

The Atari 800XL:
A Practical Guide

The Atart800XL:
A Practical Guide

Thomas Blackadar

BERKELEY· PARIS· DUSSELDORF· LONDON

Cover art by Daniel Le Noury
Book design by Mary Rose Ogren

Atari, Atari 400, Atari 410, Atari 600XL, Atari 800, Atari 800XL, Atari 810, Atari 1010,
Atari 1020, Atari 1025, Atari 1027 , Atari 1050, Atari 1200XL, Atari 1400XL, Atari
1450XLD, AtariWriter, Centipede, Missile Command, and Star Raiders are all trademarks of
Atari, Inc.

Choplifter! and Serpentine are trademarks of Br0derbund Software, Inc.
Facemaker, Kindercomp, and Snooper Troops are trademarks of Spinnaker Software, Inc.
Pac-Man is a trademark of the Midway Manufacturing Company.
Shamus is a trademark of Synapse Software, Inc.
VisiCalc is a trademark of VisiCorp.
Zork is a trademark of Infocom , Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX
assumes no responsibility for its use, nor for any infringements of patents or other rights of
third parties which would result. Manufacturers reserve the right to change specifications at
any time without notice.

Copyright©1984 SYBEX Inc. World Rights reserved. No part of this publication may be
stored in a retrieval system, transmitted, or reproduced in any way, including but not limited
to photocopy, photograph, magnetic or other record, without the prior agreement and written
permission of the publisher.

Library of Congress Card Number: 84-51821
ISBN 0-89588-259-0
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ACKNOWLEDGEMENTS

A book such as this is always a joint project, and many people
share the credit. I'd particularly like to thank Rudolph Langer and
Paul Panish for their support and advice in the development of
this project . Joel Kreisman contributed valuable technical assistance
at all stages, and David Kolodney gave it a careful and sensitive
editing. My thanks also to these other wonderful people who did so
much to turn a manuscript into a book: Valerie Robbins and Leslie
Horston, word processing; Gloria Maya, Valerie Brewster, and
Cheryl Vega, typesetting; Janis Lund and Elizabeth Thomas, proof
reading; and Mary Rose Ogren , design . Their contributions are
much appreciated.

At Atari, Margaret Lasecke and her staff were extremely helpful.
From my initial contacts with Bruce Quill to my final houndings of
Trish Marino, everyone was friendly and cooperative.

TABLE OF CONTENTS

INTRODUCTION xi

SECTION 1 1 MEET THE ATARI COMPUTERS 3

Getting Fear 3
Acquainted What is a Computer? 4

What Can it Do? 5
The Atari Computers 6

Setting up Your Computer 8
Peripheral Equipment 14

2 COMMERCIAL SOFTWARE 17

How to Buy Software 17
Games 19
Serious Programs 22

How to Use Software 24
A Look Ahead 25

3 THE KEYBOARD AND THE SCREEN 27

The Keyboard 27
Controlling the Cursor 31
RETURN and the ERROR Message 34
Your First Command: PRINT 36

The ESC Key 40

Vlll

SECTION 2
Programming

The Special Function Keys 43

Optional Exercises 45

Summary 45

4 ATARI GRAPHICS 47

What are Graphics? 47

Text: GRAPHICS 0 48

The POSITION Statement 49

Four-color Drawing: GRAPHICS 7 53
Optional Exercises 59

Summary 59

5 WRITING A PROGRAM 63

Storing Your Program 64

The Box-Drawing Program 70

Hints on Writing Programs 71

Debugging 72

Cassette Storage

Optional Exercises

Summary 77

6 USING VARIABLES

Storing Numbers

75

76

79

Variables in Programs 83

The READ and DATA Statements 88

INPUT: Getting Values From the

Keyboard 90

Doing Calculations

Strings: Storing Letters

94

Optional Exercises 99

Summary 99

97

79

SECTION3

Storage

7 CONTROLLING YOUR PROGRAM

GOTO: Jumping to Another Statement

FOR/NEXT Loops 106

IF Statements: Making Decisions

GOSUB: Subprograms 117

Optional Exercises 120

Summary 120

8 ADVANCED GRAPHICS

Changing Colors with SETCOLOR

Eliminating the Text Window 129

The Graphics Modes 130

The Text Modes 135

Summary 139

9 CASSETTE STORAG E

Setting Up the Program Recorder

Loading Prerecorded Cassette

Programs 145

Saving Your Own Programs 146

113

123

144

Other Ways to Save Programs 149

Summary 151

10 THE DISK DRIVE

Setting Up the Disk Drive 154

Taking Care of Diskettes 156

Turning on the Disk Drive 157

101

101

123

143

153

Using Prerecorded Diskette Programs 161

The DOS Diskette 162

Files 165
Saving Your Own Programs 167

IX

x

Duplicating Diskettes 168

Summary 170

11 AFTERWORD 171

Other Add-ons 171

Other Directions 173

Appendices A FURTHER READING 177

B REFERENCE GUIDE TO BASIC 179

C ATARI ERROR CODES 187

ANSWERS TO SELECTED EXERCISES 191

INDEX 195

INTRODUCTION

If you have recently bought an Atari® computer, you may have
been surprised when you opened the box. The machine was there all
right, but what about the instruction book? All you could find was a
thin Owner's Guide and an Atari BASIC Reference Guide, forbiddingly
marked "for experienced programmers only."

I'm sorry to have to say it, but that's all there is . Atari freely
admits that it does not try to teach more than the essentials of setting
up the machines . "If you want more information," they say, "you
should buy a book."

Your Atari computer is a wonderful machine: it works well and can
grow with your needs . I have written this book to be your guide, to
help you learn quickly what you need to know about your computer.

In the course of this book, you will set up your computer and begin
to use it. You will find out where you can buy programs that will let
you start using your computer right away. Then you will learn how to
write your own programs, and how to store them on a program
recorder or disk drive.

What do you need to know beforehand? Nothing. This is a practical
guide which assumes you have never used a computer before. You can
start from the very beginning, and move slowly enough to master the
concepts without needing to cope with computer jargon.

If you know a little already, you can still use this book. You may
want to skim through sections that you already understand, then read
more carefully once you get to the sections you still need to cover.

I have tried to make this book both serious and enjoyable. I have
assumed that you are truly interested in learning about your Atari
computer, and that you want a clear, no-nonsense introduction . At
the same time, I have concentrated on the most attractive, entertain
ing features of your Atari.

xu

The chapters are grouped into three sections. This will help you
organize your explorations into three fundamental phases: Getting
Acquainted, Programming, and Storage.

The first section, Getting Acquainted, will help you learn the fun
damentals of your machine. Before you can do anything else, you
must learn how the computer works and how to type simple com
mands. By playing around with the machine, you will become
comfortable using it.

Section Two moves into programming. You can combine simple
commands into a larger plan in order to perform more complex tasks.
As you learn the concepts of computer programming, you will also be
learning BASIC, the primary language used by Atari computers and
one of the computer languages most commonly used today.

Section Three addresses a subject treated only briefly earlier: how
to store your programs permanently on tapes or diskettes. Chapter 9
describes how to use the Atari Program Recorder with cassette tapes.
Chapter 10 shows how to use a disk drive for faster, more reliable
storage. At some points in this book, you may want to glance ahead
to these chapters, if you want to use commercial programs or store
your own programs for future reference.

To use this book most effectively, you will need to have access to an
Atari computer. For most of the book, you should have your com
puter sitting in front of you, so that you can tryout the examples as
you read.

It doesn't matter which Atari computer you have . This book is
written specifically for the new Atari 800XLTM, but its descriptions
will work for any Atari model. If you have an Atari 600XL, you have
exactly the same machine as the 800XL, except for a somewhat
smaller memory. Everything said in this book will also apply to the
600XL, and all of the programs will work on it. Any differences
between the two machines will be noted in the text.

If you have one of the older Ataris (the discontinued 400™, 800™,
or 1200XLTM models), you will need Atari's BASIC Computing Lan
guage cartridge to use this book. If you plug this cartridge in, your
computer will behave just like an Atari 600XL or 800XL, and you
can run any program just as if you had one of the new machines.
There may, however, be a few differences in the details about the key
board and graphics. Read pages 6-8 of Chapter 1 if you are thinking
of using this book with a model other than the 600XL or 800XL.

Computers may seem mysterious while you are an outsider, but
after your first steps, you will be able to continue on your own. This
book merely aims to make those first steps a little easier.

Xlll

sectionl

Getting
Acquainted

~ CHAPTER ONE -------------

Meet the
Atari Computers

You have recently bought an Atari computer, and are anxious to
start using it. You are curious to find out what your machine can do,
and how you can control it.

This chapter is an overview. It gives some tips that will help you
become comfortable with your Atari, and detailed instructions on how
to set it up. By the end of the chapter, you will be ready to use your
computer.

FEAR ------------------

Before you begin your journey, you'll need to overcome your fears.
If this is your first time on a computer, you are probably a little intimi
dated by it . You don't have to be: a computer is a machine, nothing
more. Like a television set or a dishwasher, a computer can help you if
you learn how to use it, and it won't bite you if you make a mistake.

You don't need to be afraid that you might wreck your computer
by pressing the wrong key. Your computer is an electronic device that
deserves the same care you give to a radio or a pocket calculator, but
you don't have to be timid with it. There is little you can do in nor
mal use that will harm it. At the very worst, you might lose the words
and numbers you have just typed, but you won't hurt the machine.

Your Atari gives you a kind of panic button. This is the RESET
key, located along the right side of the keyboard. If you ever get lost
or don't know what's happening, you can always press this key. The
computer will go back to the way it was when you turned it on, ready
to start again . And if that doesn't do the trick, you can always turn
the power off and back on.

4 THE ATARI 800XL: A PRACTICAL GUIDE

If you have some lingering fears, playa game. There is no better
way to become comfortable with a computer than to have fun with it.
In Chapter 2 of this book, you will find out how to buy some of the
best Atari games, but for now, you might want to start with the most
famous: Pac-Man. Atari's home version of this game is truly
excellent-a sure-fire cure for computer fear.

WHAT IS A COMPUTER? ----------

How does a computer work? You don't need to know. You can
think of it as a closed box that takes in information, churns it around,
and spits out the results. Along the way, it must do many complex
operations, but that's not something you need to concern yourself
with. Just think about what goes in and what comes out.

You talk to the computer through its keyboard. Atari computers have a
full set of typewriter keys that let you type letters, numbers, and special
symbols. You will use these keys for all your contact with the computer.

To talk back, the computer has an electronic circuit that can display
words and pictures on your television screen. So, as you type letters
on the keyboard, your computer shows them on the screen. Then, if
it needs to give an answer, it displays that as well. With graphics, you
can also have the computer draw pictures on the screen.

The computer has a memory, so that you can store information for
future reference. You can use this memory to save the lines of a pro
gram, the numbers you will use in a future calculation, or the words
of a text you are writing.

How much you can store at anyone time depends on the size of
your computer's memory, which is measured in bytes. A byte is
roughly the space needed to store a single letter or a three-digit num
ber. You will often see memory listed with letter K, which means
roughly a thousand bytes (1024 to be exact) . One K would hold about
one third of this page.

For the purposes of this book, you won't need to worry about the
size of your computer's memory. The Atari 800XL has 64K bytes of
memory built in-more than enough for anything in this book. Some
of the older Ataris have less memory, but all have enough to run simple
programs. If you need more memory for one of these older machines,
you can buy a memory expansion.

One other thing about your computer's memory: everything you

MEET THE ATARI COMPUTERS 5

store in it is erased when you turn the power off. To store information
permanently, you must attach a program recorder or a disk drive.

WHAT CAN IT DO? ------------

Your Atari computer can perform complex calculations quickly and
easily, display bar graphs, and paint colorful pictures on your televi
sion screen . With a word-processing program, it can let you revise a
letter without retyping it. And of course, it can play games.

The computer's great strength is its flexibility. It can do numerical
calculations if you wish, or limit itself to letters and words. It can
react to the keyboard and arrange the screen display in any way you
wish. With its memory, it can store and arrange information in a vari
ety of useful ways.

You control your computer with a program, a detailed list of instruc
tions that it follows like a recipe, step-by-step, to perform its task. The
program can be as simple or as complicated as you like, and can ask
the computer to make decisions as it works. Programs are often called
software.

A good way to start is to buy programs that other people have writ
ten. When you use commercial software, you don't need to know how
it works. You just give general instructions and answer a few ques
tions, then let the program take care of the details. Chapter 2 of this
book is an introduction to some of the software that is commercially
available. Games are very popular, and the Atari computers have by
far the best selection of entertainment software of any home computer.
You can, however, also buy programs for many other purposes, such
as education and home management. Word processing has become
increasingly popular among those who want the convenience of an
electronic typewriter.

At some point, however, you may want to write your own pro
grams, to gain direct control over your computer. Commercial
programs are expensive and sometimes inconvenient. If you plan to
use your computer to its full potential, you will want direct control.
In the later chapters of this book, you will learn how to write your
own programs. This will let you tell your computer exactly what you
want it to do. At the same time, it will let you explore many of the
computer's deeper capabilities, so that you will be the master of
your machine.

6 THE ATARI 800XL : A PRACTICAL GUIDE

THE ATARI COMPUTERS ----------

Atari has sold many different computers since it entered the busi
ness. To avoid confusion, I'd like to explain their history and their
minor differences.

Atari began its home computer division with two models, num
bered 400 and 800 . The 400 was an inexpensive machine with a lim
ited memory and a flat plastic keyboard, designed mostly for simple
video games. The more expensive Atari 800 offered a larger memory
and a full typewriter-style keyboard, so that it could be used for seri
ous computing. Apart from the keyboard and larger memory, how
ever, the 400 and 800 were essentially the same machine. Both sold
well for several years.

In the middle of 1983, Atari redesigned its line into the new XL series.
They planned to replace the 400 and 800 with new machines that
would add a few new features to the old. The new machines would
have extra memory, additional graphics modes, and sharp-looking
black-and-white cases. Yet, they would remain compatible with existing
Atari software, so that they could run any of the programs already
available for the old machines.

The first of these new computers was the Atari 1200XL, which was
to replace the Atari 800. This machine unfortunately got a cool recep
tion, because of design flaws and compatibility problems. After a few
months on the market, Atari withdrew the 1200XL and introduced
two other models, the 600XL and 800XL.

These machines were exact replacements for the original 400 and 800.
The 600XL was a low-priced computer with 16K of memory, quite
enough for games and simple programming. The 800XL offered a full
64K of memory, so that it could run more complex programs. Both had
typewriter-style keyboards-a big advantage for word processing and
other business work. The 800XL was more successful than the 600XL,
and it has now become the center of the Atari line.

Are you confused by these different models? Don't worry. All of
these computers are mere variations on the same basic machine. The
older models lack a few features, and require that you plug in a sepa
rate BASIC language cartridge. Some of the new XL computers have
extra features built in, but they remain functionally identical on most
points. All of the computers run these same software. Figure 1.1 is a
comparison chart of the different models.

MEET THE ATARI COMPUTERS 7

This book is directed primarily at the Atari 800XL, shown in Fig
ure 1.2. If you have one of the other computers, however, you can
still use this book without any trouble. All of the programs work on
the older computers, and the physical descriptions vary only in minor
details. Any significant differences between the 800XL and the older
models are explained in the text.

If you have an Atari 600XL you can read this book as if it were
written for your machine . The only real difference between the
600XL and the 800XL is the size of its memory. Since all of the pro
grams in this book are short, you won't need any more memory than
what you already have . If you want, you can add a memory
expansion module to your 600XL, making it effectively an 800XL.

If you have one of the Atari 400, 800, or 1200XL models that were
sold before the end of 1983, you can still use this book, but you will
have to be more careful. To begin with, the physical design of the
machine is different from the new models, and some of the keys have
been changed. As you read about the keyboard in Chapter 3, you will
need to adjust some of the details to fit your machine.

Another difference involves graphics. While the basic graphic
display systems are the same in both the old and new Ataris, the XL
versions have several additional graphics modes. Some of these are

FEATURES 800XL 400 600XL 800 1200XL

Memory size 64K 16K 16K 48K 64K

Typewriter -style
* keyboard • • • •

XL-style design • • •
Programmable

function keys •
Built-in BASIC • •
Monitor

connection • • •
Graphics modes 11 6-9 11 6-9 11
Text modes 5 3 5 3 5

*f1at keyboard ..
figure 1.1: The features of the Atari computers.

8 THE ATARI 800XL : A PR AC TI CA L G UIDE

discussed in Chapter 8. If you have one of the older machines, you
will not be able to use these advanced graphics features, but you will
have no problems with the rest of this book.

Unlike the new models, the discontinued Atari 400, 800, and
1200XL do not have the BASIC programming language built in . If
you want to do anything more than run commercial software, you
will have to buy Atari's BASIC computing Language cartridge. To use

this book with one oj the older computers, you must have this BASIC cartridge

plugged in. Figure 1.3 lists the Atari computers and describes what
allowances, if any, you will need to make as you read on.

SETTING UP YOUR COMPUTER - ------

The only thing you'll need that does not come with your computer
is a television set. You can use any normal television, but you will get
the best results from newer models. Televisions more than ten years
old may give a jittery screen image.

A color television is strongly recommended. The Atari computers
have a spectacular color graphics system that can display 256 different
shades. Many of the programs in this book take advantage of these
displays. While you can run them on a black-and-white television,
you will be missing a lot.

H you are selecting a television to use with your computer, you

Figure 1.2: This book is written about the Atari 800XL, but it can be used with
any Atari computer. I

MEET THE ATAR I COMPUTERS 9

Atari 600XL This book was written specifically for this
machine. No special adjustments are necessary.

Atari 800XL This machine is essentially an Atari 600XL with
extra memory. You can use this book as if you
had a 600XL.

Atari 1400XL If it becomes available, this machine will be
(projected) the same as the Atari 800XL, except that it will

have a larger keyboard and some added fea-
tures. You can use this book, but it will not
describe the built-in telephone modem or the
speech synthesizer.

Atari 1450XLD Like the 1400XL, this model is still in the plan-
(projected) ning stage. When it appears, it will have all of

the same features as the 1400XL, plus a disk
drive. For the basic computer, however, you can
sti ll use this book.

Atari 400 This older machine has the same internal opera-
(discontinued) tion as the Atari 600XL. Its flat keyboard makes it

harder to use than the other Atari computers.
The physical descriptions in Chapter 3, and the
advanced graphics in Chapter 8 will be some-
what different. YOU MUST HAVE AN ATARI
BASIC CARTRIDGE.

Atari 800 This older machine has the same internal opera-
(discontinued) tion as the Atari 800XL. The physical descrip-

tions in Chapter 3, and the advanced graphics in
Chapter 8 will be somewhat different. YOU
MUST HAVE AN ATARI BASIC CARTRIDGE.

Atari 1200XL This discontinued machine looks the same as
(discontinued) the Atari 1400XL, but does not have the tele-

phone modem, speech synthesizer, or built-in
BASIC. To use it, YOU MUST HAVE AN ATARI
BASIC CARTRIDGE. In all other respects, it
resembles the machines described in this book.

figure 1.3: How to use this book with any Atari computer.

10 THE ATARI 800XL: A PRACTICAL GUIDE

should probably choose a small or medium-size screen. Screens mea
suring from 10 to 15 inches are quite large enough to be readable .
Larger screens are unnecessary, and often harder to read.

The Atari 800XL lets you hook up a color monitor instead of a televi
sion. A monitor looks like a television, but lacks a tuner and thus can
not be used to receive normal broadcasts. A monitor will usually give
a clearer picture than a standard television. Some monitors also give
you higher resolution (finer detail), so that with some additional equip
ment you can display more than 40 characters per line. You cannot
use a monitor with the Atari 600XL or the 400.

When you open the box, you will find an owner's manual and sev
eral pieces of equipment. Unpack the box carefully, and make sure
you don't lose anything. You should find three major items.

First, there is the computer itself. Set this on the table where you
will be working and turn it around so that you can see the back, as
shown in Figure 1.4. Models other than the 800XL will look slightly
different.

The second item in the box is a power supply, which converts your
house's electricity into the direct current used by your computer. This
box has a power cord and a cable that you plug into the back of the
computer.

The last items you will find are a short cable and a small switch box
that you will use to connect the computer to your television. The
cable and switch box come in several forms, but the most common is
shown in Figure 1.5. The box has a small black pin that you can slide
between two positions. When it is in the COMPUTER position, your

figure 1.4: The back of the Atari BOOXL, where you will make your connections.

MEET THE ATARI COMPUTERS 11

television will display the computer's images. Slide the pin back into
the TV position to watch normal programs.

Once you've checked that you have everything, you can connect
your computer. You can easily do this yourself with nothing more
than a screwdriver.

Before you start, make sure your television and computer are
turned off. None of the cables is dangerous to touch, but it is a good
practice always to turn the power off before making connections.

Don't be confused by the label POWER at the lower-right corner
of the Atari keyboard. This label refers to the red indicator light that
shows when the power is on. The actual on/off switch is located on
the back of the computer, at the left end. On the Atari 1200XL, the
switch is along the left side of the computer, next to the cartridge slot.
On the 400 and 800, the switch is on the right side of the machine.
The switch is always marked POWER or PWR ON/OFF.

Start by connecting the switch box to your television . Disconnect

Figure 1.5: The switch box.

12 THE ATARI 800XL: A PRACTICAL GUIDE

the antenna or rabbit ears. On most sets, the antenna is connected
with a double cable to two screws on the back of the set labeled VHF.
Loosen these screws and remove the wires . You don't need to discon
nect the antenna labeled UHF. (If you are connected to a cable TV
system, see below.)

The switch box has a pair of short wires coming out of one end.
Connect these wires to the two screws from which you just discon
nected the antenna. Tighten the screws.

On the side of the switch box labeled TV or ANTENNA, you will
find another pair of screws. If you plan to use your set for normal
television as well as for your computer display, attach the wires from
your antenna to these screws. When the switch is set to the TV posi
tion, your antenna will be connected through the switch box just as if
you had never removed it from the set.

If you subscribe to a cable network, your television is probably con
nected with a single round plug instead of a pair of screws . Some
Atari switchboxes do have a large round connector next to the two
screws; you can use this if it fits the plug on the end of your cable. If it
does not fit, you will have to buy an adapter that connects to the
screws. You can find these in most television or electronics stores (try
Radio Shack).

Find the black cable that came with the computer. It should
be about six feet long and have a round metal plug on each end . Con
nect one end to the hole in the side of the switch box labeled
COMPUTER. Then connect the other end to the hole labeled
SWITCH BOX on the computer itself. On all the new XL models,
this hole is to the right of center as you face the back.

Now plug in the power supply. On all Atari XL computers, the
power supply plugs into the hole labeled PWR.IN, which is located at
the right as you face the back. Connect the power supply here, then
plug it into an outlet in your house . Your computer should now be
connected as in Figure 1.6.

You can have your television receive the computer's signal on
either channel 2 or 3. You will generally get less interference if you
choose the one not used by a television station in your area. Set the
channel-selector switch on the back of your computer, then tune your
television to the same channel.

If everything is turned on and connected properly, you should see a
blue screen with the word READY in the upper-left corner. If the

ME E T THE ATARI COMPUTERS 13

image is fuzzy, adjust the fine tuning on your television. If the screen
isn't dark blue, adjust the color, tint, and brightness controls on your
set. You may find you'll need to turn off the automatic fine tuning
(AFT) or automatic color controls: some televisions provide a better
image when adjusted manually.

By the way, don't worry if the screen color starts changing after a
few minutes. Atari computers are designed to do this if you leave
them on without doing anything. This is a useful feature, designed to
protect your television. If the computer did not shift the colors, its let
ters could become permanently burned into the screen. The computer
returns to the blue screen when you type any key.

If you can't get a picture or the image will not become clear, you
may have done something wrong . The problem could be any of
the following:

• You have forgotten to turn the computer or the television
on, or have forgotten to plug them in .

• The cable from the computer to the switch box is not con
nected securely. Try wiggling the connections.

• You have not tighten ed the wires from the switch box
securely to the VHF screws on the television .

• The switch box is not in the COMPUTER position .

• Your television is not tuned to the same channel (2 or 3)
as your computer. Try changing to the other channel.

Figure 1.6: Connecting the computer to the television.

14 THE ATARI 800XL: A PRACTICAL GUIDE

If you have checked all of these and your computer still doesn't
work, you should contact your dealer. The machine you have bought
could be defective, or you might be missing something. Your Atari
dealer can give you advice, and can replace defective equipment. If
you can't get satisfactory service from your dealer, call Atari's
customer service hotline (800-538-8543; in California 800-672-1404).

PERIPHERAL EQUIPMENT ---------

With a television set and the equipment that came with your com
puter, you have everything you'll need to use this book. You can run
your computer, write BASIC programs, and use cartridge programs
sold by other companies.

There are, however, a variety of devices you can attach to your
computer to expand its capabilities. None of these Peripherals is essen
tial, but some will make your life easier.

If you are planning to play games, you will probably want to buy a
joystick. It has a handle that you can move in various directions to con
trol figures on the screen. It also has a small red fire button, used in
some video games to fire shots. Your Atari lets you connect a second
joystick for games in which two people play at the same time.

You may want to use the Atari Program Recorder with your com
puter. This device lets you save programs and data permanently on a
standard cassette tape, so that they are not lost when the computer is
turned off. Later on, you can load them back into the computer for
reuse. The program recorder also lets you use games and programs
that are sold as prerecorded cassettes.

Cassette tapes, unfortunately, tend to be slow and cumbersome. If
you are doing a lot of serious work, you might want to buy a disk drive
instead, which lets you store and retrieve large quantities of informa
tion very rapidly. A program that takes several minutes to load from a
cassette might require only a few seconds with a disk drive. Also,
some advanced programs are sold only for a disk drive.

The cassette recorder and disk drive are described in this book, but
not until Chapters 9 and 10. There may be times earlier in the book
when you will want to use these devices if you have them-to save a
long program, for instance. At these points, the text will suggest that
you glance ahead to Section Three if you want to use this extra equip
ment. In this way, you can learn to use the cassette recorder or disk

MEET THE ATARI COMPUTERS 15

drive if you have one, but you will not be distracted if you don't.
You may also want to add a printer to your system. As its name sug

gests, this lets your computer print numbers and letters on paper.
This is especially useful if you want a paper copy of programs you are
writing, or if you want to do word processing.

Atari makes several printers of different kinds and qualities. The
cheapest is the 1020 printer/plotter, which displays text and graphics
on a {-inch-wide tape. For a little more money, you can buy a printer
that uses full-size sheets of typing paper. One of these, the 1025 dot
matrix printer, displays letters as an array of small points. While it
prints quickly and legibly, the output is not terribly attractive. For
higher quality, you should consider the new 1027 letter-quality printer,
which prints characters that resemble a normal typewriter's.

The program recorder, disk drive, and printer all connect to the
same large hole in the back of the computer, labeled PERIPHERAL.
If you want to use more than one device at a time, you can chain them
together. Connect a cable between the PERIPHERAL hole on the
computer and one of the holes in the back of the first device. Then
connect a cable between the second device and the hole you didn't use
on the first. In this way, you can have several different peripherals
connected to your computer. You can connect the devices in any
sequence, except for the program recorder, which must come at the
end of the chain.

One other note about Atari's line of peripherals: When Atari intro
duced its new XL computers, it also redesigned its entire line of
peripherals. Fortunately, the company has taken great care to make
sure that all of its old and new machines are compatible. All of the old
peripherals will work on the new machines, and all of the new periph
erals will work on the old line. Figure 1.7 shows how the model

DEVICE: OLD MODEL NEW MODEL

Program Recorder 410 1010
Disk Drive 810 1050
Printer (4" tape) 820 1020
Printer (dot matrix) 825 1025 ·
Printer (letter quality) - 1027

Figure 1.7: The old and new Atari peripherals.

16 THE ATARI BOOXL : A PRACTICAL GUIDE

numbers correspond. Check with your dealer if you have any doubts
about compatibility.

We have now reached the end of the preliminaries . You have set up
your machine, and it is waiting to go . With the next chapter, you will
start using it. Good luck, and enjoy yourself.

~ CHAPTER TWO ------------

Commercial
Software

In the first chapter, you found out what your Atari computer is,
and what the features of your model are. You found out something
about how the computer works, and learned that you don't need to be
afraid of it. Finally, you have set it up and turned it on. Your screen
says READY, and you are eager to do something.

The best way to begin using your computer is to buy programs
written by other people. In many cases, you can simply plug the pro
gram into the computer and start it running. You don't need to know
anything about how the computer works, and you need no program
ming knowledge.

You can buy all sorts of software from Atari and other manufactur
ers. Games are the most popular, but excellent programs are also
available in other areas, such as education, home finance, and music.

This chapter will start by describing the range of what is available.
While this is not a full buyer's guide, it will give you some tips on
good programs. It will also discuss some of the things you should
know as you shop, so that you can protect yourself from the bad
programs that are sold alongside the good.

The second part of this chapter will show you how to use programs
you have bought. Most programs come with instruction books that
explain the details of operation, but I can give you some general guid
ance to help get you going.

HOW TO BUY SOFTWARE ----------

Atari itself sells more than 250 programs for its own computers,
and claims that more than 2,000 are available from other sources .

18 THE ATARI 800XL : A PRACTICAL G U ID E

From this large selection, you should have no trouble finding some
that suit your needs.

Programs are sold for the Atari computers on cartridges, cassettes,
or disks. Games tend to be sold as cartridges , while more serious pro
grams are usually sold on tape or disk.

A cartridge stores its program in an electronic circuit, which the
computer can read directly. Because they plug directly into the com
puter and cannot be erased, cartridges are generally more convenient
and more durable than other forms of software .

Prerecorded cassettes are used with the Atari Program Recorder.
With cassettes, the program is encoded as variations in a high-pitched
whistle. The computer can decode, store, and use these messages.
Cassette tapes have several important drawbacks . Before you can use
them, you have to load the program into the computer's memory.
This loading procedure can be a little complicated, even if you follow
the procedure in Chapter 9 of this book. Cassettes are slow, taking as
long as five minutes to load a complex program. They are also less
durable than cartridges, and can be made unreadable by magnetic
fields or mechanical wear.

A disk drive is more convenient. This device uses SI/4-inch plates
called diskettes covered with a magnetic recording surface that can store
large amounts of information . You still have to load diskette programs
into the computer before you use them, but the procedure is faster
and more reliable than with cassette tapes . Most software manufactur
ers sell their cassette programs in diskette form as well . Diskettes and
disk drives are described in Chapter 10 .

You can buy programs for your Atari computer at most places that
sell Atari computers or video-game machines . Department and dis
count stores usually carry some programs, especially the more popular
games. Many record and television stores now also carry software for
home computers. In large cities, you can usually find stores that spe
cialize in computer software . These are your best bet for finding the
less popular titles .

Atari's own programs are usually very good. Atari deserves its rep
utation for fine video games, and it has an excellent line of home
management programs as well . While Atari does occasionally let a
mediocre program slip through, it has very good overall quality. Atari
also runs a service called APX (for Atari Program EXchange), which
sells programs submitted by Atari users. Many of these titles are quite

COMMER C IAL SOFTWARE 19

useful, though they tend to be unpolished . Most APX programs are
sold on diskette .

A number of other companies sell programs that run on Atari com
puters. Atari has wisely encouraged this practice in the belief that
a wide selection of software will help to sell its machines. These
independent companies are called third-party manufacturers.

If you choose your programs off the shelf, you will learn an
unpleasant fact : mixed in with the truly excellent programs, there are
many poor ones. In the fast-moving computer business, some com
panies have been able to sell inferior products merely by wrapping
them up in attractive packages. Even Atari has sometimes been guilty
of rushing programs to the market before they were really ready.
Since you usually have no way to look at the program before you buy
it, you can easily make mistakes.

There are several resources that can help you. Addison-Wesley
publishes an index of Atari programs called The Book if Alari Sqftware,
for $19.95. While the catalog format is a little unwieldy, this book
does give short descriptions and ratings of most of the programs
currently available.

Magazines are also helpful. Compute.l is a general monthly magazine
that often reviews new programs offered for Atari home computers.
ANTIC, a magazine devoted to the Atari computers, often describes
new products .

CA~ES-----------------------------------

I would suggest you start with a game if you are using your com
puter for the first time. You can do more serious work later.

You can buy many types of games for your Atari computer. Atari
has made its name with its large selection of excellent video games,
many of which became famous in the video arcades. Game programs
usually cost between $25 and $40.

You will generally need to have a joystick to play games. Atari's
joystick costs less than $10, and can be found at any dealer or dis
count store. If you are a serious game player, you might want to
invest in a fancier joystick, for greater comfort and better control. For
certain games, you might also consider an arcade-style trackball, which
lets you control your players by rolling a ball in the direction you
want to move. These cost between $50 and $75.

20 THE ATARI 800XL: A PRACTI C AL GUIDE

Of the arcade games available for the Atari computers, Pac-Man is
the most famous. Figure 2.1 shows the home computer version of the
game. Your object is to move your small yellow man around the maze
and eat all of the dots, without being caught by one of the four roving
monsters. You can achieve temporary safety by eating one of the
larger "energizer" dots in the four corners of the screen. This allows
you to chase the monsters and eat them instead of being eaten. After
a short time, however, you must return to your task of eating dots
and avoiding monsters.

Pac-Man is an excellent bargain. Atari's home-computer version is
very well designed, and retains all of the important features of the
arcade game. Even if you aren't a video-game fanatic, the Pac-Man
cartridge will give you a fine introduction to some of the things your
computer can do.

Atari sells several other video games for its home computers. Centi
pede and Missile Command are familiar titles from the video arcade.
In Star Raiders, an original Atari game, you pilot a spaceship in a
battle against a fleet of enemy attackers. You must plan your strategy

figure 2.1: The Pac-Man game.

COMMERCIAL SOFTWARE 21

carefully to conserve your fuel and protect your defensive shields . As
you fly, you see a view of the stars and your enemy's ships moving by.

Of the games made by other companies for Atari computers, my
personal favorite is Serpentine, by Br~derbund Software. In this
game, shown in Figure 2.2, you maneuver a small snake around a
maze, trying to catch three enemy snakes from behind without letting
them catch you. Br~derbund also sells the popular game Choplifter!,
in which you fly a helicopter behind enemy lines trying to rescue
64 hostages.

You should remember that you can buy more than just video
games. Chess is one of the most interesting games you can play
against the computer. Atari's Computer Chess cartridge plays quite a
respectable game, and is easy to use.

Many people enjoy adventure games. Unlike a video game, an adven
ture usually requires no fast shooting or quick action. Instead, it
places you in an imaginary situation, and asks you to find a treasure
or solve a problem. Two of the most popular are Zork, by Infocom,
and the Scott-Adams Adventure Series, by Adventure International .

figure 2.2: The Serpentine game, by Br¢derbund Software.

22 THE ATARI BOOXL: A PRACTICAL GU IDE

You play an adventure by typing short commands, such as "climb
stairs" or "look under the table." If it can understand you, the com
puter will do as you direct and then describe the results. You must
often be very resourceful to find your way around an obstacle in the
.. .
Imagmary umverse.

A final title worth mentioning is Shamus, by Synapse Software.
This game, shown in Figure 2.3, combines the best elements of video
and adventure games. You must explore an unknown dungeon, in
search of the keys and keyholes that will let you escape. In each room,
you must combat numerous monsters, shooting and dodging as you
would in a video game. You get the fast action of the video arcade and
the careful strategy of a dungeon adventure in a single game.

SERIOUS PROGRAMS -----------

Atari and other companies sell many useful programs that can help
you in serious work as well. Education, home finance, and word
processing are only a few of the things for which you can use your
computer.

figure 2.3: The Shamus game, by Synapse Software.

COMMERCIAL SOFTWARE 23

Many people buy programs to help their children's education. A
computer program can give a child individual attention and colorful,
animated illustrations of concepts. It can check his work each step of
the way, correcting his mistakes as he makes them . Some people also
feel that a child who is exposed to a computer at an early age will
be more comfortable with a machine that may play a large part in
his future.

Of the educational programs available for the Atari computers, my
favorites are those made by Spinnaker Software. That company's
Facemaker, designed for preschoolers, is one of the most entertaining
programs available, yet it is effective in teaching basic skills of mem
ory, recognition, and creativity. With this program, your child can
put a face together on the screen, choosing from a selection of hair
styles, eyebrows, noses, and mouths. He can also playa memory
game that challenges him to recall a lengthening series of facial
expressions. Spinnaker sells several other fine educational programs,
including Kindercomp and Snooper Troops .

If you want to introduce your children to programming on the
computer, you might consider Atari ' s PILOT. This is a simplified
programming language that lets a child explore the computer by cre
ating graphic designs on the screen. It is sold as a plug-in cartridge.

Complex financial calculations haunt many homeowners. A num
ber of computer programs are available that can simplify such tasks as
calculating loan payments, making a budget, or keeping household
records . You may be amazed at how much easier it becomes to deal
with your financial problems.

Unfortunately, two of Atari' s best financial programs require a disk
drive. The Home Filing Manager lets you keep records on electronic
index cards. When you need a piece of information, you can search
through your file in any way you wish. For instance, you can retrieve
all of the entries that contain a certain name or telephone number.
The program's attractive screen display even looks like a deck of
index cards, right down to the paper clip with which you mark impor
tant entries. The Home Filing Manager would be useful for any type
of organized record-keeping, such as a mailing list or a teacher's
grade book. It sells for $49 .95 .

VisiCalc, which runs only on a disk drive and requires 32K of
memory, is another resource for financial management . This famous
program was the first of the electronic spreadsheets, which are popular in

24 THE ATARI 800XL : A PRAC T ICAL GUIDE

the business world. The program gives you a large, freeform table,
with many rows and columns. You type numbers and labels into the
cells of this table in any way you wish . You can then use the resources
of your computer to add figures or perform complex calculations .
This program would be useful for anyone who needs to keep track of
charts of numbers . Its suggested retail price is $199.95.

The other program that might help you is the AtariWriter word
processor. When you plug this cartridge in, your Atari computer acts
as an intelligent typewriter. You start by typing your text into the
computer's memory. You can then edit it by inserting words, deleting
sentences, and moving blocks of text around. Once your text looks the
way you want it, you type a command to print it. This program
requires a printer and either a program recorder or disk drive.

You can buy programs to do many other things with your Atari
computer. Music programs, such as the Atari Composer, let you play
melodies through your computer's sound system. Atari's Paint pro
gram lets you draw colorful pictures on the screen.

HOW TO USE SOFTWARE - ------ --

There's no real trick to using preprogrammed software. You just
turn the computer on, give some simple commands, and let the pro
gram run . When the program needs some information from you, it
will usually ask you for it with a simple message on the screen. The
best programs are organized so that they actually help you organize
your thinking, and give you help when you need it.

With a cartridge, you just plug the program into the computer and
turn it on. On the Atari 600XL and 800XL, the cartridge plugs into
the large hole in the top of the computer, which is covered by a pair of
silvered doors. On the Atari 1200XL, the cartridge slides into the
large hole along the left side. On the discontinued Atari 400 and 800
models, you will need to open the small door on the top of the
machine, then push the cartridge into one of the slots inside.

With cassettes or diskettes, you must load the program into the
computer' s memory before you can use it. Start by connecting the
program recorder or disk drive to the computer, plugging the heavy
cable into the PERIPHERAL connection in back. With a cassette,
you must normally turn on the computer and type a command on
the keyboard to tell it to LOAD the program. With a diskette, the

COMMERCIAL SOFTWARE 25

computer will usually load the program automatically if you turn
it on with the disk in the disk drive. Most software packages include
detailed instructions on how to load the program. If you can't figure
out how to do this, refer to chapters 9 and 10 of this book.

If you are using the 800XL or one of the other XL computers, you
may have trouble with a few programs that were originally written for
the older Atari computers (the 400 and 800). While most programs
are compatible with both the old and new models, a few are not.
In the cases where the programs are not compatible, the software
companies have generally prepared an updated version that will
work on all machines. You should contact your dealer to exchange
the program.

When using some older diskette programs on an XL model, you
must hold down the OPTION key as you turn on the computer. You
must do this because many older programs assumed that you had
removed the BASIC programming language cartridge from the com
puter before you loaded the program. Since BASIC is built into the
new computers and cannot be removed, you must use the OPTION
key to disable the language.

Once you have the program loaded, the going is easy. The better
programs give you full directions right on the screen. You can usually
read the instruction manual for further explanation.

A LOOK AHEAD --- ---- ------

This chapter has shown you how to use programs written and sold
by other people. In it, you have seen some of the things you can do
with your Atari computer with no experience whatsoever. By using
preprogrammed software, you can learn about your machine and
start it working for you immediately.

You can do a lot more with your computer if you learn to give
commands and write programs on your own. You will be in direct
control of your machine, rather than following along the lines some
one else has laid out.

The next two chapters will show you some of the basics of using your
computer. You will learn how to use the keyboard and how to display
words on the screen. You will learn the fundamentals of your Atari
computer's graphics system, so that you can draw pictures as well.

Then, in Section Two, you will find out about real programming.

26 THE ATARI 800XL: A PRACTICAL GUIDE

In this, you will combine the concepts you have learned in Chapters 3
and 4 into larger means of control. If you work slowly through all of
the examples, you will finish this guide with a good, firm knowledge
of your computer.

~ CHAPTERTHREE--------------------------
The Keyboard

and the Screen

In this chapter, you will learn about your computer's keyboard. For
the most part, you will use it to type words and numbers just as you
would use a typewriter. However, there are several special keys that
you must also master so that you can control what the computer is
doing. These are all described in the following pages.

At the same time, you will also learn how to control the words your
computer displays on your television screen. You will find that the
screen has two functions. It works with the keyboard, repeating every
thing you type so that you can see what you have written, and it
displays the computer's responses to your commands.

This chapter will introduce a simple command called PRINT,
which lets you display a single line of text or numbers on the screen.
As you learn more about this command, you will be able to position
the text where you want it and to clear unwanted clutter from
your screen.

Some of this may seem trivial . Why should you want to go through
all this trouble just to have the computer say HELLO? Why should
you care about commands that let you clear the screen? Be patient.
These are building blocks for the rest of the book. Before you can do
anything more complicated, you will need to know how to type com
mands into your computer and how to interpret its responses. Once
you've passed this step, you'll be able to do many interesting things.

THE KEYBOARD -------------

The Atari computer's keyboard is shown in Figure 3.1. It looks
very much like a normal typewriter, with a few things added. The

28 THE AT A R I 800 XL: APR ACT I CA L G U IDE

letters are all in the same places, and only a few symbols have been
moved. You might notice a few unfamiliar keys at the left and right
sides of the keyboard, but for the most part, you can use it like a
typewriter.

Turn on your computer and your television set. If you are set up
correctly, your television screen will be dark blue, with the word
READY in the upper-left corner. If you can't get your screen to look
like this, reread the instructions in Chapter 1.

The small white box under the R in READY is called the cursor.
Whenever the computer accepts letters from the keyboard, it uses this
square to mark the spot where your next letter will be displayed. Type
a letter-anything you want. It will appear where the cursor is, and
the cursor will move to the right.

There are a few peculiarities of this keyboard that are worth noting.
First of all, there are keys for the numbers 0 and 1. If you are used to
a typewriter, you may be accustomed to using the letters 0 and L for
these digits. You can't do this on the computer: you must give it
numbers when it expects numbers.

Auto-repeat is another new feature . If you hold down any key more
than a second, it will start to repeat. You could, if you wanted, type a
string of Zs across the screen by merely holding down the Z key. The
repeating will stop when you release the key. The auto-repeat feature
is particularly useful with the space bar, at times when you want to
move to the middle of a line.

If you make a mistake as you are typing, you can correct it with the

~1 800XI

figure 3.1: The Atari 800XL keyboard.

THE KEYBOARD AND THE SCREEN 29

BACK SPACE key, at the upper-right corner of the keyboard. When
you press this key, the cursor backs up one space to the left and
deletes the letter in that space. You can then type the correct letter
and continue as if nothing had happened.

As you type, you will notice that all of your letters are capitalized.
The Atari computers can display lowercase letters, but in most cases,
they require that your commands be capitalized. Because of this, the
computer starts by using all caps .

If you want to type with lowercase letters, press the CAPS key, at
the far right edge of the keyboard. The computer now reads the let
ters you type as lowercase. As with a typewriter, you can capitalize
individual letters by pressing one of the SHIFT keys. To switch back
into uppercase, press the CAPS key again. (On the Atari 400 and
800, you have to press the SHIFT and CAPS keys together to return
to uppercase.) The SHIFT key does not "release" the CAPS lock, as
it would on a typewriter.

To type symbols found on the upper half of the nonletter keys, you
must use the SHIFT key, even when you have the CAPS lock on. These sym
bols include the exclamation point (!) and the quotation mark (").

You can use another special key to produce an interesting effect.
Atari computers have an inverse-video key, which changes the appear
ance of the letters you type on the screen. This key, which looks like a
square with a diagonal drawn through it (D), is located next to the
SHIFT key at the lower right of the keyboard on the Atari 600XL
and 800XL. On the discontinued Atari 1200XL, the inverse-video
key is next to the BREAK key on the row of silver keys along the top .
On the older Atari models 400 and 800, this key has the Atari logo
() on it, and is located next to the SHIFT at the lower right.

Try pressing the inverse-video key once. Then type some letters.
They will appear on the screen as blue letters in a white box, rather
than the standard white on blue. As you type, the white boxes join to
form a solid white background. Once you have selected this inverse
video mode, you can type as you would in the normal mode, and
switch between uppercase and lowercase in the usual way. To return
to typing white on blue, press the inverse-video key a second time.

Figure 3.2 shows the four different styles of text you can display,
using combinations of the inverse-video key and the CAPS key. The
first line was typed just as the computer was turned on. All of the
letters are capitalized and are displayed in normal video .. For the

30 THE A TAR I 8 0 0 XL: APR ACT I CAL G U IDE

are capitalized and are displayed in nonnal video. For the second line,
the CAPS key was pressed once. The isolated capital letters within the
line were produced with the SHIFT key. Before the third line, the
inverse-video and CAPS keys were pressed, to show how your text
would look if you turned the computer on and switched immediately to
inverse video. For the fourth line, the display was again put into lower
case with the CAPS key, but was left in inverse video.

Figure 3.2 also shows an important aspect of the Atari computer's
keyboard and screen. The fourth example is longer than the 38 char
acters that will fit on the line. Rather than go off the right edge of the
screen when a line is too long, the computer automatically drops
down to the next line and continues. This is a nice feature, since it
lets you type commands longer than a single line. At times, however,
this can be somewhat unsightly, since words might be cut in the
middle (like the word "low/er" in Figure 3.2) .

If you're accustomed to an electric typewriter, you might be
tempted to press the RETURN key at the end of a line you have
typed. On the computer, however, the RETURN key has a special

Figure 3.2: Lower-case and inverse-video text on the screen.

TH E KEYBOARD AND THE SCREEN 31

function: it enters the line as a command to the computer. So far,
you haven't learned any commands, so you shouldn't use this key.
If you do, your computer will print the word ERROR to show its
disapproval .

For right now, use the BREAK key instead of the RETURN key
to end each line. This tells the computer to drop down to the begin
ning of the next line on the screen, without responding to the line that
you have just typed. On most Atari computers, you will find the
BREAK key at the upper-right corner of the keyboard. On the Atari
1200XL, the Break key lies at the right end of the line of silver keys
along the top of the keyboard.

CONTROLLING THE CURSOR --------

You have seen that the letters you type are displayed on your televi
sion's screen. The letters appear from left to right, and the cursor slides
to the right in front of them, showing where you are on the screen.

You aren't locked into this left-to-right motion, however. You will
often want to use editing commands to control what happens on the
screen. With certain keys and key combinations, you can move
the cursor anywhere you choose on the screen, and even go back to
correct letters you have already typed.

As you remember, the cursor shows where the next letter you type
will be displayed. If you move the cursor to another place, you can
type your next letter there. If you then continue typing, the letters will
resume their left-to-right motion from the place you've moved to.

To move the cursor, you will need to use the CONTROL key,
located just above the SHIFT on the left side of the keyboard. The
CONTROL key has no meaning by itself, but is always used with
another key. To use one of these special commands, press and hold
the CONTROL key. As long as you hold it down, the computer will
interpret the rest of the keyboard as commands, rather than as letters.
To give the command, press the specific key that you want to use.

(If you press CONTROL with one of the letters of the alphabet,
the computer will display a special graphics character. These can be used
to create pictures on the screen, but are rather difficult to use. This
book will not treat the graphics characters, but you are free to experi
ment with them.)

32 THE ATARI 800XL: A PRACTICAL GUIDE

The most important of these special commands are the four arrow
keys located to the right of the letters on the keyboard. These arrows
move the cursor around the screen . The left arrow, for example, will
move it back one space; the down arrow will move it one line straight
down. When you move the cursor with the arrow keys, it passes over
letters you have typed without changing them; it merely highlights
them to show you where it is. You can move the cursor rapidly by
holding down the arrow key. If you try to move the cursor off the
edge of the screen, it will reappear on the other side .

The left arrow, located on the plus key, is the most useful of the
four. To use it, you must press the plus key, while holding the control
key down. Note that the plus key serves three different purposes.
Typed alone, it is a plus sign (+). Typed with the SHIFT key, it is a
backwards slash (\). Typed with the CONTROL key, as described
here, it tells the computer to move the cursor one space to the left.

The four arrow keys will enable you to move the cursor anywhere
on the screen. You could, for example, use the arrow keys to move to
the bottom of the screen and type a message there, as in Figure 3.3.

Figure 3.3: The arrow keys let you type on other parts of the screen.

THE KEYBOARD AND THE SCREEN 33

To see the arrow keys III action, type the following line on
the screen:

THIS LINE CONTAINS A MESTAKE

Press CONTROL and the left arrow key six times so that the cursor
is over the E. Then release the control key and type an 1. The I
replaces the E and corrects the misspelled word.

This sort of correction is very useful. Unless you are a perfect
typist, you will certainly make mistakes from time to time. You can, it
is true, retype the line from the beginning, but in most cases you will
find it easier to move the cursor back and just correct the error.

What if you leave a letter out? Suppose you have typed this
instead:

THIS LINE CONTAINS A MSTAKE

If you simply back up and type the missing I, it will appear on the
screen, but will replace a letter that you wanted. To avoid this, use
the INSERT command, located on the > key at the upper right
of the keyboard. Move the cursor back with the left-arrow key, until it
is over the S . Then hold the CONTROL key down and press
INSERT. The S and the letters following will move one space to the
right, opening up the space covered by the cursor. Now you can type
the I into that space, and the correction is complete. When you need
to insert more than one letter, press the INSERT key several times.

You have already used the DELETE/BACK SPACE key to erase
mistakes. This key, when used in combination with CONTROL or
SHIFT, has two other meanings as well, which allow you to delete
letters in other ways.

To remove extra letters from the middle of a line without leaving a
space, use DELETE/BACK SPACE with the CONTROL key. This
combination deletes the letter covered by the cursor and closes up
the space in the line. To see how this works, type yet another mis
spelled line:

THIS LINE CONTAINS A MISSTAKE

Now back the cursor up with CONTROL and the left-arrow key
until it is over one of the S's in MISSTAKE. Hold down the CON
TROL key and press DELETE. The extra S will disappear and the
"TAKE" will move over to fill in the space. Note the differences

34 THE ATARI 800XL: A PRACTICAL GU IDE

between this and the simple BACK SPACE command: BACK
SPACE would have moved the cursor back and deleted the letter to
the left, and would have left a space in the line.

If you use SHIFT rather than CONTROL with the DELETE/
BACK SPACE key, you will delete the entire line you are on. This is
very useful, if you need to clear unnecessary lines off the screen. You
must be very careful, however, not to delete an entire line with
SHIFT-DELETE when you meant to use CONTROL-DELETE or
a simple BACK SPACE.

To the other side of the INSERT key is a key marked CLEAR,
which lets you erase the entire screen. To use this function, hold down
the CONTROL key and press CLEAR. All the letters on the screen
will be erased, and the cursor will return to the upper left. You can
use this command to clear the slate anytime the screen has become
too cluttered for your taste . With some of the examples in this book, I
will ask you to type CONTROL-CLEAR before you give a com
mand. If you don't do this, you won't be able to make your screen
match the figures I describe .

Figure 3.4 reviews the six editing controls. Practice them as you
work through the pages that follow. You will soon find it easy to cor
rect mistakes anywhere on the screen.

We have now covered most of the important keys on the Atari key
board. We can use type text, move the cursor, and make corrections
on the screen, using the Atari editing keys . We have avoided one
key-RETURN-because it has a very special purpose. Let's turn to
it now.

KEY FUNCTION

BACK SPACE by itself Erases your last character, and
lets you type it over.

CONTROL + An arrow key Moves the cursor.

CONTROL + INSERT Adds a space in a line.
CONTROL +

DELETE/BACK SPACE Removes a space from a line.
SHIFT + DELETE/BACK SPACE Erases the entire line.
CONTROL + CLEAR Erases the entire screen.

Figure 3.4: The keys for editing the screen.

THE KEYBOARD AND THE SCREEN 35

RETURN AND THE ERROR MESSAGE -----

Type a line of text such as the first line of Figure 3.5. Then press
the RETURN key. You will get an ERROR message, as shown.

What is happening here? The RETURN key has a special func
tion. It tells the computer to take the line you have typed and read
it as a command. If it can understand the command, the computer
will follow it. If it cannot understand, the computer assumes you have
done something wrong, and prints an ERROR message.

You might object that your line made perfect sense. I agree, but the
machine does not. Computers require that you do things exactly the
way they want. Most English sentences do not fit within the com
puter's limited experience. Later in this chapter, you will learn some
commands that do mean something to the machine.

Don't be put off by the word ERROR. It is merely the computer's
way of saying it couldn't understand what you did. In this case, for
instance, we typed something that made perfect sense to us, but not to
the computer. The ERROR was its fault, not ours.

Figure 3.5: You get an ERROR if you type a line the computer can't understand
as a command.

36 THE A TAR I 800 XL: APR ACT I CAL G U IDE

ERRORs are part of the natural course of mastering your com
puter, and you shouldn't be ashamed if you get a few . Your computer
is very literal, and not at all forgiving. It will understand what you're
saying only if you put it in exactly the form it requires. If you miss by
even a comma, the computer will not understand you.

The computer will usually help you find your mistake by putting an
inverse-video box around the first letter it can't understand . Your mis
take will usually be to the left of this mark. At times, the computer
will display an error code such as this:

ERROR·· 3

If you get one of these codes, you can look it up in Appendix C of this
book. The code number 3 represents a valu£ error, which means you
probably used an illegal number somewhere in your command.

As you type the lines in this book, make sure that you copy them
exactly as they are printed, right down to the last quotation mark. If
you get an ERROR on any line you type, check it letter by letter
against what's printed here: you might have misspelled a word or lost
a punctuation mark.

Also, when you are typing a command line, make sure your com
puter is set for all capital letters, and is in its normal white-on-blue
display mode. If your letters are showing on the screen as lowercase
or inverse video, the computer will not be able to understand them in
a command . There is only one exception to this rule, and it is
discussed below. If you're not sure whether your computer is in the
proper mode for commands, press the RESET key or turn the power
off and back on.

YOUR FIRST COMMAND: PRINT------

So far, you have just been typing words and letters at various places
on the screen, using your computer like a memo pad. This is a good
way to learn about the keyboard, but it doesn't really help you control
your computer. To do that, you will need to use a command that the
computer can understand.

In this section, you will learn your first command : the PRINT
statement. This lets you display a string of letters, numbers, and even
the results of calculations on the screen. For right now, you will only
use it to have the computer retype words and phrases, but later, you

THE KEYBOARD AND THE SCREEN 37

will be able to use it in many different ways. By trying these simple
experiments with PRINT, you will also learn what a command is,
and how it affects the computer.

To give a command, you type a line on the screen and press the
RETURN key. The computer will then read the line you typed and
try to follow its instructions. If it can't make sense of the line, the
computer will give you an ERROR message .

Type the following line, just as it is:

PRINT "HELLO"

Then press the RETURN key. The computer should respond
HELLO, as shown in Figure 3.6. (If you get an ERROR message
when you press the RETURN key, you have probably made a typing
mistake. Check to make sure you spelled PRINT correctly and put
the quotation marks both before and after HELLO.)

You have typed your first command! The computer recognizes
PRINT as a keyword with a special meaning. When the computer sees
this word, it knows to search through the rest of the line and print

Figure 3.6: How the computer should react to your first command.

38 THE ATARI 800XL : A PRAC T I C AL G UIDE

the message enclosed in quotes. It finds the word HELLO, so that
is the message it displays. Note that the computer does not reproduce
the quotation marks: they are merely a sign that the word HELLO is
the message to be printed. After displaying the message, the computer
then adds the word READY, to show it has finished and can accept
another command .

The results may not be impressive, but you have made an im
portant step with your first command. You have asked the computer
to do something, in a way that it could understand . It read your
command and displayed the results on the screen . With this step, you
have begun to control your computer.

You can try many variations on this simple PRINT statement. You
can put anything you want between the quotation marks and it will
be printed exactly as you typed it. You can also use lowercase and
inverse-video letters within the quotation marks (but nowhere else in
the command). Also, any spaces you include between the quotes will
be included in the message the computer prints. Figure 3.7 shows
some of the things you can do.

Figure 3.7: Some examples of the PRINT statement.

THE KEYBOARD AND THE SCREEN 39

As you retype your variations on the basic PRINT statement, you
can practice your editing skills. Use CONTROL-t to move the cursor
up to one of the PRINT statements on the screen. Change or add
something inside the quotation marks, then press RETURN. Your
edited statement will be run again, and the computer will print the
new text over the old one.

This illustrates a useful aspect of your computer's screen display.
Any line that is still on the screen is "live" and can be used again. All
you need to do is move the cursor back to the line you want to reuse,
make your change, and press RETURN-the cursor may be any
where on the line. The computer will run the line again exactly as it
appears on the screen. Any changes you have made will be carried
into effect.

This is especially useful if you get an ERROR on a long com
mand. Instead of typing it all over again, move the cursor back up
and correct the mistake in the line . You can then press RETURN
and reuse the line.

The fourth PRINT statement in Figure 3.7 runs across more than
one line. That is fine, as long as you type the entire command as a
unit, without pressing BREAK or RETURN. If you haven't finished
your message when the cursor reaches the edge of the screen, just
keep typing: the computer automatically goes onto the next line
down. You can type commands as long as three full lines of text. The
computer will warn you with a beep when you approach the limit.

The last line of Figure 3.7 shows an important use of the PRINT
command. If you type PRINT, but do not give any message, the
computer will print a blank line on the screen (actually two, if you
count the one that automatically appears above the word READY).

It is possible to give more than one command at a time. Instead of
pressing RETURN at the end of the first command, type a colon (:).
Then type your second command. In this way, you can add as many
commands as will fit within the limit of three lines on the screen.
When you're done, press RETURN and all of the commands will be
carried out in sequence.

Figure 3.8 shows how you can use blank lines and multiple state
ments together to improve the appearance of your screen display. The
command begins with three simple PRINT statements, with no mes
sage, to put three blank lines on the screen. The fourth PRINT in the
command has a message, which begins with twelve spaces so that it

40 THE ATARI 800XL: A PRACTICAL GUIDE

will be centered on the screen. A fifth PRINT adds a second line,
starting five spaces in from the left . A final PRINT puts an extra
blank line on the screen between the message and the word READY
that will appear.

The PRINT statement is one of the most important commands
you will learn. No matter how deeply you explore your computer, you
will always need to display the results on the screen. With the PRINT
statement, you can do this in any way you wish.

THE ESC KEY --------------

The way we have been doing things, the screen remains cluttered
with your PRINT statement when your message is displayed . Sup
pose you want to have only your message left on the screen when
you're done . You might be tempted to type the CONTROL-CLEAR
function as part of your message, something like this:

PRINT "{CONTROL-CLEAR} HELLO"

Figure 3.8: Blank lines and multiple PRINT statements can make your screen
more readable.

THE KEYBOARD AND THE SCREEN 41

Unfortunately, this doesn't work. The computer will clear the screen as
soon as you press CONTROL-CLEAR, and you will never get a
chance to complete the command with the message HELLO.

What we want is a way to store the CONTROL-CLEAR function
as part of the printed message. If you could do this, you could have
the computer wait to clear the screen until you have finished typing
the command. Then, when you finally press the RETURN key, it
would use the stored CONTROL-CLEAR function just before
it actually displays the message .

To do this, you can use the ESC key, located in the upper-left comer
of the keyboard. ESC stands for "escape," and is used to delay the
effect of the next control character you type in a PRINT statement.

Let's try using the ESC key to PRINT the word HELLO on a
blank screen . Type the word PRINT and an opening quotation
mark. Then press the ESC key once. It will look as if nothing has
happened, since the ESC key itself is not displayed. Now press
CONTROL-CLEAR. Instead of erasing the screen immediately, the
computer will display a curved arrow in a white box. This symbol
shows that CONTROL-CLEAR has been stored as part of the line,
to be used when the message is displayed. Finish typing the message
with the word HELLO and the closing quote, so that your command
looks like Figure 3.9.

Now press the RETURN key. The computer will print the message
HELLO, but before it does, it will clear the screen. Figure 3.10 shows
the result. This greeting is much more readable than Figure 3.6, in
which the PRINT statement was left on the screen.

CONTROL-CLEAR has actually become a character that is part
of the message . When the computer PRINTs the stored character, it
acts as if you had just typed it at the point where it appears in the
message . . Any words you included in the message after the
CONTROL-CLEAR will be printed after the screen is cleared,
not before.

Note that you have to type the ESC-CONTROL-CLEAR as part
of the message enclosed within the quotation marks. If you put the
ESC-CONTROL-CLEAR anywhere outside the quotes, you will get
an ERROR.

The ESC key can be used to delay the effect of any CONTROL
key in a PRINT command. By storing combinations of the four
arrow keys, for instance , you can have the computer position text

42 THE ATARI 800XL: A PRACTICAL GU ID E

anywhere on the screen. Each time the computer encounters a stored
arrow key, it will move a space in that direction before it continues to
print the line.

Figure 3.11 shows an example that stores the down arrow in this
way. Type the PRINT statement exactly as it is shown at the top of
the screen. Wherever you see the .J, symbol, type ESC and then
CONTROL-.J,.

When you press the RETURN key at the end of the line, the com
puter will print the message within the quotation marks, exactly as
you stored it . The first thing it sees is the stored down arrow. This
causes it to drop down a line before it displays the word UPPER.
After that, it encounters two more down arrows. These cause the
computer to drop two lines further down before it prints the word
LOWER. You could have achieved the same effect by using four sep
arate PRINT statements, but it would have been much more compli
cated. These ESC and CONTROL characters let you position your
messages much more easily.

Figure 3.9: Use the ESC key to store a control character in a line you're printing.

THE K E YBOARD AND THE SCREEN 43

THE SPECIAL FUNCTION KEYS --------

You might be wondering about the special keys such as START,
OPTION, SELECT, and HELP On the Atari 600XL and 800XL,
these are square silver buttons to the right of the keyboard. On the
Atari 1200XL, these keys are spread across the silver strip just above
the keyboard. On the older Atari 400 and 800 computers, the special
keys are large yellow buttons along the right side of the keyboard.

Unless you become an advanced programmer, you will use these
keys only when you are running programs you buy in the store.
Many of Atari's games use the START, OPTION, and SELECT
keys as one-button commands to replay, change the level of difficulty,
or change the style of play. You will also use the OPTION key if you
need to disable the BASIC language as you load certain diskette pro
grams. While it is possible to incorporate these keys into programs
you write , the procedure is too technical for this book.

HELP is a new key that Atari added when it redesigned its line of

Figure 3.10: ESC-CONTROL-CLEAR gives you a clean screen before you PRINI

44 THE AT A R I 800 XL: APR ACT I CAL G U IDE

computers. At the moment, few programs are available that use this
key, but some are being planned.

The discontinued Atari 1200XL computer also had four program
mable function keys) labeled F 1 through F 4. These could be programmed
in the same way as the START, OPTION, and SELECT keys, but
the subject is, once again, rather technical.

The RESET key is the last of this group. Chapter 1 mentioned this
key as a kind of panic button that lets you regain control of your com
puter when you don't know what it is doing. When you press the
RESET key, the computer stops whatever it was doing and switches
itself back to the state it was in when you first turned on the power.

As a "start-over" function, the RESET key is very useful. In the
following chapters, we will often do things that alter the screen display
or put the computer into strange modes. Rather than worry about
giving commands to make the computer return to its accustomed
manners, it is often easier to press the RESET key. The screen will
revert to its familiar blue, and READY will appear in the corner.

Figure 3.11: By storing down arrows in a PRINT statement, you can display text
on more than one line.

THE KEYBOARD AND THE SCREEN 45

RESET, however, is a rather drastic step. It stops everything and
cancels many of the things you have done. That may be what you
wanted, but you should be sure before you press it. Be especially care
ful when you have a program stored in the computer's memory: the
RESET key can erase parts of long programs.

OPTIONAL EXERCISES -----------

Now that you have finished this introduction to your computer's
keyboard and screen, you might want to try your own hand at some
exercises. These are optional, food for thought and avenues for further
exploration . I hope you'll try them, but you won't need to have done
them to read further in this book. Answers are provided after the
Appendices in the back of this book.

1. Use the arrow keys to type block letters made up of aster
isks (*) on the screen. Move the cursor around and put
asterisks in the places where you want them to go. Remem
ber to use only the arrow keys as you do this: you will spoil
your picture with an ERROR if you press RETURN.

2. On page 39, we saw a way to put more than one PRINT
statement in a single command, separated by colons (:).
Use three PRINT statements to produce the following
message:

ONE

TWO
THREE

Can you achieve a similar result in a single PRINT state
ment, using ESC and the arrow keys?

3. Replace the down arrows in Figure 3 .11 with up arrows.
What happens when you press RETURN? Why does the
computer print the word READY right on top of the
statement?

SUMMARY ----------------

The keyboard and the screen work together. With the keyboard,
you can type letters and numbers that appear directly on the screen .

46 THE ATARI BOOXL : A PRACTICAL GUIDE

You can also type CONTROL characters that move the cursor or
change the screen. You can use these CONTROL keys to edit the
lines you have typed, to insert and delete characters, or to clear
the screen.

With the PRINT statement, you can ask the computer to display
messages on the screen. You can even store control characters in the
message, using the ESC key, so that the computer will clear the screen
before printing your message , or move the message elsewhere on
the screen.

You have covered a lot of ground in this chapter. You have learned
everything you need to know to use your computer's keyboard, and
you know how the computer controls the screen. Most important, you
have given your first command, and the computer gave its response.
In the pages ahead, we will cover many other commands that will
increase your control of your computer.

~ CHAPTER FOUR-------------------------
Atari

Graphics

If you have played Pac-Man or any other video game, you know
that your computer can display more than just letters and numbers on
your television screen. It can draw very colorful pictures, with impres
sive animation effects.

In this chapter, you will learn about your computer's graphic dis
play system. You will learn how to use coordinates, and how to plot
points on the screen. With a few simple commands, you will be able
to display letters, choose colors, and draw pictures.

The Atari computer has 16 different modes for displaying text and
graphics . This chapter gives an overview of all of them, then covers
two in detail. The other modes will be discussed in Chapter 8.

Graphics are one of the most appealing features of your Atari com
puter. I hope you will enjoy them.

WHAT ARE GRAPHICS? -------------------

The word graphics refers to any type of display you can put on the
screen other than plain text. This could mean a picture, such as a box
or a cube. It could be a bar or line graph, such as those used to show
the state of the economy. Or it could be an animated game, such as
Pac-Man.

Of the computer's 16 graphics modes, 5 are called text modes,
because they are used to type letters rather than draw lines. You have
already seen one kind of text, the letters you have been typing on the
screen. The other four text modes shape their letters in different ways
and let you control the colors of individual letters. Using these other

48 THE A TAR I 8 0 0 XL: APR ACT I CAL G U ID E

text modes is somewhat complicated, however, so I will not describe
them until Chapter 8.

The other eleven are true graphics modes. All of them work on the
same principle : you can plot points individually or draw lines in any
direction across the screen. The modes differ in the number of colors,
and in the degree of detail, or resolution, available to you .

Why all these modes? Atari has realized that you will want to have
different features for different tasks. For a bar graph, you will want to
have thick lines, with relatively little detail . For an intricate picture,
you will want to draw with fine lines, and show lots of detail. By
choosing different graphics modes, you can get just the amount of
detail you want.

Another reason for having different modes involves the computer's
memory. When you ask the computer to use very high resolution and
many colors, it will need a lot of its memory to store the picture. If
you have an Atari 800XL, this is no great problem: even at the high
est resolution, the picture will use only a fraction of the memory.
However, if you have an Atari 600XL or one of the older models,
high-resolution graphics will use up more than half of the available
space . This might cause problems if you are writing a complicated
program . (With the programs in this book, however, you don't need
to worry about memory space. All of the programs have been tested
on an Atari 600XL, and they all work without any alterations.)

So, your Atari computer lets you choose exactly the combination of
features you need . If you need four colors and high resolution, you
can choose that. If you don't, you can save memory space by choos
ing one of the modes with less detail or fewer colors.

For simplicity, this chapter will cover only two of the sixteen modes
available. The first is the normal text mode, which you have already
been using. The other is mode 7, jour-color graphics, which lets you plot
detailed pictures on the screen.

These are the most important of the sixteen modes, and they will
serve well for everything in this book. Chapter 8 discusses the other
modes, and gives some examples of what you can do with them.

TEXT: GRAPHICS 0 ------------

This is the mode you've been using so far. When you turn the com
puter on, it is automatically set up for this kind of text, so you don't

A TAR I G RAP HIe s 49

need to do anything special. At other times, however, you may want
to switch back into normal text from another graphics mode, so you
should know how to do it.

You switch graphics modes by typing the word GRAPHICS, fol
lowed by the number of the mode. The normal text mode is number
0, so you would type this:

GRAPHICS 0

Like the PRINT statement, this is a command, so you'll need to
press RETURN after you've finished. If you do this now, the screen
will just flash and say READY again: you're just switching from
mode 0 to mode O. Later on, you will type this when you want to get
out of the other graphics modes and return to plain text.

Let's start by reviewing what we know about the text mode:

• With the PRINT statement, we can ask the computer to
display any message we put within quotation marks.
Unless we tell it to do something different, the computer
will display the message on the next line after the PRINT
command on the screen.

• By typing ESC-CONTROL-CLEAR at the beginning of
the text within the quotation marks of the PRINT stat{:
ment, we can have the computer clear the screen before it
displays the message.

• By typing ESC, CONTROL, and an arrow key within
the PRINT statement message, we can ask the computer
to move to another part of the screen before it types the
message. It is also possible to space downward by
PRINTing blank lines, but this is rather cumbersome.

THE POSITION STATEMENT ---------

With the commands you have already learned, you can display a
message anywhere you choose on the screen . You have probably
found it rather difficult to do this, though, because you had to use
repeated ESC and CONTROL key combinations to move around
the screen. For this reason, Atari has given you another command:
the POSITION statement. This lets you move directly to any place
on the screen, before you start to PRINT your text.

50 THE A TAR I BOO XL: APR ACT I CAL G U IDE

When you use the POSITION statement, you name the row and
column you want to move to. The computer thinks of the screen as a
grid 40 columns wide and 24 rows high, as shown in Figure 4.1. Each
row and column is given a number. The columns are numbered 0 to
39, from left to right, and the rows are numbered 0 to 23, from top
to bottom.

With this numbering system, you can name any point in the grid
with a pair of numbers . With the first number, you choose the
column, to tell the computer how far to move in from the left edge of
the screen. With the second number, you pick the row, to say how far
you want to go down from the top of the screen . The point you
choose will be the box where that row and that column meet.

These two numbers are called the point's coordinates. The first num
ber always names the column, or the distance over from the left. This
number is often called the x-coordinate. The second number always rep
resents the row, or the distance down from the top; it is called the
y-coordinate. Programs in this book will often use the letters X and Y to
refer to horizontal and vertical locations. You can think of the pair of
numbers as "X spaces over and Y spaces down."

Figure 4.2 shows the coordinates of some points on the screen. The
square in the upper-left corner is always 0,0-0 spaces over and 0

Row 0 -...

Row 23 -...

Column 0

+
Column 39

+

Figure 4.1: The Atari computer lays its screen out like a grid.

ATARI GRAPHICS 51

spaces down. This is true in the numbering system of every Atari
graphics mode. For the box at the upper-right corner, you need to
count all the way over to the 39th column from the left. Thus, the x
coordinate of this point is 39. The y-coordinate remains 0, because
you didn't move any spaces down. We therefore write '39,0', mean
ing "39 over and ° down." For the point at the lower-left corner, you
move ° spaces over and 23 spaces down, so its coordinates are 0,23.
To reach the point at the lower right, you move all the way over and
all the way down; its coordinates are therefore 39,23 .

To name the point in the center of the screen, we need to do some
figuring. For the x-coordinate, we need to choose a number roughly
halfway between ° and 39. This could be either 19 or 20, but we'll
choose 19 so that we don't crowd the right-hand side of the screen.
Likewise, we need a value about halfway down the vertical scale of ° to 23, so we'll choose 11. These coordinates (19,11) select the
box shown in the middle of Figure 4.2: it is 19 spaces over and 11
spaces down.

The POSITION statement lets you move to any coordinates on the
screen. If you follow this with a PRINT command, the message will
start at the point you have moved to.

If the coordinates happen to be on a line that already contains text,

0,0 39,0
L

h r
0,23 39,23

Figure 4.2: Some sample coordinates in the GRAPHICS 0 (text) mode.

52 THE ATARI 800XL: A PRACTICAL GUIDE

the new message will be printed on top of what is already there . Since
that may be hard to read, it is often best to press CONTROLI
CLEAR before you give a POSITION command. If you don't do this,
you may not be able to see what the particular command has done,
and your television screen will not match the figures in this book.

Now that you understand coordinates, the POSITION statement
is very simple. To move to the point in the center of the screen,
simply type:

POSITION 19,11

If you press RETURN now, the computer will move the cursor to
these coordinates . But since you didn't give it anything to PRINT at
that point, it immediately moves on and displays the READY mes
sage on the following line. The cursor then appears below that to
await your next entry. Now clear the screen and type :

POSITION 19,11: PRINT "CENTER"

Then press RETURN, and your screen should look like Figure 4.3.
The displayed word appears a little to the right of center on the

screen. This is because the POSITION statement sets the place only
for the beginning of the word. The C in CENTER appears in the box
(19,11); the word, however, continues on to the right. To place the
word exactly in the center of the screen, you would need to start it
two or three spaces to the left. Try other coordinates in the POSI
TIoN statement to center the word more exactly.

You will discover an important fact about the screen display if you
type the following line and press RETURN:

POSITION 20,0: PRINT " LEFT MARGIN"

The message will appear at the bottom of the screen, two spaces to the
left of the normal left margin. Unless you specifically ask the com
puter to POSITION a message in columns 0 or 1, your typed lines
will always start in column 2. If you want to align your message with
the word READY, POSITION it in column 2.

In using the POSITION statement, you may occasionally get the
message

ERROR-- 141

ATARI GRAPHICS 53

If you look up this error code in Appendix C, you will see that this
means "Cursor out of range.» This means that you tried to move to a
point that was off the screen-one of your coordinates was too large.
Remember, the maximums for the X and Y coordinates are 39 and
23, respectively. When you get an ERROR, just CLEAR the screen
and start over.

Experiment with the POSITION statement and the layout of the
coordinates. You will find it useful to think in terms of coordinates as
you start to use graphics. While the numbers of rows and columns
are different in the other graphics modes, the basic idea remains
the same.

FOUR-COLOR DRAWING: GRAPHICS 7----

So far, we've only been working with letters. Now we're going to
do some real graphics, drawing pictures on the screen. In the remain
der of this chapter, you will learn how to plot points, draw lines, and
make pictures on the screen.

Figure 4.3: Use the POSITION statement to display messages where you want
them on the screen.

54 THE AT A R I 8 0 0 XL: APR ACT I CAL G U IDE

To draw pictures, we will be using graphics mode 7, one of the four
color graphics modes. Don't worry about the modes that come between
o and 7: we'll talk about them later.

To get into four-color graphics, type

GRAPHICS 7

and press RETURN. The top part of the screen will turn black and
the word READY will appear at the bottom.

The black part of the screen is devoted to the graphic designs you
are about to draw. You cannot move the cursor into this region, and
you cannot PRINT messages there, but you can use it to draw pic
tures using points and lines . This region is called the graphics screen.

The graphics do not reach all the way to the bottom of the screen,
because the computer has to leave you some room to enter commands
and PRINT messages. These bottom four lines, where the words
remain, are called the text window. In Chapter 8, you will learn a way to
extend the graphics down into this part of the screen as well . For now,
however, you'll need the text window to keep track of what you type.

There may be times as you use this book when you will want to see
more text than can fit in the text window. Especially in the program
ming chapters, you may often want to look at an extended text that is
much too long for these four lines. When this happens, press RESET
or type a GRAPHICS 0 command to return to the normal text mode.
Then you can display the extended text on a full screen once again.

Your computer gives you four paintbrushes in this mode, one for each
color. Three of the four are drawing colors (orange, green, and blue),
while the fourth is an erasebrush) which you will use to clear points from
the screen. The erasebrush is actually a black paintbrush, drawing
with the background color: when you paint a point black, it disap
pears. It is possible to change the brushes to colors other than orange,

PAINTBRUSH NUMBER PRESET COLOR

COLOR 1 Orange
COLOR 2 Green
COLOR 3 Blue
COLOR 0 Erase (= black background)

figure 4.4: The colors of the four paintbrushes.

ATARI GRAPHICS 55

green, blue, and black, but for the moment these will suffice.
Before you start drawing, you must choose which of the paint

brushes you wish to use . You do this by giving a COLOR command,
such as:

COLOR 1

This chooses paintbrush number 1, which is preset to orange. Figure
4.4 shows the colors of each of the paintbrushes.

Figure 4.5 shows the layout of the four-color graphics screen. The
top part of the screen is divided into a fine grid 160 dots wide and 80
dots high. You can refer to any dot on this grid by naming a pair of
numbers as coordinates . The graphics coordinates follow the same
system as the coordinates in the text mode, except that there are more
rows and columns. In this mode, the x-coordinate runs from 0 to 159
and the y-coordinate from 0 to 79 . Figure 4.5 shows the coordinates
you would use to plot the points in each comer of the graphics screen.

You can display either points or lines on the graphics screen, using
two commands. With PLOT, you can light up a single point on the
graphics screen. With DRAWTO, you can display a straight line
between two points.

0,0 f.J L 159,0

Graphics Screen

0,79 h I 159,79

Text Window

Figure 4.5: The layout of the four -color graphics screen.

56 THE ATARI BOOXL : A PRACTI C AL GUIDE

Generally, you will want to PLOT a point first. To do this, choose
the orange paintbrush, by typing

COLOR 1

Then type a line such as this :

PLOT 10,20

A pinpoint of light should appear in the upper-left corner of the
screen. If it didn't, check to make sure you have given the command
GRAPHICS 7, and that you have given a COLOR command to
choose a paintbrush. Also, make sure that your television is tuned
well enough that you can see this small point: it ' s finer than a period .

The '10,20' in the PLOT statement named the coordinates of the
point: 10 units over from the left, 20 units down from the top. These
are relatively small movements on the 160 x 80-square grid of the
graphics coordinates; if you want to see how small, PLOT the point
0,0. Note that this would have been quite a large distance in the nor
mal text mode. Graphics grids tend to be finer than text grids.

You can PLOT as many points as you wish on the screen. Try a
few, to get a feel for the graphics coordinates. Each PLOT command
will result in another single point, provided you didn't exceed the
limits (159 for the x-coordinate, 79 for the y). If you do give a bad
number, you will get an error message, but you can continue typing.

With the PLOT command, you only get disconnected points. If
you want lines, you 'll need to use the DRAWTO command. As its
name suggests, DRAWTO connects a line from the place where you
were, to the point you name as your destination. Try the follow
ing command:

DRAWTO 159,79

An orange line will be drawn from the last point you plotted to the
lower-right corner of the screen. Depending on the angle from the last
point you plotted, the line may not look exactly continuous. This
"staircase effect" is caused by the limited resolution of a television's
screen and of the particular graphics mode you are using. Also, the
line may not be particularly orange, depending on the angle at which
you drew it. Vertical lines on the Atari tend to look pale or purplish,
compared to the fuller colors of horizontal lines.

PLOT and DRAWTO work hand in hand. To draw a line, you

ATARI GRAPHICS 57

will generally first use a PLOT command to display the starting point
of the line. Then, you'll use a DRAWTO command to draw the line
to its end{ng point . If you start right off with a DRAWTO command,
without first plotting a starting point, the computer will start the line
from the coordinates last used.

As an example, let's draw a horizontal line across the screen. Type
the following two commands:

PLOT 0,20
DRAWTO 159,20

After the first command, a point will appear a third of the way down
the left edge of the screen. With the second command, your computer
will draw a straight orange line across to the right side.

Suppose you want to draw a green line just below this. You will
need to change to paintbrush 2, then draw the other line. The follow
ing three commands will do this :

COLOR 2
PLOT 0,30
DRAWTO 159,30

Note that the Y (vertical) coordinate has been changed to move the line
further down. How would you plot a blue line just below the green?

If you give another DRAWTO command, the computer will con
tinue the new line from the endpoint of the last one. A series of
DRAWTO commands is like drawing a number of straight lines on a
paper without lifting your pencil. There is no need to give a new
PLOT command to start each new segment. If, on the other hand,
you want to lift your paintbrush and start a new line not connected to
the rest, you will need to PLOT the starting point of the new line.
Think of it this way: DRAWTO traces a line from your present posi
tion to your next point, while PLOT moves the paintbrush without
tracing a line.

To see these concepts in action, let's draw the box shown in Figure
4.6. Start by clearing the screen and choosing paintbrush 1, with
the lines:

GRAPHICS 7

COLOR 1

58 THE A TAR I 800 XL: APR ACT I CAL G U ID E

Then give the following five commands:

PLOT 10,10
DRAWTO 70,10

DRAWTO 70,70

DRAWTO 10,70
DRAWTO 10,10

With the PLOT command, a small point will appear near the upper
left corner of the screen. Each DRAWTO command adds an edge of
the box, until the final one brings the paintbrush back to the starting
point. Since the four sides of the box are connected, you didn't need
to lift the brush with a PLOT command.

There are several ways you can erase portions of your screen. The
simplest is to use the erasebrush, paintbrush 0, by typing

COLOR 0

When you do this, your PLOT and DRAWTO commands become

Figure 4.6: Drawing a box on the screen.

ATARI GRAPHICS 59

erase commands, until you choose another paintbrush. Try typing the
following lines:

COLOR 0
PLOT 10,10
DRAWTO 70,1 0

The top of the box should disappear. (If it doesn't, you probably mis
typed one of the coordinates. Try retyping the last two examples.)

If you want to erase the whole screen, however, the best thing to do
is to type

GRAPHICS 7

This resets the screen and lets you start all over. You may need to
type COLOR 1 again before you can start painting.

That brings us to the end of our introduction to Atari graphics.
There is much more that you can do with your computer's graphics;
we have only scratched the surface . Chapter 8 of this book describes
briefly how you can use the 14 other graphics modes to produce
varied effects. It will describe modes which allow you to use as many
as 16 colors on the screen at once . It will explain high-resolution graphics,
a one-color mode that lets you plot finer points than you can with
four-color graphics. Finally, it will cover the special-text modes, which
give you other ways to print text, including color. But this is enough
for now.

OPTIONAL EXERCISES -----------

1. Using three POSITION and three PRINT statements in
one long command, display your name in three places on
the screen. Try to picture where the words will appear
before you press RETURN.

2. Rerun the commands you used to draw the orange box in
Figure 4.6. Then give a second series of commands, to
draw a blue box inside the first one.

SUMMARY ---------------

In the first three chapters of this book, you have found out how to
set up your computer and how to use it with commercial software

60 THE ATARI 8 00XL : A PRACTI C AL G UIDE

packages . You then learned to give the computer a command of your
own, which made it PRINT a message on the screen.

In this chapter, you have learned the essentials of your computer's
graphics system. You used coordinates in the POSITION statement to
place text messages where you wanted them on the screen. Then, you
learned to display points and lines in the four-color graphics mode . All
of these commands will be useful to you in the pages ahead.

The main thing you lack now is a way to save your commands.
The procedure for drawing a box, for instance, took seven separate
commands, each of which had to be entered from the keyboard. Sup
pose you wanted to draw the box again. You would have to go
through those seven steps all over again.

There is an easier way, and that is the subject of Section Two.

Section 2
Programming

~ CHAPTER FIVE --------------

Writing
a Program

In Section One of this book, you have seen some of the things you
can do with your computer. You have learned how to give commands
that print messages and draw simple pictures. As you gave your com
mands, the computer immediately put them into action.

There has been one great limitation, however. You have had to
type every command in from the keyboard. If you made a small mis
take in a series of commands, you have had to clear the screen and
start over from the beginning. Also, if you wanted to repeat a certain
task (such as drawing a box), you have had to retype the whole series
of commands every time. Because of this, you have been limited to
very short procedures.

With a program, you can store a series of commands in the com
puter's memory, then run them all as a group. When so instructed,
the computer reacts to the commands as if you had just typed them in
from the keyboard. And when the computer has finished, the com
mands are still stored, ready to be reused. If one of the steps was
wrong, or if you want to try a variation, you are free to alter the pro
gram and run it again.

Because programs let you design a procedure and reuse it many
times, they make it practical to do more complicated tasks on your
computer. If you were restricted to typing your commands one by
one, you would never want to try anything much more complex than

PRINT "HELLO"

With stored programs, you can easily combine many commands into
powerful procedures that you can use over and over. Many people
create programs involving hundreds of stored commands.

64 THE A TAR I BOO XL: APR ACT I CAL G U IDE

As you will discover in future chapters, programs also give you new
kinds of control over what your computer is doing. In a program, you
can store words and numbers as you go along, and perform calcula
tions. You can take a group of commands and run them over and over
in a loop, or have your computer do something only if a certain condi
tion is fulfilled. With these tools, you will be able to direct your com
puter to perform complex tasks, then sit back while it does the work.

This chapter will show you how to store a program in the com
puter's memory and how to run it. It will give a few short examples
to get you started.

In learning to write programs, you will be mastering a programming
language. Computer designers long ago realized that their machines
were too literal to understand complex English sentences, which are
often full of ambiguity. Instead, they decided to make up a system of
commands which are easy to learn yet specific enough for the com
puter to understand.

With your Atari computer, you will be using Atari's version of a
language called BASIC. This stands for "Beginners' All-purpose
Symbolic Instruction Code" -if you can believe that. As its name
implies, BASIC is easy to learn and simple to use; because of this, it
has become the most popular language for small computers such as
the Atari 600XL and 800XL. You have already been using some
commands from the Atari BASIC language (including PRINT,
GRAPHICS, and COLOR). You will now be able to use these and
other commands in the programs that you write.

Let's see how it's done.

STORING YOUR PROGRAM --------

Your program consists of a series of commands, stored in the com
puter's memory. When you are ready to use the stored commands,
you tell the computer to RUN the program. It then carries them out
one after the other.

Before you do anything else, press RESET on your computer and
type the word

NEW

W R ITI NG A PROGRAM 65

When you press the RETURN key, the computer will clear everything
from its memory and give you a clean slate to type your program.

You should give this NEW command every time you begin a new
program, even when you have RESET the machine. If you don't,
there may be program lines left in the computer's memory from some
other task. If you leave these lines in the memory, they may slip into
the program you are typing and disrupt it. You should make the
NEW command a habit.

You can store any Atari command as a line in a program, just by
placing a number in front of it. This is called a statement number, and it
serves as a signal that you want the computer to store the command
rather than to put it into immediate action.

Back in Chapter 3, you typed your first command from the key
board:

PRINT "HELLO"

When you pressed RETURN, the computer immediately did as it
was told, and displayed the word HELLO on the screen. Now let's
try a small variation. Type the following line:

10 PRINT "HELLO"

When you press RETURN, nothing seems to happen . The number
10 before the word PRINT told the computer just to store the line in
its memory. There is nothing special about the number 10; we could
have used any number.

You can check to see that the line is stored by typing another
command:

LIST

This tells the computer to display all of the lines it has in its memory.
In this case, there is only line number 10.

Now let's ask the computer to carry out the stored command. To
do this, type the word

RUN

and press RETURN. You get the same result as you did when you
typed the command without a number: the computer prints the word
HELLO on the screen. The action is delayed, however, until you give
the RUN command.

66 THE A TAR I 8 0 0 XL: APR ACT I CAL G U IDE

If you type RUN a second time, the computer will repeat the word
HELLO. You can do this as many times as you like: your command
remains stored in the computer's memory until you turn the power
off or type NEW to clear the memory.

To add a second line to your program, just type another command
with a different number in front of it. Again, this could be any num
ber, but since we used 10 as our statement number for our first com
mand, let's use 20 for the second:

20 PRINT "HELLO AGAIN"

When you press RETURN, the second statement will be stored in
the memory along with the first.

You can see how your program now looks by typing LIST. Your
computer will respond by typing all of the statements it has stored:

10 PRINT " HELLO"
20 PRINT " HELLO AGAIN"

Each statement is stored as a unit . The computer keeps . them in the
order determined by the statement numbers, regardless of the order
in which you typed them.

You now have two program lines in the computer's memory. What
will happen when you type RUN? The computer will search through
its memory and follow the stored commands in sequence. After it has
finished, it will drop down and say READY once again. The result
will look like this:

HELLO
HELLO AGAIN

READY

You can add statements anywhere you want to in your program.
Suppose we wanted a message between the two lines. All we have to
do is type a command with a statement number between 10 and 20,
and it will be filed in the proper place. We might, for example, choose
the number 15:

15 PRINT "GOODBYE"

WRITING A PROGRAM 67

If you LIST the program, you can see that the new statement has
taken its place between the other two:

10 PRINT "HELLO"
15 PRINT "GOODBYE"
20 PRINT "HELLO AGAIN"

RUN the program. The new command will be carried out in the
order of its statement number:

HELLO
GOODBYE
HELLO AGAIN

READY

You can choose any number from ° to 32767 for your statement
numbers. You would do best, however, to use multiples of ten (10, 20,
30, etc.). This gives an ordered appearance to your program, and
leaves plenty of room for insertions.

To delete a line, just type the statement number followed by noth
ing. Suppose you want to eliminate the last line, HELLO AGAIN.
Just type

20

and press RETURN. The statement numbered 20 will now be erased
from the computer's memory, as you can tell by LISTing the pro
gram once again:

10 PRINT "HELLO"
15 PRINT "GOODBYE"

If you now RUN the program, the computer will use only the state
ments that remain:

HELLO
GOODBYE

READY

If you want to change a line, type a new version using the same
statement number:

10 PRINT "HELLO THERE"

68 THE ATARI 800XL: A PRACTICAL GUIDE

When you press RETURN, this line will replace the old version of
statement number 10. Your program will now look like this:

10 PRINT "HELLO THERE"
15 PRINT "GOODBYE"

It is important to remember that you can use each statement number
only once. If you duplicate a number, your new statement will replace
the previous one.

If you only want to make a minor change in a program line, you
can use the editing functions you learned in Chapter 3. As you may
recall, you can change any command that you can see on the screen.
You merely move the cursor to it, make your correction, and press
RETURN to enter the new version into the computer's memory.

You can only edit statements that are displayed on the screen.
What if you want to change a line that is not currently displayed? You
could LIST the whole program again, but it is simpler to display just
the line you want to change. You can LIST a particular line with a
command like this:

LIST 15

Only line 15 will be displayed:

15 PRINT "GOODBYE"

Suppose you want to insert an exclamation after GOODBYE.
Move the cursor until it is covering the second quotation mark, as
shown in Figure 5.1. Now press CONTROL and the INSERT key
to open up a space in the line between the word GOODBYE and the
quotation mark. Then type an exclamation point, and you will have
the line the way you want it. (Review Chapter 3 if you are confused
by these editing commands.)

You have corrected the line, but it is not yet stored in the com
puter's memory. To store it, press the RETURN key: the corrected
line will replace the previous version and become part of the program.
As far as the computer is concerned, you do the same thing by editing
a line as you would by typing it in from the beginning. The computer
doesn't care whether you retyped the entire line or simply changed a
character in a line that it had LISTed. No matter how the line got on
the screen, the computer takes it and stores it as part of the program.

W R ITI N G A PROGRAM 69

Use LIST to make sure your change has been incorporated:

10 PRINT "HELLO THERE"
15 PRINT "GOODBYE!"

Sometimes you will want to type a command such as RUN or
LIST when your cursor is not on a blank line . You can ask the com
puter to give you a blank line by pressing the SHIFT and INSERT
keys together. You can also type CONTROL-CLEAR, if you don't
mind erasing the entire screen.

As a review, let's go back over the different ways you can use state
ment numbers as you type your program.

• Add If you enter a line with a statement number that you
haven't used before, it will be stored as a new line of your
program.

• Insert If you type a line with a statement number between
two other numbers already stored, the line will be inserted
in the program at that point.

Figure 5.1: Editing a program line.

70 THE ATARI 800XL: A PRACTICAL GUIDE

• Replace If you enter a line with a statement number that has
already been used, your new version will replace the old.

• Delete If you enter a statement number with no command
following, the computer will delete any statement stored
under that number.

You now know everything you'll need to type programs into the
computer. You know how to add, insert, replace, and delete program
lines. You know how to LIST your program, and how to run it.

It is time for a practical example.

THE BOX-DRAWING PROGRAM -------

At the end of Chapter 4, you typed a sequence of seven graphics
commands to draw a box on the screen. To review, try the same

. .
senes agam:

GRAPHICS 7
COLOR 1
PLOT 10,10
DRAWTO 70,1 0
DRAWTO 70,70
DRAWTO 10,70
DRAWTO 10,1 0

The computer will shift into the four-color graphics mode and pro
duce a picture that resembles Figure 4.6 on page 58.

We're going to be writing a new program, so press RESET to
return to the text mode and type the command

NEW

to clear the computer's memory. Remember: a program line remains
in the memory until you either delete it, clean the slate with a NEW
command, or turn the computer off.

What we're going to do now is simple. We're going to retype the
seven commands, but this time we'll give them numbers and store
them as a program. Type these lines:

10 GRAPHICS 7
20 COLOR 1
30 PLOT 10,10

40 DRAWTO 70,10
50 DRAWTO 70,70
60 DRAWTO 10,70
70 DRAWTO 10,10

WRITING A PROGRAM 71

When you're done, check your typing to make sure you haven't
made any mistakes . If necessary, retype the line, or correct it with
your editing keys.

Now RUN the program. Almost instantly, your computer will shift
to the black graphics screen and draw an orange box. The result is the
same as Figure 4.6, but the computer did it all in one step, rather
than seven.

With a procedure as long as this, the advantages of stored pro
grams become evident. You can correct a mistake by editing, rather
than going back to the beginning. You can draw the box again with a
single RUN command, rather than retyping all seven steps. As we go
on, you will discover other advantages to writing programs, and other
uses to which they can be put.

HINTS ON WRITING PROGRAMS -------

As you write your own programs, you will need to develop some
habits that make your work easier. Clear thinking and good organiza
tion are often the difference between successful programming and
computer nightmares. Here are three rules to follow:

1. Think it through. You will save yourself a lot of agony if you spend
a few minutes planning out your program before you start typing it.
You don't have to write the program out in full unless you feel the
need, but you should sketch out the route before you embark on your
Journey.

2. Be neat. There is nothing more frustrating than trying to make
corrections in a sloppy program. If you organize your program so
that it is easy to read and logical in its layout, you will understand it
much better when you go back to change it. Use a regular pattern in
your statement numbers, such as 10, 20, 30.

3. Leave notes to yourself. Your computer lets you leave comments in
the middle of your program. Comments that explain what you are
trying to do will make your program much easier to understand.

To leave a note at a certain point in your program, type an unused
statement number and the letters REM (for "remark"). You can then

72 THE ATARI 800XL: A PRACTICAL GUIDE

type anything you choose on the rest of the line . For example, at the
beginning of the box-drawing program you might want to add a line
that announces its purpose . Try the following:

5 REM PROGRAM TO DRAW A BOX

When you LIST the program, this remark will appear at the head.
When you RUN the program, however, the computer will ignore
the remark.

You may feel these remarks are a waste of time, if you are only
writing programs for yourself: you know what you're doing, and the
computer doesn't need the explanations. Don't kid yourself. Even if
you understand the program perfectly now, you won't remember it
six months from now if you decide to revise it. Also, if you give your
program to a friend, you will want to include enough information to
explain what you have done.

Figure 5.2 shows how remarks can be used to explain the box
drawing program. Asterisks were placed around the title of the pro
gram to set it apart . Blank REM statements in lines 8, 24, and 34 are
used to separate the program into its major parts . The REM state
ments 9, 25, and 35 name the parts. By judiciously using remarks in
this way, you can make the structure of your program much more
visible .

DEBUGGING --------------

No matter how careful you are in writing your programs, you will
certainly have troubles from time to time. Your program doesn't work
exactly the way you want it to, or you get an ERROR when you try
to RUN it. This is known as a bug in your program, and you are
faced with the task of debugging.

The first thing to check is the ERROR message, if there was one.
If, for example, your screen looks like Figure 5.3 when you try to
RUN the box-drawing program, you have a pretty good idea where
to look. The computer was partway through the program, then some
thing went wrong when it reached statement 60.

What does this ERROR message mean?

ERROR-- 3 AT LINE 60

WRITING A PROGRAM 73

The 3 in this message is a code that describes what the problem was .
To translate it into English, look the code up in Appendix C of this
book. You will find that 3 means "Value Error." This is one of the
most common errors on the Atari computer, and it usually comes
from typing an incorrect number, or a number too large for the place
where it's being used . This is the ERROR you get if you try to
PLOT or DRAWTO a point with a coordinate that is too large for
the graphics screen.

Once you know where the error occurred, LIST the program and
check it over. In this case, line 60 is the most likely place for the error,
but you should look at the other statements as well. Often a mistake
in an earlier line will cause problems in a perfectly good line later on .

Check the program over, line by line. Pay particular attention to
details; a missing comma or a misspelled word can block an entire
program.

Check to make sure that no lines are missing. It is easy to leave out
a command as you are typing, or to erase one by typing the wrong

Figure 5.2: Use REM statements in your programs to make them more readable.

74 THE ATARI 800XL : A PRACTI C AL G UID E

statement number. Make sure also that no unwanted lines have
slipped into your program. For example , you might have forgotten to
give a NEW command before you started typing.

If you still can't find your mistake, have a friend check your pro
gram over. Often another person will be able to spot a small mistake
that you had missed . Try explaining your program to someone else .
This will frequently uncover a gap in your reasoning.

After you have exhausted all the other alternatives, you may be
tempted to think it is the computer's fault. This is unlikely. Com
puters are very reliable in following their instructions, and they are
rarely at fault for the errors. Usually, it is a breakdown in the com
munication between you and the machine: what you thought you
were writing is not what the computer took you to mean.

You should suspect the computer itself only if it starts behaving
erratically on a variety of programs, or on programs which you've
already tested out. If your machine is defective, the problems will usu
ally be obvious, and will affect the computer' s overall functioning,

Figure 5.3: A typical ERROR message.

WRITING A PROGRAM 75

rather than just a single program. Check with your dealer if you feel
that your machine has gone bad.

Have courage. It can be very difficult to debug a program, so don't
become frustrated. Often when you do find the bug, it will seem like a
silly mistake . But don't blame yourself for having overlooked the
error. It happens to everyone.

CASSETTESTORAGE-----------------------

You can store only one program at a time in your computer's
memory. If you wish to use a different program, you must erase the
first one by typing NEW. Your program is also lost when you turn
the power off.

This is a problem if you have written a program that you want to
use over and over. Unless you can leave the computer on indefinitely
and use it only for that one program, you will need to retype the pro
gram every time you want to run it.

If you have an Atari Program Recorder or Disk Drive, you can
save your programs permanently and load them back into the com
puter's memory whenever you want to use them. This is very handy
well worth the investment if you plan to write long programs.

At this point in the book, I will not take the time to tell you exactly
how to use the program recorder or the disk drive . Instead, I have
collected all of the detailed instructions in Chapters 9 and 10. If you
want to learn about your cassette recorder or disk drive right now,
skip ahead to these chapters: you can read them without knowing the
material in Chapters 6 through B.

Just for convenience, however, I will explain the simplest of these
operations: saving a program on cassette tape and loading it back in.
If you get hung up on these directions, or if you are using a disk drive
rather than a cassette recorder, you should read the detailed instruc
tions in Chapters 9 and 10.

Start by cOnI'lecting your Atari Program Recorder. You can use
either the new model 1010 or the old model 410; both will work with
any Atari computer. You must plug the recorder into a ' wall outlet,
then connect its special black cable to the large hole on the back of
your computer labeled PERIPHERAL. Refer to Chapter 9 if you
don't know how to do this.

You can now save the program in the computer' s memory on a

76 THE ATARI 800XL: A PRACTICAL GUIDE

regular cassette tape. Any tape will do, even the cheapest. Put the
tape in the recorder and rewind it to the beginning. Then type the fol
lowing command:

CSAVE

This tells the computer that you want it to save the program on the
cassette. When you press RETURN, the computer will beep twice
through your television as a cue for you to record. Press PLAY and
RECORD on the program recorder. Press RETURN again.

Your computer will start to whistle: this is the actual sound it is
recording on the tape. It means nothing to you, but to the computer
it contains all of the information needed for your program. The re
cording process takes about 20 seconds (more if your program is very
long) . The recorder will stop automatically when it is finished, and
the computer will say READY. With your program on tape, you can
safely erase it from the computer's memory or turn the computer off.

To load the program back into the memory you must use a similar
procedure. Type

CLOAD

and press RETURN. The computer will beep once, asking you to
start the recorder. Rewind the tape and press the PLAY button . Press
RETURN again. The recorder will turn and the computer will load
the program . When it has finished, the recorder will stop and the
computer will say READY. You can now LIST the program to make
sure it was loaded correctly, then you can RUN it again . Note that
the program you load will replace any program you had previously
stored in the computer's memory.

If you have any problems with these brief directions, please read
Chapter 9. The descriptions there are much more complete, and con
tain other helpful suggestions. This is just to get you started.

OPTIONAL EXERCISES -----------

1. In the box-drawing program on pages 70-71, add a state
ment that will make the last line in the box blue. You will
have to choose a statement number between 60 and 70.

2. Add a line at the end of the same program, to draw a

WRITING A PROGRAM 77

diagonal line from the upper-left corner of the square to
the lower right.

3. The following program contains three mistakes:

10 PRINT "HELLO THERE"
20 GRAPHICS 7

30 COLOR 1
40 PLOT 10,734
50 DRAWTO 0,0
60 DRAWTO 10

Find the bugs.

SUMMARY ---------------

In this chapter, you have seen how you can string your commands
together to make a program . You can store as many commands as
you like in the computer's memory, and RUN them all as a group.
You can use the LIST command to review the program you have
stored, or to make changes in it.

Programs have many uses, as you have already seen. Since they
can be changed and reused as often as you like, programs allow you
to try much more complicated operations than you would if you
needed to type the commands each time. If you have a cassette
recorder, you can even save the program permanently for future use.

In the next two chapters of this book, you will learn techniques that
make this concept much more flexible. You will increase your control
over your computer and discover its true power.

~ CHAPTER SIX -------------

Using
Variables

So far, you have been giving very specific instructions to your com
puter. You have told it to PRINT a word or to PLOT a point at a
given coordinate. If you want to PRINT a different word or PLOT a
different point, however, you have to type a whole new command.

You can make your commands much more flexible if you are less
specific. Your computer allows you to replace numbers with variables,
labels which can stand for any number you choose. As you RUN the
program, you specify what numbers the variables will represent.
Later you can run the program with the variables standing for differ
ent numbers .

Variables also let you use your computer for calculations. Your com
puter can do arithmetic quickly and accurately, then display the results
on the screen. This can save you many hours of work. At the end of
this chapter, you will learn how you can make variables represent let
ters as well as numbers, so that you can manipulate words as well.

In this chapter, we will tryout several variations on the program
that draws a box on the screen. The idea remains the same as the pro
gram we developed in Chapter 5; this time, however, we will use vari
ables to stand for the coordinates. This will make it much easier to
change the shape and location of the box the program draws .

STORING NUMBERS ---------- -

Computers generally prefer to do their thinking with numbers,
rather than words . In most of our commands, we have used one or
more numbers to tell the computer what we wanted . To PLOT a
point, for instance, we used a pair of numbers to name its coordinates.

To use a fixed number such as 46, you just type its digits. In

80 THE A TAR I BOO XL: APR ACT I CAL G U IDE

general, you can type the number exactly as you would normally
write it. When it is greater than 1,000, however, you should leave out
the comma that separates the thousands from the hundreds.

These are all fixed numbers. You can type a fixed number in any
command, but it is used immediately rather than stored. If you want
to reuse the number, you will have to type it out again.

There is a way, however, to store a number in your computer, so
that you can reuse it without retyping it. To do this, you give the
number a name. You can call it anything you want, just as long as
you begin the name with a letter.

You might, for example, want to call it FRED. To store the num
ber 7, all you need to do is type

FRED=7

When you press RETURN, your computer sets aside a place in its
memory for the variable FRED. It then stores the number 7 in that
place, so that you can refer to it by name.

You cannot turn this equation around, as you can in normal
arithmetic. If you type

7=FRED

you are saymg, "Take the number FRED and store it under the
name 7." This makes no sense to the computer, and you will get an
ERROR.

The computer actually thinks of the equal sign as a command.
When it sees this sign, it looks for whatever value is to the nght of the
sign, then stores that value in the name to the left. This is called an
assignment statement.

The name FRED now represents the number 7. You can see this
by asking the computer to PRINT the value:

PRINT FRED

If you do this, the computer will display the number 7. (If it displays
o or something else, you have probably mistyped something: try
typing the last two commands again.)

You can now use the name FRED anywhere you would normally
use the number 7. You could switch into the four-color graphics mode
by typing

GRAPHICS FRED

You could PLOT the point 7,7 by typing

PLOT FRED,FRED

USING VARIABLES 81

You could even store the number 7 in another variable named JANE
by setting it equal to FRED:

JANE=FRED

Let's look a little more carefully at the statement

PRINT FRED

When you pressed RETURN, the computer displayed the value you
had given to the name FRED. Notice that the result is very different
from what you would get if you said

PRINT "FRED"

If you do this, the computer will type the word FRED on the screen,
rather than its value. With the quotes, the computer reads "FRED"
as a message to be displayed. Without the quotes, it reads FRED as
the name for the stored number, and displays its value.

The stored number is called a vanable, because you can change its
value . To do this, you merely store a new value. The computer will
accept it, and replace the old value with it.

To change FRED's value to 19, type

FRED = 19

The old value (7) will be lost, and FRED will mean 19 from now on.
You can check this by giving the command

PRINT FRED

FRED will continue to mean 19 until you store another value or tum
the computer off.

Until you use a variable, the computer assumes its value is 0. You
can see this by printing a name you haven't used:

PRINT IRVING

The computer will respond with the number 0, since you haven't
given a value to the variable IRVING.

So far, we have been using people's names, like FRED, JANE,
and IRVING. It is generally best, however, to use a word that

82 THE A TAR I 800 XL : APR ACT I CAL G U IDE

explains what the variable represents . If you have a variable that
counts the number of times you have done an operation, you might
call it COUNTER. For graphics, you might want to call the coordi
nates of a point X and Y, so that you can simply say

PLOT X,Y

When you are plotting more than one point, you might give your
coordinates different names all starting with X and Y. For example, if
you were drawing a line from one point to another, you might call the
starting point XSTAR T, YSTAR T and the ending point XEND,
YEND.

There are only a few restrictions on the names you can choose for
your variables . The name can be as long as you wish, but it must
begin with a letter. The rest of the name can contain numbers, but no
special symbols. You may not use lowercase letters or inverse video in
your variable names. Finally, you may not start your variable name
with an Atari command word, such as PRINT or PLOT. The com
puter would have no way to tell the difference between your variable
and the command.

Within these guidelines, you can use any name you like. The
names in the left column of Figure 6.1 show some of the possibilities .
The right column shows some examples of illegal words. You don't
need to be too concerned, though, since most of the names you would
use are legal.

In these experiments with stored values, you have seen how vari
ables work. You can store a number in any variable you choose, then
use the variable's name instead of the number. If you want to change
the number, you merely store a new value. The variable will repre
sent the new value until you change it again.

LEGAL ILLEGAL (REASON)

DATE 123 Doesn't begin with a letter
NUMBER BILL'SBILLS Contains a special symbol
SIDE4 Wilhelm Not capital letters
DELAY THE NUMBER More than one word
N GRAPHICS Atari command word .
Figure 6.1: Legal and illegal variable names.

us I N G V A R I A B L E s 83

VARIABLES IN PROGRAMS ---------

When you're just typing simple commands, variables . don't seem
all that useful. As long as you are typing each command as you go,
you might as well use the fixed number instead.

In programs, however, variables become very important. With
them, you can write a general procedure that accomplishes a certain
task, without knowing what specific numbers you will be using on any
particular occasion. When you RUN the program, you can plug in
the specific numbers you want. If you later want to perform the same
task with different numbers, you simply RUN the program again
with the new values.

To see how this works, let's return to the program to draw a box
that we developed in Chapters 4 and 5. To start off, give a NEW
command and type the program back into the computer's memory, as
follows:

4 REM * * * * * * * * * * * * * * * * * *
5 REM * PROGRAM TO DRAW A BOX *
6 REM * * * * * * * * * * * * * * * * * *
8 REM
9 REM - SET UP FOUR-COLOR GRAPHICS-
10 GRAPHICS 7
20 COLOR 1
100 REM
101 REM - MOVE TO UPPER-LEFT CORNER-
110 PLOT 10,10
120 REM
121 REM -DRAW FOUR SIDES OF BOX -
130 DRAWTO 70,10
140 DRAWTO 70,70
150 DRAWTO 10,70
160 DRAWTO 10,10

This program is exactly the same as the one shown in Figure 5.2,
except that the statement numbers have been changed in the second
half. This was done to make room, because we're going to add some
statements between numbers 20 and 100. If you want to save yourself
some typing, you can skip some of the REM statements, which do
not affect the operation of the program.

In every version of this program that we have used, our box has

84 THE AT A R I 800 XL : APR A C T I C AL G U IDE

always been the same size, and it has always been in the same loca
tion. The coordinates we used to set the corners are fixed numbers.
The box starts at the coordinates 10,1O-a point near the upper-left
corner of the screen. Each edge is then drawn to a fixed point, until
the final edge returns to the starting point. Figure 6.2 shows the fixed
coordinates of each corner of the box.

We can make our program more general so that it can draw a box
of any size, shape, or location. Instead of using fixed coordinates for
the corners, we can use variables.

Figure 6.3 shows the names we'll be using for each of the points.
These names were chosen to explain the numbers they will represent.
XLEFT, for example, gives the x-coordinate of the left side of the
box. Note that each of the variables is used in the names of two differ
ent corners: XLEFT is the x-coordinate of both the upper-left and
lower-left corners.

Let's begin changing the program from numbers to variables.
Instead of giving another NEW command and retyping everything,
just type the new lines that you want to add. As you may recall, when
you type an additional line while you have a program stored in the
memory, the new line will be inserted into the program. If its state
ment number matches one already in the program, the old statement

10,10 70,10

10,70 70,70

Figure 6.2: With fixed numbers, you can only have a square of one size.

USING VARIABLES 85

will be replaced. In this way we will be able to change certain parts of
the program without retyping the whole thing.

There are times in this chapter when you will RUN a program that
will leave the screen in the graphics mode . You can type commands in
the text window at the bottom of the screen, but you will usually find
it easier to return to the text mode. You can do this either by typing
GRAPHICS 0, or by pressing RESET.

Before we can use the four variables to name the corners of the
box, we need to store their values. We could choose any numbers we
want, but let's start with the coordinates we've been using: 10 and 70.
Insert the following five lines into your program:

30 REM -STORE VALUES IN VARIABLES-
40 XLEFT = 10
50 XRIGHT = 70
60 YTOP = 10
70 YBOnOM = 70

Now that we have the values stored, we can retype the PLOT and
DRAWTO statements using the variables instead of fixed numbers.
Type five lines as follows :

110 PLOT XLEFT, YTOP
130 DRAWTO XRIGHT,YTOP

XLEFT,YTOP XRIGHT, YTOP

XLEFT, YBOnOM XRIGHT, YBOnOM

Figure 6.3: We will give these variable names to the corners of the box.

86 THE A TAR I BOO XL : APR ACT I CAL G U IDE

140 DRAWTO XRIGHT,YBOnOM
150 DRAWTO XLEFT, YBOnOM
160 DRAWTO XLEFT, YTOP

These lines will replace the PLOT and DRAWTO statements in the
original program.

LIST the program to make sure that all of your new statements
have been stored correctly. Check the lines you have just added, to
make sure they are accurate. The program should exactly match the
listing shown in Figure 6.4 .

When you're sure you have it right, RUN the program . You
should get exactly the same results as you did with the original ver
sion: an orange box on the left half of the screen. This is because the
variables used in the PLOT and DRAWTO statements contained
exactly the same values (10 and 70) as the fixed coordinates did in the
original version.

With the variable version, however, you can change the shape of

figure 6.4: The revised version of the box-drawing program.

USING VARIABLES 87

the box by modifying the statements that store the values. Replace
statements 40 through 70 with the following:

40 XLEFT =20
50 XRIGHT = 140
60 YTOP=35
70 YBOnOM = 45

If you LIST the program, you will see that the new statements 40
through 70 have replaced the old. When you RUN the program,
these new values produce a thin horizontal rectangle across the
screen, as shown in Figure 6.5. By choosing other values for these
four variables, you can produce rectangles of any dimensions. Type
and RUN these two other combinations:

40 XLEFT=75
50 XRIGHT = 85
60 YTOP=10
70 YBOnOM = 70

40 XLEFT =0
50 XRIGHT = 159
60 YTOP=O
70 YBOnOM = 79

Figure 6.5: Using variables, you can draw a box of any size.

88 THE A TAR I 800 XL: APR ACT I CAL G U IDE

With the example at the left, you will get a thin vertical box. With the
values at the right, the computer will draw a yellow rectangle around
the entire graphics screen.

Tryout some values of your own in this program. You can change
any of the variables you want, then RUN the program. The com
puter will draw a box according to the dimensions you give. You can
choose any numbers you want for the variables, as long as you don't
exceed the limits on the X and Y dimensions of the graphics screen.
X must fall between 0 and 159, and Y between 0 and 79, or you will
get an ERROR.

Notice that the variable XLEFT occurs three times in the PLOT
and DRAWTO lines of the program, yet you can use one new assign
ment statement to change its value in all three places. No matter how
many times a variable occurs in a program, one new assignment will
change its value throughout.

By using variables, we have made a real improvement over the
earlier versions of this box-drawing program. We can now tell the
computer exactly where to put the four edges of the box and how
large to make it. More important, we were able to design the pro
gram to perform a general task, then change specific numbers without
rewriting the entire program.

THE READ AND DATA STATEMENTS ---- - -

When you have wanted to change the value of a variable you are
using in a program, you have needed to go back and change the state
ment where you stored it. This is all right if you rarely make changes,
or if they only involve one variable. If, however, you frequently need
to change many values in a program, there is a better way: your com
puter lets you assign values to several variables in a single statement.
You do this with two new commands: READ and DATA.

READ and DATA always work as a pair, and you cannot use one
without the other. In the READ statement, you give the computer a
list of variables to which you wish to assign values. You then type a
DATA statement with a corresponding list of the numbers that you
want to store. The computer takes the first value from the list in the
DATA statement and assigns it to the first variable in the READ
statement. If there are more variables to be filled, it returns to the
DATA statement and stores the second value in the second variable in

us I N G VA R I A B L E s 89

the READ statement. This process continues until all of the variables
have been filled. You must have at least enough values in the DATA
statement to fill all of the variables. If you run out of numbers to read,
you will get an error.

To see how this works, let's revise lines 30 through 70 of the box
writing program to use READ and DATA statements. Type the
following lines:

30 REM -READ VALUES INTO VARIABLES-
40 READ XLEFT,XRIGHT,YTOP,YBOnOM
50 DATA 10,70,10,70

When you're done typing this, add two more blank lines, to delete
unwanted statements left over from the previous version:

60
70

LIST the program: it should match Figure 6.6. When you RUN the
program, you will get the same results as before-a large yellow box
on the left half of the screen.

The four variables in the READ statement correspond exacdy to
the four values in the DATA. When the .computer comes to the
READ statement, it plugs the first number from the DATA statement
(10) into the first variable (XLEFT). It then continues, with the other
variables, reading 70 into XRIGHT, 10 into YTOP, and 70 into
YBOTTOM. These two lines have the same effect as the four lines
we replaced:

40 XLEFT = 10
50 XRIGHT = 70
60 YTOP= 10
70 YBOnOM = 70

The READ and DATA statements, however, are easier to type and to
understand.

The great advantage of READ and DATA statements is that you
can easily change to new values. If you want to draw a thin horizontal
box, as in Figure 6.5, you need to type only a new DATA statement:

50 DATA 20,140,35,45

When the computer draws the box, the corners are set by the new
values.

90 THE AT A R I 800 XL: APR ACT I CAL G U IDE

You can experiment with many different numbers in this DATA
statement. In the previous version, you had to replace four lines, but
here you need to retype only the one DATA statement. Try these sets
of values:

50 DATA 75,85,10,70

and

50 DATA 0,159,0,79

You should get yellow rectangles of other shapes, just as you did on
page 87 . Try some other values of your own.

INPUT: GETTING VALUES
FROM THE KEYBOARD ----------

There is a third way to assign numbers to variables, which is even
more flexible than the READ statement. This is the INPUT state
ment, which has the computer pause in the middle of the program

Figure 6.6: The box-drawing program, using READ and DATA statements.

USING VARIABLES 91

and ask you to type in a value on the keyboard . With this, you will no
longer need to specify the numbers as you are writing the program.
Instead, you can supply the values at the time you RUN the pro
gram. This also means that you can RUN the same program with
different values merely by giving different responses.

To have the computer ask you for the value of the first variable,
XLEFT, you could put this line into the box-writing program:

40 INPUT XLEFT

When you ask the computer to RUN the program, it will stop when
it comes to this statement and put a question mark on the screen.
This is a prompt to show that the computer is waiting for you to supply
some information.

Most people use a PRINT statement just before the INPUT state
ment, so that they can know which piece of information the computer
is waiting for. 1'd suggest you use something like this:

40 PRINT "LEFT EDGE"; :INPUT XLEFT

If you RUN a program with this statement, the computer will pause
~d type the following message:

LEFT EDGE?

This tells you which value the computer is expecting you to supply.
Notice the two punctuation marks (;:) before the word INPUT in

this line. You learned the meaning of the colon (:) back in Chapter 3:
it separates two statements written on the same line of a program.
The semicolon (;) serves a different purpose. When you type a semi
colon at the end of a PRINT statement, it keeps the computer from
starting a new line at the end of its message. After the end of the mes
sage, the INPUT statement automatically types a question mark. The
result will be a very readable question .

To see the INPUT statement in action, let's make yet another revi
sion of our box-drawing program. Type the following lines:

30 REM -GET VALUES FROM KEYBOARD-
40 PRINT "LEFT EDGE"; :INPUT XLEFT
50 PRINT "RIGHT EDGE"; :INPUT XRIGHT
60 PRINT "TOP";:INPUT YTOP
70 PRINT "BOnOM";:INPUT YBOnOM

92 THE A TAR I 800 XL: APR ACT I CAL G U IDE

If you LIST the new version of the program, it should look like
Figure 6.7. Note that the variables in this program are never given
explicit values.

When you RUN this program, it will work a little differently from
the other versions. The computer first shifts into the four-color graph
ics mode, following the instructions in lines 10 and 20. Then, at state
ment number 40, it prints the message LEFT EDGE? in the text
window and stops. This is your cue to type the first number-the
coordinate of the left edge of the box (XLEFT). The computer will
wait until you type a number and press RETURN. After you do
that, it will ask for three more numbers to set the coordinates of the
other three edges of the box. You might give the answers shown in
Figure 6.8.

When you're typing in your values as you RUN the program, you
can use the keyboard just as you do normally. You can correct mis
takes with the BACK SPACE key, and you can type as many digits as
you wish. Once you press the RETURN key, however, the computer
stores your answer in its memory, and you cannot go back. Of

Figure 6.7: The box-drawing program, using INPUT from the keyboard.

USING VARIABLES 93

course, you can run the program over again. (If you need to stop the
program before you run it over again, press the BREAK key.) Note
also that if you type anything other than a number, the computer will
object:

ERROR·· 8 AT LINE 40

When this happens, you will have to RUN the program over from
the beginning.

When you finally give your fourth response, the computer will go
on to draw the box. If you give the answers shown in Figure 6.8, you
will get the same old box as in Figure 6.2. By naming other values in
response to your program's questions, you can have the computer
draw boxes of any shape.

You have accomplished two important things with this INPUT ver
sion of the program. First, you have developed a program which asks
you questions as it works. It waits for your responses, and then acts
according to your wishes.

Figure 6.8: At each INPUT statement, the computer asks you what number
to use.

94 THE A TAR I 800 XL: APR ACT I CAL G U IDE

More important, though, you now have a program which you can
RUN again and again. Each time you RUN the program it performs
the same general task, but the results vary depending on the numbers
you supply. This is an important step because your computer is now
using its program as a general problem-solver, rather than just as a set
of fixed instructions.

DOING CALCULATIONS ----------

You have now seen three different ways you can store numbers in
variables. If you just need to assign a value to a single variable, you
can use a simple equals sign. If you have several values that you want
to store at one time, you might prefer to use the READ and DATA
statements . Finally, if you want to supply the value at the time you
RUN the program, you can use an INPUT statement.

Up to this point, however, you have been very limited in what you
could do with the numbers once you stored them. You could PRINT
them, or use them as coordinates in a PLOT or DRAWTO com
mand, but that was about it .

Your computer also allows you to perform calculations on the num
bers you have stored. It can add, subtract, multiply, and divide,. and
can handle more complex mathematical functions as well. All of this is
built into the machine: you only need to tell it which formulas to use.

Your computer lets you write your formulas in a way very similar
to regular arithmetic. For the standard operations, you use the follow
ing symbols:

+ Addition
Subtraction

* Multiplication
/ Division

" Exponent ("Power")

The asterisk (*) was chosen for multiplication, since an x might be
confusing to the computer. For division the slash (I) is used, because
it resembles a fraction bar, which is a form of division. All five of these
symbols are located on or near the arrow keys at the right side of
the keyboard.

USING VARIABLES 95

You can write a formula just as you do in arithmetic. You might try
typing

ANSWER=2+2

Your computer will take this very literally, as a command. It takes
ANSWER as a variable and looks at the right side of the equals sign
for the value it should assign. In this case, it sees 2 + 2, so it calculates
the value: 4. Then, it stores this number in the variable to the left of
the equal sign: the variable ANSWER. To see that it has indeed been
stored, you can type the command

PRINT ANSWER

Your formulas can be as complicated as you wish, and can contain
variable names as well as numbers . You could type any of the follow
ing lines:

X=15+17
PAY = WAGE * HOURS
AREA = LENGTH * HEIGHT/2

In the last of these examples, the formula contains more than two
numbers. As in arithmetic, the computer generally calculates formulas
from left to right, except that it gives priority to multiplication and divi
sion operations. To see how this works, ask the computer to calculate

NUMBER=3*4+6/2

The computer will calculate the multiplication (3 * 4) and division
(6/2) problems first. Then, it will add the answers together (12 plus 3)
and store the result (15).

If you want to override this sequence, or if you simply find this con
fusing, you can group operations together with parentheses. You
could, for instance, write the previous command as follows:

NUMBER = (3 *4) +(6/2)

You will get the same answer. Note that you would get a different
answer if you grouped the operations differendy:

NUMBER = ((3 * 4) + 6)/2

In this case, the computer will first calculate the multiplication (3*4)
in the innermost set of parentheses, then add the answer (12) to the
number 6, to solve the outer set of parentheses. Only then will it

96 THE A TAR I 800 XL: APR ACT I CAL G U ID E

divide this result by 2 to get the final answer (9). Note that you can
put parentheses within a set of parentheses.

If you find these concepts difficult, don't worry. I will stick to very
simple equations in this book, so that you won't get lost. If you are
comfortable with mathematics, you can certainly learn to write more
complicated formulas on your own.

You can use a formula anywhere you would use a number or a
variable. You could, for instance, type

PRINT 3*5

When you press RETURN, the computer will respond with the
answer, 15. As you recall, this is very different from

PRINT "3*5"

Within quotation marks, the computer treats 3*5 as a message to be
printed as written, not as a formula to be calculated.

As an example, let's write a program that draws a blue triangle on
the screen. (You're getting tired of boxes, aren't you?) As always,
press RESET and type NEW before you start. Then type the follow
mg program:

10 GRAPHICS 7
20 COLOR 2:REM GREEN PAINTBRUSH
30 PRINT "STARTING X";:INPUT X
40 PRINT "STARTING Y";:INPUT Y
50 PLOT X,Y
60 REM MOVE 40 UNITS TO RIGHT
70 DRAWTO X+40,Y
80 REM MOVE DOWN AND TO LEFT
90 DRAWTO X + 20,Y + 30
100 REM MOVE BACK TO START
110 DRAWTO X,Y

When you RUN this program, the computer will ask you for starting
X and Y coordinates. The numbers you give will define the point in
the upper-left corner of the triangle . Line 50 PLOTs this point, then
the rest of the program draws lines to the two other corners, and back
to the starting point. The result is a triangle, as shown in Figure 6.9.

RUN the program again, and give different values for the coordi
nates. In this program, you can use any X up to 119, and any Y up to
49 . As you try different combinations, you will find that the triangle

USING VARIABLES 97

always remains the same size and shape, but is moved to different posi
tions on the graphics screen. This happens because all of the coor
dinates were given relative to the point in the upper-left comer of the
triangle. When you change that point, the others will change with it.

STRINGS: STORING LETTERS --------

As a final topic in this chapter, I will describe a way to store letters
in your computer. This is a complex subject, which could easily take
up a chapter of its own. I cannot give it that much attention, but I
can cover it briefly so that you will understand this concept when you
come across it in other books.

You can store words and letters in the computer's memory, just as
you can store numbers. To do this, you need a special kind of variable,
called a string variable. To set up a string variable, you must put a dollar
sign ($) at the end of the name. All of these are string variables:

A$
NAME$

Figure 6.9: The results of the triangle program.

98 THE A TAR I 8 0 0 XL : APR ACT I CAL G U IDE

ADDRESS$
MESSAGE$

Before you can use a string variable, you must tell the computer
how long the message will be that it is about to store. The computer
must know this, so that it can set aside space in its memory for each
character in the string. Choose a length longer than you're going to
need, then type a statement such as this:

10 DIM NAME$(20)

DIM stands for" dimension," and this statement tells the computer to
set aside space for 20 characters in the string NAME$.

You can now store words or letters in the string variable, just as
you stored numbers in normal variables. You can use a standard
assignment statement, by enclosing the message in quotes:

20 NAME$= "ARTHUR"

You can use a READ and DATA statement:

20 READ NAME$
30 DATA ARTHUR

Or, you can use an INPUT statement:

20 PRINT "WHICH NAME" ;: INPUT NAME$

In the last case, the computer will ask you WHICH NAME?, and
you can type ARTHUR from the keyboard.

When you have stored the message in the string variable, you can
use it in several ways. You can PRINT it:

40 PRINT NAME$

You can even use just part of the message by naming the starting and
ending letters of the section that you want to use:

60 PRINT NAME$(2,4)

If you RUN a program with this last statement, the computer will
display only the second, third, and fourth letters of the name, in this
case RTH.

There are many other things you can do with strings . You can
splice them together, or pull them apart . You can display messages in
special ways on the screen, or store messages for future use. The

U SIN G V A R I A B L E S 99

applications of this concept are many and varied, but they are a sub
ject for a more advanced book.

OPTIONAL EXERCISES -----------

1. In the version of the box-drawing program shown in Fig
ure 6.7, add an INPUT statement before line 20, so that
you can choose a color other than orange. You will need
to define a new variable, and will need to modify state
ment 20.

2. Add statements to the end of the triangle program (Figure
6.9) so that the computer will draw a Star of David. You
will need to add PLOT and DRAWTO statements to
draw a second triangle on top of the first, with the point
facing upward.

3. Store the number lOin the variable J. Then type the fol
lowing command:

J=J+1

What value will J now have? Check your guess by asking
the computer to PRINT J.

SUMMARY ---------------

In this chapter, you have learned how to use variables, so that you
can store a number and reuse it later. Variables let you simplify pro
grams, and make them perform more general operations .

The simplest way to store a number is to set the variable name
equal to it. The number will remain stored in that variable until you
replace it or tum the computer off.

If you have many numbers to store, or constantly need to change
the values you are using, you can READ the values from a DATA
statement. Each variable in the READ statement is assigned the cor
responding value in the DATA statement. To change the values, you
need only change the DATA statement.

The most flexible way to store values is with an INPUT statement .
This tells the computer to stop each time it runs the program in order
to ask you to type the value at the keyboard. You type the number

100 THE ATARI 800XL: A PRACTICAL GUIDE

and press RETURN. The computer then stores the value and con
tinues with the program.

By writing formulas, you can have your computer do calculations
for you. The formulas can be as simple or as complex as you wish,
and you can easily PRINT the results.

You can store more than just numbers. With string variables, you can
store verbal messages as well, and PRINT them out in various ways.

In the chapters ahead, you will learn to use variables and other fea
tures to make your computer programs even more flexible and useful.

~ CHAPTER SEVEN ------------

Controlling
Your Program

In the last two chapters, you have learned how to write programs.
You can now type commands into the computer and store them as an
organized program in its memory. With variables, you can make your
programs more flexible, so that they will perform a general task using
the values you supply.

Until now, however, you have been locked into the start-to-finish
flow of the program. The computer began to RUN the program with
the first statement, then went through each of the others in order.
When it reached the end of the program, the computer stopped and
said READY. It saw each statement only once.

In this chapter, you will learn ways to alter the flow of the program.
You can ask the computer to jump from one part of the program to
another, or to return to statements it has already used. You can also
have the computer do a repetitive task many times, or make decisions
based on information you supply. Finally, you will learn how to break
your program up into smaller subprograms, which you can use as build
ing blocks.

GOTO: JUMPING
TO ANOTHER STATEMENT---------

The simplest form of program control is the GOTO statement.
This simply tells the computer to jump to another statement in the
program and continue from that point. You might, for example, want
to jump straight from statement number 20 to 50, skipping any

102 THE A TAR I 800 XL: APR ACT I CAL G U IDE

statements in between. You could merely make line 20 a GOTO
statement:

20 GOTO 50

When the computer sees this line, it will immediately skip to line 50
and go on from there. Any lines that fall between 20 and 50 will never
be used, unless another GOTO statement sends the computer back
to them.

The most common use of GOTO is to send the computer back to
the beginning of a group of statements. Try the following program:

10 PRINT "HELLO"
20 GOTO 10

When you RUN this, your computer will display a vertical column of
HELLOs along the left side of the screen.

The computer first encounters line 10, which tells it to display a
single word, HELLO . The computer then moves on to line 20.
That, however, sends it right back to line 10, so it PRINTs the word
again. When it has finished line 10 for the second time, the computer
once more proceeds to the next statement. That is line 20 again,
which, of course, sends it back to 10. The process goes on and on.

The computer doesn't even stop when it runs out of lines on the
screen. If you look carefully at the HELLO on the bottom line, you
will see that it is flickering. The computer is still printing the word
HELLO repeatedly, and it keeps moving all of the other lines up and
off the screen to make room for it.

If you try to type a letter on the keyboard at this point, you will dis
cover that the computer will not accept it. It is still running your pro
gram, and all of its attention is directed towards that task. Until the
computer finishes a program and says READY, you cannot type any
new commands . This is a program, however, which will never end.

This is known as an infinite loop. The computer is doing a task over
and over again, and will continue until you turn the power off or do
something else to stop it. You can stop the program with the RESET
key, but that will also erase the screen .

The best way to stop a program is with the BREAK key, located at
the upper-right corner of the keyboard on the Atari 600XL and

CONTROLLING YOUR PROGRAM 103

800XL. When you press this key, the computer will stop in its tracks
and say

STOPPED AT LINE 10

It does not say READY, but the cursor has reappeared to show that
you can type letters again.

You will find the BREAK key very useful for stopping programs
while they are running. No matter what the computer is doing in
your program, the BREAK key will stop it and let you type com
mands from the keyboard again. This is essential, if you ever get
stuck in an infinite loop, or want to cut the program short. If you
wish, you can restart the program from the place where you stopped
it, by typing the command

CONT

In most cases, though, you will probably want to use RUN to start
over from the beginning.

Infinite loops are not necessarily bad. When you want to do a task
over and over, it is often easiest simply to write the program as an
infinite loop and stop it manually when you have had enough.

As an example, let's write a program that will double any number
that you type in. Try the following program:

10 PRINT
20 PRINT "TYPE A NUMBER";:INPUT N
30 PRINT N;" TIMES 2 = ";N *2
40 GOTO 10

The program starts by printing a blank line on the screen, to make
the display more readable. Line 20 is an INPUT statement that asks
you to type a number in from the keyboard. It waits for your
response, then puts your number in the variable N. Line 30 then dis
plays first the number N, then the phrase "TIMES 2 = ", and then
the answer that it calculates from 2*N. The GOTO statement then
sends the computer back to the beginning of the program, to ask you
for another number.

The PRINT statement in line 30 may look a little unfamiliar. Up
till now, we have only used one variable or one message after the
word PRINT. Here we have three: the variable N, the message
" TIMES 2 = ", and the answer N * 2. The campu ter understands

104 THE A TAR I 8 0 0 XL: APR ACT I CAL G U IDE

this perfectly well, and will display the three items one after the other.
The semicolons (;) separating the items are important, since they tell
the computer to display the three items on the same line with no extra
spaces in between.

When you RUN this program, the computer will start by asking
you to TYPE A NUMBER. Type 3 and press RETURN. The com
puter will respond with the answer:

3 TIMES 2 = 6

It then goes on and asks you to type another number. You can type
numbers and have the computer double them as many times as you
wish. Figure 7.1 shows how your screen might look after a few more
responses . When you're done, press BREAK to regain control of the
keyboard.

You can make any program repeat in this way. A good example
might be the box-drawing program we developed in Chapter 6.

READY
NEW

READY
.18 PRINT
28 PRINT "TVPE A NUMBER";: INPUT N
38 PRINT N;" TIMES 2 IS "; N*2
48 GOTO .18
RUN

TYPE A NUMBER?3
3 TIMES 2 IS 6

TYPE A NUMBER?23
23 TIMES 2 IS 46

TYPE A NUMBER?~354
~354 TIMES 2 IS .18708

TYPE A NUMBER?O
8 TIMES 2 IS 8

TYPE A NUMBER?

Figure 7.1: With a COTO statement, you can have the computer do a task
many times.

CONT ROLLING YOUR PROGRAM 105

Think about what would happen if you added the following line to the
program in Figure 6.7:

170 GOTO 30

The program would RUN as usual, asking you to INPUT the coordi
nates for the corners of the box .. Once you'd typed in four numbers,
the computer would immediately draw a yellow box.

Unlike the program in Figure 6.7, however, the computer wouldn't
stop when it had finished. Instead, it would go back and ask you for a
new set of four numbers. If you typed four more coordinates for the
corners, the computer would draw a second box without erasing the
first. You could draw as many boxes as you like. Figure 7.2 shows
what your screen might look like after four times around the loop.

If you look carefully at the program listing in Figure 6.7, you will
notice that this GOTO statement does not send the computer all the
way back to the beginning of the program. This is because it is not
necessary to repeat the GRAPHICS and COLOR statements in lines

Figure 7.2: You can modify the box-drawing program 50 that you can draw
more than one box on the screen.

106 THE A TAR I 800 XL : A PR ACT I C AL G U IDE

10 and 20. In fact, the GRAPHICS statement would have cleared the
screen each time around and erased the picture we were in the process
of building. By using GOTO 30, we repeated only those lines that
were necessary.

The GOTO statement is so convenient that many people overuse
it. Programs that jump back and forth too much can be very difficult
to follow, so you should use this statement only when there is a clear
need. People normally expect to read a program from top to bottom,
and too many departures from that order can be confusing.

FOR/NEXT LOOPS ------------

With the GOTO statement, you have learned how to make the
computer repeat a part of your program. The problem is that all of
your loops have been infinite: the computer simply repeated the pro
gram until you pressed the BREAK key to make it stop.

Often, however, you want to have the computer repeat a group of
statements a fixed number of times, then go on to another part of
the program. To do this, you must use two new statements: FOR
and NEXT.

They work like this . You put the FOR statement at the beginning
of the lines you want to repeat , then type a NEXT statement at the
end. When the computer comes to the FOR statement, it starts up a
counter to keep track of the number of repetitions it has performed. It
then keeps repeating all of the statements between the FOR and the
NEXT until it reaches the limit you have set . After that it does not
jump back when it reaches the NEXT statement, but passes through
and continues with the rest of the program.

To see this in action, try the following program:

10 PRINT "THE LOOP IS BEGINNING."
20 FOR CNTR = 1 TO 10
30 PRINT "REPETITION NO. "; CNTR
40 NEXT CNTR
50 PRINT "THE LOOP IS FINISHED. "

The messages in this program's PRINT statements are arbitrary
chosen for the purposes of explanation. CNTR is the name chosen
for the counter variable, with which the computer keeps track of the

CONTROLLING YOUR PROGRAM 107

repetItions. When you run the program, your results should look like
Figure 7.3.

The FOR statement in line 20 tells the computer to repeat the loop
a number of times, keeping track with the counter variable named
CNTR. The' 1 TO 10' in the FOR statement sets the starting and
ending values of the counter, and therefore also the number of times
to repeat the loop. As you can see from the results of your program,
the counter variable starts at 1 on the first pass through the loop, and
increases by one each time through. When it reaches the upper limit
(10), the counter tells the computer that the loop is done, and the
computer proceeds to the statement following the NEXT.

Line 30 shows a useful feature of FOR/NEXT loops:

30 PRINT "REPETITION NO.";CNTR

Within the loop, you can use the counter as a normal variable. Each
time through, CNTR will contain a different value, depending on the
number of times the computer has repeated the loop. With careful
planning, you can often use this to your advantage.

.19 PRINT "THE LOOP IS BEGINNING."
29 FOR COUNTER=J. TO .10
39 PRINT "REPETITION NO."iCOUNTER
49 NEIH COUNTER
S9 PRINT "THE LOOP IS FINISHED."

READV
RUN
THE LOOP IS BEGINNING.
REPETITION NO . .1
REPETITION NO.2
REPETITION NO.3
REPETITION NO.4
RE:PETITION NO.5
RE:PETITION NO.6
RE:PETITION NO.7
REPETITION NO.8
RE:PETITION NO.9
REPETITION NO . .10
THE: LOOP IS FINISHED.

READ V •
Figure 7.3: An example of how a FOR/NEXT loop can be used to repeat a
PRINT statement.

108 THE A TAR I 8 0 0 XL: APR ACT I CAL G U IDE

The counter variable does not need to start from 1. You can choose
any numbers you want for the starting and ending values-even neg
ative numbers. Try some other values in line 20 of this program, such
as the following:

20 FOR CNTR = 7 TO 14

20 FOR CNTR = 329 TO 364

20 FOR CNTR= -3 TO 6

20 FOR CNTR=8 TO 5

Note that in the last of these examples, the upper limit on the counter
was below the starting value . When this happens, the computer goes
through the loop only once, then continues past the NEXT statement.

You can also ask the computer to increase the counter each time by
some number other than 1. You do this by adding another number to
the end of the FOR statement, like this:

20 FOR CNTR = 1 TO 10 STEP 2

If you RUN the program with this statement, you will find that the
counter skips by twos: 1, 3, 5, 7, 9 . Note that the counter never
reaches exactly 10 in this case, but stops the loop at 9, just before it
goes over the limit.

You can also use the STEP to make the loop counter go down
instead of up. To do this, give the STEP a negative value:

20 FOR CNTR = 10 TO 1 STEP - 1

If you run the program in this way, the counter will start with the
value 10. When it reaches the end of the loop, it will add - 1 to the
counter, effectively subtracting one from it . The loop will then repeat
with the values 9, 8, and so forth . When it reaches 1, the loop will
end and the program will continue.

You can give the counter variable any name you want. You must
make sure, however, that you make the name in the FOR statement
exactly match the name you use in the NEXT statement to end the
loop. If you don't, you get an ERROR. Many people choose to give
simple names to their FOR/NEXT counters-especially one-letter
names such as I, J, and K .

CON T R 0 L LI N G YOU R PRO G RAM 109

You can have any group of statements within your loop-even
another loop. Tryout the following program:

10 PRINT "THE LOOPS ARE BEGINNING"
20 FOR 1= 1 TO 3
30 PRINT "OUTER LOOP --" ;1
40 FOR J=1 TO 4
50 PRINT " INNER LOOP --" ;J
60 NEXT J
70 PRINT "INNER LOOP IS FINISHED"
80 NEXT I
90 PRINT "BOTH LOOPS ARE FINISHED"

The results of this program are shown in Figure 7.4. As you can see,
the outer loop is repeated three times in the course of the program,
each time printing the value of its counter variable, 1. Each time
through this outer loop , however, the computer encounters the inner
loop, with a different counter variable, J. This tells it to repeat the
PRINT statement in line 50 four times on each of its three passes
through the outer loop.

Figure 7.4: A loop within a loop can give interesting results.

110 THE ATARI 800XL: A PRACTICAL GUIDE

There is only one restriction on this useful idea of a loop within a
loop: the inner loop must be entirely contained within the outer, like
the pieces of a Russian doll. You must make very sure that the NEXT
of the inner loop comes before the NEXT of the outer loop, as in the
above program. Otherwise you will get an ERROR.

FOR/NEXT loops are useful for almost every type of program.
Most programs need to repeat statements in some way, and for many
tasks it is essential. Here are some examples of ways you can use
FOR/NEXT loops :

Calculations Many computations have to be done over and over
again. Often, you need to have a whole list of answers to the same
simple problem, and you'd rather not have to calculate it each time.

Suppose, for instance, that you wanted to buy a number of gadgets
at $11.39 apiece. You'd like to buy several, but the number you buy
will depend on the cost. So, you write a program to make up a table:

10 REM * * * TABLE OF GADGET COSTS * * *
20 PRICE = 11 .39
30 REM PRINT HEADINGS
40 PRINT "NUMBER", "COST"
50 FOR I = 1 TO 20
60 COST = I * PRICE
70 PRINT I,COST
80 NEXT I

When you RUN this program, you will get a table, as in Figure 7.5.
This shows how much you would have to pay for any number of gad
gets from 1 to 20. Notice that in lines 40 and 70 a comma was used
instead of a semicolon. A comma between PRINT messages tells the
computer to arrange numbers neatly in columns.

Graphics For many types of pictures, you must use some controlled
form of repetition, so that you don't have to plot every point and line
manually. Any figure that cannot be made up of a few straight lines
must be drawn using a FOR/NEXT loop.

You will need to use a FOR/NEXT loop if you want to draw a
solid figure . To see how this works, try the following program:

10 REM * * *SOLID TRIANGLE * * *
20 GRAPHICS 7

C ONTROLLING YOUR PROGRAM 111

30 COLOR 1
40 FOR Y=O TO 79

50 PLOT O,Y
60 DRAWTO Y,Y
70 NEXT Y

This program steps through every possible value of Y, from 0 at the
top of the screen to 79 at the bottom. At each Y, it PLOTs a point at
the left edge of the screen (coordinate 0, Y), then draws a horizontal
line Y units long. The result is a solid triangular region, as shown in
Figure 7.6.

Delays Each time the computer has to repeat a FOR/NEXT loop, it
wastes a fraction of a second. In most programs, you will hardly
notice this delay. If you ask for a large number of repetitions, though,
the time begins to add up.

You can use this to your advantage when you want to slow down

Figure 7.5: You can create a table with a FOR/NEXT loop.

112 THE ATARI BOOXL: A PRACTICAL GUIDE

the action or have the computer pause. Write a FOR/NEXT loop
with many repetitions at the place where you want the pause:

20 FOR DELAY = 1 TO 5000
30 NEXT DELAY

This loop does nothing whatsoever as it goes through its 5000 repeti
tions; however, it wastes about ten seconds in the process. This might
be helpful in a program such as this:

10 PRINT "PATIENCE TEST"
20 FOR DELAY = 1 TO 5000
30 NEXT DELAY
40 PRINT "YOU PASSED!"

When you RUN this program, the computer immediately displays
the words

PATIENCE TEST

It then goes into the "do-nothing loop" and waits about 10 seconds
before congratulating yOU .

figure 7.6: You can draw solid regions on the screen, using FOR/NEXT loops.

CONTROLLING YOUR PROGRAM 113

Delay loops are common in many Atari programs. Since the FOR
and NEXT statements here are really a single idea, many people
write them on a single line, separated by a colon:

20 FOR DELAY = 1 TO 5000:NEXT DELAY

In these and other uses, FOR/NEXT loops give you a new range
of control over your computer. They let you repeat a group of state
ments any number of times, then go on to the next part of the pro
gram. While the computer is repeating the loop, it also keeps track of
a counter variable, which you can use in your calculations. You will
find more and more uses for these statements as you explore the capa
bilities of your computer.

IF STATEMENTS:
MAKING DECISIONS -----------

You can also control the way the computer runs your program by
having it make decisions. With the IF statement, you can have the
machine decide whether or not to do something depending on the val
ues of certain variables.

Of course, the computer isn't making an independent decision.
You tell it to do one thing if a certain condition is met, and another
thing if it isn't. It makes its choice in response to the information you
give it. The computer doesn't really think; it just follows the course
that fits the conditions.

The IF statement consists of two parts: a condition and a response.
The two parts of the statement are signalled by the words IF and
THEN. The general form of the statement is

10 IF condition THEN response

When you actually write this statement, you will replace the words
coruiition and response with a specific comparison and command.

The condition will usually be a comparison between a variable and
some numbers. You could , for example, test to see if the variable
NUMBER is equal to 0. You would start by writing

10 IF NUMBER = 0 THEN . ..

The computer would check the value stored in NUMBER. If it is
exactly 0, the computer will carry out the response. If it is not, the

114 THE ATARI 800XL: A PRACTICAL GUIDE

computer will skip the response and proceed to the next statement in
the program.

You can use a variety of arithmetic comparisons in your IF condi
tion . The most important are

equal to

> greater than

> = greater than or equal to

< less than

< = less than or equal to

< > not equal to

You can also combine two or more conditions with the words AND
and OR. If you wanted to see if a number was more than 5 and less
than 10, you could use the condition

10 IF NUMBER>5 AND NUMBER<10 THEN ...

The computer would carry out the response only if the variable
NUMBER had a value between 5 and 10.

The response, which follows the word THEN in the statement, can
be any Atari command. If the condition in the IF part is satisfied, the
computer will follow the command; if the condition isn't satisfied, it
will pass the command by.

Here are some examples of valid IF statements:

10 IF 1= 10 THEN PRINT "NUMBER IS TEN"
20 IF MODE = 0 THEN GRAPHICS 0
30 IF SIZE >20 THEN SIZE = 20

Line 10 will display a message on the screen if at that point the vari
able I is equal to ten . If I has any other value, no message is dis
played. Line 20 uses an IF statement to reset the computer to
GRAPHICS mode 0 (standard text), if it discovers the variable
MODE has been given the value O.

Line 30 shows a common use of the IF statement. When it arrives
at this statement, the computer checks to see if the variable SIZE has
exceeded 20 . If it has, the computer resets it to 20. After this state
ment, you can be certain that SIZE will not be greater than this maxi
mum value.

CONTROLLING YOUR PROGRAM 115

To see the IF statement in action, let's try a simple program that
lets you guess at a number from 1 to 100. Type in this program:

10 ANSWER = 57
20 PRINT
30 REM BLANK LINE
40 PRINT "TYPE A NUMBER FROM 1 TO 100"
50 INPUT N
60 IF N<ANSWER THEN PRINT "TOO SMALL"
70 IF N >ANSWER THEN PRINT "TOO BIG"
80 IF N = ANSWER THEN PRINT "CORRECT!"
90 GOTO 20

Line 10 of this program gives the correct answer to the computer. The
rest of the program is an infinite loop that asks you to type a number,
then compares it to the correct answer.

When you RUN this program, the computer will start by asking
you to

TYPE A NUMBER FROM 1 TO 100

You know the answer (57), but try some other numbers too. Give your
response and press RETURN . The computer will say either TOO
SMALL, TOO LARGE, or CORRECT, depending on the number
that you type. The computer makes its choice according to the IF state
ments in lines 60 through 80, then PRINTs the appropriate response.
Line 90 sends the computer back to the beginning of the loop, to ask
for another number. Figure 7.7 shows the results of several guesses .
When you have finished, press BREAK to stop the program.

You can make the computer expect a different answer, merely by
changing line 10 . You might even enjoy playing this as a game. Store
a number in the computer by typing it into line 10, then clear the
screen and RUN the program . You can then have a friend try to
guess the number that you typed in.

IF statements are often used to ask the computer to GOTO another
part of the program only under a certain condition . You could, for
example, have the number-guessing program go back to line 20 only
if the answer was wrong. Replace the simple GOTO statement in line
90 with the following IF statement:

90 IF N < >ANSWER THEN GOTO 20

116 THE ATARI 800XL: A PRACTICAL GUIDE

The < > is a "not equals" condition, and will send the computer on
two different paths through the program, depending on whether the
values of the variables N and ANSWER are equal or not. If they are
not equal, the computer will jump directly back to line 20 and con
tinue from there. If the numbers are equal, however, the condition
will be false, and the computer will skip the GOTO command. Nor
mally, it would then continue with the next statement, but since this is
the last line, the program simply ends.

IF statements with a GOTO response allow you to split your pro
gram into two parts, then let the computer choose which path to take,
depending on the circumstances. You might, for example, write a
program such as this:

10 PRINT "TYPE A NUMBER";: INPUT N
20 IF N = 0 THEN GOTO 50
30 PRINT "STATEMENT 30 IS USED"
40 GOTO 10
50 PRINT "STATEMENT 50 IS USED"
60 GOTO 10

RUN

TYPE A NUMBER FROM 1 TO 100
?35
TOO SMALL

TYPE A NUMBER FROM 1 TO 100
?64
TOO BIG

TYPE A NUMBER FROM 1 TO 100
?51
TOO SMALL
TYPE A NUMBER FROM 1 TO 100
?58
TOO BIG

TYPE A NUMBER FROM 1 TO 100
?57
CORRECT!

~iPE A NUMBER FROM 1 TO 100

Figure 7.7: Results of the number-guessing program.

CONTROLLING YOUR PROGRAM 117

This program asks for a number, then tests to see if it is zero. If it is,
the computer jumps to statement 50 and prints a message. If the num
ber is not zero, the computer bypasses the response and continues with
the next statement, number 30. In either case, the computer returns to
line 10 after it PRINTs the message.

The IF statement lets you use a technique called data checking.
Often when you write a program that asks for input from the key
board, you are expecting a response of a certain kind . You might, for
instance, expect a number from 1 to 12, to represent a month of the
year. You can guard against meaningless responses by making a
simple check:

10 PRINT "WHICH MONTH";:INPUT MONTH
20 IF MONTH<1 OR MONTH>12 THEN GOTO 10
30 PRINT "OK"

When you RUN this program, the com pu ter will ask you to type
a number to represent a month. If the value is meaningless, however,
the IF statement will send the computer back to line 10 to ask
for another value. It will keep doing this until you type a number
between 1 and 12. In any statements you might add after line 30,
you can be sure that the variable has a value that represents an
actual month.

IF statements clearly have many other uses. Whenever you want
your computer to do more than a simple task, you will need to have it
make decisions along the way. With the IF statement, you can easily
control the way it makes these choices.

COSUB: SUBPROGRAMS ----------

There is another important way you can change the start-to-finish
flow of your program. This is with subprograms, a series of statements
which you can set off from the rest of your program and use as a unit
whenever you want.

To use a subprogram, you must call it with a GOSUB statement,
such as this:

40 GOSUB 1000

This acts just like a GOTO statement, sending the computer to line
number 1000 to continue its work. With GOSUB, however, you tell

118 THE ATARI 800XL : A PRACTICAL GU IDE

the computer that you want it to come back after it has finished using
the subprogram.

The subprogram itself is like any other group of statements, except
that it ends with the command RETURN. When the computer gets
to this final command, it sees that the subprogram is done, and goes
back to the statement following the original GOSUB. In this way, you
can tell the computer to go off and follow a group of instructions, then
come back to the point where it left off.

To see how this works, let 's try a sample program:

10 PRINT "MAIN PROGRAM BEGINS"
20 GOSUB 1000
30 PRINT "MAIN PROGRAM CONTINUES"
40 END
1000 REM SAMPLE SUBPROGRAM
1010 PRINT " NOW RUNNING SUBPROGRAM"
1020 RETURN

When you RUN this program, the computer will respond like this:

MAIN PROGRAM BEGINS
NOW RUNNING SUBPROGRAM
MAIN PROGRAM CONTINUES

From this you can trace the flow of the program. The computer
began with line 10, the beginning of the main program. At line 20,
it jumped to the subprogram and printed the second message. At
the RETURN statement, however, the computer finished the subpro
gram and went back to the main program, continuing with line
30, which immediately follows the GOSUB statement that called the
subprogram.

The END command in line 40 is quite important. It signals the
end of the main program and tells the computer to stop. If this state
ment were not there, the computer would continue running the pro
gram, going on to line 1000 of the subprogram, which would be the
next line. This would not be what you wanted, unless you did in fact
want it to rerun the subprogram at the end of the main one .

You can have many different subprograms, as long as each has
different statement numbers and ends with a RETURN. While you
are free to choose any statement numbers for your subprograms, you
will find it best to use rather high numbers, such as the 1000 chosen
here. In that way you leave space in case you later decide to expand

CONTROLLING YOUR PROGRAM 119

your main program. Also, it is generally best to start each subpro
gram with a remark (REM statement), that describes what the sub
program does.

You can put any kind of statement in a subprogram. You can even
use another GOSUB statement to call a second subprogram. If you
do this, the RETURN statement from the second subprogram will
send the computer back to the GOSUB statement in the first. The
computer will go on from there to complete the first subprogram, then
return to finish up the main program.

You may be tempted to use a GOTO rather than a RETURN to
get back to the main program. Don't. There is a way you can do this,
but you will usually end up confusing both yourself and your com
puter. Make your subprograms self-contained, and be careful to have
them RETURN when they an! done.

Why use subprograms? There are a variety of reasons why you
might want to break up your program into smaller parts. Here are
a few:

• To use a group of statements more than once. In large programs,
you often have certain tasks which you need to do over
and over. If you just want to repeat the group a number of
times in one place, you might be able to use a FORI
NEXT loop. If, however, you need to reuse the group at
another part of your program, you would need to type the
FORI NEXT loop over again at each point where you
want to use it. Instead of doing this, you can group the
statements together in a subprogram . Then, each time
you need to do the task, you can call it with a simple
GOSUB statement.

• To make a program modular. Very long programs can seem
terribly daunting if you try to view them all at once. By
breaking the program down into more manageable units,
you can make it much easier to understand . Some people
write their main programs as a series of GOSUB state
ments, which direct the computer to each of the modules
in turn.

• To develop a subprogram library. At some point, you might
want to put together a collection of subprograms that you
often use as building blocks for different kinds of programs.

120 THE A TAR I 8 0 0 XL : APR ACT I CAL G U IDE

If you store all of these routines on a cassette or diskette,
you can load anyone of them back into the computer
whenever you want to use it in a program.

With subprograms, we have reached the end of our exploration of
the statements that control the flow of your program. With the state
ments you have learned in this chapter, you are well on your way
toward programming your computer effectively.

OPTIONAL EXERCISES - ----------

1. Write a program that will ask for a number, then say
whether it was positive, negative, or zero . You will need
an INPUT and an IF statement. Remember that you use
a minus sign to type a negative number.

2. Write a subprogram that clears the screen by PRINTing
ESC and CONTROL/CLEAR. Then tack it on to one of
your other programs to improve the appearance of the
screen display.

3. Write a FOR/NEXT loop to calculate the sum of the
numbers from 1 to 100. Hint: set up a variable SUM and
add the counter variable to it each time through the loop .

SUMMARY ---------------

In this chapter, you have learned many new ways to control your
computer. You are no longer locked into a simple top-to-bottom
march through your program; you can jump around, turn loops,
make decisions, and run subprograms.

The GOTO statement tells the computer to jump to another state
ment. You can jump forward or backward within your program, and
create infinite loops if you wish . This is often a simple way to do
repetitive tasks .

With FOR and NEXT statements, you can make your computer
repeat a group of statements a certain number of times, then go on to
the rest of the program.

IF statements let your computer make decisions in the course of
your program. At any point, you can tell the computer to test a con
dition. If the condition is true , your IF statement will have the

CONTROLLING YOUR PROGRAM 121

computer take some action. It can print a message, change a value, or
go to another part of the program-anything you choose.

The GOSUB statement gives you yet another way to determine the
flow of your program. You can break a large program up into smaller
blocks, then use the blocks whenever you need them. This lets you
write simpler programs, which you can work with one piece at a time.

With this chapter, you have come to the end of the standard pro
gramming techniques covered in this book. Chapter 8 is a whirlwind
tourof the advanced graphics features of your Atari computer, which
will show you some more of its potential .

~ CHAPTER EIGHT -------------

Advanced
Graphics

In Chapter 4, you learned a little about the Atari graphics system.
You learned how to use the POSITION statement to place text mes
sages anywhere on the screen. You found out how to plot points and
draw lines in the four-color graphics mode, creating pictures with
your computer.

In this chapter, you will learn more about the Atari graphics sys
tem. You will learn how to control the colors of the screen background
and the graphics paintbrushes. You will find out how to eliminate the
text window at the bottom of the screen, so you can draw larger pic
tures. Finally, in a tour of the other graphics modes, you will discover
other ways to control the screen display.

In these few pages, I cannot describe the entire Atari graphics sys
tem. Instead, I have made this a whirlwind tour to give at least a taste
of some of the wonderful things you can do with your Atari graphics.
If you would like a more complete description, consult one of the
more technical books devoted to the Atari.

This chapter deals with difficult subjects. The deeper points of the
Atari graphics system are very interesting, but they can be confusing
at first. Don't worry if you get hung up from time to time. Just go on
to the rest of the book, and come back when you feel you understand
better.

CHANGING COLORS WITH SETCOI.OR ----

So far, you have used only a few colors: the white and blue letters
and background, and the four graphics paintbrushes (orange, green,
blue, and black). Your computer has a range of 16 colors to choose

124 THE ATARI 800XL : A PRACTICAL GUIDE

from. Within each of the 16 colors, you can select 16 luminances, or
shades. So in effect, you have 256 colors at your disposal . Even if you
are using a black-and-white television, you will be able to control the
brightness of the gray tones.

You have been using the COLOR command to choose among the
four graphics paintbrushes, but you have not been able to change the
preset color that was assigned to each one (orange, green, blue, and
black). You could choose your colors to some extent by switching
paintbrushes, but you did not have full control.

The COLOR command has a companion called SETCOLOR,
which assigns any colors you choose to the four paintbrushes. You
could, for example, make the first paintbrush white instead of orange.
While you cannot use more than four colors at one time, you can
choose those four from any of the 256 possibilities available.

Don't confuse COLOR with SETCOLOR. COLOR chooses
which of the four paintbrushes you will be using. So when you ask for
COLOR 2, you are really asking for paintbrush 2. You can think of it
as saying, "Pick up this paintbrush and keep using it until I tell you
otherwise ." SETCOLOR, on the other hand, sets the color of paint
that will be found on each paintbrush. It says, in effect, "Wash out
this paintbrush and dip it in a new color." Unlike an ordinary paint
brush, however, SETCOLOR also goes back and changes the color of
all the points that brush has already painted on the screen.

The SETCOLOR command always contains three numbers, m a
form such as this:

SETCOLOR 2,9,4

Each of the three numbers that follows the word SETCOLOR has a
special meaning. Figure 8.1 gives a quick-reference chart for using the
three numbers in the four-color graphics mode.

The first number (A) names the color register you want to change. A
color register is a place where the computer can store a code that con
trols one of the colors on the screen. Once stored, the new code
changes the color of the paintbrush attached to that register, without
affecting any of the others.

The Atari computers have five color registers, numbered 0 through
4. Unfortunately, the registers have different meanings, depending on
which graphics mode you are using. For instance, Register 2 sets the
color of a paintbrush in four-color graphics, but in text mode it

ADVANCED GRAPHICS 125

merely controls the background. It would be quite difficult to learn the
meanings for all of the modes, but you can easily master the most
important ones.

The first column of Figure 8.1 shows the meaning of each of the
registers in the four-color graphics mode. Note that the registers in the
SETCOLOR command are numbered differently from the "paint
brush numbers" you have been using in your COLOR statements .
(This may seem confusing, but you can understand it if you remem
ber that the "erasebrush" is always 0 in the COLOR statement, and
always the last of the four SETCOLOR registers number 4.) Figure
8 .2 shows the correspondence of the COLOR and SETCOLOR
codes, along with the preset colors of the five registers. Just find the
paintbrush you want in the COLOR column, then use the corres
ponding SETCOLOR register to change it. Register 3 (red) is not
used in this mode, but is important for some of the others. The preset
colors of the registers are the same in every mode.

The second number in your SETCOLOR command controls the

A: COLOR REGISTER

O-Paintbrush #1
1-Paintbrush #2
2-Paintbrush #3
3-(unused)
4-Erasebrush (#0)

and background

SETCOLOR A, B, C

B: COLOR (HUE)

O-Gray
1-Light orange (gold)
2-0range
3-Red-orange
4-Pink
S-Pink-purple
6-Purple-blue
7-Blue
8-Light blue
9-Blue-green

10-Turquoise
11-Green-blue
12-Green
13-Yellow-green
14-0range-green
1S-Light orange

C: LUMINANCE

O-Very dim

2-t
4- I
6-
8_Medium

10- I
12- +
14-Very bright

Figure 8.1: The cades far the three numbers in the SHeOLOR command in the
faur-calar graphics made.

126 THE ATARI 800XL: A PRACTICAL GUIDE

color. In this mode you may choose from the sixteen colors shown in
column B of Figure 8.1. You will notice that the colors are arranged
like an endless rainbow. If you move through the colors from ° to 15
and back to 0, you will see them go through an almost continuous
cycle. This is often useful in programs.

The third number in the SETCOLOR command sets the luminance,
or brightness of the color. For any of the sixteen colors, you can
choose from eight different shades. The lowest, 0, is almost black,
while the highest, 14, is very bright. In between, you can adjust the
brightness to fit your needs. Note that in this mode your computer
accepts only even numbers for the luminance setting. If you use an
odd number, it will be rounded down.

To see how all this works in practice, let's change the colors of the
paintbrushes. To get some lines painted with the three paintbrushes,
type the following program into your computer:

10 GRAPHICS 7

20 COLOR 1
30 FOR Y = 10 TO 20
40 PLOT 20,Y
50 DRAWTO 140,Y
60 NEXTY
70 COLOR 2
80 FOR Y =30 TO 40
90 PLOT 20,Y
100 DRAWTO 140,Y
110 NEXTY
120 COLOR 3
130 FOR Y=50 TO 60
140 PLOT 20,Y
150 DRAWTO 140,Y
160 NEXT Y

When you RUN this program, your computer will shift into the four
color graphics mode and draw three wide horizontal bands on the
screen. Each band is drawn with a different paintbrush in its preset
color: one orange, one green, and one blue. In the text window at
the bottom of the screen, the computer says READY to show that it
has finished.

Now that you have regions painted with each of the three brushes,
you can change their color settings. Let's first change paintbrush 1

ADVANCED GRAPHICS 127

from orange to some other color. Type the following command:

SETCOLOR 0,5,12

When you press RETURN, the orange bar will turn to a bright pink.
The first number names the register you are changing: register 0,
which controls paintbrush number 1. The other two numbers name
the color and the brightness you are changing that register to; color 5
(pink-purple), with a brightness of 12.

Try changing either the color or the brightness of this first bar,
using other SETCOLOR ° commands. Also, change the colors of the
other two paintbrushes with SETCOLOR 1 and SETCOLOR 2
commands. Don't be surprised if some of these commands also affect
the text window. In changing paintbrushes, you are also changing the
text and background colors of the bottom of the screen. There is no
way to change one without the other.

You can change the color of the screen background by changing the
SETCOLOR 4 register. Try typing this, for example:

SETCOLOR 4,5,6

The entire background of the screen will change to pink. This
changes the color drawn by the erasebrush, paintbrush 0, to pink as
well, since erasure is simply painting over with the background color.

If you get tired of your new colors, you can return the machine to its
preset colors. Use the values shown in the right column of Figure 8.2:

SETCOLOR 0,2,8
SETCOLOR 1,12, 10

PAINTBRUSH
SETCOLOR NUMBER
REGISTER (COLOR)

° COLOR 1
1 COLOR 2
2 COLOR 3
3 -
4 COLOR 0

(erase)

PRESET SETCOLOR
COLOR CODE

Orange 0,2,8
Green 1,12,10
Blue 2,9,4
Pink or Red 3,4,6
Black 4,0,0

Figure 8.2: The COLOR and SETCOLOR codes in the four-color
graphics mode.

128 THE ATARI 800XL: A PRACTICAL GUIDE

SETCOLOR 2,9,4
SETCOLOR 4,0,0

These are called the default values, because they are the codes that are
stored in the color registers when you turn your machine on. You can
get back to these codes by pressing RESET as well, though that will
also clear the screen.

You can also use SETCOLOR to change the appearance of the
screen in the regular text mode (GRAPHICS 0). The SETCOLOR
registers have different meanings in this mode, but they are no more
difficult. Instead of controlling paintbrushes, the registers in the text
mode control regions of the screen-text, background, and border.
Figure 8.3 shows their meanings.

Register 1 controls only the luminance of the letters, not their color.
The letters are always the same color as the background: you can set
them lighter or darker, but never to a different hue.

To see how this works, press RESET to return the color registers to
their original state. The default setting of the background color,
shown in Figure 8.3, is color 9 with a brightness of 4-dark blue. The
letters of the word READY are set by register 1, which starts out as
color 12 and brightness 10, which would normally be light green. The
computer, however, ignores the color and uses only the brightness
(10), making the letters light blue, rather than green. When the letters
have a brightness less than the screen background, they show up dark
against a lighter background.

Try changing the colors of the letters, background, and screen bor
der. Here are some interesting combinations:

SETCOLOR 2,0,0

SETCOLOR 2,15,14

SETCOLOR REGION
REGISTER OF SCREEN

0 -

1 Text Luminance
2 Background
3 -
4 Border

PRESET
COLOR

Orange
Green
Blue
Pink or Red
Black

Figure 8.3: The SETCOLOR registers in the text mode.

SETCOLOR
CODE

0,2,8
1,12,10
2,9,4
3,4,6
4,0,0

SETCOLOR 2,9,4
SETCOLOR 1,0,14
SETCOLOR 1,0,0
SETCOLOR 4,5,10

ADVANCED GRAPHICS 129

You can always press RESET to return to the blue screen.
If, at any point, you change the letters and the screen background

so that they have the same brightness value, the letters will seem to
disappear. They are still there, but you cannot distinguish them from
the screen around them. To get them back, press RESET or blindly
type another SETCOLOR command.

ELIMINATING THE TEXT WINDOW ------

In all of your graphics programs, a blue window has remained for
text at the bottom of the screen. This is important, because if the
computer used the whole screen for graphics, you would have no
place to type your commands.

At times, however, you will want to draw pictures that cover the
entire screen. Full-screen pictures are generally more attractive, since
they are not disrupted by the blue region. Also, some of the more
advanced graphics modes cannot be used with a text window.

You ask the computer to remove the text window simply by adding
16 to the mode number in the GRAPHICS statement:

10 GRAPHICS 7 + 16

Since 7 + 16 equals 23, you could also write this:

10 GRAPHICS 23

It is better to write 7 + 16, though, because this makes it clearer what
you are doing.

Since the graphics will now extend below the bottom of the regular
graphics screen, you can use some coordinates that are larger than
normal. The limits on x are the same as before (0 to 159), but the y
coordinates can now run as high as 95 (rather than the usual 79).

Since these extended graphics screens leave you no space to type
commands, you can use them only in programs. You must write com
mands into your program for everything you want the computer to
draw, then type the RUN command. Once the computer switches into

130 THE ATARI 800XL : A PRA C TI C AL GUIDE

this kind of graphics mode, you can no longer give direct commands.
If you let your program end normally, the computer will not leave

your picture on the screen, as it usually does. Instead, it will erase the
entire picture immediately, to make room for the word READY. To
prevent this , send the computer into an infinite loop with the last
statement in the program, so that it draws the picture and then gets
stuck. You do this with a statement such as this:

999 GOTO 999

When the computer gets to this final statement, it will simply stop,
with your picture frozen on the screen.

The computer still won't respond to what you type on the key
board: it is busy repeating line 999. When you 're ready to give com
mands again, press the BREAK key to stop the program. This will
erase the picture from the screen and let you type commands again.

Try the following program to see how full-screen graphics work:

10 GRAPHICS 7 + 16
20 COLOR 1
30 PLOT 0,0
40 DRAWTO 159,95
50 PLOT 0,95
60 DRAWTO 159,0
999 GOTO 999

When you RUN the program, the computer should draw an orange X
across the entire screen. Line 999 locks it in an infinite loop, so that the
picture will remain on the screen. Press BREAK to regain control.

THE GRAPHICS MODES ----------

So far you have seen only two of your computer's sixteen graphics
modes. These are the most important, but the other fourteen are also
useful. By using the mode that exactly suits your purposes, you can
design your graphic displays just the way you want them.

Figure 8.4 is a comparison chart that shows what each of the modes
does. Look carefully at the differences between the modes.

The resolution column is very important. This pair of numbers tells
how many rows and columns the screen is divided into. The higher
the resolution, the finer your points and lines can be. If you want to
draw very detailed pictures, then you will want the highest possible

ADV AN CED GRAPHICS 131

resolution. On the other hand, if you want to draw pictures with thick
lines, you can use lower resolution modes.

The resolution you choose also affects the amount of memory you
use. In high-resolution graphics modes, the computer must use sub
stantial memory space to store the information it needs to paint the
picture. This is very important if you have an Atari 600XL or one
of the older Ataris, because some of the modes will take up almost
the entire available memory. This can cause problems, because in
these modes you may not be able to write programs longer than
ten or fifteen lines. You can use all of the graphics modes on your
machine, but you must be very careful with modes that use more
than 8000 bytes of memory (see the right column of Figure 8.4) .
Memory is not a problem if you have an Atari 800XL or a memory
expanSlOn.

If you have any of the new XL series computers, you have all six
teen modes. If you have one of the older Atari 400 or 800 computers,
you lack some of the modes between 9 and 15. All of the old com
puters have modes 0 through 8, and some of the later ones have 9,

MODE TYPE OF NUMBER MEMORY
NUMBER MODE RESOLUTION OF COLORS USED (BYTES)

0 Normal text 40 x 24 1 992
1 Large text 20 x 20 5 674'
2 Large text 20 x 10 5 424
3 4-color graphics 40 x 20 4 434
4 2-color graphics 80 x 40 2 694
5 4-color graphics 80 x 40 4 1174
6 2-color graphics 160 x 80 2 2174
7 4-color graphics 160 x 80 4 4190
8 High-res. graphics 320 x 160 1 8112
9 GTIA graphics 80 x 192 1 8138

10 GTIA graphics 80 x 192 9 8138
11 GTIA graphics 80 x 192 16 8138
12 4-color text 40 x 20 5 1154
13 4-color text 40 x 10 5 664
14 2-color graphics 160 x 160 2 4270
15 4-color graphics 160 x 160 4 8112

Figure 8.4: The 76 graphics modes,

132 THE ATARI 800XL: A PRACTICAL GUIDE

10, and 11 as well . Don't worry : even if you lack a few specialized
modes, you've got all of the essentials. Just skip the descriptions of the
modes you don't have.

With this said, we can proceed with our tour of Atari graphics. In
these few pages, unfortunately, I can only give a brief overview. If
you want to know more, I'd suggest you read Bill Carris's book Inside
ATARI BASIC (Reston, 1983), or Alan· Sound and Graphics, by Moore,
Lower, and Albrecht (Wiley, 1982). These go into much greater detail
than I can in this book.

Four-color Graphics Modes. You have already been using one of
these: graphics mode 7. The other three work in exactly the same
way, but they offer different degrees of resolution. Modes 3 and 5
have lower resolution, so their rows and columns are larger and their
coordinates smaller.

Mode 15 has even finer resolution than mode 7, with boxes only
half as high. Unfortunately, it also takes up twice as much memory
almost the entire space available on the Atari 600XL. If you have an
Atari 800XL or a memory expansion, you will find mode 15 very
useful.

The paintbrushes and the SETCOLOR registers all work in
exactly the same way in these four modes. You can change a program
from one mode to the other merely by changing your coordinates to
reflect the different scale.

Two-color Graphics Modes. Modes 4, 6, and 14 are identical to the
four-color modes 5, 7, and 15, except that they lack two of the four
paintbrushes. You can still use paintbrush number 1, which starts out
orange, and the erasebrush (COLOR 0); however, you cannot use
paintbrushes 2 and 3.

What's the point of the two-color modes if they don't do anything
different? They use only half as much space in the computer's mem
ory, which can be important if you are writing a long program on an
Atari 600XL. If you only want to paint with one color, you can save
space by using these modes.

High-resolution Graphics. Your Atari computer also offers you a
special high-resolution graphics mode . This is number 8, and it is
quite different from the others.

ADVANCED GRAPHICS 133

GRAPHICS 8 gives you twice the resolution of even the finest two
and four-color modes-the points it plots are the smallest that can be
displayed on a normal television screen. This means that the com
puter can draw diagonal lines that look almost exactly straight, with
out the "staircase effect" you often see in other modes. You can use
this higher resolution to draw intricate pictures with fine detail.

You pay a price, though. To achieve this high resolution, you have
to sacrifice color: you can only draw lines of the same hue as the
screen background. In general, this means you will need to restrict
yourself to white.

The high-resolution graphics also take up a great deal of space in
the computer's memory. To use this mode on the Atari 600XL, you
must either write very simple programs or buy a memory expansion.

You do have some control over screen colors in the high-resolution
graphics mode, but the system for changing colors is not the same as
in the other graphics modes . Instead, it resembles the standard text
mode. SETCOLOR 2 chooses the background color, SETCOLOR 1
chooses the brightness of the plotted points and lines, and SETCO
LOR 4 controls the border. As in the text mode, you cannot make the
points a different color from the background; you can only control
their brightness. The SETCOLOR commands affect the text window
as well as the graphics screen.

You really have only one graphics paintbrush in the high-resolution
mode, but you can turn it on and off with the COLOR command.
COLOR 1 sets the paintbrush so that it draws lines, while COLOR 0
makes it erase by drawing with the background color.

If you want to use high-resolution graphics, I'd suggest you start off
with the following sequence of commands:

GRAPHICS 8
SETCOLOR 2,0,0
COLOR 1

This selects the mode and changes the background color to black, to
make the graphics display stand out. You can certainly use other screen
colors, but this combination of white-on-black generally works best.

Special Graphics Modes (GTlA). The XL series and some of the
more recent Atari 400 and 800 models have three other special
graphics modes, numbered 9, 10, and 11. These are sometimes called

134 THE ATARI 800XL: A PRACTICAL GUIDE

the GTIA modes, after the name of the electronic chip that Atari
installed to produce them.

These three modes are useful because they offer a wider range of
colors. In one of them, 11, you can have sixteen different hues on the
screen at once, which allows you to produce rainbow-like displays.
In another, mode 9, you can display 16 different shades of brightness
all at once.

The GTIA modes plot points that are slightly wider than the nor
mal graphics modes. While this is not a serious restriction on resolu
tion, it makes it difficult to draw thin diagonal lines realistically. These
modes are therefore better for pictures that fill whole regions of the
screen with color.

The GTIA modes are unfortunately rather hard to use, because
they work quite differently from the others. The wider range of color
choices makes the SETCOLOR statement more complicated, and
gives strange meanings to the paintbrush numbers in the COLOR
statement. Also, since these three modes do not preserve a text win
dow at the bottom of the screen, they can be used only in programs.

Mode number 11 is perhaps the most impressive of the three. All of
the points you plot must be of the same luminance, but you can use
all 16 of the hues at once. You set the luminance of all the points by
putting a value into SETCOLOR register 4. You can then choose
from 16 different paintbrushes with the COLOR statement. The
paintbrushes are numbered 0 through 15, to match the color codes in
the middle column of Figure 8.1.

Mode number 9 is a one-color version of the same idea. In this
mode, all of your points will be the same color, but you can use all 16
luminance values. You can choose the color of the points by putting a
value into SETCOLOR register 4, or you can use the default color,
gray. The number in the COLOR statement chooses the brightness,
not the color, in this mode, and your 16 paintbrushes draw with the
various luminances you select. This mode is particularly interesting,
because it allows you to use all 16 brightness values, not just the even
numbered ones.

Mode number 10 is perhaps the most flexible, but unfortunately it
is also the most complicated. This mode allows you to use 9 different
paintbrushes at once, and lets you choose their hues and luminances
in any way you please . To use this effectively, however, you will need
advanced programming techniques that are beyond the scope of this

ADVANCED GRAPHICS 135

book. Read Bill Carris's Inside ATARI BASIC if you are interested.
To get a feel for what these special modes can do, type the following

program:

10 PRINT "WHICH MODE";:INPUT MODE
20 GRAPHICS MODE
30 FOR Y = 0 TO 79
40 COLOR Y
50 PLOT O,Y
60 DRAWTO Y,Y
70 NEXT Y
80 GOTO 80

This is a variation on the solid-triangle program at the end of Chapter
7. The difference is that here the computer draws each horizontal line
with a different color.

When you RUN the program, the computer will ask:

WHICH MODE?

You can choose any graphics mode you want, although some of the
low-resolution modes will give you an error message, which you may
ignore. Press BREAK to stop the program when you're finished.
Then you can RUN it again choosing another mode. Mode 11 yields
a beautiful 16-color rainbow pattern. Mode 9 gives five gray bars,
which go through all of the gray tones from black to white (this is the
pattern shown in Figure 8 .5). Mode 10 gives a series of colorful
bands, even though this program does not use all of its 9 colors.
Modes 6, 7, 8, 14, and 15 also work with this program.

THE TEXT MODES ------------

In addition to the 11 graphics modes, your Atari computer also has
five text rrwdes. You are familiar with one of them, the standard white-on
blue letters which you have been using all along. This is GRAPHICS
mode 0, and it is by far the easiest to use. The others, however, do
have some useful features, such as control over the color of the letters.

The other four text modes resemble the graphics modes in some
ways, even though you cannot plot points or draw lines with them.
When you select them with a GRAPHICS statement, the computer
gives you a black graphics screen. You can display letters in different
colors against this background.

136 THE ATARI BOOXL : A PRACTICAL GUIDE

You use a variation on the standard PRINT statement to display
text in these special modes. Immediately after the word PRINT, type
#6 and a semicolon (;). Then type your message, enclosed in quota
tion marks. A typical statement in one of these modes might look
like this:

PRINT #6;"HELLO"

The #6 lets the computer know that you want it to display the mes
sage on the graphics screen; otherwise, it would show it as normal
white letters down in the blue text window.

large Text. Modes 1 and 2 let you display larger letters than with the
normal text mode. They allow you to use only capital letters, but they
let you choose the colors. These modes are therefore useful for large,
important messages, and for displays where you want multiple colors.
Because the letters are wider than normal text, you can only put 20
characters on each line. These two modes are identical, except that
the letters in mode 2 are twice as high as in mode 1.

Figure 8.5: The special mode number 9 offers full control over shading.

ADVANCED GRAPHICS 137

The CAPS and inverse-video keys have a different function in these
modes. If you PRINT lowercase or inverse-video messages, the
results are somewhat surprising: they will come out as capital letters,
but will have different colors. To see how this works, RUN the pro
gram shown in Figure 8.6, taking special care to type the lowercase
and inverse-video messages as they are shown.

Figure 8.7 shows how you can use the SETCOLOR registers to
change the colors of each of the four kinds of letters you may type in
modes 1 and 2. Note that some of these color settings also affect the
color of the text window at the bottom of the screen.

Four-color text. Modes 12 and 13 are more specialized and harder
to use; however, they offer an interesting alternative. In these modes,
which are available only on the new XL series, each letter is made up
of dots of four different colors. By choosing your colors carefully, you
can produce an interesting three-dimensional effect. Once again, the
two modes are identical, except for the height of the letters.

Figure 8.6: A program to display block letters in four colors.

138 THE A TAR I 800 XL: APR ACT I CAL G U IDE

To test out this mode, change the first line of the program in Figure
8.6 to read

10 GRAPHICS 13

Then RUN the program. At first you might not even recognize the
word HELLO, which the computer prints four times at the top of
the screen. This is because the preset color scheme tends to fill in the
middles of the letters. To make the screen more readable, type the
following commands in the text window:

SETCOLOR 0,2,2
SETCOLOR 2,9,12
SETCOLOR 3,4,10

You will now be able to read the message, and see that the parts of
each letter are made up of different colors.

This mode does display both uppercase and lowercase letters.

S ETCO LOR LETTERS PRESET SETCOLOR ·
REGISTER CONTROLLED COLOR CODE

0 Normal capitals Orange 0,2,8
1 Normal lowercase Green 1,12,10
2 I nverse capitals Blue 2,9[4
3 I nverse lowercase Pink or Red 3,4,6
4 Background Black 4,0,0

Figure 8.7: How to control the colors in the text modes 1 and 2.

PART OF
SETCOLOR LETTER PRESET SETCOLOR
REGISTER CONTROLLED COLOR CODE

0 Left side Orahge 0,2,8
1 Middle Green 1,12,10
2 Right side of Blue 2,9,4

normal letters
3 Right side of Pink or Red 3,4,6

inverse letters
4 Background Black 4,Q,O

Figure 8.8: The SETCOLOR registers in the four-color text modes 12 and 13.

ADVANCED GRAPHICS 139

Inverse video, however, controls the color scheme, as you can see
from the third and fourth copies of the word HELLO on the screen.
In these, the blue part of each regular letter is shifted to red, while the
other colors remain the same. Figure 8.8 shows the meanings of the
SETCOLOR registers in these two modes.

With the special text modes, we have reached the end of our tour of
the Atari's 16 graphics modes. This has been just a brief introduction
to one of the most attractive features of your computer, and I hope
you will continue to explore it .

SUMMARY ---------------

The Atari computer has an attractive and flexible graphics system.
Using the advanced techniques in this chapter, you can tap the poten
tial of this system.

In graphics mode 7, the SETCOLOR command allows you to
change the preset colors of your paintbrushes. You can choose any
combination of 16 colors and 8 luminance values for the points and
lines you draw on the screen. In the text modes, the SETCOLOR
command controls the colors of the letters, background, and border.

By adding 16 to the number of any graphics mode, you can elimi
nate the blue text window and extend the graphic display all the way
to the bottom of the screen. You can only do this in a program.

Of the 16 Atari graphics modes, 11 allow you to draw points and
lines for a true graphic display. The 11 modes differ in the number of
colors and the amount of resolution they offer. If you master the spe
cial GTIA modes, you can use many different colors on the screen at
once to produce beautiful rainbow effects.

The other five modes are for text display. By using the large text
and four-color text modes, you can display messages in oversize let
ters and in color.

You have now reached the end of Section Two of this book. You
know how to write programs, use variables, and control the order in
which the computer follows your commands. You have had a glimpse
of the potential of your graphics system, and are now ready to explore
your computer on your own. The fun is just beginning.

Section 3
Storage

~ CHAPTER NINE --------------

Cassette
Storage

In the first two sections of this book, you have been concentrating
on the Atari computer itself. Everything presented up till now could
be accomplished with nothing more than your computer and a televi
sion set; no additional equipment was required.

In this third section, you will learn some of the things you can do if
you have additional equipment to connect to your computer. This
chapter focuses on the Atari Program Recorder, which uses a cassette
tape to store programs and data. Chapter 10 considers the disk drive,
which has a similar function. It is more expensive, but is faster and
more useful . Chapter 11 will discuss some other equipment you can
add to make your system even more versatile.

There are two main reasons why you might want to add a program
recorder or a disk drive to your system. First, many of the most inter
esting programs for the Atari are sold on cassette tape or on diskettes.
If you want to use these, you will need a device that can load the pro
gram into the computer' s memory.

The second reason is permanent storage. When you type a pro
gram into your computer's memory, it remains stored until you give a
NEW command or turn off the power. That is fine if you just want to
use the program for a few minutes, then go on to something else .
Many people, however, like to write programs on their computer,
then store them for future use. With a cassette recorder or disk drive,
you can save the program, turn the computer off, and load the pro
gram back in when you want to use it again. In this way, you can
write a complicated program and have it permanently available .

In this chapter, you will learn how to set up your Atari Program

144 THE AT A R I 800 X L : A P R A CT I CA L G U ID E

Recorder and how to use it. You will find out how to load commerical
software from cassette tapes into your computer, and how to store
your own programs on tape.

SETTING UP
THE PROGRAM RECORDER - - ------

There are two versions of the Atari Program Recorder. The one
currently being sold is the model 1010.This compact model works
well and matches the styling of the 800XL.

If, however, you bought your system some time ago, you may have
purchased the earlier version, model 410. This older version works
exactly the same as the 1010, so you can use either model with any
Atari computer.

To set up either type of program recorder, you need to make two
connections. First, you must attach the thick black cable from the
back of the recorder to the wide hole labeled PERIPHERAL on
the back of the computer. The plug will only go into the hole one way.
If it doesn't seem to fit, try turning it over. The second connection is
easy: just plug the recorder into a power outlet.

The program recorder is identical to a normal cassette player,
except that its special connection lets the computer turn it on and off
automatically. The RECORD, PLAY, REWIND, and ADVANCE
buttons work exactly as they do on a regular cassette deck, and you
can use normal cassette tapes in it. Unfortunately, you cannot use a
normal cassette recorder for this purpose: you must have the Atari
recorder with the special cable .

If you are using prerecorded programs, you usually won't need to buy
blank tapes of your own. Normally, all you 'll need to do is load the pro
gram from the prerecorded cassette tape into the computer's memory.

If you want to store your own programs or want to use a special
program that does expect you to store information on tape, you will
need to buy some blank cassettes. You can use any normal cassette
with your program recorder. Short tapes such as C-30s are usually
better, since longer ones can stretch and become unreadable. You
don't need to buy special high-fidelity or computer tapes . The cheap
est audio tapes work just as well .

Take care of your tapes! Since your tapes may hold an expensive pro
gram or valuable data, you will want to be careful in handling them.

CASSETTE STORAGE 145

You must load your program from the tape every time you want to
use it, and even a minor flaw can make it unreadable.

Always rewind your tapes to the beginning before you remove
them from the recorder. Most tapes have a blank plastic leader at the
start of each side, so that the recorded portion will not be exposed. If
you don't rewind to this leader, you may damage the tape surface as
you remove it.

Keep your tapes away from all sources of magnetism, which can
erase the recorded information. Even your television and telephone
can produce enough of a magnetic field to damage a recording. Keep
your program recorder at least two feet away from your television,
and never scatter tapes carelessly around your work area.

LOADING PRERECORDED
CASSETTE PROGRAMS -----------

Many of the programs commercially available for the Atari com
puters are sold on cassette tape, because cassettes are easy to use and
widely available. When you buy one of these programs, you get a
single cassette with the program recorded on it. To use the program,
you need to load it into the computer's memory.

Since prerecorded cassette programs are made by many different
companies, it is impossible to give general loading instructions that will
work for all tapes. You should read the instruction sheet that comes
with the package to find out the specific commands for loading that par
ticular program.

While I cannot give you a procedure that will work for all cassette
programs, I can tell you the most common one. Do the following
steps in order:

1. Type:

CLOAD

2. Press the RETURN key. You will hear one beep.

3. Put the tape in the program recorder and rewind it to the
beginning of the side on which the program is stored.

4. Press PLAY on the program recorder. The tape will not
start moving yet.

146 THE A TAR I 800 XL : APR ACT I CAL G U IDE

5. Press the RETURN key again. The tape will start to
move and you will hear a beeping sound through your
television .

6. Wait until the tape stops turning in the recorder. If the
computer says READY, your tape has loaded correctly.

7. Press STOP on your program recorder and rewind the
tape. The program is now in the computer's memory, and
you can RUN it like any other program .

While the tape is loading, you cannot type other commands on the
keyboard. If, at any point, you want to stop the procedure without
loading the program, you can press the BREAK key. The computer
will say READY, and you can type commands again.

If you get an ERROR, your computer had problems loading the
tape. Rewind it and repeat this CLOAD procedure. If you still get an
ERROR, you may be trying to load a tape that was designed to be
loaded in some other way-check the instruction sheet that came with
the program.

Unfortunately, you also might have a tape that is defective or that
has become unreadable with use. Cassette tapes are very delicate, and
can be easily damaged if you don't take care of them. If you cannot
load a tape that you have loaded successfully in the past, it probably
means that the coding has become unusable.

You can try any of three things. First , turn the tape over to the
opposite side, rewind it , and repeat the procedure. Most software
manufacturers duplicate the program on side two of the tape, just in
case you have problems with the first copy.

If that doesn't work, you can try to RUN the program anyway, in
spite of the loading error. While this rarely works, it is worth a try.

As a third and final step , check with the dealer who sold you the
program. Because cassettes frequently have problems, many manu
facturers will exchange a cassette that has become unreadable.

SAVING YOUR OWN PROGRAMS ------

If you want to store one of your own programs on a cassette, you
can use a procedure called CSAVE, which is very similar to the
CLOAD command. Type your program into the computer's memory.

CASSETTE STORAGE 147

You don't need to worry about length: you can store hundreds of pro
gram lines on even a short cassette. When you have your program the
way you want it, type:

CSAVE

The computer will beep twice. This is your cue to put a cassette in the
recorder, rewind it, and press the RECORD and PLAY buttons. As
on a normal cassette recorder, you must press both buttons at the
same time to record on the tape .

From here on, you follow exactly the same procedure as you did
to load a program with CLOAD (steps 3 through 7 on pages 145-46) .
You press RETURN to start the tape, then wait until the recorder
stops and the computer says READY. The program is now stored on
the tape.

If this is a very important program, or a long one that would take
hours to type back in, this tape is very valuable. Rewind it and mark
it carefully. Put it in a plastic case if you have one, and store it some
place where it is safe from accidental erasure.

You can also protect your tape from accidents by punching out one
of the small plastic tabs along the top of the cassette . As with an audio
cassette, the Atari program recorder will not record on a tape that has
this tab punched out.

To protect your cassette in this way, hold it with the recorded side
facing you . Then use a pen to punch out the tab near the upper-left
corner, as shown in Figure 9. 1. The other tab protects the second side
of the tape .

If you later decide you do want to record over a protected cassette,
you can still do so. Cover up the hole with a piece of cellophane tape,
then record your program, just as you normally would. The recorder
will think the plastic tab has not been punched out, and will let you
record over the tape . Before you press the RECORD button, make
absolutely certain that this is what you want to do .

If you want to be very sure that you don't lose a program, you
might want to keep it on another tape as a backup. Put a different
blank cassette in the drive and type another save command. When
the computer has finished saving the program you will have your
backup copy on another cassette. Keep the backup in a different
place . That way, if anything ever happens to your first tape , you can
still load the program from the second.

148 THE AT A R I 800 XL: APR ACT I CAL G U IDE

You load a stored program back into the computer with a CLOAD
command, just as you would a prerecorded cassette program. Follow
the CLOAD procedure outlined on the previous page, then LIST the
program to make sure it's the one you want.

Whenever you give a CLOAD command, the computer clears any
program you may have stored in its memory, so that leftover lines
won't interfere with the new program. This will erase your old pro
gram just as a NEW command would. If you have been working on
an important program, you should save it before you load another in.

Since the CLOAD and CSAVE procedures are so similar, it is easy
to forget which you are using. If you mistakenly press the RECORD
button when you were merely trying to load a program back into the
computer, you may erase a valuable program.

One way to remember is to notice the number of beeps. When the
computer wants you to press only the PLAY button, it will beep once.
When it wants you to press both PLAY and RECORD, it will beep
twice. Just remember: one beep, one button; two beeps, two buttons.

figure 9.1: Protect your tapes from accidental erasure.

CAS SET T EST 0 RAG E 149

It is possible to record more than one program on each side of the
cassette tape, but you have to be very careful. You can keep track of
several programs on a single tape by watching the small mechanical
counter on top of the program recorder. If you feel certain that you
won't record one on top of another, you can try to squeeze several
on a side.

When you load a tape on which you want to record multiple pro
grams, press the small reset button next to the counter on the
program recorder, so that the counter reads 000. Then fast-forward
the tape to well beyond the end of the first program. Note down the
counter reading, then record your second program. When you want
to load this second program back into the computer, you can return to
its place on the tape using the counter.

Use this technique only if you're recording large numbers of pro
grams and don't care if you lose them. You can conserve tapes by
recording programs together, but you can easily erase one by accident
if you're not careful. Unless you really know what you're doing, stick
to one program on each side of a tape.

OTHER WAYS TO SAVE PROGRAMS ------

The CSAVE and CLOAD commands are the simplest way to save
or load a program to or from a cassette tape. There are, however, two
other pairs of commands that work in much the same way, but give
slighdy different results. These other commands are also more general,
because they will also work for storing programs on other devices such
as the disk drive.

With all of these commands, you will be using the basic seven-step
procedure for controlling the program recorder. You first type your
command, then press the RETURN key. The computer will beep
once or twice, depending on whether it wants you to press just PLAY,
or to press PLAY and RECORD together. You then set up your tape
in the recorder, and press the RETURN key to set it in motion. The
computer will stop the tape and say READY when it has finished sav
ing or loading the program.

The first pair of commands is SAVE and LOAD. These do exacdy
the same thing as CSAVE and CLOAD, except that they are more

150 THE AT A R I 80 0 XL: APR ACT I CAL G U IDE

general commands that work with other devices as well. These com
mands look like this:

SAVE "C:"

and

LOAD "C:"

The "C:" tells the computer that you want to use the cassette
recorder to save or load the program . This letter C, which must
always be followed by a colon, is the standard name for the program
recorder, and you must specify it in all cassette commands except
CSAVE and CLOAD.

The SAVE and CSAVE commands use different coding formats to
store the program on the tape. You cannot use LOAD on a program
that was saved with CSAVE, or vice versa. As with CLOAD, the
LOAD command erases any program that you may have stored in
the computer's memory.

Why use these expanded commands? For one thing, the SAVE for
mat lets you load and run a cassette program in a single step:

RUN "C:"

This tells the computer to load the cassette program into its memory
and RUN it immediately. With a CSAVE tape, you would have
needed to give two commands:

CLOAD
RUN

LIST and ENTER are the other pair of commands. This LIST
statement is a variation of the command you have used since Chapter
5 to display all or part of a program on the screen. To store program
lines on a cassette with this command, type:

LIST "C:"

The "C :" tells the computer to save the program lines on the cassette
tape, rather than displaying them on the screen. You can then reload
them by typing:

ENTER "C:"

Once again, you can only use ENTER with a program that was
saved with a LIST statement. Programs stored with CSAVE or SAVE
"C:" must be loaded with their own commands.

CASSETTE STORAGE 151

The great advantage of LIST and ENTER is that they let you set
aside parts of a program. If you only want to save the program lines
from 40 through 70, you can type the command:

LIST "C:",40,70

The computer will record lines 40 and 70 and those with numbers in
between. If you later use ENTER to load the program back in, these
are the only lines that will be retained.

This is very useful if you want to save one useful subprogram out
of an entire program. You can save the subprogram with this LIST
command and later ENTER it into other programs.

Unlike CLOAD and LOAD, the ENTER command does not clear
the program memory before it loads the new program. It merely adds
the lines to the program that is already stored. If you do want to clear
the memory, type a NEW command before you type ENTER.

You can even use this command if you need to delete a large num
ber of lines from a program. Normally, you would have to type each
of the statement numbers one by one for each of the lines that you
want to delete . With a LIST "C:" command, you can save the
desired part of the program on tape, clear the memory with a NEW
command, and reload the part you saved with ENTER "C:" .

SUMMARY -------- - - - - ---

With an Atari Program Recorder, you can run commercial pro
grams that are sold on cassette tapes, and you can save your own
programs, so that you won't have to type them in each time you want
to use them. This makes it practical to run much longer programs.

CSAVE and CLOAD are the two most important commands for
saving and loading programs on cassette tapes. When you use these,
the computer asks you to position the tape and press the appropriate
buttons on the program recorder. The computer then turns the
recorder on and off, as it needs to save or read information.

SAVE "C:" and LOAD "C:" are alternative commands that you
can use . These are more general than CSAVE and CLOAD, since
they can also be used with other devices, such as the disk drive. You
can load and run programs stored in this form with a single com
mand, RUN "C:".

152 THE ATARI 800XL : A PRACTICAL GUIDE

You can also use LIST " C:" and ENTER "C:" to store a pro
gram. These work somewhat differently, since they let you store the
program line by line. These commands are useful when you want to
save only part of a program.

~ CHAPTER TEN -------------

The Disk Drive

With an Atari Disk Drive, you can store your information in more
useful ways than with a cassette recorder. You can use prepro
grammed software almost instantly, without having to wait for the
program recorder to read through the tape. A disk drive lets you save
many different programs on the same diskette easily and reliably.

A disk drive is a mechanical device that can read and record infor
mation on a flat magnetic surface . It acts somewhat like a record
player, spinning a circular diskette at high speed and recording infor
mation in thin bands on its surface. Unlike a phonograph record,
however, the diskette can have its information changed or replaced. In
this way, the disk drive acts more like a tape recorder.

A diskette, shown in Figure 10.1, is a 5 lf4-inch vinyl plate, covered
with a magnetic recording surface. To protect it from damage, the
magnetic disk is encased in a plastic envelope, with only a few small
holes exposed. In operation, the drive spins the disk inside its enve
lope and records information on the surface as it passes.

Because they were designed specifically for computer data storage,
diskettes are far superior to cassettes. Diskettes are made to spin much
faster, so the computer can save or retrieve much more information in
a given time. The information is recorded more efficiently on the flat
surface, so a diskette can hold more than a tape.

The greatest advantage of disk storage is its flexibility. With a tape,
you can only start at the beginning and read straight through to the
end. With a diskette, however, your computer can go immediately to
any spot you want and find the information that you want to retrieve .
A diskette , therefore, lets you save many different programs, then
immediately find the one you are looking for. This flexibility allows

154 THE A TAR I 8 0 0 XL: APR ACT I CAL G U IDE

you to use disk drives to do many things that would be impractical
with a program recorder.

You can connect as many as four disk drives to your Atari com
puter, but one is enough for most people. For most of this chapter, I
assume that you have connected only one drive to your computer.
Multiple drives are discussed briefly at the end.

SETTING UP THE DISK DRIVE --------

Atari has sold two different versions of its disk drive. The original
drive was the model 810, shown at the right of Figure 10 .2. The

Figure 10.1: A typical diskette.

THE DISK DRIVE 155

newer model 1050, shown at the left of the figure, is an improved ver
sion, which works faster and can store more information on each disk
ette. The differences, however, are fairly minor, and both models
work with all Atari computers.

Because it is a more sophisticated piece of equipment than the pro
gram recorder, the disk drive is slightly more complicated to set up.
The basics are the same, however, and you can learn the rest easily.

Before you start, make sure the power switches on the computer
and the disk drive are both turned off. Never connect a disk drive to
the computer with the power on.

Start by connecting the large black cable from the disk drive to the
the computer. This cable is just like the cord that connects the pro
gram recorder, with a wide black connector on both ends. Plug one
end into one of the large I/O CONNECTOR holes on the back of the
disk drive: either one will do . Then connect the other end to the hole
marked PERIPHERAL on the back of the computer.

If you want to use a program recorder or another peripheral in
addition to the disk drive, you can plug its cable into the other I/O
CONNECTOR hole in the back of the drive. By chaining devices
together in this way, you can connect as many as you want. The pro
gram recorder must always be at the end of the chain, because it does
not accommodate two connectors.

Look in the small hole on the back of the disk drive marked
DRIVE SELECT or DRIVE CODE. In this hole, there is a pair of

Figure 10.2: The old and new Atari disk drives.

156 THE ATARI BOOXL: A PRACTICAL GUIDE

small switches that tells the computer which disk drive this is. The
second switch may be hard to see at first, but it is directly behind the
first one and butted up against it. If you are using only one drive,
both of these switches should be pushed to the left to choose drive
number 1, as in Figure 10.3. To the computer, this drive will be
known as Dl.

The disk drive has its own power supply, which should have come
packed with the unit when you bought it. Connect the small end of its
cable to the PWR hole on the back of the drive, then connect the
power cord to a wall outlet. That's it for the connections.

TAKING CARE OF DISKETTES --------

Diskettes are fragile objects. If you treat them with care, they will be
reliable, but if you abuse them, you can damage them permanently.

Don't bend your diskettes. While you can flex them slightly without
hurting them, you will make them unreadable if you fold them
beyond their limits. Be very careful not to bend them as you handle
them or insert them into the drive.

Keep dirt and dust away from your diskettes, and never touch any
of the exposed portions of the recording surface. The magnetic coat
ing on the diskette can easily be damaged by any contamination. :ae

Figure 10.3: Set both switches on your drive to the left, unless you are using
more than one drive.

THE DISK DRIVE 157

especially careful of the oblong hole that extends outwards from the
center. This is where the heads of the disk drive make contact with the
diskette to store and retrieve information.

Always slip your diskette into its paper sleeve when you aren't
using it in the machine. Store diskettes at room temperature, in a
place where they won't be disturbed. Some computer stores sell plas
tic cases that protect diskettes in storage.

When using a diskette in a disk drive, always follow one cardinal
rule: Never insert or remove a diskette while the drive is turning. Always wait
until the drive stops and the red "busy light" goes out. Also, remove your
diskettes before you tum the drive or the computer off. If you should neglect these
rules, your disk drive might erase some of the information stored at the
place where it was touching the diskette, and might even damage the
recording surface .

There is one bit of protection built into the diskette system: the
small write-protect notch along the side of the envelope. Normally, you
can both read and record information on the diskette. However, if
you cover up this notch, as in Figure 10.4, you protect the diskette
from recording. The disk drive can still read information from the
diskette, but it cannot record over or erase anything. If you later
decide you do want to record on the disk, you can easily remove the
covering from the notch. Most commercial programs are sold with the
notches covered or absent altogether, so that you cannot erase any
thing. Of course, covering the notch will not protect your disks from
other types of damage.

I hope you won't feel intimidated by all these "Don'ts." In my expe
rience, diskettes are surprisingly resilient, and they will often survive
abuse that you might expect would destroy them. Still, considering the
amount of valuable information you may have stored, it is generally
best to play it safe: if you treat your diskettes right, they will give you
faithful service.

TURNING ON THE DISK DRIVE -------

No matter how you plan to use your disk drive, you must start it
up with a prerecorded diskette . This can be either Atari's Disk Operat
ing System (DOS) diskette that came with the disk drive, or a commer
cial software package designed directly for use on the disk drive. If
this is your first time, I'd suggest you use the Atari DOS diskette.

158 THE A TAR I 800 XL: APR ACT I CAL G U I DE

On the front of the drive, there is a small slot or door, where you
will insert your diskettes. The door looks a little different, depending
on whether you have an old or a new model, but the general principle
is the same.

On the model 1050, you will slide your diskettes into a very thin
slot. Toward the left side, there is a small lever that you can pull
down. When you do this, you are clamping the drive mechanism onto
the diskette, so that it can spin and record data. When you want to
remove the diskette, wait until the "busy light" goes off and then lift
the lever. You can then pull the diskette out.

On the older model 810, you slide your diskette into a fairly wide
slot. To lock the diskette into place, you pull the black plastic door
down until it clicks. To open the door and remove the diskette , press
the button just under the door, to the left of the words ATARI 810.

Whichever model you have, you use the same procedure for

Figure 10.4: By covering the write-protect notch, you can keep the disk drive
from erasing information.

THE DISK DRIVE 159

turning on the disk drive and computer. Make sure you follow this set
of directions in this order every time you use the disk drive with your
computer:

1. Before you turn the drive on, make sure that the door is
open and there is no diskette inside. You can ruin a disk
ette if you turn the disk drive on or off with it inside . Your
computer should also be off at this point.

2. Turn on the empty drive . The red PWR ON light and the
"busy light" should go on and the drive should whirr into
action. Don't worry if it sounds like it is trying to shred a
piece of paper: that is its normal noise. After a few sec
onds , the "busy light" will go out and the drive will stop
with a crunch. Don't do anything until the drive stops.

3. Once the drive is quiet and the "busy light" has gone out,
insert the diskette you want to use. , This must be either a
prerecorded software package or the Atari DOS diskette
you cannot use a blank diskette yet. To insert the diskette,
slide it into the slot on the drive with the label facing
upward and the oval hole towards the back of the
machine . Be extremely careful about which way you
insert the diskette . Since it is square, it will fit in the slot
in many ways, but it will only work when you use the
proper orientation, as in Figure 10 .5.

4. Push the diskette all the way into the slot, until you feel it
click into place . On the 1050, there is a slight depression
to the right of center in the slot, which allows you to push
the disk the last eighth of an inch in . Close the door on
the drive . The drive mechanism will spin for a few sec
onds to center the disk , then stop . It now holds the disk
ette mechanically, and can read information from it.

5 . Turn on your computer and your television. The drive
will start to whirr again, for ten to twenty seconds. While'
it is working, the computer shows only a blank blue
screen . When the disk drive stops, the computer finally
says READY, to show that you can type commands as
always. You are ready to roll.

160 THE A TAR I 800 XL: APR ACT I CAL G U IDE

That is the ideal case. It can happen that your drive will keep turn
ing and your computer will display the message

BOOT ERROR

This indicates that you have done something wrong as you were fol
lowing this procedure. It generally means either that you were using a
diskette that your computer could not read, or that you did not insert
it correctly. Check yourself against Figure 10.4.

If this happens to you, the drive will just continue to whirr, and you
will get a long string of BOOT ERRORs. Even though the red light
does not go out, you will need to open the door on the drive to release
the diskette and slide it out of the drive. Once you have done this,
you can turn the power off on your computer and wait for the drive to
crunch to a halt. Then turn off the disk drive and start over.

Why do you have to have a disk in the drive when you turn the
computer on? When you use your Atari computer with a disk drive,

Figure 10.5: How to insert a diskette.

THE DISK DRIVE 161

it must load some additional instructions into its memory so that it
will know how to respond to disk commands. The Atari computer is
designed to look for these additional instructions on the diskette you
are using, then load them automatically into its memory as it is start
ing up. This is why you must use the Atari DOS or another prere
corded diskette: if the computer cannot find the instructions on the
diskette , it will not be able to turn itself on properly.

USING PRERECORDED
DISKETTE PROGRAMS -----------

As with prerecorded cassettes, there is no way to generalize about
loading commercial diskette software. The best thing you can do is
read the instruction sheet that came with the program: it will surely
contain detailed information on how to load the program.

Some diskette programs load and start themselves directly when
you turn on the computer with the diskette in the disk drive. Others
start the computer up and display the word READY. In this case, you
will usually have to type a command such as

RUN "D:PROGRAM"

where PROGRAM is the name of the package you are using. Check
the instruction sheet for details.

When using a commercial diskette program, you should be espe
cially careful to follow the five-step startup procedure precisely. Disk
ette programs can be quite expensive, and a single mistake can make
them unreadable. Most software manufacturers will replace a dam
aged diskette for a small fee, but they make you go through a lot of
trouble to do this.

In some cases, you can make a copy of the program on a blank
diskette, using the instructions on pages 168-69 later in this chapter.
This allows you to use the copy and keep the original safe in case you
have problems.

Many programs, however, are designed so that you cannot copy
the diskette. Software companies do this to keep you from selling or
giving unauthorized copies to a friend: as with books, most computer
programs are copyrighted, and cannot be duplicated without permis
sion from the author. With a program that has been protected in this
way, you must be very careful not to ruin the original diskette.

162 THE ATARI 800XL: A PRACTICAL GU IDE

THE DOS DISK -------------

We have already encountered the Atari DOS diskette in the proce
dure for starting up the disk drive . This diskette, sometimes labeled
MASTER DISKETTE, contains the instructions that tell the com
puter how to use the disk drive : if you lose this disk without making a
copy, you will have no way to use the computer with the drive. DOS
stands for Disk Operating System, and is actually a program that
runs unseen in the computer's memory.

Atari has three different versions of its Disk Operating System:
DOS 1.0, DOS 2.0S, and DOS 3.0. DOS 1.0 Jas the original ver
sion, and was quickly replaced by DOS 2.0S. These two versions
work in almost exacdy the same way, and can be used on either the
old or the new disk drive.

With the introduction of the new 1050 drive, Atari has announced
a new version of this DOS program. This new version, DOS 3.0, is
designed to take advantage of the 1050's faster speed and higher
density storage, and it includes many other improvements over the
earlier versions. It will work on the old disk drives as well.

Unfortunately, as this book is going to press, DOS 3.0 is still not
available and is not expected for some time. For this reason, all of the
descriptions in this book are directed toward DOS 2. OS, the most
common version currendy being sold. DOS 3.0 will work very simi
larly when it becomes available, so you will not be missing anything
essential by reading about the older version.

When you turn on the computer with the DOS disk in the drive, a
part of the DOS program is automatically loaded into the computer's
memory. This lets the computer respond to disk commands that it
would not otherwise recognize. You can use your computer just as you
normally would, but you can also use these new commands that have
been added to its vocabulary. These new commands include SAVE,
LOAD, and RUN, which will be discussed later in this chapter.

You can also use the DOS program in a more visible way, by
typing the command

DOS

This switches the computer out of its habitual mode of accepting
BASIC commands and program lines, and reads in another part of
the DOS program. This is a set of disk utilities that lets you do special

T HE DISK DRIVE 163

operations on your diskette. Note, incidentally, that when you use the
DOS command, any BASIC program you had stored will be lost.
Save it first .

Type the DOS command and press RETURN. The disk drive will
whirr again and the display will change to look like Figure 10.6. This
is called the DOS Menu, because it lays out all of the selections you can
make. In most cases, you will give your commands by typing one let
ter out of this list, then pressing RETURN. If the computer needs
more information to carry out the operation, it will ask you questions
on the screen.

While you still have your DOS disk in the computer, type command
A; to ask for the DISK DIRECTORY. The directory is the list of the
names of all the programs and data files stored on the disk. When you
press RETURN, the computer will respond with a cryptic question:

DIRECTORY - SEARCH SPEC, LIST FILE?

It is asking you whether you want to search for a specific name or list
all the files stored on the disk. Press RETURN to see the contents of

figure 10.6: The DOS Menu.

164 THE A TAR I 800 X L : APR A C T I CAL G U IDE

the entire disk. If you have version 2.0S of the DOS program, the
computer will probably list three names, something like this:

DOS SYS 039
DUP SYS 042

AUTORUN SYS 001
625 FREE SECTORS

The names of the programs and the number of FREE SECTORS
may vary slightly with your diskette. This number shows how much
space you have left on the diskette (625 is a lot).

When you have many other files stored on the disk, the directory
might fill up the entire screen and even roll some of the names off the
top. To keep this from happening, you can stop the movement of the
list by pressing CONTROL and the number 1. Proceed like this:
give the directory command as usual, then press CONTROL-1 as the
listing appears on the screen. It will stop where it is, so that you can
read it. When you 're ready to go on, press CONTROL-1 again and
the listing will continue to the end.

Since you have only one DOS diskette, it is best to prepare a blarrk
diskette for use in its place. You can buy blank diskettes at any com
puter store or Atari retailer. Atari sells blarrk diskettes under its own
name, but you can also use any number of other good brands. Disk
ettes are usually sold in cartons of five or ten.

To use a blarrk diskette, you must firstformat it so that the disk drive
can read it. When you ask the computer to do this, it tells the disk
drive to put magnetic markings on the diskette so that it can find its
place as it moves around. You don't have to worry about how this
works: just format the disk, and the computer will keep track of where
things are .

Remove the DOS diskette from the drive and insert your blank
diskette. Then type I, for FORMAT DISK. The computer will ask

WHICH DRIVE TO FORMAT?

Unless you have more than one drive, you should answer 1 or Dl.
The computer will then ask you to

TYPE "Y" TO FORMAT DISK 1

It asks you this to make sure you really want to go ahead with it.
Make sure your diskette is actually blarrk: Formatting will erase any

THE DIS K DR I V E 165

information that you had stored on the disk. If you're certain this is
all right, type Y and press RETURN. The drive will click for about
45 seconds, then stop. You cannot give further commands until the
"busy light" has gone out.

Before you can use your blank diskette . as a duplicate DOS disk,
you need to do one more thing. Type the H command, WRITE
DOS FILES. This tells the computer to take the DOS program stored
in its memory and copy it onto your blank diskette. Answer Dl and
Y to the same two questions, then wait while the computer shows the
message

WRITING NEW DOS FILES

When the drive stops, your blank diskette contains all of the informa
tion the computer needs to control the drive. You can use this disk as
if it were the original DOS disk.

I would suggest you go through this procedure every time you
begin using a new diskette. Fire up the disk drive using a diskette that
already contains the DOS program (this can be either the original
disk or another disk you have already prepared). Format the new
blank diskette and write the DOS files to it. You can then use this disk
as a "parent" for others, and keep the original DOS diskette safe.

FILES ------------------

The rest of the blank diskette is yours to play with. You can store
programs, data, or other information in any way you wish.

Your computer organizes the disk in files. These are logical blocks of
information that you want to use all at once in the computer. A stored
program is normally a single file-you save it as a unit, then reload it
all at once. Other common files include blocks of data (such as a mail
ing list), and system utilities, such as the DOS program.

Every file has its own name. The computer automatically keeps
track of the place where each file is recorded, so all you need to do is
refer to it by its name. The disk directory (selection A on the DOS
menu) is an index of the names of all the files on the diskette. You can
store up to 64 files on an Atari diskette.

The name of a file can be up to eight letters long. The file name
can contain numbers, though not as the first character. Spaces and

166 THE A TAR I 800 XL : APR ACT I CAL G U IDE

punctuation marks are not allowed. As with variables, it is best to
choose a name that explains the file's contents. Otherwise, you are
likely to forget where the information is stored.

You can add an optional three-letter extension following the file
name. Many people use this to explain what type of information is
stored (BAS means a BASIC program, DAT means a data file, SYS
stands for a system program, such as DOS). You can also use the
extension to distinguish different versions of a program.

The full name of a file consists of three parts: the drive number (Dl,
unless you're using more than one drive), the file name, and the exten
sion . Always type a colon (:) between the drive number and the file
name, and a period (.) between the file name and the extension. You
can usually leave off the drive number if you are just using a single
drive, and you can omit the extension if it is blank. The following are
some valid file names, in their full forms:

01 :OOS.SYS
01 :FILENAME.EXT
01 :PROG137.BAS
01 :NAMEONLY (no extension)

Now that you know how to give names to files, you can use some of
the other options on the DOS menu. With options C, D, and E, you
can copy, delete, or rename any file on the disk. As an example, let's
make a copy of the DOS.SYS file, and call it NEWCOPY. Type C
and press RETURN. The computer should respond

COpy - FROM, TO?

It is asking you to tell which file you want to copy, and what name
you want to give to the new file. Type this line exactly:

OOS.SYS, NEWCOPY

Note that we omitted the drive number Dl from the file names (the
computer assumes this unless you tell it otherwise). The two file
names are separated by a comma in this line.

When you press RETURN, the disk drive will start to whirr, mak
ing a second copy of all the information stored in the DOS.SYS file .
When it has finished, you can check to see that the copy is also on the
disk, by asking for a disk directory (command A). If you are working

THE DISK DRIVE 167

with a newly-formatted diskette, the computer will respond something
like this:

DOS SYS 039
DUP SYS 042
NEWCOPY 039

587 FREE SECTORS

Tryout the E-RENAME and D-DELETE commands on this
NEWCOPY file. They both work in similar ways to the C-COPY
command, though with DELETE the computer stops to ask you

TYPE "Y" TO DELETE .. .
01 :NEWCOPY ?

It does this to make sure you really do want to delete the file. Once
you type Y and press RETURN, the file is gone forever.

SAVING YOUR OWN PROGRAMS -------

If you have been writing your own programs, you can store them
conveniently as files on a diskette. You can save many different pro
grams on a single diskette, then call them back by name as you need
them. You can build a library of all the programs you have written, so
that you never have to retype an old program. You simply find the file
on the diskette and run the stored program.

To type and save a program, you must leave the DOS menu and
return to the normal BASIC programming language. You do this by
typing the B command, shown on the DOS menu as RUN CAR
TRIDGE. If you have one of the new XL machines with built-in
BASIC, you might find this phrase confusing: it is left over from the
time when Atari BASIC was a cartridge that had to be plugged in.
With the new XL machines, this command simply sends the com
puter back to its familiar READY prompt, to show that you can
again type normal commands and program lines . Atari will probably
change the words RUN CARTRIDGE in a future revision of its
DOS program.

When you have the word READY on the screen, type in your pro
gram, exactly the way you want it. RUN it to make sure it works,
then use the following command to store it on the diskette:

SAVE "D:FILENAME.EXT"

168 THE A TAR I 8 0 0 XL: APR ACT I CAL G U IDE

FILENAME and EXT can be any name and extension that you want
to give to your stored program. You must always precede the file
name with D: (or D 1: if you need to specify the drive number), and
put the whole thing in quotation marks. If you forget the D:, the com
puter will have no way to know that you want it to use the disk drive
rather than some other device, such as the program recorder.

When you store a program on a diskette, you must always give it a
name, so that the computer can locate it when you want to retrieve it.
This was not necessary with the program recorder, since the computer
always loaded the first program it found on the tape.

If you SAVE a program with the same name as a file already on the
diskette, it will erase the existing file to write the new one. This is
helpful if you have made a minor change in a program you have
stored and want to replace the old version: just save the corrected pro
gram on top of it. Of course, you must also be careful that you don't
erase an existing program by mistake: give your programs names that
are distinctive enough that you will never repeat them accidentally.

When you later want to retrieve the program, type

LOAD "D:FILENAME.EXT"

The computer will find the file with the name you specify, then load it
into the memory. You can LIST or RUN this program, as if you had
just typed it in. As with cassettes, you can LOAD and RUN a pro
gram in one step, with the command

RUN "D:FILENAME.EXT"

The SAVE, LOAD, and RUN commands for diskette storage are
the same as the cassette commands SAVE "C:", LOAD "C:", and
RUN "C:", which were covered at the end of Chapter 9. The C : and
D : within the quotation marks tell the computer whether to use the
cassette recorder or the disk drive; otherwise the statements are identi
cal. There are also LIST and ENTER commands for diskettes-read
pages 150-51 of Chapter 9 to find out how these work. There are no
disk commands that correspond to CSAVE and CLOAD.

DUPLICATING DISKS ------------

There is another useful command on the DOS menu that makes a
backup copy of an entire disk: J for DUPLICATE DISK.

THE DISK DRIVE 169

If you don't already have the DOS menu on your screen, type
DOS. Then type J and press RETURN. The computer will respond

DUP DISK - SOURCE,DEST DRIVES?

This line is asking you which drive you want to copy the information
from and which drive you want to copy it to. If, like most people, you
have only one drive, your answer will be 1 or Dl to both questions.
Type the following and press RETURN:

01,01

With only one disk drive, you must swap the original and duplicate
disks in and out of your drive. The computer will use its memory as a
storage buffer. It first reads the information in from the original disk,
then stops to let you remove the original and insert the copy disk.
Then, it writes a copy on this second disk of the information it had
just read. If, as usually happens, it could not hold all of the original
disk's stored information at one time, the computer then asks you to
reinsert the original and then again the copy so that it can duplicate
more of the information. It will keep asking you to swap your disk
ettes until it has transferred all of the original's information.

When you have finally finished with the disk-swapping, the "desti
nation disk" contains an exact copy of all of the files stored on the
original diskette. You should use this DUPLICATE DiSK feature fre
quently to make backup copies of your important diskettes. That way,
if anything should happen to the diskette you are using, you will not
lose your work. You can use the duplicate copy in place of the origi
nal, and continue with your work.

If you have more than one disk drive, you can avoid much of this
disk-swapping. You simply put the original disk in one of your drives
and the duplicate disk in the other. The computer will transfer all of
the information directly from one disk to the other without having to
ask you to change disks.

This convenience is one of the primary reasons why some people
choose to add a second drive to their system. While it doesn't allow
you to do anything you can't do with a single drive, a second drive
does simplify many disk-management operations.

You set up the second drive just like the first, except that you

170 THE ATARI 800XL : A PRACTI C AL GUIDE

plug its cable into the back of the first drive, rather than into the
PERIPHERAL hole on the computer. Use a pen to move the black
switch inside the hole on the back of the second drive.

You can use this second drive just like the first one; simply refer to
it by the name D2 . You can SAVE, LOAD, and RUN programs on
this drive by using D2 as part of the file name:

SAVE "02:FILENAME.EXT"

The only thing you cannot do with the second drive is start the system
up: the computer always looks for its DOS instructions on drive
number 1.

SUMMARY ---------------

For permanent storage, a disk drive is faster, more flexible, and more
reliable than a program recorder. You can record many different pro
grams on a single diskette, and retrieve them by name. You can also
load commercial disk programs and run them in a matter of seconds.

Some commercial programs will load themselves directly without
any special command. With others, you may need to give a LOAD or
a RUN command.

To save or load your own programs, you will need to use Atari's
Disk Operating System (DOS) disk. When you turn on your com
puter with this disk in the drive, the computer will automatically load
some extra commands to let you SAVE and LOAD programs directly.
You can also type the DOS command to do more specialized disk
operations, such as formatting a blank diskette, deleting files, or dupli
cating an entire diskette.

~ CHAPTER ELEVEN ------------

Afterword

In the course of this book, you have seen many of the things you
can do with your Atari computer. You have learned how to set it up
and how to use preprogrammed software. You have learned to give
commands of your own and to write programs that will control the
computer in various ways . Finally, in this third section, you have
found out about Atari's Program Recorder and Disk Drive , which
you can connect to your system to store programs permanently.

This is only the beginning. With these basic skills, you can go on to
explore many other possibilities. You can connect a printer or other
equipment to your system, and write complex programs that solve
important problems.

In these final pages, I will try to give you an idea of some of these
other possibilities. I cannot cover everything, though. If you want
more detailed information , check some of the books in the biblio
graphy, or try some experiments on your own.

OTHER ADD-ONS ------------

Atari's three printers were briefly mentioned at the end of Chapter 1.
They differ in many ways, but all three have the same function: they
take the information that is stored electronically in the computer and
display it on paper.

A printer is useful for many reasons. You might want to make a
permanent listing of a program, so that you are sure you can type it
back in if you should lose it. If you are writing a long program, the
printer will let you read it all at once, rather than one screen at a
time. And of course, you will need a printer if you want to use your
computer as a word processor.

172 THE ATARI BOOXL : A PRA C TICAL GUIDE

You connect an Atari printer to the computer using the hole labeled
PERIPHERAL, just as you would connect a program recorder or
disk drive . If you want to use several peripherals at once, you can
connect them all in a chain, as described in the chapter on the disk
drive (see page 155).

With the printer connected and turned on, you can normally use
it without further trouble . Many financial and word-processing
programs will let you print tables and text directly, with a simple
command.

If you have a program of your own stored in your computer's
memory, you can print a copy of it out on paper. To do this, use the
following variation on the standard LIST command:

LIST "P:"

The computer will then type the program out, line by line, just as it
would have displayed it on your television screen. The "P:" in the
statement tells the computer to send the program listing to the printer
rather than to the screen.

You can use the printer to do many things other than simply listing
programs on paper. You can display messages or lists of numbers on
paper, rather than on the screen. On the 1025 printer, you can ask the
printer to type in special ways or to change the spacing between let
ters. With the 1020 printer/plotter, you can even draw certain types
of graphics.

Another useful accessory is a telephone rrwdem. This is a device that
lets you connect your computer to a telephone line so that it can com
municate electronically with another computer. With this, you can
send a program to a friend across the country, or receive information
from one of the new electronic news and information services, such as
The Source .

If all goes as planned, Atari's 1030 direct-connect rrwdem will let you
do this very easily. This device converts your computer's electronic
signals into a warbling sound, which it then sends directly over your
telephone lines. The modem has a small hole where you can plug
in a standard telephone cable . With the help of a special program,
your computer can send information directly to another computer. It
can also receive messages from another computer and store them in
its memory.

AFTERWORD 173

Atari is planning a large line of other add-on devices to match its
new XL series of computers. Some of these may never materialize,
but they are worth looking out for.

One interesting product is the Touch Tablet, a special electronic pad
which lets you draw graphic designs directly, without any program
ming. You draw with a special pen on the tablet, and the computer
can sense exactly where you move. It can then paint with an imagi
nary paintbrush on the screen, precisely following your movements
on the pad.

An even more interesting idea is the light pen, which Atari has been
developing for several years. This is an electronic rod that you can
point at your television screen. With a special circuit, your computer
can sense exactly which spot you are pointing to, and can move a
cursor to that point or paint it a certain color. As you do this, it will
seem as if your light pen were actually painting lines on your televi
SIOn screen.

Atari has also planned an Expansion System, a large box that will
allow you to connect many different expansions to your computer,
including devices not made by Atari.

At this writing, all of these add-ons are speculation. They have all
been officially announced by Atari, but some may never be sold.
Check with your dealer for more information and for detailed
descriptions .

OTHER DIRECTIONS -----------

If you have been reading the programming sections of this book,
you have learned some of the ways you can control your computer
directly. You can create a program, use variables to perform calcula
tions, and control the program's flow with loops and decisions. With
special graphics commands, you can paint pictures in various ways on
the screen.

While you have now covered all the fundamental concepts, there
are many other thing you can do. We have really only scratched the
surface.

Within the BASIC programming language, there are specialized fea
tures that let you control your computer in other ways. You can, for

174 THE ATARI 800XL: A PRACTICAL GUIDE

example, use a1Tays that let you store an entire table of numbers in the
memory, rather than giving them each separate variable names. You
can save words or numbers as doia on cassette or diskette. You can then
later retrieve this information and reuse it in other programs.

There are several other programming languages that you can use
with your Atari computer. One of the most popular is Atari PILOT, a
graphics language for children. In this language, you give commands
to move a small turtle around the screen. As it moves, the turtle lays
down a trail, which your child can use to create interesting pictures.

With any programming language, the computer must translate the
English-like commands into the specific codes that it can use. This
process is slow and inefficient, so some people bypass the process com
pletely for complex programs that must run quickly. They do this with
machi11£ language, which allows direct control of the computer.

With machine language, you are actually giving commands at the
deepest level of the computer, and can . exert direct control over its
operation. Some of the advanced graphics features of the Atari com
puter can only be controlled with direct machine language com
mands: the animated figures and missiles of video games are an
example of this. Machine language also lets the computer run much
more quickly, since inefficient operations are reduced.

Unfortunately, machine language is very technical and difficult to
use, since it forces you to keep track of every single operation the
computer must do. You must know a lot about the internal workings
of the machine, and must be willing to do tedious programming.
Even professional programmers usually avoid machine language
unless there is a clear need for it.

Machine language is closely related to assembly language, which is
slightly more understandable. While you must still give meticulous
commands for every operation you want the computer to do, you can
use labels and verbal commands, rather than numerical codes. The
computer can translate assembly language directly into machine lan
guage when it uses it .

Some books and magazines take a middle ground between BASIC
and machine language, by using two special BASIC statements:
PEEK and POKE. These let you read and store values directly in the
computer's memory, without giving them a variable name. In this
way, you can exert some types of direct control over the internal oper
ation of the computer, which you could not do otherwise without

AFTERWORD 175

machine language. The process is, however, quite cumbersome and
hard to understand.

Whatever you do, I hope that you will continue your explorations
beyond the end of this book. There are many other books and
resources that can help you learn even more than I have been able to
cover in these pages . Your main resource, however, is yourself. Be
creative with your computer, and play around with it. There are
many wonderful things you can do with your machine, with whatever
approach you choose to take.

~ APPENDIX A --------------

Further
Reading

There are many different books about the Atari computers, and I
can hardly list all of them. These are just a few of the most useful
places to look for more information.

Inside ATARI BASIC -------------
by Bill Carris (Reston, 1983) .

This is one of the most appealing introductions to BASIC program
ming on the Atari computers, complete with attractive illustrations
and useful programming tips. This book is particularly strong on
graphics, since it covers the GTIA modes clearly and in depth. Very
entertaining reading.

Atari Sound and Graphics ------------
by Herb Moore, Judy Lower,

and Bob Albrecht (Wiley, 1982) .

This is a readable introduction to BASIC, with special attention paid
to the Atari sound and graphics systems. While its treatment is
not as thorough as it could be, it is an interesting approach to learning
the machine.

Your First Atari Program --------------
by Rodnay Zaks (Sybex, 1984).

A fine introduction to fundamental techniques of BASIC program
ming, which concentrates on the ways you should think as you try to
write a program. The delightful illustrations by Daniel Le Noury help
to make things clear.

178 THE AT A R I 800 X L : APR ACT I CAL G U IDE

Your Atari Computer --------------
by Lon Poole, Martin McNiff, and

Steven Cook (Osborne/McCraw-Hili, 1982).

This 450-page book gives every piece of information that you would
ever want to know about the Atari computer and peripherals . This is
required reading for anyone serious about programming the Atari
computer, and an essential reference book. It is not, however, light
reading. The descriptions are fairly technical, and assume some pre
vious knowledge of computers. Also, until a revised edition becomes
available, this book does not cover the enhancements incorporated in
the XL series.

Atari BASIC Programs in Minutes ----------
by Stanley R. Trost

(Sybex, 1984).

This is a collection of short programs which you can type directly into
your Atari computer and use, with no prior knowledge of BASIC
programming. The programs cover a range of financial, home man
agement, and educational applications.

The Book of Atari Software 1983 ---------
edited by Jeffrey Stanton,

Robert P. Wells, and Sandra Rochowansky
(Addison-Wesley, 1983) .

A catalog of all of the programs available for the Atari computers, as
of early 1983. Each program is given a quick letter-grade rating, and
a brief review. While a half-page review will not tell you everything
you need to know before you buy a program, it will give you some
idea of what is available. Revised versions will presumably become
available.

~ APPENDIX B --------------

Reference Guide
to BASIC

This is not a complete reference list of the BASIC language, but a
summary of the commands described in this book. For a complete ref
erence guide, read Chapter 11 of Your Atari Computer, by Poole,
McNiff, and Cook (Osborne/McGraw-Hill, 1982).

CLOAD---------------------------------

Asks the computer to load a program into its memory from a cas
sette tape. The computer will beep once to ask you to press PLAY on
the program recorder, then will load the program. Any program
already in the memory will be erased.

COLOR n------------------

Chooses the graphic paintbrush which will be used to draw in
future PLOT and DRAWTO statements . The computer will con
tinue to use that paintbrush until you give another COLOR com
mand. In specialized graphics modes, the COLOR command may
have other meanings (see Chapter 8) .

CSAVE-----------------------------------
Asks the computer to save the program by storing it on a cassette

tape. The computer will beep twice to ask you to press PLAY and
RECORD on the program recorder, and will record the program.
The program also remains in the computer's memory.

180 THE ATARI 800XL: A PRACTICAL GUIDE

DATA------------------------------------
U sed with the READ statement to assign numbers to variables.

The numbers in the list after the word DATA are assigned in
sequence to the corresponding variables in the READ statement. If
not all the numbers in the DATA statement have been assigned yet,
further READ statements will continue to use them, starting at the
number where the last READ statement left off.

DIA4--------------------------------------
Sets aside space for a string variable or an array of numbers.

DIM A$(12)

would set aside space for 12 letters in the string variable A$.

DOS------------------------------------
Tells the computer to run the Disk Operating System program, so

that you can perform certain disk operations, such as formatting a
blank diskette, copying a file, or duplicating an entire diskette. You
can use this command only if you have turned your computer on
with the Atari DOS disk in the drive, following the procedure in
Chapter 10.

DRAWTO x,y-----------------------------

In the graphics modes, this draws a line to the coordinates x,y from
the current location of the paintbrush. The paintbrush will be the one
chosen in the most recent COLOR statement. The coordinates must
be within the allowable range for the graphics mode you are using.

END------------------------------------
Marks the last statement in a program. You can omit this statement

if your program proceeds normally from start to finish . If, however,
you have a subprogram or other statement that follows the end of the
main program, you must use this command to stop the computer.

ENTER----------------------------------
Used with the program recorder or disk drive to reload a program

REFEREN CE GUIDE TO BASIC 181

that was stored using the LIST command. For a cassette, type

ENTER "e:"

For a disk drive, you must give the name of the file you want to
retrieve :

ENTER "O:FILENAME.EXT"

The ENTER command does not clear the computer's program mem
ory, but adds the lines to the program already stored .

FOR/NEX T------------------------------
The FOR statement marks the beginning of a loop, and tells the

computer how many times to repeat the loop. The general form is:

FOR I=a TO b STEP c

You must specify a counter variable (1), its starting value (a), and its
ending value (b) . You can also name the step (c) that you want the
counter to take each time through the loop. If you omit the STEp, the
computer assumes it is 1. FOR must always be paired with a NEXT
statement, which marks the end of the loop.

COSU8 n ---------------------------------

Asks the computer to run the subprogram that starts at statement
number n. The computer will run the subprogram until it reaches the
RETURN statement that marks its end. The computer then resumes
the main program with the statement following the GOSUB.

COTO n------------------

Tells the computer to jump directly to statement number nand
continue from there.

CRAPHICSn------------------------------
Clears the screen and shifts to a new graphics mode . The number n

names the new mode: the most common values are 0 (text), 7 (four
color graphics), and 8 (high-resolution graphics). If you shift into the
mode that you are already using, the mode will not change, but the
graphics screen will be cleared . By adding 16 to the graphics mode

182 THE ATARI 800XL : A PRA CT I C AL GUIDE

number, you can eliminate the text window at the bottom of the
screen.

IF/THEN-------------------------------
Tells the computer to make a decision. If the condition following

the word IF is met, the computer carries out the command that fol
lows the word THEN. If the condition is not met, the computer skips
the command and goes directly to the next statement.

INPVT-----------------------------------
Has the computer stop each time it runs the program and ask you

to type in a number or letters to assign to a variable. It displays a
question mark, then waits for you to type your answer and press
RETURN. It then stores your number in the variable named in the
INPUT statement.

LIST-------------------------------------
U sed by itself, the word LIST has the computer display the stored

program on the screen. If you follow LIST with a statement number,
the computer will display only that particular statement. If you follow
LIST with two numbers, the computer will display those two state
ments and all those in between.

LIST can also be used to store a program on tape or diskette .

LIST "C:"

asks the computer to send the program listing directly to the program
recorder, rather than to the screen . With a disk drive, you must type
a file name:

LIST "D:FILENAME.EXT"

A program saved with LIST can only be reloaded using the ENTER
command.

LOAD-------------------------------------
Retrieves a program that has been stored on a cassette tape or disk

ette. To load from a cassette, type:

LOAD "C:"

REF ERE NeE G U IDE TO BAS I C 183

With a diskette, a file name is required:

LOAD "D:FILENAME.EXT"

The computer will erase any program in its memory before it loads
the new one. LOAD will only work with files that were stored with a
SAVE command.

NfVV--------------------------------------
Clears the computer's program memory so that you can type a new

program. If you forget to use this command, lines from your old pro
gram may be mixed in with your new statements.

NfXT------------------------------------
Marks the end of a FOR/NEXT loop. This statement must always

be paired with a preceding FOR statement. The variable name after
the word NEXT must exactly match the name of the counter variable
in the FOR statement.

PLOT x, y---------------------------------

In the graphics modes, this command paints a single point at the
coordinates x,y. If the paintbrush was in a different part of the screen,
it is moved to the new point without drawing a line. The next line
drawn will proceed from the new point. The coordinates must be
within the range allowed for the graphics mode you are using.

POSITION x, y------------------------------

In the text mode, POSITION moves the cursor to the coordinates
x,y. The next PRINT statement will then display its message starting
at that point.

PRINT------------------------------------
Displays a message on the screen. If you enclose a word in quota

tion marks, the computer prints it as you typed it. If you do not use
quotation marks, the computer treats the word as a variable name
and displays its current value. You can include several messages in a
single PRINT statement, using a semicolon (;) to separate them. A

184 THE ATARI 800XL : A PRA C TI CA L G UIDE

semicolon at the end of the statement keeps the computer from drop
ping down to the next line before displaying the next message.

With the special text modes 1, 2, 12, and 13, you display messages
on the graphics screen with the command

PRINT #6;"message"

READ-----------------------------------
Works with the DATA statement to assign a list of numbers to a

series of variables . Each variable name in the READ statement is
assigned the corresponding number in the DATA statement. The first
READ statement in a program loads its numbers starting with the
first DATA statement; additional READ statements continue with
the first unused number in the DATA statement's list .

RETVRN--------------------------------
Marks the end of a subprogram. When the computer reaches this

statement, it resumes the main program with the statement following
the GOSUB that had called the subprogram.

RVN------------------------------------
Asks the computer to execute the program stored in its memory.

Program lines are used in order of their statement numbers, unless a
GOTO, GOSUB, or FOR/NEXT statement alters the flow. At the
end, the computer stops and says READY. The program remains
stored in the memory.

SAVE------------------------------------
Records the program stored in the computer's memory onto a cas

sette tape or diskette . With a cassette, you merely type :

SAVE "C:"

With a disk drive, you must specify the file name under which the
computer will store the program:

SAVE "O:FILENAME.EXT"

You must use LOAD to reload a program stored with the SAVE
command.

REFERENCE GUIDE TO BASIC 185

SE TCOL OR------------------------------
Assigns a new color to one of the graphic paintbrushes, according

to the codes shown in Figure 8.1, on page 125. In the text and high
resolution graphics modes, SETCOLOR controls the color of entire
regions of the screen (background, border, and letters).

=--

The equals sign acts as a command, to assign a value to a variable.
The computer first carries out any calculations involved in the expres
sion to the right of the equals sign, then stores the result in the vari
able to the left. For example, the statement

J=2+2

would assign the value 4 to the variable J.

~ APPENDIX C --------------

Atari
Error Codes

This is a list of the most common Atari error codes, along with
their meanings and most likely causes. Not all of the codes are listed
here, though these should cover most of what you encounter as you
use this book. When using graphics or a disk drive, in particular, you
may occasionally get a more obscure error. You can find a complete
list in the Atari BASIC Reference Guide, which came with your machine.
For a better explanation of unusual error codes, check the appendix of
Your Atari Computer, by Poole, McNiff, and Cook (Osborne/McGraw
Hill, 1982).

2 Memory Insufficient ------------

Your computer's memory is limited to 16K or 64K bytes,
depending on which Atari model you own. Program lines ,
variables, and graphic displays all use up memory. On the
Atari 600XL, this error is quite common in the higher
resolution graphics modes.

3 Value Error -----------------

You have used a number that is too large or too small for
the command. This is a very common error, which can
occur if you use a statement number that is too large (the
limit is 32767), or if you try to PLOT or DRAWTO coor
dinates which are outside the limits of the graphics mode
you are usmg. Many other statements can give a value
error as well.

188 THE ATARI 800XL: A PRACTICAL GUIDE

4 Too Many Variables ------ - - ----

You are limited to 128 variables in any program . Even
when you use and later delete a reference to a variable, it
may still be counted toward that limit. A NEW command
clears the entire list of variables .

6 Out of Data Error -------- - ---

There were not enough values in the program's DATA
statements to fill all of the variables in a READ statement.

7 Number Greater than 32767 ---------

Statement numbers and certain other values must be less
than 32767 .

8 INPUT Statement Error ----------

The number or string that you typed in response to an
INPUT question could not be stored in the variable. This
often happens when you type a letter or a punctuation
mark in the middle of a number. It can also happen when
you press RETURN without giving a response .

9 Array or String Dimension Error -------

Before you can use a string or an array, you must set aside
space for it, using a DIM statement.

11 Floating Point Overflow/Underflow Error --

The computer can calculate very large numbers (up to
1098), but it is still possible to exceed this. You may have
tried to divide by zero, for example.

12 Line Not Found --------------

You tried to jump to a nonexistent statement number.
Check your GOTO or GOSUB statement.

13 No Matching FOR Statement --------

A NEXT statement must always be paired with a FOR
statement containing the same counter variable. You may

ATARI ERROR CODES 189

have forgotten a FOR or NEXT statement, or written a
loop not completely contained within another loop.

14 Line Too Long Error ------------

Commands are limited to 114 characters or 3 screen lines.

15 COSUB or FOR Line Deleted -------

A RETURN or NEXT statement is not matched properly
with a GOSUB or FOR statement.

16 RETURN Error --------------

The computer encountered a RETURN statement without
having been sent to a subprogram . There may be a missing
GOSUB statement, or you may have forgotten to type
END as the last line of your main program.

19 LOAD Program Too Long ---------

You tried to load a program from a disk or tape, and the
program would not fit into the computer's memory.

21 LOAD File Error -------------

A LOAD command will only retrieve a program that was
recorded with a SAVE command. Programs stored with
CSAVE or LIST must be reloaded with CLOAD and
ENTER, respectively.

130 Unknown Device -------------

You tried to use a peripheral device that was not connected
to the system, or you may have forgotten to precede a disk
ette file name with D:, the device name.

133 Device or File not Open ----------

Can occur if you try to use a PLOT or DRAWTO com
mand in a text mode. Also, after a graphics program has
ended, the graphics screen must be cleared and reopened
with a GRAPHICS statement, before PLOT or DRAWTO
can be used .

190 THE A TAR I 8 0 Ox L: APR ACT I CAL G U IDE

138 Device Timeout --------------

The computer did not get a response from a peripheral
device that you asked it to use. Your peripheral may not be
connected properly.

141 Cursor Out of Range -----------

You tried to POSITION the cursor at a point that was out
side the limits of the text mode you are using.

144 Device Done Error -------------

You tried to save a program on a diskette whose write
protect notch was covered .

147 Insufficient Screen RAM ----------

You tried to use a graphics mode that exceeded the limits of
your computer's memory. High-resolution graphics on the
Atari 600XL often give this error.

162 Disk Ful/---------------

The space on the diskette is large, but limited. If you are
storing a number of very long programs on the same disk,
you may get this error.

165 File Name Error --------------

Diskette file names must start with a letter and may contain
only capital letters and numbers .

169 Directory Ful/--------------

A diskette is limited to 64 files, even when there is still
space to store more information. Try deleting some
unneeded files.

170 File Not Found -------------

You tried to load or use a file that is not on your diskette .
You may have misspelled the name, or you may be using
the wrong diskette .

3.2: Give the command:

Answers to
Selected Exercises

PRINT "ONE ":PRINT "TWO":PRINT "THREE"

To do the same kind of thing in a single command, type the following
line, using ESC , CONTROL, and the down arrow key every place
you see the ~ symbol:

PRINT "ONE.). TWOHHREE"

3.3: The computer starts to print the message on the line immediately
below the command. Before it has a chance to start the word
UPPER, though, the first up arrow moves the cursor back over P in
PRINT. The computer then prints the word UPPER on top of the
word PRINT, moves two lines further up , and prints the word
LOWER. It then reaches the end of the message, so it drops down
two lines and says READY, just as it always does . Once again, how
ever, the word lands right on top of another word-the UPPER that
was just printed. The final result will look like this:

LOWER

READY "t UPPER tt LOWER"

4.1: You can choose many possible positions for the three names .
This might be one:

POSITION 10,7:PRINT "TOM":POSITION 27,
11 :PRINT "TOM" :POSITION O,20:PRINT "TO
M"

192 THE A TAR I 800 XL: APR ACT I CAL G U IDE

4.2: Type the seven commands shown on pages 57-58. Then add six
more, such as this:

COLOR 3
PLOT 20,20
DRAWTO 60,20
DRAWTO 60,60
DRAWTO 20,60
DRAWTO 20,20

5.1: Add this line to the program:

65 COLOR 3

5.2: Add this line :

80 DRAWTO 70,70

If you have just done exercise 1, the diagonal line will be blue .

5.3: The three bugs are:

1. The word PRINT is misspelled in line 10.
2. The second coordinate (734) in line 40 is outside the

allowed range.
3. The DRAWTO statement in line 60 has only one

coordinate .

6.1: Add a statement number 15 , and replace statement 20, as
follows:

15 PRINT "COLOR NUMBER";:INPUT N
20 COLOR N

6.2: Add these statements to the program on page 96:

120 REM INVERTED TRIANGLE
130 PLOT X,Y + 20
140 DRAWTO X +20,Y - 10
150 DRAWTO X + 40,Y + 20
160 DRAWTO X,Y+20

6.3: It will set the new value of J to equal the old value (10) plus 1,
or 11 .

7.1:

7.2:

ANSWERS TO SELECTED EXERC I SES 193

10 PRINT "WHAT NUMBER"; :INPUT NUMBER
20 IF NUMBER>O THEN PRINT "POSITIVE"
30 IF NUMBER<O THEN PRINT "NEGATIVE"
40 IF NUMBER=O THEN PRINT "ZERO"

1000 REM SUBPROGRAM TO CLEAR SCREEN
1010 PRINT "{ESC-CONTROL-CLEAR}"
1020 RETURN

7 .3: Try this program:

10 SUM =0
20 FOR I = 1 TO 100
30 SUM =SUM + I
40 NEXT I
50 PRINT SUM

The answer should be 5050.

Adding program lines, 66-67, 69
Addition symbol (+), 94
APX (Atari Program Exchange),

18-19
Arithmetic operations , 79, 94-97
Arrays, 174, 188
Arrow keys , 32-33, 34, 41-42, 45,

49
Assembly language , 174
Assignment statements, 80, 98
Asterisk (*), 94
Atari computers, 6-9
Atari Composer, 24
AtariWriter, 24
Auto-repeat, 28

BACK SPACE key, 28-29
Backup cassettes, 147
BASIC programming language,

64, 173-74, 177-85
cartridge for, 7, 8, 9
machine language and, 174-75
OPTION key disables, 25

Blank lines, 39, 40, 69
BOOT ERROR, 160
Box-drawing program, 70-71, 76-

77, 83-94, 105-6
BREAK key, 29, 31, 39

stopping program with, 93,
102-3

Bytes, 4

Cables, 10, 11, 12
Calculations, 79, 94-97
CAPS key, 29, 137, 138
Cartridge programs, 18, 24
Cassette recorder. See Program

Recorder
Cassette tapes, 18, 144-45, 147

INDEX

Cassette tapes , cont.
disadvantages of, 14, 18, 153
loading program from, 24, 25,

179
saving programs to, 75-76, 143,

146-52,179,184
CLEAR key, 34, 69

before POSITION command,
52

storing in commands, 40-42
subprogram using, 120

CLOAD command, 76, 145-46,
179, 189

Colon, 39, 91
Color

changing, 123-29, 133, 185
default, 127-28
luminances, 124

COLOR command, 64, 179
in box-drawing program, 70-71
in graphics mode, 8, 55
in GTIA modes, 134-35
in high-resolution graphics, 133
SETCOLOR vs., 124

Color register, 124-25, 127 , 128
Comma, between PRINT mes

sages, 110
Commands, 35-40, 63-64, 189

multiple, 39-40
Comparisons, 114-17
CONT command, 103
CONTROL key, 31, 46

ESC key delays effect of, 41-42
to stop directory list, 164
within PRINT statements, 49

Coordinates, 50-53, 55, 187
variables as, 85-88

Copying diskettes, 15, 161
Copying files, 166-67

196 THE ATARI 8.00XL: A PRACTICAL GUIDE

Counter variables, 106-9
CSAVE command, 76, 146-49,

151, 179, 189
Cursor, 27, 28, 31-34, 190
Customer service hotline, 14

Data checking, 117
DATA statements. See READ and

DATA statements
Debugging programs, 72-75, 77
Decisions, 113-17
Delay loops, 111-13
DELETE/BACK SPACE key, 33-

34
DELETE command, 167
Deleting,

characters, 33-34
files, 167
program lines, 67,70,151

DIM statement, 98, 180, 188
Directory, 163-64, 165, 190
Disk drive, 5, 6, 8, 14, 18, 143,

153- 70
multiple, 154, 169-70
setting up, 15, 154-56
starting up, 157-61

Diskettes, 18, 153, 154
blank, 164-65
care of, 156-57, 158
duplicating, 168-70
formatting, 164-65
inserting into drive, 158-61
loading program from, 24, 25,

168, 183-84
saving programs on, 75, 167-

68 , 184
Disk Operating System. See DOS

diskette
Disk utilities, 162-65
Division symbol (I), 94
Dollar sign ($), for string vari

ables, 97-98
DOS command, 162-63, 170, 180
DOS diskette, 157, 159, 161, 170

copying, 165
versions of, 162

DOS menu, 163, 166-70
DRAWTO command, 55-59, 180
DUPLICATE DISK command,

168-70

Editing commands, 31-34, 39, 46,
92-93

Editing program lines, 68-69
END command, 118, 180
ENTER command, 150-52 , 168,

ENTER command, cont .
180-81,189

Equal sign (=), 80 , 99, 185
Erasebrush, 54, 58-59, 125
ERROR messages, 31, 35-36, 72-

75, 187-90
BOOT ERROR, 160

ESC key, 40-42, 49
Exponent symbol ("), 94
Extension in file name, 166

Files, 163-68
Fire button, 14
Fixed numbers , 80, 84
FOR/NEXT loops, 106-13, 119,

120, 181, 183
Formulas, 94-97, 100
Four-color graphics modes, 48,

53-59, 131, 132
in box-drawing program, 70-71
SETCOLOR command codes

in, 124-28
Four-color text modes, 131, 137-

38, 139
Function keys, 43-45

GOSUB statements, 117-20, 121,
181, 188-89

GOTO statements, 101-6, 120,
181

GOSUB statements vs . , 117-18
IF statements with, 115-17

Graphics, 4, 6, 8, 47-60, 123-29
FOR/NEXT loops for, 110-

111, 112
full-screen, 129-30

Graphics characters, 31
GRAPHICS command, 49, 54,

64, 181-82
Graphics modes, 6, 8, 47-48, 59,

130-35
changing, 49, 181
four-color, 48, 53-59, 131, 132
high-resolution, 59, 131, 132-

33, 190
special (GTIA), 131, 133-35,

136
text, 48-53, 128-29, 131, 135-

38, 139
two-color, 131, 132

Graphics screen, 54, 55

HELP key, 43-44

IF statements, 113-17, 120-21,
182

Infinite loops, 102-6, 115-16, 120,
130

INPUT statements, 90-94, 98,
99-100, 120, 182

Inserting program lines, 66-67, 69
INSERT key, 33, 34, 68, 69
Inverse-video key, 29-30, 36, 38,

137, 138, 139

Joystick, 14, 19

Keyboard, 4, 27-31, 45-46
Keyword, 37-38

Large text mode, 131, 136-37,
138

Light pen, 173
Lines, drawing, 56-59
LIST command, 65, 66

for cassette, 150-51, 152 , 182
for diskette, 168, 182
for printing, 172

LOAD commands, 14-15, 18, 24-
25, 182-83

from cassette, 76 , 145-46, 148,
149-50, 151, 182

from diskette, 168 , 183
Loops, 106-13, 119, 120, 181, 183
Lowercase letters, 29, 38
Luminances, 124, 125, 126, 128

Machine language, 174-75
Memory, 4-5, 6

clearing, NEW command for,
183

graphics modes and, 48, 131-3 3
Memory expansion, 4, 7, 133
Minus sign (-), 94
Modem, 6, 8, 172
Modes. See Graphics modes; Text

modes
Monitor, television vs., 10
Multiplication symbol (*), 94

Naming files, 165-66
NEW command, 64, 65, 66, 74,

183 , 188
NEXT statements. See FORI

NEXT loops
Number-guessing program, 115-

16

Onloff switch, 11
OPTION key, 25, 43

Pac-Man, 4, 20, 47

INDEX 197

Paintbrushes, 7, 54-55, 123-29
Parentheses, 95-96
PEEK, 174
Peripherals, 14-16

chaining, 15, 155, 172
PILOT programming language,

23, 174
PLOT command, 55-59, 70-71,

85-88, 183
Plus sign (+), 94
POKE,174
POSITION statement, 49-53, 59,

183
Power supply, 10, 12

of disk drive, 156
POWER switch, 11
PRINT #6, 136, 184
PRINT statements, 27, 36-42, 46,

64-69, 183-84
INPUT statements with, 91
with special text modes, 136,

184
Printer, 15, 24, 171, 172
Program Recorder, 5, 14, 18

loading programs from, 145-46,
148, 149

setting up, 15, 75, 144-45
storing programs on, 75-76,

146-52
Programming languages, 23, 64,

173-75
Programs, 5, 63-77

debugging, 72-75 , 77
editing, 68-69
stopping, 102-3, 111-13

READ and DATA statements, 88-
90, 98, 99, 184

REM statements, 71-72, 73
in subprograms, 119

RENAME command, 167
Replacing program lines, 67-68,

70
RESET key, 3, 36, 44-45, 64-65
R esolution, 10, 48, 59, 130-31
RETURN command, 118, 119,

184, 189
RETURN key, 30-31, 35, 39, 188
RUN command, 64, 65, 66, 184

with diskette program, 161, 168
RUN CARTRIDGE command,

167

Saving programs, 64-70, 143
SAVE commands, 184, 189

198 THE AT A R I 8 0 0 XL: APR ACT I CAL G U IDE

SAVE commands, cont.
with cassettes, 75-76, 149-50,

151, 184
with disk drive, 167-68, 184

Screen, 27, 49-53. See also Televi-
sIOn

SELECT key, 43
Semicolon, 91, 103, 104, 136
Set-up, 8, 10-14, 15

of disk drive, 154-56
SETCOLOR command, 123-29,

185
in four-color graphics mode, 139
in GTIA modes, 134
in high-resolution graphics

mode, 133
in text mode, 128-29, 138, 139

SHIFT key, 29, 34
Slash (I), as division symbol, 94
Software, 4, 5, 17-25 . See also Pro-

grams
catalog, 19, 178
using, 24-25, 161, 170

Solid figure program, 110-111,
112

Speech synthesizer, 6, 8
START key, 43
Statement numbers, 65-70
STEp, 108, 181
Storing commands, 63-64
Storing letters, 97-99

Storing numbers, 79-82, 99-100
String variables, 97-99, 100, 188
Subprograms, 101, 117-20, 180,

181
Subtraction symbol (-), 94
Switch box, 10-11
System utilities, 165

Telephone modem, 6, 8, 172
Television, 8, 10. See also Screen

connecting computer to, 11-14
Text modes, 47, 48-53, 131, 135-

38, 139
four-color, 131, 137-38, 139
large, 131, 136-37, 138
SETCOLOR registers in, 128-

29
Text window, 54, 55

eliminating, 129-30, 139, 181-
82

Touch Tablet, 173
Triangle-drawing program, 96-97,

99

Variables, 79, 81
names for, 80-82
string, 97-99, 100, 188

Word processing, 5, 15 , 22, 24
Write-protect notch, 157, 158, 190

Selections from
The SYBEX Library

Buyer's Guides
THE BEST OF TI 99/4ATM
CARTRIDGES
by Thomas Blackadar
150 pp. , illustr., Ref. 0-137
Save yourself time and frustration when
buying TI 99/4A software. This buyer 's
guide gives an overview of the best avail
able programs, with information on how
to set up the computer to run them.

FAMIL V COMPUTERS
UNDER $200
by Doug Mosher
160 pp. , illustr. , Ref. 0-149
Find out what these inexpensive machines
can do for you and your family. " If you're
just getting started ... this is the book to
read before you buy." -Richard O'Reilly,
Los Angeles newspaper columnist

PORTABLE COMPUTERS
by Sheldon Crop and Doug Mosher
128 pp., illustr., Ref. 0-144
"This book provides a clear and con
cise introduction to the expanding new
world of personal computers." -Mark
Powelson, Editor, San Francisco Focus
Magazine

THE BEST OF VIC-20TM
SOFTWARE
by Thomas Blackadar
150 pp., illustr. , Ref. 0-139
Save yourself time and frustration with this
buyer 's guide to VIC-20 software. Find
the best game, music, education, and
home management programs on the
market today.

SELECTING THE RIGHT DATA
BASE SOFTWARE

SELECTING THE RIGHT WORD
PROCESSING SOFTWARE

SELECTING THE RIGHT
SPREADSHEET SOFTWARE
by Kathy McHugh and
Veronica Corchado
80 pp., illustr , Ref. 0-174, 0-177, 0-178
This series on selecting the right business
software offers the busy professional con
cise, informative reviews of the best avail
able software packages.

Introduction to
Computers
OVERCOMING COMPUTER FEAR
by Jeff Berner
112 pp., illustr., Ref. 0-145
This easy-going introduction to com
puters helps you separate the facts from
the myths.

COMPUTER ABC'S
by Daniel Le Noury and
Rodnay Zaks
64 pp., illustr. , Ref. 0-167
This beautifully illustrated, colorful book
for parents and chi ldren takes you alpha
betically through the world of computers,
explaining each concept in simple
language.

PARENTS, KIDS, AND
COMPUTERS
by Lynne Alper and Meg Holmberg
208 pp., illustr., Ref. 0-151
This book answers your questions about
the educational possibilities of home
computers.

THE COLLEGE STUDENT'S
COMPUTER HANDBOOK
by Bryan Pfaffenberger
350 pp., illustr., Ref. 0-170
This friendly guide will aid students in
selecting a computer system for college
study, managing information in a college
course, and writing research papers.

COMPUTER CRAZY
by Daniel Le Noury
100 pp., illustr. , Ref. 0-173
No matter how you feel about computers,
these cartoons will have you laughing
about them.

DON'TI
(or How to Care for Your
Computer)
by Rodnay laks
214pp., 100 illustr., Ref. 0-065
The correct way to handle and care for all
elements of a computer system, including
what to do when something doesn't work.

YOUR FIRST COMPUTER
by Rodnay laks
258 pp., 150 illustr., Ref. 0-045
The most popular introduction to small
computers and their peripherals: what
they do and how to buy one.

INTERNATIONAL
MICROCOMPUTER DICTIONARY
120 pp., Ref. 0-067
All the definitions and acronyms of micro
computer jargon defined in a handy
pocket-sized edition. Includes translations
of the most popular terms into ten
languages.

FROM CHIPS TO SYSTEMS:
AN INTRODUCTION TO
MICROPROCESSORS
by Rodnay laks
552 pp., 400 illustr. , Ref. 0-063
A simple and comprehensive introduction
to microprocessors from both a hardware
and software standpoint: what they are,
how they operate, how to assemble them
into a complete system.

Personal
Computers

ATARI

YOUR FIRST ATARI® PROGRAM
by Rodnay laks
150 pp., illustr., Ref. 0-130
A fully illustrated, easy-to-use introduction
to ATARI BASIC programming. Will have
the reader programming in a matter of
hours.

BASIC EXERCISES FOR THE
ATARI®
by J.P. Lamoitier
251 pp., illustr., Ref. 0-101
Teaches ATARI BASIC through actual
practice using graduated exercises
drawn from everyday applications.

ATARI® BASIC PROGRAMS IN
MINUTES
by Stanley R. Trost
170 pp., illustr. , Ref. 0-143
You can use this practic?1 set of programs
without any prior knowledge of BASIC!
Application examples are taken from a
wide variety of fields, including business,
home management, and real estate.

Commodore 64/V/C-20

THE COMMODORE 64™/VIC-20TM
BASIC HANDBOOK
by Douglas Hergert
144 pp., illustr., Ref. 0-116
A complete listing with descriptions and
instructive examples of each of the Com
modore 64 BASIC keywords and func
tions. A handy reference guide, organ
ized like a dictionary.

THE EASY GUIDE TO YOUR
COMMODORE 64™
by Joseph Kascmer
160 pp., illustr. , Ref. 0-129
A friendly introduction to using the Com
modore 64.

YOUR FIRST VIC-20TM
PROGRAM
by Rodnay Zaks
150 pp., illustr., Ref. 0-129
A fully illustrated, easy-to-use introduction
to VIC-20 BASIC programming. Will have
the reader programming in a matter of
hours.

THE VIC-20™ CONNECTION
by James W. CoHron
260 pp. , 120 illustr., Ref. 0-128
Teaches elementary interfacing and
BASIC programming of the VIC-20 for
connection to external devices and
household appliances.

YOUR FIRST COMMODORE 64™
PROGRAM
by Rodnay Zaks
182 pp., illustr., Ref. 0-172
You can learn to write simple programs
without any prior knowledge of mathe
matics or computers! Guided by colorful
illustrations and step-by-step instructions,
you'll be constructing programs within an
hour or two.

COMMODORE 64™ BASIC
PROGRAMS IN MINUTES
by Stanley R. Trost
170 pp., illustr., Ref. 0-154
Here is a practical set of programs for

business, finance, real estate, data an
alysis, record keeping and educational
applications.

GRAPHICS GUIDE TO THE
COMMODORE 64™
by Charles Platt
192 pp., illustr., Ref. 0-138
This easy-to-understand book will appeal
to anyone who wants to master the Com
modore 64"s powerful graphics features.

IBM

THE ABC'S OF THE IBM® PC
by Joan Lasselle and Carol Ramsay
100 pp., illustr., Ref. 0-102
This is the book that wil l take you through
the first crucial steps in learning to use the
IBM PC.

THE BEST OF IBM® PC
SOFTWARE
by Stanley R. Trost
144 pp., illustr., Ref. 0-104
Separates the wheat from the chaff in the
world of IBM PC software. Tells you what
to expect from the best available IBM PC
programs.

THE IBM® PC-DOS HANDBOOK
by Richard Allen King
144 pp., illustr., Ref. 0-103
Explains the PC disk operating system,
giving the user better control over the sys
tem . Get the most out of your PC by
adapting its capabilities to your specific
needs.

BUSINESS GRAPHICS FOR THE
IBM® PC
by Nelson Ford
200 pp., illustr., Ref. 0-124
Ready-to-run programs for creating line
graphs, complex illustrative multiple bar
graphs, picture graphs, and more. An
ideal way to use your PC 's business
capabilities!

THE IBM® PC CONNECTION
by James W. CoHron
200 pp., illustr., Ref. 0-127
Teaches elementary interfacing and
BASIC programming of the IBM PC for
connection to external devices and
household appliances.

BASIC EXERCISES FOR THE
IBM® PERSONAL COMPUTER
by J_P. Lamoitier
252 pp., 90 illustr., Ref. 0-088
Teaches IBM BASIC through actual prac
tice, using graduated exercises drawn
from everyday applications.

USEFUL BASIC PROGRAMS
FOR THE IBM® PC
by Stanley R. Trost
144 pp., Ref. 0-111
This collection of programs takes full
advantage of the interactive capabilities of
your IBM Personal Computer. Financial
calculations, investment analysis, record
keeping, and math practice-made eas
ier on your IBM PC.

YOUR FIRST IBM® PC
PROGRAM
by Rodnay Zaks
182 pp., illustr., Ref. 0-171
This well-illustrated book makes program
ming easy for children and adults.

YOUR IBM® PC JUNIOR
by Douglas Hergert
250 pp., illustr., Ref. 0-179
This comprehensive reference guide to
IBM's most economical microcomputer
offers many practical applications and all
the helpful information you 'll need to get
started with your IBM PC Junior.

DATA FILE PROGRAMMING ON
YOUR IBM® PC
by Alan Simpson
275 pp., illustr., Ref. 0-146
This book provides instructions and
examples of managing data files in
BASIC. Programming designs and devel
opments are extensively discussed.

Apple
THE EASY GUIDE TO YOUR
APPLE II®
by Joseph Kascmer
160 pp., illustr., Ref. 0-122
A friendly introduction to using the Apple
II, II plus and the new lie.

BASIC EXERCISES FOR THE
APPLE®
by J.P. Lamoitier
250 pp., 90 illustr. , Ref. 0-084
Teaches Apple BASIC through actual
practice , using graduated exercises
drawn from everyday applications.

APPLE II® BASIC HANDBOOK
by Douglas Hergert
144 pp., illustr., Ref. 0-155
A complete listing with descriptions and
instructive examples of each of the Apple
II BASIC keywords and functions. A
handy reference guide, organized like a
dictionary.

APPLE II® BASIC PROGRAMS
IN MINUTES
by Stanley R. Trost
150 pp., illustr., Ref. 0-121
A collection of ready-to-run programs for
financial calculations, investment analysis,
record keeping , and many more home
and office applications. These programs
can be entered on your Apple II plus or lie
in minutes!

YOUR FIRST APPLE II®
PROGRAM
by Rodnay Zaks
150 pp. , illustr., Ref. 0-136
A fully illustrated, easy-to-use introduction
to APPLE BASIC programming. Will have
the reader programming in a matter of
hours.

THE APPLE® CONNECTION
by James W. CoHron
264 pp. , 120 illustr., Ref. 0-085
Teaches elementary interfacing and
BASIC programming of the Apple for con
nection to external devices and house
hold appliances.

TRS-80
YOUR COLOR COMPUTER
by Doug Mosher
350 pp., illustr. , Ref. 0-097
Patience and humor guide the reader
through purchasing, setting up, program
ming, and using the Radio Shack TRS-801
TOP Series 100 Color Computer. A
complete introduction.

THE FOOLPROOF GUIDE TO
SCRIPSITTM WORD
PROCESSING
by Jeff Berner
225 pp., illustr., Ref. 0-098
Everything you need to know about
SCRIPSIT-from starting out, to mastering
document editing. This user-friendly
guide is written in plain English, with a
touch of wit.

Timex/Sinclair
1000/ZX81
YOUR TIMEX/SINCLAIR 1000
AND ZX8FM
by Douglas Hergert
159 pp., illustr., Ref. 0-099
This book explains the set-up, operation,
and capabilities of the TimexlSinclair
1000 and ZX81. Includes how to interface
peripheral devices, and introduces
BASIC programming.

THE TIMEX/SINCLAIR 1000™
BASIC HANDBOOK
by Douglas Hergert
170 pp., illustr., Ref. 0-113
A complete alphabetical listing with expla
nations and examples of each word in the
TIS 1000 BASIC vocabulary; wi ll allow
you quick, error-free programming of
your TIS 1000.

TIMEX/SINCLAIR 1000™ BASIC
PROGRAMS IN MINUTES
by Stanley R. Trost
150 pp., illustr., Ref. 0-119
A collection of ready-to-run programs for
financial calculations, investment analysis,
record keeping, and many more home

and office applications. These programs
can be entered on your TIS 1000 in
minutes!

MORE USES FOR YOUR
TIMEX/SINCLAIR 1000™
Astronomy on Your Computer
by Eric Burgess
176 pp. , illustr., Ref. 0-112
Ready-to-run programs that turn your TV
into a planetarium.

Other Popular
Computers

YOUR FIRST TI 99/4ATM
PROGRAM
by Rodnay Zaks
182 pp., illustr., Ref. 0-157
Colorfully illustrated, this book concen
trates on the essentials of programming in
a clear, entertaining fashion .

THE RADIO SHACK®
NOTEBOOK COMPUTER
by Orson Kellogg
128 pp., illustr., Ref. 0-150
Whether you already have the Radio
Shack Model 100 notebook computer, or
are interested in buying one, this book will
clearly explain what it can do for you.

THE EASY GUIDE TO YOUR
COlECO ADAMTM
by Thomas Blackadar
175 pp. , illustr., Ref. 0-181
This quick reference guide shows you
how to get started on your Coleco Adam
with a minimum of technical jargon.

YOUR KAYPRO 1I/4/10™
by Andrea Reid and Gary Deidrlchs
250 pp. , illustr. , Ref. 0-166
This book is a non-technical introduction
to the KAY PRO family of computers. You
will find all you need to know about oper
ating your KAYPRO within this one com
plete guide.

Languages
C
UNDERSTANDING C
by Bruce Hunter
200 pp., Ref 0-123
Explains how to use the powerful C lan
guage for a variety of applications. Some
programming experience assumed.

FIFTY C PROGRAMS
by Bruce Hunter
200 pp., illustr., Ref. 0-155
Beginning as well as intermediate C pro
grammers will find this a useful guide to
programming techniques and specific
applications.

BUSINESS PROGRAMS IN C
by Leon Wortman and
Thomas O. SldeboHom
200 pp. , illustr., Ref. 0-153
This book provides source code listings of
C programs for the business person or
experienced programmer. Each easy-to
follow tutorial applies directly to a busi
ness situation.

BASIC
YOUR FIRST BASIC PROGRAM
by Rodnay laks
150pp. illustr. in color, Ref. 0-129
A "how-to-program" book for the first time
computer user, aged 8 to 88.

FIFTY BASIC EXERCISES
by J. P. Lamoltler
232 pp., 90 illustr., Ref. 0-056
Teaches BASIC by actual practice, using
graduated exercises drawn from every
day applications. All programs written in
Microsoft BASIC.

INSIDE BASIC GAMES
by Richard Mateoslan
348 pp., 120 illustr., Ref. 0-055
Teaches ' interactive BASIC programming
through games. Games are written in

Microsoft BASIC and can run on the TRS-
80, Apple II and PET/CBM.

BASIC FOR BUSINESS
by Douglas Hergert
224 pp., 15 illustr., Ref. 0-080
A logically organized, no-nonsense intro
duction to BASIC programming for busi
ness applications. Includes many
fully-explained accounting programs, and
shows you how to write them.

PASCAL PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller
374 pp., 120 illustr., Ref. 0-058
A comprehensive collection of frequently
used algorithms for scientific and techni
cal applications, programmed in Pascal.
Includes such programs as curve-fitting,
integrals and statistical techniques.

DOING BUSINESS WITH
PASCAL
by Richard Hergert and
Douglas Hergert
371 pp., illustr., Ref. 0-091
Practical tips for using Pascal in business
programming. Includes design consider
ations, language extensions, and applica
tions examples.

Assembly Language
Programming

PROGRAMMING THE 6502
by Rodnay laks
386 pp., 160 illustr. , Ref. 0-046
Assembly language programming for the
6502, from basic concepts to advanced
data structures.

6502 APPLICATIONS
by Rodnay laks
278 pp., 200 illustr., Ref. 0-015
Real-life application techniques: the input!
output book for the 6502.

ADVANCED 6502
PROGRAMMING
by Rodnay Zaks
292 pp., 140 illustr., Ref. 0-089
Third in the 6502 series. Teaches more
advanced programming techniques,
using games as a framework for learning.

PROGRAMMING THE Z80
by Rodnay Zaks
624 pp., 200 illustr., Ref. 0-069
A complete course in programming the
Z80 microprocessor and a thorough intro
duction to assembly language.

Z80 APPLICATIONS
by James W. CoHron
288 pp., illustr., Ref. 0-094
Covers techniques and applications for
using peripheral devices with a Z80
based system.

PROGRAMMING THE 6809
by Rodnay Zaks and William Lablak
362 pp., 150 illustr., Ref. 0-078
This book explains how to program the
6809 in assembly language. No prior pro
gramming knowledge required.

PROGRAMMING THE Z8000
by Richard Mateoslan
298 pp., 124 illustr., Ref. 0-032
How to program the Z8000 16-bit micro
processor. Includes a description of the
architecture and function of the Z8000
and its family of support chips.

PROGRAMMING THE 8086/8088
by James W. CoHron
300 pp., illustr., Ref. 0-120
This book explains how to program the
8086 and 8088 in assembly language. No
prior programming knowledge required.

EXECUTIVE PLANNING
WITH BASIC
by X. T. Bui
196 pp., 19 illustr., Ref. 0-083
An important collection of business man
agement decision models in BASIC,
including Inventory Management (EOO),

Critical Path Analysis and PERT, Financial
Ratio Analysis, Portfolio Management,
and much more.

BASIC PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller
318 pp., 120 illustr., Ref. 0-073
This book from the "Programs for Scien
tists and Engineers" series provides a
library of problem-solving programs while
developing proficiency in BASIC.

CELESTIAL BASIC
by Eric Burgess
300 pp., 65 ill ustr., Ref. 0-087
A collection of BASIC programs that rap
idly complete the chores of typical astro
nomical computations. It's like having a
planetarium in your own home! Displays
apparent movement of stars, planets and
meteor showers.

YOUR SECOND BASIC
PROGRAM
by Gary Lippman
250 pp. , illustr. , Ref. 0-152
A sequel to Your First BASIC Program, this
book follows the same patient, detailed
approach and brings you to the next level
of programming skill.

Pascal

INTRODUCTION TO PASCAL
(Including UCSD Pascal™)
by Rodnay Zaks
420 pp., 130 illustr. , Ref. 0-066
A step-by-step introduction for anyone
wanting to learn the Pascal language.
Describes UCSD and Standard Pascals.
No technical background is assumed.

THE PASCAL HANDBOOK
by Jacques Tiberghien
486 pp., 270 illustr., Ref. 0-053
A dictionary of the Pascal language,
defining every reserved word, operator,
procedure and function found in all major
versions of Pascal.

APPLE® PASCAL GAMES
by Douglas Hergert and
Joseph T. Kalash
372 pp., 40 illustr., Ref. 0-074
A collection of the most popular computer
games in Pascal, challenging the reader
not only to play but to investigate how
games are implemented on the computer.

INTRODUCTION TO THE UCSD
p-SYSTEMTM
by Charles W. Grant and Jon Butah
300 pp., 10 illustr., Ref. 0-061
A simple, clear introduction to the UCSD
Pascal Operating System; for beginners
through experienced programmers.

Software and
Applications

Operating Systems
THE CP/M® HANDBOOK
by Rodnay Zaks
320 pp., 100 illustr., Ref 0-048
An indispensable reference and guide to
CP/M-the most widely-used operating
system for smal l computers.

MASTERING CP/M®
by Alan R. Miller
398 pp., illustr., Ref. 0-068
For advanced CP/M users or systems
programmers who want maximum use of
the CP/M operating system . .. takes up
where our CP/M Handbook leaves off.

THE BEST OF
CP/M® SOFTWARE
by John D. Halamka
250 pp., illustr., Ref. 0-100
This book reviews tried-and-tested, com
mercially available software for your
CP/M system.

REAL WORLD UNIXTM
by John D. Halamka
250 pp., iIIustr., Ref. 0-093
This book is written for the beginning and
intermediate UNIX user in a practical ,

straightforward manner, with specific
instructions given for many special
applications.

THE CP/M PLUSTM HANDBOOK
by Alan R. Miller
250 pp., illustr, Ref. 0-158
This guide is easy for the beginner to
understand, yet contains valuable infor
mation for advanced users of CP/M Plus
(Version 3).

Business Software
INTRODUCTION TO
WORDSTARTM
by Arthur Naiman
202 pp., 30 illustr., Ref. 0-077
Makes it easy to learn how to use Word
Star, a powerful word processing pro
gram for personal computers.

PRACTICAL WORDSTARTM USES
by Julie Anne Arca
200 pp., illustr., Ref. 0-107
Pick your most time-consuming office
tasks and this book will show you how to
streamline them with WordStar.

MASTERING VISICALC®
by Douglas Hergert
217 pp. , 140 illustr., Ref. 0-090
Explains how to use the VisiCalc "elec
tronic spreadsheet" functions and pro
vides examples of each. Makes using this
powerful program simple.

DOING BUSINESS WITH
VISICALC®
by Stanley R. Trost
260 pp., Ref. 0-086
Presents accounting and management
planning applications-from financial
statements to master budgets; from pric
ing models to investment strategies.

DOING BUSINESS WITH
SUPERCALCTM
by Stanley R. Trost
248 pp., illustr., Ref. 0-095
Presents accounting and management
planning applications-from financial
statements to master budgets; from pric
ing models to investment strategies.

VISICALC® FOR SCIENCE AND
ENGINEERING
by Stanley R. Trost and
Charles Pomernackl
225 pp., illustr., Ref. 0-096
More than 50 programs for solving techni
cal problems in the science and engineer
ing fields. Applications range from math
and statistics to electrical and electronic
engineering.

DOING BUSINESS WITH 1-2-3™
by Stanley R. Trost
250 pp., illustr, Ref. 0-159
If you are a business professional using
the 1-2-3 software package, you will find
the spreadsheet and graphics models
provided in this book easy to use "as is"
in everyday business situations.

THE ABC'S OF 1-2_3™
by Chris Gilbert
225 pp., illustr., Ref. 0-168
For those new to the LOTUS 1-2-3 pro
gram, this book offers step-by-step
instructions in mastering its spreadsheet,
data base, and graphing capabilities.

UNDERSTANDING dBASE WM
by Alan Simpson
220 pp. , illustr., Ref. 0-147
Learn programming techniques for mail
ing label systems, bookkeeping and data
base management, as well as ways to
interface dBASE II with other software
systems.

DOING BUSINESS WITH
dBASE WM
by Stanley R. Trost
250 pp., illustr., Ref. 0-160
Learn to use dBASE II for accounts
receivable, recording business income
and expenses, keeping personal records
and mailing lists, and much more.

DOING BUSINESS WITH
MULTIPLANTM
by Richard Allen King and
Stanley R. Trost
250 pp., illustr., Ref. 0-148
This book will show you how using Multi
plan can be nearly as easy as learning to

use a pocket calculator. It presents a col
lection of templates that can be applied
"as is" to business situations.

DOING BUSINESS WITH PFS®
by Stanley R. Trost
250 pp., illustr., Ref. 0-161
This practical guide describes specific
business and personal applications in
detail. Learn to use PFS for accounting,
data analysis, mailing lists and more.

INFOPOWER: PRACTICAL
INFOSTARTM USES
by Jule Anne Arca and
Charles F. Pirro
275 pp., illustr., Ref. 0-108
This book gives you an overview of Info
Star, including DataStar and ReportStar,
WordStar, MailMerge, and SuperSort.
Hands on exercises take you step-by-step
through real life business applications.

WRITING WITH EASYWRITER IFM
by Douglas W. Topham
250 pp., illustr., Ref. 0-141
Friendly style, handy illustrations, and
numerous sample exercises make it easy
to learn the EasyWriter II word processing
system.

Business Applications

INTRODUCTION TO WORD
PROCESSING
by Hal Glatzer
205 pp., 140 illustr., Ref. 0-076
Explains in plain language what a word
processor can do, how it improves pro
ductivity, how to use a word processor
and how to buy one wisely.

COMPUTER POWER FOR YOUR
LAW OFFICE
by Daniel Remer
225 pp .. Ref. 0-109
How to use computers to reach peak pro
ductivity in your law office, simply and
inexpensively.

OFFICE EFFICIENCY WITH
PERSONAL COMPUTERS
by Sheldon Crop
175 pp., il lustr., Ref. 0-165
Planning for computerization of your
office? This book provides a simplified
discussion of the challenges involved for
everyone from business owner to clerical
worker.

COMPUTER POWER FOR YOUR
ACCOUNTING OFFICE
by James Morgan
250 pp., illustr., Ref. 0-164
This book is a convenient source of infor
mation about computerizing you account
ing office, with an emphasis on hardware
and software options.

Other Languages
FORTRAN PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller
280 pp., 120 illustr., Ref. 0-082
In the "Programs for Scientists and Engi
neers" series, this book provides specific
scientific and engineering application pro
grams written in FORTRAN.

A MICROPROGRAMMED APL
IMPLEMENTATION
by Rodnay Zaks
350 pp., Ref. 0-005
An expert-level text presenting the com
plete conceptual analysis and design of

an APL interpreter, and actual listing of
the microcode.

Hardware and
Peripherals

MICROPROCESSOR
INTERFACING TECHNIQUES
by Rodnay Zaks and Austin Lesea
456 pp., 400 illustr., Ref. 0-029
Complete hardware and software inter
connect techniques, including D to A con
version, peripherals, standard buses and
troubleshooting.

THE RS-232 SOLUTION
by Joe Campbell
225 pp., iIIustr., Ref. 0-140
Finally, a book that will show you how to
correctly interface your computer to any
RS-232-C peripheral.

USING CASSETTE RECORDERS
WITH COMPUTERS
by James Richard Cook
175 pp., illustr., Ref. 0-169
Whatever your computer or application,
you will find this book helpful in explaining
details of cassette care and maintenance.

For a complete catalog of our publications
please contact:

u.S.A . .
SYBEX, Inc.
2344 Sixth Street
Berkeley,
California 94710
Tel: (800) 227-2346

(415) 848-8233
Telex: 336311

FRANCE
SYBEX
6-8 Impasse du Cure
75018 Paris
France
Tel : 01/203-9595
Telex: 211801

GERMANY
SYBEX-Verlag GmbH
Vogelsanger Weg 111
4000 DUsseldorf 30
West Germany
Tel : (0211) 626441
Telex: 8588163

UNITED KINGDOM
SYBEX, Ltd.
Unit 4, Bourne Industrial Park
Bourne Road, Crayford
Kent DA1 4BZ
England

YOUR FIRST AlARI PROGRAM

Written especially for the ATARI
computer, this is a how-to-program
book for the first-time computer user.
It is filled with colorful illustrations
and simple diagrams that make
learning easy. In just a few hours,
you'll know enough BASIC to write
complete, useful programs on your
ATARI. See how simple it is to pro
gram your computer to do what you
want it to!

BASIC EXERCISES FOR TH E AlARI

Learn the true style and subleties of
ATARI BASIC through actual prac
tice. Graduated exercises in math,
business, operations, research, games,
and statistics teach you how to pro
gram in BASIC . Each exercise
contains a statement and analysis of
the problem, a solution with flow
chart, and a program with a detailed
explanation of each step. Appendices
of BASIC terms, syntax rules, and
character sets make this a handy ref
erence guide .

\

ALL THE FACTS ON THE

ATARI 800XL!
This book is the fastest, simplest way to a practical working
knowledge of the ATARI 800XL. Beginning with the set-up,
keyboard, and screen display, you will be guided through all the
functions of your machine. Then, with step-by-step lessons that
apply to any model ATARI, you'll find it easy to begin writing
your own BASIC programs. Or, if you prefer, you can skip pro
gramming and learn how to get started with commercially
available software.

You will quickly learn to:

• Use the new XL graphics features
• Connect and operate your disk drives
• Load and save programs on cassette
• Expand your system with useful accessories
• And much more!

Everything you need to know to put your ATARI 800XL to work
for you right away is revealed here in a friendly, jargon-free
style.

ABOUT THE AUTHOR:

Thomas Blackadar is a professional writer who has been using
computers for more than ten years. He holds a B.A. from Prin
ceton University, and he has studied at the University of Fri
bourg in Switzerland.
Other SYBEX BOOKS BY THOMAS BLACKADAR: The Best of
TI 99/4A Cartridges, The Best of VIC-20 Software, and The Easy
Guide to Your Caleca Adam

o

ISBN 0-89588-259-0

	Cover
	Contents
	Introduction
	Getting Acquainted
	1: Meet the Atari Computers
	2: Commercial Software
	3: The Keyboard and the Screen
	4: Atari Graphics

	Programming
	5: Writing a Program
	6: Using Variables
	7: Controlling your Program
	8: Advanced Graphics

	Storage
	9: Cassette Storage
	10: The Disk Drive
	11: Afterword

	Appendix
	A: Further Reading
	B: Reference Guide to BASIC
	C: Atari Error Codes

	Answers to Selected Exercises
	Index

