PRICE £1.00 ~ THE U.K. ISSUE 5

JA

COMPUTER OWNERS CLUB

INDEPENDENT USER GROUP

ACTION!
LABEL MAKER QRA
' DRAGONFIRE

ELECTRIC SHOCK

JA

COMPUTER OWNERS CLUB

INDEPENDENT USER GROUP

2 BASICALLY SECURE
Protect your programs.

4 CRACKING THE CODE

First part of a continuing series to teach you the dreaded

machine code!

5 ACTION!
A review of this new games programming language.

7 ATARI D.L.Y.

Lots of hardware modifications to give improved picture

and sound quality.
10 SPECIAL OFFERS

Software and back issues of ANALOG.

10 DID YOU KNOW...
More useful tips and miniprogs.

11 INTERFACE

Inter-member communication.

13 SOFTWARE LIBRARY

All these programs are now available to every member
because of the change in library rules.

CONTENTS

16 TOP TEN

The top ten requested programs from the library.
16 SOFTWARE MAP

If you have donated to the library this quarter your name

will be on the map.
17 LABEL MAKER

A useful utility program for all those with printers.

18 GIL-BERT
An excellent game of skill for you to type in.

20 DE-TOKENISER
Crack those programs you have protected using ‘Basically

Secure’.

24 QRA

An interesting program for Radio Amateurs.

26 ELECTRIC SHOCK
A shocking game for 2 to 4 players.

27 DRAGONFIRE

castle.

A game of high adventure in the treasure rooms of the

LIBRARY CHANGES

Qur thanks go out to all those who
re-subscribed to the club, and we would
like to express our sincere appreciation
of the knock-out comments we received
about the club. Most were
complimentary, but there were a few
gripes amongst the torrent of good
wishes. We appreciate these too, or
how else would we know how to
improve the club facilities? We also wish
to extend a warm welcome to all the
new members who are receiving their
first newsletter, we hope you like it!
Note that copies of issue 4 are still
available, price £1 plus 30p postage.

Four suggestions came up time and
time again in the comments from
members. These were: more on
Machine Code, Hardware add-ons and

modifications, Software Reviews and last
but not least, the inaccessibility of the
library to non-programmers. So in this
issue you will find major changes to the
library rules so that more of the
members can take advantage of the
system. As to the other suggestions, we
have started a series of articles on
machine code programming, called
‘Cracking the Code’. There is an
extensive article on hardware
modifications to give improved picture
and sound quality, plus a modification to
the 400 to give video output for use with
a monitor, We were surprised to find
that many of you want to see software
reviews in the newsletter, we had
thought that there were plenty of mags
on the book-stalls that cover this aspect
of the ATAR], in fact that’s about all

many of them do cover for the ATARI
computers. Still your wish is our
command, and in this issue we have a
review of the new programming
language ACTION!

Finally may we remind you that the
newsletter is open to all members to
make their own contributions, be it a
program, hint, review or anything.

So why not write in, you may have
hidden talents!

Send articles, comments, letters and software contributions to:
The U.K. ATARI COMPUTER OWNERS CLUB, P.O. BOX 3, Rayleigh, Essex.
COVER: “POLE POSITION 1S ENGINEERED AND DESIGNED BY NAMCO LTD, MANUFACTURED UNDER LICENSE BY ATARI INC. TRADE MARK AND ® NAMCO 1882°.
l:opynghl “The UK ATARI COMPUTER OWNERS CLUB" is an mdependadnj users group and is in no way alfiliated with ATARIL. All material is subject to world wide Copyright

or ion in whole or part is

and re, p All le care is taken o ensure accuracy in p ion of the
GOMPUTER OWNERS CLUB cannot be held legally responsible for its contents. Where errors occur

but the UK ATARI

will be p

assonnars ble afterwards. Per ion to

reproduce articles or listings must be sought from the UK ATARI COMPUTER OWNERS CLUB. ATARI (and any other Atari prmur.t that is dinthe

of ATARI INTERNATIONAL UK INC.

Have you just written the best program ever created in
BASIC? Want to stop your ‘best’ friends from ‘ripping it off'?
Don't rush out and buy yourself a shotgun, protect your
programs using just a few of the the following techniques! These
little programming hints are not guaranteed to protect against
the hardened criminal element of the world of software piracy.
But, you can stop most people examining and saving off your
fantastic programs.

Tip number 1.

This is the simplest, and by far the safest method of
protection, known as the LOCKIT & STOW method. This
comprises of filing your disks or cassettes into a thief proof,
alarm wired container and then padlocking it and putting the
key back in the container! As you can imagine this will certainly
protect your software from nimble fingers, and as an added
bonus it is now impossible for you to accidentally erase your
programs.

Tip number 2.

Having realised the above method does have one or two
drawbacks, vou may wish to dig out that old dusty tool box of
yours and spend a few hours with that rusty old hacksaw trying
| to retrieve your program without damaging it! After ruining your
| best filing cabinet, make a back up of your program, which you
| should have done before putting the key inside the box, and try
| the following.

Tip number 3.

Imagine this is your fantastic, wonderful, exciting BASIC
program, it's not, but you have got some imagination haven't
you?
| 100 T=0: GOSUB 200
| 119 T=1:GOSUB 209
| 120 GOTO 199
| 2pp FOR V=15 TO @ STEP-1
| 219 SOUND 0, T, 0,V
220 NEXT V
| 230 RETURN
The average life expectancy of your ‘BREAK’ key is quoted
| as typically ten million operations. This means that one way of
| disabling the BREAK key is to operate it ten million and one
| times! This could wear your fingers to the bone, so here is an
| alternative method. By adding the following line containing only
| two ‘POKE’s (think of the time you'll save!) you can achieve the
| same result.
| 99 POKE 16,64:POKE 53774,64
: What happens when the BREAK key is pressed is that the
| POKEY chip first checks the contents of its internal register
| 53774. The bits in this register are ‘flags’ to indicate whether
particular interrupts are enabled, or allowed by the user,
BREAK is one of these. To disable an interrupt, you need to set
the relevant bit in this location to zero, so you could simply
disable the BREAK key by POKEing 53774 with zero, thus
disabling all interrupts. The only problem with this is that the
keyboard interrupt will also be disabled.

The value of 64 is chosen to disable the BREAK key without
disabling the keyboard, if your program wishes to utilise any of
the other system interrupts, such as count down timers, then
you must adjust this POKE value accordingly. The ‘POKE 16,64’
is used to keep a note of the contents of the POKEY register
(53774) which cannot be PEEKed. So if another part of the
program needed to know the contents of the register, it can find
a copy of it in location 16. If you use this method, you will need
to bear in mind that there are many operating system functions
used by BASIC which re-enable the BREAK key, so you will
have to re-disable it after these. An example is the GRAPHICS

command.

Tip number 4.
This method is not very subtle, for it involves changing a

BASICALLY SECURE

by Ron, Roy, and Keith.

warmstart into a coldstart. If you are not sure what this means,
then try writing a short program on your ATARI and then press
SYSTEM RESET. This is a warmstart, because the system has
not cleared the memory, if you LIST you will find that your
programdis still in memory.

Now POKE 580,1 and repeat the exercise. You should find
that when you hit SYSTEM RESET the screen goes blank for a
brief moment, just as when the computer is switched on. Now
try to LIST the program, and you will find that it has been
erased! The POKE 580,1 has forced the machine to follow its
power-up procedure when the RESET button is pressed.

Tip number 5.

This tip also involves the SYSTEM RESET key, but is
nowhere near as drastic as the last one! It would be far better to
obtain some form of control over the RESET button. '

Normally, when the RESET button is pressed it causes the
machine to go to the start of the BASIC cartridge and print
‘READY’. But if location 9 is set to the value of 255 (by ‘POKE
9,255’) then it jumps to the address found in locations 2 and 3.
Normally this is used for a cassette booted program and is
supposed to return to the operating system, but if you point to
the middle of the BASIC cartridge by POKEing 2,65 and
POKEing 3,185 then it will not return, but produce an ERROR
instead. Now if you have a TRAP command in your program,
then it will jump to the specified line and hence continue your
program. Add the following lines to the program and try
pressing SYSTEM RESET, (after typing RUN!!!).

70 POKE 9,255:POKE 2,65: POKE 3,185
80 TRAP 1009
1000 RUN

This will work on most programs, but if other TRAP
commands have been implemented then the results are
unreliable.

Tip number 6.

Tip 6 is an interesting collection of POKE's which can have
the uninitiated scratching their heads vigorously! Type NEW
then type the following program into your computer, BUT, you
must SAVE it before RUNning it!

10 P=155

20 A=1:B=2:C=3

30FOREF1ITO3

40 PRINT LAB,C

50 NEXT 1

32766 FOR [=PEEK(130)+256 * PEEK(131)TO PEEK(132)+256
*PEEK(133):POKE 1,155: NEXT |

Type RUN, and then type LIST. Notice the mess which the
program has degenerated to! What we have done is to POKE

| the character 155, which is the carriage return key code, directly

into every byte in the variable name table. Notice, however, that
the program will still RUN properly. This is because the BASIC
cartridge only ever needs to reference the actual variable name
when a LIST is required, or when a new line is added. Try
equating P=42+128, or P=125+128. You must add 128 to the
poke because the last character of a numeric variable name
must be in inverse video (+128). While in immediate mode, try

| typing the following line-

POKE PEEK(138)+256* PEEK(139)+2,0

You should find that no matter what you do, the keyboard
simply locks up, and is quite useless. What good is this, we hear
you cry, for the system cannot now operate! Well, the secret is
that this only happens when BASIC tries to get an extra
command or program line from the keyboard, and so will only
have effect when the program has STOPPED, BREAK'ed or
SYSTEM RESET has been pressed. Type the demo program we
gave earlier, and then add the following two lines.
32766 FOR I=PEEK(130)+256 * PEEK(131)
TO PEEK(132)+256 * PEEK(133) : POKE 1,155: NEXT |
32767 POKE PEEK(138)+256* PEEK(139)+2,0: SAVE “C:”

BASICALLY SECURE

Now type ‘GOTO 32766, and you should find that the program will | 100 ¥= $0600
SAVE a copy of itself which can only be used by typingRUN “C:”, | 111(3Editor patch.,
or RUN “D:filename.ext”, and cannot be listed. | 1120 3By Keith Mashews

Tip number 7. 0130 POKMSK $10
The final tip uses machine code to achieve the same function 0140 OLDTAE $CB

as tip number 5, except that it does not rely on jumping 0150 QUOTE $22

‘somewhere’ into BASIC, but effectively types ‘RUN’ followed by 0160 CR 498

a RETURN. Using this method involves a larger program but is

guaranteed to work every time, regardless of TRAP and other :g; maﬂs :gﬁ;ﬁ

such commands.
Type ‘'NEW’ in immediate mode and then press return, now 01190 IRGEN $D20E
0200 $600

type in Listing 1. Remember to SAVE your program before
running it, this is always good practice. 1210 COUNT
Run the Listing 1 program, waiting for it to read in its data
first and then press SYSTEM RESET, notice that as in the 0220 FIND HATABS, X
previous example it re-starts the program, just as if RUN had 0230
been typed in. An added bonus with the machine code routineis | (24}
that it takes the contents of location 1700 decimal and stores 1250
this in the interrupt enable registers, so that if 1700 contains 192
then the keyboard will function as normal, and if it contains 64 it | 0260
| will disable the BREAK key, the default in the program is 64. 0270
0280
0290
0300

{ REW TYFE ‘GOTO 200007 T0 INITIALISE THE RESET KEY.
10 ? "Try ard stop this progran.”
20 6010 10
20000 POKE 2,03FOHE 3,6 B0
20001 REM POKE 9,3 FOR DISK, gg:
2002 FKE 9,2:REM FOR CASSETTE OMLY, i
20003 REM POKE 170,192 FOR KEYEOARD AND BREAX. b
20004 FOKE 1700,641REN DISABLE BREAK, bt
20010 FOR T=0 TO 1043READ DIFOKE 1536+T,03NEXT 1 i
20020 DATA 162,0,142,101,6,189,26,3 oo
20030 DATA 232,232,232, 201,49, 208,24, 142 el
20040 DATA 100,6,189,24,3,133,203, 169 s
20050 DATA 105,157,24,3,189,25,3,133 e
20060 DATA 204,169,6,157,75,3,160,15 i
20070 DATA 177,203,153, 105,6,136, 16,248 | &t
0449
0450

Set to first character.
Get entryees

point to next.

$'E was last one ‘EDITOR’
FIND no - go back for next.
PNTR Save index for later.
HATABS-2,X 01d table (low).
OLDTAB Save it.

$VECTAES$FF New table (low).
HATAES-Z,4X Replace it.
HATAES-1,X Same for high bytess.
OLDTAB+L
JVECTAB/256
HATABS-1,X
$#0F
(OLDTAE) Y
VECTAB, Y

CUEYEEEESE

;o
5
»E;

Point to end of table.
Get old table,

ard copy it

rext a2lement.,

COPY last ore, o - go back,
$NEWEC-184FF MNew ‘GET’ vactor,
VECTAB+4 Replace in new table.
INEWEC-1/296 Same for high byte.
VECTAEHS

EERIEEIR3E

«“
E

20080 DATA 149,66,141,109,46,16%,6,141
20090 DATA 110,4,173,164,6,133,16,141

o
25

20100 DATA 14,210,94,172,101,56,192,3
20110 DATA 240,9,185,102,46,238,101,4
20120 DATA 140,1,94,172,100,4,145,203
20130 DATA 133,74,3,165,204,153,25,3
2140 DATA 169,155,208,234,169,155,82,85
20150 DATA 78 Listing 1.
How it works.

On pressing SYSTEM RESET the computer first looks at
location 9. Bit 0 indicates that a disk drive or an R$232 box has
been ‘booted’ and bit 1 indicates that a cassette has been
booted. If bit 0 has been set then the O.S. will jump to an
initialisation routine pointed to by the vector at addresses 12
and 13 decimal. This is used by DOS to re-establish its device
name and other miscellaneous functions. However if bit 2 is set
then the cassette initialisation routine is called, its vector is at
locations 2 and 3 decimal and is normally not used at all. The
machine code program is called as a subroutine pointed to by
the cassette initialisation vector. This program is patched into
the screen editor so that as BASIC goes to fetch a line from the
editor our program intercepts this and returns the word ‘RUN’
followed by a carriage return code of 155 decimal. After the last
character has been sent then the program restores the editor to
its original vectors. For those interested, the source code is
shown in Listing 2.
< For those of you who own a disk drive and want an

‘AUTORUN.SYS' file to run a BASIC program from disk then
type in the source code above and replace the ‘RUN’ command
with ‘RUN’,QUOTE,'D:PROG.BAS’, the ‘QUOTE’ is used to
produce the quote mark for the assembler.

1450
0470
01480
0490

0510 NEWVEC
0320

0530

0540

0350

0540 RETURN
0570

0580 EXIT
0390

0600

0610

0620

0630

0640

0650 PNTR
0660 COUNT
0670 STRING
0680 LEN
0690 VECTAE

Listing 2.

=

STA
STA
RTS

LDY
CRY
EEQ
LDA
I
LDY
RTS
LDY
LDA
STA
LDA
STA
LDA
BNE
i=

i=

WEYTE

A=

HASK
PORMSK
TROEN

COUNT
$LEN
EXIT
STRING,Y
COUNT
#4501

FHTR
0LDTAB
HATABS-2,Y
OLDTAB+
HATAES-1,Y
iR

RETURN

| 81

X+

|IRLNII
x-STRING
¥+14

Load irterrupt mask,
Store it,

In harduare too,
Return to 0.5.

| 0300 $This is the new ‘GET’ handler.

Character pointer.,
Last onesse

Yes, do exit routine,
Load character in ‘A’
Point to next one.
Set status to good.
REtUT‘ﬁ tﬂ GDSI— |
Get pointer into "HATABS '
Point back
to old table.

~ Same for high byte.

Load ‘carriage return’
in ‘A" and return

CRACKING THE CODE :...

Whenever you write a program in a
high-level language, like BASIC or
FORTH, before it can be executed or
| understood by the microprocessor, it
must first be converted into machine
code. These high-level languages cannot
run as fast as machine code because of
| the extra time consumed in ‘interpreting’
each line of your program into machine
| code. An interpreter only converts one
| line at a time, so the constant flow of
the program is being interrupted for
conversion of the next line. A more time
efficient method of executing a high-level
language is to ‘compile’ the whole
program into one large block of machine
code, thus there is no time spent
converting lines during program

| execution. This seems a far better way

| of implementing high-level languages,
but there is a problem in that it
consumes vast amounts of memory,

which is often impractical on a home

| micro, but it can result in anything from

| ten to twenty times the speed of the

| interpreter.

| If you could write programs in

| machine code, then you would, in effect,
be getting right to the heart of the
machine. This has its advantages and
disadvantages. The advantages include
faster implementation of your programs,
allows you to access all the functions
available in your machine, programs
take up less memory and are more
efficient. The disadvantages are that
writing programs in machine code will
often take longer, this is because the
high-level languages (BASIC etc.) offer
an ‘abbreviated’ command to implement
many machine code subroutines which

| you would have to write yourself when
using machine code.

In this series of articles we hope to
not only teach you machine code, but
also to show you how and when to use
it. In practice, it is usually far more
rewarding to combine machine code and
high-level languages, mainly BASIC,
getting the best features from both.
Obviously, many commercially available

| programs are written purely in machine
code, but this has been achieved by

By Keith Mayhew and Roy Smith

many hours of hard work, and if you are
making money out of the program it is
well worth the effort. For most people’s
purposes the hybrid method would be
more suitable, using small sections of
machine code to enhance a BASIC
program. The main uses of machine
code in this context are speeding up
graphics and making animation
smoother, for instance fine scrolling.
Certain things can only be implemented
in machine code, i.e. changing colour
many times down the screen (DLI’s), or
updating clocks or continuously
checking for a key depression (VBI's).

Number bases.

Before you can start, you must be
familiar with number bases 2 and 16, i.e.
binary and hexadecimal, as you will be
using them repeatedly. You are already
familar with base 10, that's decimal,

base 2 and 16 are very similar, The least
significant digit, that is the far right hand
one, represents the base number to the
power of 0, that is always 1 or ‘units’,
the next digit represents the base
number to the power of 1, then 2, etc.
For binary (base 2), from the least
significant digit onwards the numbers
represent: 1, 2, 4, 8, 16, 32, 64, 128, 256
etc. As the base number is 2, the only
digits used are ‘0’ and ‘1’, so a binary
number of ‘1101’ would be equivalent to,
working from the right:
(1*1)+(0*2)+(1*4)+(1*8)=13, in decimal.
See figure 1 for a worked example.

Hexadecimal, base 16, works on the
same principle, i.e. the least significant
digit onwards represents: 1, 16, 256,
4096, 65536, etc. Obviously, you can
represent very large numbers with only
a few digits in hexadecimal compared to
binary. As the base is 16, you need to
use 16 digits, obviously 0 to 9 are alright
but 10, 11, etc, are two digits long. To
get over this problem, characters are
used to represent these last six digits,
so the complete set is:
0123456789ABCDEF,
where A=10, B=11, C=12, D=13, E=14,
F=15. Let's work out an example. To
see what ‘3FB’ in hexadecimal

represents, we start from the right hand
digit with: (B* 1)+(F* 16)+(3*256) or
(11*1)+(15*16)+(3* 256)=1019, in decimal.
For a worked example see figure 2.

We have shown how to convert from
binary to decimal and also hexadecimal
(hex) to decimal, we will now show how
to do the reverse. To convert a decimal
number to binary, for example decimal
number 213, you must find the largest
number of a power of two that will
subtract from 213, in our example it is
128 (256 is too high). Subtracting 128
from 213 leaves 85. This means that you
must now write a ‘1’ in the ‘128’ column.
You must now work your way through
the columns to the least significant digit
(64, 32, 16, 8, 4, 2, 1) and you must use
every column. The next column is ‘64’
and this will subtract from 85, therefore
this column is also a ‘1’, leaving 21. The
next column ‘32 is too large to subtract

from 21 so you must write a ‘0’ in this
column and move on to the next
column ‘16’. 16 from 21 leaves 5 with a
‘1" in that column. Column ‘8’ has a 0,
column ‘4’ will subtract from 5 and
leaves 1, thus you have a ‘1’ in column
‘4, Column 2’ is a ‘0’ and obviously
column ‘1" is a ‘1. See figure 3.

To convert from decimal to hex a
similar method is used. For example, to
convert 602 decimal to hex you again
find the largest column to subtract,
which is ‘256", but you must remember
that unlike binary where there is only
‘0’s and ‘1's, the digits used can be from
‘0’ to ‘F". The way to do this is to find
out how many times the column number
will subtract from the example number.
In our case ‘256" will subtract from 602
twice (602-512) which leaves 90. This
means that in column ‘256’ you write a
‘2". The next column is ‘16’ which
subtracts from 90 five times (90-80)
which leaves 10. Therefore in column
‘16’ you write a ‘5'. Finally, as the
remainder will be less than 16, it can be
written into the last column, but
remember, if the remainder is a number
from 10 to 15 you must write its hex
equivalent (A to F). In our example you
would write an ‘A’. See figure 4. Cont on 6.

ACTION! /

ACTION! is an exciting new
language developed by Optimised
Systems Software Inc. for the Atari
range of computers. The package is
supplied in a 24K ‘O.S.S. Super-
Cartridge’, which is accompanied by a
200 page reference manual. ACTION! is
really much more than a language, it is a
complete programming environment
consisting of four distinct parts: a
Monitor; an Editor; a Compiler; and a
Library of subroutines.

The Monitor is the command centre
of the system. It may be used to call the
Editor or the Compiler, RUN and SAVE
compiled programs, or it may be used
to access DOS if a disk-drive is being
used, It also includes several useful
debugging facilities such as a TRACE
function, and a memory dump.

The Editor is where ACTION!
programs are written or modified, and
as its name would suggest, it is actually
a sophisticated text-editor. Its features
are too numerous to describe here fully,
but amongst others it supports a line
length of up to 240 characters; blocks of
text can be moved around, and it even
allows two text-files to be viewed
simultaneously by splitting the display
into two text-windows! The Editor is
simple to use, and yet it is so powerful it
could almost be called a word-
processor.

When an ACTION! program has
been written it must first be compiled
before it can be run. This is the job of
the Compiler, which first checks the
program for correct syntax, and then if
no errors are found it translates the
program into machine-code. This
process is very fast; small programs are
| compiled instantaneously, and larger
programs can be compiled in a matter

of seconds.
‘ The package also contains a Library
of around 70 pre-written subroutines
which may be called from an ACTION!
program. The Graphics, Sound and
Joystick functions are all supported; a
good variety of Input/Output routines
are available, and there are some useful
string-handling routines. There are also
several miscellaneous routines which do
not fit into any of these categories.

One of these, MOVEBLOCK, is a
particularly powerful command which
allows chunks of memory to be moved
around at great speed. Vertical
movement of player/missiles, P.M.
animation, and page flipping are all
easily achieved using MOVEBLOCK.

This brings us to the ACTION!
language itself. It was designed to be the
fastest high-level language available for
the Atari, and in this it succeeds
admirably. It is hundreds of times faster
than BASIC, significantly faster than
FORTH, and is only a little slower than
programs written in Assembly language.

By Jon Beff - Manchester

100 GRAPHICS 8+14
116 FOKE 19,08 POKE 26,0

120 SCREEN=PEEK(B3)+2562FEEX(B7)

{30 FOR I=5CREEN TO SCREEN+7580

140 FOKE 1,235

150 NEXT 1

166 JIFFIES=PEEK(Z0)+Z56xFEER(19)
170 GRAPHICS 0

180 PRINT "TIME="}JIFFIES]" JIFFIES"
190 END

Listing 1

PROC SCREENFILL(}

CARD SCREEM, JIFFIES,I
EYTE TICK=20,
TOCK=19

GRAPHICS (8+14)
FORE(19,0) POHE(20,0)
SCREEN=PEEHC (83}

FOR I=5CREEN 70 SCREEM+74E0

0

POKE (T, 255)

)]
JIFFIES=TICK+2S4XTOCK
GRAPHICS(D)
PRINT("TIME=XU JIFFIES",JIFFIES)
Do m

RETURN
Listing 2

FROC SCREENFILL ()

CARD SCREEN, JIFFIES
BYTE TICK=2¢,
TOCK=19

CRAPHITUS(8+14)
FOKE(19,0) POHE(29,0)
SCREEN=PEEHC (80)

SETELOCK (SCREEN, 7680,255)
JIFFIES=TICK+255xTOCK
GRAPHICS(O}

FRINT(“TIME=VU JIFFIES",JIFFIES)
00 L1}

RETURN
Listing 3

To demonstrate the speed of an
ACTION! program | have used a
benchmark which fills a Graphics 24
screen with colour (see listings 1, 2 and
3). Listing 1 is a BASIC program which |
have included for purposes of
comparison. The program itself should
be self-explanatory; line 120 finds the
start address of screen memory, and
lines 130 to 150 form the screenfill loop.
The internal real-time clock is used to
calculate, in 'Jiffies’, the program’s
execution time. (1 Jiffy =1/5oth of a
second.) Listing 2 is virtually a direct
translation of the BASIC program into
ACTION!, and Listing 3 is an ACTION!
program which uses the Library routine |
SETBLOCK to perform the screenfill.

The following results were obtained
from running the benchmarks on a 48K
Atari 400:

Benchmark Results

Jiffies Seconds
Listing 1. (BASIC) 2640 52.80
Listing 2. (ACTION!) 21 042
Listing 3. (ACTION!) 3 0.06

The ACTION! translation (listing 2)
runs over 120 times faster than its
BASIC counterpart (listing 1), and the
ACTION! program using SETBLOCK
(listing 3) runs 880 times faster than the
BASIC program. ACTION! is FAST!

ACTION! is a structured language.
A structured approach to programming
involves controlling the overall design of
a program so that its various
components fit together neatly.
Although this imposes a few restrictions
on the programmer, it leads to better
thought out programs and more
readable code. This is not to say that
programming with ACTION! is difficult;
it is a delightful language to use.
However, the programmer who is used
to an unstructured language (such as
Atari BASIC) may have to learn a few
new techniques.

There follows a summary of the main
features of the ACTION! language:

Variable Types

BYTE: This type of variable is used for
storing positive integers between
0 and 255.

| CARD: This type is used for storing
larger numbers (from 0 to

65,535).

INT: This type, like BYTE and CARD,
is integer only, but allows both
positive and negative numbers
(from -32768 to +32767).

BYTE, CARD and INT ARRAYS are
also supported. N.B. A BYTE ARRAY is
equivalent to a BASIC string array.

Arithmetic Operators

Addition, subtraction, multiplication
and integer division are all supported.
N.B. All arithmetic operations are
integer only.

Bit-wise Operators

Bit-wise operators manipulate
numbers in their binary form, allowing
the logical operators ‘AND’, ‘OR’ and
‘EXCLUSIVE OR'. This can be a
powerful facility for the experienced
programmer.

Relational Operators
The following relational operators are

allowed:

= tests for equality.

tests for inequality.

> tests for greater than.

> tests for greater than or equal to.
< tests for less than.

< tests for less than or equal to.

Conditional Statements

Conditional statements allow an
expression to be tested, and depending
on the result determine which part of a
program is executed next. The following
ACTION! statements allow conditioned
execution:

IF- “ELSE" ELSIF

WHILE

UNTIL

WHILE and UNTIL are conditional
statements which can be used to control
loops.

Procedures

Procedures are an integral part of
the ACTION! language. A procedure is
a group of actions accomplishing a
particular task; each time the task is
needed one simply calls the relevant
procedure.

Obviously in a review such as this it
is not possible to cover all aspects of
the ACTION! language, but | hope |
have given some idea of its speed and
power,

If I sound enthusiastic about
ACTION! it's because I am! However, a
review without expressing any
reservations would be a little one
sided . . .

It appears there are still a few bugs

present in the ACTION! cartridge, the
most annoying of which is a screen
which flickers when entering text from
the keyboard. It is possible to get used
to this, but there should be no need to.
The system also occasionally crashes for
no apparent reason.

The reference manual is well-written,
and contains a lot of information, but is
a little scant when covering certain
areas, such as using machine-code in an
ACTION! program, memory
management, and data storage. The
manual does not teach how to program
using ACTION!, it is more a reference
work to show the syntax and the
capabilities of the system. The language
is crying out for a good tutorial text.

Apparently O.S.S. are aware of
these problems, and at the moment are
working on a ROM update which should
be available as a free replacement to all
ACTION! owners. They also say they
are going to make available a utility disk
which solves the problems with memory
management, and also includes several
other utilites and demonstration

Don’t let the above reservations put
you off; ACTION! is a fine language.
When its problems have been ironed
out, O.S.S. will have developed a
package which is worth careful
consideration by any Atari programmer.

Converting from binary to hex is
very simple, as any hex digit can be
expressed by four binary digits. So
taking our previous example of
11010101 (213 decimal), it can be split
into two groups of four digits, thus
working from left to right the first block
is 1101, which in decimal is 8+4+1 = 13
or ‘D’ in hex. The second block is 0101,
which in decimal is 4+1 = 5 or ‘5’ in hex.
Therefore the hex equivalent of
11010101 is ‘D5". See figure 5 for
another example.

To convert the other way i.e. from
hex to binary is a reversal of this
process. For example, ‘25A' in hex is
three groups of four digits in binary. See
figure 6 for a breakdown of the code.

Number bases are prefixed by
standard notations in machine code
terminology. Binary numbers are
| prefixed by ‘%’ and hexadecimal
numbers by ‘$’. There is no prefix for
decimal numbers. That concludes

CRACKING THE CODE

number bases and conversions, you will
be using them constantly when writing
in machine code, so it is recommended
that if you are not familiar with them,
you practice on your own examples.

In future issues we will continue this
series delving deeper into machine code
as we progress.

ATARI D.L.Y.

By Chris Barlow and Bob Kirsch

In this article we will describe several J201
sy L20s

modifications to the hardware of the 2
ATARI 400, 800 and 410 program = T i
3]

cassette recorder. At this point, we U:
must make it quite clear that no ov
modifications should be attempted
unless you feel that your knowledge of
electronics is quite good, and your

A201

Q

soldering and construction is of a high
standard. You should not consider any
maodifications if your computer is still
under manufacturer’s or retailer’s
guarantee, or any maintenance
agreements. The reason for this, is
because any modifications would almost
certainly invalidate the guarantee on any
hardware.

Although the ATARI hardware is

-

Ca&Cc=0"WF
Chb =47uF Tant

excellent, it could be even better, and
provide more facilities. The
improvements are, in the main, to the
video and sound produced on your TV
and the extras are a cold-start reset.
The modifications can be made to both
400 and 800 models, plus on the 400,
direct video and sound can be added.
The final improvement is to the 410
program cassette recorder, giving it a
‘busy’ light like the one on the 810 disc
drive.

Better Picture.

The improvements to the video
provide a cleaner and sharper picture
on your TV screen. The quality of ~e ST
picture given by an ATARI can vary Decoupling

quite a lot. This is due mainly to the
amount of unwanted signals on the +5
volt power supply line to the modulator.

The amount of RAM fitted can
sometimes make the amount of
unwanted signals increase, thus
degrading the picture quality. All that is
necessary is to add extra de-coupling to
the power supply. This should
significantly reduce the amount of
interference and patterning on the
screen. The method for fitting the extra
de-coupling on the power supply is
shown in Fig. 1.

Following on from this modification,
a further improvement is possible on the
picture quality and sound reproduction.
The fitting of a new, improved
modulator gives a sharper picture
because of its wide video band width,
and clearer sound to your TV speaker.
You may have noticed a buzzing sound,
even when no sound generators are
being used, and the buzzing usually gets
worse the more text is on the screen.
Sometimes, this is due to the 6 Mhz
sound oscillator in the computer being
‘off channel’. After fitting, and setting up
the new modulator which has its own 6
Mhz sound system, you should notice
an improvement in the sound from your
TV. When fitting the modulator, it is
necessary to disable the ATARI's own 6
Mhz oscillator and feed the sound out-
put to the new modulator (see Fig. 2).

800 PCB

RVa Set Audio
00k

2:2uF RVb
Jant 10K

Video
Tune

Phono O/P

400 Circuit
+5V

R160
1k
c164

0-1uF 18k

to TV

Q106 = Q105
R188 = R163
R190 = R164
C169 = C177
C173 =C178
C171 = C183

2 e new modulator has supply
- | filtering provided by two 10 microfarad
tantalum capacitors and a 4.7
microhenry choke. These components

| help reduce the amount of noise on the
supply to the modulator and give a
cleaner picture. The method of
construction is up to you, but as can be
seen in the photos, the new modulator
is mounted on a piece of Veroboard
fitted in the same place as the original
modulator. This was done on an ATARI
800, so the method of mounting the new
modulator may be different on a 400.
The Veroboard also has the supply
filtering components and the pre-sets for
sound adjustment, RVa and RVb.

To set up the sound is quite simple.
First, set RVa to its halfway setting.
Turn up the sound on your TV so that
you can hear the buzzing, then adjust
with a trimming tool the sound slug on
the modulator for minimum buzz and
then adjust RVa for fine control. Next,
fill the screen with text and, if
necessary, readjust RVa for minimum
buzz. The other control of the sound is
RVb which sets the level of signal fed to
| the modulator. Too much signal could
give rise to distortion on the sound from
your TV speaker. Use the sound
command 0,100,10,15 for example, to
give a loud sound level to feed the
modulator. A rough setting of RVb is
about halfway, but this control should
| be set to your own judgement. The
| other adjustment on the modulator is
the TV channel output. If it is necessary
to move the channel, this can be done
by the video tune slug on the
modulator, but this is not usual and in

ATARI D.1.Y.

Modulator & Cold Start Switch.

400 Video and Audio mods.

most cases the modulator comes out on
a clear channel near to channel 36,
Additionally, the new modulator
provides a stronger TV signal output
giving a more stable picture than the
original.

Video 400.

The ATARI 800 has a five pin DIN
socket that provides video and audio
output for Video Monitors, etc. The
ATARI 400 does not have this feature
but with a relatively simple modification,
both audio and video output can be
provided. The circuit shown in Fig. 3
provides audio and composite video -
including Chroma. But, if it is intended
to feed a black & white or black &

-

Rf 9ki

Z102 Z101

Da

P
Na1ag Bi
= 6k8]

% Link
0
g |
=

Rh 18k ’D

o

10p

Rk 330R

7

n
Audio
0/P to a Monitor

|
Video
o/pP
to a

Monitor

-

‘] ' d";‘ #

green type of monitor, the link may be
removed in order to prevent colour
patterning. A small P.C.B. can be made

| that provides direct connection to most

4
"

RRGE

T

4
i

S

B

AR .

i

of the appropriate points, with short
wire links, to the remaining connections.
The video and audio output leads may
be fed out through a small hole drilled in
the die-cast case and, in the prototype,
we have terminated the leads in a five
pin DIN line socket with the same
connections as those used in the ATARI
800. An interesting effect will be noted if
the connection to R178, is disconnected.
This removes the background video
information and provides a true white on
black display.

Cold Start Key.

When using manufactured software
you have probably noticed that the
System Reset key does not have the
same effect as in your BASIC programs;
this is because the manufacturer wants
to protect his software. This means that
when you press System Reset all that
happens is the program restarts or
crashes the system, locking up the
computer. At this point, all you can do
is turn the computer off and on to re-
boot another program, which is O.K. if
you have a direct video monitor and

| sound system, but if like most of us, you

use a domestic TV, turning off the

|| computer produces a loud, unwanted,

hissing sound from the speaker. To
have a ‘cold start’ key on the computer
would mean that when it was pushed it
would act as an on/off switch and clear
the program from memory. If you have
a disc drive it will re-boot; or holding
down the start key and pressing ‘cold
start’, will prompt the cassette boot

| load.

The circuit in the ATARI that
generates the cold start reset pulse on
turn on, can produce further reset
pulses at any time using the circuit
shown in Fig. 4 and pressing Sa,
activating the transistor, momentarily
shorting out C198 and producing a new
reset pulse within the computer. The
fitting of Sa must be done with great
care, If it was in a position where it
could accidentally be pressed then you
would lose your program. For this
reason, we decided to fit Sa on the side
of the computer near the power on/off
switch. On the ATARI 800 there is a
convenient position near the power
switch, which was used on the
American model to select the TV
channel for the ATARI. However, in the
U.K. model, this switch can be removed
and so provide a convenient hole to
mount Sa. Unfortunately, the original
switch is a slide type and not one of
momentory action and not suitable for
our purpose. The small amount of
electronics involved can be constructed
on a small piece of Veroboard mounted
on the back of the switch. To use this
new facility, simply press Sa and a pulse
will be generated, the length of time you
press the switch is nct important.

'I Push Sw

AID3A=ATIIF
R154 =R181
R155 =R182
R156 =R183

Figure 4.

2x1N4148

OV ci9s =C189
CR102=CR103

Wi

T TS
=1 111l s

g p-

7

Busy Light.

The final modification is to the 410
program cassette recorder and needs
hardly any description. When the
cassette motor is running, the LED
indicator is on, meaning that you don't
have to listen to the data going in or out
of the recorder, just look to see if the
light is on or off. The 1K ohm resistor is
to limit the amount of current through
the LED. The cassette motor has two
wires coming from it, a black and a red,

+V

Cassette
Motor

ov

Figure 5.

which connect the motor to the circuit
board. The positive supply is on the red
wire and the anode of the LED, via the
1K resistor, should be connected to this
point. The cathode of the LED is then
soldered to the point on the circuit
board where the black lead of the motor
is connected. Fitting the LED requires
the drilling of a hole in the case of the
recorder. The hole could be virtually
anywhere, but as you can see in the
photos, we chose to fit it on the front
right hand side of the case. We also
used an LED clip to make the mounting
a neat job. We find this extra indication
very useful.

We hope these modifications will
prove to be of some benefit to the more
hardware minded of our members, and
if any of you have ideas on modifying
the ATARI please let us know.

The vast, bewildering range of

| ATARI software available nowadays can
~ | make choosing an impossible hit-and-
" | miss task. We hope to alleviate this

| problem a little here by presenting a

| selection of gems from the many
| hundreds of titles available. A limited
~ | number of the three titles listed below
| are available from the club. So send in

| now, whilst stocks last. Please mark

| your envelope for the attention of
| Chris Barlow.

| K-RAZY SHOOTOUT.

This is a game which is guaranteed

| to leave even the most seasoned game
- | players with their nerves tattered and

| sweat on their brows. It is the popular

- | ‘BERSERK'’ style game. You are the
| man, and you are placed in a randomly-

| created maze and left to defend yourself
against the relentless attack of the

: | robots, The first screen is simple, for
| they merely approach you without

| shooting at you, but if they collide with
| you then your man is reduced to a

> | cinder! In the following screens,

| however, the robots begin to shoot

| back, and this is where the fun(and the
| adrenalin) begins. With each screen the
| robots move faster and shoot sharper,

- | and this is where only lightning-fast
| reactions can save your men from

| death. This excellent game is one of our
| favourites, and it features smooth

| movements and excellent sound effects,

2 | making it one of the most exciting and

: | enthralling games available. Unlike many

of the games on the market which look
| pretty but rapidly become boring, K-

| razy Shootout will keep your family
| clamouring for the joystick until they are

exhausted.

e 8K Cartridge, runs on 400, 800 and XL

| range, usual price £29.95
| Club price £7.95

K-RAZY KRITTERS.

Although not as noisy and frantic as
K-Razy Shootout, K-Razy Kritters is
every bit as addictive. It is based loosely
on the ‘Space Invaders’ theme, you
being in control of a base with a
formation of invaders above you, but
this is where the similarity ends. This
game requires stealth and careful
thought if you are to outwit your
opponents. Not only are you being
bombed by the invaders, but they are
also going to peel off and dive-bomb you
when you shoot them. As if this isn't
enough, they actually chase you as they
dive, necessitating a well planned run for
it by you after you shoot each one. As
you lose your men, they are shovelled
away by their companions, one of the
many novel effects in this excellently
produced game. K-Razy Kritters is a
thoroughly enjoyable game which |
would heartily recommend.

8K Cartridge, 400 & 800 only, usual
price £29.95 Club price £7.95

GHOST HUNTER.

One of the more popular games in
the arcades has been PAC-MAN, a
game which Atari have duplicated for
use on their home computers, and they
have kept to its original format
completely. This has meant, however,
that there was no variation in the game,
and it was not as good as it could have
been. Arcade-Plus though, have taken
this popular maze theme and created
Ghost-Hunter, a far more colourful and
interesting version. The graphics are
smoother and they have added a little
spice to the game by providing
seventeen different mazes, and the
ability to have two players. Two players
can be on the screen alternately, or if
you wish, they can be on the screen
simultaneously! The usual ‘pills” are
placed around the maze which your
man can eat, thus allowing him to chase
and eat the ghosts for a short while! If
you are a PAC-MAN fan, then you will
find this an excellent and far superior
version.

16K Cassette, runs on 400, 800 only,
usual price £19.95 Club price £3.95

ANALOG MAG.

Certain back issues of the superb
ANALOG magazine have become
available to members. Issues 11, 12, 13,
14 and 15 are available for £1.80 per
copy, which includes postage and
packing. There are only limited numbers
of each issue, so it's first come first
served. ANALOG magazine, which is
probably the best of the American
ATARI dedicated magazines, usually
sells for around £2.30 in the shops,
that’s if you can find a shop that stocks
it! So, if you've missed out on these
issues, or you are new to the ATARI
scene, don’t delay send in today! Don't
forget to state which issues you require.

IT'S A FACT
In the following program you will find
| a perfect example of ARTIFACTING,
| which is a little known (or at least little
- | mentioned) effect that is possible to use.
| [accidentally stumbled onto this by my
| experimentations (read playing around)
| with the Graphics when I first got my
| machine. It's not a mega-program, but it
| does show a nice effect when it is demo
time!
K. Schrader - Lerwick
10 GRAFHIES 8+141H=05N=191
20 SETCOLOR 2,8,0:COLOR M
40 FLOT 0,Y:DRAMTD 312,8
T4 NeN-15IF M) THEN 200
X HEHALITF M4 THEN =0
&0 Y=Y+11G0T0 20
200 X=0:7=319
210 TR M

DID YOU KNOWS

220 PLOT X, 19L:DRAWTD Z,10

280 Z=1-10X=X+1 i1

250 IF M=0 THEN ¥=15

255 TF Z40 THEM 200

260 GOTO 210

300 SETCOLOR 2,E,0

310 B=INT(1SXRND(D)42)1FOR ¥=1 TO 2
F9HEXT WIIF B=5 THEN 310

320 G010 300

LINE CHECKER

Here is a simple program to help you
check programs after they have been
typed in. It lists lines one at a time. If an
error is found, press BREAK and then
type ‘L.X’ and the current line is listed
for you to edit. Once this is done type
‘G.10000", not CONT. The reason for
this is after the last line has been

checked and you are prompted with ‘?’,
press BREAK and then CONT and the
program will delete itself.

Paul Griffey - Bath.

10000 CLOSE #41CLR {TRAP 10010:DIH
A3C1)EX=0}PRINT CHR$(125)3"
START LINE Mo, "VINPUT XiX=X-13TRAP
40000
10010 OPEN $6,4,0,"S3"IPOKE 752,1
10100 X=X+18? CHR$(129)ILIST X
10150 LOCATE 2,2,20IF 7=32 THEN 101
00
10170 POSITION 2,2:PUT #6,2
10200 POSITION 0,228 INPUT A$1GOTO 1
0100
10500 X=1000037 CHR$(125)3? 12 12 X
17 XHL08? X+1D04? X+15082 X+17032 X
20017 X+5001? X+3103? “POKES4Z,12"
10510 FOSITION 2,0iPOKE 842,1315T0P

Printed below are just a
small selection of the
comments received from
members on their re-
joining forms.

Great! Do | get a free T-shirt
for the shortest comment?
Seriously, a problem page and an
Adventure help page would be
great as well.

Andrew Lusher, Erith.

A good ideaq, if anybody is
having problems or are unable to
get past the Ogre in some
Adventure game or other, write
in and we will see if other

members can help.

The best ATARI magazine |
| have read. | would like to see
articles on connecting to the
outside world, e.g. to a train set
or a simple robot etc.

D. E. Newman, Hayes.

How about some hardware
D.LY. articles and software &
hardware for Morse and RTTY
decoding, and of course more
and cheaper issues.

R. A. Calkin, Basildon.

Issues 3 & 4 were a great
improvement on 1 & 2, keep it
up! Lets have some more of the
“Did you know . . .” articles,
helpful tips make all the
difference. Could you do an
article on multicoloured players
from BASIC?

Jonathan Willamson, Bradford.

We will add your suggestion
to our ever growing list of future
articles.

Excellent articles on PM
graphics and Display Lists, could
the same be done for sound
effects or DOS? Reviews of
software would be useful.
Possibly make the newsletters bi-
monthly? NO hesitation in
renewing membership.

P. D. Blackmore, Harrow.

I like the improved print
quality of listings. The Special
Offers did not seem very special!
although the “slashed prices” are
lower in most cases. | have not
read issue 4 yet but it looks

I

K. W. Newson, Chelmsford.

I am very impressed with the
club’s magazine. The present-
ation, articles and programs are
all excellent. | have been able to
get more enjoyment from my
ATARI thanks to you and the
club members.

P. Jenkins, Sheffield.

1 find the magazine very
interesting, the review of
Joysticks was particularly helpful.
However, | would like to see less
emphasis on the games aspect of
the ATARI.

John L. Ball, Swansea.

Great magazine, | especially
like the idea of the 3 for 1

software exchange. Could you
include more reviews of software
and the new ATARI peripherals?
C. Simon, Clwyd.

I have had my 400 48K
ATARI now for over 6 months
but have not been able to do
much programming due to work.
But I would like to hire some of
the library games, there must be
others like myself with little spare
time for learning to program at
present, but who get great

We hwehodabtofhﬂers
making a similar point. See the
Software Library section for
some good news,

Keep up the CHR$(199);
CHR$(207); CHR$(207);
CHR$(196);, CHR$(215);
CHRS$(207); CHR$(210);
CHR$(203).

Michael A. France, Welwyn
Garden City.

No software reviews in No.4!
This was a disappointment, but
balance was O.K. otherwise, and
production guality is now
fine.Maplin won't sell many Star
Raiders, even at £19.95, 99%
ATARI owners have already got
it | believe!

J. A. Hocking, Tunbridge Wells.

Like issues 3 & 4, well done!
Library no good to those with
neither time nor talent to write

programs.
Jack Schofield, Sutton.

Excellent magazine, especially
the utilities like Sector. Worth
paying more to keep a nationwide
club going.

D. W. Legg, Cardiff.

End of Term Report. Quite
good so far, but more software
reviews would be appreciated. If
required | could submit some of
my own! 7 out of 10.

Philip Rae, Hornsey.

The club newsletter is open to
all members to submit articles
and reviews or anything. We
may not always be able to use
them but many of the items we
receive are used, in fact the
newsletter would have quite a
few blank pages without your
contributions.

Thank you for vour excellent
magazine, especially the item on
adding text to graphics 8. Having
little experience of computers [
have found your articles very
helpful.

D. R. Mills, Holland-on-Sea.

| am getting from the club
what I hoped for, a useful
magazine and hints & machine
code routines beyond my own
abilities.
J. A. Spence, Midlothian.

Mag. excellent value, even for
my 800 which has three kinds of
memory, ROM, RAM and RUM.

Frequently | am heard to say
“That's RUM!!!" But | keep on

trying.
J. L. Chinnery, Rayleigh.

Let's have more hardware
articles, perhaps exploring the
use of the redundant test point at
the back of the 800. I thought
issue 3 was great but issue 4

went back to a mag. full of games.

W. Haves, Tividale.

Keep up the good work, can
we have the newsletters a little
more frequently? I need 2
machine code subroutines which
will FINE scroll 1 mode line in
either direction, which can be
used as display list interrupts.
Can you help?

Grahame Fairall, Shipton-on-
Wychwood.

If you would like to write to
Keith Mayhew at the club
address with details of what
precisely you are trying to
achieve, he may be able to help.

More info on hardware
additions to ATARI 800. More on
DOS including Macro
Assemblers, printer interfaces
and much more on Assembler

programs.
Gordon Berry, Kincardineshire.
No constructive comments,
just to congratulate you on the
improvement of the magazine,
and to say that | agree with the
selling of the magazine to non-
members.
John Hates, Edmonton.

Gets better every time, but
don't get too technicall
V. C. Botterill, Hertford.

You are doing a first class job!
What about some more inform-
ation on technical details and
secrets!! What is the right hand
cartridge slot for on the 800?
Need an article on “Assembler
Editor”. Documentation not very
helpful (BUGS!)

David G. Jones, Normanton.

Nothing is secret on the
ATARI, evervthing you will ever
want to know is available in
books, such as De Re Atani or
Technical Users Notes. Even the
circuit diagrams of the computer
are obtainable. If vou are really
stuck on a problem vou could
always ring the ATARI
HELPLINE, Slough (0753) 24561.

Excellent article on display
lists, Sector program invaluable.
Would like to see more utilities
(BASIC renumber, alphabetical
sort on a string, etc.) Very
readable magazine, | enjoy it very
much. Maybe it could be bi-
monthly.

Justin M, Baker, Winslow.

| am fluent n BASIC but just
started in Assembler/M.C.
Information about I/O control in
machine code is thin on the
ground. Also can you do the

equivalent of GR.7 for example
without having to write your own
display list & allocale screen

size qualifies a program for inclu-
sion in the software exchange?
Michael Kidd, North Shields.
There is no minimum size as
such, but programs donated to
the Library should ultimately
have a benefit to other members.

Can we have more reviews of
software and how about getting
together with PAGE 6 and
producing one glossy, nationally
distributed magazine for ATARI
as has been done by a BBC
owners club. Please think
seriously about it.

Paul Ippaso, Barrow-on-Soar.

Comments Mr. Ellingham??

There seems to be very few
books on ATARI compared to
say Spectrum. Also there are
many game programs one can
buy, but not many scientific,
mathematical or statistical
programs, or am | wrong? Can
we be shown how to enter
Sinclair programs e.g. “PRINT
AT" becomes “PRINT” in ATARI
etc.

K. W. Harrison, Glenfield.

Yes vou are wrong! There are
loads of books available, from
the simple BASIC books to the
advanced TECHNICAL NOTES.
There are serious programs
around too, such as VISICALC,
CALCULATOR, STATISTICS,
MORTGAGE & LOAN
ANALYSIS, BOB'S BUSINESS,
THE BOOK KEEPER, etc.

An excellent magazine, if not
the best ATARI magazine, with
superb program listings.

Mary Weightman, Bromham.

Great magazine but how
about a check listing as seen in
ANALOG and ANTIC to help
find typing errors in copying your
program listings, PLEASE.

John Stephens, Eastleigh.

An excellent club and
magazine only spoilt by the
infrequency of issue. Why not
make it a monthly or fortnightly
issue?

P. Thornber, Bradford.

A great publication which is
getting even better, congratu-
lations to those concerned. As
programs in the club library are
submitted under the banner of
“public domain”, maybe extra
funds could be raised for the club
by supplying listings to members
for a small fee. Or the same
“send a blank tape” as is used,
but again with a small fee, for
those who cannot write their own.

S. P. Woodward, Isle of
Benbecula.

As a person who finds great
difficulty in writing programs it
seems | will never be able to take

| advantage of the 3 for 1
exchange. Is there a way | could
pav a charge instead?

T. M. Morris, Rhondda.

This newsletter is something
that you can all be proud of,
better than the [/O magazine
from ATARI. Please continue

| with the excellent work, WE

| NEED YOU!
J. T. Dunn, Bekesbourne.

I find your major articles to be
of great assistance and the
quality of program Iistinss equally
impressive.
program “SPACE FOB‘I’RESS" is
a direct copy of David Plotkin's

| work from “Compute’s” ATARI

| GRAPHICS (page 103). 1

| personally bought and read this
book some 6 months ago and
recognised the program
immediately, | am disappointed
that your censorship control did
not.
P. Hammond, Ushaw Moor.

| So are we! So are we!

I would like to see the mag.
published once a month, not
once in a while!! It's so good!
Why not? Quality & contents are
marve! !

Mick Draycott, Ripon.

Could you tell me what pin 9,

| the Proceed pin, is for on the

| ATARI 800 1/O port? I can't seem
to find any real answer.

Bruce R. Mercer, Worthing.
None of the old perpherals
use this pin, but the new range of

devices may do. This is an
interrupt line which is not
supported in the 400/800
operating system, but the vector
for that interrupt is supported
and the O.S. simply executes a
‘PLA’ and an ‘RTI'. This interrupt
can be used in your machine
code programs and information
can be found in the TECHNICAL
NOTES.

| In my opinion, if ATARI are
going to reach the top of the
home micro market, they don't
have to drop the price of the
machines, but the software
| prices. | am not clear on your 3
for 1 scheme, if | send in a
program on a cassette do | have
to enclose another tape for the
other copies or do you put them
on my tape?
Edward Tilsley, Eastcote.

We agree with you about
software prices, but why are you
telling us? You should be
complaining to ATARI

How about an article on how
to write a war game or make a
. scrolling map? The game
“Dogfight” was excellent and the
article on display lists illuminating.
H. Field, Rochester.

INTERFACE

I should very much like to see
some hints and tips on machine
code. | am just starting to
understand it and any information
would be very useful. | find when
using machine code there is a
difference to what is written in
books and the way it can be used
on ATARI. For instance, if you
have no disk system fitted can
you use the memory that DOS
uses for dumping into?

R. ?’nmer, Southport.
es.

How about an idiot’s guide to
DLI's, VBI's, etc. Is it possible to
have more than one colour in an
individual redefined character?
More frequent issues even if we
have to pay more.

Peter M. Smith, Grangemouth.

Yes, vou can have more than
one colour in redefined
characters. ANTIC modes 4 & 5
support 4 colours including the
background.

My son (age 13) and | read
the magazine with great interest,
he enjoys typing in the games. |
would like to see some articles on
interfacing, e.g. analogue input,
control of external devices,
robotics, etc.

D. G. Moss, Teddington.

May I proffer my thanks to
everybody connected with the
production of the newsletter. |
find it most interesting and have
actually managed to leam a few
things. Would it be possible to
persuade your contributors to
include a generous smattering of
REMS in the program listings? |
realise it is difficult enough to get
people to submit programs at all,
but it would make the programs
more understandable to
beginners such as myself. If ever |
write anything worthwhile I shall
certainly let you have a copy,
there are several programs in the
library that I would like to have!
How about a few listings in
Microsoft BASIC with which | am
presently struggling?

Derek J. Saxty, Birmingham.

PORT PROBLEMS

Dear Sirs,

Following your article in issue
3, “The ATARI Ports Uncorked”,
I have been attempting without
much success to use the machine
to measure voltages produced by
outside sources. Could you
please tell me if the Paddle inputs
only measure resistances placed
across pin 7 and pins 5 and 9 or
can they measure voltages
applied to pins 5 and 9, if so,
how? 1 used pin 8 as the Ground.
Also, can pins 1 to 4 on Jacks 1
and 2 (8 lines) be used in
conjunction with an external
analogue/digital converter, when
programmed for input as
described in the article. If so, how

does one read the input?
B. A. Tenny - Rochdale.
COMMENT

The function of the 8
analogue to digital converters is
to measure resistance. It is,
however, possible io measure
voltage with a small electronic
circuit, perhaps using a FET
device which would convert your
voltage measurement info a
resistance which can be read by
the ports. Due to the design of
POKEY's paddle ports it
measures the resistance by
charging a capacitor, it should
therefore be possible to use the
voltage to produce a proportional
current which would determine
the rate of charging. We have
never tried this but in theory it
should work.

To read the external device
the ports do not need to be
reconfigured, and if reading
through BASIC then to obtain
the eight bit number from jacks 1
& 2 use the following:
VALUE=STICK(1)*16+STICK(#)

By the way, in the article in
issue 3, a slight error in the
diagram showed jacks 1 & 2
incorrectly. Bits D@ to D3 should
be jack ! and bits D4 to D7
should be jack 2.

LIBRARY QUERIES?
Dear Chris,

First, let me congratulate you
on your high standard of
production. Whilst some people
might argue that the newsletter is
‘too professional’ in appearance
the effort put into producing a
high quality publication shows
that the editorial team are
concerned with creating
something that will be respected
by ATARI users of all levels.
Keep up the good work. You

have managed to maintain a good
mixture of articles covering
aspects of the hardware and of
various software applications:
games, utilities, techniques, etc.
Although topics like PM Graphics
may have already been the
subjects of articles in other
publications, another author's
presentation of the subject may
cast new light on how the
technique may be applied. | am
particularly pleased that screen
displays are now included with
the program listings, it is helpful
to know what to expect.

Glad to see the growth of the
software library. However, | am
slightly concerned about some of
the library titles. Rule 2 of the
library states ‘The program you
send must be original and not
copied’. Unfortunately the
following library titles, from their
descriptions, are undoubtedly
copies of previously published
material.,

SHOOT:-Originally in
COMPUTE! issue 16, Sept. 81,
by John H. Palevich.

WEDGE:- Originally in

COMPUTE! issue 30, Nov. B2, by
Charles Brannon.

KEYBOARD:- Originally in
COMPUTE! issue 19, Dec. 81, by
Ric Mears.

SPACE FORTRESS:-
Originally in COMPUTE! issue
23, Apr. 82, by David Plotkin.

1 do not want to cause
trouble, but | believe that the
original authors should receive
their due credit. Incidentally, just
because a program is printed in a
magazine | understand it does
not automatically become ‘Public
Domain’, | am not sure what you
can do about this situation. |
would be interested to hear your
comments on this matter.

We are pleased to see that in
the main you are happy with the
format of the newsletter. We
share your concern regarding
‘Rule 2’ of the library. Although
we do try to check every
contribution received, it is
virtually impossible to identify if a
program has been published
before. It is obvious to us that
the reason people send in
programs which are not their
own, is to obtain programs when
they are unable to write their
own. We can tackle the problem
in two ways, first the offending
programs will be deleted from the
library list, and secondly we can
change the library rules so that
there is no need for people to
send in copied programs. If you
look at the library pages of this
issue you will find that both of
these measures have been
implemented.

CONTACT

Listed below are members who are
keen to meet or communicate with
others, with a view to improving their
knowledge of the ATARI computers,
swaping hints, tips and programs, and
generally getting to know other ATARI
enthusiasts. So if you wish to ‘Make
Contact’ with any of the people listed
below, either because they are local to
vou, or you just wish to correspand
by mail; write or phone (if the number
is given) in the first instance. If you
would like to have your name and
address published, write to ROY at
the club address with details.

SOUTH YORKS

R.A. Horner, 76A Osbome Road,
Sheffield, S11 9AZ.

SUFFOLK

Norman Butler Jr. 57 Persimmon
Walk, Studland Park, N }
Suffolk. Would like to meet member
with Disk Drive in my local area.

CORRIGENDA

ISSUE 4.

Page 11. In the vertical fine scroll
program, line 33 should read:

IF PEEK(DL+)=2 THEN

POKE DL+ ,2+32

Page 18. Dogfight modification
(b), the last statement on line
4520 should read NEXT X
instead of NEXT C.

Due to demand from
members there are now two ways
to get programs from the library.
The original scheme of
exchanging ‘3 for 1" will still
apply, but now with an added
bonus. So the library rules have
been extended to enable those
members who cannot write their
own programs to gain access,
and those that can to have a
possibility of some reward for
their efforts. The extended library
rules are as follows:

3 FOR 1 EXCHANGE

1. Every program vou donate to
the library entitles you to three
programs in return.

2. The program you donate must
be your original and not copied.
3. Your donated program must
be submitted on a cassette or a
disk, programs in the form of
print-outs will not be processed.
4. If your program requires any

Software Librarian - Roy Smith

special instructions they should
be added in the form of REM
statements within the program
(or you may present them as
instructions when the program is
actually run).

5. BONUS. Every program
donated per quarter (between
issues of the newsletter) wil be
eligible to be judged ‘STAR
PROGRAM ' for that quarter.
This carries a prize of £10 which
will be paid to the author from
the club funds. The programs will
be judged by the Editorial Team
and their decision will be final.
The Editorial Team are not
eligible for the prize.

6. The ‘3 FOR 1’ exchange is
only open to club members.

DONATION SCHEME

1. Every club member will be
entitled to ask for up to 3
programs per quarter from the
library by donating to the club

funds.

2. If a member does not take
his/her entitlement for a
particular quarter, it cannot be
carried forward to the next
quarter.

3. A member can have more than
one quarter’s entitlement at one
time (up to a maximum of 12
programs (1 year)), but then will
be unable to ask for more until
his/her credit quarters have been
used. Note that odd numbers of
programs will be counted in
quarters, i.e. if a member asks for
5 programs, the first 3 will be that
quarter’s entitlement, the next 2
wil be the second quarter’s
entitlement and he/she will have
to wait until the third quarter
before he/she is entitiled to any
more. Also note that having
programs in advance will only be
allowed if that member’s
membership covers the advance
quarters.

" USER GROUP SOFTWARE

4. The donation fee will be £1 per
program and is not refundable.
Cheques and Postal Orders are
to be made out to the ‘UK. Atari
Computer Owners Club’.

5. Members must send in a blank
cassette or diskette for the
chosen programs to be recorded

on.
6. The ‘DONATION SCHEME' is
only open to club members.

There are numerous reasons
why the library rules needed to
be changed, some of which have
been discussed elsewhere in this
issue. But whatever the reasons, |
hope that the changes will be for
the good and that many more of
the members will benefit from
them. Finally | would like to point
out that some people omit to
include retum postage when
donating to the library, so please
do not forget to include 30p
worth of stamps to cover this.

THE LIBRARY SOFTWARE SERVICE IS FOR MEMBERS ONLY

LIBRARY SOFTWARE TITLES

Listed below are software titles available to members under the “3 for 1” and donation schemes. As can be seen, they
are listed under basic program types, i.e. GAMES, UTILITIES, etc; and also included is the minimum memory required.
So if there is a title you fancy, just sent in a program of yours for exchange or donate to the club funds.

Games

BERTIE BLOCKHEAD
by Alex Kells - Liverpool,

Guide Bertie around the screen
picking up the energy pills without
receiving a lethal dose of radiation.
Runs in 16K Cassette or Disk min,

DRAGONFIRE
by G. Fairall - Oxon.

First you must get across the
castle drawbridge before you can
enter the treasure rooms, then you
must avoid the Dragon's Fire.

Runs in 16K Cassette or 32K Disk min.

BALLOON LANDER
by Dauvid Campbell - Maldon,

Land your balloon on the landing
pads. You must avoid low flying
aircraft and take account of fuel, wind-
speed & direction.

Runs in 16K Cassette or 32K Disk min.
GIL-BERT
by Mark & Brian Christian - Wirral.

Bounce on the squares to gain
points but avoid the SKULLS.

Runs in 32K Cassette or Disk min.

TOWER

by Stephen Taylor - London.
Climb the Towers avoiding the

falling buckets and pot plants.

Runs in 32K Cassette or Disk min.

CLOSE ENCOUNTERS
by Jeff Davis - Hereford.

You are the tail gunner, can you
score enough hits on the incoming
alta:k plane before your fuel runs
out?

Runs in 16K Cassette or 32K Disk min.

CRICKET
by B. Barwick - Plymouth.
Enjoy a game of limited over
cricket against the computer,
Runs in 16K Cassette or 32K Disk min.

DEFENDER
by Paul Barber - Kings Lynn.

Stop the invaders in their tracks.
Runs in 32K Cassette or Disk min.

LUNARLANDER
by Paul Barber - Kings Lynn.

Try to land on the moon without
crashing, you must constantly feed the
computer with thrust power details.
Runs in 16K Cassette or Disk min.

SEAWOLF
by Paul Barber - Kings Lynn.

You are Commander of a
submarine and you must torpedo the
enemy ships before they get you,
Runs in 32K Cassette or Disk min.

COLLISION COURSE
by Jon Beff - Manchester.

Avoid collisions with your
opponents, but try to trap him into
colliding with you. For two players or
against the computer,

Runs in 16K Cassette or Disk min.

SUBMARINE HUNTER
by Hugh Denholm - Aberdeen.

Drop bombs from your helicopter
to try and sink the sub, avoiding
missiles from the protecting destroyer.
Runs in 16K Cassette or 32K Disk min.

SKYBLITZ VERSION 1
by Chris Barlow - Leigh.

Drop bombs from your spacecraft
onto the buildings below, reduce them
to rubble before you fly too low and

crash into them.
Runs in 16K Cassette or Disk min.

SKYBLITZ VERSION 2
by Mike Barnard - Guisborough.

New version of Skyblitz 1, with
improved graphics, sound and joystick
control.

Runs in 16K Cassette or Disk min.

COWBOY
by Evan Fraser - Edinburgh.

Shoot your partner three times to
kill him, reload with bullets from the
local store.

Runs in 32K Cassette or Disk min.

BATTLE OF BRITAIN
by Mike Barnard - Guisborough.

A strategic game of wits, defending
Britain against wave after wave of
attacking bombers.

Runs in 16K Cassette or Disk min.

FRUIT MACHINE
by Mike Nash - Radstock.

A graphic representation of a fruit
machine, where you can gambile the
“computer’s money”. Incorporates
nudge and hold facilities.

Runs in 16K Cassette or 32K Disk min.

FOUR IN A ROW
by R. P. Bosma - Canterbury.

Drop you marker in the gnd and
stop your opponent from getting four
in a row.

Runs in 16K Cassette or Disk min.

SKYBLITZ VERSION 3

by D. West - South Normanton.
Machine code version

incorporating skill levels and faster

action. This program is for use on

DISK systems only. An added feature

is that “HISCORES" can be written to
disk. NB: source coding is available.
Runs in 32K Disk minimum.

COUNTDOWN
by P. Stevens - Horley.
Hit moving targets with a bouncing
ball and joystick controlled bats.
Runs in 16K Cassette or 32K Disk min.

HANGMAN
by R. L. Howarth - Preston,
Save the man from the gallows by
guessing the word.
Runs in 16K Cassette or 32K Disk min.

MANIAC DRIVER
by P. J. Phillips - Sevenoaks.

Avoid oncoming traffic by skilful
driving. This game uses PADDLES.
Runs in 16K Cassette or 32K Disk min,

PHANTOM FLAN FLINGER
Chris Barlow - Leigh.

Throw flans into the dodging face
and score points.

| Runs in 16K Cassette or 32K Disk min.

COLOUR SNAP
by H. Clark - Barking.
ATARI version of the popular card

game.
Runs in 16K Cassette or Disk min.

YAHTZEE
by Steve Calkin - Basildon.
Dice game, where you have to get
two, three or four of a kind, etc.
Runs in 16K Cassette or 32K Disk min.

MOONLANDER

by D. Mensing - Sutton Coldfield.
Manoeuver your craft onto the

landing pads.

Runs in 16K Cassette or 32K Disk min.

PEDESTRIAN
by P. Stevens - Horley.

You are the pedestrian and you
must cross the road without getting
un over.

Runs in 16K Cassette or 32K Disk min.

| COLLISION COURSE 2

| by Jon Beff - Manchester.

| Improved version.

Runs in 16K Cassette or 32K Disk min.

| Runs in 16K Cassette or 32K Disk min.

DOGFIGHT
by Rod Knowles - Merseyside.

A game for two players involving
| World War 1 bi-planes in combat.

Runs in 16K Cassette or 32K Disk min,

| REVERSI

| by lan Finlayson - Gosport.

| BASIC version of this two player
game with running scores.

| Runs in 16K Cassette or Disk min.
CONNECT 4

| by R. W. Askew - Northampton,

| Use cunning and skill to stop your

| opponent from connecting four.

Runs in 16K Cassette or 32K Disk min.

| GALACTIC CUBE

| by Nigel Haslock - Switzerland.

| Steer your craft to safety out of
the space cube.
Runs in 16K Cassette or Disk min.

Superb adaptation !mm the
original, includes redefined character
set to give enhanced graphic
presentation,

Runs in 16K Cassette or 32K Disk min.

WORM

| by Gordon Segar - Whitby.

| Use vour joystick to guide your
worm through the tunnel without

colliding with the jagged walls.

Runs in 16K Cassette or Disk min.

HANGMAN 2

by Carl Graham - Norwich.

Disk version of hangman, includes
question files on cities and countries,
Runs in 48K Disk only.

FLIP
by Ezio Bottarelli - taly.
| Guessing game! Out guess the
| computer.
Runs in 16K Cassette or 32K Disk min.
| JOIN FOUR
| by Andrew Lusher - Erith.
] Two player game, join four to win.
Runs in 16K Cassette or Disk min.
MOLE
by Keith Mayhew - Ravleigh,
| Stop the moles from digging up
your garden by hitting them on the
head.
| Runs in 16K Cassette or Disk min.

GOMOKU
| by Ezio Bottarelli & A Tocchi - ltaly.
| Two player game, get 5 counters in
| line to win.
| Funs in 16K Cassette or Disk min.
FORZA QUATTRO
by Ezio Bottarelli & Antonio Sciarra -
Italy.
Two player game, get four in a row.
Runs in 16K Cassette or Disk min.
| ZAP
| by Alex Macklen - Truro.
| Move around the screen, eating up
the energy pills, but be careful
because your tail grows longer.
Runs in 16K Cassette or 32K Disk min.

LIBRARY SOFTWARE

GUNFIGHT
by lan Scott - East Boldon.

Tmphyugmﬁwt shoot to kill!
Runs in 32K Disk only.

TANKTRAP
by lan Scott - East Boldon.
Tank battle game for 1 or 2

players.
Runs in 16K Cassette or Disk min.

HEX
by Ezio Bottarelli & Antonio Tocchi -
Traly.

Hexagonal game for two players,
join your two sides before your

opponent..
Runs in 16K Cassette or 32K Disk min.

FIFTEENS
by Ezio Bottarelli - ltaly.

There are fifteen numbers that
have got to be moved into the correct
order.

Runs in 16K Cassette or Disk min.

PASSE DE TEMPS
by Desmond Seymour - Stoneleigh.
Get four barrels in the slots to win;
2 player game.
Runs in 32K Cassette or Disk min.
PECKMAN
by Mike Nash - Radstock.
Superb adaptation of a well known
arcade game.
Runs in 16K Cassette or 32K Disk min.

TUNNEL TRILOGY
by Mark Christian - Wirral.

Guide your ship through the tunnel
to the hidden city. Three games for
the price of one. (TUNNEL RUN,
TUNNEL MASTER & TUNNEL'S
REVENGE.)

All run in 16K Cassette or 32K Disk
minimum.

LANDER

by I. R. Skinner - Stockport.

Land your lunar module onto the
landing pad.

Runs in 16K Cassette or 32K Disk min.
DEPTH CHARGE
by Ken Hall - Okehampton.

Drop depth charges onto the
passing submarines,

Runs in 16K Cassette or 32K Disk min.
STUNT RIDER
by R. W. Askew - Northamptaon.

How many buses can you jump on
your motorbike?

Runs in 16K Cassette or 32K Disk min.

Adventure Games

STONEVILLE MANOR
by Nigel Haslock - Switzerland.
Extensive BASIC word adventure,
the object of which is to discover the
treasures hidden in Stoneville Manor.
Unfinished games can be saved onto
cassette (slight modification of the
program allows you to save to disk).
Runs in 32K Cassette or Disk min.

THE VALLEY

by Steve Calkin - Basildon.
Semi-graphic adventure, you can

be warrior, wizard, cleric, etc. and you

must fight your way to safety along

the forest path.

Runs in 32K Cassette or Disk min.

OUTPOST
by Anthony Ball - Preston.

Graphic adventure in which you
defend the outpost from attacking
enemies of varying strengths.

Runs in 32K Casselte or 48K Disk min.

THE FOLLY OF EZRHARD
KKHANN!

by Alex Kells - Liverpool.

Journey through long dead
EZRHARDs dungeon looking for gold!
Runs in 48K Cassette or Disk min.

Home Entertainment

SHAPE MATCH

by Ann Yates - Le Vesinet, France.
This program generates a selection

of shapes in varying colours, and you

must match the shapes. Suitable for

the 2-6 age group.

Runs in 16K Cassette or 32K Disk min.

MEMORYMATCH

by Richard Chin - Lianelli.
‘Simon’ type game in which you

have to repeat a pattern of notes and

colours.

Runs in 32K Cassette or Disk min.

ELECTRIC SHOCK
by Steve Tullett - Dalkeith.

A 2 to 4 player game, you must get
your men home without jumping on
the electrified squares,

Runs in 16K Cassette or Disk min.

POLYGONS

by Chris Rutter - New Zealand.
Make polygons in Graphics 7 to

11, use your joystick to change the

colours.
Runs in 16K Cassette or 32K Disk min.

LETTERFRAME
by Chris Davies - Bromley.
Sort out the letters into the correct
order,
Runs in 16K Cassette or 32K Disk min.

SYNTHESISER

by Chris Payne - Manchester.
Program your keyboard to act as a

synthesiser.

Runs in 16K Cassette or 32K Disk min.

DUNGEONS & DRAGONS
CHARACTER GENERATOR
by A. J. Palmer - Basingstoke.

An absolute must for all dungeons
and dragons players.
Runs in 16K Cassette or 32K Disk min.

BIORHYTHM
by Ezio Bottarell - Italy.
Forecast your physical, intellectual
and emotional future.
Runs in 16K Cassette or Disk min.

LIE DETECTOR
by D. Dodson - Leigh-on-Sea.
Instructions are included on how
to make the hand held sensors. Then
a display is given in the form of a
graph showing true & false areas. As
you hold the sensors and are asked
awkward questions by a friend (?)
he/she can see how often you LIE!!!
Runs in 16K Cassette or 32K Disk min.

DARTS SCOREBOARD
by Derek Harrison - Glasgow

Let the computer keep score in
your game of darts and give a fanfare
to the winner.
Runs in 32K Cassette or Disk min.

NOUGHTS & CROSSES
by Ken Hall - Okehampton.
ATARI version of the popular

game.
Runs in 16K Cassette or 32K Disk min.

DICE

by Carl Graham - Norwich.
Gamble on the roll of the dice!

Runs in 48K Disk only.

SEAWARFARE

by Steve Tullett - Dalkeith.
Computer version of that old

favourite “Battleships”.

Runs in 32K Cassette or Disk min.

PICTURE PAINTER
by P. Patay - Oxted.
Paint pictures in GR.10, uses
paddles as brushes.
Runs in 16K Cassette or 32K Disk min,

can bet on the unrevealed middle
card,
Runs in 16K Cassette or Disk min.

ROULETTE
by Carl Graham - Norwich,

Play the fascinating game of
roulette and try to leave the casino
with your shirt.

Runs in 16K Cassette or 32K Disk min.
SPIROGRAPH
by Andrew Lusher - Erith.

Draw patterns, dependant on user
input,

Runs in 16K Cassette or 32K Disk min.

Demo’s
WORLD MAP
by Andrew Tullett - Dalkeith.

Map of the world, could be used as
the basis for an educational program
on Geography.

Runs in 16K Cassette or Disk min.
XI0 DEMO
by Adrian Beesley - Gorton.

A demonstration of the Fill
command on the ATARI.

Runs in 16K Cassette or Disk min.

GALLEON

by Lance Gettins - Kings Lynn.
Excellent demo of the PLOT &

DRAWTO capabilities of the ATARI,

depicting a Spanish Galleon on the

high seas.

Runs in 16K Cassette or 32K Disk min.

dangers of leaking chemical pipes.
Runs in 32K Cassette or Disk min.

U.F.0.

by Paul Barber - Kings Lynn.
Graphic demo of rotating colours

depicting a UF.O.

Runs in 16K Cassette or Disk min.

EXPO

by Paul Barber - Kings Lynn.
Animated demo of a chemistry

experiment.

Runs in 32K Cassette or Disk min.

SPIRAL
by Nigel Haslock - Switzerland.
Draw spirals of differing patterns
depending on user input.
Runs in 16K Cassette or 32K Disk min.

ATARI CLOCK
by lan Lawson-Smith - Watford.
An alarm clock for your home
computer.
Runs in 16K Cassette or 32K Disk min.

ROCKETS
by Frank Silcock - Mountain Ash.
Demo showing rockets L hing.
Runs in 16K Cassette or Disk min.
UNITED KINGDOM
by Stephen Sait - Lincoin.
3 option demno, map of U.K. Union

dJack and National Anthem.
Runs in 32K Cassette or Disk min.

PLAYER MISSILE DEMO
by Keith Mayhew - Rayleigh.

A step by step demonstration of
how to create player missiles on the
ATARL
Runs in 16K Cassette or Disk min

256 COLOURS
by Keith Mayhew - Raylewgh.

A short program which will display
all 256 colours available on the ATARI
on the screen at once.

Runs in 16K Cassette or 32K Disk min.

COLOUR CORRIDOR

by Keith Mayhew - Rayleigh.
See the colours roll down the

corndor.

| Runs in 16K Cassette or 32K Disk min.

MEMORY SCROLLER
| by Keith Mayhew - Rayleigh.
| Scroll through memory a page at a
| time.
| Runs in 16K Cassette or Disk min.
ATARI TRAIN
by Keith Berry - Birmingham.

Short demo incorporating player
missile graphics.
| Runs in 16K Cassette or Disk min.
| SNOOPY
| by Chris Davies - Bromley.
| Sketches SNOOPY on the screen
| in graphics 8.

Runs in 16K Cassette or 32K Disk min.

SPHERES
| by Peter Patay - Oxted.
Draws random spheres in

plucs
| Runs in lﬁK Cassette or 32K Disk min.

| QUADRANTS
| by Peter Patay - Oxted.

| A random pattern is generated in
| four positions to give a kaleidoscopic
| effect.

| Runs in 16K Cassette or Disk min.

PICASSO & PYTHAGORAS

| by H. Clark - Barking.

| Artistic patterns created by

| Pythagorian triangles.

Runs in 16K Cassette or Disk min.
| PROBLEM & SOLUTION

by lan Finlayson - Gosport.

A problem is set and solution is
given. Can you write a better program
to solve the problem?

Runs in 16K Cassette or Disk min.

STERLING

by Allan Sharpe - Burgess Hill
Character redefinition program,

replaces ‘&' with a pound symbol.

Runs in 48K Cassette or Disk min.

U.S.S. ENTERPRISE
by Alex Kells - Liverpool
Shows what can be achieved using
simple Graphics 8 techniques.
Runs in 16K Cassette or 32K Disk min.

ART-6
by R.P. Bosma - Canterbury.

Six artistic demo's in Graphics 8.
Runs in 16K Cassette or Disk min.
TEAMUG
by Gordon Segar - Whitby.

Draws a mug of tea in graphics 10.
Runs in 16K Cassette or 32K Disk min.

RANDOM GEOMETRY
by Keith Bcrry Birmingham.

Demo of randomly produced
patterns incorporating squares,
triangles and sound effects.

Runs in 16K Cassette or 32K Disk min.

MAINLAND G.B.
by J. Bennet - Newcastle.

Demo of different graphics modes
(3-9 & 11) using map of Great Britain.
Runs in 16K Cassette or 32K Disk min.

Utilities

TUTOR WRITER

by David Harry - Solihull

| This program takes information for
| alearning program and uses the

- | Forced Screen Read to write the info

into a program and then erases itself

| leaving only the tutor in memory, This
| can then be SAVEd.

Runs in 16K Cassette or Disk min.

LIBRARY SOFTWARE

LABEL PRINTER

by Peter Blackmore - Rayleigh.
Cassette based self generating data

storage label routine, which has the

facility to edit and retrieve, before

being printed.

Runs in 16K Cassette or 32K Disk min.

DISK SPEED CHECKER
by John Attfield - Benfleet.

Check your disk drive speed is
correct. This program is designed to
work in the UK.

Runs in any size Disk system.

TEXT EDITOR
by Paul Barber - Kings Lynn.

This program allows you to write
& then save pages of text to disk.
Print option available.
Runs in 32K Disk minimum.

TEMPERATURE CONVERSION

by Bernard West - Loughborough.
Convert Fahrenheit to Celcius and

vice versa.

Runs in 16K Cassette or Disk min.

ANAGRAMS

by Keith Berry - Birmingham.
Shuffles the letters randomly in a

word of any length.

Runs in 16K Cassette or Disk min.

CLOCK
by H. Clark - Barking.

Adds a 24 hour clock to the top
right-hand corner of the screen, useful
for timing games etc.

Runs in 16K Cassette or Disk min.

CHARACTER GENERATOR 4
by Trevor Skeags - Milton Keynes.
Get your custom characters into
use FAST with this USR generator.
Mo ‘please waits’. No POKE's. No
Strings. Up to 6 characters can be
redefined from the keyboard.
Runs in 16K Cassetie or Disk min.

SUPASORT
by Peter Bryant - Maidenhead.

A multiphase sort program in
BASIC with assembler inserts.
Includes a PRE and POST sort phase
to allow copying of files, also the sort
can be normal mode or tag mode,
incorporating composite keys.

Runs in 32K Cassette or Disk min.

REDEFINER
by Richard Chin - Lianelli.

Redefine up to 18 characters, the
character is displaved in each of the
text modes including the two
multicolour text modes (ANTIC 3 &
4). A BASIC subroutine can be
created containing all the logic
necessary to transfer the character set
and POKE in your redefined
characters from DATA statements.
Characters can be saved on tape or
disk.

Runs in 32K Cassette or Disk min.

ACCESS MINDER
by A. Lusher - Erith.

This is a small financial program
which allows you to keep a check on
your credit card commitments. This
program is written in ATARI
MICROSOFT BASIC.

Runs in 48K Disk systems only.

STOCK MARKET ANALYSER
by James Kerr - Gullane.

Keep records of stocks & shares,
and use this program to analyse the
best companies to get your money
intol
Runs in 16K Cassette or 32K Disk min.

QRA.
by Chris Barlow - Leigh.

Input QRA locations and work out
distance and point value from your
station.

Runs in 16K Cassette or Disk min,
ARTIST
by Martin Byfield - Birmingham.

Use your joystick to paint pictures
in GR.7. Excellent utility incorporating
very good player movement.

Runs in 16K Cassette or Disk min.

AUTOMATIC LINE NUMBERS
by Paul Barber - Kings Lynn.

A useful utility which automatically
writes your line numbers in any size
steps you wish.

Runs in 16K Cassette or Disk min.

CURSOR FLASHER
by Jon Williams - Littlehampton.

This is a machine code program
which runs in vertical blank, and gives
the following options:- FLASHING
CURSOR, BLINKING
CHARACTERS, INVERSE to
NORMAL FLASHING, NORMAL to
‘SOLID WHITE', UPSIDE DOWN to
NORMAL, and BLINKING INVERSE
CHARACTERS. This program is also
available in BASIC. When requesting
this program please ask for either
‘CURSFLSH.BAS' or if you want the
source code, 'CURSFLSH.BAS/SRC'".
Runs in 16K Cassette or 32K Disk min.

FILER 1
by Chris Payne - Manchester.

A filing system for cassette owners.
Runs in 16K Cassette min.

ASSEMBLER

by Chris Rutter - New Zealand,
Create your own assembly

language directly into memory. You

can also save, move, list, modify and

run programs from a menu.

Runs in 16K Cassette or Disk min.

OBJECT CODE TRANSLATOR
by Len Golding - Sheffield.

Assembly code which has been
written using the ATARI ASSEMBLER
EDITOR cartridge can be read and
translated into DATA statements by
this program, then re-written to disk
or cassette for use in other programs.
Please state if you require cassette or
disk version of this program.

Runs in 16K Cassette or 32K Disk min.

DISKCOPY
by Ken Hewitt - Nazeing.

Sector copy routine in BASIC,
allows copying of disks which do not
have DOS, but not protected
software.

Runs in any size Disk system.

MORSE KEYBOARD

by Chris Barlow - Leigh.
Comprehensive Morse utility

includes disk filing system for storing

regularly used messages. Other

features include speed and tone

settings.

Runs in 16K Cassette or 32K Disk min.

CREATOR
by Anthony Ball - Preston.

If you upgrade to a disk system
from a cassette system, use this
program to transfer data from cassette
to autoboot disk.

Runs in 32K Disk minimum.

CHARACTER GENERATOR 1
by Martin Walker - Swindon.

This program is for cassette
owners, but could be adapted to disk.
It allows you to modify all your 128
characters using the kevboard.

Runs in 16K Cassette min,

CHARACTER GENERATOR 2
by I. Scott - East Boldon.

This program allows you to modify
up to 32 characters with joystick
control giving such options as reverse,
rotate, repeat and move. At the end it
displays another program which allows
you to use these new characters in
any program you are writing.

Runs in 16K Cassette or 32K Disk min.

CHARACTER GENERATOR 3
by J. Bennet - Neuwcastle.

Use Joystick to draw new
character in 8 by 8 grid. Press 'C’ to
change to another character. Press 'S'
to stop, and obtain list of character
and list of values for DATA statement.
Runs in 16K Cassette or Disk min.

FAST SAVE CASSETTE

by Jon Williams - Littlehampton.
This program requires the use of

the ATARI ‘ASSEMBLER EDITOR’

cartridge and gives a faster way of

saving binary programs.

Runs in 32K Cassette minimum.

CASSETTE LOADER
by Jon Williarms - Littlehampton.
Enables the user to load and save
binary files to/from cassette. The load
section of this program is compatible
with object code produced by the
ASSEMBLER EDITOR cartridge, so if
you have trouble ‘CLOADing’ from
BASIC using ATARI ASSEMBLER
EDITOR cartridge, this program is for

you.
Runs in 16K Cassette minimum.

BIRTHDAY
by D. Dodson - Leigh-on-Sea.

For use by disk system owners to
keep a file record of your family and
friends birth dates.

Runs in 16K Disk minimum.

DISK FILE MANAGER
by D. Dodson - Leigh-on-Sea.

A disk file management system, so
you can keep track of all your
programs, The program is available
with or without ‘PRINT' option, so
state your requirement when asking
for this program.

Runs in 48K or 32K Disk system min.

DELETE
by Anthony Ball - Preston.

Gives microsoft delete function.
This program is for disk owners.
Runs in 32K Disk minimum.

SECTOR
by Ron Levy - Southend-on-Sea.
_ This program is a disk investigation

aid.
Runs in 32K or 48K Disk systems.

PROGRAM INDEX

by J. Bennet - Neucastle.
Cassette based program index,

keeps up to 450 records.

Runs in 48K Cassette system only.

GRAPHICS SHAPES
by Ken Ward - Norwich.

Re-defines character set to give
circles, squares and other patterns but
leaves standard letters and numbers
intact.

Runs in 16K Cassette or Disk min.

CHECKSUM
by lan Scott - East Boldon.

Run this program against a file
containing a LISTed program to
produce checksum data.

Runs in 16K Cassette or Disk min.

CHARACTER DESIGN AID
by Len Golding - Sheffield.

Allows you to redefine characters
using a joystick, and then you can
display the new character in 3
different graphics modes. Also you
can design players and display them in
3 different sizes and 2 different
resolutions.

Runs in 16K Cassette or 32K Disk min.

FILEDUMP

by Peter Bryant - Maidenhead.
This program will PRINT any file

that BASIC can read in either record

or dump format.

Runs in 16K Cassette or Disk min.

DIRECTORY DISPLAY

by lan Scott - East Boldon.
List diskette directory from

BASIC.

Runs in any size Disk system.

ADDRESS FILE
by J Bennet - Newcastle.
Ad filing sy
Run.l in 16K Cassette minimum.

COMPUTER ASSISTED DESIGN

by Sam Small - Bognor Regis.
Design and draw different circular

shapes and view them at varying

angles,
Runs in 32K Cassette or Disk min.

CATALOG

by H.M. Hoffman - London.
Catalogue system.

Runs in 32K Cassette or Disk min.

PLAYER DESIGNER

by Keith Berry - Birmingham.
Design players with this useful

program.

Runs in 16K Cassette or Disk min.

CHEMISTRY TUTOR
by David Harry - Solihull.

Will teach or revise the chemical
symbols and valencies of the 33
commonest elements and radicals in
'O’ level chemistry,

Runs in 16K Cassette or 32K Disk min.

LIBRARY SOFTWARE

=N

© 1 ~Nh
Tt St St ' ' ' ' '

-
CODNOUMBLON=
 — — — — — — — p— p—

TP TENVFVF——

STEVE CALKIN
.. CHRIS PAYNE

STONEVILLE MANOR .. . NIGEL HASLOCK
FOLLY OF E. KKHANN
viiiiiiaen.... CHRIS RUTTER

D. DODSON

srsres s s ana e

TUNNEL mn.od\'r ... MARK CHRISTIAN

..ANTHONY BALL
.. STEVE TULLETT

Well, VALLEY made it to the number one spot after all. Congratulations
Steve! The position was reversed this quarter by VALLEY just edging out
SYNTHESISER by a few requests. MANOR moved up, but the new rising
star must be FOLLY of EZRHAR'D KKHANN, a recent library entry by Alex
Kells, which has shot into the chart at number 4. That makes 3 adventure
games in the top 4. There must be a lot of midnight adventurers out there.
Another interesting new entry is the TUNNEL TRILOGY by Mark Christian,
loak out for his new library entry, GIL-BERT, which is an excellent game.

MATHEMATICS

by Keith Berry - Birmingham.
Excellent mathematical problem

setting program. Includes questions on

Cubic Volume, Pythagoras Theorem,

etc.
Runs in 16K Cassette or 32K Disk min.

Education

BIBLE NAMES
by P. Brown - Newquay.

Hangman type game but designed
to teach children the names of people
from the Bible.

Runs in 16K Cassette or 32K Disk min

KEYBOARD TRAINER
by H. M. Hoffman - London.
Learn to type faster with this
useful program.
Runs in 16K Cassette or 32K Disk min.

NATIONAL FLAGS
by Keith Berry - Birmingham.
Flags of the world can be displayed
or made into a quiz for children.
Runs in 16K Cassette or 32K Disk min.

TRACK THE ALIEN
by L. Goldsworthy - Ealing.
Keep track of the alien craft, a
guessing game for children.
Runs in 16K Cassette or Disk min.
SPELLING
by L. Goldsworthy - Ealing,
Spelling game for young children.
Runs in 16K Cassetle or Disk min.

CAPITALS

by Colin Marriott - Westoning.
Test your knowledge of the capitals |

of the world.

Runs in 16K Cassette or Disk min.

MORSE TUTOR
by Chris Barlow - Leigh.

This program generates random
morse at selected speeds so you can
teach yourself morse code.

Runs in 16K Cassette or 32K Disk min.

KEYBOARD TUTOR
by Mike Jervis - Nottingham.
Learn to touch type with this typing
tutor.
Runs in 16K Cassette or Disk min.

MATH TEST
by Mike Jervis - Nottingham.

Fun with figures for your children.
Runs in 16K Cassette or Disk min.

Music

MUSIC 1
by Graham Ward - Liverpool.

A selection of 4 tunes for use with
the ATARI MUSIC COMPOSER
cartridge. The tunes are: THE QUEEN
OF SHEBA by Handel, MINUET 1 by
Bach, MINUET 2 by Purcell and
BRITISH GRENADIERS. |
Runs in 16K Cassette or 32K Disk min.

MUSIC 2
by H. M. Hoffman - London.

A Selection of 5 tunes for use with
the ATARI MUSIC COMPOSER
cartridge, the tunes are; YESTERDAY, |
YELLOW SUBMARINE, I
SCARBOROUGH FAIR, AULD LANG
SYNE and THE NEW WORLD i
SYMPHONY (DVORAK).

Runs in 16K Cassette or Disk min,

The Software Map

Ann Yaws - France

PAGEg

4 bi. Annual S

THE
MAGAZINE

FOR ALL ATARI
COMPUTER* OWNERS
*400/800/600X1/800XL

-
1007 MACHINE LANGUAGE GAME

PLUS GREAT BASIC GAME
ONE GAME REQUIRES 32K

‘worth more than the subscription!f!

PAGES®, PO. BOX 54 STAFFORD ST161DR

bscription is £6.00. Send TODAY to:

LABEL MAKER

By John Attfield and Peter Blackmore

After many requests for some sort of labelling facility, we have
produced the program ‘LABEL MAKER', which will print details on
computerlabe]s&%m by 36mm, and will print labels side by side.

prugramcmbeusadmmatherdxskorcasseue,andbecauseof
the muel DATA storage system, it is ideal for the cassette user. The
program features on-screen editing which makes it very flexible and very
easy for data repetition and therefore very useful, if for example, you run
a club or business and often have to send information to a company with
several addresses.

There are many options available in the program including Retrieve,
Edit, Clear, Print, Disk Save and Cassette Save. Pressing ESC puts you
into the command mode. In the edit mode you can input up to 30
characters per line, and there are 7 lines available, This should be

adequate for alrnost all purposes.
This program has been tested on an EPSON RX80 and a MICROLINE
80, and has worked successfully on bo
Control commands are as folbws:—
Clear: clears the label edit area. Print: output to printer.
Retrieve: finds in memory a referenced label.
Edit: enter or edit labels. & e
DISKSAVE: save entire program & new to
CASSETTESAVE: as above to cassette. ESC: go to command mode.
LIST: starting with the first label in memory list each in turn.

NOTE: In this program, anything which is underlined, should be entered
in “INVERSE".
23 REM BY J, ATTFIELD & Fy ELACKMORE
81 DIM TEXT$(220),TEMF1$(72) , TEMFZS(73), TEFI$ (73}, CLEAR
$(2203,DAT$(300) ,CHECKS (37 1STEP=10
83 REM CLEAR STRING
8 FOR Cl=1 TO 2000TEXTH(CL,CL)=" "IMEXT CLICLEAR$=TEXTS
84 RESTORE :00C0READ LINE,CHECHIGOSUE 7503G0TO 555
110 FEM SCREEN DISPLAY
170 POKE 82,21FOKE 83,3917 COR$(125)ISETCOLOR 2,194,128
ETCOLOR 1,0,005ETCOLOR 4,14, 121L%=08L1=41%=01Y=4
20 s 4
240 2" pexxeexay DAL MAKER Xaedexnn"
220 7 n "
230 POSITION X,Y3? *| ESC COMMAND 7
240 FOSITION X-3,Y+1:7 CHR$(L7)CHRS(L8) JCHRE(18) 5
250 FOR X¥=X TO 1X-237 CHRIZ3)) 0EXT XX17 CHR$C18)1CHRS
(182 3CHRE(S)
310 FOR YY¥=4 TO LY+5IFOSITION ¥-3,YY1? CHR$(1)IPOSITION
LXAHL,YYE? CHRECA) PHEXT Y37 CHR$ (243 JCHRSCLB) JCHRE(1E))
350 FOR XN=X TO LA-207 CHR(ZA) 3 0MEXT XX27 CHREC1E3 JTHRS
(183 CHR$(3)
400 PORE 82,3iF0KE 93,3737 1?7 "STRE RETRIEVE EDIT CLEAR
PRINT
105 ? "DISK SAVE CASSETTE SAVE LIeT"
304 FOSITION 3,207 “LAEEL REFERENCE LAST 3 CHARACTIRS"
407 FOSITION 23,2157 "YOU 3 LETTERS COMPUTIR 3 MUMPERS"
208 RETIRN
430 REM x CHARACTER EDIT ROUTIME x
450 POSITION 21,417 " x EDIT x "
440 FOKE 752,0:FOSITION 4,417 ™ “iTHR$(124)}
470 GOSUB A70:GET #1,CHAIGOSUE 700
71 IF CHA=27 THEN PORE 732, L1POKE 702,54 1RETURN
472 TF (HA=125 THEN POSTTION 3,PEEM(84:FOR L=3 70 X-2%
2" URINEXT LIPOSITION 4,PEEK{BA: LD " "}1GOTD 47¢
475 IF PEEH{95)>39 THEM 7 CHRE(155) 116070 470
576 TF PEE(H3)<4 THEN IF CHA=30 THzH GOTO 470
§77 IF (HAX19G THEM IF CHACISE THEN 470
478 IF CHA»253 THEN 470
530 7 CHR$(CHAY§IGOTO 470
540 REM COMMAMD ROUTINE
535 GOsLe 170

570 FOSITION 21,437 " "IFOSITION 20,437 ™"}
370 GOSUB 6901CET 41,CHAIGOSUB 700¢IF CHAX128 THEM CHA=C

HA-128

400 IF CHA=83 THEM GOSUB 830:GOSUE S3Z0GGOSUE 1701GOSUB
3341

610 IF CHA=82 THEN GOSLE 7030:G0OSUB 3841

620 IF CHA=69 THEM GOSUB 430 tREM EDIT

430 IF CHA=67 THEN GOSIE 1BALIREM CLEAR

533 IF CHA=74 THEM GOSUE BI0DIREM LIST

640 TF CHA=80 THEN GOSUB 830:00SUE 4630

641 IF CHA=53 THEW POSITION 21,417 "SAVE DILABEL"ISAVE ©
0iLABEL"

042 TF CHA=65 THEM FOSITION 21,437 "CASSETTE SAVE"ICSAVE
§36 E0TD 570

671 OPEN ¥1,4,0,"Ky"IRETURN REN OPEN KEYEDARD

700 CLOSE #1IRETURN

750 OPEN $6,12,0,"S3"IRETURN REM OFEN SCREEN

760 CLOSE #atRETURN

810 KM x READ SCREEN X

830 POE 75Z,13POSITICH 21,437 " _x READTNG x “:C=0

840 FOR Y1=4 TO 121FOR X1=3 T0 34:C=C+1

830 LOCATE X1, YL, CHARSFOSTITION X1,Y1:? CHRSC(CHAR+L28):IF
CHAR>128 THEN CHAR=CHAR-126

832 IF CHAR=44 THEN CHAR=32

835 TEXT$(C,C)=CHRE (CHAR) INEXT X1INEXT YLICHAR=DIC=0ERET
RN

1819 REM x CLEAR SCREEM X

1861 PORE 752,1

1852 POSTTION 21,407 "x CLEARTIG

1843 TEXT#=CLEARSIGOSLE 38441RETURN

3510 REM @ FEMRITE TO SCREEN X

3361 FHE 752,14

S847 POSTITION 21,407 "x_WRITING x"

3864 L=0IFOR Y1=4 TO 12iFOR X1=5 TC 34iL=l+1

3865 FUSITION XL, Y187 TEXTS(L,L) »DEXT XLINEXT Y1

3672 POSITION 21,437 °

3830 L=0:RETURY

3510 REM x DATA LINE FPREFARATION x

5520 POSITION 21,437 & STORING X"

J530 DATH=""1THC=01AS=ASC(TEXT(218,208);

340 IF TEXT(208,2100=" " THEN TEXT$(208,210)=5TRY(CH

ECH ICHECH=CHECK+1 1GOTO 5548

9395 IF TEXT4(208,2100" " THEN IF A543 AND AS<S3 TH

EN IF VAL(TEXT#(208,210) -<=CHECK THEN £961

548 TIF FRELD)SS08 THEN GOTD 6944

9549 FOR L=1 70 210 STEP 703IMC=INCH

J500 DATSLENCDATS) +11=5TR3 (LIHE+TNC)

G592 DATHILENDATE +1)=" DATA

53 DATH(LEN(DATS+1)=CHR$(39)

T340 DATH (LENCDATS HL)=TEXTH(L L4 6Ty

T340 DATH(LEN(DATS)+1=CHR$(38)

3370 NEXT LIGOTD 8639

U547 DATE=""1L TNE={ INE+STER

G650 DATH(LENCDATS 1+1)="10000"

G852 DATS(LENIDATE+1)=" DATA ¥

3660 DATH (LENCDATS)+1)=5TR3 (LINE}

Jsol DATS(LEN(DATSMH1)=""

G862 DATS(LENCDATS)+ 1)=CTRI(CHECH)

Continued on 19,

N =)
| 105 YPO=YPO-100(ST=10)-10%(ST=6)+10R(ST=9) +10X(ST=5) 1POK
S 77,0

| 110 IF ST=10 OR ST=6 THEN SHAPE=PNIX(ST=10)+PNZX(ST=6)

GIL-BERT

by Mark & Brian Christian

Bounce Gil-bert up and down the pyramid, changing the
| colours of the squares. But beware, the SKULLS are chasing

| you! See how many screens you can clear before they get you.

This game uses a joystick and is a great game, similar to
| SLINKY or PHARAOH'S PYRAMID but written in BASIC for
you to type in.

| NOTE: In this program, anything which is underlined, should

| be entered in “INVERSE".

© | 5 DIH CHRS (4023t

| 10 GOSUB 800:GRAPHICS 7iPOHE 559,461POKE 53277 ,31SCORE=D
| SROUND=1}LIVES=3:FOKE 710,0:GOSUE 1000
| 12 GDSUB 1090

| 20 coTo 100

| 31 FOR 0=10 TO @ STEP -1:50UND 0,70,12,0%NEXT 0
| 35 CX=XPD-49:CY=YPQ+4iCOLOR 3}PLOT CX,CYIPLOT CX+1,CY-1%
| DRAWTO CX+1,CY+LIPLOT CX+2,CY-1,5IDRAMTO CX+Z,CY+1,3
| 37 PLOT CX+3,CY-2IDRAMTO CX+3,CY+21PLOT CX+4,CY-Z.5:0RAN
|| 10 CX+4,CY+2,5PLOT CX+5,CY-3IDRAHTO CX+3,CY+3
| 38 PLOT CX+4,CY-2.5:DRAWTO CX+4,CY+2,5IPLOT CX+7,CY-2IDR

| AMTO CX#7,CY+24PLOT CX+8,CY-1,55DRANTO CX+8,CY+1,5
| 29 PLOT CX+9,CY-1:DRAMTO CX+9,CY+1:PLOT CX+10,CY
| 40 NUMBLOCK=NUMBLOCK+1 $ SCORE=SCORE+1 0

50 IF SCORE/S00=IMT(SCORE/S00) THEN LIVES=LIVES+1
| 40 IF NUMBLOCK=28 THEN POP $GOTO 500

| 70 SOUND 0,0,0,03RETURN

100 ST=PEEK(432) }XPO=XP0-6x(ST=10)-6x(5T=9)+6x (5T=5)+6x(

| 114 IF YPO<-2 THEN YPO0=-2:GOTO 400

| 120 POKE 53248,XP0:D=USR (ADR (JUMP4) ,PMO+YPO , SHAPE) PORE

|| 53278,0

| 130 FOR N=1 TO 3:RR=PEEK(53770)/ROUND S VEL1=VELx(XP(N)<XP
0)x(RR<24)-VELX (XP (N)>XP0) X (RR<26)

| 140 VELZ=VELX(YP(N){YPD)® (RR<26)-VELX (YP(N)>YPO)® (RR<26)
SXPOND=XP(N)AVELL L YR (N)=YF (N)+VELZ

>. | 150 D=USR(ADR(JUMP$) ,PH(N)+YP (N} ,PH3) SPOKE S3248+N,XF(N)

$NEXT N

- | 160 IF PEEK(53260)<>0 THEN GOTO 300
| 178 IF PEEK(53252)=0 OR YP0=70 THEN GOTO 400
| 180 IF PEEK(53252)<5 THEN GOSUB 30

| 198 COTO 100

| 310 SOUND 0,132,10,43S0UND 1,132+41,10,4:G0SUB 390:GOSUB
| 390iSOUND 0,120,10,43S0UND 1,120+1,10,43G0SUB 370

| 302 SOUND 0,112,10,41S0UND 1,112+1,10,43C0SUB 390
13

| 310 SOUND 0,132,10,43S0UND 1,132+41,10,43C0SUB 390:50UND
| 0,0,0,0:5000 1,0,0,0
| 120 FOR N=10 TO 100:POKE 704,NSSOUND 0,N,10,4:NEXT NiPOK

E 704,N:S0UND 0,0,0,0

3 | 330 LIVES=LIVES-1iPOKE 704,34

| 340 D=USR(ADR(JUMP$) ,PHO+YFO,PMB+100)

| 350 FOR M=l TO 3:D=USR(ADR(JUMPS) ,PH(N)+YP () ,PHB+100) 2N
| EXT NIPOKE 53278,1

| 350 IF LTVES=0 THEN GOTO 400

= | 370 GOSUB 940:GOSUB 1120:G0TO 100
-~ | 390 L=L+13SETCOLOR 2,L,143FOR N=1 TO 1003NEXT NIRETURN
| 391 L=L+11SETCOLOR 2,L,14:FOR ¥=1 TO SOINEXT NSRETURN

392 L=L+11SETCOLOR 2,L,14!FOR N=1 TO 1003NEXT N:RETURN
393 L=L+11SETCOLOR 2,L,143FOR N=1 TO 2003NEXT NIRETURN
394 FOR DE=1 TO 20 NEXT DE:RETURN

400 FOR N=YPO+2 TO 104:POKE 704,NiSOUND 0,M+144,14,4:500
N 1,M+145,10,41F(R Q=1 TO 10INEXT @

410 D=USR CADR (JUMP$) ,PHO+N, PHL) SNEXT NISOUND 1,0,0,05YP0
=N-1

420 NO=INT(Z{xRND(1)+60)IF0R T=15 T0 0 STEP -1:S0UND 0,N
0,2, T'FR DE=1 TO SINEXT DEINEXT TiSOUND 0,0,0,0:G0T0 330
500 SOUND 0,72,10,4:G0SUB 3913S0UND 0,64,10,4:G0SUB 391}
SOUND 1,72+1,10,23GOSUE 391

501 SOUND 0,60,10,43G0SUB 391:S0UND 1,64+1,10,21G05U8 39
11S0UND 0,50,10,43605U8 392

502 SOUND 1,60+1,10,23G0SUB 3911S0UND 0,60,10,4:G0SUB 39
11S0UND 1,50+1,10,41G0SUB 391

503 SOUND 0,42,10,4:G0SUB 393

915 SO 0,0,0,0350UND 1,0,0,0

520 7 $6)CHRE(125) 1D=USR (ADR(JUMP$) , PHO+YPO, PMB+100) FOR
N=1 T0 3:D=USR(ADR(JURPS) ,PH(N)+YP (N) ,PHB+100) SNEXT N
330 ROUND=ROUND-+1}VEL=VEL+(VEL<3) 1GOSUB 1000:S0UND 1,0,0
1 03SOUND 2,0,0,0

540 SCORE=SCORE+1000 NUMBLOCK=0

950 GOTO 340

600 REM

630 ? CHR$(125) IPOHE 656,01POKE 657,037 "GAME OVER"IPOHE

656, 0 POKE 657,2017 “SCORE "}SCORE

640 POHE 656,1:POKE 657,817 "press FIRE to play"

&0 IF STRIG(0)=1 THEN 450

660 ? $63CHRS(125) IROUND=11VEL=1}SCORE=0 | NUMBLOCK=0 ILTVE
S=31SHAPE=F#1

470 GOSUB 10003S0UND 1,0,0,01SOUND 2,0,0,0:G0T0 340

800 GRAPHICS 4iPOKE 710,0:POKE 708,28:COLOR 1

810 CHAR$="GIL-BERT"

821 T0=PEEK(S60)+PEEK (561)%256 1 T1=PEEK(10+4)+PEEK(10+3)2 756
830 FOR U=1 TO LEN(CHAR$)
840 12=57344+ ((ASC(CHARS (U,U))-32)x8) }T3=11+PYx40+PX+U-1
850 FOR 7=0 70 71POKE I3+Zx10,PEEK(IZ+Z) tNEXT Z:MNEXT U
850 FOR T=0 TO 150INEXT T
845 FOR N=1 TO 14IREAD A,B,CISOUND 0,A,10,63PLOT A,BIDRA
NTO A,CIPLOT A+1,BIDRAWTO A+1,CINEXT NiSOUND 0,0,0,0
870 DATA 33,24,18,35,22,30,37,20,23,37,28,34,39,20,23,39
126430,39,34,34

IR

W

]

R T TN TG TN

AT TR e
! 5:..4.“, - !

G e

TP AT T
X'

GIL-BERT

75 DATA 41,20,30,43,20,23,43,28,34,45,22,25,45,18, 30,45

+34,34,47,24,128

76 POHE 752,137 " Bource on BLOCHS fo change their

colour ard AVOID the SHULLS..."

g7 Game by B CHRISTIAN"

| 830 PMB=PEEK(106)-24:PIHE 54279,PHB i PHB=PYBRZS6IPIHE 623
1

1

890 POKE 704,34'FOHE 705,46:POHE 706,172iFOKE 707,250:01H
JURP$(26) ,PH(4) , XP(4) , YP (1)

900 FOR J=1 TO 25:READ AASJUMPS(J,J)=CHR$(AA) INEXT J

910 DATA 104,104,133,204,104,133,203,104,133,207,104,133

,204,140,0,177,206,145,203,200,192,50,208,247 ,94

918 FOR Z=1 T0 4

919 FOR N=555 T0 0 STEP -51SOUND 0,N,10,4:50UND 1,0+X,10

4

920 5=5+1!SETCOLOR 0,5,8INEXT NINEXT ZIPOKE 88,0

921 POHE 89,PEEK(106)-2417 $4}CHRS(123)

925 SOUND 0,0,0,00500M0 1,0,0,0

| 930 FOR LOOP=2 TO @ STEP 33FOR J=0 T0 7iREAD AAIPOHE PMB
+LO0PRL0+J,AATNEXT JINEXT LOOP

940 DATA 40,126,211,155,255,126,36,108

945 DATA 40,126,203,217,235,126,36,54

950 DATA 78,42,73,109,42,28,34,28

960 FOR #=1 10 31PHN)=PMB4512+1 28¥NIYP (N)=-8+82x (N=1 OR
M=) SNEXT NIXP(1)=554XP(2)=1351XP(3)=160

970 PHO=PHB+512XP0=115}YP0=-2 PH1=PHE IPH2=PHB+30 I PH3=PH

B+40

290 RETURN

1100 SETCOLOR 0,RND(0)x15,8:SETCOLOR 1,RND(0)*13,4:COLOR
11X=894Y=-101N=-2'TH=0

1010 FOR ¥=1 T0 7

1020 NeNHLEX=X-61Y=Y+410

1030 FOR 0=-1 TO N

1040 Xx=X+(x12

1050 PLOT XX,Y:DRAWTO XX+4,Y+4:DRAWTO XX,Y+8IDRAWTO XX-&
2 YHHIDRANTO XX, Y

1060 PLOT XX-6,Y+41DRAWTO XX-6,Y+10 DRANTD XX, Y+14:DRAWT
0 XX, Y+BIPLOT XX, Y+141DRAMTO XX+4,Y+L0IDRAWTO XX+6,Y+H
1070 ZN=IWHALSOUND 1,2Wx1,6+60+1,10,43500ND 2,ZWx1,6+60,
10,4:COLOR 2

1180 PLOT XX-5,Y+3:DRAMTO XX-5,Y+101PLOT XX-4,Y+4:DRANTO
XX-4,Y+101PLOT XX-3,Y+7 DRAWTO XX-3,Y+11

1082 FL.OT XX-Z,Y+BIDRAWTO XX-Z,Y+1ZIPLOT XX-1,Y+8IDRANTO
XX-1,Y+143COLOR 11PLOT XX+1,Y+BIDRAWTO XX+1,Y+14

1084 PLOT XX+2,Y+BIDRAWTO XX+Z,Y+1ZIPLOT XX+3,Y+7 (DRANTO
XX43, Y+11IPLOT XX+4,Y+6IDRAMTO XX+4,Y+10

1086 FLOT XX+5,Y+GIDRAWTO XX+5,Y+101COLOR L1INEXT QINEXT
|

1088 RETURN

1190 SOUND 1,0,0,03S0UND Z,0,0,03DL=PEEK(540)+256XPEEK(S
61) INUMBLOCK=0 3 SHAPE=PM1 }BOARD=11VEL=1

1100 A=DL+85

1110 POHE A,711POKE A+3,61POHE A+4,61FTKE A+5,651POHE A+
6;PEEK(A+7) iPOHE A+7,PEEK(A+8) IPOKE 710,12

1120 POKE 654,0iPOKE 657,2217 “score ROUND"

1130 POHE 656, 05POKE 657,257 SCORE}IPOKE 657,1587 ROUND;
1140 POKE 656, 1 POKE 657,717 "LIVESI"}LIVES} D=USR(ADR(J
UMP$) ,PHO+YPO,PML) IPOKE 53248, XF0

1150 FOR =1 TO 3i0=USR(ADR(JUMP$) \FHCQ)+YP(Q) ,FH3) IPOKE
53248+Q,XP(Q) INEXT QIRETURN

Continued from 17.

5471 7 CHREC125317 17 DATSL? "CONT":POSITION 0,0

710 POKE 84Z,131510F

9720 POKE 842,12

975¢ POKE 559,50M1? CHR${125) IRETLRM

4620 REM DATA GENERATIR

0633 OFF=0150N=PEER (359} 3POKE 559,0FF

6640 FOR L=1 T0 LEN(DATS) STEP LEN(DATS./3

6670 7 CHRE(1ZG)T

6680 7 DATE(L,L+{LEN(DATS)/3-10)

4690 2 “CONT"

6700 POSITION 0,0

6710 FOKE 842,1315109

6720 FOHE 842, 12INEXT LIGOSUB 5647 FOHE 559,500

6751 FOKE 82,23FOKE 83,37RETLRN

4810 REM FRINT QUT ROUTINE

5830 TRAP &861IFOR L= 1O 210 STEP LEN(TEXT$)/7

5840 LFRINT " “}TEXTH(L,LH(LENCTEXT$)/7-10);

4350 LPRINT " “TEXTSCL L+ (LENCTEXTS)/7-1))

5BA0 MEXT LAFOR LOOP=1 70 3ILFRINT IRETURN

5841 7 CHI$(293) POSTTION 11,1337 " PRINTER NOT THERE “i
FOR DEL=1 TO SOCINEXT DEL
6842 POSITION 11,1817 "

MIRETURN

6961 ? CHR$(253)3FOSITION 10,1887 " REFERENCE DUPLICATED

_"IFDR DEL=1 TO SO0ENEXT DEL

4962 7 CHR$(253)IFCEITION 10,1887 ©

6753 FOP 50T0 570

| 6948 ? CHR$(253):FOSITIMN 10,1857 " _AEURTED OUT OF MEMOR

| Y"IFOR DEL=1 TO S00%NEXT DEL

LABEL MAKER

4965 7 CHR$(253)IPOSITION 10,1837 ©
6566 FOR LGOTD 570

7010 REM RETRIEVE ROUTINE

7030 RESTORE 11000$TEXT$=""ICHECKS=""

7031 FOSITION 21,417 "REF 3"} INPUT CHECKS

7032 POSITION 21,417 “RETRIEVE")CHECKS

7040 READ TEMPLS,TEMP2$,TEAP3S

7050 IF TEMF1$(2,3)="43" THEN GOTO 7210

7040 1F TEMP3$(49,71)=CHECKS THEN 7210

7070 GOTO 7040

7210 TEXTH(LENCTEXTE)+1)=TENP1$(2,71)

7220 TEXTH(LEM(TEXTH)+1)=TEMP28(2,71)

7230 TEXTS(LEN(TEXT$)+1)=TENF3$(2,71)

7240 RETURN

7979 REM LISTING ROUTINE

8000 RESTORE 11000

8005 TEXT$=""

8010 READ TEMP1$,TEP23, TEMPISIGOSUE 72103GOSUB 38611605
B A70IGET #1,CHARIGOSUB 700

8011 IF CHAR<»27 THEN IF TEMP1$(2,3)C#43" THEN 8003
8020 RETURN

10000 DATA 11000,1

3270% DATA "$i4..++ LABEL PRINTER ++, 43
Hormeeeaees SORRY THE"
32702 DATA " LABEL YOU RFOUESTED

15 NOT IN THE MEMORY

32703 DATA “-————-—-REMEMBER T0 FRESS THE ‘S‘ KEY T0 §
TORE YOUR LABEL TN MEMORY "

e TRl SR e

DE-TOKENISER

by Ron Levy

If you read the article ‘BASICALLY SECURE’ elsewhere in
this issue you will realise how some of those BASIC programs
that you have,but are unable to look at are ‘protected’, or
hidden. If you would like to examine these programs and see
how they work (of course you would not intend to copy them!!)
then here is just the program for you.

DE-TOKENISER will take your protected program, chew it
up, and spit out a readable version. It is ideally used in a disk
system , but can be used in a cassette-only system provided that
you realise the constraints in not being able to have
simultaneous input and output cassette files. The other problem
with cassette programs is that in order for DE-TOKENISER to
input them using BASIC’s GET #1,X command then they need
to have long Inter-Record Gaps. Inter-Record Gaps are the
pauses in between the 128 byte bursts of data in a cassette load
or save operation. The reason for having two different sizes of
Inter-Record Gaps (let’s call it IRG) is that whereas data files are
saved and loaded at infrequent intervals, programs are either
‘CLOAD’ed or ‘CSAVE'd in one continuous stream.

Take, for example, a BASIC program which PUTs or
PRINTS data to a cassette file. When the 128 byte file buffer is
filled the program is paused while the operating system dumps
the 128 byte buffer to the cassette recorder. It may have been a
while since the last time the buffer was dumped, so the cassette
motor will probably be stationary and will need time to
accelerate to the correct speed. Hence the long IRG's. Since
CLOAD and CSAVE operations are performed by fast machine
code routines there is no need for a pause, and consequently-
short IRG’s can be and are used to save time and tape length.

A Token Gesture

In order to understand what DE-TOKENISER does, you will
need to understand how a BASIC program is held in memory.

There are two main methods of storing a BASIC program in
a computer’s memory. The first method is that which most
users will be familiar with and this is as ASCII text. Here, the
BASIC program is stored in the computer exactly as it is typed
in by the programmer, and would usually be stored to cassette
or disk in the same form. This method is not ideal for the
computer since it has to analyse the text and perform its syntax
error checking during running. The second method is the one
used by ATARI BASIC, and is a far more efficient one; it is
called TOKENISING.

The principle is to take the line of the BASIC program as it
is typed in, and convert each element into a more compact and
logical form. For example, a line number can have a value
anywhere in the range of 0 to 32767 and when stored in ASCII
form (as the user would read it) it will occupy between 1 and 5
bytes of memory. Not by coincidence, 32767 (the largest line
number that BASIC will allow) is also the largest number that
can be represented by a 16 bit binary word. Thus two bytes of
memory can be used to efficiently store any line number.

This principle of ‘pre-digestion’ of the line number is applied
to the entire program line, and [will now explain more fully how
the ATARI BASIC tokenises and stores its programs.

Following the line number there must be a command.
Instead of storing this, for example, as REM, PRINT, or INPUT
etc., each command has a single byte number assigned to it and
this is stored in its place. For example, REM has a value of 0,
PRINT has a value of 32, and INPUT has a value of 2. The third
major item is called the OPERATOR. The term OPERATOR
actually covers a wide range of items, and includes mathematical
and string equates, numeric and string variables, and several
algebraic operations. The last major group is the FUNCTION
tokens. These are the ones which, when executed, will return a
value to the program. Study Table 1 for Commands, Operators
and Functions and their corresponding token values.

The first thing you should notice from this table is that
whereas COMMANDS and OPERATORS are considered by

COMMANDS

01 1 DATA
02 2 INPUT
03 3 COLOR
04 4 LIST
05 S ENTER
06 & LET
07 7. 1F

08 8 FOR
09 9 NEXT
0A 10 6OTOD
0B 11 60 TO
0C 12 6OSuUB
0D 13 TRAP
OE 14 BYE
OF 15 CONT
10 16 COM

11 17 CLOSE
12 18 CLR
13 19 DEB

14 20 DIH

15 21 END

16 22 NEW

17 23 OPEN
18 24 LDAD
19 25 SAVE
1A 26 STATUS
{B 27 NOTE
IC 28 POINT
1D 29 XI0

1E 30 ON

IF 31 POKE
20 32 PRINT
21 33 RAD

22 34 READ
23 35 RESTORE
24 36 RETURN
25 37 RUN

26 38 STOP
27 39 POP

28 40 ?

29 41 BET

2A 42 PUT
2B 43 BRAPHICS
2C M4 PLOT
2D 45 POSITION
2E 46 DOS

2F 47 DRAWTO
30 48 SETCOLOR
31 49 LOCATE
32 50 SOUND
33 51 LPRINT
34 32 CSAVE
33 53 CLOAD

FUNCTIONS

3D 61 STR$
3E 62 CHR$
3F 63 USR
40 64 ASC

OFE 14 TNUMERIC CONSTANTI
OF 15 [STRING CONSTANT]
10 16 [NOT USED]

11 17 INOT USED]

1218 , 41 65 VAL
1319 % 42 &b LEN
14 20 : [END OF STATEMENT] 43 &7 ADR
15 21 ; 44 68 AN
16 22 [END OF LINE] 45 69 COS
17 23 6OTO 46 70 PEEK
18 24 BOSUB 47 71 SIN
1925 70 48 72 RND
1A 26 STEP 49 73 FRE
1B 27 THEN 48 74 EXP
1 28 % 4p 75 LO6
1D 29 <= [NUMERICS] 4C 75 CLO6
1E 30 <3 2 4D 77 SER
IF 31)= ; 4E 78 SGN
20 32 € ; 4F 79 ABS
21 33) 7 50 80 INT
2 = . 51 B PADDLE
233 532 B2 STICK
24 36 8 33 B3 PIRIG
2537+ 54 84 STRIG
26 38 -

27 394

28 40 NOT

29 41 OR

2 42 AND

2B 43 (

€44

2D 45 = [ARITHMETIC ASSIGN]

2E 46 = [STRING ASSIGN]

2F 47 {= [STRINBS]

30 48 O .

3 49)= !

32 50 € .

33512 2

4352 = '

35 53 + [UNARY]

b54- "

37 55 ([STRING LEFT PARENTHESIS]

38 56 ([ARRAY LEFT PARENTHESIS]

39 57 ([DIM ARRAY LEFT PARENTHESIS]
34 58 ([FUNCTION LEFT PARENTHESIS]

3B 59 ([DIM STR LEFT PARENTHESIS]

3C 60 , [ARRAY COMMA]

36 54 [IMPLIED ’LET’]
37 55 ERROR - [FOR SYNTAX]

Table 1

=———————————— DE-TOKENISER =

BASIC as being completely different types of tokens,
FUNCTIONS are merely an additional range of OPERATORS
(and are treated as such by BASIC). Let’s look in detail now at
how BASIC actually stores a program line. Consider the
following line:

10 LET A =1:PRINT X

This is how it will look when it has been tokenised:

0 04 ?

100 JILINE NUMBER]

213 [LINE OFFSET]

3 OF [STATENENT OFFSET]

4 06 LET [CONMAND]

5804 [VARTABLE]

62 = [OPERATOR]

7 0E [OPERATOR- NUMERIC CONSTANT FOLLOWS)
8 40 ¥

9 01 ¥

10 0¢ >[CONSANT 1]

11 00 b

12 00 ¥

13 00 >

14 14 ; [OPERATOR- END OF STATEMENT]
1513 [STATEMENT OFFSET]

16 20 PRINT [COMMAND]

17 81 X [VARIABLE]

18 16 [OPERATOR- END OF LINE]

There are a few aspects of this token line which may be a
little unclear or obscure. The LINE OFFSET is the offset of the
first byte of the next program line from the first byte of the
current line. The STATEMENT OFFSET byte is the offset of
the first byte of the next statement from the first byte of the
current line.

Variables

Another question which should also arise is how does
BASIC differentiate between
COMMANDS/OPERATORS/FUNCTIONS and variables in a
program line. What happens is that as each new variable is
entered by the programmer it is assigned its own one byte
number, beginning with the number 128 (80 HEX). The greatest
COMMAND/OPERATOR/FUNCTION number used is 84 (54
HEX), and consequently there is no confusion between these
and variables. It is also worth noting that this variable reference-
number scheme is in fact the reason that you can only have up
to 128 variable names in a program.

Numbers

The OPERATOR 14 (E HEX) is used to indicate that
directly following is a number. These are stored in the ATARI
computer as a 6 byte floating point number only, and the 6
bytes are used as follows. Byte one is the exponent, and its
value is also used to indicate whether the mantissa and the
exponent are positive or negative. The next 5 bytes are used to
store the 10 digit mantissa, and it does this in BCD format.

Strings

Strings are the only parts of a BASIC program that are
stored exactly as they are entered by the programmer, and
BASIC signals that one is to follow by using the OPERATOR
number 15 (BF HEX). Strings can, however, be of varying length
and could contain any character with a byte value in the range
of P to 255. Because of this BASIC needs to know precisely how
long the string is. This is accomplished by storing a single byte
before the string whose value indicates the length of the string.
The following example shows how this will look in practice:

10 A$="TEXT”

The tokenised version is:

0 0A [LINE NUMBER
100 >
2 0E

3 0E

436

5 80 As

6 2 =

7 OF

8 04
94T)
10 45 € J[STRING DATA]

1158x ?

12547

13 16 [OPERATOR- END OF LINE]

The Invisible LET

The first part of any statement has to be a COMMAND,
followed by a set of OPERATORS, FUNCTIONS, variables and
constants. If this is the case, then how can we write a program
line that begins with a variable? For example, 10 A$=B$ is a line
which not only begins with a variable in place of a command,
but also does not even appear to contain a COMMAND! The
answer lies in the IMPLIED ‘LET’, COMMAND byte 54 (36
HEX). What happens is that as the line is entered by the
programmer, BASIC assumes it to mean 10 LET A$=B$, but
instead of using COMMAND byte 6 (explicit LET), it uses byte
54.The tokenised line is then identical to one with an explicit
LET as far as the BASIC treats it during the program run, but
when BASIC LISTs the line it will not print the word ‘LET’ to
the screen.

The Program

The first task of the program is to create its COMMAND
and OPERATOR strings and arrays. Note that [have included
the FUNCTIONS into the OPERATOR strina. As ATARI
BASIC does not provide string arrays | have had to use long
strings and create pointer arrays for the positions of the
individual sub-strings. It is possible to alter the COMMAND data
table, as | will explain later, but for now these should be typed
precisely as shown.

When RUNning, the program will, at times, need to convert
numbers from their internal 6 byte floating point representation
into printable ASCII form, and this is done in a very crafty
manner. As the 6 bytes are retrieved they are POKEd into the
locations used to store the value of the variable ‘N’ in the
program that is running. ‘N’ is then used and its value is printed.
Lines 60 to 76 are the routine which finds the location in
memory of ‘N’ and it keeps this in the variable ‘NLOC’ for use
later.

Lines 100 to 190 establish the input and output files. Input
can be from cassette or disk, and ouput can be cassette, disk ,
printer, or in fact any legitimate output device. If you intend
using a disk system, or you are using cassette system and
dumping the output to the screen only (by typing RETURN
in response to output file) or printer (P:), then there is no
limitation on the source program size as you are not attempting
to use two cassette files concurrently. If, however, you wish to
input from cassette, then there is a problem! Since the output
dump must be performed when the entire loading and de-
tokenising has finished, the produced program listing must be
stored in memory. This is accomplished by creating CASS$,
which has been dimensioned to as large as possible (allowing for
some immediate mode operations should you stop the program).
When de-tokenising has finished the input file is closed, the
cassette is OPENed for output, and CAS$ is printed to it.

Lines 200 to 270 load in and store the 14 bytes of file header.
This contains the pointers which BASIC uses to find the various
tables, and DE-TOKENISER uses these to extract the variable
names and the variable value tables.

Lines 400 to 490 will now load the variable names and store
them in VARS$. This will be printed to the screen, and you will
be asked whether you wish to use this table. You will have to

[LINE OFFSET]

[STATEMENT OFFSET]

[COMMAND- IMPLIED 'LET']

[YARIABLE]

[OPERATOR]

[OPERATOR- STRING CONSTANT FOLLOWS]
[STRING LENGTH INDICATOR]

%n&mm

decide for vourself whether you think this is corrupted or not,
although protected programs will often have this filled with
carriage returns (CHR 155), and this will then be quite obvious.
If you type N then the program will build a new variable name
table for you. It does this while it is reading in the variable value
table in lines 500 to 800.

Next is the heart of the program, lines 1000 to 1990. This is
where the tokens are examined and the source coding created,
and it will require careful examination in order to follow
precisely how it operates. Basically (no pun intended) the main
re-entry points as de-tokenising progresses are line 1000, where
a new line is expected, line 1140 where a new statement is
started from (i.e. after a line number or a colon), and 1230
where the next OPERATOR is to be read in. The program
continues in this section until ‘end of file’ is reached for the input
file, at which point a trap to line 20000 occurs.

From line 2000 on, there is a collection of subroutines which
are called regularly by the main program. These are well labelled
and so do not require explaining in detail.

0 REN

2200 DETOKENISER. 40 v2sese®
2 REM =..A BASIC Prograsse Cracker..=
S REM =.0.ueessBy RONLEVY. 0sssaee®
B REM
10 DIM F1$(15) ,F2%(15) ,CND$(300),0PRS (200),A%(20) N$(10)
, VARS (400) ,0PT$(9),D${256)
11 DIM CHMD(100,1),0PR(100,1),VAR(127,1)
20 PRINT CHR$(125);* DE-TOKENISER........By Ron Levy"
22 PRINT * *1PRINT
30 REM ..Create CMD and OPR strings..
31 REM .. 5
32 FOR I=0 TD 55
33 READ A$:A=LEN(AS)
34 L=LEN(CMD$}+1:CMD(I,00=L:CHD(I,1)=L+A-1
36 CMD$(L,L+A)=A$
38 NEXT I
39 PRINT "Commands;:":PRINT CHD$:PRINT
40 FOR I=18 TO 84
41 IF I1=18 OR I1=60 THEN A$=",":60T0 43
42 READ A$
43 A=LEN(AS)
44 L=LEN(DPRS)+1:0PR(I,0)=L:0PR(I,1)=L+A-1
44 OPR$(L,L+A)=RS
48 NEXT I
49 PRINT "Operators:®:? OPRS:PRINT
60 REM ..Find variable *N’ data loc..
61 REN .. o
42 UNTP=PEEK {130)+PEEK {131)4254
63 UNTD=PEEK(132) +PEEK{133) 8256
&4 VVTP=PEEK{134)+PEEK {135)8256
65 FOR I=VNTP TO YNTD
b6 A=PEEK(I):C=C+!
48 IF A=205 AND C=1 THEN 74
70 IF A2127 THEN V=V+#1:C=0
72 NEXT I
74 PRINT *SYSTEM ERROR.....":? " Variable N Cannot Be lo
cated ''!!'":8T0P
76 NLOC=VYTP+ViB+1:CAS=1
100 REM0PEN The FileS...susas
101 REM,====3=======22, ...,
110 PRINT ®INPUT file....";:INPUT F1$
120 PRINT F1$
130 PRINT *OUTPUT file...";:INPUT F2§
140 PRINT F2¢
150 IF F2%="" OR F2%="C:" THEN 170
160 OPEN #2,8,0,F2%:6070 190

{70 IF F24="" THEN 190

180 CSI=FRE(0)-128:DIM CAS$(CS1)

190 OPEN #1,4,0,F1%

200 visssnehibt File Header...o.ss
201 REN ...u4oo=33522222222222, ..,
210 BET #1,X:GET #1,Y:LOMEN=)+2560Y

220 BET #1,X:6ET #1,Y:UNTP=X+2560Y

230 BET #1,X:6ET #1,Y:UNTD=X+2562Y

240 BET #1,X:BET #1,Y:VVTP=X+2541Y

250 GET #1,X:6ET #1,Y:STMTAB=X+2561Y

260 GET #1,X:6ET #1,Y:STMCUR=X+2342Y

270 BET #1,X:GET #1,Y:STARP=X+2561Y

280 ? "LOMEM = *;LOMEN

282 ? "UNTP = *;VNTP,"VNTD =";VNTD

284 ? "STMTAR = *;STHTAR

400 REM ...Bet Variable Name Table...
401 REN ... aus
402 PRINT "Existing Variable Name Table......."
4035 C=0:USV=0:POKE 746,1

410 FOR I=VNTP TO VNTD

420 GET #1,X:C=C+l

430 PRINT CHR$(X);

440 VARS(C,C)=CHRS$ (X}

450 NEXT I:PRINT :PRINT

470 PRINT "Use Existing VARIABLE NAMES (Y/N)..";
480 INPUT OPTS

485 IF DPT$<>"Y" THEN VAR$=""

490 IF OPT$="Y" THEN USV=1:GOSUB 14000
500 REMGet Variable Data......
501 REM,s=s==============, ..,
505 C=0:VN=0:VN1=0:VA=0:VA1=0:V5=0:V51=0
510 FOR I=VVTP TD STHTAB-1

515 C=C+1:IF C>B THEN C=1

520 GET #1,X

500 IF USV=1 THEN 800

610 IF C<>1 THEN 800

620 IF X<>0 THEN 480

530 UN=VN+1:IF UN>26 THEN VN1=UN1+1:VN=1
640 N$=CHRS (VN+64):IF UNIC)O THEN N$(2,2)=CHR$ (VN1+176)
450 IF UN1=0 THEN N$=CHR$ (VN+192)

670 BOTD 790

680 IF X>46 THEN 740

690 VA=VA+1:IF VA}24 THEN VA1=VA1+1:VA=1
700 N$=CHR$ (VA+54):1F VAI<>0 THEN N$(2,2)=CHRS (VAl+48):N
$(3,3)=CHR% (168)

710 IF VA1=0 THEN N${2,2)=CHR$ (148)

720 6OTC 790

740 VS=VS+1:1F VS)25 THEN VS1=VS1+i:V5=1
750 N$=CHR$ (VS+64):IF VS1<>0 THEN N$(2,2)=CHR$ {VN1+48):N
$(3,3)=CHR$(144)

760 IF VS1=0 THEN N${2,2)=CHR${154)

790 L=LEN{VARS) +1:VARS (L,L+LENINS) }=N$
BOO NEXT I

810 IF USV=1 THEN 890

B20 PRINT "New Variable Name Table:"

BI0 PRINT VARS:PRINT

890 IF USV=0 THEN GOSUB 15000

900 TRAP 20000

1000 REN6et Token Lin€..ssess
1001 REM ,.....,35552=22222222, L.,
1100 LC=3

1110 BET #1,X:GET #1,Y:L=X+2560Y

{120 D$=5TR$(L):60SUB 10000:D$=" *:G0SUB 10000

DE-TOKENISER

1130 BET #1,L0:REM Line 0ffset.

1140 GET #1,50:REM Statesent Offset.

1150 LC=LC+1:REN Inc. Line Counter.

1200 BET #1,X:LC=LC+1:REM Command.

1205 IF X=0 OR X=1 THEN D$=CMD${CMD(X,0),CHD{X,1)):B605UB
10000:60SUB 4000:605UB 10000:60T0 1000

1206 IF ¥=54 THEN D$="":60TD 1220

1210 D$=CND$ (CHD{X,01,CMD(X, 1))

1220 BGOSUR 10000

1230 BET #1,X:LC=LC+1

1240 IF X=22 THEN D$=CHR${155):60SUB 10000:60TD 1000
1230 IF X=20 THEN D$=":":60SUB 10000:607T0 1140:REM Next

Statement.

1260 IF X<>27 THEN 1270

1241 D$=" THEN ":BOSUR 10000

1262 IF S0=LC THEN 1140

1263 60TD 1230

1270 IF X=14 THEN BOSUB 2000:D$=STR$(N):GOSUR 10000:60TD
1230

1280 IF ¥=15 THEN GOSUR 3000:50SUB 10000:B0TD 1230

1290 IF X127 THEN X=X-128:D$=VAR$(VAR{X,0),VAR(X,1)):60

5UB 10000:6070 1230

1295 IF X=56 OR X=37 THEN 1230

1300 D$=0PR$ (OPR(X,0) ,OPR(X,1))

1310 BOSUB 10000

1990 6070 1230

2000 RENGet Number Constant.....

2001 REN

2010 FOR Ni=1 TO &

2015 GET #1,X:LC=LC+1

2020 POKE N1+NLOC,X

2030 NEXT N1

2090 RETURN :REM Done

3000 REMBet String Constant.....

3001 REN
3005 D$=CHR$ (34)

3010 GET #1,):LC=LC+!

3015 IF X=0 THEN N1=2:6070 3050

3020 FOR N1=2 TD X+41

3030 BET #1,X:D$(N1,N1)=CHR${X}

3040 LC=LC+1:NEXT M1

3050 D$(N1,N1}=CHR$ (34}

3090 RETURN :REM Done ===s======s======
4000 REM Get REN Command......

4010 N1=1:Dg=""

4020 BGET #1,X:D$(N1,N1)=CHRS (X}

4025 LC=LC+1

4030 N1=N1+1:IF X<>155 THEN 4020

4090 RETURN :REM Done

10000 REM Output Routine.......
10601 REN

10030 IF D$="" THEN 10900

10100 PRINT D$;

10200 IF F24="" OR F24="C:" THEN 10400
10300 PRINT #2;D$;

10400 IF F2$¢>"C:" THEN 10900

10410 Y=LEN(D$):IF X+[AS)CSI THEN PRINT :PRINT *Memory §
ize Exceeded.....";CHR$(233):570P
10420 CAS${CAS,CAS+X-1)=D$

10440 CAS=LEN(CASS)+1

10900 RETURN :REM Done =======s=s=====
16000 REM Create V-Name pointer array

16010 REN
16020 N1=1:C=0

16100 FOR I=1 TO LEN(VARS)
16140 A=ASC(VAR$ (1,10}

16150 IF AC128 THEN 16190
16150 VAR(C,0)=N1:VAR(C,1)=]
16170 N1=I+1:C=C+1

16180 YARS (I, I)=CHR$ (A-128)
16190 NEXT 1

20000 REMEnd Of File Trap.....s

20001 REX

20100 PRINT :IF F2$(3"C:" THEN 20190

20110 PRINT "Insert OUTPUT tape into RECORDER,"

20120 PRINT "Press PLAY and RECORD,"

20130 PRINT "Then hit (RETURN}.....";

20150 OPEN 42,8,0,F2§

20160 PRINT #2;CASS$

20190 CLOSE ¥2

20500 PRINT CHR$(233)

20510 PRINT *..............Complete...iaccsrnnaicss s

20900 STOP

32000 DATA REM ,DATA ,INPUT ,COLOR ,LIST ,ENTER ,LET ,IF
,FOR ,NEXT ,607T0 ,60 TO ,GOSUB ,TRAP ,BYE,CONT

32001 DATA COM ,CLOSE ,CLR,DEG,DIM ,END,NEW,OPEN ,LOAD ,

SAVE ,STATUS ,NOTE ,POINT ,XIO ,ON ,POKE ,PRINT ,RAD

32002 DATA READ ,RESTORE ,RETURN,RUN ,STOP,POP,? ,BET ,P

UT ,GRAPKICS ,PLOT ,POSITION ,DOS

32003 DATA DRAKTD ,SETCOLOR ,LOCATE ,SOUND ,LPRINT ,CSAV

E,CLOAD,LET ,ERROR -

32010 DATA §,:,;,,6070 ,605UR , TO , STEP ,THEN ,#,{=,02
2 0y=y ghyty=/y NOT OR AND 4 (), =,%,05,00405,C

32011 DATA > =,4,-, (4, (, {,(

32012 DATA STR$,CHRS,USR, ASC, VAL,LEN,ADR,ATN,COS, PEEK, 51

N, RND,FRE, EXP,LOG,CLOG, SR, SEN, ABS, INT,PADDLE, STICK

32013 DATA STICK,STRIG

Using the Program

If you are using a cassette system and are using the facility
to store the output program in CAS$, then the size of program
that can be dealt with may be limited by the amount of free
memory that you have. If this becomes a problem, however, it is
possible to drastically reduce the size of the output program by
using abbreviations for the commands. Just as you can type L.
or GR. in your own program to save typing the full commands,
LIST and GRAPHICS; the same thing can be done to the
output program by altering the data tables that are read in to
create the command table. Type the following lines and keep
them ‘LIST ed to cassette or disk file, and ‘ENTER’ them over
the main program when you have memory size problems.
320ppDATA REM,D.I.,C.,L..E .LET,IF,F. N.,G.,GO TO,
GOS.,T.,B,CONT
32¢p1 DATA COM,CL.,CLR,DEG,DIM,END,NEW,0.,LO.,
S.,ST.,NO.,P.X.,ON,POKE,PR. RAD
32¢p2 DATA READ,RES.,RET.,RUN,STOP,POP,?,GET,PUT,
GR. PL.POS.DOS
32¢0p3 DATA DR.,SE.,.LOC.,SO.,LP.,CS.,CLOAD,LET,ERROR -
You could also gain a little more memory space by removing the
remarks in the de-tokeniser program, as these are only there to
assist you in understanding and modifying it to your own needs.

Something which you should notice when running the
program is that there is always a line 32768, and it is normally a
SAVE command. The reason for this is that BASIC treats
immediate mode commands by first giving them this line number
before executing them, and of course the last command given
by the programmer would be one to SAVE his program!

If you only have a cassette system, then to create a
CSAVE'd test program with long IRG’s you must use

SAVE“C:". Happy cracking!!

~ | not new. Several programs have been

QRA

by Chris Barlow

This program is not a game. So what is QRA? The letters
QRA come from the International ‘Q’ Code, similar to the C.B.
‘Ten’ code, 10-10, 10-4, etc, The Q code gives quick information
when in radio communication with other stations. This code is
not in common use by the C.B. fraternity, but more commonly
| used by Amateur Radio enthusiasts worldwide. The code ‘QRA’
| means ‘Please give me your exact location’, similar to the C.B.
‘10-20". It is easy for Radio Amateurs on V.H.F. and U.H.F.
| bands to communicate to most of Europe, distances up to 2500
| kms. are not uncommon under favourable atmospheric
| conditions,

| QRA CODE

Well, what is all of this to you, a computer enthusiast? It
| appears that several of you, like myself, are licensed Radio
| Amateurs, my ‘call’ is GBLVK. Radio Amateurs use the request
| QRA to ascertain the distance between their station and the
| station being contacted. Many enthusiasts take part in contests
in a given period of time. Points are calculated on the distance
of each station contacted. The QRA Code for a station consists
of two letters, for the first Large Square, (see Fig. 1). Each
| Large Square is sub-divided into eighty smaller squares,
numbered from 01 to 80 (top left to bottom right - see Fig. 2).
- | To obtain a precise fix, each smaller square is further sub-
| divided into nine smaller squares. These smaller squares are
lettered A-J (as shown in Fig. 3). Therefore, a complete QRA
| position might be AL34G, which is my own QRA location for
Leigh-on-Sea, Essex.

QRA BREAKDOWN
To calculate the QRA position, one

= First Letter

f“)(YZABGDEFGHI.Jl‘(LMNt'.lI

61

o
O

Latitude North

DOODOMMOI—-“XraTZ0VO0oIV$0NHC

Second Letter

40

o
ST o
* West

East

i&)‘ *:J:

Longitude

Figure 1. Large Square

| needs to convert Latitude and
| Longitude into Large and Small

Squares. This is not easy, so why do it? 2° Longitude
The QRA position data is not as e 1
—] |j—12

accurate as Latitude and Longitude. The
| reason for using the less accurate Code

| Square is that when in radio contact

with other stations, under difficult

reception conditions, there is a

possibility of misunderstanding the more

complex structure of Latitude and

Longitude reference, i.e. 52 degrees 13
| minutes 26 seconds North, 01 degrees

03 minutes 16 seconds East (Where??).

The idea of using a computer to

| calculate distances between stations is

published in the past, but none for the
Atari (it is only a games machine after

all!!). This version was devised from a
program written by D.W. Hughes which

appeared in the June 1982 edition of
Radio Communications, the monthly
journal of the Radio Society of Great
Britain. That program was written in

standard Microsoft Basic. To convert
the program into Atari Basic was quite
straightforward. The main alterations

involved changing the string handling,
| also extra colour and sound routines
were added.

| My version of the program is quite
easy to use. The first piece of

information you must enter is your own

QRA reference (the BASE STATION),

| and then enter the QRA reference of
the station you have been given. If you

input an invalid QRA code an error

INVALID QRA’ will be displayed. If it
becomes necessary to change the Base
Station reference whilst running the
program, simply input the word ‘BASE’.
This will allow a new Base Reference to
be entered. This last function is useful if
you are operating portable or mobile or
when another station requests
information from you if he does not
have such a program, or computer,
himself.

Note, program lines 50, 110, 220 and
590 all have 37 spaces.

To assist you in verifying the
program results, see Fig. 4 for some
examples.

Distance Point
Contact (kms) Value

PN45C 2045 81
AJ27B 210 9
PRO2E 2081 83

YZ47G 1314 53

HBOSD 2193 87

Base

AL34G
AL34G
ZMo1J
ZL80A
XR40D

Figure 4. Verification Examples

Also shown is a map of Europe
overlaid with a grid marked off with the
start of the QRA codes.

This program has been extremely
useful to me and [hope that you will
also gain some pleasure in using it.
Hopefully, some of you good people
with interests in Amateur Radio will
forward similar programs of interest to
the Software Library.

(- PUT ¢

QRA
10 CLR 'GRAPHICS 0iPOKE 75Z,1:SETCOLOR 2,0,0:SETCOLOR 4,

2,7
20 POSITION 4, 1tPRINT "xoxxxurxax G3LVH, OO
30 GOSUB 610
A0 DIN Z$(S5)iR=6371,021P1=3,14139263
50 POSITION 33,5:FRINT "
n

60 POSITION 4,5PRINT “_ENTER ORA OF BASE STATION, "}iIN

70 IF LEN(Z$)=0 THEN &0
80 GOSLB 270

90 IF K=1 THEN S0

100 X0=X3Yd=YIZ0=1

110 POSITION 33,74PRINT "

120 SOUND 0,0,0,0:FOSITION 4,7 PRINT "_ENTER ORA OF CONT
ACTouises "FHINRUT 28

130 IF LEN(I$)=0 THEN 120

140 IF Z$="BASE" THEN 50

150 GOswe 270

160 IF K=1 THEN 110

170 SOUND 0,45,10,10

180 DX=X-XDiDY=Y-¥0:DZ=2-10

190 C=50R (DXxDX+DYRDY+DZ2DZ) (G=0/ (2eR)

200 K=DxRapTH(R/SOR (1-G#Q))

200 KM=INTCKrt+0,5) 2 SC=INT(KM/50) 1 5C=80x2+1

220 POSITION 4,7:FRINT *

230 POSITION 4,2PRINT 283" & “jHM" KM 3" ¢ "iSCH
240 IF SC<Z THEN PRINT " POINT."

250 TF SC>1 THEN PRINT ™ POINTS,"

260 POSITION 33,7:FRINT " "360T0 120

270 K=011F LEN(Z$)<S THEN 340

280 A=ASC(Z4(1,1))-65

290 B=ASC(Z$(2,2))-45

300 I=ASC(7$(3,3))-48

310 JFASC(Z4(4,4))-48

320 C=ASC(1$(3,5))-63

330 IF A<D OR AP24 THEN 540

340 TF B<0 OR B>26 THEN 540

330 IF C<0 OR C>9 OR C=8 THEN 340

340 IF I<0 OR I8 THEN 540

370 IF KO OR J»9 THEM 540

330 IF 1=8 AND Jo0 THEN 540

390 TF A>17 THEN A=A-26

400 LO=Ax2IIF B>21 THEN B=B-24

0 LABHNII=TN=UITF SO0 THEN 430

420 TI=II-100J=10

130 LO=LO-0, 1400, 200) iA=L A0, 93750, 125211

M0 IF C=7 R C=é6 OR C=5 THEN DO=0,03333333

450 IF C=0 OR C=9 OR C=1 THEN DO=0.1

460 IF C=1 OR C=2 OR C=3 THEN DO=0.158686664

470 LO=L0+0D0

460 TF C=5 OR C=4 OR C=3 THEN DA=0,02033

499 1 C=6 OR C=9 OR C=2 THEN DA=0.0423

300 1F C=7 OR C=0 OR C=1 THEN DA=0,10417

910 LA=LA+DAILO=LORPT/ 180 LA=LAXFT/ 180

320 SM=SIN(LO) $SA=SIN(LA)1C0=COS(LC) :CA=COS(LAY 1 X=ReCOxC
ALY=RASNACAIT=R18A

530 RETURN

At k=13SETCOLOR 2,3,7 SETCOLOR 4,3,7

356 POSITION 2.100PRINT "xxooox ERROR woorke TNUALTD ORA
COOE."

358 POKE 53748, 1IFOKE 53760,605FOHE S3761,1754F0R T=0 10
SOEXT T

571 POKE S3740,2953F0R T=0 TO 36IMEXT Ti50UND 0,0,0,0
530 FOR T=0 TO 1003MEXT T

590 POSITION 2,113PRINT *

800 SETCOLOR 2,0,03SETCOLOR 4,12,7 'RETURN

610 FOR LOOP=0 T0 17IREAD DIFOHE 1534+L00P,DINEXT LOOP
620 MAC=USR(1534) IRETURN

&30 DATA 104,149,6,162,6,160,11,32,92

&40 DATA 228,94,169,0,133,77,76,9C,228

o1 | —

ox SX

0

X A e | W | ox fex

aw

|GW

Ky | w
I

P
ik

T o

)
KOy U

ulelelgaf

[

L

KT

=
-

KS

24 z|2|2 2=

2

\GR

"

f

15

Lo
Ky
h ;

w
-,
=

(s
=
=]

> KO

KN

ui

SHEC

KL

Fhe B2

ﬁgni%!

e

i2lclelelele|elgle]s|e|s|alatet2]2]e

g\!@azingﬁs

S B R EEEEEE

%|5|2i%|2|z

=i2|8]2]

%
B AR N\ B PIEIFIE

2

Ratsls ¥ =32

®2}2|5[5 7 5|5 5| =|= |5 55|58 5|55)5)

2| 2| & =| A ne =z 52| =]

s|=|s|s\slsfs|=|s|s|2|=|e|5|=| 8| 5| 5| 5| 5|5|5| 5| =| = €=

ELECTRIC SHOCK !

By Steve Tullett - Dalkeith

This is a game for 2 to 4 players, the object is to get your
four men home before your opponents’. The only problem is
that there are hidden ‘electrified’ plates in your path and if your
man steps on one, well you can guess what happens! Use the
| keyboard to move your men the number of spaces randomly
selected by the computer. This is an entertaining game for all
the family.

NOTE: In this program, anything which is underlined, should
be entered in “INVERSE".

10 GOSLB 1000
| 20 DIM AS(17),X(17),Y(17), EX(17) ,CH(17) PX(), PY(9) ,FES (1)
30 FOR P=1 TO 9 STEP 4:FOR I=0 TO 2:R=INT(RND(0)X20)+1:P
| X(CT)=RIFY(CT)=PSCT=CT+1SNEXT TENEXT P
40 A$="ABCDABCDabcdabed”
| S0 FOR PE=1 10 163X(FE)=03Y(PE)=1;CH(PE)=DSEX(PE)=0SNEXT PE
55 IF =2 THEN EX(3)=EX(4)=1
| 40 TF N3 THEN EX(4)=t
| 70 GRAPHICS 1:FOR L=1 T0 3:7 36!7 #6

86 PRINT #6}" .
90 NEXT LIPOSITION 0,237 #6;"S" SPOSITION 19,1057 #6}"H"
| 100 POSITION 3,143 $6;"1-ABCD 2-AECD":POSITION 3,1647
| 46"3-abcd 4-abed”
102 TF N=2 THEN POSITION 3,16:2 #43" "
| 103 IF N=3 THEN POSITION 10,167 463" >
105 POSITION 1,193 $6;"PLAYER ":POSITION 11,1937 46;"TH
ROM 17 SPOKE 752,1
110 FOR PLAYER=1 TO N:SOUND 0,0,0,0
| 111 IF EX(1)=1 AND EX(2)=1 AND N=2 THEN GOSUB 3000

112 TF EX(1)=1 A0 EX(2)=1 AD EX(3)=1 AND N=3 THEN GOSU
| & 3000
| 115 IF EX(1)=1 AD EX(2)=1 AND EX(3)=1 AND EX(4)=1 AND N
=4 THEN GOSUB 3000
117 IF EX(FLAYER)=1 THEN GOTO 340
118 PLACES=INT (RND(0)24)+1 $POSITION 17,1957 $4}FLACES
120 POSITION 8,19:7 $6;PLAYERS? "WHICH LETTER WOULD YOU
| LTKE TO MOVE"; {INPUT PES$
122 PRINT CHR$(125)
125 IF PE$="A" OR PE$="B" OR PE$="C" OR PES="D" THEN GOT
| 0130
127 GOTO 120
130 IF PE$="A" THEN PE=0+PLAYER+ROUND

| 140 IF PE$="E" THEN PE=1+PLAYER+ROUND

| 150 IF PE$="C" THEN PE=2+PLAYER+ROUND

160 IF PES="D" THEN PE=3+PLAYER+ROUND

170 IF CH(PE)=1 THEN €OTO 120

200 IF X(PE)+FLACES=19 AND Y(PE)=9 THEN SOUND 0,240,12,1
| StFOR I=1 TO 90INEXT T:GOTO 340

| 210 COLOR 323PLOT XCFE),Y(PE)IY(PE)=Y(PE)-1
| 220 FOSITION X(PE),Y(PE):? 46}A8(PE,FE)
~ | 230 FOR MOVE=1 T0 PLACESICOLOR 32iFLOT X(PE),Y(PE)IX{PE)

=X(FE}H

232 IF X(PE)=20 THEN X(FE)=0:Y(PE)=Y(PE)+4

| 235 POSITION X(PE),Y(PE)}? 46)A%(PE,PE)

| 240 SOUND 0,INT(RMND(0)xS50)+150,10,153FOR D=1 TO 30INEXT
DISOUND 0,0,0,0

| 20 IF X(FE)=19 THEN IF Y(PE)+1=9 THEN GOTO 2000

270 NEXT MOVE

| 280 LOCATE X(PE),Y(PE)+1,Z2:1F 7Z{>32 THEN COLOR 32iPLOT

XCPE)Y, Y(PE) IX(PE)=X(PE)+1 1COTO 300

——

P L.a Y E R | T H RO

HMHICH LETTER HWOULD YOU LIKE TO MOVE?T

290 GOTO 320

300 IF X(PE)=19 THEN IF Y(FE)+1=9 THEN GOTO 2000

310 IF X(FE)=20 THEN X(FE)=0:Y(PE)=Y(PE)+4

311 POSITION X(PE),Y(PE):? $#5}A8$(PE,PE)

312 SOUND 0, INT(RND(0)x50)+150,10,155FOR D=1 TO 30:MNEXT
DiSOUND 0,0,0,04GOTD 280

320 COLOR 3Z:PLOT X{PE),Y(PE)!Y(PE)=Y(PE)+l

330 POSITION X(FE),Y(PE)}? #43A%(PE,FE)

340 FOR CT=0 TO 8:IF X(FE)=PX(CT) AND Y(PE)=PY(CT) THEN
GOSUB 400:GOTO 340

350 MEXT CT

350 ROUND=ROUND+3:IF PLAYER=M AND N=2 THEN ROUND=0:GOTO
Ryl

370 IF PLAYER=N AND ¥=3 THEM ROUND=0:GOTO 390

330 IF PLAYER=4 AMD N=4 THEN ROUND=0

390 NEXT PLAYER

40 IF CH(1)=1 AND CH(Z)=1 AND CH(3)=1 AND CH(4)=1 THEN
BX(1)=1

410 IF CH(S)=1 AND CH(4)=1 AND CH(7)=1 AND CH(8)=1 THEN
BX(2)=1

420 IF CH(9)=1 AND CH(10)=1 AND CH(11)=1 AND CHU1D)=1 TH
EN EX(3)=1

430 IF CH(13)=1 AND CH(14)=1 AND CH(1S)=1 AND CH(16)=1 T
HEN EX(4)=1

450 GOTO 110

400 FOR I=1 TO 15}SETCOLOR 4,I,I:SOUND 0,Ix10,12,15:FOR
D=1 T0 SISETCOLOR 4,D,DINEXT DINEXT I

610 SOUND 0,0,0,0SETCOLOR 4,0,0$SETCOLOR 2,9,4:CH(FE)=1
620 FOR J=1 TO 200:S0UND 0,J,8,15:NEXT JSOUND 0,0,0,0:C
LR 323FLOT X(PE),Y(FE)

430 FOR k=1 TO 4311F PE=K THEN COLOR 32}FLOT 4+H,14

635 NEXT K

540 FOR K=3 TO 8:IF FE=K THEN COLOR 3ZIPLOT 8+K,14

645 MEXT K

&50 FOR K=9 TO 12:1F PE=K THEW COLOR 32:PLOT K-4,15

655 NEXT K

660 FOR K=13 TO 16}TIF PE=K THEN COLOR 32iFLOT K,16

665 NEXT K

670 RETURN

1000 GRAPHICS 1BIFOSITION 3,2:7 #6}"ELecTRic SHock!"
1010 POSITION 9,57 #46}"BY"IPOSITION 4,817 $4;"steve tul
lett"{FOR D=1 T0 700:NEXT D

Continued on 28,

DRAGONFIRE (=%

by Grahame Fairall

Can you dodge the Dragon’s fiery breath and get across the
drawbridge to the treasure rooms? Collect as much treasure as
you can whilst you avoid the attack of the ferocious Dragon.
Use your joystick to make your man leap or duck the flaming
fireballs.

NOTE: In this program, anything which is underlined, should

be entered in “INVERSE™.

10 DIN A$(2),M8$(32),M8(9),P(2),F(8),FY(4)
12 CRAPHICS 0:PCHE 539,0
15 As="[\"
18 FOR I=1 TO 7:READ DATINS(I,I)=CHR$ (1) INEXT 1
19 DATA 137,170,11,140,13,174,143
20 P=PEEK(106)-810LD=224%256
30 FOR TI=1 TO 3Z}READ A:M$(I,1)=CHRE(A)INEXT I
35 DATA 104,104,133,204,104,133,203,104,133,206,104,133,
205,142,4,160,0,177,203,145,205,134,208,249,230,204
40 DATA 230,206,202,208,240,94
5 X=USR(ADR(M$),0LD,Px255)
50 FOR I=8 T0 127:READ APOHE PX256+1,AINEXT 1
% FOR I=128 T0 207:POHE Px2546+1,255- (PEEK(OLDHT)) 1HEXT I
&0 FOR I=208 TO 263:READ AIPORE PXZ36+L,AINEXT 1
65 FOR T=47Z TO S11:READ AIPOKE PX256+T,ANEXT 1
4 POKE 708,541POKE 709,15:POKE 710, 0:POKE 711,241POKE 7
52, 1IPOKE 82,201F SCOHI THEN HI=SC
67 L=PEEK(741)+256XPEEK(742)+61F0R 1=4 T0 8IPOKE L+1,4N
EXT TIPOKE L+10,63PKE L+14,7
68 POSITION 2,037 "SCORE

| 1?7 SCIPOSITION 18,137 HI
B2 'H H HEH Y 1 H
1344418 433 233 M
2" 4H H 3 HHE 18 H"I"YE
IEEEEEEES:EIEREE B
7" $33E 863 33 333 84"IPOSTTION
+1037 “BY GRAHAME FAIRALL"IPOKE 82,0
72 POSITION 26,1137 "PRESS SELECT FOR DIFFICULTY"IPOSITI
0N 10,1587 "PRESS START TO PLAY"IDIF=1:POKE 559,34
73 POSITION 29,1317 DIF
74 IF PEEK(53279)=5 THEN FOR I=50 T0 -50 STEF ~10tS0UND
0,ABS(1),10, 103NEXT TiDIF=DIF+1}IF DIF»6 THEN DIF=1
75 IF PEEK(S53279)=6 THEN 77
76 SOUND 0,0,0,0:G0T0 73
77 SH=DIF-0.1}SC=0iLT=5:DD=10-DIF iSL=DIFx2IIF DD>5 THEN
00=3
80 GOSUB 2004X=13:D0=0:H0=11F (1)=11F (2)=13IF (3)=71F (4)=1
WF(S)=163F(6)=4}F0R 1=1 TO &IFY(I)=RND(0)+8INEXT I
90 S=STICK() X1=(5=9)+(5=100+(S=11)1IF 5=13 AND DO=0 TH
EN DO=DD
91 POSITION 9,.19:? $43SCIIF STRIG(D)=0 AND UP=0 THEN UP=
00
92 IF X1<>0 THEN DO=03UP=01IF X-X1<=0 THEN 130
93 IF X1<>0 THEN COLOR 0:PLOT X,83PLOT X,93X=X-X1:COLOR
&IPLOT X,B8iCOLOR 73PLOT X,9:SC=SC45160TO 100
94 IF DO=0 AND UP=0 THEN 100
95 IF DO<>0 THEN COLOR O0PLOT X,8:COLOR 81PLOT X,9:00=D0
=]
96 IF UP<D THEM COLOR 0:PLOT X,9:COLOR 30:FLOT X,8iUP=U
Pri
97 IF DO=0 AND UP=0 THEN COLOR &$PLOT X,8:COLOR 7:PLOT X
,9

HIGH SCORE":POSITION 3,1

100 FOR I=1 TO SKILOCATE F(I),FY(I),Z}COLOR 0:PLOT F(ID,

FY(I)IIF Z<30 AND 7032 AND Z<>Z8 AND 75529 THEN 120

101 FCI)=F(1)+H0ILOCATE FCI),FY(I),Z0IF Z50 AND 2532 T

HEN 120

182 COLOR 28+RND(D)PLOT F(I),FY(I)IIF F(I)>=17 THEN COL

OR 03PLOT FCI),FYCISF(D=1IFY(I)=RND (0)x1, 4+8

103 NEXT I

110 SOUND 0,F(1),8,10350UND 1,F(2),8,101GOTO 90

120 SOUND 1,0,0,0:COL0R 283PLOT FCID,FY(T)

121 FOR I=1 TO &}FOR J=50 TO 0 STEP -5350UND 0,J,10,1+43
HEXT JINEXT TIFOR I=10 TO 40:SOUND 0,1,8,10

122 SOUND 1,1+2,8,10NEXT I3SOUND 0,40,8,2:500ND 1,42,8,

2:COLOR 0'PLOT X,8

124 7=04FOR 1=10 T0 14:COLOR Z:PLOT X,I-1:LOCATE X,I,2:C
(LOR 961PLOT X,IIFOR J=1 TO 30INEXT JINEXT 1

126 SOBND 1,0,0,03J=111FOR I=20 TO 10 STEP -0,3id=J-0.3}
SOUND 0,1,8,JiF0R K=0 TO 10INEXT KINEXT I

127 SOUND 0,0,0,05LT=LI-11FOR I=0 TO 2003MEXT I:IF L0
THEN 80

128 POSITION 5,57 #6}"game over"iFOR I=0 TO 233 STEP 2
‘F(KE 709,1150UND 0,1,10,103S00ND 1,235-1,10,10

129 SOUND 2,1/2+64,8,10550UND 3,255-(1/2+64),8,101NEXT 1
{FOR I=0 TO 31SOUND I,0,0,0%NEXT IIPOKE 559,01GRAPHICS 0
iGO0TO 66

130 FOR T=-30 TO 30 STEF 23G0UND 0,ABS(I)+50,10,103S0UND
1,ABS(1)+40,10, 10 INEXT I

140 GOSUB 300

150 S=STICK(D) X1=(8=5)4(5=4)+(8=7)-(5=9)-(5=10)-(S=11)}

Y1=(8=5)+(8=9)+(5=13)-(5=6)-(5=10)-(5=14)

151 IF X+X1<1 THEN 195

152 COLOR 03PLOT X,YiX=X+X13Y=Y+Y1iLOCATE X,Y,:IF WO91
AND W92 AND W<>186 AND WC:0 AND R332 THEN 169

154 IF HO0 AND WO32 AND WO91 AND WD9Z OR Y218 THEN X
=X-X1Y=Y-Y1

156 COLOR 31+(X1<0)x-233PLOT X,Y:IF CO=SL THEN GOSUB 190
160 Q1=(Q1O0 - (Q12X) IPOSITION 0,19:2 $63" "i0=0+Q1IP
OSITION Q,1917 #6348

162 FOR I=1 70 SKICOLOR Z:PLOT FCI),FY(I)IFY(I)=FY(I)-H0
{LOCATE F(I),FY(I),Z3IF FY(I)<=3 THEN FY(T)=181F(I)=0+1
163 IF FY(I)Y THEN FY(I)=181F (I)=(+1

164 COLOR 126+RND(0)SPLOT F(I),FY(I)IIF 2=93 OR Z=94 THE
N Z=0

DRAGONFIRE

165 IF X=F(I) AND Y=FY(I) THEN 196

166 NEXT T350UND 2,0,0,00IF RND(0)<0,01 THEN COLOR 140%F
LOT RMD(0)x16+2,RMD(0)x11+4

168 SOUND 0,F(1),3,10850UND 1,F(2),8,100GO0TO 150

169 IF W=93-0R W=94 THEN 196

170 CO=CO+1:S0UND 2,20,10,143G0TO 156

190 COLOR O:PLOT 0,8:DRAWTO 0,131S0UND 2,0,0,0 SRETURN
195 SC=SC+COx103GOTO 80

196 SOUND 2,0,0,03500ND 1,0,0,03COLOR 96:PLOT X,Yid=01FO0
R I=-12 T0 12 STEP 0,2%J=J+11SOUND 0,J,8,ABS(I)+3NEXT I
197 FOR =0 TO 300:NEXT TiSOUND 0,0,0,0LT=LT-1}1F LT>0
THEN 80

198 GOTO 128

200 CRAPHICS 17:POHE 559,0:POHE 756,PIPOKE 708,261POKE 7
19,55POKE 710,263POKE 711,136

202 P1=PEEK(741)+2563PEEK (742) POHE P1+4,711POKE P1+9,73
FOKE F1+25,7 POHE P1+31,112

240 7 46310 LU 463188

gﬂ::g “;uz u*u:
02 ? 465"

"4 46348

Il’ll

214 COLOR 1643FLOT 0,5:DRAWTO 0,10:DRAMTO 19,10iDRAWTO 1
955S1PLOT 0,173DRAWTO 0,113DRAWTO 19,111DRANTO 19,17
216 DRAWTO 0,17:PL.0T 1,123DRANTO 1,163FLOT 18,12:DRANTO
18,16

218 FOR I=18 TO 2ZIPLOT 0,I'DRAWTO 19,I0REXT I
220 COLOR 1323FO0R I=14 TO 16:PLOT 2,I1DRAWTO 17,1INEXT I
COLOR 164:PLOT 9,1210RANTO 9,16:PLOT 10,12:DRAKTO 10,16
222 COLOR 187:F(R I=1 TO LIIPLOT I+6,20%NEXT IiPOSITION
9,197 $635C

224 COLOR 8:PLOT 18,9
230 PKE 359, 34:RETURN
300 GRAPHICS 17:POKE 559,03POKE 756,PIPOKE 708,214:POHE
709,52IPOKE 710,8:POKE 711,24

302 F1=PEEK(741)+2550FEER(742) IFOKE P1+427,7 1POKE P1433,1
12
303 SL=5L+135K=5K+0,1

314 COLOR 186:PLOT 0,2:DRAWTO 19,2

308 FLOT 0,0:DRAWTO 0,19:PLOT 19,0:DRAWTO 19,19:COLOR 16
4FOR I=0 T0 1:PLOT 0,1:DRAWTO 19,1NEXT I

310 FOR 1=20 TO 23'PLOT 0,I:DRAWTO 19,IINEXT I

320 COLOR 187:FOR I=1 TO LIIPLOT I+6,223NEXT I3POSITION
92,2137 $635C

330 FOR J=1 TO SLII=T+1iX=RND(0)x14+Z}Y=RNDC0)x11+43LOCA
TE XY, 20IF Z50 AND 2032 THEN JeJ-13I=I-10NEXT J

337 COLOR ASC(M$(I,I))IPLOT X,YiIF I=7 THEN I=0

334 NEXT JiG=12iC0=0

336 FOR I=1 TO SKIF(I)=RMND(1)x14+23FY(I)=RND(1)x11+4:L0C
ATE F(I),FY(D) ,IZ0IF 2250 AND 7232 THEN I=I-13NEXT 1
1B NEXT I

M2 FOR J=1 TO SKIX=RND(D)x14+2:Y=RND(0)x11+4;LOCATE X,Y
JLAIF 7450 AND 73532 THEN J=J-13NEXT J

344 NEXT J

6 X=INT(RND(D)x10+43) tY=INT (RND (D)x10+5) ILOCATE X,Y,I:I
F 2430 AND 2<>32 THEN CO=CC+1

350 POKE 559,34:RETURN

9009 DATA 15,15,15,15,255,295,255,255,15,15,15,15,15,15,
15415,240,240,240,240,240,240,240,240

9001 DATA 255,255,255,255,255,255,255,255,240,240,240,24
1,255,255,255,255,0,0,0,0,0,0,48,48

9002 DATA 30,40,24,0,56,40,38,98,94,126,28,56,24,56,44,1
00,40,170,170,170,254,16,16,56

9003 DaTA 0,120,188,222,239,112,55,23,153,189, 189,255,466
+66,102,102,54,128,50,111,71,111,99,42

9004 DATA 0,40,24,60,110,223,110,60,135,157,189,255,60,1
6416,56,0,36,0,129,0,90,90,124

9005 DATA 255,255,255,255,199,199,199,199,255,255,253,24
8,253,250,250,255,0,0,42,143,13,1566,0,0

9004 DATA 0,0,133,47,70,20,0,0,24,31,14,156,255,1,0,0,6,
126,96,28,24,28,52,38

3007 DATA 0,0,0,139,255,60,204,4,112,128,123,255,255,95,
77,125,224,48,234,2535,176,142,0,178

9008 DATA 0,0,0,0,0,0,0,0,212,122,191,102,17,48,40,130,2
4,52,110,60,145,68,17,72

Continued from 26.

1020 FOR I=1 TO 15:FOR C=8 TO 15ISETCOLOR 4,15-1,0:SETCO
LOR 2,C,8:50UMND 0,Cx12,12,C

1030 NEXT CIMEXT IIFOR J=1 TO 200:SOUND 0,J,8,150NEXT J&
SOUND 0,0,0,0

1040 GRAPHICS 0}SETCOLOR 4,3,00SETCOLOR 2,12,43P(HE 752,

132 1? "This is a simple qame for 2-4 players."}

1050 ? “Each plaver has 4 letters (ABCD) of"

1060 ? "the same colour, The computer throws 2 die for

each turn ard the player”

1045 ? "chases which of his letters to nove."

1070 ? "Letters progress from the START (5)
lire to HOME (H) at the"

1080 ? "bottom. But beware seesees”

1090 ? 1? "3 squares on each level are ‘LIVE‘,
land on ore at the end of a"

1100 ? "mave the shock you receive destrays your playi
m letter.”

1110 7 1? "The first player to land exactly on HOME wi
nss If a larding place is"

on the top

If you

ELECTRIC SHOCK

1120 ? "occupied your letter moves forward to the next 2
vailable space."
1130 2 12 12 "HOMW MANY PLAYERS FOR THE GAME "}
1140 INPUT M
1145 IF M2 OR N4 THEN GOTO 1130
1150 RETLRN
2000 COLOR 3Z:PLOT X(PE),Y(PE):POSITION X(PE),Y(PE)+1:?
$6;A%(FE,FE)
2005 FOR 1=235 T0 0 STEP -1:S0UND 0,I,10,1S53FOR D=0 T0 2
PHEXT DINEXT T:SOUND 0,0,0,0 '
2010 GRAPHICS 18iPOSITION 3,3:? 46} "player "IPLAYER}" wi
I'IS'
2020 POSITION 3,6%7 #6;"t0 play again
press START"
2030 IF PEEK(53279)=6 THEN RUN
2040 SETCOLOR Z,INT(RND(1)x14),105GOTO 2030
3000 GRAPHICS 1BIPOSITION 5,3:7 #4;"ALL LOSE!'"
3010 GOTO 2020

THE U.K.

1A

COMPUTER OWNERS CLUB

INDEPENDENT USER GROUP
The U.K. ATARI COMPUTER OWNERS CLUB, P.O. BOX 3, Rayleigh, Essex,

—y

s, i i O, 2 B s

i i i, i, b, o M. e, B

L e —— o G — e m— f i

e s e — n—— i o . lliinll nsim eeid B

-

	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash

