THE STELLA SYSTEM
TRAINING MANUAL
Version 1.1

Chris Powell
February 1783

INTRCDUCTION

This course takes approximately 4 weeks and assumes that you know 46502
assembly language and Stella development system operations. This training manual is
presented as a complement to the Stella Programmer’s Guide by Steve Wright and the
TIA Manual which should be read concurrently, The Stella system is presented in
logical blocks each consisting of a reading unit followed by a programming gxercise.
The exercises take typically three to four working days.

When each exercize is finished it should be discussed with the instructor who will
run it on a development station to chack frame timing and all numerical parametars.
The code will be examined to see that the problem was approached in a logical and
intelligent way., For the first exercises the code will not be checked for pptimal use
of RAM, ROM or CPU time. -

All the exercises togsther are designad to fully exercise the Stella system, using
most TTA registers. The course cavers Stella programming, including the philosophy
of kernel design and techniques for saving RAM, ROM and CPU time. It is intended to
be a general strategic guidance of software approaches and overall organizational
strategies to enhance quick, neat and efficient cartridge development,

Code segments and tables of values are given as examples and are not necessarily
only correct solutions to the problem at hand. '

This manual is based on the Stella Training Lecture Series conducted by Steve

Wright for his department and the contents of this manual were checked for
correctness by him.

t

UNIT1

The material covered in the first unit will include!

- Stella System Architecture
- Stella System Memory Map
- Frame Timing

- Vertical Timing

- Horizontal Timing
- Code Structure

- Playfield
- Exercise

- Registers Meeded
- Programming Hints
- Related Reading

$=\18 Huz

STELLA SYSTEM ARCHITECTURE

Frequene

Figure 1.1. Stella System High Level Architecture

[\

< Crystal {=3.5eMnz
Divider (23) | Cleck,
6532 Teigest 5 | TIA | |—o Vid
CPU —» Televisien
Recipheral Pcddles) —o Irdefoce
Inderfoce —> — Scend.
Adapter —» Adapter
85(‘\' C‘Q\Q bes N)
([L
3 b . '
\3 bix address bes (YCS Syskem
---- 1 ¢ .
2K byies | Addivionali ariridge
'Y 4K Rem |
4K bytes | € bamk !
ROoM SL3idning |
s wed

There are only encugh address lines out to the cartridge socket to accept 4K of
addresses, there are no clock, or data read/write lines (see Figure 1.1)s Multiples of
4K may be used by using the bank switching technology., By addressing & reszrved
address in a custom chip the second 4K bank i3 accessed, Although in theory this
process could be repeated indefinately (i.e. 12K, 1¢K, etc.) only 3K has been
implemented to date.

One CPYU machine cycle takes the same amount of time as three color clocks on the
TIA. This means that the CPU works relatively slowly compared to the TIA. For
example a load immediate instruction of 2 cycles and store to a TIA register of 3
cycles uses a total of § machine cycles which is 15 color clocks, about &:5% of a
complete scan line. Because both the CPU and the TIA are driven by the same clock
crystal they are synchronized.

The PIA contains the following:

- 128 bytes of RAM
- Programmable Timer
- Two 2-bit 170 ports comprised af!
a) Controller ports
- 4 right port bits
- 4 left port bits
b) Conscle switches
-~ Left difficulty
- Right difficulty
- Gama select
- Game reset
- color/ black and white switch
~ 2 unused pins

The programmable timer is set with two pieces of information. One is the address
into which the data is loaded which indicates the timer speed. The second is the
actual data loaded which is used as the initial value for the countdown timer. For
example if you load 100 into Count3 then the timer counts down from 100 at Count3
rate, The timer is most often used in timing the vertical interval of the TV frame.,

The controller ports will be discussed in Unit 4,

£

STELLA SYSTEM MEMORY MAP

@
TIA
?\&315‘\'2.\"5
TF
1217))
RANM
FF

100 Not Osed
/"_—-—__/

282 Not Osedl

283)

oq7| PTA. Registers

298 Nt Used
/__/
T~

EFEFE Net Usedl

@

Foo 4« Cacleidge
/—F__/
/_\-_/

FEFEE Q. Qar)ﬁ":iae

Tigure 1.2, Stella Svstem Memory Map

Blaw ¥
: . Veedicg\ Plank :
Z 7 £ Verkical
S\ywe
/ Active 2; Active
Screen M ’é Scrcew
T2 .
o 2 :
z

R A f
. ovevsCawn

As seewn \”‘i viewer

As seew \7\1 ffosrc\mmew

Figure 1.3, TV Screen -~ Two vigws

Figure 1.3 shows the TV screen as seen by the viewer and as seen by the
programmer showing the programmatic names for the various portions of the screen
and their corresponding portions in the TV image. During the scanning of the
television screen there are two distinct processes, the vertical deflection and the
horizontal deflection. The electron beam starts at the upper left corner of the screen
and sweeps to the right at a slight downward slope caused by the on-going vertical
deflection., At the end of the scan line the horizontal blank signal turns off the
glectron beam and deflects the scan back to the left side of the screen., This is called
the HSYNC signal and is used for horizontal synchronization. This process is
repeated continually by the TV set until it receives a vertical synchronization signal
{(VSYNC) and the beam is returned to the top of the screen. This entire process is
repeated 40 times per second.

Vertical Timing

At the vertical synchronization portion of the frame the VSYNC register of the
TIA is set and the TIA outputs a continuous vertical synchronization signal to the TV
(See Example 1.1), The software counts a minimum of 3 scan lines of vertical
synchronziation then resets the VSYNC register, The TV will accept from 3 to T scan
lines of vertical synchronization but 3 or fractionally more is the games standard.

Variations in the amount of overscan by different TV manufacturers cause the
amount of picture cropping at the top and bottom of the screen to differ, For this
reason the standard 197 lines per active screen leaves blank (black) at the top and
bottom of the screen. v

In the overscan area the FIA timer is used to determine the end of the 30 sca
lines {about 1910 microseconds or 2200 cycles)(See Example 1.2), This allows
intervening program logic before the timer is read., All possible lagic threads must
complete in time to check the timer to determine if the proper time length has passed.,
The vertical blank area is cimilarly timed with the PIA timer (about 2330 microceconds
or 2700 cycles), The software usually counts the 192 scan lines (about 1247
microseconds or 14592 cycles) of the active screen instead of using a timer because
the dizplay=d infarmation is line dependent but the timer may be uzed equally wsll,

LDA #02 i TURN VSYNC ON

STA VEYNC

STA WSYNC i WAIT FOR AT LEAST 3 LINES OF VSYNC
STA WSYNC :

STA WSYNC

STA WEYNC

LDA #0 ;i TURN OFF VSYNC

STA VSYNC

Example 1.1, Vertical Synchronization Code

LDA = #N i SET VBLANK/OVERSCAN TIMER
STA TIM6AT

; - THE PROGRAM MAY DO ANYTHING HERE BUT MUST

; FINISH BEFORE THE TIMER EXPIRES

LOOP: LDA INTIM ;WAIT FOR TIMER .
BNE LOOP

Example 1.2, Overscan/Vertical blank timing code
N is same number to be determined

Horizontal Timing

mochine

eycles 1 22.%Y3 . 76
| | |

colar I] |

ClockKs 0o 67 227

\\——-——%‘-""_ o
Hoerizendal Blank : y

Acthe Scan \Line

Figqure 1.4, The Scan Line

The horizontal synchronization signal (HSTNC) is generated automatically by the
TIA chip, beginning the horizontal blank time., The horizontal blank time (22 2/3
machine cycles) is the time from the completion of one active screen line to the
beginning of the next active screen line (see Figure 1.4), This time may be used
programatically to set up for the upcoming scan line., There are 1&0 visible color
clocks per active scan line, hence 140 pixels. Each moveable abject may be on =ach of
the 140 positions regardless of the objects own resolution.

Strobing the WSYNC register causes the CPU processing to be suspended until the

beginning of the horizontal blank of the next scan line. At that time the CPU
processsing is restarted. This is used to synchronize processing with the beginning of
L — - H

the scan line.

CODE STEUCTURE

.= FoO REuY INIT
: TART:
Y\:rv\e\s

ONerscon \.caic.

NSYNC

\!ev.ktca\ Blank Logie -

Su b\-c-'.;‘,ﬁﬁe.s

?\c\acn:\'q\o\t. Tobles

INT T
RAM 1 v\\"\ia\i?_c.:\'(an

TP START

N

.= fixed fa9® _
beﬁm“mﬂ New- cc\qca:'(o.\o\t Talbles
.= FFEC Powtr- Up Neckar (INIT)

Figure 1.5, VCS Cuade Structure

The development station does not enter programs at FFFC like the VCS does at
pawer-up, it enters at the first executable address, for example F000., Therefore the
first instruction at F00O0 should be a jump to the initializing routine (See Figure 1.3),
At FFFC is the power—-up vector which should contain the address of the initializing
routine. The VCS automatically jumps to the address at power-up. In this way the
code will jump to the initializing routine first for both the development station and
the VCS.

The kernel is the part of the game program that executes during the visible
partion of the screen. It is responsible for setting the graphics registers to obtain
the desired graphic effects. The kernels should follow the jump instruction, beginning
at FOO3, It is important that the kernels are aligned to page boundaries so that
branches do not cross page boundaries needlessly. Recall that branching across page
boundaries requires an extra machine cycle to execute (4 cycles instead of 3). The
zdditional cycles will prove to be very detrimental to effactive kernel design. To
insure the alignment during the addition of program code the kernels are the first
code in the program.

The Vertical Blank logic and Overscan logic are the game logic sections of the
code. They execute during the vertical blank and overscan because nothing is being
displayed cn the scresn allowing free use of the CPU without worry aver

synchronization with the TIA and television until the end of each section,

Graphics tables, used during the karnels, are non-relocatable tables. They should
be aligned with page boundaries so that references to them do not cross page
boundaries nee=dlessly, Recall, again, that references that cross page boundaries
require an extra machine cycle, Moving these tables during development is possible in
1-page incremants to insure page alignment,

PLAYFIELD -
20 ?ixe\s/\'\&\gscreen
TN ER RN
Tre PES L4
TV Screen
1
IPFQ[PEL | erp Doy Gre\d r:?«-\"t'
] meode
| er2 | e& | PFe | Py fiard cefleck
1 ™mede
|
4+ 5 6 7 7 6 5 4 3 2 1 © 0Ot 23 9 S e 7

pre [T 111 Gl O O I I pPz L1011 1]

Figure 1.4, Playfield Reqisters and Modes (not to scale)

The playfield is a bit map for the screen at low resolution. Each half of the
screen is 20 pixels wide so there are four color clocks per pixel, Where the register
value for the pixel is zero the background color shows through. Where the register
value for the pixel is one the playfield color is displayed. Playfield repeat mode
causes the right half of the screen to be an exact duplicate of the left, Playfield
reflect mode causes the right half of the screen to be a mirror image of the left.

Figure 1.6 shows the alignment of the playfield registers on the left side of the
screen, the alignment of the playfield registers on the right side of the screen for
both repeat and reflect modes, the playfield resolution in the number of pixels per
half screen and the bit alignments for the playfield registers on the left side of the
screan.

The graphics registers in the TIA act as parallel to seriel convertsrs. As the
electron beam moves left to right across the screen it reads the bits in the specified
order. Therefore the first pixel is bit 4 of Playfield register 0 (PFO0), the second
pixel is bit & of PFO, etc,

0

EXERCISE

= 2t Kernel

Y

N ~
[-

B <X | {22 Kernel

|__' 1 5".‘1 Keenel

Fiqure 1.7. The exercises displa

On the top third of the screen draw an arrow shaped playfield on the left and
repeat the same shape on the right (see Figure 1.7), On the middle third of the screen
draw the same shape on the left and its mirror image on the right. On the bottom
third of the screen draw a playfield in the shape of a long, narrow I-beam on the left
and a playfield in the shape of a short, wide I-beam on the right.)

The program will need correct vertical timing, a background color and tables of
data to describe the playfield shapes. Use the logic analyzer to verify that the active
screen is 192 scan lines and that the frame time is 16,686 microseconds + 6
microseconds. The data tables may be zero filled to cover a full third of the screen sa
the kernel does not have logic to determine when to display a blank playfield.

The first two thirds of the screen may use a two-line kernel(see Example 1.3),
setting the playfield registers twice every scan line, A one-line kernel must be used
for the bottom third of the screen because it is asymmetrical and the playfield
registers must be set once every half line (See Example 1.4).

; KERNEL PREPARATION
. LDY #96. ;192 ACTIVE LINES/2 ACTIVE LINES PER LOOP
i FIRST LINE OF KERNEL ’
LOOP: STA = WSYNC i WAIT FOR BEGINNING OF LINE
LDA Ti,Y i FROM TABLE 1
STA PFO '
- LDA T2,Y ; FROM TABLE 2
- STA PF1 :
’ LDA T3.,Y i FROM TABLE 3
STA PF2
; SECOND LINE OF KERNEL .
STA WSYNC i WAIT FOR BEGINNING OF LINE
DEY i DECREMENT COUNTER

BPL LOOP ;s CONTINUE IF NOT ZERO

Example 1.3, Two line kernel with playfield tables

0

i _ END OF VERTICAL BLANK

LDA #0 i TURN OFF VBLANK
STA WEYNC i AT THE BEGINNING OF A LINE
STA VBLANK
i KERNEL PREPARATION
LDY #192. i 192 SCAN LINES PER ACTIVE SCREEN
i KERNEL - COUNTS ACTIVE SCAN LINES
LOOP: STA WSYNC i WAIT FOR BEGINNING OF LINE
DEY i DECREMENT COUNTER
BPL LOOP i CONTINUE IF NOT ZERO
i OVERSCAN BEGINNING
STA WSYNC
LDA #02 i TURN VBLANK ON
STA VBLANK

Example 1.4, Minimal 1-line kernel
The minimal 1-line kernel displays nothing but counts the required 192 scan lines
for the active screen, '

Registers Needed

- INTIM - The PIA timer read register; polled to determine the end of the vertical
interval,

- TIMLAT - PIA timer interval set register; set to different values to initiate
vertical interval timing.

- VBLANK -~ Controls vertical blanking for the vertical interval, -

- VSYNC - Controls the vertical synchronization signal,

- WSYNC - Synchronizes the processor with the beginning of the next scan line.

- COLUBK - Sets the background color and luminosity.

- COLUPF - Sets the playfield color and luminosity.

- PF0; PF1, PF2 - Set the playfield graphics.

- CTRLPF - Sets the playfield reflect/repeat mode.

- Coding Hints

- It is suggested that the programmer use an already constructed register address
equates file and the routine to zero RAM (See Example 1.5). .The later is most
important because the system has an anomoly that if RAM is zeroed from the high
addresses to the low addresses the system can lock up (This will happen if the store
to VSYNC happens at cycle 74 in a scan line.)h

INIT: CLD i INSURE BINARY ARITHMETIC MODE
SEI i NECESSARY FUOR KEYBOARD INPUT
LDX #OFF i INITIALIZE STACK POINTER
TXS

i

; - CLEAR RAM
L DA #0

CLERAM: DEX ;i DECREMENT COUNTER

' STA STACK(X); ZERQ RAM

BNE CLERAM ; CONTINUE IF NOT ZERO

Example 1.5, Typical program start and RAM zerocing routine

10

= It is further suggested that the problems are isolated and solved sequentially (i.e,
the frame timing first, repeat mode second, etc.) for ease of debugging,

- Use playfield repeat mode for creating asymmetrical playfield to avoid problems
assigning values to PF2,

- For the exercise it may be easier to copy the code for the Z-line kernel for the first
third of the screen and use it for the 2-line kernel for the second third of the screen.
= In the last third of the screen, a 1-line kernel, the second store to'each PF register
must not take place until after the entire first value is displayed, So, spread out the
stores to the FF registers using NOPs to insure correct timing, The NOPs will be
replaced later with loads and stores for other graphics registers.

RELATED READING

Telavision Protocol (Bound with the Stella Programmers Guide), Steve Wright, 11/29/79
Stella Programmers Guide, Steve Wright, 12/03/79 '
~ {Beginning through section 5.0) General Description, The Registers, Synchronization,
. Color and Luminosity, and Playfield

The PIA (Bound with the Stella Programmers Guide), Steve Wright, 12/03/79

- {Beginning through section 3.0) General, Interval Timer, Setting the Timer, Reading
the Timer, When the Timer Reaches Zera, and RAM,

Stella Package - Bank Switching Without Even Thinking, Carla Meninksy, 5/27/&2
Television Interface Adaptor (TTA) Manual

- Descriptions of needed registers

11

UNIT 2
The material covered in the second unit will include!

- Missile and Ball movement
= Character Reset (CHRST)
- Miscile and Ball enable (M0, M1, BL)
~ Advanced Topics
- Reincarnation
- Alternate CHRST Loop
- Exercise

- Registers Needed
- Programming- Hints

At the end of the unit you will be able to display missiles and the ball and move
them on the screen.

MISSILE AND BALL MOVEMENT

As a model of the moveable object graphics you may consider the vertical position
of the object to be kernel'controlled., For an object that is supposed to be on line 100
and is € lines tall the kernel counts the lines turning the ball on at line 100 and
turning it off at line 108. For the same model you may consider the horizantal -
position of the objects to be controlled by character reset (CHRST) routines. '

CHRST Routines

The character reset routines apply to missiles, the ball and the players. To
pasition an object in a particular horizontal position (a column) you must strobe the’
character resat register for that object at that position in a scan line, any scan line.
Because the usual method uses an entire scan line this is usually done during the
vertical interval. For example toc move the ball to a column position you must store
any value into the RESBL register at the same column position during a scan line, that
is its when you store to RESBL that is important not what you store. From that point
on whenever the ball is enabled during the kernel it will appear with its left edge in
that position.

. 8TA WEYNC s HAIT . FOR BEGII‘;"NI‘\JG CF LINE

. NOP i 20 NOPS. 40 CYCLES -
NGP : '
NGP
STA RESBL s STROBE RESET BALL

Example Z.1, Hard Coded Horizontal Positioning

maching) {'STA RESBL be“)(m\inﬂ

cyeles 22> 4o 43 76
\ | | — i
cecloC
(Mot te scale) . R—sTa ResSVL ending,
ball ?C'Sn"\’\sh

Fiqure 2,1, Horizontal Posxtwn of STA RESBL in Example 2 2.1

Example 2.1 shows the NOP method for moving the ball to a fixed column locatian,
Notice that this code segment will always put the ball in the same location (See
Figure 2.1). It is impractical to use the NOP method for all the possible positions on
a scan line so another method of positioning on scan lines is neesded.-

Example 2.2 shows a flexible methad of coarse positioning, In the example esach
loop takes Z+3=3.cycles until the loop in which the final BPL test fails taking 2+2=4
cycles and the strobe of the reset register takes 3 cycles. For n={COARSE)
time=3n+4+3=5n+7 cycles., The loop allows S cycle or 15 clock resolution in the
positioning of an object.

LDY COARSE i SET UP COUNTER
8TA WSYNC i WAIT FOR BEGINNING OF LINE

LOOP: DEY s DECREMENT COUNTER - 2 CYCLES .
BPL LoOP ; LODOP IF NOT ZERO - 3 CYCLES/2 CYCLES
STA RESBL ; STROBE BALL RESET - 3 CYCLES

Example 2.2, Coarse Horizontal Positioning

Because of the 15 clock granularity of positioning with the CHRST loop, the TIA
also has horizontal motion registers. The reset registers are used for coarse
positioning, the horizontal motion registers are used for fine positioning, Thus the
reset registers position an object to 15 clock positions and the haorizontal motion
registers position the object as much as 7 clocks to the left ar 2 clocks to the right of
the coarse position giving complete 1 clock resolution. Example 2.3 shows the
complete positioning algorithm. In the example the CHRST loop ending with the
RESBL does the coarse positioning and setting HMBL to (FINE) and the strobe of
HMOVE does the fine positioning.

LDA FINE ,SET UP FINE POSITION VALUE

) LDy COARSE SET UP COARSE POSITION VALUE
STA WSYNC ;WAIT FOR BEGINNING OF LINE
LOOP: LEY ; DECREMENT COARSE POSITION COUNTER
EPL LOoP . ; LOGP IF MNOT ZERO -
STA RESBL ; STROBE BALL RESET
STA HMBL ; LOAD FINE POSITION INTO MOTION REGISTER
STA WSYNC ; WAIT FOR BEGINNING OF NEXT LINE

STA HMOVE i MOVE THE OBJECT

Example 2.2, Fine dorizontz]l Fositioning

The effect of HMOVE is accumulative, Hepeated strobing of the HMOVE register
will cause the value of the fine positioning toc be added repeatedly to the current
pocition changing it each time. Also, since the electron beam is turned off for the 24
cvcles of HMOVE, if HMOVE is used during the active screen black HMOVE linss &

-~

clocks leng will agpear at screen left on the lines whare the EMOVE strobe was
executed, Therefore, in simple practice, the programmer will position all five objects
(tall, missiles and plavers), set all five motion values, then execute EMQVE, once per
frems during the vertical interval. Note that the horizontal motion registers may not
bz changed for 24 cycles after strobing HMOVE., To do so will produce unpredictable
object positioning,

The determination of the COARSE and FINE values from the horizontal position of
the object may be done in either of two ways. The values may be calculated from the
position in real-time or the values may be retrieved from a pre-defined table using
the position as an index. The first method is fairly complicated and is considered a

number of times in the Stella Packages. The second method will be discussad briefly
here.

HOR IZONTAL COARSE FINE
SCREEN POSITION . POSITION
POSITION (CHRST LOOP COUNTER) (HORIZONTAL MOTION VALUE)
ag 5 . -5
39 5 -5
40 5 -7
a1 5 -8
a2 P 7
a3 6 &
43 . 5 .

Figure 2.2, Partial CERST values table

" Since the coarse position is used as a counter with useful values between S and 14
(giving on screen coarse positions from 75 clocks to 210 clocks) it may be in the lower
nyble of the table entry., Since the fine position is a horizontal motion value being
written into bits 4, 5, &, and 7 of the register it may be in the upper nyble of the
table entry. In this way the horizontal position can serve as an index into a 160 byte
table (1 byte per position) of the coarse and fine position values (see Figure 2.2)

CHRST tables are ROM intensive but save time., CHRST calculations save ROM
{typically about 40 bytes) but use mare time. With the advent of SK cartridges, CHRST
tables have become a more viable solution to horizontal positioning calculations.

Horizontal positioning may be done using only BMOVE (no CHRST loop) as follows.,
During initialization use a "hard wired" code sequence with NOPs, as per Example 2.1,
to coarse position the object to screen left, The HMOVE is then used during the
vertical interval to move the object to each of its new positions. This has the
limitation that the object may only mave a maximum of 8 clocks per frame,

(O]

ENABLE REGISTERS

LDY #0 i INIT BALL OFF

LDA YPOSBL i VERTICAL BaLL POSITIGN

SEC i PREPARE FOR SUBTRACTION

SBC LNCNT i KERNEL 'S LINE. COUNTER -
i DECREMENTED EACH LINE

CHMP #7 i WITHIN BALL HEIGHT?

BCS SKIP i NO - LEAVE BALL OFF

LDY #2 i YES = TURN BALL ON
. i OTHER OPTIONAL CODE

SRIP STA WSYNC . iWAIT FOR BEGINNING OF LINE' |
STY ENABL i ENABLE/DISABLE BALL _

Example 2.4, Vertical Positioning Code
t— (inenT) =192

Active Screen
.. ¥/,
5 tnes i < ltne (V?OS%L) -

Bl

N — : - (LNcNT)= @
Figure 2.3, Vertical Ball Position from Example 2.4 cpode

Example 2.4 is the code for vertically positioning the ball on the screen. In the
example the VPOSBL variable determines the vertical ball position and the CMP
instruction determines the ball height: The two together are sufficient to place the
ball on the screen given that it has been previously placed horizontally (See Figure
2,3)s This method works will for both missiles and the ball by simple changing ENABL,
VPOSBL and #7 to fit the different objects.

The NUSIZ registers contain the bits for setting the number and size of the
players and the missile sizes. CTRLPF contains the bits to set ball size. Note that
the missiles are directly associated with the players and as multiple copies and color
are changed for the players the missiles are changed at the same time. Similarly the
color of the ball is associated with the color of the playfield. The horizontal position
of the group of missiles or players is the horizontal position of the left most copy of
the missile or player.

ADVANCED TCPICS

Reincarnation

Historically, one of the limitations of the VCS was that it had too few sprites
{maveable graphics objects). This has been resolved by moving the objects to
differsnt screen locations during the kernel allowing the object to be seen two or
more times per frame. Thiz is termed "reincarnating” the object,

To reincarnate objects on the screen you may reposition the object using the
CHRST and HMCVE method at the cost, in the straightforward case, of Z scan lines
and the last line will have an instruction which strobes the HMOVE register producing
" a visible HMOVE line., Although the HMOVE lines can not be covered they may be

Zisguisad by having black background or a black object at screen left te.g. Realsports
Bzggball)e HMOVE can also be usad during the active screen to cause an object to do
incremental motion leaving a trail (e.g. Missile Command),

There is a problem associated with reincarnating objects, it is that the second
incarnation and the original incarnation cannot be in the same horizontal band., That
is the bottom of the first incarnation cannat be any lower than the CHRST loop for the
second incarnation. This is termed vertical seperation.

Alternate CHRST loop

In the horizontal positioning CHRST loop above two entire scan lines are lost
because the loop may end at any place in the line. In the situations where time is at a
premium, doing reincarnations during the kernel for example, this is not desireable.
The following method allows the recovery of almost half of the time lost during
CHRST loops., .

The scan line is logically divided into two halves, 0 to 37 cycles and 38 to 75
cycles. Obviously any position will lie in one of the two ranges., So the CERST table
entries are considered differently. The high nyble remains the same but in the lower
nyble the low bit indicates which half of the scan line the object is in and the other
three bits are the coarse position (see Figure 2Z.4),

1. .11
N . .

77N\

Ceavse Fine Sereen

Resibion fosition walk B

Figure 2.4, CHRST table entrv for alternate method.

At the beginning of the scan line the logical half line bit is tested and a decision
is made on which of two courses of action to take, If the position is in the right half
of the screen then code may be executed, where all paths end at cycle 37, before the
CHRST loop is executed with the coarse position., If the position is in the left half of
the screen then the CHRST loop is executed immediately and 38 cycles of code may be
exacuted afterward, ending at cycle 75 in the warst case,

Note that this method might be carried one step further. In the lower nyble the
low 2 bits would indicate which quarter of the screen the object is in and the upper 2
" bits could be the coarse position,

EXERCISE
= = K\
— - = K2

— O |

Figure 2,5, First exercise screen

In K32 (See Figure 2.5) move the ball vertically and harizontally continuously using

w

e

HBMOVE only for the horizontal motion. Seperate the vertical and horizontal movement
into different routines, The major issues are limit tests (ball movement only within
K3} and ball shaving or compression at the limits,

Move miscsile 0 (a triple copy missile) and missile 1 (2 double copy missile)
through K1 and KZ using a CHRST loop. The coarse and fine values may be determined
using either CHRST calculations or a CHRST table. For ease of distinguishing them

make the missiles different colors. The major issues are limit tests and passing
objects between kernels,

Registers Needed

NUSIZ0, NUSIZ! - Controls the number and size of the missiles.

COLUPO, COLUP! - Sets the colar of the missiles.

RESMO, RESM1! - Resets the coarse horizontal position of the m15511es.

RESBL - Resets the coarse horizontal position of the ball

EXNAMO, ENAMI - Enables the missile graphics.,

ENABL - Enables the ball graphics.,

HMMO, HMM1 - Sets the fine positions of the missiles.

HMBL - Set the fine position of the ball,

HMOVE - Causes the horizontal motion register values to be acted upon setting the
fine positions of the missiles, players and the ball,

Prugfamming Hints

- The two 2-line kernels (K! and K2) will need a line counter to use for positioning
the missiles within K1 and K2 which is independent of the kernel specific counter of
lines for determining kernel length.

- Turn the background areas for Ki, K2 and K3 to different colors to help v15ua11y
define the limits for the boundary tests.

~ Beware that the TIA provides automatic wrap—around side to side, If an object
moves off of the screen to the right it will appear at screen left and vice versa.

- The usual method for handling two moving objects in a two-line kernel is to display
one an the first scan line and the other on the second scan line.

Sean STX Mo ealevladion —== Y .,
tine1 |} 3 }
SCan | sTY & , Wi caleolatian ==X
\twvre a ' 1 1 -

Fiqure 2.4, Two line kernel displaaying two obiscts

Figure 2.4 shows that because the graphic stores must happen during the HBLANK
a straight-forward method of displaaying two objects in a two-line kernel uses two

£502 registers as well, in this case the X and Y index registers.

Symmetry in two line kernels is desireable to make the passing of graphic objects
between the two kernels easier., Ob]ects that are set in the even lines of the first
kernel are passad to the even lines of the second kernel. Similarly the objects on odd
lines are passed to the odd lines of the second kernel. If there are preoaration lines
betwesn the two kernels then it is better to have an even number of them so that the
aven lines contirue to do the even line graphics and the odd lines do the odd line
graphics. Another way to make passing objects between kernels easier is to make a
line counter glebal between the two kernels,

RELATED READING

Stella Programmers Guide, Steve Wright, 12/03/7%

- (Sections 4.0 to 6.2, 7.0, 8.0, and #.0) The Moveable Objects Graphics, Missile
Graphics, Ball Graphics, Horizontal Positioning, Harizontal Motion, and Object
Priorities

Stella Packages - Character Reset Routines For Stella, Richard Maurer,

Stella Packages - Calculate Horizontal Reset (CHRST), Howard Warshaw, 10/13/81

TIA Manual

- Descriptions of neaded registers.

UNIT 2
The material covered in the third unit will include!

-~ Player Graphics
- Collision Detection
- Sound
- General Sound Algorithm
- Exercise
- Registers Needed
- Related Reading

At the end of the unit you will be able to display and change player graphics,
detect collisions between each of the graphic objects and generate rudimentary sounds.

PLAYER GRAPHICS

L2em Y celer clocks
~—

7 €35 4% 21 ¢

Cldel [Joleli] 7 17 | V] 8} [sean Line
[\

l?h-.-ler‘s Nerrzevdal «ecs;\ic.n

Ployee Gro\g\mcs 'Rts\s\-((.
fec Noxe = @ D8] ’ Screen ‘Fn:)-mc‘v\‘\'

Figure 3.1. Register to Screen Correlation

The TIA controls two player sprites (moveable graphics objects), each has a player
graphics register (GRPO and GRP1), Each register is & bits wide and maps to each
scan line at the player’s position in a conventional bit-map way (See Figure 3.1)s The
objects are moveable over the entire screen as single units. Historically, this is an
advance over the full screen bit map method where to move an object the program must
erase the object, redraw the background then redraw the object at its new location,
For a player the program simply changes the horizontal position and the object is
moved by the TIA, Whereever the player graphics register is a 1 the pixel is the color
of the player, whereever the graphics register is a 0 the pixel is the color of the
object or field behind the player, usually playfield or background, for that scan line.
The COLUPO and COLUP1 registers are used to set the color of their respective
players. The graphics and color registers are latched just like the rest of the TIA
write registers. Therefore the grnphics must be changed every scan line for l-line
resolution or every two lines for 2-line resclution.

As with the missiles and the ball the horizontal positions of the players are set in
hardware wsing CHRST loops and the vertical positioning of the players is kernel
controlled. Typically for two-line resolution players one player’s graphics is updated
on the even lines and the other player’s graphics is updated on the odd lines. This is
necessary because conventional programming techniques take 21 to Z% machine cycles
to set up one playver’s graphics, which is one third of a2 scan line, l2aving only two
thirds of a scan line to set up two mizsiles, the ball and the playfield and to maintain
countzrs, etc, Note that when the player reset registers (RESP0, RESFP1L) are strobed
their corresponding player graphics registers are cleared automatically by the TIA.

LDA RAMTARB, Y ; FROM A RAM TABLE

STA GRPO
LDA TABLE, Y ; FROM A RORM TARLE
STa GRPO
LDA (POINTER).,Y ; FROM A ROM TABLE
STA GRPO

Example 3.1, Laaqu From Player Graphics Tables

For players the kernel must detect the beginning of the area where player graphics
are displayed, and generate an index into the graphics table for each line of the
player. When a player is not being displayed the graphics register must be cleared to
zeros to avoid streaking the player down the screen, The graphics tables, like
playfield data tables, are usually inverted in memory because the index is
decremented each line. For the case where the player is animated it is necessary to
-have multiple graphics tables. Example 3.1 shows three ways of loading player
graphics. The first method loads the graphics from a RAM table which is updated
during the vertical interval. The load from RAM takes only 4 cycles but uses a great
deal of RAM (i byte for each line of graphics)s The second method loads the graphics
from a ROM table. The load takes S cycles and uses no RAM. Unfortunately this
method requires seperate code for sach animation state and is therefore impractical,
The third method loads the graphics from a ROM table using a pointer in RAM which is,
uvpdated during the vertical interval to point to the proper table of player graphics for
the current animation state. The load takes & cycles and uses only 2 bytes of RAM.,

There are two main methods for determining at which line player graphics begin
and which player graphics to display at each line of the player. The kernel test
method involves comparing a line counter to the players position during the kernel.
The zero fill method involves filling the player graphics table with zeros for the lines
where the player is not seen.

LoX #0
LDA YPOSFO ; LDAD PLAYER O VERTICAL POSITION
SEC i PREPARE FOR SUBTRACTION
SBC LMNCNT i QUBTRACT LINE COUNTER FROM YPQOSPO
i LNCNT IS DECREMENTED EACH LINE
CMP #10 i 10 18 THE PLAYER HEIGHT
BCS ‘SKIP i ABOVE PLAYER OR BELCW PLAYER
TAY ; USE DIFFERENCE AS AN INDEX
LDA TABLE, Y ; LOAD NEXT PLAYER GRAPHICS
" TAX 3 SAVE IT IN X
SKIP: STA WUSYNC FWAIT TILL END OF LINE)
STX GRPO s SET PLAYER_ GRAPHICS .

Example 2.2, Kernel Tast Code

The kernel test method can be used when ROM is at a premium and kernel time is
not. It is similar to the kernel test used for the missile and ball positioning in the
previous unit (See Example 3.2)s Note that the accumulator value after the
subtraction for the test is the index needed for retrieving the player graphics from
its table during the kernel, The zero loaded at the top of the logic is stored into the
graphics register in the case that the player is not to be displayed preventing the
player grachics from streaking down the entire screen. This method uses 23 cycles
(cne third of the scan line) and only one byte of ROM for each scan line that the

player is shcown,

c
c
. |feg—— Pein

ke nel “e\bk* B c *ef'
[
?\c\\(ef \'\ila‘n"(g } Player G‘-rg?\r\ics Pada

Kernel %\c'\3\'ﬁ e

0

Fiqure 3.2. Zero Filled Data

LDA {POINTER).Y ; LOAD GRAPHICS OR ZERO

STA USYNC ; WAIT TILL END OF LINE
STA GRP1 ; SET PLAYER GRAPHICS

; OTHER KERNEL CODE

DEY ' : ; DECREMENT LINE COUNTER/INDEX
BPL tep_oF kernel

Example 3.2, Tero Fill Code

The zero fill method can be used when ROM is not at a premium and kernel time is.
As shown in Figure 2.2 the player graphics data is surrounded by zeros on each side so
. that the number of bytes of zeros on one side plus the number of bytes of player
graphics data equals the number of iterations in the kernel, For example, for a
one-line resolution kernel 128 lines long displaying a 10 line high player the graphics
table would be surrounded by 11& zeros on each side. The game logic maintains a
pointer into the table to regulate the number of zeros displayed before the player
graphics data is displayed and hence the vertical position of the player. The lower
below the player graphics in the zeros that the pointer points the higher the player is
on the screen. The line countar maintained by the kernel is used as an index.into the
graphics table starting at the pointer (See Example 3.3), Note that the kernel always
uses the same number of bytes of the graphics table and zeros. This method can use
nearly as many as 270 bytes of ROM but uses only & cylces of kernel time and Z bytes
of RAM, ROM space can be saved when more than 1 player graphics table is neecad by
overlapping the zero areas.

The registers NUSIZO and NUSIZ1 effect the number of copies, their spacing and
size of the players. As noted in the previous unit the effect is carried over to the
number of missiles as well, There are & harizontal resolutions of the players, &
clocks wide, 14 clocks wide and 32 clocks wide, At § clocks 1 bit of data maps to one
rlock at 14 clocks 1 bit of data maps to two clocks and at 32 clocks 1 bit of data maps
to 4 clocks which is the same as for playfield.

The NUSIZ registers can also be used to effect easy game logic actions for
multiple copy player games. For example, given a multiple copy player and one copy
gets deleted (shot down far example) the deletion may be effected by changing NUSIZ
for the target player in all cases except where the left most copy is deleted.

The score bit in the control playfield register (bit 1 of CTRLPF) when set causes
the left cide of the playfield to be the color of player0 and the right side of the

(O]

playfield to be the color of player 1 and whan clear causes all the playfield to be the
colar set into COLUPF, Histerically this is because the score was drawn in playfieid
at the top of the screen and it was assumed that the score for a player color as the
player itself. Note that the ball stays the color set into COLUPF even when the
playfield is set to the players’ colars.

There are two registers, REFPO and REFP!, which are usad to reflect player
graphics. Usually the graphics data is mapped to the screen in the order bit 0 to bit
7. When the reflect bit (bit 3) is set then the graphics data is mapped to the screen in
the order bit 7 to bit 0 which displays the player reflected (See Figure 3.3), This is
useful for the situation where a player reverses direction and the graphics needs to

be reflected. This can also be used for cheap animation, for example the monsters in
Ms Pacman are animated by this method.

7 e 1

Screen vac».\s)s'vui"\)t;f g‘-\.’ RETYR =&

726 5 4 3 2

CTTTITTL]

GRPx -

Screen FV‘&)"‘"{* Q;r REFT = &

N

Fiqure 3.3, Displav Using Reflect Plaver Ragister

COLLISION DETECTION

Collisions are detected by the TIA in the first frame where any two objects
overlap by at least one pixel. The collision indication is latched into the appropriate
collision register. For example CXMOP gives the collisions between missile 0 and
both players. If player 1 collides with the missile then bit 7 is set and if player O
collides with the missile then bit & is set. Only bits & and 7 of the collision registers
are used because then the 4502 BIT instruction may be used to test both bits in one
instruction. The BIT instruction sets the N flag to bit 7 of the tested byte and the C
flag to bit & of the tested byte. :

Since the collision registers are latched they must be cleared by direct
instruction. Strobing the CXCLR register clears all the collision detection registers
at once. Generally the collision detection registers are checked right after the karnel
causing the game logic changes to be made and the clear collisions register is strobed
just before the kernel for the following frame.

There are problems associated with using hardware collision detection. If the two
objects have a high relative velocity, greater than the width of each object or barder,
then it possible that the objects will pass over each other without a collision being
datected. In thic case the programmer must use a saftware collision scheme based on
the positions of the objects. Similarly if hardware collision detection is used to
detect ohject-border collisions the object passes into the barder by cne pixel before
- the collision is detected giving the appearance of penetrating the border. In a maze
type game, for example, this is not desireable and the border detection must be done
in software. It is also difficult to determine which direction to "bounce" from a
Sarder heczuse there is no hardware method to decide if the border is horizontal or

4>

vertical, Once again it is necascary to use software to decide. Yet anather problem
exists when multiple copies or multiple incarnations of the same object are used.
Here the problem is to determine which copy or which incarnation collided with the
other object, Once again this must be done with software. When oddly shaped objects
are used, as in Asteroids for example, the scftware must be much more sophisticated
to detect collisions properly.

SOUND

The TIA has two independent channels far generating sound through the TV's
speaker. Each channel has three registers to control the noise generator. The AUDCO
and AUDC1 registers determine the type or content of the sounds generated. The
possibilities range from pure tones to polynomial wave forms. The AUDVO and AUDV!
register determine the volume of the sounds generated. The volume values range from
0 (sound off) to OF (loudest)s The AUDFO and AUDF! registers determine the
frequency (pitch) of the sounds generated. The 3-bit register values are divided into
the base frequency (30 Khz) to produce the primary output frequency. Therefore for a
register value of 2 the primary output frequency is 30Khz/3 = 10Khz. The frequency
register values range from O to 1F giving frequencies from 30 Khz to about 97 Hz. The
actual output frequency is derived from the primary output frequency and the
waveform function or dividers specified by the AUDCO and AUDC1 registers.

General Sound Algorithm

This algorithm allows the control of which sounds will be currently sounded and
which will not be sounded if there are too many sounds at any given time., This is
accomplished by prioritizing the sounds by importance then checking relative
priorities at the start of each new sound. It is done to prevent the "clipping” or early
termination of the more impartant sounds in a game situation.

Tables are created for the tone, quality and volume values for each sound as they
would be without this algorithm. An additional table is created with the time lengths
of each sound sequence and is ordered by importance by the programmer. For example
if explosions were nat to be clipped by theme music then the explosion would have a
higher priority. The first entry of the table, a sound that is never clipped, is then
considered to be sound state 1, the second entry is considered to be state 2, ete,
Each sound channel requires two bytes of RAM, one to hold the state of the channel
{which sound is being generated) and the other for a count down timer (one count per
frame). :

When the game logic determines that a sound should start it calls the sound
initiating routine passing it the sound state that should be started. The sound
initiating routine allocates the sound to a channel if the channel is not being used or
if the new state has a higher priority than the previous sound. If the channelis
allocated then the routine initiates the sound by setting the appropriate registers,

Sound maintainance code executes every frame that decrements the countdown
timers and turns off the sounds when their timers are zero.

(4]

EXERCISE

Beginning with the screen from Unit 2 add both players to the top two-thirds of
the screen in the following manner (See Figure 3.4),

/ H "-&‘l (2 < (’P“'\ ot l
I'\C [R
r 2 p Ry
Sy e - l I S LN o
yay . e 1‘_'.—"/ L
< = 4 B < §
r—7 el <—1-1 =3

Figure 3.4. Exercise 3 Screen

-

 Put player 0 in a fixed horizontal position approximately one third of the way across
the screen from the left moving up and down from the top of the first kernel to the
bottom of the second kernel, Make the player two-line resolution and use the kernel
test method to vertically position the player. Set the player’s NUSII for a single
width, single copy player. Similarly, put player 1 in a fixed horizuntal position
approximately two thirds of the way acrcss the screen from the left moving up and
down from the top of the first kernel to the bottom of the second kernel, Make the
player one-line resolution and use the zero fill method to vertically position the
player, The player’s NUSIZ should change between a double size single copy player
and a quad wide single copy player at some rate., As with the Unit 2 exercise this
exercice will have the programmer pass an object from one kernel to another. The
difference between the two is that the graphics for each player must span the baorder
of the two kernels. The players may be animated in any way the programmer desires.

Use the hardware collision detection to determine if the missiles collide with the
players., If they do then reverse the missile’s direction 180 degrees and generate a
beep type noise

Registers Needed

RESP0, RESP1 - Resets the horizontal position of the players.,

AUDCO - Sets the channel ¢ socund gquality.

AUDFQ - Sets the channel 0 fregquency (tone)

AUDVO -~ Sets the channel O velume,

GRPO, GRP! - Set the player graphics.

IMPC, HMP1 - Sets the fine pasitions of the players.,

CXCLR - Clears the latched collision registers.,

CXMOP, CXM1P - Detects the collisions between the missiles and the players.

RELATED READING

Stella Programmers Guide, Steve Wright, 12/03/79

- (£.3, 10,0, 11,0 to 11.3) Player Graphics, Collisions, and Sound
TIA Manual

- Descriptions of needed registers

UNIT 4
The material covered in the fourth unit will include:

- Scraps and Shards
- VDEL registers
- Controllers
- PAL and SECAM conversions
- Related Reading

Scraps and shards includes the TIA registers not covered so far in the exercises,

SCRAPS AND SHARDS (MISCELLANTY)

RSYNC is a register not used in game design. Instead it is used by Carl Neilson’s
group in the LSI testing of the TIA chip. It causes the HSYNC signals to be
scrambled, shearing the picture horizontally., After a few scan-lines have passed the
HSYNC signals realign and the picture returns to its normal state.

The HMCLR register clears all of the horizontal motion registers with one
instruction. .

There are a few registers in the original design of the VCS that are either no{
used as much now or are used differently than was originally intended. The VCS was
designed for 4 or S games and it was expected that a new base unit would replace it
shortly afterward, The net effect of this is that the VCS is not a generalized base
unit, The VCS has had a product life 3 or 4 times as long as it was designed for.

The RESMP0 and RESMP1 are two such registers. Strobing these registers resets
the missiles’ horizontal position to the center of their corresponding players. The
original intent was that in Combat the missile would be reset to the center of the
tank and when shot would be moved with the HMOVE technique. In this way a
horizontal position variable was not needed,

VDEL registers

Three other such registers are the VDEL registers. Historically, two line kernels
were what was expected given the state of the hardware design, With the tests and
stores for the player graphics being done every other line the player’s vertical
position resolution was two lines. When the player is moved vertically at a fast pace
then this does not matter but if the player is moved vertically at a slow pace then
this causes the motion to be jerky. For this reason the VDEL registers were created
so that the graphics of an object could be delayed for one lines This gives the illusion
that the player is shifted down one scan line (See Figure 4.1 for an example of VDEL’s
effect). :

AFPEARENT

VERTICAL VERTICAL

rRAME VDEL POSITICN POSITION
1 QFF 7 7
2 ON) 6
3 OFF 5 S5
4 ON 3 4
S OFF 3 3
& ON 1 2
7 'OFF 1 1

Figure 4.1, VDEL values example

There are second parallel registers to the GRPO and GRP1 registers called DGRPO
and DGRP1, the delayed graphics registers. When VDEL is off then the graphics data
goes into the GRP registers. When the TIA displays that player then the data in the
GRP register is sent to the screen, If VDEL is on then when graphics are loaded into
the GRP register and when the trigger register is strobed then the data from the GRP
register is shifted up into the DGRP register. See Figures 4.2, 4,3 and.4.4 for the
trigger register effects.

76 smﬁ\ir_s dala,

ST GRPQ wElre - o

4
| GAPO J—L—' o seveew

Cor
ST GRPY *YoELPDsL
Fricgers ’
Y
] voGreo o screen

Fiqure 4.2, Player 0 Graphics Delay

Pl graphies data

foc

Sian 6t __f NDELPI =

' e

. L GRP\ o screen

. STWGReD .. |- w::g '
‘\’ﬁqu D B
’ 4
{ DGRP }-—1—;4: scceen

Figure 4.3, Player 1 Graphics Delay

STh ENABL —] AP
4
| sunen {0 screen
: &
STe GRPI . \JDEL sL =1 ’
LT
[ocenasu fo sereen

Figure 4.4, Ball Enable Delay

The use of the other graphics cbjects registers as the triggers is based on the
originzl design concept of using two line kernels. In the two line kernel the other
object’s graphics would be set up for the next line, The use of this method saved
having other strobe registers for that specific purpose.

The most profitable use of the VDEL registers is not getting one line position
esclution of the graphics in a two line kernel. There are actually two other uses for

res
the VDEL registers. The first, which uses the delay registers to provide pre—-display

set-up of two graphics values per player, is the six character kernel. The six
character kernel is described in full detail in the Stella Package.

The use of the VDEL registers allows much greater freedom in storing graphics
data, that is, it allows the programmer to store graphics data anywhere on a line and
have it take effect when he or she chooses by strobing the trigger register at that
time. In this way, data may be stored to player graphics registers during the time
window in which the player is being displayed because the graphics are not displayed
until the next line. Without VDEL, player graphics must be updated during the area of
the scan line where the player is not being displayed,

CONTROLLERS

The controller input jack has 4 joystick lines, 2 paddle lines,. 1 joystick trigger
line, the power line and the ground line. Two of the joystick lines are used as trigger
lines when the paddles are used.

Current through the paddle (a potentiometer) charges the capacitor at a varying
rate (see Figure 4,5), The less the resistance of the paddle, the mare quickly the
capacitor charges. When the capacitor charges beyond the Schmidt trigger’s upper
threshold the trigger latches a logical 1, When the capacitor discharges below the
trigger’s lower threshold the trigger latches a logical 0. Software counts the amount
of time between the logical 0 beginning and the logical 1 beginning., The time length
indicates the paddle position. The range of possible values is 0 to 228 counts. ‘

-

TIA

:, 7

Tr‘\‘ssev“

1

Figure 4.5. Paddle Electronics

Bit 7 of the VBLANK register is used to ground the potentiometers (pots) in the
paddles., Setting the bit grounds INPTO, INFT1, INPT2 and INPT3. The program must
wait at least 400 microseconds between grounding the capacitor and the first read of
the input line to allow the capacitor enough time to completely discharge. When the
bit is cleared then the capacitors in the paddles begin to charge, This must be done in
the kernel because the counting must happen at regular intervals which would be
difficult in the vertical blank time and because the maximum possible charge time (60%
to 70% of the frame time) exceeds the length of the vertical blank time, Afterwards
the saftware can detzrmine the paddle position as a function of the length aof time
that the capacitor took to charge. The rate of the charging of the capacitor in the
paddle is a function of the knob position, i.e. the pot position,

The paddle has a position space approximately 300 degrees wide, This gives
possible counts from 1 to 2Z8 but since the counting is done during the kernel (one
count per scan line) the effective range is from 1 to 1?4, If the kernel is a two line
karnzsl then the effective range is from 1 to 72, In most programs the effective range
is approximately from 1 to 150 or 160 but only a fraction of the range is ever really
used in the game.

Because monitoring the paddles is overhead during the kernel, the paddle is
unpopular with the programmers., By way of illustration, a survey twao years ago
chowed that 74% of cartridges use a joystick controller while only 24% use a paddle

(O]

and since then only cre game has been written using 2 paidle controller,
The driving controller is a rotary switch with a pair of wipes producing a 2-bit
grey code input on the joystick lines.

2
TJoyshick] —14 |5
-) —— 18 |a

-
|

LS
Paddle Teyshick
Lines Triggey
: L e
Fig:ire -4‘»-.6. Keyboard Controlier Data Lines

The keyboard uses the standard sense and scan method. The joystick lines are the
"scan® lines and the paddle lines and the joystick trigger line are the "sense" lines,
The one joystick line with a zero output indicates the row being tested., The "sense"
line, if any, with a 0 input indicates the column of the depressed key. The shortest
capacitor charge time for the paddles is about 400 microseconds. So the keyboard (see
Figure 4.6) must be read 4 times during the vertical interval, spaced at 400
microsecond intervals,

The joystick has four switches set in the N, S, E, and W positions. The value read
when no joystick switches are depressed is 1111, , When a switch is closed its
associated bit goes ta 0, With four switches set in ghe directions N, S, E, and W four
positions may be interpolated on the diagonals when Z bits are 0, From the game
design standpoint it is important to note that the diagonals are irreqular for the
operator so they should not be used in a precise maneurvering design requirement,

Bit & in the VBLANK register is used to enable and disable latching in the input
registers INPT4 and INPTS which are the joystick trigger buttons. In the unlatched
mode reading the input register gives the program the current status at the time of
the read. In the latched mode the pushed button state is saved until it is
intensionally cleared by disabling latching then re-enabling latching. When latching
is disabled the INPT4 and INPTS latches are set to logic true.

PAL AND SECAM CONVERSIONS

There are two major considerations in making a PAL conversion. Then there is
"fallout® from those two considerations. The first is that PAL has 212 instead of 262
scan lines per frame. The second is that PAL has 50 instead of 60 frames per second.
A third, minor, consideration is that PAL colors are different then NTSC colors, PAL
colars are mare pastel than NTSC colors so the programmer can not get colors as rich
as they are on an NTSC TV (See Figure 4.7)

PAL COLORS

NUMBER ~ NTSC COLORS NUMBER (EUROPEAN
SPECIFIED (U.8.) SPECIFIED EXCEPT FRANCE)
o] GREY o} GREY
1 GOLD 1 GREY
o ORANGE 2 GOLD
3 RED ORANGE 3 GREEN
4 PINK 4 DRANGE
S PURPLE 5 ' GREEN
& PURPLE BLUE & RED
7 BLUE 7 LIGHT GREEN
8 BLUE =} PURPLE
Q LLIGHT BLUE Q TURGUOISE
10 ° TURQUOISE 10 PURPLE BLUE
i1 GREEN BLUE 11 ’ LIGHT BLUE
12 GREEN 12 . BLUE PURPLE
13 YELLOW GREEN 13 . BLUE
14 ORANGE GREEN 14 CREY
15 LLIGHT ORANGE 15 GREY

Figure 4.7. NTSC tc PAL color comparisan

The things that are effected by the change in the number of lines per screen are
vertical motion of graphics objects, the kernels, graphics data tables, and boundary or
limit tests for moving objects. The things that are effected by the frame rate change
are animation rates and vertical and horizontal motion of graphic objects.

The solutions to the last two problems lie in using a fractional movement
technique. The following is ane of many fractional movement techniques. With this
method the position is kept in two bytes, The first is the integer position. The
cecond has the integer position in the lower 3 bits, the fraction in the next 4 bits and
the sign in the eighth bit, The velocity is kept in the same single mixed byte format
as the second byte of the position. When the object moves the two mixed format bytes
are added., Then the integer part is added to the integer position (See Example 4.1),
With this method the programmer can move a graphics object from a minimum of 1 line
or color clock every 15 frames to a maximum of 7 lines or color clocks every frame.,
There are some fractional values that produce bad results. If many frames of
movement are followed by one frame of not moving or if many frames of not moving are
followed by a frame of movement then the motion will be jerky. If the frames of
mavement and non-movement are alternated fairly evenly then the eye will smooth out
the motien. When the PAL conversion is done all that needs to be done is changing the
vaertical and horizental velocities by the required 17%.

(&)}

LDA VVEL . ADD FRACTION PORTION UF -VELOCITY 7O
; POSITION ‘
AND 278 ; CET FRACTIONAL VELOCITY PORTION
ADC VEFRAC ;ADD IT TO FRACTION PORTION OF POSITION
STA VFRAC
LDA VVEL
BIT VVEL ; 1S VELOCITY NEGATIVEZ
BPL FOS ; BRANCH IF IT IS POSITIVE.
ORA #78. . OTHERWISE, SETUF AS A NEGATIVE INTEGER
; FOR ADDITION .
BMI SKIP ; UNCONDITIONAL BRANCH ARCUND :
POS: AND #07 ,POSITIVE — CLEAR OUT FRACTION PART FOR
; INTEGER ADDITION
SKIP: ADC VPOS . ADD INTEGER PORTION TO INTEGER VERTICAL
) ; POSITION)
STA VPOS B - —_—

Example 4.1, Fractional Movement

Note also that the clock speed of the PAL system is slightly slower than the NTSC
system so that the generated sounds will be of a slightly lower frequency. For sounds
this is OK but it is possible that for music it is not.

SECAM cartridges use
different (See Figure 4.3),

PAL cartridge vertical timing but the colors are totally

NUMBER SECAM COLORS
SPECIFIED (FRANCE)

0 BLACK

2 BLUE

4 RED

&6 MAGENTA

8 GREEN

10 CYANM

12 YELLOW

14 WHITE

Figure 4.2, SECAM Color Table

The assignment of colors to the luminosity values is based on the historical fact that

games were supposed to

be able to be played on black and white television sets.

Therefore the different luminosities of grey were used in adjacent objects so that the
objects cound be seen clearly. By assigning colors to the different luminosity values
the same playability is accomplished on the SECAM color version. Note that the

SECAM color version must

be the came as the PAL black and white version so that the

luminosities for PAL black and white must produce "good" color for the SECAM color

version.

RELATED READING

Stella Programmers Guide, Steve Wright, 12/03/77

- (Sections 12.0 to 12.2) Input Ports, Dumped Input Ports, and Latched Input Ports

The PIA, Steve Wright, 12/03/79

- (Sections 4,0 to 4.1, 5.0 to 5.5) The 1/0 Forts, Part B, Port A, Setting for Input or
Output, Inputting and Outputting, Joystick Controllers, Paddle Controllers, and
Keyboard Controllers

PAL/SECAM Conversions (Bound with the Stella Programmers Guide)

Stella Package - Stella Hollywood Conversion, Dan Hitchens, 7/14/82

Stella Package - Keyboard Reading Routine, Carla Meninsky

Stella Package - Vertical Delay, Michael Callahan, 5/14/82

Stella Package - Stella Character Maps, Carol Shaw, 12/17/7%

2600
(STELLA)
Programmer’s
Guide

By Steve Wright
12/03/79

Updated By Darryl May
7/1/88

‘F10A0 INIHOVIW H3d SLINNOD M0010 €

S3TOAD INIHOVYIN 92 —

1« WVYHOVIA

8¢

0g NYOSHIAO
lum|l 0 S S
261 ‘
3HNLOId AL TVNLOV ANV1d
IVAINOZIHOH
Jﬁ
LE MNVIGVOILHIA

ONAS TVOILH3A

89

8¢

A

SLINNOD MO010

no<<zZ a2 —

The TIA

(as seen by the programmer)

1.0 GENERAL DESCRIPTION

The TIA is a custom I.C. designed to create the TV picture and
sound from the instructions sent to it by the microprocessor. It
converts the 8 bit parallel data from the mlcroprocessor into
signals that are sent to the video modulation circuits which
combine and shape those signals to be compatable with ordinary TV
reception. A "playfield” and 5 moveable objects can be created and

manipulated by software.

A playfield consisting of walls, élouds, barriers, and other
seldom moved objects can be created over a colored background. The
5> moveable objects can be positioned anywhere, and consist of 2
players, 2 missles, and a ball. The playfield, players, missles,
and the ball are created and manipulated by a series of registers
in the TIA that the microprocessor can address and write into.
Each type of object has certain defined capabilities. For example,
a player can be moved with one instruction, but the playfield must

be completely re-drawn in order to make it "move".

Color and 1luminosity (brightness) can be assigned to the
background, playfield, and 5 moveable objects. Sound can also be
generated and controlled for volume, pitch, and type of sound.
Collisions between the various objects on the TV screen are
detected by the TIA and can be read by the microprocessor. Input
ports which can be read by the microprossor give the status of some

of the various hand held controllers.

It also generates the signal to turn the beam off (horizontal
blanking) during its return time of 68 color clocks. Total round
trip for the electrom beam is 160 + 68 = 228 color clocks. RAgain,-
all the horizontal timing is taken care of by the TIA without

assistance from the microprocessor.

3.2 MICROPROCESSOR SYNCHRONIZATION

The microprocessor’s clock is the 3.58 MHz oscillator divided
by 3, so one machine cycle is 3 color clocks. Therefore, one
complete scan line of 228 color clocks allows only 76 machine
cycles (228 / 3 =76) per scan line. The microprocessor must be
synchronized with the TIAR on a line-by-line basis, but program
loops and branches take unpredictable lenghts of time. To solve
this software synchronization problem, the programmer can use the
WSYNC(Wait for SYNC) strobe register. Simply writting to WSYNC
causes the microprocessor to halt until the electron beam reaches
the right edge of the screen, then the microprocessor resumes
operation at the beginning of thé 68 color clocks for horizontal
blanking. Since the TIA latches all instructions until altered by
another write operation, it could be updated every 2 or 3 lines.
The advantage 1is the programmer gains more time to execute
software, but a price is paid with lower vertical resolution in the
graphics.

NOTE: WSYNC and all the following addresses’ bit structures are

itemized in the TIA hardware manual. The purpose of this
document is to make them understandable.

For example, if the COLUMP0 register is set for light red,

both PO and MO will be light red when drawn.

A color-lum register is set for both color and luminosity by
writing a single 7 bit instruction to that register. Four of the
bits select one of the 16 available colors, and the other 3 bits
select on of 8 lévels of luminosity (brightness). The specific
codes required to create specific color and lum are listed in the
the "Detailed Address List" of the TIA hardware manual. As with
all registes (except the "strobe" registers) the data written to

them is latched until altered by another write operation.

5.0 PLAYFIELD

The PF register is used to create a play field of walls,
clouds, barriers, etc., that are seldom moved. This low resolution
register is written into to draw the left half of the TV screen
only. The right half of the screen is drawn by software selection

of either a duplication or a reflection (mirror image) of the left

half.

The PF register is 20 bits wide, so the 20 bits are written
into 3 addresses: PF0, PFl, and PF2. PF0 is only 4 bits wide and
constructs the first 4 "bits" of the piayfield, starting at the -
left edge of the TV screen. PFl constructs the next 8 "bits", and
PF2 the last 8 "bits" which end at the center of the screen. The
PF register is scanned from left to right and where a "1" is found
the PF color is drawn, and where a "0" is found the BK color is

drawn. To clear the playfield, obviously zeroes must be written

into PF0O, PFl, and PF2.

bits D4 and D5 of the number-size registers (NUSIZ0, NUSIZ1). This
has the effect of "stretching” the missiles out over 1, 2, 4, or 8

color clock counts (a full scan liné is 160 color clocks).

6.2 BALL GRAPHICS (BL)

The ball graphics register works just 1like the missile -
registers. Writing a "1" to the enable ball register (ENABL)
enables the ball graphics until the register is disabled. The ball
can also be “stretched" to widths of 1, 2, 4, or 8 color clock

counts by writing to bits D4 and D5 of the CTRLEF register.

The ball can also be vertically deiayed one scan line. For
example, if the ball graphics were enabled on scan line 95, it
could be delayed to not display on the screen until scan line 96 by
writing a "1" to DO of the vertical delay (VDELBL) register. The
reason for having a vertical delay capability is because most
programs will update the TIA every 2 lines. This confines all
vertical movements of objects to 2 scan line "jumps". The use fo

vertical delay allows the objects to move one scan line at a time.

6.3 PLAYER GRAPHICS (PO, P1)

The player graphics are the most sophisticated of all the
moveable objects. They have all the capabilities of the missiles
and ball graphics, plus three more capabilities. Players can take .
on a “"shape" such as a man or an airplane, and the player can be
easily flipped over horizontally to display the mirror image
(reflection) instead of the original image, plus multiple copies of

the players can be created.

that player. Again, the specifics of all this are laid out in the

TIA hatdware manual .

Vertical delay for the players works exactly like the ball by
writing a "1" to DO in the players” vertical delay registers

(VDELPO, VDELPl). Writing a "0" to these locations disables the

vertical delay.
7.0 HORIZONTAL POSITIONING

The horizontal position of each object is set by writing to
its’ associated reset register (RESPO, RESPl, RESMO, RESM1, RESBL)
which are all "strobe" registers (they trigger their function as
soon as they are addressed). That causes the object to be
positioned wherever the electron beam was in its sweep across the
screen when the register was reset. For example, if the electron
beam was 60 color clocks into a scan line when RESPO was written
to, player 0 would be positioned 60 color clocks "in" on the next
scan line. Whether or not PO is actually drawn on the screen is a
function of the data in the GPO register, but if it were drawn, it
would show up at 60. Resets to these registers anywhere during
horizontal blanking will position objects at the left edge of the
screen(color clock 0). Since there are 3 color clocks per machine
cycle, and it can take up to 5 machine cycles to write to a
register, the programmer is confined to positioning the objects at
15 color clock intervals across the screen. This "course”

positioning is "fine tuned" by the Horizontal Motion, explained in

section 8.0.

before the electron beam starts drawing the next scan line. Also,
for mysterious internal hardware considerations, the motion

registers should not be modified for at least 24 machine cycles

after an HMOVE command.

9.0 OBJECT PRIORITIES

Each object is assigned a priority so when any two objects
everlap the one with the highest priority will appear to move in
front of the other. To simplify hardware logic, the missles have
the same priority as their associated player, and the ball has the
same priority as the playfield. The background, of course, has the

lowest priority. The following table illustrates the normal

(default) priority assignments:

PRIORITY OBJECTS
1 PO, MO
2 P1, Ml
3 BL, PF
4 BK

This priority assignment means that players and missiles will
move in front of the playfield. To make the players and missiles
move behind the playfield, a "1" must be written to D2 of the
CTRLPF register.

11.0 SOUND

There are two audio channels for sound generation. They are
identical but completely independent and can be operated
simultaneously to produce sound effects through the TV’s speaker.
Each audio channel has three registers that control a noise-tone

generator (what kind of sound), a frequency selection (high or low

pitch of the sound), and a volume control.

11.1 NOISE-TONE GENERATOR

The noise-tone generator is controlled by writing to the 4 bit
audio control registers (AUDCO, AUDC1). The values written cause
different kinds of sounds to be generated. Some are pure tones
like a flute, other have various "noise" content like a rocket
motor or explosion. Even though the TIA hardware manual list the

sounds created by each value, some experimentation will be

necessary to find “your sound".

11.2 FREQUENCY CONTROL

Frequency selection is controlled by writing to a 5 bit audio
frequency register (AUDF0, AUDF1l). The value written is used to
divide a 30KHz reference frequency creating higher or lower pitch
of whatever type of sound is created by the noise-tone generator.
By combining the pure tones available from the noise-tone generator

with a frequency selection, a wide range of tones can be generated.

12.2 LATCHED INPUT PORTS (INPT4, INPT5)

These two ports have latches that are both enabled by wring a
"l" or disabled by writing a "0" to D6 of VBLANK. When disabled
the microprocessor reads the logic level of the port directly.
When enabled, the microprocessor is reading -the latch, not the
port. When enabled, the latch is set for légic one and remains
that way until its’” port goes LOW. when the port goes LOW the
latch goes LOW and remains that way regardless of what the port

does. The trigger buttons of the joystick controllers connect to

these ports.

2.2 READING THE TIMER

The timer may be read any number of times after it is loaded
of course, but the programmer is usually interested in whether or
not the timer has reached 0. The timer is read by reading INTIM at

HEX address $284.

2.3 WHEN THE TIMER REACHES ZERO

The PIA decreﬁents the value loaded into it once each interval
until it reaches 0. It holds that 0 for one interval, then the
value is flipped over to $FF and decrements once each glock gycle,
rather than once per interval. The purpose of this feature is to
allow the programmer to determine how long ago the timer zeroed

itself out in the event. the timer was read after it passed zero.

3.0 RAM

The PIAR has 128 bytes of RAM located in the STELLA map from
HEX address $80 to §FF. The microprocessor stack 1s normally
located from $FF downward, and variables are normally located from

$80 upward (hoping the two never meet).
4.0 THE I/O PORTS

The two ports (Port A and Port B) are 8 bits wide and can be
set for either input or output. Port A is used to interface to
various hand-held controllers but Port B is dedicated to reading

the status of the STELLA console switches.

4.1 PORT B - Console Switches (Read only)

Port B is hardwired to be an input port only. Port B is read
by addressing SWCHB ($282) to determine the status of all the

console switches according to the following table:

5.3 JOYSTICK CONTROLLERS

Two joysticks can be read by configuring the entire port as

input and reading the data at SWCHA ($280) according to the

following table:

DATA BIT DIRECTION PLAYER

D7 Right PO (Left Player)
D6 Left PO

D5 Down PO

D4 Up PO

D3 Right - P1 (Right Player)
D2 Left Pl

D1 Down Pl

DO Up Pl

A "0" in a data bit indicates the joystick has been moved to
close that switch. BAll "1"s in a player’s "nibble" indicates the
joystick 1s not moving.

NOTE: The trigger buttons do not go to the PIA. They are read
on bit 7 of INPT4 and INPTS of the TIA.

5.4 PADDLE (Pot) CONTROLLERS

Only the paddle triggers are read from the PIA. The paddles
themselves are at INPTO through INPT3 of the TIA. The data bit is

set to 0 when the trigger is pressed. The paddle triggers can be

read at SWCHA according to the following table:

DATA BIT PADDLE NUMBER

D7 Paddle O
D6 Paddle 1
D5 Not used.
D4 Not used.
D3 Paddle 2.
D2 Paddle 3.
D1 Not used.

DO Not used.

TIA 1A

TELEVISION INTERFACE ADAPTOR (MODEL 11)

LR AN Sty

The TIALXA is an MOS integrated circuit designed to inter-~
face between an eight (8) bit microprocessor and a televisicn
video modulator and to convert eight (8) bit parallel data into
serial outputs for the color, luminosity, and composite sync
required by a video modulator. :

This circuit operates on a "line by line" basis, always
outputing the same information every television line unless new
data Is written into it by the microprocessor.

A hardware sync counter produces horizontal sync timing
indesendent of the microprocessor,

Vertical sync timing is supplied
to this circuit by the microprocessor and combined into composite
Sync. '

Horizontal position counters are used to trigger the serial
output of five (5) horizontally moveable objects; two players,
two missiles,and a ball, The microprocessor can add or sub-
tract from these position counters to move these objects right
or left.

The microprocessor determines all vertical position and
motion by vriting zeros or ones into object registers before
each appropriate horizontal Iine.

Walls, clouds and other seldom moved objects are produced
by a low resolution data register called the playfield register.

A fifteen (15) bit collision register detects all fifteen
possible two object collisions between these six (6) objects
(five moveable and one playfield). This collision register
can be read and reset by the microprocessor. Six input ports
are also provided on this chip that can be read by the micro-
processor. These input ports and the collision register are
the only chip addresses that can be read by the microprocessor.
All other addresses are wRrRITE only.

Color luminosity registersare included that can be pro-
grammed by the microprocessor with eight (8) luminosity and
fifteen (15) color values. A digital phase shifter is included
on this chip to provide a single color output with fifteen (15)
phase angles. ‘

Two (2) independent audio generating circuits are included,

each with programmable frequency, noise content, and volume
control registers. :

)

3

-
L
————r’?

three counter on this chip whose output (1.19 M3Z)

is buffered to drive an output pad called F0.

This pad provicdes the input phase zero clock to

the microprocessor which then procuces the system ¢2
clock (1.19 MiZ). '

Software program loops require different lengths

-of time to run depending on branch éecisions

made within the program, Additional synchronization
{Shown in Figure 2) is, therefore, required be-
tween the software and hardware. This is done
with a one bit latch called WSYNC (wait for sync).
When the microprocessor finishes a routine such

as loading registers for a horizontal line, or
computing new vertical locations during vertical
blank, it can address WSYNC, setting this latch
high. When this latch is high, it &rives an
output pad to zero connected to the microprocessor
ready line (RDY). A zero on this line causes

the microprocessor to halt and wait.As shown in
figure 2, WSYNC latch is automatically resei to zero
by the leading edge of the next norizontal blank
timing signal, releasing the RDY line, allowing

the microprocessor to begin its computation and
register writing for this horizontal television
line or line pair,

-

field craphics Register

Description

Objects, (such as walls, clouds, ané score) which
are not reguired to move, are written into a 20
bit register called the plavfield register. This
register (Figure 5) is loaded from the data bus

by three separate write addresses (PF0, PFl, Pr2).
Playfield may be loaded at any time. To clear

the playfield, zeros must be written intc all
three addresses,

Normal Serial Output

The playfield register is automatically scanned

(and converted to serial output) by a bi-direct-
ional shift register clocked at a rate which spreacs
the twenty (20) bits out over the left half of

a horizontal line. This scanning is initiated

by the end of horizontal blank (left: edge of tele-
vision screen). Normally the same scan is then
repeated, duplicating the same twenty (20) bit

sequence over the right half of the horizontal
line. -

Reflected Serial. Output

A relected playfield may be reguested by writing

crossing decode and therefore cannot trigger
multiplie copies of the ball oraphics.

C. Plaver Position Counters

Each plaver position counter has three decodes
in adédition to the zero crossing decode. Th-se
decoces are controlled by bits C,,2 of the

I imber size control registers (NUSIZO0, NUSIZL),
and trigger 1,2, or 3 ccpies of the plaver

(at various spacings) across a horizontal line
as shown on pace 20 . These same contrel bits
are used for the decodes on the missile position
counter, insuring an egual number of plavers

and rmissiles,

D, Missile Fosition Counters

Missile pcsition counters are identical to
player pcsiton counters except that theyv hev
another type of resst in addition to the pre-
viously discusseé horizontal pecsition reset.
These extra reset addresses (RESMPJ, RESMP1)
write data bit 1 into a one bit register whcse
output is used to position the mrissile (horizon-
tally) directly on top of its corresponéing
player, ancd to disable the missile serial cut-
put.

Ecrizontal Moticn Recisters

A General DEbCIlDtlon

There are five write only registers on this
chip that contain the horizontal motion values
for each of the five moving objects. A tyzpical
horizontal motion register is shown in figure
4. . The data bus (bits4 through7) is written
intc these addresses (EMP0O, HEMP1l, HMMO,

HMM1, EMBL) to load these registers with motion
values. These registers supply extra (or
fewer) clocks to the horizantal position counters
only when commanded to do so by an HMOVE
address from the microeprocessor. These re-
gisters may all be cleared to zero (no mc.ionj
sxmu‘taneously by an HMCLR command -

fror the microprocessor, or individually by
loading zeros into each register.

These registers are each four bits in length
and may be loaded with positive (left motion),
negative (right motion) or zero (no motion)
values. Negative values are represented

in twos complement format.

scan counter that converts the parallel cata
into serial output.

A one bit control recister (REFPO, REFPL) cCe-
termines the direction (reflection) of the

‘parallel to serial scan, outputing either

D7 through D0, or DO through D7. This ailows
reflection (horizontal flipping) of plaver
serial graphics cdata without having to flip
the microprocessor data.

Tne clock into the scan counter can be controlled
(three bits of NUSIZO0 and NUSIZl) to slow

the scan rate and sitretch the eight bits of
serial cgraphics out over widths of &, 16,

or 32 ciocks of horizontal line time. These

same cortrol bits are used in the player-
missile motion counters to control multiple
cories, so only three player widths (scan

rates) are available.

Vertical Delav,

Each of the player graphics recisters actuaily
consists of two 8 bit_.paraliel recisters.

The first (GRPO, GRP1l) is loaded (written)
from the microprocessor 8 bit data bus. The
second is auvtomatically lozded from the out-
put of the first. The reason for this is a
ccmolex subject called vertical celay.

A large amount of mlcroprocessor time is re-
quired to generate plaver, missile and play-
field graphics (table look up, masking,
comparisons,-ect.) and lczd these into this
chip's registers. Tor most came programs this
time is just too large to fit into one horizontal
line time. 1In fact for most games it will
barely fit into two line times (127 microseconds).
Therefore, individual graphlcs registers are
lcaded (written) every two lines, and used
twice for serial output between loads.

This type.of programming will okviously limit
the vertical height resolution of objects

to multiples of two lines. It also will
limit the resolution of vertical motlon to

two lines jumps.

Nothing can be done about the vert;ch

height resolution; however, vertical motion
can be resclved to a single line by addition
of a second graphics register that is auto-
matically parallel lcaded from the output

cf the first, one line time after the first
was loaded from the data bus,,This second graphics
register output is thereiore always delayec
vertically by one line. A control bit called

they will overlap (collide} on the screen. There are six objects
generated on this chip {five moving and playfield allowing

Tifteen possible tvo object collisions. These overlaps (collisions)

are detected by fifteen "and" gates whenever they occur, agd ,
are storec in fifteen individual latch register bits, as showr in figure

€.

E. Pezding Collision:
Th2 microprocessor can read these fifteen collision bits on
dzt

38 lines € and 7 by addressing them tvo at & time. This
could be done st any time but is usually done between frames
{0uring vertical blank) after all possible collisions have serially

C. Peset
All collision bits are reset simultaneously by the microprocessor
using the reset address CXCLR. This is usually done near the
end of vertical blank, after collisions have been tested.

1oput_ports

A. General Cescription

ihere are 6 input ports on this chip whose logic state mav be
read on cata line 7 with read zddresses INPTO through INPTS.
These 6 ports are divided into two types, "dumpec" and "latchez".
See Figure 8. '

B. Dumped Input Forts ‘19 through 13)

These 4 input ports are normally used to read paddle position from

an exiternal potentiometer—capacitor circuit. In order to discharge
these capacitors each of these input ports has a large transistor,
vhich may be turned on -grounding the input ports) by vriting into
bit 7 of the register VBLANK. When this control bit is cleared the
pstentimeters begin to recharge the capacitors and the microprocessor
measures the time required to detect 3 logic 1 at each input port.

Es long as bit 7 of fegisier VBLANK is zero, these four ports
are general purpose high inpedance input ports. When this bit is a
1 these ports are grounded.

C. Lastched Input ports (14, IS)

These two input ports have latches which can be enabled or disabled
by writing into bit 6 of register VBLANK.

When disabled, these latches are removed from the circuit completly
'~ and these ports become two general purpose input ports, whose
present logic state can be resad directly by the microprocessor.

When enabled, these latches will stere negative _zero logic level)
signals appearing on these tvo input ports, and the input port
addresses will read the latches instead of the input ports.

9.

10.

Players will then move behind playfield (ciouds,
wall, etc.). .

When a one is written into the score control
bit, the playfield is forced to take the color-
lum of piayer 0 in the left half of the screen
and plaver 1 in the right half of the screen.
_This is uvsed when displaying score and identifies
the score with the correct player.

The priority enco der produces 4 register select
lines (shkown in figure 3) that are muteally
exclusive. fThese 4 lines select either back-
ground, tr’ayer 0, player 1 or piayfield, and
only one ¢f them can be true at a time.

Coloxr Luminance Registers

A. Description

There are four registers (shown in figure 3) that
contain color-ium codes. Four bits of color

code ané three bits of lurinance code may be
written into each of these registers (COLU?0,
COLOP1l, COLUPF, COLUBK) by the microprocessor

at any time. These coles (representing 16 color
values and 8 luminance values) are given iz

the Detailed Address List.

2

B. Multiolexinc

—
2

The serial graphics output from all six cbiects
is examined by the priority encoder which
activates one of the four select lines into

a8 4 X 7 multiplexer. This multiplexer (shown

in figure 3) then selects one of the four color-
lur recisters as a 7 line output. Three

of these lines are binary coded luminosity and
go directly to chip output pads. The other
four lines go to the color phase shifter.

Color Phase Shifter.

This portion of the chip (shown in figure 3) produces
a reference color output (color burst) during hori-
zontal blank and then during the unblanked portion
of the line it produces a color output shiftec

in phase with respect to the color burst.. The

The amount of phase shift determines the color and
is selected by the four color code lines from the
Color-lum multiplexer. Binary code 0 selects no
color. Code 1 selects gold (same phase as colior
burst). Coces 2 (0010) through 15 (1111) shift

the phase from zero through almost 360 degrees
allowing selection of 15 total colors around the
television color wheédl. '

[LINE PAIR ‘__;.‘
q]smmc}n-msru\wl

HORZ.
Birex] I e N e 1 r
e 3TN E-~5E—— b LIFE—— PTLINE = 2.~ LINE~X |
CRre N N '
E
GRPYL J . M :
i fODED ADDRESSES FRIM MICROPROCESSIR
Pe PLAYER |
> GRAPRICS
SERIAL |
PLMNER Pl OUTPVTS :
VERTICAL j
- DELAY :
P YLELPI :
SERIAL A YPELPE o MRoL _
PVTTVT S] ' 1 _ REGSTER
FARALLEL 1 /r A | < sEaiAL
ivEVT = OUTPVTS :
« T ¢ <d :
] e orm: —lﬂ o~ !ﬂ ﬂu s
3 G| & -4 3 dal® chk :
BITSAe 3 3 EITS Ao Z|BITS } ;
Al 8IS filag ¥ =3 i
al B il L
) y THESE
o = - © E_‘)'; ol L pweoed;
& e < & <€~ ADDRESSES
2BIT 7 ' ' MICROPRILESSIR
DRTA 4§ : ¥ PARALLEL
RUS g.- ' T " LOAD i
1 ERATHILS
L
ADDA LSS F\EG!STERSI
Buss
FIGURE 4 VERTICAL DELAY

- =S
r(%maww«
CADD Cloas

HURITOMTAL

i 1 HORIRONTR
TION SUS CLOWS PestTioan -
REGISTER . I-———) covuTEeR REs &
i + PVLSER ' . :
£7s /] 6?75 CIRLVIT — COVNT
'y . "— CEconE
e REFLECT
T TERRPHLC ~(SLOW
RS st&nT ,&s‘raer st SCAV
s ez ...: \
TN Y Psmﬁua . . ORYELT
Y, BTS £ T SERIAL > CRATRICS
-"v[: — 'l SCAMNER SERINAL
;Z;VB';—- ﬁ w 0UTPUT
DATH < .\:’ A % P e ek (Fa,mo,Pl, /’“) BL)
Bvs g % ¥« - Aoorass
e DTCOBES
DG &= 2
§PRRREE Y {
{ 7 :
T™YPICAL | |

FIGURE 4. HORIZOMTRL MDT’IO/\J CIRCUI

r..-; “IMELD REKRSTER

“\"'"8 j F —— 4 Bi-
BN F p >U\RELTWN
Z PARRLLEL
<o
. SERIAL
| T CONVERTER PLRAYRELD
.~ P RN eRAPHICS
L E) E"““ = SERIAL
s X T ?T} am"v()T
— 33
| LI
+ 805) B 4
o S
AL Y le
= {4
w &—— ADDRESLS
e
qes. DEcpbe S

vk

<

NE
47./\[\
WMP\

FIGURE 5. PLAYFIELD CRAPHICS

CUIAVU S0 wAVd < :,m,...mwn,w.lcoc
I LG -yl OL >I\J hn
-~ 21AVUES
tQ 994 1MHA 0L
M cne

()

[
[
e —

W TIN LTI L AW

A e |.:.Vﬂ.l e me -

vinyQ

G JHOL YT

[

AL NWHIS

1
ChratsisnvaL _ [rl__
Jwoa L T
!

0151777107
wovs)
OLP_J gl

RIE DL ARVEE

S \ \7 N

-5 |

11,

11115“

53

4]
A

9%
THNMNE A

Aj,c.._ .:r_.): Q =l (QDC.

.v._, \co_ k:k\..: () LIQ._. ¢.4

i JWNQ
| |
- — . - - .
SN B = N (I
~— e\ _—)
Vv Y

g. TNPVT PIRTD

el

+1GUR

———

o1 ot [os [or X XX X] pre
sifoslestoslos [on [Joa 1 =1

{;o uslnel o3 r;z‘ m ﬂPFL

o

T et 4—-~n.‘

THESES ACORASL s ARE VSED TD WRITE INTO THE
¢ LAY FigLn RELSTIRS

= TN s Rl S M o il AR VY e m TV x> et e ey

B e LT RO SN SN & et o2 vetnd

T g T e R W TR e el R e, s s

SRR U PRV SUUSIN SNV S

R R L RGP DOL;-\ R

A e MR e et -.-_:_-\.;m_—_...-.u.g__..-; e i L L Fe— ,,‘._[

’.‘;.,1. IR r'"usmoﬂ SERIAL OUTRUT

T e e -
X TN LIRS 2 S N A v . Y~ e oo I e i L T e o e ——

—— ! %1:—3!'{9:‘°‘T.”:L LINE * LAY 1eLD

ELEET LN B e

! -
l nyo C.L.ocxs) - -1 RLELECT coaTRaU

(A A AR __‘_;'z.,:___j REFE=0

'_”?"3 P& P"-"’ ‘f”’ ?r'!‘i PR

1)
. o v, SAC 5,;':4.’_’_ SAKS
)

O SR T T T reel

p-"' PRI PFL T S Pre
r
CENTER

tRLPr

B e NI R RO

TR ANDMARESSS 16 Vesn TO WRITE A/TD TH S

VLAYFIB LY COAMTROL RECISTSALA Locic 1L CALLES A un?
AS DESLRIBEN BELD

TG V. A T AR e '\L"—’\n—nu:ml X,

>\] X [D] M Pl iDe ~REF(REFLECT PLAYFIELD)
lm-""'*"“““ P—

te«/ SCO l".E(L:FT HALE 0F PLATEIELS

“"‘“"—J GETS COLOR 6F PLAYER 6

FUGHT HALS E6TS CoLOR

7 FLAYER :L)

e PREP PLAYRIELD CETS PRIsAITY
OVER PLAYERS SO THEY
MoVvE BEMAMS FLHYFICLD)

BALL SiZE

=21D5 D4~ wWIiOTH

o I CLoCK
(o) 2 CLoCKks
f

|

.

4 LLOCIKS
8 CLOCIKS

o 0T T 3, M LT, 3 Ry W X P ..oy e T Y ———

P (PFL, PF)

ri"
RESPO (RES 5Pl RES (0, RE5M1, RESBL)

""7435{. nfw-fz"scs ARE VSED TD RESCT. PLAYCAS

mx'lecs R&YD TRE BALL, TiHE pnTECY WL BE&A ITS
TRIAL CAACHICS AT THAT TUREZ CF R HIRITOAMTAL LIMNG

DT B to T e MOGNARELS cLcyns.,

H T “ M '.:‘_"-.-;"..:-'.-.‘ R A R I '-".~.1r"-'.- M .-.1-4".-‘-.'._".‘.‘-.“

l {0 Dr'ﬁ'."t a(. 3 am— ucf:r;

T PO (R E5MP 1._

’{?4.:‘, .--".«_:,-‘;c;s;..;s NE USES o .ﬂe::s.-'r“r* : Heo13 .

1,_?____ Wi g :?:__@_s_ggl_gl TO TTAE CANTER OF IT's
o0 P ,'—r"."‘r":' S F FLAYEA, A% LONE £1S THIS CCATRIQL (MT
VS TRUSBTY 2 AssiLs AL MENMY LOCkED T9 i
C 5y /..g B U7 TS PLANEAR AAD TS /AssieE CRATNIES
e B3I DiCAGLED, Wiy A WEAAD 1S WETTEW IATD
WIS LOCATIOS Tra ANEIL T Te ELaALELd v can
CE MOVEL TS S oAty FRON THS PLAYER .

- 'A-‘;:;-:‘«_—:—;L:.'A'.'__--; DI SRTY 2 Arfl-_:‘:.::’:-:—:::‘_’:;;: PRI e e)

~w Q&C_‘.‘P(“ﬂ‘fﬂ [¥s "‘“L‘z}.‘: 3 15557)

:f { &.Q}a’_t_-;

THES DDSRESS CRUSES THC JIeRIT 8 AL A4 TToM
HEGISTR2A YALYES TT Bi ALITEN URSw DURLIAME THE
HOUZCH/TAL MLANK Tisse [.2 WEieH 17 oCccunrs, 17
UST DCLYR &T THE 38 BCIAMAINE OF MHER:Y . RLASC
i 9t\£"ﬁﬁ. TO ALbW Timz FOR CEXEANTION 0F TXTRA
CLOCK PULSES 447D THZ MeRi20ATREL FOSITIOW ESUVNMNTERS.
LT MOTION 16 DESIRAD Tis CECANAMD MUST IMMEDIATELY
F‘"LLL-U f\ wt'mc ga 4,*:*..1;.«*3 I THE FRECaAMN.

} e D"Hﬂ m'r*, N usEo
..EiﬁL@J:,LS._ |
THIS ADDARSS CLIARS ALL HOMBOMTEL AFTION
RELISTEAS TO e 0 (#0 M2TIow)
NO Dﬁ B ﬁRF— VSEO

1
! 1
TR A e A TR ST s AT Py S s A atprmy

ok

TETH ML o RITAD Tl AP e e

GRPB(GRPL)

AT eemgs I S PR LY NERGrars

TTHBsE ADUAESSES WRITE DRTA IATD THE
TLAYE® C-.»RP\("HOC* RIZGISTERS

[27] 2% o503 [o2]] 59

o~ - e ermmeemas se - A are e -
n~ A RVBLUL T LI L 0D A e maviE L Beet ot et T RS o B B Lin TN P T WIS AT Ve Baie a s T

-.n 1Ea, :é‘\.ﬁFn.(,') R r\sh,., CERVAL OUTPUT

©omE s e L R R L T AT YL TN S A A L S AT LT S s e S e vy et

3 -
L maw ses sl em

g T eI HERPLOATAN LIVSE """‘“‘“"* FLAYEMR KEsLEcT
COATRDL -

I RERPE =0

: &RTE

n catlected CEPE =

e3ITus COVAMTER WG SAME WAX
(.035€s BERO N GREL GUTPYT

e EFRLS T ISR AL NI TN TN T Wt B e TIAE TR L MlII S St AT W e WU T e e AR e et T RIS A S s rad

S {-:;nr-::mm OUTFVT 3E6IVS REEPL ACTS
1 l'/“;
4

ST ST -

"x \. PRI (R MF“P’—L)

— ey

- LTI AL 1 s A 1A T M S

T oI I e e VT £ - e e o rE— e

THESE ANORESSES WRITE D3 \AMiD ThRE 1817
FLAYER REFLECT REGISTEAS.

e e—

O wNo &E#LeCT(D? 0F &RP ¢ LEFT)
i rertzev (be of eRP sy u:F'r)

T T T AN T A W DA D S T R e, nmuwc;u—r—xm—a_a e

VDEL PG (vnEL P VDELBL) - |

ST TITTYY .

B b LA R PESNE L N2 PG 3 ~

o

- ENPCRYV.Y I IR AL

THESCE AROE 3%€s WRITE DO WTD THE | BIT
VERTIC(AL DELAM K ;‘6!5":’@1’23,1’3 DELAY PLAYEAS DR
BRLL NRY evV4A VEATICAL LINE,

L><ne

) - O N0 DELAY
| DELAY

CYXCLR
THIS ANDRESS CLEAARS ALL COLLISION LATIHES
To €A (Vo coLttsion)

[DATR NIiTs #6T VSED

- ——— . a4 e g seae

LT

AULCB(AUDCL)

|
l i
- e R A WA G S 3e = B ¢

AR TN § PV sttt . Yt S AT P sl 0 WS G BN ey

TUASETITR W R P A B G

THESC ADCRES:ES WRITE DATN IATD Thy LVolo
WHILH CouvTael Yag anis

COMTROL REGISTEAR S 2 AACISE
CONTGHT DAL ADOIMA AL DLUISIc CF TRE
UMD ZUETRYT,

e :_...}__n.T.._

KT4 <DDE | VAL IR AVY A
[ETTO 4

4 BIT POLY
S1S-24-BIT PPLY

EBITPeLY-+5231T FOLY

2 purtTore

R i Y e R

SETLAST 4 BITS T 4
=56 .

A fwr-?. A
+4q3

EBITPOLY =6

ITMONPPa g euripul—9
- == 0QQO0O-—=-—-—c0gO
| Q-0 ~Q=0=0—=0—-0—0
t:.
~{

“

o]

r-

-

-
£
~§

(3
;'43:

\..“d

TTIRLE ANARITCSES WRITE BATA IA&ATD THE

AVDID YOLUME RELIITEARS WK SET THE PULL DOWa
THAPENAMCS DRIV IS THE AUDIY gvitTvr FANS.,

i ’ AVUD OVTPUT
03| M| D1 | Dy UL CURREMT

T STWE T o AAEN YR

0 MO QUTTVT CURRRVT

o 0
o O | LOWEST
0 !
| \
| |

HIGKEST

F& 2. bF 2 .
f‘-JP. ME FUNCTION

i«:v.r;s-:f:.x "z ¢ S n 3 o

AR} S SIS IR _ -
ii' EAVALEEES! 11V L] AYDID FREQUENLY S

ilir| AvoFL | 1|1 01| Avsio ereaverer <

5@:? au{QE”“ w_7j|w.gs&vvabme eiﬂwwm_ﬁ
szpinl avo v 1 | 1| avoe vorume ¢
sshinl oree [V 1A[1 1 1] omarmics riaver 6
.7;‘-'".-%!(.' ¢ Rﬁl Irl\ l-l i G-RAPHICS F’Lﬂm\IE'R -1. i
."ESi :Dl VAMG | | RAPHICS {ENABLF} r.*\swmt:“:
:!g r_ [\J ;\ N\ ;1_ | | a-r\apmcs(Nrsrs..E.)m\:_Si'l:f'm {__:
*:l P VA 8L \ G«Rﬂpma (E/‘JRBLE) BALL |
Cl?)’ .- l.qm\" éw .;T-l_-i-w-_«..-_ HOR ?.DNTRL M DTIJ;;:;%‘/-:R e |
o !7__{ ‘4,\\ L oty et HO.‘(I%DNTF!L mbﬁorv FLAYER 4
"/"7. -1 n/"\ Ma 1 1A l— HORIZONTAL mo;w,vh::; SILE &
,-7, 23] i '\f\Ml Py _r;urz ?UN:;L I;‘TDT‘(U;": :smé A
’%’H ;‘L ".‘*’Y\ BL. '\Mlml l HO‘E!'-Z*;A;TRL—;\'DTIUN BALL
PSR /D& LPB | YERTICAL DELAY PLAYER &
wl26] VDELPY {| verncaL peLat PLAvER A
Lfrj?.? \iﬁ?l.%l. vaﬁﬁcﬁL DELAY BRBA&aLL
50124 SMPe | | RESET MIS31LE 6 TD PLATER &
men '“};{L; M4 1 | rEseT missiLe 1 1 PLAYER L
BZl ekl HMOVE .S':.:ROBE' APFPLY HORIZROVTAL MOTION

53

e e

_WRITEE] APDRESS SUMMARY

HMCLR

STRIOBE

CLERR HPRIT, MPTIDPN REES,

34

CXCLR

STRpRAE

CLEAR COLL\S\ONVN LRTCHES

2 o9 @
2% S 3
.2 2 G5 = T oo =2
2 :2eE3 2Ey,
@ DI HyE T 8o
E © 8¢ g 2 o zy € 3
M = O © = = O g O =2
O v o Zaon OwoO o
TANK 1
2
3 | ——
q
5
TANK-PONG 6
7 SE
8
INVISIBLE TANK o
INVISIBLE 3
TANK-PONG “
BI-PLANE
2vs 2
1vs 3 <A
JET
2 vs. 2
Tvs. 3 5
o 2 vs. 2 27 & 7
FHi0) h U S AL -

The object of TANK is to hit your opponent as many times as You and your opponent are invisible to each other, except when

you can before the game ends. You score one point for each hit. a missile is fired or when a hit is made. In addition, the .tanks
Game No. become visible whenever they bump into a wall or barrier.
1. Open Field (Fig. G) Guided Missile (Fig. E) Game No. . o ‘
2. Easy Maze (Fig. H) Guided Missile {Fig. E) 10. Open Field (Fig. G) Guided Missiles (Fig. E)
3. Easy Maze (Fig. H) Straight Missile (Fig. D) 11. Easy Maze (Fig. H) Guided Missiles (Fig. E)
4,

Complex Maze (Fig.1) Guided Missile (Fig. E)
Complex Maze (Fig. 1) Straight Missile (Fig. D)

&

INVISIBLE TANK-PONG GAMES

TANK-PONG is a unique series of games from Atari. The missile These games combine the invisible play feature with the missile
will bounce off the walls and barriers of the playfield. In the action of TANK-PONG.

“Direct Hit" games, you score by hitting your cpponent either
head on, or by bouncing your missile. In "Billiard Hit,” your
missile must bounce at least once before hitting your opponent
to score. If, after firing, your own missile hits your tank, it will 23
not score againstyou. © o

Game No.
12. Easy Maze (Fig. H) Direct or Billiard (Fig. F)
13. Open Field (Fig. G) Billiard Hit (Fig. F)

14. Easy Maze (Fig. H) Billiard Hit (Fig. F)
Game No.
6. Easy Maze (Fig. H) Direct Hit or Billiard (Fig. F)
7 Complex Maze (Fig.) Direct Hit or Billiard (Fig. F)
8. Open Field (Fig. G) Bitliard Hit (Fig. F)
g

Easy Maze (Fig. H) Biltiard Hit (Fig. F)

P

ot

e E3Ed e

LB 21221220

14

AR RARA R

4

LVILSEVLELCLLELOL 6 8
J1LLNAHS d0VdS

L 9§ ¢y e ¢ I

dYM 3J0VdS

=
9
8
g
. 8:
[
[ar
B
=3
]
£
K-
5t &]

ATAR, INC.,

aseqlels
aoedsiadAH

ung aoedg

oAl diep
Arepunog Axelen
o|npo o|buls
sishejd JO 'ON

EXERCISE 2

. Push the Game Reset button. By

i pushing the Joystick forward

4 {towards the television screen),

give your Star Ship three quick

short bursts of “thrust”. Notice

1 that your Star Ship is now travel-

1 ling in a forward motion towards

the bottom of the playfield. By

turning the Star Ship either clock-

1 wise or counter clockwise, turn the

! Star Ship so it is facing away from

the forward motion. Give the Star
Ship three short quick bursts of

i thrust. Your Star Ship will siow

! almost to a stop. Push the Game

Reset and try again. Practice this

exercise until you can stop the

. Star Ship completely.

EXERCISE 3

. Push the Game Reset button. Turn

! your Star Ship so it is facing to

! your right. Give your Star Ship con-
tinuous *'thrust” by pushing the
Joystick forward and holding it in
position. When the Star Ship is

“travelling rapidly across the play-
field, turn your Star Ship in the
opposite direction of travel and
push the Joystick forward, giving
your Star Ship reverse “thrust’.
Your Star Ship will slow. Practice
this exercise until you can bring
your Star Ship to a complete halt.

EXERCISE 4

Push the Game Reset button. Turn
your Star Ship so it is facing to
your right and down {approximately
45°). Give your Star Ship con-
tinuous “thrust” until it is moving
rapidly across the playfieid.
Alternate using horizontal “thrust”

INCREASE
SPEED

SLOW
SPEED

<—
CTION
OF TRAVEL

DIRECTION
OF THRUST

I DIRE:

DIRECTION
OF TRAVEL

zH

=¥

QX

o

LTS

v 15

INCREASE SPEED
DIRECTION
OF TRAVEL
—> —
OIRECTION
OF THRUST
SLOW SPEED
—>—> <
DIRECTION DIRECTION
OF TRAVEL OF THRUST
\EHECTION OF TRAVEL
DIRECTION
| i) OF THRUST
)

&

<«
DIRECTION
OF THRUST

M

15}

and vertical “thrust"” to bring the Star Ship to a near standstill
in the middle of the playfield. After mastering the above
exercises, you should be an experienced Star Ship captain,
ready to do battie among the stars.

The left and right Difficulty switches must be in the “B”
position during all Space War games. In Space Shuttle
games, slide the Difficulty switch “A” and you must exactly
match your Star Ship's velocity to the Space Module’s
velocity. In “B" position, your Star Ship does not have to
travel at the same speed to dock with the Space Module.

During Space War games {1 through 7) you score one

point when your opponent’'s Star Ship explodes. A Star Ship

will explode when:

¢ A direct hit is made by firing a missile.

e The Star Ship collides with the Space Sun (games 4 and
5).

« The Star Ship runs out of fueil while in Hyperspace
(games 2 through 7).

* The Star Ship tries to enter Hyperspace when out of fuel
(games 2 through 7).

In one and two-player Shuttle games (8 through 17) one
point is scored each time the Star Ship is successfully
docked with the Space Module. You have ten minutes to
score a maximum ten points.

GAME 2

Engage in combat in a galaxy which features Galaxy
Boundaries and Hyperspace.

GAME 3
Oppose your space opponent in a galaxy which has Warp
Drive. Use Hyperspace as a defensive move.

GAME 4

The Space Sun in the center of this galaxy exerts gravity
during combat. Avoid your opponent or collision with the

Space Sun by using Hyperspace. You also fight within
Galaxy Boundaries. :

GAME 5

The Space Sun, Warp Drive, and Hyperspace are the
features of the galaxy playfield.

GAME 6

You can refuel and receive more missiles at any time

during this game. Steer your Star Ship to the Starbase. This

galaxy also features Galaxy Boundaries and Hyperspace.

GAME 7

Steer your Star Ship to-the Starbase at any time during the
game to refuel or receive more missiles. This galaxy also
features Warp Drive and Hyperspace.

{f you have mastered the exercises, you are ready to try
Space Shuttle. Connect your Star Ship with the Space
Module to score, Recommended strategy is to first match
your Star Ship's speed to the Space Module's speed. Then
stowly maneuver your Star Ship towards the Space Module.

During Shuttie games the Star Ships have an unlimited
supply of fuel.

In one-player games, you control one Star Ship with the left
Joystick controiler and compete against the qlock. Yqu
have ten minutes to score a maximum ten peinis. Du.rmg
two-player games each player maneuvers his Star Ship to

. score. In two-player games with two Space Modules, the
target Space Module will be the same color as your .Star.
Ship. First player to score ten points or the most points in
ten minutes wins.

STRVER GAMES

2 B LA 2D DD ot LT 8 Z e

Two players each control one Star Ship and a@tempt tq
connect with the Module which is color coordinated with
the Ship. Warp Drive is present in this galaxy.

GAME 9

Two players each control one Star Ship and compete to
connect with the same Space Module. This galaxy features
Warp Drive.

GAME 10

Each player controls a Star Ship and attempts to connect
with the color coordinated Space Module. A Space Sun and
Warp Drive add extra dimension to the strategy you will
use.

GAME 11

¢ Each player controls a Star Ship and attem'pts to connect
with a color coordinated Space Module. This galaxy has a
Space Sun and Galaxy Boundaries.

" GAME 12

Galaxy Boundaries characterize this galaxy. Each player
* gontrols a Star Ship and attempts to connect to the same
Space Module.

GAME 13

Each player controls a Star Ship and attempts to connect
with the Space Module that is color coordinated to the Star
- Ship. Galaxy Boundaries are featured. .

RN LRI DT O)

P

Use your Joystick Controllers with
this Game Program'™. Be sure the
controliers are firmly connected to
your Video Computer System™.
See the Owner's Manual for details.
Hold the controllers with the red
button to your upper left towards
the tetevision screen.

NOTE: To prolong the life of your Atari Video Computer l
System and protect the electronic components, the console
unit should be OFF when inserting a Game Program.

Screech! Pow! Smash! This is the super chase scene,

and you're in it-—right behind the wheel of a Super ;
Chasemobile car equipped with power and incredible ;
gadgets.

Console Controls:

To start the game action, use the console controls to pro-

gram the type of game you want to play.

® Press the Game Select to choose the game. The num-
bers of each game appear in the upper left corner.
(See Game Descriptions of the game number of each
game).. .

e Press the Game Select to choese one of the four chase
mazes. : -

There are four chase mazes. Each player steers one car
through the maze. Chase your opponent and attempt to hit
nim with one of the secret missites fired from your car
headlights. You score a point each time you hit your oppo-
nent with a missile.

¢ The missile on the screen must hit your opponent’s car
OR

& You must retrieve the missile on the screen by steering
your car into it.

GAMES 14

Select your favorite maze pattern. These games feature
missiles that travel faster than the cars. Note that the
speed of both the missiles and cars increase with each
game nuimber. For example, Game 1 has the slowest mov-

ing missiles and cars; Game 4 features the fastest moving
missiles and cars.

GAMES 5-7

Drive your car fast on these mazes. This time, the cars
trave! faster than the missiles during these games. Note
that the speed of the cars increase with each game number.
For example, Game 5 features the slowest movmg cars; {

Game 7 offers plenty of speed. , !

GAMES 8 AND 9

Missiles do not automatically turn corners during these
games. That's why some of your missiles may become
trapped in front of a wall. In Game 9 you're driving race
cars; Game 8 features slower cars.

e o et 4 —

ae 2

Printed in U.S.A.

WA
NG

o 1854 wespeven-f

| BT

v L]

&~
et

N |
A A A

] E— v : . P s wUNLSAN!
" . ”~ o TTTERORMY =T . hany -~ b
vi| - 100-1€£2592070 d — e R I : - AWV) IOISATA IV
A o sanves |ows . At o 0 prveim .!hh-"ﬂ.lr o - b d
_ mijw?wﬁ o ogepe ey g dfealodgoni L L ANy QIS B
00sL R =y v CoEEERETETE| e :
T e nanae | gafasfs e) P St - n
L Wy¥ovid U_._.dS.MIUm; %, Py lﬂlllﬂwyﬁmnﬂmﬂ . T
. : . FEYY ™ O on § -
[yuu § 754 o e ey 2 . ﬂh-.f.rv -
e @ JYYLY [rEA2E TR - e LA il - —
1. agise v eeer wg . wve T ASNAYNG “3co s eaxoay - QXL PUWhEZSIO¥4 .
g rwMd 3 O e
= BRILVEG o KEMvI N
= E o8 40N 06 7. | SRS : o
Y- — NOLLITITID B0 THLVIOWI000N — TR MUY RN Tl._l‘ulll ﬂ:.ta'ldll:.ﬂ ol } 2T e —
z . - ._.ummm.._ ml_ - —
-~ - &'t . e : . —
» ria vH e : 0.
_ , . TN .._#_v “sdozg - Y
b AAA——{ s G
%72 (#-20'2v-10) €Y ._-bI— C e o
oMM - - s oL
- onnL(g-8M oo Jr 103
“1Ann Lei-20 L= 1) &SN
- 1nnL (S-80) - wze-gn o HTBTT L i
RN (A-200 Se-1) T y %C‘. ¥5, | —=
WL m\...m:v LT L oo “agaz] | _ :
Enntin LS-20 B b-In) 00 _ ¥ .
] %23 -ONABL{Zz-en) A&
“ i o 3 oNAsK (z1-20 gr-1n)
ll_\ Tllu 1 ASH 9% oY 0oL (6-80)
- 4dL4 WY Lh 2 Lid
) - — £g-201) 0G ——
U - {z¢-20) 14
wa L yge /= i
100 33 (e 1~ ——_— o331ND 2 - pZ-20) ¥d
1=y [€ 2-in) 59
: : - AmN-ﬁ_MK
: . 002 {9z2-70) La
v z | 85y
L¥3 _ _ .
999’ L groLgaor L 990 et "
. T 163 T0%2 ﬂmvu.ﬂweu (R ¢ = T €22
; ! vMon@m I exs I_
P ores |
| €& .
SE—Y 2 4T 23 (gza) _ yoo
i e av —Gle2 I EI &K %l %23 | (1120 9z-81 b2 20)
(L1-20) NS+ @ sl —S8ley ST 1 £T &S |) 2373
Sanv - 81-i0) v —FHsS? i 2301
1
s Wt by Qov:
| Qhva 2y viL : P Ao ASe (a-v0).
: 8n 7Jad M NN)
od AS [od [5 41 H
ASH Y 5 um
3 __1aEg _a-ﬂ[ri
— o mw K1 M .Nm 5 pait
E-ErlonanL onm #Q|Lt : ol T
& g : : _ —
i — 2 m QL M Se——r—
C-EO) DNAS t —5|us 3 3 ELMH\\\
Eal " -
@) 1001 — - qHE wE— i
Y b A M [o
s gyl EE—
ﬂ — R AL o
L 00l ¢ —gyal
. -2) . IAN. —5 IWN ATy
SIS SR SV S v$ - . A P B
. | TEY (zz-8M 1 | (8 D 2ol L2 M —

S : 9 | L | 8 weemy §
e . L XOA LH I . . i w .
1y2SAC FHL TV OILIQAYINGS LON St #~ " TSt pf I1dod L4337 St OEF T : R XL : 3
2HSATA ¥MOT FIMOF SoaALd DSZTEZ v SI. . WNOY Nid P2 HLIM 350 T2m ° L .mﬁ<x<uo~_u_2 FYY SIANTVA muz:.G,R.«.,.. . £
2FSM SI WOY L1 XISZT Nid 8T NFHA S . NON NIdBZ hlm 3asn i im g o .° .\.m ‘M¥/I SWHO NI 2V SINTVA IONVLSISI 1. EERREE S
: ‘ . . s R TITIT(Q3NIDAAS ISIMIHLO SSINA) mmhoz DAY N 2
A : o C , _ ALY ¥IOEZSN " e : v
o . L Av R : . .?v Sl “.A«‘mpo?v 4
: i A . L o _ - >_.m 3 o H|Amwu” . 3
LioeLiood o] | B o e 7l e P
10c*] 1001 100°] 100°] 100") . 100° L 100"} 100" | 100"] 100" 1 100" 1 100" | 100° .to&....aorv Mwlmﬁv —=n - i
i . : g-eﬁj-mﬁ -9 Q-ZQHoS ToEd ,-mmj,pmu Teed T vES” (2s3) —H .
. , : b 01 Ty
! A ! ~ - —<8) -
- SSE== Ny
— X z
1Y i
di P .}
S |
g Y »
~zn'1-any L na - 0 o R . La
4 1353d - A - .- . . - .
e {0b-8n) O1 - Led - . o gD o
) e S - TS a
- 15 - <EEN i
. {6€-an} _le@f. A - Za H
PO e .
—oa ML (8e-8n) NH.I.QW,\\ — &0 N
| SEiiq avlE AR : : ;
—_ 23 v (ee-8n)Ex &) 1
A 6% - = 1
»a 183 : : .) -
F 8 Gm-maﬁ..lt,»i < - :
14 R Yer : e L
R s e-smys1——— . —gr=m
Z5ce \ : : :
A oo
b Nor (22Z-eM1) [
. NWA— 28d X H
osd : T
3G — bENZ ,
1a : : N9 M|
za (c10) _.Hn\: N € ot B bl-b0)
z i Ly L) Zry | ol ﬁcma
~d 10 (012} gaw3 s LE] bb
23 T €92 (b-Z0) QUT, EH “out AS- S0 #
3 (§2-8n 've-2n) ~_l Frep) . A06ENZ | "
. 1 L] T yey (L) putl
PibNI v~ Navl B
MN FAT %% | e b
zZvY NN : S
Y . ey | a0 | L
AR : R S
hn N« : \r NG+ <t
YOBENZ 3L —esy : = N
c -) 53 m@ K
fits T2 : %] ome @-1n)
= AS 1a oA [2
» ' S e "@z-en 20 -]
a AT 257D .
»q bE (3-zre-gnvr) 4
Wz @-n) - ——— §9 Adurg NCa H
-v0) 1MW 25wl oz 78 wn - :
g e, ' oz| 8[302 =\ .
NI A 4 i B ' a =
s> T =3 = mv . Q\ 2in “12-9 12-8N) D
% "w_ ia azmiwro /¥ !
4 T2a Y oam 2059 ; oo
TUA I = T zn. Co
. Ty <M AL ’ : I
“u @nuE 187 Wr - N SRS
T e X} i AS i AV (z-if) .
) 5101 o T =TT ,muﬁ
i) AR — _N.d i e s ‘3N
ig T : ™
A EmIn y 11 f ﬁ (=2-81}
= i LA i
— 5 ; P13y m/ures . QE-n)
T Tt I '€ 9 | w« Qg oyl
g -
1 F2 252 Loy nash— Sy Mzu‘m

i . . f¥ea) T:_ + - Lo
| GrERanAl Iy — i R —
-eq N eg gy } AIvE)
| (ERiRRNaL —Hgn Xk : —at =
{ : .. g OV 2 La i
(L) ool : . . Nig5 1V ﬁ ov
— 6 1 s ~ 1
1. & YL T - 1Y,
. * ' . ..||.L 03 . - E¥iE: — R —
_ . _ e i
" L = _ oL -2y, TN —g] I A
M1 S M SHEE SHUEE SNEE SNET ssA £EA (zz-80) (81-SM) 2SNV — 7] 25202 LY g
¢z S228 S B $zd Sony c.&.ﬁ)RR . 29U | o e 5 2 89
b 3 , 1o be- , o2 OV
2 ZX12(BE-20) . ‘ 97| = . s
Qoz.m_.mw; w22 .Lm@m-NEVTi ; S gz - | YW " : z
571908 AQ¥r2 Rax(a-2r'z-zaliv-1)(e N (e-zn) 08 - n
250 - 12-2N 0 A —~VWVr—m— OW
u 220 L Gy eezr) ?
i v oW OWNIA —z oWan hav
! 28T TE12r [Zi-EN) IWNIN —F5 Wl
. (i-2r 'S-en) 2w —gzizvan v
T8 M1 i bLiSd (&-2r'ol-EN)EWnIn —ZZienn Zivis
3] Ydsea Ij o (2-2r 'Z-EN) IASA —GTI WAL €1VIHY
- o : : (9-~20) WNVIE —op N0l LAy
(§-10) AS«+ ASHD 25in [) (22 ‘s1-20) 0N — ¢ w3 SIVlEE
N3 A &Mm %h : .) 2% tz-gn)Lv
717 SEly .)
- .-.a% . . m Ar d[EE
(£10) (i-40) 5 SSA LIVAFEE-
. NaH — A g] o %t 1 «lm_w don wm.w%wl AQule-8n‘2-20'a-21,
1= - 9 i 15
" 5122 W% : 4 g v
TpR _u_.-.»:., : _ P As .
- - -) [B =10 T !
S+~ . yg-zt) - (=210 ‘ve-bn -
hs+ L NNDEYXEED) C RN ———— i3s3) : .
. e . “AG+
> <D} oo
= s Oianv(93) ¢v
% AQYLE-80'Z-20'w-10) | .
20DN(91U'Ep-1n) " o —
EEL>— ZRATK(S-E0 " S+ -1h) . -
WWN.V! _uﬁﬂmnﬁﬁw_.mm:am.?-nnv - i . i ’ d ZHW
i - - 4= H . s) .
(T —— 5 IreE) oy S Sk LTS gosEere gl
Lndne EE— T Guet D). ._‘ _ : : o311 m@\\ |
»Cd e ‘. rs porunt
¥ 3Ha 12 3d W == NARXE{ g0 = SR NI v
or S . YNVIE ALy - B ..
% . ERNWOIETPE-I0) |0 . :
oRMNsIE ZEon) o= 9% - .) 1 sdost | gerv o
T - “O3qIAD(E-13Y) - (oizzr) "\ b - - - T A T e o
= : — AGY .. - SsoLxd rEENT ‘ .
= - i— dN9 . ,. _r . 0 - ﬁ.
- . . W i Aﬂy% #OLENT nfuo._«.u _ 5
€0
| _ .
L g N i w < wga
L1d Ly 1
] | ._x €12 S 62
d (L2r) . .
A ;. }——sicps0
S . . . , 5 02l - 19
L . : 4 R o o S 1T gy |- . : wm_q
: : A AVATTREED 957 B : o
- Q
: : ! ¢
_ !

BT o T

{8

L %
—— A 1T =l _ A .. e
= v sE=1 g
— ; 1S et Dwu
Tz ; {eas?
v - N
— e 2 . @11 Cwzen)
) l.m.w [¥ L1y won.m_z.m ‘ oid
— Y : z -
s o B R
P gL [b I =
D bV e o M 336 %
Tk ow o.m. XL L) M_ __ ‘ = o “
- 2 "an | a0 | - 3
Ziiam 30| 3m 30 [o™ - Ty
2] 0z] 17] o2 . PV 4 ' ekl .fm.mw:v
, ! L0 ' mwv . 53 oml e 4353 i
o rezn) eegzpiave | AN . . o .
a/ 2 Nig 92 C3
(s z20M) ,IA (g1-o0tn) 3
22 = 13533 :
(] ~ (oI-1in) T
5 Tk L1X3 As
" +
uz-gLY L. (+2-20) 2Iv .. ey : .
g . - _p |
€ : ! : !
. Of A0u(e-8n‘z-20 4~ 21) A ._H ._. .H .~. ._y . ==
5179 v Lozzl "
v |_Nuﬂ~m~u Hw_u ﬁmﬁ. H
_ , e _ . B 1
- .
.S
r L 1
T Dy
. W22
A , . h
~7 L g L ze° elor ¢ = e
uw Tva2 +] 652 ’ j T 0%
: —dp-- ciov :
—zl R M] ALY . A I
Kz1-2in) oin S 0T 25N :
133y O —-- Qp— o] q : 0 '
£l G) F 3 .) 9.
mn 8_> . o . AVS | .
. ¥ . : : : 1€ 28Nt ﬁ . ; . -
-wo“_qu - 0z2 N Ho oz 'L+ doozz L 1
1%
%ol A ¥
R Wi : AT ‘
Evd - S 3. A
$OLENZ Ly 2 i @
s P a1)
. 22 —
cco
b ora] > HOLY M Al
ﬂ_ o eps | o 9asy o eed .
ol s BRI R S . TS S R " yilavav
onslsom| - . : ¥ . - Xy
S 934NN S+ . e . : : ..u D o 23rhed
ax = YYSS ekl T .
PN Z2E€=x i3
d c :
- DIUNN b : i
Ao + . .. | - FEE 3¢
(za¥) : ’ i
.] i
g .9 | L _ 8
. -
_ l(- o ——— .w - —— - [———— . . "
. . - -) IR R . : : : . z N : B
— e i ere L A ey e Cae, L [T S SO FLI ST I R S e L..L —i

