M.AG.€.

Maji¢ Arcade Graphics €ngine i

- e *
2 Moajicoe€ts ¥

User Manual

M.AG.6.

Majic Arcade Graphics €ingine

™

User Manual
Robert Dyomire, Dave Munsie, Larry Scholz and John Stewart

"YW\ gjicS=o=Ft®

"We Put The Majic In The Software!”

Published by MajicSoft, Irc.
348 Meredith Square, Columbia, SC 29223

First Edition, November 1993

The Authors

Robert Dytmire is the Head of the Arcade Division at MajicSoft.
He has spent the last two years working with the Majic Arcade
Graphics Engine (hereafter referred to as M.A.G.E.) and is
qualified in all facets of programming with it. Most of this users
manual was written by E.un He also contributed approximately
500 of the sprites in the M.A.G.E. package and programmed the
enclosed game named "Thurg N Murg”". He finished the
complete game in less than five days, which attributes to his
programming skills and to the power of the M.A.G.E. software.
Robert currently resides in Jacksonville, North Carolina. He is
twenty-six years old.

Larry Scholz is Head Programmer at MajicSoft and is involved
with all aspects of all software developed by our company. Larry
has spent the last twenty years programming on many different
types of computers from main frames to mini computers and
desktop models. He is a fluent programmer in Assembly, C and
Basic. He programmed the enclosed game "Sleuth”, which he
linished in approximately ten days. He is also the proud father
ol two boys and currently resides in Reseda, California. He is
thirty-nine years old.

|ohn Stewart is the founder of MajicSoft. His expertise is in
marlket inﬁ and graphic arts and he enjoys designing games and
{laying them. He did all of the graphics in the enclosed game
Sleuth”. He is the Editor of this manual. When he is not
vorking directly with various programmers at MajicSoft, he is
winlly found chasing his other hobby - large mouth bass fishing.
lohn and his wife have one beautiful seven year old daughter and
CuErent I{ reside in Columbia, South Carolina. He is thirty-nine
FEAILN Hlt

I 14ve Munsie is the creator of the M.A.G.E. and contributed
L .’-u i 11 -" The Twenty Minute Game". He and his family
¢ i Haltom, Texas.

" "

Acknowledgements

MajicSoft wishes to thank Wyman Lew for his great art which
can be found throughout this manual. He also gesigned the art
work for the box. Wyman is twenty years old and 1s currently
attending college in Castro Valley, California. He is majoring in
Electronics 'Igechnology and spends most of his free time
drawing. The contract to do our box and manual art are his first
professional artistic endeavors. Previously his art works have
won him Honorable Mention, Imagi - Nation Art Show,
Certificate of Merit - Honorable Mention (1984) Strobridge
School Art Contest, Sun Gallery Student Artist Ribbon (1987)
Sun Gallery Art Show, Certificate of Merit and 1st Place Award
(1989) Martin Luther King, Jr. Poster Competition just to
mention a few. If you WO\11§ like to write to him or if you have
any questions or comments regarding his work, please send a
SASE to:

Wyman Lew
P.O. Box 2811
Castro Valley, CA 94546

MajicSoft also wishes to thank Ari Feldman for his artistic
contributions in the main screens of the various programs
contained within the M.A.G.E.. He also contributed
approximately 600 of the sprites enclosed in M.A.G.E. package.
He is presently attending college at the State University College
of Oneonta, New York.

A big thank you goes to our Beta Testers: Steve Meredith,
Michael Stauffer and David Shumaker.

A special thank you goes out to Steve Meredith for lending us his
Atari 800 and "Shamus” game, upon which our "Slueth” game is
based. We dedicate "Sleuth” to you Steve!

And for all of the other people that have helped, thank you!!

Table of Contents

The Authors

Acknowledgements

Prologue

Intm(i:‘ction

Software License Agreement
Installing the M.A.G.E. System

The Purpose of this Manual
Preface Variable Tyfes
Overview of M.A.G.E. Components

1.

Overview of M.A.G.E. Game Creation Steps

The Editors

The Character Editor

A. Introduction to the Character Screen
B. Character Editor Command Summary
C. Tips for Using the Character Editor

The Animation Editor

A. Data Types the M.A.G.E. Uses

B. Animation Editor Command Summary
C. Creating Animations

D. Creating Patterns

E. Creating Offsets

F. Creating OffsetFs

‘The Map Editor

A. Introduction to the Character Map
B. Map Editor Commands

C. Tips on Using the Map Editor

The Inline Maker
A. Introduction to the Inline Maker
B. Inline Maker Commands

C. Tips for Using the Inline Maker 42

The MS Design Shell 43
A. Introduction to the MS Design Shell 43
B. What is the M.A.G.E. Shell 43
C. Overview of the Steps - Getting Started 44
D. VSYNCS and FPS Explained 48
E. Description of Individual Routines 49
F. Tipsfor Using the M.A.G.E. Shell 51
Screen Handling 53
A. Physical and Character Screens. 53
B. Composition of Physical Screen Memory 55
C. Partial Screen Copies 55
D. Quick Screen Clears 56
E. Screen Masking 56
F. Displaying Your Screens 56
G. Storing Your Screens as Inlines 57
H. Scrolling Your Screen 57
Character Banks and Maps 59
A. Purpose of this Chapter 59
B. The Character Bankg 60
C. Using the Character Banks 60
D. What is the Character Screen? &1
E. Why Have a Character Screen? 61
F. The Character Map 62
G. Loading a Character Map 63
H. Embedding a Character Map 63
L Scrolling With the Character Map 64
J. Tips for Using Maps 64

6.

Sprites

HOROPOZEN AT IO THOO® >

Purpose of the Chapter

Sprites Verses Spe

Image Banks and Sprites Explained
Planning Your Sprites

Loading a Sprite Image Bank
Embedding a Sprite Image Bank
Loading a GPA File
Embedding a GPA File
Animating a Sprite

Moving a Sprite

Directional Movement
Tracking Movement

Patterns

Offsets

OffsetFs

Global Movement

User Controlled Movement
Other Commands for Sprites
Multiple Sprite Images

Tips for Using Sprites

Collision Checking

geiel g

Purpose of this Chapter
Sprite Collision Checking
Boss Collide

Character Collision Checking
Tips for Collision Checking

Sound Effects

A.
B.
C.

D.

Purpose of this Chapter

Built in Sound Effects

Digital Sound Effects

The Chip MOD Player (chip music)

10.

11.
12,
13.

E,
.

Using the MOD Player
MODS and Sound Effects

Miscellaneous Commands

A.
B.
C.
D.

Purpose of this Chapter
MS_Blit Inline

Star Plotting

MS_16/32 Inlines

Important Variables

FRTEnOmHOOW s

Purpose of this Chapter
Using M.A.G.E. Variables
Sprite Variables

Animation Variables
Movement Variables

Star Plotting Variables
Screen Variabale
Miscellaneous Variables
Global Variables
Additional Character Variables
Additional Sprites Variables
Additional Effects Variables

Command Summary

A.
B.
G

Purpose of this Chapter
Notation
List of Commands

The Twenty Minute Game
The Creation of "Thurg N Murg" 153

The Creation of "Sleuth"

163

Prologue:

When MajicSoft asked me to write this manual I had to ask
myself a very big question: "What is the M.A.G.E. system?".
Simply put the M.A.G.E. is a tool. It is not a stand alone
language like STOS nor is 1t a compiled extension library like C
uses. It is a collection of some of the most amazing Basic
routines married around a kernel of Assembly ever introduced
into the Atari world.

Because the M.A.G.E. is a tool, and not a stand-alone
product, I have not attempted to teach programming in this
document. Instead, I have aspired to give a clear overview of
each aspect of the M.A.G.E.’s capabilities. Game design theory
has been introduced and discussed at length in some sections.
The source code provided and the chapters describing individual
efforts in game d%sign on the M.A.G.E. go into great detail on
how to program a game. However, I am still not convinced that
novice users should attempt to use the M.A.G.E..

Users should have the following skills: The ability to
program in basic, if possible GFA Basic; the basics of structured
programming; and they should know how to utilize the various
options that the GFA Basic editor offers such as Inline loading
and saving. If you do not know these things, then please use the
[ree copy of GFA Basic provided with the M.A.G.E. and work
with the language itself before going on. And if you do not own
the GFA manual, please register your copy with GFA Software
l'echnologies and you will receive the manual and warranty card
wil technical support if needed. You will find a coupon enclosed
within the MA(gE package that explains how to register.

I'ven novice users can quickly become proficient enough to
wie this tool. The M.A.G.E. is 2 hammer, not a variable speed
Jdiamond drill, and once you’ve used it once you will never really
have to think about it again. In designing this manual I have
‘e to realize an important fact, the user MUST experiment

vith the system in order to learn it. Some things would take me
papen and pages of eye drooping text to explain which will take
o minutes, 1if not seconds to d%scover yourself when pointed in

the right direction.

I feel that this system should raise the quality of software to
new heights in the Atari world. If you put forth the effort you
have on other, more limited, game creation systems, I have no
doubts that the Atari world will be the envy of other software
platforms.

So, it is off to finish some selected bits of editing before the
manual ships to the printers. I hope it helps you in your
endeavor to create great software on the Atari series of
computers. And remember, as long as you make a backup of
everything, you can not break anything!

Robert W. Dytmire
Arcade Division
MajicSoft, Inc.

10

E30 3\
3. s e

uLfe \$2

1,

INTRODUCTION

Thank you for the purchase of the M.A.G.E. (Majic Arcade
Graphics Engine) system. This product is a full development
system for creating professiona&) quality games on the Atari
ST/STE/TT/Falcon computer systems. Included in this package
are all the high quality tools you will need to produce fantastic
video games on your machine. The M.A.G.E. game design
system does require that you have a working knowlgedge of basic
programming (GFA Basic is preferred) and system operation.

The M.A.G.E. system is a very complex set of software
tools and commands that work together to give you the most
programming power ever available on the Atari series
computers. Because of this, it is somewhat more difficult to
master than other, more limited, programming environments.
Please take the time right now to turn your system off and

READ THE ENTIRE MANUAL. The M.A.G.E. system is a

1l

top-down programming environment. Therefore, a clear
understanding of the total system usage may not be obtained by
reading just a few chapters. Once the entire process is
understood, the M.A.G.E. system will be more easily mastered.

The M.A.G.E. system is designed to work with the Atari
ST/STE/Mega ST/TT and Falcon compatible low resolution
mode (320 x 200 with 16 colors). No other mode will work
correctly with the M.A.G.E. system. A minimum system
requirement of 512K of memory and a single floppy drive are
required to develop with the M.A.G.E., but one megabyte of
RAM and a hard drive with at least five megabytes of free space
is strongly recommended.

M.A.G.E. puts you in the drivers seat of an advanced game
design tool andp allows you to effortlessly conform to Atari’s
published game programming guidelines. This gives your
product added compatibility and professionalism.

Before you begin using our software please take the time to
read the So{)t,ware License Agreement ancf make a backup of all
disks included in your system. MajicSoft, Inc. gives you
permission to make a single back-up copy for everyday use. Itis
a good 1dea to store your originals somewhere safe and cool.
Our disks are not copy protected so you should be able to use
the standard GEM interface to make your backup.

12

Software License Agreement

This is a legal agreement between you and MajicSoft
lncorporate(? (hereafter referred to as "MajicSoft™). Please
read this Agreement carefully before opening the disk
package. Opening the disk package indicates t{flour acceptance
of this Agreement. If you dg not agree with the terms of this
at;reement, romptly return the unopended disk package,
along with all other associated materials to the s%%pher of the
product for a refund of your purchase price. This original
Software License Agreement is your proof of license. Please
treat it as valuable property.

13

1. Grant of License

Subject to the terms set forth in this License, MajicSoft
hereby grants you a non-exclusive license to use the M.A.G.E.
programs contained in this package (the "Software") only on one
computer at a time. You may make one copy of the software
soley for backup purposes. At no time may the software be

installed in more one computer at the same time or be used
in a netwwork on more than a single station at the same time.
2. Title

Title and ownership rights to the software and its
copyrights shall remain with MajicSoft.

3. Use

This software contains valuable trade secrets and
copyrighted materials. You agree not to modify, reverse-
engineer, decompile, disassemble, copy or adapt the software.
The software is ll)icensed for use only in designing, creating,
modifying, and running M.A.G.E. computer games.

4. Transfer

This software 1s licensed solely to you, the Licensee. You
may not rent or lease this software. You may transfer your
rights under this MajicSoft License Agreement on a permanent
basis provided you transfer this License Agreement, Lﬁe original
software, and aﬁ accompanying original written materials, retain
no copies (in any form), and the recipient agrees to the terms of
this agreement.

5. Limitation of Liability

In no event shall MajicSoft or MajicSoft’s suppliers be liable
to you or any other person for any incidental, cogl?ateral, special,
or consequential damages of any character, including, without
limitaition, damages for loss of profits, loss of data, computer
failure or malfunction, claims by any party other than you, or
any and all other similar damages of losses, even if MajicSoft, its
suppliers, or its agents have been advised of the possibility of

14

such damages. The licensee assumes all risk of using the software
and of using any games that are made with the Software, and the
risk of anyone using any software that is subsetlluently
distributed by the licensee. Some states do not allow the
exclusion of limitation of incidental or consequential damages, so
the above limitation may not apply to you.

6. Warranty
The Software is licensed as is, without warranty of any kind
whatsoever.

7. General

This License is governed by the laws of the State of South
Carolina and represents the entire software license agreement
among the parties.

Distributing Your Games

* Commercial developers that use ANY portion of the
MAGE system MUST obtain a license number gom Majicsoft.
I'he fee for this number is $1000 per year payable prior to
isuance of the license number and every year thereafter on the
isuance date. A lifetime license number may be obtained for a
one-time fee of $2500. Companies producing commercial
oltware with the M.A.G.E. system must display this license
wumber in their manual and acknowledge the use of the
M A.G.E. design system.

' Shareware - MajicSoft wants to set certain standards for
iaterial developed with our system. Shareware authors MUST
lullow these guidelines to obtain permission and a license
uwinber before they may release ANY pI'OdUCt.

| “liareware authors must obtain a license number for EACH

VIO DUCT they produce from MajicSoft. This is accomplished
by sending a copy of the finished product, your name, address

15

and telephone number to MajicSoft. This license number is
Provu lm* lree of ¢ ln.n'gc by MajicSoft.

' Shareware software must be able to meet the standards of
MajicSoft in playability, function and overall design. Games
which do not function correctly, or are buggy, or otherwise
reflect badly on the M.A.G.E. system will be rejected and such
software may NOT be distributed under any circumstances.

3. Shareware authors must ask for a minimum donation of $5.00
(U.S. dollars or equivalent in other currency) for their software.
This must be displayed clearly in the software’s documentation.
Once you have obtained a license number the shareware author
must reflect the license number in his title sequence and his
documentation.

* PD Software - MajicSoft forbids any user to make available
any software written using ANY part of the M.A.G.E. system
for free. In other words, NO PD SOFTWARE MAY BE
PRODUCED WITH THE M.A.G.E.. The only exception to
this are commercial demos of future products which must obtain
permission from MajicSoft before release.

Possible Commercial Distribution

MajicSoft may, from time to time, receive a product of such
high quality that we may wish to offer you the choice of
commercial distribution. Because of this, we reserve the right of
first refusal to all non-commercial programmers. This means
that you may not send your shareware product to any other
company, BBS, Individual, etc... before you obtain a'license
number from MajicSoft. This applies to sending demos of your
product to other companies as well as finished versions.
Commercial users may distribute their product as per the
commercial license guidelines provided by MajicSoft.

16

Under no circumstances can the M.A.G.E. GFA Basic
source code be given away, sold, copied or published without
prior written approval from MajicSoft. This is defined as the
GFA source coge provided with the M.A.G.E. system. It
includes all routines used to communicate with our core kernel,
our 68000 assembly code kernel and any other code provided
with the M.A.G.E. system. This also includes the tutorial games
that are included with the M.A.G.E. system.

Any executable program written using ANY part of the
M.A.G.E. must provide the following line of text in the title
sequence of the program and in the beginning of any
accompanying documentation:

"Programmed Using The M.A.G.E. - ©1993 MajicSoft, Inc.."

i

INSTALLING THE M.A.G.E. SYSTEM

Floppy Drive Users - Simply make a backu% of each disk
(they are not ccc}g protected) and work with your backups. You
may ignore or delete the INSTALL.PRG on your backups.

Hard Drive Users - Make sure you have a partition with a
minimum of 5 megabytes of free memory. Place the M.A.G.E.
Master Disk into drive "A" and call up its directory. Double
click on the INSTALL.PRG. The program will prompt you for
any info you need to input and/or disks to swap. It’s that easy!

THE PURPOSE OF THIS MANUAL

The purpose of this manual is to overview game design
using the M.A.G.E. system. It is not intended to teach you how
to use GFA Basic nor is it written for the complete novice. The
M.A.G.E. is an advanced, yet easy to use, game creation tool that
assumes programming knowledge. If you are new to
programming 1n general it is suggested that you read through
your programming language’s manual and that you become
familiar with GFA Basic 1n particular before continuing.
Intermediate and advanced users should have no problems
understanding the entire M.A.G.E. system.

18

Preface - The Basics

This section will overview the different basic concepts that
the M.A.G.E. system embraces. It will also give you an idea of
what level of knowledge is necessary to use this product most
effectively.

Variable Types

The M.A.G.E. game design system uses three types of
variables when communicating with GFA Basic. These are the
byte(]), Word&&) and long Word(;’{o) variables. When a
command is explained in the manual the variable ?rpes it needs
will be outl'meci It is vital that the correct types of variables be
used or a crash may result. Be aware of this Kecause most of the
problems that beta testers have encountered are in the form of
variables passing errors.

Overview of M.A.G.E. Components

The M.A.G.E. system uses four editors to prepare data for
the M.A.G.E. run time code. These programs encode your
praphics, maps and scripts into the highly specific data the
M.A.G.E. requires. These editors are as follows:

Mage Character Editor - Prepares raw graphics you
draw or select for use as sprites or characters.

Mage Animation Editor - Prepares scripts that the
M.A.G.E. uses for movement and animation during game
execution.

Mage Map Editor - Allows for custom-background
¢reation from a character set.

Mage Inline Maker - Converts the above files for use in
INLINE statements (an advanced feature of the M.A.G.E.
development system).

19

The M.A.G.E. Shell

The M.A.G.E. shell is a whole set of GFA Basic codes
specifically designed to work with the M.A.G.E. 68000 assembly
core. It includes all necessary loops, structures and commands to
complete an entire game. The MAGE16.INL, MAGE32.INL,
MAGEBLT.INL and MAGEICE.INL cores must be inserted
into the GFA code as inline statements.

The M.A.G.E. Sprites

Over 1000 sprites are included for your use with the
M.A.G.E. game design system They are drawn in M.A.G.E.
sprite and (%haracter sizes and are completely palette compatible.
Never before has such a professional and extensive library of
game sprites been made available to programmers.

The Chip Music Replay Interface

Based on a popular PD mod player, our GFA Basic interface
allows for exacting control over the ST’s Yamaha sound chip like
only the professionals had before! Rich three channel chip songs
and sound effects are a single command away!

Overview of the M.A.G.E. Game Creation Steps

When developing software with the M.A.G.E. you will need
to follow this general course of events:

Outline your game.

Create your graphics.

Use Character Editor to convert graphics into Sprites
and Fonts.

Prepare animation scripts in the Animation Editor.
Prepare any backgrounds in the Map Editor.

Program your game.

- S

20

As you can see, there is a lot of preparation involved with
the M.A.G.E.. This is because the M.A.G.E. is not a language
but a collection of very specific and very powerful commands
that expect the data encountered to already be in certain forms.
Half of writing games with the M.A.G.E. will be working inside
the various editors before hand. The advantage to this is speed,
ease of programming and better use of memory. We wilF talk
more about the specifics of designing a game in future chapters.

21

VV\ a}lc: = eFt®

22

Chapter 1. The Editors

The purpose of this chapter is to fully explain each of the
M.A.G.E. system editors. You will be introduced to the concept
of a Character Screen, a Character Map, a Sprite Image Bank and
a Character Image Bank.

The Character Editor
A. Introduction to the Character Screen

The character editor is probably the most used tool in the
M.A.G.E. development system. 2I'his editor is designed to

rroduce two specitic types of data. The sprite images or *.SP1
iles are the images you will use to represent moving things. The

23

characters or *.CP1 files are the background graphics and fonts.
The only real difference between the two types of data is the way
they are displayed. Sprites will not display pixels that are not
"ON" (ie: Color 0 is used) while characters are rude little things
that overwrite all graphic data they are over. A character will
show its "Square outline"” when dropped onto a complex
background and a sprite will not.

It is worth noting that pixel sizes of characters were chosen
to fit into the screen evenly. A list is provided showing just how
character pixel size reflects onto the Character Screen:

Pixel Size Character Screen Dimensions

8x8 40x 25
10x 10 32x20
16x8 20x 25
16 x 10 20x 20
16 x 20 20x 10
32x10 10x 20
32x20 10x 10

We will talk more about the Character Screen in chapter IV.
As you can see, the smaller the character size the more data you
can get onto the screen...although you may not always want to
use small character sizes.

Both a sprite and character set are limited to 200 cells each.
This number was chosen as a good balance between size and
speed. If more sprites or characters are desired, the M.A.G.E.
system is designed to allow for multiple "Banks" of sprites and
characters. Indeed, beta testers did not find 200 sprites much of a
limitation, as most games they designed failed to fill even a single
sprite bank.

24

Steps to creating a character or sprite set:

1)

2)
3)

4)
5)

Decide what size character or sprite you are going to
use. Remember that for sprites%igger = slower. The
size of the background graphics depends on what you
are doing with t%le characters. It is recommended that
16 x 10 be your operating size if you are unsure since
this is one of the M.A.G.E.’s fastest and most flexible

sizes.
Select this size from the NEW menu selection.

Either define you palette manually or load in a *.PI1
or *.PCl file to do it for you.

Draw or grab your images.

Save the image bank as either .SP1 (Sprites) or .CP1
(Characters).

B. Character Editor Command Summary

Activate the MS_ CHAR.PRG program to start your editor.
The program will appear and you will get a menu bar across the
screen. This works very much like a GEM menu bar except you
must keep the mouse button pressed to access the functions in
any given header. Two boxes also appear on the screen. The left
hand box is the image selection box and allows you to select an
image for editing or for use in some of the commands listed
below. Because of size limitations, not all images may be
displayed at once; you may page through them with the V1-X
he left hand box is the editing box. You may draw (Left
he palette is

title.

button) and erase (Right button) inside this box.
displayed along the bottom of the screen. You may select the
current drawing color by clicking the left mouse button while
putting the mouse pointer over the desired color block. The
current drawing color is reflected in the mouse pointer (it will

 hange to that color).

25

Here is an overview of the Character Editor’s commands
and functions:

Title: LOAD

Pl This allows you to load in a .SP1 or .CP1 set for
editing.

LIl - Load in a non-compressed DEGAS format picture.

PC1 - Loadinacompressed DEGAS format picture.
NEO - Loadina NEO format picture
32K - ;]_-fad in a 32K chunk of data...also known as raw
ta.
PAL - Install a saved 16 word color palette (see GFA
XBIOS calls for format).

Note: You will replace your palette when loading in a PI1, PC1,
NEO, CP1 or SP1 file.

Title: SAVE

°P1 - Saves either a SP1 (sprite) or a CP1 (Character)
bank. If an illegal extension is given then a CP1
set will be saved.

.PI1 - Save current background as a DEGAS non-
compressed picture.

32K - Save the background as a 32K memory segment.
No palette is saved!

PAL - Save the current palette.

Title: COPY

This function copies the current cell selected into the next
cell selected.

Title: SWAP

This function exchanges the currently selected cell with the
next selected cell.

26

Title: GRAB

These selections all refer to the size of the image you wish to
grab (in cells) from the background screen. The 1 x 1 means a
single cell while the 3 x 3 means a 3 cell by 3 cell block will be
grabbed (good for grabbing large "Boss” type creatures). Once

ou select a size the menu will disappear leaving you with the
Kackground screen. A square and the mouse will now be
displayed. The square represents the area the cells occupy (useful
for lining up your image). Place the square around tie image
you wish to grab and c%ick the left mouse button. The screen
will shift back to the menu and you will notice that your
captured image is now inside the left hand display. Place the
image(s) in the cell(s) you want to occupy. Click the left mouse
button to confirm or the right button to abort the operation.

Title: PASTE

Allows you to paste an image (on character cell boundaries
only!) onto the background. This is useful for creating "Mock
Ups™ of backgrounds and/or game screens to check your work
for flaws. It can also give you an idea of what the images will
look like once they are assembled.

Title: FX
Flip H - Flip Image Horizontally.

FlipV - Flip image vertically.
Bold - Attempts to make image thicker.
Scroll - These commands move the image

(with overlap) around its cell.

Undo - Unlike most undo functions this one
simply redraws the original image in the cell.

F.id

Offset Grab - Possibly the most confusing and
powerful commands in the
Character Editor.

Here is how it works:

It assumes that you have created a grid of images and have
loaded them into the backgroung. What this function
will now do is load them all into the bank at once
(eliminating single grabs!!). All images grabbed must be
in a grid like formation (spacing must be the same or it
will not work). When selected, the function will ask you
for the starting upper left pixel of the first image to grab.
It will then as%; you for the pixels between images, not
including the pixels of the images themselves. If you have
drawn a gri(Ffor your images (like the Thurg .PC1
screens), then you will have a 1 pixel spacing between
images 1n both directions. It will then ask you how many
images across and down you wish to grab (answer these as
you have drawn your next grid). It will then ask you
which cell to start placing the images into. After this data
has been entered the le-:lgtor will give you a preview of
what is going to be grabbed. Press Y to confirm this grab
or return to abort the whole thing. This powerful
function is a little strange at first, but with a little practice
you will wonder why every sprite editor does not have

something similar.
Title: V-1
Clicking on this will page through your image bank.
Title: NEW
Allows you to set up a new image bank. Unlike some
other systems all images in a given bank must be the same

size. Unlike other systems, the M.A.G.E. allows you to
combine multiple images easily.

28

Title: QUIT
Returns you to the desktop.
Additional commands/notes:

The [Help] key will present you with a list of keyboard
shortcuts to the above commands. Not all commands have
shortcuts.

Pressing P will bring up the Palette Editor. This editor is
very simple to use. Simply click on the arrows to change the
selected colors. Default will reset the colors to the M.A.G.E.
system default.

[Alternate]+fR] will allow you to run another program without
leaving the editor. This is great for floppy based developers.

C. Tips for using the Character Editor:

® Plan your characters around the ASCII character set.

¢ Remember to leave character 32 blank or filled with
your background fill because the map editor uses this
character for blank fills.

® Remember that small sprites generally move faster than
big ones.

® Use your own graphic program to design the images
because it is probably more powerful for actual
drawing,

® Look at our examples on the Source disk. Play with the
full screen grab functions.

The Animation Editor

The M.A.G.E. animation editor is a powerful tool used to
create animations, patterns and offset movement sequences for
your game. Once created, the resulting file allows for effortless

29

animation and pattern movement, such as never before seen in
GFA Basic! The animation editor creates 4 forms of data for the
. M.A.G.E. system to process. These are as follows:

A. Data Types the M.A.G.E. Uses

Animations - A sequence (usually repeating) that will be
flayed back when called. This 1s a collection of sprite

rames chained together to create the illusion of
movement. Walking 1s usually accomplished by stringing
together two separate sprite images.

Patterns - A fixed movement Fath that you draw on the
screen. A sprite can then be told to follow the pattern for
quick and easy movement.

Offsets - Similar to patterns except they do not represent
actual coordinates but directions to move each step. The
advantage to this is that an offset can start from any
position on the screen, while a pattern is fixed. A
Galaxian" type game would use this form of movement.

Offsetf - Much like the offset but with the additional
advantage of being able to follow another sprite while
performing an of?set. By drawing a circle you could
assign a sprite to orbit another sprite or you could launch
a sprite on an offset based on an 1nvisible sprite
("Insectroid” uses this trick).

B. Animation Editor Command Summary

Activate the MS_ANIM.PRG to activate the M.A.G.E.
Animator. BE WARNED: The Animator requires an .SP1 file
to be already created in order to make animations. The
Animator will not work with .CP1 files (they are for the Map
Editor).

30

You will be presented with a simple menu with 5 main areas
and several sub-sections. To select an option, simply point and
click. Here is a overview of the Animator’s menu:

Area: SP1

LOAD - Load a previously saved .SP1 file. This erases
the current records!

SAVE - Saves out a .SP1 file for engine use. Also
activates the printed report option.

INFO - Program information.

Area: Load

SP1 - Load in a sprite file created in the Character
editor. Should be your first step.

PC1 - Load in a compressed DEGAS background
screen. Good for viewing your animations over
a background.

PI1 - Loads a non-compressed DEGAS screen into the
background.

Area: Anims

The animation slot currently under edit. Clicking the left
mouse button on an arrow changes the slot very quickly.
Clicking the right button on an arrow will single step the slot
number. This also points to the last animation to be saved. Be
careful of this because you can save a partial list if you forget to
move the pointer back.

MAKE - Create a new animation in this slot (old

animation is erased).
PLAY - Play back the selected animation slot.

31

. Area: Patts

The current pattern being edited. Uses the same functions as
- the Anims area.

MAKE - Create a new pattern in this slot.
PLAY - Play back pattern using currently selected
animation.

Area: Offset

The current Offset (or Offsetf) being edited. Uses the same
functions as the "Anims" area.

MAKE - Create a new offset in this slot. This function
has another selection asking for offset and
offsetf. Review the descriptions above for the
type of offset to create.

PLAY - Plays back the offset. Offsetf can look a bit
strange at first.

Keyboard Commands:
ESC - Exit to the desktop.
HELP - Displays a small help screen.

[ALT]}+ [R] - Run another program without exiting,
Notes:
® The Animations, Patterns and Offsets all use a 1 based
animation notation. Slot 0 does not exist.

® Playback of Patterns and Offsets will use the currently
selected animation.

S 94

C. Creating Animations:

Once you have loaded in your .SP1 file (the Animator must
have something to animate!) you can begin to create your
animations. To start, select the up arrow in the ANIM section.
This will select slot 1. Note that you can not go any higher...this
is because you have not filled slot 1 with something. Once you
do, you will be able to move to slot 2. Now Select MAKE. The
Ei_rogmm will now display the first group of sprites in the bank.

o see more groups in the bank press return. On the bottom of
the display there will be a report telling you which frame you are
on, which sprite you are selecting and what group you are
looki.\:;f At '1Po add a frame to the animation simply highlight the
desired sprite and click the left mouse button. When you are
tinished, click the right mouse button or ESC. This will brin
up a description request box. This box is a rather nice feature o
the Animator in that you can enter a description of the
animation for later printout. No more trying to remember
which animation is which or hassling with lots of scrap paper.
You can now see your animation by selecting PLAY from the
ANIM area. The Animator will show you a large selection of
speeds and directions so that you can see the animation in action.

Tips for creating animations:

¢ To make animations slower, click on the same frame
multiple times.

® There can be a maximum of 101 frames per animation
and 100 animations total.

® Pong effects can be achieved by selecting the animation
and then selecting it in reverse order. In other words
enter the whole pong loop manually.

e Always play back your animation, it is possible you
couldymake a mistake and you want to catcz it

here...not later while you are programming.

33

D. Creating Patterns:

Mouse:

Creating a pattern uses basically the same process as the
animation area. Select your slot and select MAKE. A sprite will
replace your mouse pointer on the background screen. The first
time you click a mouse button tells the comguter to start
recording your pattern. Holding down the left button will
record movement continuously, regardless of mouse position (ie:
if the mouse stops moving your pattern will recorg a pause at
that spot). Hofdinﬁ down the right button will cause the
program to record the pattern only when the mouse position
changes. No recording will happen if no mouse button is pressed
g{l}iowing you to "jump" around the screen). When you are

inished with your pattern press the ESC key. This will activate
a description box, allowing you to type in a brief description of
what each pattern is. Experiment Wltﬁ both types of recordings
by using PLAY to see your results. In any case, each pattern
may hold no more than 500 recording segments (a bell will
sound when you reach 450). The animator can record no more
than 100 patterns.

Keyboard:

Very much like the mouse input method except the arrow
keys control ingut and the space ll))ar acts as an enter key. The
space bar tells the program to record a single segment. Shift and
Arrow keys shift the sprite two pixels instead of one. This
method on entry is much slower than the mouse method and
allows a higher degree of precision. This is necessary for some
patterns.

34

Tips for creating patterns:

® You can alter the sprite’s position relative to the mouse
pointer by using tEe arrow keys (which allows you to
draw off the screen). Pressing UNDO will set 1t back
to its original position.

¢ The Rigﬁﬁmtton method usually results in a smoother
pattern playback.

® Feel free to mix methods!

e Always test your patterns.

E. Creating Offsets:

Offsets are entered in exactly the same way as patterns. Read
the Creating Patterns section to learn all the nasty details. What
differs with an offset is how you use it. The starting position of
the offset is only relative. That is, unlike a pattern which will
move exactly as you draw it, the Offset will move just as you
draw it but not necessarily in the same spots. It is like drawing a
jump pattern for your main character. Every time the player
jumps you canny an offset. The jump offset will play back
exactly as drawn originally, but it will start wherever you tell it
to. This allows for more flexibility in planned movement. The
maximum is 500 segments per Offset/OffsetF. The Animator
will hold up to 100 trames of these segments.

Tips for creating Offsets:

® Offsets need to be more accurate than patterns,
esgeciaﬂy if they repeat.

® The sprite that is laid down when your first position is
selected can be very helpful. If you select the very last
slot (an empty one) there will be no animation. Now
you can exactly line up your first and last position
segment in the Offset.

Afvrsxrla s play back your offsets...if they go crazy then
c{o not have the first and last position lined up.

@
you

35

- F. Creating OffsetFs:

Creating an OffsetF is very close to creating an offset. The
- major difference is when you first click the mouse button or
space bar, you will create a reference sprite. The next click of
tEe mouse or space bar is the signal to begin recording. Imagine
the reference sprite as the sprite your OffsetF is going to follow.
Now draw (using the methods described in the Pattern section)
the path that you want the OffsetF to use. With this you could
draw a circle around the reference sprite (items would orbit the
reference sprite) or up and down next to the sprite (for shields),
etc... I'am not going to kid you here...this one may take some
experimenting to fully understand, but it is well worth it!

Hints for creating OffsetF’s:
® Be careful. This one sounds like fun but needs careful

entry to work most effectively.
* Always check your OffsetF’s carefully!

THE MAP EDITOR

A. Introduction to the Character Map

Have you ever wondered how certain games get so much
background data into such a small program? Well, the way it is
done 1s to create an interlocking "Lego Set” of character cells and
instead of storing actual image data, store a map of the cells. One
byte of data now represents up to 320 bytes of data! In order to
make it easy to construct such maps we have provided you with
the M.A.G.E. Map Editor. To use this system you must first
gieitte a set of character cells with the Character Editor (a .CP1

e).

36

B. Map Editor Commands

Activate the MS MAP.PRG to start your session. When
activated the Map Editor will display a true GEM menu bar.
The first thing you need to do is to load in a character set. No
other function in the program will work until you do. Once this
is done you can select from one of the following:

Title: DESK
ABOUT - Information about the program.
Title: MAP

NEW - Clear the current map and pointers.
LOAD - Loada .CP1 file or a .MAP file.

SAVE - Save your MAP (area defined by the F8 and F9
settings).

EDIT - Invoke the Map Editor.

QUIT - Return to desktop.

Titlee SCREEN

Save as .PI1 - Save the current displayed portion of the
map as a noncompressed DEGAS compatible file.

I'he [HELP] key will show you the keyboard shortcuts for the

1bove menu functions.

I'he Map Editor:

When first invoked the map editor will display the
"Character Selection Menu". This will not appear as muci; of a
menu (and may look like a blank screen if your first few
« haracter slots are empty). Whenever the Character Selection
Menu is active, several things occur: First, the top line of the
« reen becomes a scrolling representation of the current character

37

map. By moving the mouse to the extreme left or right of the
screen, you cause the characters to scroll in their respective
directions. By pointing to the character you want and clicking
the left mouse button, you make that cﬁaracter your current
drawing pen. You may also point directly into the current
section of map to select your new pen. Clicking the right mouse
button while this menu is active will return you to the GEM
menu and exit you from the actual map editor.” Once you select
a pen character you may draw with the left button and erase
with the right button (character 32 is used for erase). The map
editor can handle screens up to 16 x 16 per map. Several keys are
used to invoke different pointers and functions during drawing.
Pressing the HELP key will invoke a small menu to remind you
of these commands. They are as follows:

F1 - Set top left of block to current pointer position.
F2 - Set bottom right of block to current pointer
position. MUS%" be greater than F1 above.

F3 - Copy block to current position. You may NOT
overwrite your defined block area.

F4 - Fill current screen with character 32 (ie: Clear the
screen).

F5 - Auto scroll on or off. Auto scroll will change the
arrow key functions to a single cell width for
scrollllli;lgg, instead of the default screen boundary
scrolling.

F6 - Move to the top left of the map.

F7 - Move to the bottom right of the map.

F8 - Set the top left of the save area

F9 - Set the bottom right of the save area.

F10 - Search and replace (screen area only). To use this
you will replace the character now used as the pen
with the next selection (this command invokes the
Character Selection Menu).

Arrow keys - Page up, page down, left or right or scroll up or
down or left or right if Auto scroll is invoked.

38

Maps can hold many types of game screens. "Pac-Man" type
games use maps for mazes, while platform games like "Mario
Brothers" and "Thurg N Murg" use them for actual play fields.
Games like "Mario World" and "Gods" use scrolling maps to
create worlds bigger than a single screen. No matter which way
you choose to use your maps, the editor can provide you with a
quick and easy way to create your game world.

C. Tips on Using the Map Editor:

® Try to keep character cell 32 clear since the Map Editor
uses it for erase and clear.

® Mark the top left corner of your map with F8 as soon as
you start editing.

e Search and replace is a powerful function for custom
CLS commands.

® Note how different character sizes make for fast or slow
scrolling. Try out several sizes to get a good feel for
how your character scrolling is going to work in your
game.

¢ The Map save area must be at least a 1 x 1 screen in
order to save. No smaller sections are allowed.

THE INLINE MAKER
A. Introdﬁction to the Inline Maker

Note: The Inline Maker is an advanced feature of the
M.A.G.E. system and you may not want to read this section
right off. If you are new to the M.A.G.E. system then our
recommendation is to skip this section until you have mastered
the other editors. The implementation of this editor can be
confusing to novice users. It is not necessary to use this editor to
complete a fully functional game with the M. A.G.E. system.

39

Ok, you have been warned. Now on to the editor that will
Eive your program that professional touch. In addition, it will
elp you conform more closely to Atari’s own published
specifications on game design (ie: Make it a single file ifpossible).
You will need to use the shareware program JAMPACK4.PRG
to compress your files. It can be found on the M.A.G.E. Extras
Disk. MajicSoft supports shareware authors and we sincerely
hope that you will too. Please register your copy.

The Inline maker prepares your data for insertion into your
program as an inline statement. This means you should be
retty sure you are not going to want to work on that data again
gecause you will have to uncompress the data if you need to edit
it. This should really be the last step in completing your game.

B. Inline Maker Commands

Activate the MS_INLIN.PRG to invoke the Inline Maker.
The Inline Maker works in a three step process. First the data in
our .MAP, .CP1, .SP1 or .GPA will be stripped of their
Keaders. Next, the raw data is compressed by Jampacker (which
you must exit the Inline Maker to do). The last step is to
combine the header and the compressed raw data into a final
inline form. You can then inline this data and use the special
sprite and character installer routines provided in the M.A.G.E.
EA Basic shell to activate the data banks. WARNING: Use
ICE Compression at 1024 ratio with Data selected and Flash and
Heading deactivated.

Here is an overview of the commands available. The actual
design process is explained in the Command Descriptions.

Title: DESK
ABOUT - Information about the program.

40

Title: SP1/CP1

Here is where you create the Sprite and Character Inlines.
The first thing to do is select make ?NL/?CE.

MAKE ?NL/2CE - This takes a sprite file (.SP1) or
character file (CP1) and divides it into two separate parts.
The ?NL file created is the header info and you should
never tamper with it. The ?CE is the raw data that you
must compress with the "Jampacker” program. Exit the
program and compress the file using the specifications
mentioned above. When saving the compressed file,
simply overwrite the original ?CE file with the new data.

Now go back to the Inline Maker.

MAKE ?GP - This command takes the header and
compressed raw data and saves out a CGP or SGP file
that 1s ready to be inlined. When selected, point to the
?NL file you compressed in the above process and the
M.A.G.E. Inline Maker will do the rest. The old files will
be erased and a single ?GP file will be all that remains to
be inlined.

Title: MAP

MAKE MNL/MCE - This program will take a selected
-MAP file and split it into two parts. The .MNL file is
the header and you need to do nothing with it. The
MCE file is the raw map data and this is what you need
to compress following tﬁe rules listed above. Once you
have done this you can use the next command.

MAKE MGP - This takes the .MNL header file and
connects it to the compressed .MCE file. The result is a
single .MGP file for you to inline into your program.

41

Title: GPA

MAKE GCE - Makes a single file with the extension
GCE. Compress this using the rules stated earlier and
then come back to the Inline Maker. You can now use
the next command.

MAKE GGP - Converts the GCE file into a CGP file
which is ready to be inlined into your program.

Title: HELP

GENERAL - Gives you the general packing rules to
follow when making inline data.

FILES - Describes the file types used by the M.A.G.E.
Inline Maker.

C. Tips for using the Inline Maker:

o If 2 GPA file is greater than 32,000 bytes long before it
is compressed, it can not be made into an inline.

e Do not Panic! The file types are not that hard to
remember.

® Do one file type at a time until you become familiar
with this system or you may lose track of what you are

oing.
e This seems like a lot of effort but it will make your

programs shine when all you have is a single .PRG file
and someone else’s software has 20 or 30 extension files!

42

\‘.

SR %1 g
(o 5

N\
7/

Chapter 2. The MS Design Shell

A. Introduction to the MS Design Shell

This chapter will deal with an overview of the M.A.G.E.’s
(;FA Basic interface. It is not an extensive overview of the
M.A.G.E. commands, but rather a look into how we have
dlesigned the programming environment.

1. What is the M.A.G.E. Shell?
The MS Design shell is the GFA Basic interface you will

work with. It is broken down into two basic areas: The
command area is where all commands have been built for you.

43

You should never have to enter this area of the code. The second
area is the user area. This part of the code is pre-constructed to
allow you to easily design a game. You will work extensively
with the user area.

C. Overview of the Steps - Getting Started

To load the shell, activate GFA Basic 3.5 or higher and load
in the file MS_ MAGE.GFA. The user area is broken into two
parts: The upper part of the code (which handles the initial
machine interfgce) and the lower part of the code (where the
actual game programming occurs). The user shell will now be
described in the order in which it is laid out. Follow along on
your computer if you wish...it will help.

STEP 1 - Step one is an automated process. It automatically puts
the machine into the correct graphics mode (low resolution) on
any machine.

STEP 2 - The correct inline data must be loaded into the slots.
If you are working with 16 bit wide sprites or characters load in
the MAGE16.INL. If you are using 32 bit wide sprites or
characters then load in the MAGE32.INL. You can not mix the
two types. If you are going to use the advanced blit features of
the M.A.G.E. system then load in the MAGEBLT.INL. If you
are going to use de-compression routines you must load in the
MAGEICE.INL. Press HELP and then "L" with the cursor over
the correct inline area to load in the correct core kernel. You
will also need to tell the M.A.G.E. which Rrpe of blits you are
using. Follow the example shown in the code.

Step 3 - Place any inline data your program needs in this area.
This includes data created with the Inline Maker. You will need
to know the length of the file in order to reserve a properly sized
inline buffer. Music, sound effects and compressed picture data
will also be placed here. We will discuss exactly how you embed
all these types of data in the command listing. For now, it is
enough to be aware of the fact that such data belongs here.

44

Step 4 - Call the M.A.G.E. Program_Init routine. Send it TRUE |
if you are using GEM (Not recommended in a video game
environment) or FALSE if you are not planning to use it.
Novice M.A.G.E. users shouKi leave MS_Spritedump& set to
true. This step also does things such as activate the joystick in
slot 0 and shut down the mouse. It also forces a mini-reset of the

screen display banks.
Step 5 - This is the BIG call. The MS_Graphics_engine_init(?)

routine sets up the M.A.G.E. core for processing your data. You
still have to load in the Sprites, Maps, Characters and
Animations, but this call gets everything ready to rock and roll!

Step 6 - Call the Play_Game routine. The Play_Game routine is
the last procedure in the M.A.G.E. Shell. Press Control-Z to get
there quick. From here on out it is show time!

Step 7 - End the program. Re-activates the mouse, restores the
original screen position, colors and resolution. It also frees up
the memory you were using and flushes your program from
memory. This is the nice way for a game to behave. All
automatic! The F7 bit is used to run an external GFA file. ’

That is all there is to starting your own game! Most of it is
automatically handled by the M.A.G.E. Shell. Now skip the
GFA command core and find the Play_Game routine (gress
Control-Z to do so).

PLAY GAME:

Play_Game is probably the most important section of code
i the shell. From Eere you initialize your game, handle the title
« reen, run through the main loop and handle the "Game Over”
toutines. This is all laid out very carefully and in a specific

order. We will go over the routines now: |

45

Ms screeninit(0) allows you to reserve full 32,032 byte screen
buffers for extra items. The number passed is one less than the
number of screen reserved (-1 = no screens). These screens are in
addition to the MS_Logical%, MS_Physical% and

MS_Background% screens.

Next, we load in any data from disk storage. You should
not modify the order of loading. We really want the
MS LoadGPA to go first and the rest of the loads do not matter.
Give the path to the data with each call.

Next, we load in any inline data. This is the preferred
method of loading data because it cuts down on external files.
Adr% is the inline you used to load your data into - in step 3.

The next step is to place any game data into your program.
Tables are the most often used form of data. We suggest that
you place this data into a separate procedure with its own name.
By doing so, you will be abﬁe to close the procedure and hide it.
This makes moving around your code much easier.

Now we declare our arrays and global variables. Again, we
slﬁlgest that you put these into a separate procedure. See the
"Thurg N Murg" source code for an example.

Set up any variables that you declare only once per program
execution. These are things like screen boundaries and internal
pointers.

You will now see the MS VSYNC(0) command. This tells
the program to prepare for page flipping. You must do this if
you are writing a game that uses page flipping (ie: ALL Games!).

46

The first loop we encounter is the main program loop. It
will keep cycling through the following sequences until the user
exits the program:

e Title Screen - This routine handles your title screen
sequence.

e Init Game - Starts the game if the user requests it.

e Store the working palFet for quick restoration.

e Enter the game execution loop. This loop is the main
loop during the operation of your game. It is the
"Master Brain" behind the smooth execution of a
program. This loop does the following:

Asks you to update all moving "Players”.

Page Flips %he last screen draw is displayed

and the background is written to

MS_Logical%).

4) Requests all collision checks be handled. This
includes all background collision checking.

5) Calls the M.A.G.E.. This plots all sprites,
stars, does color cycling and flash effects.

6) Calls the keyboard input handler if required.

7) Waits until the number of Vsyncs you have
requested have expired.

8) Shows Frames per Second the game is
currently running.

9) May go into sing,Fe step mode if requested.

li Resets the Vertical Blanks counter.

T'his loop continues until the player is out of lives or an exit
" u'<|ucsted.

47

D. VSYNCS and FPS Explained

We had better get the whole definition of Vsyncs and FPS
out of the way right now because these are probably the most
important terms used in this system. We will also telly you about
the different screens the M.A.G.E. uses to page flip. Do not
worry if this sounds a little confusing. You will tully understand
it by the time you have finished your first game.

VSYNCS (pronounced Vee-Sinks) - Your television or
monitor runs at either 60Hz or 50Hz. The Hz means cycles per
second. In this case it also means picture frames drawn per
second. Your monitor does not care how you are updating the
screen because it needs data now and your computer will feed it
regardless of your wishes. This data comes from the RAM
starting at MS_Physical%. Since we page flip (change the value
of MS_Physical%) it is important that we do this onfy when the
monitor’s raster beam is at the top left of the screen (gettin
ready to draw a new frame). That is where the Vsync signa
comes in. A Vsync signal is generated by the computer which
tells us that the raster pen is at the bottom right iand of the
screen (the last pixel) and is now moving up to redraw the screen.
Thus the command MS Vsync(20,0) waits for a Vsync signal
from the computer and then very quickly flips the MS_Logical%
and MS_Physical% screen addresses. It does this so fast that it
happens before the raster beam gets up to the next pixel! What
you get from all this is a flicker free graphics image.

If you change your page flipping routine to MS_Vsync
(20,32000), you will get screen changes whenever you hit this
command. The new c%ata will be displayed starting wherever the
monitor’s screen pen happens to be at the time. In addition,
VSyncs measure how fast a game is running. A typical M.A.G.E.
Eame runs at 3 VSyncs. That is, the monitor draws three screens

efore we are ready to page flip. This is alright since 20 frames
per second (FPS) 1s quite fast (60 VSyncs divided by 3 screen
redraws per page flip).

48

You can get M.A.G.E. games to easily run as fast as one
VSync (60 FPS% if you use onfy a few sprites and do not re-draw |
the background. The command MS_WaitVsync(X) is put in to
make your game run at a set speed. By setting X to the fastest
speed you want your game to move (it should be the average of
what it can move) you can make your game appear to run very
smoothly. The whole upshot of all this is that we will be using
VSyncs and FPS in future commands and game descriptions an ‘
we want you to understand this before hand.

E. Description of Individual Routines

Now we will describe some of the secondary routines that |
the PLAY_GAME main loop calls:

Title Screen:

This procedure is where you control the entire title screen
sequence, which is normally more than one screen or effect. The
bare bones of this routine is enough to get you going and the
code is pretty self-explanatory. Look at "Thurg N Murg’s" title
screen sequence to see how you can run a more complex set of
screens. This routine is a "Fiddle" routine in that you can make
it as simple or as complex as you wish. We have made it so that
lire or ESC will exit this procedure. Use this until you achieve a
higher degree of mastery with the M.A.G.E. system.

Init Game;

This procedure starts your game. It is called every time you |

re-start the game. It sets things like the starting player’s lives,
level and score. It resets the sprites and gets your screen
boundaries setup correctly. It is also where you first call Init
|.evel, Init Sprites and Init Game Screen.

49

Init Level:

In this routine you will set up all the variables that are
necessary to begin a level. Some things that get set are the
number of bad guys, the possible locations of game items (which
change) and maybe even some complex tables (for advanced
programmers).

Init Sprites:

This routine is where you should Ef)sition all of your sprites
that appear at the beginning of a level. This is all you do here.

Init Game Screen:

This is where you draw your backgrounds, character maps
or character displays for the beginning of the level. It is wise to
copy it to the Logical Screen since it will be displayed once
be&re a re-draw is preformed.

Update Players:

This procedure is where you will control all of the player
and monster movements in the game. This procedure usuall
only calls subroutines specifically designed to control eacﬁ
sprite’s movement. This routine will take advantage of the s1
tﬁrough $10 automatic movement controls.

Collision Check:

Now that we have updated the players’ positions, it is time
to see what collisions have taken place. Two major types of
collisions should be checked for. They are character co].lFi)sions
(see the Character Map chapter) and sprite collisions (see the
Sprite Chapter).

50

Keyboard Control:

This directs functions related to key press actions. It is
already set up to handle function keys and to restart the game on
the first ESC key press and quits to desktop on the second ESC
key press. Pause 1s also handled and so is the VSync rate keys.
In other words, you only need to insert program-specific
modules here to make things work. We would like for you to
keep the keyboard and function key assignments standard for all
M.A.G.E. games whenever possible.

Below are some routines that you will not want in your finished
game:

FC7 - This procedure runs an external PRG (not something to
do in a gamel)

FC8 - You definitely do not want to dump your program’s data
onto someone’s printer once it is finished.

MS_ShowFPS - The number in the corner ruins most games.

MS_Stepmode - Most players should not single step through
your game. '

F. Tips for Using the M.A.G.E. Shell:

® Do not worry that your first few games do not use all
of the procedures. You may not need every one for
every game situation.

¢ Troubleshooting should always start with Play Game.

® The function FC8 can be very helpful.

® Do not fiddle with the Command Kernel. It is designed
to interface with the M.A.G.E. assembly kernel and has
not been structured in such a way as to felicitate re-
programming. Future command Kernel updates will be

ol

made available as MajicSoft develops them.

¢ Just follow the bouncing ball. New programmers
should take it slow and easy. Follow the steps that are
laid out above. Working with the code is the best way
to fully understand each function and to grasp the
complete coding overview. (Remember: Rea 1s one
thing but actually working your way through a
prob%em is probably the best training anyone can
provide).

2

Chapter 3. SCREEN HANDLING

We will explain the different types of screen memory. Scan
lines will be discussed and the layout of the Atari’s physical
memory will be overviewed.

A. Physical Verses Character Screens
The mage system keeps different types of screens in
memory. Physical and character screens are two of them.

Physical screens are sections of memory arranged so that the
Atari hardware recognizes it as a full bit-map graphic screen.

73

Physical screens can be pointed to as video pages and displayed
on screen. Character screens are very different animals indeed.
They only represent what is in each Character Cell that the
M.A.G.E. thinks is on the screen. The character screen and the
MAP are discussed in chapter IV. This chapter will discuss the
use of physical screen banks and how the M.A.G.E. uses them.

The M.A.G.E. keeps three copies of the screen in memory
(on top of whatever you reserve) for page flipping.
MS_Physical% is the address of the start of the screen that you
can actually see. MS_Logical% is the address of the screen that
gets drawn on (we never draw on the Physical Sc:reen!Ll and
MS_Background% keeps a copy of a fixed background that is
copied into the logical screen every page flip. The reason for a
background screen is because unlike other systems, the sprites do
not keep copies of the background with them. Instead, a screen
re-draw is performed. This has the advantage of allowing large
numbers of sprites to be drawn very quickly. It has the
disadvantage of using slightly more processor time and memory
when just a few sprites are displayed.

In addition to these screens, you might want to reserve extra
screen banks for your own program’s use. This is accomplished
via the MS ScreenInit(IN) command. Where N is the number of
screens -1 (ie:0=1 screen, 1 = 2 screens, etc..). The extra screens
that you reserve with this command also reserve room for the
i)alette, in Degas format. Because of this, we recommend that at

east one extra screen be reserved for fading and palette effects.
Be warned that this consumes an additional 32,032 bytes of data
per screen reserved. Commands, such as MS_Fadeln(), will only
work from a reserved screen bank. Screen banks are referred to
by number. Their exact addresses can be found via the

MS_ScreenAdr() command.

The MS_Vsync20(N,V) is a command you saw in chapter IL
This commandsgandles the page flip of the MS Logical% and
MS_Physical% screen addresses and the copying of N groups of
20 scan lines from the MS_Background% screen to the new

54

MS_Logical% screen. This command is just one of many
M.A.G.E. commands used to regulate screen flipping. It is not
really necessary to remember which screen 1s which (the
M.A.G.E. keeps the values straight for you), but it is important
to note that you should not Ciange the values of the screen
address variables on your own.

B. Composition of Physical Screen Memory

The Atari ST stores its video in RAM in the form of Scan
Lines. Scan Lines in 320 x 200 x 16 color mode are 160 bytes
wide. There are 4 bit planes in memory in this mode but they
are not stored as you would think. Each word in memory
represents 16 pixels on one plane. The next word represents the
same 16 pixelz on the next plane. It takes 4 words to complete
16 pixels of data. Then the next 4 words of data handle the next
set of 16 pixels. This goes on until 160 bytes (40 words or 320
pixels) are representecf. This represents one scan line. If you

refer to shift the screen, you have got to do it on word
Eoundaries because of the way the video is stored.

C. Partial Screen Copies

The M.A.G.E. Vsync commands offer a wide range of copy
options, including the option not to copy the background to tﬁe
logical screen at all. The reason we do this is to offer the
programmer the ability to easily implement certain "Tricks" to
speed up the operation of the program. By copying only a
limited amount of the screen, say 180 scan lines instead of 200,
you free the processor to do other things. This allows you to
shrink the active page-redraw area and get better game play.

55

D. Quick Screen Clears

An even better way to get your game to run faster is to use
no background screen at all.” Instead, use the MS_Vsyns()
command and the MS_Clear() command to make for very fast
screen re-draws. Games like "Insectroid™ and "Evader” use this
technique.

E. Screen Masking

Screen masking is the technique that games such as "Xenon
IT" use for multiple backgrounds. This gives your games depth
but eats up a lot of processor time. The M.A.G.E. system allows
two basic types of screen (or memory) masking: The full mask
or MS_Msk160() is where a sprite type mask is created on the fly.
This 1s by far the slowest method. It does, however, allow you
to mask a full set of 16 color scan lines onto a background screen.
The MS_Multi8or() routine only OR’s your data with the
background. This is much faster than the full mask but it creates
problems of its own. The OR command only allows certain
colors to blend into each other. Basically, you must plan on
your color to use two different sets of bits in the color encodin
scheme. For e le, plan your set background to use bits O an
1 and your OR’d Eaclfground to use bits 2 and 3. Any colors
that use bits from both sets can not correctly be OR’d with one
another. You could, of course, set up your bit-plane rules
however you wish. Just remember that OR’d data should not
share bit planes.

F. Displaying Your Screens

It 1s possible to load in a .PC1 file and display it on the
screen with a few simple commands. To load in a .PC1 screen
use the MS_DegCLoad() command and the MS_FadeIN()
command to show it. If you do not want to fade the screen in,
use the MS_MoveM() command to copy the buffer to the
MS_Physical% buffer.

56

G. Storing Your Screens as Inlines

One nice feature of GFA Basic is the INLINE command
With this command you can store any data you like in the
ﬁrogram, eliminating the need for external files. The M.A.G.E,

as a full line of features that allow for you to store compressec
screen files inside of INLINE statements for later retrieval.

Here is how it works:

® Draw your screen and save it in *.PC1 format.

e Compress the screen using the JamPacker, use
ICE/1024/Data/Header & Flas%: off.

® Write down the length of the file.

® Create an inline in your program of the file length and
load in the compressed ﬁfg.

*When you want to display the screen, simply
MS Delce() the Inline into the MS BAckground%
buffer, next MS_DegCMem() the file into a screen bank.
Use the MS_Copyboth() and MS_fadeln() commands to
show your screen!

H. Scrolling Your Screen

Unfortunately, not all Atari computers allow for smooth
scrolling of the screen. The M.A.G.E. system was designed to
work on all Atari ST systems so no Korizontal fine pixel
wrolling is supported. Our Majic Library Update may support
wuch a system if you request one! There is a fine system of
¢ haracter based scrolling available in the M.A.G.E. which all
computer systems can implement. The MS_Map(} commands
llow for scrolling and tracking of entire virtual worlds that you
can create. See tii\e Character Map Chapter for more info on
these commands. Right now, however, we will talk about

vertical fine pixel scrolling.

27

The way to create the vertical screen scrolling effects is to
reserve your own memory buffer that is 160 x the number of
scan lines your total map is going to be. This is really building a
really long screen in memory. Now place the variable
MS Background% equal to the start of your buffer. Call the
MS MapDraw() routine and have it draw into the
MS Background%. Add 32,000 bytes to the MS_Background%
variable and repeat the MS_MapDraw(). Do this until all of your
play field has been created. Now, during game play, you can just
change the address of the MS_Background% by pfus/ minus 160
bytes to scroll your background.

58

Chapter 4. Character Banks And Maps
A. Purpose of This Chapter

The purpose of this chapter is to familiarize you with the
ideas of Character Banks, the Character Screen and the Character
Map. It will also familiarize you with some of the most
unportant M.A.G.E. command that utilize these features.

Because of the highly detailed nature of Chapter 10, this
chapter will only overview some commands. It will discuss
possible implementations of the character command set. If you
wish, you might want to skip ahead to chapter 10 and review the
¢ haracter command sub-set.” After getting an idea of the types of
commands available and their general purpose, you may get
more from this chapter.

29

B. The Character Banks

The M.A.G.E. system allows you to load in up to two .CP1
banks for representing characters on the screen. The
MS LoadCP_1() and MS_Loade_Z(g) commands auto-handle
the Toading of your data. You should always load in bank one
before you load in bank two. You may re-load a bank after its
initial call, allowing for more than two banks of characters for

exceptionally large games.

A Character Bank is an ASCII mapped set of 200 characters.
The M.A.G.E. character string plotting commands assume that
you have your characters in ASCII sequence (ie: Commands such
as MS_CBText() assume you have your character set in order,
they convert the string you send them into ASCII values and
then plot them).

WARNING: The character commands will not work
properly if you do not load in a Character Bank first!! Failure to
observe this warning can lead to a computer crash!!

C. Using the Character Banks

i To plot a string on the screen you could use a command like
this:

MS_CBText (0,0,"I LOVE THE M.A.G.E.I""MS PHYSICAL%)

This command tells the M.A.G.E. system to place the string
"I LOVE THE M.A.G.E.!" into consecutive character cells
starting at location 0,0 and to draw the actual graphics on the
hysical screen page. The Character Cells are part olf)an invisible
guffer that the M.A.G.E. maintains. This lets you quickly and
easily recall what characters have been placed on the screen.
What you see on the screen will depend on what you placed into
those characters when you created the .CP1 file.

60

The Command MS_CPeek(0,0) would return the value 73
in the global variable MS_VAR%. This is the ASCII value of the
letter "I". By using the character command set (listed and
explained fully in Chapter 10) you can Peek, Plot, Poke, Write
Text Horizontally and Vertically, Center and fill with your
active character bank.

D. What is the Character Screen?

Most video game systems (like the Super NES) build their
screens from smjler coﬁections of data called characters. Many
video games do the same thing. The M.A.G.E. system is no
exception. The Character Screen, which represents what is
currently being displayed, is a smaller version of the Character
Map (which defines the entire game world). The upshot of all
this is that with 200 Character cells (most games use many less)
you can build screen upon screen of video graphics for your
game.

The M.A.G.E. has two different types of character buffers.
The Character Screen is a buffer the size of the screen in cells.
To determine what your cell dimensions are refer to the chart in
chapter II which shows you the relation of pixel size verse
character dimensions. The Character Screen is zero based, thus a
40 x 25 screen has coordinates between 0,0 and 39,24.
WARNING: Some M.A.G.E. character commands have no
safety net (for speed purposes) and will crash if you try to access
outside a legal cell.

The Character Screen will keep a record of all the characters
you have plotted on the screen. It will work with the Character
Map to aﬁow for the display and handling of larger than the
screen backgrounds.

E. Why Have a Character Screen?

The fpurpose of the Character Screen is to keep a temporary
record of the character cells you have plotted on the screen. In

61

order for this to work correctly you must plot the characters on
cell boundaries. Please note that some M.A.G.E. commands
allow you to plot a character anywhere on the screen, but that
this will not update the Character Screen. This record is very
useful in collision detecting and in setting up nice interface
systems for the user.

Without the Character Screen you could not easily tell what
background object the sprites were positioned over. In "Thurg
N Murg" you can see that the platforms and pickups are all kept
in the Character Screen. When the sprites move, they check to
see if they hit a platform. They also check to see it they hit a
pick-up. The command MS_CPeek() is fast and easy for such
purposes. Examine the routines Check_Legal and
Collision_Check in "Thurg N Murg” to see exactly how to work
with the sprites and Character Screen.

F. The Character Map

The Character Map is simply a collection of character
screens. The Character Map provides a permanent record of all
the backgrounds used in the game. For instance, when you want
to display a level in "Thurg N Murg", you first copy some of the
Character Map onto the MS_Background% and Character
Screen. This is accomplished by using the command
MS MapDraw(). Now whatever we do to the Character Screen
will have no etfect on the Character Map (Note: There are
exceptions to this!) and if we want our original background back
we simply call MS_MapDraw{() again.

The Character Map can also be interacted with. The Map
Scroll commands can create a "Super Mario World" type effect,
allowing you to move around an area bigger than your physical
screen. When doing this it is important to remember several

62

® Your Character Map and your Character Screen will
have to be updated. If a player takes a pickup from the
background you must erase it from both areas or you
will still have it the next time you draw the map.

® The Character Map must be re-loaded in order to
restore any changes you made to it. This is fast and
easy if you inline your data.

® You can only scroll on character cell boundaries.

G. Loading a Character Map

You can load in a character map by using the command
MS_LoadMap(Path$) where Path$ is the path of where your
MAP is located. You should always be sure that the character set
you have loaded is the same size used to create the original MAP
tile or unexpected results may occur.

H. Embedding a Character Map

You can embed a character map in a GFA Basic inline
statement by following these steps:

® Make an inline form of your .MAP file following the
instructions outlined in Chapter II.

® Record its final size and then create an inline in your
program that is the same size.

® Load the file into the inline using the HELP and
LOAD method.

® Call the M. A .G.E. command MS_MapInl(Adr%) where
Adr% is the inline you used to store your map data.

Embedding a Character Map is a very professional method of
storing data. It makes your program run smoother in its
operation, cuts down on external files and makes it hard for
hackers to modify your code.

63

I. Scrolling With the Character Map

When scrolling horizontally, the M.A.G.E. systems takes
advantage of the MS_MAP{) functions to do its scrolling. The
commands MS MapUF(), MS_MapDown(), MS MapLeﬁO and
MS_MapRight() handle the character scrolling for you. Each
command will draw a screen of characters based on the X,Y
starting coordinates on the Character Map. The Character
Screen is also updated along with the MS MapH& and
MS_MapV& variables. To see these commands in action, enter
the map editor and press F5 (Scrolling ON). Now draw
something on the screen and use the mouse to scroll around.
Note: The scrolling in this program works at the fastest rate
possible. You can use this speed to judge what type of scrolling
speed your game is going to have (about half the map editor’s
speed is due to sprite movent etc...).

J. Tips for Using Maps:

® Imagine the Character Screen as a "Window" looking
into the Character Map. The Character Screen never
changes coordinates and locations, while the map can.

® The Character Map should be treated as a permanent
record of the background. Only write to it if you plan
to reload it the next time you restart your game.

® Use the Character Map command set for horizontal
scrolling.

® Take a close look at our demo code for even better
examples of how to interface with the Character Screen.

64

Chapter 5. Sprites

A. Purpose of This Chapter

This chapter is going to introduce you to the M.A.G.E.
sprite system. It wiﬁ explain simple movement and tracking
commands. It will also explain offset plotting and some more
advanced techniques such as multiple sprite objects and tabled
movement.

B. Sprites Verses Speed

Sprites are probably the easiest thing to manipulate in the |

M.A.G.E. system. A sprite is a graphic image that contains a

65

mask. This mask cuts a custom shape out of the screen that the
image fills. A sprite does not show its square boundaries like a
character does. Because of this, sprites take up a lot of processor
time. The more sprite data you plot on the screen the slower
your game is going to run. Slow frame rates are not always a bad
thing. It has been our experience that a user perceives 25 objects
running at 15 FPS to be as fast as a game using 10 objects running
at 30FPS. Game speed and sprite use is up to you to decide. Do
not get obsessed with the magic goal of 50 or 60 FPS.

The M.A.G.E. system can handle about thirty 16 x 10
sprites at 20 FPS on a normal ST. On a Falcon computer, one
hundred 16 x 10 sprites have been clocked at 20 FPS! "All sprites
are 4 bit-plane (16 color) and fully clipped. You should plan
your games with a target speed of between 20 and 25 FPS.
Depending on the speed of your logic, the above numbers can
actually be increased!!

C. Image Banks and Sprites Explained

There might be a point of confusion we would like to clear
up right here and now. And that being what the difference is
between sprite images and the actual sprites used during
programming. When you are creating an .SP1 file you are not
creating actual sprites. Instead, you are creating image data that a
sprite uses to display itself. An animation file keeps a list of these
images in memory so the sprites can be told Wlfat sequence of
images to use. The declared sprites can use any 1mage or
animation they want. For instance, sprite number 0 can take on
images 0-199 and animations 1-XX. Sprite number 1 can do the
same. You do not have to declare a separate sprite for each
image created in the M.A.G.E. animation editor.

D. Planning for Your Sprites
You should always sit down and decide how many sprites

you are going to need. The first step to programming with the
M.A.G.E. is to decide how many sprites will be needed for the

66

player, his shots, the monsters, their shots, bonus sprites, etc...

Write this down on a piece of paper. Because of collision |
checking (discussed in the next chapter), you should always |

group your sprites together by function. Leave extra slots open
if you are not sure how many of a particular type you are going
to need. Below is the sprite plan for "Thurg N Murg".

Sprite # Function

0 Player O’s character
1 Player 1’s character
2,3,4 Player 0’s shots
5.5 7 Player 1’s Shots
8,9,10,11 Bonus numbers
12-20 Monster Sprites
21-30 Monster Shots.

With the above plan you can see that you need to declare 31
actual sprites in the MAGE _Init() command. You now know
each sprite’s function. This will come in handy throughout your

programming session.

E. Loading a Sprite Image Bank

The MS Loadspl 1() and MS Loadspl_2() commands handle
loading of the sprite banks. The first sprite bank must always be
loaded first and the second sprite bank must always be the same
size as the first bank.

Example: MS loadspl_1("E:\Thurg\Thurg.SP1")

The above example will load in the sprite bank Thurg.SP1.
That is all there is to loading in a sprite bank!!

67

| F. Embedding a Sprite Image Bank

[

| The following steps must be taken to embed a sprite bank.
| Be warned that you should not do this until tlllje game is
. completely finished because you must repeat this procedure
. every time you make a change to the original .SP1 b

® Make an inline ready file by following the instructions
in Chapter II, The Inline Maker.
e Note the final file size and create an inline in your
| program to load it into.
e piiing the Help and "L" keys load your data into the
inline.
® Now use the MS SplInl 1(Inline Address%) command
to load in the sprite bank.

‘That is it! Note the MS_Sp1Inl_1() and MS_Sp1Inl 2()
' commands work the same as the external commands but instead
- of the path you give the inline name you used to store your
sprite bank. The M.A.G.E. will handle de-compressing and

- installing the images automatically.

‘ G. Loading a GPA File

.~ To load an .GPA file created in the M.A.G.E. Animator use
' the following command:

|
|
il
|
‘.
il

| MS_LoadGPA (Paths)

' This command will automatically load and embed the .GPA
 file you have created in the M.A.G.E. animation editor.

68

H. Embedding a GPA File

Here are the steps to embedding a .GPA file. Please note that
this should be the last step in your game development due to the
fac'zl that you must repeat these steps if any changes have been
made.

® Create an inline-ready .GPA file as per chapter II,
The Inline Maker.

® Note the file size and create an Inline of the same
size.

® Using the Help and L keys, load the data into the
inline

eUse the M.A.G.E. command MS_GPAinl
(Inline_Address%) to activate the file.

I. Animating a Sprite

You can tell a sprite to use the image sequence stored in an |

animation slot by using the command MS_Anim(). This
command will not tell the sprite where to be placed. In order to
do this use the command MS_Animate() ngich sets the sprite
location as well as its animation sequence. If a single image is
desired use the MS_Sprite() command. All these commands
activate the sprite (ie: Start drawing it). MS SpriteClear() is the
command you should use to turn a sprite off. Experiment with
the above commands to see how these effect a sprite.

To change an animation without activating a sprite, use the
MS_AnimO() command. This might be useful when you want
to hold a sprite in reserve or do not want to change its status.

The MS_Expode() command allows you to display an
animation while causing a collision. Useful if the monster gets
killed, but you want him to splatter in some way or another.
The MS_Explode() command has a nasty little surprise for the
unwary. The global variable, MS_PHit|(), is a flag that the

69

|
| M.A.G.E. uses for collision checking. If MS PHit|() for a sprite
I‘ 1s not zero, a collision check will not be performed on the sprite,
even if you include it in the collision command parameters.
Make sure to call the MS_SpriteClear() command after you have
used MS_Explode() to avoid any collision checking errors. If a
sprite does not seem to be obeying a collision check then this
sgould be one of the first things to check for errors.

J. Moving a Sprite

A sprite can be moved in a variety of ways in the M.A.G.E.
system. Direction, Tracking, Patterns, Offsets, OffsetFs and user
controlled movement, will be discussed.

K. Direction Movement

A sprite can be told to move in a direction. The command

. MS_Direction() command will move a sprite a certain number of

~ steps every game loop for a certain number of game loops and

then turn the sprite off. The MS_LDirection() command will
perform the same function but will not turn the sprite off.

The sprite will be turned off if it exceeds the boundaries you
have set up in Init Game.

L. Tracking Movement

You can assign a target sprite for the sprite to track. The
command MS _Track() allows you to designate a target, speed and
length to track. The sprite tracking will turn off once the length

reaches zero. The track command does not effect animation.

70

M. Patterns

The MS_Pattern() command tells a sprite to follow a fixed
path and then turn off. The MS_LPattern command resets the
sprite to the beginning of the pattern instead of turning it off.

Patterns are a very fast way to move things. Games such as
"Xenon II" use patterns to move their aliens.

N. Offsets

Offsets work just like patterns except they are not in a fixed
Fath. Instead, they are fixed to a path based on their starting
ocation. In other words, the offset will always follow the same
sequence of steps (left, right, right, etc...). But since you can start
them anywhere on the screen, they have different screen
coordinates than the original. Games like "Insectroid” and
"Megapede” use this type of command. This type of movement
s slightly slower than);ﬁe pattern method.

O. OffsetF

OffsetF’s are offsets that continually change based on the
sprite they are attached to. An example would be a circle
tisetF. You launch a sprite using this OffsetF based on your
main character. Now, the sprite following the OffsetF will circle
your main character no matter where it moves.
This type of movement is the slowest, yet most powerful
form of movement the M.A_.G.E. has to offer.

P. Global Movement

Used in games like "Defender” and "Gauntlet”, this type of
movement shifts a number of sprites a certain number of pixels.
The command MS MoveSprites() will do this for you. Excellent
when using scrollin bacﬁgrounds or if you want to move a
group of sprites together.

71

Q. User Controlled Movement

Sometimes the M.A.G.E. movement commands are not
enough. This is where the global variables MS_SHor&() and
MS_SVer&() come in. These arrays hold the horizontal and
vertical position of every sprite you have declared. You can
change tgese values from within the program in order to move

- your sprite. "Thurg N Murg" uses this method to introduce
| gravity into its jumps and falls. The actual use and manipulation
. of these variables will depend on the type of game you are

programming. Study the enclosed source code for a more
detailed explanation on how to manipulate these variables.
P p

R. Other Commands for Sprites
Plotting a Sprite:

A sprite image can be plotted on the screen. If you want to
"Stamp” something onto the screen this is the way to do it. The
command MS_SPlot() will perform the task.

S. Multiple Sprite Images

In some cases you may want to display an image on the
screen that is bigger than a single sprite mmage cell. Thus is easily
accomplished through two different methods of plotting.

The first method is the multiple sprite method. This is
done by simply storing the image in separate sprite image cells.
Then all you need to do is use several sprites to disa%a the
image. A 2 sprite high by 2 sprite wide image can be cﬁspfayed
by using 4 sprites. Another way to keep the sprite together is to
move a single sprite as per the methods above and then updating
the MS_SHor&() and MS_SVer&() variables of the other sprites
that make up the image. For instance, MS_SHor&(1) =
MS_SHor&(Os)«!— 16. Finally, you can move the images using the
MS_MoveSprites() command.

2

The second method is to use the MS_SpriteBlock() command.
This requires that you draw each frame of the large image on a
screen and have loaded it into a screen bank somewhere. You
should not use this method unless you are manipulating rather

large pieces of data. Use the screen banks and the command
MS_ScreenAdr() to ease the handling of your sprite blocks.

In any case, moving large blocks of sprite data is sure to slow
your program down. Keep activity down when a big sprite is on
the screen by limiting the number of other sprites that appear at
such times.

T. Tips for Using Sprites

® Plan your image data so that the fewest sprites possible
can be on the screen at any one time.

® Large images can be displayed via the MS_SpriteBlock()
command.

e Movement takes on many forms in the M.A.G.E.
Experiment with each form so that you know which
one is the right one for you.

® Review Chapter 10 to get more information on the
sprite commands.

3

" VYV \agjicE===Ffte

ut The Majic In The Sottware!”

74

Chapter 6. Collision Checking

A. Purpose of the Chapter

This chapter will discuss the two main types of collision
checking. These are sprite collision checking and character
collision checking. We will also discuss sprite organization for
the best results during collision checking. Zone Checking will
also be discussed.

75

|

what

B. Sprite Collision Checking

When you move some sprites, such as a missile, you will
| want to know what sprite it has hit. This is where the
| MS_Collide() command comes in. It allows you to check a single
| sprite against many other sprites and returns a number based on
| ou wanted checked. The Bosscollide checks to see if a
sprite has entered a rectangular area.

The MS_Collide() command requires some explanation, as it
is one of the most used and most confusing commands in the
M.A.G.E. system. The command works like this:

® You tell it the sprite that you are going to use for the
collision (this is your missile sprit_}e).

® You give this sprite a Hot Spot. This is really the upper
left corner of tﬁe start of the collision rectangle. If you
place a value of 2,2 here the actual rectangle that triggers
a collision report will start 2 pixels to the right and 2
pixels down If)rom the actual sprite’s upper %eft hand
corner.

® Next, you give the command two values. These are the
width and height of the collision rectangle for the
missile sprite.

*Now the command expects the same type of
information that it will apply to the other sprites (the
Target sprites). This is in the same format as the above
information. The reason to have two collision
rectangles is very simple. Your missile may be much
smaller than the monsters. Thus, you would want to
make the collision rectangle around your missile to be
pretty small (not the size of the whole sprite image).
You would want the monsters to have a prettyi'g
trigger area. This is why we have a second trigger
rectangle. The MS_CollideQ command simply
compares all these rectangles and reports the first one
that overlaps.

® The command now wants to see the highest numbered

76

sprite to check. This command checks downward
bs;ause it is faster to subtract in machine code than to
add.

® The last parameter you will give the routine is how
many sprites to check. This routine works
downward. So to check from 20 to 12, giveita 9.

The routine will now return the sprite number that first
triggers a collision with the target sprite in the global variable
MS VAR%. If no collision is detected then a zero is returned.

Be warned! Sprite collision checking is a time consuming

Frocess. A game with lots of collision checks is likely to drop a

ew Vsyncs in speed. Only check those sprites that are
absolutely necessary for the game to function!

C. BOSSCOLLIDE

The MS BossCollide() command works the same way that
the MS_Collide() function works. Instead of checking sprites
against each other, it compares a group of sprites against a fixed
rectangle. This is used when you want to see if your missile
sprites have run into a large section of the screen, possibly a large

oss alien of some type.

D. Character Collision Checking

There are several ways to check for sprite collisions and the
Character Screen. We will cover them in the following
descriptions. Character Screen checking is most often used in
looking into the background for walls, platforms and pickups.
The Character Map should not be used for collision checking
because of the special problems that this poses.

i

| CBitPeek()

| Use this command to check under the sprite. You need to
set the X, Y coordinates to the middle of the sprite if you want
the correct character cell. Example (Using 16 x 10 sprite size):

X8¢=MS_Shor&(0)
Y&=MS Sver&(0)
add X&, 8

add y&, 5

CBitPeek X&, Y&)

CPeek

Use this command when you know what cell you are over.
If you want to do a manual calculation of the character cell for
accuracy or some internal factor, use this command. Here is an
exa_mp)le of a sprite that you want to check just ahead of (16 x 10
sprites):

X&=MS_Shor&(0) ! Get the X,Y of sprite 0.
Y&=MS _Sver&(0)

Add X&, 17! Look Right one cell.

Add Y&, 5

Div X&, 16! This is the size of the sprite!
Div Y&, 10

CPeek (X8&,Y&) ! Look at this cell.

Both of these commands return the value of the cell in the
global variable MS Var%.

You may also use the same technique to look into the
Character Map. This would be useful if your sprite went off the
physical screen but still had to worry about hitting something in
the background.

78

Zone Checking

Zone checking was set up to provide an easy way to check
boxes. This command set is more about building user interfaces
than about sprite collisions. Their primary use is in building
user interfaces. They can quickly check through up to 255
rectangles and return which one an X,Y coordinate 1s in.

The Zone commands are listed in Chapter 10. There are

only a few things that need to be said about them here.

The Zone commands will only return the first rectangle
violated. Be careful of how you set them up so that you do not
fail to detect multiple zone violations. You also need to be aware
that this comman(i) could be used in establishing areas in a video
game. We allow them to be moved around for just that purpose.
Walls could easily be bit-mapped and defined with zone
rectangles instead 027 using character cells to build them.

E. Tips for Collision Checks:

® Keep your sprites grouped so that one collision check
command can handle the whole set of sprites.

* Keep collision checking down to a minimum. Lots of
collision checking can slow down a game in a hurry!

® Use Sprite collisions to compare sprites.

® Use Character collisions to check the background.

eUse Zone collisions to help with bit-mapped
backgrounds and button-like user interfaces.

e Remember that the MS_Collide() command works in a
downward fashion!!

79

VW \ gjicS=o=Fte

"We Put The Majic In The Sotftware!”

80

Chapter 7. Sound Effects

A. Purpose of this Chapter

The purpose of this chapter is to explain the three different
ways the M.A.G.E. system produces sound effects. We will
discuss the built in sound effects, the interrupt driven digital
sound commands and the chip music .MOD interface system.
B. Built in Sound Effects

The M.A.G.E. system’s MS_Sound() command triggers one

of the 101 built in sounds to be played. Sound 100 1s a null |

sound and is used to turn off the existing sound effect early. A |

8l

| sound number from 0 to 100 is used. The other parameters used

in this command do an elementary sound effect priority sort.
| First, you tell the routine if this sound has overrige priority or

not. If it does not, then the sound effect is placed in the buffer
‘ and will be played when the current sound is finished playing.
‘r The buffer 1s only one slot in length. If another non-priorirgf
sound effect is called for before the one in the buffer is played,
| the one in the buffer will be over written. If the sound eftect has
' priority, it will stop the current sound effect and start to play
1tself. You must also pass a sound effect length because early
| versions of TOS do not always report back accurately when an
|| XBIOS(32) sound is finished playing.

|

C. Digital Sound Effects

d WARNING: This command set will NOT work on the
Atari Falcon. This is the only set of commands that do not
work on the Falcon computer. Using these commands on a

Falcon will result in a BIG crash!
The svﬁital sound player works in the backéround. Your

| program will continue to operate when sound etfects are bein,

layed with these commands. The MS_SamplePlay() comman,
g ins playing a sample. The MS_SampleStop() command turns
off a sample. The MS_SampleWait() command pauses your
program while the sample is playing.

The digital sound player uses ST-Replay format sampled
sounds and can handle speeds of 3Khz to 15Khz. Lower speeds
may result in a computer crash. The faster the playback speed is,
the more time the sample replay routine requires from the
processor. Most real time sound effects in the M.A.G.E. system
should stay near the 3Khz range.

It is best to use inline statements to embed your sampled
sound effects directly into your program.

82

D. The Chip .MOD Player (Chip Music)

The .MOD creation tool was discovered by the MajicSoft |
staff just weeks before the release of the M.A.G.E. system. We |
were delighted with the possibilities that this system opened up
for game programmers. We modified the GFA Basic interface to
use the replay routine. This routine works in the background
but unlike the sampled sound routine, it will work on the Falcon
computer system. These types of .MOD files do not contain
digital music. Instead they contain a sophisticated chip music
de%inition and a song file. By using these creatively you can get
some outstanding sound effects. Another plus to using this
interface is the amount of memory saved. TEis pe of MOD
music uses as little as 1% of the memory that digital samples use.

The Mod interface consists of a creation program named,
"MUSICMON.PRG", which can be found on the Extra Disk.
The "MUSICMON" program is not the property of MajicSoft.
It is provided to you as shareware, so please register your copy.

E. Using the MOD Player

The mod player interface has several commands to ease the
construction of multi-voice sound effects. The first thing you
need to do if you intend to use the MajicMod interface is to call
the routine MS_Init_Player(). Pass it the total number of MODs
(zero based) that you are going to use throughout your game.
After you have done this, you need to call MS_Embed Mod for
each MOD that you want to use during the game. It is
important to do tKis before you use the sound so the replay
routine does not crash. The following are the steps to follow:

1) Make your MOD:s and note their length.

2) Load them into inline statements.

3) Call MS _Init Player().

4) Embed the Mods using MS_Embed Mod().
5) Play them using MS Play Mod|().

83

|

| F. MODS and Sound Effects

|
If you create a MOD that is only a couple of notes long you
’ can replay this "Song" as a custom sound effect. This is the real
- power of this interface. Another good technique is to make the
| pgtt?rn very short so it takes up even less memory and clears out
| nicely.

84

ﬁcj{bﬁwwc &
A @ e L)

Chapter 8. Miscellaneous Commands |

A. Purpose of this Chapter \

This chapter will discuss commands and techniques that do
not easily fit into the other chapters.

85 |

B. MS_BLIT Inline

The MS_BIit.INL kernel is only used when you want extra
speed in your Blit routines iie: Moves and Screen Masking). It
takes up an additional 30K plus uses a buffer of 32K. It does add
a real speed improvement to your code. Use this when you are
programming for a 1 megabyte machine or higher.

C. Star Plotting

The star plotting commands (as seen in chapter 10) are used
to create a variety o% effects. The multi-colored star field and
snow effects are the most common. We need to note a few
oddities of these routines so you do not become confused. First
of all, the stars will move in the direction opposite of the
joystick direction you give the routine. This is because the
routine is designed to simulate two dimension backgrounds.
Another quirk not apparent is that the H and V directions are
simply magnitudes. Tlfey may not contain a negative value.

Remember to Vsync and re-draw or clear your screen before
plotting your stars. Stars do not self-erase.

D. MS_16/32 Inlines

It may not be apparent to some using this code but you will
need to load in one otp these inlines into your shell before starting
your programming. You load in the inline based on which size
character/sprite you will be using; 16 pixel wide or 32 pixel
wide. You can not mix the two sizes.

86

Chapter 9. Important Variables
A. Purpose of this Chapter
Congratulations to you for completing the major portion of

this tomb. This chapter will discuss the important internal
variables that you can use in your programs. These are advanced

features of the M.A.G.E. and it is not necessary to know these |

variables in order to use the M.A.G.E..

87

B. Using M.A.G.E. Variables

The M.A.G.E. system has a collection of internal variables.
All variables use the MS_ format. You will not encounter global
data corruption if you avoid starting any of your variable names
with MS_. The variables listed below are the ones that you may
want to access directly. It is not necessary to access these
variables as the M.A.G.E. shell provides commands that work
with all of them. Advanced programmers may wish to directly
control some aspects of the M.A.G.E. so we have provided the
following list of variables and functions.

Note: The () indicates that there is a slot for each sprite you
declare in your M.A.G.E. shell. (ie: If you declare 100 sprites
then there will be 100 elements in all arrays)

. C. Sprite Variables

Variable Function

MS_SHor&() - Contains the horizontal position of all sprites.
MS_SVer&() - Contains the vertical position of all sprites.
MS_Sprite|() - Holds the current image that a sprite is using.
MS_SFlag|{) - The On/Off flag for the sprites. 0=Sprite is off.
MS_PHit|{) - PreventHit Flag. 0=Sprite is allowed to be
collision checked. Anything else will mask the
sprite during any collision checking commands.

D. Animation Variables
Variable Function

MS_AniFCnt|() - Counter that points to the current animation
frame the sprite is using.

MS_AniMode|() - What style of animation is taking place.

MS_Anims|() - Which animation sequence the sprite is
using.

MS_AnimFlag&/() - This holds the type of animation playback to |

use:

0 = Repeat over and over. _
1 = Play animation once and turn sprite off.
2 = Play animation once and leave sprite on.

E. Movement Variables
Variable Function

MS_DirH&() - Pixels to move horizontally during
sprite direction commands.

MS_DirV&() - Pixzels to move vertically during sprite
direction commands.

MS Dirl|() - Length to move during direction commands
in game cycles. 255 = Always.

MS DMove|() - The direction the sprite is moving during the |
track commands. Based on the GFA Basic |

STICK table.
MS_MoveH|() - Pixels to move horizontally during sprite
tracking commands.
MS_Movel | - How many cycles to track. 255 = Always.
MS_MoveV|() - Pixels to move vertically during sprite
tracking commands.
MS_PatmS&() - Holds which pattern the sprite should use.
MS _PatmC&() - Counter to hold which step of the pattern to

use next.

MS_OffmS8&() - Holds which offset pattern the sprite is
using.

MS_OffmC&() - Counter to hold which step of the offset to
use next.

MS_Track%() - Holds the sprite that this sprite is tracking.

89

F. Star Plotting Variables
Variable Function

MS_Stars& - Total number of stars to plot.

MS StarH1& - Left horizontal boundary for stars (0-319).
MS StarVi& - Upper vertical boun for stars (0-199).
MS StarH2& - ngﬁt horizontal boun for stars (0-319).
MS StarV2& - Lower vertical boundary for stars (0-199).
MS StarC& - Color of the star.

MS_StarH& - Horizontal position of star.

MS_StarPH&() - Pixels to move horizontally (0-32000).
MS_StarPV&() - Pixels to move vertically (0-32000).

MS StarV&() - Vertical location of star.

G. Screen Variables
Variable Function

MS_Background% - Points to the beginning of the background
screen.

MS Logical% - Points to the beginning of the logical
screen.

MS_Physical% - Points to the beginning of the physical
screen.

MS Buffer% - Points to a 32K buffer ares (if using
MS_Blits).

H. Miscellaneous Variables

Variable Function

MS_Var% - Always returns the value of a function.
MS_MapH& - Map Horizontal pointer location.

MS _MapV& - Map Vertical pointer location.

90

1. Global Variables

All of these varibles have different functions according to
when they are used in the M.A.G.E. shell. You may freely
use these global varibles if you keep in mind that they can be
corrupted at any time.

MS _File$

MS1$, MS2$, MS3$
MS1%-MS20%
MS18-MS20&
MS1|-MS20]
MSH&, MSV&

J- Additional Character Variables

Variable Function

MS_Cp1% - Address of start of character data.

MS Vc& - Vertical pixels of a character.

MS_Cb& - Bytes per character.

MS_Cm& - Character Mode (0-16) 1= 32 Pixels wide.

MS Ch& - How many characters will fit horizontally
on the screen?

MS_HC& - Horizontal pixels per character.

MS_Cv& - How many characters will fit vertically on
the screen.

MS_CBufl1% - Holds the character image data in bank 1.
MS_CBuf2% - Holds the character image data in bank 2.

St

K. Additional Sprite Variables

Variable Function
MS _Sp1% - (Ii-Iaolds the location of the sprite image
Bl

MS_SpriteDump& - Tells the program to dump sprite data to
' printer.
' MS_Sb& - Bytes per sprite image.

'MS_Sm& - Sprite mode (0-16% 1=32 pixel wide
1 sprites.
| MS_SBuf1% - Holds the sprite images for bank 1.
' MS_Sbuf2% - Holds the sprite images for bank 2.

L. Additional Effects Variables

Variable Function

MS_FlashC% - Address of flash colors.

MS_FlashOn& - Flag for turning flash on/off.

MS Cycle& - Coigor Cycle flag.

MS Vs1% - Used in Vsync counters.

MS Vs2% - Used in Vsync counters.

MS VsCnt% - How many Vsyncs to delay.

MS VsCnt& - Used to count Vsyncs.
- MS_ProgramRun& - Used to flag a seperate program run
f 1 ui)aon exit. i ”
- MS_SingleStep& - to trigger single step mode.
| MS_Screens%() - Holds th??;gZK screen baL:Jks.

' MS_EffectScr%() - Array that holds source for effect array.
- MS EffectDst%() - Array that holds detination for effect

\ array.
MS_Buff%() - Holds Buffer Data.
|

92

Chapter 10. Command Summary

A. Purpose of this Chapter

The purpose of this chapter is to give a detailed description
of every command in the M.A.G.E. library. If you read no other
chapter this is the one to use. The commands are arranged in

alphabetical order.

93

| B. Notation:

\‘ The command descriptions that follow have some helpful

notation rules they follow. When a coordinate is given in X&,
Y& locations it is a bit map value (0-319 and 0-199). If the
variable is proceeded by a "C" as in ¢X&, cY& then you know
the command is expecting a character cell location and not a bit
map value.

WARNING!

The M.A.G.E. system commands use little or no error
checking. Passin% the wrong values will likely cause a system
crash!! Be careful when working with uncertain values.” Save
your work before proceeding with a test run.

C. List of Commands
MS_Anim (Sprite&, Anim&)
Sets a sprite animation.

Sprite& = Sprite affected
Anim& = Animation slot to use.

Notes: Anim& must be a value from 1 to the number of
animations created in your .GPA file.

MS_Animate (Sprite&, Anim&, X&, Y&)
Sets a sprite location and animation at the same time.
Frequently used to launch a sprite. This command turns
the sprite on.

Sprite& = Sprite affected.

Anim& i

= Animation slot to use.
X&, Y& = Position of sprite.

94

MS_Boffset (Sprite&, Offset&)

Sets a sprite to move on an offset pattern with bounda
controls. This means that the sprite will de-activate if it
exceeds the screen boundaries. This command turns the
sprite on.

Sprite& = Sprite affected.
Offset& = Offset to use.

TriggerV&, SprHSpot&, SprVspot&, SprHtrigger&,
SprVtrigger&, Start&, Amount&)

MS_BossCollide (X&,Y&, HspotH&, HspotVé&, TriggerH&t,

Used to test if sprites have moved into a set location.
Usually used to cgeck collision with a graphic image made
up of several sprites or an image cut and pasted from a
separate screen instead of a sprite Eank.

X&, Y&

Upper left of image.
HSpotH&, HSpoitV&

Hotspot to use for this image (added to X&,Y&).
TriggerH&, TriggerV&

Added to hotspot to create the rectangle that triggers a
collision report.

SprHSpot&, SprVSpot&

Hot spot offset for sprites to use.

95

SprHTrigger&
| SprVTrigger&

H Trigger distance for sprites to use.

| Start&

Startin%spn'te to check. This should be the highest number
sprite that you want to collision check.

| Amount&

|

The number of sprites down that the routine will check.
The answer is returned in the global sprite MS_Var%. If no
collision has occurred then a zero is returned. If a collision
has been detected, then MS Var% will return the value of
amount when it occurred. This value may have to be
modified to return the correct sprite number. For instance,
you checked starting at sprite number 20 and checked five
sprites. The number you would get would be from 1 to 5.
In order to get the correct sprite number the following
formula would work: Sprite& = MS Var%+ 15.

MS_Cbbtext (X&, Y&, String$, Screen%)

This command allows you to place character text at any bit
map location. This command does not update the
Character Screen.

X&, Y& = Starting position of string.

String$ = String to plot.

. Screen% = Starting address of screen you want to draw on.

96

MS_Cbitpeek (cX&, cY&)

This command peeks into the Character Screen at cell X&,
Y& and returns the value of the cell in the global variable
MS._ Var%.

cX8&, cY& = Cell position to PEEK.
MS_Cbitpoke (X&, Y&, CHAR, Screen%)

Converts a bit map location into the nearest character cell
location and plots the character Char& on the screen and
pokes its value into the Character Screen. Character will be
draw on the screen at the cell coordinates.

X&, Y& = Bit map position of the character.
Char& = Character to plot.
Screen% = Starting address of screen to draw character on.

MS_Cbplot (cX&, cY&, Char&, Screen%)

Plots an image at cell X&, Y& but does not update the
Character Screen.

cX&,cY8& = Character cell location.
Char& = Character to plot.
Screen% = Starting address of screen to draw the character on.

MS_Cbtext (cX&, cY&, String$, Screen%)

Draws a string on the screen but does not update the
character screen.

cX&,cY& = Character cell to start plot on.

String$ = String to plot.
Screen% = Screen address to draw 1mages on.

97

MS_Center (cY&, String$, Screen%)

Draws a centered string on the screen and updates the
Character Screen.

cY& = Vertical cell of string.
String$ = String to plot.

Screen% = Screen address to draw the images on.

MS_Charbank (Bank&)
Allows bank switching in the M.A.G.E. system.
Bank& = Bank to make active (1 or 2).

MS_Clear (Screen%)

Clears a complete 32K screen. Faster than GFA CLS
command.

Screen% = Screen starting address.

MS_Clear2 (Screen%, Lines&)

Clears memory in increments of 2 scan lines (320 bytes) at a
time.

Screen% = Screen starting address.
Lines& = How many groups of 2 scan lines to clear.

98

MS_Clear20 (Screen%, Lines&)
Clears memory in increments of 20 scan lines. This |
command works downward, in other words it learns the |
bottom of the screen first.

Screen% = Address of bottom of memory you want to clear.

Llines&’. = How many groups of 20 scan lines you want to
clear.

MS_Clearkey |
Waits until keyboard buffer is clear.

MS_ClearStick (Joystick&)
Waits until the joystick button is FALSE. “H

Joystick& = Stick to check (0-1).

MS Clickoff I
Turns the keyboard click off. [

MS_Clickon |
Turns the keyboard click on.

99

MS_Cmbitpoke (X&, Y&, Char&, Screen%)

Converts bit map coordinates into character cell location. It
then plots an image and updates both the Character Screen
and the Character Map.

X&, Y& = Bit map location of plot.

Char& = Character to plot.
Screen% = Starting address of screen to draw image on.

MS_Cmplot (cX&, cY&, Char&, Screen%)

Plots a character on the screen and updates both the
Character Screen and the Character Map.

cX&,cY& = Character cell location to plot.

Char& = Character to plot.
Screen% = Starting address of screen to draw image on.

MS Cmtext (cX&, cY&, String$, Screen%)

Places an entire string of characters onto a screen and

updates both the Character Screen and the Character Map.
cX&,cY& = Starting character cell location of string

String$ = String to plot on the screen.
Screen% = Starting address to plot the images on.

100

MS_Collide (Sprite&, HSpot&, VSpot&, HTrigger&, “
VTrigger&, SprHSpot&, SprVSpot&, SprHTrigger&, |
SprTrigger&, Start&, Amount&) |
Used to do collision checking between sprites. Compares |
the location of a single sprite to that of a group of sprites and

returns the sprite number of the first collision detected in the
global variable MS_Var%. See MS_Bosscollide for an example.

Sprite&

Sprite to check against.
HSpot&, VSpot&

Hot spot offset for Sprite&. |
HTrigger&, VTrigger& |

Horizontal and Vertical distance from hot spot to |
create a trigger rectangle. l

SprHSpot&, SprVspot&

Hot Spot offset to use on the rest of the sprites.
SprHTrigger&, SprVTrigger&

Horizontal and Vertical distance to add to the
SprHspot values to form a collision trigger rectangle. i

Start&
Highest sprite number in the group to check.

Amount&
How many sprites to check. Works downward.

101

MS_Colorcycle (Switch&, Start&, End&, Speed&)

Used to perform color cycling. The color cycle is shifted
once per game loop and is not interrupt driven.

Switch& = Controls direction and activity of color cycling.
0: Off, 1: Right, 2: Left.
Start& = Starting color register to cycle.

End& = Ending color register to cycle.
Speed®& = How many game loops to skip between cycles.

MS_Convert (X&, Y&)
Converts bit map coordinates into character
cell coordinates. The Cell location is returned via the

global variables MSH&, MSV&.
X& Y& = Coordinates to convert.

MS_Copy_Logical To_Physical (Start1&, Start2&, Lines&)
Copies a section of the Logical screen to the physical screen.

Start18& = Starting scan line of the Logical screen.

Start2& = Starting scan line of the Physical screen.

Lines& = How many scan lines to copy.

MS Copy_Logical To Background(Start1&,Start2&,Lines&)

Copies a section of the logical screen to the Background
screen.

Start1& = Starting scan line of the Logical screen.

Start2& = Starting scan line of the Background screen.
Lines& = How many scan lines to copy.

102

MS_Copy_Background To_Logical(Start18,Start2&,Lines&) ‘
|

Copies a section of the Background screen to the Logical
Screen.

Startl& = Starting scan line of the Background screen.
Start28 = Starting scan line of the Logical screen.
Lines& = How many scan lines to copy.
MS_Copyto (Sourced, Destination&)
Copies the Source screen bank to the Destination screen “

Source& = Screen bank number to copy from. “‘
Destination& = Screen bank number to copy to. H

MS_Cpeek (cX&, cY&) |

Peeks the Character Screen and returns the value of the cell .
in the global variable MS_Var%.

cX&, cY& = Character cell location to PEEK. \\

MS_Cplot (cX&, cY&, Char&, Screen%) |

Plots a character onto the screen and updates the character
screen. h‘

cx&,cy& = Character cell location to plot. 1‘

Char& = Character number to plot. |
Screen% = Screen address of the screen to draw the image on. ;l‘
|

103

MS_Cscreen (Char&, Screen%)

Fill the screen and the Character Screen with character
Char&.

Char& = Character to fill with.
Screen% = Screen address to fill with the images.

MS_Ctext (cX&, cY&, String$, Screen%)

Prints a string on the screen and updates the Character
Screen.

cX&,cY&= Character cell to start plotting at.

String$ = String to plot.

Screen% = Screen address to draw the actual images on.
MS Cvtext (cX&, cY&,String$, Screen%)

Prints a string vertically on the screen and updates the
Character Screen.

cX&,cY&= Character cell to start plotting at.

String$ = String to plot.

Screen% = Screen address to draw the actual images on.
MS Degcload (Bank&, Path$)

Loads a compressed DEGAS format(.PC1) picture into a
screen bank.

Bank& = Screen bank to load into.
Path$ = Filename to load.

104

MS_Degcmem (Bank8, Adr%)

Decompresses a compressed DEGAS format (.PC1) into a
screen bank.

Bank& = Bank to decompress into.
Adr% = Starting location of the .PCl1 file in memory.

MS_Delce (Source%, Destination%)

Decompresses ICE format compressed data into a
destination memory block. The following ICE options are
strongly recommended: Compress ratio at 1024, Flash and
Header OFF.

Source% = Memory location of the compressed data

(usually an INLINE).
Destination% = Start of memory block to decompress into.

MS_Direction (Sprite&, Hspeed&, VSpeed&, Length 1)

Moves a sf?rite in a set direction for Length& steps and then
turns it off.

Sprite& = Sprite to move.

HSpeed = Horizontal pixels to move per step.

VSpeed& = Vertical Speed to move per step.

Length | = Number of steps to move in this direction.

255 = move until sprite exceeds a screen
boundary.

105

MS_Drawsprites (Screen%)

Draws all active sprites on the screen address screen%.
Usually not called by the user.

Screen% = Screen address to draw the sprite images on.

MS Effect160 (Source%, Destination%)
This routine processes an M.A.G.E. effect array (see
MS Effectinit(g) & MS_Effect160set()) between the source
and destination addresses.

Source% = Address of source graphic data.

Destination% = Address of destination of graphic
data (usually a screen addressg).

MS_Effect169init (Amount&)

Initializes the ME_Effect arrays so they can be set by the
MS_Effect160set() command.

Amount& = How many effect lines are you going to use.

106

MS_Effect160set (Index&, Source&, Destination&)

This sets up the powerful MS_Effect160() command. What

the effect command does is process a list that tells it how to

gi)p)lr(from the source memory block to the destination
ock.

Index& = Which entry (starting at 0).

Source& = How many scan lines to subtract from the
source address.

Destination& = How many scan lines to add to the destination

address.

Source& and Destination& = Can be negative to reverse
direction of the copy.

This command can create some powerful effects. The most
famous is the barrel scroll effect, which is the effect of a
rolled tube of images scrolling by. To achieve this effect
ou need to think of the tube in scan lines. The top and
Kottom of the tube compress the image while the center
shows the entire image. In order to achieve this effect
quickly, we do not really compress the data at all but keep a
normal screen chunk of memory that we copy from
selectively. By skipping scan lines on the top and bottom of
our copy we achieve a compressed look and by copying
straight across the image we get a non-compressed look.

A typical structure for a tube is (in scan lines skipped):
22,2211,11,1,10,00000000000001111112222

In the above example, the effect routine would skip 2 scan
lines and then copy the third, add 2 then copy, etc.. until it
got to the last piece of data.

The typical source of the image data is in a screen bank and

the destination is usually MS_Logical%. By moving the
source address around we can achieve a scrolling effect.

107

MS_Explode (Sprite&, Anim&, Length&)

Causes a sprite to _halt all movement and display an
animation. The sprite will be masked out of all collisions
for the duration of the animation.

Sprite& = Sprite to effect.

Anim& = Animation to use.

Length& = Length of explosion (animation will
cycle if Length& > Anim&)

WARNING: The Variable MS_Phit|(Sprite&) 1s set to >0 in
this command. If you re-launch the sprite before the explosion is
over the MS_Phit|() will not be reset. This will mask your
sprite from collision checks until you reset the MS_Phit| 67 flag
to zero! Be careful with this.

MS Fadein (Bank&, Flag&, Speed&, Start&, End&)

Fades in a screen bank.

Bank& = Screen bank to fade in.
Flag& = 0: Fade Palette only.

1: Fade in Palette and Screen data.
Speed® = Speed (in Vsyncs) to fade in (0=~1astest).
Start& = Starting register to effect.
End& = Ending regster to effect.

MS Fadeout (R&, B&, G&, Speed&, Start&, End&)
Fades out to a single color.

R&,G& B& = RGB Values to fade to &O—lS).

Speed& = Speed (in VSYNCS) to fade out (0="fastest).
Start& = Starting register to effect.
End& = Ending register to effect.

108

MS_Fileselect (Path$, Flag&)

Calls up a GEM file selector and returns free disk space in
MS_Var% and the selected file in MS_File$.

Path$ = Path o give to the file selector.
Flag& = If this is 1 then disk space will be determined.

Note: This command will set the current drive path to the
selected file if the file selected exists.

MS_Flashcolors
This procedure holds the default background flash colors.

MS_Flashinit

Installs the background flash colors and turns on the flash
effect. Requires that you have built a Flash table in DATA
statements. The flash command now cycles color 0 through
this sequence of RGB values.

Data must be in hex format with one digit for each Red,
Green and Blue color register values. Up to 50 values ma
be entered. The Data list must be terminated wit
&H1388.

Example: RESTORE Color Label!
Cycles from black up through
MS FLASHINIT.
Color Label: ! The Red colors.
DATA &HO000
DATA &H100
DATA &HFQ0
DATA &H1388 ! End of List.

109

MS_Flashoff

Turns off the flash effect and restores the background color.

MS_Getpixel (X&, Y&, Screen%)

Returns the color of a selected pixel in MS_Var%. Faster
and more flexible than the point command.

X& Y& = Pixel to test.

Screen% = Address of the start of the screen that the pixel is
stored in.

MS_GRAPHICS_ENGINE
The master call that executes all sprite drawing, animation,

movement, tracking, flashing, color cycling etc... This call
effects the MS_Logical% screen.

MS_Graphics_Engine_Init (Sprites&)

Starts the M.A.G.E. system. Must be called first in order
for any other M.A.G.E. call to work correctly.

Sprites8¢ = Number of sprites you are going to use in this game.
This number is Zero based (ie:5 = 6 sprites).

10

MS Jstickl (Sprite&, HSpeed&, VSpeed&, HMin&, HMax&,
VMin&, Vmax&, Stick&g

Moves a sprite based on joystick direction. See the GFA
Basic manual for joystick direction table.

Sprite& = Sprite number to effect.
HSpeed& = Horizontal pixels to move.
Vspeed& = Vertical pixels to move.

HMin& HMax& = Horizontal boundaries.
VMin&,VMax& = Vertical boundaries.
Stick& = Stick Direction.

MS Jstick2 (Sprite&, HSpeed&, VSpeed&, HMin&, HMax&,
VMin&, VMax&, Stick&, Amount&)

Moves a multiple of sprites based on joystick direction.

Sprite& = st sprite to effect.
HSpeed& = Honzontal pixels to move.
Vspeed& = Vertical pixels to move.

HMin&, HMax& = Horizontal boundaries.
VMin&, VMax& = Vertical boundaries.
Stick& = Stick Direction.

Amount& = Amount of sprites to move.

WARNING: The command will not move any sprites if the
first sprite exceeds its boundaries.

1t

MS_Jupdate (Sprite&,HSpeed&,V Speed&, Amount&,Stick&)

Moves a group of sprites based on joystick direction.
I{lnli]ise MS_Jstick2(), this command does not boundary
check.

Sprite& = 1st sprite to effect.
HSpeed® = Horizontal pixels to move.
Vspeed& = Vertical pixels to move.
Stick& = Stick Direction.

Amount& = Amount of sprites to move.

MS_Ldirection (Sprite8t, Hspeed&, VSpeed&, Length|)

Moves a sprite in a direction for Length& steps but does not
turn the sprite off when it is finished moving.

Sprite& = Sprite to effect.

HSpeed®& = Horizontal pixels to travel each step.
VSpeed& = Vertical pixels to travel each step.

Length| = Steps to travel. 255 Does NOT invoke

continuous movement.

MS Loadcp1_1 (Path$)
Load in a .CP1 file into character bank #1.
Path$ = Path and filename of the .CP1 file.

MS Loadcpl_2 (Path$)

Load in a .CP1 file into character bank #2. This bank
MUST have the same dimensions as the first.

Path$ = Path and filename of the .CP1 file.

12

MS_Loadgpa (Path$)
Loads in an .GPA file.
Path$ = Path and Filename of the .GPA file.

MS_Loadmap (Path$)
Loads in a .MAP file.
Path$ = Path and Filename of .MAP file.

MS_Loadsp1_1 (path$)
Loads in a .SP1 file into sprite bank #1.
Path$ = Path and Filename of the .SP1 file.

MS_Loadsp1_2 (Path$)

Loads in a .SP1 file into sprite bank #2. This bank must
have the same dimensions as the first bank.

Path$ = Path and Filename of the .SP1 file.

MS_Loffset (Sprite&, Offset&)
Sprite will follow an offset pattern. When offset is
complete, the sprite will remain on. This command does
not turn a sprite on.

Sprite& = Sprite to effect.
ffset& = Offset to use.

113

MS_Mapdown (Cells&, Screen%)

Displays the Character Map one cell lower. Updates the
Character Screen and draws the appropriate images onto a
physical screen. This command in fact moves the Character
Screen "Window" one step lower on the Character Map.

Cells& = Vertical cells to draw (MUST be at least 2).
Screen% = Screen address to draw images onto.

WARNING: Going out of bounds of the MAP file
can cause a crash.

MS Mapdraw (Cells&, Screen%)

Draws a section of the Character Map onto a screen and
updates the Character Screen. The global Variables
MS_Maph& and MS Mapv& determine where in the
Character Map you will draw from.

Cells& = Vertical cells to draw (MUST be at least 2).
Screen% = Screen address to draw images onto.

MS_Mapleft (Cells&, Screen%)

Displays the Character Map one cell to the left. Updates
the Character Screen and draws the appropriate images onto
a physical screen. This commans in fact moves the
Character Screen "Window" one step left on the Character
Map.

Cells& = Vertical cells to draw (MUST be at least 2).
Screen% = Screen address to draw images onto.

WARNING: Going out of bounds of the .MAP file can
cause a crash.

114

MS_Mapmove (SX&, SY&, DX&, DY&, Width&, Heigh&)

Moves a block of cells inside the Character Map. Does not
update anything outside the Character Map.

SX&,SY& = Upper left corner of source block.
DX8&,DY& = Upper left corner of destination block.
Width& = Width of block.

Height& = Height of block.

WARNING: This routine is not intelligent. You ma
not overlap the source/destination blocks.
MS_Mapright (Cells&, Screen%)
Displays the Character Map one cell to the right. Updates |

the Character Screen and draws the ap‘fr_opriate images onto
in fact moves the

a 1;;hysical screen. This comman
Character Screen "Window" one step right on the Character ’
Map.

Cells& = Vertical cells to draw (MUST be at least 2). ! |
Screen% = Screen address to draw images onto.

WARNING: Going out of bounds of the .MAP file can
cause a crash.

MS_Mapup (Cells&, Screen%)

Displays the Character Map one cell higher. Updates the
Character Screen and draws the appropriate images onto a
physical screen. This command in fact moves the Character
Screen "Window" one step up on the Character Map.

Cells& = Vertical cells to draw (must be at least 2).
Screen% = Screen address to draw images onto. |

115

MS_Mbitpeek (mX&, mY&)
Returns the value of a Character Map cell from bit map
coordinates. This does not PEEK into the character screen
but into the Character Map itself. Converts bit map
location into nearest Character Map cell.

X&, Y& = Bit map coordinates to PEEK.

MS_Movem (Source%, Destination%, Bytes&)

Block memory move. Much faster than GFA’s BMOVE

command.
Source% = Source address of block.
Destination% = Destination address of block.
Bytes& — How many bytes to move. MUST be
a number divisible by 4.

WARNING: This move is NOT intelligent. You MAY NOT
overlap the source and destination block areas!

MS_Movesprites (Sprite&, HSpeed&, VSpeed&, Amount&)
Global sprite movement command.
Spirte& = Starting sprite to move. This needs to

be the highest number sprite because
the routine works downward.

HSpeed& = How many horizontal pixels to move.
VSpeed& = How many vertical pixels to move.
Amount& = How many sprites to move.

116

MS Msk320 (Source%, Destination%, Lines&)

This routine creates a mask on the fly for two overlapping
sections of screen memory, allowing for a 16 color overlay
on top of a pre-existing screen. This routine is, of course,
pretty slow. Both Source and Destination areas are assumed
to have standard ST Low screen layouts (160 bytes per scan
line). This routine copies two scan lines at a time, thus the
320'in the command name.

Source% = Source screen address.

Desunatmn% = Destination screen address.

Lines& = How many groups of 2 scan lines to copy and
mask.

MS Multi160 (Source%, Destination%, Width&Lines&)

Copies a variable scan line-length screen onto a standard
scan line length screen. Very powerful as it allows you to
set up a page in memory that 1s two or more screens long
(320, 480, etc.. bytes per scan line) and copy a section of this |
"Long" screen onto normal display screens. This allows for

ou to make the physical screen a "Window" into a much

ger screen.

Source% = Starting address of source screen.
Destination% = Starting address of destination screen.
Width& = Width of a source screen scan line.
Lines& = How many scan lines to copy.

17

MS_ Multi8msk (Source%, Destination%, SWidth&,
DWidth&, Bytes&, Lines&)

Allows graphics blocks to be merged onto the screen. This
command works much like MS_Multimsk320 but allows for
only sections of a scan line to be copied and masked.

Source% — Start address of source block of memory.

Destination% = Start address of destination block of memory.

SWidth& — Width of source scan line in bytes.

DWidth& = Width of destination scan line in bytes.

Bytes& — Number of groups of 8 bytes to copy from
each scan line.

Lines& -~ How many scan lines to copy.

MS_Multi8or (Source&, Dest&, SWidth&, DWidth&,
Bytes&, Lines&)

Allows two memory blocks to be OR’d with each other.
Great for multiple plane backgrounds. Care must be taken
in selecting colors for proper operation.

Source% = Start address of source block of memory.

Destination% = Start address of destination block of memory.

SWidth& — Width of source scan line in bytes.

DWidth& = Width of destination scan line in bytes.

Bytes& — Number of groups of 8 bytes to copy from
each scan line.

Lines& = How many scan lines to copy.

118

MS_Multimov (Source&, Destination&, SWidth&,
DWidth&, Bytes&, Lines&)

Block move for odd numbers. Much slower than other
MultiMov commands. Excellent when you need to copy
sections of screens to each other. Does an overwrite, no

Masking nor OR is preformed.
Source% = Start address of source block of memory.
Destination% = Start address of destination block of memory.
SWidth& = Width of source scan line in bytes.
DWidth& = Width of destination scan line in bytes.
Bytes& = Number of bytes to copy from each scan line.
Lines& = How many scan lines to copy.

MS_Multimov8 (Source%, Destination%, SWidth&,
DWidth&, Bytes&, Lines&)

FAST copy of memory blocks between screens. Excellent |
for moving video "Windows" to the main display pages.

Source%
Destination%
SWidth&
DWidth&
Bytes&

Lines&

| Y T

Start address of source block of memory.

Start address of destination block of memory.
Width of source scan line in bytes.

Width of destination scan line in bytes.
Number of groups of 8 bytes to copy from
each scan line.

How many scan lines to copy.

119

MS_Offset (Sprite&, Offset&)

Makes a sprite follow an offset and turns the sprite off when
the offset is finished. This command does NOT turn the
sprite on.

Sprite& = Sprite to affect.
ffset& = Offset to activate.

MS_Offsetf (Spritedz, Offset8, Target&)

Makes a sprite follow an OffsetF based on a target sprite.
The sprite will be turned off when the OffsetF is completed.

Sprite®& = Sprite to affect.
ffset& = OffsetF to use.
Target& = Sprite to preform OffsetF off of.

WARNING: Do not try to use an Offset in place of an OffsetF
or unusual results will occur.

MS_Ord320 (Source%, Destination%, Lines&)

(guickl merges two 160 byte width scan line memory
blocks (assumes screen memory) by OR’ing them together.
Does two scan lines at a time.

Source% = Start address of source memory area.
Destination% = Start address of destination memory.
Lines& = Number of groups of 2 scan lines to move.

120

MS _Pattern (Sprite&, Pattern&)

Makes a sprite move along a pattern. When the pattern is
complete, the sprite is turned off.

Sprite& = Sprite to affect.
Pattern& = Pattern to follow.

MS_Peekmap (mX&, mY&)

Peeks a Character Map location. Returns the value of the
cell in the global varible MS VAR%.

mX&, mY& = Character Map coordinates.

MS _Planel%, MS Plane2%

C:MS_Plane1% (L: Source%, L: Destination%, W: Lines&)
Moves a single bit-plane of a pre-defined background screen
to another screen. Typically this is used for quick parralax
scrolling effects.

Source% = Source address for the start of the screen you
want to copy from. This screen must be in
standard Atari Low Resolution format!

Destination% = Destination address of the screen you want
to write to. This screen must also be in Atari
low resolution format.

Lines& = How many scan lines to copy.

121

MS Pokemap (mX&, mY&, CHAR&)
Poke a Character Map cell location with a value.

mX&, mY&
Char&

Character Map cell to poke.
Value to poke into the character cell.

MS_Programinit (Flag&)

Starts up your program, including res-changes and various
other functions such as turning off the mouse and activating
the port O joystick.

Flag& = 0: The program will NOT use GEM (Default).
1: The program intends to use GEM. If this value 1s
used, no resolution change may be preformed. GEM
does not correctly change resolutions with the
M.A.G.E. system. This mode is not recommended.

MS Programend

Ends your program, restores desktop resolution and colors,
re-activates the mouse and releases reserved memory banks.

MS_Resetfps

Resets an internal counter that tracks the number of Vsyncs
that have passed since the last time this routine has been

called.
MS_Resetsprites

Resets all sprites to their initial values, turns off all sprites
and zeros their locations, animations ect...

122

MS_Resetvsync

Resets video memory locations to the same value. Used to
de-activate page flipping.

MS_Restorepal

Restores desktop colors.

MS_Restoreworkpal
Restores a previously saved workin fpallette. Useful for
restoring a pallette that will be modified during the main
game loop.

MS_Roffset (Sprite&, Offset&)
Makes the sprite follow an Offset and loops the Offset
instead of turning the sprite off when the end of the Offset
is reached.

Sprite& = Sprite to affect.

ffset& = Offset to use.
MS_Roffsetf (Sprite&, OffsetF&, Target&)

Makes a sprite preform an offsetF which repeats when it is
finished instead of turning off the sprite.

Sprite& = Sprite to affect.

OffsetF8& = OffsetF to use.
Target& = Target sprite to follow.

123

|

MS_Rpattern (Sprite&, Pattern&)

Makes a sprite follow a pattern and will repeat when the end
of the pattern is reached instead of shutting the sprite off.

Sprite8Z = Sprite to affect
Pattern& = Pattern to use.

MS_Sampleplay (Adr%, Length&, Speed&)

Plays a sample recorded in ST-REPLAY format in the
interrupt.

Adr% = Address of the sample.

Length& = Len%h of the sample in bytes.

Speed& = Playback speed in HZ (3-15).

WARNING: This routine will CRASH on a Falcon. It is
the only command in the M.A.G.E. which will not work on

the FALCON. We recommend you either use DMA digital
sound or use our own MODPLAY library.

MS_Samplestop

Stops a sample during re-play.

MS_Samplewait

Pauses the program until the sample finishes playing.

124

MS_Sbitpeek (Sprite&)

Peeks the Character Screen under the sprite’s location and
returns its value in the global varible MS Var%.

Sprited&¢ = Sprite to peek under.

MS_Sbitpoke (X&, Y&, Sprited, Screen%)

Plots a sprite image on the screen and pokes its value into
the nearest Character Screen cell.

X&, Y& = Bitmap coordinates to plot sprite image.
Sprite& = Sprite image to plot.
Screen% = Starting addresss of the screen where the image

will be drawn on.

MS_Sbplot (MS18&, MS28&, MS3&, MS1%)

Plots a sprite at a given screen address using character cell
coordinates. (For best results, Character and Sprites sizes
should be the same.

MS1& = Horizontal Location of Character
MS2& = Vertical Location of Character
MS3& = Character

MS1% = Screen Address

Example: This routine can be used to save memory by
allowing the sprites characters to plotted on the screen, thus
emulating characters. (See Chapter 11 for an example)

125

MS_Sbtext (X&, Y&, String$, Screen%)

Plots characters on a screen using sprite images. Does not
update the Character Screen.

X&,Y& = Position to start plotting.
String$ = String to plot.
Screen% = Starting addresss of the screen where the images

will be drawn on

MS_Screenadr (Bank&)

Returns the starting address of a screen bank in the global
varible MS_Var%.

Bank8 = Screen bank you want the address of.

MS_Screeninit (Banks&)

Reserves a number of full 32,032 byte screen and palette
banks.

Banks& = Number of banks to reserve.

MS_Screento (Bank&, Flag&)
Copies the data in the MS_Physical% screen to a bank.

Bank& Bank to load data into.

Flag& 0: Copy screen data only.
1: Copy Screen and Palette.
2: Copy Pallette only.

It

126

MS_Scroll96 (Source%, Destination%, Lines&)

Moves a 96 byte per scan line source screen to a 160 byte
destination screen. Used to scroll over a smaller
background map and display it on the main display. Many
games use this technique.

Source% =
Destination% =

Lines& =

Address of the first 96 byte wide scan line to
be copied.

Addresss of the start of the 160 byte per
scanline screen.

How many scan lines to copy.

MS_Scroll120 (Source%, Destination%, Lines&)

Moves a 120 byte per scan line source screen to a 160 byte
destination screen. Used to scroll over a smaller
background map and display it on the main display. Many

games use this technique.
Source% = Address of the first 120 byte wide scan line
to be copied.
Destination% = Addresss of the start of the 160 byte per
scanline screen.
Lines& = How many scan lines to copy.

MS_Setvclip (Y&)

Sets the lowest Y point (the last scan line) that sprites will be
display. Sprites will be clipped below ths line.

Y& = Lowest point a sprite may be drawn.

127

MS_Showips

Shows the estimated frames per second of the game that is
currently running.

MS_Sound (Sound&, Block&, Ranké&)
Plays one of the 101 built in M.A.G.E. sound effects.

Sound& = Sound effect to play (0-100,101 is a blank sound).
Block& = How many game loops before the next sound can
lay.
Rank& = 1: P(Ii:;y sound at once (it out RANKS any current
sound).
2: Wait until current sound is finshed playing.

MS_Splot (X&, Y&, Image&, Screen%)

Plots a sprite image on a screen. Does not update the
Character Map or the Character Screen.

X&,Y& = Location of image.
Image& = Image to plot.
Screen% = Start address of the screen image is to be plotted on.
MS_Sprite (Sprite&, X&, Y&, Image&)
Turns a sprite on and sets its location.
Sprite& = Sprite to turn on.

X&,Y& = Position of sprite.
Image& = Sprite image to use to display sprite.

128

MS_Spritebank (Bank&)

Sets the active sprite bank. Bank must already be loaded or
a crash may occur.

Bank& = Bank to set active (0 or 1).

MS_Spriteblock(Source%,X&, Y&, Width&, Lines&, Screen%)

Allows blitting of a graphic block to any X,Y coordinates
with on the fly masking. In other Worcf;, it allows you to
use large pre-drwan screen areas as super-size sprites. This
routine can get a bit slow if extremely E:rge blocks are used.

Source% = Starting address of source block of data.

X&, Y& = Screen cordianates to blit to.

Width& = Width of image in pixels.

Lines& = How many scan lines to copy.

Screen% = Starting address of the destination screen the

image will be drawn on.

MS_Spriteclr (Sprite&)
Clears a single sprite and turns it off.

Sprite8 = Sprite to clear.
MS_Spriteoff (Sprite&)

Turns a sprite off, does not clear its data.

Sprite& = Sprite to turn off.

129

MS_Spoke (cX&, cY&, Image&, Screen%)

Plots a sprite image on the screen and places the image
number in the Character Screen cell.

cX8& cY&= Character Screen cell location.
Image8 = Image to plot.

Screen% Starting address of the screen the image is to be
drawn to. :

MS_Starinit (Stars&, HMin&, VMin&, HMax&, VMax&)

Sets up the Star plot arrays for the MS_Starplot command.

stars& = Stars to init (0 based).

HMin& = Left horizontal boundary to draw stars.
VMin& = Upﬁer vertical boundz.?' to draw stars.
HMax& = Right horizontal boundary to draw stars.
VMax& = Lower vertical boundary to draw stars.

NOTE: The boundaries do not de-activate stars (like the sprite
boundaries do) instead they simply place the star at the beginning
of the opposite boundary.

MS_Starplot (Stick&, Screen%)
Moves and plots the Star arrays based on joystick direction.

Stick& = Stick Direction. See GFA Basic manual for details.
Screen% = Starting address of the screen stars will be plotted on.

130

MS _Starset (Star&, X&, Y&, Color&, HDir&, VDir&)

Sets a single star’s parameters.

Star& = Star number to modify.
X&, Y& = Star position.
Color& = Color of the star.

HDir&, VDir& = Magnitude of movement MS_Starglot()

should use. This value may not be less
than zero.

MS_Stepmode

Pauses the program until a keystroke is detected. Useful in
de-bugging only.

MS_Storepal
Stores the current palette in the PAL buffer.

MS_Storeworkpal
Stores the current palette in the Workpal buffer.

131

MS_Track (Sprite&, HSpeed&, VSpeed&, Length |, Target&)

Makes a sprite track another sprite. Turns sprite off after
length expires.

Sprite& = Sprite to affect.

HSpeed& = Horizontal pixels to move per loop.

VSpeed& = Vertical pixels to move per loop.

Length| = How many game loops to track (255 =
continuous tracking).

Target& = Sprite to track.

MS_Vsync (Catch&)
Page flips only. Does not re-draw the MS_Logical screen.
Catch& = How often to skip a Vsync (0= Flicker free
page flipping).
MS Vsync8 (Lines&, Catch&)

Page flips and draws 8 scan line groups from the
MS_Background% screen to the MS_Logical% screen.

Lines&

How many groups of 8 scan lines to copy.
Catch&

How often to skip a Vsync.

MS_ VsynC10 (Lines&, Catch&)

Page flips and copies 10 scan line groups from the
MS BACKGROUND% screen to the MS_LOGICAL%

screen.
Lines& = How many groups of 10 scan lines to copy.
Catch& = How often to skip a Vsync.

132

MS_VsynC20 (Lines&, Catch&)

Page flips and copies 20 scan line groups from the
MS_Background% screen to the MS_Logical% screen.

Lines& = How many groups of 20 scan lines to copy.
Catch& = How often to skip a Vsync.
MS_Vsyncdelay (Vsyncs&)

Pause the program until a certain number of Vsyncs have
passed.

Vsyncs& = How many Vsyncs should pass.

MS_Vsyncdraw (Source%, Bytes&, Length&, Catch&)

Page flips and redraws from a user defined background

screen.

Source% = Source address of data to copy from.

Bytes& — How many bytes down MS_LOGICAL% to
start drawing (16,000 = half).

Length& = How many bytes to copy.

Catch& = How often to skip a Vsync.

MS_Waitkey

Wait until a key is pressed and return its value in the global
varible MS_Var%.

133

MS Waitstick (Joystick&)
Wait until a joystick button is pressed.

Joystick& = Joystick button to monitor (0 or 1).

MS_ Waitvsync (Speed&)
This command is used in conjunction with MS_Resetips to
cause the program to run at a set number of Vsyncs. This
command only sets the top speed of your program.

Speed& = Number of Vsyncs per game loop.
(Frame re-draw).

MOD Player Interface Expansion Commands

MS Init_Player (Mods&)
Initializes the Mod Player and sets up the command buffers
for re—glaying your previously saved MOD files. Must be
called before any other MOD commands are used.

Mods& = Number of Mods you will be using in your
program.

134

MS_Play_Mod (Command$, Mod&, Attribute&)

Controls all the aspects of Mod re-play and control.

Command$ = Holds a letter that designates the function to
perform on the mod. A list of commands follows:
"S" = Start playing a Mod.
"O" = TurnI; n}lrcl)? Ofi.
"4 = Speed up your mod.
" = SFOW down your mod.
"<" = Turn volume down.
">" = Turn volume up.
Mod& = Mod buffer to effect. If buffer is empty then
the program may crash.
Attribute® = When playing a mod pass a 1 if you want the
player to repeat the song or a 2 if you want
this mod to play only once.

MS_Fade_In (Speed&)

Not to be confused with MS_Fadeln(). This routine fades in
a currently playing mod to full volume at a selected speed.

Speed& = Speed to fade in (0=fastest).

MS_Fade_Out (Speed&)
Not to be confused with MS_FadeOut(). This routine fades

out a currently playing mod to no volume at a selected
speed.

Speed& = Speed to fade out (0="Fastest).

135

| Falcon030 Interface Command Set
|

‘ MS Rezchange

1 Forces all Atari machines to Low resolution Atari ST mode.
Exception to this is a ST/STE in High res (which cannot be
forced into low res Atari Mode without slowing the
machine down beyond all usefullness. If the exception is
encountered, then an alert will be displayed and program
w execution terminated.

MS_Changeres (VAR Falcon&, Oldrez%)

Support routine for the MS_Rezchange routine. It does
some of the actual leg work involved in switching the
| resolution around. Not normally called by the user.

Falcon& = Has a Falcon been detected?
Oldrez% = Old resolution/operating code - see developer docs.

MS_Returnrez (Falcon&, Oldrez%)

J Returns the machine to the original resolution and mode it
\ was operating in before the program took control.

\ BEWARE: Never pass any va%ues to this routine that
MS _Changeres() did not set.

|

Falcon& = Restore via Falcon commands.
Oldrez% = Old resolution to return to.

\ 136

MS_Cookie (Cookie$, VAR Cookied, Cookie1&)

A powerful tool for looking at the cookie jar. The routine
is self documented and is used by the MS_Changeres()
routine. Users should not have to access this routine.

Cookie$ = Segment of cookie jar to search for.

Cookie& = Upper word of cookie data (-1 if no jar present).
Cookiel& = Lower word of cookie data.

137

Chapter 11. The 20 Minute Game

This section is geared toward one thing only, desiﬁlning a
very simplistic game for tutorial purposes. Hopefully this will
be your first look at a M.A.G.E. game. This section does not
explain the M.A.G.E. Shell routines and how they work. This is
done elsewhere. This section just explains how tﬁey can be used
in conjuction with the M.A.G.E. Shell.

Our quick and easy 20 Minute Game will have the following
features:

Game speed of 17 frames a second in 50hz, 20 frames in 60hz
video.

25 16 X 10 sprites

Sprite animations

Pattern handling

Direction movement

Explosion routines

Main player designed using 2 sprites

Main player controlled by the MS_Jstick2() procedure
Enemy missile shooting

Character graphics text display, star field

NOTE: A clever technique is used in this game to save data
storage. The sprites, text, and the star displays were all designed
in 1 sprite image file. For the text and numbers and other
characters we had to first designate a black color other than the
background. Next we fill in the holes (empty pixels) in these
special characters so that when they are plotted (as sprites) they
still erase what they are plotted over. This emulates the plotting
of regular characters! Nice...and sneaky!!

Total of 3 different types of levels. (Pattern, direction, random)

138

This game was created by Dave Munsie, the original creator
of the M.A.G.E.. The following comments are by him:

When putting the finished M.A.G.E. product together I
realized we did not have any simplistic, tutorial type games as
part of the main package. While many of the included games are
of a very high quality, they did not really show what could be
done in a few short minutes of time. I challenged myself to write
a game that is playable and somewhat fun to play that could be
programmed in under a half an hour. Using the M.A.G.E. Shell
really allowed me to finish this game in under 30 minutes. The
finis{\ed game shows very accurate ways to handle main play
collisions that occur out of the main loop along with proper
ways to init and end a game. There are also some very easy
methods to handling the score display. My job with this section
is not to explain the M.A.G.E. Shell procedures but only the
code that I had to create and why. I will explain the whole

rogram from top to bottom, but I'am only going into detail on
the code that I had to write for this 20 Minute Game.

The first step to designing this game was thinking about
what it was going to be. This took about 10 seconds. I decided
on creating a simple-shoot-em-up game that uses MS_Patterns to
control alfthe nasties. AllI really needed to do now was make
the bad guys shoot at the main sprite and have the main sprite
shoot back. Throw in a couple of collision checks, text handling
and I am done! SoI put together a few custom sprites and stole a
few ideas from Rob. I then created a few animation sequences
and a total of 5 patterns with the MS_Anim editor. This took
about a total of 5 minutes. I created a generic charcter set with a
few custom cells to represent the ground and the main sprite so I
could display how many ships are left in the game. Another 5
minutes are gone. So now I have about 10 minutes to throw the
game together!

One thing nice about the M.A.G.E. Shell is that it really
makes first time game programmers feel at ease by already
designing the procedure names and letting you just fill in the

139

blanks. I only had to add one custom routine to finish the game.
Everything else was just added into the specific M.A.G.E. Shell
procedures.

So! About 10 minutes left eh? Okay, let us take a look at
the sections of the game where I had to add something to from
top to bottom as they would appear in the actual source code.

MS_graphics_engine_init (24, 0)

This is at the top of the shell to initialize how many sprites I
wanted to use. I figured 25 (0-24) sprites should allow me to
write a game that would run at 3 Vsyncs from the interpreter as
well as when compiled, (Do not forget things fly when
compiled). The second number, 0, tells the shell I do not want
the extra 30k of memory used for the MS_Blits. They are fast -
but I do not need them for this game.

PROCEDURE title_screen.

MS_fadeout (0, 0,0, 0, 0, 15) 1 Fadeall to black.
MS_resetvsync ! Always reset this at this procedure.
MS_finished& =FALSE ! Needed for title loop.

* Okay, a few title screen messages:

MS, Sbtext (0, 0," 30 MINUTE DEMO GAME", MS_physical%)
MS_Shbtext (0, 1X10, BY DAVE MUNSIE", MS_physical%
MS_Sbtext {0, 4X10,” PRESS FIRE TO PLAY!", MS_physical%
MS_Sbtext (0, 17X10, PRESS ESC TO EXIT", MS_physical%
MS_fadein (0, 0, 0, 0, 15) ! Okay, fade in the text.

REPEAT

MS_finished& =STRIG(1)! Poll the joystick button.

IF BIOS (&H1, &H2)! Any keyboard data waiting?
keyboard_control ! Let the design shell handle it.

140

;ENDIF

UNTIL MS_finished&

}VIS_clearstick(l) ! Clear the joystick button.
RETURN

Most of this code was already in the shell. I just had to add
the text and fades! Okay, next section...Init Game.

Procedure init_game. ! All code is set up once per game start.

MS lives&=3! How many lives to give player per game.
MS score%=0"! Reset global ms_score% counter.

MS _resetsprites ! Clear all sprites and re-init system pointers.

MS shmin&=-11! Screen boundaries for sprites.

MS shmax&=320"! Screen boundaries for upper left corner.

MS svmin&=-9

MS_svmax& =180

MS_setvclip(180) ! Set clip at bottom scan line for full screen
:’mimation.

>

level& =0! What level are we on?
eanim&=0! Enemy animation type.
epat&=0! Enemy pattern type.
1evel_type&= 1! Enemy style of movement.

init level ! Any level variables that need to be initialized.
init_sprites ! Maybe this could be used to set up the initial sprites.

init_gamescreen ! Gosub here to actually draw the first
background screen.
3

Return

141

As you can, see not much user code has actually been
generated so far. Next, we come to the init_game screen section.

PROCEDURE init_gamescreen ! Initializes first game screen.

» This ensures a clean graphic startup without any screen flicker.
MS_fadeout (0, 0,0, 0, 0, 15) ! Fade to black.

MS resetvsync ! Always at start up.

’ Step 1: Draw any background data to ms_background%.

> Hmmm, my first problem...backdrop? Simple character stars.
FOR x&=1to 50

MS sbplot (RANDOM(20)+1, RANDOM(18),
RANDOM(4)+ 18, MSbackground%) ! Stars

NEXT x&

'MS_Sbtext(0, 18X10, String$ (20, 23),MS_Background%) ! Land.
> Step 2: Copy everything from MS_background to MS_logical.
MS_copy_background_to_logical (0, 0, 200)

> Step 3: Draw any graphics that are not redrawn every loop.
MS_Sbtext (0, 19 X 10, "0", MS_logical%g ! Starting score.
MS_Sbtext (17 X 16, 19 X 10, STRINGS$ (3, 22), MS logical%) !
Draw 3 ships to start with.

MS_DrawSprites (MS_logical%)

> Step 4: Finally copy everything from MS_Logical% to
MS_Physical%

MS copy_logical to_physical (0, 0, 200)

142

MS _fadein (0, 0, 0, 0, 15)
RETURN

There is nothing really too technical here. The sta
background was quick and dirty, but I only have about I(
minutes left!! Now we come to the procedure that is called ai
the beginning of every game level.

PROCEDURE init_level
Enemy total hit&=0! How many killed per level.

FOR x& =17 DOWNTO 0! Clear enemy-shot flags.
enemy_shot&(x8)=0
NEXT x&

’INC eanim& ! We only have four enemy animations.
IF eanim& >4

eanim& =1

ENDIF

INC epat& ! We only have 5 different patterns available.
IF epat& >5

epat& =1

ENDIF ! Every level use a different enemy animation.

INC level8& ! Once we go past 2 levels...time for RANDOM.
IF level& >2
level type&=RANDOM(3)+1
ENDIF
RETURN
This procedure just resets the enemy shot counters and
changes the patterns and animations per level. One interestin

thing is that when all 5 patterns have been sucessfully destroyed,
the program kicks in the random mode.

143

Level_type& can be from 1-3.

1 = Enemies follow pattern.

2 = Enemies are directioned controlled.

3 — Enemies have different anims and patterns.

This allows a little variety and the illusion of multiple attack
waves. Sneaky, and actually not that bad for a desperate move!

Coming up next, the init_sprites routine, gets called at the
start of every game and after the main player gets hit by a nasty!!

PROCEDURE init_sprites

MS_resetsprites

MS_spriteiO,lSO,UO,S ! Init the main shooter.
MS_sprite(1,166,170,9) ! Created from 2 sprites.
enemy& =2

RETURN

Clears all sprites. Then sets up 232 X 10 object made from two
16 X 10 sprites. Enemy&=2 just tells me which nasty gets
moved first!

Travelling down the source code trail brings us to the game
over routine. Short, sweet and to the point. Okay, I will do a
little scroll up effect.

PROCEDURE game_over ! Called when the game is over.

MS_clear (MS_background%)
MS_Sbtext (6 X 16, O, "GAME OVER", MS_background%)
temp%=MS_physical%+(88 X 160)
MS sound (61,0, 1)! A little bounce sound.
FOR x&=11t0 10
_movem (MS_background®%, temp%%, x& X 160)
SUB temp%, 160

144

NEXT x&
MS vsyncdelay(180)

RETURN

The trick here is the MS_movem() command. Notice the
source area is stationary at pointing to the top of the background
screen where I drew the game over message. The key thing here
is the number of bytes moved from this location (x&*160). With
each loop (1-10), more information will be moved from this
location. And since I actually move the destination address
(temp%) up a scan line per loop, the end result is that the words
"GAME OVER!" will seem to grow upwards from the middile
of the screen!! Finally I let the user say SHOOT, GAME OVER
for about 3 seconds.

Next up with about seven minutes left is probably the
hardest part about this game. Actually launching and controlling
the sprites. We will break this down into three problem areas:

1) Move main player back and forth and allow him/her to shoot.
2) Launch enemy nasties using one of three styles. (level&z=1-3)
3) Make enemies shoot a missile every once in a while.

Procedure update_players ! Called from the main game loop.

"Let’s tackle these one at a time...

»

’}11) Move main player back and forth and allow him/her to
shoot.

’Remeber our main sprite is actually designed using two sprites.
"We have to update both of these every loop. The MS_jstick2()
*command will take the whole movement problem in one fast
’command.

b

145

MS_jstick2 (0, 5, 0, -1, 305, 160, 160, STICK(1),2) ! Auto control
ofmamspnte s}up

’Our main player-is made from sprites 0 - 1.
"How do we make the player fire a missile?
IF STRIG(1) ! Joystick button pressed?

IF MS_sfla SZ) = 0! Launch a missile at enemy.
MS_Sprite|(2)=10

MS Shor& g =MS_Shor&(0)+7

MS_sver& (2)=MS_Sver&(0)-4

MS_direction (2, 0, -8, 25) | Move verically up 8 pixels at a time.
MS sound (30, 0, O)‘ A simple sound.

ENDIF

ENDIF

’Here we have to control the nasties based on what type of level
‘it is: Patterns, direction movement, random patterns etc...
>

IF level type&c=1

INC spacing&

IF spacimig& =6

spacing& =0

INC enemy&

I enemy&' >17

enemy&=3

ENDIF

IF MS s E[(enemy&) =0 AND enemy_shot8(enemy&)=0

MS anim (enemy&, eamim&
MS_rpattern (enemy&t epat&)
ENDIF

ENDIF

ELSE

146

IF level type8t=2! Direction move, vertically.
INC enemy&
IF enemy& > 17

IF MS_sflag| (enemy8)=0 AND enemy_shot8(enemy8)=0
MS animate (enemy&, eanim&, RANDOM (320}, -8)
MS_direction {(enemy&, 0, RANDOM(5) +1, 200

ENDIF

ELSE

INC spacing&

IF spacing8=6

spacing& =0

INC enemy&

IF enemy& > 17

enemy&=3

ENDIF

IF MS sflag|(enemy&)=0 AND enemy_shot&(enemy&)=0
MS_anim (enemy&, RANDOM(3) +2)
MS_pattern (enemy&, RANDOM(4)+1)
ENDIF

ENDIF

ENDIF

ENDIF

"Make enemies shoot a missile every once in a while. _
*The idea is to make the missiles shoot out of one of the nasties.
"This can be done rather easily using random statements.

3

IF RANDOM(200) <100 ! Fire missiles at main player.
missile& =18 + RANDOM(7)

IF MS_sflag| (missile&)=0
miss_enemy&=3+RANDOM(15)

IF MS_sflag| (miss_enemy&)=1

MS_anims | (missile8) =0

MS_shor& (missile&)=MS_shor& (miss_enemy&)
MS_sver& (missile&)=MS_sver&(nuss_enemy&)

147

MS_Sprite] (missile8)=11

MS_direction (missile8z, 0, RANDOM(6)+2, 180)
ENDIF

ENDIF

ENDIF

RETURN

The trickiest parts were handling the three different levels
of nasty movements. [usually recommened something like: ON
level type8c GOSUB level 1, level 2, level 3, etc...etc... But this
game had to be done quickly, so I had to think on the fly rather
than plan ahead of time.

Look close between level 1 and 3 and you will see that level
1 launches a sprite using a RFaMm. This will cause the sprites
to repeat this pattern until it is shot. In level 3 we just use
Pattern, this enables us to re-use the sprite using a Random
pattern each time it finishes a pattern. We also randomize the
animation style.

Level 2 shows how easy it is to make several sprites fall
down the screen. By passing Random(5)+1 vertical pixels to
move we can cause the sprites to fall at different speeds.

In the section that fires a missile you will see how easy it is
to launch a sprite from another sprites location. By passing
another sprite’s location directly to the procedure, we can easily
accomplish this task.

The next section is dealing with what happens when the
missile hits an enemy sprite and what happens when any enemy
sprite hits our main player, (which is actually two sprites wide).
Procedure collision_check ! Called from the main game loop.

MS _collide (2, 0, 0, 15,9, 0, 0, 15, 9, 17, 15)

148

IF MS _var% ! Any collision?

MS_sound (3, 20, 1)
MS_explode (MS_var%, 5, 6) ! Make this sprite explode.
MS_spriteoff(2)

ADD MS _score%, 50

INC enemy_total_hit&
enemy_shot& (MS_var%)=1
IF enemy _total hit&=15
init_level

ENDIF

MS _Sbtext (0, 19 X 10, STR$ (MS_score%), MS_logical%)
MS_copy_logical_to_physical (190, 190, 10)

ENDIF

MS_collide (0, 2, 0,28, 9,0, 0, 15, 8, 24, 22)
IF MS_var% ! Any value >0 means an enemy hit them.

player_hit! We do not care which enemy it was.
ENDIF
RETURN

Note the use of the array enemy_shot&(). This holds the
status to tell if an enemy has been shot during a level. If this
value=0, then we should launch the sprite otherwise, we assume
it has already been shot. In the collision routine we set it to 1
when it has been hit by the missile. Notice we do not allow the
enemy missiles to be shot down, which saves us a collision

detection.

Otherwise nothing really too hard to comprehend here.
The MS_collide() Routine deserves your attention though. This
is probably the most difficult thing to grasp when designing

149

games with the M.A.G.E.

Well, only a few minutes left! Luckily we have just one
more routine to write and that is the main player collision
routine.

PROCEDURE player_hit

MS_graphics_engine ! Used to finish the current frame.

DEC MS_lives&

MS_Sbtext (17 X 16, 19 X 10, STR$ (MS_lives&,22)+STR$ (3-
MS_lives&, 32), MS_logical%

MS_copy_logical_to_physical (190, 190, 10)

MS_direction (0, 7, 0, 50)

MS_direction (1, 7, 0, 50)

FOR x& =18 to 24

MS_animate (x&, 5, MS _shor8(0)+ RANDOM(16),
MS sver&(0)+ RANDOM(3))

MS_direction (x&, -3 +RANDOM(?), -RANDOM(3), 80)
NEXT x&

MS_sound(8,0,1)

FOR x&=1to 90

MS resetfps ! Reset Vblank timer.

MS_vsync20 (9, 0) ! Draw 180 scan lines from background.
MS_graphics_engine ! Let the en ine do its thing.

MS_waitvsync(2) ! Wait until Vb anks passed 2.
NEXT =&

],lF MS livesdz ! Any hives left? If so, re-init level.
MS_fadeout (0, 0,0,0,0, 15)

Enit_sprites

FOR x8 =17 downto 0

enemy_shot8(x&)=0
NEXT x&

150

enemy_total hit&=0

MS_movem (MS_background%, MS_logical%, 28800)
MS_movem (MS_background%, MS_physical%, 28800)
MS_drawsprites S’MS_logical%)

}VIS__drawsprites MS_physical%)

MS._fadein (0, 0, 0, 0, 15)
MS_vsyncdelay (20) ! Wait a little while to collect your thoughts.

ENDIF
RETURN

This last routine is important because it gives a nice clean
and structured way to handle animations outside of the main
Eame loop. The method as shown above will allow you to create

onus and special anims that happen during the main loop. It
also has possibilities for end of game routines. Again, nothing
tricky shown here. The methoc% of using a fixed for next loop
allows you to precisely determine the length of the routine.
Also, fading the background to black before resetting all the
sprites allows a more professional look to the game.

Well, that is it! This game did indeed only take 20 minutes
to write. But a lot of you might be wondering a few things if
you Slerned to this section right away, so a few explanations are
i order:

20 minutes.... HOW?

The M.A.G.E. Shell has all the routines already created and
structured in a way that makes it very easy to just fill in the
blanks with the code that I needed for this game. The only
routine that I had to add was the Player_Hit routine.
Everything else was already there for me to fill in with my own
code. Where is the main loop? Remember, the only sections I
was supposed to write about was the ones I had to program. The

151

main loop was left untouched because I did not have to add
anything to it (Yes, the M.A.G.E. Shell does a lot in letting me
design this game in 20 minutes)!

152

Chapter 12.

The Creation of "Thurg N Murg"

I have been asked to describe how I have created "Thurg N
Murg", giving you a step by step description of how the game
creation process on the M.A.G.E. system worked to produce
such results. T have declined in this chapter to describe the actual
mechanics of the M.A.G.E. system. Instead, I will go over major
foints_that should save you many hours of%
rustrations.

The Game Idea

The first step to creating a game is to get a clear idea of what
that game is going to do. My f?rst step was to decide what tgpe
of game I was going to design. I then sat down at the kitchen
table and wrote down an outline of what I wanted "Thurg N
Murg" to be. Here is a condensed version of what I wrote:

Game concept - This will be a single screen at a time
Flatform game in which the main character can jump, run and
ire. The enemy can do the same things as the player and will
have different levels of intelligence. I want the game to have a
nice soundtrack, a full set of musical sound effects and smooth
joystick response. The game will run at a target rate of 30 FPS
and will be allowed to slow down as far as playability will allow.
The player will be able to pick up extra powers and lots of
goodies. A timer will swallow entrance to the bonus goodie
screeen.

Pickups - A bunch of typical pickups that I will assign values
to.

Powers - Extra Jump Power, Extra Fire Power, Extra Speed
and Shields.

Characters - My character set will hold two fonts and some

153

air pulling

backgorunds. Characters will be 16 x 10 and the sprites will be
16 x 20. I chose these sizes because the characters can make more
flexible backgrounds and the large sprites allow me to avoid
using multiple segmented sprites.

Sprites - Since I am wasting some time plotting large sprites
for shots, I will keep collision checks to a minumim. There w1
be two players witg three shots each which makes for no more
than eight collision checks per frame.

Background checks will use standard CPEEK and CPOKE
c_:omn;n::ir.lds and will be programmed with check-specific options
in min

The lower twenty scan lines will be used for scores, timer,
and lives display. These displays will be laid out ahead of time in
Deluxe Paint ST.

Sound a little chaotic? Well, the this process always is.
After I composed a brainstorming list, I fired up my ST and drew
a mock-up screen. This screen was drawn displaying the
maximum amount of graphics that I envisioned the game using at
one time. I drew all displays with lives maxed out, scores at all
9’s and the timer and bonus powers at full display. This is not an
easy process folks! It requires hours of tinkering and fiddling.
But once you have a completed screen that you can feel
comfortabgz with, then you have a great programming tool in
that screen. By the way, I have used pre-drawn sprites in this
game. If you want to design your own sprites, tIEen there are
two steps you can take at this point. You can draw all the
graphics you expect to use and then draw your mock up screen
or you can just use filled blocks of the same size that your sprites
are going to be. I highly recommend drawing out your sprites
first because it gives you a clear idea of what your final product

will look like.

Once I had a mock-up screen designed, I noted all important
screen coordinates on a piece of paper. This included the start

154

location of each display (ie: lives, score, ect..). Ialso noted the
space between each figure in the display. Ialso noted what |
would need to draw each part of the display (sprites or
characters) and any conflicts between displays. I afso noted
where my game screen started and ended, and what possible

boundary problems I might have.

Now that I had designed my mock-up screen, I put together
my sprite and character banks. I took note of all important
sprite numbers (like the sprites I used for extra live displays). |
noted most important character types; it was at this point that |
decided to use a free floating background designation. I decided
that the upper left corner character of each screen will be a legal
background piece, all other characters on the screen would be
illegal moves (platform pieces). Once I had decided this, I made
my MAP files. I experimented with the backgrounds as some ol
them did not turn out as I expected. Note the difference
between my .PC1 files and what actually made it to the character
bank. Such experimenting is essential to getting the correct look
to your game. Also, do not get depressed if you can not get that
look in one session. It took me two days to get my character set
the way I wanted it. ‘

Now I put together my animations. I realized that a frame
of animation I had captured for falling did not work as well as 1t
was planned to so, I deleted them and used the slots for othe:
things. This is why my sprite banks have a slightly chaotic look
to them. If you realize that I loaded in a nice set of sprites (as per
the .PC1 fif;) and then played with the animations and then
fiddled with the sprite bank, you will understand how the bank

got that way.

I then pasted together my animations. Actually this
happened in a sort of twisted semi-simultaneous time frame as
the sprite bank construction. The animations are almost never
what you want the first time around, so do not get depressed i
you need to come back here quite often.

155

The last thing to do before programming was the sound
effects. I am lucky in the fact that I have a musician who makes
music for me. My soundtracks were already waiting for me. If
you do not have this luxury, then feel free to curse my name as

ou design your own soundtracks. My suggestion is that you
Kribe a musician buddy at school for the required licks. I then
thought of all the possible actions all the characters would make
and planned soumf effects around them. It is important to note
that some sound effects are better left out. For instance, it
would be easy to give every monster its own jumping sound but
since the monsters are almost always jumping the user would
hear almost nothing but that single sound effect throughout the
game. Making the sound effects was a matter of loading in a
sound and tweaking it until it became what I needed. I then
created a MOD file with exactly one note on three channels and
used the MOD interface to play back the sound effects later.

Notice how I have not programmed a single thing yet? It is
not an accident! Structuredp programming requires that you get
all of your ground work done tirst. The more elaborate the
game, the longer the above process will take. "Thurg N Murg"
took two days and I am probably the most experienced
M.A.G.E. user around. Do not get frustrated if it takes you
several days to complete these steps, as it will pay off in an
awesome product!

Oops! I almost forgot another important aspect of getting
ready. I took notes on everything and I mean everything!
Before I sat down to actually write "Thurg N Murg” I had all of
my support files ready and 6 typed pages of notes (with lots of
handwritten sidebarsé'. Typical things I kept handy were my
.GPA printouts, all the sprites that I used to display the bonus
pickups, pickup values in the 2nd character map, pickup bonus
numbers, sprite frame numbers, what main varibles would
control important stuff (like Thurg&() and Monster&() - I
actually laid out how these arrays were going to look before I
wrote the program). Anything I would need to know about the
data I had just created was in a little folder that I guarded with

156

my life. Now, you will not know what all to keep track of on
your first game, so do not expect to have all your bases covered
all the time. Do not worry that you have got to backtrack to the
editors once in awhile to get an important sprite frame or a
character number you forgot. Just make sure you have got some
serious notes. The difference between a good programmer and a
great one is the preperation involved.

I will harp on a few more things right now that, if you
listen to me, will save you a major headache. Always use
descriptive variable names for important variables. Only use
sin§le letter variables when you are using that variable to
perform a trash calculation. Always keep notes. Learn to use
those note taking and planning skills as you develop you
programming. If you do, your games will begin to come
together like clockwork. Last but not least, always finish your
game. The biggest problem with a lot of programmers to‘ﬁy is
that they will not finish their game. They tinker and tinker or
start a new program before the current project is complete. Do
not fall into this trap! No matter how Ead the project looks, at
least get your current code running before re-writing it. Never

pursue more ?rojects than you can comfortably handle. I am
really guilty of breaking that rule and I have paid for it!

Now I can actually program the game. Since the code 15
pretty straight foward and you have other, more nuts-n-bolts
examples to pour through, I will not get into much detail here.
Instead, I wi.lf discuss the points of interest throughout the game.
What follows is a topic-headed discussion of each major point of
interest in the code:

Title Sequence: The reason I have short names here, is at
first, I planned to have a series of routines handle a different run-
through. However, T2 worked out so well that I decided to
keep it and build other data routines to handle the title sequence.
The high score tables were added at the last minute Sor my beta-
testers would have lynched me!), so that is why it looks like a
patch (it is one!). The title sequence also shows how you can use

15T

an on gosub structure and some counters to control a bunch of
different things. I personally hate to do title screen work, so
mine tend to be bland. Yours could really be great!

Player Logic: Okay, since I never know what the player is
oing to do from moment to moment I use a status flag to
getermine which routine should handle the movement.
Different routines include: move left (54), move right (s8), start
jump (s1), handle Jump and Fall (s2). Look at what each of these
rocedures do. They all follow this basic pattern: Is the move
egal? If not, then adjust status flag ancf position to a legal
position and change animation. If it is legal, continue movement
as desired and do not change animation. The player should stay

within bounds and should not be able to go through a platform.

Check_Legal: T use these routines in many of my programs.
Sometimes I cﬁain a whole table to this routine (ie: Igive each of
the 200 cells a legal (0) and illegal (1) value). In this case, I have
only one type of cell per screen that 1s legal. I use this to return a
legal value. The difﬁarent types of Check Legal are just hard-
wired to check specific areas depending on what I want to look
at. Hard wiring small routines like this is a very good way to get
better program speed.

Init_Playscreen: This routine looks very complex at first but
if you break it down it makes much more sense. The first
portion simply determines the start of the screen in the
Character Map. If you count on your fingers and follow the
logic (by putting in different values of current level&) you see
that this code keeps init_level& from 0 to 29 and the X&, Y&

positions correct.

Next the routine draws the map onto the background screen
and sets the single legal character background piece by peeking 0,
0. I set this up this way in order to make any piece the
background and I have to do noth.i.nj except that the cell 0, 0 in
the Character Map is the background value. We now set up the
background some more by grawing the goodies, timer and

158

clearing the players’ power icons.

Now the code sets up the monsters. Feel free to weight this
any way you want. Basically, each little If-Then block checks to
see if the level is high enough to introduce this monster type to
the game and then attempts to set these monsters up. As a
suggested improvement (I am doing these in my next gamel), I
would say make the INIT monster routines be a single routine

that reads each monster’s type of attributes from a tabﬁz.

Now the program gets a small patch that enforces child
mode. I never put child mode in until the program is pretty
much finished. That way I know exactly where I can modify
some varibles to achieve tge effect I want.

Place Goodies: Iwanted to talk about this routine because it
could be kind of confusing to an inexperienced programmer.
Since T am working with a 16 x 10 character set and a 16 x 20
character set, I can not plot directly above a platform. Now the
value of this goodie (assigned by myself and has no importance
outside the collision check routine{is lotted into only one of
the "Fake" Character Screen cells. If tﬁis confuses you, do not
worry. Play with the Sub Y&,2 value to see what I am doing.
The rest of each little block (each block lays down a different
type of goodie? justifies the character cell into screen coordinates
so that T can plot it. Experienced eyes may ask why I can not do
this through the M.A.G.E. commands? The answer is simple,
the sprite and character heights are different. But the MS_Splot
routines take the character values as the true values so I have to
do a manual justification in order to correct for this.

Place Nasties: A lot of this routine is a patch. I added some
hidden screens for some depth. The thing to point out here is
that I do a lot of variable manupliation that could be cleaned way
up if I had taken more time ancf used tables. Sorry, but they gave
me a week to write this whole program.

The Fall Tables: These tables control all movement during

159

the game (except for plain vanilla horizontal). The fall tables
have a variable length but they all end in 5 (Fast fall). Every
character on the screen keeps a pointer to the fall table it 1s
currently using. This pointer is increased unless the value it is
pointing to is equal to 5. You will see me use some pretty
complex looking array referencing with the fall tables but they

all follow the same logic:

1) Add the vertical value I am currently point to to my
sprite position.

2) Am I pointing at the number 5?

3) No - Increase Pointer value.

Yes - Do not do anything else!

You can use this same logic to construct some pretty wild
movement. The reason to use hand-coded tables and not offsets
is that the hand coded tables can sometimes be more accurate and
flexible than a plain old offset. Try altering the fireball paths
(you can do curley ques or sine waves or anything else!l! T am
planing to use whirlwind shots in my sequal - "Son of Thurg N
Murg"?.

Overview: I want to give you a quick overview of what I do
during a typical game loop.

e Move the players based on Max_players and joystick
input.

Move shots.

Move all active monsters.

Move those neat little bonus numbers.

Collide everything.

Do it again until game is over or level is complete!!

As a last note, I would like to discuss a few things you
should play with. Mess with these values and routines and
watch how this effects the game.

160

® Play with the speeds. I have clearly marked where
speeds are affected. Try making the game run slower
or faster. Violate the 16 pixel boundary and see why
you should not.

® Play with the Fall paths. This makes for some great
variations on the original game.

® Make some monsters more intelligent or less
intelligent. How about a really smart Mondo
monkey?

® Try plotting less or more goodies. Be warned..the
program can go into an infinite loop if it can not find
an open slot.

® Change the maps around. Design new and weird
maps. See why I designed the maps the way I did
(some designs do not work well!).

® The monster intelligence routines are woefully
underpowered. Try writing in some checks to make
them smarter. Hint: Control jumping a little better
or keep the character from dropping off just above
the player, which makes them harSer to kill.

If anybody has any questions about some of the code just
mail me the questions and I will be happy to discuss anything

not covered in this chapter! Put "Attention: Robert Dytmire
on the envelope below MajicSoft’s address.

Thanks,
Rob

161

VW \ ajic =ofte

rarel!”

162

Chapter 13. The Creation of "Sleuth"

A. Layout and Design of "Sleuth"

Looking back over the years of computers and computer
games, there are always a couple of games that really stand out
amongst the crowd. These games are the ones that are now
classics in their own right.

When I first sat down with the M.A.G.E. and tried to decide
what type of game I wanted to design - my mind raced back
through the years, looking for an idea that would spark
creativity in me. QOut of alF of the arcade games I have ever
played, a game from a long dead company named Synapse, came
to mind. It was a game that a friend and I spent many months
playing. A game tﬁat formed an everlasting friendship between
my friend Steve and I because of all of the hours spent playing
and mapping it. That game was "Shamus" and it was written by
a man named William Mataga. At the time we were playing the
game, I owned an Atari 400 with 16K of memory an«f the games
were supplied on a cartridge. Steve and I got so addicted to
"Shamus" that we used to rush home during lunch hour at work
to play it. And after work, we would rush iome to play it some
more. Both Steve and I were married at the time, and I think
"Shamus” became a much hated game to our wives, because the
wives took second place to it. Steve and I practically ignored
them during the three months it took to map and finish the
game. We even snapped off a Polaroid picture of the last screen.
That screen being the one in which we destroyed the Shadow.

In today’s arcade games much has been lost to fancy graphics
and sound effects. Today’s programmers seem to put more into
the looks and sounds of games than into the play ability of them.
The addictiveness, simplicity and shear enjoyment have been
lost. With that thought in mind, I decided to do a Shamus clone

163

for my first arcade game. The first and most important part of
my design was to design a game that is simple and fun to play.
The graphics and sound were second. To do this, "Shamus”
became my role model.

My Atari 400 and all of the software I had collected through
the years had be given away many years ago. My friend Steve
however, kept his old Atari and software, so I contacted him and
asked if MajicSoft could borrow his computer and "Shamus”
cartridge. I explained that we were going to design an Atari ST
version of the game. He eagerly agreed to help and sent his
machine and game to me via "Next Day Air" by UPS. "Shamus"
was also his most favorite game from the old Atari 8-Bit days.

The package came the next day and I ripped open the box.
Boy was I excited. It had been so long since I hacf seen one of
these old Atari computers. Playing that old "Shamus” game
really brought back some great memories. They just do not
make them like that anymore.

After playing the game for a few hours to get the feel of it
again, my creative juices really started flowing. So, I shut the
machine off and headed to my office to boot up my Atari ST
computer. The first step in designing a game was now behind
me, that being to decide what type OF game I wanted to design.
The next step was to load up my paint program and start
roughing out the graphics. %ue to the way the M.A.G.E.
Character editor uses certain sizes in characters, I chose a grid
layout of 16 X 10 pixels. This small grid allows for greater detail.
This grid is what I used to draw al% of my character pieces in.
The game was to have four levels in it, so I drew four different
colored wall pieces. I also wanted to have a hint system built
into the game so I drew four different fill patterns. I duplicated
these patterns four times and colored them with the four colors I
had chosen for the levels.

I continued drawing the game pieces until I had everythinil
needed and then saved off the pictures in a PC1 format. The

164

next step was to load the M.A.G.E. Character editor and grab the
different pieces from the pictures I had drawn to be useﬁ in my
character set. This character set is the one I used to create the
mgp. The Character Editor has the ability to save off two
different types of files. One being the CP1 file and the other
being the SP1 file. The CP1 file is tie character file. It 1s used in
the Map Editor to draw the maps with. The SP1 file is used in
the Sprite Editor to make sprites with. I first grabbed all of the
pieces that would be used in the Map Editor and saved the file as
SLEUTH.CP1. Iused SLEUTH because that is the name I had
chosen for the name for the game.

The next step was to design the game map. Since this was the
first time I had ever used the M.A.G.E., I really wanted to push
it to the limit just to find out what its limitations were. So with
graph paper and pencil 1 drew a 16 X 16 map grid and then drew
the map within the grid. Next I loaded the M.A.G.E. Map
Editor and loaded in tﬁe SLEUTH.CP1 and started to design my
game map. This step took the better part of two days. A 16 X
16 map yields two hundred and fifty six rooms! With the map
finally complete, I saved off the file as SLEUTH.MAP. This was
the final step for me in the designing of "Sleuth" game. All of
the files and pictures were next turned over to Larry Scholz for
his part, the actual programming of the game. Larry’s tutorial
follows. I hope that you enjoy the final result.

Sincerely, John Stewart.

B. The Programming of "Sleuth”

When John Stewart called me up and asked me to write a
game with the M.A.G.E. I was very excited. Ihad seen several of
the shareware games created with this graphics engine and |
wondered what I could do with it. At this point I had never used
the M.A.G.E. before. I was wondering if I could learn the
M.A.G.E. and write the program in the time he gave me, which
was about two weeks. John suggested that we do a clone of

165

Shamus, a classic Atari 8-bit game. Since this was one of my
favorite games years ago I was doubly excited. I:Iohn and I
discussed what graphics were needed from him before I could

start programming.

For the next couple of days while I was waiting for the
graphics I started to familiarize myself with the 3 main utilities
supplied with the M.A.G.E.. These are the Character/Sprite
EcEtor, Map Editor and Animation Editor. Iloaded each utility
ué) and ran it throuih its paces. 1 made sure that I understood
the operation of each. After a couple of days I got the call from
John saying that the ﬁ'raphics and map are ready. I quickly called
1:&) the company Bulletin Board Service (BBS) and downloaded

e graphics files being anxious to get started.

The first thing I did was to look at the pictures that I would
turn into sprites. Since there were animation sequences for every
sprite, you can imagine how it must of looked to me at first. 1
tEen loaded up the Character Editor so I could start grabbing
sprites. The first thing I noticed was that John had drawn
everything with a background behind it. I think this is a very
common mistake to watch out for. The sprite image must not
have anything around it. By right clicking on the image from
the editor I removed all of tﬂe background. So now I have the
following images that I will use as sprites:

Animation Sequences: Sleuth walking (left, right, up,
down), Hemroids, Spiroids, Hopperoids, Spirit,
explosion, plus a special Sleuth dieing and Spirit dieing for
end of game.

Aditional Images: 8 of Sleuth’s bullets (one for each
direction), 8 of monster’s bullets, Spirit bullets, 2 sets of
numbers from 0 to 9. one in green and the other red, a set
minature keys to display at bottom of screen, the
minature Sleuth image to indicate remaining lives.

166

One important thing to remember if you are going to use
numbers or letters in your sprite set: They must appear in
their proper positions, which is as they appear in the Atari
character set. This means that the number 0 must start in
position 48 followed by 1-9. Since I needed two different colors
of numbers I needed to do someth.i.ng a little different. The next
available area was 49 spaces ahead of the first number set. When
I use them in the M.A.G.E., I now have to add 49 to each
position in the number string so that the routine for printin
text using sprites will find the new numbers. The reason I use
the sprite set instead of using the character set is because of one
il;lﬁortant factor. When you use the character set the number

ill replace everything that was previously on the screen under
that number. When using sprites they will blend in with the
background and not erase it. Since I had a 10 pixel high
character set and a 8 pixel high box to put the numbers in, I
really had no choice.

Now that I had all of my sprite images, the next step was to
load up the Animation Editor to create the actual animations. I
made an animation from each of the sequences mentioned above.
I also made one pattern for the Spirit to follow at the end of the
game. Isaved my animations off as a SLEUTH.GPA file.

Now I have the following files created:

® SLEUTH.MAP created by John
® SLEUTH.CP1 created by John
e SLEUTH.SP1 created by me
®* SLEUTH.GPA created by me

These 4 files were updated many times during the creation
of Sleuth. You will probably need to make several changes to get
everything just right. Next comes the programming of the game.
The first thing I had to decide on was how to set up my sprites. I

167

finally decided on the following:

0 Sleuth

1-2 Sleuth’s bullets
5-8 Monster’s bullets
9-13 Hemroids

14 Hemroid that fires bullets
1620 Spiroids

21 Spiroid that fires bullets
23-27 Hopperoids

30 Spirit

You will notice that I left room for improvements such as
more bullets for Sleuth, an extra Hemroid that shoots, an extra
Spiroid that shoots and a couple extra Hopperoids that do
something.

Now I am ready to load up the M.A.G.E.. Iwill load in the
511, CP1, MAP, GPA files from disk for now until I am sure I
am done changing them. When I am finished changing them, I
will use the [nhnc Maker utility and turn them into inline data.

The first programming I did was to have the first room of
the map fade in on the screen. From there I got Sleuth walkin
around on that screen. In this game the walls are deadly and w1
kill Sleuth. So the next thing I did was to check to see if Sleuth
walked into a wall. I did this by checking the map data ahead of
the sprite with the MS_cpeek routine. This routine will return
the value of the character you point to. If this character is not a
floor piece or a special pick-up, such as a key or a potion, then he
dies. So now that I have Sleuth walking around on the screen,
the next step was to make him walk from room to room. Every
time Sleuth takes a step I have to check his position to see if he 1s
leaving a room.

By the time I got this far it was apparent that it is easy to

lock up the screen. This will happen many times until you are
familiar with the M.A.G.E.. The screen will go black and stay

168

that way or everything just stops moving. However, the good
old 3 key salute usually works just great. Hitting <control >
<alt> <left shift> and then <return> will return you to
the Editor 99.9% of the time. You should pay close attention to
the tgpe of error that occurred and the line above the curso:
which contains the error.

Now that I have Sleuth walking around from room to room,
I walk him through all the rooms just to make sure they were
designed correctly. I found a few tight spots that needed fixing
so I tixed them in the Map Editor.

Now for a little action. The next thing I did was to make
Sleuth shoot. Sleuth can only have two bullets on the screen at
one time. Every time I push the trigger I check the variable
MS _sflag| (sprite no) to see if one of the two bullet sprites I have
assignef to Sleuth are available. If MS_sflag|() returns a ’0’ then
that sprite is available. If the timer says it 1s time to fire another
bullet, then I do so. He can only fire his bullets at a certain
speed. For firing the bullets I used the MS_direction routine.

his routine will send the bullet sprite off in any direction you
set up. Every game loop I check to see if a bullet sprite has been
activated by using the MS_sflag|() routine again. If it is active |
check to see what map character is under the bullet. If it is a wall
piece, I shut the bullet sprite off. This is done so the bullets do
not go through the walls.

The next step I decided on was to let Sleuth pick up objects
like keys, potions and question marks. With each step that
Sleuth takes, I am already checking what is under his feed, so the
next step will be easy. Ilook up in my notes the character values
of all of the objects. If one of those objects is under Sleuth’s feet,
I then draw floor pieces over the object. This makes the object
disappear. I then take the appropriate actions depending on
which object Sleuth picks up. I keep track of what colored ie S
are picked up. If Slguth walks over a keyhole and he has the
same colored key, I open the gate. I determine where in the
room Sleuth is so that I know which gate to open. I replace gate

169

pieces with floor pieces on the map to make the gate open.

Now that Sleuth can defend himself, we needed some bad
ys for target practice. There are 3 types of enemies, plus the
%;irit. The enemies needed to appear randomly around each
room. As Sleuth enters each room the number of enemies is
determined by how much exploring Sleuth has done up to that
time. The enemies have certain boundries they can appear in so
they are not right on you when you enter a room. I also did not
want them appearing in walls. Again, since my sprites are 16 X
20 and the characters in my map are 16 X 10 I needed to do two
checks every time I placed an enemy.

To make the enemies move was the next step. Every game
loop I would check each enemy sprite to see if it 1s active. I% it is
active then I pick a random direction to move it. I first check to
see if it is clear in that direction. If there are no walls then I
update that monsters position. The monsters do not walk

through walls either.

Time for target practice now. To check to see if one of
Sleuth’s bullets hit an enemy I use the MS_collide() routine. I
use this routine once each game loop. If a bullet sprite is active I
check to see if it collided with an enemy. The MS collideg
routine will return in MS_var% the sprite number collided wit
or a 0 if no sprite was hit. If a sprite is hit, I turn off the bullet
sprite and call the MS_explode() routine. This routine will
replace the enemy sprite with an explosion animation which I
had set up earlier. As you can tell from the discription, the
enemies are not very smart. The dumbest enemies are the
Hemroids. They will only start heading towards you if you get
close enough. The Spiroids have a little more intelligence and
start tracking you from a greater distance. Finally, comes the
Hopperoids. These monsters are special. They stand in one spot
andp goe a quick hop and then disappear. They then reappear two
spaces closer to you. They lock on to you %e second you walk
into a room. These were the trickiest monsters to move. What I
did with these monsters was to check first to see if they were

170

active. If they were active, I would then check to see which
frame the animation was on. I would do that with the
MS _anifcnt() variable. This tells which frame the animation is
on. When it was on the final frame then I would move 1t. Since
these monsters move two spaces at a time and I did not want

them walking through walls, I had to check both spaces ahead of

them. If there is a wall then they just move up to the wall.

Now that all the monsters are moving around nicely it was
time to add special monsters that would shoot back at Sleuth. It
was already pretty hectic in a room if there were a lot of
monsters, so I did not want to add too many shooters. I chose to
add possibly one Hemroid and one Spiroid. There is a 50%
chance that a shooter will appear. 1 erfgrmed the same collision
check with the enemy bullets as I dié) with Sleuth’s bullets.

Now for more collision checking. Every game loop I also
need to check to see if Sleuth ran into any of the enemies. Now
I have 4 collision checks each game loop. They are:

Check to see if Sleuth hits an enemy.

Check to see if one of Sleuth’s bullets hit an enemy.

bChueck to see if any of Sleuth’s bullets hit an enemy
ullet.

4. Check to see if an enemy bullet hits Sleuth.

il el

The reason I have to have so many collision checks is that I
am checking against different size sprites in each collision check.
In the first one I am checking a 16 X 20 sprite against other 16 X
20 sprites. In the second one I am checking a 3 X 3 sprite against
other 16 X 20 sprites. In the third check I am checging a3X3
sprite against other 3 X 3 sprites. Finally, in the last one I am
checking 3 X 3 sprite against a 16 X 20 sprite. The second and
last collision check looﬁ the same, but they are not. There are

different sprites that are being checked against.

The last enemy I had to deal with was the Spinit. The Spirit
only comes into a room if you are in there for a certain amount

171

.

j of time. A gong will sound ﬁving you a three second warning.
When the Spirit comes he will start in the upper corner farthest
away from you at the time. He will lock onto you and track

~ right to you. He will go through walls or anything else he has to
in order to get to you. The only defence against him is, if you
hit him with a bullet, he will freeze for a couple of seconds
before he resumes his attack. If he touches you, you lose a life.

Now that everything is moving and shooting I need to
update a few displays. I need to show the remaining lives in the
upper right corner display. This display will hold up to 15 little
SFeuth sprites. I need to show the high score above the player’s
score in the upper left corner. I also need to show the room
number, elapsed time and posessions along the bottom of the
screen. The score and elapsed time need to be updated every
game loop. I plotted these on the screen using sprites. I talked
earlier about how I did the numbers, which I used for the scores
and elapsed time.

About the only thing missing now is some nice sound
effects. I used the MS_sound() routine for all of my sound
effects. To do this I did ran the program and then gave it the old
3 finger salute to stop it. This would not let the program end
normally, so that I could go into direct mode by hitting the ESC
key. From here I would type in MS_sound(1, 0, 1) and [Return].
This plays the sound for me. I then went through all 100 sounds,
making a list of which ones I liked for the various effects.

Now that everything was the way I liked it, I loaded up the
Inline Maker program. Up to this time the SLEUTH.CP1,
SLEUTH.SP1, SLEUTH.MAP, SLEUTH.GPA files were being
loaded in off of disk. I created inline data out of each of them. I
then had these four files: SLEUTH.CGP, SLEUTH.SGP,
SLEUTH.MGP, SLEUTH.GGP. Next, I brought these files
into the program with the inline command. This was the last
step. The program was finished and ready for inclusion into the
M.A.G.E. box set.

172

This project took me a little less than two weeks to
complete from start to finish and I had never used the M.A.G.E.
before. This should encourage you! Do not be discouraged
when you see the number of procedures the M.A.G.E. uses.
Jump right in and start your own project. Feel free to
experiment with the source code to Sleuth. Try changing
variables and see what happens. The only way to learn is to
experiment. I hope you enjoy playing this game as much as I did |
writing it. Thank you!

Larry Scholz

\
(73 |

Technical Support

M.A.G.E. comes with free technical support. In order to receive
technical support, you must send in your warranty card. If your
warranty cars is not on file at MajicSoft, you will not receive any
support, so please take a moment right now to fill out your card
and mail it to us.

When contacting MajicSoft for technical support, the following
will save time and help us give you a quick answer:

o Please insure you have read the relevant sections of
the manual carefully and the READ.ME file (if one
exists) before contacting us (many problems are
simple mistakes which could easily be avoided by
referring to the manual).

e Give us both the version number of the software
from the About M.A.G.E. dialog box and your
exact hardware configuration. We will also need
your disk 1 serial number. You may find it useful
to make a note of it here:

Serial No.

e When telephoning, call while you are actually
sitting in front of your computer if possible so that
you can quickly try out suggestions we may make.
Alternately, have Ze manual close by for reterence.

Our technical support line is available Monday - Friday, from
9:00 am til 5:00 pm PST in the United States. The telephone
numbser is (818) 701-1473. Our sales line is (303) 788-8177 and 1s
open from 9:00 am til 5:00 pm EST in the United States.

174

Notes

175

176

Notes

T

178

YW\ gjic=oft

1e Sotirware!”

