INTRODUCTION

BASIC is the most commonly used computer programming
language. It is easy-to-learn, yet still a powerful
programming tool. ST BASIC™ is very similar to the
mainstream dialects of BASIC, but it takes advantage of the
windows, drop-down menus, and graphic icons of the GEM™
Desktop. This version of BASIC also takes advantage of the
speed and graphic capabilities of the 5205TTMComputer System.

The ST BASIC Sourcebook is set up for easy access to all the
information a programmer needs. For the first-time BASIC
programmer, work through the examples in Section 1 of the
manual. The special characteristics of the language and the
BASIC Desktop are demonstrated.

Section 2 is the reference section of the manual, containing
comprehensive Appendices on every aspect of the language. A
description of each reserved word, logical operators and
order of precedence, Error Message listing, and sample
programs are all provided.

Whether you are a beginning programmer or an expert, it is
important that you make a backup copy of the ST Language disk
before you begin programming. Refer to the 220ST Owper's
Manual for detailed instructions on making a backup disk.

SECTION 1
GETTING STARTED WITH ST BASIC

The first section of this manual provides a general
introduction to ST BASIC and demonstrates how BASIC works
within the desktop environment of the ST Computer System.

This section is divided into three main parts:
*Loading ST BASIC
*Touring the ST BASIC Desktop

*Writing an ST BASIC Program

Note: Before you begin programming with ST BASIC, you should
make a backup copy of the ST Language disk. Having a backup
disk provides security against accidentally erasing or
damaging your ST Language disk. Refer to the ATARI 520ST
Owner's

's Manual for complete instructions on making a backup
disk.

LOADING ST BASIC -

To begin using ST BASIC, you need to load the language
program into your ST Computer. Follow the instructions shown
below to load ST BASIC. If you have a one-drive system,
follow the instructions labeled, "Wwith One Disk Drive,% IF
you have a two-drive system, follow the instructions labeled,
“With Two Disk Drives."

l. With the ST Computer turned on and the GEM Desktop on the
video display screen, double-click on the Floppy Disk B icon.

2. When the Dialog Box prompts you to insert Disk B into

Drive A, place the ST Language disk into Drive A and press
the [Returnl key.

3. When the Floppy Disk window opens, double-click on the

BASIC.PRG icon. The BASIC Desktop will appear on the video
display screen.

With Iwo Disk Drivesg
1. With the ST Computer turned on and the GEM Desktop on the

video display screen, insert the ST Language disk into Drive
B and double-click on the Floppy Disk B icon.

2. Wwhen the Floppy Disk B window opens, double-click on the
BASIC.PRG icon. The BASIC Desktop will appear on the video
display screen.

Pesk File Run Edit Debug
LIST DUTPUT

The BASIC Desktop is the main point of reference for all your
work with ST BASIC. The next two parts of this section show
how to write a simple program in ST BASIC and how the BASIC
Desktop works with the programming language.

IOURING THE ST BASIC DESKTOP

ST BASIC uses the standard operating procedures of the GEM
Desktop. The procedures for accessing menu items, selecting
options, manipulating windows, and loading applications are
explained in detail in the ATARI 520ST Owner's Manual,

WINDOWS

The ST BASIC programming environment includes four windows:
Command, Output, List, and Editor. After you load the ST
BASIC program and the BASIC Desktop appears on the screen,
the Command Window is active, and all four windows are
available. (The Edit Window is available, but only a small
part is visible under the List and Output Windows.)

The procedures for sizing, moving, opening, closing,
scrolling, and managing multiple windows are identical to the

methods described in Chapter 4 of the ATARI 520ST Owner's
Manual. Please refer to that manual for specific
information.

The Command Window

Enter ST BASIC commands and program lines in the Command
Window. The Ok prompt indicates that ST BASIC is ready for
your command. Type

PRINT "HELLO"

and press the [Return] key. The word HELLO will appear in

the Output Window. Type your name and press [Return] to see
how it works.

Note: 1If you type something ST BASIC doesn't understand, you
will see the Error Message, "Something is wrong", in the
Command Window. An up caret symbol(.;) will point. to the
place in the program statement where ST BASIC found an error.

For a complete list of ST BASIC Error Messages, refer to
Appendix D.

Your computer can functicon as a calculator by using the PRINT
command. Type

PRINT 2+2 [Return]

or use an abbreviation for the PRINT statement. Type the
following program in the Command Window:

? 2+2 [Returnl

The answer, 4, appears in the Output Window.

You can also use the numeric keypad for calculations. Type
? [Spacel

then use the keypad to enter

(5+3)*(6+2)/4+2 [Enter]

The answer, 18, is in the OQutput Window. Notice how ST BASIC
handles arithmetic operations. The order of precedence is:
Multiply, Divide, Add, Subtract. (Think of "My Dear Aunt
Sally.")

Note: Whenever a word like [Returnl or [Esc] is enclosed in
square brackets in a programming example, you should press
the corresponding key on the ST Computer keyboard.

The Qutput Window

ST BASIC uses the Output Window to display the results of
commands or program operations. All prcgram input and all
output to the moniter appear in this window.

Type
INPUT A

When you press [Return], a question mark will appear in the
Output Window. Type the number 2 and it appears in the
Output Window. Now press [Returnl. The Ok prompt will
reappear in the Command Window.

Type

10 PRINT "HELLO" [Return]

You have just written a one-line program in ST BASIC! Type
RUN [Return]

The word HELLO will appear in the Output Window.

The List Window
Type
LIST [Returnl]

Your one-line program will appear in the List Window. This
window displays the program it has in memory. If you have a
printer, you can print a listing of your program by typing
LLIST.

The Edit Window

Type

EDIT [Return]

Your program will appear in the Edit Window. All editing is
done in this window. Refer to "Writing A BASIC Program" for

more information on the Edit Window. Press the [F10] key to
leave the editor.

MENUS

The Menu Bar is located along the top edge of the ST Desktop.
The menu headings are Desk, File, Run, Edit, and Debug. Each
heading has its own menu. To see the options within any
menu, point at the menu heading with the mouse pointer. The
menu will automatically drop down. If you don't want to
select a menu item, click anywhere else on the ST BASIC
Desktop. The menu will pop back up.

DIALOG BOXES AND ERROR MESSAGES

Dialog Boxes appear in the center of the ST BASIC Desktop
whenever the program requires information that is not being
provided in the program listing. Whenever an Error Message
appears, information concerning an ST BASIC format or
procedure will be displayed. For a complete listing of ST
BASIC Error Messages, refer to Appendix D.

To exit from a Dialog Box, point at one of the Exit buttons
and click on the left mouse button. If the Exit button has

an enlarged border, you can press the [Return] key on the ST
keyboard rather than using the left mouse button.

SPECIAL FEATURES

ST BASIC has three special features to make entering and

reading your programs easier: AUTO Line Number Function,
RENUM Function, and Labels.

AUTO Line Number Fupnction
Type
AUTO [Return]

Two asterisks and the number 10 will appear in the Command
Window. The 10 is the first line number that generates the
AUTO number function. The asterisks indicate that there is
already a line 10 in memory. :

Press [Return]. ST BASIC is now ready for you to enter line

20. You haven't entered a line 20 yet, so there aren't any
asterisks.

Type
PRINT "I'M YOUR FAITHFUL ATARI COMPUTER" [Return}]

You now have a two-line program in memory. To stop the AUTO
number function, press and hold down [Controll, then press
[G].

The Ok prompt will reappear in the Command Window. Type LIST
to list your program. since line 20 is too long for the List
Window, click on the Size Box at the lower right edge of the
List Window and stretch the window until it is long enough to
incorporate the entire program listing.

RENUM Function

ST BASIC has a RENUM command that allows you to renumber your
program automatically. RENUM uses your disk drive, so be
sure you have a disk in it.

Note: This function will not work with a write-protected
disk. To use the RENUM function, push the write-protect tab
on the disk to the unprotected position. For more

information, refer to Chapter 6 of the ATARI 520ST Qwner's
Mapual.

Type
RENUM 30,10,5 [Return]

When your disk drive stops and the Ok prompt reappears, list

your program by typing LIST. The o0ld line 10 has become line
30. The line number increment is 5, so the next line number

is 35. The RENUM command is explained in detail in Appendix

C.

Labels

ST BASIC also allows you to use labels to help identify
program lines. For example, using a statement like GOTO DONE
instead of GOTO 300 makes for more readable listings and

makes it easier to identify what each program line does for
your program.

MRITING AN ST BASIC PROGRAM

This section shows you how to write and use simple
programming technigues within the GEM Desktop environment.
Follow the instructions carefully.

Note: You can write ST BASIC programs in either all capital
letters or upper- and lowercase letters.

ENTERING A PROGRAM

If there is anything in the List Window, clear it by typing
CLEARW 1

Then type
NEW [Return]

This clears any current program from memory. Type

LIST [Return]

The LIST Window will now be blank. Type

AUTO I[Returnl

and enter the following program. Notice that the line

numbers are provided by ST BASIC. You do pot have to enter
the numbers.

10 REM COUNT.BAS

20 C=0

30 COUNT:"' INCREMENT THE VARIABLE C
40 C=C+1 j

50 PRINT C;

60 IF C=5 THEN PRINT "AGAIN!":GOTO 20
70 GOTO COUNT

Now you have the COUNT.BAS program in memory.
Type [Controll]l [G] to stop the AUTO program.
This simple program illustrates a few ST BASIC features.

Line 10 has a REMark to help clarify its function. The
REMark is ignored by ST BASIC. You can begin REMarks with a
single quote ('), as in line 30.

Line 30 is identified by the label COUNT; line 70 uses the
same label in a GOTO statement. A label must be followed by
a colorn (:) when first defined; it must not be an ST BASIC
reserved word; it must begin with a letter; and it can't have
any spaces in the label name.

Line 60 shows how to use the colon to put more than one
command on a program line. You can put as many commands as

you want on one line as long as you separate them with colons
and the line is no longer than 249 characters.

RUNNING A PROGRAM
Desk File Edit Debug
Run

OUTPUT

Break
Stop
Cantinue
Step

v Buf Graphics

Select the Run menu from the Menu Bar and then click on the
Run option. You will see

1l 23 4 5 AGAIN!

printing continuously in the Output Window. To stop the
program, click on the Break option in the Run menu. The
message -- Break -- at line .. tells you where the program
stopped running. Type STOP [Return] to get out of Break
mode. When your program is in Break mode you can still use
programming commands.

You can step (move) your program one line at a time by
selecting the Step option from the Run menu. When you press
[Return], the program will be stepped forward. Notice that
the program lines appear in the Command Window as they are
executed. Type

END [Return]

to cancel the STEP option.
EDITING A PROGRAM

ST BASIC has an easy-to-use editor that allows you to make
changes in your program without having to re-enter an entire

program line. To edit your program, select the Edit menu and
click the Start Edit option (or type ED).

When you edit, you move the cursor to the place on the screen
where you want to insert or delete a character, add or delete
space. You control the cursor with the Cursor Control keys
(arrow keys) on the ST keybcard.

Use the Cursor Control keys to put the cursor on the first
“A" in the word "AGAIN" in line 60. You can now type over
the word "AGAIN". Type MORE. Notice that the type style
changes to present a "ghost line". The "ghost lines" show

you which lines have been edited but not put into the program
memory. Press [Return]. You still need to discard the "N*

in "MOREN., "

Function Keys
Before going further, select the Help Edit option in the Edit
menu.

Desk File Run Edit Debug
LIST BuTPYT

HELP EDIT:

Insert Space - F1
Delete Char - F2
Insert Line - F3
Delete Line - Fd

sdealfsshansrennssanniissvnsnnbe

Page Up -F5
Page Domn - Fd
Load Text =i:Fq
iy — T 2
L New Buffer - F9 1]
Exit Edit - F18 L
[|
b3
b
Lj

.
1 1 111

4

o

The Help Edit Dialog Box describes the function key commands
available with ST BASIC.

Click on the Ok button to continue.
In the following example, use the function keys to edit the

program. However, if you prefer, you can use the mouse and
the Edit menu options.

Delete Char/Insert Space

With the cursor on the "N" in MOREN, press the [F2] key. The
"N" disappears. Any time you press [F2], the character
within the cursor is deleted and the text to the right of the
cursor is moved one space to the right.

Move the cursor to the "M* in the word "MORE". Press [F1l] 11
times. Type

DO IT SOME
The line now reads:

60 IF C=5 THEN PRINT "DO IT SOME MORE!*:GOTO 20

New Buffer

When you press [Return], the program lines you see in the
Edit Window are put into the program memory buffer. To see
what is actually in program memory, press [F9], New Buffer.
The program memory is now duplicated in the Edit wWindow. If
you haven't already pressed [Return], your original program
will be in the Edit Window.

Insert Line/Delete Line

Move the cursor to line 30. Press [F4] . Line 30 is deleted
from the program memory as indicated by the "ghost" type
style. However, the line remains in the Edit wWindow until
you press New Buffer ([F9]1). This feature makes it easy to
correct your mistakes. Simply place the cursor on line 30
and press [Returnl. Once you press New Buffer, the deleted
line is erased from both the program memory and the Edit
buffer. Press New Buffer. Line 30 is now erased.

Move the cursor to line 50 and press [F3], Insert Line. Now
there is room to enter a new line. Type

45 PRINT "COUNT "; [Return]

You can press New Buffer to see that the new line is in
program memory.

The line numbers are beginning to get ragged, so renumber
them.

Make room for a new line by pressing [F3]. Then type RENUM

[Return]l. When the cursor reappears, press New Buffer and
the program is renumbered.

10

The program now has a mistake (a bug). Line 70 says "GOTO
COUNT", but you deleted the line labeled “COUNT".

Edit line 30 to read:

30 COUNT:C=C+1

You can RUN the program from the Edit Window by making room
for a line and typing

RUN [Return]

Type [Controll [C] to stop the program and return to the Edit
Window.

Load Text/Save Text

The ST BASIC editor will save the contents of the Edit wWindow
to your disk. But the editor can only save 24 lines of text.
If the program is longer than 24 text lines, none of the
program lines outside the window will be saved.

Note: This function is different from the Save As function in
the File menu. The Save As function saves complete programs
which can be loaded and RUN. With Load Text/Save Text, you
can't specify a filename, and the text saved doesn't
necessarily have to be an ST BASIC program.

Press [F8], Save Text. When the disk stops, your text has
been saved.

Make room for a blank line and type NEW [Return]. The NEW
command clears the program area. Press New Buffer [F9]. The
program area and Edit Windows are empty. To load the program
back into the Edit window, press [F7]. The program text is
back! REMEMBER, THE PROGRAM MEMORY IS STILL EMPTY! Press
New Buffer. The program display disappears. The program
moves from the Edit Window to the program memory only when
you type [Return] on each line.

Press [F7], Load Text. Now press [Return] for each program
line. Press New Buffer. Now your program is in both the
Edit Window and the program memory.

Page Up/Page Down

The Page Up [F5] and Page Down [F6] functions allow you to
edit programs that are larger than the program window. Page
Up [F3] allows you to look at program lines toward the

beginning of a program. Page Down [F6] takes you two lines
toward the end of a program.

i1

Note: The maximum visible line length is 80 characters. If
you type off of the edge of the visible window, the text in
the screen will move to the left so you can see what you're
typing. You can type up to 80 characters in the Edit Window.
If you attempt to edit a program with lines longer than 80
characters, the part of the line beyond character 80 will be
printed on the line below the first part of the line. It
will only be included as part of the program line if the
first character on the second line is a space. Otherwise,
you must edit the line segments so that you can enter them as
separately numbered program lines.

Leave the Editor by clicking the Exit Edit function cor
pressing (F10).

DEBUGGING A PROGRAM

With the ST BASIC Debug menu, debugging a program is a simple
process. Two options in the Debug menu help you see what a
program is doing and what the problem might be. These
options are Trace and Tron.

Select the Debug menu.

Pesk File Run Edit
LIST Tron QUTPUT
Troff
Trace
| Untrace |

12

Click on the Trace option.

Desk File Run Edit Debug
L3 LIST guTPUY

TRACE: debugging on lines...
|

gL

—
e e

2

ol
i

Click on the Ok button in the Dialog Box.

Néw RUN YOur program. As each program line is executed, the
Trace option displays the entire line in the Command Window.

To exit the Trace option, stop your program, select the Debug
menu, and click on the Untrace option. Click on the OK
button in the Trace Dialog Box.

Click on the Tron option in the Debug menu.

Desk File Run Edit Debug
LIST QUTPUT

I
]
§
1
1
]
]
1
i
(]
TRON: Debugging on lines,,.
i
1
[]
!
1
1

k LIST
k 3
@

The Tron option displays the program's line number in the
Command Window as each program line is executed.

Click on the Ok button in the Dialog Box.

Run your program again. As each program line is executed,
Tron prints its line number in the Command Window.

To exit the Tron option, stop your program, select the Debug
menu, and click on the Troff option. Click the Ok button in
the Dialog Box.

TRACE and TRON are explained in detail in Appendix C.
SAVING A PROGRAM

To save your program to disk, select the File menu from the
Menu Bar and click on the Save As option.

Desk File Run Edit Debug

LIST] I oUTPUT

ITEM SELECTOR

Directory:
\¥.BRS

= lfelm:tilm:

Type COUNT in the Item Selector Dialog Box. Notice that ST
BASIC appends a .BAS extender to your filename. The extender
tells ST BASIC that the file is an ST BASIC program file. To
store the file on the disk, click the OK button. When the Ok
prompt appears, your file is saved.

You can also save the program by typing
SAVE COUNT [Return]

ST BASIC will save the program as COUNT.BAS.

14

Note: The Save As option will replace (write over) an
existing file with the same filename. If you type SAVE in
the Command Window, you will not delete a file that has the
same filename.

LOADING A PROGRAM

Type NEW [Return] to clear youf program from memory. Then
type LIST to insure that it's gone.

To load the program from disk, select the File menu and click
on the Load option. COUNT.BAS will appear in the Item
Selector Dialog Box. Select COUNT.BAS with the mouse pointer
by clicking once on the program name, then click on the 0Ok
button. wWhen the 0Ok prompt appears, your program will be in
memory. To make sure, list it by typing LIST. The heading,
“List of \COUNT.BAS", tells you the program is stored under
the filename COUNT.BAS.

You can also load the program by typing

LOAD COUNT

MERGING PROGRAMS

Sometimes it's more convenient to write a program in small
modules (parts) and assemble them at a later time. The MERGE
function allows you to do that.

Enter and save the following program as BOTTOM.BAS.

20 PRINT "MADE LONGER BY MERGING"
30 END

Type NEW and enter this program:

10 PRINT "THIS IS A SHORT PROGRAM"
20 END

Type RUN to run the program.
Select the MERGE option from the File menu. Then select

BOTTOM.BAS from the Item Selector Dialog Box and click on the
Ok button.

List the program. As you can see, the two program segments
are merged. Notice what happened to line 20. 1In the
original program it was "20 END". The merged program's line
20 has replaced it. When you merge program segments, you
need to plan your line numbers carefully.

DELETING A PROGRAM

To delete a program, click on the Delete File option in the
File menu. Click on the name of the file you want to delete.
For example, click on BOTTOM.BAS. Then click on the Ok
button. When the Ok prompt appears, the file has been
deleted.

LEAVING ST BASIC

To leave the ST BASIC programming environment, select the
File menu and click on the Quit option.

TYPING COMMANDS

If you prefer, you can type programming commands from the ST
keyboard instead of using the mouse. The typed commands are:

AUTO

[Controll [G] (To stop a program or to stop AUTO line
numbering)

[Controll [C] (To stop and exit program without being able
to continue)

CONT or [Returnl

DELETE <line number list>

EDIT or ED (To enter edit)

ERA <filename>(To delete a file)

LOAD <filename>

MERGE <filename>

NEW

QUIT

RUN <filename>

SAVE <filename>

STEP

TRACE

TROFF

TRON

UNTRACE

A complete list of ST BASIC commands is in Appendix A of this
manual.

16

BUFFERED GRAPHICS

To used buffered graphics with ST BASIC on the 520ST System,
you must free some memory space.

30,000 bytes of memory can be found for use with buffered
graphics by disabling the GEM desk accessories. There are
two simple methods for disabling the desk accessories:

1. Delete the desk accessories from the ST Language backup
disk. Simply, open the ST Language disk window and place the
DESK.ACC file in the trash. Remember, you still have the

file on the original language disk if you want to re-install
and use the accessories.

2. Rename the desk accessory file. Select the DESK.ACC
file, point at the File heading on the Menu Bar, and select
the Show Info option. The Show Info Dialog Box displays a
cursor at the end of the filename. Press the [Backspacel key
on the keyboard until DESK.ACC is deleted. Rename the file

to any name you wish as long as it does not have an .ACC
extender.

Note: For detailed information on deleting and renaming
files, refer to the ATARI 520ST Owner's Manual.

17

APPENDIX A
ST BASIC RESERVED WORDS

The following is a list of reserved words used in ST BASIC.
If you use any of these words as a variable name, the Error
Message, "Something is wrong," will appear on the screen.
Each reserved word is explained in detail in Appendix C.

ABS DEF FN FOR
ASC DEF SEG FRE
ATN DEFDREL FULLW
AUTO DEFINT GEMSYS
BLOAD DEFSNG GET
BREAK DEFSTR GOSUB
BSAVE DELETE GOTO
CALL DIM GOTOXY
CHAIN DIR HEXS
CHRS$ EDIT IF
CINT ELLIPSE INP
CIRCLE END INPUT
CLEAR EOF INPUT#
CLEARW ERA INPUTS
CLOSE ERASE INSTR
CLOSEW ERL INT
COLOCR ERR KILL
COMMON ERROR LEFTS
CONT EXP LEN
Ccos FIELD LET
CVD FILL LINE INPUT
CVI FIX LINE INPUT#
Cvs FLOAT LINEF
DATA FOLLOW LIST

LLIST
LOAD
LOC
LOF
LOG
LOG10
LPOS
LPRINT
LSET
MERGE
MIDS
MKD$
MKI$

NAME sk O
NEWQ/@PEN '

PEEK

PELLIPSE

POKE

POS

PRINT

PRINT#

PRINT USING

PUT

QuUIT
RANDOMIZE
READ
REM
RENUM
REPLACE
RESET
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET
RUN
SAVE
SGN
SIN
SOUND
SPACES
SPC
SQR
STEP
STOP
STRS$

STRINGS
SWAP
SYSTAB
SYSTEM
TAB
TAN
TRACE
TROFF
TRON
UNBREAK
UNFOLLOW -
UNTRACE
VAL
VARPTR
VDISYS
WAIT
WAVE
WEND
WHILE
WIDTH
WRITE
WRITE#

APPENDIX B
LOGICAL OPERATORS, ORDER OF PRECEDENCE, AND ST BASIC
FUNCTIONS :

LOGICAL OPERATORS

The logical operators recognized by ST BASIC are NOT, AND,
OR, XOR, IMP, and EQV. These logical operators work on the
flags resulting from logical expressions. A TRUE flag equals
-1 and a FALSE flag equals 0. Thus the statement "A=1l: B =2:
PRINT A=B" prints 0, while the statement "A=1: B =2: PRINT
A<>B" prints -1.

The result of AND is TRUE when both arguments are TRUE: 2+2=4
AND 3+2=5 is TRUE.

The result of OR is TRUE when either argument is TRUE: 2+2=4
OR 3+2=7 is TRUE.

IMP is the abbreviation for implication. IMP works on
logical expressions to check the validity of premises and
conclusions. IMP is TRUE in all cases except where a premise
is TRUE and a conclusion is FALSE.

The statement "2+2=4 IMP 3+2=6" is FALSE.

The following statements are valid implications and are
considered TRUE:

2+2=4 IMP 3+3=6
2+2=3 IMP 3+3=6
2+2=3 IMP 3+3=7

The following operators work bitwise on single byte integer
numbers according to the following:

AND produces a result in which a bit is equal to 1 only where
there is a 1 in both arguments. Thus, "A%=5: B%=3: C%=A% AND
B%" makes C% equal 1.

OR produces a result in which a2 bit is equal to 1 where there
is a 1 in either argument. Here, "A%=5: B%=3: C%=A% OR B%"
makes C% equal 7.

XOR produces a result in which a bit is equal to 1 where

there is a 1 in either argument, but not in both arguments.
Here, "A%=5: B%¥=3: C%=A% XOR B%" makes C% equal 6.

EQV produces a result where a bit is equal to 1 where there
is a 1 in both arguments, or where there is a 0 in both
arguments. A bit is equal to 0 where the bits in the
argument differ. Here, "A%=5: B%=3: C%=A% EQV B%" makes C%
equal -7.

LOGICAL OPERATION TRUTH TABLE

NOT
2 X NOT X
0 1
1 0
AND
X Y X AND Y
0 0 0
0 1 0
1 0 0
1 1 1
OR
X Y XORY
0 0 0
0 1 1
1 0 1
1 1 1
XOR
X X X XOR Y
0 0] 0
0 1 1
1 0 1
1 1 0
IMP 5
X Y X IMP Y
(0] 0 1
o 1 1
1 0 0
1 1 1
Qv
£ X Y XEQVY
0 0 1
0 1 0
1 0 0
1 1 1

ARITHMETIC OPERATORS

Symbol Name

Addition

Subtraction

Multiplication

Division

Integer division
oD Modulus

Exponentiation

IR 1+

Example
X+ Y
X - Y%
X 5%
X/ %Y
X i d
X MOD Y
X ¥

RELATIONAL OPERATORS

Symbol Meaning Example
= Equals X =Y
<> Does not equal X <> ¥
< Is less than X Sy

» Is greater than % > ¥
<= Is less than or X <K=Y

equal to
>= Is greater than X

or equal to

ORDER OF PRECEDENCE FOR OPERATORS

Operator Explanation

¢) Items in parentheses have highest priority
i Exponentiation

= Negation

* Multiplication

7 Floating-point and integer division
MOD Modulus

+,- Addition, subtraction

=, <>

Cs > Relational operators

<=, >=

NOT, AND

OR, XOR Logical operators, in order given
IMP, EQV

SUMMARY OF ST BASIC FUNCTIONS

Functions operate on constants and variables to produce

values for variables. A constant is a number, such as 250.4
or a string such as "HELLO". A variable is a named numeric
value, such as TOTAL or a named string value, such as NAMES.

Variable Names
Variable names cannot contain spaces. They can be as lcng as

you like, but only the first 31 characters are used by ST
BASIC to distingush them from cne another.

B-3

Numeric Variables

There are different types of numeric variables. The
following table summarizes variable types.

VARIABLE DECLARATION CHARACTERS

Character Type Example

$ String NAMESS$

g Integer RECORD.NUMBERS%

! Real TOTAL.PROFIT!
Number

Type Declarations

The following statements declare variable types in ST BASIC.
(See definitions in Appendix C.)

DEFSTR declares string variables.
DEFINT declares integer variables.
DEFSNG declares real number variables.

Numeric Functions

The numeric functions available in ST BASIC are shown below.

NUMERIC FUNCTIONS

Punction Explanation

ABS re:u:n; the absolute value of a number.
ATN returns the arctangent of a number.

cos returns the cosine of a number.

EXP returns e to the power of a given value,
LOG returns the natural logarithm of a number.
LOG10 teturns the base-10 lcgarithm of a number.
RND generates a sequence of random numbers.
SIN returns the sine of a number in radians.
SQOR returns the square root of a number.

TAN returns the tangent of a number in radians.

String Functions

Strings may be concatenated using + as in A$ = BS + C§$.

Other string functions are available in ST BASIC as shown in
the following table.

STRING FUNCTIONS

Punction Explanazion

INSTR finds the first occurraence of a particular
sequence of characters within a string and
returns its position.

LEPTS returns the leftmost charactars in a
string.

LEN returns the number of characters in a
string.

MIDS extracts a string from within a string,
beginning at whatever point you specify.

RIGHTS returns the rightmost characters in a
string.

SPACES returns a string of spaces.

STRS converts a number to a string.

STRINGS returns a string of a given length.

Arrays

ST BASIC supports numeric and string arrays. The DIM
statement dimensions the variables. When referencing arrays,
subscripts refer to rows, columns, and planes--in that order.
Subscript values may be any valid numeric constant, variable,
or expression. Integer values are the most efficient, as
real numbers are converted to integers when used as
subscripts in an array. Arrays accept input directly and may
be used as would any variable in a BASIC statement.

TWO-DIMENSIONAL ARRAY

(¢ (1 (2
o0 (G 3! AT SUN
Bl R ity i 12 MOMN
(2 (2.0 et 12.2) TUE
13} (3.9 i) (3.2 WED
i T T g2 THU
(5 (5.3 5 52 FRI
L8 8 Ch 81 (6.2 SAT

6AM P M 1M02M

The maximum number of elements in an array is limited by
available memory. Elements of different data types use
memory differently, as shown below.

INTEGER elements use 2 bytes.

REAL NUMBER elements use 4 bytes.

STRING elements use 6 bytes,
Line Format
The line format for ST BASIC is as follows:
<line number> <label:> <statement> <:statement> <:'remark>
The optional label may be used instead of the line numbers as
the line descriptor in a GOTO or GOSUB statement.
Filename Conventions
ST BASIC program lines use the extension .BAS to identify
them as BASIC programs. Filenames cannot exceed 8 characters

in length and they may use an extension of no more than 3

characters. For example, the filename FILENAME.DAT is a
valid filename.

APPENDIX C
COMMANDS, FUNCTIONS, AND STATEMENTS

This section describes the ST BASIC commands, functions, and
statemeants in alphabetical order. The syntax formats in this
section conform to the following typographical conventions:

Words in angle brackets, < >, describe the kind of data
you must insert in their places. They are
self-explanatory. For example, <variable>, means that
when you are writing a statement, you write

a variable in <variable>'s place.

Items enclosed in square brackets, [1, are optional and
cannot be repeated.

Items enclosed in parentheses, (), are optional and can
be repeated.

Words in uppercase are ST BASIC keywords.

ABS X = ABS(N)

Syntax: X = ABS(<numeric expression>)

FUNCTION: Returns the absolute value of a number which is
always positive or zero.

Explanation:

ABS returns an integer value for an integer argument. For
real numbers, the value returned has the same precision as
the argument.

Example:

Ok 10 I% = ABS(-9)
Ok 20 PRINT 1%
Ok 30 X! = ABS(325556.244)
Ok 40 PRINT X!
Ok 50 END
OK RUN
2
325556
Ok

ASC I% = ASC(AS)

Syntax: I% = ASC(<string expression>)

FUNCTION: Returns the ASCII value of the first character in a
string.

Explanation:

ASC returns an integer between 0 and 255. The string must
contain at least one character. If the string expression is
a null string, an error number 5 occurs.

The CHR$ function is the inverse of ASC. See the Appendices
for a list of ASCII characters and corresponding numeric
values.

Example:

Ok 10 A$ = "Murphy, James®
Ok 20 PRINT ASC(AS)
Ok RUN
17
Ok

ATN ! =

ATN(N%)

Syntax: X!

= ATN(<numeric expression>)

FUNCTION: Returns the arctangent of a number.

Explanation:

The ATN function returns a real number. The number is an
angle in radians that ranges from -PI/2 to PI/2. The TAN
function is the inverse of ATN.

Example:

Ok
Ok
Ok
Ok
Ok
Ok
Ok

10 RADIANS! = ATN(0.99999)

20 PRINT "The angle in radians is ";RADIANS!

30 PRINT

40 PI = 3.14159

50 DEGREES = RADIANS! * 180/PI

60 PRINT "The angle in degrees is";CINT (DEGREES)
RUN

The angle in radians is .785393

The angle in degrees is 45

Ok

AUTO AUTO
AUTO 50,25
AUTO ,20
AUTO 50

Syntax: AUTO [<starting line number>] [,<increment>]

COMMAND: Generates a line number each time you press the
[Return] key. A [Control]l [G] turns AUTO off. A line number
may not have a value greater than 65535. The AUTO Command
may not be executed from the editor.

Explanation:

You specify the first line number to generate and the number
to add to generate each following line number. If you do not
specify the starting line number, AUTO starts at line 10. If
you do not specify an increment, AUTO uses either 10 or the
last increment specified by an AUTO command.

If a line number already exists, AUTO prints two asterisks
before it (**10). If you enter a new program line, it will
replace the original one when you press [Returnl. If you

simply press [Return], the old program line will remain
undisturbed.

A [Control]l [G] stops AUTO. But it does not perform the same
function as [Return]. A [Controll [G] does not enter a
program line and it will not change an existing line.

Example:

Ok AUTO
10
20
30

OK AUTO 50, 25
50
15
100

Ok AUTO , 20
10
30
50

C=5

Ok AUTO 50
50
70
90

BLOAD BLOAD TESTFILE.DAT, 250

Syntax: BLOAD <filespec>[,<address>]
STATEMENT: Loads a file into memory.

Explanation:

BLOAD is used to load machine language programs, and arrays
and their contents. BLOAD can also display screen images.

BLOAD loads a file into memory at the address you give. The
filespec is the full name of the file including file type.
The address is the numeric expression where you want loading
to begin.

If you omit the address, the address specified with BSAVE is
assumed. The file loads into the same address it came from.

BLOAD does not check addresses. Although it is possible to
BLOAD anywhere, do not BLOAD over BASIC's data areas or your
program. If you do, you will most likely crash your program.

Note: BLOAD works in conjunction with the BSAVE command.
Example:

Ok 110 BLOAD “ARRAY",23

BREAK BREAK - 40
BREAK 10 - 40
BREAK 40, 125
BREAK
BREAK 40

Syntax: BREAK [<list of line numbers>]

COMMAND: Stops program execution.

Explanation:

BREAK, by itself causes the program to stop execution after
every line. Both the program line and any output are
printed. A [Return] or the CONT command will cause the next
line to execute. This is the same as the STEP command.

If you specify line numbers, program execution stops only at
the specified lines.

The UNBREAK command stops BREAK.

To exit BREAK mode, type STOP or END.

Example:
Ok 10 N =5
Ok 20 FOR X i1 T0 S
Ok 30 N =N 1

Ok 40 PRINT N
Ok 50 NEXT X
Ok BREAK 50
Ok RUN

4
b 50 NEXT X
Br

BSAVE BSAVE TESTFILE.DAT, 250, 500

Syntax: BSAVE <filespec>,<address>,<length>

STATEMENT: Saves part of memory to a file.
Explanation:

BSAVE saves machine-language programs, data, or screen
images. The filespec is the name of your file and the
address is a numeric expresson.

Example:

Ok 110 BSAVE "ARRAY" ,23,650

CALL CALL DRAW(X, Y, 2)

Syntax: CALL <numeric variable> [(<parameter list>)]

STATEMENT: Transfers control to a machine language
subroutine.

Explanation:

The numeric variable is the starting memory address of the
machine language routine. The routine can be loaded into
memory using BLOAD.

The optional parameter list consists of expressions that
serve as arguments to pass data between the main program and
the assembly routine. The parameter list is enclosed in
parentheses and must be separated by commas.

Example:

Ok 500 BLOAD "ASHLER",185000
Ok 550 CHART = 185666
Ok 600 CALL CHART(I%, AS, X)

Note: The assembler routine called using the CALL command
will find two parameters on the user stack (A7). The first
parameter is a 2-byte integer that specifies the number of
formal parameters passed from the user's program. (In the
case of the above example line 600, it will be three). The
second parameter on the stack is a 4-byte pointer to an array
that contains the current value of the formal parameters.
Each such value occupies 8 bytes in the array regardless of
the type of the formal parameter (i.e., integer, double). 1In
each case a string variable is used as formal parameter, the
8-byte value in the array will contain a pointer to the
memory location containing that string.

C-10

CHAIN CHAIN NEWPROG, 100, ALL
CHAIN MERGE NEWPROG, 100, DELETE 500-600

Syntax: CHAIN <filespec>[,<line descriptor>][,ALL]
CHAIN MERGE <filespec>[,<line descriptor>l
[\DELETE<line descriptor list>]

STATEMENT: Transfers control and passes variables to another

program. A .BAS extender is assumed unless otherwise
specified.

Explanation:

The program you specify in the CHAIN statement replaces the
original pregram in memory. The program chained to is
sometimes called an overlay, because it overwrites all or
part of the original program. The filespec is the name of
the new program. It can be any string expression of a legal
file name.

The MERGE option merges a program with an existing program
instead of replacing it. CHAIN MERGE saves all variables,
type declarations, statements, and options. If you omit the
MERGE option, you must restate all DEF statements in each
newly chained program. The MERGE option overlays the
statements in the new program with the statements in the
original program. If some of the same line numbers in the
new program are the same as in the original, the new program
lines replace the original ones.

You can specify a line descriptor after the filespec
indicating where to begin execution in the new program.
Otherwise, execution begins with the first executable
statement.

The ALL option indicates that all variables in the original
program are passed to the new program. ALL is not valid with
CHAIN MERGE.

If you omit the ALL option, you must use the COMMON statement
to declare which variables the original program and the new
program can share.

See: COMMON

Use the DELETE option only with CHAIN MERGE. The DELETE
option allows you to remove parts of the old program from
memory to make room for the new program. The DELETE option
deletes lines from the current program before merging the
program specified by <filespec>. Specify the line numbers to
delete after the DELETE keyword.

Ce=1]

Example:

The following statement chains to a program named CALCS.BAS.

Ok 400 CHAIN "CALCs*

The following statement chains to the CALCS.BAS program and
begins execution at line 1200. All program variables can
pass from the original program to the new program.

Ok 400 CHAIN "CALCS", 1200, ALL

The following statement merges the lines from an overlay
named TOTAL.OVR with the program already in memory.
Execution begins at line 900. Before loading the merged file,

the statement deletes the list ranging from line 900 through
line 2000.

Ok 710 CHAIN MERGE "TOTAL.OVR", 900, DELETE 900-2000

CHRS AS§ = CHRS(97)

Syntax: A$ = CHRS (<numeric expression>)

FUNCTION: Returns the ASCII character that corresponds to the
specified ASCII decimal value.

Explanation:
CHR$ returns a one-character string.
The numeric expression must evaluate to a legal integer.

The ASCII value of the character returned is <expression> MOD
256. This means that the expression will be converted to a
number between 0 and 256. If the expression is greater than
256, it will be treated as the remainder of a division by
256.

CHRS$ converts real numbers to integers.

Use the CHRS$ function to send special characters, such as
line feeds or carriage returns, to an output device. The
CHR% function is the inverse function of ASC.

Example:

Ok 10 PRINT CHRS(83)
Ok 20 PRINT CHR$(100)
Ok 30 PRINT CHR$(356)
Ok RUN

s

d

a

Ok

C=13

CINT 1I% = CINT(N)

Syntax: I% = CINT(<numeric expression>)
FUNCTION: Rounds a number to the nearest integer.
Explanation:

The numeric expression must be between -32768 to 32767.
Otherwise, an overflow error occurs.

See: FIX, INT
Example:

Ok 10 PRINT CINT(5.2)
Ok 20 PRINT CINT(62.89)
Ok 30 PRINT CINT(-456.61)
Ok RUN

5

63

-457
Ok

C-14

CIRCLE CIRCLE 50,80,50
CIRCLE 50,80,50,900,1800

Syntax: CIRCLE <horizontal center,vertical
center,radius>[<,start angle,end angle>]

STATEMENT: CIRCLE draws circles and arcs.
Explanation:

CIRCLE draws a circle whose center is located at the point
specified by the first two parameters: horizontal center and
vertical center. The positions are in pixels starting from
the upper left corner of the output window.

The third parameter, radius, is also expressed in pixels.

The horizontal and vertical pixel count is dependent upon the
resoclution selected and the size of the output window. The
circle is drawn in the plot color (parameter 3 of the COLOR
statement.)

The last two parameters, start angle and end angle, are
optional. If they are not specified, CIRCLE draws a circle.
If they are specified, CIRCLE draws the part of a circle that
lies between them. CIRCLE draws an arc, not a solid colored
pie-shaped segment. Angles are expressed in degrees times
10. You would specify 45 degrees as 450, 180 degrees as
1800, etc. O degrees is to the right of the window, 90
degrees is toward the top, 180 degrees to the left, and 270
degrees at the bottom. CIRCLE 100,30,30,0,3600 draws a full
black circle.

See: PCIRCLE, ELLIPSE, PELLIPSE
Example:

Ok 10 COLOR 1,0,1: CLEARW 2

Ok 20 CIRCLE 100,50,40

Cck 30 CCLCR 1,0,2

Ok 40 CIRCLE 100,50,40,300,900

Ok RUN

[Output Window will show black circle with 60 degree
red arc at 30 degrees]

Ck

CLEAR CLEAR

Syntax: CLEAR

STATEMENT: Frees all memory used for program data without
erasing the program currently in memory.

Explanation:

CLEAR sets all numeric variables to zero and string variables
to null. The CLEAR command undefines all arrays.

Example:

The following example clears all data from memory without
erasing the original program.

Ok CLEAR

C-16

CLEARW CLEARW 2

Syntax: CLEARW <numeric expression>
STATEMENT: CLEARW clears BASIC windows.
Explanation:

CLEARW clears the specified window. The windows are as
follows:

The Edit Window.
The List Window.
The Output Window.
The Command Window.

wWpopH o
wnnu

Example:

Ok 10 CLEARW 2
OK 20 PRINT “HELLO"
OK RUN

g=17

CLOSE CLOSE
CLOSE #1
CLOSE 1, 3, 4

Syntax: CLOSE [#]<file number>

STATEMENT: Closes cpen disk files, concluding any input or
output.

Explanation:

The CLOSE statement closes open files, releases the file
numbers, and frees all buffer space that the files use. The
files must have been opened with the OPEN statement.

The file number is the identification number you assign to a
file in the OPEN statement. You can specify any number of
file numbers in the optional CLOSE statement. Separate file
numbers with commas.

A pound sign, #, in front of the file number is optional.

File numbers can be any numeric expression. The expression
must evaluate to a number between 1 and 15, the maximum
number of files allowed, or a *Bad File Number" error occurs.

If file numbers evaluate to real values, CLOSE converts them
to integers.

If you do not specify file numbers after the keyword CLOSE,
the statement closes all files that have been opened.

Note: NEW, END, RUN, LOAD, OLD, QUIT, and SYSTEM close all
open files automatically. The STOP statement does not close
disk files.
Example:
The following statement closes all open disk files.

Ok 310 CLOSE

The following statement closes the open disk files that have
been assigned the file numbers 3 and 7.

Ok 600 CLOSE #3, #7

C-18

CLOSEW CLOSEW 1

Syntax: CLOSEW <window number>
STATEMENT: Close one basic window.

Explanation: Used to close one of four basic windows.
call has tc be made separately to close each window.
number> specifies windows as follows:

0 - The Edit Window.

1 - The List Window.

2 - The Output Window.
3 - The Command Window.

Note: CLOSEW does certain bookkeeping chores internal
BASIC interpreter that allow the system to keep track
window status. Therefore, do not close basic windows
direct calls to AES.

This
<Window

to the
of the
using

COLOR COLOR 1,0,1,1,1

Syntax: COLOR [<text color, fill color,line
color,style, index>]

STATEMENT: Sets text, fill, and plot colors and fill
patterns.

Explanation:

COLOR sets the colors of text printed to the output window,
the output window background color (fill color), and the
color of lines drawn in the output window as well as the
color and pattern used to fill shapes. COLOR affects
subsequent PRINT and graphics colors but does not change the
color of text or graphics already in the output window.

The chart below shows the numbers for colors in different
resolutioqs:

NUMBER LOW MED BHI

0 X X X
1 X X X
2 X X

3 X X

4 X

5 X

6 X

o X

8 X

9 X

10 X

11 £

12 X

13 X

14 X

15 X

The following chart shows the patterns selected by parameter
numbers 4 and 5 and shows the available fill styles. Under
each rectangle are two numbers, separated by a comma. The
number to the left of the comma corresponds to the style:
Hollow, Pattern, or Hatch. The number to the right of the
comma corresponds to the index for the particular pattern or
hatch.

C~-20

Ok 10 COLOR 1,0,1
Ok 20 PRINT "BLACK"
Ok 30 COLOR 2,0,1
Ok 40 PRINT "RED"
50 COLOR 1,0,1

Ok RUN
BLACK **%%* IN BLACK
RED ERExE IN RED *
Ok

Example 2:

10 COLOR 1,2,3,1,1

20 FULLW 2: CLEARW 2

30 K=(K+10) MOD 3600

40 FOR I=3 TO 11

SO COLoR 1,1.,1,;1,2

60 J=I*400

70 PCIRCLE 150,80,80,(J+K+36
80 NEXT

90 GOTO 30

k% k%

*k k%

00) MOD 3600, (J+K+400) MOD 3600

C-21

COMMON COMMON AS$, COUNT, N

Syntax: COMMON <variable>,<variable>

STATEMENT: Declares the variables that a program can pass to
a chained program.

Explanation:

ST BASIC treats all COMMON statements in a program as one
consecutive list of variables. A program can contain any
number of COMMON statements.

COMMON statements can appear anywhere in a program. It is
good practice to place them at the beginning of a program.

Use COMMON with CHAIN.

See: CHAIN

Example:

The following example chains to a program named EMPLOYEE and
ggiigﬁ)%he variables VAL!, NAME$, and the array variable

Ok 350 COMMON VAL!, NAMES, SCALE()
Ok 360 CHAIN "EMPLOYEE"

C-22

CONT CONT

Syntax: CONT

COMMAND: Resumes program execution from the BREAK mode.

Explanation:

A BREAK, a STOP statement in a program, or [Controll [GI]
(unless trapped) puts ST BASIC in BREAK mode. In BREAK mode,
you can use direct mode statements to change intermediate
program values.

Use CONT to continue execution.

You can also use a direct mode GOTO statement to direct
execution to a particular line in the program.

Example:
Ok 10 N =5
Ok 20 FOR X 1l 20 5
Ok 30 N =N 1

Ok 40 PRINT N
Ok 50 NEXT X

Ok RUN
4
3
2
[press [Control] [G]l
-- Break -- at line 30
Ok CONT
2L
0
Ok

COs X = COs(Y)

Syntax: X = COS(<numeric expression>)
FUNCTION: Returns the cosine of a number.
Explanation:

The COS function returns a real number. The number is the
cosine value of the angle in the numeric expression.

All ST BASIC trigonometric functions require that you specify
angles in radians.

Example:

Ok 10 PI = 3.14159

Ok 20 DEGREES = 180

Ok 30 RADIANS = DEGREES * (PI/180)
Ok 40 ANS! = COS(RADIANS)

Ok 50 PRINT “THE COSINE IS "; ANS!

Ok RUN
THE COSINE IS -1
ok

C-24

CvD, CVI, and CVS

CVD(AS$) AS = 8-byte string
CVI(B$) B$ = 2-byte string
CvS(C$) C$ = 4-byte string

Syntax: CVD(<8-byte string>)
CVI(<2-byte string>)
CVsS(<4-byte string>)

FUNCTION: The CVD, CVI, and CVS functions convert byte

strings to numeric variable types. Used to convert ASCII
numbers read from random files.

Explanation:

ST BASIC stores numbers in a random file as strings of bytes.
To read the numbers from the file, the strings must be
converted to the proper numeric data type. The functions do
not change the value of the number, only the data type.

These strings are the exact byte representation of the stored
numbers. They are not printable character strings.

The CVD function converts an 8-byte string into a real
number.

The CVI function converts a 2-byte string into an integer.
The CVS function converts a 4-byte string to a real number.
If the string read from the 'file is shorter than the length
required for conversion, it is padded to the right with

binary zeroes.

The MKD$, MKI$, and MKS$ functions are the reverse of the
CvD, CVI, and CVS functions.

Example:

Ok 10 OPEN "R",#1,"NUMBERS"
Ok 20 FIELD #1, 2 AS AS$, 4 AS BS, 8 AS C$
Ok 30 GET #1, REC%

Ok 40 I% = CVI(AS)
Ok 5C X! = CVS(BS)
Ok 60 Y# = CVD(CS$)

Ok 70 PRINT 1%, Xi, v#
Ok 80 CLOSE #1
Ok 90 END

If you run this program, yvou will get one set of numbers from
the file and print them.

DATA DATA 25,15,925,word

Syntax: DATA <constant>,<constant>

STATEMENT: Defines a list of constants that a READ statement
can assign to variables.

Explanation:

DATA statements allow you to assign fixed values to
variables. They are assigned according to their order in a
DATA statement.

Every DATA constant must have a corresponding READ variable,
and vice versa. The constants and variables match according
to the order in which they are listed; the first DATA
constant relates to the first READ variable, and so on.

DATA constants can be integers, real numbers, or strings, in
any combination. The data types for the constants in the
DATA list, however, must match the variables assigned them in
a READ statement. Do not put quotation marks around strings
in a DATA statement.

DATA statements can be as long as you like, but you cannot
write other statements on the same line as a DATA statement.

Though every constant must have a corresponding variable, you
do not need a READ statement for every DATA statement. You
can have many DATA statements in a program and you can assign
them variables in a single READ statement. 1In that case,
they match first according to the constants' order in the
program, then by their order within the lines.

The RESTORE statement points READ statements to DATA
statement lines.

See: READ, RESTORE
Example:

Ok 10 READ X
Ok 20 DATA 33.3, 5, ALLOW ROOM FOR GROWTH
Ok 30 PRINT X
Ok 40 READ X,Y$
Ok 50 PRINT X,Y$
Ok RUN
33.3
5 ALLOW ROOM FOR GROWTH

DEF FN DEF FNA(A) = A*2+5

Syntax: DEF FN<function name>[(<parameter,parameter>)]=
{definition>

STATEMENT: Defines user specified functions.
Explanation:

DEF FN allows you to define your own ST BASIC function for

use in a program. The name of the function can be any legal
variable name.

The variable list in parentheses is optional. You can use
any variable type except arrays. These variables are local
to the function you define and do not affect variables of the
same name elsewhere in the program. The variables in
parentheses can be regarded as place holders for the values
you pass to the function when you call it. The values you

pass to your function must match those in parentheses in type
and number.

You can use any global variables in your program within the
function definition. They will be treated exactly as the
function definition states. If you change their values
within the function, they will take on their new values
throughout the program.

The definition is an expression that defines what the
function does. The description is limited to one program
line. 1If the function name includes a type specification,
such as FNAS$, the definition may not conflict with that type.
The parameters passed to the function (in parentheses) must
also conform to that type.

Example:
Ok 10 INPUT "WIDTH OF MATERIAL IN INCHES";
MATERIAL.WIDTH
Ok 20 INPUT "WIDTH OF WINDOWSILL IN INCHES";
WINDOW.WIDTH

Ok 30 PANELS.NEEDED = WINDOW.WIDTH / MATERIAL.WIDTH
Ok 40 INPUT "LENGTH OF WINDOWSILL IN INCHES";
WINDOW.LENGTH

Ok 50 YARDAGE.NEEDED = PANELS.NEEDED * WINDOW.LENGTH
Ok 60 INPUT "PRICE OF MATERIAL PER YARD"; PRICE.YARD!
Ok 70 DEF FNSLACK = YARDAGE.NEEDED / 15 + YARDAGE.NEEDED
Ok 80 DEF FNCOST! = (PRICE.YARD!/36) * FNSLACK

Ok 90 PRINT "YOU NEED ";FNSLACK;" INCHES OF
*;MATERIAL.WIDTH;®" INCH MATERIAL.":PRINT

"YOUR COST IS: ";FNCOST!

Ok 100 DEF FNINYARDS = FNSLACK / 36

Ok 110 PRINT FNSLACK; “INCHES IN YARDS IS “;FNINYARDS
Ok RUN
WIDTH OF MATERIAL IN INCHES? 30
WIDTH OF WINDOWSILL IN INCHES? 60
LENGTH OF WINDOWSILL IN INCHES? 60
PRICE OF MATERIAL PER YARD? 2.00
YOU NEED 128 INCHES OF 30 INCH MATERIAL.
YOUR COST IS 7.11111
128 INCHES IN YARDS IS 3.55555
Ok

Cc-28

DEF SEG DEF SEG 0
DEF SEG 1

Syntax: DEF SEG [<numeric expression>]

STATEMENT: DEF SEG establishes the mode of operation of PEEK
and POKE, and the offset used by the commands.

Explanation:

The modes of operation are defined according to the
following:

If DEF SEG > 0, then 1 byte is PEEKed or POKEd, and the
value of the numeric expression used in DEF SEG is used as
the offset of the address specified in PEEK and POKE.

If DEF SEG = 0, then 2 bytes are PEEKed or POKEd, and
the value of the numeric expression used in DEF SEG is used
as the offset of the address specified in PEEK and POKE.

If DEF SEG = 0 and the address is specified by DEFDBL,
then 4 bytes (long integer) are PEEKed and POKEd.

Example 1l:

10 DEF SEG=0

20 DEFDBL S:S=SYSTAB+20: 'GRAPHICS BUFFER POINTER

30 X=PEEK(S):'X IS A 4 BYTE VALUE

40 RESET:'PUTS CURRENT SCREEN INTO GRAPHICS BUFFER

50 BSAVE "SCREEN",X,32767

60 CLEARW 2:'CLEAR SCREEN IMAGE

70 BLOAD "SCREEN",X:'RETURN SCREEN TO GRAPHICS BUFFER
80 OPENW 2: 'TRANSFER GRAPHICS BUFFER TO WINDOW

Example 2:

10 DEF SEG=100
20 PRINT PEEK(500)

Note: Will print a l-byte integer from absolute location 600.
Example 3:

10 DEF SEG=0

20 LOC#=175000

30 PRINT PEEK (LOC#)

Note: Will print a 4-byte long integer from location 175000.

DEFDBL DEFDBL A
DEFDBL A-D

Syntax: DEFDBL <letter>-<{letter>

STATEMENT: Declares a range of letters as defining real
numbers.

Explanation:

The DEFDBL statement declares that the variables whose names
start with any cf the given letters are real numbers. You
can use a single letter as a parameter or a range of letters,
such as A-D.

Type declaration characters always overrule DEFDBL
statements. DEFDBL statements can only be entered as the
first statements in a program. DEFDBL is always used in
conjunction with DEFSEG, PEEK, or POKE.

See: DEFSEG

Caution: DEFDBL statements alter the ST BASIC interpretation
of program lines.

Example:

Ok 10 DEFDBL X-Y : :
Ok 20 X = 123123412345123456
Ok 30 Y = &H333
Ok 40 PRINT X,Y¥Y
RUN

1.23123392D+017 819
Ok

C=30

DEFINT DEFINT A
DEFINT A-D

Syntax: DEFINT <letter>-<letter>
STATEMENT: Declares a range of letters as defining integers.
Explanation:

The DEFINT statement declares that the variables whose names
start with one of the given letters are integers. You can

use one letter as a parameter or a range of letters, such as
M-Z.

Type declaration characters overrule DEFINT statements.

Caution: DEFINT statements alter the ST BASIC interpretation
of program lines. If you declare a variable as integer with
a DEFINT statement, ST BASIC treats it as integer even if you
erase the DEFINT statement.

Example:

Ok 10 DEFINT X-Y
Ok 20 X = 78.9
Ok 30 ¥ = 78.1
Ok 40 PRINT X,Y
Ok RUN

78 78

Ok

C-31

DEFSNG DEFSNG A
DEFSNG A-D

Syntax: DEFSNG <letter>-<letter>

STATEMENT: Declares a range of letters as defining real
numbers.

Explanation:

The DEFSNG statement defines the variable names that start
with one of the given letters as real numbers. You can use
one letter as a parameter or a range of letters, such as A-D.

Type declaration characters always overrule DEFSNG
statements.

Caution: DEFSNG statements alter the ST BASIC interpretation
of program lines.

Example:

Ok 10 DEFSNG X-Y
Ok 20 X = 23D+16
Ok 30 Y = 456654456654
Ok 40 PRINT X,Y
Ok RUN
2.3E+17 4,56654E+11

€=32

DEFSTR DEFSTR A
DEFSTR A-D

Syntax: DEFSTR <letter>-<letter>
STATEMENT: Declares a range of letters as defining strings.
Explanation:

The DEFSTR statement declares that all variables whose first
letters are on the parameter list are strings. The
parameters can be a single letter or a range of letters, such
as M-Z.

A type declaration character always overrules a DEFSTR
statement. The default type of variables is real numeric.

Caution: DEFSTR statements alter the ST BASIC interpretation

of program lines. If you declare a variable as a string with
a DEFSTR statement, ST BASIC treats it a@s real numeric even
if you erase the DEFSTR statement.

Example:

Ok 10 DEFSTR A-C
Ok 20 A = "12,7.42"

Ok 30 B = "1066"

Ok 40 C = "4.12.%XX"

Ok 50 PRINT A,B,C

Ok RUN

12.7 .42 1066 4,19 %%
Ok

=33

DELETE DELETE - 40
DELETE 20
DELETE 20, 30
DELETE 20 - 30

Syntax: DELETE <line number list>
COMMAND: DELETE erases program lines from memory.
Explanation:

DELETE erases the lines you specify. It is more efficient to
delete a single line by typing the line number and pressing
[Return].

Example:

Ok 10 X = 10
Ok 20 Zz = 20
Ok 30 PRINT X,2Z
Ok DELETE 20-30
Ok LIST

10 X =10
Ok

C-34

DIM DIM AS$(5)
DIM X(5,10,4)
DIM B$(10) ,C$(20)
DIM X(5,10,4) ,Y(1,2,8)

Syntax: DIM<array name> (<subscript>,<subscript>)
(,<array name>[<subscript>])

STATEMENT: Defines the number of dimensions and the number of
elements in an array.

Explanation:

The DIM statement reserves space for a string or numeric
array by specifying the number of dimensions and the upper
bound of elements in each. The number of dimensions depends
upon the number of subscripts. One subscript means one
dimension, two subscripts means two dimensions, etc. The
number of elements and dimensions you can specify is
dependent upon available memory, but the maximum number of
dimensions in any case is 15.

The lower bound of each dimension is 0 or 1, depending upon
the OPTION BASE.

DIM automatically sets the initial value of the elements at
zero or null.

In ST BASIC, arrays are dynamic. You can dimension the array
with DIM, erase the array later in the program, and declare
it again with DIM using the same name but with new
dimensions. With dynamic arrays, you can also use a numeric
variable to dimension the array.

You can use an array without declaring it first with a DIM
statement. If you do, the array is declared automatically
with a default upper bound of 10 elements in each dimension.
For example, if the first reference to ARRAY A is

ARRAY A(7,3)
the array is set up as if it had been declared with
DIM A(10,10).

The default number of dimensions allowed is 4 for integers
and 3 for strings and real numbers.

Note: ST BASIC allows one-third of the free memory to be

C=35

declared as arrays. However, the total size of all arrays
can't exceed 32K, regardless of the amount of free memory.

Example:

Ok 10 DIM HOUSESS$ (1,1,1)
Ok 20 HOUSES$ (0,0,0) = "FLOORPLAN1*

Ok 30 HOUSES$ (0,0,1) = "FLOORPLAN3*
Ok 40 HOUSES$ (0,1,0) = "FLOORPLAN3"
Ok 50 HOUSES$ (0,1,1) = "FLOORPLAN3"®
Ok 60 HOUSES$ (1,0,0) = "FLOORPLAN1"
Ok 70 HOUSES$ (1,0,1) = "FLOORPLAN2"
Ok 80 HOUSESS$ (1,1,1) = "FLOORPLANZ"

Ok 90 IF HOUSES$ (1,0,0) = “"FLOORPLAN2“ THEN GOTO 300

C-36

DIR DIR
DIR A:
DIR B:BAS.PRG
DIR B:*.PRG
DIR B:BAS.*
DIR Bs®.*
DIR B:BAS.PR?

Syntax: DIR [<disk drive:>1 [<filename, filetype>]
COMMAND: Lists the files on a disk.

Explanation:

The DIR command displays the directory of the disk in the
current drive.

You can specify which drive and what files you want
displayed. The [*] and [?] act as wild card designators.

[*] indicates a "don't care" specification for an arbitrary
field, such as: *_.,BAS (for any file of type .BAS) or FIG.*

(for any type file named FIG.) or B*.BAS (for any type.BAS

file beginning with a B.)

(?] acts as a single character "don't care" designator, such
as: ?IG.BAS (for any file with a 3 letter name ending in
IG.BAS. e.g., FIG.BAS, PIG.BAS, BIG.BAS, etc.)

Example:
Ok DIR Directory of all files on the
current disk
Ok DIR A: Directory of all files on Disk A

Ok DIR B:BAS.PRG Checks for file BAS.PRG on Disk B

Ok DIR B:*.PRG Directory of all type .PRG files
on Disk B

Ok DIR B:BAS.* Directory of all files named BAS
of any type on Disk B

Ok DIR B:* * Directory of all files of any type
on Disk B

Ok DIR B:BAS.PR? Directory of files on Disk B
beginning with BAS and with an
extender beginning with PR.

EDIT EDIT ED
EDIT 30 ED 30

Syntax: EDIT <LINE NUMBER> ED <LINE NUMBER>

COMMAND: Invokes the ST BASIC editor.

Explanation:

The EDIT command invokes the ST BASIC editor. You can

specify a line number to begin editing. If you don't, EDIT
begins at the first line of the program currently in memory.

C-38

ELLIPSE ELLIPSE 50,80,100,50
ELLIPSE 50,80,100,50,900,1800

Syntax: ELLIPSE <horizontal center,vertical center,horizontal
radius,vertical radius>I[<,start angle,end angle>]

STATEMENT: ELLIPSE draws ellipses and elliptical arcs.

Explanation:

ELLIPSE draws an ellipse whose center is located at the point
specified by the first two parameters: horizontal center and
vertical center. The positions are in pixels starting from
the upper left corner of the output window.

The third and fourth parameters, horizontal and vertical
radii, are also expressed in pixels. The horizontal and
vertical pixel count is dependent upon the resolution
selected and the size of the output window.

The ellipse is drawn in the plot color (parameter 3 of the
COLOR statement.)

The last two parameters, start angle and end angle, are
optional. If they are not specified, ELLIPSE draws a full
ellipse. If they are specified, ELLIPSE draws the part of an
ellipse that lies between them. ELLIPSE draws an arc, not a
solid colored pie-shaped segment.

Angles are expressed in degrees times 10. You would specify
45 degrees as 450, 180 degrees as 1800, etc. 0 degrees is to
the right of the window, 90 degrees is toward the top, 180
degrees to the left, and 270 degrees at the bottom. ELLIPSE
100,80,40,50,0,3600 draws a full ellipse.

See: PELLIPSE, CIRCLE, PCIRCLE
Example:

Ok 10 COLOR 1,0,1:CLEARW2

Ok 20 ELLIPSE 100,80,40,80

Ok 30 COLOR 1,0,2

Ok 40 ELLIPSE 100,80,40,80,300,900

Ok RUN

[Output Window will show black ellipse with 60 degree
red arc at 30 degrees]

Ok

C=39

END END

Syntax: END

STATEMENT: Stops program execution, closes all files, and
returns to command level.

Explanation:

You can put an END statement anywhere you want to return to
command level. An END at the end of the program is optional.

END differs from STOP in that it closes all files, returns to
command level, and does not produce a STOP message.

Example:

Ok 10 PRINT "THE PROGRAM"

Ok 20 PRINT "IS RUNNING"

Ok 30 PRINT "BUT WILL NEVER"
Ok 40 PRINT "REACH THE LAST"
Ok 50 PRINT "WORD OF THIS"
Ok 60 END

Ok 70 PRINT “PROGRAM"

Ok RUN

THE PROGRAM

IS RUNNING

BUT WILL NEVER

REACH THE LAST

WORD OF THIS

Ok

C-40

EOF X = EOF(1)

Syntax: X = EOF(<file number>)

FUNCTION: Returns true (-1) at the end of a sequential or
random access file.

Explanation:

When you write to a sequential file, its end is automatically
marked. If you attempt to read past the end of a file, an
error results. You can test whether you are at the end of a
file with EOF.

EOF returns -1 if you are at the end of a £ile, @ if not,
Example:

Ok 100 INPUT "FILE ";F$

Ok 110 IF LEN(F$) = 0 THEN END

Ok 120 ON ERROR GOTO 20000

Ok 130 OPEN "I",1,FS$

Ok 140 WHILE NOT EOF (1)

Ok 150 LINE INPUT #1,R$: ?RS

Ok 160 WEND

Ok 200 ?:CLOSE 1l: GOTO 100

Ok 20000 IF ERR = 53 THEN ?"FILE ";FS$;

“ NOT FOUND": RESUME 100 ELSE ON ERROR GOTO 100

ERA ERA MYFILE.TXT
ERA B:MYFILE.TXT

Syntax: ERA [<disk drive:>l<filename>
COMMAND: Deletes a file from the disk.
Explanation:

The ERA command erases all files matching the filename from
the drive specified. An erased file is not recoverable.

ERASE ERASE AS$, BS$, C

Syntax: ERASE <array name> ,<array name>
STATEMENT: Erases arrays.

Explanation:

ERASE erases an array so that you can redimension it or

reclaim its memory space. You must erase arrays before you
redimension them.

See: DIM
Example:

Ok 10 DIM PAYROLLS$(10,10)

Ok 20 PAYROLLS$(0,0) = "BECKWITH, JOSEPHINE"
Ok 30 ERASE PAYROLLS

Ok 40 DIM PAYROLLS$(5,5,5)

ERL, ERR X=ERL
X=ERR

Syntax: X=ERL
X=ERR

FUNCTION: The ERL and ERR variables are reserved variables
used in error handling subroutines.

Explanation:

ERL contains the line number where an error occurred. ERR
contains the error code. ERL and ERR are reserved variables:
you cannot write them on the left of the equal sign in an
assignment statement.

If the statement or command in which the error occurred is in
direct mode, the value of ERL is zero. If an error occurs in
direct mode, the program always halts.

If the statement is in indirect mode, write IF statements as
follows:

IFP ERL
IF ERR

<error line> THEN <executable statement>
<{error code> THEN <executable statement>

nn

See: ERROR statement for details on error trapping and
examples of ERL and ERR in an error trapping subroutine.

C-44

ERROR ERROR X

Syntax: ERROR<numeric expression>

STATEMENT: Simulates a BASIC run time error and transfers
control to an error trapping routine.

Explanation:

You can define errors and error messages in your programs
with the ERROR statement. ERROR assigns an error code number
to an error. The number must be an integer expression.

Every time the error occurs the program refers to the error
code number. If the error code corresponds to an ST BASIC
error code, the ST BASIC error message prints. If an error
trap that you have written is in effect, control passes to
your error trap routine.

Two predefined variables are associated with the ERROR
statement: ERL and ERR.

When an error occurs, ERR contains the error code constant.
You can use it to write error messages. For example: IF ERR
= 100 THEN PRINT "PLEASE CHECK THE NUMBER AND REENTER".

ERL contains the line number where the error happened.

If no user error trap is set, the message corresponding to
the value in ERR is printed and the program halts. This
occurs if an ERRCR statement is executed in direct mode
whether you set a trap or not.

If you set a trap, the program enters the error-trapping
routine. You can use ERR and ERL as you would any numeric
variable. To exit the error trap, use RESUME, whether you
entered the trap because of a trappable ST BASIC error or an
ERROR statement.

If the error code equals a predefined ST BASIC error ccde,
the program simulates the error and prints the error message
for that code.

When you define your own errors, it's a good idea to give
your error codes values that are much greater than the ST
BASIC codes. That way, you will not need to change your

program even if the ST BASIC error codes are revised in the
future.

See: ON ERROR, GOTO, RESUME

You can simulate errors in both direct and indirect mode.
Here is an example in direct mode:

Ok ERROR 55
You cannot OPEN or KILL a file already open

The following example is in indirect mode.

Ok 500 ON ERROR GOTO 550

Ok 510 INPUT "DO YOU WISH TO RECEIVE EARNED INCOME
CREDIT"; E¥®

Ok 515 IF E$ = “"NO" THEN GOTO 600

Ok 520 INPUT "IS THE AMOUNT LISTED ON LINE 33 LESS
THAN $10,000";X$s

Ok 525 IF X$ = "NO" THEN ERROR 200

Ok 530 IF ERR = 200 THEN

Ok 535 PRINT "YOU ARE INELIGIBLE FOR EARNED

INCOME CREDIT."

Ok 540 IF ERL = 525 THEN GOTO 600

Ok 550 RESUME

-

Ok RUN

DO YOU WISH TO RECEIVE EARNED INCOME CREDIT? YES

IS TBE AMOUNT LISTED ON LINE 33 LESS THAN $10,000? NO
YOU ARE INELIGIBLE FOR EARNED INCOME CREDIT.

EXP X = EXP(Y)

Syntax: X = EXP(<numeric expression>)
FUNCTION: Returns the constant e raised to an exponent.
Explanation:

The constant e is the base of natural logarithms,
approximately equal to 2.7182. EXP returns a real number.

The numeric expression must evaluate to <= 43.6682.

Example:

Ok 10 X EXP(3.254)
Ok 20 Y = EXP(8.97)
Ok 30 PRINT X,Y
Ok RUN

23.8937 7863.59
Ok

FIELD FIELD #1, 8 AS X$, 4 AS Y$, 2 AS S$

Syntax: FIELD #<file number>,<field width> AS <string
variable> <,field width> AS <string variable>

STATEMENT: Allocates variable space in random file buffers.
Explanation:

You must write a FIELD statement to transfer information

between random file disks and random buffers. The FIELD

statement only allocates variable space; it does not move
data.

The file number is the number you gave the file when you
opened it. The field width defines the number of bytes to
give to the string variable. For example, FIELD #10, 20 AS
X$, 30 AS Z$% allocates the first 20 bytes of space XS and the
next 30 bytes to ZS$.

You cannot allocate more space than you created when you
opened the file. The default record length is 128 bytes.
For any file, you can write as many FIELD statements as you
want.

Reallocating field space does not cancel the original
mapping; rather, the two maps co-exist. For example, if you
specify :

FIELD #10, 20 AS XS$, 40 AS Z$, 10 AS Y$
and
FIELD #10, 70 AS NS

the first 20 bytes of N$ are also in X$, the next 40 also in
Z%, and the final 10 also in Y§.

Do not use INPUT or LET to input into a variable that was
declared in a FIELD statement. If you do, the variable's
pointer moves to string space instead of to the buffer.

Example:

Ok 100 OPEN "R", #5, “TAXES", 40
Ok 110 FIELD #5, 20 AS IS, 10 AS D$, 10 AS ES

C-48

FILL FILL 150,80

Syntax: FILL <numeric X expression>,<numeric Y expression>
STATEMENT: Fills shapes with colors or patterns.
Explanation:

Fills drawn shapes with shapes or patterns defined in a
previous COLOR statement. The X and Y coordinates provide
the starting position for FILL.

See: COLOR
Example:

10 COLOR 1,2,1
20 CIRCLE 150,80,80
30 FILL 150,80
40 COLOR 1,1,1,4,4
50 FILL 150,80

FIX X = FIX(Y)

Syntax: X = FIX(number)
FUNCTION: Truncates a real number to an integer.
Explanation:

FIX does not round off numbers; it simply truncates any
decimal part. The integer expression must be between =-32768
and 32767.

See: CINT, INT
Example:

Ok 10 X = 239,77
Ok 20 PRINT FIX(X)
Ok 30 PRINT FIX(-678.3)
Ok RUN
239
-678
Ok

C-50

FLOAT X = FLOAT (Y)

Syntax: X = FLOAT (<integer expression>)
FUNCTION: Converts an integer to a real number.
Explanation:

FLOAT does not change the appearance of the integer, but

assigns it more room in memory. The integer expression must
be between -32768 and 32767.

Example:

Ok 10 X = FLOAT(97)
Ok 20 PRINT X
Ok RUN

97

=51

FOLLOW FOLLOW N
FOLLOW N,

B

Syntax: FOLLOW <variable>I[,<variable>]
COMMAND: Follows the values of program variables.
Explanation:

The FOLLOW command is a debugging tool that keeps track of

all program variables.

Each time the value of a specified
variable changes, FOLLOW printe the variable name,
and the number of the program line on which it changed.

UNFOLLOW command stops FOLLOW.

Example:

Ok
Ok
Ok
Ok
Ok
Ok
Ok

WWNNHH

10 FOR X=1
20 N =

30 B

N +
B +

40 PRINT N
50 PRINT B
60 NEXT X

RUN

FOLLOW

RUN

=1

o
38

nn
w

at
at

at
at

at
at

N, B
line
line

line
line

line
line

UNFOLLOW

0

20
30

C=52

its value,

FOR FOR I =1 TO 5 STEP 1

Syntax: FOR <counter variable> = <numeric expression> TO
<numeric expression> [STEP<numeric expression>]

STATEMENT: Creates a loop that executes a given number of
times,

Explanation:

The FOR statement sets the starting and ending values of a
counter variable and the value to be added to it each time
the FOR...NEXT loop executes.

The value added to the counter variable is 1 unless otherwise
specified by STEP. The STEP can be positive or negative.

The NEXT causes the instructions between FOR and NEXT to
repeat if the value of the counter variable is not greater
than the end value specified by TO. When the counter's
absolute value is greater than the end absolute value,
program execution passes to the line after NEXT.

You can nest FOR/NEXT statements. In other words, you can
have a loop within a loop. When you nest loops, the NEXT
statement for the inner loop must come before that of the
outer loop.

See: NEXT
Example:

Ok 10 FOR X =1 TO 5
Ok 20 PRINT X

Ok 30 NEXT
Ok 40 PRINT "THE VALUE OF THE COUNTER VARIABLE IS"X
Ok RUN

1

2

3

4

5
THE VALUE OF THE COUNTER VARIABLE IS 6
ok
Ok 10 FOR X = 2 TO 1 STEP -1
Ok 20 FOR Y =1 TO 5

Ok 30 PRINT X
Ok 40 PRINT Y

Ok 50 NEXT Y
Ok 60 NEXT X
Ok RUN

Ok

AUFRAHWHNHFHRFRFUDIN &NDWRDNR R

o

C-54

FRE X = FRE(O0)

Syntax: X = FRE(<dummy argument>)
FUNCTION: Returns the number of unused bytes in memory.

Explanation:

FRE requires a dummy argument. Use any argument to find the
number of free bytes in memory.

Example:

Ok PRINT FRE(O0)
43000

Note: The size of BASIC arrays is limited to 32 Kilobytes
regardless of the amount of free memory. The arrays must not
exceed a third of the total size of free memory.

FULLW FULLW 2

Syntax: FULLW <numeric expression>

STATEMENT: Sets BASIC windows to full screen size.

Explanation: Sets the specified window to full screen.

windows are

Whe—o

wmunn

Example:

as follows:

The Edit Window.
The List Window.
The Output Window.
The Command Window.

Ok 10 FULLW 2:CLEARW 2
OK 20 PRINT "HELLO"

OK RUN

The

GEMSYS GEMSYS (X)

Syntax: GEMSYS(<AES Op Code>)

FUNCTION: GEMSYS allows the user to access the operating
system's AES interface.

Explanation: The AES control arrays can be accessed through
the GB structure, using the PEEK command.

Example:

10 REM PRINT MOUSE X,Y POSITION AND BUTTON STATES
20 A#=GB

30 CONTROL=PEEK (A#)

40 GLOBAL=PEEK (A#+4)

50 GINTIN=PEEK (A#+8)

60 GINTOUT=PEEK (A#+12)
70 ADDRIN=PEEK (A#+16)

80 ADDROUT=PEEK (A#+20)
90 GEMSYS(79)
100 PRINT PEEK (GINTOQOUT+2)
110 PRINT PEEK (GINTOUT+4)
120 PRINT PEEK(GINTOUT+6)
130 PRINT PEEK (GINTOUT+8)

£=57

GET GET #1, 5

Syntax: GET [#]<file number> [,<record number>]

STATEMENT: Reads a record from a random disk file into a file
buffer.

Explanation:

The file number is the number you gave the file when you
opened it. The record number is optional. If you leave it
out, the next record after the first GET or PUT goes into the
buffer. The greatest record number you can have is 32767.
See: OPEN for an example of GET in context.

Example:

Ck 100 IF X$ = "YES" THEN GET#5, TYPE%: GOTO 200

GOSUB GOSUB 250
GOSUB ENTRY

Syntax: GOSUB <line number> or GOSUB <label name>
STATEMENT: Passes program control to a subroutine.
Explanation:

The GOSUB statement is paired with the RETURN statement,

which passes control back to the program statement
immediately following GOSUB.

The line number or symbolic label indicates the line on which
the subroutine begins.

You can call a subroutine from another subroutine.
Subroutines can't be nested more than 16 deep, however.

You can write more than one RETURN statement into your
subroutine. If you are testing for conditions that determine
a program's progress, you might have several RETURNS in a
subroutine.

Note: It is advisable to use symbolic labels rather than line
numbers with the GOSUB statement.

Example:

Ok 10 GOSUB 100
Ok 20 REM RETURN POINT OF SUBROUTINE
Ok 30 PRINT A
Ok 40 END
Ok 100 REM START OF SUBROUTINE
Ok 110 GOSUB BOO
Ok 120 A=5%*5
Ok 130 RETURN
Ok 140 BOC: PRINT "BOO!"
Ok 150 RETURN
Ok RUN
BOO!
25
ok

=59

GOTO GOTO 50
GOTO ENTRY

Syntax: GOTO <line number> or GOTO <label name>

STATEMENT: Passes program control unconditionally to a given
line number.

Explanation:

The GOTO statement passes program control to a specified line
and resumes execution from there. If you GOTO a
nonexecutable statement, execution begins at the first
executable statement after the specified statement.

Note: It is advisable to use symbolic labels rather than line
numbers with the GOTO statement.

Example:

Ok 10 TOP: INPUT "PLEASE ENTER BENEFICIARY'S NAME";NAMES

Ok 100 INPUT "DO YOU WISH TO END THIS PROGRAM"; ANSWERS
Ok 120 IF ANSWERS$ = "YES" THEN GOTO 200

Ok 130 GOTO TOP

Ok 200 END

C-60

GOTOXY GOTOXY X,Y

Syntax: GOTOXY <Column Position>,<Row Position>

STATEMENT: Places output cursor at column and row position.
Explanation:

GOTOXY places output cursor at the column and row position
specified by the two parameters.

Example:

10 GOTOXY 2,3
20 PRINT "COLUMN2,ROW3"

C=61

HEX$ X = HEX$(Y)

Syntax: X = HEXS$ (numeric expression)

FUNCTION: Returns a string that is the hexadecimal
representation of a number.

Explanation:

A hexadecimal number is a base 16 integer. Hexadecimal
numbers are written using the digits 0 through 9 and the
characters A through F to represent the values 1 through 15.

HEXS$ does not add a leading &H to the hexadecimal number it
returns. If you want to use the value in a program, you must
prefix it with &H to establish that it is in hexadecimal
notation.

HEX$ rounds real numbers to integers before evaluating them.
The normal legal range for integers is -32768 to 32767.

Attempting to assign an address expression to an integer
variable leads to an integer overflow error, unless you
assign the value to the variable using VAL (see following
example) .

Example:

Ok 10 A% = VAL("&H" + HEXS$(FRE(O0)))
Ok 20 PRINT A%

Ok RUN

~22536

Ok

C-62

IF IF X=Y THEN PRINT A: GOTO 250
ELSE GOTO 30

Syntax: IF <logical expression> THEN <statement> <:statement>
[ELSE <statement> <:statement>]

STATEMENT: Sets conditions that determine program flow.

Explanation:

The IF statement evaluates an expression that is either true
(not zero) or false (0). If the expression is true, the
statements following THEN are executed. If false, execution
continues at the statement after ELSE. If there is no ELSE,
execution continues at the next executable line.

You can use IF statements within IF statements. Each ELSE
matches with the nearest THEN. THEN or ELSE clauses are
valid only within the context of an IF statement.

You can write a FOR or WHILE loop within the THEN or ELSE
clause of an IF statement. The FOR or WHILE statement must
be complete within the THEN or ELSE clause: the matching NEXT
must be in the same clause as the FOR statement and the
matching WEND must be in the same clause as the WHILE
statement. See the first example below.

When you use an IF statement within a FOR or WHILE statement
(all as part of the same statement line), the closing NEXT or
WEND also closes the IF construct. See the second example
below.

Example 1:

Ok 5 Ag%=5

Ok 10 IF A%>3 THEN FOR K%=1 TO
5:PRINT A%*K%:NEXT ELSE FOR
K%=1 TO 5:PRINT A%/K%:NEXT
Ok RUN

5

10

15

20

25
Ok

Example 2:

Ok 10 FOR X=1 TO 5:IF X<3 THEN PRINT X*X:NEXT:PRINT

"DONE"
Ok RUN
4

4
DONE

(The NEXT is always executed)

C-64

INP X = INP(3)

Syntax: X = INP(<port number>)

FUNCTION: Returns a byte value from a selected input port.
Explanation:

The port number must be in the range 0 to 6§5535. The INP
function is the complement of the OUT statement.

To read the port status, use a negative port value (INP
(=3)). A 0 indicates no character available; -1 indicates a
character available.

The following port assignments apply to the ATARI ST
Computer:

PRINTER (Parallel Port)

AUX (RS-232)

CONSOLE (Screen)

MIDI (Musical Instrument Digital Interface)
KEYBOARD

W H O
[T T | A I

Example:

Ok 200 ¥ = INP(3)
Ok 210 IF INP(3) > X THEN GOTO 200

INPUT INPUT AS
INPUT "NAME: ", AS
INPUT "NAME"; AS
INPUT X, Y, Z
INPUT "Height, Weight, Age", X, Y, 2Z

Syntax: INPUT [;] [<prompt string><; or,>] <variable>
(<variable>

STATEMENT: Lets you enter data while the program is running
and assigns the data to program variables.

Explanation:

The INPUT statement prompts you for input during program
execution and waits for your response. After you type a
response, press [Return] to pass it to the program.

The prompt string is a string constant, and must be in
guotes. The variables can be string or numeric. Your
responses must match the type of the variables. String
responses are not placed within quotes.

If you use a prompt string, the INPUT statement prints it on
the screen as the prompt. The prompt string appears as a
question or a statement, depending on whether you use a comma
or a semicolon.

If you separate the prompt string from the variables with a
semicolon, the INPUT statement adds a question mark and a
space to the end of the prompt string.

If you separate the prompt string from the variables with a
comma, the prompt prints without a question mark, and without
a space after the last character in your prompt string. You
type your response on the same line. For this reason, you
need to include a space as the last character in your prompt
string if you want a space between the prompt and your
response.

If you do not write a prompt string, or if you write a null
string, INPUT prints a qguestion mark and a space and awaits
your input.

The INPUT statement prints a prompt for each variable, and
each response corresponds to an INPUT variable. If the
number of variables and responses differ, an error occurs.

You must separate individual responses with commas. You can
also use commas in your response if you enclose the response

C-66

string in quotation marks.

You can enter one line of characters in response to an INPUT
request. A carriage return or line-feed ends the line of
input. The maximum line length is 255 characters.

Example:

Ok 10 TNPUT "ENTER TODAY'S DATE: “,XS$

Ok 20 INPUT "ENTER YOUR IDENTIFICATION NUMBER: ", 2S$
Ok 30 IF z$ = "359152" THEN GOTO 100

Ok 40 PRINT "ACCESS DENIED": END

Ok 100 PRINT "YOU'RE IN!": END

Ok RUN

ENTER TODAY'S DATE: 9 JULY 1983

ENTER YOUR IDENTIFICATION NUMBER: 359152

YOU'RE IN!

Ok

t=67

INPUT# INPUT#1, AS$, X

Syntax: INPUT#<file number>, <variable>, <variable>

STATEMENT: Reads data from a sequential disk file to program
variables.

Explanation:

The file number is the number you give the file when you open
it. You assign the data in the file to variables. The types
of a variable and its assigned data must match.

The INPUT# statement works much like the INPUT statement,
except that it does not prompt. Before assigning the data
item you enter to the variable, INPUT# skips any leading
spaces, tabs, carriage returns, and line feeds you enter with
the data. The first character that is not one of these is
taken as the start of the data. A space, a carriage return,
line feed, comma, or reaching 255 characters signals the end
of the data.

There are three kinds of data for the INPUT# statement:
numbers, in any of the numeric formats; quoted strings; and
unquoted strings.

Data is interpreted as a number if the variable you assign to
it is numeric; otherwise it is taken as a string. Numbers
are ended by reaching end-of-file or 255 characters, or by a
line-feed, carriage return, comma, or any character that is
not a valid part of a number.

Strings are treated as quoted if the first non-space
character is a quotation mark. Everything within a pair of
guotation marks is taken as data in quoted strings. You
cannot use a quotation mark as a character within the gquoted
string because the second quotation mark ends the string.
Quoted strings are also ended by reaching end-of-file or 255
characters.

Unguoted strings can include quotation marks. They are ended
by a carriage return, line-feed, comma, reaching end-of-file
or 255 characters. Trailing spaces in unquoted strings are
ignored.

Example:

Ok 10 OPEN "I", #1, "BILLING"
Ok 20 INPUT#1, CUSTOMERS, INVOICE%, DATES

C-68

INPUTS X$ = INPUTS$(6)
X$ = INPUTS(6,#1)

Syntax: X$ = INPUTS (<number of characters>[,[#]<file
number>])

FUNCTION: Returns a specified number of characters from the
keyboard or a data file.

Explanation:

INPUTS reads the specified number of characters from the
keyboard or a file, and returns a string containing these
characters. All characters are returned without translation,
exactly as they are entered, without exception. For example,

[Control] [G] from the terminal and [Controll [Z] from a data
file are passed to the string.

If you input the string from a file, you must specify an open
file number. If you attempt to read beyond the end of the
file, an error results.

See: EOF
Example:

Ok 20 X$ = INPUTS (6)

Ok 30 IF X$ = "GEORGE" THEN 1000 ELSE PRINT "WRONG": END
Ok 1000 PRINT "OK"

Ok RUN

ARNOLD

WRONG

Ok

C=65

INSTR X INSTR(3,A$,"DO")

X INSTR(3,A%,BS)

Syntax: X = INSTR(I[<starting point>,] <target string
expression>, <pattern string>)

FUNCTION: Searches for one string within another and returns
its position.

Explanation:

INSTR looks for the first occurrence of a pattern string
within a target string and returns its position.

You can specify a starting point for the search. The
optional starting point is an integer between 1 and 255.

The target string and pattern strings can be string
constants, expressions, or variables.

INSTR returns 0 if the pattern string is longer than the
target string; if the target string is a null string; or if
the pattern string is not in the target string.

If the pattern string is null, INSTR returns a zero.
Example:

Ok 10 X$ = "HOW DO YOU DO?" .
Ok 20 X = INSTR(3,X$,"DO")
Ok 30 PRINT X
Ok RUN
5
Ok

C-7¢

INT X = INT(Y)

Syntax: X = INT(numeric expression)

FUNCTION: Converts a number or expression to an integer.
Explanation:

INT truncates decimal places.

Example:

Ok 10 X = INT(2.999)
Ok 20 PRINT X
Ok RUN
2
Ok

c-71

KILL KILL "FILE.DAT"

Syntax: KILL<string expression>
STATEMENT: Deletes a disk file.
Explanation:

The string expression evaluates to a filename. KILL deletes
the file associated with that filename. For example, KILL AS
deletes the file specified by AS. You can KILL any kind of
disk file. You cannot kill a file that is open at the time;
an error occurs if you try.

The example creates a file named CALC.BAS. The file is then
deleted by KILL.

Unlike ERA, KILL can be used within an ST BASIC program
(i.e., 10 KILL "DATA.1%).

Example:

Ok NEW

Ok 10 A=45:B=56
Ok 20 PRINT A+B
Ok 30 END

Ok SAVE CALC

Ok B$="CALC.BAS"
Ok KILL BS$

Ok

C-72

LEFT$ X$ = LEFTS$ (AS$,5)

Syntax: X$ = LEFTS (<target string><number of characters>)

FUNCTION: Returns a string that contains the leftmost
characters of a string.

Explanation:

LEFT$ starts at the leftmost character and returns as many
consecutive characters as you specify. The number of
characters must be a positive number between 1 and 255. Real
expressions convert to integers.

The target string can be a string constant, variable, or
expression.

If the number of characters is greater than the length of the
target string, LEFT$ returns the entire target string. If
the number of characters is zero, LEFT$ returns a null
string.

Example:

Ok 10 INPUT "RADIUS";R

Ok 20 PRINT 3.1416*R 2

Ok 30 INPUT "ANOTHER AREA";CS$

Ok 40 IF LEFTS$(C$,1)="Y" THEN 10
Ok 50 END

RUN

RADIUS 23
28,2735
ANOTHER AREA ?Y
RADIUS ?

£=73

LEN Z = LEN(AS)

Syntax: Z = LEN(<string expression>)
FUNCTION: Returns the length of a string.
Explanation:

LEN returns the number of characters in a string as an

integer. 1If the expression is a null string, LEN returns
Zero.

Example 1:

Ok 10 ADDRESSS = "2114 PARKER ST, BIRDLAND, NEW YORK"
Ok 20 FOR X = 1 TO LEN(ADDRESSS$)

Ok 30 PRINT CHRS (42);

Ok 40 NEXT X

Ok RUN

T e T e R T2

Ok

Example 2:

10 A$="THIS STRING IS 33 CHARACTERS LONG"
20 PRINT AS
30 PRINT LEN(AS)
RUN
THIS STRING IS 33 CHARACTERS LONG
33

C-74

LET LET X(1)=Y
LET X=Y

Syntax: LET <variable>=<expression>
STATEMENT: Assigns a value to a variable or array variable.

Explanation:

Using LET to assign values to variables is optional. For
example, LET X = Y and X = Y are identical in meaning. The
variable and the expression can be strings or numbers. For
numeric variables and expressions, the type of the expression
converts to match the type of the variable.

Example:

Ok 10 LET NAMES = "ALYSON"
Ok 20 TICKETOFFICES = "BATH, ENGLAND"
Ok 30 LET DESTINATIONS = "CANTERBURY"

Ok 40 DATE.OF.DEPARTURE = 4.1
Ok 50 DATE.OF.ARRIVAL = 4.8
Ok 60 LENGTH.OF.TRIP = DATE.OF.ARRIVAL -

DATE.OF .DEPARTURE

Ok 70 PRINT NAMES

Ok 80 PRINT TICKETOFFICES

Ok 90 PRINT "DESTINATION: "DESTINATIONS
Ok 100 PRINT “LENGTH OF TRIP: " LENGTH.OF.TRIP
Ok RUN

ALYSON

BATH, ENGLAND

DESTINATION: CANTERBURY

LENGTH OF TRIP: .7

Ok

=75

LINE INPUT LINE INPUT "NAME? "; AS
LINE INPUT; "NAME? “; AS

Syntax: LINE INPUTI[;] [<prompt>[,or ;ll<string variable>

STATEMENT: Reguests input from the keyboard and assigns it to
a string variable.

Explanation:

LINE INPUT is similar to the INPUT statement in that it asks
you to enter data at the keyboard, but it accepts an entire
line of up to 255 characters as a response. Your response is
assigned to the string variable. A carriage return or line
feed ends your input and sends it to the computer.

The optional prompt is a string that you write as an input
request; LINE INPUT prints it in the output window and waits
for your response. LINE INPUT does not automatically add a
question mark or a space after the prompt, but you can write
a question mark or space within the prompt string. 1Including
a space is advisable, because otherwise your 1nput will run
together with the prompt, on the same line.

Example:

Ok 10 LINE INPUT "REASON FOR RETURNING MERCHANDISE ";RS$
OK 20 PRINT "THANK YOU. WE ARE PROCESSING YOUR

COMPLAINT"

Ok RUN

REASON FOR RETURNING MERCHANDISE?

WRONG SIZE, WRONG COLOR, TASTELESS STYLE.

THANK YOU. WE ARE PROCESSING YOUR COMPLAINT.

Ok

C-76

LINE INPUT# LINE INPUT#1, AS

Syntax: LINE INPUT#<file number>, <{string variable>

STATEMENT: Requests input from a sequential disk file and
assigns it to a string variable.

Explanation:

Like LINE INPUT, LINE INPUT# assigns a line of up to 254
characters as input to a string variable, but the input comes
from a sequential disk file. The file number is the number
you gave the file when you opened it.

LINE INPUT# reads all characters in a sequential file until
it comes to a carriage return, and assigns them to the string
variable. The next LINE INPUT# statement starts where the
first left off, and assigns the next line, up to a carriage
return, to the next string variable.

If a line feed immediately precedes a carriage return, they
are treated as regular characters and do not end the line.

Example:

Ok 10 OPEN “O", #4, "SCORES"

Ok 20 LINE INPUT "GIVE TEAMS, WINNERS, AND SCORES.", S$
Ok 30 PRINT#4, S$

Ok 40 CLOSE #4

Ok 50 OPEN "I", #4, "SCORES"

Ok 60 LINE INPUT#4,S$

Ok 70 PRINT S$

Ok 80 CLOSE #4

Ok RUN

GIVE TEAMS, WINNERS, AND SCORES.

USC & UCLA: USC. 50-3; CPSLO & FRESNO: CPSLO. 33-20
USC & UCLA: USC. 50-3; SPSLO & FRESNO: SPSLO. 33-20
Ok

C=71

LINEF LINEF 30,50,590,100

Syntax: LINEF <point pair, point pair>
STATEMENT: LINEF draws a line.
Explanation:

LINEF draws a line between the two point pair coordinates
specified. The points are pixel positions counted from the
upper left corner of the output window (0,0). The number of
points available horizontally and vertically is dependent
upon the system resolution chosen.

Example:

Ok 10 COLOR 1,0,1:CLEARW 2 o
Ok 20 LINEF 50,50,80,80
Ok RUN
[Output Window will show line drawn between
two coordinate portionsl
Ok

C=78

LIST LIST
LIST 10-50
LIST 10, 30, 50
LIST 10-30, 70-90
LIST = 30

Syntax: LIST [<line descriptor, list>]
COMMAND: Displays program lines in the LIST window.

Explanation:

LIST displays specified lines of the current program in the
LIST window.

LIST displays the entire program from beginning to end.
LIST 10 displays the single line number 10 of the program.
LIST 10-50 displays lines 10 through 50 of the program.

LIST 10, 30, 50 displays lines 10, 30 and 50 of the program.

LIST 10-30, 70-90 lists two groups of lines from 10 through
30 and 70 through 90.

LIST - 30 lists all lines up to line 30.

Pressing [Controll [G] stops LIST and returns to the command
window.

C=19

LLIST LLIST
LLIST 10-50
LLIST 10, 30, 50
LLIST 10-30, 70-90
LLIST - 30

Syntax: LLIST [<line descriptor list>]
COMMAND: LLIST lists the program to your printer.
Explanation:

LLIST works the same way as LIST, but prints the specified
lines on your printer.

The WIDTH LPRINT command sets the line width for your
printer. ST BASIC sets line width to 72 characters. WIDTH
LPRINT 40 would set it to 40 characters.

If a printer is not connected when the LLIST command is
executed, ST BASIC will time out.

LOAD LOAD MYPROG

Syntax: LOAD <filename>

COMMAND: LOADs program files.

Explanation:

LOAD brings ST BASIC program files into memory. LOAD assumes
a .BAS extender unless you specify otherwise. When you LOAD

& program, any current program and its variables are cleared
from memory.

Same as: QLD

LOC X = LOC(1)

Syntax: X = LOC(<file number>)

FUNCTION: Returns either a record number or the number of
bytes read from or written to a file.

Explanation:

When used after a GET or PUT to a random disk file, LOC
returns the number of the record most recently read or
written with GET or PUT. For example:

GET #1
PUT #1,LOC(1)

replaces record #1 in the slot from which it is read.

Used with sequential files, LOC returns the number of bytes
read or written since the file was opened.

Example:

Ok 10 OPEN "R", #8, "FILE"

Ok 20 FIELD #8, 20 AS 2$, 3 AS V$
Ok 30 GET #8, C%

Ok 40 IF LOC(8) > 25 THEN GOTO 90

Cc-82

LOF X = LOF(1)

Syntax: X = LOF(<file number>)

FUNCTION: Returns the number of bytes in the file.

Explanation:

For a file just opened for output, the number of bytes is
zZero.

Example:

Ok 100 X = LOF(#5)
110 IF X > 100 THEN PRINT "OPEN NEW FILE": GOTO 200

LOG X = LOG(N)

Syntax: X = LOG(<numeric expression>)
FUNCTION: Returns the natural logarithm of a number.
Explanation:
The numeric expression must be greater than zero.
Example:

Ok 10 PRINT LOG(23) /LOG(2)

Ok RUN

4.52356
Ok

LOG10 X = LOGlO(Y)

Syntax: X = LOGlO(<numeric expression>)
FUNCTION: Returns the base 10 logarithm of a number.
Explanation:
The numeric expression must be greater than zero.
Example:

Ok 10 X = LOG10(1000)

Ok 20 PRINT X

Ok RUN
e

C-85

LPOS LPOS(X)

Syntax: LPOS(X)

FUNCTION: Returns the position of the line
within the line printer buffer.

Explanation:

The position returned is the number of the
since the last carriage return character.
counts as -1. If you have printer control
alter the position of the print head, LPOS
the true position of the print head.

Example:

Ok 10 X = 90
Ok 20 IF LPOS(X) > 45 THEN GOTO 100

printer print head

characters printed
The backspace
characters that
will not reflect

LPRINT LPRINT AS; * = "; X
LPRINT USING F$; AS, X

Syntax: LPRINT [<list of expressions>]

LPRINT USING <format string expression>;<list of
expressions>

STATEMENT: Directs output to a printer.

Explanation:

The LPRINT statement works like the PRINT and PRINT USING
statements in this section, except that output goes to a line
printer. You can set the assumed width of the line printer
with the WIDTH LPRINT statement. Initially, it is 72
characters. The format string expression must be separated
from the variable list with a semicolen. The listed
expressions must be separated by commas.

See: WIDTH, LPRINT
Example:

Ok 10 LPRINT *"THIS PRINTS ON THE PRINTER"

Cc-87

LSET LSET AS$=BS$

Syntax: LSET<string variable>=<string expression>

STATEMENT: Moves a string into a specified string variable
without reassigning the string variable.

Explanation:

LSET is commonly used to move data to file buffers by LSETing
into variables mapped into file buffers by a previous FIELD
statement. LSET is not limited to this use, however.

If the string expression takes fewer bytes than you assigned
to the string variable in a FIELD statement, LSET justifies
the left margin and pads the string to the right with spaces.

If the string is longer than the destination, LSET ignores
the extra characters.

If a string takes more bytes than you assigned it in the
FIELD statement, characters to the right are dropped.

You must convert numbers and numeric variables to strings
with MKD$, MKI$, or MKS$ before you LSET them.

The counterpart of LSET is RSET.
Example:

Ok 10 OPEN "1", $#2, "TEST", 5
Ok 20 FIELD #2, 5 AS S$
Ok 30 LSET N$ = NNS§

MERGE MERGE MYPROG

Syntax: MERGE <filename>

COMMAND: Inserts an ST BASIC disk file into a program in
memory. j : g

Explanation:

The MERGE command assumes a .BAS extender unless otherwise
specified and inserts a file on disk into a file already in
memory. As long as the line numbers of the two files a:e
different, MERGE does not erase the original file. If any
line numbers in the disk file duplicate line numbers in the
file in memory, the disk lines replace the memory lines.

See: CHEIN

Example:

Ok 10 PRINT "THIS IS THE ORIGINAL PROGRAM"

Ok 20 PRINT “THIS LINE WILL BE DELETED BY THE MERGE"

Ok 30 PRINT "THIS LINE STAYS BECAUSE IT HAS A UNIQUE LINE
NUMBER"

Ok SAVE ORIGINAL

CK NEW

Ok 15 PRINT "THIS IS THE OVERLAY"

Ok 20 PRINT "THIS LINE REPLACES LINE 20 IN THE ORIGINAL
PROGRAM"

Ok SAVE OVERLAY

Ok LOAD ORIGINAL

Ok MERGE OVERLAY

Ok RUN _ :

THIS IS THE ORIGINAL PROGRAM

THIS IS THE OVERLAY

THIS LINE REPLACES LINE 20 IN THE ORIGINAL PROGRAM
THIS LINE STAYS BECAUSE IT HAS A UNIQUE LINE NUMBER
OK ' ‘ '

MID$ X§ = MIDS$(AS$,5,10)
MIDS$ (A$,5,5)= "HELLO"

Syntax: X$ = MIDS$ (<string expression>, <starting
point>,[<length>1)

FUNCTION: Returns a segment of a string.
STATEMENT: Assigns a value to a string segment.
Explanation:

MIDS$ returns a segment of a string. The starting point is a*
numeric expression pointing to the beginning of the segment.
The length is a numeric expression specifying the length of

the segment to the right of the starting point. If you omit
the length parameter, MID$ returns all the characters after

the starting point.

If the starting number is greater than the string length,
MID$ returns a null string.

If the length of the segment is greater than the number of
characters to the right of the starting point, all the
characters after the starting point are returned.

MIDS$ can also be used to define a string segment.
See: RIGHTS, LEFTS
Example:

Ok 10 X§ “MR. JAMES GRAHAM SCOTT"
Ok 20 Y MID$ (X$,18,5)

Bk 30 PRINT Y$

Ok RUN

SCOTT

Ok

C-50

MKD$§, MKI$, MKSS$ X$ = MKD$(a) A is a numeric value.
X$ = MKIS(B) B is an integer wvalue.
X$ = MKS$(C) C is a numeric value.
Syntax: X§ = MKDS(<numeric expression>)
X$ = MKI$(<integer>)
X$ = MKS$ (<numeric expression>)

FUNCTION: The MKD$, MKI$, ané MKSS functions convert ASCII
strings representing numbers to byte strings for use in
random file buffers.

Explanation:

MKI$ returns a 2-byte string. MKSS$ returns a 4-byte string.
MKD$ returns an 8-byte string. :

You must convert ASCII numbers to strings with these
functions before you can move them into a random file buffer
with RSET or LSET. The CVD, CVI, and CVS functions are the
reverse of the MKD$, MKIS$, and MKS$ functions.

Example:

Ok 100 FINAL = (100/X) * (100 - ¥)
Ok 110 FIELD #2, 5 AS Z$, 5 AS BS$
Ok 120 LSET 2Z$ = MKIS(FINAL)

Ok 130 LSET B$ = T$

Ok 140 PUT # 2

C-91

NAME NAME "AUG.DAT" AS "LAST.DAT"

Syntax: NAME <old string expression> AS <new string
expression>

STATEMENT: Renames a file.

Explanation:

NAME simply gives a new name to a file that already exists.
NAME does not alter the file or disk space in any way. Be
sure the old file exists and the new name does not:
otherwise, an error occurs.

Example:

Ok -NAME "VERSION2.BAS" AS “FINAL.BAS"

NEW NEW NEWPROG.BAS

Syntax: NEW [NAME:

COMMAND: Clears a file from memory, and opticonally names the
new program. :

Explanation:

Use NEW in preparation for writing a new program. If you
have not saved the current file, you will lose it. If you

use the MAME option, you can use the SAVE command later
without a name.

Example:

Ok 10 X = SQR(25)
Ok 20 PRINT X

Ok NEW

Ok LIST

Ok

C=93

NEXT NEXT X
NEXT X, ¥

Syntax: NEXT [<counter>] ,counter
STATEMENT: Marks the end of a FOR/NEXT loop.
Explanation:

The NEXT statement in a FOR/NEXT loop sends program control
to the beginning of the loop. The loop runs again if the
counter variable is not greater than the limit set in a FOR
statement.

Supplying the name of the counter variable is optional. The
NEXT statement assumes the nearest counter variable.

If you have nested loops, you must specify which counter
variable you are returning to at the end of the loop's
execution. Use NEXT to direct execution first to the nested
loop, then to the outer loop, by specifying first the nested
counter variable, then the outer.

See: FOR
Example:

Ok 1@ FOR Z = 1 TO 3
Ok 20 PRINT "Y“

Ok 30 FOR Q =1 TO 2
Ok 40 PRINT "X"

Ok 50 NEXT Q,2

Ok RUN

O MMM MM

OCT$ X$ = OCTS(Y)

Syntax: X§ = OCTS$ (<numeric expression>)

FUNCTION: Returns the string expression of an octal (base 8}
number.

Explanation:

CCT$ returns a string that is the base 8 equivalent of a
decimal or hexadecimal value. The value of the decimal or
hexadecimal expression is rounded to an integer before
conversion. It must be between -32768 and 32767.

See: HEX$; STRS$
Examplie:

Ok 10 X$ = OCTS$(3.4)
Ok 20 PRINT X$

Ok RUN

3

OLD OLD TEST

Syntax: OLD <filename>

COMMAND: Loads an existing program file into memory.
Explanation:

OLD closes all open files and erases any variables or data in
memory before loading the named file from disk. Any ST BASIC
program in memory is cleared by OLD.

The filename is the name you gave the file when you saved it.
You need not include the default file type .BAS.

Same as: LOAD
Example:
Ok OLD TEST

Ok
The program TEST.BAS is now in program memory.

C-96

ON ON X GOTC INIT, 100, ENTRY, DONE
ON X GOSUB INIT, 100, ENTRY, DONE

Syntax: ON <numeric expression> GOTO <line descriptor> [<line
descriptor>]
ON <numeric expression> GOSUB <label> [,<label>]

STATEMENT: Transfers program control to one of a list of

program lines depending on the computed result of the numeric
expression. The ON statement has two forms.

Explanation:

The value of the numeric expression determines where pProgram
execution transfers. If the expression evaluates to 1, ON
branches to the first label. 1If it evaluates to 2, ON
branches to the second label, and so on.

Test the value before writing an ON statement.
Non-integer values round to the nearest whole number.

In the ON GOSUB statement, each numeric expression must be
the number of the first line of a subroutine. The RETURN
statement in the subroutine returns control to the first
executable statement following the ON statement.

You can use any valid line descriptor in an ON statement, and
you can write an ON statement anywhere in your program.

10 ON X GOTO 200, PAINT, 400

If the value of X is 1 the program will jump to the line 200,
if it is 2 it will jump to the statement labeled PAINT.

Example:

Ok 10 X =1

Ok 20 ON X GOTO 70,80,90,990

Ok 70 PRINT "SEASON TO DATE:"X + 1
Ok 80 PRINT “"SEASON TO DATE:"X + 2
Ok 90 PRINT "SEASON TO DATE:"X + 3
Ok 120 X=X+1l: GOTO 20

Ok 990 END

Ok RUN

SEASON TO DATE:
SEASON TO DATE:
SEASON TO DATE:
SEASON TO DATE:
SEASON TO DATE:
SEASON TO DATE:
Ok

S Wi

C=97

ON ERROR GOTO ON ERROR GOTO 200

Syntax: ON ERROR GOTO <line descriptor>

STATEMENT: Provides a mechanism to detect run time errors and
pass control to a line number when an error occurs.

Explanation:

ON ERROR GOTO lets you handle run time errors by jumping to a
given line number when ST BASIC detects an error. A line
number, not a label, must be used as a parameter.

You can disable error handling, or restore ST BASIC's own
error handling in an error routine, by using ON ERROR GOTO 0.

When you use ON ERROR GOTO 0 in an error trapping routine, ST
BASIC prints its original error message. It is a good
practice to always use ON ERROR GOTO 0 in an error trapping
routine so that you can trap unexpected errors.

See: RESUME

Example:

Ok 8C ON ERROR GOTO 100

OPEN OPEN "“O",#1,“FILE.DAT",128
OPEN "I",#1,"FILE.DAT",128
OPEN "R",#1,“FILE.DAT",128

Syntax: OPEN <mode>,[#]<file number>,<filename>[,<record
length>]

STATEMENT: Lets you input and output toc a file or device.

Explanation:

You must OPEN a disk file before you can move data into or
out of it. The OPEN statement assigns the file an I/0 buffer

and determines the mode under which the file is accessible to
1/0.

The file number is an integer expression with a value between
1 and 15. A file number belongs to a file for as long as it
is open. Closing a file frees its number for reassignment.
The record length is an integer expression that sets the
record length for random files. It is optional. The default

length is 128 bytes. A record length giver for a sequential
file is ignored.

The file mode is either sequential output or sequential
input, or random input and output. Specify the mode with one
of the following initials:

O output for sequential files
I input for sequential files
R input and output for random files

These letters must be in the uppercase.

When you enter/input random access records, the first record
number must be entered as "1" and all following record
numbers must be sequentiai. That is, the first record is
"1", the second record is "2, the third record is "3", and
$0 on. This can be done with a FOR...NEXT loop. Records
entered out of order cause the program to ercor out. Once
the file is established, the records can be called (GET
#1,VAR) in any order.

Example:

Ok 10 OPEN "R",#1,"FUNDS"

Ok 20 FIELD #1,10 AS V$,10 AS X$,30 AS NS$
Ok 30 INPUT "ENTER A 4-DIGIT CODE",CODE!
Ok 40 GET #1,CODE!

€=99

OPENW OPENW 2

Syntax: OPENW <window number>
STATEMENT: Opens one ST BASIC window.
Explanation:

Used to open one ST BASIC window that was previously closed
using the CLOSEW command. The window opened will be the top
one on the screen. If the window has already been opened,
the window will remain the top window on the screen. <window
number> specifies the BASIC windows as follows:

0 - The Edit Window.

l - The List Window.

2 - The Output Window.
3 - The Command Window.

Note: OPENW does certain bookkeeping chores internal to the
BASIC interpreter that allow the system to keep track of the
window status. Therefore, do not open BASIC windows (that
were closed using CLOSEW) using direct calls to AES.

C-100

OPTION BASE OPTION BASE 0
OPTION BASE 1

Syntax: OPTION BASE <1 or 0>
STATEMENT: Sets the base for array dimensions.
Explanation:

You use OPTION BASE to set the minimum value for array
subscripts within a dimension. The default base is Z2ero;
thus the first element in an array has a subscript of zero.
You can set the array dimensions so they begin at 1 or reset
them to zero.

You can use OPTION BASE as many times as required.
See: DIM
Example:

Ok 10 OPTION BASE 1
Ok 20 DIM A%(10)
Ok 30 OPTION BASE 0
Ok 40 DIM B%(10)

A% now has 10 elements, 1-10. B% has 11 elements, 0-10.

C-101

ouT OuT 2,X

Syntax: OUT <integer expression>,<integer expression>
STATEMENT: Sends a byte to an output port.

Explanation:

The first integer expression is the port number. The second
expression is the byte you are sending to the port; it must
evaluate to an integer between 0 and 255.

ATARI ST Computer ports are assigned as follows:

PRINTER (Parallel Port)
AUX (RS-232)
CONSOLE (Screen)

MIDI (Musical Instrument Digital Interface)
KEYBOARD

WO
LI (O

Example:

Ok 100 IF X$>5 THEN OUT 3,(X-2)

C-102

PCIRCLE PCIRCLE 50,80,50
PCIRCLE 50,80,50,900,1800

Syntax: PCIRCLE <horizontal center,vertical
center,radius>[<,start angle,end angle>]

STATEMENT: PCIRCLE draws solid circles and pie shapes.

Explanation:

PCIRCLE draws a solid color or patterned circle whose center
is located at the point specified by the first two
parameters: horizontal center and vertical center. The
positions are in pixels starting from the upper left corner
of the OQutput window.

The third parameter, radius, is also expressed in pixels.

The horizontal and vertical pixel count is dependent upon the
resolution selected. The circle is drawn in the FILL color
(parameter 2 of the COLOR statement.)

The last two parameters, start angle and end angle, are
optional. 1If they are not specified, PCIRCLE draws a circle.
If they are specified, PCIRCLE draws the part of a circle
that lies between them. PCIRCLE draws a solid colored pie
shaped segment, not an arc. Angles are expressed in degrees
times 10. You would specify 45 degrees as 450, 180 degrees
as 1800, and so on. Zero degrees is to the right of the
window, 90 degrees is towards the top, 180 degrees to the
left, and 270 degrees at the bottom. COLOR 1,3,1:PCIRCLE
100,30,30,0,3600 draws a solid green circle.

See: CIRCLE, ELLIPSE, PELLIPSE
Example:

Ok 10 COLOR 1,0,1:CLEARW 2

Ok 20 CIRCLE 100,50,40

Ok 30 COLOR 1,2,1

Ok 40 PCIRCLE 100,50,40,300,900

Ok RUN '

[Output Window will show black circle with 60 degree red
wedge at 30 degrees]

Ok

C-103

PEEK X = PEEK(Y)

Syntax: X = PEEK (<memory location>)

FUNCTION: Returns the content of a memory location.

Explanation:

PEEK returns the value at the specified memory location. The

type of value returned is dependent upon the last DEF SEG
statement as follows: : :

If DEF SEG > 0, PEEK returns a byte regardless
Of how the location to PEEK is specified. The
iocation specified in PEEK will be offset by the
value specified in the last DEF SEG statement.

If DEF SEG = 0, PEEK returns a 2-byte word if

.location to PEEK is specified as a FLOAT
expression.

If DEF SEG = 0 and the address is specified by
DEFBDL, PEEK returns a 4-byte long integer.

You must specify the memory address using a'variable, as in
the following example, rather than a constant.

See: POKE, DEF SEG

Note: When PEEKing, the 520ST Computer is switched into
supervisory mode, meaning that you can access any location in
memory including protected memory.

Example:

Ok 100 BYTE% = PEEK(234)

C-104

PELLIPSE PELLIPSE 50,80,100,50
PELLIPSE 50,80,100,50,900,1800

Syntax: PELLIPSE <horizontal center,vertical
center,horizontal radius,vertical radius>[<,start
angle,end angle>]

STATEMENT: PELLIPSE draws SOLID ellipses and elliptical pie
shapes

Explanation:

PELLIPSE draws an ellipse whose center is located at the
peint specified by the first two parameters: horizontal
center and vertical center. The positions are in pizels
starting from the upper left corner of the output window.
The third and fourth parameters, horizontal and vertical
radii, are also expressed in pixels. The horizontal and
vertical pixel count depends upon the resolution selacted.
The ellipse is drawn in the FILL color (parameter 2 of the
COLOR statement.)

The last two parameters, start angle and end angle, are
optional. If they are not specified, PELLIPSE draws a full
ellipse. If they are specified, PELLIPSE draws the part of
an ellipse that lies between them. PELLIPSE draws a solid
colored pie-shaped segment.

Angles are expressed in degrees times 10. You would specify
45 degrees as 450, 180 degrees as 1800 and so on. Zero
degrees is to the right of the window, 90 degrees is towards
the top, 180 degrees to the left, and 270 degrees at the
bottom. COLOCR 1,3,1:PELLIPSE 100,50,50,50,0,3600 draws a
solid green ellipse. .

See: ELLIPSE, CIRCLE, PCIRCLE
Example:

Ok 10 COLOR 1,0,1:CLEARW 2

Ok 20 ELLIPSE 100,80,40,80

Ok 30 COLOR 1,2,1

Ok 40 PELLIPSE 100,80,40,80,300,900

Ok RUN

[Output Window will show black ellipse with 60 degree
red wedge at 30 degrees]

Ok

C-105

POKE POKE 1565,X

Syntax: POKE<location to poke>,<data to poke>
STATEMENT: Writes data to POKE to the memory.
Explanation:

POKE stores a value of the data to POKE in a memory location.
The location to POKE is an absolute address given as a
numeric expression. The data type is defined by the last
previous DEF SEG statement and the manner in which the
location to POKE is specified. :

If DEF SEG > 0, data is a byte regardless of how
location to POKE is specified. The location specified
in POKE will be offset by the value specified in

the last DEF SEG statement.

If DEF SEG = 0, data is 2-byte word if location to
POKE is specified as a FLOAT expression.

If DEF SEG = 0 and address is specified by DEFDBL,
data is a 4-byte long integer. -

If the data expression evaluates 6utside the range 0 to 255,
POKE stores the low-order byte of the result. For example,

Ok 5 DEF SEG=300000
Ok 10 POKE X%,257

has the same effect as

Ok 5 DEF SEG=300000
Ok 10 POKE X%,1

The complement of POKE is PEEK. You can use PEEK and POKE
for passing arguments and data to machine language
subroutines.

See: PEEK, DEF SEG
Example:
Ok 100 FOR LOC$=1 TO LEN(OUT,MSGS)
Ok 120 POKE MSG.LOC%+LOC%,ASC (MIDS$ (OUT, MSGS$,LOCS,))
Ok 130 NEXT LOC$%
Note: While POKEing or PEEKing, the computer is switched into

supervisory mode, where you can access any location in the
memory including protected memory. The system will crash if

C-106

you POKE locations used by the TOS Operating System. Reboot
the system if a crash occurs.

C-107

POS X = POS(0)

Syntax: X = POS(<dummy argument>)

FUNCTION: Returns the current position of the cursor on the
screen or printer.

Explanation:

The leftmost position of the cursor is zero. POS does not
necessarily give the physical position of the print head.

See: LPOS
Example:
Ok 40 X = POS(0)

Ok 50 PRINT "THE PRINT HEAD IS AT COLUMN: *

X
Ok 60 IF WIDTH.LINE <POS(0) THEN WIDTH.CHR X

" -

C-108

PRINT PRINT X,Y
PRINT X;Y
Print AS
?A8

Syntax: PRINT [<expression><, or ;><expression>[<, or ;>]l
STATEMENT: Prints data to the output windcw.

Explanation:

PRINT serds expressions to the output window. You can use

any number of expressions with the PRINT statement, separated
by a comma or semicolon.

The punctuation uced to separate the expressions determines
the position cf the expressions on the screen. ST BASIC
divides a line into print zones consisting of 14 spaces each.
When you use a comma to separate the expressions in the PRINT
statement, ST BASIC prints each expression in the next
available print zone. If you use a semicolon, ST BASIC
prints string expressions consgecutively, with no spaces
separating them. Numeric expressicns are printed together,
with a space for the sign.

If you end a list of expressions with a comma, ST BASIC
spaces to the next print zone, but does not move to a new
line. 1If you end a list with a semicolon, ST BASIC leaves
the cursor at the end of the last expression.

A question mark ? can be used in ST BASIC programs in place
of PRINT. ? A means the same as PRINT A.

Example:

Ok 10 PRINT "TESTING ST BASIC"
Ok 20 PRINT

Ok 30 A$ = "ONE" : BS = "TWO" : C$ = "THREE"
Ok 40 A=23:B=567:C=5

Ok 50 PRINT AS$,BS,CS

Ok 60 PRINT AS$;BS$;C$

Ok 70 PRINT A,B,C

Ok 80 PRINT A;B;C;

Ok 90 END

Ok RUN

TESTING ST BASIC

ONE TWO THREE
ONETWOTHREE

23 567 5

23 567 &5
Ok

C=109

PRINT# PRINT# 1,AS$,X
24

Syntax: PRINT# <file number>,<expression>,<expression
STATEMENT: Outputs data to a disk file.

Explanation:

The PRINT# statement writes expressions to the file specified
by .the file number. The file number is the number you gave
the file when you opened it. Each PRINT# statement creates a
single record. Each expression used in the PRINT# statement
Creates a single field.

You can use any number of expressions with the PRINT#
statement and separate each one with a comma or semicolon.

PRINT# writes the data to the file exactly as it would print
on the screen using the PRINT statement.

You must express exactly how you want the data to appear on
disk by punctuating it properly.

For example:

X$ = "Lewis"
Z§ =" C, S."

and you want to write
Lewis, C.S.

to disk. Since neither variable contains a comma, either
before "Lewis" or after "C.8", the statement

Ok PRINT#1,X$;25§
writes the data to disk as
Lewis C.S.

If you want to insert a comma as a delimiter, you must use
the statement

Ok PRINT#1,X$;",%;z$
with the comma as a literal string in quotation marks.

Example:
Ok 50 PRINT#FIVE.TEX; AS$,BS,CS

C-110

PRINT USING PRINT USING FORMS$;X,Y,Z

PRINT# 1,USING FORMS;X,Y,Z
?USING

Syntax: PRINT USING<string expression>;<list of expression”>;
PRINT#<filenumber>,USING<"string expression">;<list

of expressicns>
STATEMENT: Prints output according to a format.

Explanation:

The PRINT USING statement prints the data on the screen. The
PRINT# USING statement prints the data on a disk file. You
can print strings or numbers with either statement. For the
PRINT# USING statement, the file number is the number you
give the file when you open it.

For both statements, the string expression in quotation marks
is a list of characters that determines the fields and
formats of printed data. The list of expressions contains
the items to print, separated by commas or semicolons. If
the list ends with a semicolon, the cursor is left at the end
of the last expressiocn.

The characters in the format specification are replaced by

the data in the print list, unless they are literal
characters.

The following table summarizes the ST BASIC formatting
characters.

STRING FIELD FORMATTING CHARACTERS
Character Explanation

! Tells the statement to print the first
character of each specified string.

\chars\ chars plus 2 indicates the total number of
characters to print from the specified string.

& Specifies a variable length string field.

NUMERIC FIELD FORMATTING CHARACTERS
Character Explanation

Represents each digit position in a

C=111

numeric field.

. Inserts a zero to fill digit positions as
necessary.
+ Prints the sign of the number, plus or minus,

before the printed number.

= Prints negative numbers with a trailing
minus sign.

*% Fills leading spaces in the numeric field
with asterisks.

$$ Prints a dollar sign to the immediate left
of the printed number.

S5 Fills leading spaces with asterisk and
inserts a dollar sign to the left of the
number.

’ Inserts a comma between every third digit

on the left side of the decimal point.

~

Specifies exponential format.

Prints the next character as a literal
character.

You can include string constants in the format string, as
shown in the following example.

Example:

Ok 10 PRINT USING "THIS IS FILE _###";4
Ok RUN

THIS IS FILE # 4

Ok

C=112

PUT PUT #1,5

Syntax: PUT [#]1<file number),<record number>

STATEMENT: Writes a record from a buffer to a random disk
file.

Explanation:

The file number is the number you gave the file when you
OPENed it. The record number is optional. If included, the
record number must begin at one and proceed in sequential
order. A FOR TO NEXT loop is an ideal way to assign record
numbers in a file. If you do not give a record number, PUT
uses the next record number in sequence after the last GET or
PUT. The largest valid record number is 32767.

You should use LSET or RSET before a PUT to place the data
into the random buffer.

Example:

Ok 100 LSET Q$=Xs$
Ok 120 PUT#2,RCORD%

C-113

QUIT OQUIT

Syntax: QUIT
COMMAND: Leaves ST BASIC and returns to GEM.
Explanation:

QUIT closes all files and returns you to GEM command level.
Any program in memory is lost.

Same as: SYSTEM
Example:

Ok QUIT

C-114

RANDOMIZE RANDOMIZE X

Syntax: RANDOMIZE [<numeric expression>]
STATEMENT: Seeds the random number generator.
Explanation:

You use RANDOMIZE with the RND function to generate random
numbers. If you omit the optional numeric expression, ST
BASIC asks for a random seed number on which to base
RANDOMIZE. :

If you do not use RANDOMIZE with a zero as a parameter at the .
beginning of a program that relies on random numbers, the RND
function returns the same sequence of numbers every time you
run the program.

See: RND function for further information on generating
random numbers.

Example:

Ok 10 RANDOMIZE 0
Ok 20 FOR X =1 TO 10
Ok 30 PRINT RND
Ok 40 NEXT X
Ok RUN

.957395

.427143

.806267

.0206223

.86628

.886706

.435054

.199773

.505868

.801594

Ok

C=115

READ READ A,B,AS

Syntax: READ<variable>,<variable>
STATEMENT: Assigns values from a DATA statement to variables.
Explanation:

The READ statement and DATA statement are always used
together. READ assigns the values listed in DATA to a
corresponding list of variables one by one. The variables
can be numeric or string. They must agree in type with the
constant values in the DATA statement; otherwise, an error
results.

You can use one READ with several DATA statements, or vice
versa. If the number of values in the DATA statement is
greater than the number of variables in the READ statement,
the next READ statement picks up the remaining constants
where the first left off, and assigns them to the variables
in its list. If there are no subsequent READ statements, the
extra data is ignored.

If there are fewer values in the DATA statement than in the
READ statement, the next data statement is found and read.
If there is none, an out-of-data error results.

You can use the RESTORE statement to reread DATA items from
the start of a specified line number.

See: DATA, RESTORE
Example:

Ok 10 READ X,Y,Z
Ok 20 RESTORE
Ok 30 AVERAGE=(X+Y+2Z)/3
Ok 40 DATA 23.4,89.2,77
Ok 50 PRINT AVERAGE
Ok 60 READ X,Y,Z2
Ok 70 PRODUCT=X*Y*Z
Ok 80 PRINT PRODUET
Ok 90 END
Ok RUN
63.2
160720
Ok

C-116

REM REM THIS IS.A REMARK
' THIS IS A REMARK

Syntax: REM <remark>
STATEMENT: Introduces a remark.
Explanaticn:

REM statements help clarify the logic of a program. Remarks
appear in the program listing as written, but they are not
executable. Remarks can be as long as 245 characters. If
you write a remark longer than the width of the screen, you
can extend the line with a line feed.

If you branch into a REM line with a GOT0 or GOSUB statement,

the program continues executing at the first executable line
after the REM.

The single apostrophe character has the same affect as REM.
For example,

Ok 100 'this is a comment
is a valid statement.
Example:

Ok 10 REM THIS PROGRAM FINDS THE SQUARE OF A NUMBER
Ok 20 INPUT "ENTER A NUMBER TO BE SQUARED";X

Ok 30 S=X*Xx

Ok 40 PRINT S

Ok 50 'RETURN FOR ANOTHER NUMBER

Ok 60 GOTO 20

Ok 70 END

RUN

-
.

CG=117

RENUM RENUM 50,10,20

Syntax: RENUM [<new first line>l[,<starting
line>][,<increment>]

STATEMENT: Renumbers program lines.
Explanation:

If your program line numbers are irregular because you have
inserted new lines between existing lines, you can renumber
the entire program without having to change GOTO or other
address-dependent statements. '

Used alone, RENUM numbers the first line of the program 10,
and increments succeeding lines bBEy-10.

You can supply a new first line number. You can also supply
a starting line, which is the current line number where you
want the renumbering to begin.

You can also specify an increment for line numbering. For
example, :

RENUM 10,30,10

begins numbering at the old line 30, assigns it the line
number 10, and sets an increment of 10. The following line
numbers are 20, 30, 40, and so on.

You can also specify an increment for line numbering. For
example,

RENUM 10,30,20

begins numbering at the old line 30, assigns it the line
number 10, and sets an increment of 20. The following line
numbers are 30, 50, 70, and soon.

You can use any of the RENUM options alone. However, if you

specify only an increment, leave commas as place markers to
show you are supplying an incremental value rather than a new
first number or new first line. For example, RENUM ,,20.

RENUM adjusts all line number references in GOTO, GOSUB,
IF...THEN...ELSE, ON...GOTO, and ON...GOSUB statements to
reflect the new line numbers. If you have a nonexistent line
in one of these statements, it remains unchanged.

You cannot use RENUM to change the order of program lines.

RENUM creates a file called BASIC.WRK on the current disk.

c-118

Note: The disk must not be write protected.
Example:

Ok 15 X=5
Ok 20 z=3
Ok 25 ¥Y=10
Ok 30 PRINT X+Y¥-2
Ok RENUM
LIST
10 X=5
20 2=3
30 ¥=10
40 PRINT X+Y¥Y-2
ok

€=119

REPLACE REPLACE MYPROG.BAS
REPLACE MYPROG.BAS, 100-800

Syntax: REPLACE ([<filename>][,<line number list>]}

STATEMENT : Replaces an old version of a file with a new
version.

Explanation:

You use REPLACE with OLD or LOAD. After you have loaded an
old file and revised it, REPLACE sends the revised version
onto disk, replacing the old version.

If you specify a filename, REPLACE saves the source program
in <filename>, rather than the current program name. You can
save parts of a program by specifying a line number list.

REPLACE works exactly like SAVE, except that with REPLACE,
the name of the file you want to save can already belong to
another file. The example brings program COUNTPROG into
working storage, adds or replaces line 130, and stores the
revised program in permanent storage on disk.

Example:

Ok OLD COUNTPROG

Ok 130 IF X = 10 THEN END
Ok REPLACE

Ok

C~-120

S’

RESET RESET

Syntax: RESET

STATEMENT: RESET places the contents of the output window
into the graphics buffer.

Explanation: When Buffered Graphics is enabled, RESET
duplicates the current contents of the OUTPUT window in the
graphics buffer. This allows a graphics image to be stored
onto disk, or restored to the output window after subsequent
graphics operations. The OPENW statement restores the
contents of the graphics buffer to the OUTPUT window.

Example:
10 COLOR 1,1,1,1,1:FULLW 2
20 CIRCLE 100,100,50
30 RESET: ' PUTS IMAGE INTO BUFFER
40 CLEARW 2
50 PCIRCLE 100,100,50
60 FOR I=1 TO 1000:NEXT
70 OPENW 2
80 END

=121

RESTORE RESTORE 200

Syntax: RESTORE <line descriptor>
STATEMENT: Rereads DATA statements.
Explanation:

RESTORE lets you specify which DATA statement to use with
READ statements. RESTORE finds the first item in the first
DATA statement at or after the specified line and establishes
it as the starting point for the next READ statement.

You can specify any DATA statement in a program as the object
of a RESTORE statement by giving its line number. The line
descriptor you give with RESTORE does not have to refer tc
DATA statement, or even exist. The next READ statement finds
the next DATA statement after or equal to the line descriptor
specified.

Example:

Ok 10 READ X,Y,Z
Ok 20 RESTORE
Ok 30 AVERAGE = (X + Y + 2)/3
Ok 40 DATA 23.4, 89.2, 77
Ok 50 PRINT AVERAGE
Ok 60 READ X,Y,Z
Ok 70 PRODUCT = X * Y * g
Ok 80 PRINT PRODUCT
Ok 90 END
Ok RUN
63.2
160720
Ck

C-122

RESUME RESUME (0)
RESUME NEXT
RESUME 200

Syntax: RESUME (0)
RESUME NEXT
RESUME <line descriptor>

STATEMENT: Continues execution after an error.
Explanation:

After an error has been detected and trapped, RESUME restcres
the program to normal execution. You write a RESUME _
statement at the end of an error trapping routine, and only
there. A RESUME statement executed anywhere except in an
active error trap causes an untrappable error.

RESUME used by itself or followed by a zero sends program
control back to the statement where the error occurred.

- RESUME NEXT sendés program control to the statement following
the one that caused the error.

RESUME <line descriptor> sends program control to a given
line number.

Example:

Ok 100 ON ERROR GOTO 700

-

Ok 700 IF (ERR = 300) AND (ERR = 150) THEN PRINT
“MINIMUM NUMBER OF DEPENDENTS IS 1": RESUME 140

C=123

RETURN RETURN

Syntax: RETURN

STATEMENT: Transfers control from a subroutine to the
statement following the last GOSUB.

Explanation:

RETURN transfers execution of a program to the first
executable statement in the main program following a
subroutine call. The subroutine call can be a GOSUB or
ON...GOSUB statement.

Example:

Ok 10 GOSUB ALPHA
Ok 20 REM RETURN POINT OF SUBROUTINE
Ok 30 PRINT A
Ok 40 GOTO 200
Ok 100 ALPHA: REM START OF SUBROUTINE
Ok 110 A=5%6
Ok 120 RETURN
Ok 200 END
Ok RUN
30
Ok

C-124

RIGHTS Xs§

RIGHTS (A$,5)

Syntax: X§ RIGHTS (<target string>, <number of characters>)

FUNCTION: Returns the rightmost characters of a string.

Explanation:

RIGHT$ assigns the number of characters you specify on the
right of a target string to a new string variable. .If the
number of characters you ask for is greater than or equal to
the length of the string, the entire string returns. If you
ask for zero characters, a null string retusns.

Example 1:
Ok 10 A$ = "Marketing Strategies"
Ok 20 B$ = "Regional Response"
Ok 30 C$ = "Test Results”
Ok 40 INPUT "CATALOG NUMBER"; CATALOGS
Ok 50 IF RIGHTS (CATALOGS,l) = "1" THEN PRINT "YOU HAVE
CHOSEN"

Ok 60 PRINT "TESTPRC CATALOG SERIES1"

Ok 70 PRINT "PLEASE CHOOSE FROM THE FOLLOWING
HEADINGS: "

Ok 80 PRINT AS

Ok 90 PRINT BS$

Ok 100 PRINT C$

Ok RUN

CATALOG NUMBER? CASPAR BLEEBLEBOX CATALOG 201
YOU HAVE CHOSEN

TESTPRO CATALOG SERIESI1.

PLEASE CBOOSE FROM THE FOLLOWING HEALINGS:
Marketing Strategies

Regional Response

Test Results

Ok

Example 2:

10 As “ST BASIC"
20 BS RIGHTS (A$,5)
30 PRINT BS

RUN

BASIC

Ok

C-125

RND X = RND
X = RND(Y)
X = RND(0)
X = RND(-Y)

Syntax: X = RNDI (<numeric expression>)]
FUNCTION: Generates and returns a random number.
Explanation:

RND returns a uniformly distributed random number in the open
interval between zero and 1. Unless you write a RANDOMIZE
statement before the RND statement, the same sequence of
random numbers generates on every run.

RND acts differently depending upon whether the numeric
expression evaluates to a positive number, negative number,
or zero:

RND (<positive expression>) returns the next number in the
current sequence.

RND (0) returns the last random number generated, without
affecting the current sequence.

RND (<negative expression>) reseeds the random number
generator with the negative number and returns the first
random number in the new sequence.

The numeric expression is optional. 1If you do not give one,
RND acts as if you had given a positive expression as an
argument. :

Note: See RANDOMIZE for information about seed number.
'Example:

Ok 10 RANDOMIZE

Ok 20 X = RND

Ok 30 ROLLS$ = “TAILS"

Ok 40 IF X > .5 THEN ROLLS$ = “HEADS"

Ok 50 INPUT "HEADS OR TAILS",P$

Ok 60 IF R$ = ROLLS$ THEN PRINT "YOU WIN" ELSE PRINT
"YOU LOSE"

Ok RUN

Random number seed (-32768 to +32767)? 2
HEADS COR TAILS? TAILS

YOU WIN

OK

C-126

N J:

RSET RSET A$=BS$

Syntax: RSET<string variab1e>¥<string expression>

STATEMENT: Moves a string ihto a specified string variable
without reassigning the string variable.

Explanation:

RSET is commonly used to move data to file buffers by

resetting them into variables dropped intc file buffers by a
previoug FIELD statement.

If the string being moved is shorter than the destination,
RSET right justifies the string and pads the left with
spaces. If the string is longer than the destination, RSET
ignozes the extra chkaracters.

You must RSET or LSET numbers before you can use them with
MKS$, MKIS, or MKDS.

Example:
Ok 10 OPEN "R",#3,“TEST"
Ok 20 FIELD #3,20 AS A$,20 AS BS

Ok 30 RSET A$=X$
Ok 40 RSET B$=STRESS$

€=127

RUN RUN
RUN ,200
RUN MYPROG.BAS

Syntax: RUN
RUN <,line descriptor>
RUN <filename>

COMMAND: Begins program execution.
Explanation:

RUN executes a program currently in memory or in a disk file.
Program execution begins with the first line of the program
unless you specify otherwise. When the program to be RUN is
in a disk file, RUN clears any current program from memory
before loading the specified program.

Program output appears in the output window.

To stop program execution and enter the BREAK mode, type
[Control]l [G] or click the Break option in the RUN menu.

To continue program execution, type CONT or press [Returnl.
To exit the BREAK mode and discontinue program execution,

type STOP or END. To discontinue program execution and
return to ST BASIC, type [(Controll I[C].

C-128

SAVE SAVE MYFILE
SAVE MYFILE, 20-30
SAVE MYFILE, 10, 30, 70, 80
SAVE MYFILE, -30

Syntax: SAVE [<filename>], [<line descriptor list>]
COMMAND: Saves program lines to disk.

Explanation:

SAVE puts a program, or specified lines from it, into a disk
file. SAVE assumes file type .BAS unless you specify
otherwise. 1If you attempt to SAVE a program using a name
already on the disk, an error occurs. SAVE will not replace
a disk file with a current program.

Use REPLACE to save a program into an existing disk file.

Cc-129

SGN X = SGN(Y)

Syntax: X = SGN(<numeric expression>)”

FUNCTION: Returns the sign of a number.

Explanation:

SGN returns 1 if the numeric expression is positive; -1 if

the expression is negative; and 0 if the expression evaluates
to zero. ;

Example:
Ok 10 X = SGN(-3)
Ok 20 Y = SGN(0)
Ok 30 z = SGN(2)

Ok 40 PRINT X
Ok 50 PRINT Y
Ok 60 PRINT Z
Ok RUN
-1

0
-
Ok

C-130

SIN X = SIN(Y)

Syntax: X = SIN(<numeric expression>)

FUNCTION: Returns the sine of its argument expressed in
radians.

Explanation:

The SIN function assumes the expression is an angle in

radians. To convert degrees to radians, multiply by pi/180,
where pi = 3.141593. SIN converts integers to real numbers
and returns a real number.

Example:
Ok 10 PRINT SIN(23)
Ok RUN

~-.84622
Ok

C=131

SOUND SOUND VOICE, VOLUME, NOTE, OCTAVE, DURATION

Syntax: SOUND <numeric expression>, <numeric expression>,
<numeric expression>, <numeric expressiond>, <numeric
expression>,

STATEMENT: SOUND controls the 3 sound channels.
Explanation:

SOUND makes musical notes.

VOICE is the number of the sound channel used (1-3).
VOLUME controls loudness (0 = OFF, 15 is loudest).

NOTE and OCTAVE control the pitch of a note. You select an
octave number from 1 to 8 and a note number from 1 to 12.
The note numbers correspond to the note positions in a
musical scale. A 440 Hz A is note 10 in octave 4.

DURATION is the time in 1/50 second counts that a note will
be held before the beginning of the next sound. The last
sound statement for each voice should turn off the

sound (e.g., SOUND 3,0,0,0,0). You can use the SOUND
statement as a timing function by setting volume to 0 and the
duration to the delay you want.

Example:
10 SOUND 1,8,12,4,25

20 SouwD 1,8,9,4,25
30 sounp 1,0,0,0,0,

C-132

SPACES X§

SPACES® (Y)

!

Syntax: X$ SPACES (<numeric expression>}

FONCTION: Returns a string of spaces.

Explanation:

SPACES returns as many spaces as you specify in the numeric

expression. The value of the expression must be from 0 to
25845

Note: If you want to generate a number of spaces purely for
printing, it is more efficient to use the SPC (X) function.

Example:

Ok 10 X -= 10

Ok 20 FOR V =1 TO 5

Ok 30 PRINT SPACES(X); ®|v
Ck 40 NEXT V

Ok 50 FOR Z2 = 1 TO 21

Ok 60 PRINT "-";

Ok 70 NEXT %

Ok RUN

—— - ——————————— —— S -

C=133

SPC PRINT SPC(X)

Syntax: PRINT SPC(<numeric expression>)
FUNCTION: Outputs spaces to a PRINT statement.
Explanation:

SPC prints the number of spaces you specify in the numeric
expression. The expression must evaluate to the range -32768
to. +32767 .

If the number of spaces you specify is greater than the
declared width of the printer, the value used is the numeric
expression MOD width.

For example, if the width is 72 and the numeric expression
equals 100, SPC will insert 28 spaces.

If the numeric expression is greater than 255, the number of
spaces inserted is the numeric expression mod 255.

Note: Use SPC only with PRINT, LPRINT, and PRINT#.
Example:

Ok 10 PRINT “ALPHABET"

Ok 20 PRINT

Ok 30 PRINT “"A"SPC(3)"a"sSPC(7)
"B"SPC(3)"b"SPC(7)"C"SPC(3)"c"
Ok RUN

ALPHABET

A a B b €--¢

C-134

SQR X = SQR(Y)

Syntax: X = SQR(numeric expression)
FUNCTION: Returns the square root of a number
Explanation:
The number must not be negative. SQR returns a real number.
Example:
Ok 10 PRINT SQR(9)
Ok RUN '

3
Ok

€=135

STEP STEP
STEP, 200
STEP MYPROG.BAS

Syntax: STEP
STEP <,line descriptor>
STEP <filename>

COMMAND: Executes a program line by line.
Explanation:

STEP runs a program one line at a time, printing each line
along with any output and waiting for a [Return] before
proceeding to the next line.

To exit from STEP, use the CONT command to begin normal
execution, or the END command to stop altogether.

Example:

Ok 10 X = 9

Ok 20 PRINT X

Ok 30 PRINT “HOW DO YOU DO?"
Ok 40 END

Ok STEP, 10

S 10 X=9

BR [Return]

S 20 PRINT X

BR [Return]

S 30 PRINT "HOW DO YOU DO?*
BR [Return]l

HOW DO YOU DO?

S 40 END . —
BR [Return]

OK

€E-136

ST10P BTOP

Syntax: STOP

STATEMENT: Stops program execution, and transfers the control
of BASIC to the Command Window.

Explanation:

After a STOP, the program is at BREAK level. You can stop a
program anywhere. Unlike END, STOP leaves files open, enters

BREAK mode, and can be continued. It also prints the message
"STOP*.

CONT or [Return] resumes program execution.

Example:

Ok 10 A=4:B=6:C=8
Ck 20 PRINT A,A*B
Ok 30 STOP
Ok 40 PRINT C*A
Ok 50 END
Ok RUN

4 24
Stop at line 30
Br CONT

32
Ok

€C~137

STR$ X§ = STRS (Y)

Syntax: X$ = STRS$ (<numeric expression>)

FUNCTION: Returns a string containing the decimal character
representation of its argument.

Explanation:

The string returned contains the standard representation of
the expression. "It contains the characters that would print
if a PRINT statement were executed.

For positive numbers, STRS adds a leading blank for the pPlus
sign, and STRS deletes any space that follows a number.

VAL is the complementary function to STRS.
See: OCTS$, HEXS
Example:

Ok 10 ZIPCODE = 91899
‘Ok 20 PRINT STR$(ZIPCODE) + " (CALIFORNIA)"
Ok RUN
91899 (CALIFORNIA)
Ok

C-138

STRINGS X$ = STRINGS(Y,AS)
X$ = STRINGS(Y,N)

Syntax: X§ = STRINGS (<numeric expression>, <numeric or string
expression>)

FUNCTION: Returns a string of a given length. The characters
are defined by the second argument.

Explanation:

The first numeric expression is the length of the string that
STRINGS returns. It must be in the range 0 to 255, :

You can use a numeric or string expression for the second
parameter. A numeric expression must be an ASC1I code for a
character. A string character can be of any kind.

STRINGS returns a string of the specified length consisting
of the character for the specified ASCII code or the first
character of the string expression.

STRINGS produces less memory fragmentation and works
significantly faster than concatenation. When building a
string containing a number of different characters, it is :
more efficient to use STRINGS or SPACES to create a string of
the required length and then use MIDS to move individual
characters into the string than to concatenate strings.

Example:

Ok 10 2§ = STRINGS(20,"*")
Ok 20 PRINT 2Z$
Ok RUN

KAKAKXKXRT R AT A XA AT Ak k%

Ok

C~139

SWAP SWAP X, Y

Syntax: SWAP <first variable>,<second variable>

STATEMENT: Trades the values of two variables.

Explanation:

You can swap any type of variable, but the variables must be
of the same type. You can swap array variables, but not

arrays themselves:

SWAP A%(3) ,B%(7,5) is okay

SWAP A%(),B%() doesn't work
Example:

Ok 10 X$ = "TOM BRENTMEYER"

Ok 20 Y$ = "SUSAN STEIGER"

Ok 30 08 = “FORMER"

Ok 40 C$ = "CURRENT"

Ok 50 M$ = " MARKETING MANAGER: *

Ok 60 PRINT OS$;MS$;XS

Ok 70 SWAP Xs$,Ys

Ok B0 SwWAP 0§,CS

Ok 90 PRINT OS;M$;X$

Ok RUN

FORMER MARKETING MANAGER: TOM BRENTMEYER
CURRENT MARKETING MANAGER: SUSAN STEIGER
Ok

C-140

]

SYSTAB X PEEK (SYSTAB+OFFSET)

Syntax: X PEEK (SYSTAB+OFFSET)

VARIABLE: System pointer table.
Explanation:

SYSTAB is the beginning memory location of a table of system
parameters and pouinters. With the exception of SYSTAB+2,
which is a READ/WRITE location, SYSTAB is a READ/ONLY
location.

Except for SYSTAB+20, the graphics buffer pointer, SYSTAB
contains 2-byte wvalues. SYSTAB+20 contains a 4-byte long
integer address.

The graphics buffer is 32768 bytes long. SYSTAB is organized
as follows:

Offset Function
0 Graphics Resolution (Planes) 1 = HI,
2 = MED, 4 = LO :
- Editcr Ghost Line Style.
(See Table Below.)
*4 EDIT AES Handle

*H LIST AES Handle
*8 OUTPUT AES Handle
*10 COMMAND AES Handle
12 EDIT Open Flag (0 = CLOSED, 1 = OPEN)
14 LIST Open Flag (0 = CLOSED, 1 = OPEN)
16 OUTPUT Open Flag (0 = CLOSED, 1 = OPEN)
18 COMMAND Open Flag (0 = CLOSED, 1 = OPEN)
20 Graphics Buffer (4 byte pointer to 32768
byte buffer when BUFFERED GRAPHICS
enabled)
*%24 GEMFLAG (0 = NORMAL, 1 = OFF)

BIT DESCRIPTION

Thickened
Intensity
Skewed
Underlined
Outline
Shadow

VhkWPOH O

C-141

* Use of these handles requires knowledge of the TOS
Operating System.

** GEMFLAG can be used to turn ST BASIC's interaction with
GEM off to increase processing speed. When BASIC is off, no
BASIC functions involving the screen, mouse, or keyboard will
work. Disk I/O and processing functions are available. Your
program must turn the interaction on again before it can take
any form of user input.

C-142

SYSTEM SYSTEM

Syntax: SYSTEM
COMMAND: Leaves ST BASIC and returns to GEM.
Explanation:

SYSTEM closes all files and returns you to GEM command level.
Any program in memory is lost.

Same as: QUIT
Example:

Ok SYSTEM

C-143

TAB PRINT TAB(Y)

Syntax: PRINT TAB(<tab position})

FUNCTION: Moves the cursor to a specified tab position.
Explanation:

TAB is used with PRINT, LPRINT, and PRINT#.

The tab position must evaluate to the range -32768 to +32767.
If the current print position is already beyond the tab
position you specify, TAB goes to the next line and stops at
the tab position you specify. The leftmost position is space
1; the rightmost is defined by a WIDTH statement. If the
pPosition evaluates to greater than 255, the position is
computed Meod 256. If the position is greater than or equal
to the width, it is computed Mod (width) .

Example:

Ok 10 PRINT "1985 QUARTERLY EARNINGS"
Ok 20 PRINT

Ok 30 PRINT TAB (10)"WINTER"

Ok 40 PRINT TAB (70)"TOO FAR"

Ok 50 PRINT TAB (100)*SUMMER"

Ok 60 END

Ok RUN

1985 QUARTERLY EARNINGS
WINTER

TOO FAR

SUMMER

C-144

TAN X = TAN(Y)

Syntax: X = TAN(<angle in radians>)
FUNCTION: Returns the tangent of a number.

All ST BASIC trigonometric functions require that you specify
angles in radians.

Explanation:

The TAN function operates on radian values and returns a real

number. To convert degrees to radians, multiply them by
pi/ 180, where pi = 3.141593.

Example:

Ok 10 RADIAN! = 34

Ok 20 TANGENT! = TAN(RADIAN!)
Ok 30 PRINT TANGENT!

RUN

~386235

Ok

C-145

TRACE TRACE
TRACE 20,40
TRACE 20-40
TRACE -40

Syntax: TRACE [<line descriptor list>]

COMMAND: Follows program execution line by line and
selectively prints the entire line.

Explanation:

You can use the TRACE command during debugging to print
program lines as they run.

TRACE prints each line before executing it.
TRACE 20, 40 prints lines 20 and 40 each time they execute.

TRACE 20-40 prints lines 20 through 40 each time they
execute.

UNTRACE cancels TRACE.
See: TRON, FOLLOW
Example:

Ok 10 FOR X
Ok 20 N = N
Ok 30 B =B
Ok 40 PRINT
Ok 50 PRINT
Ok 60 NEXT X
Ok RUN
: 4
1l
2
2
Ok TRACE
Ok RUN
T 10 FOR X =
T 20 N= N +
T30 B=B+
N
B

]
et

=+ 4+

(W

T 40 PRINT

1
T 50 PRINT

1
T 60 NEXT X

T 20 N= N + 1

C-146

T 30 B=PB + 1
T 40 PRINT N

2
T 50 PRINT B

2

T 60 NEXT X
Ok UNTRACE

Ok

C-147

TROFF TROFF
TROFF 10, 40
TROFF 10-40
TROFF =40

Syntax: TROFF [<line descriptor list>]}

COMMAND: Cancels the TRON command.

Explanation:

TROFF cancels TRON either completely or for selected lines.

See: TRON

C-148

TRON TRON
TRON 20,40
TRON 20-40
TRON -40

Syntax: TRON [<line descriptor list>]

COMMAND: Selectively traces program execution line by line
and prints the line numbers.

Explanation:

Use TRON during debugging to follow the course of the program
line by line.

TRON prints each line number of the program as it executes
and traces the values of variables. The line descriptor
appears in square brackets.

TROFF cancels TROCN.
See: TRACE, FOLLOW
Example:

Ok 10 FOR X

Ok 20 N = N

Ok 30 B =B

Ok 40 PRINT

Ok 50 PRINT

Ok 60 NEXT X
Ok RUN

b

Ww=Z+ + i

WWoNn -

. Ok TRON
Ok RUN
[10]
[20]
[30]
[40] 1 (Appears in Output Window)
[50] 1 (Appears in Output Window)
[60]
[20]
[30]
[40] 2 (Appears in Output Window)
[50] 2 (Appears in Output Window)
[60]
[20]

C-149

[30]

[40] 3 (Appears in Output Window)

[50] 3 (Appears in Output Window)
[60]

Ok TROFF
Ok

C=150

UNBREAK UNBREAK
UNBREAK 20, 50
UNBREAK -50
UNBREAK 20-50

Syntax: UNBREAK [<line, descriptor list>]
COMMAND: Selectively cancels a BREAK command.

Explanation:

‘UNBREAK cancels BREAK either completely or for selected
lines.

See: BREAK

€=151

UNFOLLOW UNFOLLOW
UNFOLLOW X, Y

Syntax: UNFOLLOW [<variable>],[<variable>)
COMMAND :

Explanation:

UNFOLLOW cancels FOLLOW either completely or for selected
variables.

See: FOLLOW

C-152

UNTRACE UNTRACE
UNTRACE 10, 40, 70
UNTRACE 10-40
UNTRACE -40

Syntax: UNTRACE [<line descriptor list>]
COMMAND: Cancels the TRACE command.
Explanation:

UNTRACE cancels TRACE either completely or for selected
lines.

See: TRACE

C-153

VAL X = VAL(AS)

Syntax: X = VAL(<digit string expression>)

FUNCTION: Scans a string of characters and converts them to a
real number.

Explanation:

VAL scans the string from left to right, skipping leading
tabs, spaces, and line feeds, until it reaches the end of the
string or finds a character that is not a digit. VAL scans
strings in the same way that the INPUT# statement reads into
@ numeric variable.

If the first character of the string is not a valid part ot a
number, VAL returns a zero.

VAL is the complement tq STRS.

Example:
Ok 10 READ IDS
Ok 20 IF VAL(IDS$) < 300 THEN 390
Ok 30 EXPIRATIONS = "JAN X: 2985 .
Ok 40 IF VAL(IDS) > 300 THEN 50 -
Ok 50 EXPIRATIONS = “"JAN 1, 1990"

C-154

VARPTR X = VARPTR(Y)
X = VARPTR (#1)
Syntax: X = VARPTR(<variable>)
X = VARPTR (#<file number>)

FUNCTION: Returns the address of a variable.

Explanation:

You can use VARPTR to find the address of a variable sc that
you can pass it to an assembly language subroutine. The
variable can be of any type, including array, but "'you must
have assigned it a value before you can find its address with
VARPTR. VARPTR returns a value which is the absolute address
of the first byte of the named variable.

In the case of files, the file number is the number you

assigned a disk file when you opened it. VARPTR returns the
starting address of the file's input/output buffer.

Example:

Ok 50 X = VARPTR (MATERIALS)

6+-155

VDISYS VDISYS(1)

Syntax: VDISYS(<Dummy Argument>)

FUNCTION: Allows user to access the operating system's VDI
interface.

Explanation:

To access the VDI interface, POKE the CONTRL, INTIN, and
PTSIN arrays with the proper values before making the VDISYS
call. Output from the VDI level can be accessed through the
INTOUT and PTSOUT arrays.

Example:

10 REM DRAW A CIRCLE AT 50,50 WITH RADIUS 25
30 POKE CONTRL,11

40 POKE CONTRL+2,3

50 POKE CONTRL+6,0

60 POKE CONTRL+10,4

70 POKE PTSIN,50

80 POKE PTSIN+2,50

90 POKE PTSIN+8,25

100 VDISYS(1)

C-156

WAIT WAIT 200,X,Y

Syntax: WAIT <port number>,<integer expression>[,<integer
expression>] -

STATEMENT: Halts the program while waiting for an I/0 port to
develop a bit pattern.

Explanation:

WAIT stops program execution until a given bit pattern
develops in a machine input port. The logical operator XOR
tests the data from the port to determine whéther it
correspendes to the optional second integer expression. If
you omit the optional ‘expression, it is assumed zZero,

The AND cperator then tests the data against the first
integer expression. If the result of the text is zero,
execution loops back and grabs the next data at the port.

When the result is ron-zero, execution goes on to the next
statement.

If WAIT doces not finds a bit pattern that results in zero, it
loops infinitely, and you must reboot the machine.

Example:

Ok 100 WAIT 5, &H2, &H3
Ok 110 PRINT “NUMBER FOUND"

C=157

WAVE WAVE ENABLE, ENVELOPE, SHAPE, PERIOD, DELAY

Syntax: WAVE <numerical expression>, <numerical expression>,
<numerical expression>, <numerical expression>, <numerical
expression>,

STATEMENT: WAVE controls the waveforms used in SOUND
statements.

Explanation;

ENABLE is the mixer register of the sound generator. A 0 on
bits 0-2 enable voice 1-3. A 0 on bits 3-5 places the noise
on voice 1-3. More than one voice can be selected at once.

ENVELOPE is the envelope generator register. A 1 on bits 0-2
enables the envelope for voice 1-3. More than one can be
enabled.

SHAPE is the envelope shape and cycle control register. Bits
0-3 are used as shown in the chart below.

PERIOD sets the period of the envelope.

DELAY sets the time in 1/50 second increments before BASIC
resumes execution.

€158

WEND WEND

Syntax: WEND

STATEMENT: Signals the end of a WHILE/WEND loop.

Explanation:

WEND is used solely with WHILE to direct program flow back to

the WHILE statement. A nested WEND associates with the
nearest WHILE.

See: WHILE
Example:
Ok 10 X=8

Ok 20 WHILE X
Ok 30 PRINT "s*;
Ok 40 X=X-1

Ok 50 WEND

Ok 60 END

Ok RUN

$8955888

Ok

C=159

WHILE WHILE A<B

Syntax: WHILE <logical expression>

STATEMENT: States a condition that controls a WHILE/WEND
loop.

Explanation:

WHILE initiates a WHILE/WEND loop that continues running
until the logical expression is false (i.e., 0). The
statements between WHILE and WEND execute while the
conditional expression in the WHILE statement is true.

The WEND statement at the end of the loop sends program flow
back to the WHILE condition. The condition at the WHILE loop
is evaluated and the loop repeats while the condition is true
(not zero). When the condition is false, execution continues
at the statement following WEND.

You can nest WHILE/WEND loops. Each WEND matches the most
recent WHILE. A WHILE without a WEND or a WEND without a
WHILE causes an error.

See: WEND
Example:

Ok 10 M=10

Ok 20 P=5

Ok 30 WHILE M>P
Ok 40 PRINT "COUNT LOOP"
Ok 50 M=M-1

Ok 60 WEND

Ok 70 END

Ok RUN

COUNT LOOP
COUNT LOOP
COUNT LOOP
COUNT LOOP
COUNT LOOP

Ok

C-160

WIDTH WIDTH 72
WIDTH LPRINT 72

Syntax: WIDTH [LPRINT] <integer expression>

STATEMENT: Sets the line width of the screen or printer.

Explanation:

The default width of the screen and printer is 72 characters.
You can change it with WIDTH.

The integer expression is the line width in characters; it
must be in the range 14 to 255. The LPRINT option sets the
line width for the printer. Otherwise, the line width is set
for the screen.

When printing, BASIC prints a carriage return before any
character that would otherwise print past the line width
limit. To prevent unwanted carriage returns in your output,
set the line width to 255. ST BASIC then assumes the device
has infinite width and does not insert carriage returns.

See: P0OS, LPOS
Exanrple:

Ok 10 WIDTH 33

Ok 20 FOR I=1 TO 50
Ok 30 PRINT "-";

Ok 40 NEXT

Ok RUN

D D S S e S S W T S) S S W W — " T —— . T — ———

C=161

WRITE WRITE X,Y,AS

Syntax: WRITE [<expression>],<expression>

STATEMENT: Outputs data to the terminal.

Explanaticn:

Like PRINT, WRITE sends output to the screen, but WRITE
Prints commas between the items and quotation marks around

strings.

Each item is separated from the next on the terminal with a

comma.

String values print with quotation marks, and after the last
item, the cursor spaces down to the start of the next line.

WRITE sends a blank line to the terminal if you do not

specify

a list of expressions to output.

See: PRINT, PRINT#

Example

Ok
Ok
Ok
Ok
Ok
Ok

1l:

100 X$="HAPPY MOTORING"
110 Z=010583

120 WRITE 2

130 WRITE

140 WRITE X$

RUN

10583

“HAPPY MOTORING"

Ok

C-162

WRITE¥# WRITE #1,X,Y,AS$

Syntax: WRITE# [<expression>] ,<expression>

STATEMENT: Outputs data to a sequential file.

Explanation: WRITE# is similar to WRITE but sends the data to

a sequential file, not the terminal. The file number is the

number you opened the file with. You must have opened the
file in O mode.

WRITE# is preferable to PRINT# when you plan to read the data

back with a series of INPUT# statements. The output from

WRITE# is in the form required to read back the data
accurately.

The rules for forming the expression are the same as those
for PRINT#.

See: PRINT, PRINT#
Example: '
Ok 10 KWH=34.275 :
Ok 20 K$="AVERAGE KILOWATT HOURS PER WEEK*
OK 30 WRITE #2,K$,KWH
This writes to disk as:
"AVERAGE KILOWATT HOURS PER WEEK",34.275
Close the file, reopen for input, then read the file:

Ok 40 INPUT#2,KS$,KWH

"AVERAGE KILOWATT HOURS PER WEEK" to K$ and 34.275 to BS

c=163

APPENDIX D
ERROR MESSAGES

Number Message
2 Something is wrong.
3 RETURN statement needs matching GOSUB.
4 READ statement ran out of data.
5 Function call not allowed.
6 Number too large.
7 Not enough memory.
8 A statement or a command refers to a
nonexistent line.
9 Subscript refers to element outside the array.
10 You defined an array more than once.
11 You cannot divide by zero.
12 Statement is illegal in direct mode.
13 Types of values do not match.
14 Undefined error.
15 Strings cannot be over 255 characters long.
16 Expression is too long or too complex.
17 CONT works only in BREAK mode.
18 Function needs prior definition with DEF FN.
19 Undefined error.
20 RESUME statement found before error zoutlne entered.
21 Not used.
22 Expression has operator with no following operand.
23 Program line too long.
24-29 Not used.
30 Window number 1nva11d
31 Argument out of range.
32 Command cannot be executed from the editor.
33 Line is too complex.
34-49 Not used.
50 FIELD statement caused overflow.
51 Device number invalid.
52 | File number or filename invalid.
53 File not found on disk drive specified.
54 File mode is not valid.
55 You cannot OPEN or KILL a file already open.
56 Undefined error.
57 Disk input/output error.
58 File exists.

59-60 Not used.
61 Disk is full.

62 You have reached end~of-file.

63 The record number in PUT or GET is more than
32767 or zero.

64 Invalid filename.

65 Invalid character <character> in prograa file.

66
67-98

99

100
101
102
103
104
105
106
107
108

109
R0
iR S
112«201
202
203
204

205

206
207
208
208
210
221
212
213
214
215-220
221
222
223

Program file has statement with no line number.
Not used.

~-Break--.

Undefined error.

Program has too many lines.

ON statement is out of range.

Invalid line number.

A variable is required.

Undefined error.

Line number does not exist.

Number too large for an integer.

Input data is not valid, restart input from
first item.

Stop.

You have nested subroutine calls too deep.
Invalid BLOAD file.

Not used.

Command not allowed here.

Line number is required.

FOR statement needs a NEXT or WHILE statement
needs a WEND.

NEXT statement needs a FOR or WEND statement
needs a WHILE.

A comma is expected.

A parenthesis is expected.

Option Base must be 0 or 1.

Statement end is expected.

Tco many arguments in your list.

Not used.

Cannot redefine variable(s).

Function defined more than once.

You are trying to jump into a loop.

Not used.

System error #X, please restart.

Program not run.

Too many FOR loops.

D=2

APPENDIX E
ST ASCII CHARACTER SET

The following tables show the complete character sets
available on the ST Computer. To print any of these
characters from ST BASIC, input and run the following

program:
5 ' THIS PROGRAM PRINTS A LIST OF ALL ST ASCII
CHARACTERS .
6 ' AND THEIR CODES.

10 FULLW 2:CLEARW 2
20 GOTOXY 1,2:?2"LIST OF ST ASCII CHARACTERS" :GOTOXY 0,4
30 P=0:1=0
40 FOR C=1 TO 255
50 IF P>4 THEN P=0:1=1+1:7?
60 IF 1=1C THEN GOTOXY 1,14: INPUT "pRESS [Return] TO
CONTINUE..." ,AS
70 IF 1=10 THEN 1=0:GOTOXY 0,4
80 IF C=10 THEN ? *“10=[Returnl”;:GOTO 120
90 IF C=7 THEN ? “7=[Belll™;:GOTO 120
100 If C=251 THEN GOTOXY 0,14
110 2 C;%= "-CHRS(C):" *;
120 P=P+1 :
130 NEXT C

140 GOTOXY 1,16: INFUT “PRESS [Return] TO EXIT..." A%
150 END

There are two character tables. The first is set up for 8x16
characters; the second for 16x16 characters. The different
character set sizes are used with different screen

resolutions.
: < 16|32|48/64|80|96 112)128|144|160 176|192|208|224|240
1|2 6/7|8/9|A | Blc|D|E|F
oo ERCE =
110 EmiEros “
2|2 i EiE e B
3|3 S 28 ﬁ ,,,,,, :
4|4 ks eyl on
~ o o ﬁ# : = ;

E-1

T ¥ TTT E9E0 INENDSUA EURRENSE NEANE] 288 TIT HH
EEE T L Il » 1t D 85 a4
L4 #lr -1 L 1
RS HH H s S - __ s 1 8
H 3 H HHH 4 1 LH
[l I 11T J: d ® 288 2 1T '8 A H e I EEEEBNENOE A
1 T T X Tt sa H 1 It o) .J ! E.:u IUBENEREEIRANEE
T (] - - HEEH +- H HHH 1 H H
H I g s sEsa < 1 1 588 1 ¥ H H
= 4 41]
H . B N 11 HH H
H o ensn 9— t H B
H m s BEEE 1 1T 1
T B HH @ nal
H . : HH H HH © 2
I 5| +H4 1] L
H HE 11 T H HH
H TR] BB HES 11 5 IBEBERES I EEEEEEEE
T a 0 BB BERAI T e TTN] REE § 8 IR EEEB| [TH
" » 8 s a 3 H H HH N H o +-H
H H I] 8 3] 8 114 M I 0
H H H s 5 g ' tHH O H 1 H
H T HH
HHEH] 3] = H 108
I 1l [
issgasaa)isal a a8 LT
-+ YT H HH o H H 1 H
H M H ¢ 4 3 H
+ H HH H o
R | i :
HH - H & 2
= { -t 5 1 L]
TITIIL m T (T TaEE 0 ..:::::1 m~_ § O
HH & T s H H
seas ssa B 8 H 8
[- s 13 -1
: i @ ; £ : : ;
B SENENEN 3 H w= 111 H 1
JU ISEEN] IRESADEN 8| i TITITITY 1 jEsanspEaEE
= T s '8 O
HH < sna H a8 s
HHH 1] s H 5
! HH « oh Hi : H :
. {4 = -1 4
H 11t Hi] = 1 a (3T s
T I HH w8 T [B 0 O
H tHH : g H :
g N 0 : : :
. iy e H H
't
A T T1 T B
H H - -F-u aEE 2 1)4 Ll
" a H H+H 1
H a B EEBRE ? | (H
58 8 s s] yem sng us
5]]]] 1891 T Hill o= 1 1 T
THTIT 18 us 1§ ssne 1 1t BB BA
H [T Im B (1] an
T - T H 2 I Ho-HH+ I : H
L] e H3H H
» 8 a8 — - . F ﬁ 11 L] H
u L] L] L H B
u] 5 1 0 B
HAH]
H H g u] sass n_ +1 H 8§
jseenenns gas BEREDEA JE A u thitd 1T TIIT I
a] 1] ITT TTVIIT T {3 1] I
L] u 8 1 T nnuu. u o a8 T
aEem s a8
a BERaS HH B i = 1A
 SaEaE A s HHH i 58] ae
TETYT T 1
g] H FHH H FHH et HA H s
HHH e HH H HH H H
1 HH o L HH HH HH H-
I GEEREER! . u“uu “~ _“ 58 BB am
T TR iasAnEREt
I B EREABAE) 8 HHH T ¥ B i IT
H H H H H iy 00 HH a8 i o
8 1 2 o 414 1 -4+ 1 - -
Hal 1T] HHH 11 u'E oe 180 BuE
jm L LELL! 11 ' 12928 a8E8 ¥ HiH H as HH3H HH
AR R 1 T
; LB N A2
T B 1 a8 H HH B B
L H a8 -] o i
it e +H H 1 11111 T 3 1 T vi
e L L 8 t TEOTTITTT 1
= T 5 T T LA L1 22,
I] s - - BH A REERERE 0 an
H HH 6 HH (4) [+ 1] = H a8 BeR
] H+ aes H H | B HH
H s 8 sass - I H . : 55 EEE
T annn L @ H 8 a8
8 AT - IBEB |
T [
H ; HHH H
. H saan »
: : o =) -
H 5
BEEE T 5]
olrjlo|lojlclajlo]|o|w|w e o o o :
L H H
T30 B O = = ™ e 23 !
4 g L £2 =) e i
v | g | g | g | g (g O 5= - (] H
B H B
0] o> o

I AT TH IT T T T T
11 IEEREE T 1 Ty b 8
1 YRR AT
-4 mas ¥
s X o Y
1 t +
L LILLTY Bus 11 BEGdEAEPEERIUSE DN
O T wE [] B8 s
b4 4 i] sl 13 444 Ry ‘g
H H iga . as se D Has aaE .asd ba
44 " (] 11 " L] IEBEUUNEE N
: : H s e il 22 & e £
SN we a1l
} HHT o T yilinss
L oy 9 [H T I
n 0 i B8 b B ' L14]
H Tt H an H
v H y H
a SuOHE it HH
11 : T 1
[TIIL [] I O
H ' i e] g/ mens
H seaken, iy HE HH
T u 8
H mE 1 T] et 888
" Tt 1 13 111 L EREE (1]
A Wn Eus: T T sea s we r
H =g T =g us 8 s 1
= Lt 4 J +4-$-4 = -
H s mane 1 1
= H i H e
ass 7 A
{44} 1 ¥ V1
FEaE : ! R
-H L] 81 L4
I T 1 = 111 T 1
T I] g] 18
4] 58 s 5 B 1]
8 B 8 us " B 1 s [
= H a] 8 -
5w 1] s = o
s8 @ 8 u 1 e T
181 I H HH eIt B B B
= BB b H -+ =
] 3] 5'u s H . .
3 I um H s 13 ; s
] 3 H B 1
8| a8] u 13 & 8
o8 w8 H H 8 T " . 68
1 ey I I - X ITTITT] IBESESETNE U THTY [
Tl X 3 1 4.4 I HHH
11 B | BSESUE RS 1 '
uy 1 B
H 5 s e
H 1 1 3
H 1 { % H I 11
- -1 IEBUEERSNSS B I T »
sem &5 e L B t . 3
Eza L s s asug H H
sud a'sw 1 # s b s
senn
1 H T 1 i 2
1 H H T idnbasy
= 54 - jd L -
[e A mas [s's L
i HH £ : H T TH
H 8] T s
8 I] 198 TIIT
: i H § e is H H HH B HHH H
H - Hf- - 2 HH H 1 B sia H
H H anw & e H] o/g 5 1
H 8 i a8 H = " O Ho a8 o
B ws b g8 K us §g H B “_ 1 a8
T 1T 1T T § a L
] o3 T 8 SREBD
5 '8 " HR H H {41
H HH - » HH ¥ 5
11 ua g TITIT
0 T TIT 1T T
o I T 18
B an . ssga u's
H 5% | BEEN ssEEm
H H H- as s H i
T ' ¥ I
1L 13t 28 1 1t HH "
e TS [O T M [
8 u 8 s 1] s
s 3 EEE: H [S5u s . H : iF
z H 5w H s It
I ¥ B8 I » 1 i
TUTICT H T a8 ay BN EESEERE0E ¢
(11 T T 191 8 T]
58 |mw I T T T ®
TEy 0 ae nEs us &: 1t 1 H
suE sEE u 5B] 0 T H 8
41 - 4 asap (- L] . “n HL1 H a
] e 3 T B T 11 T R 1] 1]
1 I ITTTT 1)SESENEE B |
ERES A HH -
H b o HHH
= P - O W b i
sasy Eaajfians i
FHH O BH HH
EeEE EssagRus H3H
HHH (o w= HHOH N o+ I HiE
siug Ta] [HHH HH
= 111 .
-+ b g i 0 3 - - bl 55 5

E-3

APPENDIX F
ASSEMBLY LANGUAGE MODULES

The CALL statement in ST BASIC allows the use of assembly
language modules. To use a module, you must load it into
memory with a BLOAD statement, assign its starting address to

a variable, and CALL it from BASIC (passing any necessary
parameters to it).

Parameters are passed from BASIC to Assembler programs in the
fcllowing manner. The machine language module will find two
parameters on the user stack (A7). The first is a 2-byte
integer specifying the number of parameters being passed.

(In the example below, it is 3.) The second is a 4-byte
pointer to an array that contains the parameters. Each
parameter in the array will occupy 8-bytes, regardless of its

type. 1In the case of a string variable, the 8-byte value is
a pointer to the string.

Before returning to BASIC, the Assembler program can put any
parameters it wants to pass to BASIC into a given memory
location. Later, the BASIC program can PEEK at these
parameters.

Example:

500 DIM AS(8):I%=70:X=22

510 CHART=18566: *START ADDRESS OF THE ASSEMBLER
LANGUAGE CCDE

530 CALL CHART(I%, AS, X)

Derived Functions

Secant
Cosecarnt
Inverse Sine

Inverse Cosine
Inverse Secant
Inverse Cosecant

Ipverse Cotangent
Hyperbelic Sine
Hyperbolic Cosine

Hypersolic Tangent

Hyperboiic Secant
Hyperboliic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic
Sine

Inverse
Cosine

Hyperbolic

Inverse
Tangent

Hyperbolic

Inverse
Secant

Hyperbolic

Inverse Hyperbolic
Cosecant

APPENDIX G
DERIVED FUNCTIONS

Derived Functions In Terms Of ATARI
Functions

DEF FNSEC(X)=1/C0S(X)

DEF FNCSC(X)=1/SIN(X)

DEF FNARCSIN(X)=ATN(X/SQR(-X*X+1))

DEF FNARCCOS(X)=-ATN(X/SQR(-X*X+1) +
CONSTANT

DEF FNARSEC(X)=ATN(SQR(X*X-1)) +
(SGN(X-1) *CONSTANT

DEF FNARCCSC(X)=ATN(1/SQR(X*X-1)) +
(SGN(X-1) *CONSTANT

DEF FNARCCOT (X) =ATN(X) +CONSTANT
DEF FNSINH(X)=(EXP(X)~EXP(X))/2
DEF FNCOSH(X)=(EXP (X)+EXP (-X)/2

DEF FNTANH (X) =—EXP (-X) / (EXP (X) +
EXP(-X)) *2+1

DEF FNSECH(X) =2/ (EXP (X)+EXP(-X))
DEF FNCSCH(X)=2/(EXP (X)-EXP (-X))

DEF FNCOTH (X) =EXP (~X) / (EXP (X) -
EXP(-X))*2+1

DEF FNARCSINH(X)=LOG (X+SQR (X*X+1))
DEF FNARCCOSH(X)+LOG(X+SQR(X*X“1))
DEF FNARCTANH (X) =LOG ((1+X) /(1-X)) /2

DEF FNARCSECH (X) =LOG((SQR(=X*X+1) +1) /X)

DEF FNARCCSCH(X)=LOG
((SGN(X) *SQR (X*X+1) +1) /X)

Inverse Hyperbolic DEF FNARCCOTH (X)=LOG((X+1)/(X-1))/2
Contangent

Note:In this chart, the variable X in parentheses represents
the value or expression to be evaluated by the derived
function. Any variable name is permissible as long as it
represents the number or expresson to be evaluated.

BOXES

AFPENDIX H
SAMPLE PROGRAMS

An interesting example of the RND statement using color
- graphics. Run this program in low-resolution mode.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

' FILL BOXES SYMMETRICALLY

randomize 0:c=0

color 1,0,1,1,1:fullw 2:clearw 2

for x=18 to 284 step 19

linef x,0,x,166

next x

for y=13 to 153 step 14

linef 0,y,303,y

next y

c=c+l:if c=16 then c=1

color 1,c,l

col=int (rnd*16) *19+9:row=int (rnd*12) *14+7

£ill col,tow,1

if c0l>151 then cenc=col-151:fill col-(cenc*2) ,row,1l
if col<152 then colh=302-col:fill colh;row,1l

if row>82 then rowh=row-((row-82)*2):filil col,rowh,1
if row<83 then rowh=164-row:fiil col,rowh,l

if eo0l1>151 then fill col-(cenc*2) ,rowh,l else fill

colh,rowh,l

190

goto 100

CIRCLE OF PATTERNS

This program divides a circle into segments and then fills
the segments with patterns. To vary the program, change line

120 to:

120 pellipse x,y,x,y,b,b+100

10 ' CIRCLE WITH 36 PATTERNED SEGMENTS
20 color 1,0,1,1,1:fullw 2:clearw 2

30 if peek (systab)=1 then 60

40 if peek(systab)=2 then 70

50 goto 80 -
60 x=306:y=172:8=170:g0oto 90

70 x=304:y=83:s5=182:goto 90

80 x=151:y=83:5=91

90 a=24:i=2:b=0

100 for p=1 to a

110
120
130
140
150
160

eolor 1.:1,1,p;i
pcircle x,y,s,b,b+100
b=b+100

next p

if i=3 then end
i=3:a=12:go0to 100

GRID OF PATTERNS

This program selects the screen resolution automatically,
then displays 36 fill patterns.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
" 150
160
170
180
190
200
210

' DISPLAY GRID WITH 36 FILL PATTERNS
color 1,0,1,1,1:fullw 2:clearw 2

if peek(systab)=1 then 60

if peek (systabl=2 then 70

goto 80
x=102:y=56:2=28:b=308:c=56:d=51:e=561:f=102:goto 90
x=102:w=28:a=14:b=154:c=28:d=51:e=561:f=102:g0to 90
x=51l:y=28:a=14:b=154:c=28:d=25:e=280:£f=51
for x=f to e-d step f£

linef x,0,x,345

next x

for y=c to b-a step ¢

linef 0,y.615,y

next y

i=2:p=1

for y=a to b step ¢

for x=d to e step £

€elor 1,1,%,p,i:£i1} x%,%,1

p=p+l:if p=25 then p=l:i=i+l

if i=4 then end

next x,y

LOW RESOLUTION DEMO

An interesting demonstration of
low-resolution shapes and colors.

10
20
30
40
50
60
70
80
90
100

color 1,0,1,1,1:fullw 2:clearw 2
PIE: c=1

for b=0 to 3360 step 240

color 1,c,l

pcircle 151,83,91,b,b+240

c=c+l

next b

gosub DELAY

OVAL: c=1

for b=0 to 3360 step 240

110 coélor 1,c,1

120 pellipse 151,83,151,83,b,b+240
130 c=c+l

140 next b

150 gosub DELAY

160 FILLPTNS: c=l:a=24:i=2

170 for p=1 to a

180 clearw 2

190 for x=61 to 244 step 61

200 linef x,0,x,166

210 next x

220 for y=55 to 110 step 55

230 linef 0,y,303,y

240 next y

250 y=2

260 for x=30 to 270 step 60

270 coior 1,c,1,p,i

280 $ill x,;v,1

290 c=c+l:if c=16 then c=1

300 next x

310 y=y+55:if y=167 then 330
320 goto 260

330 next p

340 - if i=3 then 360

350 a=l2:i=3:goto 170

360 gosub DELAY

370 - COLORFULCIRCLE: c=l:r=91
380 for b=C to 3600 step 200
390 color 1,c;1

400 pcircle 151,83,r,b,b+200
410 c=c+1l:1if c=16 then c=1

420 next b

430 r=r=l1l:if r=0 then 450

440 goto 380

450 gosub DELAY

460 COLORFULELLIPSE:C=l:x=151:y=83
470 for b=0 to 3600 step 240
480 color 1,¢,1

490 pellipse 151,83,x,y,b,b+240
500 c=c+l:if c¢=16 then c=1

510 next b

520 x=x-2:y=y-2:if y=3 then 540
530 goto 470 .

540 gosub DELAY

550 end

560 DELAY: for z=1 to 3000:next
570 color 1,0,1,1,1:clearw 2
580 return

MEDIUM RESOLUTION DEMO

This program demonstrates the medium-resolution color palette
of your ST Computer.

10 color 1,0,1,1,1:fullw 2:clearw 2
20 PIE: c=1 :

30 for b=0 to 3360 step 240
40 celor 1,c,l

50 pcircle 304,83,182,b,b+240
60 c=c+l:if c¢=4 then c=1

70 next b

80 gosub DELAY

90 OVAL: c=1

100 for b=0 to 3360 step 240
110 coleor 1,c,1

120 pellipse 304,83,304,83,b,b+240
130 c=Cc+l:if c=4 then c=1

140 next b

150 gosub DELAY

160 FILLPTNS: c=l:a=24:i=2

170 for p=1 to a

180 ciearw 2

130 for x=203 to 609 step 203
230 color 1,c,1,p,1

210 linef x,0,x,170

220 fill x-2,2

230 c=c+l:if c=4 then c=1

240 next x,p

250 if i=3 then 270

260 a=l2:i=3:goto 170

270 gosub DELAY

280 and

290 DELAY: for z=1 to 3000:next
300 color 1,0 '1 pl;l:C].earw 2
310 return

HIGH RESOLUTICN DEMO

Show off your high-resolution monochrome monitor with this
program! '

10 fullw 2:clearw 2

20 SQUARES: a=2:b=3:1=61:w=56
30 X=a:y=b

40 linef x,y,x+1l,y

50 linef x+1,y,x+1,y+w
60 linef x+1,y+w,x,y+w
70 linef x,v+w,x,y

80 x=x+61

90 if x>600 then x=a:y=y+56
160 if y>320 then 120

110 gotoc 40

123 a=a+2:b=h+2:1=1-4:w=w-4
130 if w<0 then 150

140 goto 30

150 gosub DELAY

160 LINES: x=0:y=0

170 while x<€14

180 linef 307,172,x,y

190 X=xX43 =

200 wend

210 while y<344

220 linef 307,172,x,y

230 y=y+3

240 wend

250 while x>0

260 linef 307.:172.%2,y

270 x=x-5

280 wend

290 while y>0

300 linef 307,172,x,y

310 y=y-3

320 wend

330 gosub DELAY

340 DESIGN: x1=1:x2=614:yl=1:y2=343
350 linef x1,y1,x2,vl

360 linef x2,yl,x2,y2

370 linef x2,y2,x1,y2

380 linef x1,y2,x1,yl

390 X1=x142:x2=x2-2:yl=yl+2:y2=y2-2
400 if y2>-22 then 350

410 gosub DELAY

420 end

430 DELAY: for z=1 to 5000:next
440 clearw 2:return

TRIGONOMETRY

Use this program to graph any trigonometric function.

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

' TRIG GRAPHS

' BY ROB COLLIER

pi=3.1415926

fullw 2:color 1,0,l:clearw 2
SCREEN:

if peek (systab)=4 then goto LOW

if peek (systab)=2 then goto MEDIUM
if peek(systab)=1 then goto HIGH
INIT: t=0:1=0
lng=r/4:inc=pi/lng:off=b/4
FUNCTION: value=-2*pi

clearw 2

print "choose a function:":print
print "1) sine"

print "2) cosine"”

print "3) tangent"

print "4) cosecant"

print "5) secant"

print "6) cotangent"

print:input choice

if choice>0 and choice<7 then goto GRAPH
?"pick one of these numbers, please."
goto FUNCTION

PLOT:

value=-2*pi

x=1:x1=1:yl=b/2

on choice gosub

SINE,COSINE,TANGENT,COSECANT,SECANT,COTANGENT

280
280
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

y=off*y:y=b/2-y

if y<t or y>b goto SKIP

if x<1 or x>r goto SKIP
linef x1,yl,x,y

SKIP: x1l=x

yl=y:x=x+1

value=value+inc

if value>2*pi then goto DONE
goto 270 :
DONE: input waits$

goto 120

GRAPH: color 1,bg,gr:clearw 2
linet 1,b/2,r,b/2

NGt r/2,€,5/2.b

color 1,bg,1ln

goto PLOT

SINE: y=sin(value):return
COSINE: y=cos(value):return
TANGENT: y=tan(value):return

470 COSECANT: hold=sin(value)
480 if hold=0 then return
490 y=1/hold:return

500 SECANT: hold=cos(value)
510 if hold=0 then return
520 y=1/hold:return

530 COTANGENT:hold=tan(value)
540 if hold=06 then return
550 y=1/hold:return

560 LOW: r=303:b=167

570 gr=2:1n=14:bg=4

580 goto INIT

5980 MEDIUM: r=608:b=167

600 gr=l:1n=2:bg=3

610 goto INIT

620 HIGH: r=615:b=343

630 gr=1l:1n=1:bg=0

540 goto INIT

EFFECTIVE INTEREST RATE

Use this program to analyze finance packages.

10 'Effective interest rate program by Richard Lauck

20 'The program uses a form of Newton's

method for estimating roots.

3¢ ‘In effect the program uses calculas within the
epsilon, "E" defined at line 100.

40 'The formulas consider each payment to be made at the

end of a period.
50 clearw 2:fullw 2:?

60 ? "FINAL LUMP SUM PAYMENT = ";:INPUT R

70 ? "MONTHLY PAYMENT = ";:INPUT A

80 ? “COST IF BOUGHT NOW = ";:INPUT C

S0 ? "NUMBER OF PAYMENTS = "; :INPUT N

100 2=12:1=0.01:E=0.01:K=0

110 CePRINT * THE EFFECTIVE INTEREST RATE WITH: "
120 BRIND *

130 PRINT "A FINAL LUMP SUM PAYMENT OF $":;R

140 PRINT "A MONTHLY PAYMENT OF $%;A

150 PRINT "AND PAYMENTS NUMBERING - ";N

160 GOSUB 250 :

170 F=F+5.0E~03:F=100*F:F=INT(F) : F=F/100

180 F1=F1+5.0E-03:F1=100*F1:F1=INT(F1):F1=F1/100
190 I=I1:K=K+1

200 ° IF ABS(F)-E>0 THEN 160

210 PRINT * °®

220 X=Z*I:PRINT “THE EFFECTIVE INTEREST RATE IS ";100*X;"
%Il

230 PRINT * *

240 END

250 T=(1+I)"N

260 F=C-R/T-A*(1-1/T) /I

270 T2=T* (1+1I)

280 F1=R*N/T2+A* (1-1/T-1*N/T2)/I/I
290 I1=I-F/F1

300 RETURN

NUMBER GAME

This program is a self-prompting number game. You enter a
number, the computer chooses a number between your number and
zero, and then you have the chance to guess the computer's
number.

10 'A make it easy or hard on yourself game, by Rich
Lauck.

20 fullw 2:clearw 2

30 gotoxy 0,0 -

40 ? " Let's play GUESS MY NUMBER."

50 ? " You enter a number and press *

60 ? " Return. Then I'll pick a number®
70 ?" between your number and “;

80 ?%zero,"”

S0 ? " Go ahead, enter a number *

100 INPUT " and press Return. ",TOP

110 ?:? "And now try to, GUESS MY NUMBER “

120 RANDOMIZE 0

130 ANSWER =INT (RND* (TOP))

140 ?:2 " You guess and I'll give hints.":goto 180

150 2:input " Y to play again, any other to quit. “,
agains$:?

160 if again$="Y" or again$="y" then 90

170 end

180 input guess

190 if guess < answer then ?"To low try higher.":goto 180
200 if guess > answer then ?"To high try lower.":goto 180
210 ? "You got my number.":goto 150

BOX DEMO

This low-resolution color program uses the AES and VDI to
draw multi-colored boxes on a screen location of your choice.

AES (Applications Environment Services) is the part of GEM
that allows for drop-down menus, multiple windows, and Dialog
Boxes. VDI (Virtual Device Interface) is the part of GEM
that contains graphics and text routines.

Follow these steps to use the program:

1. RUN the program.

2. With the mouse, point to the location on the screen where
you want to draw the box.

3. Press the right mouse button to draw the box.

4. Press the left mouse button to exit from the program.

5 at$ = gb

10 control = peek (a#)

20 global = peek (a# + 4)

30 gintin = peek{a# + 8)

40 gintout = peek (a#%# + 12)

50 addrin = peek(a# + 16)

60 addrout = peek (a# + 20)

100 clearw 2:fullw 2

1070 poke systab+24,1 ,

1071 poke contrl,122:poke contrl+2,0:poke contrl+6,1
1072 poke intin,O:vdisys(1)

1074 mouse =1

1075 gemsys(79)

2000 x peek (gintout + 2)

2010 y = peek (gintout + 4)

2020 key = peek (gintout + 6)

2025 if key = 2 then gosub 3000

2027 if key = 1 then poke systab+24,0:end
2028 if key=0 then gosub 3115

2030 goto 1075

3000 rem *krkkkkkkkkhhkkhhkhkhkhkkhkkhhhrrhhkkhkhkhhkkdkhddhk

3010 rem draw a box using vdi

3020 rem L2 2R R R 22 A R R R R R R X T R S R T L
3022 color 1,(rnd*15)+1,1,rnd*25,2

3024 if mouse=0 then 3040

3030 mouse=0

3035 poke contrl,123:poke contrl+2,0:poke contrl+6,0
3037 vdisys(1l)

3040 poke contrl,ll

3050 poke contrl + 2,2

3060 poke contrl + 6,0

]

CUSTOMER SUPPORT

Atari Corp. welcomes any questions you might have about your
ATARI Computer product.

Write to:

Atari Customer Relations
P.O. Box 61657
Sunnyvale, CA 94088

‘Please write the subject of your letter on the outside of the
envelope. : :

We suggest that you contact your local Atari User Groups.
They are outstanding sources of information on how to get the
most out of your ATARI Computer. To receive a list of Atari
User Groups in your area, send a self-addressed, stamped
envelope to:

Atari User Group List
P.0O. Box 61657
Sunnyvale, CA 94088

ST BASIC SOURCEBOOK
ERRATA SHEET

Enhancing ST BASIC's Memory

After you load TOS from the System Disk and ST BASIC from the
ST Language disk, you will have a iimited amount of memory
space available for programming.

There are two methods to enhance the available memory space:

1. Turning off the Buffer Graphics option will provide an
additional 32,000 bytes of memory. Point at the Run Menu on
the BASIC Desktop and see whether there is a check mark in
front of Buf Graphics. If the check mark is present, select
Buf Graphics. When the Dialog Box appears, click on the Ok
button to turn off the Buffer Graphics option.

Note: If you turn off the Buffer Graphics option while you
have a program in memory, the program will be lost.

2. Disabling the GEM desk accessories will provide 30,000
additional bytes of memory. Refer to page 17 of the ST BASIC
Sourcebook for instructions.

Reserved Word lists

The following words should be added to the reserved word list
in the manual:

ALL INTOUT
AND | MOD
AS NEXT
BASE NOT
CDBL OCTS$
CONTRL OLD
CSNG ON
DEF OPEN
ELSE OPENW
EQV OPTION
FIELD# OR
GB ouT
GET# PCIRCLE
GO PTSIN
IMP PTSOUT
INKEYS SYSDBG
INTIN THEN
TO
USING

X0R

N ATARI®

© Atarl Corp.
AH Rights Reserved.

.

O s ~ i T S

Printed in UK
C0O26166 Rev. A

	ST Basic Source Book-001.pdf (p.1)
	ST Basic Source Book-002.pdf (p.2)
	ST Basic Source Book-003.pdf (p.3)
	ST Basic Source Book-006.pdf (p.6)
	ST Basic Source Book-007.pdf (p.7)
	ST Basic Source Book-008.pdf (p.8)
	ST Basic Source Book-009.pdf (p.9)
	ST Basic Source Book-010.pdf (p.10)
	ST Basic Source Book-011.pdf (p.11)
	ST Basic Source Book-012.pdf (p.12)
	ST Basic Source Book-013.pdf (p.13)
	ST Basic Source Book-014.pdf (p.14)
	ST Basic Source Book-015.pdf (p.15)
	ST Basic Source Book-016.pdf (p.16)
	ST Basic Source Book-017.pdf (p.17)
	ST Basic Source Book-018.pdf (p.18)
	ST Basic Source Book-019.pdf (p.19)
	ST Basic Source Book-020.pdf (p.20)
	ST Basic Source Book-021.pdf (p.21)
	ST Basic Source Book-022.pdf (p.22)
	ST Basic Source Book-023.pdf (p.23)
	ST Basic Source Book-024.pdf (p.24)
	ST Basic Source Book-025.pdf (p.25)
	ST Basic Source Book-026.pdf (p.26)
	ST Basic Source Book-027.pdf (p.27)
	ST Basic Source Book-028.pdf (p.28)
	ST Basic Source Book-029.pdf (p.29)
	ST Basic Source Book-030.pdf (p.30)
	ST Basic Source Book-031.pdf (p.31)
	ST Basic Source Book-032.pdf (p.32)
	ST Basic Source Book-033.pdf (p.33)
	ST Basic Source Book-034.pdf (p.34)
	ST Basic Source Book-035.pdf (p.35)
	ST Basic Source Book-036.pdf (p.36)
	ST Basic Source Book-037.pdf (p.37)
	ST Basic Source Book-038.pdf (p.38)
	ST Basic Source Book-039.pdf (p.39)
	ST Basic Source Book-040.pdf (p.40)
	ST Basic Source Book-041.pdf (p.41)
	ST Basic Source Book-042.pdf (p.42)
	ST Basic Source Book-043.pdf (p.43)
	ST Basic Source Book-044.pdf (p.44)
	ST Basic Source Book-045.pdf (p.45)
	ST Basic Source Book-046.pdf (p.46)
	ST Basic Source Book-047.pdf (p.47)
	ST Basic Source Book-048.pdf (p.48)
	ST Basic Source Book-049.pdf (p.49)
	ST Basic Source Book-050.pdf (p.50)
	ST Basic Source Book-051.pdf (p.51)
	ST Basic Source Book-052.pdf (p.52)
	ST Basic Source Book-053.pdf (p.53)
	ST Basic Source Book-054.pdf (p.54)
	ST Basic Source Book-055.pdf (p.55)
	ST Basic Source Book-056.pdf (p.56)
	ST Basic Source Book-057.pdf (p.57)
	ST Basic Source Book-058.pdf (p.58)
	ST Basic Source Book-059.pdf (p.59)
	ST Basic Source Book-060.pdf (p.60)
	ST Basic Source Book-061.pdf (p.61)
	ST Basic Source Book-062.pdf (p.62)
	ST Basic Source Book-063.pdf (p.63)
	ST Basic Source Book-064.pdf (p.64)
	ST Basic Source Book-065.pdf (p.65)
	ST Basic Source Book-066.pdf (p.66)
	ST Basic Source Book-067.pdf (p.67)
	ST Basic Source Book-068.pdf (p.68)
	ST Basic Source Book-069.pdf (p.69)
	ST Basic Source Book-070.pdf (p.70)
	ST Basic Source Book-071.pdf (p.71)
	ST Basic Source Book-072.pdf (p.72)
	ST Basic Source Book-073.pdf (p.73)
	ST Basic Source Book-074.pdf (p.74)
	ST Basic Source Book-075.pdf (p.75)
	ST Basic Source Book-076.pdf (p.76)
	ST Basic Source Book-077.pdf (p.77)
	ST Basic Source Book-078.pdf (p.78)
	ST Basic Source Book-079.pdf (p.79)
	ST Basic Source Book-080.pdf (p.80)
	ST Basic Source Book-081.pdf (p.81)
	ST Basic Source Book-082.pdf (p.82)
	ST Basic Source Book-083.pdf (p.83)
	ST Basic Source Book-084.pdf (p.84)
	ST Basic Source Book-085.pdf (p.85)
	ST Basic Source Book-086.pdf (p.86)
	ST Basic Source Book-087.pdf (p.87)
	ST Basic Source Book-088.pdf (p.88)
	ST Basic Source Book-089.pdf (p.89)
	ST Basic Source Book-090.pdf (p.90)
	ST Basic Source Book-091.pdf (p.91)
	ST Basic Source Book-092.pdf (p.92)
	ST Basic Source Book-093.pdf (p.93)
	ST Basic Source Book-094.pdf (p.94)
	ST Basic Source Book-095.pdf (p.95)
	ST Basic Source Book-096.pdf (p.96)
	ST Basic Source Book-097.pdf (p.97)
	ST Basic Source Book-098.pdf (p.98)
	ST Basic Source Book-099.pdf (p.99)
	ST Basic Source Book-100.pdf (p.100)
	ST Basic Source Book-101.pdf (p.101)
	ST Basic Source Book-102.pdf (p.102)
	ST Basic Source Book-103.pdf (p.103)
	ST Basic Source Book-104.pdf (p.104)
	ST Basic Source Book-105.pdf (p.105)
	ST Basic Source Book-106.pdf (p.106)
	ST Basic Source Book-107.pdf (p.107)
	ST Basic Source Book-108.pdf (p.108)
	ST Basic Source Book-109.pdf (p.109)
	ST Basic Source Book-110.pdf (p.110)
	ST Basic Source Book-111.pdf (p.111)
	ST Basic Source Book-112.pdf (p.112)
	ST Basic Source Book-113.pdf (p.113)
	ST Basic Source Book-114.pdf (p.114)
	ST Basic Source Book-115.pdf (p.115)
	ST Basic Source Book-116.pdf (p.116)
	ST Basic Source Book-117.pdf (p.117)
	ST Basic Source Book-118.pdf (p.118)
	ST Basic Source Book-119.pdf (p.119)
	ST Basic Source Book-120.pdf (p.120)
	ST Basic Source Book-121.pdf (p.121)
	ST Basic Source Book-122.pdf (p.122)
	ST Basic Source Book-123.pdf (p.123)
	ST Basic Source Book-124.pdf (p.124)
	ST Basic Source Book-125.pdf (p.125)
	ST Basic Source Book-126.pdf (p.126)
	ST Basic Source Book-127.pdf (p.127)
	ST Basic Source Book-128.pdf (p.128)
	ST Basic Source Book-129.pdf (p.129)
	ST Basic Source Book-130.pdf (p.130)
	ST Basic Source Book-131.pdf (p.131)
	ST Basic Source Book-132.pdf (p.132)
	ST Basic Source Book-133.pdf (p.133)
	ST Basic Source Book-134.pdf (p.134)
	ST Basic Source Book-135.pdf (p.135)
	ST Basic Source Book-136.pdf (p.136)
	ST Basic Source Book-137.pdf (p.137)
	ST Basic Source Book-138.pdf (p.138)
	ST Basic Source Book-139.pdf (p.139)
	ST Basic Source Book-140.pdf (p.140)
	ST Basic Source Book-141.pdf (p.141)
	ST Basic Source Book-142.pdf (p.142)
	ST Basic Source Book-143.pdf (p.143)
	ST Basic Source Book-144.pdf (p.144)
	ST Basic Source Book-145.pdf (p.145)
	ST Basic Source Book-146.pdf (p.146)
	ST Basic Source Book-147.pdf (p.147)
	ST Basic Source Book-148.pdf (p.148)
	ST Basic Source Book-149.pdf (p.149)
	ST Basic Source Book-150.pdf (p.150)
	ST Basic Source Book-151.pdf (p.151)
	ST Basic Source Book-152.pdf (p.152)
	ST Basic Source Book-154.pdf (p.154)
	ST Basic Source Book-155.pdf (p.155)
	ST Basic Source Book-156.pdf (p.156)
	ST Basic Source Book-157.pdf (p.157)
	ST Basic Source Book-158.pdf (p.158)
	ST Basic Source Book-159.pdf (p.159)
	ST Basic Source Book-160.pdf (p.160)
	ST Basic Source Book-161.pdf (p.161)
	ST Basic Source Book-162.pdf (p.162)
	ST Basic Source Book-163.pdf (p.163)
	ST Basic Source Book-164.pdf (p.164)
	ST Basic Source Book-165.pdf (p.165)
	ST Basic Source Book-166.pdf (p.166)
	ST Basic Source Book-167.pdf (p.167)
	ST Basic Source Book-168.pdf (p.168)
	ST Basic Source Book-169.pdf (p.169)
	ST Basic Source Book-170.pdf (p.170)
	ST Basic Source Book-171.pdf (p.171)
	ST Basic Source Book-172.pdf (p.172)
	ST Basic Source Book-173.pdf (p.173)
	ST Basic Source Book-174.pdf (p.174)
	ST Basic Source Book-175.pdf (p.175)
	ST Basic Source Book-176.pdf (p.176)
	ST Basic Source Book-177.pdf (p.177)
	ST Basic Source Book-178.pdf (p.178)
	ST Basic Source Book-179.pdf (p.179)
	ST Basic Source Book-180.pdf (p.180)
	ST Basic Source Book-181.pdf (p.181)
	ST Basic Source Book-182.pdf (p.182)
	ST Basic Source Book-183.pdf (p.183)
	ST Basic Source Book-184.pdf (p.184)
	ST Basic Source Book-185.pdf (p.185)
	ST Basic Source Book-186.pdf (p.186)
	ST Basic Source Book-187.pdf (p.187)
	ST Basic Source Book-188.pdf (p.188)
	ST Basic Source Book-189.pdf (p.189)
	ST Basic Source Book-190.pdf (p.190)
	ST Basic Source Book-191.pdf (p.191)
	ST Basic Source Book-192.pdf (p.192)
	ST Basic Source Book-193.pdf (p.193)
	ST Basic Source Book-194.pdf (p.194)
	ST Basic Source Book-195.pdf (p.195)
	ST Basic Source Book-196.pdf (p.196)
	ST Basic Source Book-197.pdf (p.197)
	ST Basic Source Book-198.pdf (p.198)
	ST Basic Source Book-199.pdf (p.199)
	ST Basic Source Book-200.pdf (p.200)
	ST Basic Source Book-201.pdf (p.201)
	ST Basic Source Book-202.pdf (p.202)
	ST Basic Source Book-203.pdf (p.203)
	ST Basic Source Book-204.pdf (p.204)
	ST Basic Source Book-205.pdf (p.205)
	ST Basic Source Book-206.pdf (p.206)
	ST Basic Source Book-207.pdf (p.207)
	ST Basic Source Book-208.pdf (p.208)
	ST Basic Source Book-209.pdf (p.209)
	ST Basic Source Book-210.pdf (p.210)
	ST Basic Source Book-211.pdf (p.211)
	ST Basic Source Book-212.pdf (p.212)

