 IF A=H+41 OR (PEEK(A+20)=131 OR PEEK(A+40)=131) AND
(RND(0)<0,7 AND I=0) THEN D=3

825 IF A=W THEN 900

826 IF H=0 AND AW THEN POKE A,01FOR C=60 TO 20 STEP -1%
SOUND 0,C,10,(C>20)x4INEXT CIGOTO 580

830 IF D=5 AND PEEK(A+20)=65 THEN D=(INT(RND(D)XZ2)+1)%Z
831 IF D=0 AND PEEK(A-40)=131 AND (PEEK(A+21)=45 OR PEEK
(A+21)=194) AND RND(0)<0,3 THEN D=CINT(RNDCD)*Z)+1)%2
833 IF H=0 AND I THEN I=0iD=3:FOKE A,0iA=A-201POKE A,140
16070 880

835 TF H=0 OR H=19 THEN D=D+(D<3)x2-(D=3 OR D=4)x2}IF H
AND RND(D)<0.6 THEN POKE A,0:A=A-201D=111=11FOKE A,140
880 FOR C=44 70 28 STEF -BISDUND 0,C,12,(D=2 OR D=4)x4iN
EXT C

890 HeH-(D<3)+(D=3 OR D=4)IPOKE A,EA=A+(D=1)x19+(D=3)x2
14(D=5)x20-(D=2)x21-(D=4)x19 {E=PEEK(A) 1GOTO 820

o =

900 FOR B=11 TO 15iPOKE A,B+1283S0UND 0,Ex10,4,8iFOR C=1

TO J0NEXT CINEXT BIPOKE A,0

910 FOR E=B TO 0 STEP -1350UND 0,Ex10,4,B3F0R C=1 TO 5iN

EXT CINEXT BIFOR C=1 TO SO0IMEXT C

920 FOR A=158 TO 40 STEP -103FOSITION 1,037 363" PLAYER
WINS "IFOR B=1 TO 10INEXT BIPOSITION 3,0

930 ? $6}"FLAYER "jCHR$(4945+(S)x94) " WINS"I1S0UND 0,A,1

0,8150UND 1,A-10,12,43FOR B=1 TO 203NEXT BISOUND 0,0,0,0

940 NEXT ASSOUND 1,0,0,01FOR A=1 TO 3000INEXT AIRESTORE

105047 #43CHRS(125)1G0T0 20

1000 DATA 255,255,1,1,0,0,0,0,239,239,239,239,0,0,0,0,12

9,255,129,129,129,255,129,129,114,84,84,92,84,84,112,10

1010 DATA 112,112,114,124,114,116,116,0,24,24,16,56,84,1

4,40,48,74,24,8,28,42,8,20,34,24,90,74,124,24,24,36,36

1020 DATA 108,108,68,238,213,48,170,170,0,0,12,12,4,14,2

1,40,40,60,125,126,126,126,60,40,0,0,56,124,124,124,124

1030 DATA 34,8,0,24,60,60,60,24,0,0,0,0,16,56,36,16,0,0,

ﬁ,ﬂpl,lé,16,ﬂ,ﬂ;Z‘hZ‘hB;ZB,‘lZHZ;B,E;1,12;12,4,4;8,16.3

1040 DATA 24,88,40,24,8,8,8,8,195,195,195,195,195,195,19

9195

1050 DATA 90,90,90,0,68,68,68,0,55,55,0,68,48,48,0,0,0,0

,90,90,90,0,48,48,48,0,55,55,0,68,48,68,1,0,0

1040 DATA 0,73,73,0,48,48,0,73,73,0,85,85,85,0,0,0,0,78,

78,0,73,73,0,78,78,0,90,90,90,0,0,0

1.70 aﬁTﬁ 90;99995|ﬂ,68.63,69,0;55;55,&;6&63;63;“;0'5;0

,90,90,90,0,48,48,48,0,55,55,0,68,68,68,0,0,0

1080 DATA 67,67 ,0,62,62,0,67,67,0,72,72,72,0,0,95,95,0,6

8,68,48,68,48

1090 DATA 0,0,0,0,0,0,0,0,9,8,57,57,0,0,90,90,0,0,0,0,0,

0,0,0,0,0,0,57,57,0,0,%0,90,90,0

THE
MAGAZINE

FOR ALL ATARI

COMPUTER* OWNERS
*400/800/600XL/B00XL

REVIEWS
®
TUTORIALS
@

UTILITIES
®

HINTS &
TIPS

ONE GAME REQUIRES 32K
*waorth mare than the subscription!!!
PAGE 6 is d bi. hly. Annual Subscription is £6.00. Send TODAY to:

PAGES, PO. BOX 54,STAFFORD, ST161DR

078541153

| Normally £9.95

By popular request we have
arranged a further selection of top
quality software titles for members to

~ | purchase from Maplin Flectronics. The

| prices shown are extremely low, and so
| we have had to rule that total purchases

| must be at least £7.00 to be eligible for

| the club’s special prices. Address your

| orders to the club and we will pass them
on to Maplin for you.

| Educational Software

Three software packages that are all
| intended specifically for the 4-10 age

" | group. Each comprises three or four

| games which, although simple, are

| nonetheless excellently produced. The

| instructions are written in the form of a
| comic based around the robot/alien

| character Prototype, and each package
should keep many a youngster happy

- | for hours. All three work on the XL

| range as well as the old 800 & 400.

| PROTO’S FAVOURITE GAMES

| 16K Cassette or 32 K Disk for 400, 800

| and XL range.

Club Price £3.00

| PROTO’S FUN DAY
| 16K Cassette or 32K Disk for 400, 800
and XL range,

| Normally £9.95

Club Price £3.00

THE ADVENTURES OF PROTO
16K Cassette or 32K Disk for 400, 800
and XL range.

Normally £9.95 Club Price £3.00

MUSIC MAJOR by Charles Parker
is, as the instructions state, a
lighthearted approach to learning the
basics of music for the young student.
Produced in a similar but ‘slightly’ more
mature style to the prototype series, but
featuring Professor Von Chip. Excellent
entertainment for those also wishing to
learn something about music and
includes a quiz program about
Beethoven that can be modified to suit
other topics.

MUSIC MAJOR
32K Cassette or Disk for 400, 800 and
XL range.

Normally £14.95 Club Price £4.00

BUG ATTACK

This high speed colourful graphics
game is an excellent version of the
popular CENTIPEDE game, and it is
guaranteed to wear you to exhaustion!
32K Cassette or 48K Disk for 400, 800
and XL range.

Normally £13.95 Club Price £3.00

CYPHER BOWL

Very clever graphics allow the
participants in this game to move their
teams in changing formations against
their opponents. Excellent sound effects
and crowd-roar give this game a

marvellous ‘feel’. An added bonus is that |=

both cassette and disk are supplied
together in each package, together with
comprehensive instructions and strategy
plan charts.

16K Cassette or Disk for 400, 800 and
XL range.
Normally £12.95 Club Price £4.00 |

o

JAWBREAKER ;

A brilliant verson of PAC-MAN, but
with much higher resolution, smoother
graphics and better sound effects. An
amusing aspect of this game is the
toothbrush which scrubs the jaws after
a complete screenful is munched.
32K disk only, for 400, 800 and XL

range.
Normally £9.95 Club Price £3.00

LISP is a computer language which
is used extensively in artificial
intelligence research. This is an ideal
purchase for the Atari owner who wants
to experiment with a language which
offers a completely different directon in
programming, it is certainly not suitable
for the beginner! A manual is provided,
together with a substantial tutorial book.
48K Disk only for 400, 800 and XL
range.

Normally £59.95 Club Price £29.95 |

Chegues or Postal Orders are to be
made payable to the club and the prices
quoted are valid until the end of
February 1985. Stocks are limited so
please order promptly and remember to
state cassette or disk format.

- USER GROUP SOFTWARE

Due to demand from
members there are now two ways
to get programs from the library.
The original scheme of
exchanging ‘3 for 1’ will still
apply, but now with an added
bonus. So the library rules have
been extended to enable those
members who cannot write their
OwWn programs to gain access,
and those that can to have a
possibility of some reward for
their efforts. The extended library
rules are as follows:

3 FOR 1 EXCHANGE

1. Every program you donate to
the library entitles you to three
programs in return.

2. The program you donate must
be your original and not copied.
3. Your donated program must
be submitted on a cassette or a
disk, programs in the form of
print-outs will not be processed.

Software Librarian - Roy Smith

4. If your program requires any
special instructions they should
be added in the form of REM
statements within the program
(or you may present them as
instructions when the program is
actually run).

5. BONUS. Every program
donated per quarter (between
issues of the newsletter) will be
eligible to be judged ‘STAR
PROGRAM' for that quarter.
This carries a prize of £10 which
will be paid to the author from
the club funds. The programs will
be judged by the Editorial Team
and their decision will be final.
The Editorial Team are not
eligible for the prize.

6. The ‘3 FOR 1’ exchange is
only open to club members.

DONATION SCHEME

1. Every club member will be

entitled to ask for up to 3
programs per quarter from the
library by donating to the club
funds.

2. If a member does not take
his/her entitlement for a
particular quarter, it cannot be
carried forward to the next
guarter,

3. A member can have more than
one quarter’s entitlement at one
time (up to a maximum of 12
programs (1 year)), but then will
be unable to ask for more until
his/her credit quarters have been
used. Note that odd numbers of
programs will be counted in
quarters, i.e. if a member asks for
5 programs, the first 3 will be that
quarter's entitlement, the next 2
will be the second quarter’s
entitlement and he/she will have
to wait until the third quarter
before he/she is entitiled to any

more. Also note that having
programs in advance will only be
allowed if that member's
membership covers the advance
quarters.

4. The donation fee will be £1 per
program and is not refundable.
Chegques and Postal Orders are
to be made out to the ‘UK. Atari
Computer Owners Club’.

5. Members must send in a blank
cassette or diskette for the
chosen programs to be recorded
on.

6. The ‘DONATION SCHEME' is
only open to club members.

Finally I would like to point
out that some people omit to
include retum postage when
donating to the library, so please
do not forget to include 30p
worth of stamps to cover this.

THE LIBRARY SOFTWARE SERVICE IS FOR MEMBERS ONLY

LIBRARY SOFTWARE TITLES

Listed below are the software titles received by members for inclusion in the library since issue six was published. As
the library now contains over 200 programs it is getting a bit too large to keep on reprinting the entire list. Eventually it
would probably take over the whole magazine and there would be no room left for the articles and program listings.
For those of you who are new members and do not know what is available from the library then vou can either
purchase a back copy of issue six or send for a photocopy of the complete list which is auvailable from the Librarian.
There is a small charge for this service to cover photocopying costs. If you would like a list please send 50p and a SAE
for return.

BUNNY RUN
by Steve Tullett - Dalkeith.

You are the rabbit and you need
carrots to survive, but beware of the
ferret, the fox, the evil brown rabbit
and the farmer’s gun!

Runs in 16K min. Cassette only.

DEFEND

by J.P. Connell - Stoke-on-Trent.
Excellent BASIC version of the

well known arcade game, with 5 levels

of play and the option of 1 to 4

players,

Runs in 16K Cassette or 32K Disk min.

FLIP 2
by Stephen Taylor - London.

The object of the game is to flip all
of the tiles to a new colour, but you
can only use a colour so many times
and the same colours cannot be
adjacent. An exceedingly frustrating
game.

Runs in 32K Casselte or Disk min.

JACKPOT

by J.P. Connell - Stoke-on-Trent.
A fruit machine simulation

including nudge and hold.

| Runs in 16K min. Cassette only.

XL machines only.

MATCHBOX
by Peter Cunningham - Chester.

This is a concentration type game
in which you have to match the
hidden shapes in the boxes.

Runs in 16K Cassette or 32K Disk min.

MILKY WAY
by Grahame Fairall - Oxon.
Pinball game created using Pinball
Constructor.
Runs in 48K min. Disk only.

MUNCH
by Grahame Farrall - Oxon.

Two player game in which vou eat
everything except the mushrooms.
Runs in 16K Cassette or 32K Disk min.

GUNFIGHT 2
by Grahame Fairall - Oxon.

Two player cowboy gunfight.
Runs in 16K Cassette or Disk min.

TIMEWORD

by Steve & Gwenda Tullett - Dalkeith.
A two player game based on

scrabble and TV's Countdown

program,

Runs in 16K Cassette or Disk min,

Adventure Games
* % %% STAR PROGRAM * % % *

* IDOL ISLAND *
by J.P. Cracketi - Choppington.
Extensive word only adventure
incorporating its own text style. Your
object is to search the island for
treasure and live to tell the tale.
Runs in 48K Disk only.

SIMPLE ADVENTURE
by Alex Kells - Liverpool.

An adventure with graphics, the
object is to find the hidden gem. This
program has an Autorun file and
requires one complete side of a disk.
Runs in 32K min. Disk only.

Home Entertainment

BIORHYTHM 2
by J. Bennett - Newcasile.

This program gives a graphic
representation of your future well-
bemg.

Runs in 16K Cassette or 32K Disk min.

CHANGE GIVER
by G, Berry - Wakefield.

A program that works out what
coins you should expect in your
change.

Runs in 16K Cassette or Disk min.

CHESS SET
by Steve Tullett - Dalkeith.

A chess set drawn in GR.8 which
can be used to play the game of
chess.

Runs in 16K Cassette or 32K Disk min.

TEXT GOLF
by Steve Tullett - Dalkeith.

Make your way round the course
by selecting the right club and the
right shot.

Runs in 16K Cassette or Disk min.

Demos

COLOR SELECTOR
by Ian Leonard - Chelmsford.
* Use this program to find the
colours you require.
Runs in 16K Cassette or Disk min.

FIREWORK
by Mark Christian - Wirral.
Randomly generated fireworks

display with sound effects.
Runs in 16K Cassette ar Disk min.

SHAPES 8

by Mark and Brian Christian - Wirral,
Interesting little demo that has

some pretty nice shapes.

Runs in 16K Cassette or Disk min.

Utilities

ARTIST 2

by Martin Byfield - Birmingham.
Artistic sketch pad program in

graphics 7+,

Runs in 32K Cassette or Disk min.

ASSEMBLER 2

by M.C. Barnard - Guisborough.
Improved version of Chris Rutter's

assembler with disk and print out

options.

Runs in 32K Disk min. only.

BUBBLESORT
by M. Iremonger - Dublin.
Sorts a list and then dumps it to a
printer.
Runs in 16K Cassette or Disk min.

CHARACTER GENERATOR 5

by Stephen Bylo - Harpenden,
Design characters and save them

to cassette.

Runs in 48K min. Cassette only.

DISK CONSISTENCY CHECKER
by Paul McAlinden - Airdrie.

Verifies that the directary, bit map,
etc. on a DOS 3 disk are intact and in
the event of corruption may help to

X

st R ol o Bt

s

identily the problem.
| Runs in 16K min. Disk only.
- | ERROR
| by Stephen Taylor - London.
| This program gives written error
| messages in place of the normal error
| number.
| Runs in 16K Cassette or Disk min.

| ERROR 2
by David Pink - Swanley.
This program supplies error
messages instead of code numbers.
| Runs in 16K Cassette or Disk min.

| GRAPHY
by M. Iremonger - Dublin.
This program will graph sets of
numbers using auto-scaling, includes a
print option.

- | Runs in 32K Cassette or Disk min.

LISTALL

| by J.P. Cracketr - Choppingion.

This m/c program will list any
ATASCII file to an Epson printer
(tested on RXB0 F/T) including inverse

| and graphics characters. Source code
| is also available for Atari Macro

| Assembler.

Runs in 32K min. Disk only.

| MEMORY DUMP
| by Jeff Davies - Liandeio.
A memory dump routine to the

screen.
Runs in 16K Cassette or Disk min.

| MENU .
| by M. Iremonger - Dublin.
| Lists programs on disk, also allows
| them to be RUN and files can be
locked, unlocked, deleted, etc.
Runs in 16K min. Disk only.

2 (2) SYNTHESISER

8 (-) CATALOG

10 (=) USERCOMP....

1(4) FOLLY OF E. KKHANN ALEX KELLS

3 (3) STONEVILLE MANOR . NIGEL HASLOCK
4 (1) THE VALLEY STEVE CALKIN
....... ANTHONY BALL
...... .. CHRIS RUTTER
7 (-) BIORYTHM EZIO BOTTARELLI

5 (8) OUTPOST
6 (5) ASSEMBLER

9 (-) FRUIT MACHINE
+.......TREVOR SKEGGS

.... CHRIS PAYNE

MIKE NASH

MC MONITOR
by Paul McAlinden - Airdrie.

A simple m/c monitor which
permits display, modification, saving
and loading of blocks of memory using
hex addresses and data.

Runs in 32K min. Disk only,

MENU MAKER

by Mark & Brian Christian - Wirral.
Add this program to your disks to

give you a menu of files on that disk.

Runs in 16K min. Disk only.

MINIDOS 2
by Linda Tinkler - Wirral.

This program gives Directory,
Rename, Delete, Lock, Unlock and
Disk format options directly from
BASIC.

Runs in 16K min. Disk only.

OLDTEXT

by Martin Byfield - Birmingham.
Change Atari text into old

fashioned lettering,

Runs in 32K Cassette or Disk min,

REMOVE
by Jeff Davies - Llandeilo
Deletes lines using forced read
mode.
Runs in 16K Cassette or Disk min.

TEXT FILE MANAGER

by lan Scott - Tyne & Wear.
Disk based BASIC program to

create and edit text files.

Runs in 16K min. Disk only.

VATCALC

by lan Leanard - Chelmsford.
Useful little program for the

businessman which will add or

subtract VAT from figures input by

the user.

Runs in 16K Cassette or Disk min.

WORLD CLOCK
by David Pink - Swanley.

On input of the present time this
program will give a list of the times in
many places around the world.

Runs in 16K Cassette or Disk min,

YEARLY BARGRAPH
by M. Iremonger - Dublin.
Graphs monthly income up 1o 2

years, includes print option.
Runs in 16K Cassette or 32K Disk min.

ELECTRONIC DICTIONARY
by Paolo Fragapane - Bristol.

Create your own foreign language
dictionary, this program uses the
forced read mode to create its own
data. Originally devised for
French/English it could be modified to
suit other languages.

Runs in 16K min. Cassette only.
MATHS PROBLEMS
by Brian Christian - Wirral.

Three programs to solve
Simultaneous Equations, Indices and
Triangles. Very useful for school
homework.

Runs in 32K Cassette or Disk min,

Music

MUSIC 3
by Grahame Fairall - Oxon.

Six tunes: Isle of Capri, Hawaii 50,
Match of the Day, A Whiter Shade of
Pale, Lion Sleeps Tonight, Steptoe
and Son. All for use with the Atari
Music Composer cartridge.

Runs in 16K Cassette or Disk min.
MUSIC 4
by Grahame Fairall - Oxon.

Six tunes: Cinderella Rockalella,
Diamonds are a Girls Best Friend, Tie
a Yellow Ribbon, Star Wars, Milord,
Organ Waltz. All for use with the
Atari Music Composer cartridge,
Runs in 16K Cassette or Disk min.

THREE TUNES
by Grahame Fairall - Oxon.

The Entertainer, Run Rabbit and
Camptown Races all from BASIC,
Runs in 16K Cassette or 32K Disk min.

| ESSEX

I am interested in starting a
local user’s group, would
anybody in the Chelmsford/
Braintree area who wants to
know more contact me. lan
Leonard, telephone Chelmsford
440512,

| Is there anyone in the Club
| who might be interested in
| practical applications of the Atari

| “Graph It” programs? Is it only

| for drawing designs or has it
practical, business uses? | would
be pleased to make contact with
someone who has a similar
interest. Chris Cheatle, 28 Park
Rd, Leigh-on Sea, Essex or
phone: Southend-on-Sea 79043

| YORKSHIRE
o Do you know the procedure
|| for altering the GR.1 and 2
| Characterset in the “Magic

" | Window” utility from Quicksilva?

Contact John Proud, Police
| Station Flat, Grove Square,
Leyburn, North Yorkshire.

| DERBYSHIRE

Anyone out there got any info
on dumping a screen, generated
by a video camera, onto a
printer. It can be done, I'd love to
know how (A similar system is
available for the Beeb!?). Bryan
Cox, 20, Somerset Close,
| Buxton, Derbyshire SK17 9XB.

CONTACT

YORKSHIRE

Is there anyone in my local
area who would like to share
ideas and interests with an Atari
enthusiast who's friends are not
“into computing”. Preferably you
should have a disk drive and an
interest in Assembly Language.
P.S. Do you know of any local
user groups | could contaci?
Steve Hill, 5 Broadacres, Durkar,
ué?skefield, West Yorks, WF4
3BE.

NORTHERN IRELAND

New Atari user group to be
set up in Belfast, plans to
produce a newsletter and a
book/software library. If you
would like to help or are just
plain interested, please write
(including SAE) to Frankie
Smyth, 62 Orchardville Ave.,
Belfast, BT10 0JH.

| would like to contact owners
of NEC 8023 printers who can
help me to get the best out of my
printer, especially the graphics.
handling capabilities. G.M.
Hutchinson, 1 Hollymount,
Finaghy, Belfast BT10 0GL.

AVON

New Bulletin Board System
(BBS) for Atari owners has
started up. On line from 21.00 to
7.00, ring Bath (0225) 23276.

= =

NOTTS/DERBYS

Does anyone have a program
that allows creation of files with
an editing facility and then be
able to print the files out on a
1020. 1 would also like to contact
any other ATARI enthusiasts in
my local area. Tony Morris, 2
Potter Street, Sutton in Ashfield,
Notts.

BEDFORDSHIRE

The Atari does not seem to
allow mixing of coloured text in
normal (GR.0) size. Many other
machines now do this, and
although the Technical Notes

suggest that the hardware can
cope, no-one seems to have
written a routine to cover it. If
someone somewhere has done it
or knows how to do it, please
contact me. lan Favell, 3¢ Ruifs
Furze, Oakley, Beds.

SCOTLAND

Does anyone know if there is
a program which would allow
Touch Tablet disk files to be
loaded into a BASIC program?
Do you know what sort of format
is used to save the pictures? Any
help would be gratefully received.
A.S. Darling, 2 Salters Terrace,
Dalkeith, Midlothian.

ATTENTI

all our members a fair choice.

Denmark, Eire and West Germany.

48 Read Way, Bish

ON
ATARI 400/600/800 OWNERS

MIDLAND GAMES LIBRARY

Do you want to join a long established library?

Are you looking for a fast efficient and friendly service?

Would you like to select from nearly 850 programs,; cassettes,
cartridges, discs and utilites and educational?

Would you appreciate 40 new additions per month?

Are you interested in interactive club schemes?

Two games may be hired at any one time.

We buy many of the popular games in multiples of five or six to give

ATTENTION

Now entering our third year of service to Atari owners.
Hundreds of satisfied members, many even as far away as lceland,

Send large SAE for details.
M.G.L.

o Cheltenh

(0242-67) 4960 6pm-9pm
with Full o

All pur games are

INTERRUPTS ...

By Steven Hillen

, This article is intended as a general discussion on how to use

| interrupts to improve the graphics of your BASIC programs. It

| does not pretend to fully explain interrupts, it merely provides
guidelines for using them. By their very nature, interrupts can
only be accessed by machine-code, but don’t worry, if you have
not been keeping up with “Cracking the Code”, there are

| listings for you to add to your BASIC programs which require
no knowledge of machine-code!

Before we start, | would recommend that you make sure

you've read Keith Mayhew and Roy Smith’s excellent article on

| display lists (Issue 4) as it contains much material that | do not

| wish to repeat here.

el There are two questions which must be answered. Firstly,

- | what are interrupts? Imagine a bank clerk busy totting up figures

| one afternoon. Suddenly, the telephone rings, so he makes a

| note of where his calculations are, then answers the phone.
After his wife has finished speaking, he returns to his sums at
the exact point where he left off. The bank clerk is analogous to

| the 6502 chip in your Atari, the telephone call is an interrupt
which halts processing for a while. The two types of interrupt

| that are useful for graphics are known as the Vertical Blank
| Interrupt (VBI), and the Display List Interrupt (DLI).

et Secondly, why are interrupts useful to us? The answer to
this is that they are synchronized to the TV display. Translated,

| this means that by using interrupts, we can have many colours

| on the screen, scroll smoothly without flicker, and move objects
on the screen continually without stopping BASIC or even

| seeing them being redrawn.

| Setting Up Interrupts
This section is aimed at the novice assembly programmer,

| and is not essential to those of you who would rather just use

the listed interrupt routines. DLI's occur at the end of one scan-
line on your TV set. They allow you to ensure that when you
change colours half-way down the screen, the exact position of
this change will not alter, i.e. the boundary of the colour change
will be fixed. DLI's must be enabled by the following operations:

1. Adjust your display list by adding 128 to each mode line that
you wish an interrupt to occur on, remembering that the
interrupt will occur at the END of that line.

. Write your DLI, remembering that you must save any
registers you use on the hardware stack and that you must
address hardware colour registers, not the shadows at
locations 704-712.

. Point to your DLI routine by poking the low and high bytes
of its address into VDSLST (locations 512,513).

. Enable DLI's by poking NMIEN (54286) with 192, (You can
disable DLI's with a poke of 64 to NMIEN.)

Here is the source code for a simple display list interrupt:-
WSYNC .EQ $D40A This is the latch that synchronizes
your program with the TV display.
COLPH2 .EQ $D018 This is the hardware equivalent of
colour register 710.
| DLI PHA Save Accumulator on stack.
LDA #834 Load A with red colour.
STA WSYNC dJust addressing WSYNC causes
processing to halt until synchronized.
STA COLPH2 Save red into hardware.

PLA Restore the accumulator.
RTI Return to main processing.

As you can see, DLI's are very simple. However, they are
| best kept fairly short, you only really have enough time to
| change a few colours. Note also that the red colour is stored
| into hardware immediately AFTER the WSYNC instruction. If
you stored it before the WSYNC then red would appear
somewhere along the current TV line rather than at the end;
| and worse, on successive TV frames, red could appear

anywhere along that line, causing flicker. It is also a good idea to
make use of page 0 locations for variables used in DLI’s, as
these locations take less time to access.

While DLI's usually consist of only a few instructions, VBI's
can be very large. Usually, however, it is again best to keep
VBI's reasonably short as excessively long interrupts can cause

bad flicker on the screen. As you probably know, VBI occurs 50 B,

times per second in between consecutive TV frames. It occurs
when the electron beam in the TV set is returning from bottom
right to top left, thus any scrolling or redrawing of the screen
implemented during this time will not cause any flicker. The
Atari Operating System has its own VBI routine which updates

the internal clock, copies shadow colour registers into hardware, | :

copies joystick port data into RAM, and also deals with the
keyboard auto-repeat.

Let's examine exactly what happens when the 6502 jumps to
a VBL The A X,Y registers are saved on the stack. A jump is
made through VVBLKI which normally points to the Stage 1
Vblank Processor. The system timers are updated (locations 18-
20). If the code interrupted was non-critical, then a jump is made |
to Stage 2. This now deals with all the colour registers, etc. |
However, if the interrupted code was critical, the system leaves
the interrupt immediately, without passing through either Stage
2 processing or the vector in VVBLKD. Otherwise, the OS now
jumps through VVBLKD where the registers are restored and
main processing recommences. If all this sounds a little
complicated, don't worry, using a VBI is simplicity itself. First
you must decide whether you wish your routine to take place
before (immediate) or after (deferred) that of the OS. If any
time-critical operation is likely to occur whilst your VBI is in
operation, then you should place your VBI before the OS
routine as EVERY VBI will then jump through your routine.
Note that if I/O is being used, then your immediate VBI should
be short, or else /O may be messed up. If you place your
routine after the OS one, then only the non-critical VBI's will
vector through your routine, which means that your interrupt
routine might not always be called. If any I/O is likely to go on,
it is better to place your VBI after the OS routine.

Suppose we want to place our VBI routine after the OS
routine. We must therefore alter VVBLKD to point to our
deferred Vblank processing. To avoid the possibility of having |
changed only one byte of VWBLKD when an interrupt occurred, |
we use the following routine to point to our program:- '

LDA #5$07 Specifies deferred vector.

LDX /VBI High byte of your program address.
LDY #VBI Low byte of your program address.
JSR $E45C Let the OS install our new vector.
RTS

LDA #0
STA COUNT
JMP SE462

Qur actual program.

This instruction exits us from the
VBIL.

Suppose we had wanted to install our program before the

0S routine. We use a similar method to change VVBLKL In this |

case the following routine is used:-

LDA #806
LDX /VBI
LDY #VBI
JSR SE45C
RTS

VBI LDA #0
STA COUNT
JMP $E45F Into Stage 1 Vblank.

Note that the JMP instruction which is executed at the end
of your VBI program is different for the immediate and deferred
types. Note also that in calling the routine that sets up our VBI,
it automatically disables any DLI's you may have enabled. These

Specify immediate vector.
MSB of address of program.
LSB of address of program.
Let OS install vector.

OQur program.

INTERRUPTS

DLI's can be re-enabled with a poke of 192 to NMIEN.

That is all you need to know to set up and write your own
interrupt procedures. | hope that you will find the following
examples useful, both as illustrations of DLI's and VBI's and as
complete routines that anyone can ‘tack’ on to their BASIC
programs.

Display List Interrupts

There are two listings for each DLI, but you only need to
type in the BASIC listing for each. The source code for the DLI
routines are included for those who wish to see further
| examples before writing their own.
| Listing 1 is a program that will allow you to change one
colour down the screen as many times as you like. It will work
in any graphics mode, and with colours that you specify. Two
demos are included in the listing starting at lines 100 and 200
respectively. The actual DLI handler is installed by lines 10 to
40. Don't forget to save this listing before running the program!
So the procedure to use this DLI in your own program is as
follows:-
1. Install machine code on page 6.
2. Locate your display list and adjust the interrupt lines by

adding 128,

Be careful not to alter LMS operand bytes.

. Call the initialising routine;
X=USR(1536,REGISTER,NUMBER, COL1,COL2....) Where
REGISTER is the colour you want to change, e.g. for Color 0
(708) REGISTER=0. For Color 4 (712) REGISTER=4,
NUMBER is the total number of interrupts that you have
installed into the modified display list, and COL1,COL2...
are the colours that you want to display in the order that
they will appear down the screen. Note that it is essential
that the number of COL1,COL2, etc. that you pass to this
routine MUST equal NUMBER and the total number of DLI’s
that you have installed. If they are not equal, you will
probably cause a lock-up.

. Enable DLI's with a POKE to NMIEN (54286) with a number
larger than 192.

NOTE: In this program, anything which is underlined, should
be entered in “INVERSE".

Listing 1.

5 REM ®xxMachine code followsxxx

10 DATA 104,104,104,216,24,105,22,141,67,6,104,104,170,1
60 ,0,104,104,153,77,6,200,202,208,247,142,74,6,169

20 DATA 6,141,1,2,169,54,141,0,2,169,6,162,4,160,46,76,9
1,228,169,0,141,76,6,76,95,228,72,152,72,172,75,6

30 DATA 185,77,6,141,10,212,141,22,208,238,74, 4,104,148,
104,64

33 REM mxxInstall m-c in page 4Xxx

40 FOR A=0 TO 7SIREAD DIFOKE 15346+A,DINEXT A

50 7 "DEMO 1 OR 2"VINFUT A'TF A=1 THEN GOTO 100

60 IF A=2 THEM GOTO 200

70 GOTOD 50

B8 REM =xxSuncet display in Gr.Swxx

100 GRAPHICS 24iFOHE 710,132

110 REM »xxFind Display Listxxx

120 A=FEEK(S60)+256XFEEK (561)45 RESTORE 140

125 REM xxxplter Display Listxxx

130 FOR B=1 TO 13!READ LINEIFOKE A+LINE,PEEK(A+LINE)+128
{NEXT B

140 DATA 50,70,75,80,110,112,114,117,120,122,126,130,140
145 REM wxxX=USR(153é,color register (0-4),mo.of interru
PtSQC‘Bl.m‘ datases) Mxx

150 X=USR(1534,2,13,148,133,117,133,117,101,85,49,53,0,1
94,196,198)

160 POKE 54284,192:REM *x¥Enahlexxx

170 GOTO 170

200 REM xxxColours in Gr.0xxx

210 A=PEEK(SA0)+256XFEEK(561) +6LFDKE 710,16

220 POKE A-3,PEEK(A-3)+128

230 FOR B=A TO A+22:FDKE B, 130INEXT E

240 X=USR(3536;2.2’¢,13,20,22,24,32;3‘1,36;33,%,43,50,52,
54!56!“,“;&8}7“}72;30;82;85186;&)

250 POKE 542B6,192

260 LIST

Listing 2.
00010 3}An example DLI
00020 by S.Hillen,
00030
00040 LI OFF
600se
80040 jEquates for the DLI
00070
08080
00090 VDSLST
00100 COLPHO ,EG $D01&6 Colour O
00110 WSYNC EQ $D40A Mait for
00120 ; SYNC
00130 SETVEV ,EQ $EASC Set Vblank
0140 SY 0 $E45F Stage 1
00150 ;
08140 JOR $400
00170 ;
o180 FLA
00190 ;
10200 PLA
00210 FLA
0220 CLD
00230 CLC Adjust DLI
80240 ADC #%16 1o correct
60250 STA COLBYTE+1 colour,
00240
08270 FLA
10280 FLA
00290 TAX
00300 LDY #0
00310 GET.DATA FLA Discard hi
00320 FLA Store in
003310 STA COLOR.DATA,Y table
00340 INY and get
00350 DEX aniother
00360 ENE GET.DATA byte
00370 '
00380 STX COUNT Zero it
10391 LDA /DLI Point to
00400 STA VDSLST+1 our
00410 LDA #DLI DLI and
00420 STA VDSLST then the
10431 LDA #6 inmediate
00440 LDX /BT Vblank
0043510 LDY #VEI routine
00440 JMF SETVEY Into 0.S.
00470
00480 }The vertical blank just resets
00490 jihe variable COUNT to ensure
00500 jthat the same colour starts
00510 jat the top of the display,
00520

JEQ $200 DLI vector

Fage &

Discard
$arquments
Discard hi
Colour

Mo decimal

Discard hi
No.of cols
as index
Init Y

INTERRUPTS

00530 VBI LDA $0 Reset it
605440 STA COUNT & jump to
10550 JHP SYSVBV 0S routine
00560

00570 jThe DLI save A and Y on the
00580 jstack, finds out which line
#0590 jit is on from COUNT,loads the
00400 jrelated colour for that lire,
006108 jand stores it in the harduware
104620 jcolour register selected by
00430 jthe vser-it then restores A
00640 jand Y and returns.
00450 }

00460 DLI

10670 PHA

00680 TYA

00690 PHA Save Y
o700 LDY COUNT Get lire,
00719 LDA COLOR.DATA,Y color
60720 STA WSYNC Mait and
00730 COLEYTE STA COLPHO save color
00740 INC COUNT MNext time
00750 PLA Restore Y
00760 TAY

08770 PLA
00780 RTI

00790 §

00800 COUNT BS 1
00810 COLOR.DATA .BS 1

Save A

Restore A
& return

. Listing 3 is another DLI that you can use from BASIC. This
one allows you to rotate colours through a row of characters,

‘ which could be useful for intro pages on your games etc. Lines

| 10 to 50 install the DLI routine into page 6, and lines 100 to 170

~ | are the demo-program. The procedure for using this DLI in your

| own program is as follows:-

~ 1. Install machine code as per lines 10 to 50.
| 2. Modify your display list so that the line PRECEDING the line
| you want the colours on, is the interrupt line (add 128).

. Call the routine with X=USR (1664, REGISTER,HEIGHT)
where REGISTER is the colour you wish to be rotated, e.q.
capitals in Gr.2 are Color 0 so REGISTER=0, and HEIGHT is
the height of the characters that you want to colour rotate,
e.g Gr.0 and Gr.1 are 8 high so HEIGHT=8, Gr.2 is 16 high

| so HEIGHT=16.
| 4. Enable the DLI with a poke of 192 to NMIEN.
There is no limit to the number of lines that you can have
colour rotating provided that you remember to have the
| interrupt on the preceding line. The only other thing you must
| not do is to try rotating colours through characters of differing
- | heights on the same screen, i.e. don’t expect this DLI to
- | successfully rotate colours through Gr. 2 and GR.1 characters
| on the same screen, although Gr.0 and Gr.1 characters would
| be all right as they are the same height.
Hopefully, these examples will have shown you how easy it is
| to write DLI's. Other possible DLI's could be written to alter the
| rate of scrolling down the screen, the best example of which is
| “Frogger”, change screen width down the screen by addressing
| DMACTL, multi-task players and missiles, and to turn on and

— | off GTIA so you can mix Gr.9, 10 or 11 with the normal modes.

| Listing 3.
| 10 DATA 104,184,104,216,141,222,6,24,105,22,141,201,6,14
| 1,21646,173,222,4,24,105,196,141,210, 4,104, 104, 141

| 20 DATA 193,6,169,6,141,1,2,169,189,141,0,2,169,6,162,4,
: E 16!,177,7&,92,228,2&,223.6.1?3,223,6,1‘!1

30 DATA 222,4,74,95,228,72,138,72,162,8,173,222,4,141,10
,212,141,22,208,238,222,6,202,208,241,173,194,2

40 DATA 141,19,212,141,22,208,104,170,104,44

45 REM mxxInstall m-c in page &Xxx

50 FOR A=166%4 T0 1664+931READ DIFOKE A,DINEXT A

60 7 "DEMD 1 OR Z"{INPUT BIIF B<1 OR B2 THEN &0

100 REM xxxFancy font 1xxx

110 GRAPHICS DiA-PEEK(S40)+256XPEEK(S41)

115 REM xxxNote that interrupt is on the preceding line!
XXX

120 POKE A+7,130iPOKE A+8,5+B

130 POKE 87,1:POSITION 2,6

140 ? #41"ROTATING COLOURS"

145 REM xxxX=USR{1664,Colour,8 or 16 depending on charac
ter height)xxx

150 X=USR(1644,0,8%B)

140 POKE 54286,192

170 GOTO 170

Listing 4.
00010 }Second DLI
00020 3by SiHillen
00030 }
00040 VDSLST
00050 COLPHO
00040 WSYNC
00070 SETVEV
00080 SYSVRY
00090 COLORD
00100 4
00110 +OR $480
00120 3
00130 PLA
00140 PLA
00150 FLA colour req
00151 CLb No decimal
00140 STA ACTCOL Meed later
00170 CLe
00180 ADC 4416 Adjust DLI
00190 STA ADJUSTI+1 so that
00200 STA ADJUST3+1 correct
00218 LDA ACTCOL colours,
00220 oc Also need
00230 ADC #$C4 shadow
00240 STA ADMUSTZ2+41 colour
00250 :
00260 PLA Discard hi
00270 PLA Get height
00280 STA ADMUSTH ard save
00290
00300 LDA /DL Vector the
003140 STA UDSLST+ DLI
00320 LDA #DLI
00330 STA VDSLST
00340 LDA %6 Inmediate
00350 LDX /VBI VEI
00340 LDY $8I Let 0S do
00371 JP SETVEV the rest!
00371 3
00372 ;This VBI adds ore to & control
00373 jcolour shadow and copies it
00374 jinto the DLI colour shadow—

JEQ 6200
JEQ 90016
«EQ $D40A
+EQ $E4SC
«EQ $E4SF
EQ 708

Discard
Discard hi

INTERRUPTS

taives rotating effect.

1

INC CTLCOL Rotate the
LDA CTLCOL colour

STA ACTCOL by one and
JMF SYSVBY qo to 0S!

H
t

1This DLI is urwsual in that it
jaddresses WSYNC up to 17 times
{for one interrupt! a lot of
iprocessing time is wasted, but
tyou cannot create a DLI in
ythe middle of a character
twithout more complex control-

00438 je.q. using VCOUNT.

00439

00440 DLI PHA

00450 XA

10440 FHA

00470 ADJUST LDX 48

10480 AGAIN © LDA ACTCOL

00490 STA WSYNC

00500 ADJUSTI STA COLPHO

00510 INC ACTCOL

00520 DEX

00530

00540 ADJUSTZ

Save A

Save X

8 or 16
Colour
Wait
hardware
Next color
Done all?
ENE AGAIN Mo

LDA COLOR0 Restore
10550 STA WSYNC old colour
00560 ADJUST3 STA COLFHO from shad.
00570 FLA Restore X
00580 TAX
00390 PLA
00400 RTI
00610 §
00420 ACTCOL
00630 CTLCOL

Restore A
& return

JES 1
BS 1

| Vertical Blank Interrupts

As you have probably already noticed, all but the very
| simplest of DLI's need to have counters reset after the last DLI
has taken place. The VBI, occuring at the end of the TV frame
is an excellent time to reset such variables.

Another good use for a VBI is to move players around on
the screen. In this way, fast but smooth movement can be
achieved, without holding up your BASIC program. However,
before we look at the listed routine to do just this, a quick
| summary of Player-Missile Graphics (PMG) is in order.

& Normally, when you want to move, say a spaceship over a

| graphics screen, you would have to copy out a region of the
screen, copy in your spaceship shape, and then restore the
screen in the space where the spaceship had moved from. This
| process is made especially tedious by the fact that your
| spaceship shape is non-sequential in memory; i.e. consecutive

| sections could be spaced apart by 40 bytes due to the screen

| RAM arrangement.
: By using players and missiles, we have a method of moving
| shapes over the graphics screen without the bother of redrawing
the screen behind them. Another advantage is that players map
vertically down the screen, i.e. consecutive bytes in your PM
table form a one byte wide vertical band down the screen,
| making movement very simple to produce. Two other very

| useful features of PMG are that they can be assigned priority, ie.
| different players can appear to move in front of, or behind other
- | objects. This gives a good pseudo-3D effect, e.g. in Basketball.

The second advantage is that collisions between each player,
missile, and objects on the screen are automatically detected by
the hardware, and your programs can thus detect collisions just
by peeking these locations.

The Atari has 4 players and 4 missiles, which can be grouped
together to form a 5th player. There are several methods for
putting shapes into the PM table, but only one is practical for
use with BASIC. This is known as DMA (Direct Memory
Access). This method requires you to reserve some RAM which
is your player-missile table. The size of this table depends on
whether you want single line resolution players, meaning that
there are 256 possible vertical positions, or double line
resolution, which means that there are only 128 plottable vertical |
positions. Rather than write yet another description of setting up |
PMG, | am limiting this discussion to the use of listing 5 for ’
single line resolution players. Full instructions on how to set this |
routine are listed below, after the introduction.

Listing 5 is a program which runs in VBI and hence does not |
interfere with your BASIC program. It works with single line ;
resolution players, but no missiles. By using this routine, players |
can be moved anywhere on the screen by a single poke, or 5
alternatively, you can select one or two players to be controlled
by joystick ports 1 and 2. No other work need be done by :
BASIC except to poke in desired X and Y coordinates (X and Y
as in the normal graphics screens). The procedure for using
single line players and this VBI program is as follows:

1. Reserve 2K of memory, starting on a 2K boundary. First
make the graphics call and then find a suitable area of |
memory thus; AREA=INT ((PEEK(106)-16)/8)*8 then reserve |
it: POKE 106,AREA ‘

. Tell the system where your PM table is with a poke to
PMBASE thus: POKE 54279,AREA

. Enable P/M DMA with pokes to SDMCTL and GRACTL.:
POKE 559,62 and POKE 53277,3

. Set the desired colours by addressing the locations 704-707
for players 0 to 3, and 711 for the fifth player if enabled.

. Create your player shapes in a similar fashion as you would
redefine a character, see diagram 1, and install this data into
strings PM0S, PM13$, PM2$ and PM3$ as shown in
listing 5.

. Put the VBI data into VBI$, and call it once with
X=USR(ADR (VBI$), JOYSTICKS,SPEED ,NUMBER,ADR
(PMO0$),LEN(PM0S),ADR(PM1$),LEN(PM1$),ADR(PM2$),
LEN(PM28),ADR(PM3$),LEN(PM38),ADR(VBI$)+56) where
JOYSTICKS is 0 if you want no players to be controlled, 1 if |
joystick 1 is to control player 0, and 2 if joysticks 1 and 2 are
to control plavers 0 and 1 respectively. SPEED is the amount
you want the players, if they are being controlled by '
joysticks, to be moved, e.g. 1 is slow, 3 is quite fast. You
should put 0 in as SPEED if no joysticks are being used.
NUMBER is the number of players you have defined. Note
that if this number is not 4, then you need only include the
ADR and LEN of those players you have defined, and this
routine assumes that however many players you select, the
first is always player 0, the second player 1, etc.

Player Data

64+32+16+8+4 +2=126
64+2=66

64 +2=66

64+ etc.=126

will be moved automatically. Remember that only values of Xpos
between 41 and 200 will be on the screen, and only values of 32
- | to 223 will be on screen for Ypos. Remember also, that Ypos

| refers to the top of your player, see diagram 2.

INTERRUPTS

| 7. Enable the VBI with a POKE of less than 128 to 1767; any

number larger than 128 will disable the VBL. If you want to
change any parameters while the VBI is running, just re-call
the USR function with the new parameters.

Now your program is free to alter the four X and Y
Ppositions:

Xpos player 0 = 1783
Xpos player 1= 1784
Xpos player 2 = 1785
Xpos player 3 = 1786
Ypos player 0 = 1787
Ypos player 1 = 1788
Ypos player 2 = 1789
Ypos player 3 = 1790

Note that if you select the joystick option, players 0 and/or 1

32 Player 0 1 200 |
41
Y pos
223
Screen |
Xpos
Diagram 2.
Listing 5.

| 40 DATA 173,231,6,16,3,76,98,228,8,216,174,246,6,240,75,
: 202,173;0,211.224;0,2%,4,7‘!,7‘!;74,74;169
| S0 DATA 41,1,208,10,189,251,6,56,237,255,6,157, 251, 6,152

10 DIH VEI$(226),FH0$(2),FH1S(4)

15 REM xxx Machine code dataxxx

20 DATA 214,104,104,104,141,246,4,104,104,141,255, 4,104,
104,141,245,6,170,202,160,0, 104, 153,232,6,104, 153,734
30 DATA 6,104,104,153,240,6,200,202,16,239,104, 104,24, 10
3:4,141,244,6,104,170,104,168,169,7,32,92,228,96

+41,2,208,10,189,251,4,24,109,255,6,157,251

60 DATA 6,152,41,4,208,10,169,247 ,6,56,237 4255, 6,157,247
+64132,41,8,208,10,189,247,6,24,109, 255, 4

70 DATA 157,247 ,6,202,16,182,174,245,6, 202,189,247 , 6,157
+8,208,202,16,247,174, 235,64, 173,244, 6,133, 204, 169

80 DATA 0,133,203,148,145,203,200,208, 251,230,204, 202,20
8,296,174,245,6,202,189,232, 6,133,204, 189, 236, 4,133,205
90 DATA 189,251,6,133,203,138,24,109,244,6,133,204,188,2
10,6,136,177, 205,145,203, 134,16,249,202,16,220,40, 74 '
100 DATA 98,228

105 FOR A=1 TO 2263READ DIVEI$ (A)=CHRS (D) {NEXT A
110 REM xxxEnable F/M graphicsxax

115 AREA=INT ((FEEK(106)-14)/8)x8

120 POKE 5A4279,AREAIFONE 559,62:FOKE 53277,3

175 REM xxxSet up plaver dataxxx

130 FOR A=1 TO 4:READ D:FM0$ (A)=CHR$ (D) INEXT A

135 FOR A=1 TO &SREAD DIFMI$(A)=CHR$(D)INEXT A

140 DATA 2355,129,129,255,255,129,129,129,129,255

145 POKE 704,52:FOKE 705,704REM xxxSet up poloursxxx

150 X=USR(ADR(VET$),1,3,2,ADR(PHO$) ,LENCPHO$) , ADR (FH18) ,
LEN(FH1$) , AREA, ADR (VET$)+54)

160 POKE 1767,0REM x¢¥Frsble VEIxex

170 FOR A=1 TD 255 STEP 2:FOKE 1784,AtPOKE 1788,ANEXT A
+G0TO 170

Listing 6.
00010 jPlaser mover

00020 jby S, Hillen
00030 ¢
00040 ;called with

00050 ;X=USR(ML,Joysticks,Speed,
00060 jNumber of players,addresses

00070 }and leraths of players’ data,
00080 ;Puarea,HL+56)

00099

00100 LI OFF

00110 }Equates

00120 ¢

00130 SETVEV ,EQ $E43C Set VEBI
00140 XITVEV .ED $E46Z Leave VBI
00150 PORTA .EQ D300 Joysticks
#0160 HPOSFD .EQ $DOOD Xpos PMO
00170 3

00180 +OR $6E7

00190

00200 ENABLE JES 1 Flag

#0210 HI 85 4 Address of
00220 1O 5 4 PH strirgs
00230 LENGTH .BS 4 Lermths
00740 PHAREA BS 1 Prbase
§0250 NUMBER JBS 1 0f plavers
00240 JOYST BS 1 No.of joys
00270 XFOS 5 4 Your work.
#0280 YFOS BS 4 positions
00290 SPEED 85 1 How fast
00300 §

00310 TO +EQ $CEB Fage 0
00320 FROM +EQ $CD usage
00330

00340 §

00350 +0R 44000 Anywhere
00350 }

00370 CLD No decimal
10380 FLA Discard
00370

00400 FLA Discard hi
004110 FLA No.of
00420 STA JOYST joysticks
00430 FLA Discard hi
00440 FLA How fast?
00430 STA SPEED

10440 PLA Discard hi
00470 FLA How mary
00480 STA NUMBER players?
10490 TAX

00500 DEX Index

00510
00520 GET,ADD
00530
00540
00550
00560
10570
00580
00590
00600
80610
00620
00630
00640
00650
00640
00670
00680
0690
10700
00710
00720
00730
00740 §
00730
00760 §
00770 VEL
00780
00790
00800
00810 .1
80820
00830
00840
00830 GETJOY
00840
00870
a0e8o
00890
80900
20910
00920
90930
00940
00930
00960
00970
00980
00990
01000
01610
01020
01030
01040
01050
01060
81070
01080
01690
01100
41110

Init ptr
Save hi
and 1o

of string
addresses
and then
save their

STA LENGTH,Y lergths,

INY
DEX

For 211 of

BFL GET.ADD then,

PLA
FLA
CLe

ADC 44
STA FMAREA
PLA

TAX

FLA

TAY

LD #7

JSR SETVEV

RTS

LDA ENABLE

Discard hi
Add 4 to
1o byte to
point to
player 0.
Hi of VEI
into X

Lo of VBI
into Y
Deferred
Ublarnk,

That's all

0.ks?

Yes

Leave VET
Binary
No.of jous
None!

Joysticks

Move 1.h.
nibble to
rh. nibble
if player?
Save it
Up?

No

Nove up

by value
in SPEED
and save
Restore A
Down?

No

INTERRUPTS

01120
01130 .4
01140
01150
01160
01170
01180
01190
01200 S
01210
01220 }
01230 NDJOY
01240
01250 HFOS
01240
01270
01280
0129¢ ;
01300
01310
01320
01330
01340
01350
01360 ERASE
01370
01380
01390
01400
01410
01420 ;
01430
01440
01450 AGAIN
01460
01470
01480
01490
01500
01510
01520
015330
01540
01350
01560
01570 FILL
01580
01590
01400
01610
01620
015630

STA XPOS,X
TYA

AND 48
M .5

LDA XFOS,X
CLe

ADC SPEED
STA XPOS, X
DEX

BPFL GETJOY

LDX NUMBER

DEX
LDA XP0S,X

For both
Jjoysticks

Copy the
X-pos’s to
nardware.

STA HFOSPO,X

DEX
EFL HPOS

LDX NUMEER
LDA PMAREA
STA T0+
LDA $0

STA 10

TAY

STA (TD),Y
INY

BNE ERASE
INC TOH
DEX

ENE ERASE

LDX MMEER
DEX

LDA HI,X
STA FROM+
LDA LO,X
STA FROM
LDA YPOS,X
STA 10

DEY

Hore left?
Yes

Now et up
page 0 ptr
so that 4
pages from
playerl to
playerd
are erased
Clear

PH table.

Now set up
pointer to
the FM

string and

then set

LDA (FROM),Y Transfer

STA (T0),Y
DEY

BPL FILL
DEX

EPL AGAIN
JF XITVEV

string
into PM
table,

Do all
Leave VBI

| am certain that any points you are unsure about are |
illustrated in listing 5, so now you can write programs in BASIC |
using either of the DLI's and also have fast player movement. |
_The source code (Listing 6) is commented for those of you
who would like to see a slightly longer VBI routine.

Three last points need to be mentioned in this section on
players. Firstly, priority can be selected by addressing GPRIOR
(623). See table 1 for a list of possible priorities. Secondly,

INTERRUPTS
Collisio i
GPRIOR|[623] nRegisters e
Name Location Description
128(6432 |16 |8 |4 | 2 | 1 MOPF 53248 Missile 0 to Playfield
MI1PF 53249 Missile 1 to Playfield
s o e M2PF 53250 Missile 2 to Playfield
| M3PF 53251 Missile 3 to Playfield
POPF 53252 Player 0 to Playfield
GTIA P1PF 53253 Player 1 to Playfield
modes P2PF 53254 Player 2 to Playfield
9,10&11 e el EasiCehs P3PF 53255 Player 3 to Playfield
PO PF2 PFO P2 | 9 MOPL 53256 Missile 0 to Players
3rd colour Pi PF3 PF1 P3 | & MIPL 53267 Measi i e
for P2 PO PF2 PFO| o M2PL 53258 Missile 2 to Players
| P3 P1 PF3 PF1| £ M3PL 53259 Missile 3 to Players
overlapped PF2 P2 P2 PF2 'g POPL 53260 Player 0 to Players
players PF3 P P3 PF3| ©® P1PL 53261 Player 1 to Players
BAK BAK BAK BAK | & P2PL 53262 Player 2 to Players
i . -~ /< P3PL 53263 Player 3 to Players
ayer i
en:bi\; [Fmor® than: ones selicisd HI-T(-:LR 53278 Poke to clear all registers
then conflicting priorities Collisions
. Value Collision with Player or Playfield
will be black. Read Colour Number since last HITCLR
1 0
Table 1. | 2 1
collision detection is effected by reading the appropriate register | 4 2
as shown in table 2. Thirdly, the width of the players can be 8 3
altered by poking values into locations shown in table 3. T
i 2 = ‘ e i able 2.
One final point, as you may realise, typing in immediate |
mode commands in BASIC will cause string locations to alter, | | Player Sizes Poke with...
and hence the VBI may well cause a lock-up. The moral is don’t | | gize of Player 0 - Location 53256 0 or 2 for Normal Size
use any immediate mode commands after RUNNING this | | Size of Player 1 - Location 53257 1 for Double Width
program. | | Size of Player 2 - Location 53258 3 for Quad Width
In Part 2 | will continue with Horizontal and Vertical ; Size of Player 3 - Location 53259
Scrolling techniques '

Table 3.

s

Button Blaster is a new device designed by the User Group
Founders to relieve that agonising cramp of the thumb
experienced by ardent games fanatics. Imagine playing those
graphic games which allow more than one shot on the screen
simultaneously and being able to press the trigger and have a
continuous high speed burst of shots ring out! Well now you can
with the BUTTON BLASTER.

Button Blaster has two leads, one roughly two metres long,
the other about one metre (this also allows you to sit back in
comfort whilst playing!). The longer lead plugs into your
computer, in place of your joystick, and your joystick simply
plugs into the socket on the shorter lead, now you are ready to
blast. You can vary the auto-trigger rate using the control knob,
and a flashing indicator (LED) shows the rate 'selected.

There is no need for batteries, since Button Blaster draws its
power from the computer itself, and since it uses the lastest IC
technology its current consumption is negligible!

Normal retail price for Button Blaster is £14.95, but we are
offering it to user group members at the reduced rate of only
£11.85 including P&P. Send a cheque/P.O. made out to the U K.
Atari Computer Owners Club, and please mark your envelope
‘Button Blaster Offer’,

Buy BUTTON BLASTER now and perhaps double, or even
treble your scores on your favourite games.

TRAP

is a new, 100%
machine code game, available : -

only from this club. It offers nine levels of play from easy
to impossible and is for one or two players. You and the
‘enemy’ must fill in all the open spaces with your trailing
tails, avoiding the mines left in your way. If you out last
all of the enemies then you are awarded a point for every
enemy ranged against you on that screen, but if only one
enemy out lives you then you get nothing. In the two
player option, if all the enemies are destroyed then the

points you collect you are given an extra life.

TRAP is obtainable by sending a cheque/postal order
for £3.95, made out to the club, to P.O. Box 3, Rayleigh,
Essex together with a blank cassette or disk, An auto-
boot copy of TRAP will be recorded onto your cassette or
disk and then returned to you. By marketing TRAP along
similar lines to the Library Donation Scheme the overall
costs can be kept low and many more people will feel the
_benefit. The price includes postage (U.K. & Eire) and
packing but Overseas members should add 50p (Europe)
or £1.00 (Outside Europe). Please mark your package
‘TRAP OFFER' and remember it is best to send a good
quality cassette or disk and also ensure adequate
wrapping is provided.

player who lasts the longest gets the points. For every 100 |

ol s

e
e ’

By Stephen Taylor - London

Flip is one of the most frustrating games I have come across.

You are presented with a 4 x 4 grid of coloured tiles composed
of 5 different colours, your object is to change the colour of

every tile and flip it onto its back, but the colour you change it
to must not conflict with adjacent tiles in any direction including
diagonals. This is no easy task and so far all my attempts have

failed! At the start of the program Stephen assures us that there

NOTE: In this program, anything which is underlined, should
be entered in “INVERSE".

10 ¥=0:DIM NT(3,3),7(3,3)

20 MEMTOP=PEEK(104)%254

30 CHEASE=MEMTOP-Z048

35 POKE 756,CHEASE/256

40 ? CHR$(125)\FOKE 752,11G0SUB 8000
50 FOR I=CHEASE TO CHBASE+1024

60 POKE 1,0

70 NEXT I

90 READ Z

100 IF Z=99% THEN 137

110 POKE CHEASE+N,ZiSOUND 0,Z,10,12
120 N=N+1

130 GOTO 90

137 S0UND 0,0,0,0:GOSUE 8012

140 POSITION 2,213FOR I=0 TO 300INEXT I3? "PRESS ANY REY"

141 POSITION 2,211FOR I=0 TO 300INEXT Ii?

142 IF PEEK(764)=255 THEN GOTO 140

145 FOR I=0 TO Z3:FOSITION 0,037 CHR$(157)3S0UND 0,1+10,
10,6 NEXT I1S0UND 0,0,0,0

290 REM DRAW EOARD

300 GRAPHICS 1BIFOR I=10 TO 0 STEP -0.25:SETCOLOR 2,0,1%
SETCOLOR 4,3,TINEXT I

301 BLACK=3!RED=0!BLUE=3}GREEN=3}WHITE=4:A=41F=01G=01H=0
303 NTC0,0)=ZINT(1,0)=1INT(2,0)=2INT(3,0)=1

304 NT(0,1)=43NT(1,1)=0INT(2,1)=33NT(3,1)=0

305 NT(0,2)=3INT(1,2)=2INT(2,2)=1INT(3,2)=4

304 NT(0,3)=4INT(1,3)=01NT(2,3)=3INT(3,3)=2

307 FOR I=0 TO 35FOR II=0 TO 3:3T(I,II)=0INEXT ILINEXT I
320 FOKE 736,CHEASE/Z36

930 SETCOLOR 0,0,14:SETCOLOR 1,3,65SETCOLOR 2,8,81SETCOL
OR 3,11,83SETCOLOR 4,4,0

540 RESTORE 4000

350 FOR ROW=0 TO 10

560 FOR COLUMN=0 TO 19

570 READ CHAR

580 COLOR CHAR

590 PLOT COLUMN,ROM

600 NEXT COLUMN

610 NEXT ROM

700 REN _MOVE TOP CURSOR

701 POSITION Z,1117 #6;"CHODSE COLOUR NOW'iC=18iD=6:E=10

L]

is a solution, but I am not so sure. Apart from the frustrating
nature of this game, the game does have redeeming features,
such as the graphic display of the tiles which is in psuedo 3D,
excellent sound effects and a lovely routine showing the tiles

rotating or flipping over into place.

702 POKE (77),03REM xxSTOPS ATTRACT HMODE
705 TF STICK(D)=11 THEN A=A-3:1TF A<4 THEN A=4
710 TF STICK(8)=7 THEN A=A+3)1F Ax16 THEN A=16
715 COLOR 1223FLOT A,03FOK I=0 TO L00INEXT ISCOLOR O:PLD
T A0
720 IF #=4 THEN G=01H=32
725 TF #=7 THEM G=11H=0
730 IF A=10 THEN G=2:iH=140
735 TF #=13 THEN G=3iH=128
740 TF A=16 THEN G=4iH=32
745 IF STRIG(0)=0 THEN FOR I=10 TO 0 STEP -0,Z5:S0UND 0,
40,10,TINEXT IPOSITION 2,113G0TO 748
746 GOTO 700
748 POKE 77,04POSITION 2,1137? $63"SELECT TILE 5
795 TF #=4 AND WHITE=0 THEN GOSUE 7000:GOTO 700
739 TF #=7 AND RED=0 THEN GOSUE 7000:GOTO 700
764 TF =10 AND BLUE=0 THEN GOSUE 7000:GOTO 700
76% TF #=13 AND CREEN=0 THEN GOSUE 7000:GOTO 700
774 TF #=16 AND BLACK=0 THEN GOSUE 70001GOTO 700
800 REM HOVE MIDDLE CURSOR
810 IF STICK(G)=11 THEN B=B-21IF B<10 THEN B=10
815 IF STICK(0)=7 THEN B=B+2iIF B-16 THEN B=16
822 COLOR 214iFLOT B,43FOR I=0 TO 1003NEXT ISCOLOR 03FLO
T B4
823 IF STRIG(0)=0 THEN FOR I=10 TO 0 STEF -0,Z5:S50UND 0,
50,10, TINEXT T1GOTO 900
825 GOTO 800
900 REN HOVE EOTTOM CURSOR
905 COLOR Z24:FLOT C,DIFOR I=0 TG 100SNEXT IICOLOR 0SFLO
TCD
710 IF STICKCD)=14 THEN D=D-1iC=C+1:IF D<6 THEN D=6iIF C
#18 THEN C=18
915 IF STICK(0)=13 THEN D=D+1iC=C-1:IF D9 THEN D=9:IF C
£15 THEN C=13
920 IF STRIG(0)=0 THEN FOR I=18 TO 0 STEF -0,25S0UND 0,
60,10, TINEXT T3GOTO 930
922 GOTO 900
929 REM CAN YOU GO?
930 TRIED=03$YES=0:GOSUB 1000
933 TF TRIED=0 AND YES=0 THEN POSITION 2,11:? 44}"YOU CA
NT GO THERE"iFOR I=0 TO 255S0UND 0,235,10,10:50UND 0,0,
0,0:NEXT T3GOTO 700
935 IF WHITE>D THEN G=0:GOTD 730

25

937 IF RED>0 THEN G=1:GOTO 950
939 IF BLUE»0 THEN G=2:GOTO 950
941 TF GREEN-0 THEN G=3:GOTO 950
943 IF BLACK>0 THEN G=4:GOTO 950
944 POSITION 2,1137 #4;"HELL DONE "ICx=1

945 FOR I=0 TO 10:FOR J=10 TO 0 STEF -0,5:S0UND 0,47+1,1
0,I150UND 1,40-1,10,J3NEXT JINEXT I

944 FOR I=14 T0 0 STEF -0,25:SOUND 0,15,8,I¢NEXT T:GOTO
90

930 IF CX=16 THEN GOTO 944

931 POSITION 2,114? #4}"checking

=% 109

952 FOR B=10 TO 14 STEF 2

933 YES=1

955 GOSUB 1000

957 MEXT BINEXT D

9461 IF TRIED=1 THEN GOTO 700

963 TF TRIED=0 AND G=0 THEN GOTO 937
945 TF TRIED=0 AND G=1 THEN GOTD 939
947 IF TRIED=0 AND C=2 THEN GOTD 941
969 IF TRIED=0 AND G=3 THEN GOTD 943
971 POSITION 2,117 #5;"YOU CANT GO"
973 FOR I=100 TO 120%FOR J=14 TO 0 STEF -1:50UND 0,1,10,
JINEXT JINEXT T3FOR I=119 TO 100 STEP -1iFOR J=0 TO 14i5
OUND 0,1,10,JiNEXT JINEXT I

979 SOUND 0,0,0,0:PORE 744,255
980 POSITION 2,11%7 #46)"PRESS ANY

"ITRIED=0SFOR D

"IFOR I=1 T0 3003NE

XT TPOSITION 2,1147 463" \
982 TF PEEK(764)=255 THEN FOR T=0 TO 300{NEXT T:GOTO 980

984 OTO 290

1000 REM TURN OVER TILE, CHECK LECAL MOVE

1005 REX 0,0

1010 TF BS10 OR D<>6 THEN GOTO 1034

1015 IF T(0,0)=1 THEN GOTO 1036

1020 IF NT(0,0)=6 OR NT(0,1)=G OR NT{0,1)=6 OR NT(1,1)=G
THEN GOTO 1034

1024 TRIED=1!TF YES=1 THEN RETURN

1025 T(0,0)=1NT(0,0)=G4G0SUE 3000

1036 REM 1,0

1040 TF B<12 OR D<v6 THEN GOTO 1060

1045 IF T(1,0)=1 THEN GOTO 1040

1049 TF NT(0,0)=G OR NT(1,0)=C OR NT(Z,0)=C OR NT(0,1)=G
OR NT(1,1)4G OR NT(2,1)=G THEN GOTO 1060

1050 TRIED=1:IF YES=1 THEN RETURN

1051 T(1,0)=1$NT(1,8)=G:GOSLE 3000

1060 REX 2,0

1062 TF B<S14 OR D<r6 THEN GOTO 1070

1064 T T(2,0)=1 THEN GOTO 1070

1066 TF NT(1,0)=G OR NT(2,0)=G OR NT(3,0)=6 OR NT(1,1)=G
OR NT(Z,1)=G OR NT(3,1)=G THEN GOTO 1070

1067 TRIED=1}IF YES=1 THEN RETURN

1068 T(2,0)=13NT(2,0)=G3GOSUB 3000

1070 REN 3,0

1072 TF BO16 OR D<r6 THEN GOTO 1080

1074 T T(3,0)=1 THEN GOTO 1080

1076 TF NT(3,0)=6 OR NT(2,0)=G OR NT(2,1)=G OR NT(3,1)=
THEN GTO 1080

1077 TRIED=1$TF YES=1 THEN RETURN

1078 T(3,0)=1:NT(3,0)=G1G0SUB 3000

1080 REM 0,1

1082 TF B<10 OR D7 THEN GOTO 1090

FLIP

1084 TF T(0,1)=1 THEN GOTO 1090

1084 TF NTC0,1)=G OR NT(D,0)=5 OR NT(1,0)=C OR NT(1,1)=G
OR NT(1,2)=5 OR NT(0,2)=G THEN GOTO 1090

1087 TRIED=1}1F YES=1087 TRIED=1$IF YES=1 THEN RETURN
1088 T(0,1)=13NT(0,1)=GICOSUE 3000

1090 REM 1,1

1092 TF BO12 (R D7 THEN GOTO 2000

1094 TF T(1,1)=1 THEN GOTO 2000

1095 TF NT(1,1)=6 OR NT(0,0)=C OR NT(1,0)=C OR NT(2,0)=C
THEN GOTO 2000

1096 TF NT(0,1)=G OR NT(2,1)=G OR NT{0,2)=G OR NT(1,2)=C
OR NT(2,2)=G THEN GOTO 2000

1097 TRIED=1:TF YES=1 THEN RETURN

1098 T(1,1)=13NT(1,1)=G:GOSUE 3000

2000 REM 2,1

2002 TF BG14 OR DEY7 THEN GOTO 2010

2004 TF T(2,1)=1 THEN GOTO 2010

2005 TF NT(2,1)=6 OR NT(1,0)=6 OR NT(2,0=6 R NT(3,0)=6
OR NT(3,1)=6 OR NT(3,2)=6 OR NT(2,2)=C THEN GOTO 201¢

206 TF NT(1,2)G OR NT(1,1)=C THEN GOTO 2010

2007 TRIED=141F YES=1 THEN RETURN

2008 T(2,1)=11NT(2,1)=GIG0SUB 3000

2010 REM 3,1

2012 TF B 16 OR D457 THEN GOTO 2020

2014 TF T(3,1)=1 THEN GOTO 2020

216 TF NT(3,1)=6 OR NT(3,0)=C OR NT(2,0)=G OR NT(Z,1)=6
OR NT(2,2)6 OR NT(3,2)=C THEN GOTO 2020

2017 TRIED=13IF YES=1 THEN RETURN

2018 T(3,1)=1NT(3,1)=G3GOSUE 3000

2020 REH 0,2

2022 TF B&10 OR D58 THEN GOTO 2030

20724 TF T(0,2)=1 THEN GOTO 2030

226 TF NT(8,2)=G OR NT(0,1)=6 OR NT(1,1)=G OR NT(1,2)=G
OR NT(0,3)=5 OR NT(1,3)=G THEN GOTO 2030

2027 TRIED=13TF YES=1 THEN RETURN

2028 T(0,2)=1$NT(0,2)=G:GOSUE 3000

2030 FEN 1,2

2032 T BOAZ (R D<)8 THEN GOTO 2040

2039 T T(1,2)=1 THEN GOSUE 2040

35 TF NT(1,2)=6 OR NT(0,1)=C OR NT(1,1)=6 OR NT(2,1)=G
OR NT(0,2)=C OR NT(2,2)=G OR NT(0,3)=G THEN GOTO 2040
W3 TF NT(1,3)=C OR NT(2,3)=C THEN GOTO 2040

2037 TRIED=14TF YES=1 THEN RETURN

2038 T(1,2)=1:NT(1,2)=GIGOSUE 3000

2040 REM 2,2 '

2042 TF B<14 0K D8 THEN GOTO 2050

2044 TF T(2,2)=1 THEN GOTO 2050

2045 TF NT(2,2)=6 OR NT(1,1)=C OR NT(2,1)=G OR NT(3,1)=G
Ok NT(1,2)=6 OR NT(3,2)=G OR NT(1,3)=G THEN GOTO 2050
246 TF NT(2,3)=6 OR NT(3,3)=G THEN GOTO 2050

2047 TRIED=1:1F YES=1 THEN RETURN

2048 T(2,2)=1:NT(2,2)=G:G0SUE 3000

2050 REN 3,2

2052 TF BO16 OR DOB THEN GOTO 2060

2054 TF T(3,2)=1 THEN GOTO 2040

05 TF NT(3,2)=6 OR NT(2,1)=6 OR NT(3,1)=G OR NT(2,2)<G

COR NT(2,3)=G Ok NT(3,3)=C THEN GOTO 2040

205 TRIED=13TF YES=1 THEN RETURN

2058 T(3,2)=1:NT(3,2)=G4GOSUE 3000

2060 REM 0,3

2062 TF B0 OR D49 THEN GOTO 2070

2064 TF T(0,3)=1 THEN GOTO 2070

2066 TF NT(0,3)=G OR NT(0,2)=G OR NT(1,2)=G OR NT(1,3)=G
THEN GOTO 2070

2067 TRIED=1}TF YES=1 THEN RETURN

2068 T(0,3)=1:NT(0,3)=G3GOSUE 3000

2070 REM 1,3

2072 TF B<>12 OR DEO9 THEN GOTO 2080

2074 TF T(1,3)=1 THEN GOTO 2080

76 TF NT(1,3)=G OR NT(0,2)=C OR NT(1,2)=C OR NT(2,2)=G
OR NT(0,3)=C OR NT(2,3)=G THEN GOTO 2080

2077 TRIED=1:IF YES=1 THEN RETURN

2078 T(1,3)=1iNT(1,3)=G4GOSUE 3000

2080 REN 2,3

2082 TF B<>14 OR D9 THEN GOTO 2090

2084 TF T(2,3)=1 THEN GOTO 2090

86 TF NT(2,3)=C (R NT(1,2)=6 OR NT(2,2)=G OR NT(3,2)=G
OR NT(1,3)=C OR NT(3,3)=G THEN COTO 2090

2087 TRIED=1:TF YES=1 THEN RETURN

088 T(2,3)=1:NT(2,3)=GCOSUE 3000

2090 REM 3,3

2092 TF B<>14 OR D<>9 THEN GOTD 2100

2093 TF T(3,3)=1 THEN GOTO 2100

094 TF NT(3,3)=C OR NT(2,2)=G OR NT(3,2)=G OR NT(2,3)=G
THEN GOTO 2100

2095 TF NT(3,3)=G OR NT(2,2)=6 OR NT(3,2)=6 OR NT(2,3)=G
THEN GOTO 2100

2094 TRIED=1!TF YES=1 THEN RETURN

2097 T(3,3)=1:NT(3,3)=CCOSUE 3000

2400 RETURN

3000 REX _FLIP OVER TILE SUE.

310 POSTTION 2,1147 443" "ICX=CXH

3020 COLOR 15+HFLOT B-D+4,D

3025 COLOR 14+HIPLOT B-D+5,D4FOR T=10 T0 19:SOUND 0,1,8,
10350UND 0,0, 0,05NEXT T

3026 COLOR 17+H(FLOT B-D#4,D

3027 COLOR 18+HSPLOT B-D+5,DSFOR I=40 TO 493500 1,1,8,
104S0UND 1,0,0, 04NEXT 1

3028 COLOR 19+H:PLOT B-D#4,D

3029 COLOR 20+HIFLOT B-D+5,D4FOR I=50 T0 40:S0UND 2,1,8,
10450UND 2,0,0, 0$NEXT T

3030 TF G=4 THEN COLOR 23+H:PLOT B-D+4,DICOLOR 24+HIFLOT
B-D+5,DSRETURN

3035 TF G<4 THEN COLOR 214H:PLOT B-D+4,D!COLOR 224H:PLOT
B-D+5,D

4000 REM RUN OUT OF COLOUR?

050 IF A=4 THEN WHITE=MHITE-1:IF WHITE=0 THEN GOTO 4070
452 TF A=7 THEN RED=RED-13IF RED=0 THEN GOTO 4070

54 TF A=10 THEN ELUE=BLUE-13IF BLUE=0 THEN GOTO 4070
4056 IF A=13 THEN CREEN=GREEN-1:IF GREEN=0 THEN GOTO 407
0

4053 TF A=16 THEN ELACK=ELACK-13TF BLACK=0 THEN GOTO 407
0

4060 RETURN

4070 POSITION 1,1137 $43"COLOUR NOW RUM OUT"

4071 COLOR O3PLOT (G+1)X3,1:DRANTO (G+1)%3+2,1

472 COLOR 03FLOT (G+1)x3,2:DRANTD (G+11%342,2

4074 COLOR O3FLOT (G+1)x3,3DRAHTO (G+1)x3+2,3

2075 FOR T=0 TO 300$MEXT I$POSITION 0,1137 $6}"

4080 RETURN

4999 REM NEW IMPROVED CHARACTER SET !!

5000 DATA 0,0,0,0,0,0,0,0

2001 DATA 0,253,255,255,255,128,128,2355
G002 DATA 0,0,0,0,0,0,0,0

9003 DATA 0,255,255,255,255,0,0,253
5004 DATA 0,255,255,255,254,40,121,242
S005 DATA 0,192,192,44,44,128,10,0

5004 DATA 228,200,144,32,64,128,0,0
5007 DATA 1,3,7,15,30,60,121,242

3008 DATA 1,255,285,255,254,2,3,254
3009 DATA 121,235,255,255,255,0,0,255
o010 DATA 0,0,1,3,7,4,4,7

o011 DATA 0,0,1,3,7,15,30,40

5012 DATA 121,242,228,200,144,32,64,128
9013 DATA 0,31,43,127,235,128,128,2355
3014 DATA 0,254,254,250,242,20,24,240
5015 DATA 0,0,235,123,128,255,0,0

3014 DATA 0,0,254,18,18,254,0,0

3017 DATA 0,255,128,128,255,127,43,31
3018 DATA 0,240,24,20,242,250,254, 254
G019 DATA 43,64,255,255,255,255,255,255
5020 DATA 752,4,244,244,244,244,248,240
G021 DATA 0,31,62,124,255,128,178,7255
3022 DATA 0,254,124,250,242,20,24,240
3023 DATA 0,31,33,67,233,128,128,255
3024 DATA 0,254,134,10,242,20,24,240
5025 DATA 0,31,32,64,255,128,128,255
5026 DATA ,754,6,10,242,20,24,240

5927 DATA 255,128,128,128,128,178,128,178
3028 DATA 235,1,1,1,1,1,1,1

5029 DATA 0,1,3,7,14,29,58,117

5020 DATA 1,255,170,85,170,85,170,85
3031 DATA 0,234,174,94,186,118,234,214
3032 DATA 16,48,127,255,255,127 48,14
3033 DATA 0,124,238,238,238,254,238, 238
5034 DATA 0.232,238,252,238,238,254,252
3033 DATA 0,124,230,224,224,230,254, 124
4034 DATA 0,248,236,230,230,238,254,252
5037 DATA 0,254,224,254,224,224,254,204
5038 DATA 0,254,224,254,224,224,224,224
5039 DATA 0,124,230,224,238,230,254, 124
3040 DATA 0,238,1738,254,254,238,238,238
3041 DATA 0,640,60,40,40,40,40,40

5042 DATA (,78,28,28,28,220,252,120
3043 DATA 0,238,1734,248,252,738,238,238
3044 DATA 0,224,274,724,224,724,234,254
5045 DATA 0,230,254,254,218,230,230,230
9044 DATA 0,238,246,254,254,238,238,238
3047 DATA 0,124,238,238,238,238,254,124
5048 DATA 0,252,230,230,254,252,224,224
5049 DATA 0,124,238,238,238,738,252,126
5050 DATA 0,252,238,252,238,238,23€,238
3051 DATA 0,124,224,124,14,14,254,252
J052 DATA 0,254,56,56,56,56,56,56

50533 DATA 0,258,238,238,238,238,254,123
5“54 Di"“’a 255!255?255f2559255}255)255\3255
5055 DATA 0,230,230,230,218,254,254,230
5056 DATA 4,142,223,254,252,248,252,754
o057 DATA 0,Z38,238,124,56,56,56,56
5058 DATA &0,40,60,60,235,126,40,24
059 DATA 128,128,128,128,128,1128,128,255
3060 DATA 1,1,1,1,1,1,1,255

Cantinued on Page 29.

MEMORY SHRINKER!
Dear Sirs,

My reason for writing to you is that |

have typed in numerous magazine
listings, but have been unable to run a
fair percentage of them., | think this is
because my machine is a 48K 800 and
most of the programs were for a 16K
machine and these programs probably
have a line in them that is controlled by
the machine’s memory capacity that
prevents them from running properly. Is
there any way that I can POKE a lower
memory value in order to fool my
computer into thinking it is only a 16K
version?

I don’t mind the typing in (it's all
good practice isn't it?), but it is very
frustrating to see four or five (or even
eight) davs typing turn into a blank
screen when run.

A. Pullinger - Avlesbury,

COMMENT

Yes, it is frustrating typing in pages
of listing only to find they don’t work.
We wish those national glossy mags
would at least say what memory is
required, and the author of the piece
write it so that it would work in any
size machine, which is not so much
extra work.

The ATARI computers keep a series
of pointers which keep track of such
things as the screen memory, which

| moves about depending on how much

memory is free. Programs should access
things via these pointers and not

| directly because they do not keep to

one fixed location. The reason why you
are getting blank screens is that your
screen memory is up near 48K, buf the
program is assuming that your screen is
in the 16K region.
: There is one location in the

| computer that keeps a record of how

| many ‘pages’ of RAM there are in your

machine. So, if you PEEK location 106
you can see how many pages vou have,
and multiplying it by 256 gives vou the
number of bytes. For a 48K machine
vou get returned 160 pages or 40K
bytes (remember the other 8K is

| BASIC).

To make the machine think it has
less memory, you need to POKE a
lower value into location 106, this will
not change anything instantly, but a call
to GRAPHICS 0 will make the machine
re-calculate its memory pointers for the
smaller memory available. If you add as
the first line of your program: POKE
106,64: GRAPHICS 0 then this will set
your memory to 16K, and similarly for
32K vou would POKE 106 with 128.

DESCRIPTIVE
PROGRAMMING

Once you are used to looking at
program listings you begin to notice that
most programmers never seem to write

anything in a straightforward manner.
They always seem to be redefining the
alphabet so that their programs end up
with lines like: A=1:B=A+A:C=A+B
etc. . . Halfway through a program, can
they really remember what all those
symbols meant? A more descriptive
approach could be taken thus:
ZERO=0:LET ONE=1: TWO=0ONE+
ONE etc. . . a much easier system to
remember! Or even better you could
use LET ONE =NOT ZERO!!
Incidentally ONE will be rejected
without LET.

However, nobody likes to type in
such cumbersome things as SOUND
ZERO,ZERO,ZERO,ZERO:POKE
SEVENHUNDREDANDSIXTYFOUR,
TWOHUNDREDANDFIFTYFIVE.

So my favourite approach is the ‘Roman
System’ which gives such wonderful
lines as:

[ENOT Z: =1+ =11 V=111 : V=TT :
X=V+V: XX=X+X etc... I also include a
few specials such as
PAGE=256:FF=PAGE-I. With this
systemn at line umpteen thousand you
can still remember what XX equals.

Most of us are familiar with a
statement such as TRAP 1000 to cause
line 1000 to execute in the event of an
error, but the statement TRAP 40000
usually makes us look twice (40000 is
used as a deliberate error to end the
special trapping arrangements). A more
elegant and descriptive way would be to
use TRAP END (provided there is no
line zero).

What is needed is a common
standard to make programs
understandable to all, say the Skeags
Atari Standard Comprehensible
Information Interchange, not a B.S spec.
more a SASCII standard!!

Trevor Skeggs - Milton Keynes.
Editor’s Note: This is a joke, isn't it
Trevor?

MICROSOFT FORMAT

Dear Sir,

| am writing to you to ask for help
with a software problem that I have
encountered. My problem concerns
ATARI Microsoft BASIC V1.0 on
diskette. | have written a large database
suite of programs for my personal video
library. The amount of data involved is
so large that one diskette is not enough.
Therefore my program asks for new
diskettes when the current diskette is
full. The problem occurs, because when
this new diskette is called for, | have to
leave BASIC to format a new diskette.
As you can imagine this takes quite a bit
of time and is very inconvenient. The
solution to my dilemma would be a
routine that could forrhat the diskette
within BASIC. Can you help?
A. Lusher - Erith, Kent.

COMMENT
If you had been using ATARI

BASIC, formatting the diskette is easily
achieved using the flexible XIO
command: XIO 254,71,0,0,“D: "
Microsoft BASIC however, does not
have such a command and you need to
access the Central Input/Output
routines via machine code calls. On the
Microsoft BASIC disk is a machine
code data file called ‘CIOUSR’. The
following program reads the machine
code from the file and then formats a
diskette by using the disk handler’s

format command (hex FE). Also given is]

a description of how the program works
so fthat it should not be too difficult for
you to incorporate it as a subroutine
into your main program.

140 !

110 'Hicrosoft BASIC.

120 !

130 'Formst diskette.

140 ¢

158 'By Keith Mavhew.

140 1

170 DIN TOCB%(18)

180 OPTION RESERVE 140

190 ADDR=VARFTR(RESERVE)

200 OPENE1,"DICIOUSR™ INPUT

Z10 FOR I=0 70 159

220 GET#1,XPOKE ADDR+I,X

230 NEXTICLOSE#L

240 DISK$="Di"

250 JOCEZ(8)=1

260 T0CEZ(1)=8FE

270 ICBADDR=VARFTR(DISKS)

280 ELEMENT=VARFTR(IOCE%(3))
290 POKE ELEMENT ,PEEK(ICBADDR+2)
300 POKE ELEMENT+1,PEEK(ICBADDR+1)
310 PUTIOCE=ADDR

320 CALLCIO=ADDR+41

330 ARRAY=VARFTR(IOCEZ(0))

340 INPUT “Fress [RETURN] to format
dish." JDUMMYS

350 X=USR(PUTIOCE,ARRAY)

340 Y¥=USR(CALLCIO,ARRAY)

370 PRINT "Disk formatted,”

380 END

The program first dimensions
IOCB% to 10, which will contain the
information to format the disk. The
OPTION RESERVE command reserves
160 bytes of memory into which the
data of the ‘CIOUSR’ file is read, byte
by byte. Disk$ is set to the file spec. of
the device to be accessed (D:), and
then the array IOCB% is set up for the
format command. Element 0 is set to 1
and is the channel number, the next
element is the command number (&FE
- format). ICBADDR is set to the
address of the string DISK$ and
ELEMENT is set to the address of the
third element of IOCB%. The two byte
integer ICBADDR is then POKEd into
IOCB%(3), PUTIOCB is the address of

biiinniilabinadi R ikl i inilicds

| the machine code to transfer the

| IOCB% array into CIO and CALLCIO
is the address for executing the
command. The two routines are then
called in sequence, both being passed
the address of the array, and then the
disk is formatted! Simple isn't it?

HARDWARE ADVICE
Dear UKACOC,

I am writing for a couple of reasons.

| One is | think that your magazine has

improved considerably since the first
one. Keep up the good work. | am
impressed with the ability of some of the
| subscribing people out there and yours
as well!

The small program that 1 submitted

| and was printed in Issue 5 about
| artifacting was probably a big

‘| disappointment to most people. | have
just seen it run on a UK spec. machine
and it’s a real dud. From my
investigations, | have found out that with
the PAL/UK TV interface there is more
“resolution” in the PAL system (more

| lines) and that artifacting does not come
| out as good as compared to the US

| NTSC system. Some of the people |

| know have also complained about
games that use artifacting for the
colours. The result on a UK system is

INTERFACE

not what you would call vivid Atari
Graphics!! | am using a US spec. Atari
800 here in the UK with an NTSC
colour monitor and of course, the
games (and my demo) look much
better. Sorry about that!!!

Which brings me to the last point. |
noticed several people have asked about
hardware additions to their Ataris. |
have several modifications/additions to
my computer and they are welcome to
get in contact with me if they could use
what advice or help that I might be able
to give. My set-up consists of an Atari
800 (USA model) with a Newell
Industries Ramrod MMQOS board in the
first slot. This board has Omnimon! and
the Fastchip floating point chip installed
in it. Also | have a different operating
system which is on EPROMS also on
the board. The board allows EPROMS
or the standard ROMS. Also, it is
possible to remove the OMNIMON!
EPROM and install 4K of RAM which
fills up the “hole” that Atari left in the
system. The second slot has the
standard Atari 16K RAM board. The
third slot has an Intec 32K board for a
total of 48K. The last slot has a Bit-3 80
column card installed which is in turn
hooked up to a green screen Zenith
monitor. This works great with the 80

column versions of LJK's Data Perfect
and Letter Perfect.

| also have SWP's ATR8000
peripheral which handles my printer
(Epson MX-80 w/Graftrax +) and disk
drives (two slimline double sided
Shugarts and a Percom RFD40-52). 1
can also run CP/M 2.2, but this is my
latest addition and | can’t say much
about it other than it works with no
problems so far. In the “Atari” mode,
the ATR is also a 60K printer buffer
which I have found to be useful. Finally
the video output from my 800 runs to a
Panasonic colour monitor with sound. |
have had no problem with the system
here in the UK. | run the entire set-up
through a step down transformer. Oh,
and | also have a 410 recorder.

For anybody who wishes to contact
me my name and address is Kirby
Schrader, 13 Earlswells View, Cuits,
Aberdeen, Scotland. My telephone
number is 0224-861226 and if I'm not in,
leave your number and I'll call you back
when | get in.

COMMENT

My, what a big system you have
Kirby! We are sure many people will be
interested to know more about vour
equipment. Stand-by for lots of letters
and phone calls.

Continued from Page 27.

9061 DATA 255,255,255,255, 255,255,295, 299
5062 DATA 170,86,170,86,170,86,170,86
5043 DATA 170,86,172,88,176,96,192,128,999

3999 REN DRAW FLAYFTELD DATA

46000 DATA 0,0,0,0,122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4002 DATA 0,0,0,61,62,63,29,30,31,189,190,191,157,158,135

?’61 ;62363’01'

6004 DATA 0,0,0,86,86,94,118,118,126,214,214,222,246,246

rﬁﬂ,ﬂ?,bﬂ,ﬂ,ﬂ.ﬂ

FLIP
7020 RETURN

R$(125)

7999 REM INSTRUCTIONS
8000 SETCOLOR 2,0,104SETCOLOR 1,0,03SETCOLOR 4,3,10%7 CH

8001 POSITION 10,717 “FFFFF LL II PPPF "
8002 POSITION 10,837 “FFFFF LL II PPPPP"
8003 POSITION 10,937 “FF
8104 POSITION 10,1037 “FFFFF LL II PPPPP"
8005 POSITION 10,1137 “FFFFF LL II PPPP"

EESe T1IPP-PRY

6004 DATA 0,0,0,86,86,95,118,118,127,214,214,223,246,744
1299491,92,95,040
6008 DATA 0,0,0,0,0,0,
4010 DATA 0,0,0,0,0,0
163,163,164,145,0,0
6012 DATA 230,0,0,0,0,171,172,173,174,13,14,173,174,13,1
4,167,164,274,0,0

014 DATA 204,0,0,0,171,172,57,58,45,46,141,142,45,46,14
74166,0,0,0,0

6016 DATA 105,0,0,171,172,141,142,173,174,13,14,57,58, 14
7,166,0,0,0,0,0

6018 DATA 80,0,171,172,57,38,45,46,141,142,173,174,167,1
66,0,0,0,0,0,0

6020 DATA 0,170,169,163,143,143,143,143,143,163,143,148,
166,0,0,0,0,0,0,0

7000 REM MESSAGE

7005 POSITION 2,1137 #43"TRY AGAIN PLEASE"

7010 FOR =230 TO 2503S0UND 0,J,10,105FOR I=0 TO 3INEXT
TIS0UND 0,0,0,03F0R I=0 TO JINEXT TINEXT J

+0,0,216,0,0,0,0,0,0,0,0,0
71,161,143,163,163,143,163,143,

0,0
0,1

9y

8006 POSITION 10,1237 “FF LLLLL IT FF"

8007 POSITION 10,1337 “FF LLLLL IT PP"

8008 POSITION 7,167 “DESIGNED BY STEPHEN TAYLOR "
8010 RETURN

8012 FOR =0 TO 23:POSITION 0,017 CHR$(154)INEXT T
8019 7 “"HOW TO PLAY FLIP™i? 17

8020 ? "YOU MUST REPLACE ALL THE TILES WITH ONE "3
8030 ? "THE COLOUR OF YOUR OWN CHODSING"M?

8040 7 "USE THE JOYSTICK AND BUTTON":?

8050 ? "YOU CAN ONLY USE EACH COLODUR SO MANY"
8060 ? "TINES":?

8070 ? "PICK THE TILE YOU WANT TO CHAMGE"

8080 ? "IT MUST NOT BE THE SAME COLOUR AND"

8090 ? "IT MUST NOT BE AJACENT TO THE SAME "

8100 ? "COLOUR TILE IN ANY DIRECTION":? 17
. 8110 ? “GOOD LUCK"

8115 ? “THERE IS A SOLUTION"

8900 RETURN

Landscape

Landscape is a cross between ‘Buck
Rogers’ and ‘Encounter’ in so far as we
are treated to the rear view of our
spaceship as it twists and turns across
the scrolling landscape avoiding enemy
fire as well as giving a good account of
itself in the return fire department. The
object of the exercise is to traverse the
landscape to reach the ‘Dark Tower’
which can be seen in the distance, and
when you finally achieve your goal, to
destroy the tower by shooting out its
base to make it come crashing down,
chimney stack fashion. Various enemy
formations are out to stop you from
reaching the tower including static and
mobile ground forces, but by far the
the ‘Air Defence’ craft which

If you love those “shoot "em up”
type games in the tradition of Defender
and Space Invaders then you'll just love
Gyruss. The concept of the game is that
you are spiralling your spaceship into
the Solar System from somewhere in
outer space, coming in on a trajectory
aimed at good old Earth, passing by
Neptune, Uranus, Saturn et al. As you
approach each planet defending craft

| attack you, usually spiralling out from
the centre, although they can be sneaky
and come at you from behind. Your
ship rotates in a circle as you move
your joystick left and right, together
with a background starfield which
radiates out from the centre, giving a
realistic impression off travelling down
into a tunnel. Each atacking wave
consists of fighters which fire at you as

|

by Ralph Kingsley

are not only exceedingly accurate with
their shots, but also have this terrible
desire to be kamikazi pilots and swoop
down straight into you, nasty beasts
indeed!

At the start, we are presented with
an interesting title page which depicts a
3D landscape with the mountains and
the ominous Dark Tower as the skyline,
and dotted in various positions are large
coloured balls that cast elliptical
shadows onto the sloping plain to give a
rather ‘op-art’ effect. A well thought out
opener and also stunning to the eye in
its own way. Next we are given a list of
the enemy forces ranged against us,
combined with the provocative
statement “Can you destroy the Dark
Tower?” Here we are also allowed to

select the level of difficulty, which
basically consists of changing the
distance we need to travel to reach the
tower. Lastly, before we start on our
mission, we go to the tactical screen,
which gives details of the optimum route
to the tower. Then it’s full speed ahead
into the inferno.

Your ship appears at the edge of the
grid, you push forward on your stick to
accelerate and you are on your way. At
first the enemy defences seem weak and
thin on the ground but don’t be
deceived, the closer you get to the
tower the more active the enemy gets.
You only have three ships to play with
so you must last as long as possible to
stand any chance of reaching the dark
edifice and destroying it forever.

YRUSS

well as attempting to collide in mid-
space. Molecular satellites also attack
you and are usually to be found in
threes, if you destroy the middle satellite
you receive the added bonus of firing
double lasers. Other hazards include
meteorites and ‘electromagnetic’
satellites which line up in pairs and
produce a lethal energy wave between
them which must be avoided.

As you pass each wave of attackers,
you warp to the next stage and every
time you pass a planet you are given a
bonus screen of enemy ships who can't
fire back, this is the ideal situation for
those who love to gather lots of points.
Speaking of points, you are awarded an
extra ship at 60,000 points and at every
100,000 points thereafter.

One of the best features of the game

has nothing to do with the graphics, and
that’s the sound. The music that
accompanies the game all the time you
are playing is Bach’s Toccatta and
Fugue in D Minor, which is probably
familiar to you if you are a John
Williams fan. Far from annoying after
several minutes like some music does
on some games (the constant music on
Astro Chase and Shamus to name but
two) it actually enhances the game and
makes it more enjoyable.

Parker Brothers who produce
Guruss are to be congratulated on
developing an old theme into an original
and entertaining program, this surely
has to be one of their best so far. | put
it into my personal number two spot
(Boulder Dash is number one of course,
what else?).

Mastering the Atari.

By Daryl Severn, published by
Interface Publications, 9-11 Kensington
High Street, London W8 5NP.,

This book has clearly been written
with the intention of providing a good
working knowledge of the Atari
computers and as such it starts by
recommending that the best way to get
the most out of the book is to be at
your keyboard as you read so that you
can enter the programs as they come
up. Four main topics are covered and
these are Strings, Input/Output, Logic
| and Graphics and each section is
generously filled with example programs.
Of the four sections, the graphics
section is the largest and includes much
information on Display Lists, Player-
Missile Graphics and Scrolling
Techniques. The /O chapters include
interesting tid-bits on the Screen Editor,
the Keyboard, Joystick Ports, as well as
explanations of how the Cassette and
Disk handling systems work. This book
is not for the very beginner but assumes
a reasonable knowledge of Basic and is
aimed at the enthusiast who wants to
know more about his machine.

,.[gli""ﬁ m

'L

Writing Strategy Games.

By John White, published by
Sunshine Books, 12-13 Little Newport
Street, London WCZ2R 3LD.

To write games of strategy requires
| not only a knowledge of programming
- | but also of certain mathematical and

coding techniques. This book looks at
the programming theory behind
intelligent games before moving on to
practical examples of how to set up a
board, move pieces, standard openings
and endgame moves. Included are
sample games for draughts, chess and
other board games, and the author has
also provided his own board game called
‘Warp Trog’, which illustrates most of
the techniques discussed in the book.

READ ALL ABOUT IT

Some Book Reviews by Bradley Mountjoy

“An mrﬁﬂﬁum =

An Introduction to Programming the
Atari 600/800XL.

By R.A. & J W. Penfold, published
by Babani, The Grampians, Shepherds
Bush Road, London W6 7NF.

The step-by-step approach adopted
by this book starts with the
fundamentals of Basic and then moves
on to more advanced topics such as
animated graphics. There are chapters
on Variables and Arrays, Strings,
Inputting Data, Decision Making, Sound
Generation, Graphics and Ins & Outs
such as Paddles, Lightpen, Interfacing,
and Timers. There are plenty of
program listings given to illusirate
various points. All in all a useful little
volume especially as it is priced at under
£2.00.

Dr. C. Wacko’s Miracle Guide to
Designing and Programming your
own Atari Computer Arcade Games.

By David Heller, John F. Johnson &
Robert Kurcina, published by Addison-
Wesley, Finchampstead Road,
Wokingham, Berks RG11 2NZ.

As well as having the longest book
title I have ever come across, this
volume also manages to be the most
entertaining programming book I have
read. It is packed with cartoons and
jokes in the true tradition of West Coast
of America wackiness. Dr. Wacko
guides us through all the necessary
details with such fun and style that you
hardly notice that you're learning as you
go. Subjects covered include Graphics
modes, Character graphics, Flip-flop
animation, Joystick control, PMG, and
*Zounds’ (Sounds?). In Dr. Wacko’s
opening speech, | quote: “Holy
Zanzibar! Are you going to be glad that
you bought this book!” Well, all I can
say is: “I was Doc.”

Space Knights.

By David Heller & Robert Kurcina,
published by Reston Publishing, Reston,
Virginia 22090, U.S.A.

Space Knights is a book and a disk
combined to give an entertaining read
coupled with ready to run programs
which slot into various action sequences
in the novel. What you might call a
novel concept! The idea is that you can
read through the story of the
adventures of Jack and Lisa and then at
certain points load up the appropriate
game and try out your skills or, if you
are like me, trust to luck to win
through. About two thirds of the book is
taken up by the story, which i$ nicely
illustrated, the rest of the book being
devoted to game descriptions and rules.
There are nine games with titles such as
Bug Buster, Weomby, War Room,
Navigate and Mind Demons. Some of
the games require the use of paddle
controllers but most are joystick
controlled. If you are a Sci-Fi fan or just
looking for something different, then I
am sure you will find Space Knights to
your liking.

W

Exploring Adventures on the
Atari 48K.

By Peter Gerrard, published by
Duckworth, The Old Piano Factory, 43
Gloucester Crescent, London NWI.

This book is a thoroughly
comprehensive quide to writing your
own adventures in BASIC. It assumes
only a very limited knowledge of BASIC,
as one chapter provides a useful
summary of the BASIC commands used
in writing adventures. Another chapter
breaks down a complete adventure into
small sections, and then discusses
exactly how each works. This is a
particularly good way of showing how
an adventure can be written. Everything
you need to know is explained, from
creating the initial map of the game to

o
A
2
4
=3 A

e

=& 3

bringing in random elements, such as
small dwarves attacking you. Although

- | the book limits itself to text only types

of adventure, there is an overview of
graphic adventures and fantasy role
playing games. Also, if you're lost for
ideas, there is a large selection of
themes for possible adventures. Perhaps
best of all, there are three complete
adventure listings provided, but if this
amount of typing is too daunting, you

| can send off for a cassette of these

‘| games. In summary then, this book is

L well worth the price, giving clear
instructions on producing a high quality
game with minimum effort.

The Atari Book of Games.

By Mike James, S.M. Gee & Kay
Ewbank, published by Granada
Publishing, 8 Grafton Street, London
WiX 3LA.

Twenty-one listings of games
programs are presented in this book
together with a description of the object
of the game and details of how to play.
All the games are written in Basic but
show how much can be achieved
without resorting to machine code. Each
program also has tips and hints
provided so that you can modify them
to make your own improvements. There

are many different types of game

READ ALL ABOUTIT

THE ATARI

= BOOK OF ===

— GAMES

Making the Moge

of

included such as: Bobsleigh, Capture
the Quark, Treasure Island, Smalltalker,
Sheepdog Trials, Save the Whale, to
name but a few. The listings are well
printed and easy to read and in addition
‘typing tips’ are given if there are any
special control codes required.

Making the Most of Your Atari.

By Paul Bunn, published by Interface |
Publications, 9-11 Kensington High
Street, London W8 5NP.

Aimed at the computer owner who
has had his machine only a short time,
this book provides details of much of
the information that a beginner needs to
improve his programming attempts. It
does this by providing just enough on
each topic to make it usable without
going into lengthy explanations of why
and how. It includes information on all
the Graphics modes and associated
Basic commands such as Plot, Drawto,
Position, XIO (fill), Setcolor, etc. The
Error message system, PMG including
Collision Detection and the fifth player,
Redefining characters, and making
programs more efficient are also
discussed. Finally, Paul has added
fourteen games programs for your
enjoyment which include Frog Jump,
gstro Blast, Sales Analysis and Grand

Tix.

Previous issues of this magazine are
obtainable from the club for £1 plus 30p.
postage each. They contain many
interesting and informative articles, hints
& tips, program listings for you to input,
reviews and practical advice. If you have
missed out send for your copies of back
issues today! Please note that issues 1,
2, and 3 are already sold out.

Issue 4.

Includes a complete in-depth look at
Display Lists, what they are, how to use
them, LMS explained, horizontal and
vertical scrolling, etc. Another article
shows how to get text on a Graphics 8
screen and gives an example graph to
prove the point. A comprehensive
review of many of the different types of
joystick that are available gives ratings
for comfort, action, looks and value.
Program listings are aplenty and include
Peckman, a Basic version of a well-
known arcade game, Stunt Rider, in
which you must jump your motorbike
over the buses, Hex is a two player
board game with excellent graphics, and
for the more serious minded, you can
enjoy designing your own shapes with
CAD (computer assisted design).

Issue 5.
The first part of the series on

| ‘Cracking the Code’ starts in this issue
and covers Binary, Hexadecimal and
Decimal mathematics. There is an
article on protecting your Basic
programs from prying eyes and an
interesting article on hardware

modifications to the 800/400 machines
to give improved sound and picture
quality, a cold start key and a busy light
for your cassette player. Also included is |
a review of the new programming
language. ‘Action!” showing its potential
for creating exciting fast action games.
Games listings shown include Gil-bert,
which is a ‘Q-bert’ type game, also
Dragonfire in which the player must
cross the drawbridge dodging the
dragons flaming breath to reach the
treasure room. Other listings include a
label maker and a QRA locator for
Radio Amateurs.

Issue 6.

Includes a useful tutorial showing
how to print Micropainter and
Versawriter pictures, also contains a
terrific program demonstrating 80
characters across the screen. A new
regular column for adventure
enthusiasts is started to give reviews of
adventure games and give hints and tips
on how to play them. Part two of
Cracking the Code continues with
addressing modes and binary sums. The
hardware design for a Light Pen is
shown together with some simple
programs to use with it once you have
built it. Fun with Art from Epyx is
reviewed and some of the excellent
results of using this package are shown.
Programs include Planetron and an
RTTY listing for use with a short wave
band radio, the Atari 850 interface and a
signal terminal unit (such as the Maplin
TU1000).

64K GOMPUTER FOR ONLY £129!

ATARI XL
ok £12

EVERYTHING YOU WANT FROM A HOME COMPUTER

1.ATARI 64K BOOXL - £129: Tne Atari BOOXL has many facilities and includes such advanced specifications that you will be amazed by its
performance. At the new reducad price of only £128 inc VAT for a full specification 84K compuler with a proper {ull stroke keyboard, we
believe that the 800XL cannot be beaten. Compare Atari witn the competition, just look at thesa specifications:-

COLOUR CAPABILITIES: 16 colours and 16 intensitios giving 266 aifferent colours (all of the 256 colours can be dispinyed &1 o same bme)

OPERATING SYSTEM: 24K ROM ircluding Atari Basic programming fanguage and 3 seil dragnostic 188! program

KEYBOARD! Full slroke design with 62 keys including help key and & special function keys, International chiractar set ang 29 Grashics keys.

SOUND: 4 independen| sound syntnesisers each capable ol nroduc-w MUSIC ZCress a 3'; octave range of & wide variaty of special sound efacts (Additaonal
pragramming can achisve an octave range of up 1o nine aciaves’]

DISPLAY: 11 graphic moces and 3 text modes. Up to 320 %132 resolution. Maximum tex! display 24 knes by 40 columns

SPECIAL a'lARllNTEGHATED CIRCUITS: GTIA for graphics dwwplay, Pokey for sound and controdier ports. Anlic for screan control and 10 (Input/ Culput)
CPU: B302C micre 0.50 d cycle and a clock speed of 1 78 MHz

EXTENDED GRAPHICS FUNI:T]UNS High resolution graphics. Mulli-coloured charac mr set Software screof switching Multiple redifined character sets
Player missile (sprite) graphics. Fine screen scrolling. Changeable colour registers Smooth character mowement Simple colour snimation faclilies
PROGARAMMING FEATURES: Buit in Atari Basic programming language suppormng '\eek = and USH pius a1 leas! 8 other languages available. T!

key will provide addiional information and menu screens with certain il 5 1 ADIe A5 woil 03 Synlax checking on antry
INPUT/OUTPUT: Extarnal procsssor bus for sxpansion s gme & = Nor oulput Peripheral port for direct connechon
to Atan standard panpherals. Softw cartridge slot s dw as 2 joystick conltroller ports

SOFTWARE: Over 1.500 nems of 3 e Bre availaoie ncluding salf tesching programs unigus voice over The range ol program: hedes Education
Home Management & Programming 205 There & also APX (Atar Frogram Exchange) and o se Alan's famous entertainment ware now al only
£9.85 |n 300N Ihere 1 @ Nost of SLPPort and help availadle from specialist Alan magarings like AnTic 2nd Analog and Irom over 75 A18n DOOKS! Manuais
.ATARI| 400 16K GAMES MACHINE - £29: We have several Alari 400 games consoles/computers with 16K RAM, The price s £29 (for a
reconditioned model) or £39 for a new machine. Both coma with 12 months guarantse. The Atari 400 can play all BOOXL ROM cartridge
games and is expandable up to 48K RAM. Computar upgrade with Basic Programming Kit (£30) optional exira

3.ATARI 1010 PROGRAM RECORDER - £34: For low cost storage and rewieval capability. Data transmission 600 baud. Siorage capability
100K byles on a sixty minute cassetle. Track configuration four track, two channels (digital and audio). Auto record/playback/pause
cantrol/unique soundthrough facility. Built in accidental erasure prevention, automatic shutoff and 3 digit tape counter.

4. ATAR| 1050 DUAL DENSITY DISK DRIVE - £199: 5)," disks holding 127K randomly accessible bytes provide both axpansion and
flexibility for your 400/800 or XL system with new ‘heipful' DOS 3. All customers who purchase a Disk Drive from Silica Shop will be
automatically given a FREE set of 100 programs an 3 Disks recorded on both sides.

5.ATARI 1020 COLOUR PRINTER - £99: Prinier and Plotter with four colour graphic print capability. 40 column wigth printing at 10
characters per second. Can print 5, 10 and 20 characters per inch, 64 character sizes. Prints text in 4 directions. Choice of line types,

6.ATARI 1027 LETTER QUALITY PRINTER - £248: For word processing letters in professional type. Print speed of 20 chars per second

7.ATARI TOUCH TABLET - £49: Enables you to draw and paint pictures on your T.V. screen, with tha touch of a stylus.

8.ATARI TRAK BALL CONTROLLER - £19.95: Enablos cursor movement in any direction and adds arcade realism to your games

9. ATARI SUPER CONTROLLER -£9.95: The ultimate joystick with double fire button 10 give you a greater compatilive edge in your games.

SILICA SHOP ARE THE No1 ATARI SPECIALIST

Silica Shop are now firmiy established as the No 1 Atari retail/mail order and wholesale specialist in the U K. We already offer our service 10
over 120,000 customers, 10,000 of whom have purchased Atlar Home Computers. Because we spacialise (and witn a turnover of £1.5
million). we are able 10 keep prices low by bulk purchases, Ring one of our 45 stafl and we will be glad to be of service to you. Complate the
| coupon below and we will send you our Atari pack with our 16 page price list and XL colour catalogue

EXTENDED TWO YEAR QUARANTEE: We are an Alari Service Centre, able 10 s@rvice and repair Atarl aquipment and nave added a 12 month guarantes to the
year oflared by Atar, giving you & full 2 year guarantes on your new XL computer

SPECIALIST SUPPORT: Our technical stal! are mlways availsble on (ne lelephone to help ang adves you We ondoavour 10 hold stocks ol every Atarl
campatile tam avaliabla in the UK. and we stock ovar 75 Atan books and manuals

AFTER SALES SERVICE: \Wnan you purchase your squipmant from Silica, your name will be automatically agged ta our mailing sl You will then receive price
lists, newslattars and cetalls of new raizases and developments. as woll as special offers which are exclusive 1o Gilca Atan Computer Owners

LOW PRICES: Qur prices include VAT and are exiramaly competilive. We will normally match any awer pri
FREE COMPUTER OWNERS CLUB: This is open ta all Afar computer pwners irrespactive of where you purchased you
entilias you 10 receve bullehing grng detads of new relosses and developmants. Send now for your FREE informati
PAYMENT: We acceot cash. chegues al orders and all Crecit Cards. We also of
NEXT DAY DELIVERY - FREE: All goods de; hied lrom Silica Shop are normaily {
offer for a Wmeted penod only we will be sending all Computers ang Disk Drves by a next day Sec of debviry SerVice 31 our own expensa

So fill in the coupon below with a literature enquiry or order and begin lo experience a specialis! Atari service that is second 10 none.
- SILICA SHOP LTD, 14 The Mews, Hatherley Road, Sidcup, Kent, DA14 4DX Tel: 01-309 1111
| ORDER NOW-OR SEND FOR A FREE COLOUR BROCHURE

" 1T R F R R R R R R R R R R R BB E BN WS
e o To: SILICA SHOP LTD, Dept ATCOC 0185, 1-4 The Mews, Hatherley Road, ‘
rm——ceon 0l Sidcup, Kent, DA14 4DX Telephone: 01-309 1111

LITERATURE REQUEST

s FREE and
06

edit facilitie

send me your FREE ¢

ur brochures and

age price lisl on Atari Compulers

O towna Vide mputer
Mr/Mrs/M als
Addr

U Super wtroller

ISIVE OF VAT - POSTAGE & PACKING

E INCL

8 FREE OF CHARGE

Limited for the

>~y ¢ h 7 J
ﬁ-----

L)L

	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash

