steCinurnal

San Leandro Computer Club '85 Special Edition $3.00

Legend of
Stargunner

Master Pencil

A View From
Japan

RamTalker

Cartoon
Machine

Flitterbug

& More!

A

Blackjack in Action!

SOFTWARE
& SYSTEMS

ATARI...POWER WITHOUT THE PRICE...ATARI...POWER WITHOUT THE PRICE

3E Price (S & H)

Atari 130XE COmMPUter.ececcsscescossesssessssass 139,95 (10.00)
Atari 1050 Disk DrivVeeeeeceeeecscosnscsscassns 179.00 {(10.00)
Atari 1030 Modem with software....... cesscene 74,95 { 5.00)
Tech Sketch Light Pen with MicroIllustrator.. 44,95 (3.00)
Legend 1080 Dot-Matrix Printer.....cccceeeee. 249.00 ° (10.00)
CompuServe Starter Kit.eeeeeooooann ceescacsas 29.95 (3.00)
Batteries Included BomepaK..eeesossoosoaeaanas 37.95 (3.00)
Broderbund Print Shop.csesas. cerecsscescsssen e 34.95 (3.00)
Broderbund Print Shop Graphics Library..e.... 24.95 { 3.00)
Epyx/Lucasfilm Ball Blazer...ceceeesecosscscsss 29.95 (3.00)
Epyx/Lucasfilm Rescue at FractalUS.eeeceeoesss 29.95 (3.00)
MicroProse F-15 Strike Eagle..ceeeeeoceoosens 27.95 (3.00)
subLogic Flight Simulator II...... creceroesss 39.95 (3.00)
Tronix S.BA.M..eceeeessesocscssossscscsossansces 49,95 (3.00)
Adventure International QuestProbe w/ Hulk... 24.95 (3.00)
First Star SPY VS. SPYeeseoeeoccconsocesacses 27.95 (3.00)
0.8.S. Action!.eceeveeecenssnse s e e eseseesoscs oo 69.00 { 3.00)
0.5.5. Action! Toolkit..eeeeeeeoescanncnooncns 24.95 (3.00)
0.S5.S. BASIC XE (for Atari 130XE.avail.July.) 69.00 (3.00)
0.5.S5. BASIC XL.veoeeaoconoaoscsesoscsssscsssacscs 49.00 (3.00)
0.5.S. BASIC XL ToOlKiteieeeeoeoeosocoooccoss 24,95 { 3.00)
0.5.8. Mac/65ceeceoccsccsncccss cecsccerencsas 69.00 (3.00)
0.5.S. Mac/65 TOOlKiteeeeeeeeoeooooeososnooas 24.95 (3.00)
0.S5.S. DOS XLieevoeeooososoancsccsasacsasssnsas 24,95 (3.00)

3E Software & Systems
P.0. Box 178
931 A Street
Hayward, CA 94541
Phone (415) 537-3637
Open Tuesday thru Saturday 10:30 A.M,., to 6:00 P.M.

Located on "A" Street between Mission Blvd. and Main Street
Next to Payrite Drug Store

Parking in Rear - Free Meters on Saturdays
We accept MasterCard, Visa, and American Express Credit Cards

Mail & Phone Orders Accepted. Please include Shipping & Handling
Charges (S & H) on shipments. CA residents add 6.5% Sales Tax.

TEXXXXXX X K XX
XXx D X (XX lx{u u;u
) XXEXXE X X XX XEKX
) XXXXXX X IO XX XX IX XX ﬂ
v XX IO XX XX xx
(X X XX XXKX XX I oxx
(X OXNXX KR IO0K XX IO XX X o
(X XXX X XX X X xx
X XXX o X XX X XX
X XXX 0 (X DHEX
. e I
XIXOOEX XX OOOENX o
Ix
XXX
axx
n AXEXXX EXXXXX
x g XX NEEENX XXEERX)+ 4 ﬁ
i o x B XX * "
n n [X) [XX)
BE BSOS S BE N B OB OH B OBU BN BENN ENE B EW
XX g j+ 1 X XXXXX XX IX XIXx XX XEXXX X X o] X XXX
ol u xx xx X XXX Xx LEXX 0 7 4
Simeh B oommE B0 OB B RE B OB OE Hopmh
B pgooH g 2B BFYH H £ H B
g ﬁ Ix xx g XX gn ug g ; xx X o
ggg IXXKXEX XEXXX qggé%§ x TXXAXX XX I K OGEXO(XEX XEXXKXKEX §§
And I“11l bet that sou do too! But wour printer isn’t an

Atari printer and since APX closed gou have not been able to
get my Printer Driver to use with ygour Atarildriter. Well,
I“m the author of the Printer Drivers, and because of the
demand for them, and mg9 contimnued interest in Atari and a
desire to see AtarilWriter recognized for the quality product
that it is, I have begun to sell Printer Drivers directly.

If gyou send 3 cashier’s check or money oarder for $10.00 to

me at the address below, I will send wou the FPrinter Driver
for gour printer, and complete documentation in the return
mail. Don‘t trgy to ca3ll me, my phone number is wvunlisted.
Please specify which printer bou own when ou write.

Currently there are Printer Drivers designed specifically
to take advantage of features on the following dot matrix
and letter quality (L.Q.? printersi

X ATART 1028 or 1027 (L.B.) X HANNESMANN TALLY 160/180L x DIABLD 620 (L.0.)

X EPSON MX-80/100 X MANNESHANN TALLY SPIRIT-B80 X SILVER REED 400/500/350/770¢L.Q.)
x EPSON RX-80/100 x (KIDATA 80,82/83,84,92/93 x BMC PB 401 (L.Q4)

x EPSON FX-80/100 x IDS - 480 MICROPRISM X BHC BX - 80

X STAR GEMINL 10 or 10X % C, ITOH PROMRITER 8510 x DIC STYLE WRITER (L.Qu)

X 5TAR RADIX 10/15 x DLYMPIA NP, RO, COMPACTZ x OLIVETTI PR-2300 (INK)

X STAR POWERTYPE (L.Q.) X PANASONIC 1098/1091/1092/1093 x JUKT 46100 (L.0.)

x STAR SG,5R,S0 - 10/15 x | EGEND 8810 x CITIZEN MSP 10/15

X AXIOM AT - 100 x CP - 80 TYFE § x BROTHER HR-13/25 (L.0.)

X AXIOM SLP : x SMITH CORDMA TP-1 (L.Q.) x EROTHER COMPACTRONIC 58 (L.Q.)
X AXIOM GFIS0AT x SMITH CORONA D-100 x BROTHER CORRECTRONIC 50 (L.Q.)
x COMREX IIE x ROYAL ALPHA 610 (L.0)) ¥ BROTHER EXECUTRON 70 (L.G.)
x H.P, THINKJET (INK) x RITEMAN PLUS

And more on the way from....
Garygy W. Furr
F.0. Box 1073
Mountain View, CA 24042

Please copy and distribute to your friends who own Atari Computers
Thanks, Gary Furr

=

Wi

Table of Contents

PROFHISIU“)REVHNNS

4

7

8
12
28
37
38
41
46
46

UTILITIES:

10
17
19
19
25
27
29
30

32
39
40
a4
45
a7

SOUND:

16

16

GAMES:

26
42

'HARDWARE:
20

22

24

BETTER BASIC

ANTIC'S 520ST

COMPUSERVE'S GEM CONFERENCE
DOS 2.5 ’ ’

A CRY FOR HELP

ATR-8000 PROGRAM LIBRARY
LOIS IN ATARILAND

RECURSION IN LOGO

TISBY’S TOPS

SARGE'S SELECTIONS

FORMATTER
MASTER PENCIL

SYSTEM KEY TO THE KEY SYSTEM
TOOL KIT DEMO

XL-ATOR

DISK MAP

DIRECT SCREEN WRITING
DOS 2.0S MODIFICATION
PLAYER-MISSLE DRIVER
UTILITY PACKAGE

- Bill Wilkinson
- Jack Powell
- Compuserve
- Atari Corp.
- Mékoto Nagata
- Bill George
- Lois Hansen
- Lois Hansen
- Tom Tisby
- Sgt. Slaugh ter

- Kenneth J. Pietrucha

- Joe Eash

- Mike SaWIey

- Jim Warren

- Bill Eash

- Michael Cun'y

- Frank Daniel
- Makoto Nagata

- Makoto Nagata

- Makoto Nagata

DIGITAL ALARM CLOCK
ATARIWRITER UNDERGROUND
CARTOON MACHINE

SUPER SCREEN DUMP

TEXT SCREEN DUMP

USING 16 BIT SOUND

SOUND IDEAS

FLITTERBUG
BLACKJACK -
THE LEGEND OF STARGUNNER

RAMTALKER

810 DRIVE MODIFICATION
1050 DRIVE MODIFICATION

- Steve Kunze
- Frank Pazel

- Cliff Schenkhuizen and Mark Perez
- Ted Burger and Paul Gifford

- Tom Reichard

- Jerry White
- Lee Minard

- Jim Warren
- Frank Daniel

- Alex L;.a:vens

- :"Rén—g;kHolniés i
- Banford Wong

- Bill Fletcher

f

The San Leandro Computer Club for
Atari Microcomputers is an indepen-
dent, non-profit organization and users’
group with no connection to Atari Corp.
Membership fees are $20 per year.
Membership includes access to the
computer library, subscription to the
Journal, and classes when held. Permis-
sion to reprint articles in any non-
commercial publication is permitted
without written authorization, provided
proper credit is given to the San Leandro
Computer Club and the author. Opin-
ions expressed are those of the author
and do not necessarily represent the
views of the S.L.C.C.

S.L.C.C. OFFICERS
PRESIDENT BobBarton 352-8118
VICE-PRES. Jim Hood 534-2197

TREASURER Lois Hansen 482-2222
SECRETARY Dan Chun 471-9286

SPECIAL EDITION JOURNAL STAFF

EDITORS Ron Seymour 537-3183
Tom Bennett 276-4466

GRAPHICS

EDITOR Jim Hood

PRODUCTION Karen Bennett, Ron
ASSISTANTS Devine, Tom Tisby,
Nate Hood

CONTRIBUTORS Antic Magazine,
Atari Corp., Ted Burger, Eric Clausen,
Michael Curry, Frank Daniel, Bill Eash,
Joe Eash, Bill Fletcher, Bill George, Paul
Gifford. Lois Hansen, Randy Holmes,
Steve Kunze, Alex Leavens, Lee Minard,
Makoto Nagata, Frank Pazel, Mark Per-
ez, Jack Powell, Tomn Reichard, Mike
Sawley, Cliff Schenkhuizen, Sgt.
Slaughter, Tom Tisby, Jim Warren,
Jerry White, Bill Wilkinson, Banford
Wong.

TYPISTS PatBaratta, Karen Bennett,
Schell Dietchman, Stewart Dimon,
Janice Eaton, Pieter Galiston, Victor
Johnson, Mike Sawley, Dick Scott.

CORRESPONDENCE ADDRESS &
NEWSLETTER EXCHANGE

SAN LEANDRO COMPUTER CLUB
P. 0. BOX 1525
SAN LEANDRO, CA 94577-0152

JOURNAL ADVERTISING RATES

FULL PAGE: $40.00
HALF PAGE: $20.00
QUARTER PAGE: $10.00
BUSINESS CARD $ 5.00

Special Edition disks (2 disks, double
sided) with magazine are available by
mail order for $15.00 (postage and han-
dling included) by sending your request
to the above correspondence address.
Supplies limited.

Editors’ Notes

by Ron Seymour and Tom Bennett

fa-nat-ic adj. (L.fanaticus, of a temple, hence enthusiastic, inspired)
unreasonably enthusiastic; overly zealous; also fa-nat-i-cal - n. a per-
son whose extreme zeal, piety, etc. goes beyond what is reasonable;
zealot.

We figure we must fall into this definition. It did not seem ‘“overly
zealous” at the time. As a matter of fact, that Friday evening, December
21, around 11:45, we found ourselves in a jam. We had finished layout
for the January issue, only torealize that we were at 15 pages of copy,
not the 16 required to get the newsletter out.

“How about an ad for a special edition Journal”, Ron joked. “Why
not, we have been sort of kicking this around for a while, let’s give
it a try”, Tom responded. We did not think that anyone would really
respond anyway. So we could fill the page, get the January issue
rolling with the ad being an easy way out.

Curse that night!

With the religious fervor of meeting announced deadlines (much
like our friends at Atari), here it is, the June Special Edition in July.
(Note it is now the Special Edition, not “June” Special Edition.)

We were overwhelmed. The enthusiasm in response to our page filler
was outstanding. From the delivery of “Master Pencil” in its earlier
form by the Eashs, we knew things were going to roll. We had a number
of typists come forward and really help make this fly. Jim Hood was
“volunteered’ to do the graphics and many contributed hours to this
special effort.

The biggest single delay was the copy editing, copy editing and more
copy editing. Then we had to repeat the whole process once again
after typeset. We know we missed a number of things even after all
our efforts. So, thank you for your understanding of all of our delays.

Inside we hope you will find the ‘“‘meatiest’” Journal yet. Games,
utilities, profiles, reviews, insights and hardware are all covered here
in a way that we have not been able to present to you in the past.
Hopefully this will be the start of a new concept in user group publica-
tions. We intend to mail our disk text files to select groups across the
nation to begin a newsletter file exchange that will both get our club
out to others and in turn allow us to print other groups’ materials here
in the Journal. If this exchange concept works, look for top quality
Journals in the future.

Thanks go to Jim Hood, Karen Bennett, Tom Tisby, Ron Devine,
Bill Wilkinson, Atari Corp., all of our contributors and typists. And
very special thanks go to the spouses and families of all involved with
the Journal for their patience and understanding. We can not do
without your continuing support.

Better
BASIC

by Bill Wilkinson, OSS
Special to the San Leandro Computer Club Journal

Hopefully, by now you have all noticed the OSS ads
for BASIC XE. And if you have, you have read that
BASIC XE is faster than BASIC XL and, of course,
much faster than Atari BASIC. Since I was the
turkey/hero (your choice—the vote's still being
counted) who wrote the specifications for the original
Atari BASIC, and since BASIC A + BASIC XL, and
BASIC XE are all modifications and extensions of good
old Atari BASIC, I thought you might be interested
in finding out how we at OSS can continue to eke more
performance out of an existing language. In other
words, stand by for some secrets.

First of all, I should like to point out that all the OSS
versions of BASIC really are extensions of Atari BASIC.
Even in our newest BASIC XE, there are still a few
hunks of code which are unchanged since the original
1978 vintage. But other major routines have been
rewritten from the ground up. And, almost inevitably,
rewriting a piece of code to make it faster involves
making it bigger. So Atari BASIC takes up lIOK Bytes
(if you include the floating point routines), BASIC XL
uses 18K Bytes, and now BASIC XE gobbles fully 28K
Bytes! Of course, not all those thousands of bytes we
now use are there just to speed up existing code. We
do tend to like to add features, also. For example,
PRINT USING and SORT each use about 1,000 bytes.
(The real trick in BASIC XE was devising a method
of packing 28K Bytes of code into your computer in
such a way that the language is compatible with Atari
BASIC even to the point of giving you the same work-
ing memory space for your programs! The result:
BASIC XE won’t work in Atari 400 and 800 computers,
though it does fine in XL and XE machines. Sorry
about that.)

Okay. So now you know that you have to use more
room for BASIC if you want more speed. But just what
did OSS spend all that room on? Actually, in the pro-

cess of trving to leverage BASIC for all the speed we
could reasonably get, we worked on three major por-
tions: (1) execute expression, (2) program transfers,
and (3) floating point math. We are going to talk about
all those in reverse order.

FASTER MATH

BASIC XL had already been given a major overhaul
on parts 1 and 2, but item 3 is uniquely BASIC XE.
To be fair, a floating point math speed-up has been
done before: Newell Industries has been selling the
FastChip, a replacement for Atari’'s Floating Point
ROM, for years now. But when Charles Marslatt (sorry
if I spelled that wrong) wrote the code for that chip,
he was constrained to put all his improvements into
the space we used originally. In view of this, his
changes were almost spectacular. With BASIC XE, we
are and were under no such restraints. Where the en-
tire math pack of Atari BASIC uses only about 2,500
bytes, BASIC XE uses over 4,000 bytes for Add/Sub-
tract/Multiply/Divide alone!

[don't have space here to describe everything which
was done, but I will give one example: In the routine
to convert a floating point number to an integer, Atari
BASIC multiplies the integer it has built so far by 10,
picks up the next digit of the floating point number,
and adds that digit to the budding integer. That mul-
tiply by 10 is slow. The process of picking up digits
one at a time is slow. BASIC XE, on the other hand,
has a 160 byte translation table which takes pairs of
digits (i.e., bytes) from the floating point number and
converts them (in two machine instructions!) into
their binary equivalent. And that’s just for the units
position of the floating point number! Why is this
speed up important? Because it is used over and over
again in BASIC. Every place which calls for an integer
number calls this subroutine. Examples include the
line number of a GOTO or GOSUB; the address and
data of a POKE; all the numbers in a SOUND, SET
COLOR, PLOT, DRAWTO, OPEN, and many more!
Changing this one routine alone can speed up many
Atari BASIC programs by a factor of 10% to 20%!

GETTING THERE FASTER

One feature of Atari BASIC of which I am especial-
ly proud is the fact that you can STOP a running pro-
gram, examine variables, SAVE it to disk, change the
Program, and still CONTinue right where you left off!
Almost no other microcomputer BASIC can do this.
For example, all Microsoft BASICs (yes, even on the
PC) will not allow you to change your program and
continue.

The freedom you enjoy with Atari BASIC is not
without its price., though. Consider the following:
When a STOP occurs, we are in a subroutine called
from a GOSUB. Now you change the program (such
that the line which contained the GOSUB moves in
memory) and CONTinue. What happens when
RETURN wants to do its job? [f GOSUB caused BASIC
to "remember”’ the address of its line (as does
Microsoft BASIC), we're in trouble! So instead Atari
BASIC and its kin remember the line number where
the GOSUB is. Neat, right? Yes, but then when we
RETURN we have to search for that line number.
S-s-l1-1-0-0-0-w! And guess what! FOR/NEXT loops
work the same way.

The story doesn’t stop there. One thing Atari BASIC
and Microsoft BASICs have in common is the way they
execute GOTO and GOSUB: After they've figured out
which line you want to transfer to (and that can take
a while...remember the floating point to integer con-
version discussion above?), they always start at the
beginning of your program and search forward until
they find your requested line. More s-s-1-1-0-0-0-w.

So what do BASIC XL and BASIC XE do different-
ly? Well, if you do nothing, everything works exactly
as in Atari BASIC (albeit a bit faster because of other
factors). This is on purpose, for compatibility. How-
ever, when you use the FAST command, these BASICs
actually do a pre-compile of your program. All line
numbers referenced in the program are looked up and
converted to absolute addresses instead. Then when
you use GOTO 100, BASIC doesn'’t search for line 100
because it already knows where it is. Fast!

Of course, we didn’t stop there. BASIC XL, and XE
in FAST mode “remember” the absolute addresses
of GOSUBs and FORs (and WHILES and CALLS
and...), so the line number search is not needed when
a RETURN or NEXT (or ENDWHILE or EXIT) is en-
countered. Is there a penalty for this speed. Of course:
You can NOT stop a Program. which is in FAST mode
and then CONTinue. Period. Still, we don't think that’s
too bad, since you can still debug your programs in
the good old Atari BASIC style and only move to FAST
mode for the final touches.

EXPRESS EXPRESSIONS

Although the new math routines involve the largest
changes (in terms of sheer code space), the most com-
plex changes (because of the effects on existing code)
were those which Steve Lawrow made to one of the
“master” routines of BASIC: Execute Expression.
This routine is used by almost every statement and

function. Any time the syntax of the BASIC language
allows an expression of any kind, the routine named
Execute Expression is called. As a simple example,
consider a statement of the form

PRINT A+3

The expression in that sfatement is A + 3. With Atari
BASIC, the execution of it goes something like this:
Fetch the value of A to FRO
Push FRO onto the argument stack
Fetch the value of the constant 3 to FRO
Push FRO onto the argument stack
Pull the top of the argument stack into FRO
Pull the next value on the stack into FR1
Add FRO plus FRI1, the result is in FRO
Push the result onto the stack again
Pull the top of argument stack into FRO
10 Convert and print the value in FRO

(In the above, “FRO"” and "FR1” are the two primary
floating point ‘‘registers’—actually six bytes each in
zero page.} Got all that? Now watch what BASIC XL
and XE do:

1. Fetch the value in A into FRO
2. Move FRO into FR1
3. Fetch the value of the constant 3 into FRO
4. Add FRO plus FR1, the result is in FRO
5. Convert and print the value in FRO

A ot shorter and a Jot faster. We estimate that, for
simple expressions (e.g., no multiply or divide), this
new method saves 30% to 40% of the time used by
execute expression.

COND O N

Now, those of you new to computing may say, ““Well
of course. Why would you ever do it any other way?”
The answer to that question is complex: first., because
you have to provide for expressions such as SQR
(X*X +Y*Y)*SIN(X/2)"2 equally as well as provide for
simple things like A +3. Trying to analyze the kind
of expression being presented is not a trivial task.
Second, along the same lines, even after you figure
out how to make execute expression faster, you have
to find room to impiement the needed code. The ad-
ditional space simply isn't there in the Atari BASIC
cartridge. (Could Atari BASIC have been made better
in the space available? Yes, but not as much so as
BASIC XL and XE have done.) Anyway, this kind of
optimization is done as a matter of course by com-
pilers (yes, including ACTION!), but it is seldom done
as comprehensively as we have done in our expand-
ed BASICs.

And that's about it. Oh, there are many other more
subtle differences and improvements which we made
as we built our advanced BASICs. And let's not forget
the amount of work which went into getting BASIC
XE to understand bank-switched cartridges, memory
under the OS ROMs, memory under the cartridge, and
(last but definitely not least) 64K of program space
and over 30K of string/array space. And still be able
to run with cartridge alone, without using expanded
memory, in a mode compatible (except for speed) with
Atari BASIC. That was (and is, even as | write this) a
job! We hope you will agree with us that the effort was
worth it.

5

* ”
Flitterbug

f by Jim Warreni ;i:

Is it possible to explain ACTION! to
someone completely unfamiliar with it
and at the same time show a more ex-
perienced ACTION! hacker how to use
the routines in FLITTERBUG? I do not
know, but I am going to try by talking
about the source code of Flitterbug. If
you will PLAY with the program for a
while you will have an easier time with
my explanations.

Now take a look at the FLITTERBUG
code. Despite the seemingly huge varie-
ty of statements there are only three
major “structures” to this code: COM-
MENTS, VARIABLE DECLARATIONS
{i.e. BYTE BUG__EGGS—meaning, set
aside one memory location and do to it
what I say to do to BUG_EGGS, and
PROCEDURES (subroutines containing
the actual business of the program
parcelled out into reusable, task
specific, modules).

The top lines of FLITTERBUG are
comments, followed by MODULE,
meaning that the following variables
can be used by any procedure anywhere
in the program. The three INT variables
(INT indicates +/- numbers getting two
memory locations each) are used by
several procedures and have their values
set in PROC JOYSHTIK() so that every
time PROC JOYSHTIK() is called (run,
gosubed, JSR ed, executed, etc.} those
variables are updated reflecting the
condition of the joystick. Next there are
fourteen CARD variables (two memory
locations, all positive numbers), some
of which have been given initial values.

Next there are twenty-seven BYTE
variables (one memory location— all
positive) some of which have been as-
signed values and some of which have
been assigned a memory location (i.e.
CONSOLE =53279). This is convenient
since, now, I can say simply, IF CON-
SOLE =6 THEN DING() FI, meaning if
the START button is pressed execute the
DING routine. Notice the backwards I[F
indicating the end of that particular set
of IF testing. Next in the list of FLITTER-
BUG code is a BYTE ARRAY called
HARDLINE. It is a list of single memory
locations used to store a word, sentence,
or list of numbers giving the shape of

R

a player missle or redefined character.
In this case HARDLINE is used to hold
and print the different levels of game dif-
ficulty (EASY, HARD, FAT CHANCE,
DOCUMENTATION]). It is manipulated
in PROC TITLE().

Next in the code is DEFINE
POP ="[$68 $68]". DEFINE is a mere
typing convenience offered by the com-
piler. It has no intrinsic programming
value. It simply means, in this case,
wherever you see the word POP in the
code, substitute the stuff between the
quotations. In this case the stuff bet-
ween the quotes are two machine lan-
guage instructions [PLA PLA} which
will remove an address from the stack
so that we can RETURN (if and when
one is issued!) to the procedure that
called PREVIOUS to the last.

Next in the FLITTERBUG code is,
finally, a real procedure declaration;
PROC RE MAIN =ERROR(}. However, it
does not say here what RE MAIN does,
it just says that it is found at the same
place that the ERROR procedure is
found and that it does not accept any
data for manipulation. Why would I tell
the compiler such arotten lie? Because
later I will set ERROR equal to the REAL
address of PROC MAIN({) and call for RE-
MAIN() which will get us to MAIN in a
very round about way. This overcomes
the inability of the compiler to handle
forward references.

Next in the code we come to a pro-
cedure that actually does something. [t
Pulls an address off the stack and jumps
to the ERROR procedure which now you
know could be ANYWHERE in the
program.

FLITTERBUG, then, consists of a
long list of procedures, which you and
I can remove and put into other pro-
grams having nothing to do with FLIT-
TERBUGS. So, even if you do not like the
game FLITTERBUG, any routines
within the game that you do like are
yours for a very small effort involving
almost no typing.

One way to reuse parts is to
CTRL/SHIFT DELETE the procedure
that you want, then do a CTRL/SHIFT

6

2 to getinto aseparale window, then do
a CTRL/SHIFT P (for put) to put the pro-
cedure there. Then doa CTRL/SHIFT W
(for write) to save that procedure to disk
for later inclusion (with INCLUDE
“D:FILENAME") into a different
program.

When you take these routines from
me and turn them into your own mas-
terwork, T hope you will publish at least
some of it in the public domain so that
we can improve our efforts with some
of YOUR knowledge and effort. Send the
code (and PLENTY of explanation) to
me. I will see that it gets distributed
widely and that YOU get the proper
credit.

Jim Warren
San Leandro Computer Club
PO. BOX 1525
San Leandro, CA 94577-0152

The very first thing (the first pro-
cedure executed is always the last one
inthelist) that FLITTERBUG does is to
copy the character set in ROM into RAM
so that it can be redrawn. You will notice
that PROC RELOCATE_HARSET()
calls for the execution of POKE_A __
CHAR() just before it calls for the execu-
tion of MAIN() as its last instructron.
POKE_A_ CHAR()is the second to last
procedure and is little more than the list
of data that comprise the new letters
and numbers of the character set, Only
the lower case letters were redefined.
The upper case letters are used by
graphics mode 1 in TITLE() and EN-
DLE() and work just fine as is. | drew
these new letters using the EDIT() pro-
cedure in this program (the same pro-
cedure appears in the TOOL KIT demo
in this special edition). You can draw
your own character set or redefine just
one or two letters that [did not do quite
well enough by using the editing box of
this game or the one in the TOOL KIT
DEMO. Just leave one line blank at the
top and bottom and two “bits” blank on
the right. Then write down the data and
type it in the appropriate part of the
BYTE ARRAY in POKE__A_ CHAR().
For a fuller explanation see my TOOL
KIT DEMO article in this special edition.

If you want to see why I had to go to
the trouble to redefine the character set.
write alittle documentall in uppercase
in the first paragraph and all in lower
case in the second paragraph and save
it to disk with the name "FLITTER:
DOC". Then read that document with
the FLITTERBUG doc reader (get DOC-
UMENTATION by pressing OPTION in
the title screen then press START). You
will see that the ROM character set
(upper case letters) just does not appear
clear in antic mode 4.

After the character set is relocated
and the new data Poked into place the
main procedure is called and controls
the flow of the program from now on.
The main controlling procedure is nam-
ed, appropriately, PROC MAIN() and is
little more than a list of procedures in-
dicating the order of execution of the
main modules. [t in turn, call other
procedures as needed to get the job
done. I have tampered with the normatl
procedure calling scheme of ACTION!
in a couple of procedures with the "RE
ACTIONARY" methods of forward
referencing and recursion. For the most
part, you will see procedures calling for
procedures which are ‘‘above”
themselves in the list. They can not call
procedures “below’” themselves in the
list. This is what I mean by forward
referencing. To facilitate my ‘“‘tamper-
ing” I used address variables to refer to
the forwardly referenced procedures;
and the first thing that PROC MAIN()
does is assign the right address to those
variables (i.e. ADR__MAIN = MAIN).

Then TITLE() is called where the
player sets the MINIMUM_EGG. TIME,
BUG__BIRTH__RATE. and variables by
pushing OPTION. When START is
pressed in TITLE() a RETURN is issued
and execution returns to MAIN() where
SETUP()is nextin line. After the return
from SETUP(), we point ANTIC at our
custom characters and jump into an in-
finite (meaning there are no controlling
statements saying when to stop) DO OD
loop with five procedures in it which are
repeatedly executed.

You can write procedures and have
them executed anywhere by calling
them by name where you want them ex-
ecuted. For example, if you write PROC
BEFORE_THEY__ARE__HATCHED().
and write BEFORE_THEY__ARE__
HATCHED() right after COUNT_
EGGS() in PROC MAIN(), then you will
have your eggs counted just before they
are hatched! I would encourage you to
experiment with FLITTERBUG in just
this way but, unfortunately, the source
code is too big to be in memory at the
same time as the object code. You will
have to break it up into sections, work-
ing on one part in memory with the rest
“INCLUDED" from the disk. I suggest
that your files be single procedures that
might also be useful for inclusion into
other programs. Likely procedures
within FLITTERBUG for such an “ex-
cision” are JOYSHTIK{), ANTIC4(),
DOCREADER(), EDIT()&LOOKUP{().
POKE_A_ CHAR(). and RELOCATE _
CHARSET(}. These are all potentially
reusable “as is” in other programs.
Sorry the program is not smaller for you
to play around with but, as usual, I got
carried away!

Antic’s
520ST

ANTIC PUBLISHING INC.,
COPYRIGHT 1985.
REPRINTED BY PERMISSION.
by JACK POWELL
ANTIC TECHNICAL EDITOR

Our Atari 520ST just arrived in the
Antic offices. This is the $5,500 develop-
ment package, and it includes the com-
puter, two 3%"” disk drives, one
medium-resolution (640 X 200) RGB
analog monitor and one mouse.

The software in the package is the “C”
compiler, machine language assembler
and debugger by Digital Research, the
Mince screen editor by Mark of the
Unicorn, Kermit (a modem protocol pro-
gram for file transfer), CP/M-68 and, of
course, GEM which is in ROM in the
machine.

On back order, but expected soon, is
a high-resolution (640 X 400) mono-
chrome monitor and a ten-megabyte
hard disk.

Along with all this came 1000 pages
of documentation and since it will take
some time to digest all of this, we
thought you might like a first impres-
sion of this new, high-level Atari
computer.

The development 520ST is a prelim-
inary model and there will be some
changes between now and the time you
see it in the stores, but all parts of this
machine were factory made in the same
manufacturing plants as the final pro-
duct will be. The only real difference,
besides the price, is that these machines
were hand assembled.

The first thing you notice when tak-
ing the ST out of its box. is that it is very
light. Although somewhat larger in size
than the 800XL, it fecls lighter. This
may be because the shielding has not
yet been added.

It looks exactly like the ST on our May
cover but there are some details you can
not see from the photograph. On the
right edge of the machine, to the rear,
are two joystick ports identical in ap-
pearance to current Atari joystick ports,
except they are also used for the mouse.

On the left edge, rear, opposite the

joystick ports, is the cartridge slot. This
will accept a 40-pin board, 20 upper and
20 lower.

In back of the computer are various
switches and ports, each labelled be-
neath and with an indicating icon etch-
ed in the plastic above. From left to right
they are:

Reset - a small, square button.

Power - identical to previous Atari
power switches.

Power In - 7-pin, male DIN.

MIDI Out - 5-pin, female DIN.

MIDI In - same as above.

Television - RCA, female.

Channel - mini-switch, labelled “L”

Monitor - 13-pin, female DIN.

Printer - female D-25, IBM-PC/Cen-
tronics compatible.

Modem - male D-25, IBM compatible.

Floppy Disk - 14-pin, female DIN.

Hard Disk - female D-19.

Besides the standard keyboard and
ten-key pad, are ten function keys,
labelled F1 to F10. The isolated cursor
section is particularly well designed
with the lower three keys representing
Left, Down and Right, and the Up arrow
centered above them. On either side of
the Up key are Insert and Clr/Home.
The top two keys in the cluster, which
are enlarged, are Help and Undo. The
Undo key may become particularly
useful.

The drives accept Sony 3%2" disks. To
boot the machine, first turn on the
drives and insert both disks before turn-
ing on the computer. A disk must be in
a drive for the computer to later access
that drive.

When booted, the GEM desktop ap-
pears as a light green background with
pale blue border and black-outlined
icons. In the upper right corner of the
screen are two disk icons, one over the
other, that look like file cabinet drawers.
In the lower right corner of the screen
is a trash can.

In the border area, above the upper
left section of the green background, are
the words, "DESK FILE VIEW OP-
TIONS.” In the middle of the screen is
a thin, black arrow-cursor which is mov-
ed by the mouse.

We will save details on GEM for later
articles. And it is fast! It can redraw an
entire screen of icons in the blink of an
eye.

This is just a surface description of an
exciting new machine. Antic wants to
get the information out to you as soon
as possible and we plan to share our ST
experiences as they happen. Stay tuned
for further details.

7

Compuserves
GEM Conference

This article contains portions of the
transcripts of the GEM online confer-
ence held on May 9, 1984. The confer-
ence was cohosted by SIG*ATARI and
DR SIG. The featured guests were the
members of the GEM Development
Team.

(DRI) Hiand welcome to DR SIG and
to the GEM CO. On my left is Tim Oren,
Toolkit expert, next to him is Gregg Mor-
ris, Applications expert, John Grant,
VDI Ace, Scott Raney, all around good
guy, Dave Mackenzie, GEM Application
Support. Others are on their way. To-
night we will welcome the Desktop own-
ers and the soon to be released ATARI
ST owners. Also a special welcome to
those veterans who have been working
with GEM development on the IBM PC.

(MODERATOR) Besides the new
ATARI ST what other 68000-based
machines will GEM be available for (in
the near future)?

(DRI) There are no other 68K
machines that we can comment on at
this time.

(Ron Winn) I know very little about
GEM. As afuture ST owner, can you sug-
gest any good books or manuals to
study up on GEM ?

(DRI) Nothing out as yet. Look for
something this Fall from several pub-
lishers. '

(Steve Brecher) I am a Mac
developer. Could you comment on
whether Porting from the Mac to ST is
likely to be feasible. (I understand “feasi-
ble” is undefined, but your thoughts?)

(DRI) OK, there are a number of
possible answers to that. Let me try a
few. If you have done your job on the
MAC *“cleanly”, that is, done a proper
“non-moded” modular program in a
language like C or PASCAL, the port
should be relatively fast. But, GEM and

MAC are nowhere near call-for-call com-
patible, so you need logical separation
points (shells) around the machine spe-
cific code. To give you some actual feed-
back, one European developer moved a
MAC application in about 3 weeks of in-
tensive effort (that was the time to an
alpharelease). A number of other devel-
opers are taking the opportunity to
translate their programs from MAC Pas-
calinto C. Obviously, that takes longer.

(Steve Brecher) Per answer to Ron
above, understand I can not go out and
buy a book on GEM internals, but is
there any way I can learn about such
porting issues (in some detail)
currently?

(DRI} The best way to get answers to
that would be to purchase the GEM Pro-
grammer's Toolkit with or without inter-
active support. The present Toolkit is
available from DRI for $500 with inter-.
active support on this SIG. The retail
version will be available soon.

(MODERATOR) This is the IBM
Toolkit only?
(DRI) At this time it is for IBM only.

The 68K version for GEM DOS will be
a little later.

(Steve Brecher) Without support?
Does that include a written program-
mer's guide?

(DRI) Thatdoesinclude written pro-
grammer’s reference manuals and
sample programs.

(Steve Brecher) Re GEM/ST do I
talk to Atari?

(DRI) Yes.

{Ron Winn) With an ST out of the
box, what will GEM do for me? What
else will need to get to use GEM in my
programs?

(DRI) 1) The ST, as shipped, will in-
clude the equivalent of our PC Desktop.
There will also be some other programs
available from Atari, particularly Logo.
and, of course, our own GEM stuff will
be ported. 2) The programming inter-

face will be very similar to PC GEM, so
someone could get started now on the
PC. Atari will release their own toolkit
but I do not have a date on that and we
will be doing a “generic” 68K Toolkit.
(That is, it will not be Atari specific).

(Ron Winn) Can you get to GEM
thru Basic or LOGO?

(DRI) First for GEM LOGO. This will
include some VDI type primitive such
as draw circle, fill, and so on. However,
the first release will not have a binding
into the AES, thatis, it will notlet a user
program open windows and such. As to
Basic, the question is still open and
under discussion. How about it, do you
think people really want to drive win-
dows from an interpreted language?

(MODERATOR) Absolutely! Espe-
cially a useable BASIC.

(Ron Winn) I do not know for sure.
Some want to use whatever they have
Paid for.

(DRI) More about BASIC.. What
are people looking for, MBASIC com-
patibility? CBASIC? GWBASIC?? You
tell us.

(MODERATOR) That's tough to
answer for an ATARI owner. Except for
a few owners of MS BASIC we have been
a captive audience of ATARI BASIC.

(DRI) Pardon my ignorance, but
what type of BASIC was on the former
ATARI machines? Was it a Microsoft
effort?

(MODERATOR) ATARI 8k BASIC
was NOT a MS BASIC. It was developed
by OSS and is similar to a BASIC used
by the old NORTHSTAR systems.

(DRI) Hum, well maybe we should
find a manual for it and take a look.
Whatever we do, it will probably have a
strong BASICA flavor. since we are start-
ing on the PC. But we can be careful not
to introduce gross incompatibilities
from current ATARI BASIC.

(Ron Winn) Even ATARI basic is a
start. There is a whole generation of
BASIC programmers. They would like
to start there where they feel at ease,
then move them up to modern
languages.

(Steve Brecher) [s there any in-
termediary between $500 and, e.g., In-
foworld superficial descriptions wherein
Imight obtain info onn what GEM is and
is not, from a programmer's view?

(DRI) We are strongly considering a
Retail Programmer’s Toolkit which
would be released late in the summer.
If this happens the GPS support that
you get with the current Toolkit will be
unbundled. Instead we will offer on-line
DR SIG subtopic like Borland does for

8

Turbo PASCAL. Someone could then
“buy up” into GPSif they start a serious
project.

(Steve Brecher) But right now,
without necessarily requiring detailed
info as for coding, but rather a program-
mer's conceptual overview? Anything
available?

(DRI) Not really. you are going to
have to be a little patient. We are kind
of maxed out right now with shipping
the PC and 68K Toolkit. There is some
catching up to be done on the documen-
tation side. We are strongly encourag-
ing in-house people to write articles on
GEM PC and GEM ST. Keep an eye on
places like Dr. Dobb’s and Antic. [am
now told that there will soon be an arti-
cle in Analog.

{(Ron Winn) You mentioned the lst
GEM LOGO. Does that suggest that ear-
ly ST buyers will end up putting in new
ROMs later on?

(Steve Brecher) The first ST buyers
won't get ROMs, I hear. They will be all
in RAM.

(DRI) No, just that they bought
source rights and could go to a later
release if they chose. (I kind of doubt it,
but that is strictly my opinion.) BTW,
Steve the business about RAM was
reported in the press but we can not of-
ficially comment.

(Steve Brecher) WSJ today says all
of OS ("'near” 256KB) will be in RAM for
1st 8 weeks of production. (Maybe all to
Europe.)

(DRI) Well, the WSJ usually has
good sources, but we can not comment,
call Jack.

(Steve Brecher) Ron, in case you
did not hear, ST availability in the U.S.
is now July.

(MODERATOR) Please clarify a
point of possible confusion. The pr-
gramming commands that will allow a
user to, for example, “open a window™
from BASIC are a function of that ver-
sion of BASIC he is running. Whether
such operations will be possible on an
ST does not depend on upgrading to a
new version of GEM (changing ROMs).
It is simply a matter of buying a new ver-
sion of BASIC. Correct?

(DRI) Um, | assume we are talking
about a hypothetical BASIC. Generally
what you say is true but there are ways
to work around requiring a whole new
interpreter when GEM changes. As an
example, if anyone out there has ever
used CALL or the “& trap” on Applesoft,
there are ways to jump directly to
assembly routines from BASIC. If we
took that route, then only those routines

would change if the underlying GEM
changed. HOWEVER, we will make
every effort to be sure that future ver-
sions are fully backward compatible.

(MODERATOR) [guess|wastrying
to state a slightly different issue. Many
novice programmers might think they
have to wait and not buy one of the first
few STs simply because they only know
BASIC and the existing BASICs may not
have a way to “open a window"' for ex-
ample. Someday, somebody probably
WILL sell a version of BASIC which has
these commands just like some BASICs
support automatic line numbering,
others do not. The ability to talk to GEM
depends on the programming language.

(MODERATOR]) He can buy an ST
now and WILL NOT have to buy new
GEM ROMS just to program in BASIC.
Do you follow my point?

(DRI) Ok, thatisright, because GEM
is notlanguage dependent. However, we
could not (with a straight face) recom-
mend that anyone pay $4500 for a ST
right now to run BASIC. The environ-
ment on the STs from ATARI is only
suited for a programmer who is an ex-
pert in C and the 68K.

(MODERATOR) “at this time”.

{(Ron Winn) $4500? You mean the
development STs? Is it worth paying
$15007?

(DRI) Yes, the development STs.
$1500 would be more like it. All we
meant to say was that it is difficult these
days to market a program written in
BASIC, and that would be the only way
to justify paying the developer's price.

(Bill Bolton) [have not seen the
release GEM yet. It is still sitting in
customs (cleared today they tell me).
But with the Toolkit version there was
a definite limit on the number of things
that could be installed on the Desktop.
Has that been “fixed" in the release
version?

(DRI) The limit remains. There is a
quick way to delete previous programs.
We will post the transcript tomorrow
and you can read it there. Again, note
that just because you can not get a
specialicon installed for a program does
not mean you can not run it! Remember,
COM and .EXEs will default to DOS
mode, and .APPs to GEM mode.

(Ron Winn) I hope you will pursue
the “buy up" policy you talked about so
that the many machine buyers can grow
with their machine without getting cost
shell shocked.

(DRI) ! happen to agree. (Ha ha, we
noticed.) Look for further news on this
in a few weeks.

Disk -]
Formatting

by Kenneth J. Pietrucha - JACG

To me, the most sensible approach to
formatting has always been to format a
new box of disks at one time. I made this
decision after I tried to save a program
to an unformatted disk. Now I do not
even take the cellophane off the box un-
til I am ready to format them all.

Formatting an entire box of disks
using DOS involves many key strokes.
Fortunately, the Atari has an XIO
command which allows you to format
directly from BASIC. Actually, the whole
formatting program can be written as
a one or two liner.

5 REM FORMATTING
PROGRAM
10 XIO 2586, #1.0.0,'D:"

Thatisit! Type RUN, hit RETURN and
your disk will be formatted. This may
be one of the shortest formatting pro-
grams ever but you do not have to keep
it that way. Now is your chance to write
your own formatting program. You can
have the screen change color during the
formatting process or you can add a
counting step, line N=N + 1, to tell you
how many disks have been formatted.
You can use the special function keys to
start the formatting process instead of
typing RUN each time.

There is very little additional informa-
tion on the X10 command. In lon Poole’s
book, YOUR ATARI COMPUTER, on-
ly a brief mention is made of this XIO
function. I do not know the specifics.
only that it works. As a matter of fact,
every BASIC formatting program I have
ever seen uses this command.

Here is my version of a formatting pro-
gram: which I keep on my utility disk.
[t keeps track of the number of disks for-
matted. If I start with a new box of ten
disks, I better have the number 10 on
the screen when [am finished.

I think you will like formatting with
this approach. It is definitely easier than
using DOS.

9

By Joe Eash

Do you recall a child's drawing tool called “Etch-a-
sketch”. With Master Pencil, you can now do this elec-
tronically. Ah, but this program has developed into
more than just moving the cursor around and mak-
ing lines.

This program can make perfectly straight lines at
any angle when you give it the “from" and ““to” points
and ask the program to “fill"” in the line for you. You
can draw pictures with a joystick and (unlike Etch-a-
sketch) selectively erase portions you wish to change.
You may also copy or move portions of the picture
around the screen. There is an Alphabet mode for
adding words and numbers to your drawings.

Once you have created a “master-piece” you can
save it and load it later to show to your friends.

You can print your pictures if you have PrintWiz (or
any other special printer utility that prints graphics).
If you are using PrintWiz, the pictures usually look
their best under ““Triple Width" and “Double Height”
options (part of PrintWiz’s special commands).

If you have the disk that accompanies this magazine
you will find the source program in BASIC “MPEN-

CIL.BAS", the ACTION! source code "MENCIL.ACT",
and the machine language version “MPENCIL.BIN'
which is really the ACTION! source code that has been
compiled by the “RUN TIME KIT* (c) 1984 Action
Computer services. The one you will usually use is
“MPENCIL.BIN". You may use the BASIC or ACTION!
versions to modify Master Pencil to fit your needs or
to get ideas. NOTE: both versions make use of all the
memory available on my 48K computer, so modifica-
tions may cause an “Out of Memory” error. Action
users must do a compile from disk.

Please feel free to share this program with your
friends, but please keep all credits in the program.

Now, down to business. I have done my best to make
this program very easy to use so that you'll only have
to read this once.

When the program is run the screen will turn black
and a small cursor will be blinking on the screen. This
cursor can be moved with the joystick in any of 8 dif-
ferent directions. This ““magic’’ cursor will not erase
any dots it crosses while being moved. To plot a dot,
press the fire button. You can change the color of the
dot by pressing the space bar. There are only 2 col-
ors, the foreground and the background. When the
words “COLOR ON” is in the window at the bottom
of the screen, you will be drawing dots on the screen.
When the words “COLOR OFF” are in the window, you

10

will be erasing dots. Your joystick is your ‘“‘Master
Pencil! So, with your pencil in hand and your paper
on the screen, doodle for a while and get use to **COL-
OR ON" and "COLOR OFF” (press the space bar to
switch them).

Now that you are used to using this much of the pro-
gram, let's go on. The only two keys you need to
remember while you are drawing are: the space bar,
and the escape key [ESC]. Press the ESC key and a
menu will appear. At the bottom of the menu screen
is an up-to-date display on a few important things.
Here is an explanation of them:

HSPEED - This is the horizontal speed of the cursor.
This will be explained later under “H".

VSPEED - This is the vertical speed of the cursor. This
will also be explained later in detail.

X POS - This is the horizontal position of the “Magic”
cursor on the screen.

Y POS - This is the vertical position of the “Magic”
cursor on the screen.

4-WAY MIRROR - This will be explained later under
GET DOT mode - Explained under “G”.

The other items on this menu perform very special
features and have taken a long time to perfect, soI'm
sure you will appreciate the things that they do. Here
they are, explained in detail:

A) ALPHABET. This feature lets you put letters,
numbers, lower case, graphics characters and punc-
tuation anywhere on the screen you want. Press “A”
and you will be asked the height and then the width
of the letters to be drawn. For now, press 1 for the
height and 1 for the width. One is the smallest size
of a letter and is the same size as the text mode let-
ters. Next you will be asked to position the cursor in
the upper-left corner of the area where the first
character is to be printed and press the fire button.
For now, put the cursor towards the left side of the
screen and press the fire button. Now type anything
you want, or press return to move cursor somewhere
else or [ESC] to return to the menu.

B) MOVE/DUP. This is for moving a piece of your
picture to another place on the screen. If you respond
“Move’” then the area to be transferred will be erased,
otherwise, “duplicate” will not erase that area. Follow
the rest of the prompts and you will be on your way
to complete the process. Note: since BASIC doesn’t
have as much memory available this function is
slightly different.

C) CLEAR SCREEN. This will clear your drawing
screen and reset horizontal and vertical speeds to 1.

D) DIRECTORY. This displays ALL the files in DRIVE
1.

E) 4-WAY MIRROR. When this is turned on,
anywhere you are on the screen when you plot a dot
it will be mirrored in the 3 other quarters of the screen.

F) FILL (FOR GET DOTS). See “GET dots”.
G) GET DOTS (100 MAXIMUM). When using this

mode, the computer stores the next 100 dots plotted
on the screen. For example: press “G’” in the menu,
“L’ toreturn to picture, then randomly plot about 20
dots fairly well spread out. Now press [ESC] for the
menu, then press “F’, and PRESTO! All the dots will
be connected in the exact sequence that you plotted
them. Now, try to make a star.

H) HORIZONTAL SPEED. This value determines
how many dots the cursor will *'skip” when moving
horizontally across the screen. To change the value,
press “H” while in the menu and enter anumber from
1 to 10. Do not forget to press [RETURN].

I) VERTICAL SPEED. This is the same as “"H” ex-
cept this controls how many dots the cursor will skip
when moving vertically. Press "I and enter a number
from 1 to 10. Again, don't forget to press [RETURN].

J) SAVE. Enter a name for the picture (maximum of
8 characters, with an optional 3 character extension)
and press [RETURN]. Your picture will now be saved
to disk under the filename you gave it. A long, thin,
white cursor will show you where the cursor is while
saving.

K) LOAD. Enter a name for the picture and press
[RETURN]. Your picture will be loaded from disk onto
the screen for you to view, edit and save again. Note:
the BASIC version loads and saves much slower (about
2 minutes, 30 seconds) than the machine language
version* (about 10 seconds).

L) EXIT. This returns you to your picture.

TIPS: If you are familiar with artifacting in graphics
mode 8 (which is what this program uses) here is a
neat trick. For red artifacting, position the cursor in
a column where the colorisred. Then press [ESC] for
menu and set the horizontal speed to 2 and the ver-
tical speed to 1. Do the same for blue, except position
the cursor in a blue column. If you are not sure about
the color of a column, press [ESC] for the menu, then
look at the value for the *X POS". If the value is an
even number, then you are on a blue column. If the
number is odd, then you are on a red column. Plot-
ting two dots side-by-side will cause the color to be
white, not red or blue.

Use the “GET"” and “FILL" modes as much as possi-
ble to save time. These modes are very helpful in draw-
ing geometrical shapes as well as your own creative
designs.

If you wish to clear the window of instructional text
to do a screen print, press [ESC] for the menu, then
press “L to return to picture. Now you have a clean
picture to print.

* the machine language version is the ACTION!
version compiled by: The RUN TIME KIT, (c) 1984 Ac-
tion Computer Services.

11

N ATARI

DISK OPERATING SYSTEM 2.5

(Editor’s note: The following is being reprinted by
the SLCC JOURNAL with permission of Atari Corp.)

Every effort has been made to ensure the accuracy
of the product documentation in this manual.
However, because we are constantly improving and
updating our computer software and hardware, Atari
Corp. is unable to guarantee the accuracy of printed
material after the date of publication and disclaims
liability for changes, errors and omissions.

ATARI, ATARI BASIC, AtariWriter, 1050, 810,
130XE, 65XE and 800XL are trademarks or
registered trademarks of Atari Corp.

No reproduction of this document or any portion
of its contents is allowed without the specific written
permission of Atari Corp., Sunnyvale, CA 94086.

Copyright 1985 Atari Corp. Sunnyvale, CA 94086

INTRODUCING ATARI DOS 2.5

In an ongoing effort to provide the highest quality
of products for use with your ATARI Computer, the
new ATARI Corp. is supplying you with the enclosed
DOS 2.5 Master Diskette. Its advantages over ATARI
DOS 3 include ease and convenience of use (most
utilities are contained within a single file and need
not be loaded from disk) and compatibility with DOS
2.08. DOS 2.5 also allows you to use the full capacity
of your ATARI 1050 Disk Drive and to access the full
RAM potential of the ATARI 130 XE.

This short manual provides you with instructions
for getting started with DOS 2.5. For complete infor-
mation on DOS 2.5, including detailed discussions on
the menu items, compatibility with DOS 3 and 2.0S,
the RamDisk and the 2.5 Utilities, you may consider
obtaining the new ATARI DOS 2.5 Manual. Available
from ATARI Customer Relations, P.O. Box 61657, Sun-
nyvale, CA 94088. Cost: $10 plus $2.50 for shipping
and handling. California residents add 6.5% tax.

Please write ATARI DOS 2.5 Manual on the outside
of your envelope when you order the book.

Getting Started With DOS 2.5

DOS 2.5 allows you to format diskettes and store
information in either single or enhanced density. With
enhanced density you can record about 50 percent
more data on each diskette than you can with DOS
2.0S. Enhanced-density storage is only possible if you
have an ATARI 1050 Disk Drive; the 810 Disk Drive
is not capable of formatting or managing data stored
in enhanced density. You need a 1050 Disk Drive to
begin working with DOS 2.5 because your DOS 2.5
Master Diskette is recorded in enhanced density. If you
often use an 810 Disk Drive to access your files, you
may want to format all your diskettes in single density.

DOS 2.5 works with any cartridge-based program
that runs on your Atari Computer and uses DOS—
even programs that predate DOS 2.5, including the
AtariWriter word processor and ATARI BASIC. With
such programs you can always use DOS 2.5 instead
of DOS 2.0S to prepare data diskettes and manage
files.

Many diskette-based programs designed for use
with the earlier DOS 2.0S can also be used with DOS
2.5. However, you may have to continue to use DOS
2.0S with certain protected diskette programs (see
your program user's manual if you are unsure
whether a program is protected.)

THE DOS MENU

Load DOS into your ATARI Computer using the
same procedures you use for either DOS 3 or DOS
2.08S. (If you have an ATARI 130XE, 65XE, or 800XL
with built-in BASIC, type DOS and press [RETURN]
to go from BASIC to DOS). The DOS Menu on your TV
or monitor screen presents a list of the DOS 2.5
options.

The prompt below the menu invites you to make
a selection. You choose the function you want to use
by pressing the letter corresponding to your selection

12

and pressing [RETURN].

DOS then asks you for the information it needs to
proceed.

Summary of DOS 2.5 Menu Options

If you have used DOS 2.0S, you will be familiar with
most options. Note the change in Option J and the
new Option P.

If you have only used DOS 3, read this section for
an introduction to DOS functions.

A.DISK DIRECTORY allows you to call up a com-
plete or selective list of the files on a diskette, show-
ing the filenames, extenders (if any), the number of
sectors allocated to each file and the number of free
sectors still available on the diskette.

B. RUN CARTRIDGE (can ONLY be used with
built-in BASIC or with a cartridge installed in the com-
puter). This option allows you to return control of your
system to built-in BASIC or to the cartridge inserted
in the cartridge slot.

C. COPY FILE For use when you have two or more
disk drives and you want to copy files from one disk-
ette to another. Also use this option to copy a file on
the same diskette, assigning a different name to the
copy.

D. DELETE FILES lets you erase a file from a
diskette, increasing the available space on a diskette.

E. RENAME FILE Use when you want to change
the name of a file.

F. LOCK FILE can be used to prevent you from
changing, renaming, or accidentally erasing a file. You
will still be able to read the file, but will not be able
to write to it. An asterisk is placed in front of the
filename in the directory to indicate that the file is
locked.

G. UNLOCK FILE This removes the asterisk in
front of the filename and allows you to make changes
to the file, rename it, or delete it.

H. WRITE DOS FILES lets you add the DOS files
(DOS.SYS and DUP.SYS) on your Master Diskette or
System Diskette to a diskette in any disk drive.

I. FORMAT DISK Used to format a blank diskette,
which is necessary before you can record any infor-
mation on it. Be sure you do not have any files you
want to keep on a diskette before formatting it. This
option will formata diskette in enhanced density pro-
vided you are using a 1050 Disk Drive; otherwise, it
will format in single density.

J. DUPLICATE DISK Use when you want to create
an exact duplicate of a diskette. This option will
automatically format the destination disk.

K. BINARY SAVE saves the contents of specified
memory locations on a diskette.

L. BINARY LOAD lets you retrieve an object file
from diskette

M. RUN AT ADDRESS Use to enter the hexadec-
imal starting address of an object program after it has
been loaded into RAM with BINARY LOAD.

N.CREATE MEM.SAV reserves space on a diskette
for the program in RAM to be stored while the
DUP.SYS file is being used. For some applications like

programming, it is a good idea to create a MEM.SAV
file on each new diskette you intend to use as a System
Diskette. As you become more familiar with DOS, you
may find there are cases where a MEM.SAV file serves
no useful function. The inconvenience of waiting for
MEM.SAV to load into memory may warrant deleting
it from the disk.

O. DUPLICATE FILE copies a file from one diskette
to another, even if you have only a single disk drive.

P. FORMAT SINGLE formats a diskette in single
density using a 1050 Disk Drive.

DOS 2.5 AND THE ATARI 130XE RAMDISK

The ATARI 130XE Computer is equipped with
131,072 bytes—128K—of Random Access Memory
(RAM), twice the maximum 64K available with earlier
model ATARI Computers. The additional 64K RAM
can be useful for many purposes: fast exchange of
screen images for animation, additional storage for
large data bases and so forth.

You can also use the extra RAM of the 130XE as a
very fast “virtual” disk drive. Set up as a “RamDisk”’
(recognized by DOS 2.5 as Drive 8 in your system) it
can accommodate up to the equivalent of 499 sectors
on a diskette. That is about half what you can store
on a diskette formated in enhanced density.

The “storage” capacity offered by the RamDisk is
volatile memory. Information stored in it will be lost
when you turn off your computer system. So before
turning off your system, be sure that any data current-
ly in the RamDisk that you want to save permanently
is recorded on an actual diskette.

The RamDisk can be a very convenient tool. It allows
you to switch almost instantaneously between BASIC
(or any other programming language) and DOS, and
back again. Use it to work with files “stored” on Drive
8; a technique that might prove especially useful
when you are transferring large amounts of data bet-
ween two programs that are chained together (that
is, when one program RUNs the other).

To Activate the RamDisk

Your DOS 2.5 Master Diskette contains a file called
RAMDISK.COM that automatically sets up the extra
64K RAM of the 130XE as a RamDisk.

When you boot your 130XE system with a DOS 2.5
Master or System Diskette containing RAMDISK.
COM, DOS will:

- Display a message that it is initializing the
RambDisk;

- Set up your computer’s extra 64K of memory to
act very much as a disk drive, telling DOS to regard
it as Drive 8; and

- Copy the DOS file DUP.SYS and establish MEM.
SAV on the RamDisk, and use the versions of these
files on the RamDisk rather than those on your Master
Diskette.

If you wish to expand the usable capacity of your
RamDisk, you may recover the memory used by
DUP.SYS and MEM.SAV by:

13

- Changing the contents of location 5439 ($153F)
to ATASCII 1, for example, POKE 5439,ASC(*1"); and
-Deleting the files DUP.SYS and MEM.SAV from the
“diskette” in Drive 8, that is, the RamDisk. Use op-
tion D., DELETE FILE(S), on the DOS Menu and enter
D8:** in response to the DELETE FILESPEC prompt.

Note: Booting a disk which does not contain
DUP.SYS will cause RAMDISK.COM to initialize the
RamDisk, but DUPSYS and MEM.SAV will not be
moved to the RamDisk.

Using DOS With the RamDisk

Because of the size of the RamDisk, you may not
use DOS Menu option J., DUPLICATE DISK, to copy
either a single-density or enhanced-density diskette
to the RamDisk. Instead, you must copy individual
files, taking care that they do not exceed in size the
capacity of the RamDisk. You can ask DOS to dupli-
cate the contents of the RamDisk on an actual disk-
ette.

From then on, however, that diskette will be capable
under DOS of accessing only 499 sectors worth of
data, though you can always duplicate its contents
back to the RamDisk.

If You Do Not Want to Use the RamDisk

If you do not want to use the ATARI 130XE Ram-
Disk, you can either delete or rename the RAM-
DISK.COM file on your DOS 2.5 Master or System
Diskette. You may then use the extra RAM for other
purposes.

If you have applications for which you do not wish
to use the RamDisk, it is recommended that you leave
the RAMDISK.COM file intact on your DOS 2.5 Master
Diskette. You might wish to make one working copy
of DOS (System Diskette) that contains RAM-
DISK.COM, and one that does not. Or you can simply
rename the RAMDISK.COM file on your System
Diskette, then rename it back to RAMDISK.COM when
you wish to use it.

THE DOS 2.5 DISK UTILITIES

Your DOS 2.5 Master Diskette contains three new
utility programs in addition to the standard disk
utilities handled by the DUP.SYS file—those available
from the DOS Menu. The programs, each of which
appears on the disk directory with a .COM extender,
function as follows:

COPY32.COM allows you to copy files from disket-
tes formatted and written to from AT.ARI DOS 3 to
DOS 2.5 diskettes, converting the files in the process
from DOS 3 to DOS 2.5.

DISKFIX.COM allows you to correct some prob-
lems that may occur with files on DOS 2.5 and 2.0S
diskettes. Under certain conditions, you can also use
this utility to recover deleted files.

SETUP.COM allows you to change certain DOS
parameters. You can also use it to create an AUTO-
RUN.SYS file that will automatically load and run a

BASIC program when you boot your system.

Note: RAMDISK.COM is not a disk utility. It is used
only to set up the RamDisk on a 130XE Computer.

Selecting and Loading a Utility

All three utilities are binary files that are loaded and
run using option L., BINARY LOAD, from the DOS 2.5
Menu. For example, to begin using the COPY32.COM
program, with the DOS 2.5 Menu on your screen, you
would type L and press [RETURN], then type COPY-
32.COM as the name of the file to load, and press
[RETURN] again.

Specific instructions for using the COPY32.COM
follow. There are also brief instructions for DISKF1X.
COM and SETUPCOM. For more detailed instructions
for the latter two utilities, consult the ATARI DOS 2.5
Manual (see the Getting Started section of this manual
for ordering instructions).

COPY32.COM

Using this utility is much like using the COPY FILE
function on the DOS Menu. After you load the
COPY32.COM program, you are prompted to specify
which drive will hold your DOS 3 (source) disk and
which drive will hold your DOS 2.5 (destination) disk.
If you have only one drive, type 1 in response to both
prompts. In this case, you will have to swap your DOS
3 and DOS 2.5 diskettes during the copying process.
If you have more than one disk drive, you may select
one to hold your DOS 3 diskette and another to hold
your DOS 2.5 diskette.

At this point, if you have only one drive, the utility
prompts you to insert your DOS 3 disk in Drive 1. For
safety, place a write-protect tab on your DOS 3 disk
so that you will not erase valuable data if you make
an error while swapping diskettes.

If you specified two different drives, the utility
prompts you to insert both your DOS 3 and DOS 2.5
disks.

After you insert the diskette or diskettes, press
[START]. The COPY32.COM program reads the direc-
tory of the DOS 3 diskette and displays the files it con-
tains, sixteen at a time, by number. Press [RETURN]
to see the next sixteen files. When all the files on the
diskette have been listed, you have the options to
restart, return to DOS or view the files again.

To convert a file, enter the number of the file you
wish to convert. The utility prompts you to confirm
your choice by pressing [START].

When you press [START], the program: begins the
conversion process by reading the specified file from
the DOS 3 diskette. After COPY32.COM reads the en-
tire file (or as much data as it can accommodate in
its memory buffer), it asks you to swap disks if you
specified the same drive for your DOS 3 and DOS 2.5
disks. With very large files, you may have to swap
diskettes several times. If you are using two drives, the
program copies and converts the file in a single
operation.

14

After the file has been copied and converted, press
[START] to return to the listing of files on your DOS
3 diskette, from which you may choose another file
to convert.

If an error occurs during the copy process,
COPY32.COM displays an error number and prompts

you press [START] to restart, or [SELECT] to return
to the DOS 2.5 menu.

Note: Unless you have two disk drives, you will be
unable to convert files of more than 124,700 bytes
(300 bytes less than the maximum file length possi-
ble under DOS 2.5).

DISKFIX.COM

This program begins by showing you the current
drive number and a menu with these five options:
1. Change Drive #
2. Unerase File
3. Verify Disk
4. Rename File by #
5. Quit to DOS

Type the number of the function you wish to use
but do not press [RETURN] after typing your choice.
After activating an option, follow the prompts.

SETUP.COM
This program begins by showing you a menu with

HANDICARDS

Quick Reference Instructions for Atari'Programs

these four options:
1. Change current drive number
2. Change system configuration
3. Set up an AUTORUN for Boot
0. Quit - Return to DOS

Menu selections 1 and O are used for **housekeep-
ing” purposes. The two main functions of this utility
are menu selections 2 and 3. Press the number key

that corresponds to the function you wish to use, then
follow the prompts.

Customer Support

Atari Corp. welcomes any questions you might have
about your Atari Computer product.
Write to:
Atari Customer Relations
P.O. Box 61657
Sunnyvale, CA 94088

Please write the subject of your letter on the out-
side of the envelope.

We suggest that you contact your local Atari User
Group. They are outstanding sources of information
on how to get the most out of your Atari Computer.
To receive a list of the user groups in your area, send
a self-addressed stamped envelope to:

Atari User Group List
P.O. Box 61657
Sunnyvale, CA 94088

e Organized commands
@ Easy to read

Now available for:
ATARIWRITER®
Beginning BASIC

ACTUAL SIZE:11"x4 V4~

HANDIDISKS - multiple programs and files at the
unbellevable price of $5.95 per disk (plus $2.00
shipping and handling per order).

Available Disks: PICTURES I, PICTURES II (SPECIFY
KOALA OR MICROPAINTER), AMS MUSIC I, AMS MUSIC II,
PRINTER UTILITIES, GENERAL UTILITIES, MODEN
PROGRAMS, MENU PROGRAMS, SAMPLER DISK.

o Durable plastic (11" x 4 1/4")
@ Use on or off computer

HANDI PUBLISHING INC.

As an introductory offer, User
Group members may have the benefit
of reduced prices through quantity
group purchases. The regular price
of HANDICARDS is $8.95 each
postpaid.

Ten (10) or more HANDICARDS may be
purchased at $5.95 each, shipping
and handling included (to one
address).

Only $8.95 ea. postpaid
(Both for only $15.95 ppd.)
NY residents add aates tax

“Trademark of Atari Corp.

P.O. Box 453, Ardsley, NY 10502

15

Worldwide™
Users
Network

Copyright © 1985 Antic Publishing.
WUN bulletin reprinted by permission.

Using 16-Bit
Sound

by JERRY WHITE

(Copyright 1985 by Antic Publishing, Inc.)
(Editor s note: This submission by Jerry White was
donated by Antic Magazine for the SLCC ‘‘Special
Edition” Journal.)

Beefup your music from Atari BASIC with this short
program by Antic Contributing Editor Jerry White.
Learn how to program 16-bit dual-voice sound that
gives you a well-tuned 7 octaves—instead of the
thinner-sounding 4 octaves you’d ordinarily get.
Works on all Atari computers of any memory size,
with disk or cassette.

If you have experimented with SOUND commands
in Atari BASIC, you probably noticed that some of the
higher notes seem a bit flat. You may have also found
that your lowest note is the B generated by SOUND
0,255,10,8.

Using SOUND commands with a distortion value
of 10 for clear sound, you have a range of just over four
octaves. If you'd like to fine-tune your music and ex-
tend that range to seven octaves, this tutorial will tell
you how.

The SOUND 16 program will demonstrate what is
called 16-bit sound. It is based on using two combin-
ed voices to create one sound. Only two sounds can
be produced at once but the frequency of each pitch
will be more accurate and much deeper bass notes
can be generated.

The BASIC program uses an assembler subroutine
to turn 16-bit sounds on and off. A commented source
code listing has been provided for assembler hackers.
The assembler routine also appears in the BASIC pro-
gram as the DATA statements starting at line 20010.

Sound Ideas

by Lee Minard
STARFLEET Users Group, Denver

You have already heard me complain
about the lack of realism in the sounds
you get from the instructional books
(and the ATARI can do wonders with
sound) so here is another of my attempts
to get more out of my 800XL!

This time [am working on the sound
of a‘train. Why you ask? Well I did it for
the challenge. And I learned a lot from
it. I hope you do too.

This is an attempt to build the sound
of a steam locomotive pulling out from
a station. It gets close. I was never
satisfied with the whistle sound. I would
love to hear how you improved it.

The FOR/NEXT loop at line 130 reads this data and
stores our subroutine in the string S16$.

Using BASIC’s USR function, the desired frequen-
cy and volume for one or two voices can be passed to
the subroutine, as shown in the demo program. Note
that the SOUND and POKE commands found in line
150 must be executed before your first USR call.

The BASIC program reads frequency data into an
array called FREQ. This array stores 12 frequencies
for each of seven octaves. Octave one contains the
highest note frequencies, while octave seven contains
the lowest bass notes.

Each octave begins with C as its lowest note (pitch
12), and ends with B as its highest note (pitch 1). Mid-
dle C (SOUND 0,121,10,8) is frequency 3414 or
FREQ(4.12) in our array. The next highest note, C#,
is FREQ(4,11). The next lowest note, B, is FREQ(5,1).

The program uses a countdown timer to clock
delays. When you POKE a number from 1 to 255 into
location 540, it will be decremented every 1/60th of
a second. 1/60th of a second is called a “jiffy.” Thus,
if you set the variable WAIT =60, then go to the
subroutine beginning at line 480, you will return in
one second.

Octave, pitch and note will be displayed on the
screen as the program cycles through all frequencies.
Next, the double 16-bit sound option will be used to
demonstrate the use of consecutive octaves. Finally,
a short tune is played just before the program ends.

Seeing and hearing the demonstration program as
it runs and studying the program listing should help
you understand the use of 16-bit sound. With any
luck, you and your Atari will soon be making beautiful
music together.

16

LT

System Key to the Key System

THE KEY SYSTEM
- AN ATARI BBS
OPERATED BY
THE SAN LEANDRO
COMPUTER CLUB
. 415 352-5528 - ALWAYS OPEN

QUICK REFERENCE CARD
By Mike Sawley

GENERAL SYSTEM COMMANDS:

USE THESE COMMANDS AT THE
MAIN *GO PROMPT.

[A] ASCII/ATASCI TOGGLE
Used to switch between these two
translation modes. If you change the
translation mode at your end only, then
the BBS will no longer understand your
commands! Use this toggle!

[D] DOWNLOAD A FILE

You must give the file name exactly
asitisshown in the files listing. Colons
(:) and periods (.) are not allowed. If you
misspell the file name, the system will
tell you "File not found.”

[E] ENTER A MESSAGE

Drops you into the message enter
routine of the currently active message
base. See further commands in the mes-
sage section.

[F] FILES LISTING

Presents a list of the available files for
downloading. You will be asked to sup-
ply a category from a menu. You may
skip this menu by appending the cate-
gory code to the [F] command. |F G] will
find all the games. [F U] will find all the
utilities.
[G] GOOD BYE

The proper way to log off. Confirma-
tion is made to be sure you really want
to leave.

[K] KILL MESSAGE
Drops you into the delete message

routine of the currently active message
base. You need to supply a message
number to kill. The message must have
been posted by you or addressed to you
for you to delete it.

[L] LEAVE MESSAGE FOR SYSOP

Lets you enter a private message to
the Sysop. The system will accept mes-
sagesof 15 lines and 80 columns maxi-
mum. Since these messages go to the
system printer, no one but the Sysop
will see it. Also see message editor
commands.

[M] ELECTRONIC MAIL

Activates the Electronic Mail Base.
This is the only place where private
messages are kept. You may only read
messages addressed to you and/or
posted by you. Since the system scans
the base sequentially it may take some
time if your message is at or near the
end of the queue. When you first enter
this section you will be told if you have
any messages waiting.

[P] PROFILE OF YOURPASSWORD

Lets you see how you have been us-
ing the system. In addition, you may
change the following contents of your
file:

1} You may enter a new password
(must be 4 characters!).

2) You may enter a new phone
number.

3) You may change your system
parameters.

4) Toggle system clock on/off.

[R] ENTER THE CURRENTLY AC-
TIVE MESSAGE BASE

Will tell you what message base is
active and ask if you want to search for
messages addressed to you. If you have
messages waiting, you will be told
which messages to read. You are then
advised how many messages are in the
base and the low and high message
numbers. You are then given the mes-

sage base Select: prompt. See message
base commands below.

[U] UPLOAD A FILE TO THE
SYSTEM

Youmust supply a file name. As with
downloading, colons and periods are not
allowed. You have to tell the system how
long the file is in single density sectors.
You must catalog the file from menus
that will be displayed. You should always
use XMODEM for uploading. If you use
non-XMODEM, begin your transfer IM-
MEDIATELY, since a pause of 10 sec-
onds tells the system to save out the file
or abort if there has been no data sent.

[Y] YELL FOR SYSOP

If paging is off you will be told that the
Sysop is not around. If paging is on a
message will be displayed telling you
that the Sysop is being paged and you
may continue to use the system. The
Sysop has the ability to break in at any
point.

[Z] MESSAGE ZONE SELECTION

There are several message zones
(bases) available on the system. You will
be given a list and asked to choose one
of them by number.

[*] DATA BASE AND HELP FILES

There are a number of interesting text
files to be found here, including a short
help file. You should choose the file to
read by its number from the menu. You
will be given the option to use XMODEM
when reading the file, but since they are
currently all text files, this is not really
necessary unless you want to save one
of them to your disk.

[?] COMMAND LIST
Will display a list of available
commands.

MESSAGE BASE COMMANDS
USE THESE COMMANDS AT THE

,MESSAGE BASE SELECT: PROMPT

[R] READ MESSAGES COMPLETE
Lets you read the complete message.

[B] BRIEF MESSAGES
Reads only the header of the message
(to, from, date, title).

[T] TITLE OF MESSAGES

Reads only the title and date of the
message. Lets you mark messages for
future reading (See [M]).

[M] READ MARKED MESSAGES

Reads the messages you marked us-
ing the [T] option. This must be the next
command after [T] or the list you gen-
erated with [T] will be lost. The maxi-
mum number of messages that can be
marked is 16.

[D] DELETE A MESSAGE

Lets you remove a message from the
system. The message must have been
addressed from you or posted by you to
be deleted.

[S] SEND A MESSAGE

Lets you enter a message into the sys-
tem. Similar to the [E] command but
from the message base instead of the
main prompt. See message editor com-
mands below.

[C] CONTINUOUS TOGGLE

The default is to read a message,
display a command string at the end of
each message. If you would like to do
away with this command string, turn on
continuous display. There will be a short
pause at the end of each message. If you
press a key during this pause, the com-
mand string will be displayed. If you do
not press a key, the next message in your
queue will be displayed.

@] QUIT

Exits the message base and takes you
to the main *Go prompt. If you have
posted or deleted messages, there will
be a short delay while the system writes
out a new index.

81

[Z] MESSAGE ZONE SELECTION

Lets you change message zones
(bases). Choose the one you want to go
to by number from the list.

NOTE: When requesting the [R], [B] and
[T] commands, you will be asked for
message numbers. There are several
ways to tell the system which messages
to display:
{+] ALL messages, lowest to highest.
[~] ALL messages, highest to lowest.
{3,5,9,2] gets these message
numbers.
[40-50] gets all messages from 40 to
50 inclusive.
[20,22,70-65,16] gets combination.

MESSAGE EDITOR COMMANDS

USE THESE COMMANDS FROM
WITHIN THE MESSAGE EDITOR
(These commands must be entered as
the first characters of a new line and
must include the [/] so the system can
tell a command from a character that
is part of the message.)

[/L] LIST MESSAGE

Listswhat youhave entered. Thiscom-
mand works two ways. If entered as
shown, it willlist the entire message. Ifa
number is appended to the command
{([/L5)), the system willlist the next 5lines
starting with the line that you are on.

[/T] GO TO TOP OF MESSAGE
Takes you to the top line (line 1) of your
message.

[/B] GO TO BOTTOM OF MESSAGE
Takes you to the bottom line of your
message so you can add to the message.

[/N] NEXT LINE
Takes you to the next line in the mes-
sage so you can edit it.

[/U] MOVE UP
Moves you up a line.

[/G—-] GO TO LINE NUMBER ##

Lets you go to line number —- for
editing.
[{/D] DELETES THE CURRENT
LINE

Removes the line that you are on from

the message. All lower lines will be [CTRL X] CANCEL XMODEM
moved up to fill in the space. ' TRANSFER
WIll cancel an XMODEM transfer
[/1/] INSERT A LINE
Anything after the second slash will gefore any d?mj Is s;;nt.{)lb Cancelfaftir'
be Inserted as a new line in your mes- ata tran?malss on asd egun, r?a(t:ir N
sage. All lower line will be moved down. your terminal program documentation.

Please note that the second slash is re-
quired!

[/C/stringl/string2] CORRECTION
Finds the FIRST occurence of
[stringl] and replaces it with [string2].

Note that all three slashes are required. The Key System is an Atari BBS but
[/S] SAVE any computer type may log on. If you

When you are satisfied with your are not an Atari, or log on in ASCII
message, this will save (or post) it. translation with an Atari, you must

[/A] ABORT THE MESSAGE specify your terminal parameters.
Lets you get out of the message enter | €s¢ may be changed with the [P] com-

routine without saving the message. mand. The terminal parameters are:

1) Line feeds Y/N
[/? or /H] HELP 2) Clear Screen code (or Home value).

Lists a brief summary of the message The system is asking for the decimal
editor commands. value of the ASCII code that will clear

NOTE: The message editor is line your screen and place the cursor at the
oriented. You must be on a line to edit top left of the screen.
it. Also please note the symbol printed 3} Line Length. Default is 40 col-
after the line number. [A)] means that umns. This is used to determine how
you are creating this line. [A :] means long a line may be type in before the
you are editing this line. systen generates a RETURN during
message entry. If you specify 40 or less
the system will enter areturn after that
many characters. Any message you en-
OTHER COMMANDS ter will be a maximum of 30 lines of that
[CTRL S] PAUSE DATA TRANS- many characters. If you specify 41 to 80
MISSION columns the system will enter a return
Used to tell the system to stop sending after that many characters again, but
you data for a while so you can read it. your message may be amaximum of 15
The system will automatically start up lines of that many characters. A mes-
again after about 3 minutes. sage to the Sysop will always be 15 lines

[CTRL @] RESUME DATA TRANS- of 80 columns, the format of the printer.
MISSION

Used after a CTRL S was sent to tell
the system to start sending data again.

[CTRL C] CANCEL COMMAND NOTES ON XMODEM TRANSFER

Will generally cancel any command AMODEM, SMARTERM, ETMODEM,
that you have entered. TERM 1030 and HOMETERM all sup-
[CTRL N] READ NEXT MESSAGE port XMODEM file transfer. It is the on-

Lets you skip on to the next message ly way toreliably get tokenized or object
in your queue without having to wait for files. XMODEM is a way of sending
the command string at the end of the blocks of data so that there is a check-
message. sum made at each end. If the check-

TERMINAL PARAMETERS

sums match the computers go on to the

" next block. If there is an error the cur-

rent block isresent. There will be aretry
up to about 9 times before the transfer
is aborted. The file is also saved out to
disk automatically at the end of the
transfer. The BBS and most terminal
programs work differently when it
comes to setting up for XMODEM trans-
fer. The BBS needs a [D] or [U] command
to tell it that a file transfer is to take
place. The BBS will ask, “Are you using
XMODEM (Y/N)." Answer Yes or No as
appropriate. On the other hand, most
terminal programs have FOUR different
commands for file transfer. In most ver-
sions of AMODEM there are: [C] Capture
incoming data. (U] Upload data without
XMODEM. [R] Recelve data with
XMODEM. ([S}SEND data with
XMODEM. As you can imagine, it is easy
to get all these commands confused so
be careful! Use the same protocol at both
ends for a successful transfer.

NOTES ON COMMAND STACKING

The BBS allows you to bypass most
ofthe sub-promts and sub-menus with
command stacking. The places you can
do this are too numerous to list, however
a few examples should get you going.

[Z 2] - Takes you to message base

number 2 and starts reading
messages in the reverse
direction.

[R 80-100] Beginsreading messages in
the current message base
starting with message 80 and
ending with message 100.

[Z4E} Switches to message zone num-
ber 4 and drops you into the
message editor.

[* 3] Reads Data Base item number 3.

As you can see, command stacking is
a fast way to get around the system.
However, until you get used to the sys-
tem and know where everything is you
could easily get lost, since you are skip-
ping past most of the sub-prompts. Just
experimentand see what happens. You
cannot hurt the system!

by Jim Warren

This little demo shows only part of
what you can do with four players us-
ing the PM and joystick routines of the
ACTION! TOOL KIT. The routines allow
you to easily manipulate players
without knowing much more about
them than what they are.

They are four independent vertical
stripes that can be shown in three
widths, 2 vertical resolutions, any col-
or and can be moved rapidly about with-
out interfering with anything else on the
screen. They can be made to appear in
front of or behind other screen objects.
Their confluence with any other object
can be detected at any time. Any section
of them can be shown at any time so that
they do not have to appear as stripes.
They can be animated by changing sec-
tions of the stripe shown on the screen.
If they are put side by side they can
almost cover the screen. In short, what
they are is neat!

This little demo was written in AC-
TION! and uses the player missile and
joystick routines on the ACTION! TOOL
KIT. There is an editor that allows you
to draw on an eight by eight grid and
then display your drawings as sections
of the playerO and as the control
characters displayed on the title screen.
You can display various lengths of the
player starting at various places on the
stripe and you can move the player
around with the joystick. It is a simple
little demo designed to give you a “'feel”
for player missile graphics. If you experi-
ment with the program you will quick-
ly grasp the ideas involved.

The demo uses an Antic mode 4
display list so that we can have four col-
ored text in a graphics O “environment”.
I have had to draw a new set of letters
and numbers, however, because the
standard character set in ROM does not
show clearly in Antic mode 4. I drew the

new character set with the editor in this
demo. The editor shows a section of
playerO and a character in standard and
inverse mode just to the left of the
editing box. You can redraw 9 sections
of playerO and the 9 graphics characters
that are displayed in the title screen by
pressing OPTION to select the section
that you want. You then draw in the box
with the joystick. Then press START to
make a simultaneous change in the
player and the joystick. The editing page
will give you a chance to experiment
with the four color characters of the IR
(instruction register, in this case antic
4) modes of the antic chip.

In the IR antic modes, the characters
are not displayed as an eight by eight
grid of dots as in graphics O where the
dots are displayed individually, but as
an eight by eight grid of dots where the
dots are displayed in pairs. The color of
each two bit {no puns please!} pair is
determined by how the bits in that pair
are set. The gold and blue bars at the
top and bottom of the editing box in-
dicate the dots that are displayed
together. Think of the box as four col-
umns across and eight lines deep with
alternating “gold” and “blue” columns.
There is a legend at the bottom of the
screen showing how the paired bits are
colored. If no bits are set in a column
then that pair takes color from register
4. Since register four also sets the
background color, that pair of bits will
not appear. If both bits are set in a col-
umn then that pair of bits is colored by
register 2 in standard mode and by reg-
ister 3 in inverse mode. If the left bit on-
ly is set in a column then that pair of bits
takes color from register 1. If the right
bit only is set then that pair of bits is
displayed with the color of register O.
You can change the color of the registers
by holding down the ESC,1.2,3,4,0 keys.
You can toggle the direction of the color
change by pressing the up or down ar-
row so that if you go past an interesting
color, just change direction and go back.
Up adds to the values displayed and
down subtracts.

A0

NEW XL TRANSLATOR/MENU

Bill Eash

Included on the Special Edition disk
is a special XL Translator. This package
was put together by Dan Philipps, an
SLCC member for the past year. Dan
used the “"FIX-XL" (OCT. 84 DOM), the
“SPIFFY MENU" (APR. 84 DOM) and an
automatic turn off of BASIC.

This was put together as an “AUTO-
RUN.SYS" file (with much rearranging
and debugging of code). Together with
a standard DOS, these files will allow
you to have multiple BINARY files all on
the same disk as your translator. You
will have to rename "XLATOR" to
“AUTORUN.SYS".

This is how you use it:

1) Boot disk which auto loads the
translator

2) AUTOMATICALLY removes BASIC

3) Pulls up a menu with your pro-
grams on it

4} Press the number next to the pro-
gram selection you want

Non XL users can use this also. The
computer just ignores the translator
load and BASIC turn off. Just remember
to pull your BASIC cartridge. You can
have faster loads, though, if you just use
DOS and the SPIFFY MENU without
having to load the translator.

There isan INSTRUCTION program
on the disk and it is aimed at the begin-
ning user. The instructions were writ-
ten by my son, Joe, in ACTION(c). Joe
has called this package the “XL-ATOR"
for the XL - TRANSLATOR.

Although the instruction program
states that this package does not give
the option to load a binary boot disk, it
will work. When the menu appears
remove the XL-ATOR disk, insert the
boot disk and press 1 (as if you selected
program 1 on the menu). The disk will
now boot. The translator is still in the
system and basic is still removed. This
was tested using Letter Perfect, Data
Perfect, and others. When Filemanager
(which requires BASIC) was tested, the
message appeared to insert the BASIC
Catridge verifing BASIC was still
removed.

19

-—N\L

by Randy Holmes - ST ATU.S. Users’ Group

(Editor.s note: This article was taken from the S.T.
A.TU.S. newsletter, January, 1985. It is Randy'’s first
in a series of articles on digital sound. Others may
follow in future issues of the SLCC Journal.)

This is the first in a series of articles on the digital
recording of sound with your Atari. As you may recall,
an article in the July, 1983 issue of ANTIC magazine
presented an article on this same subject. The ANTIC
article included a program, which itself was an adap-
tation of an Apple program from an early issue of Byte
magazine.

In this set of articles, I will present several modifica-
tions to what was originally an awkwardly coded and
hard to follow program. In the course of constantly
updating this program, we should all learn something
about programming, digital sound and special func-
tions of the Atari. Rather than enumerate the changes
that have been made to Ed Stewart’s program (the pro-
gram is now almost unrecognizable), I will discuss the
specific points of the program as it is now.

The program requires a special circuit to be built
to allow the Atari to be able to read an analog voltage
at its paddle port (Port 3. Sorry, XL owners, we'll fix
this problem next month: in the meantime, get your
circuit built). The schematic is included in this arti-
cle. In working with this circuit, I have found that the
two MegOhm potentiometer that was included in the
original circuit schematic may be eliminated with no
ill effects on the circuits operation. Once you have this
circuit built (see accompanying construction article},
it is possible to read a changing voltage (as might be
produced by a microphone), as a resistance value from
0 to 255. This circuit works well in its present form,
although we may change it in future articles.

The program, RAMTALKER, is a friendly, fast,
easy-to-use program. After initialization, a menu is

presented. To perform a desired function, press the
number corresponding to that function; a BASIC
“GET” command eliminates the need to type a
[RETURN]. If the function you picked is not the one
you wanted, simply press [RETURN], and the pro-
gram will take you back to the original menu. After
a function is selected, the program will prompt you
for more information.

RECORD -will ask for a sample speed. Sample
speed is the speed at which the program will read the
information coming in at the paddle port. A sample
speed of 1 willrender the highest quality sound, while
asample speed of 255 will result in nearly unintelligi-
ble noise. Once a sample speed is specified, followed
by a [RETURN], press the START button to begin
recording.

PLAY -will ask for a sample speed. This sample
speed will be the speed at which the sound informa-
tion contained in memory will be played back. A good
speed is usually around 55, giving a natural sound
to the playback. Of course, you may wish to have your
recorded sounds resemble the Chipmunks of Lurch,
in which case you would choose a higher or lower sam-
ple speed. Again, pressing START after giving a sam-
ple speed will then begin playback.

THROUGHPUT -will ask for a recording sample
speed, and will allow you to play sounds through the
speaker with no time limitations. Press START to
begin, and a [SYSTEM RESET] will get you out of this
one.

SAVE -will ask you for a file name. Include *'D:” or
“C:”" in your file specifications.

LOAD -will ask you for a file name. Again, use “D:"”
of “C:” in your specs. The program uses the Atari’s
Central Input/Output (CIO) routines, which makes
saving and loading sound files quite fast, even though
sound files are 132 sectors long (Single Density).

WAVEFORM PLOT -does just what it says. It plots
a picture of the sound stored in memory (in locations
16384 to 32767, a full 16K) on a graph of Time against

20

Frequency. The Time at a sample speed of 1 is a little
over 7 seconds, and I have not measured the frequen-
cy response of the system. We'll do that in another ar-
ticle. The sound is divided into four separate bands,
so that we are able to plot the entire contents of
memory with some detail. To me, the waveform plot-
ting routine is an exciting feature of this program. You
can say a few words into your Atari, and then have
the computer show you what your voice looks like. You
can see how different sounds are similar, and where
they are different. Looking at a plot of myself saying
“file” and “while”’ gives me quite an appreciation for
the difficult task that a speech recognition system has
to perform.

These are the basics of RAMTALKER. In the com-
ing months we will modify the program even further.
Some things I hope we can do with the program:
editing the sounds in memory, improvement of sound
quality, special effects (echo and speed effects) and
maybe, just maybe, some speech recognition.

[am sure you have your own ideas as to where this
program could go. I would be happy to hear your sug-
gestions, criticism and comments.

+5V(PIN7)

MICROPHONE

(| or
PHONO JACK

0.l UF

AN
7 T

POT A (PIN 9)0

Fig. 2 Voice Input Circuit

Fig.1 Pin Configuration of Console End

OBNONIONONG]
®© 0 ® 0

PIN NUMBER

1-4 joystick input
POT B
trigger

+5 Vohs
Ground
POT A

-3 NN NP

RamTalker Circuit
Construction Notes and Parts List

In place of a microphone, you may want to
substitute a simple quarter-inch jack of RCA-type jack
to allow you to plug in a guitar, keyboard, or tape
player; this will give you higher quality sound than
recording from a microphone will. Adjust the volume
control on your source to get the best, most distortion-
free sound.

PARTS

1 .1 MF nonpolarized capacitor available at Radio
Shacks everywhere.

1 NPN transistor 2N2222, this is a general purpose
transistor, almost any NPN transistor will work.

1 100K Ohm Fixed resistor (Brown-Black-Yellow
resistor code)

1 DB-9 connector plug, that’s a joystick plug to you
and me.

You may mount these components on a small cir-
cuit board (see Figure No. 2) or simply wire them
together without a board; either way will work fine.

Remember not to keep the soldering iron on the
transistor too long, or you may damage the compo-
nent. The same goes for the resistor and the capacitor,
but they have a higher tolerance to heat. Also, be sure
to observe the Emitter-Base-Collector specifications
in the circuit. The back of the transistor Package
should have the pins specified in a diagram such like
the transisitor in Figure 2.

After the circuit is constructed, simply run a two-
conductor wire from the specified points on the cir-
cuit to the correct pins (7&9) on your port plug. Test
the circuit by plugging it into Port 3, and run the RAM-
TALKER program. Select the THROUGHPUT option,
with a sample speed of 1. Plug in a microphone, guitar,
tape player or some other source, and see if any sound
comes from the TV/Monitor speaker. If not, go back
and check your wiring, making sure all connections
are good.

With this circuit up and running, you are ready to
begin digital sound recording with your Atari
computer!!

21

MODIFICATIONS

DRIVE

810 =

by Banford Wong

(Editor’s note: Do not attempt to do this drive
modification unless you have had experience doing
soldering and wiring. The SLCC JOURNAL is not
responsible for the accuracy of this modification or
damage caused by this. There are other versions of
this switch available if this does not suit your needs.)

A previously published article in the SLCC Jour-
nal on an 810 Disk Drive write-protect modification
prompted me to come up with this version. It uses a
momentary switch, a toggle circuit and an LED for
“OVERRIDE" indicator. This idea is more involved but
I believe the advantages it provides are worth the
effort.

The main advantage of this override modification
is that the circuit will always come up in the normal-
safe mode whenever the disk drive is turned on.
Second, because of the unique momentary switch
with a built-in LED and the location on the front bezel
on which the switch is mounted, the disk drive looks
very nice.

This modification uses a momentary switch with
abuilt-in LED, a CD4013 dual D Flip-Flop, and 2 NPN
transistors as output drivers. Section 1 of the D Flip-
Flop is used as a switch debouncer. The RC network
on pin 4 provides the filtering. Section 2 of the Flip-
Flop toggles each time the switch is depressed. The
RC network on pin 10 assures that the circuit will
come up in the safe mode whenever the disk drive is
turned on. The momentary switch is pressed to ac-
tivate the write-protect override and the LED will
indicate its status.

The switch with built-in LED I chose to use is strict-
ly for cosmetic reasons. Any momentary switch and
LED would work. The switch/LED is the UNIMEC
series made by MEC. The circuit is built on a small
perf board and mounted towards the front of the side
board using 2 threaded stand-offs. To avoid having to
drill holes through the side board I used RTV to secure
the spacers to it. The MEC switch is mounted on a
square hole where the Atari logo is. Be very careful
cutting the square hole. A tight fit is required. The
switch binds slightly on the side board. A fiber spacer
added between the PC board and the chassis took care
of that. The ADD ON circuit is connected to the disk
drive via J101 on pins 1,2, and 5. Pin 1 is on the
bottom.

22

o1

<P 013

ADD ON CIRCUIT

-

i

810 CIRCUIT, SIDE BOARD

+5 .
1 i
.1 ,
.
L -
=)
220
J101
+5
! — R
Wi 2N3018 150
AN wAA
: 4
100K !
: hi] 4 2
! |
= - 1
*s ! XZ"’ 3 AlOCE
2N3415
! !
|
I
5
]

23

1050

by Bill Fletcher
Queensland ACE

(Editor's note: Do not attempt to do this drive
modification unless you have had experience doing
soldering and wiring. The SLCC JOURNAL is not
responsible for the accuracy of this modification or
damage caused by this. There are other versions of
this switch available if this does not suit your needs.)

=l
o

This month’s modification adds a write-protect
bypass switch to the 1050 disk drive and will save you
having to constantly remove and re-stick write-protect
labels. A flashing LED (Light Emitting Diode) is
recommended so that you will be aware that your
write-protected disk can be written to.

Undo the four screws in the drives casing and lift
off the cover. Choose a suitable place to mount the
switch and LED before starting work. The LED would
naturally be on the front face of the drive but the
switch may be mounted anywhere it will not foul the
mechanism or touch any of the components.

oINK P11 11
A 1
Y
@)=
3
4L
BLACKS <7
D-P-D-T
SWITCH

Once you have decided this, find the strap (link)
marked “JP7” which is situated in the middle of the
board, just behind “U10” (one of the chips). Remove
this link. The front connection of this link will be the
supply point for the CENTER pole of your switch. The
other side is connected to one of the end terminals
of the same pole of the switch.

Connect the poles of the switch as shown in the cir-
cuit diagram below, 5 volts can be found at “TP13"
located near the middle of the board, approximately
a quarter of the way from the rear. The earth can be
connected to “TP15" located near “TP13".

Ensure correct polarity of the LED. If you can not
determine which way it should go put it in and if it
fails to light reverse the polarity.

The 100 Ohm resistor is there as a safeguard. It is
recommended but not essential. The more adven-
turous of you could get a 3 position, 3 pole switch
wired as follows:

POSITION 1 - bypasses “JP7’ completely making
the system believe the disk is protected.

POSITION 2 - system normal (acts as “JP7").
POSITION 3 - as shown here.

JPS
R8
5V
D\@M
JP6 U1
remove this
link
1
§ 2700
LW
1000)
1/4W

FLASHING
LED
DIAGRAM
KEY:— EXISTING CIRCUIT MODIFICATION —= ”* >

o e Light
oo _m— —— Emitting
e e RDlodg polarities.
SWITCH LED EARTH RESISTOR A {-ve is short lead]

24

Knowland Stets
Arboretum and Perk

{ A
' RiL VQ ‘b
. b =3 sousﬂsn’
.@

“‘ »

R ow

(it \UN\

Copyright 1985 Michael Curry.
All Rights Reserved.

Introduction:

Have you ever wondered how the Atari file manager
allocates space? Or where a file resides on a disk? Or
even where the free space on the disk is located?
DMAP will answer these and other mysteries of the
Atari disk structure.

DMAP was designed to display the Atari diskette file
structure in a meaningful and (hopefully) entertain-
ing way. DMAP is easy to use. There are no compli-
cated options or commands to remember.

BASIC DMAP INSTRUCTIONS:

BASIC DMAP requires an Atari BASIC Cartridge.

Boot your DOS 2.0S disk.

Insert the disk with BASIC DMAP into the drive.

Type: RUN “D:DMAPBAS '[return]

DMAP will then ask you for the drive number you
wish to map.

Enter the drive # and press return.

DMAP will then ask you to insert the disk to map
in the selected drive and press return.

After you have done this, DMAP will show a map
of used and unused sectors on the screen.

When you are done viewing the map, press any key
to rerun the program.

EXTENDED DMAP INSTRUCTIONS:

Boot your DOS 2.0S disk.

If you have a BASIC Cartridge in the computer, type
DOS [return].

When the DUP menu appears, remove the disk from
the drive and insert the disk containing DMAP.COM.

Type L (for binary load) and press [return].

Now type DMAP.COM and press [return].

After the program loads, it will run automatically.

The screen will now show an introductory message
and ask what drive you wish to map.

Enter the drive # containing the disk you wish to
map or O to return to DOS.

The program will now ask you to insert the disk to
be mapped into the selected drive. If you haven't
already done so, do it now. Press [return] to proceed.

You will now see a menu asking you to select which
function is desired.

You may now select:
1: Map Entire Diskette
This will show the entire diskette surface, in-
cluding used and unused sectors.

2: Trace Specific File
This will present you with a menu of files on
the diskette and allow you to select which file
you want to trace.

After DMAP is finished with either option, it will
display “Press any key to continue” in the upper right
hand part of the screen. When you are finished look-
ing at the map, press any key and DMAP will return
to the starting display and you will be allowed to repeat
the above functions.

Atari Disk Structure Explained
When the Atari DOS creates a file on the diskette
it must find an unused section of the diskette to place
the file. In order to quickly find where the unused sec-
tions of the Atari diskette are, the DOS uses what is
known as the Volume Table Of Contents (VTOC).

The VTOC is a single sector on the disk that is used
to maintain a record of where used and unused sec-
tors are located.

The VTOC sector is organized as follows:
Bytes O through 9:
Miscellaneous Information
O: Type Code (0 in DOS 2.0)
1: # of sectors total (low byte)
2: # of sectors total (high byte)
3: # of unused sectors (low byte)
4: # of unused sectors (high byte)
5: Reserved
6-9: Unused
Bytes 10 ($A) through 99 ($63):
Sector Usage Map
720 bits, each bit representing a sector in DOS 2.0
If a bit is 1, the sector is unused.
If a bit is O, the sector is used.

For a thorough explanation of the Atari DOS 2.05
structure, please buy a copy of “'Inside Atari Dos”, the
most complete and detailed documentation on the
subject I have come across.

Thanks to Bill Wilkinson of OSS and Atari for ex-
plaining how everything works.

EXTENDED DMAP was written in Deep Blue C.

25

ACTION! |

by Frank Daniel \

The following is a BlackJack program I wrote in
ACTION! last November. The program itself is fairly
well documented so I will not go into detail as to its
workings. There is one important item though. This
program requires a support routine equivalent to the
ACTION! TOOL KIT's PMG.ACT. Alsoif you are using
the player missle package of an older TOOL KIT, the
graphics procedure requires a fix which I will explain
later in the article.

Most of the widely documented graphics techni-
ques are used in this program. Some of which include
redefined character sets, player/missle graphics, direct
screen writes and vertical scrolling. All have appeared
in one or more of my tutorials in the JOURNAL.

The rules of play for the game are fairly standard.
The deck consists of 52 playing cards (though it can
be changed easily if wished). A bet must be two dollars
or more. A BlackJack pays 1.5 times the bet (approx-
imately since I did not use floating point, so stay with
even bets!). The dealer must hit 16 or less and a soft
17. You can double down on 10 or 11. Insurance can
be obtained if the dealer shows an ace by hitting a key
at the insurance prompt. The cost of insurance is 1/2
of your bet. Be quick in deciding on insurance because
you only have four seconds to hit the space bar. Un-
fortunately there is no splitting. I tried to fit it in, but
time did not permit it. To exit hit the escape key at
either the bet prompt or the player prompt.

Now about that fix which, hopefully, OSS has
documented by now. Apparently in the early tool kits
the graphics procedure in the player missile routine
did not permit a smooth exit from graphics O via the
PMgraphics routine, causing a 130 error. The easiest
fix for this is to change the “Graphics’ procedure and
all subsequent calls to another name. You would then
replace the ‘‘screen open’ portion of the procedure
with a call to the cartridge or RealTime package
Graphics routine.

That is it. So long for now and good-luck.

26

Direct Screen Writing

Direct Screen Writing
by Frank Daniel

Some years ago | was writing a pro-
gram that in order to be user friendly
required a few menus. Well as you can
imagine, this was not too much of a
problem. Anybody that has ever written
a multi-task utility has used a menu
routine at one time or another.

But as the program got larger, the
number of menus got larger and most
of the menus were getting sub-menus.
This WAS getting to be a problem. Not
only were these menus taking up a lot
of memory, but it was taking longer and
longer to get from point A to point B in
the program.

Now there are two thing I really hate.
One is programs that gobble up too
much memory. The other is waiting for
the program to finish printing a menu.
Ifaced areal dilemma. It is bad enough
having just one of these problems in my
programs. But both?? NO WAY!! My self
respect could not take it. I had to do
something!!

I was now faced with three options if
1 were to continue the project. These
were:

1. Doing a complete rewrite of the
command processor into a CPM type
system.

2. Developing a hybrid which would
be a cross between the menu system
and the CPM system.

3. Find a way to change the menus
fast.

I had to rule out the first option right
off the top. A major rewrite just could
not be done in the time available. The
second option went very quickly after-
wards. Though it would not mean a
major rewrite, I just could not bring
myself to do it (self respect again. . .
drat it). All that left was changing the
menus rapidly.

There are two methods of updating

the screen quickly. One is page flipping
and the other is direct screen writing,.
Page flipping is the fastest method of
changing the display known to a ATARI
programmer. Just change two bytes in
the display list and the whole screen
changes. But with all this speed comes
a few problems.

One, you have to preset all of your
menus. By that I mean you have to make
sure that all of the characters in your
menu have been offset correctly. This is
because ANTIC has its own set of char-
acter values which are very different
from ASCII or ATASCII. Another prob-
lem is arranging the menus in memory.
The ANTIC is a bit touchy about which
page boundaries get passed when
describing the screen’s data area. (Hint:
NEVER-EVER try to pass a 4K boun-
dary!!}

The worst problem with page flipping
though was the amount of memory it
would use. The “GRAPHICS O” screen
mode uses 960 bytes for its Load Mem-
ory Scan (LMS) or data area. Page flip-
ping would require that a number of
blocks this size be set aside for the ex-
clusive use of the menu driver. Add to
this the dead areas between the menus
needed to prevent page boundary prob-
lems and you can easily see that the
amount of usable program memory is
quickly diminished.

That leaves direct screen writes. Do-
ing direct writes also has its problems.
The first, like page-flipping, is that most
of the text requires offsetting. This is not
a big problem. There are many ways to
rectify this. You can precalculate the
offsets or write a short program that
does it for you. Another method is to in-
clude an offset routine in the program.
This is not very efficient for a menu
driver but is very necessary when the
text is varied or unknown. I actually use
this method in the preceding demo.

Another problem with direct writes is
parameter passing. How do you tell the
routine where the text is, how long it is
and where on the screen to put it. The

solution to this are also varied. The first
that comes to mind is reserving a place
in memory for the parameters. When
dealing with BASIC though, it is easier
to use the stack.

This brings me to the BASIC demo
that follows. The demo will permit a
BASIC user to write directly to the
screen.

To call the routine you use the BASIC
command

A=USR(CDE,X,Y, ADR(AS),LEN(AS))
or the alternate

A =(CDE,ADR(AS},LEN(AS)).
CDE is the address of the machine code
string. X is the screen column and Y isthe
row position where you want to start the
display. A8 is the string to be displayed.
If you do not pass a X and Y parameter,
the routine assumes that you to want to
use the present cursor position as default.

The routine will display all characters
with one exception. The EOL character
(155) is used as a line delimiter. This for
multi-line displays without the need of
counting the characters. To go to the next
line, simply insert an EOL characterat the
appropriate location in the string. One
warning, the routine assumes that your
starting column position is the left margin
and will start from there.

While we are on the subject of warnings,
let me caution you about a few items.

First, with the exception of screen posi-
tion, the routine DOES NOT do any error
checking. You can pass strings larger than
the screen. This normally is not a problem,
but forlorn is the person who does this
with a relocated display list and no back-
up!

If you do make an error in the screen
position, the value 141 (cursor out of
range) will be passed back.

Do not let the machine code call a
subroutine. BASIC gets a little confused.
The program does not crash, but does not
work right.

Along with the BASIC demo I have in-
cluded the assembly listing of the routine.

27

A View From Japan

A Cry
For Help

By MAKOTO NAGATA

2117 HASTE ST. #310
BERKELEY, CA 94704

U.S. representative.
Fuji Atari Computer Users Group, Japan
Member, San Leandro Computer Club

(Editor’s note: The following set of superb articles
are by new SLCC member Makoto Nagata. We have
decided to devote a whole section to his articles. We
hope to hear more from Makoto!)

Hello to all of the members of the S.L.C.C. I really
thank you for giving me a place to introduce our club,
Fuji Atari Computer Users Group.

One very unfortunate situation has made it ex-
tremely difficult to maintain our club; there has been
no dealer of Atari computers in Japan and no support
from Atari itself.

Our club was founded by Mr. Iori Fujita (who is now
in Peru) and myselfin 1982. Shortly before that time,
several computer stores in Japan individually im-
ported Atari computers and sold them. There were
rumors that Atari had a plan to enter the Japanese
market and it is likely that those dealers wanted to
take them in advance.

Of course we bought Atari because it was the best
we had ever seen. But Atari did not come and one day
we got letters from those computer stores saying,
“Sorry, we are not going to support you any more. Here
is a list of those to whom we sold Atari’s. It is your own
choice to keep your Atari or throw it away and buy
an Apple (1) Isent letters to everyone on that list, and
our club was founded.

Although our club was started by Japanese who
bought Ataris at those stores, there was another group
of people out there weeping at their Atari in Japan;
those Americans or Japanese who brought their Atari
from the U.S.

Mr. Iori Fujita was one of those people. He and those

P 4 N

Americans, including Mr. Joe Langdon and Mr. Bob
Rutherford, greatly helped our club by individually
importing magazines, software and- hardware from -
the U.S. Ireally thank those members for their devoted
activities.

Some of our members were so devoted that they
almost ruined their usual activities, because we had
to do everything by ourselves.

Early on, our main activity was to ask Atari to sell
their computers in Japan but we soon gave up
because they would not listen to us. Atari has never
supported us although our club has been an official
one. We had to find another way to survive by our-
selves.

There was an Atari Coin-Op Division office in Tokyo
before the selling of Atari last year. When we asked
them, they very kindly did their best privately to sup-
port us although they were not selling Atari com-
puters.

They bought hardware and software for us through
their private connections with the Atari Home Com-
puter Division and they gave us some technical
manuals. They even offered us a room in their office
for our monthly meeting. We helped them in return
by giving information and advice about the Japanese
market. It might have been the happiest period of our
club. (I cannot thank Mr. Hight, the president of that
former office, enough for his help.)

Last year the new Atari company closed that Tokyo
office and opened a new one (Mr. Hight and other peo-
ple were fired). When we asked the new office to con-
tinue to support us, they refused, saying, “We will
never sell Atari computers in Japan.” [believe that
a trusted company should support, or at least try to
support, all the users of their products, wherever those
users are. This was just what Mr. Hight tried to do.

28

Now we are forsaken again (forever?). We lost our
last connection. We are holding our club meetings at
a small cafe in Tokyo. [am really anxious about the
future of our club.

Despite our tough situation I believe our club has
been very active, as might be seen in some of my re-
cent uploads to your club BBS and in the accompany-
ing articles. Most of our members are as creative and
enthusiastic as you S.L.C.C. members. We developed
lots of software and hardware by ourselves, including
printer cables and 64K RAM boards. [really hope to
be a bridge between our two clubs, although our club
seems to be fading away now.

I know that there are many almost-forsaken Atari
users around the world. Mr. lori Fujita recently re-
ported to me about those in Peru. But there seems to
be no other country like Japan, where there are many
Atari enthusiasists and no dealers. Once we were even
interviewed by a Japanese computer magazine
because the editors were so interested in Atari.

If some of you are going to Japan with your Atari,
please do not forget to call our president Mr. Masayuki
Hata at (03) 653-1258 (Tokyo). You will not be alone
in Japan cursing the poor support of the Atari
company.

(Some more information about our club can be
found in Antic magazine, international edition.)

DOS 2.0S Modification

Makoto Nagata

Fuji Atari Computer Users. Group, Japan

This program modifies ATARI DOS 2.0S so that it
can use non-resident handlers (such as R:) more
safely.

1. How to modify your DOS 2.0S

Using ATARI BASIC, boot up a disk containing DOS
2.0S and RUN “D:DOSMOD.UTL"”. When the
“READY"” prompt appears, type ‘DOS [RETURN]"
and write DOS files to your disk, using the H option.
(Cf. DOS 2.0S Reference Manual pp.35-36)

2. Theory of operation

This modification allows the DOS to handle another
autorun file named “DEV.SYS". This file is like the
usual "AUTORUN.SYS" file, but the process of loading
and initializing it has the following differences:

(1) BOOT-UP: The DOS first looks for a file nam-
ed “DEV.SYS"” in drive #1, and if it exists, that file is
loaded into RAM and initialized just like an
“AUTORUN.SYS"” file. Then the DOS looks for an

“AUTORUN.SYS file as usual. (If there is no DEV.SYS .

file in drive #1, then it works just like the original DOS
2.08)

(2) SYSTEM-RESET: After re-initializing various
registers and tables, the DOS examines the value at
$1853 (called LDFLAG), and if its value is non-zero,
it JSRs to the address contained in $1854,$1855 (call-
ed INIVEC; LSB first), then returns to the cartridge.
Ifthe value at $1853 is zero, it re-loads the “DEV.SYS”
file and initializes it before going back to the cartridge.

(3) RETURNING TO THE CARTRIDGE FROM
DUP.SYS: Before DUPSYS returns to the cartridge,
using option B, it re-loads the “DEV.SYS" file in drive
#1 and initializes it.

3. How to write a non-resident device handler
Due to a bug in the OS, the HATABS is re-written

-at system-reset. So usually you can not press the

RESET button while you are using a non-resident
handler (such as R:). As explained above, using this
modified DOS, your non-resident handler works just
like resident handlers if you add an initialization
routine which registers its name to the HATABS and
sets values of registers $1853 to $1855 appropriately.
Usually, $1853 should contain some non-zero value,
and $1854, $1855 should contain the initilization
address of the handler.

REMARKS:

1. So far no incompatibility has been found with
the original DOS 2.0S. If you find any, please let the
author know.

2. The modification is done by using some redun-
dant text regions in the original DOS 2.0S so some
DUP.SYS messages are shortened, but still easily
recognizable (such as: "NEED MEM.SAV TO LOAD...”
is changed to “NEED MEM.SAV").

3. Before going back to the cartridge from DUP.SYS,
be sure that the disk used to boot-up is in drive #1.
If the disk in drive #1 contains no (or another)
“DEV.SYS" file, the handler in RAM might be deleted.

29

Player -Missile

BY MAKOTO NAGATA
FUJI ATARI COMPUTER USERS GROUP, JAPAN

1. Introduction

This program was developed for beginning
members of Fuji Atari Computer Users’ Group, Japan,
toshow what can be done with Atari’s unique Player-
Missile graphics.

The program is designed to let beginners experi-
ence the fascinating world of PM graphics using
readable commands, with no PEEKs and POKEs, as
safely as possible. It allows the user to hit the |[BREAK]
or [SYSTEM RESET] keys at any time, or change the
background graphics mode, without affecting the PM
graphics, etc.

This article does not contain any explanation of PM
graphics. If you are not familiar with it, consult any
of the many articles about it in various Atari-related
magazines.

2. Device “G:” - OPENing and CLOSEing

This program is actually a device named "G:". It
analyzes arecord (ending with an EOL} sent to it and
goes to work. The first thing you do to use this device
is OPEN it using the following command:

OPEN#channel,resolution,0,‘G:

where:
channel = [OCB number
resolution = O for double line resolution

1 for single line resolution
For example, if you want to use double line (vertical-

Driver

ly coarser) resolution, you should type OPEN
#1,0,0,“G:". You cannot change the resolution until
you CLOSE the device using a CLOSE #channel
command.

The OPENing process does the following:

1) resets various registers;

2) calculates the necessary amount of memory for
PM graphics of the desired resolution and relocates
the BASIC workspace upward accordingly;

3) changes the vertical blank interrupt routine so
that pressing the BREAK key won't destroy the PM
graphics.

The CLOSEing process is just the reverse of the
OPENIiIng process:; i.e., relocating the BASIC work-
space downward to the original address, resetting the
VBI, etc. (All the PM graphics are erased.)

Now, once you open the “G:” device, you can send
various commands to it. The commands are explain-
ed in the next section.

REMARK: To see how the BASIC workspace is
relocated, PEEK the content of memory locations 128
and 129 before and after the OPENing.

3. Commands

In all of the following, PM# is a number from O to
7, which represents a Player-Missile number as
follows:

0-3: Player O to Player 3
4-7: Missile O to Missile 3
(fifth Player option is not supported.)

30

?#channel;*OBJ”,PM#,address,length
where:

PM# = Player/Missile number :
starting address of the (binary)

address =
shape data
length = number of data bytes to be sent.

For example, if you want Player O to be of the
following shape:

10000001 (decimal 129)

01000010 (decimal 66)

00100100 (decimal 36)

11111111 (decimal 255)

00011000 (decimal 24)

00011000 (decimal 24)
first define a string (for example, D$) of length 6, us-
ing a DIM D$(6), and write the data into D$ using a
program as follows:

100 FOR I=1 to 6:READ X:D$(I.I) = CHR$(X):

NEXT I

110 DATA 129,66,36,255,24,24

Then (after OPEN #1,0,0,°G:”’) type:

?#1;*0BJ"",0,ADR(DS),6

WARNING 1: You may not be able to see the shape
of a Player or Missile until you have set up its position
and color, as explained below.

WARNING 2: For Missiles (PM- 4-7), only the least
2 bits of the data is loaded into the Missile region.

Current horizontal and vertical position data are
always stored in internal registers, pointing to the
upper-left corner of the Player/Missile shape.

To change the position of a Player or Missile, use:

2?2#channel;'POS”,PM#,x,y
where:

x = x-coordinate (0-255)
y = y-coordinate (0-127 for double line resolution,
and 0-255 for single line resolution).

These coordinates correspond to the value to be

stored in HPOSP# and the vertical offset.

WARNING: If x ory is too small or too large, then
that Player or Missile may be positioned beyond the

screen edges, so it may not be seen.

To change the color of a Player, type:

24#channel;*COLOR”,PM#,color,lJuminance
This is just like the SETCOLOR command in BASIC

To change the size of a Player, type:

?#channel;“SIZE"”,PM#,size

where "'size” iseither 1, 2, or 4. (1 is the smallest, and
4 is the largest; a 4 means that each pixel is 4 times
wider horizontally than the smallest.)

WARNING: This “SIZE” command does not affect
the vertical length.

To change the priority, type:

?#channel;*“PRIOR”,data

where ‘‘data’ is the value to be POKEd into the PRIOR
register. (Cf. Atari Hardware Manual).

To let all the Players or the Missiles disappear or
re-appear without changing their position or color
data, type:

?#channel;DMA” data
where the value for ‘‘data’” is:

0: to let all the Players and Missiles disappear

1: tolet all the Missiles appear and all the Players
disappear

2: tolet all the Players appear and all the Missiles
disappear

3: to let all the Players and Missiles appear

To clear the shape of a Player, type:

?#channel;*CLR",PM#

internal registers. To get these data, type:

2?#channel;"**LOC PM#,varl,var2”

where “varl” and ‘“‘var2” are the names of BASIC
arithmetic variables. The horizontal position data is
stored into the variable named “varl”, and the vertical
position data is stored into the variable “var2". For
example, after the command ?#1;*LOC O, XPYP", the
horizontal and vertical position datas are in variables
XP and YP.

WARNING: The device cannot generate data area
for new variables. So these variables must be used at
least once somewhere in the program as usual
variables. (To make sure, use nonsense commands
like X=X etc.)

You can read collision register values using a com-

31

mand like:

?#channel;“HI_T PM#,varl,var2”

*yoae

where ‘“‘varl”, “var2’ are arithmetic variable names

as above. The Player-Playfield collision data is return-
ed to the variable named “‘varl” and the Player-Player
collision data is returned to the variable named
“var2”. (Cf. Atari Hardware Manual).

To toggle the multi-colored Player optio

ype:

?#channel;*MULT,data

where ‘“‘data” is 1 to enable multi-colored Player op-
tion, and *‘data’ is O to disable it. (Cf. Atari Hardware
Manual).

The “OBJ” command sends the shape data to the
memory region pointed to by the current value in the
internal vertical position register so that you can
change the shape where ever the current position is;
i.e., the new shape data overwrites the old shape data.

Sometimes it is necessary to change the data in the
vertical position register temporarily. To do this, type:

?#channel;*RESV"”,PM#,newdata

(The current value in the vertical position register can
be read using LOC command.)

4. REMARKS

1} The program’s command-analysis routine can
read the values of BASIC variables directly from
memory. So if you are not using arithmetic expres-
sions, you may write that variable name inside the
quotation marks; i.e., the command

?#1;*POS”,0,X,Y

is equivalent to the following:

2#1,“POS 0,X.Y”

(where “X"” and “Y” are variable names). But you can’t
write ?#1;"POS O,X*2Y"” instead of ?#1;"POS"0,
X*2Y.

2) This program: is located at $1CFC-$239F. The
actual PMBASE value is stored at $1D96. No memory
locations usually kept for user application are used
by this program, including $CC-$D6, and
$0600-$06FF.

Utility Package

Makoto Nagata

Fuji Atari Computer Users’ Group
Japan

This package consists of general purpose
relocatable machine-language subroutines for BASIC
users.

This file is “LIST ed, so use “ENTER” command
to merge the utility package.

1. General Description
This package consists of the following:

1. Hex-decimal conversions

2. Binary-decimal conversions
3. String Search

4. Block Move

5. Disk Access

6. CIO Access

7. 1 byte Search/Replace
8. Basic Relocator*
(The Basic relocator may not work on newer systems.)

The program resides at lines greater than 30000
and there is a single initialization point at 30000. To
initialize all the functions above, type “GOSUB
30000 (Actually, the initialization process consists
of defining strings and storing machine-language pro-
grams in them. So the initialization must be executed
once and only once to avoid a re-dimensioning error.)

2. REMARKS

1. This package originally consisted of 10 separate-
ly LISTed files. If you want to save memory you can
decompose the package as follows:

32

Suppose that you want to separate SEARCH
function.

1. First, ENTER the package

2. Delete all the lines between 30001 and 32766 not
relating to SEARCHS. (Do not delete line 30000 and
32767.) :

3. Type: LIST *“D:filename’,30000,32767

After separating all the functions in the package this
way you can merge as many functions as you like
without losing the initialization point.

2. The *"*” in the description below represents any
arithmetic variable. The content of that variable may
be altered after the machine language execution.

DECIMAL-HEXADECIMAL CONVERSIONS
(WORDDEC and DECWORD)

These programs are decimal-hexadecimal conver-
sion programs. The WORDDEC Program converts a
hexadecimal number into a decimal number and the
DECWORD program converts a decimal number into
a hexadecimal number.

1. FORMAT

Before using these subroutines, you should define
afull string of length 4 (for example by the command
DIM WORD$(4):WORD$(4)="" ") for hexadecimal
numbers. Then after the initialization GOSUB 30000,
type as follows:

(1) Hex to decimal conversion: WORDDECS$
dec =USR(ADR(WORDDECS),addr)

where: addr :theaddress of the string con-
taining the hexadecimal

number (O0O00-FFFF)
dec : corresponding decimal num-

ber (0-65535)

(2) Decimal to Hex conversion: DECWORD$

* =USR(ADR(DECWORDS),dec,addr)

where: dec :the decimal number
{0-65535)

addr :the address of the string for

the corresponding hex-
adecimal number
(OO00-FFFF)

REMARK: To use the WORDDEC subroutine, the
hexadecimal number must exactly be of 4 digits.

2. SAMPLE PROGRAM

After ENTERing the package type in and run the
following program. This is a simple hexadecimal
listing program.

10 DIM WORD$({4),wWORD2${4):WORDS$=" "

20 GOSuB 30000

30 ? "ENTER STARTING ADDRESS IN HEX ";:INPUT
WORD2 $

40 WORD$="0000": WORD$(5-LEN[WORD2$))=WORD2$

50 STA=USR[ADR(WORDDEC$), ADR{WORDS$])

60 I=STA

70 X=USR{ADR(DECWORDS$),ADR{WORDS},I]):?WORDS$;" ";

80 D=PEEK(I)
90 X=USR{ADR(DECWORD$},ADR(WORD$)},D}:?WORDS$(3]}
100 I=I+1:G0TO 70

BINARY-DECIMAL CONVERSIONS
(BINDEC AND DECBIN)

These programs are binary-decimal conversion pro-
grams. The BINDEC program converts a binary
number to a decimal number and the DECBIN pro-
gram converts a decimal number to a binary number.

1. FORMAT

Before using these subroutines you should define
afull string of length 8 for binary numbers. Then after
the initialization GOSUB 30000 type as follows:

(1) Binary to Decimal: BINDEC$

dec =USR(ADR(BINDECS),addr)

where: addr :address of the string contain-
ing the binary number
dec :correspoding decimal
number

{2) Decimal to Binary: DECBINS$
* =USR(ADR(DECBINS),dec,addr)

where: dec
addr

:decimal number

: address of the string contain-
ing the corresponding binary
number

REMARK: To use the BINDEC program the binary
number should exactly be of 8 digits.

2. SAMPLE PROGRAM

After ENTERing the package type in and run the
following program. This is a simple binary to decimal
conversion program.

10 DIM B¢$(8),B2%(8):B8[(8)=" *

20 GOsuB 30000

30 ?"BINARY NUMBER";:INPUT B2%

40 B$="00000000":B$(S-LEN(B2S$))=B2%

50 D=USR{ADR(BINDECS$),ADR(B%})

60 ?"BINARY ";B$;" IS ";D;" IN DECIMAL."
70 GOTO 30

3. MODIFYING THE DECBIN PROGRAM

The machine language part of the DECBIN program
contains a “0” characterand a '1’” character. These
characters determine the form of the returned binary
number. If the character “0" isreplaced by ‘" and the
character “1” is replaced by ““*", then the binary
representation corresponding to decimal 13 (usually
*00001101") will be changed to .. ***".

STRING SEARCH (SEARCHS)

This program searches for a smaller string in a
larger one.

1. FORMAT

Suppose that we want to search a string A$ in a
string B$. Then (after the initialization GOSUB
30000) type as follows:

33

X =USR(ADR(SEARCHS),ADR(AS),LEN(AS),
ADR(BS),LEN(BS))

X is the starting position of the first occurence of
A$inBS$;ie.,B3(X, X +LEN(A$)-1)isjustequal to AS.
If A$ is not found in B$ (or the length of B$ is smaller
than that of A$), then O is returned to X.

2. SAMPLE PROGRAM

After ENTERing the package, type in and run the
following program. The Program replaces all the “AP-
PLE in the entered string with “ATARI"

10 DIM A$(5),B$(128) :A$="APPLE"
" 20 60SuB 30000
30 INPUT BS$
40 X=USR(ADR(SEARCH$),ADR(AS$),5,ADR(BS$),LEN(BS]))

50 IF X=0 THEN 80

60 BS$(X,X+4)="ATARI"
70 GOTO 40

80 ?BS%

90 GOTO 30

BLOCK MOVE (BMOVES)
This program moves memory block.

1. FORMAT

* =USR{ADR(BMOVES),addrl,length,
addr2)

where addrl :starting address of the origin
block

:length of the origin block
:starting address of the

destination block

REMARK: The origin and destination blocks may
overlap.

length
addr2

2. SAMPLE PROGRAM
(Cf. BASIC RELOCATER)

WARNING: This program may not work on newer
systems. “

After ENTERing the package, type in and run the
following program. This defines a custom character
font where the “‘space” character is replaced by the
“underline” character.

10 GOsuB 30000

20 BLH=PEEK{129]} :MLH=PEEK([744)

30 CB=[INT[BLH/4)+1)*4:IF BLH>MLH+7 THEN BO
40 NBL=CB+4

50 X=USR[ADR[RELOCS$),NBL*256)

60 RCB=57344

70 X=USR(ADR[BMOVE$),RCB,1024,CB*256)

80 POKE CB*256+7,255

90 POKE 756,CB

100 ?"CHARACTER BASE IS CHANGED TO ";CB
110 END

REMARKS:

lines 10-40 calculates new BASLO and character
base
relocates BASIC workspace if necess-

ary

line 50

line 60 RCB is the address of ROM character

font

line 70 copies the ROM character font
line 80 modifies the character of the “space”
line 90 changes the CHBAS value

DISK CONTROLLER (DSKCTRLS)

This subroutine enables you to access directly to
the disk sectors (without DOS).

1. FORMAT

Before using this subroutine, you should define a
sector buffer. This is a 128-byte RAM region and the
content of this buffer is transferred to the specified
sector (“write” operation) and vice versa (“read”
operation). The safest way to define such a sector
buffer is to define a full string of length 128 using com-
mands like DIM B$(128):B$(128)=""""

Then type as follows (after the initialization GOSUB
30000):

status =USR(ADR(DSKCTRLS),rwf,
bufadr,sector)

where :rwf :=4 for read operation
: =8 for write operation
bufadr : the address of the sector buffer
sector :specified sectornumber (1 - 720)
status : status of operation (=1 if

complete)

(For various values returned to the variable ‘‘status”,
see the ERROR CODE TABLE in ATARI BASIC
REFERENCE MANUAL))

2. SAMPLE PROGRAM

After ENTERing the package, type in and run the
following program. This program displays the content
of the specified sector in ATASCII form.

DIM B$[128):Bs(128)=" "

G0SuB 30000

? "SECTOR NUMBER";:INPUT S
X=USR{ADR[DSKCTRL$],4,ADR(B$],S)

IF X<>1 THEN ? PERROR ";X;" AT ";5:G0T0 30
POKE 7686,1

? BS$

POKE 766,0

GOTO 30

CIO CONTROLLER (CIOCTRLS)

This subroutine enables you to access directly to
the ATARI Central 1/O system. (Cf. Atari Operating
System Users’ Manual).

1. FORMAT

status = USR(ADR(CIOCTRLS),iocb,iccom,icba,
icbl,icaxl,icax2)

(icaxl, icax2 are optional)

where: iocb :IOCB number (O - 7)
iccom :CIO command code
icba :CIO buffer address
icbl :CIO buffer length

icaxl :ICAXI

icax2 :ICAX2

status :ICSTA (=1 if the operation is
complete)

2. SAMPLE PROGRAMS

There are many applications of this subroutine.
Here are some of them:

(1) READING BINARY DATA FROM A DOS FILE

OPEN #1,4,0,D:filename”
X =USR(ADR(CIOCTRLS$),1,7,BUFADR,BUFLEN)
CLOSE #1

The program above reads the binary data of length
BUFLEN from a DOS file, and stores it in the RAM
region starting at BUFADR.

(2) WRITING BINARY DATA TO A DOS FILE

OPEN #1,8,0,D:filename”
X =USR(ADR(CIOCTRLS$),],11, BUFADR,BUFLEN)
CLOSE #1

The program above writes the binary data in the
RAM region starting at BUFADR of length BUFLEN
to a DOS file.

(3) READING BINARY DATA FROM CASSETTE
(FASTER THAN USING GET)

OPEN #1,4,128,"C:
X =USR(ADR(CIOCTRLS$),1,7, BUFADR,BUFLEN)
CLOSE #1

The program above reads binary data of length
BUFLEN from cassette and stores it in the RAM region
starting at BUFADR. This is faster than using GET
command.

(4) WRITING BINARY DATA TO CASSETTE
(FASTER THAN USING PUT)

OPEN #1,8,128,*C:
X#USR(ADR(CIOCTRLS$),L1L,BUFADR,BUFLEN)
CLOSE #1

The program above writes the binary data in the
RAM region starting at BUFADR of length BUFLEN
to cassette. This is faster than using PUT command.

(5) DIRECT INPUT FROM THE EDITOR

After ENTERing “D:CIOCTRL.LST", type in and run
the following program.

10 DIM As$(128):A%(128)=" ":G0SUB 30000
20 X=USR({ADR(CIOCTRL$),0,5,ADR(AS%]),128)
30 IF X<>1 THEN STOP

40 L=PEEK[840]

50 IF L=1 THEN 20

60 ?A$(1,L-1)

70 GOTO 20

This enables you to input a string from Editor

without using BASIC's INPUT command. The *?"
prompt does not appear.

SEARCH AND REPLACE (SEAREPS)

This program is a general search-and-replace pro-
gram: of 1 byte data. Since this program allows you
to use data masks, you can use it as a “fill data”
program.

1. FORMAT
There are three formats.

(1) *=USR(ADR(SEAREPS),addr,length,datal,
data2)

In this format, a machine language program cor-
responding to the following BASIC program is
executed:

10 FOR I'=addr TO addr +length -1
20 IF PEEKI(]) =datal then POKE I,data2
30 NEXT I

(2) * =USR(ADR(SEAREPS),addr,length,datal,
data2,maskl,mask?2)

In this format, the search and replace operation is
masked by the “‘mask” variables. If we denote the
binary AND of two numbers by BANDIa,b], the binary
OR of two numbers by BOR|a,b], and the binary EOR
of two numbers by BEOR|[a,b}], then the operation is
expressed in a BASIC-like form as follows:

10 FOR I=addr to addr+length-1

20 IF BAND[PEEK([I),mask1]<>datal THEN 50
30 X=PEEK(I):Y=BEOR[mask2,255):Z=BAND[X, Y]
40 W=BAND([data2,mask2]:POKE I,BOR[Z,W]

50 NEXT I

(If you do not know about binary AND, OR or EOR
operations, see any book about microprocessors.)

(3) * =USR(ADR(SEAREPS),addr,length,datal,
data2,mask)

This format is the shortened form for
* =USR(ADR(SEAREPS$),addr,length,datal.data2,
mask,mask). See (2).

2. SAMPLE PROGRAMS

After ENTERing the package, type in and run the
following programs:

(1) Thisreplacesall the “A” in the entered string with

+ Gar 7:

10 DIM As${128)

20 GOSuB 30000

30 INPUT AS

40
Xi??H[ADR[SEAHEPS],ADR[A$].LEN[A$].ASC["A"],ASC["
a

50 ?A$:60T0 30

(2) This inverts all the normal characters in the

. entered string:

35

10 DIM As(128)

20 GOSuB 30000

30 INPUT AS

40 X=USR(ADR({SEAREPS$),ADR(AS$),LEN(A$},0,128,128]
50 ? A$:G0TO 30

(3) (FILL DATA)
This program fills the whole screen with “*":

10 GRAPHICS 0
20 MEM=PEEK([8B]+PEEK[89])*256

30 X=USR[ADR(SEAREP$),MEM,40%24,0,ASC["*"},0,255)

BASIC RELOCATER (RELOCS)
This program relocates the BASIC workspace.

1. BASIC WORKSPACE

The BASIC workspace is the RAM region which con-
tains all the necessary information for BASIC to run;
i.e., program statements, names of variables, etc.

2. POINTERS

There is a pointer which contains the lower boun-
dary of the BASIC workspace:

BASLO $80,%81 [128,129] (LSB,MSB)

On the other hand, there is a pointer which contains
the upper boundary of the RAM region used by the
Operating System:

MEMLO $02E7,802E8 [743,744]

This program relocates the BASIC workspace to the
region starting at the specified address. This changes
the BASLO pointer value to the specified one, but the
MEMLO pointer remains unchanged. The BASLO
pointer and the MEMLO pointer usually coincide.

R REREN
$0000 workspace

MEMLO

BASLO

r———— L L 1 LA L L BT

$0000 workspace

MEMLO

BASLO

The RAM region between MEMLO and BASLO is
then user-free, and you can store your custom
character font or non-relocatable machine language
programs there.

3. FORMAT

After ENTERing the package and the initialization
GOSUB 30000, type:

X =USR(ADR(RELOCS),newbaslo)
where: newbaslo : new value for the BASLO pointer

4. REMARKS:
(1) This program does not interfere with the BASIC
program execution so you can write a BASIC program
which runs relocating itself.
(2) You can relocate the BASIC workspace downward -
but the BASLO pointer value must always be equal
or greater than the MEMLO pointer value.
(3) Once the BASIC workspace is relocated, it is not
re-relocated by SYSTEM RESET so the user-free space
between MEMLO and BASLO remains safe until power
is turned off.
(4) This program may not work on newer systems.
If this program does not work on your system, please

let the author know by posting a message on the Key
System BBS.

36

ATR-8000 Program Library |¢§

ATR - 8000 SIG
by Bill George

Our ATR-8000 Special Interest Group
has been meeting for about 8 months now.
We have been concentrating mainly on the
ATR’s CP/M capabilities. We have issued
seven CP/M public domain floppy-of-the-
months. The source of our CP/M programs
is 60 megabytes of public domain pro-
grams on 300, 250k eight inch floppies.
I estimate that there are roughly 10,000
programs on those disks. The cream of
these programs are placed in our floppy-
of-the-month.

Recently several of our SIG members
have obtained and installed Co-Power 88
boards in their ATR-8000s. So, our SIG is
exploring 16 bit MS-Dos and CP/M 86
operating systems. We have been collec-
ting public domain software that will run
on MS-Dos and will soon issue a public do-
main MS-Dos floppy. We will do likewise
with CP/M 86 programs. For this special
edition [am presenting you with a con-
densed catalog listing of all programs from
our first seven CP/M floppies. You will be
interested to know that we have chosen the
Kaypro single sided, double density format
for our floppy. This format was chosen
because almost any 5” CP/M computer can
read the Kaypro format and because it
holds a bit more data than the other for-
mats (191k).

The price of these floppies is $9 each.
Mail your checks and which floppy
number you want, to the San Leandro
Computer Club, CP’M Floppy of the Month,
PO Box 1525, San Leandro, California,
94577-0152. Allow about a month and a
half for delivery.

ATR-8000 CP/M Floppy of the Month

Disks 1 - 7
Nov 84 - May 85
Program Disk Size
Name No. in K

ALGOLM HLP - 07 - 13K
ALLCHARS.PIC - 07 - 4K
AMAZE .BAS - 04 - 4K
AMAZE .INT - 04 - 3K
ANYCODE ,ASM - 06 - 3K
ANYCODE .DOC - 06 - 20K
ASM JHLP - 03 - 4K
ASM2 HLP - 03 - 4K
BIOPRINT.BAS - 04 - 7K
BIOPRINT.INT - 04 - 6K
C .HLP - 03 - 17K
£8411D0C. - 02 - 3K
KCBASIC2.HLP - 07 - 22K

CDIR « COM
CDIR .DOC
CDIR/BD .C

COMBINE .ASM
COMBINE .COM
COMPARE ,ASM
COMPARE .COM

CPM . HLP
CPM2 HLP
CPMADR .C

CPMADR .COM
D . COM
D «HLP

DISPLAY .COM
DISPLAY .HLP
DU-v86 ,COM
pu-ves ,DOC
EBASIC .COM
EBASIC .HLP
EBASPRG .HLP
ELSE «ASM
ELSE . COM
ENDIF « ASM
ENDIF . COM
ERUN . COM
FINDBAD .COM
FINDBAD .DOC
FINDBDS54.,ASM
FINDV40 .ASM
FINDV40 ,COM
FINDV40 .DOC
FMAP-PD .COM
FMAP-PD ,.DOC
FMAP-PD (HLP
GOTO - ASM
GOTO . COM
HELP . COM
HELP . COM
HELP . COM
HELP . HLP
HELP . HLP
HELP . HLP
HELP «HLP
HELP—-PLN. COM
HELP-TRS.COM
HELP-V20,ASM
HELP-VE20,COM
HELP-V20.HLP
HELP-V20.HLP
HELP-V21,ASM
HELP-Vv21,C0OM
HELP-V22.COM
IF . ASM
IF . COM
IF .DOC
LANDER .BAS
LANDER . INT
LISTT . COM
LISTT «HLP
LOAN .BAS
LOAN « INT
LRUN . COM
LRUN . HLP
MAC - HLP

8K
2K
8K
7K
1K
4K
2K
31K
37K
3K
6K
3K
5K
3K
3K
8K
18K
12K
12K
3K
6K
1K
1K
1K
12K
2K
3K
32K
15K
2K
3K
2K
2K
2K
6K
1K
2K
8K
5K
7K
2K
2K
1K
5K
5K
39K

24K
24K
40K
5K
5K
11K
2K
9K
5K
3K
2K
1K
3K
2K
2K
1K
8K

MASM - HLP
MEMLINK ,COM
MLOAD23 .0BJ
NOTE . COM
NOTE .DOC
NSWP205 .COM
NSWP205 .DC1
NSWP205 ,.DOC
NSWP207 .COM
NSwP207 .DOC
NULU . COM
NULU .DOC
NULU .D0C
NULU11 .COM
NULU11 . NOT
NULU11F1,ASM
NULUTERM. ASM
OTHELLO .BAS
OTHELLO .DOC
OTHELLO .INT
PAUSE « COM
PAUSE/BD.C
PAUSWAIT.ASM
PAUSWAIT,.COM
POET . BAS
POET « INT
PRINT . COM
PRINT .DOC
QUICKKEY.COM
QUICKKEY.HLP
QUOTES .PRN
READ . ME
RESOURCE.COM
RESOURCE.DOC
REZBO .COM
REZ80 .DOC
SECTRAN .C
SECTRAN . COM
SHOW . ASM
SHOW . COM
STORY .BAS
STORY « INT
SUPERSUB. COM
SUPERSUB.DGC
SUPERZAP.COM
SUPERZAP.DOC
SURVEY3 .ASM
SURVEY3 .COM
SYNONYM ,COM
SYNONYM ,DOC
SYNONYM3.ASM
SYNONYM3. COM
SYNONYM3.DOC
TED . COM
TED .D0C
TRANSLAT, COM
TRANSLAT.DOC
UNERA11 .ASM
UNERA11 .COM
WUMPUS .BAS
WUMPUS . INT
YANC . COM
280 .LIB
ZBOASM . CGM

8K
1K
3K
20K
2K
11K

28K
12K
32K
14K
40K
57K
15K

1K

2K

3K
16K

11K
5K
2K
8K
1K
4K
2K
5K
3dK
2K
2K
13K
1K
10K
26K
7K
1K
1K
4K
10K
1K
7K
5K

4K
6K
11K
13K
1K
2K
1K
12K
2K
7K
17K
23K

1K
6K
2K

6K
32K
6K
9K

37

54

T

.-_""\\\\ [N 38

£

e
e s iy A

e
S

by Lois Hansen

You will not mistake Atari Corp. for Atari Inc. were
you to visit them. There are no hanging plants, thick
carpets, fountains, expensive furniture or free coffee
and donuts. What there is in the reception area are
packing crates, slightly shabby furnishings, a front
door that does not close properly and a bulletin board
skewered haphazardly with pink while-you-were-outs.
People hurry about without the collegiate good-
vibsing characteristic of old Atari and many other
Silicon Valley campus companies. Atari Corp is rock
bottom business.

Inside and upstairs it looks like they are preparing
for a garage sale. All manner of computers and
peripherals, from DECs to IBM PCs to MacIntosh (and
you can bet there are Commodores) are strewn
around; some in service, others piled on the floor and
on top of each other. Inside the cubicles no one seems
paranoid about who the hell Iam. Perhaps they have
users in every day to try out the goods.

I sit down in a crowded cubicle kindly vacated for
me by Richard, a software tester. We are still making
smalitalk when an exterminator walks by, pumper in
hand. After my comment to the effect that “you guys
leave no rock unturned”, Richard escapes to exter-
minate his bugs and I get down to serious testing of
Dr. Logo on the ST. There is scarcely room on the table
to operate the mouse so I use a notepad.

own devices for hours. I cruised the computer, not
reading any of the documentation left for my enjoy-
ment. | had a fine time, and just when I was thinking
I really should get going back to Oakland. John
returned to hear my comments.

What is the Jackintosh like to use? You have to get
used to the mouse and windows. It is easy to avershoot
the mouse but just as easy to get rid of what vou did
not want. I did not get into any trouble that I could
not get out of. Logo did not come right up, since I was
using a disk version (it will end up resident in the ST).
I had to figure out how to get it off the disk but it was
very obvious.

What is the Logo like? Is it like the Atari Logo we
know and love, from LCSI, nearly identical to Apple
and IBM? No, it is not. It is Dr. Logo, if you ever saw
that, written by Gary Kildall himself and released in
August of 1983 to run under CP/M on the IBM PC. Most
of the commands are the same as LCSI Logo. The
main difference is that it comes up with a screen split
sideways between graphics and text and it has a trace
feature that allows you to watch the commands at the
same time your drawing is executing. On the Jack you
can cause all three screens to be visible at once, due
to windowing. In the Edit Mode, the cursor control
commands are Control F, B, N, etc. instead of using
the arrow keys but Atari might change that. The use
of color in Logo on the ST, despite the alleged 512 col-
ors, is more like Apple and IBM than Atari 800. You

38

can not flash your background through even 127 col-
ors and luminances, except perhaps, by including
pallette-change commands in your program. In hi-res
you get no color, in med. res. you get 4 at any one time
(although you can change which 4), and in low res.
you get 16 at a time. You get similar numbers of col-
ors in the pen (only one pen, although you can vary
the brush width) and, of course, there is only the one
turtle, a triangle. The list processing is similar to IBM,
which is a great improvement over cartridge Atari
Logo. For adult use, this is definitely the Logo to have
on Atari. :

Is this a better deal than Atari Logo on the 800 XL
or XE? I hate to hedge but all questions like this
require questions back: how much money have you
got and what else do you want to do with the com-
puter? For people who have not wanted to spend $350
on a “‘kid's” computer and drive that they felt the
adults would not use, here is a way to really com-
promise. You have to spend $800, but you get the latest
thing in "adult” software and hardware as well as Logo
for your kids in a version that you will enjoy too. This
Logo is not identical, but close enough, to that used
in schools.

Are you going to be annoyed to have a ST computer
you can not program? I mean, this computer does not
have BASIC in it yet! Earlier machines are going to
come with some applications and Logo but no BASIC.
You have spent years. getting good at BASIC, Atari
BASIC at that, and now they give you this poor man’s
paint program and wish you good luck. Why would
an adult want to learn Logo?

Why did you want to learn BASIC? Because you
wanted to gain access to this new thing; to learn a new
way to organize your thoughts. In BASIC, the inner
workings of the computer dictate that you must
organize your thoughts in a linear fashion. In order
to avoid chaos in BASIC you have to be very careful
with your GOTOs and GOSUBs and remember what
all your strings refer to. Logo came along on machines
with larger memory allowing you to define small
procedures with abandon and organizing them later
into one or more superprocedures. Many people feel
that this is more the way people, as opposed to
machines, think. Or. shall we say, the way right-
brained people think. Not that you must think non-
linearly in Logo but you can. There are no line
numbers in Logo and you do not have toreduce ideas
to numbers so you can compare them mathematical-
ly. You go through Logo “‘words’ and ‘‘lists”,
separating them out with “butfirsts’ or, as one adult
Logo student put it, “butt first”. It is a totally different
way to think. It is one of the most engaging occupa-
tions you will ever have on a computer (if you like to
think about thinking). Elsewhere in this issue you can
find a Logo Program of this sort that runs with Atari
Logo. Try it and pick up a book about Logo such as
Harold Abelson’s Apple Logo, or David Thornburg's
Discovering Apple Logo. It is not just a kids’ language
at all; it is a language for adults who like psychiatry,
literature, movies or other stimuli that cause them to
examine their own or others’ thought processes.

DigitalAlarmClock

by STEVE KUNZE
Age 14
Adelaide Atari Club, Austra]ia_

To change the time loop the computer
uses for each second you must change
the variable “'time” in line 4 of the pro-
gram according to this formula:

A = Actual elapsed seconds
B = Elapsed seconds on computer
TIME = TIME/A xB

For the purposes of setting “TIME”
correctly, I thoroughly recommend to
leave the program running for at least
10-15 minutes so that your result will
be an exact average of time.

Also note that when you enter your
data for the clock, the program will not
start working until you press START!
This is a safety precaution. You have to
take this into consideration when enter-
ing your data and give yourself about 30
seconds if you want the alarm, and 10
seconds if you do not.

Have fun. . ..

A\tari\WVeiter

by Frank Pazel - JAGG

THE FORM LETTER

The good folks at the former Atari Inc.
gave us what is probably the best word
processor for any PC, bar none. It is easy
to learn, handles just about any kind of
request, is loaded with features and is
absolutely dirt cheap. With the advent
of the APX Printer Driver almost any
printer works with it and the use of
Atspeller is a godsend to those less lex-
ical. It is, in short, superb.

Now, these very same departed pro-
grammers had a few tricks up their col-
lective sleeves when they put this ROM
together. However, they were not entire-
ly honest in reporting all the surprises
packaged inside. Or perhaps they did
tell all with some points lost between
technical writer and manufacturing. In
any event [am going to try to report
what | have gathered from various
sources and discovered through experi-
mentation about the often demeaned
Atariwriter.

Hidden inside the cartridge lies the
latent ability to create form letters
automatically with a mail merge, block
copy text from one file to another and
unleash a resident modem handler.
First [will discuss the mail merge.

MAIL MERGE

There have been a couple of articles
written on this feature in other newslet-
ters but following their instructions led
to frustration and no results. It turns out
that a key point was always left out that
Istumbled on almost by accident. Here
is my report on how to get your Atari-
writer to function as a bonafide business
type form letter producer.

A form letter, for definition purposes,
is a document which will contain per-
sonalized information. The bulk of the
letter is the same for each addressee.
You get these things in the mail every
week telling you how you might just
have won 10 billion dollars. Suppose you
have the need to produce such a letter.
Perhaps your club needs to send out a
mailing which. would look nice person-
alized or might attract more attention
if the receiver’s name appears inside the
text. Using normal Atariwriter func-
tions write the letter. However, wherever
you want to personalize the text hold
down the OPTION key and the insert key
at the same time. An inverse ESCape
character will be printed on the screen
in that position. Later on, when you ask
Atariwriter to PRINT your document
the program and printer would normal-
ly halt and allow you to type in the miss-
ing information. This procedure is
detailed on page 39 of the Atariwriter
manual. As the manual says, . . . leave
blanksina text file. . . .and fill them in
each time you print the file.” This is ex-
actly what we want to avoid. We want

Undlergroumd

to create a file which will automatically
merge with our letter file and insert the
missing information for us.

When you are sure your letter is exact-
ly like you want, SAVE it. Make accurate
notes of how many blank items you
need to fill in and what the information
needs to be. For example, the first three
ESCape characters might represent
name, street address, and town and
state. Create a new file in the following
manner.

1. Enter the Editor and delete the
entire format line. Yes. You should now
be looking at a blank blue page which
used to have inverse letters with
numbers after them. This is the abso-
lutely crucial step in making this pro-
cess work.

2. Using your notes about the empty
blanks in your letter type in the miss-
ing information with a RETURN at the
end of each piece of information. Use no
blank line and continue typing in your
repeating series of data. You are creating
a "sort of’ data base for the letter.
Hopefully, you will design it so it can be
used for other things. The addresses, for
example, can be used to make up labels
later on.

3. SAVE this file. I use the name
MERGE but you use your favorite. Count
the number of records in this file. A
record is all of the information you need
to print one letter. It might be something
like name, street, and city-state. The
number of records will equal the num-
ber of different documents you are go-
ing to print. You have ten different
names with addresses in your MERGE
file; you are going to print ten different
personlized letters.

4. LOAD your letter into Atariwriter.
Turn on your printer. Position your
paper. Begin the PRINT series. At the
prompt ““PRINT WHOLE DOCU-
MENT?" answer Y.

5. At the prompt "NUMBER OF
COPIES” type in the number should
equal the number of records in your
MERGE file. The maximum is 99.

6. At the prompt “MAKE ENTRY,
PRESS RETURN", hold down the Con-
trol Key and press V (CTRLV} and you
should hear the one key click. Now type
in the specifications of your data file,
e.g..D:MERGE. Make sure your file disk
is in your active drive.

7. As soon as you press RETURN the
printer should come to life and begin
churning out your form letters. If you
have specified right hand justification
(J1) each letter will be printed with the
personlized information properly justi-
fied. It’s near magic!

40

PHONE LINES AND BLOCK MOVES

The Atariwriter ROM has, in addition
to the ability to do a form of mail merge,
the mechanism to transfer files via a
modem.

In order to use this hidden modem
handler you must boot up a copy of the
original DOS 2.0 Master Diskette which
came with your disk drive. Most people
are unaware that stuck away on it is the
RS232 information for handling mo-
dem operations. If you are using OSS
software it is a file called *"RS232.COM”.
Both communicators must be running
through a 850 Interface Module. Using
OPTION E rename it “AUTORUN.SYS”
and you are in business. Once both ends
of the telephone connections have con-
tacted each other files are SAVEd or
LOADed from *'R:filename”. Try it and
save some transfer time.

The final little trick that Atariwriter
will do for you is a variation on its
Duplicating Text feature. Rather than
using the copy function to copy within
a file you can use it just as well to copy
from file to file. Use the Duplicating Text
sequence described on page 37 of the
instruction manual. This amounts to
marking the beginning and ending of
the text block you want to move with a
CTRL-X. At this point, however, press
ESC and return to the menu. Use SEL-
ECT to Create a new file or Load a file,
depending on how you want to use your
extracted block of text. If you load a file,
enter the editor, position the cursor
where you want to enter the saved block
of text and press OPTION D. The saved
file has been residing in the copy file buf-
fer and can be used again and again.
This is especially handy if you are
preparing areport which uses a special
format that must be repeated. To repeat
copy just place the cursor where you
want to replicate the saved block of text
and press OPTION D. No need to remark
and save it each time. If you save a new
block of text with CTRL-X, that new text
will, of course, replace the previously
saved block.

The Atariwriter is truly a fine piece of
software. Each day I wonder how I could
get through my workweek without it. If
you discover some new or undocument-
ed features please send them along so
we can publish them for the good of the
order.

Thanks for some of the source
material for this article goes to Clyde
Pritchard of the Portland Atari Club and
an article in the ACE of Syracuse news-
letter.

Recursion

By Lois Hansen

The main feature that convinces you
that Atari Logo is not just for children
is recursion. Unlike other languages
which somewhat resemble logical
thought, or some other kind of sequen-
tial thinking, Logo (and Lisp, from
which Logo derives) forces you do do
business through recursion.

What is it? Not any easy question, as
they say. Let me tell you a story, com-
bined from three in David Touretzky’s
excellent Lisp book: A poor fool had to
find out how many slices of bread were
in the loaf a nasty dragon had, so he
could win the hand of the local princess.
He approached the dragon fearfully and
asked. “Please, sir, tell me how many
slices of bread you have!” The dragon
roared fearsomely and said, “'I will not
tell you how many I have, but I will give
you the first slice.” With that, the dragon
fell asleep, feeling guilty that he was so
mean, even for a dragon. He got to
wondering how many slices were in his
loaf. He dreamed of another dragon with
the loaf minus one slice. That dragon
dreamed of another dragon holding the
loaf minus one more slice and that
dragon dreamed of another dragon
holding an ever shorter loaf, who dream-
ed of yet another dragon. . . . None of
them could figure out how many slices
they had until the dragon whose loaf
was so small, it did not exist. He had the
empty loaf and he was ecstatic. He woke
up the dragon before him and told that
dragon that his loaf had one slice. That
dragon woke up the one before him and
told him he had one plus one slice. All
of the dragons were happy as they were
awakened in turn with the good news
because they could now figure out how
many slices they had and the prince
could go back with his riddle solved and
marry the princess.

Now this may seem like the long way
around in terms of problem solving.
And it does make Logo slow. But after
you get used to it (it's taken me about
two years) it kind of grows on you and
seems reasonable. This is the method
artificial intelligence uses to process
words instead of numbers. You search
by knocking the first word off a list and
trying to match it. If there is no match,
you go back and try the butfirst first
(second), and on and on until there's
nothing left (the empty list). Who is to
say it is not the way our brains work?

in Atari Logo

Many feel recursion approaches the way
brains work, except dcing many lists of
words at the same time would be closer
to reality.

Let me give you a brief example of
recursion in graphics:
To Manysquares :list.of.sizes
If :list.of.sizes = [] [stop]
Square first :list.of.sizes
Manysquares butfirst :list.of.sizes
End

To Square :size

Repeat 4 [Fd :size Rt 90]

End

Type both of these procedures in as

you see them, taking care to observe all
spaces and punctuation. I'd better
define some terms. Dots (:) means the
word following is an input and requires
you, in this case, to supply a list of sizes
of boxes you want. A list is more than
one word surrounded by square brack-
ets. || means the empty list. To run this
program you simply type Manysquares
[20 30 40 50] and press return. Many-
squares will call Square, which makes
a square with sides of 20, and goes on
to the next line, which “manysquares”
the butfirst, or second number in
list.of.sizes, and so on. When you get to
the empty list, the program stops.

I hope this example was simple
enough to give you an idea of how recur-
sion works. You can use recursion on all
kinds of sorting problems, from alpha-
betizing to making phone lists. Other
classic problems are poetry generators
and “doctor” programs (although the
latter is painful in Atari Logo, which
lacks property lists). The important part
to remember is that the product is not
the point; the process is. If you want a
certain application to do a job for you,
it can probably be written more easily
and it will certainly run more quickly
in Basic. But in using Basic you are
following the computer's rules of
thought and operations. If you have
learned these rules well, they probably
seem second nature. But they are
nothing like the way the human mind
processes information. If you want to
use your computer to simulate human
thought, try thinking of stating a prob-
lem using recursion and then see if it
works in Logo.

41

of Stargunner

/4y

0

Pl

by Alex Leavens

Your footsteps echo quietly down the hallway and
you notice, as you always do, the worn green linoleum
beneath your feet. The linoleum of the Planetary
Defense Command. You allow yourself a smile at that
because you are the first person from Earth—man or
woman—to attain the rank of Stargunner.

You turn the corner, push open the door. The first
of the operators notices you, makes the customary
salute with its signaling tentacle and adds a gesture
of greeting. “Good evening, Gunner.”

..Stargunner. A person charged with guarding
Yarthae, the hub of the galactic empire, the 25th Cen-
tury Constantinople. If Yarthae were to be attacked,
destroyed, the empire would be shattered. You are
there to see that that does not happen. Ever. Once,
more than 200 years ago, the outlaw Sphyzigi at-
tempted such an attack. That attack was beaten
back—Dbarely...

You nod to the controller as you make your way to
the landing bay shuttle. “Evening, Quoxatcl. Clean
board?”

The signaling tentacle gives a half-shrug. “Is it ever
anything else?”

“No”, you reply, as you climb into the shuttle pod.
With a whoosh! of compressed air you are shot out
to your ship. You climb into the cockpit, Powering on
the engines, sensors and guns, even as the hatch

The Legend

lowers itself snugly over you. The fleet of Stargunner
ships around you do the same. You press a series of
buttons, see the uninterrupted banks of green lights
telling you everything is functioning as it should.

...No one was ever sure if the Sphyzigi were
destroyed, or merely driven off. But the Galactic coun-
cil decided to set up the fantastic (and fantastically
costly) defenses anyway. No one was willing to take
any chances... Yet 200 years is a long time—more than
long enough for the threat of destruction and devasta-
tion to fade from memory, to become merely an oft-
repeated tale, albeit a deadly and terrifying one...

You guide your ship to the takeoff shaft and the
launch sequence takes over. You feel the mass ac-
celerator push you back into the cushions as the
magnetic rings flash by you, faster and faster until—
space! Stars twinkling around you, the hills of Yarthae
below, rolling peacefully under your ship. You handle
the controls lightly, surely, the ship responding to your
every touch. You press the fire button once, to test the
P-laser guns. Immediately the night is shattered by
a brilliant green pulse of pure energy, streaking away
from your ship with a thunderclap, fading in the
distance. You glance at the shield indicators—all 5,
green. Then you hear the voice of control in your ears.

“How's your status, Gunner?”

“Looks good. Everything's functioning perfectly.
Another smooth night, gang.” Control responds with
achuckle. You flip a switch, and a radar display is pro-
jected in front of you. Glowing eerily, it seems to hang
in midair, just inside the cockpit window. A rapidly
moving light breaks the screen s stillness. “Wups, I
got something here. See it, control?”

“Yeah, Gunner, we're on it. Probably just some kid
joysticking around. We’ll get his frequency and tell
him to get out of here. Give him an escort, would you?”

42

“An overgrown nursemaid, that’s what I am. Yeah,
I'll get him. You better tell him to watch it, too. This
high up is restricted air space.

“Roger, Gunner, we copy.” Your ship streaks toward
an interception point and you feel the hairs on the
back of your neck start to rise. Just routine stuff, you
- think. Nothing to worry about. Control crackles in
your ears.

“Gunner, craft is not answering any signals, repeat,
craft is not answering any signals. This is not a drill,
repeat, this is not a drill!” Instantly you reach over
and flick your defense screens on, your attack com-
puter from standby to armed.

“Control, this is Gunner 171-42,” you say, your voice
becoming precise and formal. “Request ET.A. and
code reference check on incoming craft.”

“Roger, Gunner. Incoming craft has no bounce back
frequency. Stand by.” Suddenly, the blip on your radar
screen splits into dozens of objects, each corkscrew-
ing crazily off. “Gunner, this is control! They've
Mirved! Emergency, Plan Red D! Gunner, they're com-
ing into—"

A tremendous blast lights half the sky. Your ship
rolls wildly, and you fight for control. “Control, this
is Gunner 171-42! Control, what the hell happened!
Control!” But there is no answer. Quickly you check
the other frequencies, trying to raise your fellow
Stargunners. Nothing. And then you realize: On the
entire radar screen there is only one Stargunner ship.
Yours.

And now you know what that craft is. A Sphyzigi
ship. They have come back. And all that lies between
them and total conquest of Yarthae are you and your
ship. You, and you alone, will repel the invasion force.
You MUST.

Playing STARGUNNER

Introduction:

Stargunner is your basic “‘Shoot everything that
moves”, stripped down, “let’s fry a few neurons”, raw
adrenalin video game. It has no other raison d'etre and
the player should impart none to it, except, perhaps,
the total impecuniousness of the author at the time
he wrote it. To play, just plug a joystick {we recom-
mend a sturdy one) into port 1, start the game from
DOS (or however it comes packaged in the special edi-
tion), and have at it. Here are some notes to help you
get more enjoyment from the game.

1: Movementisleft, right, upand down. Button press
fires the missle in whichever direction you're facing
at the time. You must release the button, and re-press
(“Hmm. Let’s zee zose repressions, my dear.”) it to fire
again.

2: There are 6 levels to the game, and you can start
at any one of them. By pressing SELECT in the at-
tract screen you will cycle through the levels. Press
START to start at the level currently displayed. Press
the joystick button to start at the level that you last
completed.

3: Youcan turn the musicin the attract screen off by
pressing OPTION.

4: There are 3 waves in every level. You must destroy
10 attackers, 1 atatime, 20 attackers, 2ata time, and
30 attackers, 3 ata time. Occasionally, you'll only have
to destroy a few aliens in one of the waves—kind of
a gift for overtaxed thumbs. At the end of every wave,
you're awarded a bonus. At the lower levels they don’t
add up to much, but they can be quite significant at
the higher levels.

5: Bonus ship every 2000 points.

43

By Cliff Schenkhuizen and Mark Perez

(Editor’s note: Cliff and Mark are currently attending
school at Moreau High as sophomores. They have
been working together for a year now but this is their
first published program. Mark is the creative artist
and Cliffis the dedicated programmer of this truly uni-
que “Dynamic Duo.”)

Lately a new trend in features of Electronic Bulletin
Boards has been catching on. BBS's around the coun-
try are now including, in addition to message bases
and free software, on-line “cartoon” sequences of
characters as an added attraction to the board. These
cartoons are ATARI's control graphics characters
animated with the resident screen editor functions
available.

Few programs are available for Atari users that take
advantage of the ability to show short cartoons over
the phone lines. The ones that are available are usual-
ly just “bare-bones’ text editors, that is, they only offer
the entering of text and then the saving of it. Using
these programs proved to be disappointing for us as
well as others. They lack many helpful features and
are somewhat awkward to use. It is this that led to the
development of CARTOON MACHINE.

USING THE PROGRAM

The CARTOON MACHINE is set up in such a way
that the user can easily access any part of the program
with a minimum amount of keystrokes. The three con-
sole keys (OPTION, SELECT, and START) are the on-
ly keys needed. At the main menu the SELECT key
moves the “cursor’’ (a little ball) down to each of the
available options. To choose that particular option,
one needs only to press the START key. The OPTION
key serves to terminate all functions such as viewing
a cartoon. OPTION will also abort any keyboard input
and return the user to the main menu.

The first option, VIEW CARTOON, does exactly as
it should: view the cartoon in memory. If no text has
been entered into memory, a *“NO FILE IN MEMORY™
message will result. While viewing, however, OPTION
will abort the function and return the user back to
the menu. The program is set up in such a way that
the cartoon is shown at a speed simulating a 300 baud

RSN EMARTIN

modem. Hitting SELECT while viewin{g actsasatog-
gle for 300/1200 baud viewing thus allowing the 1200
baud user to take advantage of the program too.

Saving and loading files have been simplified for the
user. Both are nearly identical in operation. A direc-
tory of drive 1 can be obtained by pressing RETURN
at the “Filename?” prompt. An append function has
also been added. Typing /A" after the filename will
append the file to an existing cartoon in memory if
LOADing or will append the cartoon in memory to a
disk file if SAVEing.

The next option, ZERO MEMORY, clears the pro-
gram’s 15000 byte buffer.

After the ZERO MEMORY function comes the
CREATE CARTOON option. It allows the user to start
a cartoon from scratch. Every keystroke is recorded
except, of course, console keys and the BREAK key.
Since no one is a perfect typist, we have added a
helpful feature to the editing process. The START key
now functions as a delete key. Pressing it will erase
the last keystroke from the cartoon so that typogra-
phical errors will not show up on the finished copy.
When the buffer contains only 100 free bytes, the com-
puter will signal this by changing the color of the
border to red. The user can either finish the cartoon
and terminate cartoon entry with the OPTION key or
he can save it and append the end to it with another
file.

The last function is APPEND CARTOON. Not to be
confused with disk appends, this allows the user to
continue a cartoon in memory. For example, a file can
be loaded and the user could add more text to it with
the APPEND option.

Last on the menu is HELP MENU. This is not a
function. By selecting the HELP MENU option the
user is presented with a screen of helpful hints. In-
cluded on this screen are quick explanations of the
console keys, explanations of the menu options and
also tips for the novice user.

We hope that you find this program to be entertain-
ing and useful. We would be glad to hear from any of
you cartoonists out there who have designed or or-
chestrated their own personal cartoon. Also, if you
have found anything that could make this a better pro-
gram, please drop us a line in care of the newsletter.
By doing this, we can make improvements to CAR-
TOON MACHINE. Have fun and keep us informed!!!

A

by Téd Burger and Paul Gifford

This program is a result of becoming
frustrated while printing pictures from
the Koala Pad system. The program is
written in Atari Basic with many
machine language subroutines. Some
of the ML routines are my own and some
of them came from other authors. At the
moment [can not remember the sour-
ces. If you see some of your code in here,
thanks!

The program supports several print-
ers: Epson, Gemini, NEC, and Prowriter.
Modifying it for a different printer is very
simple. You add the printer name to the
list around line 100 and then add the
first letter to the check in the same area.
The lines between 800 and 900 are
where the printer is set up. Add another
“IF" statement with the proper graphics
control characters to format your
Printer.

OPERATION OF THE PROGRAM

The program will ask you for the “'pic-
ture disk™. Koala format picture files
must end with the “.PIC" extender and
Micropainter format picture files must
end with the “MIC" extender. The
screen will display a list of the files on
the disk, up 38 files. You make your sel-
ection from the list. The program will
then load the selected picture from the
disk. The picture will appear in color at
first and then switch to black and white.
The bottom of the screen will switch to
text to prompt you. Below the text block
is another line of graphics. This shows
the shade of gray assigned to each of the
four color registers. To change the gray
shade of one of the color registers, select
which register, 1-4. The Prompt will
change and ask which shade you want
(black = 1 and white = 5). The numbers
2,3.4 will give you progressively lighter
shades of gray. This will allow you to set
up the picture to look right in black and
white.

NOTE: If you set color 3 and 4 to the
same shade, the text will not be visible
but things will still work.

When you get the picture set up the
way you want it, a tap of the “P”" key will
send it to the printer. The other choices
you have here are: “M"enu will take you
back to the list of the picture files and
“V"iew will temporarily show you the
entire graphics screen just in case
something important is hidden by the
text block.

This is a case of “what you see is what
you get’. The gray scales from the
screen will be duplicated on the printer.

Have fun! (Ted Burger @ 71376,1263
and Paul Gifford.)

45

Software Winners

Tisby s Tops

by Tom Tisby

The Atari Home Computer has been
around for a long time. Because of this
many software programs have been
written. And throughout the thousands
that are produced, just a few really stand
out. [am not talking about the great Pac-
man or Missile Command we have
played so much that our cartridges have
worn out. What I am talking about are
the games that made Atari famous and
unique; the programs that take our
computers to the limit. So without fur-
ther ado, may I Present for your inspec-
tion THE GAMES AND PROGRAMS
in their respected order from a group of
credible computer enthusiasts like you
and me.

AND NOW...ON WITH THE
AWARDS. . .

TOP 11 GAMES

1) Starraiders

2) Alley Cat

3) Seven Cities of Gold
4) Whistlers Brother
5) Ghostbusters

6) Rescue on Fractalus
7) Ball Blazer

8) Archon

9) Agent US.A.
10) Microleague Baseball
11) Bruce Lee

TOP 11 ADVENTURES
1) Ali Baba & 40 Thieves
2) Return of Heracles
3) Zork, I, 1L, III
4} 7 Cities of Gold
5) Suspended

) The Count

) Mystery Fun House

) Ultima III

) Planetfall

10} Mask of the Sun

11) Transylvania

TOP WORD PROCESSORS
1) Atari Writer
2) Letter Perfect

6
7
8
9

. N
ot I U O
wﬂ
N ‘\'.‘V .,

3) Paper Clip

TOP EDUCATIONAL
1) Wiz Type N
2} Mickey & the Great Outdoors’
3) Agent US.A.

MOST INNOVATIVE GAMES
1) Ball Blazer
2) Rescue on Fractalus
3) Microleague Baseball
4) Starraiders
5) Spy Vs. Spy
6) Pinball Construction Set
7) AE
8) Bruce Lee
9) Way-Out
10) Flight Simulator II
11) M.UL.E.

TOP 11 UTILITIES
1) Printshop
2) Printwiz
3) Disk Wizard II
4) Lister Plus
5) Picture Plus
6) Colorprint
7) Diskkeeper
8) Humpty Dump
9) S.AM.

10) Megafont

11) Syn-File

TOP BUSINESS
1) Syn-Calc
2) B-Graph
3) Visi-Calc

TOP BASIC COMPILERS
1) ABC
2) Datasoft
3) MMG

And so there you have it! The best of
the best. If you do not have these pro-
grams, I suggest that you go and run
(not walk!) to your nearest computer
store and buy these great programs. You
are missing a lot if you do not! And for
all those who do own some or all, then
all I can say to you is congratulations!!!
You have made some excellent pur-
chases. Now aren’t you glad you did not
buy that Pacman clone instead???

Sarge’s
Selections

by Sgt. Slaughter

Many times people will ask me, “Sgt.

it Slaughter, what is your favorite game?"

Isometimes tell them MULE or the Pin-

1| ball Construction Set or even Bruce Lee.

Occasionally they will say, “Aw, Sarge,

/| everybody likes those. You got any
favorites that no one knows about?”

Indeed I do. Often. good games get
goodreviews and do well in sales. Other
times, bad games get good reviews and
do well in sales (but the buyers often
regret it). It is rare that there can be a
game or two out there that no one buys,
no one has ever heard of or no one wants,
but is still a very good game. This is the
purpose of this review. | have a few
games in my library that I play a lot even
though they may not be a Bruce Lee or
a MULE. Here is a list, with comments,
on whatIthink are some of the greatest
closet classics on the Atari.

RAINBOW WALKER: | happen to
think this game is probably the most
fun and involving Q*Bert clone on the
Atari. The idea is to color grey and black
holes in the rainbow without getting
kicked off. It is a tough job but
somebody has got to do it! The sound,
graphics and action are second to none.
There is a bonus round that is probably
the best simulation of a bucking bron-
coride I have ever seen! A definite plus
for a game library.

COHEN’S TOWERS: This release is
asort-of Donkey Kong clone with a twist.
You are alowly courier who has to shuf-
fle letters into various mail drops in a
high-rise building. I play this game a lot
because it is challenging and the graph-
ics, animation and sound are top notch.
In fact, with all the times I have Played
this game, I have only completed the
first building once which just goes to
show you how much of a challenge this
game has to offer.

WIZTYPE: Of all the typing educa-
tional programs that are on the Atari,
this virtually unknown program is
great! It offers you many different ways
to hone typing skills, from games to
actual paragraph typing, plus on-going
charts of your progress and incredible
graphics representing the many charac-
ters of the Wizard of Id. Not even the
Atari Star Award winner, Typo Attack,

46

does as good a job of teaching typing
skills as this program does. It is fantastic
for anybody of any age because it can
be friendly enough for a child or serious
enough for an adult.

BOULDERDASH: Ok, Ok. I know
this did pretty well but I feel that even
if it was a best seller, it would not have
done this excellent game justice. With
all the terrible Dig Dug clones (Atari’s
Dig Dug being one of them) this one
stands high and mighty above the rest.
To win at this game you need something
more than just fast reflexes [which
seems to be a staple in most games to-
day). You need to think ahead and plan.
This game requires intelligence to play
and I still play it many times when I find
myself with some spare time.

THE RETURN OF HERACLES: As
far as action adventures go this one is
the tops! I have solved it 5 times already
and I am going for a 6th! The mixture
of players plus a well supported back-
ing of mythic descriptions make this an
epic blockbuster. Unlike Ultima 3, the
characters are much more developed,
much more interesting and less bind-
ing. For instance, with the right amount
of gold you can help any character
become a great hero, unlike Ultima 3,
whose glitch makes it almost imposs-
ible to get to the stage where you can
help your characters gain attributes. If
you have never played Heracles or Ali
Baba, I strongly suggest that you check
it out and see what you are missing.

MIG ALLEY ACE: This is a fantastic
flight combat simulation with multiple
players and combat mode. When I found
out that all of this was written in com-
piled BASIC, I could not believe my eyes!
The speed and action can not be beat,
even by the over-burdened and over-
detailed Flight Simulator 2 by Sublogic.
This is not to say that Flight Simulator
2 isaterrible program, but just that with
the given amount of memory and play
action Mig Alley Ace isa whole lot more
fun. This is in comparison to the War
game on Flight Simulator 2, not the ac-
tual simulation.

AMS2 (ADVANCED MUSIC
SYSTEM 2): Few people realize what a
great thing AMS2 is for Atari users and
many shrug it off. I personally can not
write music so the programming fea-
tures are lost on me. What I do know is
that not only are there hundreds upon
hundreds of songs written for it (AMS2
has more user support for it than any
other music program for any computer).
all the songs are public domain and it
is very inexpensive with the price of
around $20 as opposed to $39 for lesser
programs on other systems. If you know
how to write music and have a good ear,

[would really strongly suggest that you
take a look (and listen) to AMS2. You
might very well be surprised.

SPELUNKER: Even when re-releas-
ed from Broderbund, I do not think this
game has ever gotten the respect it
deserves. Truly an awesome game in
both graphics and planning, I believe
this is the game that SHOULD have
replaced miner 2049er. It is a lot more
related tomining than the latter is. This
game can keep you going for along time
and the novelty still has not worn off for
me.

‘Oh. yea; before I go would like a cou-
ple of shots at some definitely over-rated
games too. . . .

LODE RUNNER: Innovative but
BORING!

POLE POSITION: If an actual car
drove like that, this game would be a
great argument to take the bus!

DEFENDER: Sure, it was great for
about %2 an hour. But after you are stuck
on the 99th level for about 15 minutes,
you sort of get a little bored. . .

CHOPLIFTER: Good for the times
but got quickly outmoded in other
games and in its own challenge.

ULTIMA 3: Yea, it is an epic. But all
that work for what???

THE QUEST: Well, remember how I
did not like it the first time I reviewed
it? Well, right now, I like it even less!!!
I still have not booted it up after I played
it the first time. I did see a positive review
for it somewhere, so this is in response
to that unwary reviewer (wherever you
are!)

Q*BERT: This is a brainless, artless
copy of the arcade version without any
of the inherent charms or action of the
first one. You would think that they
would fix the fact that you have to go
diagonal to move. . .nope. This one is
areal turkey. But because of the arcade
popularity, it stayed around. . . .

Anyway, I would just like to leave you
off with a little suggestion on how to pick
the winners and losers of the gaming
world. Try to see how the game/software
is. If you can not see it and still have
doubts, don't buy it. Another good idea
is not to be the "first kid on the block™
with something new. Very often the
game you get for $35 today will be in the
$4.95 bargain box tomorrow. Just be
aware and be smart.

Until next time,
Goodbye and Good Gaming!

At Ease,
Sgt. Slaughter

Text Screen Dump

by Tom Reichard - JACG

Several micros have a built-in screen
dump that allow a screen full of data to
be dumped to the printer with a single
keypress. The following is a simple
BASIC program that essentially accom-
plishes the same thing.

As a stand alone program one simply
RUNs it then types to the screen using
all of Atari’'s great screen editing
features. When you want a screen
dumped to your printer simply press
START. To continue on to another
screen just press SHIFT and CLEAR (or
CONTROL and CLEAR) then resume.

You need to be careful in using con-
trol characters as some of them affect
printer actions. However, if you learn
their functions for your printer, adding
them to your text can give you some ad-
ditional interesting features. For exam-
ple a control N at the beginning of any
line will cause that line (but not the next
one) to be written in expanded type for
many printers.

SPECIAL NOTE: In lines 50, 130
AND 190 the "!!" are supposed to be
ESC DOWN followed by ESC UP arrow
which cannot be printed using this word
processor. Please change them in your
program!

PROGRAM NOTES

Line 40 - This routine is not well
known. It allows line by line input from
the screen. (See also the loop from line
130 to line 180}

LINE 110 - Disallows entry of data to
Line 23 of the screen. It avoids problems
associated with scrolling. Printouts are
thus limited to 23 lines (0-22).

With some additional programmming
one might, with relative ease, add a
screen save routine giving you a simple
word processor which you could couple
with various BASIC programs as a sub-
routine.

41

SUFRFER SCREERNM DUMRE

i REM

2 REM | Sad LEANDRO COMPUTER CLUB]
X REM | SPECYal EDITION JOURNAL]
4 REM IP.0. BOox 152S. San teandro.cal
S REM | 945808—-6152

6 REM ! o

19 REM THIXIS PROGRAM WILL DISPLAY AND

Z8 REM PRINMT PICTURES IN KOALA AND

ZH REM MICROPAINTER FORMAT

48 REM

S8 REM THIS PROGRAM KWILL NOT HWORK

60 REM WITH MOMNKEY MWREMCH INSTALLED
79 REM

88 DIM MAINS CIIO) ‘MODES €61) ,NAMES C15) ,

PRAS C772) ’PRZS C€C772) y,PRISCZ772) 'FILES €50
8) , TEMPS €152 ,DUMP1S5C178) ,DUMP25C178)
85 DIM PRTS(.L),GRS(LB),HLDS(LL?)

98 GRAPHICS O6:POKE 752 ,1:POKE 201,5

25 SETCOLOR 1,2,108:SETCOLOR 2,2 ,2:5E7C
OLOR 4,2 ,2

iee 7 'R IN THE PUBLIC DOMAIMN*'
EN: O e e, L}
iez 2 -t € € £ o P oD 6 H ey ?

T : 7 . *

iex 7 e _-____ __beo LI
N Y e LED _BUBGCESR L
L e e, * *
ERCICEEE __ MICBOPAINTER MOD - LU
A07 7 .V TR ¢ 1 2
. Pl DRD e

CE T T N <
ie9 7 ..""+4 WHHICH fPRINTERY'"":7? .. e 14

SOMN*':7 ..
TROMWMRITER""

FEMINI *:? . .-

MEC** :? ..

118 7 . .""$4ENTER YOUR CHOICE'': :INPUT PR
TS
111 IF PRTS="E'" OR PRTS='"G'"*" OR PRTS="'®

OR PRTS=""pP"
FEXEXI": GOTO 126

THEN 7?7 ""ft+trtr 11+ {EXEXE]

1i2Z2 GOTO 9@

115 REM

1Z8 REM PUT DPISK I/70 SUBROUTINMNES IN
1308 REM PaAGE FOUR CASSETTE BUFFER.
148 REM

i1s5ea

pATA 16Z,16,169,0,157,72,3,16%,0,1
57,7%,%,32,86,228,192,0,48,%,23I68,31,4,
298 ,%,238,32,4,96,104, 104,96

160 FOR A=1824 TO 1054:READ B:POKE A,8

INMEXT o

196 REM

ZOO REM DUMPS IS A MACHINE LANGUAGE
218 REM ROUTINE THaAT DOES THE

228 REM SCREEN DUMP

221 REM X7 aALS0 USES THE FIRST 20
222 REM BYTES OF PAGE 1 (60106.61106)
22X REM DUMPL1S IS FOR EPSON TYPES
Z24 REM DUMP2S XS FOR NEC. PROWRITER
225 REM

248 DUMPLS 1) = hh ALY (tmkkhme el Fhm -

B 03 2a b L iKs OZ0pEN L o O—E_FEN E - 01— 28 4

e NEIOE S 1632 R o O —L 4 bl
241 DUMPLS CBL) =i me " II=FFivem i KETPATI 4N
A TEEeEH HETITITEH (EIPAN U ST < A T eEH Habk bbbt afl
IFMBH P 2 ONNN 020D N2

747 DUMPLS C161) — "'V 7] IACTITFAITATIX "
24T DUMP2SCL) =""hhT AL T hmkrhme Fhed Fhm T
Al Y R e NIRRT AN O (Heidm IR Fiw
ey NEIOE T 842 R O L & ol

244 DUMPZS (81 =" idme T Fiki vk KT FPAD M
e CIE e b b b PYTTIUITON CEEPAT Y JTHD 2 b THReEH Heall
FOIT o e dn J OO TN SR

745 DUMPZS €161) =" E1¢(7 IAEYITFATATIN S
Z46 REM

247 REM MLDS HOLDS THE M/L ROUTINE TO
LOAaD M—PAIMT FORMAT FILES

248 REM COURTESY OF ANALOG MaG.

Z49 REM

250 MLDS='IMHhEO Huid W1 i vTHRWTSEIONSING
MFAT- i CWFANL oSTHIvD e AL FITTH flaR -

2572 MLDS (613 —"'PATR-i KT FALi @TTWIeTAU-SNIBS
FIwfiH- F1e I FAXEIDS FAYIEY urECH TEFIvIETIe "

Z255S REM

260 REM MODES IS A MACHINE LANGUAGE
278 REM ROUTINE TO CHANGE GRAPHICS 8
2808 REM TO GRAPHICS MODE E

2929 REM

86 MODES='"hE0 CXE1 CF-FIle(TXFIveFTIFMVI

AMTTI4 . METO.SI0MTTR JHFPL_FIHOXFPINIFT LTINS

48

16 REM

3268 REM MAINS IS5 A MACHINE LaNGUAGE
X300 REM ROUTINE TO DECOMPRESS .PIXC
I48 REM FILES AND DISPLAY THEM

3I7@ REM

IBO MAXINS €13 ="hEHS NN IMYID- FIVIEL flom>4 m

4] O ITTEXIFNTNT R4 WD [T HLTIVA T E LT PA T
M EX] o-lmA BX) o-imd BT o-im@ X o4l X @

I8 MAINS (101 ="-1mid(X] v-im +-IXCTIVITTEFIA

RXIMFPAYIITE] S ANPORKESAT 14 FAE 4T 4@F
MPFICTRAD (SWMPAT)I PSR 4T o4TTTaT - TTvA
e L0

408 MAINS (2013 ="YX HL CUITSEII VA GSATIIAD |
FFAATINDED] Pl [FTIG-AFIP el X F1veFTIFYXF1¢RTD /51

HAN 5] Fe T TE 1 VT Tl e ST ETIFH-L! Ad =51 c e X
FYers

418 MAINS CIO1) ="' WieITHI Hil lelTEXFIve TV
Ao

426

MAINS C111,111)=CHRSC3I4

40 MAINS(l57,157)=CHR$(34)

448 REM

458 REM REAQAP DISK DIRECTORY

460 REM AND STORE .PIC

465 REM AND .MIC FILENAMES

4780 REM

480 ? .3 d INSERT THE PICYURE DISK.-*
Hir SRR 4 THEN PRESS IWITRHRANITE' : : INPUT
NAMES

420 FILE=1:0PEN 121,6,0 ,D:% PIC"'
568 FILES='" “":FILES(92@0)="" “":FILES$(C2)=

FILES

510 INPUT $t1,NaMES

520 IF NAMESc2,2) <>*'* ** THEN 560

530 MNMAMES (1L ,2)='"D:*" " :NAMES(11) ="' . PIC"'"
S40 FILESCASHFILE—14)=NAMES:FILE=FILE+
1

550 XIF FILECI7 THEN S10

5608 REM

S6S CLOSE 121

S70 OPEN $31,6,0,''D:%.MIC"'

S$72 INPUT RB1,NAMES:IF NaAMESCz .23 (> =

THEN 576

S74 NnMES(L,Z):"D:"INnMES(.‘I..L):".MIC":F
ILES (1SHFILE—14) =NAMES I1FILE=FILE+1:IF
FILEX3I7 THEN S72

$76 FILE-FILE—-1:CLOSE 31

80 REM

590 REM NOW GET MWHICH PICTURE

600 REM TO PRINT

610 REM

620 GRAPHICS ©0:? 'K P B T
N H D 't :? FL=©

630 FOR FF=1 TO FILE
640 NAMES=FILESCFr®*i15—14)

850 POSITION CCFF/72Z—INTCFF/23) <0.2)m20
FF/241:XF FF{10 THEN 7

6608 ? FF:' ' —'"':NAMES

670 MEXT FF

6806 7 ""$4ENTER '©6° TO CATALOG a4 NEW DI
Sk

690 TRAP 620:7 '*WHICH PICTURE DO YOU W
ANTY TO PRINT'"; :INPUT PIC

760 IF PIC=0 THEN 490

718 XF PIC)FILE THEN 620

720 TEMPSZFILES(PICH15-14>

73I@ NAMES='"""":FOR aA=1 TO LENCTEMPS)

740 IF TEMPSCA,Aal <> ' THEN NaAMES (LENC

NOMESI +13=TEMPS Cn, Al

750 NEXT A

7655 IF NAMES (LEN(NAMES)—Z,LEN(NQMES)):
“"MIC'* THEM 1000

768 OPENMN ﬂ.‘..‘,O’NnMES

770 GRAPHICS 8+16:A-USRCADRCMODES))
780 A-USRCADR (MAINS)D

790 CLUSE £t1

8080 REM

810 REM

828 REM

838 REM

840 GOSUB 1215

850 TRaP 13560

86€@ CLOSE 1 :0PEN 21 ,8,0,°'P:"'

86S Ir PRTS=‘"E'" THEN DUMP=-ADRCCDUMP15) :

? BL: LRI GRS='K L4

866 XF PRTS='""G'"* THEN DUMP=-ADRCDUMP1S) :
? B1:""EeEI4 " GRS="'&L4J

867 IF PRTYS$='""M'"* THEN DUMP=ADRC(DLMP25):
? B1L:"'&T16%CEQ': GRS=""kS50772""

868 IFr PRYS='"P‘* THEN DUMP=ADRIDUMP2S5) :
? 81 :°&T16% (%A : GRS=""LS50772""

879 PRAS="'$':PRASC(Z772I=""®"":PR1S5(2)=PR1
$:PR2S=PR1S5:PRIS=PR1LS

880 PRAL=ADRCPR1S5) :PR2=ADRCPR2S5)

890 REM

900 REM EITTAL MEGINIFOITA IR

218 REM

920 SCR=PEEK (883 +PEEK(B9)#256: 0KE 764
,25S

938 FOR X=©0 TO 3I9:IF PEEK(7643 <(>2SS TH
EN POP :POKE 764,25S5:GO0T0 9590

935 PICT=191%40+SCR+X:S5TR=USRCDUMP,PIC
T.PR1,PR2)

940 XF PR1S<>PRIS THEN ? 8B1;GRS;PR1S;
942 7 11t

246 IF PRZSCOPR3IS THEN 7 ®B1;GRS;PR2S;
947 7 81

248 NEXT X

956 7 21" g

26080 TRaAP IZ767

970 CLOSE #1:GRAPHICS 08:GOTO 620

1806 REM

1865 REM LOAD M—PAINT TYPE FILE

16016 REM

16135 CLOSE ##1:0PEN ﬂl,‘,O,NAME5:GRQPHI
cCS 8+16

1817 A=USR (ADRI(MLDS))

1818 IF A<>1 THEN 7?7 "'R'"':GOYO 480

180286 GET 81 ,C1:GET #1,C2:GET 81 ,CI:GET
1 ,C4:CLOSE ®#1:POKE 712,C1:POKE 7e8,C
2:POKE 709 ,CI:POKE 710,C4

1825 GOTO 800

11906 REM

12068 REM THIS ROUTINE CHANMNGES

1216 REM THE GRAY SCALES

1211 REM

1215 BKG=5:CRZ=1:CR1=3I:CROG=2

12290 GRAPHICS B8+IZ2:A-USRC(ADR CMODES3) 1 P

OKE 752,11

12231 POKE 712,33 ,7»(BKG—13 :POKE 7108,3,7
(CR2—13 : POKE 709,I,7%C(CR1—1) : POKE 708
;3,7 CCRO—-13

1228 7 “WrifFL=1

1230 DL=PEEK(S68) +PEEK(S61)%2S56+173
1240 SCR-PEEK(88) +PEEK(89)IM256-500
1724S FOR C=© TO 3I:FOR X=SMC TO SHC+4a:P
OKE I+SCR440.C®B85:NEXT I:MEXT C

1268 POKE DL+4,6S5:POKE DL+3I,10

1255 POKE DL+S,PEEKC(DL+1) iPOKE DL+6,PE
EK CDL+2)

1260 POKE DL ,78:POKE DL+1.SCR—-INTCSCR/
256) %2861 POKE DL+2,INTC(SCR/256)

1286 CLO3IE RBI:OPEN BRI 4,0, K1 : TRAP 12
80
1316 POKE O ,786
1348 T K PRESS [NRINMT OR MENU OR M
TEM." 17 "4 CHOOSE COLOR TO CHANGE.
€1L—43""
1320 T °*° i 2 3

40
1338 CLO3E 3BI:0PEN 123 ,4,0,°K:"": TRAP 13
I

1340 GEY 83 ,KEY

1344 IF KEY=80 OR KEY=112Z THEN ?
RESS aMY KEY TO STOP PRINTINMG'
sSe

1348 IF VEY=77 OR KEY=1029 THEN
1346 IF KEY=86 OR KEY=118 THEN
718:GCTO 1220

“Re P
:GOTO 14

620
Gosus 1

1350 7 '% BLACK = 1 2 I 4 5 = WHITE"™
1360 7?7 *"* CHOOSE MEW SHaDE. CL~—-52*°
1378 7 ‘"PRESENTY SHADE FOR COLOR ®':KEY
—481*" IS5 "1

1376 COKE DL ,6S

1380 IF KEY=49 THEMN ? BKG:GET R3I , KEY:B
KG-KEY—48: POKE 7L2‘3’7*(KEY—49):GDTO 1
10

1328 IF KEY=S@® THEN ? CRO®:GET RBI ,KEY:C
RO=-KEY—48: POKE 708’3.7*(KEY—49):GOT0 1
Ii10

1480 XF KEY=S51 THEM ? CRL1:GET 8HI ,KEY:C
R1I-KEY—48: POKE 709 ,3 . 7N (KEY—423 :GOTO 1
I10

1410 IF KEY=5S2 THEM ? CR2Z:GET R8I .XKEY:C
RZ2Z=KEY—48 : POKE 718,3.7*(KEY*49):GOT0 i

X110
1449 SOLUND 1,100,10,10:FOR I=1 TO0 2ZO:N
EXT XI:S5SOUND 1,0,0,8:G0T0O 1310

1458 RESTORE 13508+BKG:FOR I=260 TO 263X
tREAD PAT:POKE XI.PAT:NEXT I
1460 RESTORE 1S5S@GQ@+CRO:FOR I—-264 TO 267
tREAD PAT:POKE I,PAT:NEXT I
1479 RESTORE 1S500+CR1:FOR I=268 TO 271
TREAD PAT: POKE I,PAT:NEXRT X
1489 RESTORE 1S80O+CRZ:FOR I=272 TO 27S
tREAD PAT:POKE I,,PATINEXT I

1490 RETURN

49

1508 REM DATA FOR GRAY 3SCALES

15@t DATA 15 ,15,15,15

1582 PAaTA 10,5 ,16,.5

1563 paTa 16,0,S_. @

15904 DAaTA 2,0,8,06

1505 DPATA ©0,0,0,0

15S35@ REM

1555 REM

15686 REM PRINMTER ERROR ROUTINE

157G ? *"SOMETHIMG I3 WRONMG WITH THE PR
IMTER?

1580 SOUND 1,1006,10,12

15926 FOR A=1 TO ZOB:NEXT A

1680 SOUMNMD L,O,B’O

1610 FOR A=1 TO 100:NEXT A

1626 GOTO 8S©6

16568 REM

16535 REM

1718 GRAPHICS 8+16+32:A-UISRCADR C(MODES)>
b

1720

POKE 712 ,3 , 7% (BKG—1) 1 POKE 710,3,7
W¥CCR2Z—1) :POKE 7089 ,3.7%(CR1-1) : POKE 708
,3.7*(CRO“1)

1738 FOR A=1 TO 480:NEXT A:RETURNM

TRAIN SOUND

1 REM r

Z REM | SAN LEANDRO COMPUTER CLUD 1
3 REM | SPECTIAL EDITIYION JOURNAL]
4 REM 1P.0O. Box 152%5. San Leandro.cal
S REM | 24580—0152 1
6 REmM !t o
18 REM TRAIN SOUND

28 REM BY LEE MINAQRD

I8 REM 5TQRFLEET' PENVER

40 GRAPHICS 2

S© POKE 752,11

6@ B=-10:H=1

78 REM STEaM RELEAQSE »es

80 SOUND ©,1,8,a

298 FOR DLAYZ=1 TO SO0:NEXT DLAY

1060 FOR STEAM—12Z TO 6 STEP -—-08.5

1186 SOUND @,1,8,STEAM

120 FOR DLAY=1 TO SO :MEXT DLAY

130 MNMEXT STEAM

140 REM CHUGS

158 FOR G=15 TO 1 STEP —-06.2S

166 FOR A=G TO 2 STEP —-@.9

176 SOUND ©&,B,8,a

180 SOLIND z,B%+1,8,a

198 NEXT a

200 REM SPEED UP CHUGS

238 FOR DLAY=B™Z TO 1S50:NEXT DLAY
226 FOR DLAY=1 TO 2LIS:MEXT DLAY

230 B=B+2

2460 REM GRAPHICS FOR ""TRAIN'" MMM

256 H=-H+1L1

268 IF H=—4 THEN H=1

278 IF H=Z THEM GOSUB 490

zZz88 IF H=X THENM GOSuB Si10

290 IF H—-1i THEM GOSUB JS3IO

08 IF B—-%9 THEN 340

I10 IF B-J0 THEN 3JI4&

20 MEXT G

IIO0 REM HWHISTLE e

I40 FOR X=1 TO 100

ISG IF X=1Z OR K=14 OR KX=-65 OR X=62 TH

EN SOUND 1,75,108,5:50UND I,50,10,4
ND 2,52,49,4

X600 IF K=13 OR H=16 OR X=68 OR K=70 TH
EN SOUND 1,75,18,1:SOUND X,56,18,1:500
NMD 2,52,10,1

370 XF X=1% OR K=73 THEN SOUND 1,0,0,0
:SOUND I,0,8,8:S50UND 2,0,8,0

:so0u

I8 FOR A=< TO 1 STEP -—-@.4
I98 SOUND @,86,8,Aa

490 NEXT a

410 7 '"CHOO °**:

4206 NEXKT X

430 FOR A=% TO 1 STEP -0.4
440 SOUND @,86,8,a

450 NEHT a

468 FOR DLAY=1 TO 2:NEXT DLAY
470 2 ‘'cHOO *':

480 GOTO 340

490 7 16 ;" TRAIN':

S008 RETURNMN

510 7 u6; TTF:

520 RETURN

530 7 186 ; ITFEGr:

S40 RETURN

MRS TER FENCIL

T R
Z R
X R
4 R
S R
&6 R

7o
8a
0
160
1160
120
130
14
0o G
156
16
170
175
186
120
2090
zZ10
zzZza
236
240
256
266
z27e
280
z98e
Toa
I10
Izo
X0
40
ISa
I60
7O
Rg=1:]
I9ae
4006
410
420
43T O
440
4590
460
coL
470
480
420
S0o0
510
520
5359
Sae
550
S60
sS7a
S80e
s9a
600
610
626
630
6449
650
660
670
680
690
700
710
720
730
740
750
766
TH

EM r— 3
EM 1 SAN LEANDRO COMPUTER CLUB]
EM | SPECTAL EDITION JOURMAL t
EM IP.0, Box 1525. San Leandro.cal
EmM | 24580—-08152 1
EM G o
REM r —

REM | MASTER ®* PENCIL !

REM |1 1

REM | b Joe EFash 1

REM L 4

CLR

:DIM GK(LOG)’GY(LOQ)'Y5(28)’n$(
,BS €202
HS=1:1USZ1 :X=160:¥Y=90:C=1
DIM FLCZS5909)
GOTO 2440
REM BLINK
COLOR O©:PLOT H,Y:FOR T=& TO0 So
NEXT T:COLOR 1:PLOT K,Y:RETURN
REM FILL ROUTINE
COLOR C:PLOT GXC1) ,GY C13 :FOR T=2 T
T—41

DRAKMTO GHCTI ,GY (T3 : NEXT T:RETURN

REM JOYSTICK ROUTINME
S=STICK(B)
COLOR L:PLOT ¥X,Y

IF F=1 THEN F=0:GOSUB 13X@

IF S5=15 THEN RETURM

IF S=7 THEN X=HK+HS

IF S5=11 THEN X=XK—-HS

XF 5=14 THEN Y=Y-US5

IF S5=1F THEN Y=Y+VUS

IF S=18 THEN Y=Y-US:X=K—HS

IF S5S=9 THEN Y=Y+US:XK=K—HS

IF S=6 THEN Y=Y—VUS:X=X+HS

IF S=5 THEM Y=Y+US:H=K+HS

IF %<0 THENWN X=06

IF H>3I19 THEN X=X19

IF ¥Y<8 THEN Y=0

IF ¥>1S5S9 THEN Y=1S9

LOCATE X,Y,L:RETURN

REM PLOTTER

FOR O0=90 TO WD

PLOT H+O+ CCMMHND) , Y+ CRWMHT)
DRAWTO H+O0+ CCMMWND)I , Y+ CRWNHTI +HT -1
NEXT O:RETURNMN

REM DEL

H=H— CHD#*8) —1

FOR RW=9 TO 7:COLOR OF

FOR CM=06 TO 7

GOSUB IIO:NEXT CM:MNMEXT RM:RETURN
REM OTHER

FOR RW=©® TO 7

NM=PEEK (S7344+PL+RMW) : CM=0

COLOR OF:XF MNM>127 THEM NM=NM—-128:
OR AN

GOSUB 3IIO:COLOR OF:CM=41

IF HM>63I THEN NM=-MNM—-64:COLOR AN
GOSUB IIO:COLOR OF:CM=2

IF MM>3I1 THEMN NM=NM—3I2:COLOR AN
GOSUB 3IXB:COLOR OF :CM=3

IF MM>1LS THEMNM NM=-NM—16:COLOR AN
GOSUB 3I3I0:COLOR OF:CHM=4

IF NMM>7 THEN NM=-NM—-8:COLOR AN
GOS5UB IXIO:COLOR OF:CM=S

IF NM>I THEN MM=NM—4:COLOR AM
GOSUB IX@:COLOR OF : CM=6

IF NM>1 THEN NM=NM—2:COLOR AN
GOSUB I3ZIO:COLOR OF:CM=7

XYF MM>O THEN NM=MM-1:COLOR AN
GOSUB 3IZIO:NEXT RKW

H=H+ CWD*83 +1

RETURM

REM CHECK

S=0: IF KWDX8+X>3I19 THEN S=1

IF HY®8+Y>159 THEMN S=1%1

RETURNM

REM DCHEK

S5=@:IF X—WD®8<® THEN S5=1

IF YH+HTH*8>1S9 THEN S=1

RETURN

REM AtLPHA CLETTERS. ETC.)

POKE 752,1:CLOSE H#13I10PEN 2L,4,0, K

PRINT ""R$d4°':

? TENTER LETTER HEIGHT (¢1—-83 "':
GET ﬂllHT:HTZHT—CB:IF HT<{1 OR HT>SB
EN 760

770 PRINTY HTY:? :7?
€183 *r:

786 GET BL,HD:HND=HND—-48:1IF WND<i OR WD>8
THEN 780

796 PRINT WD:~?

800 GRAPHICS 8+32:POKE 710,01P0KE 75z,

"ENMTER LETTER WIDTH

LA

816 ? '"NRPOSITION CURSOR TO PLACE ON SC
REEN®"

8206 7?7 ‘*WHERE UPPER-LEFT CORNER OF FIRS
T

838 ? *“*"CHARACTER IS TO GO. A'D PRESS T
HE"'"

8406 ? "'FIRE BUTYTON. . .'

856 GOSUB 160:GO0SUB 1600:5=STRIGCE?

860 XIF S5=1 THEN 850

870 POKE 764,255

88©@ 5=-0:GO0SUD 640

898 IF ST1L THEN ? :©:7? *"SGRRY. NOT ENOUG
H ROOM."":7 *""PRESS aNMyY KEY TO REPOSITIO
N:"*::GET 331 ,5:GO0TO 72e

2?00 LOCATE X,Y,S5:COLOR 1—-5S:PLOT X,V
216 PRINT *"KRPRESS RETURN TO REPOSITION
"t:? ""PRESS ESC TO RETURM TO MENU‘:? "'pP
RESS THE LETTER OF YOUR CHOIXICE: *"*

9226 GET 81, K:AN=L:0F=©

938 COLOR S:PLOT H,Y

2408 IF K=1SS THEM 720

258 IF K=27 THEN RETURN

960 IF K>127 THEN K=K—-1Z28:QN=®10-=1
278 IF K<3I2Z THEN PL=-CK+64)1 N8

280 IF K>3I1 AND K<96 THEN PL=-C(K—X2) 8
290 IF K>9S THEN PL=KM8

1068 IF K=126 THEN GOSUB 680:IF S=@ TH
EN GOSUB I8 :G0TO0 1920

1010 GOSUB 430

1920 GOTO 880

1630 REM MIRROR1

1048 IF XK<161 THEN Q=319-K

1050 IF X>1668 THEN A=160-(X—- 1603

186€@ IF Y>80 THENM B=80—-CY-88)

1870 IF v<81 THEN B=159-Y

1080 COLOR C

1898 PLOT H,Y:PLOT X,B:PLOT 0,B:PLOT a

., Y

1100 RETURMN

1118 GRAPHICS B8+3IZ2:POKE 7106,08:POKE 752
,1

1120 7 "*“W"MOVE OR DUPLICATE (M/D) 2°:
1136 CLOSE H#1:0PEN 121,4,8," K:'"

1149 GET #M1,M:IF MI{>68 AND MI{>77 THEN

1140

1150 MOUVU=0:IF M=77 THEN MOU=1

11455 IF MOV THEN 7 *“"KMOVE:'*

1158 IF MOU<>1L THEN ? *“KDUPLICATE:"

1168 ? ""POSITIOM CURSOR TO UPPER LEFT

CORMER""

117@ 7 ""OF AREA TO BE TRAMSFERRED. THE

N PRESS*

11806 7 "'THE FIRE BUTTON.':

1199 GOSUB 160:G0SUB 180:IF STRIG(E>=1
THEN 1190

1195 OX=R:0Y=V

1268 ? ""KO.K.. POSITIONM THE CURSOR TO

THE'"

1216 7 "LOWER RIGHT CORNER OF THE aREa
Yo BE"'

12206 7 ‘‘TRANSFERRED AND PRESS THE FIRE
BUTTOM""

1230 GOSUB 160:GOSUB 100:IF X<OH THEN

K=OX

1740 IF Y<OY THEN Y=0Y

1256 IF STRIGCOI=1 THEN 1230

1255 MK=H:NY=Y

1260 ? ""ANOW. POSITIOMNM THE CURSOR IN T

HE UPPER-"

1270 ? "LEFT CORNER OF THE AREA WHERE

THIS

1280 ? *'IS TO BE TRANSFERRED TO. AND P

RES S

1296 7 "*THE FIRE BUTTON':

1306 GOSUB 168:GOSUB 160:XIF STRIGC8) =1
THENM 1300

1316 ? "RTRANSFERRING..."

1T20 KLI=NRK-OH:YL1I=MY—-0Y

13IIO XIF HK+K1>3IL1D THEN X1=3I19-X

1348 IF Y+Y1>1S9 THEN Y1=1S2-Y

135@ FOR Y=1 TO Y1

1360 FOR R=1 TO X1

1370 LOCAYTE OK+R—1,0Y+T—-1,COL

13880 COLOR COL:PLOT H—L1+R,Y—1+T

iz9e0

IF MOV THEN COLOR ©:PLOT OH+R—LJO
Y+T—-41

1400 MEXT RIMEXT T
1418 IF MOV=0 THEN

TIGET 8#1 ,AN:TF AaN=

? "ODUPLICATE AGAIN?
89 THEN 1260

1420 RETURN

15808 REM DIR

1596 CLOSE RBX:0PEN HI , 6,0, "D ¥, '
1600 7 'K DIRECTORY '

1616 TRaP 1640

16268 IMNMPUT RBI:VYS:?7 YS:' U

1630 GOTO 1620

16409 TRAP 40000: RETURN

165686 REM LODSAV

16606 7 ::7? 'fIXTIIZIIXIIIXI':? :7?7 :? EMNMTER
FILENAME: '*:

1670 INPUT aAa5:BS=''D:°'

1688 BS((3I)=Aa$S:CLOSE ®2

1690 IF KW=AS5CC'"'3I*') THEN OPEN ﬂZ,BIO'BS

:GOYO 17190

17680 OPEN 832,4,0,85
17180 GRaPHICS 8+3X2:
s1:7 :COLOR L :PLOT
1720 FOR Q=SCR TO 5
17368 XIF W=-Asc I

Q,255:PUT R2Z2,R:POK

17408 IF W=ASCC'2'")
1t2 ,R:POKE Q,R

1756 NEXT Q

1760 CLOSE #2:RETUR
1778 REM PRERET
1788 ? :? :? “PRESS
1790 CLOSE $£31:0PEN
18668 GET B1,E:RETUR
18190 REM ESCAPE
1820 CLOSE #331:

1838 GRAPHICS O0:POK
®:POKE 709 ,200:POKE
1840 2 Master
T

1858 2 7

1860 7?7 ° B>
187@ 7 ** (3]
18806 7 °*° D3
1892 ? E>
1986 27 ' FJ
1918 2 °* (5]
19z8 2 HY
19368 27 ** x>
19406 2 ** J3
1956 2 °° K2
1968 7 " Ll
1976 2 :7? ENTE
1986 POKE 82,8:7 :7
19296 2 °° HSPEE
ze008 7 " USPEE
281 2 X PO
zeze 7 Y po
2030 ? *“‘4—WaY MIRRO
20498 IF M=1 THEN ?
2050 IF M=0 THEM 7
2860 ? “"GET DPOT mod
20870 XF G=1 THEN 7
2088 IF G—0 THEM 72
2090 POKE 82,2

2190 POSITIOM 24,15
21106 GEY #t1,W:PRINT
21208 IF W>=AascC(C"a'')
EN W=W—-3I2

2130 IF W65 OR W>9
2148 TRAP 2440

2150 IF W=AScC'"J*)
B:RETURN

2160 IF W=ASC (*"K**)
6 :RETURN

2170 IF W=ASCCcL'')
2186 TRAP 1810

2128 IF HW=ASCCC‘C''>
2200 IF W=aASCCC'G')
2210 IF KHW=AaSCCC'*'G*'')
2220 IF KWZASCC'F')

=1 :RETURMNM
2230 IF HW=-ASCC'H"'")

? "ENTER MNEW HORIZONTAL SPEED

POKE 710,0:POKE 752
®,¥

CR+6400

THEN R=PEEK Q) : POKE
E a,Rr

THEN POKE Q,255:GET

N
RETURMNM:

81,4,0, K"
N

R MENU
OPEN 11,4 ,08,'"'K:""

E 718,80:PO0KE 712,38
752,11
Pencil Command Shee

A) ALPHABET'
MOVE /DUP"'
CLEAR SCREEN'"
DIRECYORY""
4-HAY MIRROR®
FILL CFOR GET DOTS)
GET DOTS (€100 MaAXI '
HORIZONTAL SPEED**
VERTICalL SPEED*
SAVE DR

LOAD koo ol

EXIT"™
R ONME (¢H—LD> :"":
D
D
s
s
R
oMt
OFF
e: *"‘:
eON
“aFF

HS
us
el
h d

s o gan;
CHRS CW) :
AND W<{=ZASCC*1"') TH

6 THEN 210680

THEM W=S1:G05UB 165
THEN W=S568:G05UB 1635
THEN RETURN

THEN HS=Z0:RETURN

AND GT>1 THEN GT=1
THEMN G=1:F=-©
AND GT>1L THEM G=0:F

THEN POSITION 2,15:
€1—162

1 IMPUT HW:IF W>O0 AND W<13 THEN HS=KW

2240 IF HZTASCC*"X"*)

? “"ENTER NEMW VERTICAL SPEED

INPUY W:IF W>O AND
22508 IF W=ASCCC*E"*)
2260 IF W=ASCCC*'D*'2Y
uB 1770

22768 IF W=AS3CC'"'B"*)
K'': :RETURN

THEN POSITION 2,15

€1-103 :°":
W{11 THEN US=W
THEN M=1—M
THEN GOSUB 1580:GO0S
THEN GOSUB 1110:7 *

51

2280 IF mW—Tasccc*a*') THEN GOsuB 720

2298 GOTO 1810

200 REM COLFLIP

216 POKE 752,11

2320 XF C=1 THEN C=0:7 ""RCOLOR IS OFF"'*
IRETURMN

23O IF C=@ THEN C=1:7? *“"KRCOLOR IS ON'"
2340 RETURMN

ZISO8 REM DRAW

2X668 COLOR C

2370 IF STRIGCCO3=1 THEN RETLURN

23890 PLOTYT xXx,¥Y:L=C

2T290 IF M=1 THEN GOSUB 18306

2400 IF G=1i THEN GHC(GTI=H:GYL(GTI=Y:GT=
GT+1

2421@ IF G=1 THEM 7 *‘'GET DOT MODE. DOT
n'':GT

2428 IF G=1 AMND GT=181 THEMN G=0:7 °''KNO

MORE DOTS ACCEPTED FOR GET DOT MODE'*

243G RETURN
2440 REM MAIN s MAIMN LOOP Eaian
Z458 XF TP=1 THEN GRAPHICS 8+32:GOTO 2
478
2460 GRAQPHICS B8:TP=1
247@ POKE 7S52,1:POKE 710,06:7 '8
Bw: Joe Eash''
248@ SCR=-PEEK(88) +2S6®PEEK (89
2428 JIF PEEK(C(87)=8 THEN GRAPHICS 8+32:
POKE 710.0:POKE 7SZy1:7 'R
2508 &0SUB 160:REM JOYSTICK
2516 GOSUB 108:REM BLINK CURSOR
2520 GOSUB 23ISO:REM PLOT POINT
2539 Q=-PEEK(764) : POKE 764 ,2SS
25468 IF Q=28 THEN GOSUB 181@
2558 IF Q=33 THEN GOSUB 2300
2568 IF HS=—8 THEM HS=1:TP=0:VUST1:GOTO
Za440
Z570 GOTO 2490
2588 REM BYE — BYE !

UTILITY PACKAGE

1 REM -«

2 REM | SAN LEANDROC COMPUTER CLUB t
T REM | SPECIXAlL EDITYION JOURNAL 1
4 REM [P.0. Box 1525. San Leandra.cal
S REM | 94580-0152 I
6 REM L o
IO060 REM [TTITRE T EKTITER

I0801 DIM DECHORDS (S55) : DECWORDS=""hhT¥Th

TMELTNIK TS VAT B PARIHH JJJJ3 - Lioft: 5
EEP RN =N H G FA YT 2L

IPOO2Z DIM HORDDECS (73I) : HORDDECS=""hh™Th
TABIVRCITHEY) KJITWIel. iG] "silofa b i~ ke a8l
NOIHH AARAT BN\« IETWISTH - TEFITITOA EIHe

TO00O0I DIM DSKCTRLS(C48) :DSKCTRLS=- "hhh@R
FldD W H e haed < e " hmh S 5T bem D SEER J ST
F1OTETe "

3600604 DIM CIOCTRLS (S8 :CXOCTRLS="hIlhhh
AR ThhiIBd hES KD hIIXS hNHL T B h b TJ2 [OAD

hhiiKs UREESIVIITe""

I0P06 DIM BMOUVESC171) : BMOVES='""hhITIhTHHh
AN ZATEN AT TERWATA L LA PATTAW LM ARe CENWAT el@
b M NP~ N2~ O

T00O7 DIM SEAREPSC126) : SEAREPS='""hIThI¥Th
b L%y Ol¥e PITYS NI Sy 02 by B S T IDNE N Ba Sh T80 |
hhIEYA S (RGPATIAMTR FAN "
0008 SEAREPS (64} ="' RN PAIITEFEYWIR . TA T4
2L PAS N0 pLE: 2P il P2OAL A 0P QPE 220 PR § 22 MEE 4
SATBGTIT e
00168 DIM SEARCHS (174 : SEARCHS=Z""hhTThI1
L Q1 PPREFOF P OV N SUL RPEFOSFRZSE G M1
AT T eNNIVTRTANS
TBO11 SEARCHS (592) = AT TEVATINTE WA ¥A
M2 Y203 L7 N3 220 a Us M XOZ2DEIGIUEPPRZMHEDRNYF T P
Ios
TOO12Z2 SEARCHS (117 ="'‘[ATefdT] XITIITL ELEF4AUR
| FIEIORZTENPRZUELI PAVR L a 2 IRIFNPR fO £ TP £ L]
@ =
TAOLI DIM BIMDECS C(I7)Y :BINDECS=""thITIIhITN
DLy Fait [otof) TRIDE SRYa Th NbheH GF 2
IBO014 DIM DECBINS(44) :DECBINS="hhhIT K3
TSI NN TOLITHMSIC U TTH SN CITTlc L Re "
TO618 BMOVES (S58) ='eTHIJdNAWATD] FITIATVATIAY
PEFOLIL rNFLAL I PPEFMEN“NTIFPRFOFPZP T PPR M
ITOO19 BMOVES C1153 =" (FAONISILAH AT i T¢I AW

32767 RETURN

DISHF MAK

1 REM

2 REM | SAN LEANDRO COMPUTER CLUB !
T REM | SPECXYAalL EDITIOMN JOURMNAL 1
4 REM IP.O. Box 1525. San Leandro.cal
S REM | 94580—0152 1
6 REM ¢ 2

168680 GRAPHICS 68:POKE 82 ,8:SETCOLOR 2,0

;9

16910 REM Mt m e M e r b a2 e M- hE - 6
10820 REM »
1830 REM % UTOC DISPLAY PGM 10/28./84%
1840 REM * »*
10508 REM ¥ aBad s on et
16608 REM

1870 DIM USINGSC(IO6) ,BUFS5C128) ,MLSC4) :F

OR I=1 TO 4:READ BYTE:MLS (CX) =-CHRS(BYTE
3 :NEHXHT IXI:POKE 7S52.1%

1080 DIM CLS5C1) :CLS=CHRS$SC125)>

16908 DIM BINARYSC8)Y , TEMPARRAYS (643

1160 DIM TEMPS5 (2552

1116 DIM FILES (1S

1120 DIM POWERC?)

1130 POSITION 12,12:7 *“ONE MOMENT...'':

1140 FOR I=© TO 7

1150 POWERC(I)I=SINT(ZAX+®.53

1160 NMEXT I

11786 DDEVIC=768

1180 DPUNIT=769

1196 DCOMND=77@

12680 DSTATS=771

1218 DBUFLO=?72

12260 DAUXL=773

128 DTIMLO=774

1240 UTNOC=3I60

12506 pPaThA 1084,76,83,228

1260 FOR I=1 TO 128:BUFSCI,XII="""":MEXT
x

1270 7 CLS:

1288 POKE 7S2,@

1290 DL=PEEK(S68) +2S6MPEEK(S561)

1300 O0FFSET=PEEK(DL+4) +2S6HPEEK (DL +S]
1318 POSITION 12,1:? “DMAP Version 1.1

.

1320 POSITIONM 6,I:7? *“‘CoPuriaht 198S Mi

chael Curru*'

1330 TRAP 1330:POSITION 7,11:PRINT "En

ter Drive Number to map'':POSITION 12,1

2:7 '""C1—4 or O TOo Quit) *“'; :INPUT DRIVE
1340 TROP O

1T5S60 ITF DRIVE=ZO8 THEN GRAPHICS 68:END
1X68 IF DRIVE<C1I OR DRIVE>4 THEN 1276
1370 POSITION G’LS:? "'"ITnsert disk to m

apr and pPress [RETURM]";:INPUT TEMPS

1388 POKE 7S52,1

1320 POKE DDEVIC, ,DRIVE+48

14060 POKE DUNMIT ,DRIVE

1418 POKE DTIMLO ,2SS

1428 POKE DCOMND,82:REM READ

1430 BUFFER=-ADRCBUF S$)

1449 ADPDPRESS=DBUFLO:VALUE=BUFFER:GOSUSB
2630

1450 SECTOR=VUTOC:REM READ VUTOC SECTOR
1460 ADPDRESS=DAUXKIL:VALUE=ZSECTOR:GOSUB
2030

1476 XK=USRCADR (ML S3)

1488 7?7 "RK'"::POSITION 10’8:?
I<—FREE—2I<— _TTL —2&

1420 POKE ?SZ)L:REM CURSOR OFF

1506 BL-ASC(BUFSC4)) +256%aS5CCBUF$C(53)2
15160 BU=-ASCCBUFS(C(2)3+2S6MASC (BUFS C3I)Y) —
BL

15268 POSITION 0,1:?

ON LBIL

< —UNSED-—>]

*SECTORS: "":POSITI

1530 WYIDE=9

1546 UVALUE=BU:GOSUB 26880:7 USIMGS;" |°
1558 VALUE—BL :GOSUB 2880:7 USINGS;* I
15668 VALUE=BU+BL :GOSUB 2080:7 USINGS;
1578 POSITION ©,2:72 ' BYTES:"':POSITIO
N 10,2

15868 VALUE=BLU125:GOSUB 2680:7 USINGS;
Lx} Ill:

1590 VALUE—BL*®*125:GOSUB 2880:7 USINGS;
(1] l-l:

1600 UALE=(BU+BL)I®125:G6G05UB 2086:7 USI
MNGS;

1618 YP=-Q:XP=9©6

52

1626 FOR XI=6 TO I:POSITION Ixie,4
:POSITION I®16,S:FOR J=@ TO 9:7?2 J
T JINEXT I

?

X .

I
NE

1638 POSITION ©,0:7 ""DRIVE: "' ;DRIVE;
1640 FOR LOOP=10 TO 99

1650 BYTE=ASC (BUFS (LOOP.LJUOP)

1666 GOSUB 1819

16760 FOR LOOPi1i=1 TO 8

1686 YP=YP+1:IF ¥YP>16 THEN YP=1:XP=XP+
i

169290

POKE 0FFSET+((YP+5)*40+HP)'QSC(BI

NQRVS(LOOPL’LOOPL))

1700 NEXT LOOPL

1716 NEXT LOOP

1720 REM POKE 764’

A17X8 POSITION 3’3:
TO COMTINUE >>>°:
1740 FOR I=A TO 7S:IF PEEK(7641)<>255 T
HEN 1796

1750 NEXT I

L7608 POSITION 3’3:? IKE€(Press Anuy Kew
To Continue »X2II*;

2S5
? "<<< PRESS ANY KEY

1770 FOR I=1 TO 1900:NEXT I

1786 GOTO 1738

1798 POKE 764,25S

1808 GOTO 1270

1818 REM SUBROUTINME TO RETURM

1826 REM 8 CHAR STRINMG OF BIMARY
1830 REM CHaRS

1840 REM

1850 BINARYS="TRSNESB&I"':REM 8 SPaCES
1860 FOR ITEMP=7 TO O STEP —1

1870 TEMP=POWERC(ITEMP?2

1888 IF (BYTE—-TEMP3)>=0 THEN BINARYS (8-

ITEHP,B—ITEMP)=”C":BYTE=BYTE—TEMP

13920 NEXTY ITEMP

19060 RETURN

1910 REM COMUERT 8 CHAR STRIMG TO
1926 REM TO DECIMAL NUMBER 0-25%5
19368 REM

1949 BYTE=0O

1958 FOR I=7 YO @ STEP —1

19260

IF BINQRYS(B—I,B*I)()" .
E-BYTE+POWERCI)

THEN BYT

1970 NEXT I

1980 PARAM=BYTE

1990 RETURN

2000 REM DPOKE HI AND LO BYTE OF val UE
29108 REM INTO APDRESS

2020 REM

2630 POKE ADDRESS+1 ,INT(VALUE/256)
2840 POKE ADDRESS,VUALUE-CPEEKCADDRESS+
1) %256

2050 RETURN

2060 REM RIGHT JUSTIFY NUMERIC INTO ST
RING WITH LENGTH OF [IFIa

2070 REM

28680 FOR I=1 TO WIDE

20908 USINGSCI, I) ="' *

2108 NEXT I:REM INIT STRING

21168 TEMPS=STRS CVaALUE)

2120 USIMNGS CWNIDE—-LENCTEMPS)II=TEMPS
2130 RETURMN

REL OC

1 REM -

2 REM | SAN LEANDRO COMPUTER CLUB 1
3 REM I SPECXAL EDYXTION JOURNMNAL 1
4 REM IP.0. Box 152S. San Leandro.cal
S REmM | 24580—-0152 1
6 REM !

19 GOSUB 3I0000
260 LOMEMO-PEEK(128) +PEEK(129)%256:G0SU
B 1006

I@ NL=-LOMEMO+10

49 Z=USR(QDR(RELDCS)’NL):GOSUB 100

S0 FOR I=LOMEMO TGO ML—-1:POKE I ,0:NEXT
x

6e Z:uSR(QDR(RELDCS),LOMEMB):GOSUB 1006
768 END

100 ? PEEK(128) +PEEKCLZ29)XN256: RETURRN

I0000 REM AP TR

TOOO6S DIM RELOCS(S55S) : RELOCS="'hhIWahI ' EIC
A TR AT E A S - TEFA TFAVAL W FAIaXTEFA
PR WAL

I2767 RETURN

DIRECT SCREEN
WRITING

1 REM r—

2 REmM | SAN LEANDRO COMPUTER CLUB 1
I REM | SPECIAL EDPITION JOURNAL 1
4 REM IP.O0O. Box 1525. San Leandro.cal
s REM | D4580-0152 1
6 REM . -]
18 CLR

206 POKE 82,0:POKE 8X,40:POKE 732 ,1:7 C
HRS C125)>

I8 DIM ﬁS(SSO),CODES(L’S)

40 REM

S50 REM CODE LOADING ROUTINE

668 REM

70 LOADING CODE:FOR

POSTYTION 13,2:7
I=1 TO 19S:READ A:CODES(I,I)=CHRScA@d:S
OUND 1,a,10,4:SOUND 1,a+1,14,2:NEXT X:
COE=ADR (CODES)

80 REM

98 REM IMITIALIZE
188 REM

110 POSITION 106,4:? “INITITALIZING STRI
NG :FOR J=1 TO 40:FOR XI=0 TO 23:K=IN40
+J:AS5CK,KI=CHRS (64+.J)

12a SOuND 1,I+20,16,4:SOUND ©,X+21,14,
4:NEXT I:NEXT J:SOUND 1,0,0,0:SOUND @,
0,0,0
138 REM
148 REM
A PRINT
158 REM
160 7 CHRS(C125) :POSITION 12,2:7
USE A PRINT'' :POKE 20,0

TEST STRING

SHOW SPEED DIFFERAMCE BETWEEN
AND A DIRECT MWRITE

FIRST

1706 IF PEFEK(20) <1008 THEN 170

186 ? AS::POKE 20,0

198 XIF PEEKC2Z0) {S@ THEN 19%@

203 ? 1? NOKW THE FasT Ha
v

216 FOR I=@ TO 10008:NEXT I

2280 FOR IT=0 TO 24:7 :NEXT XIi1POSITION ©
, 20

238 A-LUSRCCDE, a,8,aDRcas) ,LENCASI

Z40 FOR Y=0 TO S@0:NEXT X

2580 ? CHRSC1L253 :7 ** NOW FOR A LIT
TLE FUN WITH'::1POKE 20,0

Z68 IF PEEK(26) {160 THEN 260

276 REM

280 REM SHOW POSITIOMAL CAPABILITIES
290 REM

IBB asS=*"":a5='"" FAST MPIYiIIT sScreen MNDE
B3 :a$¢27,273=CHRSCIO) :a5$C1,13 =CHRS I
13

10 A=USR(CDE,S,2,ADRCAS) ,LENCASY) : POK
E 20,0

IZ20 IF PEEKCC(Z9) (150 THEN X240

IIG FOR IT=18 TO 108:X=RNDCO)®40: VY=RND(C
81%24:A=USRCCDE ,X,Y, ADRCASI ,LENCAS)I 2
TAO NEXT I

IS0 FOR XI=0 TO 1S5S00:MEHXKT XI:? CHRS$C1L2ZS)
:POSITYON 14,2:7 '"END OF DEMO':POSITIO
N Z,21:RUN *'D:MENU.BaAs'

368 REM
T7O0 REM DATA FOR MACHIME CODE ROUTINE
T8O REM
X920 DATA 169’0,162)5,149,283,282‘16,25

1,104,201,2,2068,6,164,84,166,85,208,27
;104,104 ,170,104

400 DATA 104,168,224,41,16,4,192,24,14
4,13,104,104,104,104,165,141,13I3,212,1
69,0,133,21F,96,169

410 DATA ©,136,48,11,24,105,40,13IX,207
yld4,246,230,200,206,242,165,207,24,10
1,88,133,207,165,208

420 DATA 101,89,133,208,138,24,101,207
,133‘20?,144,24238,208,104,133,284,104
,133,20%,104,13I3,209,104

430 DATA 1760,208,2,198,2069,165,207 ,133
,205,165,208,133,206,168,0,177,203,201
,155,240,49,72,41,127

440 DATA 201,32,16,6,104,24,105,64,144
»11,201,96,16,6,104,56,23II,32,176,1,16
4,145,205,2008

450 DATA 2086,4,230,204,230,206,202,208
,214,198,209,16,210,169,1,133,212,169,
0.133.213.96.202.208.4.196.209

460 DPATA 48,240,165 ,207,24,105,40,13%,
207,144,2,230,2068,152,56,101,203,13I3,2
63,144,165,204,208,161

53

DIGITAL ALARM

CLOCK

1 REM DIGITAL ALARM CLOCK IN 3IK
BY STEVE KLUNZE aqge 14

Aadelaide Computer Club

Z2Z REM Reprinted in the San Leandro
Computer Club Special Edition
T REM P. O. BOX 1525

SaN LEANDRO.
4 TIME=2S@
5 GRAPHICS ©:POKE 710 ,SS:POKE 712,176:
POKE 709 ,15:POKE 7S2Z,1:7 7
6 ? "“THIS IS A4 PROGRaAM FOR A DIGITAl —*°
1?7 ""AlLARM CLOCK HWHICH HAS Q Z4—HOLUR'':~?
""COUNTER. I DOMNM'T THINK THAT ANYOME''
7 ? ""WOULD LEAVE THEIR COMPUTER ON OVE

ca 245770152

:?

R~ ?7 'NIGHT. BUY IT SHOWS YOU JUST WA
HT' :? “'YyOud CAM DO WITH A FEW LINES aAND
8 ? ""HOW EaSY IT IS ON aN MEfT&d YT TITed
A1 :? **"PRESS STaRT WHEN READY'

? IF PEEK(S3I2Z7932<>6 THEN 9

16 DIM D5(2)‘05(l))RS(1)

20 OPEM BL,4,0,""K:""

50 GRAPHICS @:POKE 709 ,15:POKE 710,0:P
OKE 752,12

68 2 DLIOGT T —ol ARMECL OC G0

70 2

80 ? °‘*EMTER aLl MECESSAQRY DaTa !°

20 DE="" =

100 ? " HOUR e

118 7 ""MINUTE °*"; :IMPUT M

1Z2@ 7 ""SECOND °°'; : INPUT S

13@ ? “VOiLUME OF SECOND—BEEP €O—153"; :
IMPUT V:TRAP 1S5S0

159 7 :? "“'DO YOU WANRT TO SET AN AtLaRM

CY/7/N2T":GET 21,4

168 IF A<>AaSCC’"Y"') THEN GOTOQ 2406

106 T 7?7 *TO TURM THE aLaARM OFF YOUL MU
ST PRESS"' :? " THE FYIREBUYTON ON JOYSTI
CK 3241 "*:7 o OR PRESS EEITEI

Z068 7T 7?7 “*"ENTER paTa FOR aLARM 1

2106 7 " HOUR "3 TINPUT H2

2268 T "T"MINUMTE" IMNPUT M2Z

2X@ T ""SECOND; : INPUT 52

249 7 :7? 7?7 °*"PRESSs CEITEI TO BEGIM !
250 IF PEFEK(S3I2793<>6 THENMNM 2S5

I00 REM HSETTING UP THE DISPLAY

IZ20 GRAPHICS 18

325 POKE 712,176

IX@ POSITIOM S5,3X3:7 186;°" M ~ |5 B

T4 POSITIOM 7,5:? 76 ; "R

IS0 POSITION 0.5:. 36 ; ‘R

I75 POSYTIONM - 4 ﬂB;"m‘HﬂT"iHZ'"'";M
25" ;52

I8S B=-L?6

398 POKE 712,08

40608 REM #aCTuUAL COUNTER
405 POSITIOM 5,5:7 B6;° .
416 SOUMD 0,550,114,V

415 POSITION 8,35:7 B6;' b
4Z0 POSITYOM 11,5:72 8186;" '
550 S=95+1:XIF S>S9 THEN M-M+1:5=0:SOLND

8,60,6,10

S60 IF M>S5S9 THEN H=H+1:M=0:SOLND 8,35;
10,106

576 IF H<{=11 THEN DS="‘am'

S80 IF H>=12 THEM DS='"'pm'

598 IF H>23 THEN H=O:M=08:S=@:DS=‘‘amM'
6600 REM M#PRINTING THE NUMBERS»

650 POSITION S5,5:7 886; H

669 POSITION 8,5:7 B6; M

670 POSYITIOMN 11,S5:7 RB6;5S

679 FOR P=-1 TO S:NEXT P

680 POSITION 1,5:7? R6;DS

6928 SOUND ©,0,0,0

708 FOR P=1 TO TIME:NEXT P

7350 IF H2Z2=H AQAND MZ=M AND 52=-3% aND a=as
CC'"Y")> THEN SOUND 2,38,8,15:50UND 3,40
’14,15

760 IF STRIG(E)=0 OR PEEK(S3I279)=6 THE
M SOUND 2,0,0,0:S0UND X,0,0,0
866 GOTO 406

1000 EMD :REM RETYPED BY P.J. BARATTA

DOs MOD

1 REM
2 REM
I REM
4 REM
5 REM
6 REM

10 GRAPHICS ©0:7

17 7?7

P2
ze 2

FOR A MOMENT'
¥ RESTORE :TRAP 1006

1P.
1

SAN LEANDRO COMPUTER CLUB i
SPECIAL EDITION JOURNAL]

0. Box 1S235.

S5an Leandro.cal

24S80-0152 1

“JapP

12 e

ANt

? '""MODIFYING DOS.2.0':7
PLEAQASE"*"

""DOS 2.0 MODIFICATION"
"FUJY ATARYI COMPUTER USERS'®

GROU

“*HAIT

48 REAQAD A,HK:POKE A, X:GOTO 40

106 2
TTHOKW
110 2
ize 2
138 E
1600
1610
1020
10360
1040
1050
18606
1870
1080
1890
1100
1110
112z2e
1130
1148
115@
1160
1170
1180
118
1Zze6
1210
1220
12306
1240
1258
12606
1276
1280
12306
13086
13Z10
1320
13I3XAO
1X40
13T58
1360
1370
13806
1390
1400
14106
1420
1430
1440
1456
1460
1470
1480
1420
15006
15106
1526
1530
1540
1550
1560
1576
1586
19590
1608
i610
1620
1630
1640
1650
1660
1676
16606
1620
17060

Hir
TYP
tanN
"ox

HND

DAaTA

DATA

DAaTA

DATA

DATA

DAaTaA

DAaTa

paTa

DaTna

DaTa

pDAaTAa

DATA

DATA

DAaTA

pPATA

DATA

oATA

pATA
caTa

DaAaTH

DATa

DaTa

DAaTaAa

DatTa

DATA

DAaTH

DATA

DATAa

DATA

DATA

DATA

DATaA

DAaTa

DaTA

DATA

DATA

DaTa

DaTa

DaTnA

DATA

oAaTA

DaTa

DATA

DATA

DAaTA

DATA

DPaTA

DaTA

DATA

DATA

DATA

DATA

DATAHA

DATA

DaAaTa

DaTaA

paTA

oaTn

DATA

DATA

DATA

DaTan

DATA

DaTA

DATA

DAaTA

DATA

paTa

oATA

DATA

pDATAH

"THANK
€ *"DOS
D 5QUE
SKETTE

2174,169
23175,66
2176 ,141
2177 ,41
2178,3
2179,169
zi180,203
z181,141
2182,42
z183,3
2184,169
2185,7
21686 ,141
2187 ,43
2189,17%
z2190,83
2191 ,24
2192 ,208
2193 ,10
2194,169
2155,40
2196 ,1412
2197 ,84
z198,3
2199,169
zz200,23
2201,76
2202 ,111
2203 ,21
2204,108
2205 ,84
2206 ,24
2207 ,169
2z208,8
2209 ,141
2210,83
2211 ,24
2212,76
2213 ,159
2214 ,23
4867 ,48
4868,19
4869 ,80
4871,
4872,
4873,
4874,
4875,
a879,
49s8,
see9,
se14,
se1s,
5017 ,84
sez2s,20
S03X,195
s$041,32
s044,2
5046 ,34
S047,34
5049 ,139
5050, 1
5105,24
s108,2
5110,2X
S111,23
5113,153
5185,66
5186 ,40
5201,67
5202,0

HRrAARNNOUQ

¥YOU FOR HAXTINMNG.*'':1?7 17
CRETURNMNI * °**

THXIS MEW DOS TO YOUR'
LHSING

"H* COMMANMND.*

1710
1720
1730
1740
1756
1766
1770
1780
1796
1860
i1pi1e
1820
i8X0
18406
i8506
186806
1870
168880
1890
19200
1910
1920
1930
1940
1950
1960
1970
1986
1996
2000
2010

DAaTaA
pPaTA
DAaTaAa
DATA
DATA
DaTA
DATA
DATA
DaTa
DATA
DaTa
DaTa
DATA
DATA
DAaTA
DaTa
PATA
DaTa
paTA
DATA
oaTha
DaTaAa
DATA
DATA
DaTa
pATA
DaTa
pDaTA
DATA
DATA
DATA

S4as0,8
5535 ,192
SS36,224
S538,225
5927,15S
s$928,68
5929,49
s93@,s86
59331 ,68
5332,69
5933 ,86
5934 ,46
5935 ,83
5936 ,89
S937,8%
598,155
5939 ,32
5940,146

S942,108
5943 ,250
S944,191
5945, 23
6226 ,15S
6z27,8
6z28,11
6229,29
6429,76
6430,51
6431 ,23
6780,2

SIMPLE TEXT DuUMME

REM r

REM 1

REM

rREM |

REM ¢

1
2
3 REM |
4
S
13

Ip.0.

SaN LEANDRO COMPUTER CLUB

SPECIAL EDXTIOM JOURMNAL

Box 1S22S5,
24580—0152

San Leandro.cal

10 REM SIMPLE SCREENMN DUMP T.

26 DIM SCRSC40M25) .HS (40D
X0 CLOSE 8#2:0PEN 122,4,0,°''K

40 CLOSE #$#3:0PEN 24,13,0,"E:"
SO POKE 82,0:POSXITION @,0:7

S EE]

SPEC IO

INO T E!

60 POKE 764 ,2SS
78 IF PEEK(532793=6 THENM 130:REM CHECK
FOR START KEY
80 XF PEEK(764) =255 THEN 70
20 GET 82 ,KEY

? CHRS(C(KEY)> :
118 IF PEEK(B84)=23 THEN 190
126 GOTO 60
130 POKE 752,1:POSYTION ©,0:

100

S FENSPEC TOL)
FOR ROW=Z©® TO 22

140
iS50
160
170
180
1926

LIS EENSPECTOL]

HS="

IND T E

POSITION O,ROWM:INPUT 34:
LPRINT RS
NEXT ROKW
POKE 752,0:POSITION 0,0:

IMNO T E

200 GOTO 690

580 REM SPECIYIAL NOTE:
9 aAaND 196 THE

REICHARD

¥t S REM

?

HS

4

g gre,

--"n’.

IN LIMES S5O.

{! ARE SUPPOSED TO

686 REM BE ESC DOWN FOLLOWED BY ESC
ARROKW WHICH CANNOT BE PRINTED

700 REM USING THIS HWORD PROCESSOR.
EASE CHANGE THEM IN YOUR PROGRAM!

: RE

13X

upP

PL

1&—EIT SOunND

1 REM r]
2 REM | SaAN LEANDRO COMPUTER CLUB)
X REM | SPECYaL EDITION JOURMAL]
4 REM IP.O0O. Box 1S25. San Leandro.cal
S REM | 245800152 1
6 REM L 4

SOLUNDLIE DEMO 11/ X 82!
11® GRAPHICS 18:7 B6;7 86" 16 BIT
SOUND'':7 H6;7 16;'" BY JERRY WHITE'*
126 DIM S165C56) :REM FEITEENILGITREL (A
1X8 FOR ME=1 TO S56:READ BYTE:S165C(ME, M
E) =CHRS (BYTE) : NEXT ME
FRY:- BN CECSETUP FOR 16 _BYYT SOLUND]
150 SOUND ©,0,0,0:POKE 5SI766,120
160 DIM NS C24) ,FREQI(7,12) :NS=""B ana G
G FBF E D®SD CBC ‘“":GOTO 220
4B DT SPLGY SUHBROMT EINE]
1868 POSITION 6,5:7 $116;'"OCTAVE="";O0CTAVE
::XF BOTH THEN ? 86;"+ jO0CTAVE+1L:
126 POSITION 6.7:7 8B6;'"PITCH='"";PITCH;"
g
2006 SP=PITCH®2-1:POSITION 6,9:7
TE="";NSC(SP,S5P+1) : RETURN
FEE: I CRESTE FREQUENCY CRRGY]
2298 FOR OCTAVE=?7 TO 1 STEP —1:FOR PITC
H=12 TO 1 STEP —1
238 REAP FREQ:FREQCOCTAVE, PITCHI=FREQ:
NEXT PITCH:NEXT OCTavge
2408 BOTH=O:LOWOCT=7:HAIT=10
258 REM
268 FOR OCTAVE=LOWOCT TO 1 STEP
PITCH=12 TO 1 STEP -1
2768 SETCOLOR 4,PITCH,2:GO0SUB 180:V0L=8
:POKE Sa40,VUO0L
280 IF NOT BOTH THEN JUWTZUSRCADRC(S16%5)
+FREQCOCTAVE PLITCH2 ,V0L) :GOTO 3086
220 JW=-USRCADR(516%) ,FREQCOCTAVE_ PITCH
3 ,V0L ,FREQCOCTAUVE+L ,PITCH) ,V0L>
T IF MOT VOL THEN 320
310 VOL=PEEK(S540) :GOTO 28
3206 GOSUB 480
IIB NEHTY PITCH:MNMEXT OCTAVE
I4e IF NMOT B8O0TH THEN BOTH=1:LOWOCT=6:®
GOT0O 260
IS0 FOR ME=S TO 3 STEP 2:POSITION 6, 6 ME
1?7 8186 ; INEXT ME
I66 REM [ADPENTANI GIA W :3dda
X760 YUOL—8:0CTAVE=S:PITCH=?7:HOLD=16
T=8:G05UB S3O6
IEG PITCHT1Z:HOLD=4:WAIT=0:GOSUB S3IO

us;"uo

~1:FOR

AT

X980 OCTAVET6:PITCH=1:HOLD=-4:WAIT=0:GO0S
uB sS3I0

400 OCTAVE=-S:PITCH=12:HOLD=4:WHAIT=0:G0
SuUB S3IO

419 PITCHT10:HOLD=16:WAXIT=-8:GO0S5UB SIO
428 PITCH=12:HOLD=16:MWAXT=32:GO05UB S30
430 PITCH-8:HOLD=16:NAIT=8:6G05UB S30O
440 PITCH=7:HOLD=3I2Z:WAITZO:G0SUB 536
4S8 GRaPHICS @:? :? '‘BAaSXC':? *IS';:EN
D

468 REM 8d[AHYIETT

470 REM

480 POKE S40,WAXT

4906 IF PEEK(S40) THEN 490

S00 RETURN

5168 REM RO T (B

528 REM mmvrﬁ

530

POKE S40,HOLD:X=USRC(APRC(S16%52 ,FREQ
COCTAVE ,PITCH) V0L ,FREQCOCTAVE+1,PITCH

> ,voL3

540 IF PEEK (5462 THEN 540

5560 X=USRCADR (51653 ,FREQCOCTAVE,PITCH)

4,9, FREQCOCTAVE+1,PITCHI , a3

560 GOTO 480

20008 REM

26018 DATA 184,201,2,240

1z,17e, 224,0,249,4;

208260 DATA 202,164,104 ,240

,104 ,141,2,210,1084,141,0

20038 DATA 210 ,104,104,41,15,

,%,210,104,141,6,210

20040 DATA 104,141,4,210,104, 104,41,15
,9,168,141,7, 210 26

Iooee REM
Tae1e DATA 273IS57 ,25821,243I72,230063,217
12,28493, 19342'L8256‘17231 16264,15351

,laaso

I3 ,201,4,240,

”

247,208,245

9,168’141

55

300206 DATA 13675,12967,12182,11498,108
52,18243,9668,9125,8612,81268,7626,7241
36038 DaTa 6834,6450,6088,5746,5423,51
18,4830 ,4559 ,43083 ,4061,3I832,3617

30840 DPATA 3I414,3222,3040,2869,2708,25
55,2412,2276,2148,2827,1913,186S

I00S® DATA 1783,1607,1517,1431,1350,12
74,1202,1134,1070,1010,953,899

30060 PATA B848,800,755,712,672,634,598
/564,532,501 ,473,446

Y0078 pPATA 421,397,3I74,3I53,332,313,295
1276,262,247 ,233,219

FLAYER MISSLE
DRIVER

i REM

2 REM | SAN LEANDRO COMPUTER CLUB]
I REM 1 SPECTIAL EDITION JOLRNAL 1
4 REM IP.0. Box 152S. San Leandro.cal
S REM | 24580—-6152 1
6 REM L i

IO OPEM 11 ,8,0,'°G:'*:0PEN 82S

;%,8,"K:1"":G

RAPHICS 1+16

48 ? R1;°'POS 0,40 ,16'":7 21 ,;'SXZE @ ,2'
568 7 n1;°''08J 8"'QDR("----“),4

668 7?7 11;'"COLOR O6,0,15':7?2 7#1;'"PRIOR 4
70 H—-O:Y=O

80 GET ﬂSIK

20 IF K=ASC(K''+'') THEN ¥Y=Y—-1:GOTO 2Zo0©
1688 IF K=-ASCC""$'') THEN Y=Y+1:GOTO 2006
118 ITF K=ASCC"'?°'') THEN H=-X+1:GOTO 200
120 IF K=ASC(C''%"") THEN X=X—-1:G0T7T0 200
1X@ XIF X=15S THEN X=0:Y=-Y+1:GOTO 200
148 POSITION HK,Y:? 826 ;CHRS CK) :

1580 H=H+1:XIF H>19 THEN Y=Y+1

200 IF X<O THEMN X=19

218 XF X>19 THEN X=0

228 IF ¥<0 THEN Y=23

230 IF Y>23 THEN Y=0

240 27 n1;''POS 8"'48+H*8’L6+Y*4

2586 GOTO 80

DISK FORMATTER

1 REM r

2 REM | SaAaN LEANDRO COMPUTER CLUB §
X REmM | SPECYAL EDITXON JOLURNAL 1
4 REM [P.O. Box 1S25. San Leandro.cal
S REM™M | 24580—-8152]
6 REM & o
168 REM DISK FORMATTING PROGRAM

11 REM BY

12 REM KENNETH J. PIETRUCHA

1T REM NOVEMBER 29, 1984

Z8 TOTAL=O:PRINT CHRS (125S) : POKE 752,41
2SS POKE 769,14:POKE 7L8)24:POKE 712/28
IO TOTAL=TOTAL+1

IS POSITIOM 6,7:PRINT ""IMSERT DISK TO
BE FORMATTED'"

48 POSITIONR S5,9:PRINY ""PRESS STaARTYT TO
FORMAY DISK #1*'; TOTalL

45 IF PEEK(CSIZ2793<>6 THEN 45

48 POKE 716,32

S8 FOR H=1 TO 2908 : NEXT X

52 XIO 254 ,811,0,6,'D:""

680 POKE 710,20

65 POSIXTION 6,14:PRINT ""FORMAT OF DISK

"m; TOTAL '
7@ POSITXON
O CONTIMUE'*
75 YF PEEK(S5I279)<>3 THEN 7S
80 PRINT CHRS$(C12S) :iGOTO 2S

COMPLE €

7,16 : PRINT '“PRESS5 OPTIOM T

iz
21y n 7]
Wwoeul
B3I
HeEHS
wois7

Lo
ararel
BEBC
BEIE
Iorynig
we1a
wett
Wa1z

Wa1S
Be1é
w619
b61A
#W61D
Wo61E
BoH1F
we621
He2T

wea26
B&27
He2A
W62H
e 2E
HE2F
eI
Wez2
634

B&37

68

Cou2
Fea21
Cou4
FeC

AA
E @i
Fa29
CA
68
68
F@F7
D@FS

68
8DE2D2
&8
8DhawD2
&8

68
294F
HoAd
8D@WED2

&8
aDnwebD2
&8
8Dpy4aD2
&8
68

296F

B9 A
8D@7D2

&

11 i
“witg
Ww12a
@13
@144
@w15e
@164
@17¢
@184
#1949
@2
w219
2260
230
@244
@25
@264
@27
@284
B294
7RSO 17]
@31
@WI20
RS
¢34
RS
@Wirew
WE70
380
W94
I3l
g 10
aHa42¢
434
B44¢
#1454
a460
a7
@48
494
aketnln
wolg
@E29
7 ke
w49
155
2 I1-10)
S 74

s16 RIT SOUND SUBROUTINE
BY JERRY WHITE
2 16 BIT SOUNDS

sREV 9/23/82
sCREATE 1 OR

iFROM BASIC USR CALL
iSTORED IN STRING S16%

sFOR 1 SOUND

$ JW=USR (ADR{516%) , FREQ, VOL)

sFOR 2 SO0OUND

=)

s JW=USR ({ADR (516%) ,FRER, VOL ,FRE&, VOL)

=

FLA
CHMF
BEQ
CHMP
REQ

TAX
000rPSs CFX
BER
DEX
FLA
FLA
BEQ
ENE

FOUR FLA
STA
FLA
8STA
FLA
FLA
AND
ORA
STA

TWO FLA
STA
FLA
STA
FLA
FLA
AND
ORA
STA

]
END RTS

SouH

#2
TWO
#4
FOUR

AVOID LOCKUP IN CASE

#
END

000Fs
000FS
$D2w2
sD2ie
#bEF

HEAL

$D2W3
$D2db6
D204
HEHF

HBAE
*D2a7

56

§ RELOCATAELE

i# OF FARAMETERS

i IF 2 PARAMETERS
$SINGLE SOUND ROUTINE
s IF 4 FARAMETERS
$DOUBLE SOUND ROUTINE

OF

§INVALID # OF PARAMETERS
s NONE?

s STACK CLEAN

FSUBTRACT 1

s GET PARAMETER

$OFF MY STACK

iFORCE GOTO 0O0QOPS

{IN EITHER CASE

sHI BYTE

s AUDF2

sLOW BYTE

s AUDF 1

s VOLUME

sNEED ONLY LOW BYTE
sMAKE ¢ TO 15
iDISTORTION 14
FAUDCE

fHI BYTE

s AUDF 4

iLOW BYTE

§AUDF3

§ VOLUME

$NEED ONLY LOW BYTE
sMAKE @ TO 15
$DISTORTION 14

i AUDC4

FRETURN TO BASIC

FLI TTERBUG

JIM WARREN
SAl LEAKDLO CONPUTER CLUB
P.O. BOX 1525
SAN LEANDRO CA 94577-0152
KEY SYSTEM BBS (415) 352-5528

FOR RUM TIME COMPILE:

SET 5495=12 FROM THE 1OiOTOR
USE DOS 2.0

COMPILE EVERYTHING FROM DISK

{ODULE
INT
VERTICAL_CFFSET,HORIZONTAL_OFFSET,
TRIGGER_LUTTOMN
CakD
TI(E=[1560],SCREEN,I,TOTAL_ECGS,
EATER_BIRTH=(0],3IG_EOY_BIRTE=[0],
MATE_BIRTH=(0],:ATE_3IRTH_RATE=[200],
BIG_BOY_BIRTH PATE=[200]},
CATER_BIRTH_RATE=[300],
ADR_FAIU,ADR_EDIT,ADR_BUG,RANSET
2YTE
coLtis=[15],R0Ws={231,JOVSTICK,
£UG_EGGS,ANTA_LATE=[5],
CONSCLE=33279, OLLCER=93,
SCREEN_LOW=8S,SCREEI_II=§9,
SCREEN_ZGG,WUz={0]),GEUERATICH={0],
POS,POSX, BACKGROUD=[80],
FATER_COLUL'LS ,EATER_1O0WS,
ZIG_30Y_GOLUMIS, BIG_LUY_ROWS,
OPTION=[0]), 1IN Uit EGCS={25],KEY=764,
VATE_COLUL.S,IIATE_ROWS,GELE=L1L],
(E_CURSZ=[0],REQUIRED
i AFRAY HADDLINE

SUFLUE PCP="[$68 $68]"

PRCC TE_IRIN=ERZOR()
2.0C FE_ZDIT()

eep

Zxn0E()

PROC [E_ZUG=CLRGR()

2:0C 1AIT()
CCR 1=C TO 1{D0 ©0 CD

LZTURN

o

PROC PAUSE(CARD NUY)
CARD I

FOR I=0 TO XNUM

DO WAIT() OD
RETURN

PROC BEEP()

FOR I=1 TO 500
DO
sounm(2,255,12,3)
oD

SNDRST()

RETURN

PROC DING()
FOR I=0 TO 500

*n)
PRINT("
position cursor with joystick O
draw or crase bit with trigger
") T=1 DONG()
PAUSE(7)
Do
T=Strig(0) TEST=Stick(0)
IF T=0 THEN PRINT('"*") DING()
EXIT
FI
IF
TEST<>15 THEN TEST=1
EXIT

COliSOLE=6 GR CONSOLE=3 THEN
EXIT
FI
PAUSE(7)
0D
FI
PAUSE(6)
IF
COI'SOLE=3 THEN PART_COUNT=a=+]
IF
PART_COUNT>5 THEN PART_COUNT=l

RETURN
FI
ERROR=ADR_EDIT RE_EDIT()
FIL
IF
CONSOLE=6 THEN
X=14 LINEO=0 Y=8 $=0

Do
S==+1

FOR I=0 TO 8
Do

X==+]1 POSITION(X,Y) PRINT("")
POWER=LOOKUP(X)
BIT=LOCATE(X,Y)
IF BIT=170 OR BIT=42

THEN LINEC==+POWER FI
0D

DEFINE CHARACTER $
IF PART_COUNT=1 THEN PART=71
ELSEIF PART_COUNT=2 THEN PART=70
ELSEIF PART_COUNT=3 THEN PART=96
ELSEIF PART_COQUNT=4 THEN PART=51
ELSEIF PART_COUNT=5 THEM PART=69
FIL

POKE(RAMSET+(8*PART)+S-1,LINEQ)

POSITION(X,Y) PRINT("")
POSITION(X+1,Y) PRINT("~~~")
PRINTBE(LINEQ) LINEO=0
Y==+]1 IF Y>15 THELK $=0 EXIT FI
Xals

oD

POSITION(15,8) PRINT("")

FI
IF KEY<>255 THEN CHAKGE COLOCRS
IF XEY=14 TUEN ADD=l
ELCEIF {2¥=15 THEN ADD=-1

FI

IF KEY=50 THEL RO==+ADD
ELSEIF KEY=31 THEN Rl==+ADD
ELSEIF KEY=30 TUEI R2==+ADD
ELSEIF KEY=26 TI'El R3==+ALD
ELSEIF KEY=24 THEN R&==+ADD
ELSEIF KEY=28 THEL COLOKS()
FI
XEY=255

TEEN PRINT REGISTER COUTELTS
POSITION(O,21) PRINTF("
Al %1 %1 %1
n4,20,R1,R2,R3)
F1

<1 "

oD
RETURN

PROC DOCREADER()
BYTE LINECOUUT,KEY=764
BYTE APRAY FILELINES(256)
POKE(82,1)
DO
ERROR=ADR_MAIN;if there is g
iPROC Error will vestart the
CLOSE(2)
gPEN(Z,“DI:FLITTER.DOC",A,O)
0
GRAPHICS(0)
SETCOLOR(1,5,8)
SETCOLOR(2,9,8)
SETCOLOR(3,13,8)
SETCOLOR{(4,0,0)
ANTIC4()
POINT ANTIC AT RAMNSET
POKE(756 ,RANSET/256)
POSITION(1,23)
PRINT("space bar for text.,

POSITION(1,0)
FOR LINECOUNT=0 TO 20
DO
INPCTSD(2,FILELINES)
PRINTE(FILELINES)
IF EOF(2)<>0 THEN EXIT FI
0D
KEY=255
DO
IF KEY=33 TLEN EXIT

disk error
prozram

. option ror menu')

CLSEIF COLiSOLE=3 THEN CLOSE(2)

ERROR=ADR_MAIN RE_IAIN()
FI
oD
IF EOF(2)<>0 THEM EXiT FI
oD
oD
RETURN

PROC TITLE()
BYTE S
CARD FLASH

POKE(77,0);disable ATTRACT node
POKE(566,143);disable breuk Key
POKE(567,231); (new 0S only)

GRAPHICS(17);GRAPHICS 1 with no
SNDRST()
EASY DEFAULT_VALUES()

LS

window

FLLITTERBRUG

FL/S1=4000

;DO

POCTI1GL.(G,0)

TUTDL(C)

PUTDI(06)

PRINTDI (6,1 ##xidsthbkiidkdiihs!l)

PRIITDE(G," * *r)
PRILTLL(G," ¥ ——mmmmmmee *')
PRINTLI(6," * FLITTEREUG *")
PRINTDE(6," % ——mme—mm—e *")
PLINTDE(6," * scurce code *")

N

PRINTDL(6,"
FRILTDL(6,"
PRIXTDE(6,"
PUTDE(6)
TRINTDE(6,"
FUTDE(6)
PRINTDE(6,"
PUTDE(6)
PRINTLE(6,"
PUTDE(6) .
PRINTDL(6," JIM WARREL")
SCTCOLOR(3,13,6);lower casc inverse
scclor
SETCOLOR(1,5,6);lover case non—inversc
scolor

avuileble *")
*Il)
KR h BRI AR)

%*

ACTIOE! COLFILED")
SAN LEANDRO')

COMPUTER CLUB")

iy
FOR 1=C TO FLASKE DO O2; njliosize tlc
;difficulty of levels with z specd
;chenge for sound znd flash
POSITION((21-MARDLINE(D))/2,20)
;ceiiter herdline.. HARDLINE(O) is length
;of HAPRDLIKE...2) width of screcrn...
PRINTDE(6 ,HAPDLINE)
SETCOLOE(2,S,8);upper case iuverse
ycolor
SETCOLOR(0,2,S);upper case non-inverse
;color
SOULD(0,5+3,10,3)
souUrD(1,8+115,10,5)
souvxr(2,5,10,3)
SOUKD(3,5+80,3)
S§==-2juced to vary sournd and color
IF
CONSOLE=0 AND OPTIOK=3 THEK
SKDEST() OPTIOL=0 DOCREADER()
ELSEIF CONSOLE=6 THEM
REQUIRED=HINIMUM_ EGGS
RETURL
F1
IF CONSOLE=3 THEN
OPTIO.;==+];counter for sequential
;6tep thru of options
DO UNLTIL CONSOLE<>3 0D;slow down
;the console responce

1F

OPTION=] THEL
BIG_BOY_BIRTY_RATE=100
EATEL_BIRTL_RATE=20(
MINTMUY_EGGS=35
HARDLINE="hard"
FLASH=1000

ELSEIF

OPTION=2 THEN
BIG_BOY_BIKTH_RATE=25
EATEK_BIRTH_RATE=50
MIKIMUE_EGGS=50
HARDLINE="fAt ChArnCe"
FLASE=0

ELSEIF

OPTIOR=3 THEN
HARDLIKE="documentation"
FLASKE=100C0

ELSEIF
OPTION=4 THLL
EASY_DEFAULT_VALUES()

FLASI{=4000
OPTIOr=0;reset option sequence
POSITION(O,20)
PRINTD(6," ")
FI
FI
0D
RETURK

PROC ELDLE()

SKDRST() SETCOLOE(2,0,0)
GRAPHICS(17)

POSITION(S,3)
PRINTDE(6,"extinction™)
POSITION(4,6)
PRINTD(6,"GENERATIONL ™)
PRINTCDE(6 ,GENERATION+1)
PUTDE(6)

PRINTD(6," EGC TOTAL *)
PRINTCDE(6,TOTAL_EGGS)
PUTDL(6)

PRINTD(6," REQUIRED ")
PRINTCDE(6,REQUIRED)
PUTDE(6)
PUTDE(6)
PRIKTDL(6,"
PUTDE(6)
PRINTDE(6,"
PUTDE(6)
PUTDE(6)
PRILIDE(6,"
PUTDE(6)

OPTION")

change difficulty™)

START")

PRINTDE(6," resune same status")
REQUIRED=MIKILUK_EGGS
bo
IF COLSOLE=6 THEN .
EUE=0 TIME=1500 GENERATIOL=0
ANNA_MATE=5 BACKGROUND=80
SETUP () .
EX1T
ELSEIF COLNSOLE=3 THER
. ERROR=ADK_MAIN
RE_MAIL()
FI
oD
POKE(756 ,RAMSET/256)H1 BYTE OF RAMSET
RETURN

PROC WIRLER()
SNDRST() COLORSA()
PRINT("}

the winner

the end

<

select™)

Do
IF
CONSOLE=5 THEK ERROR=ADR_MAIN
RE_MAIN()
FI
oD
PROC COUNT_EGGS()

IF;old age sets in, count eggs & moss
TIME<=0 THEN TLLE=0 ¥
TOTAL_EGGS=0
FOR I=0 TO 960

DO
SCREZK_EGG=PEEL(SCREEL+])
IF
SCREEL_EGG=19% THEI
TOTAL_EGGS==+]
FI
oD

IF;insufficient egss for survivel
smuch more thau 50 is \ery her
; (for me anywayl)

TOTAL_EGGS<MINIMUMN EGGS THEN
ENDLE() -

ELSE;if sufficient egss

;decrease time, £0 Lo next generation
GENERATION==4+]
IF GEKERATION=E THEN WINKER() F1I

EDIT()

TIHE=1500—200*GENERATION
IF TIME<500 THEN TINE=500 FI
ANFA_MATE=S ROWS=23
HUE==+] BACKGROUND==-] SETUP()

FI
FI
RETURL

PROC LOOK_MATE()

; CALL AND TESTS FOR EATEL
MATE_BIRTH==+]

IF MATE_BIRTH>MATE_BIRTE RATE
THEK -

IF
COLUHHS‘HATE_COLUNNS AND
ROWS=MATE_ROWS THER MATE_BIRTE=(Q
MATE_STING()

FI

IF ANNA_MATE=3 THEN

; blank out the old MATE

sPosition cursor for printing new
; EATER

POSITION(MATE_COLUHNS,)mTE_RONS) PRILT("

POSTTION(MATE_COLUMNS ,MATE_ROWS-1) PRILT("
1F h

FATE_COLUMNS >34 OK MATE_ROWS<2
THEN
MATE_COLUMNS =5
MATE_ROWS=RAKD(20)
FI
MATE_COLUMNS==+]1 MATE_ ROWS==-}
MATE () -
FI
MATE()

POKE(756 ,RAMSET/256)KI BYTE OF RAMSET

"y

8S

FLLITTEREUG

1F 12TL_BLFTH=0 THEY SKDRST() FI
Fl
RETULL

PROC LCOL_EATER()

CLLL ALD TESTTS FOR EATER
EATER_S1RTH==+]
IF EATE! BLRTH>EATER_BIRTH_RATE
THEH
IF
COLUMES=EATER_COLULUS AKD
LOVS=EATER_FROVS TEEK EATER_BIRTH=0
STIHG()
FI
IF AFLA_LATE=3 ThEL
; blerk out the old EAT;R]
ipocition curscr for printing new
;E&TED
POSITIDH(EATL1~COLULKS,EATER_&OHS)
PRIFT(" "
EL ._Z‘\vCOLUI-'J!S==+l
iF)
EATEL_COLUIYS>34 TEEL

>

EATER()

FI
EATER()

1F EATER_BIRTH=0 TLEK
FI
ELTURL

SKDRST() F1

PLOC LOGK_BIG_BOY()

CALL AKD TESTS FOR BIG_BOY
BIG LOY~31RTH==+1
IF E1¢_BOY_ BLRTU>BIG_BOY_BIRTH_RATE
TEER
IF
COLUMKS=EIG_BOY_COLUMNS AND _
ROWS=EIG_BOY_ROWS THEN BIG_BOY_BIRTH=C
sT1RG()
FI
IF ANNA_IWTE=3 THEL
; blark out the old BIG_ﬁ0¥
;pesition cursor for printing new

;BICG_BOY .)
POSITION(BIG_BOY_COLUMNS ,BIG_BOY_ROVS)
PRIUT(" ")

EIG_BOY_COLUHHS==—1
IF

B1G_BCY_COLULNS<1 THEM
BIG_IOY_COLUNKS=34
EIG_BOY [0US=RAND(22)

F1
EIG_ROV()
FI
BIG_BOY ()
IF LiG_BCOY_BIRTH=C THEL
F1
KLTULRL

SNDRST() F1l

PROC MAIN()
ADY_MAIN=VAIN
ADE_EDIT=EDIT
ADL_BUG=BUG

SHDL.ST() TITLE()

SLTUF()

POINT ABTIC TO KEW CHAR SET LOCATIOL
(this will have to be done after
GRAPKICS() culls and...?

POKE(756 ,FAISET/256)81 BYTE OF RANSET

LO; START THE IRFINITE GAME LOOE
COUNT_EGGS()

LOO¥_BIG_BOY()

LOOK_EATER()

LOOX_MATE()

BUG()

OD;END GAME LOOP

RETURN

PROC POKE_A_CHAR()

LEFT SHIFTED FOR ANTIC4 DISPLAY
BYTE ARRAY

ZERO(9)=

[0 45 204 204 204 204 48 O],
OKE(9)=

[0 48 240 48 48 48 252 0],
TWO0(9)=

[0 252 204 12 48 192 252 0],
THREE(9)=

[0 252 12 60 12 12 252 O},
FOUR(9)=

10 204 204 204252 12 12 v),
FIVE(9)=

{0 252 192 252 12 204 252 0},
S1X(9)=

{0 252 204 15z 252 204 252 0O},
SEVEK(9)=

[0 252 12 46 48 192 192 0],
EIGLT(9)=

[0 252 204 252 204 204 252 O},
HIKE(9)=

[0 252 204 252 12 12 12 0},
SKIP : ; <= > 17§

A(9)=

[0 48 252 204 204 252 204 O},
B(9)=

[0 252 204 252 204 204 252 O],
c(9)=

[0 252 204 152 192 204 252 0],
p(9)=

[0 240 204 204 204 204 240 01,
E(9)=

[0 252 204 240 240 204 252 0],
F(9)=

[0 252 192 240 192 192 192 0],
G(9)=

{0 252 192 192 204 204 252 0],
H(9)=

[0 204 204 252 252 204 204 0],
1IEYE(9)=

[0 252 48 48 48 48 252 0],
J(9)=

[0 252 48 48 46 4B 240 0],
¥(9)=

[0 204 240 240 252 204 204 O],
L(9)=

[0 192 192 192 192 192 252 0],
K(9)=

{0 204 252 204 204 204 204 0},
N(9)=

[0 192 252 252 204 204 204 0],
0(9)=

[0 48 204 204 204 204 48 0],
P(9)=

[0 240 204 204 240 192 192 G},
Q(9)=

{0 48 204 204 204 240 60 O,
R(9)=

[0 252 252 240 252 204 204 0],
5(9)=

fo 252 252 192 252 12 252 0},
T(9)=

[0 252 252 48 48 48 4870},
u(9)=

[0 204 204 204 204 204 292 0}
V(G)= '
[0 204 204 204 204 45 45 o],
w(9)= .

[0 2064 204 204 204 252 204 cl,
X(9)=

[0 204 204 48 48 204 204 0
Y(9)= ’
[0 204 204 6C 45 240 19z ¢l,
z(9)=

[0 252 252 12 45 192 252 @)

FOR 1=0 TO 79

Jale}

POKE(RAMNSEY+{8%16)+1,ZER0O(T))
oD

FOL I=0 TO 20¢

DO
POKE(RAMSET+(8%97)+1,A(1))
0D

RETURI!

PROC LLLOCATE_CHARSET()
BYTL RAMTCP=106,RONSET

ALLOCATE SAFE RAM
RANTOP==-5 GRAP1ICS(0)
LOCATE FIRST CHARACTEK
RAMSET=(RAMTOP+1)#256
COPY CLAR SET
FOR I=0 TO 1023

DO

ROMSET=PEEK(57344+1)

POKE(RANSET+1, ROISET)

oD
POINT ANTIC TO EEV CIZD SET LOCATION
(thie will have to be dore after
GRAPEICS() culls and,..?
POKE(756 ,RAISET/256)KI EYTL OF R&SET
POKE_A_CHAR()
MATL ()
KETURL

8%33 FOL UPFERCASE

6S

BL ACH. JACK

* Kk X X X

Pryvprgegepvgrgvgesaae e R F RS ST X R 22 0 A A 4

Frarmk's HlackJack Frogram
Version 3 Rev. R
18/4/84

IR ERE

FEpEareRarE Y S I 2 22 2 R R R L 2R L el b

;ASCIY position of suits

DEFINE HEART="5"
DEFINE CLUB="%86"
DEFINE DIAMOND="7"
DEFINE SPADE="%88"

BYTE Delt,
HldCnt,
tick=2@,
tock=19,
RowCrs=%54,
ChBase=%2F 4,
CH=%2FC,
GFrior=%¢z6F,
DspFlg=%2FE,
BkGrnd=%2C8,
AUDC1=%D2@1,
ChCt1=%D4@1,
VSeral=¢D403,
WSync=%D4@A

INT FlrBank=[2003],
PlrBet=[@]

CARD DldMenHi,
SavMsc=%$58,
ColCrs=%55,
Vdsl st =%200,
MemHi=%2ES,
DList=%230

BYTE ARRAY NwChar,

jDeck counter

;Dealers hold card

;Part of real time clock (1sb)
H " " (hsb)
;Cursor vow position

;Character base address

sLast key hold location
;Flayer/playfield priority control
;Control character display flag
;Background color

;Sound control for chanmel #1
;Character control

jvertical scroll control

;Wait for sync control

;players bank (Yes, ycu Can owe!)
splayers bet

;Temp hold for old memory high location
;Points to start of screen data

jCursor column position

jDisplay list interrupt vector

jHighest usable memory location

jPoints to start of display list

;Address of new chatcer set

Color(3)=$2C4, ;Color regsisters

Deck (52),

jThe deck

HoldCrd ($20), jCards still in play array

;The fcollowing array describes the card face

CrdBrd=0l ©
$7E
$7E
$7E

$7E $7E $7E $7E $7E
$7E $€7E $7E $7E $7E
$7E $7E $7E S$7E S$7E
t7E $7E $7E $7E],

;The following array describes the card back

CrdBcock=[$FF

$FF $FF $FF $FF $FF

$FF $FF $FF $FF $FF $FF
$FF $FF $FF $FF $FF $FF
$FF $FF $FF $FF 1,

;The player 'FOP-UR? displéys

PlrLine="player", $1Type in ".......player........"
BetlLine="bankbet” tType in ".bank......bet......"
tNote: The periods in the two comments above
tdesignates the entering of "CTL ,°’
5 [the heart char.]

CARD POINTER PLAddr ;iGeneral pointer for direct screen changes

BYTE ChRfl=[13} ;Character reflect status byte [set to off]
TYPE WHO=LBYTE Cnt, iPlayer and Dealer play status
Ace jrecord description
INT Amtl
WHO Dealer, jDealer's status record
Player jPlayer's record

PROC HBInk=#* ()
tHoriz. interrupt sevice routine.
Routine 'FLIPS' the characters

upside~down and rightside—up at locations
on the screen selected by 'SetHBlk()'.

;i Has to be straight code block for speed
y and possible additions later.

[s48 ;Pha

$AD ChRfl j;Lda ChRf1
$43 3 jEor #3
#8D ChRfl 3Sta ChRfl
%A iAsl A

$8D WSync ;S8ta WEBync
%8D ChCtl 3Sta ChCtl

1! tPla
40 1Rt
1

RETURN

PROC SetHBlk(BYTE line)
BYTE POINTER Bp

jSetHEl Kk sets the 'HORZ.' interrupt in the display list

Bp=DList Bp==+line jCompute DL line position
Bp==+4 Bp ==X$80 1Set a Hoz. Interrupt

RETURN

=L _ ACH IS0

RETURN

FROC Timer (BYTE Sec)
CARD Time=19,
D

; Just as it is called, do & timed delay
D=Sec*€Qd Time=@

WHILE tick+cS6e%*tock (D
DO

§X Beconds or D jiffies delay

3
oD
RETURN

PROC ClrTable()
BYTE c
EYTE POINTER Bp

;This prcoccedure clears the table, the hold card array
sand both the dealer’s & player status

FOR c=@ 70 3
DO

FMClear (o)
aD
Ep=SavMsc+21 Zerao(Bp, 16@)
Bp==+24@ Zero(Bp, 16@Q)
Zerc (HoldCrd, 38)
Zero (Dealer, 4)
Zerc(FPlayer, 4)
RETURN

INT FUNT CrdAmt (BYTE Who, Crd)
WHO POINTER Crdr

sThis Function updates either the player's
jor the dealer’s play status and returns their card count

IF Who THEN
Crdr=Dealer
ELSE
Crdr=Flayer
FI

jwhose play?

IF Crd=1 THEN
Crdr. Ace==+1
Crdr. Amt==+11
ELSEIF Crd=@ OR Crd)=10 THEN
Crdr. Amt==+1@ jGot a teri or & face card
ELSE

Crdr.RAmte==+Crd
1

jTest for Aces

1F Cyvdr.fAmt) 21 THEN 1Test for over 2%

jover, pot any aces?
Crdr.Ace=s=-1 jyes, deduct usable °1’
Crdr, Rnt==-18 jdecrease count

ELSE
Crdr. Amt==%—-1 jOFPS. . send BUST

FI

FI

RETURN(Crdyr. Amt)

BYTE FUNC CrdClr(BYTE Value,Crd)

{This functior determines the card
jcolor and returns the offsetted value

Crd==&1

IF Crd THEN
Value==+%9@
ELSE
Value==+%10
FI

;0dds are black

jEvens are red

RETURN (Value)

PROC CrdFlip(BYTE Who)
CARD X, Y

{ CrdFlip puts the card face display on to

; the screen. The position is determined

; by whose play it is and the number of card
i they presently have.

IF Who THEN
X={Dealer.Cnt &3) ¥x404+5E
Y=(Dealer.Cnt&$FC) +27
Who=Dealer.Cnt
ELSE
X=(Player.Crt&3)#40+52
Y=(Player.Cnt&$FC)+79
Who=Flayer.Cnt
Fl
Who==283 ;Select a P/M reg.

PMCreate (Who, CrdBrd, 22, 4, X, Y)
RETURN

CARD FUNC CardPos(BYTE Who)

CARD X,V

CARD ARRAY XPos=[6 11 16 213,
YPos=[2 3 4)

; CardPos calculates the position to display
} the card value and suit. The display address
; is returned toc the caller.

E=lL_ACHK . JACKH

PROC wWait ()
WHILE Peak(764)=25%
DO
jwait for a key stroke
oD
FPoke (764, 25%)
RETURN

PROC Rotate(BYTE spaed)
BYTE Colour=$D219,
VCnt=$D428,
©y Wy, vy, Nc=[Q]
CARD Time=19

Time=2
DO

FOR w=@ TO speed

WSyrnc=@
Colour=c
Cmmt]
UNTIL VCnt&128
ap
(a]s)
ne=m+
UNTIL tick+256xtocck) 30@
oD
RETURN

tThis routine is ALMOST the
jcolor procedure found in the ACTION!
'scrollecolors()?,

scalled

golor shifting

manual

it has the addition of
ja timer and the ability to vary the acroll speed.

PROC Initialize()
CHARR

[~
BYTE ARRAY Revr=(3 10 21 231

BYTE POINTER Bp, Bpl
CARD POINTER Cp

Graphics (1+16)

BKkGrnd=$86 Color (@)=9%42 Color(1)=486

Color(2)=@8 Color(3)=%D6

Bp=DLiat Bp==-2
FOR c=@ TO 2
DO
Bp~=$7@
Ppm=+]
op
DList==-2
Bp=DList Bp==+3
Bp~=847
Bp==+3 Bp"=6
Bp==+1 Bp~=6
Cp=DList Cp==+4

jLine to set Horz. Intrr,

js@t background and
jplayfield colors

jPosition pointer for D/L mod.
jMove D/L down Z Bytes

jTwanty four blank lines

jReset Diaplay List location

;Gr.2 W/ IMS
jSwitch back to Gr.t

Cp~=SavMsc

Bp==+10 Cp=Bp+1 PLAddr=Cp

Bp =467 Cp"=PlriLine+t

Bp==+3 Cp==+3

Bp~=$46 Cp~“=SavMsc Cp"==+220@

Bp==+15 Cpu=+15 Bp"=%41 Cp~=DList

VdsLat=HBInk

jBr.2 W/ LMS & Vert. Scroll

;60 back to Gr.1i
jClose off DList

jset Horz. Interrupt vector

{The following routine waits for a vertical blank
jinterrupt, then will enable the horizontal

jinterrupt service routine.

sThough it was written as a code block for clarity,
$4it could have been written in "ACTION®.

C

$SAD $F $D4 jWait Lda NMISt
$29 %40 H And #%$49Q
SFO $F9 H Beg Wait
$AD $E $D4 H Lda NMIENn
3 %8Q@ 5 Ora #%80
$8D SE $D4 H Sta NMIEn

1

OldMemHi=MemHi MemHi==-$D0O®
NwChar=MamHi&$FFQQ

MoveBlock (NwWChar, $EQQQ, $8020)

MoveBlock (NwChar+40, SEQ28+512, 8)
MoveBlock (NwChar+48, $SEQQ0+649, 8)
MoveBlock (NWChar+56, $EQ@B+768, 8)
MoveBlock (NWChar+64, SEQQO+984, 8)

ChBase=NwChar RSH 8
PMBraphics(2) GPrior=$i4
FOR c=2 70 3
DO
PMClear (c)
PMColori(c,®, 1)
SetHElk (Revr(c))
aD
FOR c=4 TO 7
DO
PMClear (c)
PMCreate (c, CrdBck, 21, 4, 9@, @)
[n}o]

PrintDE(6, " slce™)
PrintDE(6, " BLACKJACK")
Rotate(3)

Closa(l) Open(i,"Ki",4)

;Compute location for new Char._sut
jMove down the character set

jMove specific characters to
sto differant location

;jReset CHR address

;Inverse SLCC
sInverse BLACK std JACK

29

EL_ACrR.JEcoes

1F Whao THEN

Y=YFcs (Dealer.Cnt RSH 2)xz@
Who=Dealer.Cnt

Dealer.Cnt==+1
ELSE

Y=YFos (Flayer.Crnt RSH 2)*¥2@+220
Who=Flayer.Crt

Flayer.Cnt==+1
FI

jCalc. Dealer Y

jCalc. player Y

Who==23
X=XPos (Wha)
X==+5avMsc+Y
RETURN (X))

1Select a X pesition
;Calc. address offset

BYTE FUNC DplCard(BYTE card,Who)
BYTE i,
Crd, Value
BYTE ARRAY SUIT=CHEART CLUE DIAMOND SPADE],
Face=[($1R %211
BYTE POINTER Bp, Ep!l
DplCard bririgs all the other display support
routines together. This does the P/M calls
and does the actual displaying of the
card value and suit

Bp=CardPos (Whao)
Epl1=Ep+6@
CraFlip(Whao)

;6et display address
;find bottom of cld card
3Put up card face

FOR i=2 TO 2 jClear bottom of card

DO

Epi~=@

Bpl==+1

abp

Epl==+18 jFind new card bottom

Value=card MOD 13 i=Value

card==/13

IF Value THEN
I Value=1@ THEN
Crd=CrdCir (i, card)
Epi==+1 Ep1~=Crd Bpl==-2
Bp~=Crd Bp==+1 Value=0
ELSEIF Value=1 THEN
Value=%11
ELSEIF Value) i@ THEN
Value=Face (Value—11)
F1

ELSE
Value=s$1Ek

F1

jGet card suit

tCalc. card value

;1s the card a king?

§ls it a 1@

;Yes, do special display

j11s ti & ace

tYes

jFace card

jIts a king

Crd=CrdClr(Value, card) jget color

(2 char.

not 1)

Bp~=Cird Bp==+1 Bp~=8UIT (card)
Bpi==+1 Epl1~=Crd

Bp1-=SUIT (card)
RETURN (i)
Di1BLKJACK. @2

sDISPLAY TOP OF CARD
;DISFRLAY BOTTOM DOF CARD

PROC Bhuffle ()
BYTE c,1i

3 "Bhuffle’
; deck array.
;5 & gpame, the cards still
§ The *SHUFFLING' prompt

SetBlock (Deck, 52, 1)
c=@
Delt=0@

WHILE HoldCrd (c)

DO
i=HoldCrd (c)
Delt==+1}
c==+1

oD

RowCrs=@

Deck (i) =@

ColCrse=5 Printb(6, "shuffling")

Rotate(7)
CalCrs=5 PrintD(6,"
RETURN

reshuffles the deck ie.

DEARLER ")

clears the

If a reshuffle occurs during

ivn play are removed.

is alsoc displayed

tClear deck
jReset count

57PULL' cards still in play

tInverse shuffling

s Inverse DEALER

BYTE FUNC Deal ()
BYTE ¢

5 This functiorni returns a
j It also tests to see if
; Deal alsc tests to make
5 more than once.

IF (Delt&%3F))51 THEN
Shuffle()

Delt==X%80

FI

DD

c=Rand (52)
UNTIL Deck(c)
oD

Deck (c) =@
Delt==+1
RETURN (o)

card from the deck.
a reshuffle is required.
sure that a card is not sent

;Time to shuffle?
jyes'

$'PULL' a card off the deck
jtKeep doing 'til find one not sent

1Set "Pullecd” Card
s Increase played count
tReturn card #

FROC Delay ()
CARD Slow

iWait a constant lergth of time

EILACHK.J A

3 (appraoximately & jiffies)

FOR Slow=@ TO 1ZQQ
bo

3
oD
RETURN

PROC Results(BYTE Speed,lLocate)

;s Display the results of the play (ie.
} win, lost, bust or push) and rotate its color

Rotate (Speed)

Collrs=_Locate

PrintD(s, " ")
RETURN

PROC Busted()
$ Display "BUST' for either
ColCrs=8

PrintD(6, "bust")
Results (3, 8)

jinverse 'bust®

RETURN

PROC Flip()
BYTE ¢

3 'FLIP OVER' Dealers card

FOR c=4 TO 7

Do
PMMove (c, @, @)

oD

RETURN

jMove missiles (back of card) off screen

INT FUNC GetCrd(BYTE w)
BYTE ¢
INT H

GetCrd will pet a card from the dealer

and display it. It will also place the card
into the 'IN PLAY' array and have the
player/dealer status updated.

. as un e

c=Deal ()

HoldCrd (H1dCnt) =c
c=DplCard(c, w)
H=CrdAmt (w, C)
HidCrit==+1}

RETURN (HY

INT FUNC DlvHand ()
BYTE c©

INT Hand

WHO POINTER dealer

t This is the dealer logic routine.
It goes by the following rules:
or if

§
3 If the dealer has (£ or less,
i

it has & soft 17, it must take a card

dealer=Dealer
Hand=dealer. Rmt

jole}
Flip()
IF (Hand)® AND Hard(17)
DR
(Hand=17 RAND dealer.Ace)d)
THEN
Timer (1)
Hand=GetCrd (1)
Timer(l)
1IF Hand (@ THEN
EXIT
Fl
ELSE
EXIT
FI
§ Wait ()
oD
RowCrs=1
RETURN (Hand)

tTurn the hole card over
jTest for take card or not

1Get a card

s0ops dealer busted!’

jBot final hand

jReturn Final hand

INT FUNC PlrHand()
BYTE c

INT Hand

WHO POINTER player

3 This is the player prompt handler

t It waits for a key to be pressed and

} test legitmacy of the response.

player=Player
Hand=player. Amt

olu]
RowCrs=12 ColCre=0

jWait for key

IF (Hand=1@ DR Hand=11) AND player.Cnt=2 THEN

PrintD(6, "BTAND

inverse "HIT®
ELSE

PrintD(e6, "
FI

HITSTAND")

DOUBLEDOWN HIT")

jinverse 'ESTAND’ normal

tinverse "HIT' normal '' inverse

' DOUBLEDOWN

* STAND?

EL_ ACK.TACH

DO

UNTIL CH#E5%
oD

c=CH CH=255

c==8$3F

IF c=33E THEN jPlayer pressed "Esc!, wants to quit!

EXIT
FI

1IF c=%39 THEN jWant a card
Hand=GetCrd (@)
IF Hard (@ THEN
EXIT

Fl

FI

;0ops player busted!!

IF c=%3A AND (Hand=1@ DR Hand=11) fWants to double down
AND player.Cnt=2 THEN
PlrBet==LSH 1
Harig=GetCrd (@} sStatus is ok, so pget card
Timer (1)
EXIT
FI

1F c=%1C THEN ;Likes bhand, stands
Hand=@
EXIT

F1

oD

CclCrs=a Rowlrs=12

FrintD(6," ")

ColCrs=@ RowCrs=1g&

RETURN (Hand) jReturn final hand

PROC Scroll(BYTE dir)
BYTE d

§ '"Scrcoll’ scrolls the two 'POP-UP’ prompts

IF dir THEN jGoing up
FOR d=0 TO 15
DO
VScrol=d
Delay ()
oD
E_SE t1Boing down
FOR d=@ TO 15
jaa}
VScrol=15-d
Delay ()
oD
FI
RETURN

PROC GetBet ()
BYTE c, i,
BYTE ARRAY BrkLn(1@)

GetRet handles the entire wager process

From clearing out the old bet, through petting
and offset the present bank display to

to petting the input, converting from QASCII
and test the input.

Do
jClear & set coffsets
J=1
Zero(BetlLirne+7,5) Zero(BetLine+15,35)
Strl (PlrBank, BnkLn)
FOR c=1 TO BrikLn(@)
DD
BnklLr(c)==+3$60
oD
SRssign (BetLine, Bnkln, 7, BnkLn (@) +7)

tDo "POP-UP'w
Screll (1) PLAddr "=BetlLine+i Gecroll (@)

;1Get input and do convertion
i=Q
c=GCetD(1)
WHILE c#135
bo
IF c=$1B THEN
PlrBet=-1
RETURN
ELSEIF c)='@ AND c(='9 THEN
i==+1
Brikbn(i)=c Brnkln(@)=i
BetLine (i+15) =c+%60@
ELSEIF c=127 THEN,
jmm—]
IF 1)18 THEN i=9 F1I
BetLine(i+16)=@ Bnkln(@)=i
FI
c=GetD (1)
oD
Scroll(l) PLAddr~=PlrlLine+l Scroll (@)
$Test input
PlrBet=Vall (Brkin)
UNTIL PlrEBet)1
oD
RETURN

BYTE FUNC Insur()
BYTE 1
CARD Time=19

BLACK . JACK

; If the dealer is showing an ace
;] better hit a key quick!!

Time=@ i=Q
Position(6,11) PrintD(6, "insurance? ")
WHILE tock(l
$Only got 4 seconds

DO

IF CH#255 THEN

FrintD(&, "YES") i=1

Timer(2) EXIT

FI
oD
Position{(6,11) PrintD(6," ")
RETURN (i)

PROC Play ()

BYTE c,m, i

INT Hand, DlrHnd, PlrHnrd,

X, Y

WHO POINTER player,
dealer

player=Player

dealer=Dealer

;5 Mairn game logic... all others are ultimately
} called from here.

jStart the game
DO
CirTablel()
IF Delt) 4@ THEN
Shuffle()
FI
GetEBet ()
jtplayer wants to quit!!
IF PlrBet (@ THEN
RETURN
FI
tPlace cover over dealer hole card
FOR m=4 TO 7
DO
PMMove (m, 117+m#5, 28)
oD
t1Get the first 4 cards

FOR HldCnt=@ 70 3
DO

c=Deal ()

HoldCrd (H1dCnt) =c
c=DplCard(c,Hl1dCnt&1)
CrdAmt (H1dCnt &1,)
[s}e}

jTest for, and process 'ACE SHOWING®

i=a
IF (HoldCrd (1) MOD 13)=1 THEN
i=Insur()
IF dealer.Amt#21 AND i=1 THEN
Position(3,11) PrintD(6,"took insurance'")
Timer (3)

Fosition{3,11) PrintD(&," ")
PlrBank==—(PlrBet RSH 1)

FI

FI

i6o into standard play
DO

IF dealer.fRmt (21 AND player.Amt (21 THEN
Hand=PlrHand ()

IF Hand=Q@ THEN

RETURN

FI

IF Hand (@ THEN

Flip()

Busted ()

PlrBank==—PlrBet

EXIT

FI

Hand=D1lrHand ()
IF Hand (@ THEN
Busted()
FlrBank==+PlrBet
EXIT
FI
ELSE
Flip()
FI

jPlayer pot a BLACKJACK
IF player.Amt=21 AND player.Cnt=2 THEN

PlrBet==sl EH 1
Fl

<

RowCrs=12
ColCre=7
tplayer wins!
IF player.Amt)dealer.RAmt THEN
PrintD(6, "winmer") Inverse 'winner’
PlrBank==+PlrBet
ELSEIF player.Amt {dealer.fmt THEN
tDealer BLACKJIACK with insurance
IF dealer.Cnt=2 AND dealer.RAmt=21 AND i=1 THEN

PrintD(6, "no bet") jinverse "no bet’
ELSE
jPlayer loses!
PrintD(6," lost ") jinverse 'lost’

PlrBank==—PlrBet

BLACHK . JACK

FI
ELSE
1Tie

PrintD(6," push ") $ inverse 'push’

FI

Results(3,7)

EXIT
oD
Fosition(3,11) PrintD(6," ")
Timer (1) :
0ob
RETURN

PROC Start ()
BYTE b,c,r
BYTE POINTER Bp

Initialize()
Delt=100 jStart Game Clean

Position(@,®)

FrintDE(&, " BY FRANK DANIEL ") jInverse FRANK DANIEL
PrintDE(6, " [C1 1984™)
Timer (4)

PutD (&, 125)
Color (1)=844
Play ()

jEnd of game reset memory and screen
Graphics (@)

MemHi=01dMemHi
RETURN

FLITTER

’
H
H BUG
THE ACTIGI RE_ACTION RECURSION ¢
LANDOL PROCEDURD CALLING METHOD
JIM WAKEEN
TAlL LEAKDRO COMPUTER CLUL
PURPOSE: tc zllow any procedure to
cull itsclf or arny other proucedurt
irrespective of it”s order iv the
>P>]")
IF
;11 console=OPTIOL then set the
3RC_CURSE flag erd call yourseld
CONSGLL=3 wiii. II_CULSL=1 GIL(M1"}
ELSEIF '
;1f corsole=SELEC>RET>IS P>PRO>I")
IF
COISOLE=3 THEN ERROR=ADR_ONE
RE_ONE("2"™) RE_PEAT TWC("R")
ELSEIF
CONSOLE=5 THEL RE_PEAT TWO("2")
)3!!)
IF
CONSOLE=3 THEE ERROER=ADK_OLE
BE_OKE("3") RE_PEAT TEREE("R™)
ELSEIF
CONSOLE=5 THEIL. ERROR=ADR_TWO
RE_TWC("3") RE_PEAT THREE("R")
ELSEIF
COLSOLE=6 THEL RE_PEAT
TERCE("3")
ELSZIF
KEY=12 THElL ERROR=ADR_DILGC
RE_DILG() RETURL
FI
0b
RETURL

PROC “DING()

CAED 1

KL_ELEOL

SLDRST()

FOi. 1=0 TO 5000

DO SOUKD(0,25,10,8) OD
SYDRST()

KEY=255

RETURL:

PROC SETUP()

A11 of tho pucedures above this one
except the RE_x:x procedures can be
shiftec¢ erround in any order. The
RE_zau: procedures must be ot the
tep of the list and the following

eddrese ¢ssignoments must come at the

very last (sc thct they will be tle

{irst sruteLents czecuted by the
propTan).

£D1._8¥S_EELOL=LPLO:
OLE=OLL

TUO=TVC
AUL_TLEREE=TELLL
4D, _DING=DIiiG

PEINT("}™)

POXE(752,1) SETCOLCR(1,0,0)
SETCOLOR(2,13,6)

ONE("'S"™)

GRAPHICE(0)

CPRINT("

RETUR:: THRU PROC SETUP
TO TLE NCLITOL")

PRIKT("

THE ACTIO! RE_ACTION RECULSION o
RAIDCU PLOCEDURE CALLING LETICD
JIN WARRLYL

SAl. LEALDRO COLPUTEL CLUL
PURPOSE: tc zllow eny pruccdure to
call iteelt or any othcr procccurc ™)
PRINT("
ixxespective of it’s crder in ti:
list while precervir, the propes
order of RETURIS sv¢ with full
parameter passiiug capabiiaty. "
RETUR:

L9

RAMT AL HER

1L REM r—
2 REm | SaM LEANDRO COMPUTER CLUB 1
I REM | SPECIaAL EDITYIYON JOURNAL |
4 REM IP.O. Box i%2S5, San Leandro.cal
S REM | 94580-0152 1
6 REM L 4
10 REM H b 1184
a.-R. Holmmes €Ccd 1985 -~ Norfolk, va
for the STATLUS Hewsletter
20 GRAPHICS O :POKE 752,1:7 : ? : 2 : 2 X
nNitializing...Please wait.*
X0 FOR XI=0 TO 243 :READ Z:POKE 1536+X,Z
TNEXT I
48 GOYO SO
S pIM Z(255),FN$(13):DPEN "t , 4,6, "K:*
60 GRAPHICS 2:SETCOLOR 2,0,8:TRAP 660
78 ? 116;'* RAMTALKER"":7?7 6
80 ? R6;'" 1 record'':? #16;' 2 pPlauback*
:?7 RB6;' I Throuahput''
926 ? 1B6;'* 4 save'':? |B6;'" 5 l1o0ad'
1986 7?7 R16;'" & waveform aAQraeph’'

110 TRAP 110:GET H1,ANS:IF ANMS>S4 OR A
N5<49 THEN 110

12® IF QNS>S51 THEMN 140

1368 TRAP 60:POKE 7S2Z,1:7 ""What SampPle
Speed!" ; :INPUT 55:IF 55>255 THEN 136
1406 DN VAL CCHRS (ANSY) GOTO 160,200,240
,270,336,640

150 REM idaIWQH

160 POKE 268,1:POKE 20S5,0:POKE 206 ,64:
POKE 207,55:POKE 289,128

170 A=USRC1IS53I6I : POKE 562 ,I:POKE 53775,
I

180 GOTO 68

19@ REM [TWETTAAA

2006 POKE 287 ,5S:POKE 203 ,0:POKE 204,64
:POKE 208 ,0:POKE 266,128

2106 A-USRC1S53I6I : POKE 562 ,X3:POKE 53775,
3

226 GOTO 60

230 REM INTNITTAITITEN

Z246 POKE 208 ,2:POKE 205,0:P0KE 206,64:
POKE 2€7,55:POKE 2089 ,128
250 A=-USR((1S5I63 :GOTO 246
268 REM FYUTEEEYITIHESINA
270 TRAP 278:POKE 752,1:7
ame''; :INPUT FHMS:IF FNS="'
2860 YO0O=4:0PEN 1#4,8,0,FNS
298 ADDRESS=—163I84 :MUHMBER=-163I8I:PROC=11
TeOe GOSUB S10

ILe GOTO 68

- RN IS 0D S OUND _F T E]
IIB TRAP 3I3I@:POKE 7S2,1:7
ame' ; : INPUT FHS:IF FNS='
I4€ ITO=4:0PEN #H4,4,0,FNS
IS0 ADPDRESS=163I84:NUMBER=16383I:PROC=7
360 GOSUB S16

X708 GOYO 60

X880 DPATA 104,169 ,8,141,31,268,17%,31,2
08,41 ,1,208,249,160,255,162,255,32,149
, 6

90 DATA 136,208 ,248,.i69,8,141,31,208,
166,208,224 ,0,208,3,76,.181,6,169,0,141
400 DATA O ,212,141,14,212,141,106,212,1
41,10,212,166,207,%2,149,6,173,4,210, 1
62]

410 pATA 19,142 ,15,216,162,2%,142,10,2
12,142 ,15,216,142,1%,210,174,24%,6,224
, 0

428 PATA 208,22,41,240,141,242,6,1066, 1
96,106,106 ,41,15,9 ,16,141,1,2310,238,24
4

48 pATA 6,76,45,6,106,106,106,106,41,
15,9,16,141,1 ,210,41,15,1%,242,6

448 DATA 206,24%,65,160,0,145,2085,173,3
1,2068,41,1,240,19,2%0,205,208,163,23a0,
206

450 paTa 166 ,206,228,209,2088,155,76,15
¥,6,202,208,25%,96,.165,208,201,2,288,1
1,169

468 DATA 6 ,13X,2065,169,64,13%,206,76,3
7,6,169,64,141,14,212,169,34,141,0,212
478 pPAaTAa 96,169 ,0,141 ,314,212,.141.0,212
,166,207,32,149,6,1608,0,177,203,176,10
6

4868 pDaATa 106,106,106 ,41,15,9,16,1413 ,1,
2108,138,41,15,9,16,24,24,24,24,166

“‘Give file n
THEN 60

‘Give file n
THEM 60

68

490 DATA 207,32,149,6,141,1,216,236,26
x,208,206,230,204,166,2084,228,206,208,
206,76

5686 DaTa 15%,6,0,0

S10 REM MO ENTISEHRDYAIRadFld

S20 XO=16%IO0

5T XOCB=8I2+TO0:POKE JXOCB+Z.PROC

540 ADPRHIZINTCADDRESS/72562

S50 ADRLO=-APDRESS—ADRHIM256

S60 POKE IOCB+4,ADPRLO:POKE IJIOCB+S,ADRMH
X

5768 NUMHI=-INTC(NUMBER 256>

S80 NUMLO-NLUMBER - 2S6NMLUMHI

590 POKE IOCB+8,NUMLO:POKE JOCB8+95, MuUumMH
I

6608 I=-USRCADR ("hhh-.':LUfﬂ"),IO)

610 CLOSE 8®BYIO/16

620 RETURN

630 REM [TWGIAENTAITIEATIAT

648 GRAPHICS 8:SETCOLOR 2,0 ,08:COLOR 2:
POKE 752,41:7 *“Kpurina pPlot. Press anwv

key to return to main menu*

6568 FOR XI=1 T0O0 600:MHEXT I

660 GRAPHICS 24:SETCOLOR 2,0,0:COtLtOR 12
tA=Z0:B=0:C=8:D=8:H=-O

670 FOR I=1 TO 4095 :POKE 764.25S

680 A=-PEEK(I+16384)
690 B-PEEK(I+2Z2048a)
700 C=PEEK(KI+24575)
710 DT-PEEK(X+286790)
7280 HTH+0 .07773:PLOT
740 PLOT R, (B/63 +ZX5
750 PLOT H,CCr6)>+850
760 PLOT H, (D/6)+120O0
7760 IF PEEK(764) =2SS
780 TRAP 820:1IF

H, €ta/63 —-S

THEN NEXT I

PEEK (76432 =255 THEN GR&
PHYCS 4@:7 "'TO DUMP TO PRINTER. PRESS
M@ :? "“"FOR MENU. PRESS I

790 IF PEEKC764) =10 THEN RUN
DMP**

800 IF PEEK(7643>=37 THEN 68
8106 GOTO 7930

820 7 ‘*ARE PRINTER AND INTERFACE ON?':
FOR T=1 TO SOO0:NEXT T:GO0TO 780

'D:PRINT.

’:..1|:, Second Annual, World’s Only
n .«

- y 4 ~
a as []
Wi Aor2¢ C’olfzﬁll lq 1/
PRESS RELEASE (For immediate publication)

Home Computing Centers, Inc.
296 Bay Fair Mall 115 Tanforan Park

FWI'.I" San Leandro San Bruno
'I- ol | , _

: ' San Ffrancisco, July 15, 1985

dnp

The 2nd annual "Worlds Only Home Computing Fair" was announc=:d
today by Home Computing Centers, Inc., a retail specialty chain
neadquartered 1in San Bruno, California. When asked what
distinguished this fair from the many others that have appearead
in recent years, company spokesman, Dan Williams explained,
"Well, the name of the fair tells most of the story. We have
intentionally set out to create a 'non-techie' exhibition.
There are an enormous number of peopole out there who =2ither own or
are thinking about buying a home oriented computer but who aren't
in the least interested in hearing about bits, bytes and baud
rates. They are really after a productive home appliance.
They are waiting for someone to show them what you actuallv do
with a home computer besides play games and balance your
cneckbook. That's the thrust of the fair."

"A full spectrum of useful applications will be shown. We'll
have a real cross-section of exhibitors ranging from computer
makers to software houses, peripnheral manufacturers and so on.
There will be something for everybody. The new Atari and
Commodore computers will be shown. People will get to see
demonstrations and state of the art applications that are
normally reserved for insiders at trade shows. It's all very
exciting."

The fair will be held over the weekend of September 13-14-15 at
Tanforan Park Shopping Center 1in San Bruno, California.
Tanforan Parx 1is a major mall located just south of San
Francisco. Several dozen manufacturers, distributors and user
groups have been scheduled to attend. For more information,
interested parties should call Dan Williams at (415) 273-8881 or
write to him in care of Home Computing Centers, Inc., 296 Bay Fair
Mall, San Leandro, CA 94578. Alternately, you may call Lew
Moore at (415) 588-1201 or write to him in care of Home Computing
Centers, Inc., 115 Tanforan Park, San Bruno, CA 94066.

September 13™ thru 15™

TANFORAN PARK SHOPPING CENTER ¢ SAN BRUNO, CA

BASIC XE" Gives Your Atari 130XE" All
The Performance It Should Have Had In
The First Place

In the home computer races, the Atari 130XE stands out as a price leader. But using underpowered Atari
BASIC™ on this otherwise fine machine is like racing in the Indy 500 with half your cylinders missing.

So don’t get left at the starting line with only half an “engine.” Change to the performance leader now! Buy
BASIC XE from OSS, the only programming language designed especially for the Atari 130XE.

Just look at what you get for one low sticker price:

BEST MILEAGE: With over 60,000 more bytes
for your programs, BASIC XE lets you use all the
memory you paid for.*

MORE HORSEPOWER: Run Atari BASIC pro-
grams 2 to 6 times faster.* Even with its incredible
power, BASIC XE is compatible with Atari BASIC.

BETTER HANDLING: With auto line number-
ing, renumbering, program cross referencing,
English error messages, and more.

CLASSIC DESIGN: Show off the sleek struc-
tured style of your own programs when you use
BASIC XE statements like PROCEDURE,
IF...ELSE, and WHILE... ENDWHILE.

FREE ACCESSORIES: Get over $100 worth of
Atari BASIC options FREE when you buy BASIC
XE: complete Player/Missile Graphics support,
string arrays, DOS access, SORT commands, read-
able listings...over 50 extras at no additional charge.

m If you're ready to step up to real performance...YOU need BASIC XE now!
m If you haven’t written your first BASIC program...YOU need BASIC XE now!
m If you're already a real pro in BASIC...YOU need BASIC XE now!

s BASIC XE may well be the best buy any Atari owner ever made.

*Want to know more? Call or write for free brochure or ask your local dealer.
Atari 130XE™ and Atari BASIC™ are U.S. registered trademarks of Atari Corporation.

Qss

Optimized Systems Software, Inc.

12218 Kentwood Avenue, San Jose, California 95129 (408) 448-3099

	San Leandro Computer Club (SLCC) Journal Atari Newsletter 85-00 Special Edition Pt 1
	San Leandro Computer Club (SLCC) Journal Atari Newsletter 85-00 Special Edition Pt 2

