MASTERING YOUR

A I nn I / S

Includes ready-to-run programs on disk,with
spreadsheet,clock, music editor, programmable
character generator, games,and more

by the staff of MICRO magazine

MasTeERING YOuR ATARI
Through Eight BASIC Projects

Tom Marshall
Editor

A SPECTRUM BOOK

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data
Main entry under title:

Mastering your Atari through 8 basic projects.

“A Spectrum Book.”

1. Atari computer—Programming. 2. Basic (Computer
R/r‘ugmm language) I. Computenst (Firm) 1. Title:
astering your Atan through eight basic projects.

QA76.8.A82M37 1984 001.64"2 84-3336
ISBN 0-13-559550-9

© 1984 by the Computerist, Inc. All rights reserved. With the exception noted below, no
part of this book or the accompanying cassette/diskette may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic or other record, without prior agreement and written permission
from the publisher. A Spectrum Book. Published in the United States of America.

To the extent that the contents of this book are replicated on the cassette/diskette
enclosed with the book, they may be loaded from the cassette/diskette into the user’s
Atari minicomputer. Original retail purchasers are permitted to make copies of the
programs on the cassette/diskette solely for their own back-up purposes.

109 87 6543121
ISBN 0-13-559550-9

Original programs: Phil Daley, Robert M. Tripp, and Loren Wright
Atari conversions and updates: Tom Marshall and John Hedderman
Edited: Emmalyn H. Bentley and Nancy Lapointe
Layout and production: Nancy Lapointe and Linda Fedas
[lustrations: Frank Wyman

This book is available at a special discount when ordered in bulk quantities. Contact
Prentice-Hall, Inc., General Publishing Division, Special Sales, Englewood Cliffs, N.J.
07632.

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall of India Private Limited, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand
Editora Prentice-Hall do Brasil Ltda., Rio de Janeiro

Table of Contents

Introductionc.itieeneenneneenns

Atari Player i,
Making Beautiful Music

Masterciiiiiiiiiiiiiiineaaann
A Simple Guessing Game

Word Detectiveccvvvivinnn..
A Word Guessing Game

Breakup i,

An Animated Game

AtariClock,
A Digital Time Display

Programmable Characters 113

Customize the Atari Character Set

NOLEINR . 55 6 0 8 0800 090 085 © 05 5608 5 bbb s 08 & 129

Information on Five Sorting Methods

MicroCalcciiiiiiii ittt innnnn 153

A Miniature Spread Sheet

Introduction

Welcome to the world of Atari! You are about to embark on an in-
credible journey that will take you through the labyrinth of your
microcomputer. You don't need to be a sophisticated programmer or
have years of high-tech experience to enjoy this voyage; you just need
an adventuresome spirit and a keen desire to learn. We hope you find
this tour entertaining, stimulating, and useful.

Our itinerary includes explorations into many levels of computer
programming. The absolute novice can simply 'RUN’ and enjoy the
programs, while the more experienced computerist can acquire new
programming techniques. To get the most from this learning ex-
perience a rudimentary knowledge of BASIC programming would be
helpful. This is neither a programming text nor a reference guide;
teaching good programming by example is our intent. We have taken
care to be consistent in our presentation of the material, including a
list of concepts for each chapter, initial operating instructions, variable
usage tables, and program listings in a structured format with adjacent
descriptive text. We use figures, screen dumps, and short demonstra-
tion programs extensively. To become more knowledgeable about your
Atari, investigate the programs in the book and on cassette. A synopsis
of your journey follows.

If you have ever dreamed of becoming a note-able musician, you
will enjoy ''Atari Player.”” This program provides you with a five-
octave organ keyboard on which you can compose your own tunes or
play some of your old favorites. LOAD and SAVE the songs to cassette
then regale friends with your renditions of La Paloma, Allouette, or
Loch Lomond. Edit your songs on the ‘‘Song Editor’’, a supplementary
program to help you fully understand how to use the music capabilities
of your Atari. A musical feast awaits you as you learn music program-
ming and the use of cassette data files.

Whether you are traveling alone or with someone else you will en-
joy “MASTER,"" a simple guessing game for one or two players. Unlike
the commercial version, this Atari game uses letters instead of colored
pegs, but the rules are the same. We offer you three versions, and you
can modify the program to play even more games. While trying to
figure out your A’s, B’s, C's, and D’s, you will have the opportunity to
learn something about random numbers and flags.

And since there are always rules to every game, we have included
“"Word Detective,”’ another guessing game that lets you figure out
what the rules are. The program introduces the concept of the com-
puter handling letters and words, as well as numbers. A supplementary

4

{]

program, ''The Answer Machine,’”’ allows you to ask the computer
questions, which it will answer with a yes, no, or maybe. If you are en-
dowed with a good imagination, the narrative can become quite in-
volved and you may rival even Scheherazade or Aesop.

No journey would be complete without a sporting event of some
kind; we take you to a ball game. ''Breakup’’ uses a paddle, joystick, or
the keyboard to provide you with a simple bouncing ball game. At the
same time you learn how animation is accomplished with PEEKs and
POKEs to the screen memory.

If you have the time, perhaps you would like to display it in giant-
size digital numbers on your Atari screen. '‘Atari Clock'' proceeds,
step by step, from the simplest uses of the Atari clock to a deluxe clock
that displays the time in big numerals that you can read from across
the room. At the same time learn a few simple techniques for program-
ming the cursor and using string primitives.

While traveling you are bound to meet many characters. We pro-
vide you with quite a few in '‘Programmable Characters,’”’ which
redefines part of the Atari’s character set. Demonstrations of this
powerful technique include animated space invaders, a chameleon
robot, and an abstract design that changes color at the touch of a key.
Also included is a whole set of characters that lets you plot functions
with extra resolution.

Explore the two programs in ‘‘Sorting’’ that demonstrate several
methods of sorting data. You will enjoy watching the Atari's colorful
character graphics sort bars of different lengths right in front of your
eyes. The second program is a telephone directory that allows you to
create new files, add, change, or delete old files, load existing files,
save them to tape, and sort files in a feasible manner.

Finally, sail through “MICRO Calc,” a miniature spread-sheet pro-
gram that makes complex, repetitive calculations a breeze. LCAD the
program from the diskette and your video screen will fill with ten
yellow lines. A yellow diamond cursor indicates where you are on the
screen. You can use this program to experiment with BASIC functions.

We sincerely hope that you find this venture exciting and educa-
tional and that it leads you to further exploration of your Atari. Now
load your diskette and commence your journey. Bon voyage.

Atari Player

Making Beautiful Music

N [
x
0 W
< i
@ O
z B
I [

[

@

m

- . P

Aulri Player enables you to play music on your Atari. It converts the
Atari into a simulated organ with the organ keys being represented by
the keys on the Atari keyboard, as shown above. Each note you play
can be heard over one of the Atari voices. The keyboard spans three
complete octaves, beginning with a low C and ending more than two
octaves higher with a B. Each note that is played is stored in memory
so that it can be instantaneously replayed and then saved on cassette
tape or disk. Later you can load your song in again and replay it.

We have included a feature in Atari Player that allows you to stop
playing, go back to correct mistakes, replay the song from the begin-
ning to the current note, and then continue playing additional notes.
Absolute perfection is possible using the editing option (number 5),
which allows you complete control over every note that has been
played. You can change the tone, octave, and/or duration of any of the

7

notes; or, if you wish, you can add more notes or remove them
altogether.

With the Atari Player installed in your computer you can make
your Atari a musically instructive as well as entertaining device.

Operating Instructions for Atari Player Demonstration

The first time you use the Atari Player, you should listen to the
song already provided on your disk to appreciate how much can be
accomplished. To do this, follow the simple steps listed here.

1. Using standard Atari loading procedures, load Atari PLAYER.

2. Type 'RUN' followed by the 'RETURN’ key.

3. You will be presented with the information that appears on the
display screen below.

ATARY PLAYER
i PLAY SONG
F4 REPLAY SONG
4 SAVE SONG
] LOAD SONG
1 EDIT SONG
] CHANGE TEMP
rd QUIT
CHOOSE? R

4. Press the 4 key to select the 'LOAD SONG’ option.

5. The display will ask for the file name under which the song is
stored.

6. Type 'D:SONG’ followed by the 'RETURN’. This will cause the
song already provided in the file 'D:SONG’ to be loaded into your
Atari.

7. When the song has been loaded, Atari Player will tell you how many
notes have been loaded, wait a few seconds, and then return to the
original menu.

8. Press the 2 key to select the ‘REPLAY SONG’ option.

9. You will now be treated to a rousing song played automatically on
your Atari computer.

Using the Atari Player

After choosing the 'PLAY SONG’ option from the menu, the pro-
gram will prompt you for the name of your song. (This is not the same
thing as the file name that disk users have to supply when performing a
save or a load. The name is saved with the song just for convenience
and has no bearing on the song itself.) Then a representation of the
Atari keyboard is printed on the screen in the format of a two-keyboard
organ. The bottom row of keys represents the lowest notes, starting
with '‘C’' and ascending alphabetically. The second row of keys
represents the sharps and flats (black keys) that correspond to the first
row. Note that there are inbetween keys on the second row of the Atari
for every pair of first-row notes. This is different than the normal organ
keyboard and means that some of the second-row keys do not sound
when pressed (A, F, and K). These keys can be used to introduce rests
into your song.

The third row of keys represents the second keyboard of the organ,
starting at middle ‘F’ and ascending to high ‘B’. The top row of keys
represents the sharps and flats corresponding to this second keyboard.
When you have mastered the keyboard, you are well on your way to
com-posing your own music. Read on.

At the beginning, the program waits for you to start the song. This
is one of the few times when a pause doesn’t count. Once you start
playing, the computer keeps track of every note and its length exactly
as you play it. Practice a little bit to get the feel of the keyboard. It is
not as simple as a piano, especially with the letters on the keys dis-
tracting you from what the true note is. The white keys on the display
have the actual name of the note printed over the keyboard name of the
key to help keep you oriented.

After you start a song, you may discover that you didn’t mean to
play a particular note. Fortunately there is a mistake-recovery method.
As soon as you realize that you have made an error (sometimes the first
note is an error), press the space bar to pause momentarily. You will be
presented with several options.

1. CONTINUE allows you to start playing the song at exactly the point

where you stopped. This is a useful technique for the times when
you become confused as to which note you want to play next; press
the space bar to pause, regather your wits, and press ‘C’ to continue
from where you stopped.

2. REPLAY will play the song up through the current note so that you
can inspect your masterpiece as you input and make corrections if
necessary. This option can be chosen as many times as you need it.

3. BACKUP is the option for which you've been waiting. This allows
you to remove one note at a time from the current song, all the way
back to the beginning if you want. When you make a mistake and
press the space bar to pause, press the ‘B’ option and the note you
are erasing will sound. Another ‘B’ will erase the next note, and so
on. Then pressing ‘C’ will allow you to continue your song from the
point to which you have backed up.

If, no matter how hard you try, you can’t seem to get the song
perfect, then the next step is to use the editor (option 5), which will
allow you to manipulate the more obscure aspects of your song.

Using the Editor

The Editor option enables you to correct any minor (or major)
mistakes that may creep into your performance. It allows complete
control over every note in your song; the note, octave, and duration
can all be changed to your specifications. And when using the insertion
feature, you can start from scratch and construct your own song
without ever playing a note on the Player keyboard! The Editor option
is the perfect complement to Atari Player.

The first thing that the editor does is to list the notes currently in
memory in groups of 30. These are notes that have been either entered
from the keyboard or loaded in from a previously saved song. The
‘Next’ and 'Previous’ commands allow you to page forward and
backward through the note tables so that you can look for the note (or
notes) that you wish to change. The ‘Current’ command simply
redisplays the table starting at the same note. This option is usually
used after an insert, delete, or change to see how the song looks.

The '#’ option allows you to change the current notes in memory,
one at a time. Note that the editor is not expecting the number sign
itself; it is expecting a number. Also, it does not change any notes on
the tape or disk, so don’t worry about making a mistake. Experiment

10

with changing notes and then play them together to see how
they sound.

Pressing the return at the 'NEW LENGTH:’ prompt will return you
to the main menu. Pressing return at any other prompt will leave the
rest of the parts of the note unchanged and skip ahead to the next note.
This allows you to change the lengths without re-entering the remain-
ing values that you don’t want to change.

Pressing the '/’ and return at any prompt preserves that one value
and jumps to the next prompt. For example, if you don’t want to
change a value, such as length, but do want to change the note or
octave, press '/’ and it will skip over the values you want to save
without your having to retype them.

The insert option moves all the notes (including the one whose
number you entered) forward one position and then returns you to the
‘Next, Previous, Current, or # prompt. You might want to use the
‘Current’ option now to see how the song looks. Change the note that
was at the point of insertion to whatever specifications you want and
you have just entered a note.

Delete moves all the notes following the one you specified down
one position, effectively erasing that note. As with the insert option,
you will be returned to the '‘Next, Previous, Current, or # prompt.
Again, you may want to use the ‘Current’ option to see how the song
looks after the deletion.

When you are prompted for a new note, the only notes that will be
accepted are ‘C’, ‘C#’, etc., as listed in the data statement (line 13010).
A rest is indicated by ‘£ 3’. The program looks up your note in the note
table and converts it into the number that represents that particular
note. If it can’t find that note, it will give you the ?NOTE NOT
FOUND.’ error and return to the 'NEW NOTE’ prompt to give you
another chance to change it.

Other Menu Options

There are five additional menu options that allow you to hear your
song, load a song from or save a song to the tape player, change the
tempo of the song, or quit.

Choosing option 2, 'REPLAY SONG,’ will play the song currently
in memory over the television speaker. The routine uses the current
tempo for the speed at which to play the song. If there are no notes in
the song, then the error ‘?NO SONG IN MEMORY' is printed and you
are returned to the menu.

The ‘SAVE’ and 'LOAD’ options are numbered 3 and 4, respectively.

11

To save the current song, choose option 3 and enter the file name of
the song to be stored. If you are using a cassette you can specify only
'‘C:’" as your file name. If you are using a disk, the file name must be a
standard disk file name. Note that this file name and the name of the
song you specify when you choose option 1 (PLAY SONG) are not the
same. The name refers to the name that you wish the song to be titled
— for the sake of convenience only. The file name is merely where you
want the song to be stored and applies only to disk users. If you are
using a cassette-based system you will be prompted to press PLAY and
RECORD on the tape player. When the song is saved, the number of
notes and the file in which they are saved are displayed and you are
returned to the menu. If you are using the tape player, it will stop.

Option 4 is similar in operation to option 3. Remember that when
you LOAD a new song, you will erase any song currently in memory;
you must SAVE the current song (if you want to keep it for later use)
before loading a new one. The file name prompt will now appear. (If
you are using a cassette, there are no file names that you can specify.
The tape will read from where it was left last.) When the song is
loaded, as when saving, the number of notes and the file they were in
are displayed and you are returned to the menu. Again, if applicable,
the tape player will stop.

To change the current tempo setting, choose option 5. The
minimum (fastest) setting allowed is ‘1’. There is no restriction on the
maximum (slowest) setting, except for the fairly large internal limits
of the Atari. However, even a setting of just 100 will result in extremely
long notes.

When you are finished with Atari Player and want to return to
BASIC, choose option 6. Always remember to save any song that you
are currently working on before choosing this option. If you forget this
rule, typing ‘GOTO20' might enable you to return to the program
without losing your song.

Programming Concepts

Using a Menu to Make a Choice
1. Input with a Single Keystroke

Normally input from devices is done with the INPUT statement.
The only limitation of this statement is that it requires the input data
to be followed by a carriage return. Thus, any input from the keyboard
using this method would require at least two keystokes — one for the
character being input and one for the return key. The way around this
is illustrated in program lines 30 and 50.

12

Line 30 opens the keyboard for input. This means exactly what it
seems: you can now input from the keyboard. The open statement is
usually used for access to files on cassette or disk, but it can be used for
any connected device, such as the keyboard and even the screen. The
device specification for the keyboard is ‘K:’, which is the open state-
ment’'s fourth parameter.

Because a single keystroke input is preferred, the keyboard input
for the menu (line 50) is done with a GET. The GET statement waits
for one character of data from the keyboard; i.e., the single keystroke.
Thus no carriage return is required and an option may be selected by
striking a single key. However, the data input is not a character, or a
letter, but rather a number. This number is the numerical representa-
tion of the typed letter and is called an ASCII code.

2. ASCII Codes

Because computers cannot handle anything other than numbers, a
method for handling characters such as punctuation marks, letters of
the alphabet, or any other character, is needed. What has been devised
is the ASCII codes (American Standard Code for Information Inter-
change), which are numerical representations of each character for the
computer to handle internally. Most users never see these numbers for
they are converted back to characters when displayed on the screen,
but they are neccessary when dealing with such specific statements as
the Atari GET.
3. Using a Menu to Make a Choice: Selection by Number

When you run Atari Player, the first display that you see is a list (or
menu) that tells you what options are available. Each item on the
menu is selected by pressing the number associated with it. The
BASIC program steps required to evaluate your choice are in lines 50
and 60.

IF aA<49 OR A>5SS THEMS@a
SUB A16060686:G0TO 40

Line 50 gets the ASCII code for the keyboard character pressed and
stores it in variable A. The following IF... THEN statement checks to
see whether or not the character typed was a number. Note that, as
stated above, the GET statement gets the internal code for the
character typed rather than the character itself. This means that the
program has to check for the characters 1-9 rather than the numbers
1-9. If A is less than 49 (ASCII 1) or greater than 55 (ASCII 7), then the
character typed is ignored and the program returns to line 30 to get
another choice from the keyboard.

Line 60 does the actual branching to the appropriate routine. Since

13

the only options available are listed 1 through 7, and the program
routines for each start on the line numbers that are multiples of a thou-
sand (1000-7000), the branching to these routines can be done by for-
mulae. All that is needed to branch to the appropriate routine is to
multiply the option number chosen by 1000 and then perform a
GOSUB to that result. Thus, 48 (ASCII 0) is subtracted from the code
in A to convert it to one of the numbers 1-7. Then a GOSUB to the line
number A * 1000 is performed. This is a useful space conservation
technique. The only other way to do this would be to have a fairly large
ON...GOSUB statement followed by the starting line number of every
subroutine.

4. Selecting by First Letter

If the space bar is pressed during the ‘PLAY SONG,’ then another
menu is displayed.

The first character of each item is displayed in reverse video to in-
dicate which letter is to be pressed on the keyboard to select that
choice. The routine that gets the characters from the keyboard is at
line 5540. Note that this routine converts the number put in variable A
into a string (A$) via the CHR$ command. This is done so that the
routine will return a string holding the choice as opposed to returning
the ASCII value of the choice. That is, this routine returns a letter,
which is then serviced by its own IF...THEN statement.

8670 GOSUB SS5S408:REM GET ROUTINE
880868 IF AS=C THEN GOSUB 2200 : SOUND

8,6, B8: RETURN
8090 IF as-R THEN GOSUB 206086:G60T0

86106
8188 IF AS$S<{>B THEN 8676

If there are only a few choices, as in this example, then there is not
a lot of code. If there were many choices, then the amount of code to
service the letters could be significant.

5. Accessing the Keyboard for Real-Time Situations

The above method of selecting by first letter using the GET state-
ment is fine for most situations involving input with a single
keystroke, but it is severely limited in real-time applications. This is
because the GET statement actually waits for a key to be struck. For
instance, suppose you were writing a game that needed to keep track of
the elapsed time between keystrokes. This would be impossible with
the GET statement because the loop required to keep track of the time
could never be executed. Such was the problem in writing the PLAY
SONG option, which has to keep track of such things.

14

The Atari uses memory location 764 as the place to keep the last
key hit. That is, whenever a key is struck (no matter what program is
running) location 764 is filled with a number that represents the last
key pressed. But this number is not ASCII. This location uses the ac-
tual hardwired codes for the keyboard — a different set of codes en-
tirely. For the beginner, using this location is rather difficult as the
codes follow no obvious pattern. For instance, a space is a 33, the letter
A is 63, the B is 21, and so on. Therefore, the user must know which
keys to expect ahead of time. The following short routine can be used
to discover the various key codes. After typing RUN, simply hit a few
keys; their corresponding codes will come up on the screen.

10 PRINT PEEK(764):GOTO 10

Lines 1030, 1060, and 1070 show how Atari Player uses this loca-
tion. Note that it is POKEd with 255 after being read. This insures that
the same key can be hit twice and registered as two keys. That is,
because the location holds the last key hit, if you were to hit, say, the
'Z) key twice, and if the location was not reset after each read, it simply
would not change from the first ‘Z’ to the next. This means that two
notes would be read as one (with a rather long duration). Resetting
location 764 also allows us to keep track of the duration in the first
place (line 1030). By checking for the 255, we know that the key has
not yet been hit and that the duration should then be incremented.

Space Saving with Arrays

Atari Player uses many arrays — for the storage of its notes,
keyboard entries, and other such internal data. There are many ways of
storing this information in the arrays. This section deals with the most
economical way possible for storing the types of information contained
in Atari Player.

1. Numeric Arrays

Atari Player could have stored all of its information in the form of
numerical arrays as all of its information is, indeed, numbers. But
numbers are very costly to store in BASIC arrays, especially on the
Atari. Atari BASIC ‘eats’ up 15 bytes plus 6 bytes for every cell in the
array. This is not including the space that is eaten up by the variable
name and the DIM statement itself. For example, an array that was
dimensioned for 100 cells would eat up 15 plus 6 times 100 — or 615
bytes! Therefore, the only array that we made numerical was W, and it
was dimensioned for a whopping 501 cells. Over 3000 bytes is used to
store it.

15

However, things could be worse. The W array has a little more in-
formation than normal crammed into it. In fact, that one array is made
up of both the keystroke (for the note played) and the length of time
that it is played. It was necessary to perform such a numerical com-
bination to keep from wasting an exorbitant amount of memory. But
before we get into such a space-saving trick, let’s first examine how
not to program the storage area.

As mentioned briefly before, each note that you play involves two
pieces of information that must be saved by Atari Player: the number
(keystroke) of the note and the duration of the note.

We could define a two-dimensional array that contains a number
for both parts of each note: e.g., DIM W(500,1) would reserve space for
500 notes (the zeroth element is not used) with two numbers per note.
How much memory do you think this would take? It really is deceiv-
ing. Since 500 times 2 is 1000, is that the total number of bytes re-
quired? No! Each Atari BASIC array number requires six bytes of
memory. Therefore, it would take 6 * 1000, or 6000, bytes of memory!
On a 16K Atari (which, by the way, has only 13000 some bytes left
after the operating system has taken its share) that leaves a little over
7K for the rest of the program.

You have to get a bit tricky to squeeze more out of the song space;
but there is nothing wrong with getting tricky when writing programs.
In fact, that can be half the fun! To really squeeze the memory in Atari
Player, we took advantage of the size of the number that the Atari
arrays can hold. The two values that we need to keep for each note
played are the note number (0 to 38) and the duration (which is limited
to 0 to 999 units). If only we could pack both of these individual values
into a single number for storage and then unpack them when we
needed to use them. Well, good news — we can!

The technique to pack the numbers is shown in line 5392.

S3I2Z GOSUB 9S00 :REMPACK IT INTO WIU)

2568 F D
251 CU2

1hg

8 I 299 HEN D=99%9
a2 M INTCTP*1000+DY :RETURN

This equation is not as difficult as it may at first appear.

W% (V) is the array of notes where V is the number of the note in
the song
+TP *» 1000 multiplies the keystroke number (0 to 63) by 1000

+D adds the duration value (0 to 999)

16

All we have done is multiply the keystroke value that we need to save
by enough to make sure it does not overlap with the duration value.
This insures that we will be able to unpack the separate parts later.
The unpacking is a bit more difficult than the packing, but conceptually
it is simple. All we need to do is reverse the packing process. This is ac-
complished in the following lines:

2200 TP=-INTCHC(V) 18080682
2210 D=WHCVI - TP*1000: RETURN

Line 9200 restores the note number by dividing by 1000.

Line 9210 restores the duration by subtracting the note number
multiplied by 1000. This simply returns the remainder that was
sheared off by the INT 1000.

The above lines of program take the single integer value and con-
vert it back into two separate parts. This method results in a 500-note
song requiring only 501 array slots to store it, at six bytes per number,
for a total storage of just over 3000 bytes — only half the amount that
would be needed if we stored the two values separately!

2. Simulating String Arrays

NT$ is a string that holds all the possible note symbols. Normally
these symbols would be entered separately in a string array, but the
Atari does not have this capability. (It does dimension strings, but this
refers only to the lengths of the strings and that doesn’t help us much.)
Instead, all string information must be concatenated, or ‘strung
together,” one after another in a single string. This means that the only
way to access the different elements is to access the different character
locations within the string. As long as the elements are of equal size
this is fairly simple because the starting character position of any of
the elements can be calculated using the index. Take for example the
following lines:

18 DIM NAMES (X0

Z0 NAMES=""TOM DIXICK HARRY JIMBO
RALPHBIXLLY""

166 INPUT INDEHXH: REM ———INDEXK
STARTS AT 86———

1106 gg%?T NAMES CINDEXMS5+1 , INDEHX

12 GOTO 100

This routine simulates a string array where the elements are first
names. In Atari BASIC, to get part of a string, you specify the string
name followed by the starting and ending character position of the
substring you want. In line 110, what is printed is the substring that
starts with character position INDEX*5+1 and ends with

17

INDEX=*5 + 5. Thus, because the character position is calculated, every
element must be the same length. If they aren’t, and this is usually the
case, then the smaller ones must be padded with spaces. Every element
must start at every character position that is a multiple of some
number in order for this particular technique to work.

The note symbols used by Atari Player are stored the same way.
They are stored initially in line 13010 and then READ in as a single
string (NT$) in the initialization routine at lines 12000 through 12050.
Assuming Y is the note number (0-12), the following routine will set
N$ equal to the corresponding note symbol:

10 NS =NTH(Y*2+1,Y*2 +2)

In fact, this very routine is found at the end of line 5062. Note that the
elements in this case must be two characters long: a note, ‘C’ for in-
stance, followed by either a space or a sharp sign, '#'.

There is another way that strings are used in Atari Player. It is a bit
more complex but basically entails the same concepts. The difference
lies in the fact that this method is used to store a series of numeric
values such as would normally be done with numeric arrays. The sav-
ings are space and time and for the following reasons.

Strings use up only one byte of memory per character. A little more
is used up in the variable name and such, but that is essentially it. So,
if we were to somehow convert every number that is in a numeric
array (six bytes) to a string character (one byte), we would have a sav-
ings of five bytes per element. Thus, a numeric array dimensioned for
100 elements that would normally eat up 600 bytes of storage could be
made to fit in merely 100 bytes.

Loading in the initial values in a string is very fast, whereas loading
in the initial values in an array is tediously slow. This is because string
loading can be done with a single statement and all the elements can
be loaded in at once; the elements in an array must be loaded in one
after another in a loop. For arrays of ten elements or less, conversion to
a string is hardly worth the effort because the loading is so short and,
therefore, does not take up much time anyway. But for larger arrays,
string conversion is definitely worthwhile because the loading time of
even several minutes can be cut down to only a few seconds at most.

Lines 12042, 13000, and 13020 demonstrate how the strings are
stored and read in.

126068 S=18:LN=S5S80:DS=10:L=-8:CF=752
12610 DIM MHMICLNIY ,PITCHS(63)Y ,NTS (262

JFSC1L42 ,BSC20) ,NSC3I2 ., AaS5C3I) ,NTOD
CTSC63X)

18

12020 RESTORE :BS=""NONAME"*"

128042 READ PITCHS, NTS,.NTOCTS

1286560 RETURN

1306068 DATA P'f""'('ﬂ/'—*'@ﬂz'ﬂnﬂ
ED.LS"UVy']E'C.QE'HSV(Q[*VZZ'
v vv IRvvXi

130168 DATA C CHD DRRE F FOG GHA AnRB

8)

13620 DATA _0"™ ¥" 99! @116 ¢33 ¥y v v |
Vr P YOl vT Y, Y "l t¥Llg— e
Syt S ews

There are a couple of problems when working with these strings.
First, when addressing the element you must, in reality, address the
individual characters of the string. That is, the index that you would
normally use to access any of the elements in the numeric arrays is
now the character position in the string. But element positions in
arrays start at zero (0] while string positions start at one (1). Therefore,
when accessing the data in strings, you must either ignore the zeroth
element entirely and start the element numbers off at one, or add one
to the element number so that the element that was previously
numbered zero will reside at string position one (1). Line 9800
demonstrates how this latter method is used in Atari Player.

2800 gOEND 8,ASCICPITCHSCTP+1,TP+13)2,

where TP is the index to the string array PITCHS.

The second problem is a little tougher for the beginner to under-
stand. Since each character in a string is essentially one byte of storage
internally, the size of the numbers you can store are limited to what a
byte can store. Because, as you may know, bytes are only eight bits
long, the largest number that could possibly be stored in one is
11111111 binary (255 decimal). Also, the number must be a non-
negative integer. To get the number in the string as an element it must
be converted to a character via the CHR$ function. This function will
turn the number specified into the character whose ASCII value is that
number so that it may be stored in a string. When accessing that ele-
ment, to get the number from the character, the ASC function must be
used. This function converts the string specified (presumably an ele-
ment in the string) to its ASCII equivalent. (See Programming Con-
cepts 2: ASCII Codes.)

The Program

The Atari Player program contains seven major functions (which

19

are selected from a menu), three minor functions used during the play-
ing of a song from the keyboard, seven minor functions used during the
editing of a song, and some support subroutines.

The main program (lines 10 - 50) calls subroutines to initialize the
program, turn off the sound generators, and print the menu on the
display. It waits for a character in the range of the menu (1 - 7) then
goes to the appropriate subroutine to service the selected function.

The PLAY SONG subroutine (lines 1000 - 1120) gets the user’s song
name, calls a subroutine to print the music keyboard, gets input from
the keyboard, calls a subroutine to pack information about the current
note and store it in memory, and then, depending on which key you
press, does one of the following things:

A Carriage Return terminates the song by putting a 0 in the next
song location and returning to the main menu

A Space goes to the ‘Continue, Replay, Backup’ subroutine
The A, F, and K keys are converted to a ‘musical rest’

A defined key (i.e., a '‘music key') is converted to its sound
generator.

The REPLAY SONG subroutine (lines 2000 - 2070) prints the
message 'PLAYING' and the song title, if there is one. If there is no
song in memory, it prints the error message ‘‘NO SONG IN
MEMORY’, goes to a subroutine that produces a delay to enable the
message to be read, and then returns to the main program.

If there is a song in memory, REPLAY calls a subroutine to unpack
the keystroke corresponding to the appropriate note and to the dura-
tion of that note. It uses a subroutine to output the note to the sound
generator for the specified duration. The sound generator is then turned
off and the song pointer (variable V) is incremented to the next note. If
the maximum song length possible (LN) has been exceeded, then a
return is made to the main program; otherwise the keyboard is checked
and if any key is pressed a return is made to the main program.

If no key is pressed, the next note of the song is unpacked and
tested. If it is not the ‘end of song’ indicator (a zero value) the program
continues playing the song. At the end of the song, REPLAY uses a
subroutine to generate a brief delay and then goes to the main program.

The SAVE SONG subroutine (lines 3000 - 3030) uses a subroutine
to print the message ‘Enter filename...?’ and inputs a file name. If ‘C:’
is specified it opens the cassette device for saving information, asks
you whether or not the tape is ready, and outputs the song information

20

one note at a time. If ‘D:’ is specified, it opens the specified disk file
and outputs the song information. When it has output the last note it
closes the output device, tells you how much was saved, and exits
through the delay routine.

The LOAD SONG subroutine (lines 4000 - 4030) uses a subroutine
to print the message 'Enter filename...?” and inputs a file name. It
opens the appropriate device for loading information and inputs the
song information one note at a time. When it detects an empty note it
closes the device, tells you how much was loaded, and exits through
the delay routine.

The EDIT SONG subroutine (lines 5000 - 5550) outputs the data of
the first 30 notes in the song. It then asks you for the next, previous, or
current group of 30 notes you wish displayed, or the number of the line
you wish to edit. If just a carriage return is typed, the program returns
to the main program (menu). If the ASCII value of the input response is
not that of a number, then it goes to line 5430 where it branches to the
appropriate routines. If the ASCII value is one of a number, then it asks
you if you wish to change, delete, or insert a note at that point. If ‘C’ is
chosen, it asks you for the values of the three parts to the note, and
then it continues on with the next note until you hit a carriage return
at the 'NEW LENGTH?' prompt. If 'T' or ‘D’ is chosen, then the pro-
gram shuffles the entire array up or down one element, respectively, to
either make room for the inserted note or obliterate the one already there.

The CHANGE TEMPO subroutine (lines 6000 - 6030) prints the
current value of the tempo variable, then requests and inputs a new
value. If the value is less than 1, it is ignored. When a valid value is in-
put, the routine returns to the main program.

The QUIT routine (line 7000) enters graphics mode 0, thereby
clearing the screen and setting all the colors back to normal, and then
it executes an END to return to BASIC.

The PLAY SONG MENU routine (lines 8000 - 8120) provides three
additional commands for use while playing a song. When called by
pressing the space bar, it first uses a subroutine to turn off all sound
generators and another to unpack the current note. It prints its qwn
menu and waits for a keyboard selection. Upon receiving a ‘C’ it backs
up the song pointer to the current note, unpacks the note, and turns off
the sound generators before returning to the PLAY SONG routine.

The letter 'R’ calls the REPLAY SONG subroutine, which plays the
current song from the beginning to the current note, and then waits for
another menu selection.

The letter ‘B’ causes the program to go to the subroutines to un-
pack the current note’s values, output the note for the correct dura-

21

tion, and turn off the sound generators when the note is done. Then it
backs up over the note played by subtracting one from the note
pointer. If, however, the note pointer is at the beginning of the song,
the entire routine does nothing. When it is done, it waits for another
menu selection.

The support subroutines (lines 9000 - 13020) provide support for
the main program and major subroutines.

Line 9000 provides a several-second delay to permit you to view
messages that appear before clearing.

Line 9100 prints ‘Enter filename...?’ and accepts a name from the
keyboard. If ‘C:’ is specified, you are prompted to hit return when the
tape is ready.

Line 9200 unpacks the stored note information into its two com-
ponents: the keystroke/note equivalent ‘TP’ and the duration of the
note 'D’. See packing information in the section headed ‘‘Numeric
Variables."’

Line 9500 makes sure that the note duration is not greater than 999
and packs the two components of the note (the note/keystroke
equivalent ‘TP’ and the duration of the note ‘D’) into a single integer
value in the song array. See packing information in the section headed
"Numeric Variables.’

Line 9800 outputs a note by converting the keystroke number (TP)
into a pitch for the SOUND statement. This is done by using TP as an
index into the string array ‘PITCH$’. Note that this is not the standard
BASIC string array, as the Atari simply does not have that capability.
(See Space Saving with Arrays 2: Simulating String Arrays.) After
sounding out the note, the routine then waits for the duration of the
note, which is calculated as the tempo ‘S’ times the note duration 'D’
divided by 8 times the time it takes the BASIC FOR...NEXT loop
to execute.

Line 10000 prints the main menu.

Line 12000 performs a series of initialization functions. It sets the
tempo ‘S’ to 10 and the length of the song ‘LN’ to 500 notes; it sets the
distortion ‘DS’ used by the SOUND statement to 10 (pure tones); it
sets the loudness ‘L’ also used by the SOUND statement to 8, which is
moderately loud; it dimensions a numeric array (W% (LN) to hold the
song note information); it dimensions six strings (PITCHS$ associates
the keyboard characters (i.e., keystrokes) with the pitches needed by
the SOUND statement; NT$ is a series of the 12 possible two-letter
note symbols plus ‘[|" for rests; F$, B$, N$, A$ are just utility strings
used by the program; and NTOCTS$ associates the keystroke with a
note and its octave). It also assigns B$ to the value of ' NONAME' as a

22

song name default, reads in PITCH$, NT$, and NTOCTS$, and then
performs a RETURN.

Line 13000: This is the string value for PITCHS. It is a series of
pitches for the Atari SOUND command that corresponds to the
keystroke number, which is used as an index. That is, once the
keystroke number is ‘gotten’ from the keyboard, it is used as a
character position in the string. The ASCII value of the character at
that position is the pitch for the SOUND statement.

Line 13020: This is the string value for NTOCTS. It holds the note
number (0-12) and the octave. The accessing of its elements is done
with character position indexes, the same way it is done in line 13000.

Line 14000: This is the routine that outputs the keyboard. The
keyboard was drawn using the Atari graphics characters, and can be
used on the normal mode O text screen. Earlier versions of Atari Player
actually drew the keyboard in one of the graphics modes, but this
method took up too much memory. Since the graphics characters can
be used in mode 0, they take up extra memory.

You'll notice that in line 14000 a POKE is made to the location held
in the constant CF. This is the cursor inhibit location and when it con-
tains a non-zero value, the cursor display is suppressed. When it holds
a 0, the cursor is displayed as the reverse of whatever character it is on.
Since the cursor is usually on nothing other than blank screen, a solid
white square (reverse-blank) is usually displayed while output to the
screen is done. Since this is not wanted when the keyboard is being
displayed, the cursor is disabled. In fact, during most of the displays in
this program, the cursor is not wanted, thus providing a sharper and
generally better-looking display. The user should experiment with
how the displays look with and without the cursor.

23

Atari Player Variable Usage

Constants

CF POKE location for cursor inhibit

DS Sound distortion

L Sound loudness

LN Last element available in W array

NT$ String ‘array’ of all note symbols

NTOCT$ Note/octave conversion from keystroke number

PITCH$ String ‘array’ of sound pitches for conversion from
keystroke

Variables

A ASCII value from keyboard

D Duration for current note

I Loop counter

MAX Position of the zero element in the song (end of song)

N Note number (0-12)

NT Actual note (0-12) plus octave (0-2)

O Note's octave

S Tempo setting (speed of song)

TP Keystroke/note equivalent

\Y Note pointer for song

W) Array of notes and durations

XX X position of editor’'s output

YY Y position of editor’'s output

A$ Input string from keyboard

B$ Song name

F$ File name

N$ Note symbol

24

Listing 1: Atari Player/Editor

186 REM ATARI PLAYER/EDITOR
I8 OPEN 1 .,4,0.,"'K:*"":G0OS5SUB 12066
468 GOoOSUB 16008
58 GET g1, Aa:IF A<49 OR A>5SS5S THEN S
a
60 A-—A—-48:G05UB A¥1660:G0TO 40
1890906 PRINT :PRINT ""Input song name
. .""; :XNPUT BS:IF BS=''"" THEN B
S=""NONAME""
1016 v
19;1615 GOSUB 14600
1020 D—@8
1930 D=DH+1:A=-PEEKI(764) : IF A=255 TH
EN 18636
19040 POKE 764,255:G0SUB 25680: 5S0UND
e,06,0,0
18680 IF A=12Z THEN SOUND ©,6.,08.,.8:MA
H=U+1: WNIV+1)) =0 :GOTO 1126
1870 IF A=3IX THEN MAHX=-VU+1:G05UB 80
88 :G0TO 1615
1880 IF A>62 THEN A=3X
18090 TP=A:SOLUND O8,ASCIC(PITCHSC(TP+1,
TP+12)2 ,DS ., L
11860 VU-VU+1:IXIF VU=LN THEN HIIV) —-@:GO0T
0O 1120
1118 GOTO 1620
11268 POKE CF,9:RETURN
298060 7?7 ""RPLAYING'"":VU=1
2010 IF WIVII=8 THEN 72 ""?NO SONG IN
MEMORY'"" : GOTO 2960600
28620 GOSUB 92Z00:IF TP=6 AND D=-@ TH
EN RETURN
206368 SOLUND 8,0.,06.,6:605U8B 2800 :V=U+
1:XF v>=MAHXK THEN SOUND @.,6.,6,8
IVZDIY=VU—1 : RETURN
2040 IF PEEK((764)>255 THEN POKE 7
64,255 : RETURN
206560 GOoOTO 2020
000 GOSUB 9100:0PEN 112 ,8,08,FS5S:TRA
P IS5086
TO18 PRINT 12;8BS5
I0Z2Z0 FOR V=1 TO MAXK:? BZ;WIVI :NEXT
v
I040 CLOSE B®2:7 *""SAVED "":MAH—1;:;"'" N
OTES TO '"";F$:GOTO 90006
IS0 CLOSE 1t2:7 "FILE X0 ERROR'": G
oTO 9110
4600 GOSUB 91600:0PEN B2 .4 ,0,FS:TRA
P X500
4816 INPUT 1B2,.BS
48028 INPUT BBZ;A:MWMOUVI—-A
48368 XF A>O THEN V=VU+1:G0T0 4026
4046 MAXK=V:CLOSE R®Z:7 *"'LOADED *"";Mn
H—1;"" NOTES FROM "";FS$:GOTO 960
a

25

5888 POKE 261,5:POKE CF,1:POKE 82,
a

5620 v

58038 POKE CF,1:POKE 703 ,2Z4:PRINT '
RCURRENT SONG: "";BS

S83I2 POSITION ©.1:PRINT "EE3EEEEN N

T COLOR 2Z:PLOT 18,Z:DRAWTO 18
» 19

D840 FOR HXH=2 TO 2Z STEP 2ZO0:FOR YY
=X TO A7:VU=VU+1

5868 GOSUB 292200:IF WIV>>—8 THEN MAX
TVUIPOSITION HHE,.YY:PRINT ""END":
GOTD S13X6

5862 NO=-ASCCNTOCTSCTPH+AL,TP+13) :0=X
NTICNOZ7A132 :Y=NO—INTCNO/7ALIDIHALI:N
STENTS C(YHZ+1 ,YHZ+2)

5S880 POSITION XH,YY:PRINT VUV, NS
LN« L LLEN

56098 NEHT YY:NEXKT HH

S1X0 POSITION 0 ,20:POKE 7063,4:POKE

CF ,©

S148 PRINT '"JIEXT, ErREVIOUS, [HURRE
NT, OR " :AS="""":INPUT aAasS:PP=V:
IF AS="""" THEN AS="'Z*

51568 V-O:IF aAasSCcCAaSI>=48 aAND asccas
2<{=5S7 THERN v=vAL CAS) : PP=PP—3I0

51608 IF V=8 THEN 5436

S1768 PRINT "[HHANGE, MELETE, oR K
NSERT""

51860 GOSUB S540:IF AS$S=""C"" THEN 52Z@
a

S190 GOTO S460

S22 GOSUB 2200

5SZ48 IF WUV THEN S276

D250 Y-ASCINTOCTSCTP+1,TP+132 :0=IN
TECEY 713 i:N=Y—INTCY 7133213

5260 PRINTY ""KNOTE NUMBER: '"'";v
S2708 AS="""":PRINT ""NEW LENGTH:"', :IN
PUT AS:XIF AS='"""" THEN 5140

5280 IF AS$S<>"/"" THEN D=-vAaL CAS)
52968 AS="""":PRINT "NEW NOTE:"", : INPU
T AS:IF AS="'"' THEN 5390

ST IF AS<>" /" THENNS=-AS:IF IFLENC
NS22>2 THEN 5296

SIBZ XF LENCNSI=1 THEN NSC2) =" =*

S319 FOR N=9 TO 1Z:IF NTSIN*Z+1,6 N*x
2423 <>NS THEN NEXT N:PRINT "'7?N

OTE NOT FOUND.'":GOTO S290
S3IZO AS="""": PRINT "'NEMW OCTAVE:'", :IN
PUT AS$S:IF AS="""" THEN 5390

5325 IF vaLCAaS>>2 THEN AaAS='"2"

S3II@ IF asS<>'"s/"" THEN O0=vaL caS5>

S53I28 NT=N+OH1Z:FOR TP=8 TO0O 62:XF n
SCIC(NTOCTSCTPH+AL, TP+1323 <{>NT THEN
NEXT TP

26

5IXI2Z GOSUB 23500 :REM PACK IT IXINTO MW
(47D]

54800 V-VU+1 :GO0OTO S260

S415 IF v<@ THEN V=@

S420 PRINT "'R"":GO0OTO S630

5430 XF AS='""P"" THEN V=-PP-60:GOTO S5
415

S448 XIF ASK<>""N"" THEN 5456

5442 POKE 70X ,24:PRINT *‘R"":IF PP+2
2>2>MAH THEN PP-MAX—3@

5443 IF PP<{6G THEN PP=-8

444 V-PP:GOTOD S5S836

5456 IF AS="'C"" THEN V=PP—-IZ0:GOTO S
415

5458 RETURN

5468 IF AS="'D"" THEN 55160

S48 FOR I=MaAaHK TO V STEP —1:WCI+12
THCIY :NEXT I:MAHKH-MAX+1L:GOTO S1
46

5518 FOR I=V TO0O MAX: WX =-WCI+1) : NE
HT X:MAH-MAXK—1:GOTO S146

5540 GET ##1.Aa:AS=CHRSCAY : IF AS— "
THEN 5540

59558 RETURN

5999 END

6880 ? :7 7?7 TEMPO = *"*:5
6016 7 ** NEW TEMPO = "";:INMN
PUT S

68628 IF S<1 THEN 66106

6863686 RETURN

F90080 CLOSE RB1:GRAPHICS @:END
8066 SOUND 8,0.,0,0:605UB 2200

8018 7 "K' :POSITION 3,3
80628 ? "*CHOICES:"*:? :7?
8630 7 *"‘(HONTINUE"

8640 2 *‘CIEPLAY""

86568 7 "'"[(ACK UP 1 NOTE"'":?
8060 7 ""WHXCH? "';

8676 GOSUB S5S540:REM GET ROUTINE

80686 IF AS$S=""C'* THEN GOSUB 9266:50U
ND ©.,0,0,0:RETURN

88698 IF AS=""R'* THEN GOSUB 206060:GO0T
0O 8610

8106 XIF Aas$<>''B'* THEN 8676

8116 IF V=0 THEN 8676

8126 GOSUB 9200:GO0SUB 9800:VU=V-—1

81360 SOUND ©,0,0,0:G07T0 8670

92000 FOR I=1 TO IBO:NEXT I:RETURN

2166 PRINT :PRINT AR IITEEEEETRET
L D filename for disklly

2165 PRINT ""Enter filename...';:IN
PUT FS

2110 V=1:IF FS$<>*"C:"" THEN RETURN

2156 7 ""INSERT SONG TAPE AMD PRESS
(IRE T LIR NUY

27

21680 GET 21 .Aa:7 :POKE CF,B8:RETURN

2200 TP-INTCMIVY 71808062

2Z160 D-HIIVY - TP1006: RETURN

95600 XF D>999 THEN D=999

25160 WIVI-INTCTPH*1000+D)Y : RETURN

28608 SOUND 0,ASCCPITCHSCTP+L,TP+12
2,DS5,L

2810 FOR I=1 TO S™D/7,8:NEXT I:RETUR
N

1668600 GRAPHICS 6:SOUND €,0.,06,0: P0OK
E CF,1:SETCOLOR 1,0.,0:SETCOLOR

2,3,4:SETCOLOR a4,7.6

180360 7 "'RKis+d ATARI PLAY

ER*":7? 7?2 :v=@

160640 2 Fl PLAY SONG"
1eese 7 FA REPLAY SONG"
1866 2 -+ Kl SAVE SONG*'
1e8ee7ve 2 -+ Bl roAaD SONG"
1ree8r75 7 EH EDIT SONG*'
18680 27 ** [CHANGE TEMPO"
1086986 2 ** i ouxrs-r

18166 POKE CF,8:7?
Z " IRETURN

12800 S"180:LN=S880:DS=10:L=-8:CF=752

17281686 DIM HWICLN)Y ,PITCHS(C(63I) ,NTS5C26)
PFS5C143 ,BSCZ20) ,NSC3II ,A5CII ., NTO
CTS (63>

1260620 RESTORE :BS=""NONAME"

128042 READ PITCHS ,NTS,.NTOCTS

1Z856 RETURN

130860 DAaTAa rF fevesv oy, v— > yEOvIvyvilli
EBD YL o2vvUHYu V1Y . ¢ YEYHSY{Q [V 2V
V! v¥v IRvvExi

138910 DATA C CHD DHRE F FRRIG GItn aHB

o |

13820 DATA _hd" V" 991 91193 9q o] v\ |
VTV VYT, 4V "rely] relg— v
vSe" 4 ew/)

14800 POKE 82,2:POKE CF.,.1:7 "'‘R4PLA
Y MWHEN READY SONG:"";BS$S:SETCO
LOR 1.,8,0:SETCOLOR 2,12,6

14816 7 ""SPACE BaAaR TO0 PAUSE, RETUR
N TO END SONG';

CHOOSE

140628 27 ""aAa, F, OR K = REST"
14836 7 ** . 4
-e

14640 7 | NN EEE | NS | =
A

14656 7 | NN EEE | IS | .
EmE

14966 7 "] FEEAEKEKE | KKEAES | E
AR EKES I

149070 27 | IHE N EEE | IEEEE | .
LR

28

140886 27 " 1] I] 1 1 1
1 i I
14926 2 1 EHI [3I @Al E1 @1 1 31 @i
m[|r 3y 3
141086 2 '] 1] | | 1 1
1 | I
14118 2 **] a)l Wl El] R] T Y1 ul x|
ol Pl — I
141268 2 **
141360 7 ** i 2
14140 2 *° ! RN | T Eaas !
..
14150 2 ** 1 N | EaEaasm |
L N
14160 7 ** I EFEEEEE | KEEmEem |
L L N
14170 2 ** | NN | S |
.. I
141806 7 *°] 1 1 1 1 1 | |
| i I
141960 2 ** I E1 ©¥I 21 E 81 @31 &E1
m =31 &3
14200 7 ** | |] 1 |] |
1 | I
1421606 72 ** I Z} ®}] c|l v] Bl N] Ml
» b R s

"t ; :RETURN

29

MASTER

A Simple Guessing Game

1NN -SR] ON OFF
W 2@ 2E ?[E L2] 4
28 >0 >0 2 [E i b4
»id > >E1 >[E i 2
28 >l > >[E 2 i
251 > 201 2[E a2 4
>4 >E >0 >

MASTER is a simple guessing game for one or two players. The
commercial version of this game involves colored pegs. One player
constructs a pattern of four colored pegs behind a screen and it is up to
the other player to guess the concealed pattern. The first player pro-
vides the second player with clues, telling him how many pegs have
been guessed in the right position and how many pegs are the right col-
or but in the wrong position. The second player continues to guess un-
til he has discovered the colors and correct positions of all four pegs.
The number of guesses is the score, and the player with the lower score
wins. The Atari uses letters instead of pegs, but the rules are the same.
In fact, the MASTER program offers you a choice of three different
game versions, and you can modify the program to play even
more games.

31

Operating Instructions for MASTER

1.

2.

32

LOAD the program ‘MASTER’ and RUN it.

In response to ‘1 OR 2 PLAYERS?' press ‘1’.

. Select EASY game by pressing the ‘1’ key again.

. Read the rules of the game from the screen. You are trying to

discover a secret pattern of four letters. In this EASY version of the
game, each of the letters A, B, C, and D will appear exactly once in
the pattern.

. Type in a four-letter pattern using the letters A, B, C, and D. Your

guess may use repeated letters, but the secret pattern in this version
of the game does not.

. Until you type the fourth letter, you may start your guess over again

by pressing the 'DELETE’ key.

. After you press the fourth letter, the computer will respond with

two numbers. The first number, in the ‘ON’ column, is the number
of letters you guessed in the correct position. The second number,
in the ‘OFF’ column, is the number of other letters you guessed cor-
rectly, but in the wrong position.

. Use this information to determine the secret pattern. Repeat the

steps from number 5 above until you have correctly guessed the
secret pattern.

. When you have guessed the pattern correctly, the Atari will con-

gratulate you and tell you how many guesses you made.

Running the Program

Load the program 'MASTER’ and RUN it. The screen will clear and
the message ‘1 OR 2 PLAYERS?' will be displayed at the top. For now,
select '1’. (The two-player game is described later.) Next you are
offered a menu of game difficulty levels. Press ‘'1’, '2', or ‘3’ to select a
game. (If you want, you can change your choice for the next game.)
The rules appropriate to the game you have selected are then
displayed. The rules are printed here for reference.

In the EASY game, only A, B, C, and D are allowed and no letter
may be repeated in the secret pattern. Your guesses may include
repeated letters, though.

In the MID game, only A, B, C, and D are allowed, but these let-
ters may be repeated in the pattern.

In the HARD game, A, B, C, D, E, and F are allowed, and letters
may be repeated.

Press any key (except BREAK or RESET) to continue. The computer
now generates, at random, a secret pattern. The screen will clear and
appear as below:

SELECT LETTER ON OFF
>0

Only '?’, 'DELETE’, and the letters allowed in the game will be ac-
cepted from the keyboard. (The BREAK key does work, though!) Accept-
able characters will be printed on the screen; unacceptable characters
will have no effect. As soon as you enter the fourth letter in your guess
pattern, the program will process it. Until you enter that fourth
character, though, you may change your mind. Press '‘DELETE’ to
restart your guess. If at any time you want to give up, the ‘?’ key will
print the secret pattern and let you start over with a new game
and pattern.

When you enter the fourth item in your guess pattern, the com-
puter matches it against the secret pattern. In the ‘ON’ column is the
number of letters guessed correctly and in the right position; in the
‘OFF' column is the number guessed right but in the wrong position.
Understanding the matching process will help you learn to play the
game better. For instance, if you guessed ‘D C C A’ and the secret pat-
tern is ‘D B A C’, then the computer will return a ‘1’ in the ‘ON’ col-
umn and a ‘2’ in the '‘OFF’ column.

33

Figure 1

Guess: D CC A

Secret: D B ‘k<C

Result: ON OFF
1 2

The ‘D’ is in the correct position (indicated by the shading), but the
‘C’ and the ‘A’ (matches indicated with arrows), while they do exist in
the secret pattern, were guessed in the wrong position. Only one of the
C’s in the guess is counted since there is only one C in the secret pat-
tern. If the secret pattern were ‘C B A C' instead, then the program
would return ‘0’ in the ‘ON’ column and ‘3’ in the '‘OFF’ column. Both
C’s in the guess are now counted.

Figure 2

Guess: D N
Secret: C‘)g: x

Result: ON Off

When you have guessed the secret pattern correctly, you will be
congratulated and told the number of guesses you took. Then the pro-
gram is restarted with selection of the game level.

As you play more and more games, you will begin to develop
systems to help you guess the pattern as quickly as possible. One
technique that is sometimes useful is substituting one character at
a time.

Two — person Game

The two-person option allows a second player to input a secret pat-
tern instead of having the computer provide one. The player who will
be guessing should look away from the screen while the other player
inputs a pattern. The program tests for the letters allowed, but it does

34

not check for repetitions. Be sure to follow the repetition rule in effect.
To go back to the one-person version press BREAK, type 'RUN’, and
press RETURN. This time answer ‘1’ for the number of players.

Programming Techniques in MASTER

Random Numbers

In the one-player version of MASTER, the program presents a dif-
ferent secret pattern of letters each time the game is played. How is
this done? The secret is random numbers. BASIC is able to generate
random numbers using the RND function.

A random number is one that is obtained without any predictability
or repeatability. Rolling a die, flipping a coin, and spinning a roulette
wheel are all means of obtaining random numbers.

Many programming applications require a source of random
numbers. For statistics programs they can provide sample data to test a
model, and in physics they can be used for applications such as
demonstrating the behavior of gas particles.

Many game programs require random numbers. These may be used
in the form of playing cards, dice, or locations of hidden treasures. In
the one-player version of MASTER, random numbers are used to
generate the secret pattern of letters.

The BASIC function RND generates pseudo-random numbers in
the range between 0 and 1. Pseudo-random means each succeeding
number depends to some extent on the previous one. As a result, after
many thousands of numbers, the sequence will start over. This makes
statistics involving very large samples sometimes difficult, but
it usually causes no problem in games, which use considerably
fewer numbers.

Once we have a sequence of random numbers, how do we turn this
sequence into the letter patterns for MASTER? Line 1020 does it all in
one BASIC expression: RN=INT(RND(0J*N+ 1), where N is the
number of letters allowed in the game. See figure 3 for a graphic il-
lustration of how four random numbers are converted into the four let-
ters of a secret MASTER pattern. RND(0) produces numbers in the
range of 0 to 1, but this does not include 1 itself. First we multiply the
number by the number of letters allowed in the game. If we allow four
letters (N=4), then we multiply the random numbers by 4 to get
numbers in the range 0 to 3.999.... Next we add 1 to make it 1 to
4.999.... Then we use the BASIC INT function to remove whatever is
to the right of the decimal point, leaving us with 1, 2, 3, or 4. These
numbers are never actually converted to letters. Instead, the letters the
player types for a guess are converted to numbers.

35

Figure 3

Element #

BASIC

Function 1 2 3 4
RND(1) 555877482 .689094948 .828839479 .0619696133
*4 2.22350993 2.75637979 3.31535792 .247878453
1 3.22350993 3.75637979 4.31535792 1.24787845
INT() 3 3 4 1
LETTER C C D A

The same technique can be used to get random numbers over any
range. For dice, multiply by 6, add 1, and take the integer. For playing
cards, multiply by 52, take the integer, and add 1. (Converting 1 to 52
into suits and ranks is another problem!)

You don’t have to restrict yourself to a range of numbers or letters.
Try the following short program. (You'll have to type NEW and press
RETURN before you type it in. To use MASTER again, reLOAD it.)

10 DIM A$(24)

20 A$ = “APPLE PEAR BANANAGRAPE "
30 X = INT(4*RND(0))*6 + 1

40 PRINT A$(X,X + 5)

50 GOTO 30

A random sequence of fruits! Perhaps this is the beginning of a slot-
machine program? The string defined in line 20 could be combinations
of graphic characters and cursor controls that actually draw pictures
(such as dice or playing cards) on the screen. See the '‘Atari Clock”
chapter to learn about programming cursor controls into strings and
positioning images on the screen.

Flags and Logic

One of the most powerful features of a computer is its ability to
make decisions. MASTER uses the Atari’s decision-making ability
throughout its program.

Every decision boils down to deciding whether an expression is true
or false. The BASIC IF...THEN construction makes this decision. If the
expression after the IF is true, then whatever appears on the line after
the THEN is executed. If the expression is false, then the rest of the
line is skipped and execution continues with the next line.

36

Figure 4

Secret Pattern

KRR
=== = HEE= =H=

X>HE>>>>E>>
noononoofgooon

Guess Pattern

[O R Sl S Ot S

ATLILIRLE

noofdoofpoodo
nofldookoaofpoo
\>>>H>>>>>>

PM OM

~
(=

0
0
0
0

o

0
0
0
0

SELECT LETTER

>3 >@E
>3 >@E
>m >@E
>3 >@E
>3 >@E&E
>@ >@E
>E#3 >@E
>@ >@E
>3 >@&E
>3 >@E
>E >@E

>R
>H
>=
>=

GIVE LIP 7]
>3 >3 >@E >@A

>@=

=
4
=

SNNEBENNNNWN

PATTERN

HNORNOOOOOSO

ANY KEY MHWHEN READY

FF

37

Atari BASIC doesn’t actually handle the words true and false. In-
stead, it assigns 1 to represent true and O to represent false. When
evaluating expressions, any non-zero result is considered true. To see
this in action try the following example:

10 PRINT “A="":INPUT A

20 PRINT “B="",:/INPUT B

30 IF A=B THEN PRINT “TRUE":GOTO 50
40 PRINT "FALSE"

50 PRINT A=B

60 GOTO 10

Run this program. Type in a value for A and press RETURN, type in
a value for B and press RETURN. If the number you entered for A
equals the number you typed for B, then 'TRUE’ will be printed fol-
lowed by a 1; Otherwise '‘FALSE' is printed followed by a 0. The
number 1 or 0 is the value BASIC assigned to the expression 'A=B'.
Line 170 in MASTER checks to see whether or not the number of cor-
rect position matches (PM) is equal to the number of letters (NN) in
the pattern. If so, the player has correctly guessed the pattern and the
congratulation routine (6000) is executed by returning to line 100
before starting a new game.

Now enter the following program example that demonstrates the
use of a flag.

10 INPUT A

20 IF A THEN PRINT “TRUE":GOTO 40
30 PRINT “FALSE"”

40 GOTO 10

Try a few numbers. Every number except 0 will result in 'TRUE’
being printed. Entering 0 will produce a ‘FALSE’. The ‘A’ in line 20 is
evaluated just like any other expression. If it is non-zero then it is con-
sidered true.

A flag is a convenient device in a program. It can be either set (true
or 1) or clear (false or 0). MASTER uses several variables as flags: RP,
RQ, and the arrays PF() and PG(). RP is set or cleared in the game-
selection routine (in line 7100, 7200, or 7300), depending on the game
chosen. In line 1030, if RP is set (1) then lines 1040-1080, which pre-
vent duplicate letters in the pattern, are skipped. RQ stays cleared
unless a duplicate letter is found. If the flag is set, then the program
returns to line 1020 to determine a new number. Each element of the
secret pattern has an element in the flag array PF(), and each element

in the guessed pattern has an element in the flag array PG(). See the
discussion under '‘Processing a Guess'’ for details of how these flags
are used.

Another interesting use of a flag is in the display of the congratula-
tion message (6050-6140). A FOR...NEXT loop is used to alternate the
variable I between O and 1. The flag I is tested in lines 6060 and 6110. If
the flag is set, the character color is changed to red and then back to
blue. If the flag is clear, no color changes are made. This produces the
alternating color effect.

The program has to make decisions in a number of other places,
evaluating an expression to determine what to do next. The IF... THEN
statement is used most commonly for decision making, but
ON...GOSUB and ON...GOTO are also used. ON...GOSUB is used in
line 110 to decide whether to generate a random pattern in a 1-player
game or to let a player input a pattern.

Processing a Guess

As explained earlier, the match count is determined by first check-
ing for exact position matches and then going through to check for out-
of-position matches. No element in either the secret or guess pattern
may be used more than once in a match.

To avoid reusing pattern elements in matches, we need to program
a way to cross off pattern elements that have been used in a match. In
addition to the two arrays of the elements themselves, two correspond-
ing flag arrays are used. The lines of the program involved in checking
for matches are reproduced below.

3000 REM CLEAR FLAGS

3010 FOR I =1 TO NN:PF(l) = 0:PG(l) = 0:NEXT |

3020 REM CHECK FOR POSITION MATCHES

3030 FOR I=1TO NN

3040 IF R(l)=GU(l) THEN PF(l)=1:PG(l)= 1:PM = PM1
3050 NEXT |

3100 REM CHECK FOR OTHER MATCHES

3110 FOR I=1TO NN

3120 IF PF(l) THEN 3170

3130 FOR J=1TO NN

3140 IF PG(J) THEN 3160

3150 IF R(l)=GU(J) THEN OM = OM1:PF(l)= 1:PG(J) = 1:J = NN
3160 NEXT J

3170 NEXT I:RETURN

39

At the beginning of the matching process, all the flags are cleared or
set to O (line 3010). As each match is detected, the flags corresponding
to the matched elements are set (in lines 3040 and 3150). The flags are
checked in lines 3120 and 3140. If the flag is set, then the matching
process is skipped and the next element is checked. In addition, when
a match is found in line 3150, the higher numbered elements in the
guess pattern are skipped by setting the loop index J to its maximum
value, NN. The NEXT | statement in line 3160 sees | equal to its max-
imum value and is fooled into thinking it’'s through with the specified
repetitions. Control passes to the NEXT I statement in line 3170.

This process is graphically demonstrated in figure 4. I is the index
into the secret pattern, while J is the index into the guess pattern. The
boxes indicate the two elements currently being compared, PM is the
number of position matches, and OM is the number of out-of-position
matches. A shaded box indicates a match, and a diagonal line through
an element indicates that it has been used in a match already. First, the
position matches are checked. The result is 1, with the D’s in the first
position crossed off. In the program, the flags PF(1) and PG(1) are set to 1.

Next, the out-of-position matches are checked. Since the first
elements in each pattern have already been used, the comparison
begins with the second elements. No match is found for the B, so the
search continues with the third element of the secret pattern and the
second element of the guess pattern. When the match is found with
the fourth guess element, these two are crossed off and the out-of-
position match counter OM is incremented. A match is found im-
mediately for the fourth secret pattern element, so the remaining two
elements are skipped and the counter incremented again. One position
match and two out-of-position matches are reported to the player.

If you are still confused about how this works, try a different pat-
tern and construct a table similar to figure 4. You might also try run-
ning through the program lines with an example.

Scrolling the Graphics Screen

Atari BASIC handles nine different graphics modes, three of which
are text modes. Mode 0 is the standard mode that you see when you
first turn on the computer. Modes 1 and 2 are expanded text modes;
the characters are larger and there are more colors available. MASTER
uses graphics mode 1 to make use of the extra colors. Normally, modes
1-9 leave a four-line text window at the bottom of the screen. A full
screen can be obtained by adding 16 to the mode number. Therefore,
the statement GRAPHICS 17 is used in MASTER to obtain a full-
screen mode 1.

40

Displaying text in graphics mode 1 has one drawback — scrolling is
not handled automatically if a PRINT statement is accidentally made
beyond the screen limits. Instead, the program will halt with a ‘Cursor
Out of Range’ error. One way to get around this problem is to clear the
screen when the cursor reaches the bottom of the screen and to start
over at the top. But in MASTER we want to keep the previous guesses
on the screen because they are important to the discovery of the secret
pattern. Therefore, a machine-language routine was added to scroll all
of the screen but the heading ‘SELECT LETTER ON OFF'.

DEC
104
104
133
104
138
104
133
104
133
104
133
104
133
160
177
145
230
208
230
230
208
230
198
165
201
208
198
165
5
208
96

204

203

206

205

208

207

2083

205

203

204
205

206
207
207
255

208
207
208
224

loop

to

count

check

New Monics
PLA

PLA

STA 204
PLA

STA 203
PLA

STA 206
PLA

STA 205
PLA

STA 208
PLA

STA 207
LDY #0
LDA (203),Y
STA (205),Y
INC 203
BNE to
INC 204
INC 205
BNE count
INC 206
DEC 207
LDA 207
CMP 255
BNE check
DEC 208
LDA 207
ORA 208
BNE loop
RTS

Comments

;# of arguments
;source

:destination

:byte count

:zero index

:increment source

:increment destination

.decrement byte count

41

The simple block-move routine above is called from within the pro-
gram by a USR function. The format for this function is X = USR
(routine address, argument list). X is a dummy variable in our case; its
value is never important, but it must be included in the function call
all the same. Normally, a value will be calculated within the USR call,
and it is returned in X. The USR function requires the starting address
of the routine. This is supplied in line 510 by the ADR function, which
returns the starting address of SC$. This is a string composed of
characters whose numeric codes correspond to the machine code of the
routine. Following the starting address of the routine is a list of three
arguments that are passed to the routine. These specify the starting ad-
dress of the block of memory to move, the address to which it is to be
moved, and the number of bytes to move. In MASTER, we use
SCR +60 as the first argument. SCR is the beginning of the screen
memory; adding 60 starts the scroll at the third line of the screen.
SCR +40 designates the address to move to or the second line of the
screen. Finally, we want to move 440 bytes of screen memory, which
corresponds to 22 screen lines.

The scroll routine is performed as needed by using a TRAP state-
ment. All errors that occur within a program are reported by the
system unless a TRAP has been set up. The line number after this
statement indicates to the system where to go when an error is en-
countered. The first line of the initialization routine (line 8010) points
a TRAP at line 500, designating it as an error-handling routine. Line 500
checks for errors other than ‘Cursor Out of Range’ errors; these are
taken care of by lines 540-550, which print a simple error message and
end the program. Line 510 performs a one-line scroll, and line 520
resets the TRAP to line 500 so that future cursor errors will also lead to
a scroll. Then a return is made to the error-causing line, where the
PRINT statement is this time successfully performed. Notice that in
the areas of the program where scrolling might be needed (as in lines
9000-9100), PRINT statements are limited to one per line. If there are
two or more per line, an infinite loop is created by the TRAP and the
GOTO at the end of the TRAP routine, performing the first of the
multiple PRINTSs repeatedly.

Customizing Your MASTER Game

Adding an EXPERT Level

Because of the way MASTER is written it is easy to add your own
version to the game. As an example of how to do this, let’s add an EX-
PERT game to the three choices we have already. Add or substitute the
following lines to the program supplied.

42

7045 PRINT #6:PRINT #6;,"" 4 EXPERT"

7060 T=T—48:FT <1 OR T >4 THEN 7050

7070 ON T GOTO 7100,7200,7300,7600

7600 N =8:RP=1:G(1)=8:G(2) = 12:G(3) = 16:G(4) = 20:
G(5)=25

7610 PRINT #6;"° EXPERT GAME:"

7620 GOSUB 7400

7630 PRINT #6;' MORE THAN ONCE"

7640 RETURN

This version of the game allows the first eight letters of the
alphabet. The operation of the game itself is controlled by the values of
N and RP in line 7600. The rest of the program changes involve adding
the game to the menu and displaying the rules. The value of N deter-
mines the number of letters allowed in the game. RP is a flag, which, if
set (1), allows repeats of letters in the pattern (see the ''Flags’’ section
above). The array G() holds the cut-off numbers of guesses for each
congratulation message. Adjust these values and program the
appropriate messages as in the example above and you will be able to
add your own game version.

Number of Elements in Pattern

The number of elements is four for all versions of the game described
so far. This number can be changed to practically any number, the only
limitations being the width of the display and the amount of memory
in your Atari. The number of elements in the pattern is determined by
the value of NN in line 8140 of the initialization routine. Change line
8140 to read:

8140 K=764:NN =3:G(0) =1

Now run the program. Notice that everything works as before, ex-
cept only three letters are generated in the secret pattern and only
three are expected in each guess.

Up to six elements can be accommodated without disturbing the
rest of the display. However, with more than four elements allowed
per guess, only the MID and the HARD games may be chosen because
they contain more than four elements in their secret patterns. One
solution for longer patterns is to print the clues on the next line:

180 POSITION 14,PEEK(CR + 1):PRINT #6;PM;"* "";OM

43

MASTER Variable Usage

Constants

CR
K
NN
SCR
CN$
FD$
MS$
OB$
SC$

Variables
GN

Arrays
G()
GU()
PE()
PG()
R()

Address of current row position

Address containing code of last key pressed

Number of elements in pattern

Address of beginning of screen memory

‘ANY KEY WHEN READY' message at bottom of screen
‘! pointer to GET next guess element

Congratulation messages

Colored blocks for first six letters

Machine-language scroll routine

Guess number

Loop variable

Loop variable

Index into congratulation-message string
Number of letters allowed

Number of players

Out-of-position match counter

Position match counter

Random number, temporary

Flag (=1: repeats allowed)

Flag (=1: indicates number already used in pattern)
Keyboard character code

Dummy variable for USR call

Cut-off numbers of guesses for congratulation messages
Guess pattern

Flags for crossing off secret elements

Flags for crossing off guess elements

Secret pattern

Program Description

Initialization (20): Subroutine 8000 sets up a number of constants,
and subroutine 7500 gets the number of players.

Program mainline (100-190): Subroutine 7000 gets the skill level
for the game and displays the instructions for the game. Subroutine
5000 waits for a key to be pressed before continuing with the
main program.

44

Line 110 uses the ON...GOSUB structure to determine whether to
call subroutine 1000, which generates a random pattern, or subroutine
4000, which allows one player to input a pattern. NP can have only
two values, 1 or 2. On 1, subroutine 1000 is called; on 2, subroutine
4000 is called.

GN is used to count the number of guesses. Line 120 calls
subroutine 2000, which prints the header on the screen and receives
the first guess. The second and subsequent guesses return to line 130,
where the same subroutine is called at 2020 to avoid having the header
reprinted for each guess.

In line 140, T contains the ASCII value of the last key the player
pressed. A value of 63 corresponds to a ‘?’, which indicates that the
player has given up. A call is made to subroutine 9000, which prints
out the secret pattern. GOTO 100 starts a new game.

Next the guess must be processed. Before each call to the process-
ing routines, the match counters PM and OM are zeroed. Subroutine
3000 processes the guess, first checking for position matches and then
for out-of-position matches. If PM (the number of position matches)
equals NN (the number of elements in the pattern), then the player has
guessed the pattern. Subroutine 6000 is the congratulations routine.

Line 180 prints out the results of the matching, with the position
matches under the heading ‘ON’ and the out-of-position matches
under the heading ‘OFF’. The POSITION statement specifies the col-
umn and row at which to begin PRINTing; in this case the column is
the 14th and the row is the current row, whatever that may be. CR is
the memory location containing the current row position.

The guess counter GN is incremented and the program loops back
to 130 for another guess.

Scroll Screen (500-510): This routine is called through an error
TRAP. Line 500 checks ERR, the error-number location, to see
whether or not the error that occurred was a '‘Cursor Out of Range’
error, number 141. If not, lines 540-550 print a simple error message
and STOP the program. A call is made in line 510 to a machine-
language USR subroutine that performs the scroll. SC$ contains the
code for the routine, and ADR(SC$) supplies the USR function with its
starting address. SCR is the beginning of screen memory; a block of
this is moved to produce the scroll. SCR+ 60 designates the third
screen line, which is where the scroll will begin. SCR + 40 is the sec-
ond line, to where the scroll is moving. Line 520 sets the cursor at the
bottom row of the screen by POKEing 23 into CR, the current row.
Then the TRAP is restored to line 500 so that the scroll routine is
enabled again. Finally, a return is made to the program line that caused

45

the screen error, and the PRINT statement that failed the first time is
performed successfully. Memory locations 186 and 187 hold the
number of the line in which the last error occurred; they are used in
line 530 to return to the appropriate line in the program.

Generate Random Numbers (1000-1090): This routine is called at
the beginning of each one-player game to generate the secret pattern.
In the supplied version of the game NN is always 4, so four numbers
are generated. Line 1020 returns in RN an integer between 1 and the
number of letters allowed in the game (N). If RP is non-zero, then
repeats are allowed in the pattern. Lines 1040-1080 are skipped and RN
is copied into R(I), the current element of the pattern. If repeats are not
allowed (RP=0), then each RN must be checked against the previous
elements in the pattern R(). In line 1040, RQ is set to 0 to indicate that
no element has been found so far to match RN. If I=1, then there
aren’t any numbers in the pattern and we can skip to 1090 and accept
this RN. The FOR...NEXT loop on J (lines 1050-1070) goes from 1 to
the previous element (I-1). If RN is found to match an existing ele-
ment (RN =R(J)), then RQ is set to 1 to indicate a match has been
found and | is set to I-1 to terminate the FOR...NEXT loop. If no
match is found, then the loop continues through all the previously
assigned elements. RQ is tested in line 1080: if it is non-zero, then
another RN must be calculated (return to 1020); if it is still zero, then
we can accept the RN and install it in the current element R(I) of the
pattern. The outside FOR...NEXT loop (1010 to 1090) continues until
all of the elements required in the pattern have been calculated.

Process Guess (2000-2110): As discussed above under the program
mainline, this routine is usually called at 2020, but the first time the
call is made to 2000 to print the heading ‘SELECT LETTER ON OFF'.

The routine consists of a big FOR...NEXT loop, in which I starts
with a value of 1 and ends with the value NN, the number of elements
in the pattern. Within this loop, characters from the keyboard are
accepted or rejected. The GET function waits for a single character to
be input from the keyboard. As soon as a key is pressed, the program
continues at line 2060.

Now we test for two special characters, 'DELETE’ and ‘?'. If the
'DELETE’ key was pressed, T will have the value 126 (the numeric
code for that key) and control will pass to line 2100 to erase the current
guess. First, the cursor is POSITIONed at the beginning of the current
row. Then a string of 19 spaces is printed to erase any characters in that
row. The combination of printing only 19 spaces (rather than the possi-
ble 20 in the row) and including a semicolon at the end of the PRINT
statement prevents the cursor from advancing a row. Thus, in line

46

2110, the value of CR will remain unchanged and the cursor will be
repositioned at the beginning of the same row, ready for another guess.
Then the loop is terminated by setting I to NN and executing a NEXT
statement. The GOTO 2030 starts the loop over again. If we had failed
to terminate the loop (by omitting the I =NN and NEXT statements)
the user would be able to crash the program by repeatedly hitting the
'DELETE’ key. BASIC keeps track of each FOR...NEXT loop in an area
of memory called the stack. If we don’t terminate a loop, that informa-
tion continues to occupy space on the stack. Repeated calls to 2030
with the ‘DELETE’ key will continue to build up new FOR...NEXT in-
formation on the stack until there is no room left. At this point the
program crashes with a ‘Memory Insufficient’ error. The " character
(code 63) is similar. The FOR...NEXT loop is terminated and a
RETURN is made to the program mainline.

Other characters are converted in line 2080 from their numeric
codes into numbers beginning with 1. The code for the letter A is 65, so
subtracting 64 makes the conversion. If T is less than 1 or greater than
the number of letters allowed in the pattern, then the program
branches to 2050 to GET another character. If the character is ac-
cepted, then the appropriate colored letter OB$(T, T) is printed and the
number T is stored in the current element of the guess pattern GU(I).
RETURN takes the flow back to the mainline.

Matching Routines (3000-3170): These routines are described in
more detail in the main text under the section '‘Processing a Guess."’

Line 3010 clears the flag arrays PG() and PF() by setting them to 0.
Lines 3030-3050 advance, position by position, through the secret pat-
tern R() and guess pattern GU() arrays checking for matches. If a
match is found, the position match counter PM is incremented and the
corresponding flags are set to 1.

Lines 3110-3170 check all the other possibilities for matches. The
flags are used to cross off elements as they are matched. Some
economy is achieved by skipping over crossed-off elements (lines 3120
and 3140) and by terminating the inside loop as soon as a match is
found (] = NN at the end of line 3150).

Input Pattern with Two Players (4000-4130): After the instructions
are displayed, this routine accepts letters one-by-one until the pattern
is filled. It is similar to the guess-processing routine (2000-2110). In-
stead of filling the guess array, the secret pattern array R() is filled. See
the description above for details.

ANY KEY WHEN READY (5000-5010): The string CN$ is a con-
stant defined in the initialization routine. The result is to print the
message 'ANY KEY WHEN READY' at the bottom of the screen. The
GET statement waits for a key before the RETURN is made.

47

Congratulation Routine (6000-6140): Lines 6010-6030 use the
number of guesses GN to determine the congratulation message. The
array G() is set up for each version of the game in line 7100, 7200, or
7300. The messages in MS$ are set up during initialization. First, MS
is cleared before any value is found for it. By comparing GN to each
cutoff value G() with the < = (less than or equal to) operation, the
offset MS for the correct substring of MS$ is determined. If MS is still 0
when the loop is finished, then GN was too big for even the last cutoff
value; subsequently MS is set to 91, the offset for the ‘'TRY, TRY,TRY
AGAIN!" message.

Line 6040 clears the graphics screen and clears the keyboard status
location K by POKEing 255 into it. Lines 6050-6140 display the con-
gratulation screen, alternating the character color of the message and
the number of guesses between red and blue. The use of I as a flag is
discussed above under '‘Flags.”” If 1=1, then the character color is
changed. I's value alternates between 0 and 1.

Line 6100 is a FOR...NEXT loop that does nothing between the
FOR and the NEXT! By adjusting the number after the TO, you can
achieve a delay in the program of nearly any time. Here it controls the
rate of the flashing.

Lines 6120-6130 check to see if a key has been pressed on the
keyboard. If the PEEK of location K equals 255, then no key was
pressed and the congratulations display loop continues. Any number
other than 255 in K means that a key has been pressed; line 6130 takes
care of that case. First, location K is reset by POKEing a 255 into it,
then the character color is returned to blue as it was originally. The
FOR...NEXT loop is terminated by setting I=1 and performing a
NEXT. Finally, a RETURN is made to the program mainline.

Select Game and Display Instructions (7000-7450): Lines
7010-7040 display a menu listing the different games available. Line
7050 awaits a key, which is converted to a number and tested against
the range of the menu in line 7060. If the key is out of range, then the
program branches back to 7050 for another key. The ON...GOTO in-
struction in line 7070 calls 7100 if T is 1, 7200 if T is 2, or 7300 if T
is 3.

Each of these set-up-and-display routines establishes N (the
number of letters allowed in the game), RP (the flag determining
whether or not repeats are allowed), and G() (the array of guess
number cutoff values for the congratulation messages). Then the name
of the game is displayed. Next subroutine 7400, which displays parts of
the instructions common to all games, is called. Finally, the rule regar-
ding repeats is printed in the proper place.

48

Subroutine 7400 first prints the colored letters corresponding to the
number of letters allowed (N). If the number allowed is four, the first
four letters are printed. Then the portion of the directions common to
all versions of the game is printed.

Get Number of Players (7500-7520): This subroutine is called once
when the program is first run. After asking for the number of players, it
GETs a key from the keyboard. Only 1 or 2 is accepted and the value is
returned in NP.

Initialization (8000-8220): A TRAP is set up in line 8010 to send
control to the scroll routine when a screen error occurs. Lines
8020-8030 dimension the strings and arrays that will be used in the
program. Lines 8040-8060 set up graphics mode 1 without a text win-
dow (mode 17) and define the various colors to be used. Colors 0
through 4 are defined as blue, black, green, red, and white, respective-
ly. Line 8070 opens the keyboard (specified by 'K’’) as input device #1;
the GET #1 statements within the program receive single keystrokes
as input through device #1. Lines 8110-8120 set up the strings used in
the program. The colored letters that are displayed for the guesses are
set up in OB$. Lines 8130-8140 set up other constants and lines
8150-8200 define the congratulation messages. Line 8210 defines SC$,
which contains the code for the machine-language scroll routine.

Print Pattern on Give-up (9000-9050): The secret pattern is printed
out in the appropriate colored letters using the secret pattern array R().

Listing 1: Master

1 REM MASTER FOR THE ATaAaRI

28 GO5LES 868686 :G0SUB 75080

168 GOoSUB 7808 :G05UB S000

118 ON NP GOSUB 1000 ,4000

120 GN=1L:GO0OS5UB 2000 :G0T7T0 140

13X GOoSUB ZO2zZe

148 IF T=63F THEN GOSUB 92660060:G0T0O0 1
ae

15eé PM-B:0M—-B6

168 GOSUB 3I086ea

178 IF PM=-NN THEN GOSUB 60800:G0TO0O
106

1860 POSITION 14 ,PEEKCCR? :PRINT 116 ;
PM; (L] ";OM

1908 GN=GNH+1:GOTO 13I8

S008 IF PEEKCERR)Y <2141 THEN 540

516 H-USRC(ADRC(SCS)Y ., SCR+68, SCR+4@., 4
4602

S280 POKE CR,.ZI:TRaP 5006

530 GOTO PEEKICERL) *PEEKC(ERLT1IMZ56

49

S48 PRINT ""ERROR "";PEEKCERR) ;"™ AT
LINE "";PEEKCERL) +PEEK C(ERL+1)™2
S6

5560 CLOSE 331 :STOP

180880 REM GENERATE RANDOM NUMBERS

1616 FOR X=1 TO NN

1820 RN=INTCRND C(O) ¥*N+12

1930 XIF RP THEN 1890

18040 ROQ=9:XF X=1 THEN 1696

1650 FOR J=1 TO I—1

1868 IF RN=RCJY THEN RQ=1:J=X-1

1870 NEXT J

1888 XF RQ THEN 10206

18090 RCII=RN:NEHT IT:RETURN

2000 REM PRINT HEADER

Z0168 PRINT $26;""KSELECT LETTER ON O
FF*

Z020® REM PROCESS GUESS

ZO3IO0 FOR X=1 TO NN

ZB848 PRINT 6 FDS5;

2050 GET 881, T

Z060 IF T=126 THEN 2Z106

ZO@78 IF T=63 THEN X=-NN:NEXKT I:RETU
RN

2080 T=T—-64:IF T<1 OR T>N THEN 205
a

Z090 PRINTINT 16 ;0BSCT,T); :GUCIXI=T:
NEXT X:RETURNMN

2180 POSITION 8,PEEKI(CRY :PRINT 316;
- LB

»

2118 POSITION 8,PEEKC(CRY :XI=NN:NEXT
XT:GOTO ZO3a

T80 REM CLEAR FLAGS

TOLO FOR XI—=1 TO NN:PFC(I2?=B:PGC(I) =9
INEXT X

0208 REM CHECK FOR POSITION MATCHE
5

0TI FOR I=1 TO NN

TB40 IF RCIDI=-GUCII THEN PF(I>=1:PG
CI2?=1:PM=PM+1

IS0 NEXT X

186 REM CHECK FOR OTHER MATCHES

118 FOR X=1 TO NN

120 IF PFCIY) THEN 3176

T13ZIOG FOR J=1 TO NN

140 IF PGCJY THEN I1680

T1SO IF RCCI2=-GUCJIJ? THEMN OM=—OMt+1:PF
CIXI?=1:PGCJI=1:0=MNMN

I160 NEXT J

L1790 NEXT X:RETURN

48008 REM INPUT PATTERN

4810 PRINT 86 "KITEENYTEE] ENTERS™

4820 PRINT 116 :"" PATTERMN MWHILE®"

40368 PRINT 816 ;"'ENTOaE IR

48048 PRINT 16" LOOKS AMWAY"

50

49560 PRINT N6:PRINT #H6;" "ENTER PATT
ERN: oe

4060 FOR I=1 TO NN

4670 PRINT B6;FDS;

40680 GET 1., T

4090 IF T=126 THEN 4120

4180 T=T-64:IF T<1 OR T>N THEN 468
3]

4118 PRINT M6;0BSCT,T); :RCII=T:NEHX
T X:RETURN

4120 POSITION O,7:PRINT 326 ;""

L
41360 POSITION O,7:I=NN:NEHT X:GOTO
4960

5000 POSITION ©O,22:PRINT #6;CNS

5016 GET 11, T:RETURNMN

60060 REM CONGRATULATIONS

6010 MS=O:FOR I=90 TO S

6020 IF GN<=GCI) THEN MS=IX*18+1:X=

6838 NEXKT I:XF MS=68 THEN MS=91

6640 PRINT 16 ;:"'%'"; : POKE K, 255

6685606 FOR I=—-@ TO0 1

6860 IF X THEN SETCOLOR 0,4, 8

6870 POSITION 8,0:PRINT 6 ;M55 ICMS,
MS+172

68080 PRINT H6: PRINTYT #16;""YOU TOOK *°
sGN:"" TRIES:!"

60208 POSITION €,2Z:PRINT 16 ;CNS

61686 FOR J=-1 T0 S0 :NEHXKT J

6116 IF X THEN SETCOLOR @.,92.8

6120 IF PEEKIIK) =255 THEN 61406

613680 POKE K,2Z5S5:SETCOLOR @8,92,.8:I=1
INEHXHT IT:RETURN

6148 NEHXKT X:GOTO 66056

FOOO9 REM PROCESS INITIAL CONDITION
S

78160 PRINT ##6;:"'"m SELECT GAME:*

7028 PRINT RG:PRINT 226 ;" 1 EASY"
703XI8 PRINT B6: PRINT 16 ;" 2 MID"
7048 PRINT 16 : PRINT 216 ;" I HARD""

78560 GET 21,7

7660 T=T—48:IF T<1 OR T>3XZ THEN 765
a

Y876 ON T GOTO 71006 .,.7200,7300

7888 ON T GOTO 7196 .,.7200,736860

71080 N4 :RP-SHO:GCA=F 1G22 =S5S:GCID>)» =7
t1GC4) =10 :GCS52Y =15

7118 PRINT 16 ;""REAaSY GAME :*

712728 GOSUB 7460

1360 PRINT 116 ;" ONLY ONCE"

7140 RETURN

TZ288 N-4 RP-L: G112 -4 G2 =6:GCIX=8H
tGC4) =12 : G (53 =18

218 PRINT 16 ;:""AMID GAME :"

51

72260 GOSUB 7468

2T PRINT 116 °" MORE THAM ONCE*"

7240 RETURN

78 N=-G6G:RP-1:GC(13=5:GEC2)=7:GC3I>2 =1
B:6G6C4)Y =15:GLCS52Y=20

Z73I10 PRINT 116 ;""KHARD GAME :©*""

FIZ20 GOSUB 74066

FIIO0 PRINT 16 ;""" MORE THAN ONCE""

7348 RETURNMN

74680 POSITION 8.,.3I:FOR I=1 TO N:PRI

NT #6;0BSCX,X) ;" ""; :NEHT I
74180 PRINT B#6;:;'"6;:""aLLOKEDRD"": PFPRINT RG6G
7428 PRINT 16 : PRINT 116" EaCH MAaY
BE USED""

7430 POSITION 6.,10:PRINT 36" "DEL "
TO CLEAR GUHESS*

74460 PRINT 126 ;:°"" @ TO GIVE uUup"*

74560 POSITION 8,7 :RETURN

75060 PRINT ft6:*'K 1 OR 2 PLAYERS?'

75108 GET 1, T:XIF T<49 OR T2>56 THEM
7519

TSZ20 NP=-T—48: RETURN

890060 REM INITIALIXZATIOM

86160 TRAP 506006

868620 DIM 0BS5S (C6) ,CNS5SC192) ,FDSC1) , M55
€188 ,S5CS (54>

8638 DIM RC(6) ,GUHII62 ,PF (62 ,PGI(6] . GC
52

86046 GRAPHICS 17 :SETCOLOR @,92.8

868568 SETCOLOR 1.6 ,2:SETCOLOR 2,12,
16

8668 SETCOLOR X .4 ,8:SETCOLOR 4,0, 1
. 8

8676 OPEN 11,4 .0 ,""K:"

81660 REM SET—UP OF CONSTANTS

8110 O0BS=""afIC[AE[E"": FDS=CHRS (Z0)

81280 CHNHS="" ANY KEY HWHEN READY""

8139 CR=84:SCREPEEK(82)YMZS5G+PEEK (S
8 tERR=-125 :ERL=-186

814090 K=764:NNH=-4:GC(68Y =1

81568 MS55(C1,18>=""A PSYCHIC!

8160 MSS (192,36 =""EXCELLENT!
an

8178 MSSC(3I7,54) =""VERY GOOD'!

8180 MSS (55, 72)=""GOOD

819606 MSS(I(73,920)=""FaAaIR

87200 MSS (91,188 =""TRY, TRY ., TRY AGAX
N

8210 ScCS=""hhiIIELEEARTINT O TEH TR LT
MFKPE FLFMPR FNFOXOI PPRFP¥OQP P &L

52

82260 RETURN

2000 REM PRINT PATTERN ON GIVE—UP

28616 PRINT 126

2020 PRINT 116

2838 PRINT 226 ;""GIVE UP? PATTERN IS
-n

2040 PRINT 16

2856 FOR XI=1 TO NN

28660 PRINT 26" 2>"";:0BSCRCXI) ,RCI3ID;

28076 NEXT IXI:PRINT 126

2880 PRINT 116

2828 PRINT 2116

21060 PRINT 16 :GOTO S600

53

Word Detective

A Word Guessing Game

WHMORD DETECTIVE

IF X LIKE A WORD
X MAKE IT RED

IF I HATE A WORD
I MAKE XT GREEN

FIGURE OUT MY RULE
BY TRYING DIFFERENT
HORDS .

HHEN YOU HAVE FIGURED
IT OoUT, OR YOU GIVE
up, TYPE:

THE RULE IS
TO DISPLAY THE RULE.
TO DISPLAY ALL OF THE
RULES, TYPE:

THE RULES aRE

Word Detective is a game that challenges you to figure out why
your Atari likes some words and hates other words. By typing in dif-
ferent words, you attempt to figure out what rule the computer is
using to decide whether it likes or hates a word. The game introduces
the concept of the computer handling letters and words, as well as
numbers. Detailed listings and instructions show you how to modify
the program to use rules that you create.

55

Operating Instructions

1.

2.

56

Load the program ‘'WORD’ from disk.

Type 'RUN’ and press RETURN.

. You will be presented with the basic rules for Word Detective. Press

any key to continue.

. Type in a word for Word Detective to analyze.

. When you press the RETURN at the end of the word, ‘WORD' will

turn the word GREEN if it hates the word or RED if it loves
the word.

. Continue giving ‘'WORD'’ one word at a time and try to guess the

rule. When you think you know the rule, try some additional words
to make sure that your hunch is correct.

. When you are convinced that you know the rule, type 'THE RULE

IS’. 'WORD' will then display the rule.

. Each time you play ‘'WORD),’ it randomly selects one of five rules.

Can you guess what they are?

. If you want to see all five rules, type ‘'THE RULES ARE'.

Programming Concepts

While we normally think of computers as devices for dealing with
numbers (referring to them sometimes as ‘number crunchers’), they
can also deal effectively with alphabetic material. One of the major
uses of microcomputers today is as a word processor — a machine that
can replace the typewriter and offer many kinds of support to the
writer. Word processors can provide editing features such as character
insert, character delete, line insert, and line delete; they can move
blocks of data, and more. Spelling-checking programs can eliminate
most spelling errors. Text can be stored on cassette or disk, sent from
one computer to another, and printed out in various formats. BASIC
has a number of commands to assist in dealing with non-numeric in-
formation; the most important ones are demonstrated in Word
Detective.

Processing ALPHABETIC Data

A CHARACTER is a single unit of information such as a letter (A d
X), a digit (0 1 2), a punctuation mark (! ? '), a mathematical symbol
(= > < +),aspecial symbol ($ # | @), or various graphic symbols and
control characters. BASIC can handle characters in two ways:

1. It can refer to them directly, as in a PRINT string, by enclosing a
string of characters in quotation marks: PRINT ‘‘THESE ARE
CHARACTERS"".

2. It can refer to them as a variable: C$ = ""LETTER’'.

The STRING Concept

The Atari can work with a single letter, a word, a sentence, or a
large portion of text as a single entity. This collection of letters (which
can include digits and most special characters) is called a 'string.” Atari
BASIC keeps track of strings separately from other types of informa-
tion, such as floating-point numbers. It names them with up to 120
characters per name, like the numbers, but adds the dollar sign ($) to
show that a string of characters is being referenced. Examples of string
names include A$, Q23$%, and HELLO$. A string may have no
characters, in which case it is called a NULL string. A string may have
a single character or may be very long, up to 32,767 characters in
Atari BASIC.

In Word Detective we demonstrate several different ways to handle
strings. An examination of some of these methods should provide a
basic understanding of the string-processing capabilities of
Atari BASIC.

57

130 PRINT #6;CHR$(30);

The CHR$ function determines the single-character string whose
numeric ATASCII (Atari ASCII) code is specified. This string is not
assigned a name, and it does not need to be DIMensioned in the pro-
gram. In line 130 above, the character whose ATASCII code is 30 is
printed on the graphics screen. Code 30 corresponds to a ‘less than’ sign
(<) in Color Register 1, which is black in Word Detective. This
character is used to tell the user that the program is waiting for
him/her to type a word and to show the position where the next word
will be placed.

194 |F LEN(Z$) =0 THEN 120

The LEN function determines the LENgth of the string that was in-
put into Z$. In line 194 it is used with an IF statement to check for a
NULL or empty string. If the length of Z$ = 0, then no word was typed
(just a RETURN) and the program tries again to get a word. If any
characters had been typed, then the length of Z$ would not be zero.

190 IF Z$ ="THE RULE IS THEN GOSUB 3000:X = R:GOTO 110

The entire contents of the Z$ string may be tested by comparing it
to a string that is specified by a pair of quotation marks. If the Z$ string
matches the string "THE RULE IS'’ exactly, character by character,
then the subroutine at 3000 will be executed. If there is not an exact
match, then the next instruction will be executed.

In addition to dealing with the entire text string, as in the IF or
PRINT statements, Atari BASIC can deal with portions of the total
string. To work with part of the string, BASIC needs functions to
isolate that part of the string that is of interest. A substring function is
provided for this purpose and it may be used in two ways, with either
one (1) or two (2) subscripts:

1. Z$(A), which will isolate the substring within Z$ beginning with
the Ath character and extending to the last character.

2. Z$(A,B), which will isolate the substring within Z$ beginning with
the Ath character and ending with the Bth character.

‘A’ may be a number or an algebraic expression. Its value is used to
determine the starting character of the substring. ‘B’ works in the
same way — its value is used for the ending character of the substring.

Let us assume that the input to the Z$ string was the word
‘SAMPLE'.

58

220 F$=27%(1,1)

In this line of the program, F$ is set equal to 'S’, the first character in
‘SAMPLE’. The substring function in this case specifies the string
within Z$ beginning and ending at character number one (1).

230 L$ =Z%(L)

L$ is set equal to 'E’, the last character in ‘'SAMPLE'. This substring
function specifies the string within Z$ from the Lth character to the
end. There are only L total characters in Z$ anyway, so L$ returns with
the single rightmost character of Z$.

300 V$ = Z$(K,K)
V§ is set equal to the character at position K in the string Z$: ‘'S’ when

Kis 1, ‘A" when K is 2, and so on up to ‘E’ when K is 6. The substring
specified consists of one character in the Kth position in the string Z$.

Word Detective Variable Usage

Constants

CR Location of current cursor row position
ERR Location holding last error number
ERL Location holding line number at which error occurred
SCR Beginning of screen memory

SC$ Machine-language scroll routine
Variables

ADD Offset used to change words’ colors

C Number of consonants

COL Code of character on screen

D Double letter flag

K Loop counter

L Length of input string

R Random number rule

\% Number of vowels

X Previous rule

V4 Temporary storage

F$ First letter of Z$

L$ Last letter of Z$

59

v$ Middle letter of Z$

X$ ‘T hate..." part of rule
Y$ T love..." part of rule
z$ Input string

Examples of String Functions

Y$ = ""DIFFICULT"

LEN(Y$) = 9
Y$(1,1) = HDII
Y$(LEN(Y$)) = “T”
Y$(3,4) = “FF"
ASC(Y$) = 68

CHR$(73) = T

Program Description

The string Y$ contains the
word "'DIFFICULT"'.

The LENgth of the string Y$
is 9.

The leftmost character of
string Y$ is "'D’’.

The rightmost character of
string Y$ is ‘T,

The middle two characters
starting at position 3 and
ending at position 4 are ''FF'’.

The ASCII decimal value of
the first character, “‘D'’, in
the Y$ string, is 68.

The CHaRacter represented by
the ASCII decimal value 73 is
the letter "'I"".

At line 20, the program goes to subroutine 9000 to initialize. The
initialization procedure consists of the following steps:

Line 9010 sets an error TRAP pointing to line 500. Any errors
occurring in the program will thus be handled by a routine beginning

at 500.

Lines 9020 to 9030 DIMension the strings that will be used within
the program. No string may be used unless its length is reserved with a

DIM statement.

60

Line 9040 OPENSs the keyboard (specified by ‘K:’) as device number
1. The ‘4’ designates an input-only device. GET #1 statements within
the program will use this device, waiting until a key is pressed on the
keyboard before the next statement is executed.

Lines 9050 to 9070 set up the graphics mode and its colors. Mode 17
is a full-screen version of mode 1, an expanded text mode, which nor-
mally leaves a four-line text window at the bottom of the graphics
screen. Colors 0 through 4 are defined as blue, black, green, red,
and white.

Line 9080 sets CR to the address containing the current cursor row
position. It also sets SCR to the beginning of the area in memory,
which contains the data printed on the graphics screen. SCR must be
defined after the desired graphics mode is set up, because the different
modes use different areas of memory to hold the screen data. ERR, the
location containing the number of the error that last occurred, and
ERL, the location containing the number of the line at which it
occurred, are also defined.

Line 9090 defines SC$, a string containing a machine-language
routine used to scroll the graphics screen.

Lines 9110 to 9270 are simply a series of PRINT statements that
display the operating instructions for the program. Notice that some
words and phrases are printed in lower-case and/or inverse text.
Graphics modes 1 and 2 (and their full-screen counterparts 16 and 17)
do not actually print these words in lower case and inverse; instead
these combinations control the colors with which they will be
displayed. For example, lower/inverse prints in color register 3, which
is red in Word Detective, and upper/inverse prints in color 2, which
is green.

The GET statement in line 9280 waits for a key to be pressed and
stores its ASCII value in Z. This value will not actually be used later,
but the variable is required in the format of the GET statement. The
screen is then cleared and the heading ‘'TRY A WORD' is displayed.

Line 9290 RETURNSs the program to the mainline code.

The mainline of the program, lines 100 to 360, uses the random-
number generator to select the current ‘RULE’, accept the word from
the user, analyze the word for a number of characteristics, and then
evaluate the word relative to the rule.

Line 110 generates a random number and then makes sure it is not
the same number as X, the previous rule. If the new rule number is the
same as the old one, then another number is generated until a new rule
is selected.

Line 120 clears Z$, the string that will hold the user’s guess word,

61

and L, which will keep track of its length. A blank line is printed to
position the cursor for the next word to be typed.

Line 130 prints a black ' ', which corresponds to the ATASCII
code 30. This signals that it is the user’s turn to type.

Line 140 accepts one key from the keyboard with a GET statement.
The character is not stored as a string variable, however; its ASCII code
is stored in the variable Z.

Lines 150 to 154 handle the DELETE key. If the code in Z is not 126
(the code for DELETE), then lines 152 to 154 are skipped. They are also
skipped if L = 0, which means there are no characters yet to be
deleted. Otherwise, L is decremented to take one character off the
length of Z$, and the cursor is POSITIONed over the last character of
the word. Then a space is printed over that character to erase it and the
cursor is rePOSITIONed appropriately. A GOTO 140 is then used to
look for another character.

Line 160 checks for a carriage return (code 155), which signals the
end of the word.

Line 170 makes sure that the word typed in does not exceed 18
characters. If its length is 18, the only keys that will be accepted are
'‘DELETE’ and ‘RETURN'. This check is needed to prevent PRINTing
off the right-hand side of the graphics screen or in the last column of
the screen, which would signal a ‘Cursor Out of Range’ error. This er-
ror is handled in Word Detective with a machine-language scroll; the
only time we want it to occur is upon an attempt to PRINT below the
screen, in which case the scroll is the appropriate solution. Without
the pointer ' >’ at the beginning of each line, the word length could be
extended to 19 characters. If line 170 did not take care of word length,
the screen would scroll needlessly on long words.

Lines 180 to 185 print the last character typed on the screen and add
it onto the end of Z$. L is incremented to account for the new letter. A
GOTO 140 returns for another character.

Line 190: If the user types 'THE RULE IS’, then the GOSUB 3000
will cause the current rule to be displayed. On return from line 3000,
the program will GOTO 110 to generate a new rule and continue.

Line 192: If the user types ‘'THE RULES ARE’, then the routine
starting at line 4000 will display all of the rules on the screen.

Line 194: If no word was typed (only a carriage return), preparations
are made for a new word at line 120.

The program reaches line 200 on any regular word. Each of four
variables is set to an initial value of 0. The variables are: | for Odd or
Even, D for Double letter, V for the Vowel counter, and C for the Con-
sonant counter.

62

Line 220 uses a substring function to get the leftmost character of
the string Z$ into the string variable F$.

Line 230 uses a substring function to get the rightmost character of
the string Z$ into the string variable L$. The substring function uses L,
the length of Z$, to specify the character to isolate.

Line 240 first divides the length L by 2 and then subtracts the
whole, or integer, part of it. If there is any remainder left, the length is
an odd number. If there is none, the length is even. If the length is odd, |
is set to 1.

Line 250 simply tests for a single-letter word that obviously could
not have a double letter and skips the next few lines if there is only one
letter in the word.

Line 260 sets up a FOR...NEXT loop to test for a double character.
The Z$(K,K) portion of line 270 isolates one character in the word, the
Z$(K + 1,K + 1) isolates the next character in the word, and the IF func-
tion tests to see if these two consecutive characters are identical. If
they are, it sets the double flag D to 1 for later testing; if not, it leaves
the flag alone.

Lines 290 to 350 are a FOR...NEXT loop to count vowels and con-
sonants in the word. Line 300 sets the V$ string variable equal to the
next character in the word. Lines 310 and 320 test for the vowels and
line 340 adds one (1) to the V counter for each vowel found. Line 330
adds one (1) to the C counter for any character that is not a vowel.

All variables that are going to be used for the various RULE tests
below now have been calculated:

F$ is the First character

L$ is the Last character

J 0 for an even number of characters
1 for an odd number of characters
the number of characters

= the number of vowels

the number of consonants

= 0 for no double letters

= 1 for double letters

o<t
I

Lines 500 to 530 take care of scrolling the graphics screen as it is
needed. This routine is reached through an error TRAP, which is ini-
tially set up in line 9010. When a PRINT statement is attempted below
the bottom line of the screen in graphics mode 1, an error occurs and
lines 500 on are called. Line 500 checks the error number to be sure it
was indeed a ‘Cursor Out of Range’ error. If it wasn't, lines 540 and 550
display a simple error message and STOP the program; otherwise line

63

510 calls the scroll routine with a USR function. Then the cursor is set
at the bottom row, number 23, and the TRAP is reset. Finally, a return
is made to the line that caused the error, using a calculated GOTO.
Locations 186 and 187 hold the number of this line. For more details
on this scroll routine, see '‘Scrolling the Graphics Screen'’ in the
MASTER chapter.

Line 1000 branches to a subroutine based on the number of the rule in

R. It will go to subroutine 1100 on rule 1, 1200 on rule 2, ..., 1500 on
rule 5.
Line 1100 tests for odd or even number of characters. If | = 1,

which means that the word has an odd number of characters and is
disliked, it goes to line 2000 to display the word in green; otherwise
the word is liked and goes to line 2010 to be displayed in red.

Line 1200 tests for the length to be less than 6 and, if it is, goes to
line 2000 to turn the word green; otherwise it goes to line 2010 to turn
the word red.

Line 1300 compares the number of consonants and vowels. If there
are as many or more vowels as there are consonants, then it goes to
line 2000 to turn the word green.

Line 1400 tests for the first letter of the word to be earlier in the
alphabet than the last letter. If so, it goes to line 2000 to turn the
word green.

Line 1500 tests for double letters. If there are double letters, it turns
the word green.

Lines 2000 and 2010 each define an offset that will be used to
change the color of the word to red or green. In graphics mode 1, dif-
ferent numeric codes specify not only the character to be printed but
also the color in which to plot them. Thus, adding an
appropriate offset to the character’s numeric code is a simple way of
changing its color. If the word is disliked, this routine will enter
through line 2000, which sets the offset ADD to 128 for green. If the
word turns red because it is liked, line 2010 is called; it sets ADD
to 160.

Lines 2020 to 2050 form a FOR...NEXT loop that turns the word,
character by character, into the appropriate color. Line 2020 uses the
LOCATE function to find the ASCII code of the next letter in the word.
The column and row specified in this function (I and PEEK(CR) in this
case), indicate the screen position to check; LOCATE finds the
character in this position and returns its ASCII code in the vari-
able COL.

Line 2030 adds the offset ADD to the numeric code COL, skipping
spaces (code 32) because they need not be changed.

64

The COLOR function is used in line 2040 with the new code COL
to redefine the current character. The PLOT statement prints the new
red or green character over its old blue counterpart.

Line 2050 executes a NEXT. It RETURNS to line 1010 when the
loop is completed.

Lines 3000 to 3120 handle the response when the user types 'THE
RULE IS'. Line 3010 RESTOREs the DATA pointer for the follow-
ing READ statement so that the READ will start at the first
DATA statement.

Line 3020 uses R, the number of the current rule, to READ the
appropriate pair of strings that make up that rule. X$ corresponds to
the 'I hate words with..." part of the rule, and Y$ is its opposite, the ‘I
love words with..." part of the rule. If R is 1, the first two strings in the
DATA statements are READ as X$ and Y$ in line 3020. If R is 2, then
the second time through the loop the next pair of strings are assigned
to X$ and Y$, writiag over their previous values. The same process is
repeated for values of R greater than 2. The loop is thus a simple means
of READing through the DATA statements to the desired pair
of strings.

Lines 3030 to 3110 print the rule on the screen with the ‘I hate...’
message in green and the ‘I love...’ message in red. The PRINT
statements are limited to one per line because of the error TRAPping
for the scroll. More than one per line would repeat the first PRINT in
the line infinitely.

Line 3120 RETURNS to line 190 in the program mainline.

Lines 4000 to 4030 handle the response when the user types ‘'THE
RULES ARE'. Line 4010 PRINTS a blank line to separate the rules from
the previously typed words.

Line 4020 uses a FOR...NEXT loop to output each of the five rules.
First it RESTORESs the DATA pointer to the first item. Then it READs
the next two strings from the DATA statements, assigning them to X$
and Y$.

Line 4030 goes to the subroutine at line 3090 to output the *‘I
love...”" information only (using Y$ only) and returns to the NEXT
statement. On values of R from 1 to 4 this statement will go back to
line 4020. On R equals 5 (the last value specified in the FOR loop in
line 4020) the program will go to the next sequential statement (the
GOTO 110), which selects a new random number for the next game.

That’s all there is to it. Word Detective is a simple game and a sim-
ple program. If you study the program and fully understand it, then you
are well on your way to understanding BASIC programming on the
Atari.

65

Random-Number Generation

A ‘random number’ is a number that has no relation to the numbers
that precede it or that come after it. Basically the concept is simple.
For example, tossing a coin is one method of generating a random
event. With an honest coin, what happens on any toss, or series of
tosses, gives you no information as to what will happen on the next
toss. Each toss is independent of the other tosses. This simple concept
is important to a wide range of computer-oriented processing including
statistics, simulations, and games.

While the concept of a random number is simple, generating a truly
random number is difficult — particularly on a computer whose main
role in life is to act with great precision and accuracy, not randomly!
Atari BASIC has a function whose sole purpose is to generate pseudo-
random numbers. A computer, by its very nature, cannot generate
truly random numbers; the best it can do is to generate a series of
numbers that appear to be independent.

Using the RND(X) function is quite simple. The value of X is of no
importance, but it must exist all the same. Simply calling the RND
function with any value for X will produce a pseudo-random number.
The tricky part about the RND(X) function is that it returns a number
in the range greater than or equal to 0 and less than 1. Often the pro-
gram needs numbers in a range other than 0 to 1. The
RND(X)-generated value can be converted easily into any range
required.

110 R=INT(RND(0)*5) + 1:IF R=X THEN 110

The RND(0) function is used to create a random number in the
range of 0 to 1. This number is multiplied by 5 (the number of choices
we actually require) to put the numbers in the range of 0 to 5. The INT
function is used to reduce this to a number 0, 1, 2, 3, or 4. One is added
to make the range 1, 2, 3, 4, or 5.

Programming Projects

There are many ways you can change Word Detective. Let's look at
a few.

Reversing the Rules

To reverse a rule (e.g., to make ‘WORD' like EVEN words and hate
ODD words), two parts of the program must be changed. First, the test
for ODD or EVEN must be reversed. This can be done by changing
line 1100.

66

1100 IF J=1 THEN 2000

When J equals 1, the word is ODD and, in the original version, goes
to the 'hate word’ routine at 2000. To reverse the rule simply test for |
equals 0. This will then branch to the ‘hate word’ routine when the
word is EVEN.

1100 IF J=0 THEN 2000

Second, the strings that will be displayed for ‘THE RULE IS’ and
‘THE RULES ARE’ must be reversed.

10000 DATA ODD NO. OF LETTERS,EVEN NO. OF LETTERS
should be changed to read

10000 DATA EVEN NO. OF LETTERS,0DD NO. OF LETTERS

Changing the Rules

Any rule can be eliminated and a new rule put in its place. The new
rule can be based on the existing tests ODD/EVEN, LENGTH,
VOWELS/CONSONANTS, FIRST/LAST LETTER, and DOUBLE
LETTERS, or new tests can be added. Using the existing tests, the
FIRST/ LAST LETTER can be modified so that the word is ‘liked’ only
when the FIRST letter equals the LAST letter.

1400 IF F$ < L$ THEN 2000
becomes
1400 IF F$< >L$ THEN 2000

An entirely new test may be added. For example, if only words with
the letter ‘A’ were to be 'liked,’ then insert a new test in the loop that
goes through the entire string looking for vowels and consonants (lines
300 to 350). Add
305 IF V§="A" THEN A=1
Initialize the variable A to 0 by adding A =0 to the end of the existing

line 210:
67

210J=0D=0:V=0:C=0:A=0

Now replace the Doubles test with the Letter A test. Change
1500 IF D=1 THEN 2000
to
1500 IF A=0 THEN 2000
Finally, change the strings at 10040 to reflect the new rule:
10040 DATA LETTER A,NO LETTER A

Use your imagination! There are many rules, and you can even
combine two rules to make a new one. For example, ‘like’ ODD letters
in words that are seven characters or more in length, ‘like’ EVEN let-

ters in words that are six characters or fewer in length, and ‘hate’ the
other two possible combinations.

Listing 1: Word Detective

18 REM HORD DETECTIVE

Z® GOSUB 290066

1880 REM MAIN PROGRAM

1160 R=INTCRND (8)™S)+1:XIF R=H THEN
116

120 ZS="""":L=-@:PRINT =R6

139 PRINT ##6;CHRSC(IO) ;

148 GET 211, Z

158 XF Z<>126 OR L=@ THEN 1698

152 L=-L—1:POSITION L+1,PEEK(CR)

154 PRINT ##6;"" *""; :POSITION L+1,PEE
KCCRY : GOTO 146

16080 XF Z=155 THEN 196

176 XF L>=18 THEN 1490

180 PRINT 126 ;CHRSCZ) ;

185 L=-L#+1:ZSCLY=-CHRSCZ?> :GOTO 146

190 XF ZS=""THE RULE IS5"" THEN GOSUB

T :H=-R:GOTO 116

192 IF ZS=""THE RULES ARE'" THEN 466
a

194 IF LENCZS>=0 THEN 128

20608 REM PROCESS NORMAL WORD

2180 J=-8:D=-0:V-8e:C=e

220 FS=ZS5C1,1)

23O LS=ZSCL)

Z49 IF CL/2) -INTCL/7232 THEN J=1

68

250
260
270

280
290
00
1@

X209

IXO
IT406
TS50
6o
S006
S10

S5zZe
530
540

5508
1600
1010

1166
11106
1zZeo
1210
13606
1310
1400
1410
15006
1518
2000
Z810
2020

ZO03X06
2840
20850
IO
Ie10
Iozo

Iezxo
X400
650
060
Iaerea
o080
096

IF L=1 THEN 299
FOR K=1 TO L—1

IF ZS(CIK,K)=ZS((K+1,K+1) THEMN D=
: &
NEHXT K
FOR K=1 TO L

US=ZSIK,K)

IF vUS=""A'" OR VUS=""E'"* OR US=""T**
THEN 340
IF VUS=""0"'" OR VS=''U'" OR US—=*'ye:
THEN 3Ia406
C=C*+1L:GOTODO IS0
V-—vu+1
NEXT K
GOTO 1006
IF PEEKC(ERR)Y <>141 THEN S48
ZZUSRCADRCSCS) , SCR+60, SCR+48, 4
48?2

POKE CR,2Z23I:TRAPFP S00

GOTO PEEKCERL) +PEEK(ERL+1) 256
PRINT ""ERROR ""; PEEKCERRY ;""" AT
LINE "";PEEKCERL) +PEEKCERL+*1) ™2
56

CLOSE 1 :5S5TOP

REM SELECT TEST

ON R GOSUB 11688, 1200, 1300, 140
8,1580:G0TO 120

IF J=1 THEN 20060

GOTO ZO16

IF L<6 THEN 20600

GOTO ZO610

IF VU>=C THEN 20806

GOTO 2ZO18

IF FSXLS THEN 2Z000

GOTO ZO1i1e

XF D=1 THEN 2000

GOTO 216

ADD=128: GO0TO 2620

ADD=160

FOR I=1 TO L:LOCATE IX,PEEKCCCR
2 ,COoL

IF COoLX>3I2Z THEN COL=COLt+ADD
COLOR COL :PLOT X,PEEKCCR)
NEHXT X:RETURN

REM THE RULE IS

RESTORE

FOR X=1 TO R:READ HS ,YS:NEHXT
I

PRINT 116

PRINT 16

PRINT 3126 ;""RULE 22" R

PRINT 516

bt et B L HATE HWORDS WITHH
PFPRINT 26 XS

PRINT 116

69

= ST:-:INS R Rl love words wi thiy

116 PRINT H6;YS

T120 RETURN

4006 REM THE RULES ARE

4616 PRINT 116

4628 RESTORE :FOR R=1 TO S:READ XS
L ¥YS

4030 GOSUB IO9O:NEHT R:GOTO 116

9000 REM INITIALIZATION

9616 TRAP 500

9626 DIM Z5C20) ,FSC1) ,LS$C1) ,VUSCL)

986306 DIM HSC(20) ,YS$C(20) ,5CS5 (542

9046 OPEN 121 .4.,0,""K:""

9858 GRAPHICS 17:SETCOLOR ©,9.8

9060 SETCOLOR 1,0,8:SETCOLOR 2,12,
10

96708 SETCOLOR 3.,4,8:SETCOLOR 4.,6.,1
a4

9888 CR=-84:SCR=-PEEK(89)%256+PEEK (S
8) :ERR=195:ERL=186

R I e Ly K NUH M Pl O L LK e
MFKPR FLFMPE FNFOXOIPPRFPXO PP &Ly
L

92168 REM GAME DESCRIPTION

9116 PRINT #6;" ' Rword detective

L
9126 PRINT 116
92136 PRINT 16
LA

““ITF IF LIKE A WORD"
ne I MAKE IT REE

LI 1}

29148 PRINT 16
291580 PRINT 16
29168 PRINT 1B6
92176 PRINT 116

929180 PRINT 16
-m

9198 PRINT 26 ;" "WHEN YOU HAVE®

92668 PRINT #$16;"FIGURED IXT OUT, OR"

9218 PRINT $26;"'YOU GIVE UP, TYPE:"

9220 PRINT 16;:*"° the rule is**

923X PRINT 6" TO DISPLaAY THE RULE
L

“*IF X HATE A WORD'
- X MAKE IT [[{33H1

“FIGURE OUT MY RULE""
*BY TRYING DIFFERENT

ar W

LTI 1]

HORDS .

L1}

9246 PRINT $116;°''TO DISPLAY aALL OF*"
92568 PRINT 316 ;" THE RULES, TYPE:®
92606 PRINT 186" the rules are

9278 PR.PRINT 36;""ANY KEYTO0O CONTINUE
-n

9280 GET #1,Z:PRINT ##6;""KTRY A HWOR
DI.

929290 RETURN

168860 DATA ODD NO. OF LETTERS,EVEMNM
NO. OF LETTERS

70

16818 DATA S5 LETTERS OR FEMER,G6 LE
TTERS OR MORE

18068280 DATA VOMELS=>CONSONANTS , VOME
LS < CONSONANTS

18630 DATA FIRST LETTER < LAST,FIR
ST LETTER=>LAST

198040 DATA DOUBLE LETTERS,NO DOUBL
E LETTERS

The Answer Machine

The Intelligent Computer

The Answer Machine allows you to have a discussion with your Atari,
or to have your Atari tell you a story or answer your questions. All you
have to do is type in a question that can be answered with a YES or NO;
The Answer Machine will do the rest. To enter a question simply type
it, ending with a question mark (‘?’). The Answer Machine will pro-
vide you with an answer immediately. It may not always be right, but
it is always fun!

Program Description

The Answer Machine may be one of the easiest programs you ever
try! The routine uses only twelve BASIC statements and four BASIC
functions. The BASIC statements are CLOSE, DIM, END, GET,
GOTO, IF..THEN, LET, ON...GOSUB, OPEN, PRINT, REM and
RETURN. The four BASIC functions are ASC, CHR$, INT, and RND.

Line 10 is a REMark statement.

Line 20 OPENSs the keyboard as the input device. This allows the
GET statement to be used in line 110. It DIMensions string variable $$
to reserve space for the typed input, and A$ for the input character.

Lines 30 to 80 simply PRINT the instructions for The Answer
Machine. The ? is equivalent to the statement PRINT.

Line 100 LETs the string variable S$ be equal to the NULL string,
LETs the numeric variables C and T be equal to 0, and then PRINTS a
question mark. Where is the LET in line 100? It is implied. $$ =0 is
equivalent to LET $$ =0. The LET does not have to be specified and is
normally omitted.

Line 110 GETs a character from device 1 which was OPENed in line
20 as the keyboard into the variable A. It then PRINTS the value as a

71

character, converting it to a displayable form using the CHR$(A)
expression.

Line 120 adds the value of the character to the total variable T; adds
1 to the counter variable C; and places the character into the Cth
location in the string variable S$.

Line 120 tests to see if the character just input was not a question
mark. If it was not, then the program goes back to line 110 for the next
character. If it was a question mark, then the program continues at the
next line, line 130.

Line 140 ends the program if S$, the string input, is only a question
mark. The cursor is placed on the next line. The keyboard device is
then CLOSEd and the program executes an END to return to BASIC.

Line 150 converts T, which has the total of the ASCII values of all
of the characters in the string S$, into a number in the range 1 to 10.

Line 160 uses the ON...GOSUB to branch to a YES, NO, or
MAYBE. On return from the subroutine the program does a GOTO 100
to start the next question.

Line 200 PRINTSs the YES, 210 PRINTSs the NO, and 220 generates a
random number to select among 10 choices for the MAYBE.

Line 240 uses the ON...GOTO to branch to one of 10 possible
responses.

Lines 300 to 390 are the PRINTSs for each of the responses. Each
ends in a RETURN, which will return to line 160 at the GOTO 100.

That's all there is to it. You can change the responses easily by
changing the text in lines 300 to 390, or change the number of YES and
NO responses by changing the line numbers in line 180. This simple
program shows how your computer can be made to appear intelligent
without really having a whole lot of ‘smarts’.

72

Listing 2: The Answer Machine

60

70

86

186
1106
120
130
140

1506
160

200
210
220
240

Iaee
X106
IZ0
ITXO
X406
IS0
60
I7TO
I80

26

REM THE ANSHER MACHINE
OPEN 111 ,4,0,"K:"":DIM SS$SC1502 . a5

12

""KMTHE ANSHWER MACHINE®'":7?

"*I KNOW EVERYTHING'!"":7?

"YOU ASK QUESTIONS ABOUT ANYT
HING,""

""AND X MWILL ANSHWER WITH A YES
» "0'.-

""OR MAYBE."":7?

"'TO EXHXT, TYPE A SINGLE ?2":7?
SS=":C=O:T=0:7? :7? "k ":

GET ##1,Aa:7 CHRSCAX ;
T=TH+A:C=CH+1L:SSCC,CI=CHRS (A2

IF aAa<>ASCC*?"'"2 THEN 116

XF SS$=*72'* THEN 7 :CLOSE #t1:END

? IT=T—IXINTCT/710)Y%10+1

ON T GOSUB 206,210,220 ,200,210
r 220,200 ,320,200,210: G0T0 1006
? "'"YES'":RETURN

Z? ""NO"": RETURN
R-ZINT CRND CO) 102 +1

ONM R GOTO 396,316,326 ,330,340,
5@, 368,370,380, 390

""MAYBE'"": RETURN
""SOMETIMES " " :RETURMN
""POSSIBLY"" :RETURN

""ARE YOU KIDDING?"":RETURN
""PERHAPS"": RETURN

"TNOT LIKELY"™":RETURN
"INDUB:UBITABLY"": RETLURN

""OF COURSE'"":RETURN

"I CAN'"T TELL YOU THAT"" :RETU

W g g

RN
? ""PLEASE RE-PHRASE THE QUESTXI
ON"": RETURN

73

\\ \ \\\\\ N
\\“‘\ \,\

\

//l//"' / :",/// ;
‘ ////' 1

A ‘\W‘\\\\x

\ W A\ \\ \

Breakup

A Brick Wall Demonstration

-
I

Gct ready to hit the bouncing ball with your bumper and knock a
few bricks out of the wall. The farther away the brick is, the more
points you will get for knocking it out. If you are dexterous enough to
knock out the entire wall of bricks, don’t become over-confident; the
game will continue with a screen of bricks that are even more difficult
to knock out.

Breakup is a simple graphics-display game that presents the prin-
ciples of animation using player/missile graphics to move characters
on the screen and test for collisions. It includes a ‘'ball’”’ that moves
around the screen, rebounds from struck objects, and knocks bricks
from a wall. It also includes a player-controlled ‘‘bumper’’ to keep the
ball from going out of bounds and being lost, a defined playing field
with three walls from which to bounce the ball, and eight rows of
blocks. The amount of points received for hitting the blocks depends
on their color and distance from your bumper.

The game keeps score by color; 5 points for the green blocks at the
bottom, 15 points for the blue blocks in the middle, and 20 points for
the yellow-orange blocks at the top. If you clear the entire screen, you
are awarded an extra ball and the paddle shortens by one dot, moving
closer to the blocks. This continues, screen after screen, until the
bumper is as small and as close to the bricks as it can be. In addition,
the points received for hitting the blocks are increased by three points.
That is, when you are playing the second screen, the green blocks are
worth eight points, and on the third screen they are worth eleven
points, etc. Unlike the size of the bumper, the values for the bricks
have no limit and increase in value for as long as you can play the game.

75

Operating Instructions

76

. Load in ‘BREAKUP’ from your disk and RUN it.

. First you are asked whether you will play with paddles or the

keyboard. Choose the corresponding letter — P or K.

. The program will display the playing field, the brick walls, and your

bumper. When you are ready to start play, press the button on the
paddle or the START key on the system console.

. If you have chosen the keyboard, use the cursor arrow keys -—and—

to move the bumper left and right. Holding the shift key at the same
time increases the speed of the bumper.

. If for some reason you halt program execution with the Break key,

you must hit the SYSTEM/RESET key before reRUNing. (More on
this later.)

The Program

The ball starts from a random position at the bottom of the screen
and travels upwards, hitting a brick. This causes the brick to dis-
appear, adds the appropriate amount of points to your score, and re-
bounds the ball towards the bottom. Here is the challenge: You must
hit the ball back with your bumper to keep the ball from travelling out
of bounds and off the screen, thereby losing the ball. If you are suc-
cessful, the ball will simply hit another brick and bounce back. If you
miss the ball, a buzzer will sound and the program halts until you hit
the paddle or the START button. You are allowed six balls plus one ex-
tra for each screen you clear. Also, the angle and relative speed of the
ball increase the closer you hit the ball to the ends of the bumper.
Hitting the ball near the center of the bumper helps to restore the ball
to a less radical angle.

Breakup’s Animation:
The Idea of Player — Missile Graphics

The animation in Breakup is done with the Atari’s player-missile
graphics capabilities. I used PM graphics because of the very fast speed
of the moving figures (players — such as the ball and paddle) on the
screen. Also, PM graphics makes it easy to test for collisions, providing
a faster and more challenging game. In fact, even machine-language
versions of this game, which are generally fast due to the nature of
machine language, employ PM graphics because it is easy to use.

A ''player’’ is a zone on the screen that is eight pixels wide and ex-
tends vertically off both the top and bottom of the screen. A missile is
generally a very thin player; it is only two pixels wide and, also, ex-
tends past the top and bottom of the screen. There are several locations
(registers) that correspond to the characteristics of each of the players
and missiles, such as color, pixel width, priority, collision detection,
and horizontal position of each. The reason the players and missiles
are so thin when compared to their height stems from the fact that
there is no vertical position register for them — only a horizontal posi-
tion register. This means that in order to move a player vertically (as
needed by the ball, for example), we have to physically redraw the
player either higher or lower in memory. Before we describe the loca-
tions of PM graphics, lets first discuss how the Atari handles
PM graphics.

The Atari allows four separate players and four missiles on the
screen — or five players if you combine all four missiles and treat them
as a player. There are, in general, two types of players: those drawn in

77

one-line resolution and those drawn in two-line resolution. One-line
resolution is just that; the players are drawn out one scan line at a
time. Two-line resolution is simply drawing the players out two scan
lines at a time. One-line resolution produces better pictures and re-
quires 2K of memory to store. Two-line resolution requires 1K of
memory to store. Each player in one-line resolution takes 256 bytes to
describe (one for each scan line from the top of the screen to the bot-
tom). Each player in two-line resolution takes up to 128 bytes since
each byte corresponds to two scan lines instead of one. Note that not
only does the one-line resolution take up more room, but the memory
used must start on a 2K boundary (the starting location must be divis-
ible by 2048). The two-line resolution memory can start on a 1K
boundary (the starting location must be divisible by 1024). Therefore,
we should be somewhat careful in our placement of the player-
missile memory.

The Atari finds this memory through its base address register at
location 54279. That is, location 54279 tells the Atari where to go to
find out how the players look. Since the location is only one byte in
size (it is only one location) it has to hold the page number of the PM
memory. Studious readers will remember from the Programmable
Characters chapter that a page is 256 bytes. Therefore, a single byte,
which can hold any number from 0 to 255, will be able to address any
one of the 256 pages in the Atari. The paging method is simply a way
for the Atari to find its way around with only one byte telling it where
to go.

That’s the Way the Ball Bounces

Another time-saving feature of PM graphics is its collision-
detection capability. A collision occurs when any player or missile
touches something other than the background. This capability allows
the program to find out, with a single PEEK statement, if anything is
hitting any one of the players or missiles or if they are touching
anything. This makes the whole checking routine for the ball and pad-
dle collisions very fast.

Collision detection works simply. There is a register for every
possible PM collision. Now look at the player-to-playfield collisions
register. This is the location that is read constantly to see if the ball
(player 0) has hit something so that the appropriate ball-movement
routine can be activated. Similarly, the player-to-player collision
register is read to see if the paddle has hit the ball.

78

Additional Information

To make the colored bricks, I used redefined characters in graphics
mode 2. I used characters simply because of their color capability and
because they are easy to draw and erase. Remember that the characters
in graphics mode 2 can be displayed as four different colors. I redefined
the character ‘$’ to a 7-dot x 5-dot brick. The different colors are
achieved the same way the different colored space invaders are
displayed in the chapter on Programmable Characters.

Look at figure 1 again. Note that the first 384 bytes of memory (in
double-line mode) is always unused; and the first 512 bytes remain
unused because this program does not enable the missiles (everything
is done with the players). That means that we have 512 bytes sitting on
a 1K boundary doing nothing — a perfect place for the graphics 2
character set. By using this space for the somewhat altered character
set, we can store information that would normally require 14K (1K for
the PM storage and %K for the character set) in only 1K.

The actual movement of the ball is calculated in BASIC and ex-
ecuted in machine language. This is because, as mentioned earlier, PM
graphics moves figures quways around this, but using a machine-
language routine is the easiest.

Breakup Variable Usage

Strings

BALLS$ Holds the PM description for the ball

M$ Holds the machine-language block-move routine

M2$ Holds the machine-language ball-move routine

Arrays

A Holds the possible ball angles resulting from a
bumper hit

P The number of points per line (for the bricks)

PAD One-byte PM description for the paddle

Constants

CHBASE Character-set base register

COLPO-COLP3 Color register locations for the four players

DMACTL Direct memory access control register

HITCLR Collision clear register

GRACTL Graphics control register

79

PO-P3
PMBASE
SIZEPO-SIZEP3
POPL

POPF

P1PL

Numerics

BALL
BALLXY
BMOVE
BL

BPF

BPL

C

CTRL

CN
D

H,V
I

NB
P,P9

PB

PP

PY
Q,QQ
RY

SC
START
STPO

SZ
U

X,Y
ZERO

80

Horizontal position register for four players
Player-missile base register

Size register for four players

Player O to player collision register

Player O to playfield collision register
Player 1 to player collision register

The starting location of the ball description
Starting location for the move-ball routine
Starting location for the block-move routine
Number of balls left in the game

Variable holding the ball to character collisions
Variable holding the ball to wall collisions

The variable used in all character inputs

Holds the line number of the bumper routine to
be used

Loop variable for character internal number loop
Dummy variable used for assigning values to arrays
in loops

Horizontal and vertical displacement for the ball
movement

Increment for the bumper when controlled by the
keyboard

Number of bricks left on the screen

Value of the keyboard left arrow, right arrow, and
shift key

Variable holding the paddle to ball collisions
Paddle position

Paddle vertical position on the screen

Loop variables

Real Y position on the screen for the bricks

Score

Starting location of the PM and character-set area
Start of the player O (ball) memory area minus 2 for
ball movement

Index to determine the bumper’s size, screen after
screen

Dummy variable for the USR statements

X and Y coordinates for the ball

Used to either move the paddle up one dot or not
move it at all, depending on the screen number and
bumper size

Program Description

The routine to move the ball and paddle, test for collisions, and do
anything else that involves animation is contained entirely in lines
100 to 190. Note that this routine is almost at the very top of the pro-
gram; all initialization and other routines are done below it. This is a
programming trick to speed up the game; the more lines that exist
above a routine, the slower that routine will be. This is because when a
GOTO is encountered, BASIC starts looking for the destination line
number from the top; that is, it checks each one until it finds where it
has to go. This is time consuming, especially if you have a lot of lines
above the routine. Therefore, all routines that are not time-dependent,
such as the intialization and score-keeping routines, appear below the
movement routine. This way, no time is wasted.

Line 10 dimensions all the strings and arrays used by the program:
M$ holds the block-move routine discussed in other chapters; M2$
holds the ball-movement routine; BALL$ holds the player-missile
description for the ball (only twenty bytes worth); A holds the possible
angles resulting from a collision with the bumper; P holds the points
for each line of bricks on the screen; and PAD holds the byte that
describes how the paddle looks from screen to screen. These features
will be discussed more thoroughly below.

Line 20 calls the initialization routine at line 30000.

Line 30010 lowers the top-of-memory pointer by 1K (four pages) to
make room for the player-missiles and new character set. Fortunately,
location 106 points to a 4K boundary, so subtracting 1K from this loca-
tion insures that the location will be on a 1K boundary (divisible by
1024). The graphics 1 screen is initialized right after the pointer is
moved so that the computer can readjust the appropriate pointers after
losing the 1K of memory.

In line 30012, START is assigned the address of the new memory
area and the two machine-language routines are loaded in.

Line 30014 POKEs the starting location with a 0 and propagates it
through the entire 1K by moving 1023 bytes from the starting location
to the following location.

Line 30020 uses the block-move routine to move the standard
character set from ROM to the new memory allocated just before the
PM memory area. This allows us to redefine the few characters
necessary and to keep the rest as they are.

Lines 30030 and 30040 make players 2 and 3 into the left and right
walls of the game. These walls could have been a character, as is the
top wall above the bricks, but they were made as players so that a
single check could be made to determine whether or not the ball
should bounce horizontally.

81

Line 30044 puts the description of a 7-dot-wide paddle into the
player 1 area.

Lines 30050 to 30054 redefine the two characters whose internal
value is 4 and 5 (‘$’ and '%’, respectively) to the brick and solid block.
The latter is used to draw the wall across the top of the screen.

Lines 30060 to 30066 define the values of all the constants in the
program. The majority of these are the locations for characteristic
changes in the player missiles.

Line 30070 opens the keyboard for later input. For convenience's
sake, it will remain open during the entire program execution.

Line 30080 sets up all the game values. (See the Variable Usage
table for details.)

Lines 30082 to 30090 load in the values for the A, P, and
PAD arrays.

Lines 30100 to 30120 asks if you want to play with paddles or the
keyboard. CTRL holds the line number of the appropriate bum-
per routine.

Lines 30200 to 30260 are a routine to initialize the screen. The PM
graphics and character set are enabled and the bricks and walls are set up.

Line 50 stops the game until either the paddle or START button is
pressed. This gives the user a moment to reconnoiter before the ball
is released.

The entire game is controlled by lines 100 to 190.

In line 100, the horizontal and vertical displacements are added to
the X and Y coordinates of the ball. Then the paddle is moved (CTRL is
the line number of the appropriate routine). A machine-language
routine that moves the ball within the player is then called. This
routine is given the following values: x coordinate, y coordinate, the
starting location of the ball description, the start of player O (where to
put the ball), and how many bytes of the ball description to move.
Player 0 is moved horizontally (only one location to change), player 0
is moved vertically, and the collision registers are cleared. The routine
then waits for 1/60th of a second and returns to BASIC. The collision
registers are cleared by the Atari internally whenever location 53278 is
POKEd with any number. It takes 1/60th of a second for the collisions
to register.

Line 110 assigns the needed collision registers to the following
variables: BPF (ball to character collisions), BPL (ball to wall colli-
sions), and PB (paddle to ball collisions). Y is then checked to see if the
ball has been missed.

Line 150 turns off any sound that may have been turned on by a
previous collision. BPF is then checked to see if it has hit playfield 0, 1,

82

or 2 (one of the bricks). If a collision has occurred, then control is pass-
ed to the brick routine at line 200.

Line 160: If the ball hits playfield 3, then it reflects (negates) the
vertical displacement and a sound is made.

Line 170: If the ball hits either wall, then it is horizontally reflected
and a sound is made.

Line 180: If the paddle hits the ball then it is vertically reflected, H
is assigned the appropriate angle of horizontal reflection, and a sound
is made.

Line 190 returns control back to line 100 in the event that none of
the above has occurred.

Lines 200 to 210 handle the brick-collision routine.

Line 200 prints a space over the brick, effectively erasing it, adds
the appropriate amount of points to the score, vertically reflects the
ball, makes a sound, and subtracts 1 from the number-of-bricks
variables (NB).

Line 202 prints the score. If NB is 0, then control is passed to the
new screen routine.

Line 210 passes control back to the main loop.

The value of CTRL is set in the routine at 30100 and is either a 300
or a400. CTRL is the line number of the appropriate bumper routine. If
the game is controlled by the paddles, then CTRL is 300; if it is con-
trolled by the keyboard, then CTRL is 400. Line 300 assigns the
variable PP with the paddle position negated and moved to the right a
little. The paddle value is negated so that paddle movement will cor-
respond to the bumper movement on the screen.

Lines 400 to 420 move the paddle left or right one pixel depending
on whether the left or right arrow key is pressed. If the shift key is
pressed, then the paddle is moved by fivew pixels in the direction
specified. This allows the paddle to speed up if necessary.

Lines 500 to 550 are the missed-ball routine. If the number of balls
left is greater than 0, then the game values are re-initialized, the
number of balls left is decremented by one, and the game resumes at
line 50. If the number of balls is 0, then the game is over and you are
asked whether you wish to try again. If you specify ‘N’, then the top-
of-memory pointer is reset to its original spot and the program halts. If
you specify 'Y’ the top-of-memory pointer is reset and the program is
reRUN. If the program is stopped via the Break key and then rerun, the
top of memory will be even lower than it was before. Continuing this
will cause the computer to eventually run out of memory and crash.
You should hit SYSTEM/RESET whenever you stop the program via
the Break key.

83

Lines 600 to 690 handle the screen-cleared routine. One pixel is
subtracted from the paddle, which is moved up three lines. This is
done at line 610 by block moving the description bytes for the paddle
up one byte three times. Between each move upward, a sound is made
briefly and a delay occurs so that the paddle change is obvious. SZ is a
flag telling the program that there is still room to move the paddle up-
ward three lines and that the paddle can still be shortened. It is in-
cremented every time the paddle is raised. If SZ reaches 7, then the
paddle is no longer raised or shortened every time the screen is cleared.
The points received for each brick struck is increased by 3 for each con-
secutive screen. When this routine occurs, the game values are re-
initialized and the game resumes at line 50.

The DATA statements in lines 32010 and 32110 hold the two
machine-language routines in string form. These are read into the ap-
propriate strings during the initialization routine.

The rest of the DATA statements in lines 32210, 32220, 32310,
32410, and 32510 hold the values for the new characters in the
character set, the paddle angles, the points received for the blocks per
line, and the paddle sizes per new screen, respectively. They are also
read into their appropriate variables during the initialization routine.

Listing 1: Breakup

18 DIM MSC(S54) MZ25(C929) ,BALLSC20) ,AaC
T2 ,PC23X) ,PADC6)

28 GOoOsSUuUB X0000

58 IF PTRIGCO8)Y AND PEEK(S3I279232<>6
THEN 5@

180 H-HH*+H: Y=Y +VU:GOSUB CTRL ::POKE P1
PP IUCUSRCOCBALLHEY K.Y .BAalLL ,STPOG
» 142

116 BPF=-PEEK(POPF) :BPL=-PEEKI(POPFPL)Y :
PBE=-PEEK(P1PL) : IF ¥2111 THEN 5@
a

156 SOUND ©0.,0.,0,0:XF BPF>0 AND BPF
8 THEMN 20606

1668 XF BPF2>7 THEN VU=-—V:S0OUND 6,86,
16,10

176 XF BPL>Z THEN H=—H:SOUND ©,80,
19,10

188 IF PB/AZ<O>INT(PB/2) THEN V=-—VU:H
TACH-PPH+LI M (BPL{=3I) +H™*(BPL> X2 :
SOUND 6,50.,10,10: 6070 106

192 GOTO 100

200 RY-ZINTCCCY 16274 :POSITION INTC
C(X—48) 78 ,RY : 7 m#6;"" *""; :5C=SC+p
CRY2 :V=-—VUV:SOUND 6,100,106, 16:NB
=NB— 1

84

202
2109
I00
400

416

420
500

Sez

Sa4

S16

520

S22

530

556

6680

602

6160

612

620
630

634

636
640

620

POSXTION 15,0 :PRINT BB6;SC:IF N
B0 THEN 6060
GOTO 1606
PP=250—-PADDLECAG) : RETURN
X=1:P=PEEKC(764) : PP GAM(P>6G4) :
PO2=-PEEK(S3I775) : IF P9<248 THEN
Ir=4
IF P9<>25S5S THEN PP=PP—-X:IF P=7
THEN PP=PP#+2%I

RETURN

POSXTION S,80:PRINT 26 :BL IXIF BL
> THEN SOUND 8,200,122 ,14:FO0R
Q=1 TO 1680 :NEXT QQ:SOUND @.,06.,06,
8:GO0TO 5560

FOR O=206 T0 166 STEP —2:50UND
8,0,10,160:S0O0UND 1,366 0,106,106
tNEXT Q

FOR O=1 TO 1608 :NEXT QQ:SOUND &,
a.,8.,.0:S0UND 1.,6.,.0.,06

POSITION @,5:PRINT ##6;""

EFEEI CY /N>

"

L
GET 1 ,C:IXF CHRSCCY >""Y'"" AND C
HRS CCY <>""N"" THEN 520
XIF CHRSCCY=""¥"" THEN POKE 106.,P
EEKC186) +4 : GRAPHICS 1 :POKE GRA
CTL.®:RUN
CLOSE 1 :POKE 166 ,PEEKI{186) +4:
GRAPHICS O :POKE GRACTL . 8:END
BL=BL—1:POSITION S5,8:PRINT 216;
BL:HK=INT(144RND () +562 :Y-111:
H=#+2:U=-—2:PP=124:G07T0 58
U=ZUSRC(BMOVE ,START+512 ,5START #5351
TL,A1ZT7D
FOR Q=200 TO0O 68 STEP —S5S:SOUND @6
0,18, 14:SOUND 6,072,160, 10: NEX
T @:SOUND 0 ,06.6,0:IF PY=-82Z THE
N PY=-8S5S:ZERO=21
FOR =1 TO I :U=USRI(BMOVE ., ,START
+641 ., STARTYG640O0+ZERO , 127)
SOUND 8,36.8,.14:FO0OR Q=1 TO 2Z8
INEXKT QOQ:SOUND €.0.0,0:FO0R Qa=
1 TO ZB:NEXKT QQ: NEHT Q@
SZ=SZ+1:XF SZ=7 THEN 5Z=6
POKE COLP1,15:SOUND ©,200,106, 1
4: PY=-PY—I:POKE STARTH+640t+PY PN
DCSZY :SOUND @.,60.,0.,0: POKE COLP1L
P 78
FOR 0=© TO 2ZI:XF PCQ)>@ THEN P
Caxy —Pp Q) +3x
NEXT @
BL=-BL+1:NB=-144:G605UB 30280 :H—-I
NTC(1A44RND (B +562 : Y"111 :H=—2:V
=—2Z:PP=124
GOTO S8

85

09000 REM ———INITIALIZATION———

9616 POKE 1066 ,PEEK(C(166) —4:GRAPHIC
S A7

TPO1LZ2Z START=-ZSEPEEK (1686) : READ MS$S,
MZS : BMOVE-ADR (MS) : BaALLXEXY=-ADRIM
252

I014 POKE START,.O0:U=-USRC(BMOVE, STA
RT,START+1 ,1823X)

T2 U=-USRI(BMOVE ,256PEEK(756) ,5T
ART ,S5S12)

TOOIO POKE START#+788, 255 :U-USRCBMO
VE,START+788, START+782, 212 : REM
L HALL

IO048 POKE START+216,255:U=-USRICBMO
VE,STARTH+216,START+217, 212 : REM

R _HWALL
IP44 POKE START+7406,254:REM 110N
=

8050 FOR CN=4 TO S

TEOSZ FOR O=CN¥8 TO CN8+7:READ D:
POKE STARTH+Q,.D:NEXT

0054 NEHXKT CN:REM

IO060 PO=-SIZA8:P1=SI249:P2=-5S3I250:P
T=SIZ2SL:POPF=S3I2SZ:POPL=S3I260:
PIPL=-S3IZG61L:HITCLR=SIZ278:DMACTL
=559 :GRACTL=S3I277

TP06Z2 SIZEPB=S3IZ256:SIZEPL1L=S53I257:5X
ZEPZ=-S3ZI258:SIZEP3I=S3I259:COLPB=
704 :COLP1=705:COLPZ=706:COLP3I=
707

I0P64 PMBASE=S4Z79:CHBASE=756:5TP8
=START+S12—6

TOO066 BaLLS=-""wevyevyydOvvyvyeyey ' _BalLlL=
ADRCBALLS)

I0O070 OPEN 121 ., 4,0 ,"'K:"

0080 H-INTCL44RND (A +56) :¥Y=-111:H
=42 :VU=—2:BL=S:NB=144:PY=1060:PP
=124

IOO82 FOR 0= TO 7:REAQD D:ACQ) —D™2
tNEHXKT Q: REM

T84 FOR 0= TO ZI:READ D:PL(QX=D:
NEXT QG:REM

T892 FOR 0= TO 6:READ D:PADCOY =D
INEHT Q:REM

TO160 POSITION 8,5 :PRINT 126;:;"" pAaDD
LES OR KEYBOARD' :

0110 GET 1 ,C:XF CHRSCCY <>"'P"" AND

CHRSCC)Y <>*"'K"* THEN 306116
I0LZ0 CTRL=400:IF CHRSCC)Y=""P"" THEN
CTRL=308

TOZ200 POSITION ©6.,0:POKE PMBASE, PEE
KC186) : POKE CHBASE ,PEEK (186>

TO2Z2160 POSITION @,1:PRINT 216;'TEELXT1

11113131331 1313113133)
TO2Z212 PRINT 16" S$555555555555555S5

86

5 E558555555555555555 EEEEEEE]
ISSSSSSSSSSSHES SSSSSSSS55555555 S
B -m

TO2Z20 PRINT 226" 4444444444
-4 4444444444444 44444
:1444144444 4444444444

TOZ23I0 POKE P2,48:POKE P3I,201:P
COLPO,14:POKE COLP1,78:POKE CO
LPZ,70:POKE COLP3I, 70

0240 POKE SIZEPO,0:POKE SIZEPL1,0:
POKE SIZEP2Z,0:POKE SIZEPIZ, 0

IO250 POKE DMACTL ,42:POKE GRACTL , 2

TOZ60 POSITION S,0:PRINT 116 ;BL : POS
ITION 15,8 :PRINT 116 SC

TO900 RETURN

72000 REM ———BLOCK MOVE ROUTINE-———

32016 paTAa hhTERTENTIL T LGN YELY
I rMFfKPR FLFfMPR FNFOYOI PPRFPXOJPP #)
.

2100 REM ———BAaLL MOVE ROUTINE——-—

2110 DAaTA hhhEYEHLATASTELT LT hAe
b M NER A N C I K pMEL P W P —RaT IE P U

ke ol e

444444
444444
444444

OKE

= EL CIMe
322860 REM ———NEMW CHARS (5,7 ——
2210 DATA ©,0,0,127 ,127 , 127,127 ,1
27

X222 DATA 255,255,255 ,255,255,255
P 255,255

IZ2I060 REM ———PADDLE ANGLES ———
IZ2310 DATA — 2, 1.5, 1,—.9,.9,1,1.5
b
»
24086 REM ———POINTS PER LINE———

IZ419 DATA ©,0,0.,28,20,15,15.,0,5.,5
P 5,5,0,0,0,0,0,0,.,0,6,0,606,0,06

TZ2568668 REM ———PADDLE SIZES———

X251 DATA 8,126,124 ,60,56,24.,16

NNNENIINIE

87

ATARI Clock

A Digital Time Display

c50

Thc Atari Clock program displays the time in large seven-segment
digits on your TV screen. Features include AM/PM indication,
seconds display, set time, and set alarm. Line changes and additions
are given to add a chime and to improve the appearance of the digits.

89

Operating Instructions

1.

LOAD the program CLOCK from the Mastering Your Atari disk and

RUN it.

. Set the time. The space bar toggles between hours and minutes.

With 'HOURS' indicated in reverse, press the '+’ key once. The
displayed time will advance by one hour. If you hold the key down it
will advance continuously. The ' =’ key works the same way to turn
back the time. When you have the right hour, press the space bar to
set the minutes. Be sure the AM/PM indication is correct.

. Set the minutes using the '+’ and '-' keys. This time will take

effect as soon as you hit RETURN, so you might want to set the
clock a minute ahead and wait until exactly the right moment to hit
RETURN.

. The clock will continue to display the correct time until you stop

the program or turn off the computer.

. To change the time or set the alarm, hit any key except ‘A’. You will

be presented with a short menu. Select ‘A’ to set the alarm.

. The alarm is set the same way as the time. Set the alarm time using

the '+’ and ' —' keys and press RETURN. Notice that the clock has
maintained the correct time even while you were setting the alarm.

. A message appears at the top of the screen indicating the alarm

time. This time is displayed in 24-hour format. Subtract 1200 to get
PM times.

. When the alarm goes off it will beep about once a second for a

minute. You can turn off the alarm by hitting the ‘A’ key, which
acts as a toggle to set the alarm or to turn it off.

90

Atari Clock Information

Take a look at a digital clock or watch. You will see that the numbers
are composed of seven linear segments. Each of the ten digits is pro-
duced by lighting the proper segments in this seven-segment display.
Figure 1 shows how each of the ten digits is produced using only these
seven segments.

Atari Clock simulates the operation and appearance of a digital
clock. When you run the program, you will see that both the horizon-
tal and vertical segments consist of three reversed spaces. Each of the
segments is the result of printing a string of characters on the screen.
What characters are included in these strings? The reversed spaces are
obviously included. To produce a vertical segment we must print three
spaces in a vertical line. Between spaces the cursor must be moved
back and down. This is accomplished by including cursor control
characters in the string. When a cursor control character is printed, the
corresponding cursor movement is executed.

Each of the strings for the two kinds of segments has a correspond-
ing string that does not include the reversed spaces. These are used to
turn a segment off when the current digit does not include it. Each
space removes the reversed space, making the segment appear to turn
off. Thus there are a total of four strings to be printed — the ‘on’ and
‘off’ versions of both horizontal and vertical segments. These are com-
bined into two final strings (H$ and V$) — the horizontal and vertical
segment strings, respectively. Each of these two strings consists of two
substrings of equal length, the first designating the 'off’ segments and
the second designating the ‘on’ segments. Each substring is shown in
figure 2, along with a graphic respresentation of how it is printed on
the screen. The black arrow indicates a cursor movement, with the
arrow's head showing the cursor position at the end of each move. A
solid circle indicates where the cursor begins, and an asterisk indicates
where the cursor is positioned at the end.

There are two unseen strings other than the blank segments. These
consist entirely of cursor movement characters. These strings, BK$
and UP$, are used to move the cursor across the digit for the next seg-
ment. BK$ moves the cursor from the end of a horizontal segment back
to the position under the first space of the horizontal segment. We are
now ready to print a vertical segment. BK$ is shown with its printed
results in figure 3.

BKS$ is also used to ready the cursor to print a horizontal segment as
shown in figure 4.

91

&
1
-

o

- o
T
- oy
J(m

sjuswbas uaAas ui jooj s}bip us} ay} moH °| ainbi4

\ond
)
N
)
N\
)

B,

C:!

. ‘
¢\

L]

952

Figure 2: H$(1,5),H$(6,10),V$(1,7),V$(8,14) produce the off and on
segments on the screen.

® Cursor starts here
% Cursor ends here
-3 Cursor movement

|
HS(1,5) = " J o %
l

* H$(6,10)="" mEm "

V$(1,7)="" «~} ~} " __'l
IV
ll*

N

/';

a

* V$(8,14)= "M+ | W~ W"

93

Figure 3: Result of printing BK$
after horizontal segment.

oA ®
|

=
|

BK$=“—D—Q—O—O—O‘I

1z

Figure 4: Result of printing

BKS$ after right-hand vertical
segment.

€ — —
l‘ V.//,
*

I

-1

UP$ is used to move the cursor from the bottom of a left-hand ver-
tical segment to the top of a right one. Figure 5 shows UP$ and the
result of printing it after a vertical segment.

94

Figure 5: Result of printing UP$
after left-hand vertical segment.

UP$='"—=—=—=tt"

Figure 6 shows, segment by segment, the process of printing the
proper sequence of strings to produce a seven-segment '2’ on the
screen. Actually this is done in lines 1510-1570 of ATARI Clock. The
values for the array elements (S(TI,0), S(T1I,1), etc.) are always either 1
or 0. A blank segment is printed if this value is 0, and a filled segment
is printed if it is 1. The process of coding and decoding the segment pat-
terns is described later. In the figure, the starting and ending characters
of the substrings are shown as if they had been calculated already.

Coding and Decoding the Digits

The seven-segment digit display is controlled by a two-dimensional
array, S(1,J). In lines 8510-8520, the loop counter I designates the cur-
rent digit (0 to 9). The loop counter J designates the segment number of
a digit; the segments are numbered from 0 to 6. Figure 7 shows the
numbering system of the Atari Clock display and the data that is read

95

Figure 6: Producing a seven-segment ‘2’.

1 2
a. PRINT H$(6,10);BK$;V$(1,7);UPS;

1 2
b. PRINT H$(6,10);BK$;V$(1,7);UPS$;

— ¥

1 2
c. PRINT V$(8,14);BK$;H$(6,10);BKS;

96

1 2
d. PRINT V$(8,14);BK$;H$(6,10);BKS;

97

f. PRINT V$(8,14);UP$;V$(1,7);BK$;H$(6,10)

I N N2

98

in for each digit. A ‘0’ represents a segment that is turned off, and a ‘1’
represents a segment that is turned on. For the digit ‘2’ (I=2),
segments 0, 2, 3, 4, and 6 are ‘on’. Therefore, the array elements
$(2,0), S(2,2), S(2,3), S(2,4), and S(2,6) are set to 1. S(2,1) and S(2,5) are
set to 0 to designate the 'off’ segments of the digit.

Figure 7: Coding of segment data. %%%

Segment

6543210
Digit
0O 1110111 119
1 0100100 36
2 1011101 93
3 1101101 109
4 0101110 46
5 1101011 107
6 1111011 123
7 0100101 37
8 1111111 127
9 1101111 111

The decoding process consists of converting the array element 1's
and 0’s into segments. This is done within the digit-display routine
(lines 1500-1570). Each PRINT statement within this routine prints a
string corresponding to a horizontal or vertical segment, which is
either off or on. Where do these strings come from? The horizontal seg-
ment strings are combined as one string, H$, and are actually sub-
strings of it. The same is true of the vertical segment strings, which
comprise V$. To print the appropriate segment string of H$, the PRINT
statement must use the substring function of the format H$(S,E), with
S designating the starting character of the substring and E the ending
character. In the digit display routine, S and E are calculated using the
values in the array S(1,J), which are either O or 1:

1510 PRINT H$(S(T1,0)*5 + 1,S(T1,0)*5 + 5);BK$;

99

In the program line above, TI is the current digit. S(TIL,0) is
therefore the code for the Oth segment of that digit, or the top horizon-
tal segment. If the value of that code is 0, the values of S and E in the
substring function are 1 and 5. If the code is 1, S and E are calculated as
6 and 10. The PRINT statement thus prints the first five characters of
H$ (the 'off’ segment substring) if the array code is 0, and it prints the
last five characters of H$ (the ‘on’ segment substring) if the code is 1.
The same type of calculation is used to print the correct substring of
V$, except that the two vertical segment strings are each seven
characters long. In that case the subscript arguments S and E result in 1
and 7 if the array code is a 0 or 8 and 14 if the code is a 1.

Keeping Time — the Atari Way

The Atari does most of the work when keeping time. The system
maintains a real-time clock in memory locations 18, 19, and 20
(decimal). When the computer is first turned on, the three timer loca-
tions contain 0's. From that time on, the timer is incremented every
TV frame (a sixtieth of a second). The time may be changed, though, to
represent the real time. The following short program demonstrates
Atari’s built-in clock.

10 PRINT * HRS MIN SEC':POKE 752,1

20 Tl =PEEK(18)*65536 + PEEK(19)*256 + PEEK(20)
30 H=INT(TI/216000)

40 M =INT(TI/3600 — H*60)

50 S=INT(TI/60 — H*3600 — M*60)

60 POSITION 52:PRINT H;* "

70 POSITION 10,2:PRINT M;** "

80 POSITION 15,2:PRINT S;** "

90 GOTO 20

RUN the program. The time will be displayed continually at the
top of the screen.

Press the BREAK key, wait a few seconds, then type RUN again.
The time shown is current because the timer’s value is maintained
even when no program is running. The only time the Atari fails to keep
proper time is when the disk drive or cassette recorder is used.

100

Atari Clock Variable Usage

Constants
K

AP$

BK$

CR$
H$
HM$
SA$
UP$
V$
ZR$

Variables
AF
H

Address containing code of last key pressed

AM or PM indication

Moves cursor ready to print horizontal segment or left
vertical segment

Carriage-return character

Off and on horizontal segment string
HOURS/MINUTES indication during time/alarm-set
SET TIME or SET ALARM message

Moves cursor ready for right vertical segment

Off and on vertical segment string

Six 0’s, used to clear time strings

Alarm flag (1 set, O off)

Real-time hours in read-time routine, most significant
byte of time counter in write-time routine

Loop counter, indicates current digit position

Loop counter

Real-time minutes in read-time routine, middle byte of
time counter in write-time routine

Mode flag (1 set minutes, O set hours)

AM/PM flag (1 PM, 0 AM)

Real-time seconds in read-time routine, least significant
byte of time counter in write-time routine

Flag used to determine if time has been changed in set-
time routine

Hours in AM/PM, used in AM/PM correction routine
Value of current digit

Hours in AM/PM, used in set-time routine

In main program, code of last key pressed. In read-time
and write-time routines, value of time counter
Character from keyboard

Alarm-set time string

Current time string, as last read by read-time routine
Temporary time string

Last values displayed in static time-display routine
Contains on/off data for each digit's segments

In time/alarm-set routine, used for hours and minutes
portions of time. In main program, used for last values of
each digit position

101

Atari Clock Program Description

Initialization sequence (lines 10-30): The program starts with a call
to the initialization subroutine (8000), where constants are defined
and the segment coding for the digits is set up. Next, the time-setting
routine 5500 is called (with T$ set to ‘T’).

Program mainline (lines 100-220): Line 100 sets the array of posi-
tion flags to all —1's. The elements of this array normally contain the
last value for each digit in the time display. Minus 1 is an impossible
digit value, so this ensures that all digits are printed on the first run.
Line 110 calls the read-time subroutine (500), which reads the current
time and converts it into TI$. It then prints the two digits of the
seconds, one over the other at the right side of the screen. Substring
functions are used to extract one character each from the fifth and
sixth positions of TI$.

Lines 120-190 go through the first four digits of TI$, displaying
them as seven-segment digits on the screen. Because the fourth digit
changes the most often, the FOR...NEXT loop counts down from 4 to
1. This is accomplished by using the extension ‘STEP -1’ in line 120.
Without this extension, the loop would execute only once. Line 120
also extracts the proper digit from TI$ using a substring function. This
returns a string character, so we need to turn the character into a
number in TI using the VAL function. Line 130 tests the keyboard
status location (K), which contains a code for the last key pressed. If
the code (X) is 255, then no key has been pressed and program control
resumes at line 150. Any code other than 255 signals that a key has
been pressed, in which case line 140 is executed. First, 255 is POKEd
into the keyboard status location to reset it. Then a call is made to the
mode-select subroutine (3000), after which the program returns to the
beginning of the mainline. Since this occurs in the middle of a
FOR...NEXT loop, we can’t jump out of it without a little tidying up.
Before the GOTO 100, we must terminate the FOR...NEXT loop by
setting I to the ending value and performing a NEXT statement.

Because the time found in TI$ is in 24-hour format rather than
AM/PM, the digits for the first two positions have to be adjusted for
PM times. Subroutine 4000 performs this adjustment. Line 150 allows
us to perform the full conversion (by starting at 4000) when the display
reaches the second digit. However, when the display reaches the first
digit, the conversion has already been performed and we need to ex-
tract only the first digit from TM$ (by starting at line 4070).
Remember that the FOR...NEXT loop (lines 120-190) counts down
from 4 to 1. When I is 3 or 4, the subroutine at 4000 is skipped.

102

Line 170 compares the current digit with the last digit printed in
that position. If they are the same, there is no need to print the same
thing over again and a branch is made to the NEXT statement (line
190). Line 180 readies the cursor for the next digit and prints the
appropriate large digit in that position with a call to subroutine 1500.
Finally, the 'previous digit’ array element is set to the value of TI. The
NEXT statement goes back to 120 for the next digit.

In line 200, either 'AM’ or ‘PM’ is printed below the seconds
display, depending on the value of PM. PM can have a value only of 0
(for AM) or 1 (for PM). A little formula is used within the PRINT state-
ment to calculate the proper substring of AP$ to print. In line 210 the
alarm-set flag is tested. If it is set (not 0), then the alarm-check routine
at line 1000 is executed. The cursor is positioned above the first digit of
the time, and the hours and minutes portion of TA$, the alarm-set
time, is printed.

In line 220, the attract mode is overridden with a POKE to memory
location 77 (decimal). A value of 7 in that location signals attract
mode; any lower value means it is off. If this POKE is not made
repeatedly, the attract mode may present a strange-looking display.
Finally, GOTO 110 starts the mainline over again but without clearing
the previous digit array.

Read - time routine (lines 500-560): The Atari timer, located in
memory locations 18, 19, and 20, is copied into X in line 500. Then in
line 510 the time X is split up into H, M, and S (hours, minutes, and
seconds). The INT function of a positive number drops any fraction
and returns with a whole number. Lines 520-550 initialize TI$ by
setting it equal to ZR$, a string of 0's defined in line 8110, and copy the
values of H, M, and S into it. If one or more of those numbers is less
than the two-digit space it must take up, a ‘0’ is already there to fill it
out because TI$ was initially equal to ZR$.

Write — time routine (lines 600-620): Line 600 assembles the hours,
minutes, and seconds of TM$ into X, the time to be set. Each part of
the time must be multiplied by a factor of 60 to get a result in sixtieths
of a second. Then, H, M, and S, are used to represent the most signifi-
cant, middle and least significant bytes, respectively, of the three-byte
timer. These are in turn POKEd into their appropriate memory loca-
tions, 18-20.

Alarm - check routine (lines 1000-1020): This routine consists of a
simple comparison of the first four characters of TI$ and TA$ (the time
for which the alarm is set). If the two strings are found to be equal,
then the alarm routine is executed. As long as the alarm is set (AF does
not equal 0) and the times are equal, the program flow will go from line

103

210 to line 1000 to line 2000 and back to the mainline at 210. If the
alarm is turned off (by pressing ‘A’) or the time advances to the next
minute, then the alarm will stop.

Print — digit routine (lines 1500-1570): This routine uses the array
elements from S(,) to print a seven-segment digit with the
appropriate segments on or off. Each element in the array is set to 1 or
0 by the set-up routine starting at line 8500. A 1 indicates that a seg-
ment is on, and a 0 indicates that a segment is off. Lines 1510-1570
print a series of strings, end to end. Each substring of H$ or V§ is
calculated using the value of the appropriate array element S(TI,X),
with TI representing the current digit and X representing the segment
number. H$(6,10) and V$(8,14) are ‘on’ segments, while H$(1,5) and
V$(1,7) are 'off’ segments. For a more detailed description, see the
main text and the accompanying figures.

Alarm routine (lines 2000-2060): The background color is turned
blue in line 2010 by the SETCOLOR command. The numbers after this
statement determine the color register to be changed, its hue, and its
luminance. In this case, register 2 (background in Graphics Mode 0) is
set to a light blue (color 8, luminance 10). While the screen is blue, the
sound is turned on with the SOUND statement. The sound produced is
in voice 0, with a high pitch (50), low distortion (10}, and mid-to-high
volume (10). The FOR...NEXT loop in 2020 determines the duration of
the sound. Upon exiting the subroutine, the sound is turned off, and
the background color is returned to the normal red color.

Mode - select routine (lines 3000-3100): If the code for the last key
pressed was a 63 (an ‘A’), then line 3010 toggles the value of AF be-
tween 1, which is read by an IF... THEN statement as true, and 0,
which is read as false. The NOT instruction in Atari BASIC changes
true conditions to false and false to true, so NOT(1)=0 and
NOT(0) = 1. If the last key pressed was not ‘A’, then the menu of op-
tions is printed. Line 3060 looks for a character from the keyboard. The
three acceptable characters are tested in lines 3070-3090. If no accep-
table character is received, then line 3100 branches back to 3060 for
another character. A carriage return returns to the mainline without
changing either the time or the alarm-set time. An ‘A’ causes the
alarm-set subroutine (5000) to be executed and a ‘T’ causes the time-
set (5500) subroutine to be executed. Each of these subroutine calls is
made without a GOSUB...RETURN. Since the subroutines themselves
end with RETURNS, it is more efficient to GOTO the beginning of the
appropriate subroutine; the RETURN encountered sends program con-
trol back to the mainline.

PM correction routine (lines 4000-4080): The left two digits of T1$
(representing hours) are extracted with a substring function. Next, this

104

two-character string is converted to a number in TH using the VAL
function. At the same time, TM$ is cleared by setting it equal to ZRS.
In line 4020, if TH is greater than 23, then 24 is subtracted from TH
until it falls in the range of O to 23. If TH is greater than 11, TM is set
to TH minus 12; otherwise TM is set to TH. This move assures us that
TM is between 0 and 11 (AM/PM format), while TH is still between 0
and 23 (24-hour format). If TM is O (midnight) by this time, it becomes
a 12 for the digit-display routine. Then the value of TM is copied into
the first two characters of TM$. If TM$ contains only one digit, then a
‘0’ is already there to fill out the string to two characters.

Line 4070 extracts the proper digit from TM$ to return to the
mainline. I's value is set by the FOR...NEXT loop in the mainline.
Here it can be only 1 or 2. One character, starting with the Ith position,
is extracted. This is returned in TI. Line 4070 also sets the AM/PM flag
PM to 1 if TH (the hours in 24-hour format) is greater than or equal to
12. If TH is less than 12, then PM is set to 0.

Set alarm (lines 5000-5050): Line 5010 sets the alarm-set flag to 1
and changes the screen color to blue. The current alarm-set time TA$
is copied into the temporary string TM$ before the call to the
alarm/time-set routine (line 6000). Then TM$, presumably changed,
is copied back into TAS$. Before returning, the screen color is changed
back to red.

Set time (lines 5500-5550): This routine is similar to the alarm-set
routine. The screen color is changed to green and the current time is
read into TI$ using the read-time routine at 500. TF is a flag used to
determine whether or not any change has been made in the time. If a
change has been made, then the changed TM$ is copied into TI$ and,
using a call to the write-time routine at 600, POKEd into the timer
memory locations. If no change was made in the time, TI$ (which has
been marching onward in value) is not affected. TF is set to O to start
and changed to 1 only if the '+’ or ' =’ key is hit in subroutine 6000.
Therefore, if TF is still 0, then no change has been made. The screen
color is returned to red before the return.

Alarm/time set (lines 6000-6530): This routine, used for both
setting the time and for setting the alarm, starts with a clear-screen
followed by the appropriate heading ‘SET TIME' or ‘SET ALARM'. The
expression ‘T$=""T" ' evaluates to 1 if true and to O if false. This
value is in turn used to determine the correct substring of SA$ to print.
MF is set to 0, indicating that the hours will be set first. Line 6020 sets
the array of digit display flags to all —1's. Like the similar statement
in line 100, this assures that every digit will be displayed the first time.
The hours and minutes are extracted from TM$ using substring func-

105

tions. The VAL function then converts the characters into numbers in
T(1) and T(2). T(1) represents the hours in 24-hour format, while TM
is used to represent the hours in AM/PM format. Lines 6040-6070 per-
form this adjustment. Line 6080 tests T(1) and sets PM to 1 if it is after
noon. It also clears TM$ by setting it equal to ZR$.

Lines 6100 and 6110 form a new TM$ from TM and T(2). Line 6090
calls the static-display routine (line 7000) to display the time on the
screen. Next the cursor is positioned under the time display, ready to
print the 'HOURS/MINUTES’' message. 'HOURS' or ‘'MINUTES' is
printed in reversed characters, depending on the state of the flag MF.

Line 6200 looks for a keyboard character. The four acceptable
characters are tested in lines 6210-6240. If no acceptable key is
pressed, then line 6240 returns the flow to line 6200 for another key. A
space toggles MF and branches back to line 6130 to update the
'"HOURS/ MINUTES' display. A ‘4’ or ‘=’ adjusts the hours or
minutes appropriately, depending on the value of MF. If MF is O then
T(1) (hours) is adjusted and if MF is 1 then T(2) (minutes) is adjusted.
Both conditions result in a branch to line 6300. If the return key is
pressed then the flow is sent to 6250.

Lines 6300-6330 adjust for over- or under-flows on the hours and
minutes. If T(1) is greater than 23, then it is set back to 0. If it is less
than O then it is set to 23. The minutes, T(2), are set using the
‘modulo’ function in line 6320. This removes any multiples of 60
from T(2), leaving only the excess; so 60 becomes 0 and — 1 becomes 59.

TM$ is put together in lines 6250-6270, as it was in lines
6080-6110. Because TM$ was set to ZR$ to begin with, the last two
characters (seconds) are pre-set to ‘00’ to make a full six-character
string, as required for TIS$.

Static — time display (lines 7000-7030): This routine is much
simpler than the dynamic display routine in the mainline. The
FOR...NEXT loop calls subroutine 1500 to print the digits from left to
right. TT is the value of the current digit. If it is equal to the digit cur-
rently displayed (D(I)), then the display routine is skipped; otherwise
the cursor is positioned and the digit is displayed. Then the
corresponding ‘currently displayed digit’ element is updated by setting
D(I) equal to TI.

Initialization (lines 8000-8530): Lines 8000-8030 dimension all of
the strings and arrays that the program will use. Strings are dimen-
sioned by reserving a specific length for each of them. Line 8040 opens
the keyboard as input/output device number 1. The ‘4’ after the OPEN
statement declares the device as an input-only device. The ‘K:’

106

specifies the keyboard. Line 8050 sets the constant K equal to the ad-
dress of the keyboard status code; this is used in the program mainline.
CR$ is defined as a carriage-return character, and the POKE 752,1
turns off the cursor so that it does not interfere with the display. Line
8060 sets the character color to black (color 0, luminance 0) and the
background color to a light red (color 4, luminance 10). Finally, lines
8110-8170 define a number of string constants and initialize the alarm-
set time TAS$.

Set up digits (lines 8500-8530): This routine reads in the elements
of the array S(1,J). The loop counter I ranges from 0 to 9, designating
the current digit. Loop counter | designates the segments of digit I,
which are numbered from 0 to 6. X is used as a dummy variable for the
READ statement, which will not directly read a subscripted variable.
The DATA for the array S(,) is contained in lines 9000-9040.

Expanding the ATARI Clock Program

More Attractive Digit Display

The appearance of the digits on the screen can be improved greatly
by filling in the six segment intersections with solid or diagonal half
characters. To accomplish this, we must define 11 different horizontal
segment strings and change the coding to reflect these new
possibilities. The analogy to a seven-segment display clock is no longer
valid. Type in the following lines to improve the appearance of the
digit display.

8010 DIM H$(55),V$(14),BK$(6),UP$(5)

8170 H$(1,20)= " OOOOM4ANEENANENY R EEER '
8180 H§(21,40)= "mENENEEERBO0CENENEN
8190 H$(41,55)= "NEENDNEENECNEEN

9000 DATA 1,1,1,6,1,1,8,0,0,1,0,0,1,0

9010 DATA 1,0,1,2,1,0,9,1,0,1,10,0,1,8

9020 DATA 6,1,1,3,0,1,0,3,1,0,7,0,1,5

9030 DATA 1,1,0,4,1,1,8,3,0,1,0,0,1,0

9040 DATA 1,1,1,3,1,1,8,1,1,1,9,0,1,0

Line 8010 reserves 55 characters for H$ to allow for 11 segment sub-
strings that are each five characters long. Lines 8170-8190 define the
11 different horizontal segment strings. Note the use of the two
diagonal fill characters and their reversed images. Lines 9000-9040
contain the new data for the segment digits. The digits are now coded
with the numbers 0 through 10 instead of 0’s and 1's.

107

The display routine (lines 1500 on) works exactly the same way.
The PRINT statements still calculate the proper starting and ending
locations of the substring (within either H$ or V$) to be printed, using
the number codes in the array S(I,]) The only difference is that there are
nine more horizontal segments that can be printed.

Adding a Chime
This function requires the following line changes:

180 POSITION [+7 — 2,7:GOSUB 1500:IF | =2 THEN CH =TI
185 T(l) =T
205 IF CH THEN GOSUB 2000:CH = CH — 1

CH is used to count the proper number of chimes. In line 180 it is
set to the current number of hours as corrected in subroutine 4000 for
AM/PM. This line is reached only when the digit in a particular posi-
tion changes. If I is 2, then the hour has just changed. Line 205 tests
CH; if it is not 0, then a chime is sounded by a call to the alarm
routine. CH is decremented and the main program continues.

You may want to make improvements in the chime. Try program-
ming a mechanism to avoid chiming when the time has just been set.
Also, you might try using different frequencies for the chime
and alarm.

Other changes to consider in the program are running it on 24-hour
time, playing a melody on the hour, or introducing a ticking sound.
The 24-hour modification is a matter of deletion rather than of addi-
tion. The others require more effort and possibly more memory than
provided in an unexpanded Atari.

Listing 1: Atari Clock

18 REM ATARI CLOCK

2@ GOoOSUB 806006

IO TS=""T"":GOSUB 55600

186 FOR I=1 T0O 4:TCIX)=-—1L:NEXT I

1168 GOoSUB S5S0@:POSITION 6,16 :PRINT
TXSCS,5) :POSITION XI6,1Z:PRINT
TXS €6 ,6)

128 FOR OR I—-a4a TO0O 1 STEP —1:TIXI=vaAaL
CTX SCX,X22>

1380 H-PEEKCC(K2 : ITF H=-255 THEN 156

148 POKE K,2Z2Z55:G05UB I800:IXI=-1:NENXT
I:GOTO 1606

158 IXIF X=2 THEN GOSUB 4000

168 IF XI=-1 THEN GOSUB 40870

1768 IF TI=TCI> THEN 19O

180 POSITION IM7—-2,.7:GOSUB 1500-TC
I2»=TX

108

196 NEXT I

200 POSITION IS,AS:PRINT aAPSPMeZ+t+
1. PMZ4+2)

2168 ITF AF THEN GOSUB 160666060 :POSITIONMN
S,4:PRINT ""'aLAaRM: e TASCL, 42

2206 POKE 77.68:G6G07T0 110

S0 H-oPEEK((18)IMESSIGHPEEK (19256 +
PEEK C2Z8)

D10 H-ESINTIHAZ7Z16000) - M-"INTIOHK/Z"Z60686—H
ME0) :STINTIH/"60 H*I600 " M*XG60)

SZ20 TIS=ZRS

ST TISCI-LENCSTRSCH2? ,2)=STRS CH)>

S40 TISCS—LENCSTRSCMI) 42 =STRS (M)

S50 TISC7-LENCSTRSC(S22 ,6)=STRSC(S2

S686 RETURN

608 H=-VvALC(TMS (1 ,2))%2160004+VvAaL CTMS
(X . 4323600+ VALCTMS (S, 62260

6518 H-ESINTIHA/Z7G6SSIGE)) -:M-INTCLCH-HMG6553X
6 /7256 :ST"TH"H™GE6S5SSI6" M%256

628 POKE 18 H:POKE 19 . M:POKE 2Z@,5:
RETURN

166866 REM CHECK aLARM

16010 IF TISC1,4)=TASC1L.,4> THEN GOS
us 2066

1828 RETURN

1588 REM PRINT DIGIT

1516 PRINT HSC(SC(TI,,.Q)HS+1,.SCTX, Q)
S+5) ;BKS;

1528 PRINT VSCSCTI,, 12741 ,SCTX, 13
ZT7H72;UPS;

15308 PRINT VSCSCITI, 2741 ,SCTX,23
74+7) ;BKS ;

1548 PRINT HS(C(SICTI, XIS 4+1,SCTI,I)»®
S+5) ;:BKS;

15568 PRINT VSISC(TI,.4A4X 741 ,SCTX, 43
772 ;UPS;

1560 PRINT VUSCI(SCTI, S 741 ,.5CTXI,S)*
7473 ;BKS;

15768 PRINT HSC(SI(TI.G6IHS+1,.5CTX, 6™
S+5) _:RETLURN

208686 REM alLaRM

2016 SETCOLOR 2.8 .,.16:S0UND €.56é.16
» 16

2828 FOR I=1 TO A7S:NEMT I

2038 SOUND 0.6 .,.0.0:SETCOoOLOR 2.4 ,160
tRETURN

T8 REM MODE SELECT

TH10 IF MH=-6F THEN aF= NOT CNnF2? :RET

URN
T2 PRINT ""ASELECT MODE:*""
TOITHG PRINT PRINT * SET RILaRM""
TB846 PRINT :PRINT * SET DIME*""
TS0 PRINT :PRINT " IRETLUR N

IFe6e GOos5UB 7506
Te70 IF TS=CRS THEN PRINT "K' RETU
RN

109

T8O XIF TS=""A"" THEN 58606

TO90 IF TS=""T"" THEN 5500

166 GOoTO IO

48086 REM PM CORRECTION

4686168 TH=VALCTISCL1L,23) :TMS=ZRS

486268 IF TH2>23X THEN TH=TH—-2Z4:GOTO 4
a8z2za

48360 IF TH>11 THEN TM=TH-12:GOTO a4
256

48468 TM=TH

40560 IF TM=@ THEN TM=12

48660 TMS(x—LEN(STﬂs(TM)).Z)ZSTRS(T
M2

487068 TI=VALCTMSCI, X2 :PM=TH>11:RET
LHRN

S8086 REM SET aLaRM

S010 AF=1L:SETCOLOR 2Z.8.,.186: TMS=TasS:
GOSUB 6606606

S0Z20 TAS=TMS:SETCOLOR 2,4, 180:PRINT
TR IRETURN

SS868 REM SET TIME

5518 SETCOLOR 2,12 .,.10:TF=8:G0SUB S
88 : TMS=TIS

5526 GOSUB 60098 :IF TF THEN TIS=TMS
tGOSUB 6066a

5S5S3I8 SETCOLOR Z.,4,.10:PRINT ""B'"":RET
UHRN

6886 REM aALARMA/ATIME SET

66168 PRINT "'KN"":POSITION 15,FT:PRINT
sSAasc CTS=""T""2IHI4+1 , LTS=""T""IHI+9
3 i:MF—-@

68280 FOR I=1 TO 4:DCIX=—1:NEXT I

6836 TC1I=VALCTMS C1,22) :TCZ2=VvALCT
MSCIX,43)

6840 IF TC1)2>ZI THEN TC1) =T C1) —24:
GOTO 668640

60560 IF TCi>2>11 THEN TM=TC1) —-12:G0O
TO 66760

6686686 TM=TC1)

68768 XF TM=0 THEN TM=12

68688 PM=TC12211:TMS=ZRS

61606 TM5(3*LEN(5TR$(TM)),Z)ZSTR$(T
M2

61186 TMS(S—LEN(STRS(T(Z))),4):STR$
€T CZ2 2

6129 GOSUB 70066

6130 POSITION IS . 1S5S:PRINT APSC(PMM?
+1,PM*2+2)

61480 POSITION 1Z.,.19:PRINT HMS CMF*1
S+1L MF*1I+13I2

62006 GOosSuUB 7506

62108 IF TS="" "* THEN MF= NOT CMF2 : G
oOTO 613X6

6220 XF TS=""4+"" THEN TI(MFH+1)=TCMF+1
241 :GOTO 6300

110

62X IF TS=""—"" THEN TOIMF+1)_-TO(MF+1
2—1:GO0OTO 6366

67248 IF TS<>CRS THEN 6200

6250 TMS=ZRS

6268 TMSC(I-LENCI(STRSCTC1222 ,23=STRS
CTC1L3 2

6270 TMS(S—LENCSTRSCTCZ22) ,4)3=5TRS
CTC2Z2 2

6280 RETURN

630680 IF TC132>2F THEN TC12> =86

6316 IF TC1> <8 THEN TC1>»=23

620 TC2)=TCZ) " GOXINTCTC(Z2 7682

630 TF=1:G0T0O 6648

768080 REM STATIC TIME DISPLAY

7616 FOR I=1 TO 4:TI=-VALCTMSCI, X222

7020 IF TIK>DCIY THEN POSITION XI¥*7
—2,7:G05UB 15668:DC(I>=TX

70XT0 NEXT X:RETURRN

75008 GET 221, H: TS=CHRS (K> : RETURM

8006 DIM ZRS(6) ,TISC6) , TMS(CE6) ,TASCK
62

86018 DIM HSC16) ,USC14) ,BKSC(6) ,UPSC
52

8020 DIM APS (4 HMSC(Z6) ,5A45C18) ,CR
SC1Y , TS CA2

866 DIM TC(4) ,DC4Y ,5C2,62

86406 OPEN 111 ., 4,0, "K:""

8050 K=764:CRS=-CHRS (155> : POKE 752,

1

86608 SETCOLOR 1,68.,.8:SETCOLOR 2Z.4.,1
a

8168660 REM PRIMITIVE DEFINITIONS

8110 ZRS='""86068000"": TAS=ZRS:AaPS=""aMP
Mll

81380 HMS="QOITCE"MINUTESHOURS LA IThY
=3

8148 SAS=""SET ALARMSET TIME "'’

81580 BKS-""€€€€€3 " 1 UPS=""t 1+ >33 3""

8160 vS=" €4 <34 HBci+B<+B"

8176 HS=" s

85600 PRINT "'ARSETTING UP DIGITS"

85189 FOR I=© TO 2:FOR J=6 TO 6:REA
D X

8520 SCX,JXY-—H:NEHT J:NEHT I:RETURM

9696 DATA 1.1.1,6,1.1.1.,6,6,1,6,06,

9910162Tﬁ 1,6,1,1,1.6,1,1,6,1,1.,.&,

992916;Tn a8,1,1,1,6,1,6,1.,.1,6,1.,.a,

sozaléirn 1,1,9,1,1,1,1,1,6,1.6,6,

9649162Tﬁ i,1,1,1,1,12,1,1,1.,1,.1,86,
b B

111

[
jll

I
/{f: i (L
el ~ O

\ i
ST

\\ww\;\ﬁm\}m\\»:wm«m

[l
Vs A L

|

' v
W

N\ 4

Programmable
Characters

Customize the Atari Character Set

Enter cather ®, A, 2, X, ar 4

Thc Atari comes with a set of 128 characters. The reversed images of
these characters add 128 more for a total of 256 characters. This set of
characters is more than adequate for most situations. However, there
are times when a few extra characters would be nice (for space
invaders, for instance). Other times we may need to change the entire
character set. The Atari provides this capability. This chapter shows
you how to program custom characters on the Atari and gives you a
few ideas on how to use them.

113

How Characters are Stored

Each Atari character is made up of an eight-by-eight array of little
dots called pixels. Each pixel shows up on the screen as either the
background or character color. Pixel patterns are stored in an area of
Read-Only Memory (ROM) starting at location 57344. Each character
description is stored as eight bytes, each representing a row of pixels on
the screen. Within each byte, if a bit is set (1), then the corresponding
pixel will show up in the character color; if the bit is off (0], then the
pixel will show up in the background color. Figure 1 shows the Atari
letter ‘A’ as it appears on the screen in pixels and again in memory as
1's and 0’s.

pixels binary dec
. . 80600660600 a
- - 868116008 24
- - 86111160 606
- - 81168661106 1682
. - 811661106 182
. - 81111116 126
. - 811606116 102
...... - . 800080600 a

Figure 1

To see how the entire character set is stored in memory, load in the
program '‘CSDUMP.PC’ and RUN it.

You should recognize a series of large images of the characters with
the on pixels represented by white blocks (inverse spaces) and the off
pixels represented by periods. This program reads the bit patterns
directly from the character set in memory, byte by byte. A description
of how it works follows.

The location in memory that tells the Atari where to find its
character set is 756. Such locations are called pointers because they
literally point to where in memory information can be found. Thus,
such pointers actually hold locations themselves. But since the pointer
is only a single byte in size and, therefore, can hold a number only be-
tween 0 and 255 inclusive, this pointer can’t hold the actual location
of the character set. This is because locations themselves are two bytes
in length and can be any number from 0 to 65535. Instead, this pointer
holds the page number (a page is a group of 256 bytes) of the character
set. To find the actual location, we must multiply the value found in
756 by 256. Line 100 does this and stores that location in ROMCS. In
the Atari, the internal character set (ROM)] lies at location 57344, as in-
dicated by the REM statement. Therefore, the value in 756 should be
224 (what is 224 * 256?).

114

Line 200 initiates a loop that will point to the starting byte of each
of the 128 characters. Because there are 128 characters and each is
eight bytes’ worth of description in length, this program will output
exactly 1024 bytes of character description (0-1023). The STEP 8
modifier to the FOR...NEXT loop simply forces PTR to be the starting
byte of the characters. Note that the inverse characters need not be
stored. The Atari, when it needs one, merely reverses all the bits in
the description so that it comes out with the on pixels off and the off
pixels on.

Line 210 initiates a loop that will point to each of the eight bytes in
the description. ROMCS (the starting location of the character set) is
added to BYTE to get the actual locations in memory that hold the
descriptions. VALUE is the value at the locations of each of the eight
bytes in the character. The location is displayed followed by a number
of spaces for the picture. STORE is then given the value of VALUE
because VALUE will eventually be decremented to zero.

Line 215 sets a loop to pluck out each of the bits in the current
descriptor byte (VALUE).

Line 220 uses a technique known by most machine-language pro-
grammers to isolate the least significant (bottommost) bit in the byte.
It then checks that bit. If the bit is set, then it outputs a solid white
block followed by two ‘cursor-left’ characters. If the bit is not set, the
program then outputs a period followed by the two ‘cursor-left’
characters (line 230). This may seem strange, but what it is doing is
displaying the bits in the order that it shears them off; i.e., from right
to left. To do this it has to output the reverse space (or period) and then
back up over it twice — once to position the cursor back over the
displayed bit and once more to back it up to the position just before the
displayed bit. Thus, the next bit to be displayed falls right before the
last bit displayed. In short, the display process to the screen is tem-
porarily reversed.

The technique used to test the bottommost bit involves subtracting
the integer of VALUE divided by 2 and then multiplied by 2 from
VALUE. Dividing by 2 effectively shifts all the bits in the number to
the right 1 bit, thereby throwing what was the bottommost bit out past
the decimal point. Taking the integer shears off this fraction. When
VALUE is then multiplied by 2, all the bits are shifted left one space,
bringing a 0 in at the bottom. So far all we have done is zeroed the bot-
tom bit. To get what that bit was we subtract from the original number
the value just derived. This procedure will not seem so long and com-
plex once you have done it a few times.

Line 240 shifts VALUE to the right 1 bit so that we can test for the
next bit.

115

Line 250 moves the cursor to the right 11 spaces and then outputs
the original value. If the program is on the fifth byte displayed, it also
outputs the internal code for the character being represented.

Line 252 forces a carriage return to the next line.

Line 270 goes to the next byte in the character description. At the
end of the character it prints a blank line.

Line 280 goes to the next character.

Note that the characters are stored in the order of their internal
codes, not their ASCII equivalents.

Defining Your Own Characters

Since, as previously mentioned, the pixel patterns are stored in
ROM, an area of memory that can be only read from and not written
to, we cannot change the character set there. Instead, we change where
the Atari looks for its characters. This is done at location 756, which
holds the page number where the character set resides. That is, the
Atari looks at this location to find how to draw its characters. All we
have to do is change 756 so that it points to an area of RAM (Random
Access Memory) and put our new character set there.

However, it is not all that easy. The Atari can display its characters
in two ways: in graphics mode 0 (text mode) and in either mode 1 or 2.
When it is in one of the latter two modes, the Atari uses only the first
64 of its characters. Briefly, this is because when in these modes the
Atari displays every group of 64 characters the same way it does its first
64 characters — only in a different color. That is, the character whose
code is 33 (internal code for upper-case ‘A’ — group 1) looks the same
but is a different color than the character whose code is 97 (internal
code for lower-case ‘a’ — group 2). This means that for these two
modes, the only descriptions needed are those for the first 64
characters; only the first 512 bytes of storage are used.

Graphics mode 0 is another story. This mode displays all 256
characters and therefore has to access the entire 128 in memory (the
reverse images need not be stored). It uses the full 1024 bytes of
description found through location 756.

Here is the kicker. There is a rule for the Atari that states that when
using modes 1 and 2, the character set must reside on a 2K (512-byte)
boundary; i.e., it must start on a location that is a multiple of 512.
This means that location 756 must hold a number that is a multiple of
2. A similar rule applies to graphics mode 0. It states that its character
set must reside on a full 1K (1024-byte) boundary. So when using the
characters in this mode you must make sure that the value in 756 is a
multiple of 4. The beginner may find this bothersome.

116

Load and run the next program, 'FILLIN.PC’.

The first thing FILLIN does is to move the character set pointer
(location 756) to a blank part of memory. This causes all the characters
to appear as spaces. Next it outputs a screenful of text (which will be
totally blank), and then it loads the character set from ROM into the
memory just cleared. This causes the character set to more or less
‘ooze’ onto the screen.

To get a batch of free memory, FILLIN uses the memory used by the
string CS$. CS$ is dimensioned to a length of 2048, or some 1024 more
than the amount needed. This may seem wasteful, but it is neccessary
because the character set must be on a 1K boundary, and the actual
location of the string could be anything. Dimensioning it for 2048 in-
sures that there will be such a boundary somewhere within it. Line 60
then zeros that string, which really zeros the memory that holds it. We
now have a batch of memory (somewhere) that is zeroed.

Lines 110 to 130 find which character position in the string corre-
sponds to the 1K boundary. START holds the address of the string
(found through the ADR function). PAGE holds the page number of the
start of the boundary. This is found by locating the 1K boundary just
before the string, adding 1 to it (effectively finding the boundary just
INSIDE the string), and then multiplying by 4 to convert it from a
batch of 1024 to a batch of 256. This gives us the page number of the
boundary. CHRPOS (character position) is then assigned to the dif-
ference between the memory start of the string and the location of the
1K boundary within it. This yields the character position within the
string where the character set (when it is loaded) is to be stored.

Line 140 gets the location of the ROM character set. Line 150
causes the new character set to come from the 1K boundary in the
string CS$.

Lines 200 to 262 display the full screen of text.

Lines 310 to 330 fill in the character set, byte by byte and character
by character, at the boundary position in the string. As each byte of
description is loaded into the string, it is displayed on the screen.

Animation with Programmable Characters

Load in and run 'ANIMATE.PC’. Five space invaders will appear,
marching noisily across the screen diagonally. Watch them move their
arms, legs, and mouths.

As a rule, animation with programmable characters is almost
always very fast. This is because the entire description of every occur-
rence of any particular character on the screen can be changed with
only a few statements. As in the case of the moving space invaders, the

L7

movement of their arms, legs, and mouths is carried out with only one
statement. Here is a description of how it works.

Lines 10 to 140 put the Atari into graphics mode 2 and set up CS$ in
the same manner as FILLIN. The only difference is that, as previously
mentioned, modes 1 and 2 require a definition for only the first 64
characters (512 bytes). Also it need be on only a %K boundary, so the
string can be even smaller.

Lines 210 to 230 get the ROM character set and put it into CS$.

Lines 310 to 330 redefine the ‘$’ to look like a space invader with
his arms up.

Line 400 redirects the character set pointer to point to the string.

Line 510 sets up the invaders to appear on lines 1 through 10. X is
incremented so that the invaders will move diagonally. Line 520 clears
the screen and at position X,Y displays the invaders in each of the four
colors. To get a different color for each, I added 64, then 128, and then
192 to the internal code for ‘$’'. In mode 2 this displays the same
character but in different colors.

Line 530 sets up a 100-count delay so that they won’t move
too fast.

Lines 540 and 550 make the sounds and then move the invaders’
arms, legs, and mouths. This is done by changing the part of the string
that defines from their mouths on down to another string. If the in-
vaders are displayed on an even-numbered line they are forced to look
different; if they are not, the invaders remain in their original condi-
tion. Figure 2 shows the original space-invader character and which
bytes are altered to obtain the preferred movements.

_ghanges To

-

dec Pixels

Zz4
66
X6

.
PUNONSAN b

QAQQYEA N

WANON
ataOn

Figure 2

118

Multi-Colored Characters

The Atari has a mode that allows any position on the screen to
display a character comprised of more than one color. Up to four colors
per character and five colors total per screen (including the
background) are possible. The pixels that make up these characters
come in two sizes: the size of the pixels involved in graphics mode 2
text (which is internal mode 5) and the size of the pixels involved in
graphics mode 1 text (which is internal mode 4). Using mode 5 will
cause a picture to appear as though it were drawn in graphics mode 7
(the pixels are the same size) while using less memory. And using
mode 4 will result in a full-color picture twice the resolution of
graphics mode 7!

Load and run ‘'MCOLOR.PC’. After about a 20-second delay, a front
yard should appear, tree and all. This is an example of using an internal
mode 4 screen. Hit any of the numbers from 0 to 4. These numbers
correspond to the color registers found at location 708. Hitting them
will cause the value in the corresponding color register to be in-
cremented, so holding one down will cause all the colors to appear, one
after another.

These graphics modes cannot be accessed through an Atari BASIC
command. Instead we must modify something called the display list.
We modify the actual display mode, scan line by scan line, by POKEing
the correct values (either a 4 or 5) into memory. We have devised a
short machine-language routine to accomplish this. A comprehensive
explanation of this type of manipulation in BASIC is above the in-
tended scope of this book. However, for you more adventurous types,
the BASIC version of the machine-language subroutine is listed at line
32700, and the procedure used is briefly outlined in the follow-
ing paragraph.

The display list is a series of bytes in memory, the starting location
of which can be found in locations 560 and 561. Each byte in the list
corresponds to a graphics ‘command’ for the ANTIC chip inside the
Atari. The possible commands are: display (a line of any mode), display
blank lines, and jump (go to a different part of the display list). The
display list is structured as a sort of endless loop in memory that is ex-
ecuted by ANTIC. To get the new graphics mode we must be sure that
the display list is filled with the appropriate display commands. This is
accomplished by the USR statement found at the end of line 20. What
this statement does is to start executing the machine language found
in the string memory for M$. The number that follows specifies the in-
ternal graphics mode number. For our purposes this number will be
either a 4 or 5, where 4 corresponds to the smaller pixels and 5 cor-

119

responds to mode 7 pixels. If you wish to execute the BASIC version for
some reason (it is much slower), simply replace the entire USR state-
ment with a GOSUB 32700.

Each multicolored character uses eight bits of data, the same as
with the other characters. But because it has to account for color
storage, the eight bits are enough for only four pixels across. That is,
the bits are grouped into pairs, and each pair is then interpreted as a
color (see figure 3). The technical reason for this is that two binary
digits can hold a number from O to 3; hence we have four colors. There
is a way, believe it or not, to get a full five colors on the screen; this
will be discussed later.

Figure 3

Multi—-—colored chargcters

aa Color Reg. 4 CBack Ground?
a1 LT Reqg. @
16 LR Reg. 1
iz .. Reg. 2
or Reg. I »»x
Cal b2 CCc2
81 66 66 60
81 61 81 61
18 61 86 606
i1 &1 11 11
16 1 16 16
a6 61 11 66
e &1 11 @86
11 11 11 €6

az How the characters appear in
multi—colored mode.

b2 Binary coding fbits are ainter—
preted in pairsl.

c) How tThe characters appear in
tText mode 6.

% XTf bit 7 of T
1

he internal value
binary pairs that
1

set then all n
be the color of
n

is 1
appear as 11 w
color registenr

i
I i

120

Stop the program and type 'LIST 32700,32740’. Now change line
30030 so that the variable MODE holds a value of 5. RUN the program
again. The top half of the earlier scene should appear — but twice as
tall! This is an example of an internal mode 5 screen. Note that
because of its new size, only the top half of the picture is visible; the
bottom half is down near your knees!

This is how 'MCOLOR.PC’ works.

Lines 15 and 20 set up the screen in the specified mode and perform
most program initialization.

Lines 50 to 230 set up the new character set in CS$ as in the other
demos. This character set is a full 128 characters (1024 bytes) long.

Lines 300 to 396 redefine the characters ‘#’, '$’, ‘%’, and ‘&’ to tiny
checks, larger two-tone checks, and two solid blocks (different colors),
respectively. Note that these are the decimal equivalents to the binary
patterns used, so what these characters look like internally may not
be obvious.

Lines 1000 to 1270 display the front-yard scene.

Lines 2000 and 2010 get a number from O to 4 from the keyboard,
add 708 to it to get the location of its corresponding color register, and
POKE it with what it previously held plus 2.

Line 30000 is the initialization routine, line 32000 holds the bytes
in string form for the machine-language display-list alteration, and
lines 32700 to 32740 hold the BASIC equivalent of that altera-
tion routine.

Note that the picture is printed as though the Atari were in graphics
mode 0. This is because it thought it was! The Atari was put into
graphics mode O at line 20. It was our routine that took it out, but the
Atari still operates as though it were in mode 0. To prove this, hit
break and type LIST. What follows should be something in a program-
like format. You won’t be able to recognize anything because the
string that holds the character set literally moves when you stop pro-
gram execution. Now type POKE 756,224 (it will not look like what
you typed). This will redirect the character-set pointer back to ROM.
What should appear is the bottom part of the program listing, which
looks something like graphics mode O text, if you are in mode 4. If you
are in mode 5, the listing will be made of characters twice as tall. Also,
you won't see what you are typing unless you clear the screen, because
only the top half is displayed in this mode.

As mentioned before, in these two modes it is possible to display
five colors. Recall that when in text mode 0, the computer simply
displays all characters greater than 128 as the inverse of its lower
description. But how does the computer display inverse color

121

characters? What it does is simply to display all bit pairs within that
character description that are coded binary 11 as the color found in col-
or register 3 rather than register 2. This means that two characters
with the same data can be displayed in different colors. For example,
take a look at the apples in the tree and the smoke or the smokestack
and the tree trunk. Note that in the display the characters responsible
for these parts of the drawings are merely inverses of each other, but
the computer displays them as different colors. This applies only to the
characters made up of binary 11’s; it won’t work for them all.

Combining Some Techniques

The most time-consuming part of the entire program is the part
that loads the existing character set into CS$. Things can be speeded
up in two major ways. We can make the Atari load in only the
characters that it needs; i.e., the graphics characters and a few letters
(this can become cumbersome and will still take several seconds). Or
we can use the machine-language 'block-move’ routine that was used
to scroll the graphics mode 1 screen in the MASTER and Word Detec-
tive chapters. All that is needed is to perform a move about 1024 bytes
from the character-set default location (57344) to the 1K boundary
location within the string (PAGE * 256). The statement will replace all
of the lines from 200 to 230 and should appear as follows:

U = USR(ADR(M2$),ROMCS,256*PAGE,1024)

Refer to the section titled ‘‘Scrolling the Graphics Screen’’ in the
MASTER chapter for subroutine specifics.

Listing 1: Fillin.PC

189 DIM CS55C280482
Z90 GRAPHICS ©

58 REM ———ZERO STRING———

60 CSS=""'¥":CS55C(2048)=""9"":CS55(C23=CS
ScCc12

1680 REM ———CaAaLC. POSITIONS IN MEM-—

118 START=ADRCCSS5)

128 PAGE-TINT(START/1024+1) %4

138 CHRPOS-SPAGEXZS56—START+A1

1498 ROMCS-Z2ZS6MPEEKI(7S62

158 POKE 756, PaAaGE

2868 PRINT * This is just a short
Lblurb to show''

282 PRINT "‘you how the atari store
S its Cchr set.*'t

122

264

286

208

210

212

214

216

218
220

222
224
ZzZ26
2208
2306
232
22X 4
236
Z2X8
240
2509
260
262
264
I00
10
20O

ITIO

PRINT it & o also ShOows YO how =€
he chr set is*

PRINT *"*"loaded into strings. HNo
te that the'

PRINT ""loading of the cCcharacte
mrs iAs done in'*

PRINT ""the order of the intern
al CcCharactenr"

PRINT "‘codes. (This is NOT ASC
ITX.Y> This is"

PRINT *“*why the UPPER CASE lett
ers are done*"

PRINT ""first, and the lower ca
s5e lettenrs are""

PRINT "'done after."

PRINT ** NOTE THAT THE LOMER
CASE LETTERS"

PRINT "*MUST BE STORED SEPERATE
LY AS, INDEED,"

PRINT ""THEY ARE SEPERATE CHAaRA
CTERS, LOOK"*

PRINT "DIFFERENT, AND MUST THE
REFORE HAVE"

PRINT *“"DIFFERENT DESCRIPTIONS
IN MEMORY .""

PRINT "

SE LETTERSH

RS RBRRNEED NOT BE STORED A5 1]

HAT WOLULD BEWY

T F R TERIBLE WASTE OF MEMO

IRY WHEMNM THEYWY

T FS AR RE MERELY THE INUVERSE |

OF CHARACTERSHY

R AL AL READY STORED .4

PRINT " COETEEGELEEISECEER""

FOR Q=6 TO I1:PRINT CHRSC(27);:;C
HRSCQ) ; :NEHXHT Q:PRINT

FOR Q=128 TO 159:IF =155 THEN
PRINT "'B'; :GOTO 2Z64

PRINT CHRSC(27) ;CHRSCQ) ;

NEXT Q

REM ———GET ROM CHAR SET———

FOR PTR=© TO 1023

CSS CCHRPOS+PTR, CHRPOS+PTR)Y —CHR
S(PEEKC(ROMCS+PTR))

MNEXT PTR

29992 GOTO 2999

Listing 2: Animate.PC

1 DIM CSSC1624)

20 GRAPHICS 2Z+16:DEG

S8 REM ———ZERO STRING———

60 CSS=""¥''"':CS55C1624) =rrr LSS C2)=CS

Sc1d

188 REM ———CalLC. POSITIONS IN MEM-

123

118
12e
1309
148
200
218
220

Z2X09
Ieo
10
20

T30
926
400
416
S00
S10
S2Za

5306
540

S56

S22

START=ADR CCS5)>
PAGE-INTC(START/75S12%+1) %2
CHRPOS-PAGEXZ2ZS56—S5START +1
ROMCS=-ZS5G6PEEK(7S56)

REM ———GET ROM CHAR SET———

FOR PTR=©& TO0 S11
CSSCCHRPOS+PTR, CHRPOS+PTR)Y —CHR
S(PEEK{(ROMCS+PTR)2

NEXT PTR

REM ———REDEFINE $———

FOR PTR=32Z 7T0 I2:READ D
CSSCCHRPOS+PTR, CHRPOS+PTR)Y =CHR
SCD2

NEXT PTR

DaAaTA 24,606,189 ,126,60,24,36,66

REM ———REDIRECT CS POINTER———
POKE 756, PAGE
REM ———DISPLAY ON SCREEN———

FOR Y=1 TO 180:H=-H+1

PRINTY 26 ; CHRS (1252 :POSITION H,
Y:PRINT 226;""S E 4 2l S$"": SOUND ©
+8,6,06

FOR Q=1 TO 160:NEXT Q

XIF Y/7Z-INT Y722 THEN SO0OUND @&,2
480,160, 18: CSSC(CHRPOS+34 , CHRPOS+
X9y =S <{~S5S"": GOTO 590

SOUND 8,255,10,10:CSSCCHRPOS+3
4, CHRPOS+3I92) =4 (4A&58""

NEHT Y:H-B8:GO0OTO 5106

Listing 3: MColor.PC

i1e
12
Z9
Se
60

106

119
120
130
14
158
200
210
220

2309
00
Ies
10
X209
I

124

DIM MS$SC29) ,CS55C2048)
GOSUB X000
GRAPHICS O8:U=-USRCADRCMSY) , MODE)
REM ———CLEAR STRING———
CSS=""9¥"":CSS(2048) =""¥"":CS55C2)=CS
Scad
REM ———CALC. POSITIONS IN MEM-—
START=ADR C(CS52
PAGE=-INT C(START/1024+1) %4
CHRPOS-PAGEMZS56-START+1
ROMCS=-256PEEK (7562
POKE 756, PAGE
REM ———GET ROM CHAR SET———
FOR PTR=—G TO0O 1823
CSS SSC(CHRPOS+PTR, CHRPOS+PTR2
=CHR SC(PEEK C(ROMCS+PTR2)
NEXT PTR
REM ———REDEFINE 32,5 ,#%x, & ——
RESTORE 326
FOR PTR=2Z4 TO 55
READ D
gSS(CHRPOSprR,CHRPOSprR):CHR
D>

T4 NEHKT PTR

928 DATA 68,17,68,17.,.68,17,68.17

22 DPATA 165,165,165 ,165, 960,20, 26,
26

X924 DATA 255,255,255 ,255,255,255,2
55,255

X926 DATA 85,8%5,85,85,85,85,85,85

16800 POKE 82Z,1:PRINT ""Enter either
e, 1, 2, X, or 4*'

1618 PRINT :PRINT :PRINT

1106 2> ** -]
- U .ll

1118 2 *° 10 ;o 0O
e m - c--

1120 7 ** O ST N _-—
- Dll

1136 7 " O O\ N - .

- D .ll

1146 72 ' /= 1 | . F AN

1156 27 1 S [0 # rr— \[4

1166 7 "'\ aaun e S HH O\
I--

1176 2 " JT nenttmninnt T ” L —
\ll

1180 7 " [saesenesana(ine N ”~
\ll

1192 2> = bacaignisd Faanaas @] P grrnccaaanancnaanald
IR

1208 =2 *° Pgracacccnzei o W b = 4
“ll

1216 2 ** e o 1 0O b = —r
1“'.

122z =2 ** O 0 «=x 0 1 555 | |
*nl-

1236 2?7 *° o 12 S$S5S5 b
Jul-

1240 7?7 ""EEEEEE/VEEEEELEEENn 555
REBREEZREEE &L

1258 =2 ** & wr & & 11 555
mn &II

1268 2 ** & v & & 812t 5SS
n &Il

1z7e 2 =t

2000 GET 21 .A:IF A48 OR A>S2 THEN
Z000

2010 A-A—-48: P=PEEK(708+A) :P=-P+2—235
6 (P=254) : POKE 768+A,P:GOTO 20
a6

THO000 RESTORE 3I2800: READ MS

0620 OPEN 111 ,4,0,""K:"

I08636 MODE=4

125

306960 RETURN
2806 DATAa hE6 L1 CTEHHE/TIEIOS 6] &

cl- Ilie

27606 REM ———SET UP DL FOR IR4———
IZ710 DL=-ZSEMPEEK(S61) +PEEK (5682
IZ2720 POKE DL+3X,64+MODE

273 FOR Q=DL+6 TO DL+2Z28:POKE Q.M

ODE: NEXT Q

XZ2746 RETURN

Listing 4: CSDump.PC

1068
12960
200
210
215
220
2X9

249
2508

252
270
289

126

ROMCS=2SG6PEEK (7562 :REM IS 573

44

? :PRINT ""MEM, BITS SET, DEC

IMAL, INTRMNML CODE""

FOR PTR=8© TO 1823 STEP &8

FOR BYTE=-PTR TO PTR+7:VALUEZ=PE

EKCROMCS+BYTEY : PRINT BYTE+ROMC
» 3" L ISTORE=VALUE

FOR BXT=68 TO 7

IF (VALUE—-INT(UVALUE/2)%2) THEN
PRINT "'Hf€¢"; :GOTOD 240

PRINT *"'.€€"";

VALUE=INTI(VALUE/23 : NEXT BIT

PRINT ""23%3*3333»333 3 ; STORE, : XIF

BYTE—PTR=4 THEN PRINT ""["";INTC

PTR/8Y ;""1"":GOTO 2708

PRINT

NEXT BYTE:PRINT

NEXKT PTR

Sorting

Information on Five Sorting Methods

Enter Last Name (Sgace)
First Name <{Return
and Phone Number 080—-00806—-06800
DONE when through

Name ?SMITH JOHN
Phone 7123-456—7896

Name Z2J0HNSON DAVE
Phone 7456—354—92
Name 7?alLLEN aL
Phone ?73I55—-554—8898
Name ?DAVIDSON DAVE
Phone 2?A73—-75S7—0197
Name ?ROGERS RANDY
Phone ?726—283—9382
Name ?2?DONE

“A picture is worth a thousand words.”” Often quoted, but how often
implemented? Here is a program that demonstrates, on the screen,
behind-the-lines activity of a sorting algorithm — a much taught and
well-documented topic.

Have you ever wondered how a computer keeps all of the informa-
tion stored on it in proper order? Have you ever wanted to sort a long
list into alphabetic or numerical order? Here are the answers to
everything you need to know about computerized sorting and
then some.

129

Operating Instructions

1.

LOAD the program BARSORT and RUN it.

. When the menu appears, press '1’ for bubble sort.

. Choose 'R’ for random numbers and sit back and watch as your

Atari puts the bars into descending order.

. To stop the action, press the spacebar; to continue, press it again.

. To watch the sample being sorted one step at a time, press ‘X'. The

program will do one step and wait for another ‘X’ or the spacebar
to continue.

. To become acquainted with the program, select the number for each

of the other sorts, then read on.

130

Background Information

To begin, we present some background of sorting theory including
information on five sorting methods: bubble sort, insertion sort, selec-
tion sort, Shell sort, and quick sort. A complete program is included for
each method.

Apart from specific details for each of the algorithms, the theory
connected with sorting has to do with efficiency. The sorts listed
above are more or less in ascending order of efficiency, bubble sort
being the slowest. Bubble sort, however, is the easiest to understand,
so we will spend the most time on it.

When discussing sorting, it is necessary to define a few
mathematical terms; please bear with us and we will make this as
painless as possible. The number of items to be sorted (the total
number of objects in a group with which the program deals) is called
'N’. Number of elements to sort = N.

To talk about the efficiency of any algorithm, you need to have
some measurable quantities. For sorting algorithms, concentrate on
the number of comparisons and the number of interchanges. A com-
parison occurs whenever one element of the group to be sorted is com-
pared to another element. The value of that second element can be
another member of the group, or it can be a very large or very small
number chosen specifically to sort the group above or below. Thus, a
statement such as

IF A(l) < A(l+1) THEN ...

is an example of a comparison of one element in the array A (in this
case the Ith element) to the next higher one (I+1). Also, a state-
ment like

IF A(l) = MAX THEN ...

is a comparison of the element A(I) to a large number, MAX.

An interchange occurs whenever a member of the group is moved
from one place in the computer's memory to another and, possibly,
some other element takes its place. The classic interchange can be
described by this sequence of statements:

TEMP = A(l)
A(l) = A)
A(J) = TEMP

131

assuming that I is not equal to J. Not all sorting algorithms use this
form, but usually there is an easily identifiable interchange step whose
repetition you can count.

Counting the number of comparisons and interchanges that take
place during program execution helps you measure the efficiency of
that algorithm. In addition, there is computer time spent in loop con-
trol and subroutine calls that is difficult to estimate except by em-
pirical observation.

Now that you are armed with a few terminological weapons, we
shall present some of the sorting buzz phrases. Do not be alarmed if
they sound Greek. They are background information only and are not
necessary to the operation of the program itself.

If you count the number of comparisons made during the sorting of
a group by a particular algorithm, it may turn out that N2 (N squared)
comparisons are needed. This means that '‘on the order of’’ N times N
comparisons are needed to sort an array of size N using that parti-
cular algorithm.

Another type of algorithm may use a different amount of com-
parisons called N * (log, N) — N log N. This is N multiplied by the log
base 2 of N, a smaller number than the previous example, take our
word for it. Why should you be interested in these numbers, and what
is the significance of the difference between them?

Look at table 1. It shows values for N, N2, (log, N) and N * (log, N).
Assuming that the overhead from one algorithm to the next is relatively
constant, you can see that there is an ever increasing difference be-
tween N2 and N log N. To make the comparison more concrete,
assume that a comparison costs .001¢, and that you need to sort an ar-
ray containing 1,048,576 numbers. Using an N? sort will cost
$10,995,116.27, while using an N log N sort will cost $209.72. Of
course, a single comparison on today’s big computers costs con-
siderably less than .001¢. But even at .0000001¢ per comparison (a rate
of 1¢ per 10,000,000 comparisons), the cost will be 2¢ for an N log N
sort and $1,099.51 for an N2 sort! With that kind of differential, you
can see why a commercial sorting program would not use an
N2 approach.

Bubble Sort

This algorithm is probably the most widely known and easiest to
understand of all sorting algorithms. Assume that N elements, which
are denoted by A(1), A(2), A(3), ... A(N), are to be arranged in ascending
order. This sort operates by sweeps through the array, causing various
elements to ‘'bubble up’’ in the process . For each pass, at least one ele-

132

ment is guaranteed to be placed in its final sorted position. At the heart
of each sweep is the idea of comparing two adjacent entries in the array:

Al) > Al +1)

If A(I) is greater than A(I+ 1), then the two elements are known to be
out of correct order and must be swapped. This is accomplished by the
classic interchange mentioned previously and illustrated here in
BASIC (see figure 1).

100 IF A(l) < = A(l+ 1) THEN 140
110 TEMP = A(l)
120 A(l) = A(l+1)
130 A(l+1) = TEMP
140 ...

Figure 1

Now consider the number of comparisons necessary to arrange the
array into sorted order. First, you can make no assumptions about the
original array with respect to the relative positions of the members.
You must successively compare each element to the next higher one
until the end is reached. That is, you compare A(1) to A(2) and A(2) to
A(3), until you compare A(N-1) to A(N). Positions of various
elements will be swapped (using the code in figure 1); in particular, the
largest element in the original array will end up in the A(N) position
after the sweep is completed. To be convinced that this is true, ask
yourself, "'If the largest value is originally in A(]), then with what other
array elements will it be swapped?”’

After one sweep of the array, you have a picture such as that shown
in figure 2. You have partially sorted the original array. In fact, the
only sorted element is the last. On each subsequent sweep through the
array, one additional element is sorted. The last sweep is when A(1)
and A(2) are interchanged, if necessary, to complete the sort. Since two
elements are arranged by this swap, and one by each previous sweep, it
requires N — 1 sweeps through the array to ensure that all elements are
sorted (see figure 3).

Since each sweep makes N -1 comparisons, the total number of
passes necessary to completely sort the array is (N - 1)2. In the case of
large numbers, this is relatively close to N2. This inefficiency of the
bubble sort is compensated for by its simplicity, especially in
understanding how it works. Consequently, it is quite acceptable for
sorting tasks involving only small values of N.

133

A :
'3 7 V 1 1= TE
May still need Largest numerical
further sorting. value of

original array.

Figure 2: Array after sweep of bubblesort

For those so inclined, there is a discussion of Quick Sort, another
sorting algorithm presented in the program (see page 142).

10 FOR | 1 TON-1

20 FORJ = 1 TON -1

30 IFAJ) < = AJ+1) THEN 70
40 TEMP = A(J)

50 A(J) = AU+ 1)

60 AJ+1) = TEMP

70 NEXT J

80 NEXT |

Figure 3

Sorting Implemented

The BASIC program in listing 1 provides implementations of visual
sorts for the following five methods: bubble sort, straight insertion
sort, selection sort, Shell sort, and quick sort. The visual display
arranges the array to be sorted as a table of 20 different bar lengths,
each bar length representing a number. The array table uses the ran-
dom number generator from BASIC. If you wish no repeated numbers,
the modification to the program is shown in figure 4.

134

FORI = O TOLL: B(l) = N : NEXT I

FORI = 0 TO N

L = RND(N + L):IF B(L) < = 0 THEN REPEAT
B(L) = I : X = L: GOSUB DISPLAY

NEXT |

Figure 4

All values generated are positive and less than 19. This is due to
horizontal space constraints of the display and does not reflect any
inherent limitations in the algorithms themselves.

Each of the sorting algorithms are carried out in the program. As
the array is sorted, the values displayed on the screen reflect the
changes taking place internally. Various colors are used to highlight
this. Each time a comparison is made, the bar being examined is
displayed in blue. If it becomes a temporary storage number, it is
switched to black. If it is swapped with another number, it changes to
green. In any case, when the program is through with that number, the
bar returns to red. Notice that some sorts hold temporary values longer
than others and a bar may remain black for some time. You can get a
good idea of how each algorithm does its job just by watching the pat-
tern of colors on the screen. In addition, each sort prints on the top
border of the display some additional information about what
is happening.

The program begins with a menu and asks you for your choice of
sort. After you have entered your selection, you may choose to have a
new random pattern or repeat the previous random pattern. This is so
that you can see the difference in the various sorts using the same pat-
tern. You cannot repeat a pattern until you have sorted a new pattern.

To stop the program at any point, press the spacebar. To restart the
sort, again press the spacebar. While the program is temporarily
stopped, pressing either ‘F' or ‘S’ to restart the program puts the sort
into 'F(AST)’ or ‘S(LOW)’ mode, respectively, to hurry the sort along
or make it sort each element slowly so that you can better understand
the steps involved in sorting an array. An X continues the sort for one
step and stops again, waiting for another X to proceed one more step or
for the spacebar to continue running.

A running total of comparisons and interchanges is kept at the top
of the screen while the sort is in progress. This is printed on the menu

135

screen for each sort while using the same random pattern. When a new
pattern is selected, the old totals are cleared. To get a clearer idea of
how long each sort takes, run the program through each type of sort,
always specifying the same random order. After all five sorts are done,
the menu page will contain a list of the running totals of comparisons
and interchanges. Examine this list and you will get an accounting of
how long it took each sort to complete its work. Timewise, an inter-
change is worth approximately two comparisons.

There is an additional sorting program supplied with BARSORT.
Phone Book is an example of a bubble-sort program that sorts
something useful — in this case a telephone log. The sort alphabetizes
your personal telephone book. When run, the program prompts you to
choose an option:

1. Create a new file (you can enter up to 20 names and telephone
numbers).

2. Add, change, or delete names (you can alter a file that you have
already created).

3. Load a file already saved on tape (you can load in your telephone
book to look up numbers or make changes).

4. Save file to tape (you can put your tape recorder in record mode and
save your telephone book on tape).

5. Sort file (you can sort the file into alphabetical order). If you want
the file saved alphabetically, you must resave it at this time.

There are several points of interest in this program that do not
occur in the other sort programs. The change-entry routine in lines
4000-4520 allows for a RETURN to indicate that the current entry is
OK and does not need to be retyped. The entry is changed only if
something new is typed in. Lines 7040 and 7050 set uppermost
boundaries for the names and phone numbers so that there is sure to be
an entry larger than any typed in. Lines 7130 and 7140 exchange both
the name and the telephone number.

Telephone Book Variable Usage

Constants

CURSOR Location controlling cursor appearance
SIZE Size of file

B§ String of 20 spaces

Variables

A Flag for visual or normal sort

1\?()

AA
I

J,K,L

Z

A$

F$

N$

P$

T$
TEMP$

Flag for name or number sort
Number of names in file
Loop counters
Input-character code

Input character

Name of file

Name field

Phone-number field
Temporary input string
Temporary sort string

Bar Sort Variable Usage

Constants
LL
B$
C$
Q$

Variables

A

CO

F
IJ,K,L,WW
M,SP, T,SP,V
P,QQ

Q

QT

SW

X

Z

A%

CO$

SW$

X$

Arrays
Al)
B()
COf)
S()
SP()
SW()

Maximum number of bars
String of multi-colored dashes
String of spaces

Names of sorts

Vertical printing coordinate
Compare counter

Flag for bubble sort done
Loop counters

Temporary storage
Partitions in quick sort
Menu selection

Delay counter

Swap counter

Color code for printing bars
GET character code

Input character

Formatted CO for printing
Formatted SW for printing
Single-step flag

Random array for bar lengths
Current bar lengths

Table of compares

Stack storage for quick sort

Array for span lengths in Shell sort

Table of swaps

The Bar Sort Program

The subroutine at line 1000 controls all the screen printing during
the sorting operation. The variable A controls the vertical displace-
ment of the print line; each line is printed A lines down from the top of
the screen. Some sort routines may unknowingly send subroutine
1000 a value in A that is greater than LL, the last bar allowed. Line
1000 checks for this case and performs a RETURN if necessary. Line
1010 POSITIONS the cursor at the beginning of row A. It then prints a
row of dashes, whose length is specified by B(A) and whose color is
specified by X. B$ is a string of dashes that are used to make up the bar
lines. The amount of line printed (B(A)) corresponds to the random
number assigned to that position in the array. C$ is a line of spaces and
is used to fill out the rest of the line, which erases any previous lines
that might have been longer in length. Lines 1020-1030 convert the
value CO, the number of compares, and SW, the number of swaps, into
3-character, right-justified strings. Line 1040 prints the compares and
swaps at the top of the screen.

The input subroutine at line 2000 looks for certain key characters
that tell the program how to proceed. An ‘X' is the single-step
character and causes the program to proceed only until the next print
subroutine call. A space is the indicator to pause in the sort until
another key is pressed. The ‘F' character (for FAST) sets the delay
timer QT to 1, the smallest possible delay. 'S’ (for SLOW) sets the
delay timer to 200. The subroutine is also called at line 2030 to read a
key from the keyboard during menu choices.

The subroutine at line 3000 prints the compare and swap totals
next to the menu names. The subroutine at line 4000 clears the com-
pare and swap totals when changing random patterns. Line 6000 ini-
tializes the array with random numbers between 1 and 18.

Bubble sort is at line 7000. The compare is made at line 7020 and
swap, if necessary, at line 7060. The flag ‘F’ is set every time there is a
swap. If the sort goes through the entire loop without a swap, then it is
finished and the flag returns unset and, in line 7040, sets the loop
counter to LL, which finshes the sort.

The straight insertion-sort subroutine begins at line 8000. The
compare is made in line 8020 and elements are swapped in line 8040
when necessary. T is used to hold each succeeding element while the
compares are made back to the beginning of the array to see where the
current T line is to be inserted.

The selection sort saves the largest line currently found in M. The
compare is at line 9030 and swapping is done at line 9065. M is used to
store the largest element currently found, which is moved to the bot-

138

tom position at the end of each loop with the bottom position progress-
ing toward the beginning of the array.

The subroutine at line 10000 sorts by the Shell-Metzner method,
which searches the array by decreasingly smaller intervals. The SP()
array contains the intervals that are used in the loop counters. The
STEP increments of SP are 10, 6, 4, 2, and 1, which increasingly fine-
tune the sort until completed. The compare is done in line 10040 and
swapped, when necessary, at 10050.

Quick sort is located at line 11000 and is the most complicated sort
(see shaded box). Compares are made not only of the elements, but
also of the loop counters. In addition to swaps of the elements, one or
more of the elements may be stored on a temporary stack until a
suitable place in the array is found to put them. It is also the quickest
of the sorts.

Telephone Book

A sample program to demonstrate how sorting could be used in a
useful manner is included with BAR SORT. Load the program PHONE
and type 'RUN’.

Since we don’t have any files saved on tape, type '1’ to create a new
file. When asked for the name of the file, press return to accept the
default name of ‘D:PHONEFIL’. At this time you could enter up to 20
different people and their telephone numbers.

For this trial run put in your name, last name first as prompted. Do
not put a comma after your last name as that would indicate to the
Atari that you have two inputs on that line. After your first name,
press return. Then enter your telephone number in the form
000-000-0000. Press return after that entry also. Enter one other person
and number at this time. When prompted to enter name again, type
'DONE'’ in upper or lower case and press return. This will return you
to the main menu.

You have created a short telephone file of two names, which is in
the computer’'s memory but not yet saved. There are several options
listed on the menu that you can perform now. Choosing the second
menu selection will allow you to thumb through the file, one name at
a time. After each name and number is displayed, you may DELETE
the entry by pressing ‘D’, CHANGE all or part of the entry by pressing
‘C’, or CONTINUE through the names by pressing RETURN. During
the CHANGE operation, pressing RETURN signifies that the old entry
is acceptable; typing new information replaces the old entry with
the new.

The LOAD and SAVE options work similarly to the Atari Player

139

load and save. For the LOAD option, you must supply the name of the
file. Cassette-saved files must include the ‘C:’ before the name, and
disk-saved files must include the ‘D:’. Choosing the SAVE option
stores the file using the filename you supplied before creating it.

The SORT selection will perform a bubble sort on either the name
field or the phone-number field. You also have the option of watching
the sort or having the sort done more quickly and returning you to the
menu when finished. When in the visual sort mode, you must press a
key for each cycle through the sorting algorithm. This slows the sort
down enough so that you can see the interchanges.

Exit CLOSEs the keyboard device and returns you to BASIC in
graphics mode 0.

The Telephone Program

Line 10: SIZE may be set as large as memory allows to accom-
modate a larger number of names and phone numbers. Setting it to 21
here allows up to 20 names in a file. The other space is reserved for the
sort routine; it is used to hold a string of 'Z’s so that there is a name
within the file that is alphabetically higher than any of the others.
CURSOR is equal to memory location 752. If this location contains a
0, then the cursor is displayed. If it contains a 1, the cursor is invisible.
Line 20 DIMensions the strings that will be used within the program.
Line 30 sets up the character, background, and border colors. Line 40
OPENSs the keyboard as input device number 1 for use with GET
statements within the program. Lines 50 and 60 set up the strings N§
and P$, respectively, filling each with spaces. Line 70 creates B$ as a
string of 30 spaces for padding names that are less than 30 char-
acters long.

Line 1000 is the get-character subroutine. The program waits for the
single character A$ to be typed on the keyboard before RETURNing.

Lines 2000-2090 display the main menu and request an option
choice. Line 2100 first clears the variables A and AA, which are used in
the sort routine. It then inputs a character through subroutine 1000,
checking its value to make sure it is a valid menu number (between 1
and 6). Line 2110 performs a GOSUB to the appropriate subroutine,
using the VALue of A$ to calculate the line number to which it should
go. Then the menu is called again with a GOTO 2000.

Line 3000 is the routine to add names to the file. As in the LOAD
routine, a filename must be supplied including the ‘C:" or '‘D:’' that
should precede the name. Lines 3040-3070 print a few lines of instruc-
tion for the input, and lines 3080-3120 print the input prompts and
keep track of the number of entries.

140

Line 4000: The add, change, and delete routine lists the file names
one at a time and checks to see if you want to make changes or dele-
tions. If you type a 'C’, you may change the name and/or the phone
number of the entry just displayed. If you type a 'D’, that entry will be
deleted from the file and the next one will be displayed. If you just
press RETURN, the next entry will appear. When the end of the file is
reached, the routine checks to see if you want to add any more names,
in which case it jumps to the add routine or else it returns to the menu.

Line 5000: As at the beginning of the file-creation routine, a
filename must be supplied. Line 5020 checks for a RETURN as input,
which assigns the default name of 'D:PHONEFIL’ to the file. Once the
name is supplied, the file is loaded into memory. The number of en-
tries in the file is stored in the first 30 characters of N$. The message
'File loaded’ is displayed on the screen for a few moments before the
menu is called again. Lines 6000 and on save the current file using
cither the name it was given upon its creation or the one given as it
was loaded from disk or tape.

Line 7000: A bubble sort is performed on either the names (N$
field) or the phone numbers (P$ field), AA =0 for name sort and AA =1
for number sort. The compares in lines 7070 and 7080 are executed
according to AA. The subroutine at line 7130 does the interchanges
and the one at line 7160 prints the display during the sort, indicating
with an asterisk the entry being compared.

Line 8000 CLOSEs device number 1 (the keyboard), returns to
graphics mode 0, and ENDs the program.

Programming Changes

The other sorts in the BARSORT demonstration could be im-
plemented in this program by substituting the code from BARSORT in
place of the bubble-sort code in the subroutine at line 7000. Make sure
that I is set to the number of entries currently on file.

If you have additional memory, other fields could be set up for an
address (including city, state, and zip fields) by adding the necessary
prompts. It might be especially useful to have the sort on the zip-code
field for mailing-list purposes.

141

Quick Sort

This sorting algorithm, invented by C.A.R. Hoare, is probably
the most elegant of the sorting techniques yet devised. It is of the N
log N class, based on a very simple idea and programmable in very
few lines of code. The greatest difficulty in understanding how it
works involves the details of applying the basic step that controls its
operation. There is a tendency to ask, ‘'You mean, that’s all there is
to it?’’ or "'What do you mean to simply apply the same procedure to
both halves?’’ Nonetheless, once appreciated, the algorithm is one
you will never forget.

The basic idea underlying quick sort is to perform interchanges
of non-adjacent array elements in hopes of bringing order to the
array more quickly. (You have already seen the inefficiency of inter-
changing adjacent elements in bubble sort.) The idea is applied
using the concept of partitioning. Since this is a difficult program-
ming concept, first we will describe a quick sort in an analogy that
everyone can grasp.

You have a pile of papers to alphabetize. The first step is to run
through all the papers, dividing them into two groups — those
preceding ‘M’ in the alphabet and those following ‘M’ in the
alphabet, including ‘M.’ You can see that if the first pile, A-L, is
alphabetized and the second pile, M-Z, is alphabetized, all that
would remain to be done is place the A pile on top of the M pile.
This is what quick sort does. Once the two subarrays are sorted, the
entire array is sorted since each subarray contains only elements on
its side of the partition.

In this case the partition chosen was ‘M.’ However, how do you
alphabetize the two subarrays? Here is where you have to have a
good imagination. Make a new partition in each sub-pile, then
divide those subarrays. For example, take the A-L pile and divide it
into two piles of A-E and F-L. When these are sorted into order, the
A-L pile is sorted. Next, divide the A-E pile into A-C and D-E. This is
continued until there is only one element in each partition, which
means that there are no further partitions possible and that the sub-
piles are alphabetically sorted. If this is done with each sub-pile,
eventually all the sub-piles are sorted and the whole array is sorted
alphabetically.

We will not attempt to prove that this is a much superior way to
sort; you can see that for yourself when you run the sample sort pro-
grams from the tape. Time both the bubble sort and the quick sort to
see which is faster.

142

Table 1

64

128
256

512
1,024
2,048
4,096
8,192
16,384
32,768
65,536
131,072
262,144
524,288

1,048,576

Powers and Logs of Numbers

N2

4,096

16,384

65,536

626,144
1,048,576
4,194,304
16,777,216
67,108,864
268,435,456
1,073,741,824
4,294,967,296
17,179,869,184
68,719,476,736
274,877,906,944

1,099,511,626,776

Log, N

6

10

11

12

13

14

15

16

17

19

20

N Log, N

384
896

2,048
4,608
10,240
22,528
49,152
106,496
229,376
491,520
1,048,576
2,228,224
4,718,592
9,961,472

20,971,520

BAR SORT Listing

1 GOTO 1720060

1888 IF A>LL THEN RETURN

186186 POSITION O ,A:PRINT B86;BS (K19
1L, H™19+BCAYD ;CSCBCAY +1 ,1913 ;

1820 COoS="" TICOSC4-LENCSTRS CCOY D)
P I3 =STRS CCO2
1838 SHS="" CTISHSCA-LENCSTRS CSHY)

y,II=STRS CSWI

18940 POSITION 7,.,0:PRINT 116 ;' '[Hila": C
05 ;" EMT": SKWS;

20008 IF HS=""H'* THEN XS$="""":GOTO0O 2Z03I
a

2010 Z=PEEK(764) : IF Z=33Z THEN POKE
764,255 :GO0T0O ZO0306

ZOZ0 FOR HWM=1 TO QT:NEHXHT HHWH:RETURN

2030 GET 1 ,Z:A5=CHRSCZ)

20480 IF AS='""H'* THEN HS=''H°"

2858 IXIF aAS='""F'* THEN QT=1

286608 IF AS$=""S"'"" THEN OQT=208

2076 RETURN

I IF COCI>»)—HG THEN PRINT ®#6:RETU
RN

I8160 POSITION 15-LENCSTRSCCOCI>»D)D,
IMZ+4 :PRINT 6 ;STRSCCOCI2)] ;

FTOZB POSITION 19 LENC(STRSC(SWILXI232,
IMZ+A4 :PRINT 26 ; STRSC(SWCI2 2

I03ZT8 RETURN

40080 FOR I=60 T0 S5S:COCI>»)-AB:NEHXKT I:R
ETURN

6009 FOR IXI=1 TO LL:ACI>>X-INTILRNDC(8)
18+1) :NEHT IX:RETURN

7860 FOR J=1 TO LL:F=ZO:A=-1:H=-1:G05
uBg 1866686 :FOR L=-1 TO LL—J

70160 COoO=COo#+#1l:a=-L#+1:XKX=2Z:G605UB 1609

70620 XF BCL)>BCL+1) THEN GOSUB 786
a

78I H=-1:GOSUB 16600 : AL i H=-8:GO05UB
1000

70480 NEHKT L:A-L:H—-H9:GO05UB 16808 : IF
F=-®& THEN J=-LL

7058 NEHXHT J:RETLURN

960 AL HZ=-IZ:GO0OS5SUB 19060 :T=BCLY :B (L
2=TBCL#1) :BCL #1232 =T

AT SHESHHL I ATLHL H=-I:GOoOS5UB 1800:
F-Ai:a=-L+1:RETURN

80860 FOR I=2 TO0 LL:T=BCIY) A=-X:H=1:
GOoOSUB 1964

86106 FOR J=IXI—1 TO 1 STEFP —1:C0=CO+
1:Aa=-J:H=2:G05UB 18806

868208 IF T>=BCJY THEN aA=-J:H=-8:GO0SUB
1908 : GOTO 8866

144

B8B3IB SH=SH+L:A=-I+1:H=F:GO0SUB 10606 :
A=-J:GOoS5UB 106066

86048 BC(JIJH+1I2=BCJ) :A=J+1:H=B:GOSUB 1
9606

8058 A=J:GOSUB 18608 :NEHXT J:A=X:G0S
uBs 160606

88068 BC(JH+12=T:A=-J+1:G05SUB 1088: NEX
T X

86760 RETURN

2660 FOR I=© 70 LL—1

2010 M=1:A=M:H=1:G0SUB 1600

2020 FOR J=2 7TO LL-—X

2038 A=J:CO=CO+1:H=2:GO0SUB 10808:H=
8:G05UB 108000 :IF BCJX<{=BI{M>» THE
N 926586

2048 A=-M:H=0:GOSUB 1800:Aa=J:H=1:G0O
SUBs 1866:M=J

2858 NEHXT J:IXIF XI=LL—1 THEN 99676

280608 SH=SMHMt+L:A=M:HX=3I:GO0SUB 16606

2065 T=BIM? :BICMI=BCCLL—I>:BCLL—-X2=T7T

28078 A=-LL-I:X=I:GOSUB 18800 :H=0:G0S
us 1666:A4=M: GOSUB 1600

2880 A-LLH%+1-TX:IF A<LL+1 THEN H=98:G
OosSuUuUBs 16606

28960 NEHXHT I:Aa=1:G0S5SUB 10668 :RETURN

1800686¢ FOR I=1 TO S:SP=SPCIY:FOR J=
SP TO LL

166816 T=B(L(J):A=J:H=1:G0SUB 1009

168268 FOR K=J—-5SP TO0 1 STEP —SP:IF
K=68 THEN 1680640

189838 A=K:CO=CO+1:MH=2:G0SUB 10006

108648 IF T>=B(C(K2 THEN 18686

188580 SH=SHt+L:A=-K:HX=IF:GO0SUB 1686:B
(K+SP2? =B CK2

1808060 A=-K+S5P:H=I: GOSUB 1886:H=-@:G0O
SuUug 16066

1968678 NEHXKT K

108686 H=9:GOSUB 100080 :BI(K+S5P2=T

18898 A-K+SP:H=-@:GOSUB 16066

186186 NEXT J:NEHXT IXI:RETLURN

116808 BI(LL+1Y="I2767:P=1:00=LL:TP=0

11918 IXF P>=Q0 THEN 11196

118028 K=QQ+L:V=BCPI : I=P: J=K:H=P:H=
A1A:G05UB 1006

11038 J=J—-1:XF BCJ>» <=V THEN 11650

1109040 A=J:CO=CO+1:H=2:G0O0SUB 10806: X
=8 :6G0SUB 1800 :GOTO 1163X6

11858 I=X+1:XF IXI>LL THEN 110676

1180660 A=X:CO=CO+1:H=2:G0SUB 10606
=8 :G05UB 1000

11876 IF BLCIXI2>=V THEN 116896

11980 GOTO 11656

1168986 IF J<=X THEN 111308

111980 A=X:SHW=SH+L:H=I:GO0SUB 10806
=J:G0SUB 1000:H—0

=

o

145

11118 T=BCI) :BCI>»>=BCJY :BCIJI=T

11128 A4=YX:GO05UB 18686:A=J:GO05UB 100
2:G0TO 1168329

11130 BCPY=-BCJ} :BCII SV ISHoSKHTL

11148 A=-P:GOSUB 18680 :A=-J:H=-I:GO05UB

1889 : H-0: GO0SUB 16806

111568 IF J-P<0Q0G—J THEN 111786

11160 SCYPH+A1I-P:SCTP+22—-J—1:P=J%+1¢
GOTO 11186

11270 SACTPH+H1X-JH+1:S5SCTP+2)-Qa:Q0=J—

11188 TP=TP+2:GOTO 11616

111968 IF TP=6 THEN 11216

1128008 Q=S CTP) :P=S5CTP—1) : TP=TP—2:G
oTO 116816

112189 RETURN

12600 GRAPHICS 17:SETCOLOR © .4 .8

126168 SETCOLOR 1.8.,.0:SETCOLOR 2,9,
8

128208 SETCOLOR IX,12 ,18:SETCOLOR 4,
a.14

120825 OPEN 11 . 4,0, " K:"

126368 DPIM aAaCz21) ,BC(Z213 ,5PC(5) ,C0C52 .,
SHWESY ., SC1e) L5280

12048 SPC12=10:SP(Z3=-6:5SP C3I2=-4:5P(C
4 =2 :5P (52321

126560 DIM QSCZIO) , B5C762 ,CS5SC20) ,A5C
132 ,H5C1D ,CO0S5C33 ,S5SHUS LI :BC212 =3
a

12060 O5=""BUBBLEINSERTSELECTSHELL
QuUICK **-

12878 "'BEEr—s—memPotRVNFoa ST —mT—

fomm o = TS S e e et

172088 CS="" e

12098 PRINT 16 ;" 'K LL=-260

1721090 PRINY 16" aTaARI BAR SORTER
an

121180 PRINT 6 :PRINT 6 :PRINT 16"
WHICH SORT? LTI

172128 FOR T=1 TO S:PRINT HB6:PRINT
HE: X" "":QSCIXE6—5, IX%6D ; : GOSUB
T80 :NEHT X

171360 PRINT BB6:PRINT ®#6;''6 QUIT*

17149 PRINT H#6 :PRINY 6 :PRINTYT 16"
CHOOSE" :CO=8:5HM=-0:G05UB 2636

12150 Q=Z-48:IF Q<1 OR Q»>6 THEN GO
SUB ZOIO:GOTO 12159

1721660 PRINT B6:""K"":XF O0=6 THEN END

12176 POSITION ©,3:PRINT #H6; " "WHICH
o um

12186 POSITION 9,6:PRINT 16; " [JANDO
M BAR LENGTHS"

146

12190 PRINT H6:PRINT 26 ;" [dEEP SAME
LENGTHS"

12200 PRINT M6 :PRINT H6 : PRINT 6 ;"
CHOOSE'" : GOSUB 2036

122160 IF AS=""R'* THEN GOSUB 660686:G0
SUB 4000:G0TO0 172240

12220 IF AS="'K'* AND BC1>) THEN 1224
a

12230 GOTO 12170

12249 FOR T=1 TO LL:BCIX>=-ACI) :NENXT
x

122560 PRINT G ;""'K " QS (O6—5, Q6D ; :
H=—@:FOR XI=1 TO LL:A=YX:GOSUB 18
90 : NEXHT X

12260 POSITION @,ZZ:PRINT 116" [Hily
X3 temp BEIVEYTD":

12278 GOSUB G6H800+0O1000

12280 POSITION 8,ZZ:PRINT 116" P
RESS AMY KEY k-

122960 GOSUB ZO83I0:COCOY=CO:SHIOI=SMW
tGOTO0 12090

TELEPHONE BOOK Listing

10 SIZE-ZZ:LL=-Z@:CURSOR=752

Z0 DIM NS C(SIZELL) ,PS(C(SIZEMLL)Y ,AS5C
1) ,FSC15) , TS C255) ,BSCLLY , TEMPS
fLL2>

386 SETCOLOR 1,0,.0:5ETCOLOR 2,122,106
ISETCOLOR 4,7.,6

468 OPEN 131 .4 .0 ,""K:""

S0 NS="" "":NS(C(SIZELL ,SXZEMLL)Y ="" "
NS CZ) =NS

60 PS="" "":PSI(SIZEMLL ,SIZEMLL) ="" "'
PSC2)=PS5

786 BS=""

88 GOTO 2000
1900 GET 1 ,Z:AS=CHRSCZY : RETURN

2000 PRINT ""'Riid Ata
=y

2610 PRINT "3

208268 PRINT "33 IME M LI

2030 PR PRINT "4+ 1. Create new
file"*

2048 PRINT ** Z. aAdd,.Change ., De
lete names"*

2058 PRINT " . Load existing
file""

Z060 PRINT "' 4. Save file""

2078 PRINT " 5. S5Sort file*"

147

ZO88 PRINT * 6. Exit""

29092600 PRINT ""4+4 Yyour choice?';

2160 A=0:A4A=-8:GOSUB 1968660 : IF nscoas
2449 OR ASCCASI >S4 THEN 216060

2118 GOSUB VAL CASI1890+2000:G0T0
2680

T80 PRINT ""'RName of file?"

Z0160 PRINT :PRINT *""{Return> for dJde
fault of D:PHONEFIL"

THZO0 PRINT :INPUT FS:XIF LENCFS)Y —@
THEM FS=-"'D: PHONEFIL"

ITezTe 1I=—1

T84 PRINT "'REnter Last Name ((5pac
e)l!

TS0 PRINT ""First Name <Return>*

TH660 PRINT "*and Phone Number 60006
6—68000""

ZTE70 PRINT ""DONE when through'': PRI
NT

T80 PRINT ""Name ""; :INPULT TS

ZTO90 IXF TS=""DONE"" OR TS=""'DOone'" OR
TS=""done*" THEN I=-I—-1:NSC1L.LL—1
P==STRSCIY :RETURMNM

0925 NS (XL L +1, XL 1L +LL—1Y=T%

ZT1668 PRINT ""FPhone ""; :INPLULT TS :PSCX
*LL'l'l_,I'l'fLL‘FLL—J.):TS

T1168 IF XI>SIZE—2 THEN RETURN

T1LZ9 X=X+ :GO0OTO0O ITO86

48680 PRINT "'KR*""; :J0=-@

4019 J=JF1:PRINT

46820 PRINT NSO L+1, 0LL+LL —12

49360 PRINT PSCOJOLL+1 , J™LLYLL—1)

40489 PRINT FPRINT ""[fhng or [Hel <Re
turn?> tTto continue*;

4858 GOSUB 1060 : PRINMNT

4968 XIF AS=CHRSC155) THEN 416086

46870 XIF AaAS=*"d'* OR AS='""D"* THEN NS C2
M1 L FAISNS CILLAYLL*1)Y : PSCOLL+1
I=PS OO HLLH+1LY : X=X -1 :0=J0—-1:GO
TO 4160

460880 IF asS<>'"c'" AND asS<>"*Cc*"* THEN 4
1686

480908 PRINT ""New name ""; i INPUT TS : X
F LENCTSI>?B THEN NS CJOLL+1 , 0L
L+LL—12=TS

4095 PRINT ""New phone "' :INPUT TS =
ITF LENCTSI>@ THEN PS OO LL+1L,)0
LL+LL—-12=TS%S

416880 XF J<I THEN 4610

4119 PRINT :PRINT "'Aadd more names?
Y/N""; :GOSUB 180060 :PRINT

4120 IF AS=""y"* OR AS=""Y"" THEN I=I+
L:PRINT :GOTO IH086

41368 RETURN

148

S5SO000 PRINT ""SMWhat is the name of T
he existing file?"

S816 PRINT AT N
lename for diskih

5S815 PRINT *""{Return?> for default o
f D:PHONEFIL"

S002Z2Z8 PRINT tINPUT FS:XIF LENCFSY —@8
THEN FS="'D: PHOMNEFIL""

S80I IF FSCL1L,23<>"'""C:"* THEN S056
5048 PRINT ""Insert file tape and | =4
ress <Return?> *""; :GET 111, Z
50958 OPEN 12 ., 4,0 . FS:NS= " :pS—s.. TR

AP 51680 :INPUT RB2:SIZE
50680 INPUT BZ; TS NSCLENINS)YH+1)=T5:
INPUT B2, TS:PSCLENIPS)Y +12=TS%5
S8760 GOTO S066
51680 CLOSE BZ:XI=-VALINSCL,LL—132 :PR
INT "'File l1o0aded"*
S118 FOR J=1 TO IO :NEXT J:RETURN
68008 PRINT "‘KSaving file"

68018 IF FSCL,2)<>"*'C:*"" THEN 6838
680268 PRINT ""Insert file tape and p
ress <Return?> "*;:GET 1t1.Z

6838 OPEN 112 . 8.0,.FS:PRINT 122 ;S5IZE
686489 FOR J=1 TO LENICNS) STEP 2Z00:K
Z=J*199:XF KIXLENICNS) THEN K=LEN

CNS2

68508 PRINT M2 NS CJ. K :PRINT tZ:PSC
J, K2

6860 NEHXKT J:CLOSE M#Z: PRINT "‘File =S
aved as ""“;FS

68790 FOR J=1 TO IO :NEHT J:RETURN

7000 IF NSCLL+1.,0LL+#12="" ** THEN PRI
NT :PRINT tPRINT ** NOo Fi
e to Sort "";:; :GOSUB 16868606 :RETUR
N

Y160 PRINT ""KVisual SORT YN 2" o:
GOSUB 16800:IF AS=""y'" OR AasS—=""y-"
THEN A=1:POKE CURSOR, 1

T2 PRINT tPRINT tPRINT "lames or
[Ahone numbers 2'; :GOSUB 1606680 :
XIF AS="'p'"" OR AS="'P*"* THEN an=1

7039 PRINT "'‘R"":GOSUB 7160

7040 NS CIMLLALL+1, TLLALL*Z2Z—1)=""'Z7
LT ZZZZZ" "

7050 PSCIMLLVLLYL, TLLALL™Z—1) ="": &

7868 FOR K=1 TO X:FOR L=-1 TO X

7078 IF AN=0) AND (NS CLLL+1,L™LL
FLL-AD>NS CL™LL +LL+1 , L*»LL+LL»2—
12232 THEN GOSUB 71386

7088 IF Aan=13 AND (PSS CLMLL+1 ,L*LL
FLL-AX2>PS CL™LLFLL +1 , L*LLFLLM2Z—
13223 THEN GOSUB 7130

7188 NEHT L:IF A THEN GOSUB 71608

149

71895 NEHT K

7118 PRINT "Press any key To conti
nue "";:GOoOSUB 1608

7128 POKE CURSOR.,O:RETURMN

7136 TEMPS=-NS (L™LL+1,LLL+LL—1) NS
CLL L +1 , 0% L+LL—12=NS CL™*LL+LL+
4,0 LL FLL2—213 NS CL™*LL+YLL+1 L%
LL*#L L #*2—-13="TEMPS

7149 TEMPS=PS CL™LL+1 ,L*LL+LL—1) :PS
CLM™LL+1 ,L®LL+LL—-1)=PS CL™LL+*LLY
2, L MLL*LL*2Z—1) :PSCLM*LLFLL+1 L
LL*+L 1L ®%2—13=TEMPS

FA1S59 RETURN

71680 POSITION 2.8

7176 FOR J=1 TO TO X

7180 IF J=—K THEN PRINT "% "'; :GOTO
F1L98
7185 PRINT ** Ll

71968 IF An=0 THEN PRINT NS CJOLL+1,
JMELLHLL A1)

7280 IF An=1 THEN PRINT PSCJMLL+1,
SJEELLHLL—1)

FT2Z2 NEXT J

7230 GOTO 1006

80660608 CLOSE 21 :GRAPHICS @:END

MICRO Calc

A Miniature Spreadsheet

aMoOuUNY A=-8006 .00
NUMBER OF____ M=-48

MONTHS

INTEREST XI=114.9

RATE
MONTHLY I=X/1200

RATE

DIVISOR DP=C1—-CAL4XI>2A—MI /X
MONTHLY P=a,D

AMOULNT

ROUND P-INT(P*100+.5) /166
POYMENT P2 210 .28

Editaing expression field.

Thc ""electronic spreadsheet’’ is one of the most popular types of
business programs available. The first program of this kind, VisiCalc
(sold by VisiCorp), made quite an impact on the business world and
many offshoots of that original program are now on the market. A
spreadsheet program lets you perform mathematical computations on
the video display, and applications range from accounting to inventory
to printing bar graphs. MICRO Calc is a miniaturized version of a
spreadsheet program. With the touch of a key you can perform even
very elaborate calculations. Once your sheet is defined for a particular
application, you can save it and use it again and again for that application.

Operating Instructions

1. Load in the MICRO Calc program and RUN it. Hit the ESC key and
then the console OPTION key. At the save/load/edit prompt type
‘L’, which signifies a load operation. At the filename prompt, type
‘D:MSAMPLE’. This will cause a demonstration page to be loaded
from disk and displayed as shown on the previous page.

2. You are now in the editing mode of the program. If you were to type
any of the keys now, the information on the spreadsheet would
change. Type ESC and at the following prompt hit the console
START key. This executes the instructions on the screen and after a
few seconds the number 210.28 should appear on the eighth line.
You have just calculated the monthly payment on an $8000 car with
a 48-month term and 11.9 annual percentage rate.

3. Hold down the CTRL key at the left of the keyboard and one of the
appropriate arrow directional keys at the right of the keyboard and
move the cursor over the ‘8’ in the first line. When the cursor is

right over the number, type ‘6’ to change the value of ‘A’ from
$8000 to $6000.

4. Press the ESC key followed by the START button again; the new
payment now appears on the eighth line.

5. This time position the cursor just to the right of the ‘11.9’ in the
third line and hit the DELETE key four times to erase the '11.9’.

6. Type in a new value of ‘9.9, hit ESC, push START, and see how
much difference a couple of percentage points makes.

154

Using MICRO Calc

Load in and RUN MICRO Calc now. If you have MICRO Calc in
memory already, then simply hold down the Shift key and the Clear
key to clear the screen. After a few seconds the screen will fill with a
series of lines arranged in two columns of twenty rows each. The
longer lines at the right are for the numerical expressions. The smaller
lines to the left are for comments. When the program is run, it defaults
to editing the expression field as indicated by the message line at the
bottom of the screen.

Notice the reverse underline (white block) at the corner of the ex-
pression field. This is the cursor and it simply shows where the next
character typed will be placed. The cursor is moved the same way as in
BASIC — through the use of the CTRL key and one of the four arrow
keys. Hold down CTRL and one of the arrow keys. Note that you can’t
move the cursor out of the editing field. This insures that the screen
stays neat. Later I will dicsuss an easy way to edit the comment field.

A Simple Example

For this first example we want to add two numbers and print the
result. The two numbers are labeled A and B and the sum defined as C.
First type the right-hand portion of each of the following lines, pressing
RETURN after each. Hit the ESC key and then the SELECT button on
the console. This switches the editing fields so that the comments can
be entered. In other words, if the expression field were in use at the
time, the SELECT key would enable you to edit the comment field.
Pressing the SELECT key again will allow you to edit the expression
field. The SELECT key simply toggles (switches back and forth) the
editing fields.

FIRST NUM__ A=-S
SECOND NUM_ B-=7
SuM_______ c=a+bB

c? 12

Editing comment field.

155

Now press ESC followed by START. The cursor disappears for a sec-
ond, the answer ‘12’ (the sum of 5 and 7) is printed after the ‘C?’, and
the cursor reappears where it was left before STARTing. To change the
value of A to equal 2, move the cursor over to the '5', type '2', and then
reSTART. The new answer (9) appears after the 'C?’.

The formula may also be changed. For example, to make
‘C=A-B’, move the cursor over to the '+’ and type ‘' —’. When you
reSTART, the new answer, ' —5’, appears.

Now let’s try a more practical example — calculating averages. Use
shifted CTRL/Clear key to clear the screen and type in the following.

START the program and the sum of the three scores, ‘486', will
appear after the S? on the fifth line and the average of the scores, ‘162,
after the V? on the seventh line. This procedure could be used to
calculate bowling scores. Any three numbers you want to average
could be used. Note that a more flexible method of averaging would be
to put the averaging lines further down the screen so they could be
adapted to handle more than three numbers. Do not worry about blank
lines since they are ignored.

Editing comment field.

To show how similar programming MICRO Calc is to writing
BASIC, here is a BASIC program that does the same thing as the
averages sheet above.

10 INPUT"FIRST SCORE'":A
20 INPUT*'SECOND SCORE":B
30 INPUT“THIRD SCORE":C
40 S=A+B+C

50 PRINT S

60 V=S / 3

156

70 PRINT V
80 GOTO 10

The Rules

MICRO Calc, as you can see, is easy to use. However, it has some
rules that must be followed to avoid errors.

1. Nothing should be typed after a ‘?’. That is where the program fills
in its result.

2. After an ' =', you must type either a number or a BASIC expression
that evaluates to a number. Any BASIC function that yields a
numerical result, such as TAN, SQR, RND, LOG, or ABS, may be
used. BASIC string functions may not be used unless they yield
a number.

Consult your Atari BASIC Reference Manual to learn about BASIC's

built-in functions and numerical expressions, then use MICRO Calc to

help you understand how they work.

3. Do not type in any BASIC commands or statements such as PRINT,
RUN, NEW, CLOAD, etc., as they will be executed at start time.
There are a few commands and statements that will work (such as
SETCOLOR| but for safety’s sake, the general rule-of-thumb is to
avoid them.

4. Never use a variable name that ends with ‘0’ as it could conflict
with the variables used by MICRO Calc itself. Sometimes you will
be able to get away with it, but results are unpredictable and total
anihilation of the program is possible.

MICRO Calc allows you to use BASIC storage locations called
"'variables.”” As in BASIC, each variable is uniquely identified by a let-
ter or series of letters of the alphabet. These letters may be followed by
a digit or a series of digits provided that the digit is not ‘0’. A variable
length is limited only to MICRO Calc’s line length (which is 25).
Therefore, all variable names must be somewhat shorter.

In our first example, when we typed ‘A =5, we assigned the value
of 5 to the variable A, we typed ‘B =6’ to assign the value 6 to B, and
we typed ‘C=A+B’ to assign the sum of A and B to C. Until it is
changed, 5 is substituted for A whenever it is used in an expression.
Also, B and C retain their values until they are changed.

As in a BASIC program, MICRO Calc looks at the lines on the
screen from the top down. Therefore, a ‘C?’ on a line before C is de-
fined will give the wrong answer. Also, if you assign a variable a new
value, the new value will be used in all subsequent calculations.

157

Editing

The MICRO Calc editing capabilities are a subset of the ATARI
screen-editing capabilities. Nearly all of the editing functions of the
ATARI were duplicated for MICRO Calc, from cursor movement to the
repeat-key function, where holding down a key for more than half a
second causes it to repeat. In fact, the only BASIC editing abilities that
are not in this editor are the scroll line left, scroll line right, delete line,
and insert line. These abilities have been omitted to insure that no
accidents occur on the screen.

The screen editor supplied is cursor-oriented. This means that
changing anything on the screen can be accomplished by moving the
cursor over to that section and simply retyping it. Cursor movement is
done by holding down the CTRL key while striking one of the arrow
keys. Remember that you cannot move the cursor out of the editing
field as the cursor merely ‘wraps’ around to the other side of the field.

There are three other keys that can be used to edit the screen. The
return key simply positions the cursor at the start of the line below.
The cursor will wrap to the top of the screen if it is at the bottom when
the return key is pressed.

The clear key clears the screen of all text, effectively starting you
off with a clean slate. This, as you might guess, is a potentially hazardous
ability, so its use has been safeguarded in a couple of ways. First, the
CTRL or SHIFT key must be held down when you hit the clear key;
otherwise the computer will simply ignore it. Second, the computer
will ask you if this is really what you want to do. If it is (you don't
want what is on the screen) type 'Y’; otherwise type any other key.

The delete key deletes the character just to the left of the cursor and
then moves the cursor over to that position. Also, to keep things neat,
it removes the lines under the character it erases. If you are at the first
character position of the line, the delete key simply wraps around to
the end of that same line to delete the character there.

Avoiding Errors

To minimize typographical errors, MICRO Calc disallows
characters that could cause trouble, such as lower- and upper-case let-
ters and CTRL graphics characters. However, if you are not careful it is
possible to make a RUN-time (or perhaps START-time) error. The pro-
gram will stop and an error message, similar to those found in BASIC,
will be printed. Because it uses the BASIC numbering system, the
typical error message will look like ‘?Error 11 at line 1. (You should
keep a table of the Atari BASIC error messages in front of you.) Should

158

one of these errors occur, the computer would simply inform you of it
and place the cursor at the start of the troublesome line. You are then
free to correct the problem and restart.

If you use parentheses to assign a variable, for example
'‘C=(A+B|)/(A-B)', be sure there are as many right parentheses as left
parentheses. Also remember that, unlike in algebra, multiplication
here must be explicitly indicated with an asterisk. Use ‘10*B’ and
‘5+*(A+B)’, not '10B’ and ‘5(A + B)’. If you use a variable that has not
been assigned in a previous line, its value is assummed to be zero.
Division by an unassigned variable will result in a ?DIVISION BY
ZERO ERROR.

More on ESC

So far we have used most of the ESC key's capabilities, though not
all. Now, when we hit the ESC key we get a line asking us to hit the
START, SELECT, or OPTION console key. As we have learned,
START causes the screen expressions to execute, and SELECT allows
us to select which screen we wish to edit.

Saving and Loading Screens

When you hit the OPTION button, the computer will display yet
another line of information asking you to type an ‘S’, ‘L', or ‘E’. The
'E’ is merely a failsafe enabling you to return to editing the screen.
Typing an 'S’ allows you to save your screen. As in some of the
previous programs in this book, you will be asked for a filename and,
as before, this filename is in the form of 'D:filename.ext’ for disk users
or 'C:’ for cassette users. Both the comment field and the expression
field are saved, so you will get back later exactly what you have typed.
When MICRO Calc has saved your screen, it will redisplay the line
asking for an 'S’, 'L’, or ‘E’. At this point you can continue editing the
screen, save the screen to another file (make a backup copy), or load
another screen.

To Load in a screen simply specify the ‘L’ option. You will be asked
for a filename the same way as when saving a screen. After the
filename is specified and the return key is hit, the loading will com-
mence. When MICRO Calc has loaded your screen, the newly loaded
screen will be displayed and editing can begin in the upper left-hand
corner of the expression field.

A Hint to the Efficient

We will give you a few pages of typical problems for MICRO Calc to
solve. Saving each one as you type them in is fine as this allows you to

159

keep the method for solving the problem for future use. But it is
cumbersome to have to erase and retype all the numbers when you
want to solve a different problem. Try saving the screens without the
numbers typed in first, and then when you load them in later all you
have to do is supply the numbers. For example, type in the averaging
screen previously shown without any values for the variables A, B, or
C; however, don’'t START it! Since the screen will not run without the
numbers, you will have to supply them each time the screen is loaded
in. This technique makes the screens more versatile for all conceivable
situations.

More Examples

The Pythagorean Theorem

According to the Pythagorean Theorem, ‘'The hypotenuse of a right
triangle is equal to the square root of the sum of the squares of the
other two sides.”” Since this is, in effect, an expression just like any
other, it can be handled by MICRO Calc. Enter the following lines,
pressing RETURN after each line.

SIDE a A=

SXDE B B=

PYTHAGOREAN C=SQR (AN +B*B)
THEOREM

éIDE C c?

Editing comment field.

Monthly Payments
You can calculate monthly payments of installment loans using
the following formula:

160

iis the interest rate per month and m is the number of months. The
principal (the amount you are borrowing) is divided by D to get the
monthly payment. Below is the screen you enter to perform these
calculations with MICRO Calc.

AMOULNT n=
NUMBER OF___ M=

MONTHS

NTEREST =

RATE
MONTHLY I=-X/71200

RATE
DIVISOR D=C1L—CAL4+XID>2A—MI /X
MONTHLY P=A/D

AMOUNT

ROUND P-INT(P*1006+.5)/7100
PAYMENT P

Editing comment field.

Before you try it, SAVE the screen as described above. When it is
saved, the program will return with the cursor where you left it. Enter
values for A, M, and I, START it, and the result will appear on the
eighth line. Now you can make a change (as you did with one of the
first examples above) and see the change in the monthly payment.

Once you understand MICRO Calc, you can use it to perform a
wide variety of repetitive calculations. Be sure that you save the more
elaborate screens, and you will develop a library of useful solutions to
just about any problem.

Here are two graphics: one shows an empty screen and the other is
a sample run. Enter your own data and try to calculate the answers.

INXTIAL vAaL KMETERS=50©

CONVERSIONS MILES=-KMETERS.6214
FEET=MILESS52860
INCHES=-FEET»>12

?

ouTPUTSE _____

W13

ITLE
EET
NCH

Mau

16
5? 126

Editing comment field.

Convert kilometers to miles, feet, and inches.
161

ALL ANGLES_ DEG
IN DEGREES

SIDE 1 a=1

SIDE 2 B=1

INCLUDED ___ X=9@

ANGLE

LawW Or U—AXAQA+B*B - 2XAaNB*C0S CH)
COSINES____ C=SQRCV)

OUTPUTE c? 1.41421356

Editing comment field.

Calculate another side of triangle, given two angles and included side.

IN DEGREES__ PEG

ANGLE 1 n1=-as

ANGLE 2 AZ=55

SIDE 3 53=10

CINCLUDED)

ANGLE I A3Z=-180-—Aa1-—n2

SIDE 1 S1=SINCAL1IHSI/SINCAID

SIDE 2 SZ=SINCAZIHXSI/ SINCAI)

ouTPUTSE S1? 7.18015036
5272 8.3178877°9

Editing comment field.

Calculate third side of triangle, given two sides and included angle.

START OFF __ DEG
IN DEGREES
CONSTANTS PI=X.1415927
D TO R_ CONSTL=PI/180
R TO D_ CONSTZ=-1806/PX
INITIAL pP=-1860M
TO RADIANS R=CONST1»D
R? .1415922686

BACK TO
DEGREES

D-CONST2Z™R

D? 179.999998

Editing

expression field.

Convert angle from degrees to radians and back to degrees again.

162

How the Program Works

MICRO Calc is composed almost entirely of two major routines: a
screen editor and an expression evaluator. The editor is constructed
simply and requires no explanation beyond the program description
that appears later. The expression evaluator, however, is the heart of
the program and, therefore, requires some explaining.

If you take a look at the listing, you will notice that all the variable
names end in ‘0. This is so that the variables used in the screen do not
conflict with the variables used by the program itself. The variables in
MICRO Calc are ended with a ‘0’ to insure that staying away from the
program variables is no handicap to the user.

Conlflicts with variable names is possible because MICRO Calc
uses the BASIC interpreter to evaluate the expression lines. Using the
interpreter allows the program to be much shorter and lets BASIC do
the dirty work. Since BASIC already has a way to evaluate the numeric
expressions in program lines, why not utilize this ability in MICRO Calc?

To get BASIC to do the expression evaluation, I had to do some
sneaky things. I had to suspend the execution of MICRO Calc, making
the computer think it was in BASIC’s immediate mode, then enter a
line, somehow ‘hit’ return over that line to enter it, and resume opera-
tion of MICRO Calc.

To make the computer act as if it were in immediate mode we have
to duplicate the environment of immediate mode exactly. This means
that we have to make another screen, type in a line, and hit return
(somehow). I lowered the top of free memory by POKEing location 106
(see program description) with a smaller number than was in it. This
allows us to have about 1K of protected storage that cannot be ruined
accidentally by the computer. The bottom 960 bytes of this storage is
the memory to hold our new screen. Then locations 88 and 89 are
POKEd with the location of the new screen. These locations tell
BASIC where to find its screen. Now, not only do we have another
screen way out in memory, but BASIC also regards it as one.

Emulating typing a line is almost as easy. Once BASIC knows
where to find the new screen, all we need is a PRINT statement fol-
lowed by an expression line from MICRO Calc's screen and the expres-
sion line appears in the new screen memory. Note that although
MICRO Calc is writing to a screen different from the initial one, you
don’t see it. This is because the Atari is still initially set up to show
you the original screen. So, no matter which screen BASIC is writing
to, you will always see the underlines and text of the screen editor. For
this reason I suggest you hit SYSTEM RESET every time you BREAK
the program during the START routine. Otherwise, BASIC may keep

163

outputting to the new screen and everything could get irreparably and
indescribably fouled up.

So far we have designed another screen to handle the tokenization
of the expression line and have actually printed the expression to the
screen. But how do we emulate the return key so that we can actually
enter in the line? Luckily, there is a magic location (842) that can
‘turn’ the return key on and off. When this location holds the number
13, the return key is activated and returns occur everywhere. And
whatever was written to the screen that happened to be ‘returned’
over, is entered as if you typed it in yourself. When this location is
reset with the number 12, the returns are halted. Try it! Type 'POKE
842,13" at the BASIC 'READY’ prompt and press return; the cursor
should jump through everything below it (entering everything along
the way) and continue down the screen, causing it to scroll repeatedly.
Hit SYSTEM RESET to regain control.

Now all the program has to do is output the line, followed by a
‘CONT’ (continue statement) a few lines down, POSITION the cursor
to the top of the screen, POKE location 842 with a 13, and then per-
form a STOP. The return key will enter everything in sight, beginning
with the expression line. After it has entered the expression line
(usually less than half a second) it then enters in the ‘CONT’ state-
ment, and execution is continued at the line following the '‘STOP’.
When this is done, location 842 is reset to the value 12, and the com-
puter redirects the pointer at locations 88 and 89 to point the initial
(edited) screen to display the greater-than sign and START-time errors
(if any).

If a question mark (‘?’) is discovered at the end of the expression
line, the computer merely outputs that line (without the ‘?') preceeded
by a ‘A990’. This causes whatever that expression evaluates to be
stored in variable A990. Then when execution is resumed at the line
following the STOP, instead of immediately proceeding to the follow-
ing line, MICRO Calc outputs the value of A990 right-justified (flush
with the right-hand edge) on the same line as was requested.

Fortunately, handling errors is no problem. Setting a "TRAP 1900’
right before the outputting is done to the new screen causes the com-
puter to go to line 1900 when it encounters an error. At this routine it
outputs a similar-to-BASIC error message on the message line and then
lets you in the editor — on the troubled line. The only problem with
this is that syntax errors (errors where BASIC simply refuses to accept
any of the line) are not TRAPable. Instead, look at the line following
where the expression was entered (or attempted to be entered). If there
is nothing there but blank spaces, then the line was entered correctly

164

and no error occurred. If there is something there, then there is an error
in syntax and execution goes to the special routine at line 1990.

MICRO Calc Variable Usage Table

Strings

FO$

MO$
STO$
TEMPO$
ULO0$
SPACEO$

Arrays
DX0,DY0

TBLO

QMO

Numerics

A990

CO

CONO

DX0,DY0

L0, MO

LLO
MAXO0

PO
STARTO
Q0,QQ0
QLO,QMO0

Holds the Save/Load filename

Holds the machine-language block-move routine
Storage string for the editing screen

Temporary string

Holds the underlines used in the editing screen
Holds an entire screen line of spaces

X and Y displacement for each of the four arrow key
combinations

Holds a value telling the printable status of each
character

Holds the position of the question mark within each
line

The variable to which the value of a ‘question mark’
expression line is assigned so that the value can be
printed out.

Holds the characters typed in during all editing and
single-

character input requests

Value of the console button location

Variables used to read in the value for the DX0 and
DYO arrays

Low byte and high byte of the starting address of the
hidden screen memory

Line length of the currently enabled editing field
Maximum screen position of the end of the editing
field’s lines

Position within STO$ of any particular character.
The starting address of the hidden screen memory
Loop variables

High and low byte of the current location of the
normal screen

165

TYO The type of the character just input, as derived from the

TBL array
uo Dummy variable used for USR statements
X0,Y0 X and Y coordinates of the cursor during screen editing

Program Description

Line 9 lowers the BASIC top-of-RAM pointer by 1024 bytes to allow
a new screen to be protected in high memory. This POKE effectively
drops the number of free bytes by 1K. The new screen is needed to
allow MICRO Calc to use the BASIC interpreter without seeing it.
Next, the computer is put into graphics mode 0 (text mode). This
graphics statement has to appear after the POKE statement so that the
new text screen can adjust itself to the new memory constraint. (For
more information, see the description for lines 1000-1990.)

Line 10 dimensions the various strings and arrays used in MICRO
Calc. STO$ is most important as it is the storage area for the edited screen.

Line 20 calls the initialization routine at line 30000. When the
routine is finished, execution then begins at line 300. (See the descrip-
tion for line 30000 for details on variable usage.)

Line 100 GETs a character from the keyboard in ASCII. TYO is
assigned a value from 0 to 7, depending on its ASCII code. If the value
is a 0, then the character received is not allowed and the program goes
back to 100.

There is a small routine to handle each of the seven classes of
characters. Line 110 executes the appropriate routine according to the
variable TYO.

Line 120 displays and stores a normal character. When it is done, as
with all these character routines, control is passed back to line 100 so
that another character can be input.

Lines 130 to 138 handle the arrow keys and the resulting cursor
movement.

Line 140 handles the DELETE key.

Line 150 handles the RETURN key.

Lines 160 and 162 handle the question mark.

Lines 170 to 174 clear the screen. Since typing the CLEAR key is
altogether too easy to do, the program prompts you to make sure you
want to clear the screen. If you type 'Y’, the screen will clear. If you
type any other character, the screen does not change. When the screen
is indeed to be erased, the storage area (STO0$) is filled with blanks.

Lines 200 to 226 display a one-line menu that appears on line 22
when the ESC key is pressed. If START, SELECT, or OPTION is

166

pressed, control is passed to lines 1000, 250, or 2000, respectively.

Lines 250 and 260 switch the active editing fields.

Lines 300 to 320 display at line 22 which editing screen is active.

Lines 1000 to 1990 are the START routine.

Line 1000 saves the location of the normal screen in variables QL0
and QMO.

Line 1100 sets up a loop to point to the starting character of each of
the 20 lines stored in STOS$.

Line 1102 displays the greater-than sign at the currently execut-
ing line.

Line 1103: If the line is blank the program proceeds to the next line.

Lines 1104 to 1106 clear from the end of the expression to the end
of the line so the printed results don’t remain forever.

Line 1108 sets up the new screen and clears it. Clearing is done by
filling the memory that holds it with some 960 zeros. This is
accomplished by using the move routine to move 959 bytes from the
top location (previously POKEd with a 0) to the location just below it.
The net effect is that the 0 is propagated throughout the 960 bytes.

Line 1110: If the expression ends with s '’, then GOTO value-
printing routine.

Lines 1120 to 1150 handle the rest of the expression tokenization
routine. The line is output and entered using the technique discussed
in the section titled ''How the Program Works."’

Lines 1200 to 1290 take care of outputting the value of the expres-
sion line.

Line 1300 deletes the remaining greater-than sign on the screen, re-
enables the cursor display, and goes to line 300.

Lines 1900 to 1910 hold the error-handling routines (except the
syntax error).

Lines 1950 and 1960 re-enable the old screen and set up the new
screen, respectively.

Line 1990 takes care of the syntax errors.

Lines 2000 to 2060 are the screen-save and load-menu options.

Lines 2100 to 2180 load in a screen.

Lines 2200 to 2220 save a screen.

Lines 2900 to 2910 handle the possible errors in saving and loading.

Lines 30000 to 30090 initialize the program variables and memory:

Line 30010 initializes the starting location of the new screen.

Lines 30010 to 30028 set up a table with the numbers to describe
each character to the editor. The table holds a number from 0 to 7,
where 0 is a non-displayable character. The ASCII value of the
character received from the keyoard is used as an index to this array so
that the numbers actually pair up to the ASCII values. That is,

167

TBLO(155) is a 6 (155 is the ASCII code for the RETURN key), which
signals the editor to GOTO the RETURN key handler, just as TBLO(65)
is a1 (65 is the ASCII code for the letter ‘A’), which tells the editor to
print the character normally.

Line 30030 sets up the initial values for the editing field.

Line 30040 reads in the direction displacements for each of
the arrow keys. The ASCII code of the arrow keys (28-31) is used as an
index to the arrays DXJO() and DYO() once 28 has been subtracted
from it. The displacements are either a 1, 0, or negative 1, depending
upon
the direction.

Lines 30050 to 30054 set up the three strings used by the program.

Line 30060 puts the initial values into the question mark array
QMO(). These values later hold the position within the storage string
(STO$) of the question mark (if any). In this way, during the START
routine, a quick check can be made to see if the lines indeed hold a '’.

Line 30080 OPENSs the Atari keyboard for input. This is so the char-
acters typed can be input one at a time.

Line 30088 sets up the screen initially with the underlines, etc.

Line 30090 POSITIONSs the cursor at the current X0(X) and YO(Y)
coordinates on screen, then performs a RETURN.

Lines 32000 to 32010 hold the data for the arrow displacements.
Each arrow (beginning with CHR$(28), the up arrow) needs a pair of
these numbers.

Lines 32100 to 32110 hold the machine-language block-move
routine (used in previous programs) in string form. (See the section en-
titled '‘Scrolling the Graphics Screen’’ in the MASTER chapter of
this book.)

Altering MICRO Calc

With just a little work MICRO Calc can be made to handle strings
as well as BASIC numbers. There are only a few things that need to be
changed. First, the method of assigning a string variable a value in
itself works without any modifications due to the way MICRO Calc
evaluates the lines. But we are not so lucky with the rest of the pro-
gram. The value-printing routine would have to be modified to print
strings. All you need to do is to check the screen line for a ‘$’ after the
variable name and right before the '?’ and assign that line to be the
value of ‘A990%’ instead of ‘A990’. Then, all you have to do is output
the string at the end of the line, using the same right-hand justification
technique used for outputting the numbers.

168

There are a few aspects about using strings with MICRO Calc that
are not so rosy. All strings on the Atari have to be previously dimen-
sioned to a certain character length via the DIM statement. This
means that they must be dimensioned either at the start of the MICRO
Calc program itself (at line 10 perhaps) or on the screen. If you do it at
the beginning of the program, you will be able to specify only a limited
number of strings (because of memory limitations). For example, only
the string variables A$, B$, and C$ would be allowed. If you are going
to specify the DIM statement at the top of the screen, then you must
be sure that after the initial STARTing of the screen, the DIM
statements are no longer there. No matter what you try, short of clear-
ing all the variables with a CLR statement (don't try this as it will clear
MICRO Calc's variables as well), you can only dimension a string
variable once. This may be more trouble than it is worth and it is for
this reason that string handling is almost entirely omitted from
MICRO Calc.

There are a few things that you can do with MICRO Calc that are
not transparent at first. At the start of the program itself you might
define a few constants such as PI=3.14159265, AVAGNUM = 6.02
F23, MYWEIGHT =450, or whatever you find necessary. Then you
can use the variables in any screen you wish without having to
predefine them. If you don’t want to alter the BASIC code, you can
create a screen file that is nothing but constant definitions. You can
Load it in, START it up, and then erase the screen for your other screen
work; the values will still be there for the following screens. Either
way you can build a whole library of values for future efficiency.

INITIAL T=8
I 0 L — FORQ=1TO90: T=TH+IXQ: NEXTO_
ourPuT T2 12285

Editing expression field.

169

MICRO Calc even has looping capability similar to that in BASIC,
provided the entire loop takes place on a single screen line. This means
that the lines will be a little tight, but there is enough room for some
FOR...NEXT loops. Clear the screen and type the short screen above
that calculates the sum of the first 90 multiples of 3. Note that spaces
were removed to conserve space in the line.

If you find that the 25 characters per expression line is not enough,
you can change the line length to be any size (up to 40 characters). First
you must change the screen initialization routines (so that the
underlines are displayed.

Next, the values of MAX and LL must be changed to fit the new
editing dimensions. MAX is the number of the last position on the
screen (probably 38 or 39) and LL is the line length (probably 38 or 40).
This enables the editor to wrap things around on the screen correctly.

If you no longer wish to have a comment field, you must disable the
SELECT key by changing the line number from 250 to 300. Otherwise,
changing the MAX and LL variables in the lines that handle the
editing-field switching will be enough.

Next the START routine must be modified so that it checks, out-
puts, and keeps track of the different lines. This is complicated since it
requires altering not only the print statements to the hidden screen
(see the program descriptions) but also other less obvious things, such
as positioning the greater-than sign (>) to the left of the executed ex-
pression line.

When you have finished the alterations, save the new program so
that in the future you have a choice between the two MICRO Calcs,
thereby allowing you to tackle both everyday problems (original screen
with comments) and scientific problems (full screen).

Listing 1: MicroCalc

I REM MCaLC

4 REM

? POKE 106,PEEK(C(186) —4:GRAPHICS @

186 DIM TBLOCZ55) ,S5TO8S (8068 ,DHOBCI) ,
DY@ CI) , TEMPOS (200) ,ULBS5C(25) ,F@
SC15) , MBS (S54) , QMO (20 , SPACEB®S C
4872

Z68 GOSUB 0060 :GOTO OO0

180 GET 121, CO:TYO=TBLOCC®) : IF NOT

CTY8>) THEN 10666

11686 ON TYS® GOTO 120,130,200, 140, 16
8,150,176

128 POSITION HO,YO:PRINT CHRS CcC@2 ;
PO (YO 1) %40 +HO+1L :STOS (PO, PO)
ZCHRS CCO) : HO-HO+1—LLOM(HO=-MAKO
2 :GOTO 1006

170

132
134
1LXT6
138

1406

150

160

162

170

A72

174

200

210

Zz220
Zz222
224
226
2508

2609
Toee

106

20

HOE-HO+DHOCCHO—2Z8) : YO=-VYO+DYOB L(CO—
283 : IF HO<{MAHO—-LLA+1 THEN XHO6=M
nHe

IF HO>MAKG THEN HO-MAXKO—-LLO+1
IF ¥Y8<1i THEN YO0=2@6

IF ¥Y8>20 THEN YO=1

POSITION HO.,.YO:PRINT ""2+«"; :GOT
0o 1066

HO-HO-AL+LLO(HOE-MAXKO—LLAG+1) : PO
SITION HO,YO:PRINT '""_€"; :P@=CY
-1 %48 +HO+1L:5TOS (PO, PBY="" "":G
oT0o 106

HO-MAHO —LLO+1L: YO=-YO+1—-20%(YO=2

@) :POSITION HO,YO:PRINT ""3€&'; :

GOTO 1006

POSITION HO®,YO:PRINT ""7?';: :HO=H

B+1L-LLOC(HO-MANXBY : IF HO<>MAXO
THEN PRINT ULOS (1, MAHO—XO+1) ;

PO (YO 1)M40+HO: STOS CPO ,POY ="7

TIOMBCYO) PO :POSITION HSO,YO:PR

INT *""2«'"; :GOTO 106

POSITION @&8,2Z2Z:PRINT "3 Clea

™ sScreen: are you sure...?"'";: G

ET 121, CO:XF CHRSC(COY <>"'¥Y'* THEN
a0

FOR Q8=1 TO ZO:POSITION 1,00:P

RINT UL@eSCL,11) ;" TtruULBeS 1L, 25
2 :NEXKT Qo
STAS="" " :5TOBS5S (8OO ="" "":S5TEBSCZI

=STOS:GOTO 300
POKE 752,1:POSITION ©8,22Z:PRINT

o 1| - -eldNIRE, [IEAEYI], or EXd
C1:Rd . .""; :POKE 752.0©

CONOG=-PEEK(S3I2792 : IF CONG8=7 THE
N 2106

XF CONO=-6 THEN 16800:REM START

IF CONO=5 THEN 250:REM .SELECT
IF CONO=IF THEN 2000:REM OPTION
GOTO 216

IF LLB=2S5S THEN LLO=11:MAXG=11:
HO-1:GO0OTO X606

LLO=-2Z2ZS5S: MANXO=-I8: HOe—-14

POSIXTION ©,22:POKE 752.,1:XF MA

HOe=-11 THEN PRINT "' Editing
CoOmment field."":POKE 752.0:G0

TO X220

PRINT "'I3 Editing expression
field."" : POKE 752.0

POSITION HO,YO:PRINT ""2€¢"'; :GOT
0o 1006

196060 QLO-PEEKC(S88) : OMB=PEEK (89) : POK

E 752,41

1186 FOR Q68=1 TO0O 8060 STEP 40
1182 GOSUB 192S5S0:POSITION 13, INTCOO

/48 :PRINT " 3€>3¢ '"°;

17l

11683 IF STOSC(QO+14,00+3I8) =SPACEBSC
1,252 THEN POSITION 14 ,INTIOO/S
4682 +1 :PRINT ULULEeSC1L,252 :GOTO 12

2a
11684 FOR OQQO=3I8 TO 14 STEP —1:XF S5
TS (Qe+QO06 , 08+006) ="" *"* THEN NE

KT Qe :G0T0 1168

1185 IF QO =38 THEN 1168

11896 POSITION QOO+ L, INTICOO/ 486) +1 1P
RINT ULOSCL,3I8—QQA2 ;

11688 GOSUB 19260 : POKE STARTO,0:U8=U
SRLCADRC(MAS)Y ,STARTE, STARTHO 1 , 95
22

11168 PE=-OMB CINTC(OO8,/7408) +12 : IF STBSC
rPe . P83 —-""2*"" THEN 1208

1120 POSITION O.,.4:PRINT STOSC(OH6t+14
LSOO +ITHY ;7 :? IPRINT ""CONT"

1138 POSITION O@.,.8:TRaP 1900:POKE &
42,13 :5T0P

1149 POKE 842 ,12:1IF PEEK(STARTO+2ZO
8 <>8 THEN 1996

1156 GOTO 1296

1200 POSITION 8. 4:PRINT ""A2928="";:57T
850 +14, OMBLINT (O848 +13 — 12 :
=z T ? :PRINT ""CONT"

1216 POSITION 8,08 :TRAP 1280 : POKE &
42 1T :STOP

1215 POKE 842,12 :IF PEEK(STaARTe+2a
8 <> THEN 1998

1226 GOSUB 1250:POSITION I9—-LENCST
RS CA990)2 , INTI(OB/746) +1 : PRINT A
2968 ; :GOSUB 19266

1290 NEXKT Q6 :POKE 752.0

130900 GOSUB 1950 :POSITION 13X, INTOOO
483 :PRINT NT """ '"*"; :POKE 752.,0:
GOT O X096

1928 GOSUB 19586

1992 POKE 842 ,12:POSITION ©,22:FPRX
NT X3 ?Error ""; PEEKC195> ;°°

at 1line "";INTCOQ8/7486) +1L;""_""; :P

OKE 752,90

19160 HE-MAHO—LLOG#+1 :YO-—INT OGO/ 482 +1
tPOSITION HO,YO8:PRINT "€« ; :1G0
TO 1686

1950 POKE 88.,.0L6:POKE 8§2.,.0M0: RETUR
N

1960 POKE 88.L0:POKE 89 MO :RETURN

1990 GOSUB 19508 :POSITION &8 ,22:PRIN

T X3 Syntax Error at line
e TNTCOQB /74083 +1 ;" .""; :POKE 752,

e:GoTO 19216

20800 POKE 75Z.1:POSITION 6,2Z:PRIN
T 3. .[€¥%] to save, [{WIEto l1oad
[{=] to edit.."";:POKE 752,00

172

2818 GET 1 ,CH8:IXF CHRSCCHY <>""5"" AN
D CHRSCCOY {>"'L"* AND CHRSC(CB) {>
"*E*"* THEN 206106

2038 IF CHRSCCO) =""E*'* THEN 3200

250 POSITIOCN €8 .,.2Z:PRINT "1 Ent
er filename. . .""; :INPUT FOS:TRA
P 29680

29060 IF CHRSCCO) ="'S'"* THEN 2Z00

20680 0OPEN 122 .,4.,0,F6S

21808 STHAS="" "":5TOS (800G =" "':5T7TO8S5C2

2=STOS:5T@S=""""

2120 FOR Q6=1 70O 4:INPULUT 222, TEMPAS

ISTOSCLENCSTOS) #12="TEMP8S : NEXT
Qe

2122 FOR Q=1 TO Ze:INPUT 22, 0MO: O
M Qe —OME : NEXT 0

2130 CLOSE RBZ:TRAP 655395

2159 FOR Q8=1 TO0 806 STEP 40

2152 POSITION 1,INTC(QO/7482+1:FOR Q
Ge=11 TO 1 STEP —1:XIF STeS Qe+
Qa8 , 0e+Qael =" ** THEN NEHXRT QOo:
? ULOSCL,112; :G0TO 2166

2154 PRINT STOSCQe+41.q8+a06) ; :IF Q
<11 THEN PRINT ULE8SC1,11—0QO08a
b B

Z21680 POSITION 14, INTI(O8/7402 +1:FOR
aQe=-3I8 T0 14 STEP —1:IXIF STOSLO
e+taoe . ae+q0ed =" " THEN NEHXT OO
8:7 ULOSC1,252 ; :GOTO 2Z17@

2162 PRINTY STOSC(QO+14,068+0002 ; : IF
Q<38 THEN PRINT ULBSC1L,3I8—Q0
a3

2164 IF Q8-/740=-INT (084682 THENMN PRIN
T

21706 NEMT Qo

Z180 LLO-Z2Z5:MAHKO=3I8:YO0=-1:HO=-14:GO0T
O Iae

22860 OPEM 112 ,8,0,.F8S%

2210 FOR Q08=9 TO I :PRINT 2;5T650Q
OZ00+1L, Q00200+ 208) : NEXT QO
2217 FOR QO8=-1 TO ZO:PRINT BZ:;0MBOCQ

83 :NEHT 06
Z2Z280 CLOSE RBZ:TRAP 65535:G0T0 3006
22080 TRaAP 6553S:POSITION 6,22 :PRIN

T "B ?File inputsoutput er
rort. .."

Z9168 FOR Q8 =1 T0 280 :NEHXHTYT Q00 :GO0OTO
2000

T8 REM ———IXINXIT———

I9019 MO=-PEEK C166) :LO=-80:STARTO=256
*MB

T2 FOR OO0V TO 26 :TBLACOOY —O: NE
HT Q@6

T882ZZ FOR Q=32 TO 94:TBLOBCOBYX —-1:N
EXT o

173

T802Z4 FOR Q=95 TO 2Z255:TBLOCOQG)Y —O0:
NEHT Q@6

TOO2Z26 FOR O068=28 TO XI1:7TBLOBCOBY —Z:N
EXT e

T8O0Z8 TBLOCZ72)=3:THBLOC126)=-4:TBLOC
632 =S5 :TBLAOCASSY=6:TBLOC1252 =7

T8I0 LLO=Z5:MAHO=-3I8:YO=-1:HO—-14

T804 FOR O09=-6 TO0 I:READ DHO,DYO®:D
HO (OO —DHe ::DYBLOQO) ZDYB : NEXHT 6

ITB042 READ MOS:POKE STARTe,60:UB8=US
RCADRCMBS) ,STARTO , STARTAO+1 , 259

2
30056 ULeS=""
-n

TOOS2Z STOAS="" "":5TBS5C8O0BY="" *"":5TASC
23 =5TBS

Ta8s54 SPACESBS="*

LA

T8660 FOR Q060=1 TO Z8:0MOCOQO) QO 1
IHA4O0+TO:NEXT QO

T80 OPEN 131 .4 .0 ,""K:""

TO0988 POKE 82 ,0:POKE 752Z2Z,1:FOR Q8=
1 TO 2ZO:POSITION 0,00 :PRINT "
TLULOeS CL ., 113 ;""" ULBS :NEXKT QO

TO0968 POKE 752Z,0:POSITIOM HO,YO @72
et I RETURMNMN

T2080 REM -~ aARROH RISPLACEMEMTS -

281686 DPaATA H,-1,€8.2,-1,6,1,6

TZ1868 REM ——— 65602 MOVE (FILL)Y ———

B N I =N = e ary L [y MK Ny M P O L1 K]
M F K P LF P X O 4P P %
»

174

A N N O U N C I N G

MICRO

The Magazine for Serious Computerists

Are you ready for a higher level of microcom-
puting? MICRO will excite you . . . educate
you . . . entertain you . . . challenge you . . .
but only if you are one of the special group
who want to go a step beyond the ordinary, to
expand their computing horizons infinitely!

MICRO is unique ... a practical how-to
magazine for serious users of the Atari (as well
as a few other serious personal computers). It’s
full of hands-on projects and programs with
the kind of depth you just don't find in the
usual computer magazines.

Ifyou . . .

really relate to your computer

want to know what makes it work

arent afraid to get your hands on itand in it
enjoy experimenting

want to continue improving your skills,
whether novice or expert

. then MICRO is designed for you

Numerous Complete Programs (worth many times the price of the subscnpuon) are included in
every issue. You get 12 informative issues for just $24.00 (a saving of $6.00 on newsstand prices).
Subscribe now and join other adventurous users on a higher level of microcomputing.

MICRO INK

PO. Box 6502 e Chelmsford, MA 01824 e 617/256-3649
VISA AND MASTERCARD ACCEPTED

ANNOUNCING THE ADVANCED VERSION OF:

MICRO CALC

FOR THE ATARI

These enhanced features include.

® Support of Loop-type operations
® Formatted output to a printer
® Automatic screen overlays

. and much more

In this book we ‘'ve shown you the fundamental version of an
excellent spreadsheet program to demonstrate the infinite uses of
this valuable concept. A complete package is available which
covers the more advanced features of the spreadsheet.

If you enjoyed using the MicroCalc in this book, you will find
the expanded version of this useful utility package invaluable.

Only $29.95 at your computer store, or order direct from:

MICRO INK
PO. Box 6502 @ Chelmsford, MA 01824 @ 617/256-3649

(Add $2.00 shpg/hdlg. MA residents add 5% tax) Visa & MasterCard accepted

Using the Diskette

Boot the disk operating system from your Atari System Disk and then
insert the Mastering Your Atari disk.

Type RUN "D:PROGRAM [return] to run any desired program. Type
the name exactly as given in the table below, and do not forget the "D:

which must precede the program name.

Press SYSTEM RESET when you are done with one program before you
RUN another.

Diskette Directory

Name Description

PLAYER Music playing program

SONG Sample song for PLAYER - Do Not RUN it
MASTER A Simple Guessing Game

WORD A Word Guessing Game

ANSWER An Intelligent Computer

BREAKUP An Animated Game

CLOCK A Digital Time Display

CSDUMP.PC Display of Atari Character Set

FILLIN.PC Demonstration of Character Set

ANIMATE.PC Demonstration of Animated Characters
MCOLOR.PC Demonstration of Multi-Color Characters

BARSORT Comparison of Five Sorting Techniques
PHONE Create and Sort by Name and Number
MCALC Micro Calculator Program

MSAMPLE Sample Screen for Micro Calc - Do not RUN it.

Note that SONG and MSAMPLE are data files used by PLAYER and
MCALC and will not LOAD or RUN.

Your Mastering Your Atari disk is WRITE protected. Before using
PLAYER, PHONE or MCALC, which permit you to create data files on
disk, you should copy these programs to another disk that can then be
run Unprotected.

COMPUTERS

Written and produced by the editors and programmers of MICRO
magazine, this new book is your guide to complete mastery of Atari
BASIC. Learn quickly how to write your own programs, modify them,
and add a wide assortment of features—all on your own.

You’ll learn by doing. Each of the eight BASIC projects listed
below begins with a complete running program ... a practical utility
or highly entertaining and challenging game. Then, detailed, easy-to- I
follow instructions show you how to add features. You can actually
create your own software for Atari!

Eight Basic Projects ... Dozens of Programs

MICRO CALC—a miniature spreadsheet program that makes
complex, repetitive calculations a breeze. Can be used to
experiment with BASIC functions.

MASTER—a guessing game for one or two players. Teaches
programming with random numbers and flags.

ATARI CLOCK—a deluxe clock that displays time in giant-size
numerals on the Atari screen. Teaches ON...GOSUB function
and character graphics.

V D DETECTIVE—Iets you discover the computer’s rule for
@ pting or rejecting the words you type. Also teaches string
manipulation functions.

ATARI PLAYER—shows you how to play musical tunes using
the Atari’s keyboard like an organ. Teaches you how to LOAD
or SAVE files, how to program music, and how to use cassette
data files.

SORTING—a ‘‘bubble’’ sort is demonstrated in two |
programs—one uses colorful character graphics, the other
sorts a telephone directory. Other sorting methods are also
described.

BREAKUP—use a paddle, a joystick, or the keyboard to play
this exciting bouncing-ball game and learn how animation is
accomplished with PEEKs and POKEs to screen memory.
PROGRAMMABLE CHARACTERS—Ilearn how to redefine
part of the Atari’s character set to add extra plotting resolution
while retaining most normal characters.

FOR ATARI 400, 800, AND XL SERIES
_’

Cover design by Mike Freeland
PRENTICE-HALL, Inc.,

Englewood Cliffs, New Jersey 07632
0 5
3
21898"55955

ISBN 0-13-559550-9

	Mastering Your Atari_000-0 [Cover - Front](300dpi)[Fixed-Up].tif
	Mastering Your Atari_000-1 (Inside Cover).tif
	Mastering Your Atari_001.tif
	Mastering Your Atari_002.tif
	Mastering Your Atari_003.tif
	Mastering Your Atari_004.tif
	Mastering Your Atari_005.tif
	Mastering Your Atari_006.tif
	Mastering Your Atari_007.tif
	Mastering Your Atari_008.tif
	Mastering Your Atari_009.tif
	Mastering Your Atari_010.tif
	Mastering Your Atari_011.tif
	Mastering Your Atari_012.tif
	Mastering Your Atari_013.tif
	Mastering Your Atari_014.tif
	Mastering Your Atari_015.tif
	Mastering Your Atari_016.tif
	Mastering Your Atari_017.tif
	Mastering Your Atari_018.tif
	Mastering Your Atari_019.tif
	Mastering Your Atari_020.tif
	Mastering Your Atari_021.tif
	Mastering Your Atari_022.tif
	Mastering Your Atari_023.tif
	Mastering Your Atari_024.tif
	Mastering Your Atari_025.tif
	Mastering Your Atari_026.tif
	Mastering Your Atari_027.tif
	Mastering Your Atari_028.tif
	Mastering Your Atari_029.tif
	Mastering Your Atari_030.tif
	Mastering Your Atari_031.tif
	Mastering Your Atari_032.tif
	Mastering Your Atari_033.tif
	Mastering Your Atari_034.tif
	Mastering Your Atari_035.tif
	Mastering Your Atari_036.tif
	Mastering Your Atari_037.tif
	Mastering Your Atari_038.tif
	Mastering Your Atari_039.tif
	Mastering Your Atari_040.tif
	Mastering Your Atari_041.tif
	Mastering Your Atari_042.tif
	Mastering Your Atari_043.tif
	Mastering Your Atari_044.tif
	Mastering Your Atari_045.tif
	Mastering Your Atari_046.tif
	Mastering Your Atari_047.tif
	Mastering Your Atari_048.tif
	Mastering Your Atari_049.tif
	Mastering Your Atari_050.tif
	Mastering Your Atari_051.tif
	Mastering Your Atari_052.tif
	Mastering Your Atari_053.tif
	Mastering Your Atari_054.tif
	Mastering Your Atari_055.tif
	Mastering Your Atari_056.tif
	Mastering Your Atari_057.tif
	Mastering Your Atari_058.tif
	Mastering Your Atari_059.tif
	Mastering Your Atari_060.tif
	Mastering Your Atari_061.tif
	Mastering Your Atari_062.tif
	Mastering Your Atari_063.tif
	Mastering Your Atari_064.tif
	Mastering Your Atari_065.tif
	Mastering Your Atari_066.tif
	Mastering Your Atari_067.tif
	Mastering Your Atari_068.tif
	Mastering Your Atari_069.tif
	Mastering Your Atari_070.tif
	Mastering Your Atari_071.tif
	Mastering Your Atari_072.tif
	Mastering Your Atari_073.tif
	Mastering Your Atari_074.tif
	Mastering Your Atari_075.tif
	Mastering Your Atari_076.tif
	Mastering Your Atari_077.tif
	Mastering Your Atari_078.tif
	Mastering Your Atari_079.tif
	Mastering Your Atari_080.tif
	Mastering Your Atari_081.tif
	Mastering Your Atari_082.tif
	Mastering Your Atari_083.tif
	Mastering Your Atari_084.tif
	Mastering Your Atari_085.tif
	Mastering Your Atari_086.tif
	Mastering Your Atari_087.tif
	Mastering Your Atari_088.tif
	Mastering Your Atari_089.tif
	Mastering Your Atari_090.tif
	Mastering Your Atari_091.tif
	Mastering Your Atari_092.tif
	Mastering Your Atari_093.tif
	Mastering Your Atari_094.tif
	Mastering Your Atari_095.tif
	Mastering Your Atari_096.tif
	Mastering Your Atari_097.tif
	Mastering Your Atari_098.tif
	Mastering Your Atari_099.tif
	Mastering Your Atari_100.tif
	Mastering Your Atari_101.tif
	Mastering Your Atari_102.tif
	Mastering Your Atari_103.tif
	Mastering Your Atari_104.tif
	Mastering Your Atari_105.tif
	Mastering Your Atari_106.tif
	Mastering Your Atari_107.tif
	Mastering Your Atari_108.tif
	Mastering Your Atari_109.tif
	Mastering Your Atari_110.tif
	Mastering Your Atari_111.tif
	Mastering Your Atari_112.tif
	Mastering Your Atari_113.tif
	Mastering Your Atari_114.tif
	Mastering Your Atari_115.tif
	Mastering Your Atari_116.tif
	Mastering Your Atari_117.tif
	Mastering Your Atari_118.tif
	Mastering Your Atari_119.tif
	Mastering Your Atari_120.tif
	Mastering Your Atari_121.tif
	Mastering Your Atari_122.tif
	Mastering Your Atari_123.tif
	Mastering Your Atari_124.tif
	Mastering Your Atari_125.tif
	Mastering Your Atari_126.tif
	Mastering Your Atari_127.tif
	Mastering Your Atari_128.tif
	Mastering Your Atari_129.tif
	Mastering Your Atari_130.tif
	Mastering Your Atari_131.tif
	Mastering Your Atari_132.tif
	Mastering Your Atari_133.tif
	Mastering Your Atari_134.tif
	Mastering Your Atari_135.tif
	Mastering Your Atari_136.tif
	Mastering Your Atari_137.tif
	Mastering Your Atari_138.tif
	Mastering Your Atari_139.tif
	Mastering Your Atari_140.tif
	Mastering Your Atari_141.tif
	Mastering Your Atari_142.tif
	Mastering Your Atari_143.tif
	Mastering Your Atari_144.tif
	Mastering Your Atari_145.tif
	Mastering Your Atari_146.tif
	Mastering Your Atari_147.tif
	Mastering Your Atari_148.tif
	Mastering Your Atari_149.tif
	Mastering Your Atari_150.tif
	Mastering Your Atari_151.tif
	Mastering Your Atari_152.tif
	Mastering Your Atari_153.tif
	Mastering Your Atari_154.tif
	Mastering Your Atari_155.tif
	Mastering Your Atari_156.tif
	Mastering Your Atari_157.tif
	Mastering Your Atari_158.tif
	Mastering Your Atari_159.tif
	Mastering Your Atari_160.tif
	Mastering Your Atari_161.tif
	Mastering Your Atari_162.tif
	Mastering Your Atari_163.tif
	Mastering Your Atari_164.tif
	Mastering Your Atari_165.tif
	Mastering Your Atari_166.tif
	Mastering Your Atari_167.tif
	Mastering Your Atari_168.tif
	Mastering Your Atari_169.tif
	Mastering Your Atari_170.tif
	Mastering Your Atari_171.tif
	Mastering Your Atari_172.tif
	Mastering Your Atari_173.tif
	Mastering Your Atari_174.tif
	Mastering Your Atari_175.tif
	Mastering Your Atari_176 [Recreated with Photoshop].tif
	Mastering Your Atari_177 (Inside Back Cover).tif
	Mastering Your Atari_178 [Cover - Back](300dpi)[Fixed-Up].tif

