The :ur mm camputer awmrs cluh lssm.- 9 Pme £1 tm
mmmwmm -

Much mam in tms lsstie IMPPI' Eipi
including: Reviewed: Tapﬂﬂs
FastFill Routine =~ and Homeword

KEYO typing checker Profile on lea Valley l.'lub
Binary loads fmmBasic_; Go ranm

PRICE £7.50

AVAILABLE FROM W.H. SMITHS, BOOTS, WOOLWORTHS AND MOST COMPUTER RETAILERS OR FROM
LLAMASOFT 49 MOUNT PLEASANT, TADLEY, HANTS (TEL. 07356 4478) SAE FOR CATALOGUE & NEWSLETTER

‘THE NATURE OF THE BEAST!

EXCITING TIMES!

Things are really moving on the Atari front
these days, Since the new machines were
announced all the national magazines have
reviewed the 130XE and raved over the 520ST.
It's as if they have suddenly realised what they
have missed, if only they had asked us we could
have told them years ago. | just feel sorry for all

| those people who have bought inferior

products. At first they were sceptical that the
new machines even existed, but now that the
130XE and the 520ST (in limited numbers at
present) are here, they are getting more and
more interested. Lets hope they continue as
they have started and support the machines as
much as they deserve.

It is reported that over one hundred
development systems have been sold in the
U.K. and that many well known software
houses are busy developing (converting?)
programs for the 520ST. Having the good
fortune to see a 520ST system for myself
recently, | can report that it lived up to all my
expectations. GEM was very impressive, the
mouse was easy to operate, the drives were fast
and silent, the monitor was sharp and clear, the
keyboard was finger sensitive and a joy to type
on. If the 520ST package consisting of a
computer terminal, monochrome monitor, 3
1/2 inch disk drive, a mouse, GEM, BOS
(business operating system}, TOS, GEMpaint
and GEMwrite, at £749 is not an all time
winner, then | don't know what will be!

Atari DOS 2.5 is now being passed around
It contains extra files (not part of the DOS) to
convert DOS 3 files to DOS 2.5 or DOS 2
format, unerase files, create an AUTORUN.SYS,
verify disks and change drive numbers. Another
file on the disk gives a RAMDISK for use with
the 130XE. A mini-manual is also supplied
(supplied as a file on the U.K. version) which
gives details on how to operate DOS 2.5, note
that a full blown manual will be available latter
probably costing around £14.

Atari User magazine is now well under way,
and Database has thanked the club for passing
on the names and addresses of all the people
who wished to subscribe.

Most of you have returned your
membership questionaire and we are in the
process of compiling the results. We wish to
thank you all for your comments and we have
already acted on some of the points raised. In
this issue is our own typing checker program
called KEYO which we think is a bit better than
some others which are around at the moment.
Also from this issue on you will be able to
purchase a disk with all of the main programs
on.

Finally, there are rumours that the next
machine to be launched here will be the 256K
model in the ST range. the 260STD (with built
in disk drive), it will be interesting to see if this is
true. One last point, we would like to credit
some of the pictures in the ‘Power without the
Price’ article in issue 8 to Analog magazine, our
thanks to Michael J. Deschenes for writing to us
to inform us of our omission.

CREDITS

Editor Roy Smith
Art Editor Peter Blackmore
Technical Editor =~ RonLewy
Technical Editor - Keith Mayhew
Adventure Editor Steve Hillen

UK ATr\R] COMPUTER OWNERS CLU
e or part 15 expressly fort
for its contents. Where

S
=

- Homewerd, TopDOS and Mr. DO! F

130XE Explored
Just where is that extra RAM?

Binary Loads from BASIC
Machine Code routine to provide binary loads without going to DOS.

Starting from Basics
Part 2 of this series for beginners.

Reviews P

GoFORTH
Ifyou don’t know about FORTH, now is your chance to fmd out.

RAMD!SI(lol' the 130XE
Utilise that extra memory in the 130XE.

Keyo
The ultimate checksum program?

Software Library
This qugrte;'s new programs.

Cracking the Code o
Part 5 really gets to grips with programmng S

FastFill S
An exce]ient program which fills any shapeyoa care to draw and fast too!

B

e

Adventure into the Atari
Return to Eden, Spiderman, Dallas Quest and Emerald [sle reviewed.

Bootbase
A utility for indexing your ‘Multiboot’ disks.

Profile on Lea Valley
We are not the only club in the country. This issue we spotlight the Atari
enthusiasts of the Lea Valley.

What's MIDI?
First_,par;t ofkanb_,in c_:lepth look at MIDI which will be available on the 5205T.

Happy Typer i
Super utility that gives you automatic line numbers and programmable
function keys.

B o

Due to lack of space F’art 2 of Openmg Out has been armtted

SUBSCRIPTION RATES

cheques/postal orders are to be made

M andbeland -0 c 2 e Lo £4.00 payable to the ‘UK. Atari Computer Owners
T e R S e £7.00 Club'. Overseas membership is also available
Quiside Europe (Surface)........o.vvun £7.00 at slightly higher rates. Overseas members
Qutside Europe (Airmail) £10.50 who use the Library service should include

The above prices are in English Pounds
Sterling and include postage and packing.

A subscription/membership fee 1o join the
U.K. Atari Computer Owners Club is just
£4.00 for four issues of the club magazine. All

COVER: Photographs of the 5205T and the 130XE supplied by Silica Shop Ltd,
CLUB ADDRESS: The UK. Atarl Computer Owners Club, P.O. Box 3, Rayleigh, Essex.

way affiliated with ATARL All material is subject to world wide Copyright p

enough extra monies to cover return postage.

ADVERTISEMENTS

Please note that the club cannot be held
legally responsible for claims made by
advertisers,

ATARICOMPI
cles or listings mus|

Welcome to this review of the first of
Jack Tramiels new micro’s — The 130XE.

The 130XE is, in essence, an 800XL
{which was just a re—packaging of the
trusty old 800/400 machines) but with a
few layout changes and a VERY exciting
addition in the form of an extra 64K of
RAM!

The operating system and BASIC
programming language of the 130XE is
identical to the XL series so in this review,
bearing in mind that the vast majority of
our readers are already Atari computer
owners, [shall restrict my comments to the
features which make the 130XE unique
within the Atari range. These are:

a) The Manual

b) The Physical Layout

¢) The Extra 64K of Memory

THE MANUAL

Sadly, the manuals previously supplied
with Atari computers have been shame-
fully inadequate. If you have boughtan
800XL or 600XL you will have discovered
that although you are given a nice glossy
61 page booklet, only four pages (7 sides)
are of any actual relevance. The rest of the
book is merely a set of the same 4 pages
translated into five other languages! This is
hopeless even for an experienced
programmer. The novice doesn’t stand a
chance!

The new Atari regime, however has
come to realise that a good machine is
useless without a good manual, and that
the vast majority of home computer buyers
are novices. Thankfully the 130XE is
supplied with a neat (8.5 * 5.5 inches)
spiral bound handbook, an incredible 132
pages long and all in ENGLISH! At least
one third of the manual is dedicated to
teaching the elementary aspects of
programming in BASIC to the absolute
novice, and this it does very well indeed. It
starts by showing how to print simple
words to the screen and progresses at a
gentle but thorough pace through to
FOR/MNEXT loops, mathematical calculat-
ions and I[F/THEN comparisons.

The next section deals with sound and
graphics, sound generation is dealt with
fairly concisely — the book is adequate, but

2

not outstanding in this section. Itis in its
description of graphics, that the manual
really shows signs of weakness. Although
the modes () to 7 are dealt with in a very
clear and concise way, and once again [
think the beginner will find this very
helpful, modes 8 to 15 are not even
mentioned.

This, | feel, is a great shame, since
these are probably the most interesting and
versatile of the graphics modes available to
the programmer. Modes 9 to 11, for
example, have never really been explained
in previous Atari manuals and yet they
have been available since the days of the
400/800 machines. Their most interesting
facet is the ability to produce realistic
camera pictures with the use of a suitable
video interface. Also amongst modes 12 to
15, there are some which are excellent for
medium resolution ‘painted’ pictures
(there is the special mode used by MICRO-
PAINTER and other good ‘painting’
utiliies), and these could do with
explaining,

VERDICT:~ Although largely a vast
improvement on previous efforts, this

manual seems to stop abruptly halfway
through the graphics section! Itis very sad
that Atari computers have the most
advanced and varied graphics available on
a home computer, and yet Atari still don't
even tell owners about it in the manuals.
Still, it is definitely a step in the right
direction.

THE PHYSICAL LAYOUT

First impression is of the machines
compactness. The reduction in width has
been achieved by moving the function and
reset keys to above the keyboard. Their
diagonal shape has more to do with artistic
appeal than practical useability, but
nonetheless they do enhance the machines
visual appeal, and the 130XE is certainly
the smartest looking machine produced by
Atari. [don't know whether it was
intentional, but I found the ridge running
across the machine (just above the logo)
was very handy for laying pens in while
programming!

There were, however, two aspects of
the new machines case which I found
rather irritating, the first of these being the
location of the RESET key. This is placed
just above the DELETE and BREAK keys,
with an exposed edge facing them. Several
times [have accidentally touched this key
(it also has a very light spring), and since |
use a disk drive, the computer cold-started
itself with the inevitable loss of my program
most frustrating!

The other problem is in the characters
printed on the keys of the main keyboard.
They have been printed in a rather light
grey colour, and consequently the finer
punctuation keys require very good
lighting conditions to locate them
reasonably easily. [also thought that some
of the punctuation marks were needlessly
small. Indeed, | found the coma and full-
stop virtually impossible to differentiate
without close examination, and this applies
equally to the colon and semi-colon.
Larger, bolder, black lettering would, | feel,
have made the keyboard much nicer to
use. As far as the keys themselves are
concerned, | must say that | found them
excellent. They have a beautifully light,
rapid feel about them, | found that [could

type much faster on the 130XE than on my
old 800 — something which | attribute to
their relatively short travel and ‘bouncy’
feel.

A look inside the machine revealed
the usual well screened, high quality circuit
board which we have come to expect of
Atari. Something [did find a little
disappointing was that all the [C's were
soldered directly into the PCB, thus
making servicing much more difficult. |
suspect that this has probably been done
to help reduce costs, increase reliability,
and cut down on inter-component
interference, but it will be interesting to see
how Atari deal with servicing, particularly
on out of warranty machines when the
time comes. It is interesting to notice that
there are very few small scale logic IC’s (3
TTL and 3 CMOS chips), an example of
the trend towards large scale integration
(LSI) IC technology, packing as many
functions as possible into as few IC's as
possible, hence the cluster of large IC’s.
We all, of course, benefit from this with
cheaper, more powerful machines.
VERDICT: — Despite the few niggly points,
this is certainly the neatest and most
professional looking Atari computer to
date.

run a BASIC program any larger than the
800XL, in fact the 130XE will operate in
precisely the same way as the 800XL, this
is why itis 100% compatible with existing
XL Atari software. The additional 64K
exists as 4 separate 16K blocks and the
only way it can be accessed is by disabling
a 16K block of normal memory and
placing a chosen block of the extra
memory in its place. You can do this by
poking to memory location 54017. Once
this is done however, you can not access
the original 16K memory block until it is
re-enabled. Diagram 1 shows how this
happens a little more clearly.

It is also possible to have the main
processor (6502 CPU) accessing the
system memory as normal, but have the
display processor (ANTIC) accessing the
extra RAM, and vice versa. This is because
the control register in location 54017 uses
2 bits to decide which type of memory the
two processors will use, one for the 6502
and one for the ANTIC. Two more bits are
used to indicate which block of memory is
to be used if the extra memory is selected
by either of these.

Notice where the extra RAM is
overlaid, it is in the second 16K section
(locations 16384 to 32767). This is the

B

This problem of conflict of memory
would, at first, seem to prevent the use of
the extra RAM by a BASIC program for
data storage, but this need not necessarily
be so. There are two ways around the
problem: —

a) Ensure that the BASIC routine
which accesses the extra RAM lives outside
the ‘window’ section. You can find the
approximate position in RAM of a program
line by including the following command
on the same line: — PRINT ADR(™)

This seemingly pointless command
will in fact print the address of the non-
existent string in the quotes! Consequently
you will know the approximate location (to
within 4 or 5 bytes) of the program line.

b) Use a machine code subroutine
located outside the second 16K section of
memory to perform the access to the extra
RAM. This is the fastest, neatest and most
reliable method, but unfortunately not
everyone knows how to write in machine
code. For those who do, Atari BASIC
provides an excellent method of interfacing
machine code routines to a BASIC
program, the USR function.

An application which the extra RAM is
suited for is a RAMDISK. A RAMDISK is a
large block of memory with a piece of

any cne time.

0

Normal system
RAM

| Diagram 1

At the back
1
—— 32767 32767 32767 32767 3276
Block 0-3
can be " Blcu)ck OR Bl:ck OR Blgcl OR an;:u
overlaid in
this section. 18384
T 16384 16384 16384 16384

The four 16K blocks of extra RAM, only one of which can be used at

THE EXTRA RAM

Now for the part which really does
make the 130XE different to its
predecessors. The 130XE is supplied with
a total of 128K of random access memory
(RAM), twice as much as the 800XL.
Marvellous, | here you say. But if you plug
your machine in, switch on and type: —
PRINT FRE(0)

It responds with 37902, the same as it
did with the 800XL (64K less the amount
banked out to allow BASIC and the
operating system to exist). Here is the
catch, the additional 64K is not there to use
as normal memory!

The problem is that the 6502 CPU,
like all 8 bit processors with 16 bit address
lines, can only ‘talk’ to up to 64K of
continuous memory (ROM or RAM), in
use.

So, where then is this extra 64K
lurking in the 130XE? Firstly, you must
realise that the 130XE will not be able to

obvious choice since the 0 to 16383
section holds the valuable system
information which, if it is unavailable
briefly, or was to get corrupted, would
cause the computer to lock-up, or crash.
The third 16K RAM section (32768 to
49151) holds the screen data, and 8K of
this is often switched out to allow BASIC,
or cartridge software to operate, so this is
out of bounds. The top 16K section
(49152 to 65535) is where the operating
systern lives in ROM, so it is also out of
bounds. This only leaves the second 16K
section, locations 16384 to 32767, to use
as a ‘window’ to the extra RAM. This area
is free when you switch on, but as your
BASIC program grows, it will eventually
reach and cover it. The problem then is
that when you attempt to enable and
access the extra RAM using BASIC
commands (e.g. PEEK and POKE) you
might actually disable your programmes
memory space and crash BASIC!

== e
— — B o

machine code software which simulates a
disk drive, so that programs which regulary
access a file at random positions can be
fooled into thinking the memory is a disk
drive. This increases the speed of such a
program enormously, as well as reducing
drive wear.

Other applications which could
benefit from having the extra memory are
word processors, program text editors or
database type programs. Atari have stated
that any software packages produced for
the 130XE will be made compatible with
the older Atari computers, but perhaps
with some features lost. It will certainly be
interesting to see whether they stick to this.

VERDICT: — The extra 64K is a
superb feature which should ensure the
survival of the Atari machines. It opens up
the way for many exciting possibilities such
as a RAMDISK, large database programs,
perhaps even a decent ‘spelling checker’
type word processor. Adventure games
that use graphics can be vastly improved,
avoiding the need to load each screen
separately from disk.

When you take all the possible future
benefits into consideration, and the fact
that by upgrading you will not loose out to
any kind of incompatability with the
software you already have, finding the
measley £170 to buy one is a temptation
not easy to overcome. It will be an
investment worth every penny!

I would like to thank Silica Shop for
sending me the 130XE for review so soon
after they arrived in the U.K., its nice to
know that someone out there is supporting
the Atari computers with enthusiasm.

3

BASIC

binary Loads From

There have always been a number of
problems in loading a binary load file from
BASIC. These problems stem mainly from
the fact that another DOS file must be
loaded itself in order to load a binary file
for you. This file will either overwrite your
BASIC program, or force you to wait for
ages while a section of memory is saved
out under a MEM.SAV file. Another
problem is that the DOS loader will protect
itself and not allow any loads over its
region of memory, a region which is
normally user space.

There are 3 answers to the problem,
Firstly, get another DOS e.g. OS/A+ which
has a resident binary load option.
Secondly, make your binary load file into
an AUTORUN.SYS file, so itis loaded on
boot-up, bypassing the second DOS file.

These two solutions are either expensive or ‘

inconvenient, so perhaps the compromise
solution is to have a short routine to
perform the load for you.

Before the listing explanation how-
ever, a quick reminder on the structure of a
binary file.

STRUCTURE

It is basically a memory dump onto
disk (or cassette) with a special 6 header
bytes which determine where to load the
file, and how much there is to load.
Referring to Figure 1, the first two bytes are
a mandatory 255,255 which specify that it
is a binary file. The next two bytes are the
lo,hi address at which to start the load. The
5th and 6th bytes are the lo, hi address at
which the load will end. Following the first
6 bytes is the data which is to be loaded
between the two addresses.

A binary load file does not stop there
though. Depending on how it was created,
itcould have a number of supplementary
files appended to the end. Such a file is
known as a compound file. The only
difference between these extra sections
and the first, is that the first two 255's may
or may not be included. The four address
bytes and the specified amount of data will
still be there, however.

The listings below are for a BASIC
binary load option, which occupies most of
Page 6 in memory. Once installed, you can
call it with: —
X=USR(1536,ADR{"D:FILENAME.EXT"))

Where you supply the filename you
want to load. At the moment, the routine
will not load any program between page 6
and page 31, in order to protect itself and

4

by Steve Hillen

255 Header
Bytes

255

Start Lo.

Start Hi.

End Lo.

End Hi.

Second segment
may follow on here.

Figure 1

the resident DOS. The upper and lower
bounds can be altered by poking 1605 and
1609 respectively with the new bounds.

You will also notice that the program
will print the memory ranges loaded in
hex, and there are two things to look out

| for. If the file loads into $2E0-$2E1 then
those two locations hold the RUN address
for the file. If it loads into $2E2-$2E3 then
those two locations hold the INIT address
for the file.

Type in listing 1 and save it out before
running it. As it stands, the program will
read the data into page 6 then stop. If you
delete line 10 however, the program will
create a binary load file of itself, which you
can load once with DOS, then load any
further binary files without the need for
MEM.SAV etc.

Listing 2 is the assembly code, and is
only shown for more advanced readers

who may wish to see how it works.

NOTE: In this program, anything which is underlined, should be entered in 'INVERSE".

El | REM #5#####isdisi e nisitidaasiisiss
NH 2 REM

J8 3 REM BINARY LOAD FROM BASIC

NJ 4 REM

TF 3 REM BY STEVE HILLEN

NL & REM

| YN 7 REN FOR MONITOR MAGAZINE

EQ 9 REM ##34uidssbiidbtiidsriisans
GW 1@ BO0TO 3iged

V0 180 REN ##+ Create binary load file. ¥ i

ﬂ

EE 118 DIN INS(1)

IM 128 ? "Ready disk with DOS and press ¢
CRX*y 1 INPUT IN$

K6 13@ TRAP 200

JF 148 OPEN #!,8,0,"D:BINARYL.OBJ"

YN 158 PUT #1,255:PUT #1,235:PUT #1,8:PUT
$1,6:PUT #1,2441PUT 41,4

IN 160 FOR A=0 TO 2441READ D:PUT #1,DINEX
TA

PB 178 CLOSE #1:? "Done.":END

DI 208 ? "Error "jPEEK(195):CLOSE #1:END

RQ 31082 REM +## Load data onto page & #

3

BH 31881 FOR A=B TO 244:READ D:POKE 1534+
A,D:NEXT A

HX 31082 REM 12+ Ready to use. #3%

10 31083 REM #3# Y=USR(1536,ADR(*D:FILENA
ME.EXT*)) #33

i YO 31884 END
VR 31010 DATA 104,216,162, 16,169,3,157, b6
13,169,4,157,74,3, 184,157, 69, 3, 104, 157
| 488,3,32,86,228,48, 116,32
| TU 31011 DATA 123,6,281,255,208,189,32,12
3,6,201,255,208, 182, 160 B, 132,203, 32, {
23,6, 164,203, 153,208, 8,28, 192, 4
| PP 31812 DATA 144,241,32, 152, 6,145,288, 15
7,48,3,165,209,201 6, 144,4,201, 31, 144,
47,157,69,3,56, 165,210,229, 208
BA 31013 DATA 157,72,3, 165,211,229, 2089, 15
7,73,3,254,72,3,208,3,254,73,3,32, 131,
6,32,123,6,133,288,32,123
LB 31814 DATA 6,201,255,248, 189,133,289, 1
49,2,208,176,169,0,157,72,3,157,73,3, 1
49,7,157,66,3,32,86,228, 16
BT 31815 DATA 18,184,184,149,12,157,66,3,
32,864,228, 96,168, B, 165,289, 32,206, b, 16
5,208,32,286, 6,288, 165, 211,32
12 31814 DATA 206,6, 165,218, 32,206, 6, 162,
0,169,9,141,66,3,142,73,3, 169,127, 141,
72,3,169,6,141,69,3, 169
VE 31017 DATA 235,141,58,3,32,86,228, 162,
16,96,162,1,72,74,74,74,74,9,48, 281 , 58
 144,2,185, 6,153,235, 6
AN 31818 DATA 288,282,48,6,184,41,15,76,2
13,6,9,78,78,78,70,45,70,78, 78,78, 155

Listing 1

Listing 2
88081 ;Binary load files from Basic
88882 jWritten on SynAsseabler
BE0R3 ;
8eaed ;Called by
88885 ;X=LISR(1534,ADR("D: FILENAME.EXT"))

penas ;

Beea7 LT OFF

ganes 0R $608 Page &
Bage? .TF *"DtBINLOAD.OBJ"
peale ;

80811 jCID Equates

8ae12 ;

geei3 ICCMD .E@ 4342 Comsasand byte.

@004 ICBAL .ED $344 Buffer address low.
80815 ICBAH .EQ 4345 Buffer address high.
8a@14 ICBLL .EQ@ %348 Buffer length low.
peai7 ICBLH .EQ $349 Buffer length high.
goa1g ICAX! JEQ $34A Auxiliary byte 1.
Boeie 4

800820 ;CI0 coamands

aee21

BO822 OPEN EQ £3 Open file.
20823 CLOSE .E@ 4C Close file.
80824 GET £0 47 Get bytes.
2825 PUT JEQ $9 Put bytes.

pO826 §
Be27 CIov .EQ $E456 CIOD entry vector,
80e28

BB827 My workspace.
20030

80031 BUFFER .ER $DB
#0832 TEWP .EQ $CB

Four bytes space.
One byte space.

BER3T §

20834

pOB3S START PLA Clear stack.

aee3s CLD Clear decimal,

20837 LDX #$18 Bet to IOCE &1,

aea3p LDA #OPEN Open the file.

pee3e §TA ICCHD,X

pan4g LDA #4 Direction is read only.
aeR41 8TA ICAX1,X

aae42 PLA Filespec address
pae43 BTA ICBAH,X is passed on the
faea4 PLA stack and saved

00045 8TA ICBAL,X into the buffer addr.
naads J5R CIOV Let CIO open file.
BBR47 BMI ENDED If Y -ve then error.
pap4a ;

pagay JSR BET! Bet one hyte from file.
paese CMP #$FF Must be 233 for

aees1 BNE ENDED a binary load file,
#aes2 J5R BET! Same for second byte.
20R33 CHP 4$FF

20854 BNE ENDED

paRsS 3

pa@s6 AGAIN LDY #@ This loads 4 bytes
Be8s7 GET4 §TY TENP from the file

BB@se JER BET! and saves them in

a@es9 LDY TENP buffer- thes 4 are
peese BTA BUFFER,Y the start and end
gagsl INY load addresses for
BeRs2 CPY #4 the file,

BORs3 BCC GET4

00044 §
00845
00846 §
p00s7
A0848
P2049
20878
pRg7!
20072
20073
00874 OK
20075
20875
2aR77
20878
20079
poase
poes!
#0082
(TITH
0084
08885 JUNP
20085 §
#0087
paass
pBRg?
(FTTT
00891
00892
20893
20894
20095 ;
BRA95 GET1
20097
20298
#3899 PART2
20100
pa1a!
00182
#0103
#9104
20105
291086 ENDED
10187
8a108
991089 BACK
89110
80111 PRINT
09112
00113
00114
00115
09116
8117
#9118
Ba119
00120
80121
08122 ;
09123
89124
#0125
#0126

JSR PRINT Print the start/end addr.

LDA BUFFER The start load goes
8TA [CBAL,X into the buffer addr.
LDA BUFFER+! Check that file will
CHP %4 not overwrite

BCC OK above Page &

CHP 4$1F and below

BCC ENDED page $1F (protect DOS)
STA [CBAH,X

8EC Now subtract start
LDA BUFFER+2 addr. fros end

BBC BUFFER addr. and add |

STA ICBLL,X to get the length

LDA BUFFER+3 of the file to load.
SBC BUFFER+1

STA ICBLA,X

INC ICBLL,X

BNE JUNP

INC ICBLH,X

J5R PART2 Lpad the file.

J5R BET! Test for coampound file.
STA BUFFER Save for later

JSR BET1 Get another-if it's 255
CHP #$FF then need another 4 bytes.
BE@ ABAIN If not, then those 2

STA BUFFER+! were the start load addr.
LDY #2 Specify two bytes only
BNE BET4 and get thea!

LDA #0 If length set to 8,
§TA [CBLL,X one byte is returned
STA ICBLH,X in A,

LDA #BET Set for get byte.
§TA ICCHD,X

J8R CIOV Bet byte.

BPL BACK No error if Y +ve.
PLA Clear last RTS.

PLA

LDA #CLDSE Close the file.
§TA ICCHD,X

J5R CIOV and exit to Basic.
RTS

LDY %8 This section changes
LDA BUFFER+I the first 4 hex

JSR HTOP bytes in Buffer

LDA BUFFER to a printable B bytes.
J6R HTOP

INY

LDA BUFFER+3

J5R HTOP

LDA BUFFER+2

JSR HTOP

LDX 48 Specify IOCE 8
LDA #PUT Put a recard.

STA ICCMD Set buffer length.
STX ICBLH

BR127 LDA #47F 80143

00128 8TA ICBLL BB144 CORRECT
80129 LDA /MESSAGE Point to message to 89145

pa13e STA ICBAH print to screen, BR14b

pa131 LDA #NESSABE 80147

80132 STA ICBAL 2148 NOTHEX
00133 JBR CIOV Let CIO print. Be149

80134 LDX #$18 Restore 10CB 1 pa15e

88135 RTS 80151

00136 § 0152

80137 ; Ba153

BRI3B HTOP LDX M Set index. Ba1S4

8139 PHA Save for later. Ba155 RET
pR14D L8R Shift high nibble 80156 §

Be144 LSR to low nibble. BR1S7 MESSABE
pa142 LSR #0158

LSR

ORA 4430 Put in ASCII offset.
CHP #$3A And correct for hex
BCC NOTHEX numbers,

ADC &6

STA MESSBAGE,Y Store.

INY

DEX

BMI RET Both dane.

PLA Restore A

AND #$0F Get low nibble.

JNP CORRECT and change to ASCII.
RTS

S "FFFF-FFFF*
JHE 9B

CROSSWORD COMPETITION
RESULT

We had an overwhelming response to
the crossword competition, and it took a lot
of work to sort out the correct entries and
put them into the proverbial hat, ready for
picking the winner. Surprisingly there was
only seven correct entries, so we probably
made the clues a bit too difficult. Next time
we will make them a bit easier!

Our congratulations to Liz Ahmedzai
from Chatham in Kent for being one of the
seven and for having the good fortune to
have her name pulled from the hat. We
hope the £10 came in handy Liz! Also our
condolences to the six who got it right but
get nothing for their efforts.

To put all of you who are curious
about the answers out of your misery, here
they are:

Answers ACROSS 3)Jack Tramiel,
6)Interface, 9)ROM, 11)Byte, 12)List,
13)Binary, 15)Page, 17)Command,

19)Tiny, 20)Sector, 22) Terminal,

24)Disk Drive, 26)Mode, 30)Decimal,
31)Recursive, 34)Via Tape, 35)Language,
37)Integer, 38)Keyboard, 39)Open.

Answers DOWN 1)Antic, 2)Zero, 4)Error,
5)Bit, 7)Cassette Recorder, 8)Structured,
10)Manual, 14)Joystick, 16)System,
18)String, 21)DIM, 23)Atari, 25)Array,
27)Next, 28)Nibble, 29)New, 30)Data,
32)Even, 33)Bug, 35)Loop, 36)Game.

MONITOR ON DISK

Like the look of a program but can’t
find time to key it in? You've asked the wife
three times to do it for you whilst you're out
at work, and she still hasn't. Or maybe you
have typed it in but it won't run. Then why
not take all the effort out of it and send for
the MONITOR DISK. All the main
programs in each issue of MONITOR are
now available pre-recorded on disk for
you. They cost £4.95 which includes

postage and packing, send a cheque/postal
order made payable to the ‘U.K. Atari
Computer Owners Club' to Monitor
Magazine, P.O. Box 3, Rayleigh, Essex.

If you live in Europe add 50p, if outside
Europe add £1.00. Please allow 28 days
for delivery.

Monitor Disk 8.

Includes: Quickplot, a fast Graphics 8
Plot/Drawto handler. Nightmare Reflections,
an exceedingly frustrating adventure.
Matchbox, improve your concentration

with this memory game. Interrupts, 5

demo programs showing various uses of
interrupts.

Monitor Disk 9.

| Includes: Keyo, a new typing checker.
Multiboot Bootbase, database program for
‘Multiboot disks’. Binload, binary loads
from Basic. Happytyper, automatic line
numbering. Ramdisk, for use with the
130XE. Fast Fill, a speedy shape filling
utility.

STOP PRESS STOP PRESS

A new word processing package is
soon to be released (August) by Precision .

Software for use on the XL/XE range. It
will be supplied on disk with a fully
comprehensive manual which includes a

training course. The word processor is pe
menu driven with single command selection |

plus user defined selection, it also has a
calculator, mail merge facilities, a
dictionary of over 20,000 words (which is
also user definable) and can be used as a
spelling checker. Various Printer set up files
are included (ves, these are user definable
too). Although it is menu driven, for more
experienced users all commands can be
inserted directly into the text, The package
is being marketed under the ‘Superscript’
brand name and will be on display at the
PCW show at Earls Court in September.
The price will probably be £69.95, which
sounds a lot but after having seen a
preview copy and being totally impressed
with the quality of the program, came to
the conclusion that it will be a bargain!

6

A new ‘Magical’ adventure from Level
9 called ‘Red Moon' is to be released on
15th July. Itis cassette based, text with
graphics, and will retail for £6.95. lfitis as
good as their others its worth looking out for.

Discovered in amongst the pile of
letters we receive at H.Q. was the first issue
of a new newsletter for Afari fans. Itis
pretty good, we liked the 'Atariman’
cartoon strip best (wish we had thought of
it!). Named ‘GTIA Gazette', details are
available from Mike Lynch, 24 Oakdene
Road, Anfield, Liverpool, .4 2SR.

On the subject of newsletters, we have
been sent a copy of ‘Atari Magazine’ which
is published by Stichting Atari Gebruikers
in Holland. It is a professionally printed
newsletter full of tips and listings and
although its all in Dutch and we could'nt
read it, it was fun typing in the programs
just to find out what they did. If you are
interested, we are sure Casper Jansen
would love to here from you (no, you
don’t have to write in Dutch, he speaks
English). Write to Postbus 40181,

6504 AD Nijmegen, Holland.

There are very strong rumours that
Atari Corporation have booked three
massive stands at the forthcoming PCW
show at Earls Court in September, we
have also heard that Silica Shop and
Precision Software will be there, and its a
possibility that Page 6 magazine will have a
stand too. [f all this comes to pass, it will be
a show not to be missed by any Atari
enthusiast.

A special offer for
User Group members!

£3or

each new subscription

i - 3 New era
ol heralds 2 nel
’l'mmlel .omnpuiing

L 5 “r\t co

in personc V. o

Here’s your chance to make sure of a
regular copy of Atari User — the
independent magazine that’s become the
premier source of information on the
whole range of Atari microcomputers.

Each month brings you a choice selection
of first rate programs, powerful utilities,
easy to follow articles and invaluable hints
and tips — plus full coverage of what’s
happening in the world of the Atari, with
in-depth reviews of all the latest products.

If you want to know all there is to know
about your Atari micro, Atari User is
essential reading!

ORDER NOW!

Pleases send me the next 12 issues of Atari User at the specially
reduced User Group members’ price of £9 (normal price £12).
Please indicate method of payment.

D Access/Mastercard/Eurocard
J 1 L A 1 J [A i L J L L L L J

El Barclaycard/Visa

i R 1 i £ q i L ' L 1 L

D Cheque/FPO made payable to Database Fublications Ltd.

Name -

Address

Signed

[

Send to: A;ﬁ_Usm', FREEPOST , Europa House,
68 Chester Road, Hazel Grove, Stockport SK7 5NY.

(No stamp needed if posted in UK)

N

STARTING

FROM BASICS

by Captain Hacker

- alleviate the confusion

in a program, the

e e 8 i

=

Welcome to the second @3@

first is.numeric values

" W ¥ e

of my column for the beginner. This is where | hope to
experienced by the novice who wants to get a foothold into the world
of programming. In this issue | will deal with the way elements of information are held
in the computer. There are two types of information (or data) that can be manipulated

, and the second is letters, or words.

& .

Numbers

In the last issue | told you a little about
the PRINT command, and how to use it to
print your name to the screen. Since [will

| now use this command, it is important that

you read and understand the article in the
last issue, (Back Issues are available). Let
us suppose that we want to print the
number 2 onto the screen. This is very
simple, just type: —

PRINT 2

Press RETURN on your computer

and you will see that it obediently places a l

2 on the next line, just as instructed!
Suppose though, that you want to do
something more useful with numbers,
what can your computer do? Well, in fact,
your computer can perform any of the
basic mathematical operations for which
you might normally use a calculator, i.e.
add, divide, subtract and multiply. It can
also perform the kind of functions which
you would normally find on a good
scientific calculator, such as SIN, COS,
LOG, etc.

If | decide that | want my machine to

| add two and four together, I would simply

type: ~
PRINT 2+4

Try it, and you will see that it prints 6
on the next line. What about subtraction
though? Type: —

PRINT 4-2

This, of course, gives the answer 2.
When adding or subtracting, | use the
same keys as on a calculator, but for
multiplying and dividing I have to use
different symbols. For multiplying [use the
ASTERISK, i.e.:—

| PRINT 4*2

With the result of 8 being printed.
For division I use the symbol which is
refered to by programmers as a SLASH,

iei—

PRINT 4/2

8

This gives the value of 4 divided by 2.
All these symbols are on the lower right-
hand side of your keyboard. Experiment
with them for a while, and remember that |
they can be used in a combination, thus:— |

PRINT 4*3/2-5+1
Numeric Variables

Let us suppose that want to hold a
numeric value in a program, but[wantto |
alter it in various ways as the program
progresses. To do this | have to use a
VARIABLE. You can imagine this as a
pot, into which | may place a number. 1 can
alter the value in this pot using any of the
mathematical functions | experimented
with earlier, and I can have as many ‘Pots’
as [wish, but how do [refer to them, or tell
them apart from each other? | just label
each pot separatley, just as if | were
actually labelling different types of jam, [
stick imaginary labels onto my imaginary
‘Pots’! | refer to the label as the
VARIABLE NAME.

To create a number pot [need only
refer to its name and the computer will
automatically make a space for itin its
memory. Type the following: —

A=1

Notice that when you press RETURN
the computer does not print anything. All it
has done is to create a number ‘Pot’, place
the value 1 into it, and then labelled it with
the letter ‘A’. Many computers only permit
VARIABLE NAMES of one character
length (i.e. A,B,C,D, etc) but fortunately,
the Atari allows names of almost any
length. The only limitation is that you must
NOT use words which are themselves
commands, such as PRINT or GOTO,
(these are called reserved words). | can
print the contents of a variable in the same
way as | would print a literal number,
eg.:—

PRINT A

In fact, [can treat number variables in
exactly the same way as [would treat \

numbers themselves, i.e.: —
PRINT A+5

The answer will be 6, since the last
operation | performed on the variable A
was to force the number 1 into it.
Experiment with the following command
lines on your screen: —

A=A+2
PRINT A
B=7

PRINT A+B
PRINT A*B
PRINT A/B

To show how to use a number
variable in a program, here is a short

program for you to type in: —
10A=1

20 PRINT A

30A=A+1

40 GOTO 20

Type RUN after you have entered
each line, but remember that to stop the
program you will have to press the BREAK
key!

String Things

The second kind of information dealt
with in a computer is called STRINGS.
A string is the term used to describe a
collection of letters grouped together,
usually to form a word. Remember that in
the last issue | used the PRINT command
to print a name to the screen, thus: —

PRINT "JACK"

Well let us suppose that, rather than
quote the name directly, I would prefer to
store the name JACK into one of our
imaginary pots, (the same as I did with
numbers) and give it a label. [can do this,
but | somehow need to show the computer
that [am dealing with a string, rather than a
number variable. This is done by puttinga
dollar sign after the variable name (or
label). For example, whereas | use the
name A for our number variable, [must

use A$ as the name for my string variable,
(the dollar sign is always refered to by
programmers as ‘STRING’ —i.e. B$ is
read as "B string”).

Itis here, however, that | encounter a
slight problem. Numbers are stored in the
computer’s memory in a specially coded
form which requires a fixed amount of
room, regardless of the value. Strings, are
a little more awkward. Because | might
want my imaginary pot (or string variable)
to hold either a short name, or perhaps a
whole sentence, the amount of memory
space needed to hold a string variable
might vary enormously, and this poses a
problem for the computer. What [need to
do is to somehow tell the computer how
much room to allow for my string variable.
This [do at the very beginning of my
program, using the DIM command, (short
for DIMension). Suppose that [decide |
want to use a string variable named A$,
and that the longest I think it will be is ten
characters. [declare this with the following
line: —

10 DIM A$(10)

[can now use the variable A% and
place whatever characters | want into it.
For example: —

20 A$="JACK"

Type NEW, and enter lines 10 and 20
as above, then type RUN. You have now
stored the word JACK in the variable A%,
| Notice, however that although line 10
prepared A% for up to ten characters, you
only used four of them. Thisis an
important point, since in line 10 you told
the computer that you MIGHT want to
have A$ up to 10 characters long, but since
you do not have to use all of the space you
have reserved for it, the computer also
keeps track of how long A$ really is. If you

now type: —
PRINT A$

The name JACK has dutifully been
stored in the variable labelled A$, and as
you will see, you can print its contents in
the same way as a number variable. Type
LIST and you will again see the program
lines you have entered. Now type NEW
and try LIST again. You will find that your
program no longer exists! This is the way to
clear the computer's memory and tell it
that you want to enter a different program.
Type in the following: —

10 DIM A$(10), B$(10)

20 A$="JACK":B$="SMITH"
30 PRINT A$:PRINT B$

40 PRINT A$,B%

50 PRINT A$;B$

60 PRINT A%;" ":B%

Type RUN, and you should see the
following printed on your screen: —

JACK

SMITH

JACK
JACKSMITH
JACK SMITH

Examine the program carefully.
Notice that | was able to DIMension A%
and BS at the same time by separating
them with a comma. Notice also that, as on
line 20, it is possible to have more than one

SMITH

separate command on one line number.

To do this you must separate the two
commands with a COLON. On line 20 the
two commands are both PRINT commands,
but they could actually be two completely
different commands, and in fact you could
have more than just two, the only

limitation to how many you have is that

you cannot exceed the length of three
screen lines!

Cutting Up Strings

One of the very useful functions of
Atari BASIC is the ability to print, examine
or alter any part of a string. Suppose that|
have a string variable, (call it A$) which
holds the words ‘MY ATARI COMPUTER’,
and | want my program to print the middle
word ‘ATARI'. In order for it to pick out
part of A§ I must tell it two things: the
positions of the first character and the last
character. The A of ATARI is the fourth
character in A$, and the I is the eighth, so
would write this as A$(4,8). Type NEW,
then enter the following example to
demonstrate how this is used in practice.

10 DIM A$(20)

20 A$="MY ATARI COMPUTER"
30 PRINT A$

40 PRINT A$(4,8)

The result should look like this: —

MY ATARI COMPUTER
ATARI

Now, without erasing the program so
far, enter the following additional lines.

50 A$(4.8)="HOME"
60 PRINT A$

Type RUN, and you will see the
following on your screen: —

MY ATARI COMPUTER
ATARI
MY HOME COMPUTER

So you can see that you can also force
a different string into part of another string
as well, a very useful feature indeed — as
you will no doubt discover in time!
Something which you should note here is
that the spaces in the strings actualy count
as a character. | said earlier that you can
use a number variable in place of a literal,
or fixed number, and this is certainly true
here. Type NEW, and type in and then
RUN the following program then you will
see what [mean!

10 DIM A$(20)

20 A$="MY ATARI COMPUTER"
30A=1

40 PRINT A$(1.4)

50A=A+1

60 GOTO 40

The program should print to your
screen the following: —

M

MY

MY

MY A

MY AT

MY ATA

MY ATAR
MY ATARI
MY ATARI
MY ATARIC

S R B S R R S R R i R R R

MY ATARICO

MY ATARI COM

MY ATARI COMP

MY ATARI COMPU

MY ATARI COMPUT
MY ATARI COMPUTE
MY ATARI COMPUTER

ERRCR 5 AT LINE 40

Notice the error message. If you try
and make the computer do something that
is not possible it tells you so, and in a very
precise way. The computer tells you what
line number the problem occured on, and
in this instance the error occured on line
40. You are also told what went wrong, but
there are around 50 different kinds of
errors, so rather than explain it to you the
computer prints an error number — in this
example error 5. Now you will need to
look through your BASIC REFERENCE i
MANUAL and find the table of ERROR
CODES. You will then see that ERROR 5
means STRING LENGTH ERROR.

This type of error usually occures
when you try and reference part of astring |
which is beyond the current length of this
string, and so does not exist. If you look at
line 40, you will see that the offending
number must be in the variable A. So letus
find out what value caused the error.

Type: —
PRINT A

You will find that it holds the number
18. Since, in line 20 you have only placed
17 characters into A$ itis illogical to try and
print up to the 18th — hence the program
‘crashes’ with error 5.

Hopefully, by now you are reasonably
familiar with strings and numbers, and are
able to write short programs to manipulate
and examine them, but suppose that you
would like your program to ask you for a
number or a string — how is this done?

|

Using the INPUT Command

The INPUT command is one of the
most valuable commands available to you.
It forces the computer to pause and wait
for you to type a number or string on your
keyboard, and it will continue with the
program as soon as you press the
RETURN key. Try the following program; —

10 INPUT A
20 PRINT "THE NUMBER TYPED WAS ":A
30GOTO 10

You could consider the INFUT
command as being the opposite to the
PRINT command. They both work with
strings as well as numbers, as you will see
by trying the following: — .

10 DIM A%(100)

20 INPUT A$

30 PRINT "YOUR STRING IS ";A%
40 GOTO 20

Notice that when your program is waiting

for you to type something the computer
prints a question mark (?) as a prompt.
Whatever you type then goes straight into

the variable you mention with the INPUT [
command. Something which you must
remember is that if your program asks for a ‘
number to be entered (e.g. using INPUT

Continued on page 13, 9

REVIEW

48K Cassette £9.95 Disk £14.95
from US Gold.
Reviewed by Gary Cheung.

Starring as a cute little clown, [went
out on my daily round of cherry picking. As
usual, those little monsters are out to stop
me, but [am determined and armed!
Clutching my trusty power ball, I push my
way through the earth and set up my trap. |
can almost smell those meanies coming up
the tunnel as [push a big red apple upon
them. Whilst savouring that satisfying little
victory, another monster creeped into view
and, with what can only be pure reflex, |
hurled my power ball and sent it to another
dimension!

Having flattened some monsters, |
came upon the lair and discovered one of

; the fabled centre treats. Wow! a dish of ice-

cream, yum, yum! Soon after | had
polished this off, | heard some strange
marching sounds. Oh, Oh! [ts the Boss
Monster and it's dreaded henchmen. ['ve
got to run!

Mr. Do! is a very good translation of
the arcade game of the same name. As you
may have gathered, its a digging game.
You pick up cherries as you tunnel through
a cherry field, while being pursued by
various monsters. Points are gained by
picking cherries, eating the centre treat,
killing the monsters and picking up the
legendary Lucky Diamond. Exira Mr. Do!’s
are awarded, not by points, but when all
five types of Boss Monsters are killed. Boss
Monsters are marked with the letters E, X,
T. R or A, hence they are also known as
EXTRA letter monsters!

Regular Monsters move along pre-
dug tunnels and can be killed by your
power ball or a falling apple. Diggers are
the only monsters that dig tunnels (just as
well!) and can be killed in the same way.
Beware, Regular Monsters can turn into
Diggers! A Boss Monster appears at every
5000 points and when you eat the centre
treat, the henchmen follows! The Boss and
its dreaded henchmen cannot always be
destroyed by falling apples, but killing the
Boss will change its henchmen into apples.

Mr Do! features very good graphics
and nice little tunes. There are many nice
touches, such as, your Mr. Do! changing
poses as he moves, the Regular Monsters
eyes and legs move and, the henchmen
wobble as they chomp on the apples.
When an extra Mr. Do! is awarded, a
cartoon shows your Mr. Do! strolling up to
a monster and hurling a power ball at it,
the monster starts to sweat (it sure looks
like sweat!) and waves a white flag in
surrender! Datasoft claims that there are
virtually a limitless number of screens, but |
found that screen 11 is nearly identical to
screen 1, screen 12 to screen 2 and so on.

10

There is only one gripe, that is the cassette
version loads in five parts and takes over
16 minutes! Another thing (did [only say
one? Sorry!) the disk version cost £5
extra!! Having said all that, it is a very
addictive game and beats Pacman and Dig
Dug hands down. | can recommend it to
any arcade gamer who likes a little
strategy.

A TIP FOR BEGINNERS.

To set up a trap, dig straight upwards
to a position adjacent and one step below
an apple. Now pass under the apple and it
will fall behind you. Then turn around and
push the apple slightly so that it just sticks
out into the vertical tunnel. To get the
maximum points, wait until lots of
monsters are in the tunnel then push the
apple onto them.

Top-DOS. The Ultimate DOS
32K Disk, Price £37.95
Reviewed by Matthew Tydeman.

've always been a great fan of Atari's
menu driven DOS 2.0s, it is simple and
very user friendly. Atari's DOS 3.0 was a
step back for Atari in my eyes, as it was for
many other people | know, who have
encountered it.

[use DOS 2.0s regularly and I like all
my DOS systems to be compatible with
each other (thats why DOS 3.0 was out of
the window straight away!). | occasionally
use OSS DOS XL, or ICD's Sparta DOS
(with Ultra Speed /O Processes). Both of
which are compatible with DOS 2.0s.

DOS 2.0s is good for its age (and is a
great improvement on DOS 1.0). For
many a year now, there has been a long
wait for a DOS 2.0s update, something
which has multiple compatibility and many
new features to help the programmer get
the most from his disk based system.

Top-DOS, from Eclipse Software, has

done just this. Top-DOS is a menu driven
DOS with many more features than Atari
DOS 2.0s. I counted 43 more commands.
Many are features to help the lazy user, but
some are a real help to programmers who
need to get the best from their DOS. I shall
briefly outline some of the major
commands which attracted me to Top-
DOS.

The directories are alphabetically
listed and numbered for ease of use. You
can search a directory for all the files

"beginning with, for example, ‘A’ and

specify to copy them to another disk, print
them to printer, or print them to screen. A
nice feature which alleviates the necessity

of exiting to Basic or Assembler, to load a

file to see its coding.

You can specify the length of the file
name, and the number of columns in the
menu, (1 to 6). A trouble command lets
you see an error message in English. No
more codes to learn! You can boot the
RS232C Handler from DOS, choose
Resident DOS, or Non-resident DOS,
change bytes in memory using the Editor
and Monitor, already installed in memory
when Top-DOS is booted, and there is one
of my favourite commands, Undelete file.

Top-DOS is divided into two parts,
the first part being the main menu, which is
similar to a DOS 2.0s menu, but with 12
more commands. The second partisa
customiser menu with around 22
commands. This customiser menu is a very
useful part of the DOS. It allows you to
make your own version of DOS, with your
own pre-coded requirements, Something
similar to that of a Printer coding disk, with
all the Printer codes set up for your
particular Printer

This customiser section does'nt write
codes to the disk however, it makes
alterations to the DOS in memory and then

writes the new modified version out when
you are finished. Some of the options
available are: Change Resident DOS;
Verify write; Single/Double/Quad Density;
File Buffers; Drive Control bytes; Bypass
Cartridge; Disk Buffers; System Drive
Number; Margins; Locations in memory
and even change the prompt cursor.

One feature [have not experimented
with yet, is the Modify Drive Control bytes.
This useful feature can only really be
utilised on Percom, Rana, Concord, Trak,
and Indus drives. These drives have
transferable bytes. Twelve bytes can be
modified to support Double Density.
Sector Count and other nice features such
as Access Times,

Something | enjoyed using was the
revised copy option. You can merge copies
of files together and save out as a complete
file on another disk. Also, [enjoyed the
new format feature. Not only can you
specify how you want a disk formatted, but
you can format a disk in 3 seconds! It does
this by cheating a little in that it only
formats the VTOC. The formatting range
can also be altered (720 is the default) to
934! Top-DOS has its own help feature
included (far easier to use than DOS 3.0s)
and now contains sub-files. There are only
two files that make up Top-DOS;
DOS.SYS and DUP.SYS. Top-DOS even
has its own AUTORUN.SYS creator called,
appropriately, ‘HELLO'. Something [am
vet to experiment with fully.

Above all, Top-DOS is what [would
call the Ultimate DOS. When I first looked
at it I thought it was complicated and hard
to use, but [was very wrong! There is
nothing more simple than operating Top-
DOS. | am sure that my personal
enthusiasm plays a biased role in this
review, but [hope it still gives you some
idea of the capabilities of the ‘TOP’ DOS,

TRL P Ld
Gocument

rey
ontrol
the $7type of

sez spad inse

Homeword

Homeword
48K Disk, Price £54.95
Reviewed by Matthew Tydeman.

Homeword is one of the latest word
processors on the market and is somewhat
different in appearance to that of many
others that are around at the moment.
Homeword is supported by a full range of
Icons (a small illustrated picture of the
performing function). In a sense, Home-
word is not menu driven, although text
prompt lines accompany each Icon on
display. Within the main lcon menu are
illustrations of a disk, a printer, a filing
cabinet, and writing paper. As you select
each lcon, you enter another [con menu
linked with the title chosen, i.e. if you select
the filing cabinet menu, you will enter a
sub-Icon menu which contains a number
of filing cabinets, each with a different
function, such as Merge File, Copy File,
Erase File, Get File, Save File, etc.

Because of the Icons, the screen is
divided into two display regions. The
upper half is for editing (only 16 lines) and
the lower half is the region in which the
Icons are shown and also the memory
situation and disk storage situation are
graphically represented with bars. In the
bottom right hand corner is an 80 column
display, each letter being shown on this
‘mini’ page as a Graphics 8 pixel, even a
flashing cursor is included.

Other than these extraordinary
functions, Homeword operates like any
other word processor, but with a few
limitations. Block Delete/Copy, File
Search/Replace, Justify, Merge, Include
and Move are all there but are hard to
access and utilise. Each sub-lcon menu is
called from disk in order to save memory
space (essential in a word processor), and
this calling of each menu from disk takes
some time, which tends to prolong comp-

letion of the letter/document. Selection of
the desired Icon is complicated at times
and one false move with the cursor will
load the wrong lcon menu.

A feature | did not like much was that
the [cons were too extensive, once you
entered one Icon menu, you had to go on
to another and another and then vet
another, This aspect, | feel, makes user
friendly operations into frustrating time
consuming annoyances, and this is what
Icons should'nt be! The main reason for
having Icons is to simplify and make things
easier, in Homeword's case, for example,
sometimes you have to go three or four
layers to get back to the main Icon menu.
Very upsetting.

A good feature however, is that you
can customise your own printer codes to
match your printer. Included with the
program is the Customiser File, which is
quite easy to use. All the editing features
are the same as normal screen, as is the
ever popular CONTROL and 1 letter
formatting, i.e. CONTROL + [sets the
page indent. But note that these codes are
different from Atariwriter & Letter Perfect
{whose codes are similar).

A nice touch is the Preview Document,
This is presented differently from the usual
preview division in word processors in the
sense thatitis in full 80 column format. A
nice feature to use, but unfortunately it is
only in the preview option and not the edit
option, still at least you won't have to
worry about mistakes as you can see your
whole document scroll up the screen just
the way it will be printed.

The program would be good for
youngsters, they can't really go wrong with

- the cons. For those who don'tlike the idea

of Icons, there is a system to cut out all lcon
operation, This system just stops cursor
control for the selection of Icons, it does
not however cut out the different loading
processes, it just enables you to key-code
instead, i.e. press Control + F for Filing
Cabinet.

Of course, when using this key-code
method for controlling the lcons, there is
inevitably a lot of key-codes to remember.
This can be eased by the use of quick
reference cards which would have all the
codes marked on. All the codes are also
stored on the master system diskette, as a
printer file, so you cannot really go wrong
in this respect.

The overall program instructions are
quite extensive, but not very helpful when
it comnes to problems, which often happens
when playing around with the various Icon
menus. The program is average when it
comes to judgement, it is not really what it
is made out to be! Many people have got
the impression that the program is along
the lines of a full pull-down menu system,
this is not the case! But its a pretty good
attempt.

An average program for an above
average price, something Sierra should
think about, I feel. [could not get to grips
with this claimed ‘Easy to use’ word
processor. The idea of lcons on an eight bit
machine has not really appealed to me.
The use of Icons on a sixteen bit micro
shall, I'm sure!

n

0 FORTH

hy Paul Blackmare

This amtle s an*mtroductm to one vf the more populﬁr
—— altematwes to BAS!C as a progr&rnmmg Iaf:aguage

FORTH, as it is generally known
today, is based on FORTH 79, the most
usual implementation being to the Fig
FORTH model. This is a minimum
specification, most commercial implement-
ations of FORTH have enhancements to
take advantage of a particular computers
capabilities. There are a number of
different FORTHs for the ATARI mostly
disk based, although English Software
have recently produced a cassette version.
There are currently three disk versions
available, FigFORTH by ATARI (APX)
approx. £7, Q.S. FORTH by Quality
Software and ValFORTH by Valpar
International. As FORTH was designed to
operate with disk based systems this article
is in general talking about disk versions of
the language.

FORTH Advantages?

Firstly, FORTH is significantly faster
than BASIC in most applications. This is
because FORTH source code is compiled
and not interpreted at run time (this is not
strictly true as FORTH has a small run time
interpreter). Secondly, FORTH code is
compact, allowing larger programs in the
available memory. A FORTH word, once
defined, takes only two bytes of memory
when subsequently used inside another
word definition.

What is FORTH?

The most fundemental structure in
FORTH is the stack. Anyone who has
delved into the intricacies of assembly
language will understand the concept of
the stack. For the uninitiated, the stack can
be likened to a pile of papers, each sheet of
paper in the pile having an item of data
written on it. Obviously the last sheet put
on the pile is the first one to be taken off
the top, commonly known as LIFO (last in,
first out), and to get at something halfway
down the pile you have to move the others
off the top first.

One of the most apparent differences
between FORTH and other languages is
the use of Reverse Polish Notation (RPN).
This is usually one of the earliest stumbling
blocks when learning FORTH. To my
knowledge, no other language uses RPN,
although some of you may know it from
some of the early scientific calculators.

2

Basically it works in this manner.

On a normal calculator, the calcul-
ation: —
6(5+(4*3))=

Would entail a series of keystrokes
something like this: —
4¥3 =4 5=%*=

In FORTH, this calculation
becomes:— 6543 * + 7.

The *." in FORTH, the print stack
command, is the equivalent of hitting the
equals key on the calculator

The top two numbers on the stack (3
& 4) are multiplied by the first **' leaving
the result on the top of the stack. The *+’
then takes this result and adds it with the
next number down the stack. the 5, and
leaves the result of that calculation on the
stack. Finally, the **’ takes these two
remaining numbers and multiplies them
together. The last operator, the *.", prints
the number left on the top of the stack.

It can be seen from this example that
the stack can be loaded with data and then
each item of data can be accessed sequen-
tally by the mathematical operators. There
are many commands within FORTH that
allow manipulation of data on the stack so
that extremely complicated calculations
can be performed without vast numbers of
brackets, in fact without the use of brackets
atall!

This brings me to FORTH's most
powerful feature, the ability to define your
own command words. The words that you
define can then in turn define other words
which ultimately becomes your program.
There is almost no limitation on what
words do or even on what they are called,
{you cannot have a word with a space in
its name or certain control characters).

In fact, some of the standard words in
FORTH are nothing more than symbols,
e.g @—-—> etc,

For instance, you could define the
word ‘AVERAGE' to calculate the average
of three numbers. li could look something
like this: —

:AVERAGE + +3/.;

The *" and the *;" mark the start and
finish of a word definition. This word needs
three numbers on the stack, it adds them
together, divides by three and prints the
result. [t would be used in the form:—

99 338 225 AVERAGE
This would print the result ‘220 Ok.’

(the “Ok.” is like BASIC printing READY).

Note that the result is ‘integer only',
i.e. there are no decimal places in the
answer. With a different definition of
AVERAGE it is possible to get an answer
with a remainder: —

:AVERAGE + + 3/MOD..."/3";

The ." " prints the text between the
quotes. This would print the result: —

99 338 225 AVERAGE 2202 / 3 Ok.

Standard FigFORTH does not support
floating point maths. If you have ATARI's
FigFORTH or ValFORTH however, this
has been added as an extension to the
system. It should be noted that the use of
floating point maths in FORTH is not much
quicker than itis in BASIC, it uses the same
OS routines!

The FORTH command words available
allow you to have the very fashionable
‘structured programming’. Apart from
words that allow manipulation of memory
there are loops such as DO——LOOP,
DO——+LOOP, conditional structures like
IF——ENDIF, IF- —ELSE——ENDIF,
BEGIN——AGAIN, BEGIN—-UNTIL,
BEGIN——-WHILE-—REPEAT, and the
extremely powerful <BUILDS—-DOES>
construct. With <BUILDS——-DOES>
words can be created that define defining
words (read that again, it does make
sense!),

In ATARI FORTHs there are
command words on the systemn disk for
graphics, sound, printer handling, an editor
and a complete assembler vocabulary
allowing the use of assembly language in a
FORTH program. ATARI's FigFORTH and
ValFORTH also support RS232 interfaces,
DOS /O and floating point maths.

Writing a FORTH Program

Writing a FORTH program can be
done in two ways. You could, as in the
case of the short examples given here, just
type them into the FORTH dictionary
directly from the screen editor. Alternatively
the better way, especially when the word
definitions are large, is to use the FORTH
editor to write ‘screens’ for later
compilation. In fact thisis the only way that
you can save your word definitions for later
modification, unless you save the complete
FORTH system containing the new words.

The standard FigFORTH editor is

perhaps FORTH's most notorious feature,
it is not as easy to use as the standard full
screen editor used by BASIC. Some
versions of FORTH have tried to remedy
this, notably Q.S. FORTH, and provided
an editor more like the one we are all used
to. Unfortunately, most people have to use
the RAGSDALE editor provided, (which
incidentally is written in FORTH), unless
you wish to write your own editor of
course!

Standard ATARI FigFORTH works by
treating the disk as blocks of ‘virtual
memory'. This means that FORTH sees a
single density disk as 90 external blocks of
1K memory. Other versions of FORTH use
smaller size blocks, usally 1/2K per screen.
This allows more screens per disk and also
saves on wasted disk space. Once you
have written your program onto these
screens using the editor you can ‘LOAD'
them onto the FORTH dictionary using: —
10 LOAD(remember, everthing is back-
wards!)

The ‘program’ written on screen 10
will be taken off the disk and compiled into
the dictionary. If screen 10 ends with the
load next screen command, ——>, then
screen 11 will also be loaded and
compiled. When all this has finished, your
command words will be in the dictionary
and can be listed with list vocabulary
command, VLIST. Your program can now
be run, just type its name!

' Dictionaries & Vocabularies

' You may have noticed that [have

| been talking about dictionaries and
vocabularies and have not explained what
they are. Well a dictionary is a list of words
(surprise, surprise!) found in a vocabulary.
To explain, the words found in a French
dictionary are the words in the French
‘vocabulary', i.e. the French language. The
same thing applies in FORTH. The words
ina FORTH dictionary are the words that
FORTH can understand, if you change the
vocabulary to something else, e.q.
ASSEMBLER, then the vocabularies are a
bit smarter than this, everything defined in
a vocabulary will eventually trace back to
the FORTH vocabulary, the words are
effectively translated for you by the system.
What this means is that if an application
does not have a word defined in the
CURRENT vocabulary then FORTH will

| frace back and try to find it in the FORTH
vocabulary.

Toillustrate the use of vocabularies,
suppose that FORTH is the ‘CURRENT'
vocabulary, i.e. the one that we are
compiling our word definitions into, we
could define a word to tell us which
vocabulary we are working in, thus: —
:WHERE ." defining into FORTH" ;

Now we create a new vocabulary and
set it to be the current vocabulary by
typing: — PROGRAM DEFINITIONS

From now on all new word definitions
will go into the PROGRAM vocabulary. If
we redefine WHERE thus: —

‘WHERE ." Defining into PROGRAM" ;

A message ‘WHERE is not unique’ is
printed because the system knows about
the definition of WHERE that we just put
into the FORTH vocabulary. If we now
type: — WHERE

We get the message ‘Defining into
PROGRAM'. Now type:

FORTH DEFINITIONS
WHERE

We get the message ‘Defining into
FORTH'. The uses for vocabularies are
endless, you could write adventures,
telephone and mailing lists, language
translators, database systems, word
processors or even disk operating systems
all based around the use of different
vocabularies.

Of necessity, this article has not been
too technical, nor attempted to teach
FORTH programming, but | hope that it
has at least given you an insight to the
possibilities of using an alternative
language like FORTH.

A final word of caution to all possible
converts, because of its total flexibility,
FORTH can be quite hostile to
programmers with ‘untidy minds'. The
lesson is: forget all those nasty little habits
you used to get away with in BASIC and
learn the correct way of doing things!

Starting from Basics
Continued from page 9.

A), if you type a non — numeric string,
such as a name (or even in fact by pressing
the RETURN key with no number) BASIC
will give an error (ERROR 8 — INPUT
STATEMENT ERROR) and your program
will stop.

10 DIM C$(20),5%(20)

20 PRINT "CHRISTIAN NAME";:INPUT C3$
30 PRINT "SURNAME";:INPUT S$

40 PRINT "AGE";:INPUT A

50 PRINT

60 PRINT "YOU ARE ";C8$;" ",S$

70 PRINT "YOUR AGE IS ":A;" YEARS"

80 PRINT "(ROUGHLY ";A*365:" DAYS!)"
90 PRINT :PRINT

100 GOTO 20

Type NEW and enter the above
program then type RUN. Answer the
questions. Notice how | have used a semi-
colon after the PRINT commands that
give the prompt for the following INPUT
command (e.g. on line 20). This s so that
the cursor remains on the line, immediatly
after the prompt. If you wanted the INPUT
command to continue on the next line you
would omit the semi-colon. Remove the
semi-colon on line 20 and see how this
changes the way the program works.

Suppose that you decide that you
want to insert another program line
between lines 60 and 70. Now you should
see the advantage in using line number
references in increments of 10, for you can
simply enter your new line as number 65,

the computer will then insert it between
lines 60 and 70 in its memory. Try typing
the following line: —

Now, RUN the program again and
vou will see that the exira line does indeed
print your initials on the screen. Type LIST
to see that the new line is placed in the
correct position.

Using LIST

The command LIST can be used in
several ways. You have seen that LIST,
when used on its own, will cause the
computer to list your entire program to the
screen. This is great for small programs,
but suppose that you are altering a line in
the middle of a large program, you would
have to wait patiently while the computer
lists all the way through, until it reached the
line you want. There is, however, a much
more convenient way of looking at a single
| line, you simply type LIST 90 to list line 90.
You can even list sections of a program if
vou wish, by simply typing (for example)
LIST 50,80. This would list every line
between (and including) 50 and 80.

LIST can also be used to any other
device you have. For example, to listto a
printer you would type LIST "P:" or LIST
"P:", 50,80 for lines 50 to 80 only.

And Finally

If you are running a program which

65 PRINT "INITIALS ARE ,C$(1,1); S$(1,1)

prints lots of data to the screen, or you are
listing a long program to the screen, itis
possible to ‘freeze’ the screen to give you
time to read it. You do this by holding
down the CONTROL key (on the far left of
your keyboard) whilst you press the ‘1’
key. The computer will instantly stop in its
tracks and this gives you time to read the
display. You tell it to continue by repeating
the process. This only works whilst data is
being printed to the screen — not with any
other devices such as printers.

A useful feature of Atari BASIC is that
virtually all of its commands can be
abbreviated. For example, the command
GRAPHICS 8 can be replaced with GR.8,
and GOTO 10 can be replaced with
G.10. If you take a look at the manual
supplied with your computer, you will see
the abbreviated version next to each
command. Try experimenting with them.
Notice that, although you may enter your
program line using the abbreviations,
when you actually LIST the program
BASIC prints the full version! There is
however, one exception to this. The
command PRINT has a special abbreviation
which stays in its short form when you
LIST the program, itis the question mark
(?). Try some of the programs again, but
this time use the question mark in place of
PRINT.

That's all for now, but [will be back in
the next issue to continue with our lessons.
See you all again soon!

Atari (US) have released a version of
DOS (called DOS 2.5) which contains a
RAMDISK, taking advantage of the
130XE’s extra 64K of RAM, Soon it will be
freely available to users, but until that time,
presented here is a short program which
sits in page 6 of memory, and which
intercepts calls to drive 2 and instead of
getting or putting a sector to drive 2 it
transfers the data to the extra 64K of
memory (the DOS 2.5 Ramdisk will access
drive 8 — Ed.). The result is an incredible
increase in speed when loading and saving
programs or when working with files on the

| Ramdisk. Just like normal memory,

however, the extra memory is lost when
you switch off the computer, so you must
remember to copy all your files back to a
real disk drive when you are finished.
However, since the Ramdisk only has 64K,
you will only be able to use up to sector
512 rather than the usual 709 (DOS 2.5
only allows access to 499 sectors).

| use K-DOS rather than DOS 2, so
this Ramdisk was originally intended to be
used with K-DOS, but | have also included
a patch to allow it to work with DOS 2.
Using DOS 2 it is possible to configure the
Ramdisk as drive 1, and then write DOS
files to it. Then, if you are using BASIC and
want to go to DOS, you type DOS as
usual, but now the DOS menu will be
loaded well within 1 second, a startling
speed!

CREATING THE RAMDISK

The first task is to type in and RUN the
BASIC program, Listing 1. This creates a
file on your disk, named ‘RAMDISK.OBJ'.
This file is a BINARY LOAD file, and it
contains the main Ramdisk program. The
same program will work for both K-DOS
and DOS 2, and it will load onto the
bottom half of page 6, so it does not
conflict with the operating system. It won't
however, work on its own, since DOS will
not use it, we now have to alter our DOS to
make it call our routine before it transfers
sectors of data to and from disk.

For disk sector transfers, both versions
of DOS use a routine in the first part of
DOS. This routine calls the serial bus
routine in the operating system with a JSSR
$E459 instruction, but we must change this
to point to our routine with a JSR $600.
This simply involves changing the two
appropriate bytes, and in DOS 2 these are
locations $7A3 and $7A4 (decimal 1955
and 1956). The locations in K-DOS are
$7AD and $7AE (decimal 1965 and
1966). The contents of these two bytes
must be changed to 0 and 6 respectively.
Although these locations can be altered
using BASIC, by far the quickest way is to
have a further binary load file, and
consequently [have included a program to
create such a file for you. Program 2 is for
use with DOS 2, and program 3 for K-
DOS. Each will create a binary load file
named ‘PATCH.OBJ'.

4

by Ron Levy

KE (LUREN woniannnno PEOQPAR, Lowsoswainimni

IN 2 REN This program creates a binary

BT 3 REM load file called RAMDISK.OBJ

SV 4 REM This will be the main ramdisk

8P 5 REM program and it lives in page 6

NL & REM

JQ 10 OPEN #1,8,08,"D:RAMDISK.0BJ"

KN 20 TRAP 200

IL 188 READ XiPUT #1,X260TD 108

KY 288 CLOSE #1

HC 218 PRINT "Complete.”

TJ 30@ §TOP

FO 1081 DATA 255,235,8,64,148,6,173,1,3,20
1,2,240,4,32,89,228,96,173,18,3,133,21
2,173,11,3,133,213,41,254,208,77,173

kJ 102 DATA 4,3,133,214,173,5,3,133,215, |
32,108,6,32,125,6,160,127,173,2,3,201,
B2,208,22,166,218,142,1,211,177,214

WL 1083 DATA 162,241,142,1,211,145,214,13
6,16,239,168,1,74,102,4,201,80,248,4,2
81,87,208,22,177,214,166,218,142,1

W1 1884 DATA 211,145,216,162,241,142,1,21
1,136,16,239,165,1,76,182,6,168,1,1480,
3,3,96,165,213,1086,165,212,41,128,106

NG 1885 DATA 74,74,74,74,9,225,133,218,9
y165,212,24,41,127,106,9,64,133,217,16
9,0,186,133,215,%6

USING WITH DOS 2

Boot up your 130XE with the DOS 2
MASTER DISKETTE, (you must leave
BASIC installed, and type DOS to go to
menu). Insert a fresh diskette and use
option | to format it, then use H to write
DOS files to it. Now return to BASIC
(option B).

Type in and SAVE program 1, then
RUN it. This will create the file
‘RAMDISK.OBJ'. Now type in and RUN
program 2, which will create ‘PATCH.OBJ', |
the file that will overlay and 'steal the
serial interface vector in DOS. You must

—
A RAMDISK FOR THE 130XE

now return to the DOS menu using the
command DOS. When the menu appears
type L for BINARY LOAD. The computer
will ask for a file name, and you should
enter RAMDISK.OBJ. Now repeat the
process for the file PATCH.OBJ. You now
have a Ramdisk in your system, set up as
drive 2. As with a normal disk, the first
thing you must do is to format disk 2, using
option I. At this stage vou can even look at
the directory of the Ramdisk, which will of
course show 709 free sectors, although
you are only able to use up to 512 sectors.
How you use your Ramdisk depends upon
the tasks you need to perform, but you
could now return to BASIC, and LOAD
programs from drive 1, and SAVE them to
drive 2. If you are developing your own
programs you could use the Ramdisk to
store any utility routines or files that you
use regularly, and the easiest way of doing
this is to use the file copy facility (option C)
on the DOS menu. The best way of doing
this is to create a normal disk full of your
utility routines and programs, and copy
them to the Ramdisk using the copy facility
with wildcards for the filenames, e.g.

DI tD2r?

Another way of using the Ramdisk is
to configure it as drive 1, then format and
write DOS files to it. This way you can flip
between BASIC and DOS at incredible
speed. In fact, even when you use a
MEM.SAV file DOS will appear within 1
second!

KG | REM ..nu...?roqul 2--"-“-"-
IN 2 REM This prograa creates a binary
NH 3 REM load file called PATCH.O0BJ
XK 4 REN to force DOS 2 to call the
0N 5 REM rasdisk routine.

NL & REM

WJ 18 OPEN #1,8,8,"D:PATCH.0BJ"

KM 28 TRAP 280

IL 180 READ X:PUT #1,X:80TD 108

KY 280 CLOSE #1 5

HC 218 PRINT *Complete."

TJ 30@ STOP

08 1081 DATA 255,255,163,7,164,7,0,4

LE L REM vuvunnnn Program Jovieeinnins
IN 2 REM This progras creates a binary
NH 3 REM load file called PATCH.0BJ
CVY 4 REM to force K-DOS to call the
OM 5 REM rasdisk routine.

NL & REM

WJ 1@ OPEN #1,8,0,"D:PATCH.0BJ"

KN 20 TRAP 200

IL 182 READ X:PUT #1,X:607T0 189

KY 288 CLOSE #1

HC 218 PRINT "Complete.”

TJ 30@ STOP

@K 1881 DATA 255,255,173,7,174,7,8,6

Unfortunately though, as the program
stands you cannot write DOS files to drive
2 and then convert the Ramdisk to
respond as drive 1 since DOS does a status
check on the drive via a different route first.
Consequently, | have included program 4,
which will provide you with yet another
binary load file. This file, when loaded with
option L, will perform the equivalent of a
POKE 1540, X where X represents the
number we want our Ramdisk to respond
to. Once you have changed the Ramdisk
to drive 1, you can write DOS files to it
(option H), and then return to BASIC. You
would then probably want to switch your
normal disk drive to respond as drive 2.

| 8168 DBUFLD

USING RAMDISK WITH K-DOS

The method here is essentially the
same, except for a few points which I shall
explain. Run program 1 as normal, but
instead of program 2, use program 3.
There is no need to write DOS files to the
Ramdisk since, with K-DOS, the utilities
package is permanently in memory. K-
DOS performs a check on the destination
location of binary load files to ensure that
you do not accidentally corrupt DOS, so to
force our patch file in, you must use the
/PUT switch thus: —

LOAD PATCH.OBJ/P

The DISKDUP.SYS program supplied
with K-DOS, will not work with the
Ramdisk unless a small modification is

HC 1 REM ssvenesss Program 4.......... .
IN 2 REM This prograa creates a binary
KX 3 REM load file called DRIVE1.0BJ
10 4 REM to be used to change the

BX § REM ramdisk to make it respond
EQ & REM as drive 1.

NH 7 REM

JY 18 OPEN 41,8,8,"D:DRIVEL,0BJ"

KN 28 TRAP 200

IL 18 READ XtPUT #1,X180T0 188

KY 28@ CLOSE &1

HC 218 PRINT "Cosplete.”

TJ 38@ STOP

1E 1881 DATA 255,255,4,6,4,8,!1

made.

First, insert a K-DOS master disk with
DISKDUP.SYS on it and go to DOS.
Type:— LOAD DISKDUP.SYS/M
Then:—

A 42DE A9

A42DF 01

A4Z2E0EA

SAVE DISKDUP.RAM 4000 47C0 4000

You will now have created the disk file
named DISKDUP.RAM, which you call
with the command,

RUN DISKDUP.RAM

Or, if you copy it to your Ramdisk: —
RUN D2:DISKDUP.RAM.

Although K-DOS features abbreviated
commands, | have shown them in full to
ensure clarity.

10 | HEERRREBREREEREERRERIREREEEE
2054 RAN-DISK

38 3 # A Virtual Disk Storage
48 ; + GBystea Which Uses The
50 § #+ Extended RAN Facility
68 § # On The ATARI 130XE
!+ BY RON LEVY

BO ; ERRERERREREHEHEREEHEIEREE
aloe
el

W e e e W

Disk Interface Equates,

VY
| 9125 SIOV

=$E459
8126 DDEVIC =430
8138 DUNIT =$381
8148 DCONND =$382
B158 DSTATE =4383
=§384
B178 DBUFHI =$385
8188 DAUXI =#3BA
B198 DAUX2 =$30B
0209 GETSEC =#352
8219 PUTSEC =438
8228 FORMAT =$21

8388 RANCTL =$D381
g31e M =$D4
8328 12 =405

8338 13 =$Ds
8340 T4 =$07

8350 BPL =¢08 RAM block position
8368 BPH =409 for a given sector.
| @378 RAMBEL =$DA Bank select mask.

8482 NORMAL =241 ‘Normal' RAM MASK.

1e8 #=44600

1018 BEGIN

1028 LDA DUNIT Check the
1830 CHP #$82 drive number.
1040 BEA Bi

1058 JER SIOV Go to SIOV if
1860 RTS its not for RAM.
1070

2008 ;

2018 ; Main routines here. j

2028 4

2168 §

2178 B1

2188 LDA DAUX1 Transfer the
2198 STA T1 sector number.
2200 LDA DAUX2

2210 §TA T2

2212 AND $254 Check for
2214 sector nuasber
2216 too high.
2218 BNE EXIT

2228 B2

2230 LDA DBUFLO Transfer the
2240 §TA T3 buffer
2258 LDA DBUFHI pointer.
2268 §TA T4

2278

2280 JSR RAMBANK

2290 JSR RAMPOS

2295 LDY #127

2388

2318 LDA DCOMND

2328 CHP 4BETSEC

2338 BNE PUT

348 3

2358 BET

2568 3 The BET sector
2362 61 LDX RAMSEL comaand
2344 §TX RAMCTL routine.
2378 LDA {BPL),Y

2372 LDX #NORMAL

2374 §TX RAMCTL

2388 §TA (T3),Y

2398 DEY

2400 BPL B1

2405 LDy #s81

2418 JNP EXIT Done !!

2420

2438 PUT

2440 CHP 4PUTSEC

2458 BE@ P1

2452 CHP #4557

2454 BNE EXIT

2448 §

2508 _ The PUT sector
2518 P1 LDA (TH),Y comsand
2512 LDX RAMBEL routine.
2514 §TX RAMCTL

2520 8TA (BPL),Y

2522 LDX #NORMAL

2524 STX RAMCTL

2530 DEY

2540 BPL P1

2542 LDA #s01

2558 JNP EXIT Done !!
2590 4

2599 4

5eeQ EXIT

aeie LDY #s01

5620 STY DSTATS

3890 RTS Done and Bye !!!

9800 ;
9810 j Select A RAM Bank. j

9820 ; T = low § T2 = high

9838 RAMBANK

9840 LDA 12 The high byte.
9a5e ROR A

9860 LDA T4 The low byte.
qara AND 4128

9898 ROR A

9140 LSR A

9118 LSR A

9128 LSR A

9130 L8R A

9140 ORA #225 Set other bits.
9150 STA RAMBEL

9190 RTS Done !!
9198

9199

9200

218 ; Calculate the data block
9228 | position in RAM.

9238 RANPOS

9248 LDA T1 Sector low byte.
9245 CLC

9258 AND $127

9268 ROR A

9265 ORA #64

9278 STA BPH

9288 LDA #$@0

5298 ROR A

9380 §TA BPL

9310 RTS Done !!
9390 4

9399

15

KEYO KEYO KEYO KEYO KEYO

By far the most frequent comment
made to us by readers of Monitor is ‘Why
don't you have some kind of program
entry checker to help us type in your
listings?'. Well, never let it be said that we
would ignore such a regular request from
our readers, so here is KEYO!

You may have noticed that in this
issue each listing has a two character code
before each line number. This is the
checksum code which KEYO will use to
determine whether or not you have typed
the program line correctly. You might also
notice that it is similar to the checksum
letters used in several other magazines. In
fact, you can actually use our program to
enter the listings in those magazines, or

by Eddie Taw

perhaps use their checksum program to
enter the programs in MONITOR, if you
prefer!

What makes KEYO different? |

KEYO works by saving your program
onto cassette or disk as you enter it at your
keyboard. [t also asks you for the
checksum code for each line and compares
this to the line you have just entered. We
feel that KEYO offers several advantages
over other checksum entry utilities: —

a) Since KEYO requires you to enter the
given checksum code as well as the line,

| and rejects the line if it does not match,

The Ultimate Checksum Program

there is no danger of you getting a wrong
line as there could be if you had to check
every code yourself.

b) Since KEYO saves to cassette or disk as
you type, if the computer crashes for some
reason (e.g. the wife/sister/brother unplugs
your computer to use the hoover!) then
don't worry, you will only lose a very tiny
part of the program you have entered (128
characters at the very most).

We hope that you find KEYO helpfull
but PLEASE remember that we would like
to know of any difficulties you encounter
whilst using it, or indeed any improvements
you think we could incorporate. Feedback
from users is of vital importance if we are to
improve the service to you, our readlers,

EI | REM #esiassdesdi b s isseasnabansss

NH 2 REM

T1 3 REM KEYD

NJ 4 REM

UG 5 REM BY EDDIE TAW

NL & REN

YN 7 REN FOR MONITOR MABAZINE

NN 8 REM

EQ 9 REN #e###ssdissdddissbsbeitnidanss

RT 1@ DIN C312),CHKS (3) ,F$(15),L$(132)

GX 28 ? CHR$(125)4* KEYO Handityper --
By Eddie Taw. "

K132 For MONITOR Magazine,®

VF 4@ PRINT :PRINT

BB 58 ? "Do you want Instructions Y/N *j:
INPUT L$:IF L$="Y" THEN GOSUB LBAQ@

YJ 188 ? "Output file "j:INPUT F$:IF F$(1
,1)1="1" THEN 5@

IC 120 IF F#(1,1)="C" THEN 7 “Insert TAPE
and press RECORD & PLAY"

B 288 OPEN #1,8,0,F$

ES 210 IF F#(1,1)="C* THEN FOR [=1 TO 130
tL$(I,1)=CHR$ (32) sNEXT I:PRINT #1;L$

V@ 220 SOUND 9,0,0,0

VW 388 ? "Type the CODE...";:1 INPUT CHK$

UN 310 IF CHK$="END" THEN CLOSE #1:6070 3
2767

1K 320 IF CHK$="I" THEN GOSUB 1BB@@:60T0
h{']'

BU 408 PRINT "Type the PROGRAM line,"

M1 428 POKE BS,8:7 CHK$:POKE 85,1

IT 430 INPUT L$:IF L$="" THEN 3@@

NO 448 IF L$(1,1)="C" THEN 304

B8 450 IF L$="1" THEN BOSUB 188@8:B0TD 4P
]

P 448 GOSUB S

VP 478 IF CHK$=C$ THEN PRINT #1;L$:PRINT
"0k, Line accepted."tPRINT :50UND 0,8,
,0:60T0 0@

BE 508 REM Error Routine.

0Y 518 ? “Error j Re-type prograa line."

YN 528 ? CHR$(253);:POKE 85,8

11 530 ? CHK$:Y=PEEK (84117 L$:POKE B4,)

16

| JK 548 POKE 85,1
| OF 550 BOTO 430

HP 588@ REM ...Calculate The Checksua...

| XH 5018 S=0

FF 5180 FOR I=1 T0 LEN(L$):8=5+I#ASC(LS (I
DV INENT

OE 5118 C=5-676%INT (5/676) sHC=INT (C/26)

KQ 5128 LC=C- (HC#26) +651HC=HC+63

YH 5138 C$(1)=CHRS (HC) 1C$(2) =CHRS (LC)

| AV 5908 RETURN

BC 1000Q REM
Kl 18@1@ FOR J=1 T0 4

| KM 10820 GOGUB 11@8@:POSITION 2,4

PV 18838 ? “Instructions.”
WK 1004B 7 P--mm-mm-mmemm "
HP 18050 RESTORE 1818@+J#10@
UP {8@&0 FOR I=1 TD 14

| EF 18070 READ L$:PRINT L$

6P 10888 NEXT I

6L 18898 ? 1POKE B5,4:? "Press RETURN to
continue,.."j 1 INPUT LEINEXT J

FT 18188 B0SUB 11@@@:RETURN

| J1 18280 DATA , KEYD will save your prog

ram as,it is typed in so first it sust
ask

SP 18218 DATA where you want it saved to.

It will,give the prompt 'Output Filen
ane 7'

RR 18228 DATA , Cassette owners will typ
e C: and,must then place a good qualit
y tape

WH 18238 DATA into their recorder (prefer
ably Cé@) ,and press the RECORD & PLAY
buttons,

§1 10240 DATA , Disk drive owners need t
o specify,a filename (ie D:PROG.LST) a
nd then,insert a good disk.

US 10388 DATA , KEYD will first ask you
for the,two character code which you w
ill,find next to each prograa line.

CX 18310 DATA , Next it will ask for the

program,line. If you wish to go back
to the

RD 18328 DATA previous prompt just press
RETURN,on its own. KEYD will check th
g,line and save it if it is corrrect.

AX 1B33@ DATA I+ it is incorrect you will

be able,to edit it or type C to chang
e the

RC 1834@ DATA code (you can type over the

linel.,

DI 10488 DATA , To leave the program at
any tise,you sisply type END when KEYOD

asks,for a checksus code.

§H 1B418 DATA , You can continue enterin
g your,progras later by again RUNning
KEY0.

| BN 18420 DATA Casstette owners simply lea

ve their,tape in the player so that KE
Y0 can

YK 10438 DATA create another file imsedia
tely after,the first but disk drive ow
ners will

BD 18448 DATA have to give a different fi
lenaae, (eg PROG2.LST).y,

NS 18588 DATA , To load the finished pro
gram:-,, CASSETTE owners must first r
ewind

| BH 18518 DATA the tape and type NEW to er

ase the,KEYD prograa. Then type ENTER
'c|l

16 10528 DATA for as many times as you EN
Ded and re-ran KEY0.,, DISK DRIVE own
ers should follow

HY 18538 DATA a similar sequence except t
hat you,must type ENTER "D:PROGL.LST"
and

XA 18548 DATA repeat this for any other f
ilenanes,you have used.,

BE 11088 REM

NB 1101@ POSITION 2,3

RV 11028 FOR 1=1 TO 20

HX 11038 PRINT CHR$(157);

CB 11048 NEXT I:RETURN

AD 32767 END

USER GROUP SOFTWARE

Software Librarian - Roy Smith

Due to demand from
members there are now two ways
to get programs from the library.
The orignal scheme of
exchanging ‘3 for 1" will still
apply, but now with an added
bonus. So the library rules have
been extended to enable those
members who cannot write their
own programs to qain access,
and those that can to have a
possibility of some reward for
their efforts. The extended library
rules are as follows:

3 FOR 1 EXCHANGE

1. Every program you donate to
the library entitles you to three
programs in return.

2. The program you donate must
be your original and not copied.
3. Your donated program must
be submitted on a cassette or a
disk, programs in the form of
print-outs will not be processed.

4. If your program requires any
special instructions they should
be added in the form of REM
statements within the program
(or you may present them as
instructions when the program is
actually run).

5. BONUS. Every program
donated per quarter (between
issues of the newsletter) will be
eligible to be judged 'STAR
PROGRAM' for that quarter.
This carries a prize of £10 which
will be paid to the author from
the club funds. The programs will
be judged by the Editorial Team
and their decision will be final.
The Editorial Team are not
eligible for the prize.

6. The '3 FOR 1’ exchange is
only open to club members.

DONATION SCHEME
1. Every club member will be

entitled to ask for up to 3
programs per quarter from the
library by donating to the club
funds.

2. If a member does not take
his/her entitlement for a
particular quarter, it cannot be
carried forward to the next
quarter.

3. A member can have more than
one quarter’s entitlement at one
time (up to a maximum of 12
programs (1 year)), but then will
be unable to ask for more until
his/her credit quarters have been
used. Note that odd numbers of
programs will be counted in
quarters, i.e. if a member asks for
5 programs, the first 3 will be that
quarter’s entitlement, the next 2
will be the second quarter’s
entitlement and he/she will have
to wait until the third quarter
before he/she is entitiled to any

|

more. Also note that having
programs in advance will only be
allowed if that member’s
membership covers the advance
quarters.,

4. The donation fee will be £1 per
program and is not refundable.
Cheques and Postal Orders are
to be made out to the ‘UK. Atari
Computer Owners Club'.

5. Members must send in a blank
cassette or diskette for the
chosen programs to be recorded
on.

6. The DONATION SCHEME ' is
only open to club members.

Finally | would like to point
out that some people omit to
include return postage when
donating to the library, so please
do not forget to include 30p
worth of stamps to cover this,

THE LIBRARY SOFTWARE SERVICE IS FOR MEMBERS ONLY

LIBRARY SOFTWARE TITLES

Games

ASTERIOD BATTLE

by Mark Hutchinson — Belfast,
Pinball game created using Pinball

Constructor.

Runs in 48K min. Disk only.

Not XL compatible.

*k+*x STAR PROGRAM * %%
CHASE
by Grahame Fairall — Oxon.

Collect the money but don't get
caught. Excellent game with 40 levels of
play.
Runs in 32K min. Disk only.

DROPOUT

by Alan Williamson — Dunfermline,
Shoot the dropping objects before

they land, or else!

Runs in 16K Cassette or 32K Disk min.

FURTRADER

by Grahame Fairall — Oxon.
Trade your furs, make money or

starve. Strategy game.

Runs in 16K Cassette or Disk min.

HAUNTED HOUSE.

by Mark Hutchinson — Belfast.
Pinball game created using Pinball

Constructor.

Runs in 48K min. Disk only.

Not XL compatible,

MOTORMAZE

by Mike Barnard - Guisborough.
Drive your bike around the maze to

find the exit.

Runs in 32K min. Disk only.

ACTION! program (ACTION! cartridge

required),

NUMBER GRID
by Chiris Simon — Mold.
Two player game, get the highest
score by your quick reactions.
Huns in 32K Cassette or Disk min.

SUPER FRUIT MACHINE 2
by Grahame Fairall — Oxon.
Excellent graphics with all the usual

Listed below are the sofrware titles received by members for inclusion in the library since issue
eight was published. As the library now contains over 300 programs it is getting a bit too large
to keep on printing the entire list. Eventually it would probably take over the whole magazine
and there would be no room left for the articles and program listings. For those of you who are
new members and do not know what is available from the library then send for a photocopy of
the complete list which is available from the librarian. There is a small charge for this service
to cover photocopying costs. If you would like a list please send 50p and a SAE for return.

features of a fruit machine.
Runs in 16K Cassette or 32K Disk min,

UPS & DOWNS
by Stephen Taylor — London.

Two player board game. Get your
ship or car to the top first collecting
bonuses on the way. Good graphics.
Runs in 32K Cassefte or 45K Disk min.

Home Entertainment

BLOCKBUSTERS KIT
by Steve Tullett — Dalkeith.

3 person game simulating the score
board of the TV Blockbusters game.
Runs in 32K Cassette or Disk min.

MICRO PUZZLER
by Stuart Mowles — Ipswich,

This program takes any of 13
Micropainter pictures and jumbles them
into a jigsaw puzzle.

Runs in 48K min. Disk only.
Requires both sides of a disk.

PONTOON FRUIT

by Grahame Fairall — Oxon.
Fruit machine game.

Runs in 16K Cassette or Disk min.

WORDCLUE
by Alan & David Williamson —
Duniermline,

Word guessing game for 1 or 2
players,
Runs in 16K Cassette or 32K Disk min.
Utilities
ATTENUATORS
by Robert Macleod — Glasgow.

This program works out T-network &

Pl-network attenuator values.
Runs in 16K Cassette or 32K Disk min.

CASSETTE INLAY PRINTER

by Stephen Taylor — Londen.
Print cassette inlays on your 1020

printer.

Runsin 16K Cassette or Disk min.

COMPOSED WRITER
by Larry Farmer — U.S.A.

Extensive wordprocessor with full on
screen editing, print options and many
other good features.

Runsin 16K min. Disk only.
Requires whole side of disk.
From ACE of Eugene, Oregon, U.5.A

COPYDISK

by Raobert Gibbons — Holmes Chapel.
Sector by sector disk copy uiility (not

protected disks),

Runs in 48K min. Disk only.

DISASSEMBLER

by Mike Barnard — Guisborough.
Useful utility for the more advanced

programmer.

Runs in 32K min. Disk only.

ACTION! program (ACTION! cartridge

required).

MULTIBOOT BOOTBASE
by Sol Negrine — Hockley.

This program reads the directory of
multiboot disks and can create a file
directory and/or print labels, compatible
with APX Proglib.

‘Runs in 48K min. Disk only,

SCREENBASED
WORDPROCESSOR
by Jeff Davies — Llandello.

Simple wordprocessor utility, includes
Edit, Store & Recall and Print options.
Runs in 16K Cassette or Disk min.

SEARCH & SEARCH 1
by J. Benneit — Newcastle,

Two programs which both look foran
ATASCII string on a disk. SEARCH lists
the sectors where the string is found.
SEARCH 1 displays the section of the
sector upto the occurrence of the string,
Runs in 16K min. Disk only.

822 GR.0 SCREENDUMP
by Jeff Davies — Llandeilo.
List the screen to the 822 Thermal
Printer.
Runs in 16K Cassette or Disk min.

Education

INTERFERENCE WAVES

by David Cheung — London.
Demonstration of the interference

pattern produced when waves meet.

Runs in 16K Cassette or 32K Disk min.

SAMSPELL
by Phil Brown — Newquay.
Spelling and pronunciation program
for youngsters. SAM required.
Runs in 48K min. Disk only.

SINE/COSINE CURVES

by Steven Pearsall — Birmingham.
Two programs, one showing the,

sine/cosine of X, the other showing the

variable X.

Runs in 16K Cassette or 32K Disk min.

Music

SIX TUNES
by Grahame Fairall — Oxon.

6 Atari Music Composer Cartridge
tunes: Sweet Georgia Brown, From
Russia with Love, Skaters Waltz, When
I'm 64, If | Could Teach the World,
COnedin Line.

Runs in 16K Cassette or Disk min.

PUFF THE MAGIC DRAGON

by Grahame Fairall = Oxon,
Well known tune from Basic.

Runs in 16K Cassette or Disk min.

17

GCRACKING THE GODE

by Keith Mayhew Part Five

Having covered a lot of basic ground work, the previous articles should be
~ used as reference material. Binary and hex numbers were mtrodaced as well as

as well as descnbmg how the

. g | compute s I 2
cenzral processer AII the processor 's mstmct:on codes were descnbed showing
howfhey affect the regrsiers flags, and memory,

I NS lin

We are now at the point where we can
start the more practical side of machine
code programming, using an assembler
and running some simple examples. It is
recommended that you experiment with
such simple programs. Do not be dis-
heartened if things do not go as expected,
you will learn a lot from your mistakes,
such as saving a copy of your program in
case it crashes! Lastly, if you have any
difficulties which you can’t solve over a cup
of coffee and a few back issues then T will
be pleased if you drop me a line explaining
vour problem — no matter how simple.
Suggestions as to what topics you would
like to see covered in future articles would
be useful as well as any comments you
may have.

Why an Assembler?

We already know that each instruction
has been given a standard three letter
mnemonic to help remember its purpose.
In the last issue there was a complete list of
these mnemonics and their associated
op-codes. The term ‘hand assembly’ is
given to the process of manually
converting an assembly language program
into machine code by the use of such a
table. However, the task is made more
tedious by the fact that most mnemonics
have more than one op-code entry in the
table, each allowing for the different
addressing modes the instruction can be
used in. Then there is the added
complication of changing all numbers into
one base, say decimal, for entry into the
computer. There are many more reasons
why hand assembly becomes difficult and
slow, that's apart from any mistakes you
can easily make when working with pages
of numbers.

Assemblers overcome all the problems
associated with hand assembly because
the process of converting assembly
language (of mnemonics, labels etc.) into
machine code becomes just one command.
Assemblers have many more advantages
than just converting assembly language
that make the development of a program a
lot easier. Most assemblers are supplied

18

with a powerful editor to create and modify
assembly language programs and a ‘de-
bug’ or ‘monitor’ program that allows you
to look at memory locations, dis-assemble
machine code back into mnemonics and
many more useful features that will help
you to test and find bugs in your programs.
Even when writing small subroutines you
will find an assembler is a luxury over
doing things by hand. I would advise you
to invest in one of the several assemblers
available if you intend to get to grips with
the code, in the long run it will save you
time and frustration!

This series will be centred around the
ATARI Assembler Editor cartridge which is
perhaps the most popular among users, it
is not the best, butit is easy to use and
quite comprehensive. Apart from the
actual speed of assembly, other assemblers
tend only to differ in minor respects, or
offer features which only an advanced
programmer may find useful, such as
macros. An excellent compromise over a
commercial assembler is USERCOMP,
although a little limited in that most of the
features associated with an assembler are
missing, you can enter all the mnemonics
and is great for writing small routines or for
experimenting with. For just one pound, or
for free under the exchange offer, you
can't complain!

Get those Fields in File!

There are two types of files which are
associated with an assembler, the source
file and the object file, these reside on
either disk or cassette. The source file
represents the assembly language program
which you create and modify with an
editor. This is analogous to how you enter
and save a BASIC program except that the
program is usually saved as pure text, i.e.
exactly as you typed it.

When you decide you want the
machine code for the assembly language
vou command the assembler to compile
the source file. The source file will be read
and an object file created, this will be actual
machine code, on a disk system you could
‘binary load’ this file (directly from DOS)

into memory. Remember that any changes
you want to make to your program should
be made to the source file, re-compiling
will then give the updated version of the
machine code, in the object file, ready for
execution. At this point the fundamental
difference between a language like BASIC
and an assembler should be clear: BASIC
is an interpretive language and executes
statements directly from a source file, line
by line, and therefore BASIC has to be
resident to run the program. An assembler
is a compiling language and works with
two files — source and object — and
converts all the statements in the source file
into directly executable machine code in
the object file, therefore the assembler
does NOT have to be resident to run the
object code.

We will now look at the structure of
the source file in some detail. The file
consists of lines of text, each line is thought
to consist of fields of characters. Here a
field consists of one or more adjacent
characters, each field is separated by one
or more spaces — analogous to the words
in a sentence. The first field is normally a
line number, this has NO effect on the
assemnbler what-so-ever.

Line numbers are used by most
editors to keep track of lines and as such
are completely ignored by an assembler if
they are present. We shall, therefore, call
the first field either the one at the start of
the line or the one following the line
number (by one space), depending on
which type of editor you are using. A line
can have from one to four distinct fields.

The Label Field

A label must start with a letter and can
have any mixture of letters and digits
following it, forming a ‘name’ for the label
— similar to a variable name in BASIC,
except there is usually a limit of upto six
characters only. Labels are used to
represent numeric values; once a value has
been assigned to a label then where ever
the label is used its value will be substituted
during the assembly of the program. The
first field on a line is reserved for a label

name — you will see the use of labels soon.

The Operation Field

The second field is the operation field
and is where the familiar op-code
mnemonics are written, such as LDA.
Pseudo-operations, also known as
assembler directives, are also written in this
field and are used to control the operation
of the assembler when compiling your
source code.

The Operand Field

Operands are written in the third field
and are the data for what is in the
operation field. The type of operation will
determine if an operand is necessary or
not. Any label which was previously
defined (by placing its name in the first
field) can be used in the operation field —
the effect is the same as writing the actual
value of the label in place of it, so labels are
effectively substitutes for fixed values, or
constants.

The Comment Field

Comments are simply a string of
characters commenting the operation of
the program, similar to the REM statement
in BASIC. The start of a comment is
usually signified by a semicolon (;), when
this is reached the rest of the line is
completely ignored. The comment field is
an exception in that it can start at any place
on aline. They can take up a whole line or
can be placed at the end of any existing
line. The use of comments helps describe
what a program is doing and should be
used quite liberally throughout any
program as documentation. If vou find an
old program at the bottom of a drawer
then the comments will prove invaluable to
remembering what it did and how!

Neat Fields

At least one space must be used to
skip a field, if the tab key is used to space
fields out you will not have to worry about
the exact spacing and as a bonus you will
find that they line up neatly from line to
line. The following shows some possible
field layouts:

100 LABEL LDA #$3A;Minimum spacing.

200 PLA ;Operation only.

300 PLA :Same, but with
rminimun spacing.

From now on tabs will be used to
space these fields out. Listing 1 shows a
complete program. The program loads the
accumulator with the value zero, stores this
at location 3000 hex and then returns to
the calling program. The third line down
contains: — “*= $0600°, the “*="isan
assembler directive which sets the origin or
location counter of the assembler to 600
hex. This causes the machine code to be
generated from location 600 hex onwards.
Such a command must preceed any
program to determine where the code will
be stored and can be used anywhere else,
thus spliting the code up into different
sections of memory if desired.

Listing 2 is the output from the
assembler during the assembly, itis an

0100 }Simple program showing the effect of
1110 jusirg the tab key to space out fields.

11z0 x= §0600 iStart code at 400 hex.

0130 LDA $0 tlero locstion

0140 STA $3000 33000 hew.

0150 RIS tReturn to caller,
Listing 1

0100 ;5imple program showirg the effect of
0110 jusing the tab key to space out fields.

joo0 0izo X= $0600 }Start code at &00 hewx.
0600 A900 0130 LD& %0 tZero location
1602 800030 0140 STA $3000 33000 hex
1605 40 0150 RTS tReturn to caller,
Listing 2
0100 iProgram to show the use of labels to
0110 jrepresert memory locations and data.
1120 SUH = $4000 jAddress where sum is stored,
0130 INCR = $13 tIncrement value,
148 B= §0600 }5Set location counter,
4150 CLe sClear carry for addition.
1160 LDA SUM 1Get current sum,
1170 ADC $INCR jAdd on the incresent.
0188 5TA SUH y5tore the result back,
0190 RTS sReturn,
Listing 3

exact copy of Listing 1 except that two
extra columns of numbers have been
appended to the left hand side. These
show the contents of the location counter
and the contents of the memory,
respectively. From this we can see that
‘A9’, the op-code for ‘LDA’, is stored at
location 600 hex and that ‘00", the
operand, or data, is stored in the next
location of 601 hex, the next line shows
the count or address at the next location of
602 hex as expected. Therefore, by
looking at the second column of numbers
we know the exact contents of the object
file, i.e. the actual machine code for our
program and the address of any particular
byte.

Label It

Listing 1 does not have anything in
the first field, i.e. labels. If a label is placed
in the first field then it is assigned a value.
This value will be the contents of the
location counter, i.e. the current address.
Another method exists for assigning a
value to a label by using the ‘=" or equate
directive in the second field, the operand
following this will then be the value
assigned to the label. [t should be noted
that the assignment of a value to a label

can only be made ONCE during a program.

Once given a value, the label can then be
used in the operand field as the data to
whatever is in the previous field. When

assembled the value of the label is
substituted for the label's name.

Labels are used to give names to
memory locations or data. One advantage
of using labels is that they aid your
memory, instead of remembering or
looking up a value repeatedly, a meaning-
ful name can be given to the value and
then the label name can be used where
ever needed. Another advantage is
obvious, if you want to change a value
then you haven't got to search the entire
program changing the value many times,
instead you would only need to change the
value of the label (at the start of the listing).

Listing 3 shows the use of labels to
represent memory locations and data.
The program adds an increment to a
memory location and stores it back again.
Line 120 assigns the value of 4000 hex to
SUM, this is the address where the number
to be incremented is stored. The next line
assigns the value of 13 hex to INCR, this
represents the amount to be added to the
sum. The rest of the program is as normal
except that where an address or data is
needed the label name is used instead.
When assembled, the label names are
simply substituted for their values in the
operand field. Therefore the effectis
exactly the same as if, for example, line
160read: 'LDA $4000'.

If we now wanted to change the
address of SUM we only have to change it

19

0100 }Program showing the use of labels
0110 }to ‘mark points’ in proarams.

0120 COUNT = $4000 jHolds current count.
1130 x= $0600 }Set location counter.
1141 ADD CLC Clear carry for addition.
0130 LDA COUNT 3Get count.
1140 ADC §2 tAdd on increment.,
1170 STA COUNT jStore new value back.
0180 JF ADD sdump back to start.
Listing 4 ‘
0100 }Progras to fird the ‘value’ of
0110 jan ASCII number,
0120 CHAR = $4000 }Holds ASCII character,
1130 NUM = $4001 }Holds value of the number.
0140 2= $0400
0150 SEC 19et carry for subtraction.
1140 LDA CHAR iGet ASCII character,
0170 SEC $0 tSubtract value of ASCII 0,
1180 STA NUM y5ave as a3 number,
0190 RTS sReturn,
Listing 5

on line 120, as opposed to having to
change both line 160 & 180, if we had
written the actual value of $4000 there.
Listing 4 uses two labels, the first is defined
in the same way as before and is the
address of a count. Line 140 has the
second label, ADD, however this time it
preceeds a 6502 mnemonic. In this case
the value assigned to ADD is the address of
the instruction it preceeds, which happens
to be the start of the program, i.e. 600 hex.
Line 180 is a jump instruction, it
jumps to the address held in ADD, so in
this case it is the same as writing:
JMP $600'. Thus the program con-
tinues in a never ending loop adding two to
COUNT every time it goes around the
loop. Labels can, of course, be placed
anywhere in a program, a jump or branch
can then be made to the label, instead of
trying to work out which location the
instruction is stored in. The use of labels in
this way can be thought of as ‘marking
points’ in a program which can then be
jumped to by reference to the label or
‘marker’.

Odd Expressions

Yet another advantage of an
assembler is to evaluate expressions in the
operand field. For instance:

LABEL = 2*3+1 will evaluate the
expression on the right hand side to be
seven and then assign the value seven to
LABEL. Such an expression can contain
other label names which are already
defined, these expressions can also be
used as an operand to a 6502 instruction.
This facility does not provide a short cut to
doing multiplication and division in
machine code; expressions are evaluated
once at assembly time and are then used in
programs as a fixed value — just as a label
has a fixed value. The use of these
expressions does, however, save you
having to use a calculator to work out a
constant, instead the computer works it out
for you at assembly time, A useful
expression is the single quote followed by

20

an ASCII character, when the expression is
evaluated the ASCII value of the character
becomes the operand — this saves looking
up characters in tables of ASCII values and
writing that value down. Listing 5
demonstrates the use of this. Assuming the
location at CHAR contains the ASCII value
of a digit between 0 and 9, the program
will place the actual number that character
represents in location NUM, The ASCII
value of 0 is 48 decimal, the characters 1 to
9 have the consecutive values of 49 to 57,
s0 to convert the character to the number it
represents we simply have to subtract the
value of ASCII 0 from it. Line 170 does the
subtraction, the ‘0 is evaluated to be 48,
the ASCII for the character 0, the result is
then stored in location NUM. For instance,
if the ASCII character was 9 then 57 would
be in location CHAR, by subtracting 48
from this we get the actual value of 9,
stored in location NUM.

Getting It Together

Having seen a lot of examples on the
features of an assembler, we will end by
writing a program which, when called by
BASIC, will multiply two integer numbers
together and return the answer to BASIC.
Although not being spectacular, it will
hopefully bring together a lot of ideas and
principles covered so far in this series and
should be fully understood.

Using the User

Before we can start we need to look at
the mechanism by which BASIC allows the
user to call machine code routines — by
the aptly named ‘USR’ command. This
command also allows numbers, known as
parameters, to be passed back and forth
between the two. The general form of the
command is:)

X=USR(ADDR,PAR1, PARZ2...)
Where ‘ADDR' is the address in memory
where the routine starts and ‘PAR1’,
‘PAR2', etc., are the parameters to be
passed; the parameters are separated by

commas and the number of these can vary
from none to as many as BASIC will let
you type on one line. All these numbers
should be integers between 0 and 65535
(although BASIC does round-off any non-
integers). An integer, in the same range,
can also be passed back into the variable X
of the USR command.

The numbers BASIC passes are saved
on the stack. By doing this we don't have
to worry about exactly where they are
stored in memory, to retrieve these
numbers in the machine code we use the
PLA command which takes the last entry
of the stack and puts it into the
accumulator. The first number pulled back
tells us how many parameters BASIC
stored on the stack, e.g. if zero, then it tells
us that there were no parameters supplied
by the user. This can be used to see if the
actual number of parameters is equal to
the number you expected, if not, the error
can be dealt with, Most of the time it is
ignored and assumed that the user knows
how many parameters he should supply,
however, using this method means that if
you do give the wrong number of
parameters it will almost definitely crash on
vou, so be careful. Once the parameter
count has been taken off the stack, the
parameters are then removed, two bytes
for each. The first PLA will give the high
byte of the first parameter in the USR
command, the second PLA will return the
low part of this same parameter, the rest
are taken off in the same manner until all
are removed. If everything went well, then
the return address will be left on the top of
the stack ready for an RTS to take you
back into BASIC. To return a value to the
BASIC variable used in the USR command
then, you simply store the low partin
location 212 and the high part in 213
(decimal). On return, BASIC sets the
variable equal to the value of this two byte
integer.

Doing the Multiplication

The easy way to multiply two
numbers together is simply to add one of
them repeatedly to a result, the number of
times will be determined by the other
number, for instance; 2*3 is the same as
2+2+2, i.e. 2 added on three times. This
is obviously very inefficient, especially for
large numbers, as a lot of addition will be
involved, better methods do exist but we
will stick to this one for its simplicity. Using
our method, we need to add the
multiplicand to the result by the number of
times indicated by the multiplier. For the
example of 2*3, the multiplier is 3, thus we
add 2 onto the result 3 times to get the
answer of 6. However, this is exactly the
same as 3*2, now the multiplicand is 3 and
the multiplier is 2, this means that we do
one less addition than before, i.e. 3+3.
This is better illustrated by 1*255 which
takes 255 additions of 1 instead of 1
addition of 255 for 255*1. The method, or
algorithm, for our multiplication now
becomes: Firstly, if the multiplier is greater
than the multiplicand then swap them
over, we then zero the result and add the
multiplicand to the result by the number of
times as the value of the multiplier.

0100 }Simple multiplication of two single byte

0110 jintecers by repeated addition.
foce 0120 MLTPND = $Ce tMultiplicand,
0004 0130 RESULT = 212 tResult for BASIC,
oooo 0140 x= $0600 }Start on pace 6.
0600 68 0150 FLA {Discard number of data,
0601 68 0160 FLA iDiscard high byte,
0602 &8 0170 FLA 1Get low byte,
0603 BSCE 0180 STA HLTPND }Save as multiplicand,
1605 48 0190 FLA Discard high byte.
1606 68 0200 FLA 1Get low byte,
0607 A& 0210 TAx 1Save as multiplier,
0608 CSCE 0220 CHP MLTPND jCompare both,
0604 7005 0230 BCC NOSWAP JOK if MLTPLR<MLTPND,
050C ASCE 0240 LDA MLTPND $Swap MLTPLR
D60E B&CE 0250 STX KLTPND jfor MLTFND
1610 &4 0250 TAX 150 that MLTPLRMLTFND,
0611 4900 0270 NOSWAF LDA $0 tZero the result
1613 8304 0280 STA RESULT }low
0615 8205 0290 STA RESULT+1}and hich.
0617 EO00 0300 MLTPLY CPY $0 +If MLTPLR=0 then
0619 FOOF 0310 EEQ EXIT jexit loop.
161k 18 0320 CLC tClear carry,
161C ASDA 0330 LDA RESULT jAdd in MLTFND
061E 63CE 0340 #0C HLTPND }to the result
0620 8304 0350 STA RESULT jand save back,
0622 9002 0340 ECC NOCARY 3No carry so branch.
B624 E&DS 0370 INC RESULT+1}Else adjust high byte.
1626 CA 0380 NOCARY DEX tDecrement count
0627 4C1706 0390 JHF HLTPLY jard go back.
0624 &0 0400 EXIT RTS sExit back to BASIC,

Listing 6
Listing 6 shows the completed parameters into the accumulator, however,

assembly program, the following describes
how you might go about entering it into an
assembler to compile it. If you have an
assembler editor cartridge then you would
type in everthing except the two columns
on the far left, the comments are, of
course, optional. If you have a different
assembler then you would need to change
a few minor things, see the appropriate
manual for some help. Table 1 gives some
guidelines for conversion between most of
the popular assemblers. Before assembling
the code you would save a copy of thisas a
source file (disk owners should note that
the extension of .SRC is often used to
denote the source file), assembly of the
program is then done to an object file (for
disk the extension of .OBJ is widely used).
Assuming there were no errors then the
contents of the object file would be the
same as the second column of Listing 6
and would load into the addresses shown
in the first column, i.e. page 6 (600 hex)
onwards,

How it Works

The equates on lines 120 & 130 set
up two labels, MLTPND will hold the
multiplicand and is at location CB hex,
RESULT is set to point to location 212, this
is where BASIC picks up the value for the
variable in the USR statement. Next the
location counter is set so that the code
produced is placed from 600 hex onwards.
The first PLA gets the number of BASIC's

this is discarded, as is the high byte of the
first parameter, this leaves us with the
lower half in the accumulator after the third
PLA and is saved as the multiplicand by
the following STA instruction at location
MLTPND, i.e. CB hex. Two more PLA's
leave the low part of the second parameter
in the accumulator and is saved in the X
register by the TAX instruction as the
multiplier. Only the low part of each
parameter is saved so that neither number
can exceed 255, by doing this the result

will not need more than two bytes which is
the maximum size we can return to
BASIC's variable.

We now want to see if the multiplier is
less than the multiplicand to minimise the
number of additions. A copy of the
multiplier is still in the accumulator at this
point, the compare instruction then
subtracts the multiplicand from it, leaving
only the N,Z and C flags affected. We want
to skip the swap over if the accumulator
was less than the data, i.e. the comparison
left a borrow condition because the larger
data was subtracted from the smaller value
in the accumulator. If a borrow occured
then the carry (C flag) would be cleared,
the next instruction, BCC, would then
branch over the following three instruct-
ions to NOSWAP, thus not doing the
swap. You can see by looking at the
machine code, on the left, that the
assembler has converted the address of
NOSWAP (611 hex) into the offset of 05,
following the opcode of 90 for the BCC
instruction, yet another thing the assembler
does for you!

If the branch failed then the
instructions on lines 240, 250 & 260 swap
the multiplier and the multiplicand over,
the accumulator is loaded with the
multiplicand and then the multiplier, in the
X register is saved as the new multiplicand,
finally the accumulator is moved back into
the X register as the new multiplier. Which
ever path was taken, when the LDA
instruction is reached at NOSWAP, the
multiplier will be in the X register and the
multiplicand will be in MLTPND with X
being the lesser of the two. At NOSWAP
the accumulator is loaded with zero and is
stored at location RESULT (212), as the
result will take two bytes we must also zero
the high part at the next location. Rather
than define another label to point to
location 213, RESULT+1 is used, this is
equivalent to 212+1 which is location 213,
the high part of the result.

The multiplier is in the X register so
that it can be used as a count, every time
an addition is done we will take one from
the count until it reaches zero. The test for
this count being equal to zero is made on
line 300, which compares the X register to
the number 0, if it is then the ‘branch if

Atari Synapse 0.S.S Atari
Description Assm/Edtr | Syn Assm | Mac 65/Bug 65 |Macro Assm
Cartridge | Disk |Diskor Cartridge Disk
Set origin & =
(Location counter) * i : "
Value. Df * * - +0
location counter
Equate . ” -
(assignment) g or Rl
Define bytes/ AT JBYTE D8
characters in BYTE HS LSBYTE DC
memory .AS LDBYTE
Define words ifi | o0 .0A . WORD oW
memory
Skip bytfes LER .BS =z e4 DS
Table 1. Assembler Conversion Chart Continued on page 32.

21

FAST FILL

So you thought you had seen the last
of Graphics 8 utilities with the excellent
Quick-Plot, eh? Well here is et another!

It you have ever used the fill routine in the
operating system, via the XIO command,
vou would have realised its limitations;

it only fills four sided shapes and is very
slow. Drawing utilities, such as ATARI
ARTIST, can fill in any shape yvou design
and quite fast. Fast Fill uses a similar
method to these programs and allows you
to fill any shape on a Graphics 8 screen,
and fast.

Listing 1 is a simple demo program in
BASIC. Type it in and remember to save a
copy before you run it. If the program
crashes then re-load it and check all the
numbers in the DATA statements.
Assuming the program runs OK, the screen
should clear after a short delay while the
machine code is read in. The little flashing
pixel in the middle is a cursor! It can be
moved in all eight directions with a joystick
and lines can be drawn by pressing the fire

‘BY KEITH MAYHEW

button down. Once you have drawn a
shape place the cursor inside it and press
the START button to fill it up. Remember
that if you do not properly enclose the area
to be filled the whole screen will be filled
up, even if only one pixel was missing.

To use the machine code fill routine in
your own programs list lines 30000 to
32380 to disk or cassette (e.g. LIST
"C:",30000,32380) and then enter it onto
your own program {e.g. ENTER "C:").

To initialise the machine code you will
have to place a GOSUB 30000 at the start
of your program and then call the machine
code by something similar to:
Z=USR(ADR(FILL%),X,Y), where the
pixel at which to start the fill is held in X
and Y. A word of caution; in order to make
the fill fast there is no error checking to see
ifit goes off the top or bottom of the

screen...CRASH! To avoid this problem
either make sure the shape is completely
contained or draw a border around the
screen as in the demo program.

The fill routine has been split into two
parts; the initialisation section is held in a
BASIC string (FILL$) and the main part is
in page 6 (no, not the magazine!). The
initialisation section first points a software
stack to just under the screen memory, this
grows downwards as pixel addresses are
pushed onto it. The rest of this section
converts the X & Y co-ordinates into a
screen memory address for that pixel. As
there are eight pixels per byte in this mode
a ‘plot mask’ is calculated which contains
one bitsettoa ‘1’, so that when ORed
onto the screen at the screen address, will

| plotthe correct pixel. A jump is then made

into the main section in page 6.

The method by which the shape is
filled is in horizontal runs or lines. While a
run is in process the adjacent lines are
examined and continuation addresses are

Listing 1

El | REN #ossisssdstitbadibaaioisassnsns

NH 2 REN

BS 3 REM FAST FILL

NJ 4 REN

HJ 5 REM by Keith Mayhew

NL & REM

YH 7 REM for Monitor Magazine

NN 8 REK

ER 9 REM ##3#53#3d5s0idatibnsitbetdiess

SW 10@ GOSUB J@@de

L 118 GRAPHICS B+161X=1481Y=96:1POKE 789,
15

KL 115 COLOR §sPLOT B,0:DRAWTD 319,B8:DRAN
T0 319,1911DRAWTO @,191:DRAWTD 8,8

F8 128 8=8TICK(@)sLOCATE ,Y,CsCOLOR 1-C:
PLOT X,Y

ED 13@ FOR I=B TO S:NEXT I:COLOR C:PLOT X
1
L]

CU 148 X=X+(8=5 DR §=& OR 8=7)

AP 158 X=X-(5=9 OR 5=1@ DR 8=11)

CD 168 Y=Y+(5=3 DR §=% OR 5=13)

DB 17@ Y=Y-(8=h OR S=10 OR §=14)

ML 188 IF NOT BTRIG(@) THEN COLOR 1:PLOT
1Y

AC 19@ IF PEEK(53279)=4 THEN I=UBR(ADR{FI
LL$), X, Y)

ND 2@ GOTD 128

WN 38888 REM Read in machine code for §il
ll

ZD 38018 DIN FILL#(118)

YF 38020 FOR I=1 TO 118:READ D

EM 38830 FILL$(I,1)=CHR$(D)2NEXT I
AB 38848 FOR 1=8 TO 184:READ D

DC 38858 POKE 1336+1,DiNEXT I

DX 38@a8 RETURN

HH 328088 DATA 104,173,229,2,133,206,173,2

38

MG 32818 DATA 2,133,287,184,141,1B6,6,104

SF 32020 DATA 141,185,4,149,8, 141,189,
FF 32030 DATA 104,104,18,46,189,6,10,46
L@ 32049 DATA 189,6,10,44,189,8,133,203

HL 32858 DATA 174,189,6,134,204,18,44,189

1V 32068 DATA b,18,46,189,6,24, 101,283

VR 32878 DATA 133,203,165,204,109,189,6,1

33
HF 32080 DATA 284,173,185,6,41,7,170,149

JX 32098 DATA B,5¢6,106,202,16,252,133,285

NI 32108 DATA 173,186 ,6,74,173,185,6,186
IF 32118 DATA 74,74,24,101,283, 144 ,2,238

IN 32128 DATA 204,56,233,40,176,2,198,204
50 32138 DATA 24,191,88,133,283,145,89,19

1
FT 32140 DATA 284,133,204,75,0,6

HQ 32158 DATA 168,40,177,203,36,205,208,2

UY 32168 DATA 6,205,144,248,38,205,165,20

3

1L 32178 DATA 288,2,198,284,198,283,177,2
(X

UN 32188 DATA 288,234,248,242,169,1,141,1
87

WN 32198 DATA ,141,188,5,70,205,144,8

PR 32200 DATA 182,285,238,283,288,2,230,2
04

UN 32218 DATA 148,40,177,203,36, 205,288, 5
b

WH 32220 DATA 5,285,145,283,173,187, 6,248

OX 32238 DATA 11,168,0,177,283 34,205,208

KD 32248 DATA 3,32,146,6,160,0,177,263

BY 32250 DATA 141,187,6,173,188, 6,248, 14

XL 32260 DATA 148,80,177,203,36,285,141,1
88

AP 32278 DATA 6,208,3,32,146,6,140,80

Wi 32280 DATA 177,203, 141,188,6,76,36,6

UR 32290 DATA 145,207,205,230,2,208,7, 145

OD 32388 DATA 284,205,229,2,240,58, 140,0

KK 32318 DATA 142,2,177,206,149,203,230,2
2

§) 32320 DATA 288,2,230,207,202,16,243,76

CX 32330 DATA 8,b,166,204,56, 163,206,233

BW 32348 DATA 3,133,206,176,2,198,207,152

HU 32358 DATA 56,233,40,176,1,202,24, 101

BB 32348 DATA 203,148,2,145,206,138,105,0

VA 32378 DATA 135,145,284, 165,205, 136, 145
,206

0F 32380 DATA 9

22

16, 17 =il
13
i
[1205 {5l
11 £ |
10, 15 B
D
8 7] =150
3 0 B% S
12 . I
| |1 [
[L}
| ! | . +— . |
"[—'_‘—I 1 1 T]
. ‘ | L]
‘ Start

Diagram

placed onto a stack, when a run is

complete the last stacked address is |
removed and the process continues from ‘
there until the shape is filled i.e. the stack \
is empty. When first entered, the routine ‘
searches to the left of the current line until

a border or edge is reached. Theline is

then plotted pixel by pixel to the right until

the right border of the run is reached.
While doing this, it looks at the two

adjacent lines to see if a left edge is
detected, this requires knowing the state of
the previous pixel as well as the current
one. To achieve this two flags are kept
updated with the state of the last pixel
examined. If the previous pixel (flag) was
set and the current pixel isn't then the pixel
address and plot mask are stacked. If the
extreme left edge of the adjacent lines fall
before the current one then this starting
edge would not be detected, it is for this
reason that both flags are set at the start of
a line. Then if the first pixel directly above
(or below) the start of the current line is
cleared then the point will be stacked. If the
stack is then empty itis the end of the fill,
else the last address is pulled back and
jumps back to the start which continues the
same process from this point. To help you
understand the fill process, the diagram
shows a filled shape. The numbers indicate
the order and the place where left edges or

Point being Stack
used for contents
PLOT |After PLOT]
STARL. ..o v 1
1 a2
e ai i 3,4,5,6 [
B 3,4,5 '
Pt 34,7
T mehnah 3,4
e e T 3
< e e 8
[S]
N AR 10
3| ¢ HAram s e 1
i R S 12
Ve e 13,14
N s 180
1+ A e s 13
- T B 16,17
1 b A e e 16
). el I e EMPTY
Table

starting points were found and stacked.

The table then shows the order in which
the lines where drawn from these stacked
values and shows the pixel numbers on the
stack after the line has been drawn.

THE

PAGEE;

MAGAZINE

N\

See what Precision Software has

to offer serious 800XL/130XE owners!

FOR ALL ATARI ¢ Visit PCW Show Stand Number 1701/5
COMPUTER* OWNERS ATAR' in the National Hall at Olympia
*400/800/600X L/800XL from the 4th to 8th September 1985
NE;VS EESQEST Or send for advance information to:
LISTINGS Precision Software Limited
' fro m SVE?CI:ST;'?: ﬁ'.
REVIEWS [] _I Surrey KT4 7JZ ENGLAND
& USA Pr%cisiun Telephone: 01-330 7166
Soltware
TUTORIALS . 4
Uk
@ 2
AUSTRALIA ATTENTION ATTENTION
UTILITIES © ATARI 400/600/800 OWNERS
° PUBLIC MIDLAND GAMES LIBRARY
HINTS & DOMAIN Do you want to join a long established library?
Are you looking for a fast efficient and friendly service?
TIPS SOFTWARE wcu‘lrd you Iikegm select from nearly 850 uragvrams, c:ssetles,
LIBRARY cartridges, discs and utilites and educational?
plllS more] Would you appreciate 40 new additions per month?
SPEC]_RL Are you interested in interactive club schemes?
e ek se Vo OFFERS e
e — e @ buy many of the popular games in muitiplas of live or six to give
PAGE 6 is published bi-monthly. Sl e TaTabure-s Toll choice. 3 :
Annual Subscription is £7.00. Send TODAY to: Now entering our third year of service to Atari owriers,
pti
Hundreds of satisfied members. many even as far away as Iceland.
nmark, Eir Germany.
PAG E 6, P-Ol Box 54 L] o i e we;;ndeiar::\;AE for details.
STAFFORD —-
’ ST1 6 1 DR 48 Read Way, Bishops CIuve_. Cheltenham
Tel. 078541153 All our glﬁjif;{pmowfmlsd:xmcmmmrl

28

A Ena:
AR
Return to Eden

L]

2%
SHBHDG

32K Cassette £9.95

This is Level 9's long awaited sequel
to Snowball, which has become a bit of a
classic because of its enormous size. For
those of you unfamiliar with Snowball's
plot, here it is. You are Kim Kimberly,
appointed to watch over the safety of two
million colonists on board the Snowball 9
spaceship on route to Eden, another
planet. You awaken to find that the ship is
headed towards a star, and all the robots
are now homicidal! At the end of the
adventure, you confront and defeat the
saboteur, and rescue the Snowball,

In the sequel, false video-tapes show
that Kim him (her?) self was the saboteur,
and Kim is sentenced to death. Luckily,
Kim escapes in a strato-glider and lands on
Eden. Unfortunately, the colonists are out
for revenge and turn the ship’s rockets on
you, devastating the land. If you should
survive this, you emerge in a strange jungle
where most of the normally friendly wildlife
is after your blood! On the subject of
death, you are at least given a few chances,
appearing strangely resuscitated inside a
tree-pod.

Through a ‘see-bee’ telescope you
can preview the task ahead with
minefields, gunships, towers and the jungle
all barring your way to the city, Enoch,
which you must rescue from the onslaught
of the jungle, and where you must prove
| your innocence to the colonists. You can
expect this to take quite some time.

Well, you can’t ask for a more
dramatic plot than this, and coupled with a
good parser, this game deserves to be a hit.
I can't wait to see the final part of the
trilogy, “The Worm in Paradise’ where you
are rumoured to have to try and discover
whether the whole universe s just some
puppeteer’s toy.

24

Adventure intg

by STEVEN HILLEN
Cutthroats

48K Disk £32.50
As an out of work deep sea diver on

the miserably dull Hardscrabble Island, life §

is incredibly boring. The treacherous seas
surrounding the island defy anyone to
retrieve the sunken treasures they conceal.
Then, one night, an old seamate of yours,
Hevlin, arrives at your hotel room door.
He passes you a book revealing the
location of a large haul of treasure, then
dashes off. You hear a scuffle outside as
Hevlin is murdered. You awake the
following morning to find a mysterious
note that has been slipped under your
door, inviting you to a meeting.

1f you've ever wanted to play the
leading role in a pirate adventure, then
play ‘Cutthroats’. No other game ['ve
played has quite had such completely
convincing characters with such realistic
responses. The plot also twists and turns,
sweeping you into the story.

In order to claim your riches, you
must join forces with the likes of Johnny

" Red and his band of cut-throats. Even

when you do gain their confidence, they
cannot be trusted, for the Weasel is ready
to slit your throat at the slightest hint of
treachery.

To start the game, you are supplied
with a rather useful map locating the
shipwrecks, a price list for Outfitters Inter-
national who can supply your diving gear,
and a tide timetable. Each time you play,
you may have to search for a different
wreck, as there are 4 in the game. There
seems to be no limit to what you can do in
this adventure, for it understands over 800
words. | keep going back to this game, it's
just like being in a Robert Louis Stevenson
novel. not knowing what will happen next.
Infocom are still showing the rest how
adventures should be written.

Emerald Isle
32K Cassette £6.95

This is an adventure that seems to
have something of everything, and is again
up to Level 9's consistently high standard.
It is being sold for £3.00 less than usual as
it is rated as an easier adventure, although |
still think it's pretty challenging. A line-map
of the island is supplied in an ever-
improving style of packaging, along with
some large glossv posters.

You arrive on Emerald Isle (some-
where in the Bermuda Triangle) by silk
parachute which unfortunately snags in the
trees, Vultures watch your attempts to
escape. Next, you discover a tree-top
fantasy city which is strangely deserted

except for a bored King who seems to have |

issued some kind of challenge. If you're
carrying the right goods, then both the
guard and seamstress will help you.

Back down on the ground, avoid
climbing onto the railway tracks, otherwise
the inevitable happens. Instead, you can
enjoy a ride to the seaside station which
backs onto a glorious beach. It soon
becomes apparent that you need some
light to explore the mine and the cave (not
the inside of the spider!), so if you can
build a canoe, the second island may
provide some help.

In this game, points are scored for
swelling the King's coffers, although the
ultimate objective is to escape from the isle.

Why then is it rated as a beginner's
adventure? Well, unlike all the other Level
9 adventures, there is usually just one way
you can go to proceed with the game.
Instead of deciding where and when to go,
you need only find a method of getting
there.

Emerald Isle is unusually good value
for money and great fun to play as there is
so much variety, Thanks to Level 9 for
producing such games, and for sending me
review copies.

Spiderman

16K Cassette £7.95, 48K Disk £17.95

This is the second of Scott Adams’
‘Questprobe’ series, the first being ‘The
Incredible Hulk', of course. The game is
available on disk or cassette, but only the
disk version has graphics.

Spiderman starts in a mysterious
office block virtually surrounded by Marvel
characters. As with the Hulk, your score is
increased by gathering the gems together.
However, the Hulk was at least consistant
and vaguely credible, whereas Spiderman
fails on both counts. The reason for these
gripes are as follows. The whole situation
seems very contrived, for in almost every
room there is another ‘trumped-up’
superhero who must be defeated or used
in some way or another. OK, Spiderman
himself may not be totally convincing, but

the Sandman and Madame Web are
absolutely comical. Unfortunately there are
also some logical faults within the game, an
example being when going down one
floor, out of the window and finding
yourself at the very top of the building.
The screen format and parser have
been left unchanged from previous
adventures, so they are adequate but slow
at times. There seems to be a number of
themes that may run through the whole
Questprobe series. One is the method of
resuscitation when vou die, another is the
re-appearance of the natter energy egg.
I hope that the third in the series will not be
another treasure hunt, one or two of the
win/lose situations such as The Count
would be a welcome change. All inall
then, Spiderman is, to me at least, just
another unmemorable adventure.

Dallas Quest
48K Disk £14.95
Well, here is the first adventure that
Datasoft have written since the graphically
excellent and challenging ‘Sands of Egypt’.

Not being a Dallas freak myself, South
Fork Ranch isn't as exciting a scenario as
ancient Egypt. The game loads with a
picture of J.R. and the theme music from
the TV series, and the game starts in the
living room with Sue Ellen. The graphics
are again quite outstanding, but the
adventure itself is poor, simple and
illogical. It has been completed by some
adventurers in less than an hour, hardly
giving them their monies worth nor much
safisfaction.

The game centres on finding a new oil
deposit near the ranch, which is not too
difficult if you can avoid being beaten up at
the main gate by some local yobbos, or by
the equally improbable giant rat which
lurks in the barn. Just as inconsistent is the
monkey blocking the hole in the boat with
his tail!

It really is a shame to see such
excellent graphics, sound and overall
programming wasted on such an
intrinsically poor game. In short then,
recommended for incurable Dallas fans
only.

Letters Section

Well, this time you seem to be running
out of questions for me to try and answer.
Maybe you're all such experts by now that
you no longer need assistance? However, |
haven't heard of anyone who's yet
escaped from Issue 8's ‘Nightmare
Reflections’, so here are some gratuitous
clues which you should follow very
closely...

Push around, ways abound.

Touch to show the node, the watch
completes the code.

It's hard to reside in a SQUARE of SIDEs.
Rainbow colours one to seven just add to
the problem.

Initialise the paper clue for the final thing
to do.

Nine more true moves make, and then
you'll be awake.

Fishy draughts are just for laughs.

One false step then, and it'll be
another ten!

Back to commercial adventures again,
the remaining unanswered questions are
below. If you can answer any of them, I'd
be pleased to hear from you. If you're

hopelessly stuck with a game, then write in,

and I'll try to help. If you've completed an
adventure, again please let me know, and
I'll add it to a list I'm compiling for next
time. Thanks to all those who wrote in this
time.

Lastly, thanks to Peter Lister for
answering several queries, and for letting
me preview his rather good adventure,
The Amulet.

Unanswered Questions

Savage Island Il
Can't kill dinosaurs nor change back from
Neanderthal.

Escape from Pulsar 7
Can’t remove cups from captain’s cabin
ceiling.

Waxworks.
Where is the well?

Curse of Crowley Manor
Have combination but can't get past
monster in ‘numerical lock’ room.

Answered Questions

Ten Little Indians
Can't do anything with couch nor safe.

10 DIMA$(40):A$="MY__MR*S]* \
ON*RO\ \ SXQ8*NSKV*,CB="

20 FORA=1TOLEN(A$):A$(AA)=
CHRS$(ASC(A$(A,A))—10):NEXT A:? A%
by Tony Cheung.

26

BOOTBASE

This program reads the directory of
your ‘Multiboot' disks (sectors 48 and 49),
and optionally allows you to print out
labels, to show program names, sizes and
free space on each disk, and also it
appends the entries to a DOS file named
PROGLIB.DB which is created and/or
unlocked as required. This file is
compatible with the APX Diskette
Librarian system, which will allow you to
sort and print your entries, (note that any
existing data on the DOS file is retained).

You may wish to customise the label
formats to suit your own printer, this can

by Sol Negrine

be done by ammending the PRINT
statements in lines 385 — 414 as
appropriate. The use of PRINT #3
staternents instead of LPRINT is to allow
one to compile BOOTBASE with the
excellent ABC Compiler from Monarch
Data Systems. Please note that the
program features delay loops which will be
excessive if you RUN the program from
BASIC without compilation. Ammend
these as required. The delay loop is called
via WAIT=2500:GOSUB 1100 in lines

200,800,1010 and 1630 (just change the
value assigned to WAIT.

If you do not have or do not wish to
use the APX Diskette Librarian, then the
output file D1:PROGLIB.DB can be
treated simply as a fixed format DOS text
file. You may print it directly from DOS
using option C (copy file) by typing
PROGLIB.DB,P: which will copy the file to
your printer. You could also read it into
Atariwriter (or any other text processing
program), and even ammend the record
layout in line 660. But how ever you use
BOOTBASE, | hope you have fun!

NOTE: In this program, anything which is underlined, should be entered in INVERSE”.,

RX 1 DIN NAMES(200),D$(4),8IZE$(18) ,N$(28 |

),84(1) BUF1$(128) ,BUF2$ (128)

LX 2 DIN Ri$(10@80),R2¢ (200@) ,R3%(500) ,R4
$(500)

GW 3 GRAPHICS @

SN 18 DATA 104,32,83,228,96

W 28 FOR 1=1534 TO 1548

YR 3@ READ J:POKE I,J

15 40 NEXT I

KY 58 POKE 752,1:POKE 789,14:POKE 718,116
1POKE 712,116:H=8

YP 4@ PRINT CHR${125):7 "
OTBASE - By Sol"

AF TR 2" =
1?

BF 88 ? "This program will read the direc
tory"

BL 98 ? "of your Multiboot disks in Drive

1.7
CU 188 7 "You can choose to *

FR 118 7 * = Print labels"

JT 128 7 " = Create a Proglib Data
base"

OM 138 27 " - Both of the above .*

VP 148 7 1? "Enter your choice (P,C,BI"}

TB 158 POKE 764,255:0PEN #1,4,0,"K:"

15 168 IF PEEK(764)=21 THEN ? :? 1? "You
have chosen both":C=2:60T0 2080

A1 178 IF PEEK(764)=18 THEN 7 1? 17 "You
have chosen to print labels ":C=1:B0T0
200

KT 188 IF PEEK(764)=1B THEN ? 17 1? "You
have chosen to create a Proglib"1? "Da
tabase "1C=316070 208

ON 198 GOTO 1é8

AV 288 WAIT=250@:G05UB 1180

SN 205 POS=ADR(BUF1$) : PABS=118EC=48

BF 286 I=INT(PDE/256)1J=PD5-]14254

15 218 POKE 7469,1:POKE 778,821POKE 772,01
POKE 773,11POKE 778,8ECIPOKE 779,8

ES 228 IF PAGS=2 THEN 348

HJ 388 ? CHR$(125):? "Please put a Multib
oot disk in D1 "t? “and press RETURN ,
or # to exit.”

26

CI 310 7

RN 320 GOSUB 1200

CA 330 ERR=R

EU 340 X=USR{1536):IF PEEK(771)<>1 THEN 1
aee

KY 341 IF PASS=2 THEN 347

WV 342 FOR I=1 TO 128:5$=CHR$(PEEK (POS+]-
1)) 1BUFL$ (1, 1)=B$:NEXT |

CH 346 [F PASS=1 THEN PASS=2:PO&=ADR (BUF2
$)18EC=49:60T0 286

| IE 347 FOR I=1 TO 128:84=CHR$(PEEK (POS+I~
HULTIBODT BO |

1)) 1BUF28(1,1)=58:NEXT 1

TH 350 GOSUB 78@

UT 355 IF C>2 THEN 588

16 340 ? 1?7 "Please ready printer ,":? "a
nd press RETURN®

UM 37@ EOSUB 980

NR 375 CLOSE 43

15 38@ TRAP 2@@@

WP 385 OPEN #3,8,8,"P1"

BN 398 PRINT 43

58 391 PRINT 43

8T 392 PRINT 43

§W 353 PRINT 43

MA 395 PRINT #3;"MULTIBDOT DISK ®yD$;" SI
DE "84

WF 394 PRINT 43;"
-="1PRINT 43

CK 397 PRINT 43; "PROGRAN
RE*:PRINT 43

EP 398 FOR I=1 TO N

BY 480 W$=NAMES(I#28-19,1%28)

IF 4B3 J=ABC(BIZES(I,I))

8K 488 PRINT 43;0%;" *jJ

FW 4108 NEXT I

HO 411 PRINT #3:PRINT #3;"FREE SECTORS "
b45-107

NP 415 CLOSE 43

U0 420 IF CC2 THEN 285

DB 508 FOR I=1 TON

TU 510 M=N+1:IF N>58@ THEN 1600

US 520 Ri$(N#20-19,N#20)=NAMES (1%28-19,1#
28)

RD 538 R2$ (N#d=3,Med)=D$

BECTD

XC 548 R3$(M,N)=8%

1D 558 R44 (M, M)=BIZE$(I,1)

BH 548 NEXT 1

D@ 578 BOTD 285

HI 488 IF C<2 OR M=@ THEN 1380

CH 485 ERR=0

YT 418 7 1?7 "Please insert a DOS 2.8 Data
Disk®:? "in D1, 1 shall append to a f
ile"

CR 628 ? "called PROBLIB.DB with *;N;" re
cords."”

PV 638 ? *You can use the PROGLIB databas
e on*

| UJ 648 7 "it for sorting,printing etc.”

RU 643 ? 1?7 "Press RETURN when ready .*

UF 658 GOSUB 98@:TRAP 25080

WB 651 XID 36,%4,D,8,"D1:PROGLIB.DB"

GH 652 CLOSE #1:0PEN #1,%,@,"D1:PROGLIB.D
B!

DL &55 FOR I=1 TO M

IE 653& N=ASC(R4$(I,1)):D$=BTR% (N):1D$ (LEN!
D§)+1,4)=" "iD§(4,4)="#"

AR 668 PRINT #1jR2%(4+1-3,421)jR34(1,1);"

"IR1§(28+#1-19,20¢1);" N/BD

o7 "1 0%

BS 678 NEXT 1:CLOSE #!

WB 6B@ ? 17 "EILE D1:PROGLIB.DE NOW WRITT

EN
LK 698 BOTO 1300

§J 708 N=0:T0T=B1P0G=ADR (BUF1$)

B@ 705 FOR I=1 TO 1@:1F PEEK(POS-1+I)=8 T
HEN 728

IU 718 N=N+11J=PEEK(POS-1+I)3TOT=T0T+Js81
IE$ (1) =CHR$ () INEXT 1

YJ 728 IF TOT>565 THEN B0@

FJ 738 6T={

DY 735 FOR I=1 TO N

80 734 FOR J=1 TO 28

BF 737 IF BT)98 THEN POS=ADR(BUF2$)-128

P 748 S$=CHR$ (PEEK (P0S+29+8T))

BU 741 NAMES (8T)=5#

EN 742 5TaBT+l

FM 743 NEXT JNEXT I

Continued on page 29.

PROFILE ON LEA VALLEY

by Matthew Tydeman.

In 1980 [purchased a 16K Atari 400
for £349, (your not the only one who paid
a fortune in those early days) witha 410
cassette player and, of course, the Star
Raiders cartridge, the 8K wonder of Atari!
Within 6 months [was totally bored with
game playing and [began to dig deeper
into the possibilities of my computer.
Finding out how it worked, and how |
could achieve graphics as good as Star
Raiders, (great ambition, eh!). Yes, you
guessed it, [could'nt! So, where was [to
turn? Other users seemed to be my only
hope, they must be having the same
problems as me [thought. [rushed back to
the shop where [had bought my machine
and I had a long talk with the proprieter.
He gave me the phone number of a man
who had asked the same questions only
hours before me. I rang, and within 2
months the ‘Atari Users Group’ was set up,
with a member list of 5, including the
officials!

At the beginning, Nigel Fowler was
the President and | was made Vice-
President. This may seem a little odd, but
in those early days (before Atari (UK))
instructions on how to form a users group
came from the USA, so it is no surprise that
the clubs were modelled on the American
Presidential system. At the start we could
give little help to our members except to
discuss games and new releases, (at that
time Caverns of Mars was considered to be
great!).

Slowly we got it together and since
then we have gone from strength to
strength. We advertised in local shops and
newspapers in order to increase our

Curoe

| * amp ™0 avapy o

| NUCH mgge, AT sTRINg

|

! v

L —Clume

~2N5 L Mumbop
—r g

—

Newsletter

numbers. We did naughty things too, like
looking up owners names in shop sales
lists, but all in a good cause we feel. Soon,
meetings in our homes became too
crowded and our only choice was to hire a
hall and this is what we did. We rented a
small Church Hall and we still hold
meetings there to this day.

At the meetings, most members were
keen to see what software was around and
so we had to have 3 or 4 machines
constantly running with all the latest on
display. Unfortuneatly, at this point, Nigel
Fowler had to leave us, (pressure of work)
and this meant a new President had to be
found. As often happens, nobody wanted
the job at the time, but we managed to
muddle through with yours truly at the
helm for the next six months. Then one
night we had a meeting in a local pub (I
assure you that this was a one off, Hic!)

Atari night at the Lea Valley Club

and Ken Hewitt was voted in as our new
President.

From here on it was all uphill, our
newsletter got bigger and bigger, (and
better and better we hope) increasing from
4 to 20 pages. Our meetings became more
regular and our attendance grew by 50%,
well almost! We started to give
demonstrations of new software of all
types; arcade, utilities and educational. We
gave help to people with programming
problems in Basic and Machine Code, and
we now include Logo (Pilot is not
supported though, but then its not that
popular in the U.K.).

We cater for everyone including
youngsters with no knowledge except how
to play games, and adults with no
knowledge except how to play games (!).
We have an age span from 10 to 60, but
sadly only 2 lady members. We have
members all over the country, and indeed,
all over the world, so anything is possible.
If you would like to join in the clubs
activities and are within attendance
distance (London to Hertford) why not call
in on us? If you live elsewhere we can
arrange a special membership deal (write
for details).

Meetings are held at the Church Hall,
Church Lane, Wormley (near A10/M25).
They are fortnightly, commencing at
7.00 pm until 10.00 pm. Please send a
large SAE for details, or phone Waltham
Cross 28168 (evenings only), we will be
very glad to hear from you. We would also
like to hear from other nearby Atari Users
Groups so that we could organise a ‘Mega-
meeting', how about it?

WHAT'S MIDI?

by Mlchael Stringer

Looking through the specification of
the Atari 5205T the other day I noticed
that it read ‘512K RAM, Expandable ROM'
and then ‘MIDI Interface’. MIDI was placed
third in the order of priority, way ahead of
such exciting things as ‘Hard disk Interface,
16 Bit Motorola Microprocessor running at
8MHZ', etc. To be given such a prominent
position, it must be pretty important.

MIDI is an acronym for Musical
Instrument Digital Interface, which isa
Communication Standard for musical
instruments and is probably the most
important single development devised for
the electro-musical fraternity. It allows the
hardware of this artform to communicate
with itself and also the microprocessor, and
in the case of the Atari 520ST, an
enormous amount of power is released.

The initial meetings between the
major manufacturers began in 1981 and a
draught proposal was put forward in April
1983 which gave rise to the MIDI DATA
FORMAT. The signatories of this
document were Oberheim, Sequential
Circuits and Roland, who were also acting
on behalf of Yamaha, Korg and Kawai.
These manufacturers did not want to fall
into the same pit as computer manufact-
urers, they realised the importance of
having a universal instrument interface.
Imagine how much more enjoyable it
would be if all the manufacturers of, say,
6502 based computers had produced a
similar specification for a Basic Language!
Anyway, they didn’t and we haven't.

The proposal was thrown around a bit
and MIDI specification 1.0 was published
in August 1983, The first instrument to be
manufactured with MIDI incorporated was
the Prophet 600 and since then it can be
found in Organs, Electric Pianos,
Polyphonic Synthesizers, Guitars, Remote
Keyboards, Expansion Units, Digital

Sound Samplers, Digital Sound Sequencers,

Tone Generators, Rhythm Units, Foot
Pedals, Electric Drum Sets, the Yamaha
CX5 MSX computer and the Atari 520ST.
Not bad, for something proposed less than
two years ago, and this list is being added
to almost daily. Designers are constantly
looking for more and more applications in
which MIDI can be incorporated.

Is it Limited?

The next question that needs to be
answered is, "What can it do"? Before this
guestion can be answered it must be
appreciated that MID], in its present
format, does have its limitations. It will not
turn a cheap synthesizer into an all
dancing, singing, superduper top line (and
very expensive) synthesizer, neither will it
turn you into the greatest musician since
Wolfgang Amadeus Mozart, but it will
certainly open up a new, and very
absorbing, world if you have any musical

28

Part 1

Opto -
Isolator

UART

MIDI IN

MIDI THRU

MIDI OUT

Figure 1

interest. The extent of its possibilities will
be limited by the software availability. If,
for example, you have a touch-sensitive
synthesizer, there is no doubt that the Atari
520ST will be able to teach you to play
correctly. This is because the synthesizer
will be able to communicate with the
computer, as well as the computer
communicating to the synthesizer. The
computer will know exactly which note
you have played in response to a given text
and it will know exactly how you played
the note. All the information regarding
note, key velocity and pressure is sent out
from the keyboard and can be analysed
very critically.

If learning to play does not appeal to
you, it is still possible to utilise the other
applications, such as linking a synthesizer
to the computer and letting the computer
play scores, or store real time information
from the keyboard, if you can already play.

The computer can synchronise other
synthesizers and ancillary apparatus, such
as thythm units, sequencers, in fact
anything from the list given eatlier, upto a
maximum of 16. The only proviso in this
instance is that only one voice, or channel
is dedicated to each peripheral.

The two essential features of MIDI are
the Interface and the Control Data. In
Figure 1 can be seen, in a simplified
manner, the important features of the
Interface. As far as the user is concerned, it
consists of three ports. These are known as
MIDI IN, MIDI OUT, and MIDI THRU (yes
it is another American word we are stuck
with!). These are standard 180 degree 5
pin female DIN sockets. The Atari 520ST
only has two sockets, MIDI OUT and MIDI
IN.

The fact that there is only one pair of
sockets is a very limiting feature, but more
about that at a later stage. There is no need

for a controlling device to have MIDI
THRU, which is why there are only two
sockets to be found tucked at the back of
the computer.

MIDI DATA is Asynchronous, Serial,
operating at 31.25 Kbaud, which is why
MIDI data can be sent via DIN hardware,
because it is obviously cheaper to
manufacture than it would be if the data
was sent parallel. The three modes of data
transfer are MIDI IN, which receives data,
MIDI OUT which transmits data and MIDI
THRU provides a buffered output of data
received from MIDI IN, allowing data to be
| sent to the next piece of apparatus in a
Train Network.

The interface is a 5mA current loop,
which is opto-isolated. The two states of
the data, HIGH (1) and LOW (0) produce
current changes in the circuit. When the
data state is LOW, current flows through
the opto-isolator, effectively grounding the
5V normally sent to the UART, causing the
UART to see a logic LOW. When the logic
data goes HIGH, the opto-isolator does
| not conduct and, therefore, the UART sees
| logic HIGH. There is no ground
connection between a transmitter and
receiver. The screened cable from the
MIDI IN socket is not connected to the
opto-isolator (pin 2). It can be seen from
the diagram that on all the sockets, pins 1
and 3 are not used. The maximum length
of cable that can be used is 15 M (49 Feet).

Systems

There are two ways of networking a
system, these can be called the Train and
the Wheel. Typical examples are shown in
Figures 2 and 3. Figure 2, is a possible
arrangement using a Train Network. The
‘Master’ controller could be the Atari
520ST, for example. Two-way communi-
cation is only possible with one of the
peripherals, here it is connected to Synth
1. Data from the Master is transmitted to
the MIDI IN of Synth 1 and the MIDI
THRU from this connection is forwarded to
the next peripheral. The MIDI OUT of
Synth 1 is connected to the MIDI IN of the
Master. It can be seen immediately from

ouT
Ny Jour frare N} fRuT Ny AU iNg
520 ST Synth 1 Synth 2 Sequencer Drum Set
Figure 2
|
: Sequencer
ouT IN
1
IN ouT
IN out IN __our
Drum Ideal
Synth 1
Set Master
ouTt IN ouT IN
ouT IN
| A
IN ouT
Synth 2
Figure 3

this arrangement there is a severe
restriction enforced by having only one set
of MIDI sockets. There is a very cramped
utilisation of the full potential of the Master.
MIDI is a two-way communication system,
and it can be seen that only one peripheral
can utilise this facility.

Itis a great pity, that in their infinite
wisdom, Atari could not have put some
extra MIDI outputs on the 520ST to take
full advantage of the tremendous power
thatis available. This would enable a

Wheel Network to be set up. In Figure 3, a
typical Wheel Network is shown. Thisis
without doubt the best arrangement to
have, all the peripherals can communicate
with each other, utilising to the full, the
enormous potential that MIDI can provide.
If Atari had increased the number of outlets
it would have turned a great computer into
an outstanding one!

Next time we will look at the Data
Format and the structure of the MIDI
Language.

Bootbase

Continued from page 26.

YY 758 POKE 744,255:7 “ENTER DISK % (4 CH
ARE) "

BB 755 INPUT D#:IF Dé="" THEN 735

TU 754 ? “ENTER SIDE (A,B)"

K& 757 INPUT 8$:1F Sé="A" DR 56="B" THEN
740

UL 758 BOTO 757

HT 760 IF LEN(D$)=4 THEN 788

KI 770 DS(LEN(DS$)+] 4)=" "

1T 788 RETURN

NR 808 ? :? "THIS IS NOT A VALID MULTIBOO
T _DISK*:WAIT=258@:605UB 1188:POP :60TD

205
WP 980 POKE 764,255
JIN 918 IF PEEK(764)¢>12 THEN 918

1] 928 RETURN

LG 1BB@ ERR=ERR+1:IF ERR(S THEN 348

NG 1818 ? 1? “Error in reading your Multi
boot disk":? "Please check it and re-t
ry"tHAIT=2500

IP 1028 BOSUB 1188:60TO 205

K 1188 FOR I=1 TO WAIT:NEXT I:RETURN

FV 1208 POKE 764,255

16 1218 IF PEEK(764)=7 THEN 680

UN 1228 IF PEEK(764)<>12 THEN 1210

AN 1238 RETURN

X6 1380 ? 7 "THANK YOU FOR USING BODTBAS

OR 131@ ? 1?7 "BYE FOR NOW':POKE 58@,1:CLO
SE #1:0PEN #1,4,08,"K:"t? 17 12 12171
G0TD 3808

QU 14088 7 1? "588 ENTRIES IS THE MAXIMUM®

Cv 1618 7 "FOR SAVING TD D:PROBLIB.DB"

PE 14628 7 :? “LIMIT NDW REACHED !'*

WL 1625 ? "(You have a lot of prograss ..
ik

NJ 1638 WAIT=2500:605UB 1108:60TD 205

UX 2888 ? :? "ERROR IN PRINTING":? :GOTD
368

0W 2588 ERR=ERR+1:TRAP 258@8:IF ERR1 THEN

2510

0X 2585 CLOSE #1:0PEN #1,8,8,"Di:PROGLIB.
DB*:60TD 652

CI 251@ 7 :? "ERROR _IN ACCESSING DOS 2.9

"2 :60TO 685

OE 38@@ ? :? "PRESS RETURN TO RE-BOOT*:PD

KE 752,1:60SUB 9@@:X=USR(58487)

29

THE HAPPY TYPER

Introduction

The Happy Typer is a utility for use
with Atari Basic. It will give you automatic
intelligent line-numbering and 10 extra
keys which you can redefine to print out
keywords, thus speeding up your typing.
Unlike many auto line numbering facilities,
this one allows the full use of the Atari
screen editor, so you can adjust lines while
still in the auto mode. The redefined keys
are accessed by pressing the SHIFT and
CONTROL keys simultaneously with a
number key. These keys are not used by
Basic or the operating system, so you can
still type in all those control characters
safely.

Making a Copy of
Happy Typer

If you are using a cassette only
system, then type in listing 1 using Basic.
Save out this program before doing
anything else. Type RUN and the
program will check your typing and ensure
that the data is correct. Retype those lines
that produce an error. Once all is correct,
the program will prompt you to ready a
new cassette. On typing RETURN the
program will save out an autoboot file
which is the Happy Typer, Load this file by
pressing START on power-up with Basic.

Happy Typer will load, tell you that it's OK,

and be ready for use.

If you are using a disk system, type in
listing 2 and save it out. RUN it and correct
any mistakes found by the program. Once
it's ready, the program will ask you to
insert a disk with DOS on it. The program
will then save out an Autorun.Sys file onto
the disk. Don't change the filename —
Happy Typer will only work as an
Autorun.Sys file. The next time you boot
this disk with Basic, Happy Typer will be
ready for use.

Using Happy Typer
1-The Auto Line Numbering
Every time you tap the TAB key after
a RETURN, a new line number will be
printed. If you type on the TAB key and
the last key pressed was not a RETURN
then the TAB will be performed as normal.
This is better illustrated by example.
Directly after power-up, press the
TAB key — the first line number will be
printed. Type ?"hello” then RETURN
then TAB. The next line number will then
appear. Play around and get used to using
the TAB key after a RETURN. If you type
in a few lines of Basic, then list them. then
press RETURN and TAB, the next line
number after the last line of your program

30

by Steve Hillen

is printed. Also, if you use the cursor keys
to move to another line, and press
RETURN on that, then the next auto line
number will be that plus 10.

This method of auto line numbering
remembers the last line you typed, and
gives you the next one if selected with the
TAB key. If you want to type in a new
number, just do so without using the TAB
key.

Finally, to change the increment of the
auto line numbering. just type:

INC nn where nn is any number you like.
e.g. INC 2000 will give line numbers 2000
apart, INC 1 will give numbers one apart.

2-The Redefined Keys

The keys that can be redefined are
the row of 10 numbers across the top of
the keyboard. To redefine a key type:

DEF 1 ?"hello”

Every time you type SHIFT CONTROL
1 simultaneously, ?"hello” will be printed.
Another example; DEF 8 POKE. Now a
shift-control 8 will type out POKE for you.
Get the idea?

Note that the space between DEF.1, .
and the string are important. Also note that
each key is allocated only 16 characters, so
this is the maximum you can stuff onto one
key. If you redefine a key that has already
been redefined, then the last redefinition
will be printed. If you should wish to delete
a key just type DEF 1 then RETURN
without the second space. You will find
that all characters except trailing spaces
and the return key can be printed, so you
might set up one key to backspace say 10
characters by using the Escape Cntl cursor
keys.

Finally, don't worry about hitting the

Systemn Reset key, the program is safely
installed and protected, and will remember
all the keys you've defined, and the
increment and current line number.

How does it work?

The program falls into two sections.
Firstly there is an editor patch. The editor is
located in the device table, and its vectors
are moved into RAM. | adjust the get-byte
vector to point to my new routine, This
new routine waits for a return to be typed
then scans the input buffer for either INC
or DEF. If neither are found then the line is
passed back to Basic as a normal line. If
one is found, then the operation is
performed, and the line is not passed to
Basic. The second section is a patch into
the keypress routine, The keypress
interrupt vector is stolen and the new
routine looks for a shift-control number or
a TAB immediately following a return. If a
defined key is detected, then the string is
printed out a byte at a time through the
editor put-byte routine. If a TAB is found,
then the input buffer is examined for a line
number and the increment is added to
form the next number which is then
printed via the put-byte routine.

The program is just over 3 pages long
and protects itself by altering MEMLO.
Don't change MEMLO or poke anywhere
beneath it!

Note that this is only an editing aid
and is irrelevant when running the
program. The cassette version loads over
pages 7-10, and the disk version loads
over pages 31-34, so page 6 is left free for
your own use.

Happy Typing!

Listing 1

EI | REN G4 tssaenessbedbitdbtbtessies
NH 2 REM

BZ 3 REM HAPPY TYPER (CASSETTE VERSIDN)
NJ 4 REM

| TF 5 REM BY STEVE HILLEN

| NL & REM

IT 7 REM MONITOR MAGAZINE 1983

NN 8 REM

EQ 9 REM #ssssssessis s bt ibibsbessss
DW L@ DATA 0,1,2,3,4,3,6,7,8,9,0,0,8,8,0,

0,8,10,11,12,13,14,15

MM 15 DIN DAT$(91) ,HEX(22)
KI 28 FOR X=0 T0 22:READ DrHEX(X)=D:NEXT

X:LINE=990:RESTORE 180@:TRAP 4812 “Che
cking data":PRINT

LI 25 LINE=LINE+1@8:7 CHR#(28);"Line:";LIN

EtREAD DAT$:IF LEN(DAT$)C)98 THEN 118

VD 28 DATLINE=PEEK(183)+PEEK (184) #2561 IF
DATLINECOLINE THEN 7 "Line :"jLINE}" o
issing."tEND

LU 38 FOR X=1 TO 89 STEP 2:D1=ASC(DAT$(X,
X)) -481D2=ABC (DAT$(X+1,X+1)) -48: BYTE=H
EX(D1)#16+HEX (D2)

JW 35 IF PASS=2 THEN PUT #1,BYTE:NEXT X:R

EAD CHKSUM:BOTO 25

BL 48 TOTAL=TOTAL+D14D2+%4:IF TOTAL)999 T
HEN TOTAL=TOTAL-100@

CE 45 NEXT X:READ CHKSUM:IF TOTAL=CHKSUN
THEN 23

NE 50 60TO 11@

PE &B IF PEEK(195)¢>6 THEN 118

IT &5 IF PASS=2 THEN CLOSE #1:? "Done it.
*1END

UE 78 ? "Ready cassette and press (return
>*110PEN #1,8,128,"Cs"

HH 98 PUT #1,2535:PUT #1,235:PUT #1,B:PUT
#1,31:PUT 41,176:PUT #1,34

CN 188 ? "Writing file™:? :7 1PAGE=2:LINE
=098:RESTORE 108@: TRAP &8:60T0 25

AZ 118 7 "Bad data on line:"jLINE:LIST LI |

NE:?7 TOTAL:END

PE 1080 DATA BOOBBEBARRATATICBDB2DIATRCED
150AAT0BED4402A280AF099D4283AT069D4503
A9B59D44B3A70BID4T03ATTF , 990

DR (810 DATA 9DAB@I2056E41B68486178707920
9479786572204F 4B2E9BDABBARERRGRRARRRED
OBacecapapeneRopaRGROREE, 610

5K 18208 DATA DpoB@pepepocapacRRanEcOBRAD
fbaopeaca0RRE0ARERRR0RARRRARADARARADGE
00R0BRORADDBAT4BBDETB2AY,70

HO L8308 DATA @ABDEBB2A2@0BDIAAIEBEBEBCYAS
DBF6BD18@3BSCBBD190385CCAT189D18B3AT8A
9D1903ABAFBICB7718@ABB10,255

KS (840 DATA FBADICBA1BA981BDADBBADIDAALY

@B8DAEABATABED 1 DBAAT4BBDI1CAAAD LEBALBLY |

B18DBABYADIFBALTBREDBEAT 430

WK 1030 DATA 78ADABE28DAZA7ADAYE2EDA3ATAY
B7800902A97B6DBBR2581B6078DBBA4BTBABAC
158AADETD2BD150AA2A9DD4L, 518

1J 1860 DATA BAF@I3CAIBFBCY2CDOB4CEACFB2B
6BABABARGBACFFFFBDA167FB1BADLRATEARADA
BABAAABESFB9BD6BAT200989,733

N@ 1878 DATA AESFA9EBCE4BAIDAEEACICATAZFF
EBBDABRACTIOFOFBBE] ABA20BTBFEEL LAAAE LS

| BABDE@BAAEBAGIBFBA9218DFC,B

| HL 1088 DATA B24BABABAAGBSBADA2FFEBIRSEBD

[8@45Co28FBF tCIIBFOF 29049CT3ABRASERARRD

| 998BBABDBABS297FCI3090AC, 188

IN 189 DATA C93ABBABEBCBCAASIREAFRI4A204
B7@BOATDBBRACABE 1 BFAATI0TDBBRACALBFALR
A204BD1BQA7DABOACYIATBAT , 263

C99BDB3BBA4690487620FB075BA2BRAE400ARD
Bep78pe5DD28BADBASEBCECE, 396

YY 111@ DATA @390F2B01DCBEBCAAIDAFAEEABBA
EBBS90E1ATFFBD178A6BABLBAARTTIBEE]70A28
6BACL70AR99R9780058D6R05, 580

AH 1120 DATA AEABRABD3BAARDD3ABBD2ERABDDA
8820D208A2008E170A981AATBT9D4283BE4983
A97F7D4BBIATBATDASB3AT32, 678

BY 1130 DATA 9D44@32056E44C4DARACFFFFABFF
CBB78485C99BFR0BCI3RT0B4CT3A9FB3BBBIE
8830FAAZB4D98405250F 910,848

AB 1100 DATA E9BATBTDBBBACALAEDAB2BFFFFOB

CR 1142 DATA BACABB1BF4EG@B3EBBATEE9D1REA
CAIBFALBGBZAFFFFABARBABTABAECTINT046CY
JABB423BETI04BBADADABAAA, BBY

LU 1150 DATA A9@88DSE@ICBE780@5CTTBDRAT6E
ARATBBIDL109FB21CBBI8ADSCI9BFR119D4BAY
EBEESE@YADSE@9CT I BIBEACE, 95

WC 1168 DATA SE@96BAAADSEBT9DA109184A3840
daeeanasoonaeeedceodepceaeaneaaeaaan0e
BogoAcoonoRead0RaRRERRR, 647

DK 1178 DATA doeococpaceccoseepeaaoaccaan
20a0cpp0RARRARGR0ERORRRR0RRRRRRRRORDGE
@nopopepeecaananeeaoanea,qs7

J1 1188 DATA Q@aopeaeBoRODAAREREBARRRERRE
goepoeepaROBAGRRERACEEEAARGDAROERRORAR
fAbopococaopcacopacRoanea, 287

UC 1190 DATA @oopecccoseacpeeepeaeannrae
doeeooanasceareedetiecieniecaBo0ada0ae
laeoeancRapaeanceanance,sa7

OM 1208 DATA 0dRe@PeaRRaARR3IR3A3A3130AARE
anaiceeoeaceenaconasandnntenseasenanae
0DAR0B494EAT4445460B0905, 58

OU 1218 DATA @D3I796E746178206572726F722E
9B@eF2DFDEDADEDDDBF 3FSFRARRARDRREARARE
dodpaeepacoeacanceacenan, 524

Listing 2

EI | REM #Redsdei i i e b pin e e iasins

NH 2 REN

WE 3 REM HAPPY TYPER (DISK VERSION)

N 4 REM

TF 5 REM BY STEVE HILLEN

NL & REN

1T 7 REN MONITOR MAGAZINE 1985

NN 8 REHM

ER T REN #¥ssssrsnsssbessbnubbsbRbseess

DW 1@ DATA 8,1,2,3,4,5,6,7,8,9,0,0,8,8,8,
8,0,10,11,12,13,14,15

MM 15 DIN DAT#(91) ,HEX(22)

KI 28 FOR X=B TO 22:READ D:HEX({X)=DiNEXT
¥:LINE=99@:RESTORE 10808@:TRAP 4@:? "Che
cking data®:PRINT

L1 23 LINE=LINE+18:? CHR$(28);"Line:";LIN
EtREAD DAT#:IF LEN(DAT#)<>9@ THEN 118

VD 28 DATLINE=PEEK(183)+PEEK{184) #256: IF
DATLINE(OLINE THEN ? "Line :"3LINE;" n
issing.":END

LU 3@ FOR X=1 TO 89 STEP 2:Di=ASC(DAT$(X, |

X)) -48:1D2=ASC (DAT${X+1,X+1))-48: BYTE=H
EX(D1)#14+HEX (D2)

JW 35 IF PASS=2 THEN PUT &1 ,BYTE:NEXT X:R
EAD CHKSUM:BOTO 25

BL 4@ TOTAL=TOTAL+D1+D2+94:IF TOTAL)999 T
HEN TOTAL=TOTAL-1D@@

CE 45 NEXT X:READ CHKSUM:IF TOTAL=CHKSUN
THEN 25

ME 50 GOTO 110

PE &B IF PEEK(195){>& THEN 118

IL &5 IF PASE=2 THEN PUT #1,224:PUT %L, 2:
PUT #1,225:PUT #1,2:PUT #1,78:PUT §1,3
4:CLOSE #1:?7 "Done it.*1END

HN 78 ? "Insert disk with DOS.Press (retu
rny,"3:DIM INS(1) s INPUT IN$:0FEN #1,8,
B, "D: AUTORUN, 5Y5*
KH 98 PUT #1,235:PUT #1,235:PUT #1,8:PUT
#1,31:PUT #1,176:PUT #1,34
| CN 18@ ? "Writing file®:? :? :PASS=2:LINE
=99@1RESTORE 100@:TRAP &B:EB0TD 25
A7 118 ? "Bad data on line:"jLINE:LIST LI
NE:? TOTAL:END
FC 180@ DATA 28FFFFDBA94EBDE7@ZA9228DEBEZ
A200BD 1 ADIEBEBEBCS45DAF 6BD LBAIBSCEEDIT
@385CCAT1B9D18@3A9229D19,243
HV 1810 DATA B3ABEFBICB991B228818FBADIF22
18469218D5820AD20226988805128A9208D2822
A94EBDIF22AD21221B690818D,232
| XY 1828 DATA 8D21AD22226708BDBE2178ADBEAZ
BDASIFADA9B2BDALIFATIFBDBTA2AT7EBDRBRAZ
58186078088A4B984BAC1B22,310
| AK 1830 DATA ADB9D28D1822A289DD4422FB13CA
| 18FBC92CD@AACBACFR2B4BABLBAASBACFFFFED
| 6421F01BBDAI21BABARABARA, 581
| XP 1848 DATA AABE4221BD4E2120@C21AEL221ER
| CE&321DBEEACIF IFA2FFEBBDAE22C93BFAFREE
1922288C21EE1922AE19228D, 707
EP 1830 DATA BEZ2EB@S7BFBAY21BDFCE26BABLE
| AAR4BSB4BAZFFEBIASABDEBASCT2BF BF 4CTIBFR
F29849C93ABR4SEBARBBTTBE , BZ3
XK 104B DATA 22BDA@@S297FCY3898BCCT3ABEAG
EBCBCARSIBEAFD]4A2B4B90E229DRE22CABE1A
F&A9309DOE22CA1BFA18A204,926
CD 1878 DATA BD13227DBE22C93A9BA3ETBAILID
@E22CA1BEDAR2RFFFFABCIIBDAIBAA4E984878
2BF31FSBA2BRBE4322A0BREY, 31
GS 1868 DATA 80@5DD2P220@ABEBCBCARIIAF2BE
{DCBEBCAA3IDOFAEE4322ERASTRELIATFFBD1A22
! 4BABGBAAATIBEE1A22286BAC, 229

RO 1098 DATA 1A22A99B9980858D8BBSAEA3228D
332280D62@BD31228DD72028D520A2808E 122
901AATBT9D42B3IBEATBIATTF | 251

SK 1180 DATA 9D48@3A9229D4583AT359D448320
G6E44CADABACFFFFABFFCBBYB405C97BFBBBCY
3B9004C73A98FA30BE1EB838,393

AB 1110 DATA FAA284B98485290F9D1322CABB10
FAE@DB300BAT@09D1322CA1BFA1BEB2BFFFF 4B
ABB4B7BABSCT329046CT3ABE, 427

1B 1128 DATA 4238E93@4B0ABABARAAAATAREDS!
21C8BYBRRSCITBDBRILBARATARTDEA21FB21C8
B78@@SCYTBFE119D6E21EBEE , 543

DU 1138 DATA 6121AD&121C9109BEACEAL2148AR
AD61219D642118603840000R0BOR0RARERA0AE
opecpeapesteadeeanntente, 215

TN 1148 DATA cedpaceeacendaceandtancsensd
abecpeapeascadnoaecoanioncoaoBateRI0el
ébeapeepenaecaapanatenea, 35

NH 1158 DATA BeadppedolapisnaeaBpRRRBdORE
ébeepacpeacanceranciendatianineeaaenes
Boaeoeapeoaeoaenaeniane ,BS5

TW 1168 DATA Goocepepdeecdeciendaeaacanes
beodeasanEEAABDARARARARARAARRARERR0ER
dddpdeepapeeacaaerananed, 73

60 1178 DATA BE@ceeaRBABRARARRGARARERRDER
200838303038313008800000 1 Aane00RRAGRGE
fpdedenpapecacEDARRABREE, 12

AF 1180 DATA @B49AEA3IA445462021D81053796E
746178206572726F722E9B080F 20FDEDADBDDDB
FIFSFRBATBCAD1B22A5ACEDA! ,620

JT 1198 DATA [FASBDBDB21FA9BBBSBCAT1FESAD
A7808D4402A208A989904283R9229D4583A988
9D4403ATBRIDATB3IATTFIDAB , 684

HR 1208 DATA @32B54EAACATIFAB417070792054
79706572204F4B2EBRAR0RG0R00RRARRDA0R0
degedcodooeaccadeeanenaa,297

a1

awrrreees

Previous issues of this magazine are
obtainable from the club for £1 plus 30p
postage each. They contain many
interesting and informative articles, hints &
tips, program listings for you to input,
reviews and practical advice. If you have
missed out send for your copies of back
issues today! Please note that issues 1,2,3
& 7 are already sold out.

Issue 4.

Includes a complete in-depth look at
Display Lists, what they are, how to use
them, LMS explained, horizontal and
vertical scrolling, etc. Another article shows
how to get text on a Graphics 8 screen and
gives an example graph to prove the point.
A comprehensive review of many of the
different types of joystick that are available
gives ratings for comfort, action, looks and
value. Program listings are aplenty and
include ‘Peckman’ a Basic version of a well
known arcade game, Stunt Rider in which
you must jump your motorbike over the
buses, Hex is a two player board game
with excellent graphics, and for the more
serious minded, you can even enjoy
designing your own shapes with CAD
(computer assisted design).

Issue 5.

The first part of the series on
‘Cracking the Code’ starts in this issue and
covers Binary, Hexadecimal and Decimal
mathematics. There is an article on
protecting your Basic programs from
prying eyes and an interesting article on
hardware modifications to the 800/400
machines to give improved sound and

)

picture quality, a cold start key and a busy
light for your cassette player. Also included
is a review of the new programming
language ‘Action!’ showing its potential for
creating exciting fast action games. Games
listings shown include Gil-bert, which is a
‘Q-bert’ type game, also Dragonfire in
which the player must cross the
drawbridge dodging the dragons flaming
breath to reach the treasure room. Other
listings include a label maker and a QRA

locator for Radio Amateurs.

Issue 6.

Includes a useful tutorial showing how
to print Micropainter and Versawriter
pictures, also contains a terrific program
demonstrating 80 characters across the
screen. A new regular column for
adventure enthusiasts is started to give
reviews of adventure games and give hints
and tips on how to play them. Part two of
Cracking the Code continues with
addresseing modes and binary sums, The
hardware design for a Light Pen is shown
together with some simple programs to use
with it once you have built it. Fun with Art
from Epyx is reviewed and some of the
excellent results of using this package are
shown. Programs include Planetron and a
RTTY listing for use with a short wave
band radio, the Atari 850 interface and a
signal terminal unit (such as the Maplin
TU1000).

Contains a preview of the new Atari
computers. Two new series start, one
about how files work and the other
‘Starting from Basics' for beginners.
Cracking the code continues and the
concluding part of ‘Interrupts’ discusses
horizontal and vertical scrolling. The
adventure column includes reviews of
Mask of the Sun and Sorcerer. Other
reviews include Conan, Spy vs Spy, Alley
Cat and Ghostbusters. Programs are
Matchbox, a concentration game, Quick-
plot, a Graphics 8 Plot/Drawto utility and
Nightmare Reflections, an exceedingly
frustrating adventure.

Cracking the Code
Continued from page 21.

equal’ (BEQ) instruction will take us to
EXIT which returns to BASIC. The testis
made first in case the multiplier is zero, if so

Listing 7

10 DIN HEX$(16)

20 LINE=100003TRAF 100

30 READ HEX$,CHHSUM:SUM=0:J=015TART=
1536

40 FOR T=1 TO 15 STEF 2

30 D1=ASCCHEX$(T,1))-48302=ASC(HEX$(
I+1,I+1))-48

60 NUM=((D1-7%(D1>16) yxi&+(D2-7%(D2>
16)))

70 SUM=SUMHNUMIPORE START+J,NUHS J=J+
1INEXT T

80 IF SUM=CHKSUM THEM LIME=LINE+10iC
070 30

90 PRINT "Checksus error on this lin
CH

95 LIST LINESEND

100 PRINT "Data in memory,"

10000 DATA £84846BBSCEAB40AA,1026
10010 DATA CSCE900SASCERACE, 1254
10020 DATA AAAZ0085D4ESDSED, 1754
10030 DATA 00FOOF1BASDA45CE, %40
10040 DATA 83D49002E4DSCAAC, 1212
10050 DATA 1705400000000000,125

32

then the result will also be left as zero. I
Assuming the multiplier isn't zero then lines
320 to 350 clear the carry and add the |
multiplicand to the low byte of the result.

If the carry is left clear then a branch is
made to NOCARY, else one is added to
the high byte of the result by the increment
instruction on line 370. This method of
seeing if the carry is set and then
incrementing the high byte by oneis
exactly the same as adding with carry
(ADC) zero to the high byte, however, this
would require a load and a store
instruction, thus we save two bytes! All that
happens then, is one is taken from the
count by the decrement X instruction and a
jump is made back to the comparison
instruction at ML TPLY to continue the
multiplication. The loop will continue like
this until the count in the X register has
been taken to zero, once this happens it
will return to BASIC and the answer, held
at RESULT and RESULT+1, will be
placed into BASIC's variable.

Running the Program

To run the program it will have to be
in the locations starting at 600 hex (page
6). If you assembled your own copy of this
program then you could load the object file
into memory, for disk owners life is simple,
just nip into DOS and binary load the
object file, then jump back to BASIC.

If you are using the assembler editor
cartridge with cassette then beware of an

error. You cannot CLOAD the object file
as is stated in the manual, instead you will
need a short routine (see the one on page
8 of issue 6). such utility routines will be
delt with in the next part of this series.

If you can't load your object program or
don’t have an assembler yet, then Listing 7
is a BASIC program which reads the hex
data and stores them in memory after they
have been converted to decimal for the
POKE statement, if you have made a
mistake in the data a ‘checksum error’ will
be printed out, if so, then re—check the
DATA statements. Having saved the
program, type RUN and the machine code
in the data will be poked into memory,
after a short delay the message ‘Data in
memory’ will be displayed. You can now
test it by typing:
ANSWER=USR(1536,10,24)

then typing: ANSWER will give the result
of 240. You can change the two
parameters, but don't alter the first number
of 1536, this is the decimal for 600 hex,
which is the start of the program.

Until Next Time...

In the next issue [will tie up some
loose ends, including looking at an
improved multiplication routine, and then
start some new programs and topics. Have
fun experimenting until then, and if you
haven't already done so, rush out and buy
that assembler you were promising
yourself!

EEExEEE
EEEEEEEEEEEENEEEE NN
lIl----,llllIllIlllllllll

i "
- . . . - . : | ; k‘ i
1 Sk 5

IIE'“-.I-III L [Y |

1 Y P4 ‘IIIIIIIIIF,>® !l

II«K;%*iIIIIIIIIIL-;
, jIlll!?f"-l-lll

| zﬁwwglﬂnllllll
EEEVENESIERERDEERE L

NS205

POWER WITHOUT THE PRICE

THE NEW ATARI 520ST

Under the new leadership of Jack Tramiel (farmer boss and founder of Commodare

' a ' Busi Machines), Atarl Corparation have marked their entry into the world of

business/parsonal computers with & maching which leaves the competition standing,

“Imagina a Fat Mac - the 5TZK Apple Macintosh - but with o Digger acreen, I' Tramisl's siogan 'Fower Without the Price’ has been implamentad in the manutacture

sm(mu (524,288 Eytpa) elager keyboard wilh numesic keypad, cursor and funation Keys, and chou of the new 512K Atari EEDG'Y oolour computer which offers the user amazingly high

lﬁ:w-uﬁfﬁﬁfﬁ‘ﬂ : z I-Ia;al-gnhﬂu- glves you seme idaa o':vmai the Amksa:sle i, mahpl for two. g o uv- &t an ow price. Launched 85 & work-atation, this new sysiem
g M otput aeama fester, Second the Atari syst about one ll! mnl’l " Brlel

200K 105 sparsing gl S e (e ket e ”ck';wm PRAGTH G ::::r:;rm BEvEn am.r- olcnuu a3 woll s mu 53031‘ cdmpularsumn 12K HAH

GRAPHICS muu,ﬂuﬂg"g (with 18 key numeric Ildypldr. MIDI interface, GEM uod a BOOK 2% inch Ulih drhc. |||

22, bl PPH' paralist intsrface for far the pukngs- price of oniy £851.30 («VAT = £748). Dubbed the ‘Mac beater and tha
scroen wiil wm.u-w«-é'mummnnul ‘Jackintosh’ (after Atari's Cnief, Jack Tramisl), Atari's new machine has baen directly

Miﬂl\ o in wem ;Ianrunnmanl senal modem, rnles et YES compared with the Apple Macintosh ARP £2598 (+WAT = £2985) which offers similar
et et B G i e L T e - [Swiérsn | 450wi57xz5 | ooxzeoxeo | ['2atures and capabilitiss but ata much higher price. Fevouranly reviewsd by the UK's
- :J it BEETLCTEE ETPTT IS highty critical spe @mputer press, the S205T (s likely to make a great impact in
.,z”w“‘:m,“g'fq“,;m oy ‘*mmﬂm,'m“";mglm [N evareez | e phicticatad. altarmative to an IBM PG, APRICOT or APPLE
Bleveis of pach in red, green ang Shie Joyatick pora (oes Tor § bultos maue) S00K SO0 MACINTOSH, Unlikes its overpriced competitors, the Atari 52057 can ba linked up toa
MAICH irrieetace for sxiormat muks synineaizens 2 9K 40K colour monitor to unleash & choice of up to 512 colours. The addition of colour brings
ARL‘HITEG‘!’URE Appls ACT - Activity GEM out the full potential of graphics packagss such as GEM.
wm e i g s S e e e USER FRIENDLY GEM OPERATING SYSTEM
Carsroiler - Graphics rocassing Uit TWW“"MWW‘" The power of the 5T |s harnessed and made user friendly by the new operating
at YES ¥ES GEM"

s syslem 'GEM' trom Digltal Assenrch, GEM stands for Graphics Environment Manager
::g.".:;‘;m:;m,,,,m gg":"g; _“"m‘;';,“w'“'wmlm Genironics Farsilel Frinter Port G YES and allows a user {riendly colour ar BAW graphics inferface which closely resembles
18 it catn bend B2 ncdess bus GEM BBT - B4 Block Tranafer Dedicates Floppy Disk Controlier ND YES that of the Maciniosh, This similarity oxtends to the use ol moveable resizeable
7 livess of 1 k & calendar HErd D5k DMA Interiece NO. VEL windows, icons to reprasent objects such as disks and disk drives, and tha use of pul|
14 2o0ressing Moces!S dats fypes o Full stroke kayboard YES YES down menus and a mouse. The advantage of sl this is that the computer bacomes
DATA STORAGE ERRTMARE [Nomber of keye on keybosd | &b L8 FHomeLy Shay 1o is- OEM aw o heenilmpiFIsnid far: e Rooln, T e

e ot e e , ICL, and Ofi ars written for on one computar should also fun
,;%wﬂ'wmwmr{“nmuwwm,ﬂ, :{g;‘g‘;wo:::u Sv:?:n o %E"_______ﬁg__ﬁﬂﬁ;ﬁ}_ under GEM on another computer. This will anable The market 1o quickly produce a
Dot e i 9 ; .F.‘.‘;d""_"r‘_“""‘}‘.l"" :u "‘Ea large library of standard intrchangeebie software.
St rnge access hierarchical directary & B sfruehirs i B B il

Dacicsiad ooy s sorolle P 1 i 565 & Uit comrand smerires [l [TE5Tprocasser I T FREE SOFTWARE AND FUTURE EXPANSION
‘BOS - Busness Operatng Sysam Broceseor running soead AMHE ATz | The Atari 5205T comes supplied with seven free soltware packages &5 listed bolow:
DlSK DRIVE o rur Ay afastdlend BOS Dukienis prograsms HAM 8ize TG TEIK, 1] TOS -Tramlel Operating Syslem based on CPM BBK. 2) GEM Graphics Environment
SOOK. (urormated) muav; lnppymmu (GEM dskiap m - - T Manager by Digital Research (DA) giving a WIMP (Window, Icon, Mousa, Pull down
M4BK fformatie) storage o with GEM FAINT grapnics mgme sysien URDS oS TP Ic A ao i menu] environment, 3) DA GEM Paint for creating graphics masterpiaces. 4) DR GEM
SOWD AND MUSIC Hnd GEM WRITE word procnasos [Numberofeolours ~ |Momochroma] 18 | Write for word processing. 5) Logo learning language to anable you (o write your own
ot Gt Fersanal BASIC and 08 Max Screen Resclution |pixsis) S12x243 640 = 258 programs easily using turtle graphics. 6) DR Personal Basic 2 powsrful user friendly

Mousa Inciuded

[Aepizcezble External Powar Pack NO KO

versian of the Basic 7} BOS system giving you

2 e)
ookl smiten by Digtel ResearcH (06}
ﬁnlm:ywﬂlr:l from oz mww-lmmll Wory m aoceas 1o dozens of business applications packages already available on the market.

3 voices (chinnals) n wave shaping sound axcapt ranm gm”m ul,rz.n[m

adidision 1 ise rator Designed with future expansion in mind, the 5T also features a host of different
Sapaase I?n::‘:ﬂw‘:ﬂwwummm L A fu—”—-—";m 2o Socks! e a2 Interiacas lo the outwido world and an mprussive st of scosssores (s planned] Atarl
Tiamic gvsiaps conirols VARIOUS - will saon Be releasing a 1000K (1MB) 3% inch disk drive, and a 15MB hard disk
:ﬂsa fAttack. Dw'r Sustain, Aslease] Divamong: 7ozt .-”:‘,J_“‘?l%ﬂ;"_“m ':D - NO U > T— slorage systerm as well as a mass storage compact disk {OD‘!*nlan capable of sioring
FAoplacoabls e} fower supgias [Monilor Jize it - eatra an entire 20 valume encyclopedia on one disk. A full range of inexpensive printers arne

D! erace foresaia iz synineszes e S T AGE Vidso Outal O, VES planned including ol matris, daisywheel and thermal colour printers, With its
- unbeatable graphics, speed and software at a price which is far below that of any

KENRORA e SEnbarn 50N, Wit A IS ol LIV Mol RN DNy ‘comparable personal campuler currently on the market, the ST is all set fo do battie
Price of baslc syslem (wxc VAT) K25B5 VAT LER5+ VAT K862+ VAT with the competition. To recaive furthor dotaiis of the ST from Silica Shop, just fill in

T Mouse Inciuges WA Inci

the caupon below with your name and address details and post it 1o us

E Thermai.
5 ooy st M o AGS & T Manochrame Monitar Incluges £200°VAT Tnciuded :
e hiyead — mmmm; wTER ancosiiing MoNY o | nciuded | W 5y5ica Shop Price: £651.30 + £97.70 VAT = £749.00 This price Includes:
;“mlmwm e Fros o canpis eysten v s | mesvar || [l *512K RAM < B/W MONITOR
Mary af 20N Ba aalinbe, Inclusing: 111
12" g - igh 752 MOROEN oS monitzy Assemiales, BEPL €, Cobal, Compied S - = *MOUSE * 500K 3.5” DISK DRIVE
rrima Vo2 Pk IPRICE ==+ [£2,984/£1,362] £749 |

* GEM

* KEYBOARD (95 KEYS)

Asgust 231 1984
sgust 2131 FINANCIAL TIMES <hin are wark of o he 5T) uses e mest. modem technology st is
“Thit n the asli peracat comoutet { knaiv of lat comes witn sfordabie, in a package that gives & prolesssanal impression.”
o M injertece e ; , May Z3rn 1855 POPULAR COMPUTING WEEKLY
Fater Bright chobmirecly PERSONAL COMPUTER WORLD p e 32-bit wihen e machine appesns in the shozs,
i GEME g NS i oy s U AV SO0 v i R e 1 8 M i Dy i Pl "'""u"":""'ﬁaﬂ'nm'ﬂm"&" ramary
¥ ! Paler Bright June 1885 PERSOMAL COMPUT Arl has lised an odiginal a
Rave kl‘ne ‘#dditional advantage of eawing e FC o warsion o iz o . rmznapement which shoukd make the ST faster fan any other
slanging” apr 6ih 1985 PERBONAL COMPUTER NEWS ~This machine in sigrificantly more aowerful than an IBM BC Ae oo the kel - i &ny price Bragal | TR BN dotac
\1's possile o deaign a Jure-rirg wnning machine, this i3 quastion 15 would | go ost and spend maney lar enel Tz
May 1717 1385 PERSONAL GOMPUTER NEWS ahich he s smawe: s Try ar stap et -
ke use of GEM mAkes e mew rangs ol At computers SO0 Lambert Juiy 1982 ELECTRONICS & COMPUTING
#0 Bimiar 1o the Macimissn (wih ihe sgded sttractian of | “The S20ST is lachnically sxcalient || The 5205T hardwars s
coigurl. thal ey are alfeady bewng calied " Jackintostes.” tha naw standerd by which others will be udges "
Ay $n0 1065 COMPUTING July 1565 YOUR COMPUTER

“ATAIVE W COTPedale STACE B8 &N SDSFRSBIVE low cas) “The néw Atsr 5T compLiees truly represent 10 the consumer
compulsr makar is likaly To misror thet of Commodore whare whd Jack s sayirg — eesy-lo-uBe Computing Dower
M. Tramiel astabianad the maxm that BUsINss is war .~ wiROU® 1Re price. March 1385 ANALOG COMPUTING
s rmn -
r

“it would EM aflers i b !
March TIR 1085 POPULAR COMPUTING WEEKLY

" found A (GEM] axwemaly say b0 S And was very

impressed wiln the way in which i disguises the unfriendly

Filirdwirs Bnd Apensling sywem lurking under (e seriace

SILICA SHOP LTD, 1-4 The Mews, Hatherley Road, Sidcup, Kent, DA14 4DX

I\ B X 1 Jl ISEND FOR FREE ATARI ST LITERATURE
k JJ"’I"."IJJI' 'J.I []HJ k rl 3-8 N B 83N 7-F 3 5 5§ 1

Rl WE ARE THE UK’s No1 ATARI SPECIALISTS AR| To Silica Shop Lid, Dept ATCOC 0885, 1-4 The Mews, Hatherley Road, Sidcup, Kent, DA14 mx

At Silica we have been successlully dedicated to Atari ever since their products first appeared on the UK
market. We can attribute our success largely to the Alari specialisation which we practice and to the user l

back-up we provide, Rest assured that when you buy A piece of Atarl hardware at Sllica you will be fully
supparted. Our mailings giving news of software releases and developments will keep you up to date with ﬂ" THE "E“ lT,“l 52“31 GDMPUIEI I
the Atari markel and our technical support team and sales siaff are ai the end of the telephone line 10
deal with your problems and supply your every need. With ‘our specialist bias, we aim to keep stocks of " . G l
all the avallable Atarl hardware, software, paripherals and accessories. We aleo stock a wide range of MrMrs/Ms: Initials: Surname:
Atari dedicated books and through us, the ownars on our list can subscribe to several American Atari
dedicaled magazines. We can provide a full service to all Atari owners and are now firmly established as I Address: '
the UK's NUMBER ONE Alari specialists. Here are just some of the things we can offer to gur customers.
* FREE POST & PACKING ON MAIL GHDERS If you would like to be registerad on our mailing
« FREE NEXT DAY SECURICOR DELIVI et 5 iy Al Competor bwrsr i s s perany l l
* INFDRMATION MAILlNG SEHVICE interastad In buying an Atard machine, let us

* TECHNIC know. We will be pleased lo keep you up fo date
* HIGHLY COMP‘ETTT]VE PRICES with new Atarl developments free of charge. So, l I

« AFTER SALES SUPPORT SERVICE refurn the coupon loday and begin experiencing
* REPMFI SERVICE ON ATARI PRODUCTS a spacialis! Atarf service that Is second to none. l l
SILICA

= - Do you siready own a computer

HOTL IN E It 80, which one do you own?

o L L P P P b 3 0 0 0 7] =3

	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash
	Flash

