
FOR BEGINNERS OR EXPERTS!

100'5 of Important
Memory Locations

MASTER MEMORY MAp™
by

Robin Alan Sherer

CONTENTS

How to PEEK and POKE 1

Input/Output Control Blocks (IOCB) 6

System Timers 12

Paddles, Joysticks and Lightpen Controls 13

Color Locations 15

Diskl/O 17

Player Missiie Graphics Registers 18

Paddles and Audio Controls 21

Floating Point Package (ROM) Entry Points 24

Handlers 24

O.S. Jump Instruction Addresses 25

Miscellaneous Notes 25

Basic Hints 26

Bugs in Atari Basic 27

Bugs in the Operating System 27

Notes on the Operating System 28

GTIA Chip 29

Graphics 9-11 29

Hex Conversion Chart 30

Entire Contents Copyright 1982
by

EDUCATIONAL SOFTWARE inc.

~ ___________________ Notes ____________________ ~

Hello students.
I am Professor Von Chip.

I've been asked to teach you all about
the wonderful things you can do with your
ATARI computer. My lessons are called the
TRICKY TUTORIALS TM, but before you study
them, I thought a nice reference book of all
those memory locations would be nice. I
have marked the most commonly used locations
in boldface to make them easier to find.

The first thing we will discuss is for beginners:

How to PEEK and POKE

This part is for those who have yet to learn how to use a memory map. Basically, a memory map is
a list of valuable locations within the computer (in this case an ATARI), that you can directly use for
various purposes. These locations are simply bytes (memory locations) of memory at a specific
place. If you have 16K of memory, then there are 16*1024 memory locations that you have to work
with. Although some of these bytes are used for the computer's Operating System, most of them are
blank for you to use in your programs. This manual will tell you about the ones that you can do
something with.

For example, you can quickly look down this list to find the memory location that contains the
value of the tabs. By following the included hints, you can change the "normal" value in that loca
tion, so that when you tab, the cursor now goes to the columns that you want. Please note that any
of the changes that you make are only temporary and will go away when the computer is turned off.

Now to explain how to make changes from BASIC. Say you look down the list and decide to
change location 752 (all numbers are decimal unless marked with a $ symbol, which denotes a HEX
adecimal number, or in a column marked "hex"). 752 is called CRSINH by ATARI, and its function is
to make the cursor visible or invisible. So, if at a certain point in a program you want to have a
display without the cursor, you simply have to look up the correct value to POKE into location 752.

In this example, the memory map says that you use the number 1 for off and 0 for on, so to turn off
the cursor we use 1. The basic instruction to put a number into memory is called "POKE" (see your
ATARI BASIC Manual). After all this long-winded explanation, you can now see how simple an example
of the actual BASIC code is:

10 POKE 752,1

-HINT-

Always use the decimal numbers with a POKE statement. This means that sometimes you will
have to convert between binary, hexadecimal, and decimal. I will offer some hints on how to do this
in a moment. Also, anyone memory location can only hold a number up to 255. Why? ... remember
that the ATARI uses eight bits per word (memory location), and eight bits in binary counts from 0 to
255 (internally, the machine uses binary). You may want to read a book on computer mathematics .
Because of this limitation, sometimes you must POKE numbers into two locations in a row. The
computer wil: know to put these two numbers together to form one large number. For example, look
at memory locations 741 & 742 which are called MEMTOP. These locations hold a number that cor
responds to the top of your available memory (called RAM . .. Random Access Memory). Since the
top of memory can be up to 48K (48*1024), a number well above the limit of 256 for anyone memory
location, the computer will need two locations to store the value. Yes, I know 256 for the first loca
tion plus 256 for the second doesn 't seem to add up to a large enough number to hold 48K, but the
computer takes each number in the second location and multiplies it by 256. Examples:

11 stored in the low byte
+ 1 stored in the high byte

267

The computer "sees" 256 *1 + 11 which equals 267.

Another example:

121 in the low byte
7 in the high byte

1913

Since 7*256+ 121 = 1913.

Sometimes it is desirable to fool the ATARI into thinking that the top of memory is lower than it
actually is, perhaps to keep it from using the last few thousand bytes of memory, thus reserving
them for your use (see my Tutorial on Page Flipping). You do the same type of POKE here as in the
first example, except that you have to do it twice; once for the "LO" part of the number and once for
the" HI" part.

2

I

ITS NOT NICE
10 FOOL AN

ATAR1·

I said the LO part of the number is placed in the first memory location and the HI part is next.
Although it seems backwards, this is really not hard to understand. The ATARI (and most other
microcomputers) store multiple part numbers this way. Occasionally this rule is broken, so please
don't call me up if you find an exception.

Here's what you do. We want to change the value of M EMTOP to be 4K less than it currently is.

1) Find current value ...

10 A = PEEK (741) + PEEK (742) *256
LO Part H I Part

EX: 12288 Which could be the value of your MEMTOP, and might result from running this
statement.

2) Subtract 4K from this value

20 A=A-4 *1024

Remember that one K is actually 1024 bytes

3) Break the new value up into LO and HI parts

30 B = INT(A/256): C = A - B*256

What this does is make C the LO part of the number and B the HI part

EX: 12288-4K gives 8192.

The above line when run will give you 32 for the HIGH part and 0 for the LOW part.

4) POKE these values into memory

40 POKE 741, LO#: POKE 742, HI# (#'s in decimal!!!)

EX: POKE 741 ,O:POKE 742,32

3

!!! FINAL WORDS OF WISDOM!!!

1) Feel free to POKE and PEEK all you want, trying out ideas or testing the effects mentioned
in the Master Memory Map. The explanations are only the most basic part of how to do the
various effects possible on the ATARI computer. I offer a series of TUTORIALS that will take
you step by step through Display Lists, Page Flipping, Sound, Player Missile Graphics, and
others. These are the techniques that the best programs use, and all of our Tutorials are
done in BASIC, although we do sometimes include a machine language subroutine to offer
you some advantage like speed. Player Missile Graphics even teaches you how to program
a popular Arcade Game!

2) Any errors that occur will often reset values you have changed! You can use the TRAP
statement to check for this.

3) Remember that two numbers are required to tell the computer the value for some locations,
and these are stored LOW part, HIGH part. This is opposite of what you might think.

4) Many of the following locations are for advanced users only. Don't feel bad if you have no
idea what they are for. Some have been left out because they seem of no use to almost any
user. The idea is to experiment and learn.

5) This list is designed for general reference. Many locations used by the Operating System,
BASIC, etc., are not mentioned. Also, the explanations are intended as a bonus (although
we strive to make them accurate).

6) You can usually press Reset if trouble occurs. This will restore the original (default) values
of many locations.

7) Many of the locations in the MASTER MEMORY MAP are used to read from only. If your pro
gram needs to write a value into one of these locations, you'll have to write instead the
value into its "Shadow" location. The shadow locations hold the same value as their cor
responding "HARDWARE" registers, except that you must remember that the Operating
System will take the value in a Shadow and put it into its Hardware register every 1/60th of a
second.

S) Many of these locations work from the BASIC cartridge, but not other languages. Try them
to be sure.

Complete confusion?

Okay, just look at 53270. We marked the shadow as 70S. To read or write color 0 (which is also
known as a playfield color), use the 70S location. What happens if you write a color to 53270? Well,
you will get the color you want for 1/60th of a second until the O.S. writes the "old" value from 70S
back into 53270. All of the shadows we know of are marked in "()" next to the hardware locations.
NOTE!!! Please consider studying hex-binary-decimal conversion. It's not that hard after a little
practice and really allows you to have more fun with your machine.

Here is an alternate method (use the chart on the back page):

S192(dec) = $2000(hex) $20 = H I part (hex) .. $20 = 32(dec, H I part)

$00 = LO part (hex) .. $00 = OO(dec, LO part)

Go back and re-read the last section at least a few hundred times. There are only four lines in the
program that both read the old value of MEMTOP and store a new value. These lines don't have to be
part of a program. You could enter them directly.

4

Locations for beginners are marked in Boldface.

Decimal Hexadecimal
Label Location Location Description and How to Use

CASIN I 2,3 2,3 Cassette boot init ialization vector. If cassette booted
successfu lly during powerup then JSR thru here .

RAM LO 4 4 RAM pointer for memory test.

TRAMSZ 6 6 Temporary register for RAM size.

TSTDAT 7 7 RAM test data register.

WARMST 8 8 0= Powerup init ialization. 255 = normal. A warmstart will
not wipe out memory, so your variables , programs and
data may st ill be intact . The same as pressing RESET.

BOOT 9 9 Boot flag . The 1 bit is set to indicate that a program was
booted from disk and will cause operation at each RESET
to jump to the address given in DOSINI to perform disk
initia lization. The 2 bit is for a cassette booted program
and provides fo r cassette in itia lization at the address
given in CASIN I. If both bits are set (va lue = 3), cassette
initialization is performed before disk initialization.

DOSVEC 10, 11 A.B Noncartridge contro l vector. Disk software start vector.

DOSINI 12,13 C,D Disk boot init iali zation vector. Used to store address of
in itia lizati on of application upon the DOS boot- JSR
indirect thru here to init ialize appli cation .

APPMHI 14,15 E,F Contains the highest address of memory you can use for
programs, data, etc.

POKMSK 16 10 Try 64 here and also POKE 64 into 53774 to turn off
the break key. You will want to do this in every
program that you don't want anyone to stop while it's
running. For example, press the BREAK key on your
computer now and I will keep on talking! This
location is a lso know as the POKEY interrupt vector.
IRQ service uses and a lters POKMSK. These are
POKEY interrupts. Shadow for IRQEN [$D20E].

bit 7 = 1 Break key interrupt enable.
bit 6 = 1 Other key interrupt enable.
bit 5 = 1 Serial input data ready interrupt enable.
bi1 4 = 1 Serial output data needed interrupt enable.
bit 3 = 1 Serial out transmission finished interrupt

enable.
bit 2 = 1 Timer 4 interrupt enable.
bit 1 = 1 Timer 1 interrupt enable .

BRKKEY 17 11 0= Break key pressed , o means it is not pressed .

5

RTCLOCK 18,19,20 12,13,14 Internal Clock ... every 1/60 sec loc. 20 increments
by one 'til 255 is reached then 20 becomes 0 and 19
increments by 1 while loc. 20 cycles through to 255
again and 19 increments, etc., 'til 19 reaches 255,
then 18 increments, 19 & 20 are 0 and begin

BUFADR 21

ICCOMT 23
DSKFMS 24
DSKUTL 26

PTIMOT 28

PBPNT 29

PBUFSZ 30

PTEMP 31

again ... got that? Try this in a program:

100 SECONDS = INT((PEEK(18)·65536 + PEEK(19)*256 + PEEK(20))/60)

15

17
18
1A

1C

1D

1E

1F

Said another way, loc. 20 changes with each TV
frame, 60 per second. Loc. 19 changes every 4.27
seconds and 18 changes every 65536 TV frames, or
18.2 minutes. Isn't computer talk grand!

Indirect buffer address register. Used as temporary page
o pointer to current disk buffer.

Command for vector.
Disk file manager pointer.
Disk utilities pointer.

Printer timeout every printer status request. Typical
timeout for the 825 is 5 seconds. Inititialed to 30 sec.
Print buffer pointer, index into printer buffer ranges from
o to value of PBUFSZ.
Print buffer size of printer record for current mode.
normal = 40 bytes.
double width = 20 bytes
sideways = 29 bytes
status = 4
Printer handler uses this temp register to save value of
character to output to printer.

Input/Output Control Blocks (IOCB)

The following locations , 32 to 47 , are explained as an example of the use of 10CB (Input-Output Control
Blocks). See locations 832 to 959 for other 10CB's (which are structured the same). CAUTION: DO NOT USE
PAGE ZERO 10CB FOR NORMAL I/O USAGE.

ICHIDZ 32 20

ICDNOZ 33 21

ICCOMZ 34 22

ICSTAZ 35 23

-Page Zero 10CB-

Handler index number. Set by the O.S. as an index into
the device name table for a currently open file . Set to
255 if no file open on this 10CB.
Device drive number. Also set by the O.S. to 1 to 8 for
the drive to use.
Command byte. From the user program. Defines how the
rest of the 10CB is formated.
Status byte returned by the device. Set by the O.S. May
or may not be the status returned by the STATUS
command.

6

ICBALZ/H 36,37 24,25

ICPTLZ/HZ 38,39 26,27

ICBLLZ/HZ 40,41 28,29

ICAX1Z 42 2A

ICAX2Z 43 2B

ICAX3&4Z 44,45 2C,2D

ICAX5Z 46 2E

ICAX6Z 47 2F

BASIC COMMAND

OPEN #1,12,0,"E: "

GET #1 ,X

PUT #1 ,X

INPUT #1,A$

PRINT #1,A$

XIO 18,#6,12,0," S: "

Buffer address for data transfer or address of filename
for commands like OPEN, STATUS, etc.
Put one byte vector. Set by O.S., it = the address - 1 of
devices put one byte routine. Points to CIO 's "IOCB not
OPEN" (on CLOSE.)
Buffer length byte count for put/get operations.
Decreases by one for each byte transferred.
Auxi liary information used in OPEN to specify kind of file
access needed .
CIO working variables. Some serial port functions use
this byte .
The place to transfer disk sector numbers from NOTE
and POINT. Other uses possible .
The byte within the above sector. 10CB Number multiplied
by 16.
Character byte for current operation.

Example uses of 10CB's

Operating System 10CB Parameters

IOCB = 1
Command = 3 (open)
Aux1 = 12 (I nput/Output)
Aux2 = 0
Buffer Address=ADR ("E:")

10CB = 1
Command = 7 (Get Characters)
Buffer Length = 0
Character returned in accumulator

10CB = 1
Command = 11 (Put Characters)
Buffer Length = 0
Character Length = 0
Character output through accumulator

10CB = 1
Command = 5 (Get Record)
Buffer Length = Length of A$ (not over 256)
Buffer address = Input line Buffer

10CB = 1
BASIC uses a special put byte vector in the ·IOCB to talk
di rectly to the handler

10CB =6
Command = 18 (Special, "fill")
AUX1=12
AU X2 =0

7

STATUS 48 30 Internal status storage.

CHKSUM 49 31 Single byte sum with carry to least significant bit.
BUFRLO 50 32 Pointer to data buffer low byte??? Which buffer.

BUFRHI 51 33 Pointer to data buffer high byte.

BFENLO 52 34 Next byte (low byte) past end of data buffer.

BFENHI 53 35 Next byte (high byte) past end of data buffer.

CRETRY 54 36 Number of command frame retries.

DRETRY 55 37 Number of device retries .

BUFRFL 56 38 Buffer full flag.

RECVDN 57 39 Receive done flag .

XMTDON 58 3A Transmission done flag.

CHKSNT 59 3B Checksum sent flag.

NOCKSM 60 3C No checksum follows data flag .

BPTR 61 3D Cassette record data index into data portion of record
being read or written . Values range 0 to current value
BLlMI[$28A] when BPTR = BLiM then buffer
CASBOFF[$3FD] is empty if reading or full if writing.

FTYPE 62 3E Interrecord Gap type. Copy of ICAX2Z from
OPEN command FTYPE 0 normal gaps. FTYPE $80
continuous gaps.

FEOF 63 3F Cassette end of file flag used by cassette handler to
indicate end of file.

FREQ 64 40 Beep count reta in and count number of beeps requested
of beep routine by cassette handler during open
processing.

SOUNDER 65 41 Noisy 1/0 flag ... try = 0 to quiet the computer during
certain operations like disk or tape inputs (beep .. .
beep ... beep).

CRITIC 66 42 1 = disables repeat action of the keys and changes the
sound of the cntl- 2 buzzer. Indicates critical 1/0 (e.g. ,
data input), is taking place.

FMSZPO 67 43 Disk file manager zero page.

CKEY 74 4A Cassette boot request flag on powerup (coldstart). Start
key checked , if pressed then CKEY is set.

CASSBT 75 4B Cassette boot flag.

DSTAT 76 4C Display status used by display handler.

ATRACT 77 4D Less than 128 is normal operation, 128 gives reduced
luminescence and rotates the colors to protect the
screen. This could be used to instantly darken the
screen for special effects in a game. If your program
doesn't use the keyboard within several minutes
(9.01 mins), you should POKE this location in the
code to prevent the attract mode from happening . This
happens, for example, during games that use only
joysticks.

8

DRKM SK 78 4E 254 = Normal brightness. Dark attract mask = $FE when
att ract mode inactive.

COLRSH 79 4F Attract co lor shifter XOR 'd with playfield colors . At stage
2 Vblank color regi sters are XOR 'd with COLRSH and
DRKMSK, then sent to hardware color registers when
attract inacti ve COLRSH = 0 and DRKMSK = $F6
reducing luminence 50 % and COLRSH = RTCLOCK + 1
affecting color change eve ry 256 /60 = 4.1 sec .

TEM P 80 50 Used by display handler in moving data to and from
sc reen.

HOLD1 81 51 Same as TEMP.

LMRGIN 82 52 Left margin, default = 2
RMRGIN 83 53 Right margin, default = 39

Use these two to cause your text or graphics to start
or end where YOU want it to!

ROWCRS 84 54 Current graphics cursor row (0 to 191). Try this:

10 ?"ONE" :POKE 84,3:?" TWO":?"THREE"

COLCRS 85,86 55,56 Current graphics cursor column (0 to 319). These can
be useful, either when you want to know where the
cursor is, or, to place the cursor on the screen (must
do a PRINT before change takes place). Try this, too.

10 ?"O N E": PO KE 85,6:?"TWO":?"TH R EE"

CRMODE 87 57 Used to fool the O.S. into thinking that it is in a
graphics mode other than what you originally had.
For example, when modifying Display Lists, you
often use this POKE to allow normal PLOT and
PRINT commands to work. POKE with any number
from 0 to 8 (regular graphics modes). Try a POKE 87,7
AFTER you have entered GRAPHICS 8. The top half
of the screen will allow GR.7 while the bottom will
still be GR.8! See our Display List Tutorial for more
information.

SAVMSC 88,89 58,59 Lowest address of screen memory. Data in this
address will be plotted at the upper left corner and
the next # of bytes will be plotted following . Use this
to redirect the computer to display graphics or text
other than what is shown.

OLDROW 90 5A Previous graphics cursor row.
OLDCOL 91 ,92 5B,5C Previous graphics cursor column.
OLDCHR 93 5D Data under graphics window cursor. Value of

character under cursor used by OS to restore
character when cursor is moved. To print the return
character which normally can't be put on the screen:
POKE 93,219:?"- ". ,

OLDADR 94 5E Retains memory address of current visible text cu rsor
locati on. Used to conjunction with OLDCHR to restore
character value when cursor moves low byte .

9

NEWROW 96 60 Point (row) to which DRAWTO will go.

NEWCOL 97,98 61,62 Point (column) to which DRAWTO will go.

LOGCOL 99 63 Points at column in logical line. A logical line can contain
up to 3 physical lines. This variable is used by display
handler.

ADDRESS 100 64 Temporary storage holds contents of SAVMSC[$58]. and
SAVMSC + 1 [$59].??

MLTTMP 102 66 OPNTMP first byte used in open as temp.??

SAVADR 104 68 ???

RAMTOP 106 6A Actual top of RAM memory given in number of pages
(A page = 256 bytes of memory). This is often used to
move where the computer thinks the top of memory
is, thus saving a safe area for programs or data. You
just POKE 106,PEEK(106) - # pages you want to save.

BUFCNT 107 6B Screen editor current logical line size.

BUFSTR 108 6C Editor low byte .???

BITMSK 110 6E ???

SHFAMT 111 6F Pixel justification???

ROWAC 112 70 Accumulator. Controls point plotting and increment and
decrement functions.

COLAC 114 72 Controls column point plotting .

LOMEM 128,129 80,81 BASIC LO memory pointer (at the end of the Operating
Systems RAM). Also starting here is the token output
buffer which BASIC uses to convert your code into
tokens, i.e., numbers that represent instructions. It is 256
bytes long. Same space used as stack by BASIC for
executing expressions .

VNTP 130,131 82,83 Variable name table beginning address. This table holds
the names of all variables that have been entered in your
program. Each is stored in ATASCII in the order input with
high bit on in last character in each name.

VNTD 132,133 84,85 Dummy end of the variable name table. BASIC uses this
pointer to indicate the end of the name table. When there
are less than 128 variables this normally points to a
dummy zero byte . When 128 variables are present , this
points to the last byte of the last variable name.

VVTP 134,135 86,87 Variable value table address. This table contains
information on each variable, stored in 8 bytes for each
variable .

These tables of your variables' names will fill up with names you are no longer using in your program. To clear
them out, and save memory, list them to tape/disk ; do a NEW; and ENTER the program back into memory. You
can have up to 128 variable names.

STMTAB 136,137 88,89 Statement table address. The table includes all the lines
of code that have been entered by the user and
tokenized by BASIC, and also the immediate mode line.

10

STMCUR 138,139 8A,8B Current statement pointer for BASIC, used to reference
particular tokens within a line of the statement table.
When BASIC is waiting for input, this pointer is set to the
beginning of the immediate mode line.

STARP 140,141 8C,8D String/array table address. Also where your BASIC
program ends. The table contains all string and array
data. String characters only use one byte each. Arrays
are stored as 6 byte BCD (binary coded decimal)
numbers. This area grows as each dimension is
interpreted by BASIC, thus reducing free memory.

RUNSTK 142,143 8E,8F Run time stack address. This software stack contains
GOSUB and FOR-NEXT entries . 4 bytes are used per
GOSUB and 16 per FOR-NEXT.

MEMTOP 144,145 90,91 BASIC top of memory pointer. This is the end of the user
PROGRAM. You still have room to expand until you reach
the bottom of the Display List. FRE(O) is obtained by
subtracting this from HIMEM.

????? 173,174 AD,AE LIST pointer. Contains the high and low byte address of
the line LISTed. If LIST alone had been typed, a 32767
would be here.

????? 183,184 B7,B8 Current number stored in Basic Data line pointer. This
value is the line number from which data is currently
being read. Could be used to list the line number where a
read error occurred.

DATAOFF 185 B9 Offset in current DATA line.

STOPLN 186,187 BA,BB Line number where a STOP or TRAP occurred.

ERRSAVE 195 C3 Error number causing the STOP or TRAP to occur.
Here is an example that uses these two locations:

10 Trap 100
100 ?"ERROR # "; PEEK(195):LlST (PEEK(186) + 256* PEEK(187))

PTABW 201 C9 Print tab width (default = 10). Set to other tab widths
if wanted.

FRO 212-217 D4-D8 Floating point register O. (Value to be returned from USR
function.)

FR1 224-229 EO-E5 Floating point register 1.

CIX 242 F2 Character index

INBUFF 243,244 F3,F4 Input text buffer pointer

RADFLG& 251 FB Radians/degrees flag (Rad = 0, Deg. = 6)
DEGFLG

11

VDSLST

VPRCED
VINTER
VBREAK
VKEYBD
VSERIN
VSEROR
VSEROC
VTIMR1
VTIMR2
VTIMR3
VIMIRQ

512,513

514,515
516,517
518,519
520,521
522 ,523
524,525
526,527
528,529
530,531
532,533
534,535

200,201

202,203
204,205
206,207
208,209
20A,20B
20C,20D
20E,20F
210,211
212,213
214,215
216,217

Display List Interrupt (DLI) vector; you must POKE 54268
first before doing a DLI. DLI's are used to stop the
normal flow of processing, and go do something else for
a few microseconds, then return. For example, some
games do many DLI's each time a screen is drawn in
order to do music. This method is needed since a
program might get hung up in a loop waiting for a
joystick input and couldn't do music statements. The DLI
continues since the screen is always being redrawn. DLI
instructions must be in an assembly code that is
vectored to by the Display List instructions (ANTIC).
Serial Proceed

Serial Interrupt ~\
Break I nstruction vector
Keyboard Interrupt vector ~
Serial I/O bus receive data ready
Serial I/O transmit ready
Serial bus transmit complete
POKEY timer1 vector
POKEY timer2 vector
POKEY timer3 vector
IRQ Immediate vector (general)

System Timers

Accessed from assembly, some of these timers count backwards in 1/6Oth of a second intervals until they
reach O. For example POKE 540 with a 60, and then test for it to hold o. After 1 second it will have counted BACK
WARDS to o. Use them to time music, a clock, or whatever.

CDTMV1
CDTMV2
CDTMV3
CDTMV4
CDTMV5
VVBLKI
VVBLKD
CDTMA1
CDTMA2
CDTMF3
CDTMF4
CDTMF5

SDMCTL

536,537
538,539
540,541
542,543
544,545
546,547
548,549
550,551
552,553
554
556
558

559

218,219
21A,21 B
21C,21D
21E,21F
220,221
222 ,223
224,225
226,227
228,229
22A
22C
22E

System timer 1 value
System timer 2 value
System timer 3
System timer 4
System timer 5
VBlank Immediate jump address
VBlank Deferred jump address
System timer 1 jump address
System timer 2 jump address
System timer 3 flag
System timer 4 flag
System timer 5 flag

BACK TO EASIER LOCATIONS!!!!

22F Direct memory access (DMA) enable. Use to turn off
the screen display chip, the ANTIC, which will speed
up the ATARI by 30% or more. (Remember to turn it
back on or you won't see your results .) Original
= On; 0 and other #'s = Off. Save the actual number
that is in here before you POKE with a O. Then, to
turn the screen back on, POKE in the SAVED number.

12

SDLSTL

SSKCTL

LPENH
LPENV

COLDST

GPRIOR

PADDLO

PADDL1
PADDL2
PADDL3
PADDL4
PADDL5
PADDL6
PADDL7

Be sure to use a TRAP statement in case of
errors ... you can't see them with the display turned
off! This is a shadow for 54272, so see that location
for the correct values to use here for other uses.

560,561 230,231 Display list pointer. Gives the starting address of the
display list which, when known, you can then modify
for many effects. See our Display List Tutorial.

562 232 Serial Port Control.

564 234 Light Pen Horizontal Value.
565 235 Light Pen Vertical Value.

580 244 1 = coldstart.
0= normal. This is the same as turning the computer
off and on. If you POKE 580,1; then press RESET, the
coldstart occurs. Very useful to go run a program
through AUTORUN.SYS on your disk. This will keep
kids from crashing a disk based program since it will
reboot!

623 26F SHADOW OF 53275. SEE 53275.

Paddles, Joysticks and Lightpen Controls

624

625
626
627
628
629
630
631

270

271
272
273
274
275
276
277

Value of Paddle 0 (if plugged in) 0 to 28. Use 0 to 39
and 201 to 228 to keep players off screen until
needed.

These are the same, but for other paddles.

13

The following (632-635) are also used to read a lightpen switch if it's plugged into port 1-4:

STICKO

STICK1
STICK2
STICK3

PTRIGO
PTRIG1
PTRIG2
PTRIG3
PTRIG4
PTRIG5
PTRIG6
PTRIG7

STRIGO
STRIG1
STRIG2
STRIG3

TXTROW

TXTCOL

TXTMSC

TABMAP

632

633
634
635

636
637
638
639
640
641
642
643

644
645
646
647

656

657,658

660,661

675-689

278

279
27A
27B

27C
270
27E
27F
280
281
282
283

284
285
286
287

290

291,292

294,295

2A3-2B1

Value of joystick returned by: Print PEEK (632-5) if
Stick 0-3 is in these positions:

14

10 6

11---\ 1---7

9 5

13

Paddle Triggers: 0 = pressed
1 = not pressed

Joystick control trigger: 0 = pressed
1 = not pressed

Text Cursor Row (0 to 3) .

Text Cursor Column (0 to 39). Location 658 should
always be O.

Upper left corner of text window.

A 1 in any bit position of any of these 120 bits will
act as a stop for the tab key. To clear all tabs, POKE
each location with O's. To set tabs, POKE in the
decimal number that corresponds to the binary
number that results when the desired bits are set.
For example, to set a tab stop in Col. 6 on the
screen, the binary number would be
00000100 = 4,SO = = = > POKE 675,4.

14

INVFLG 694 2B6

SHFLOK 702 2BE

BOTSCR 703

128 = Inverse Video (ATARI Key); 0 = Normal. POKE
either of these if you want to be sure the next input
will be either inverse or normal (prevents errors on
input ... other uses too). Computer will act like input
keys are inverse or normal! Use this location with
702 as in this example:

100 POKE 694,128:POKE 702,0

This will make all input come out as inverse
lowercase!

0= lower case letters; 64 = shift lock key pressed, i.e.,
capitals which is the normal mode; and 128 = control
lock key pressed, i.e., special graphics characters.
255 = all letters will be ignored. What these values do
is redirect the meaning of the keys. Note: takes
effect upon the next input.

Number of text rows available for printing, usually 24,
4, or O. Use to force all text output to last 4 lines.
Other values generally ignored.

Color Locations

To use the following color locations, use this formula:'

PCOLRO 704
PCOLR1 705
PCOLR2 706
PCOLR3 707
COLORO 708
COLOR1 709
COLOR2 710

COLOR3 711

COLOR4 712

For 708 to 712, "(

2CO
2C1
2C2
2C3
2C4
2C5
2C6

2C7

2C8

POKE #,Z where # is the location number and:

Z = COLOR*16 + LUM

Color = 0 to 15 as in your BASIC Manual
Lum = 0 to 14 for luminescence (even #'s).

Color of Player & Missile o.
Color of Player & Missile 1.
Color of Player & Missile 2.
Color of Player & Missile 3.
Color Register 0 (setcolor 0) (CAPITALS).
Color Register 1 (setcolor 1) (lowercase).
Color Register 2 (setcolor 2) (Inverse CAPITALS, Text
Window, Borders).
Color Register 3 (setcolor 3 and Missile 4) (Inverse
lowercase).
Color Register 4 (setcolor 4) (BACKGROUND).

)" applies to text colors when using GRAPHICS MODES 1 or 2.

15

RAMSIZ

MEMTOP

MEMLO

DVSTAT

CRSINH

KEYDEL

CHACT

CHBAS

ATACHR

CH

FILDAT

DSPFLG

SSFLAG

740 2E4 Top of RAM address.

741,742 2E5,2E6 Operating System Top of Memory Pointer.

743,744 2E7 ,2E8 Operating System Bottom of Memory Pointer.

746 2EA Device Status.

752 2FO Cursor inhibit, turns on/off cursor. Takes effect upon
the next screen output (like a PRINT statement).
0= on; not = 0 for off. Try this program:

10 POKE 710,0:POKE 752,1:POKE 82,0:FOR 1=1 TO 959:?".";:NEXT I
20 GOTO 20

753 2F1 (R) 0= No key pressed. 3 = any key pressed .

755 2F3 Character Mode Register.
4 through 7 = upside down letters as in 0 to 3.
3 = inverse solid blocks.
2 = normal letters.
1 = show inverse video character.
0= shows inverse video character as normal
character.
You can get attention in your programs by going
between inverse and solid letters. Try this:

10 POKE 755,4:?"ABC":POKE 755,2:GOTO 10

756 2F4 Character Base Register: Default = 224 for upper
case letters; 226 for lower case set of letters.

763 2FB Last ATASCII character read or written , or the value of
the graphics point . Also the DRAWTO (as an XIO)
command uses the value in this location to get the color
for the fill command line.

764 2FC Internal code of the last key pressed. POKE with 255
first to clear. Used to read keys without input
statements and to wait for input. For example, POKE
a 12 here and the return key would not have to be
pressed. Note that "last key" means if you press "S"
and then "A", only the code for the A is stored here.
For example:

100 POKE 764,255
110 IF PEEK(764) = 33 THEN 110

WHAT this will do is to wait for the letter "A" to be
pressed.

765 2FD Color for Graphics Fi ll (X10)

766 2FE Display Flag: 0 = normal ; 1 = control character displayed
(Ex: To display the symbol for "clear " page, an arrow to
the left).

767 2FF Start/Stop flag for paging. 0 = normal. Set by CNTL - 1
keys pressed.

16

Disk 1/0

DDEVIC 768 300 Device bus 10.
DUNIT 769 301 Disk Device Number, 1 to 8.
DCOMND 770 302 Disk Operation to be Performed.
DSTATS 771 303 Status Code Upon Return to User.
DBUFLO/H 772,773 304,305 Address of the Source or Destination of Disk Sector Data.
DTIMLO 774 306 Timeout Value for the Handler.
DBYTLO/H 776,777 308,309 Number of bytes transferred to or from disk as result of

most recent operation .
DAUX1/2 778 ,779 30A,30B Disk Sector Number to Read or Write.

HATABS 794-831 31A-33F Handler Address Table (3 bytes/handler). A maximum of
12 entries . Contains the single character device name
(K,P,E,S,C,D,) and the handler address for each entry.
The rest of the 38 bytes are O's . A handler is a set of
instructions that tell the computer "handle" the screen,
disk, or whatever.

IOCBO 832-847 340-34F I/O Control Block O. See page 0 10CB above for notes on
general useage.

Examples of use:

ICPTLIH 838,839 346,347 POKE 838,166 and 839,238 and everything that would
normally go to the screen will now go to the printer! (Or
any other device .) The normal values for these locations
to put things back on the screen are POKE
838,163;POKE 839,246.

ICAX1 842 34A 13 = Read from screen; 12 = write to screen. These
can be used or write input from/to the screen, for
example, to read in line numbers and thus delete
lines from a program while it's running! This is used
in our Tricky Tutorial #1, Display Lists, to input new
DATA statements without stopping the program.
Neat!

IOCB1 848-863 350-35F I/O control block, 10CB 1.
IOCB2 864-879 360-36F IOCB 2
IOCB3 880-895 370-37F 10CB 3
IOCB4 896-911 380-38F 10CB 4
IOCB5 912-927 390-39F 10CB 5
IOCB6 928-943 3AO-3AF 10CB 6
IOCB7 944-959 3BO-3BF 10CB 7

LBUFF 1408 580 Text Buffer

????? 1801 709 The number of disk files that may be open at one time
(normally 3).

????? 1802 70A The number of disk drives in your system goes here.
Normally set to 2. If you have more or less you
should change the number and then res ave the
modified DOS to your disks. For example, if you have
drives 1, 2, and 4 the binary value is 00001011
which = 11 to POKE into this location.

17

?????? 1913 779 POKE with 80 to turn off write verify when doing disk
copying. 87 turns back on. It's much faster, but an
occasional error may occur, so use at your own risk.
After you POKE this location, you could re-write DOS
and thus have the verify off every time you use this
copy of DOS.

????? 3118 C2E o will cause only the first of two files with the same
name on your disk to be deleted if you try to use the
DELETE command from DOS to get rid of only ONE.
184 will restore normal DOS usage.

????? 42082 A462 Search list for common name or abbreviation.

????? 43508 A9F4 Test whether BREAK key has been pushed.

Player Missile Graphics Registers

We want to tell you of a feature of the ATARI called "shadowing". Shadowing comes from the fact that
many of the following locations can't be written to directly. They are "Hardware Reg·isters" since these
locations reflect the state of certain pins 011 chips within the computer, i.e., the hardware. Anyway, we
have marked these locations with a "(R)" if it can be read and a "(W)" if you can write to it. The shadow
ing comes in because for each location that you can't write to, there is a Shadow at another location
that you can write to. The value in the Shadow is placed into the hardware register every time a frame is
drawn on the screen . .. 60 times a second! This is why you can't write to it; the Shadow value would
replace anything you wrote after 1/60th second. What to do? Well, we put the location to write to in "()"
marks. For example, to turn off the screen you want a 0 in DMACTL, 54272. Just POKE 559,0 instead,
since 559 is its shadow.

To really use Player/Missile Graphics, you should either get our tutorial on Player Missile Graphics, or
see articles on the subject in magazines. Warning!! Most articles give only the briefest of introductions
to using ATARI graphics. Our tutorials give you enough to create your own games, but not of the quality
of Star Raiders, which is in assembly language. We are talking about BASIC games and simple business
applications.

Finally, note that in many of these locations you read one thing from it (like a collision), and write
something else into it (like a horizontal position). Collisions mean that two things, say a player and the
background, a maze shape, have touched or overlapped . Priority allows one shape to appear in front of
the other (only one color shows). Horizontal position registers instantly move players across the screen.
The size of PLAYERS:

0= normal (2 color clocks wide)
1 = double (4 color clocks wide)
2 = normal (2 color clocks wide)
3 = quadruple (8 color clocks wide)

18

AND FOR COLLISIONS:

VALUE COLLIDED WITH PLAYER
READ OR PLAYFIELD NUMBER

0 0
1 1
2 2
4 3

HPOSPO 53248 0000 (W) Horizontal Position of Player 0
MOPF (R) Missile 0 to Playfield Collision

MPOSP1 53249 0001 (W) Horizontal Position of Player 1
M1PF (R) Missile 1 to Playfield Collision

HPOSP2 53250 0002 (W) Horizontal Position of Player 2
M2PF (R) Missile 2 to Playfield Collision

HPOSP3 53251 0003 (W) Horizontal Positon of Player 3
M3PF (R) Missile 3 to Playfield Collision

HPOSMO 53252 0004 (W) Horizontal Position of Missile 0
POPF (R) Player 0 to Playfield Collisions

HPOSM1 53253 0005 (W) Horizontal Position of Missile 1
P1PF (R) Player 1 to Playfield Collisions

HPOSM2 53254 0006 (W) Horizontal Position of Missile 2
P2PF (R) Player 2 to Playfield Collisions

HPOSM3 53255 0007 (W) Horizontal Position of Missile 3
P3PF (R) Player 3 to Playfield Collisions

MOPL 53256 0008 (R) Missile 0 to Player Collisions
SIZEPO (W) Size of Player 0

M1PL 53257 0009 (R) Missile 1 to Player Collisions
SIZEP1 (W) Size of Player 1

M2PL 53258 DOOA (R) Missile 2 tb Player Collisions
SIZEP2 (W) Size of Player 2

M3PL 53259 DOOB (R) Missile 3 to Player Collisions
SIZEP3 (W) Size of Player 3

POPL 53260 DOOC (R) Player 0 to Player Collisions
SIZEM (W) Sizes for all missiles

NORMAL DOUBLE QUAD

for
Missile 0 0 1 3

1 0 4 12

2 0 16 48

3 0 64 192

For example, to have Missile 0 be double size and Missile 2 be normal and Missile 3 be quadruple size:

POKE 53260,(1 + 0 + 192)

19

GRAFPO 53261
P1PL

GRAFP1 53262

P2PL

GRAFP2 53263
P3PL

GRAFP3 53264
TRIGO

GRAFPM 53265
TRIG1

COLPMO 53266
TRIG2
COLPM1 53267
TRIG3
COLPM2 53268
COLPM3 53269
COLPFO 53270
COLPF1 53271
COLPH2 53272
COLPH3 53273
COLBK 53274

PRIOR 53275

0000 (W) Graphics for Player 0 (shape of player)
(R) Player 1 to Player Collisions

OOOE (W) Graphics for Player 1 ... You place the shape of
players in GRAFP# (1,2,3,4 or M) registers only if
you are not using OMA (GRACTL)

(R) Player 2 to Player Collisions

OOOF (W) Graphics for Player 2
(R) Player 3 to Player Collisions

0010 (W) Graphics for Player 3
(R) Joystick Trig 0 (644)

0011 (W) Graphics for all missiles
(R) Joystick Trig 1 (645)

0012 (704) Color and LUM of Player/Missile 0
Joystick trigger 2(646)

0013 (705) Color and LUM of Player/Missile 1
Joystick trigger 3(647)

0014 (706) Color and LUM of Player/Missile 2
0015 (707) Color and LUM of Player/Missile 3
0016 (708) Color and LUM of Playfield 0
0017 (709) Color and LUM of Playfield 1
0018 (710) Color and LUM of Playfield 2
0019 (711) Color and LUM of Playfield 3 and Missile 4
001A (712) Color and LUM of background

001 B (W) Priority select: to choose which of the objects on the
screen will appear to be in front of the others, i.e., a
player for example, might pass over a star and this
register controls if the star will not be seen (player in
front) or if the player will be partly covered up (star in
front). Choose desired options and POKE INTO 623,
THE SHADOW LOCATION. PF#= playfield #0 to 3.
P# = player #0 to 3. BAK = background.

ADD

TouseGRAPHICS11 192
To use GRAPHICS 10 128 GTIA ONLY!
To use GRAPHICS 9 64

(CHOOSE ONLY ONE OF ABOVE OR NONE AT ALL)

For overlapped areas of players
to have a third color 32
To use all 4 missiles as a 5th
player. 16 (color is COLPF3)

Priorities in this order:

PFO,PF1 , PO-P3, PF2·3, background. 8}
PFO·3, PO·3, BAK . ~1 choose only one
PO·1, PFO·3, P2·P3, BAK
PO-P3, PFO-3, BAK

Example: 5th Players = 16 + Last Priority Choice = 1 - -- > POKE 623,17

VOELAY 53276 001C (W) Vertical DELAY

20

GRACTL

HITCLR

CONSOL

53277

53278

53279

D01D

D01E

D01F

Switch 1
Start
Select
Option

(W) Used with DMACTL (below) to 1) latch triggers
(remember if triggers have been pressed), 2) turn on
players, 3) turn on missiles. To get the value to POKE
here.
For Missile DMA, add 1
For Player DMA, add 2
To latch the trigger inputs add 4.

(W) POKE wi th any # to clear coll ision registers.

(W/R) Use to see if the special consol swi tches are pressed.

1 2

X
X
X X

Numbers are those that wi ll result if you print
PEEK(53279) . POKE with 8 first before reading thi s
location to clear. POKE a number (0 to 7) into thi s
location to "c lick" the speaker. X means that if you press
the keys indicated, the number shown is placed in this
register.

3 4 5 6 7 0
I

X X X
X X X

X X

Paddles and Audio Controls

The AUDF# locations correspond to the pitch for the sound 0 to 3 channels. Use the val ues of the notes (0 to
255) as in your BASIC manual. The AUDC# are the volume cOII'tro ls. These may be POKEd to learn their effect or
see our SOUND Tutorial:

Pots are the values read from paddles 0 to 7 plugged into the front ports . The va lues read range from 0 to
about 228. When using players and missiles , a va lue less than 40 or more than 200 represents an area off screen
to either side . The sum of the volumes of the four channels shou ld not exceed 32. If you POKE in sound, rather
than using the SOUND command , first initi alize with POKEs of 0 to locations 53768 and 3 to 53775.

AUDF1 53760 D200 (W) Audio Channel 1 Frequency
POTO (R) Pot 0 (Paddle)(624)
AUDC1 53761 D201 (W) Audio Channel 1 Control
POT1 (R) Pot 1 (625)
AUDF2 53762 D202 (W) Audio Channel 2 Frequency
POT2 (R) Pot 2 (626)
AUDC2 53763 D203 (W) Audio Channel 2 Control
POT3 (R) Pot 3 (627)
AUDF3 53764 D204 (W) Audio Channel 3 Frequency
POT4 (R) Read Pot 4 (628)
AUDC3 53765 D205 (W) Audio Channel 3 Control
POT5 (R) Read Pot 5 (629)
AUDF4 53766 D206 (W) Audio Channel 4 Frequency
POT6 (R) Read Pot 6 (630)

21

AUOC4
POT?
AUOCTL
ALLPOT

KBCOOE
STIMER

RANOOM
SKREST
POTGO
SEROUT
SERIN

IRQEN

SKCTL

SKSTAT

PORTA

PORTB

PACTL

PBCTL

53767 0207

53768 0208

53769 0209

53770 020A

53771 020B
53773 0200

53774 020E

53775 020F

54016 0300

54017 0301

54018 D400

54019 0303

(W) Audio Channel 4 Control
(R) Read Pot 7 (631)
(W) Audio Control
(R) 8 Line Pot Port State

(R) Keyboard Code (764)
(W) Start Timer (reset audio-frequency dividers to AU OF

values).
(R) Random Number Generator.
(W) Reset Serial Port Status, 53775.
(W) Start POT Scan Sequence.
(W) Serial Port Output .
(R) Serial Port Input.

(W) Interrupt request enable . If you turn this off , the keys that
do interrupts won't work. 0 = Off ; PEEK(53774) = On. Also
POKE location 16 to disable break key.

(R) (562) Serial port control. 3 = stops occasional noise after
input/output from cassette. This location will hold 251 if
most any key is pressed, 255 if no key is pressed, and
247 if shift is pressed .

(R) Read serial port status .

For 53776-54015 repeat 53760-53775

(R/W) Reads or writes data from controller jacks 1 & 2 if bit 2
of PACTL = 1. Writes to direction control if bit 2 of
PACTL = O. (632 for jack 1 and 633 for jack 2.)

(R/W) Reads or writes data from controller jacks 3 & 4 as
above. (634 for jack 3 and 635 for jack 4.)

(W) Port A controller ... 60 turns cassette motor off, 52
turns it on. Use this to do program control of music
or voice, or you could interface this to a light or other
type of control (home heater, etc.).

Port B controller

For 54020-54271 repeat 54016-54019

22

DMACTL

CHACTL

DLlSTLlH

HSCROL

VSCROL

PMBASE

CHBASE

WSYNC

VCOUNT

PENH
PENV

54272 D400

For

(W) (559) Direct Memory Access control (DMA). Turns of
DMA, gives 1 or 2 line resolution to players,
turn on player/missiles, choose from the following
options and add the total to get the value to POKE
into 559:

Add

Wide Playfield

!}Choose only one Standard Playfield
Narrow Playfield
No Playfield
Enable Missile DMA 4

8
o

Enable Player DMA
2 Line "Thick" Players, or
1 Line "Thick" Players 16

32 Enable Instruction Fetch DMA

Better see our Tutorial on Player Missile Graphics to understand this.

54273 D401 (W) (755) Character control. 4 = upside-down letters;
2 = like ATARI key; 1 = blank letters . . . blinking letters
can be done by toggling these values.

54274/5 D402/3 (560/1) Display List pOinter. This address will tell you
where the OS has placed the instructions to the
computer as to what modes and what data to put on
the screen. Yes, we do have a Tutorial on the
subject!

54276 D404 (W) Horizontal scroll enable ... long explanation ... see
Tutorial #2. Basically you POKE with 0 to 16 clock
cycles.

54277 D405 (W) Vertical Scroll enable (see Tutorial #2). This one gets
POKEd with 0 to 16 scan lines. Both scrolls only take
place if the Display List has been modified.

54279/80 D407/8 (W) Player missile base address. You will use this often
to locate where to place your Players and Missiles.
See our tutorials or recent magazines. A little tricky
to use.

54281 D409 (W) (756) Character base address. The location of the
start of your character set can be changed from the
standard ATARI characters to your own custom set.
See a program by IRIDIS or our new tutorial.

54282 040A (W) Wait for horizontal sync. Simply accessing this location
halts the CPU until horizontal sync. occurs.

54283 040B (R) Vertical line counter ... In assembly programs this is used
to keep track of where the picture is currently being
generated (for color or graphics changes).

54284 D40C (564) (R) Light pen horizontal position.
54285 0400 (565) (R) Light pen vertical position.

23

NMIEN

NMIRES
NM IST

AFP
FASC
IFP
FPI
ZFRO
ZFI
?????
FSUB
FADD
FMUL
FD IV
?????
?????

?????
PLYEVL
FLDOR
FLDOP
FLD1R
FLD1P
FSTOR
FSTOP
FMOVE
EXP
EXP10
LOG
LOG10

54286

54287

55296
55526
55722
55762
55876
55878
55889
55904
55910
56027
56104
56239
56251

56255
56640
56713
56717
56728
56732
56743
56747
56758
56768
56780
57037
57041

D40E (W) Non-maskable interrupt enable 192 wil l allow a Display
List interrupt.

D40F (W) Reset NMIST.
(R) NMI status .

For 54288-54277 repeat 54272-54287

_ ----"-

D800 ASCII to FP convert.
D8E6 FP to ASCI I convert.
D9AA Integer to FP convert.
D9D2 FP to integer convert.
DA44 Clear FRO.
DA46 Clear FP number.
DA51 Load INBUFF (243) with address of Text Buffer (1408).
DA60 FP subtract.
DA66 FP add.
DADB FP multiply.
DB28 FP divide.
DBAF Check character in Text Buffer for a numeric digit.
DBBB Check st ring in Buffer for a number with possible

or decimal.
DBA1 Skip spaces in Text Buffer.
DD40 FP polynominal evaluation.
DD89 Load FP number.
DD8D Load FP number.
DD98 Load FP number.
DD9C Load FP number.
DDA7 Store FP number.
DDAB Store FP f1umber.
DDB6 Move FP number.
DDCO FP base e exponentiation.
DDCC FP base 10 exponent iation.
DECD FP base e logarithm.
DED1 FP base 10 logarithm.

Handlers

Base addresses for handler vectors for the resident handlers:

Screen editor (E) = = = = = = = = = = E400
Display handler (S) = = = = = = = = = E410
Keyboard handler (K) = = = = = = = = E420
Printer handler (P) = = = = = = = = = E430
Cassette hand ler (C) = = = = = = = = E440

24

+ , -

o.s. Jump Instruction Addresses

DISKIV 58448 E450 Disk handler initi alization .
DSKINV 58451 E453 Disk handler entry.
CIOV 58454 E456 CIO utility entry (often used).
SIOV 58457 E459 SIO utility entry.
SETVBV 58460 E45C Set system timers routine.
SYSVBV 58463 E45F Stage 1 VBLANK entry.
XITVBV 58466 E462 Exit VBLANK entry.
SIOINV 58469 E465 SIO utility entry.
SENDEV 58472 E468 Send enable routine.
INTINV 58475 E46B Interrupt handler initialization.
CIOINV 58478 E46E CIO utility initialization.
BLKBDV 58481 E471 Blackboard mode entry.
WARMSV 58484 E474 Warmstart entry (reset button) POKE 580, previous USR

to this: X = USR(58484).
COLDSV 58487 E477 Coldstart entry (powerup) .
RBLOKV 58490 E47A Cassette read block vector.
CSOPIV 58493 E47D Cassette open for input vector.

Miscellaneous Notes

Many of these locations are beyond the needs of most of us, but if you have looked at the list and
think you made a mistake in buying it, don't ... if you will just try and use some of the values and ask
other programmers questions, you will soon find you can do some very nice things on your ATARI.

Please write to us with any corrections you may find or. to place an order.

EDUCATIONAL SOFTWARE, INC.
5425 Jigger Dr.

Soquel, CA 95073
(408) 476-4901

Want great sound from your programs? Just plug your ATARI into a stereo. Here's how. Look at the
side of your ATARI 800 (sorry 400 owners) and find the socket marked "monitor". It takes a standard 5 pin
DIN plug available at many stereo, TV, and electronics shops like RADIO SHACK. Besides the plug, buy
a 2-wire cable with an RCA plug at one end. It doesn't matter what is on the other end as you must cut
this off and attach it to the DIN plug. You want the inner wire (signal) of your cable to attach to the pin
that will plug into the monitor plug's #1 hole, which is all the way to the left as you look at it. The other
wire, the ground or shield, goes to the #3 hole, which is in the center of the monitor plug's five holes.

Now just plug in your cable to both the ATARI and the "AUX" input on most stereos. If you don't have a
stereo-mono switch, you can splice two RCA plugs to the same end to get the sound signal to both
left/right inputs of your stereo. You will now hear music and game sounds like never before!

For those of you with disk drives made before August 1981, here is a useful modification. The early
drives had, among other problems, trouble reading disks that were recorded on machines that ran at
slightly different speeds than their own speed. Newer drives have what's called a Date Separator, which
seems to get rid of this problem. ATARI will upgrade on your older drives if needed, but the cost will de
pend on your debating abilities. A company called Percom also sells a separator for ATARI drives.

25

BASIC Hints

First, here are a few tips on how to speed up your BASIC programs and also save memory:
Put both subroutines and FOR-NEXT loops that are often used at the front of a program. Whenever

BASIC has to look for a line number, like at the start of EVERY loop in a FOR-NEXT look, it starts at the
beginning of the program and works its way down. This takes up a LOT of time.

If a constant is used often, give it a name as in "CaNST = 12.3" when first needed, then just refer to it
by name everywhere else. This saves memory. Some programs you will buy use constants like Z1 = 1,
Z2 = 2, Z10 = 10, etc., this can be confusing to read.

Put many statements (10 ?"HI":POKE 84,6:?" BYE") on the same line using colons to separate them.
This also saves memory space and time.

If you are going to have the computer do something that takes longer than a few seconds, print out a
message to "Please Wait" then POKE off the screen display (POKE 559,0). The processor will run up to
30% faster. Then POKE back the original number (usually 34) into 559 to turn the screen on again.

If you can't turn the screen off, using a graphics or text mode that requires less memory will save the
processor much time, thus allowing it to run faster. The less memory it has to put on the screen, the
faster it goes. See BASIC Manual for memory requirements.

When you write a program, you may not use every variable that you started with. Even though you take
them out, if you ever ran the program with them , they are still taking up room in the variable name and
value tables. They are removed by LiSTing the program out to tape or disk, type NEW, then ENTERing it
back in again.

If you are outputting the same text message over and over, store it in a string and output the string in
stead of having the message several times in your program.

With frequently used GOSUB's and GOTO's, have them refer to a variable that has been defined. For
example:

10 PLACE = 100
20 FOR 1=1 TO 1000
30 GOSUB PLACE
40 NEXT I
50 END
100 PRINT "HELLO 100 TIMES"
101 RETURN

Replace SETCOLOR commands with POKE commands.
For advanced users, it is possible to have the program actually delete lines of code after it is running ,

so you could delete many lines before dimensioning variables , etc. This trick uses location 842 (look in
our Tutorial #1).

Finally, you can chain programs to run each other.
These are only some of the many unique things you can do to save memory space and time using the

ATARI's O.S. Most BASIC manuals give many other things you can do to write good programs.

26

Bugs in ATARI BASIC ~o ~
Yes, both the BASIC cartridge and the Operating System (OS) have problems. Here are some of them:

1) An input statement without an associated variable doesn't cause an error message, but can
cause the computer to lock up if run.

2) Sometimes, if you do a lot of editing, you will find the machine suddenly either has lost some of
your program, or no longer responds to any input (this is called "going to sleep").

3) String assignments that involve the movement of multiples of 256 bytes do not move the first 256
bytes. This refers to the internal length , not the number of characters. Since most strings don't
come out exactly this number, you will seldom have this problem. If a problem occurs, just add
one character.

4) PRINT A = NOT B puts the computer to sleep.

5) You must use the LPRINT command from direct mode BEFORE doing a SAVE"C" or CSAVE.
Leave any printers you have OFF. This is because the cassette handler doesn't always set up the
hardware properly for output. You will get an error message which you may ignore.

6) Don't type in a program line· longer than 3 screen lines unless you want the excess beyond 3
lines to be taken as the next line in your program. Other strange things may happen as well.

7) Many exponents don't evaluate exactly. For example, 5/3 = 124.999998, not 125. The lack of ac
curacy will mostly effect comparisons where an exact number is expected . Your program can
look for a small range of numbers instead.

8) A printed CNTL R or CNTL U is treated as a semicolon.

9) Watch out for the use of the letters "NOT" at the beginning of variable names.

10) LOCATE and GET do not reinitialize their buffer pointer. This can cause your program to change
when next run (for example, some line numbers may change). To fix, reinitialize the pointers (by
using a STR$ call like:) A = STR$(O); or you can print a numeric value like: Print A.

11) An input of more than the standard 128 bytes will write them into the so called safe region in
page six of memory ($0600 to $067F). Since many programs store their assembly routines in page
six, you must be careful to relocate these routines if longer input is a must.

Bugs in the 0.5. A-;.
Yes, but please realize how good the operating system is before you feel bad about a few bugs. Here

are the ones that ATARI has fixed in revision " B", which should be in machines shipped from ATARI after
about DECEMBER 1981 (this date is not exact!).

1) During disk input and output, the disk drives would occasionally "time out" for several seconds,
then start up again (this one caught me MANY times). The problem is fixed with no impact on
your old software.

2) Under certain I/O conditions, the TV display would go away. This is also fixed.

3) Sometimes you would get an error message "device timeout error", "ERROR 138", which was
false, but you had no way of knowing this. Problem fixed.

4) POKEY timer #4 IRQ vector is now working . This would be for advanced users.

5) Sending the SIO utility a buffer address ending in $FF caused SIO to loop forever.

6) A vector for the BREAK key has been added. This means programs may now use the BREAK key
to do something other than stop a BASIC program from running. The vector address is at
$236,$237 and bytes at $28B-$28D are used by the IRQ interrupt handler as temporary storage
registers.

27

Notes on the 0.8.

The IRQ interrupt handler has been completely recoded, although it is functionally identical. Illegal
entry points have been eliminated.

The disk drive time out problem was solved by changes in the SETVBL routine (sets vertical blank
vectors and timers).

The two routines modified to fix the incorrect "ERROR 138" messages were SETVBX and SETVBL.
ATARI says that assembly programmers who make use of the above information should be sure to

enter the OS only through $E450 to $E480 as shown above in the MEMORY MAP. I personally have pro
grams from very well known companies that no longer run because they entered the OS routines where
they shouldn't have. If you find some of your programs don't work, the problem may be in software
designed for the old OS. Check with the software vendor. ATARI has done a fine job of correcting the few
bugs that were in the OS.

FORGET, You CANT
FORGET. ONLY ~UMANS

CAN ~ORGET.

28

-
ctr

GTIA Chip

Well, that's about it for the MEMORY MAP. This started out as a normal memory map with just loca
tions and what they were for. Then, I started adding new locations from various sources including
readers of the MASTER MEMORY MAP (for which they were rewarded with free software!). Next came
the hints which would make the ATARI more usable to the new owner. Finally, for this revision, many
more advanced locations were added along with a lot of general notes. You may have seen many of the
locations in this document before, but think how long it would take to write all this down. Please help
me keep the price low by NOT COPYING THIS FOR YOUR FRIENDS. Besides being illegal, it's a rotten
thing to do to a fellow ATARI enthusiast. On the other hand, I am legally obligated to say the
following: "ATARI is a registered trademark of Warner Communications, Inc.". There, now that that is
done with here's your bonus #47:

ATARI now is shipping computers with a different chip called GTIA (George's Television Interface
Adapter). The old chip is called CTIA. It controls the graphics modes available to you. GTIA adds modes
9, 10 and 11. Older computers will be able to get an upgrade. Call 800-538-8737. Cost is about $62.50
installed.

All of your programs will still run with the GTIA. The old CTIA used only the four color registers that
correspond to the setcolor command. The GTIA uses all nine color registers within the ATARI, the addi
tional ones being those used for the four players and the one for the missiles when used as a fifth player.
This gives you NINE COLORS or 16 hues with one luminance, or 16 luminance levels of one hue. ALL
from BASIC!

In addition to the above you can still add Players and Missiles. Your regular BASIC Cartridge supports
modes 9 to 11 even though your manual doesn't say so. Here is a brief description of each.

GRAPHICS 9

- This mode produces up to 16 different brightness levels of the same hue. This allows 3-D effects
where you can shade an object (it looks great).

GRAPHICS 10

-All nine colors are allowed as mentioned above each with different brightness levels. You address
them as COLOR ° to 8. Actually the chip will allow you to call for up to COLOR 15, but since there are
only the nine actual color registers in the computer's hardware, such a call will get you one of the first
nine colors.

GRAPHICS 11

- The opposite of mode nine in that you can have 16 different hues with the same brightness. You set
the brightness with:

SETCOLOR 4,0,luminance #.

The hue is called similar to the following:

FOR 1=0 to 15:COLOR I
PLOT 4,1 + 10:NEXT I

Okay, so that is all the good stuff about the GTIA. What about the proverbial bad news. Well, nothing
about the new chip is really bad. Software people won't write programs for it until there are a lot of them
in production, and then these new "colorful" programs won't run correctly on older machines. Also, the
new modes all use the same memory as graphics 8 (7900 bytes), yet they have a resolution of only 80
horizontally by 192 vertically. This resolution will be fine, however, for solid drawing with lots of colors,
i.e., GAMES!!

29

Hex Conversion Chart

Column # 4th 3rd 2nd 1 st

4096 256 16 1
8192 512 32 2

12288 768 48 3
16384 1024 64 4
20480 1280 80 5
24576 1536 96 6
28672 1792 112 7
32768 2048 128 8
36864 2304 144 9
40960 2560 160 10
45056 2816 176 11
49 152 3072 192 12
53248 3328 208 13
57344 3584 224 14
61440 3840 240 15

Examples:

Hex to Decimal

$ 4A3F =
4th 3rd 2nd 1 st
4 A 3 F

I
I L---------------------------1 5

~------------------------------48

I

I L--------------------------------2560
L-----------------------------------16384

HEX

1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

TOTAL = 19007 (dec)

Dec imal to Hex

9304
- 8192 (largest # less than 9304 on chart, 4th column) ___________ ;;> 2

1112
- 1024 3 rd col u m n _________________________________ ~ 4

88
80 2nd col u mn _________________________________ :;> 5

8 1 st column ~ 8 = $2458

30

FOR BEGINNERS OR EXPERTS
THIS BOOK IS FOR YOU!

BKA066
MASTER MEMORY MAP
BROWN BOOK

The MASTER MEMORY MAp™ is rapidly becoming the
(THIN) ndard reference book for owners of ATARI computers. A.fter you

Ie bought this book, you will understand why. WHAT? You want
know how. OK, I'll tell you . The MMM, as I lovingly call it, was

... itten by the best qualified person in the whole world, ME! I am
Professor Von Chip, your instructor for learning to use all the
power built into your computer.

The 100's of locations I talk about inside offer you almost every
thing you will want to know about your computer,

EVEN IF YOU DON'T PROGRAM!

Don't forget to ask for my other lessons teaching you about all
of the great GRAPHICS and SOUND tricks that the ATAAI
computers can do: the TRICKY TUTORIALS™ for 16K:

#1 - DISPLAY LISTS (many Graphics Modes at the same time!)
#2 - SCROLLING (move your Graphics and text around

smoothly)
#3 - PAGE FLIPPING (a professional looking way to redraw

many screens of text or graphics)
#4 - BASICS OF ANIMATION (a beginner's lesson in moving

shapes around the screen)
#5 - PLAYER MISSILE GRAPHICS (Learn to write a PACMAN™

type game of your own!)
#6 - SOUND AND MUSIC (from single notes & chords to songs

& special effects, I explain all)
#7 - DISK UTILITIES (Utility programs to help you use yourdisk

drives (32K)
#8 & 9 Coming soon to a blackboard near you!

"'He PROFeSSOR
KNOW5WHAT

We LivE IN
SOQUEL- CA.

HiS 1$ -rAt-KING
ABOUT.

(40 8) 470-4901

	Cover
	Contents
	How to PEEK and POKE
	Input/Output Control Blocks (IOCB)
	System Timers
	Paddles, Joysticks, etc.
	Color Locations
	Disk I/O
	Player Missle Registers
	Audio Controls
	Floating Point ROM
	Handlers
	O.S. Jump Instruction Addresses
	Miscellaneous Notes
	BASIC Hints
	Bugs in Atari BASIC
	Bugs in the O.S.
	Notes on the O.S.
	GTIA Chip
	Hex Conversion Chart

