

Other books of interestfrom Granada:

The Apple II

APPLE II
PROGRAMMERS
HANDBOOK
R. C. Vile
0246120274

ATARI

GET MOREFROM
THEATARI
Ian Sinclair
0246121491

THEATARI
BOOKOF GAMES
M. James, S. M. Gee
and K. Ewbank
0246122773

The BBC Micro

INTRODUCING
THE BBC MICRO
Ian Sinclair
0246121467

THE BBC MICRO
AN EXPERT GUIDE
Mike James
0246120142

21 GAMES FOR
THE BBC MICRO
M. James, S. M. Gee
and K. Ewbank
0246121033

BBCMICRO
GRAPHICS AND SOUND
Steve Money
0246121564

DISCOVERING
BBCMICRO
MACHINE CODE
A. P. Stephenson
0246121602

THE BBC BASIC
PROGRAMMER
S. M. Gee and
M. James
0246121580

The ColourGenie

MASTERING THE
COLOUR GENIE
Ian Sinclair
0246121904

The Commodore64

COMMODORE 64
COMPUTING
Ian Sinclair
0246120304

THE COMMODORE 64
GAMES BOOK
Owen Bishop
024612258 7

SOFTWARE 64
Practical Programs for
the Commodore64
Owen Bishop
0246122668

The Dragon 32

THE DRAGON 32
And How to Make
TheMost Of It
Ian Sinclair
0246121149

THE DRAGON 32
BOOKOF GAMES
M. James, S. M. Gee
and K. Ewbank
0246121025

THE DRAGON
PROGRAMMER
S. M. Gee
0246121335

DRAGON GRAPHICS
AND SOUND
Steve Money
0246121475

THE DRAGON 32
How to Use and
Program
Ian Sinclair
0586061037

The IBM Personal
Computer

THE IBM PERSONAL
COMPUTER
James Aitken
0246121513

The JupiterAce

THE JUPITER ACE
Owen Bishop
0246121971

The Lynx

LYNX COMPUTING
Ian Sinclair
0246121319

The NewBrain

THE NEWBRAIN
And How ToMake
The Most Of It
Francis Samish
0246122323

The ORIC·l

THE ORIC·l
And How ToGet
The Most FromIt
Ian Sinclair
0246121300

THE ORIC·l
BOOKOF GAMES
M. James, S. M. Gee
and K. Ewbank
0246121556

THE ORIC·l
PROGRAMMER
M. James and S. M. Gee
0246121572

ORIC MACHINECODE
HANDBOOK
Paul Kaufman
0246121505

Continued on inside bock cover

Get More From
The Atari

Get More From
The Atari

Ian Sinclair

GRANADA
London Toronto Sydney NewYork

Contents

Preface VII

I Setting Up The Machine I

2 Words On The Screen 13

3 A Bit Of Variation 23

4 Repetitions And Decisions 36

5 String Up Your Programs 51

6 Filing And Planning 65

7 The Coarser Characters 80

8 More Resolution 98

9 Sounding Out The Atari 124

10 Odds And Ends 136

Appendix A: SA VE and LOAD Problems 141

Appendix B: Useful Addresses 143

Index 145

Preface

The Atari 400 and 800 models are now well-established and
respected personal computers. Recent price cuts, and the provision
of 48K of memory on all the 800 models have made these well
designed computers very much more competitive in the UK. This
has highlighted the need for a comprehensive guide for the beginner
to Atari programming. When the Atari models first appeared, the
BASIC language cartridge which enabled the user to program the
machine for himself / herself was sold as an extra. Because of the vast
array of software which could be bought for the Atari models, there
was little incentive for most owners to write their own programs. In
addition, some of the most fascinating actions of the computer were
not even hinted at in the manual.

This book is aimed at the beginner who has just acquired an Atari
400 or 800, but it should be of considerable service to the established
owner of an Atari who has never tried programming. Programming
for both models is identical, and the main differences between the
400 and the 800 are the keyboards, and the provision of an extra
cartridge slot in the 800. Everything in this book, therefore, refers
equally to both the 400 and the 800 computers. I am sure that the text
and examples here will provide a welcome source of information for
the beginner. I hope also that the more seasoned user will find much
of interest, and perhaps a few welcome surprises in these pages.

Ian Sinclair

Chapter One

Setting Up The Machine

By the time that you read this, you will have found that the Atari is a
very solidly constructed machine, with a strong diecast chassis, and
certainly no lightweight chunk of plastic. It comes much better
prepared for service than most other machines, so that you can get it
going for you very quickly. A computer is a more complicated device
than a kettle or a toaster, however, and though the mains plug is
already connected to your Atari, computing is not just a matter of
plugging in and switching on.

First you must find a space large enough to take the Atari, along
with everything you are likely to use with it. That will include a TV
receiver and, almost certainly, the Atari program recorder (a form of
cassette recorder). Later you may want to add disk drives, a printer
and other goodies, so that space may be important. The only way I
can manage to have several computers in one room is by using
specially made stands, and the type made by Selmor (Fig. I. I) is the
best I have come across. If you are not quite at that stage yet, then
make sure that you have a good-sized table or desk to work on.

With that hurdle over, you are almost ready to work some Atari
wizardry, but you need the use of a TV receiver. A computer is a
device which is arranged so as to send signals to a TV receiver, and
unless you connect a TV receiver to the Atari you won't be able to see
what the Atari is doing. It will still compute for you just as well, but
you won't see what is going on.

Unlike most small computers, the Atari comes with its TV cable
already attached and with an aerial plug at the end of the lead. You
could, of course, simply plug this lead into the TV receiver, but a
better option is to use the type of 2-to-1 adaptor that is illustrated in
Fig. 1.2. This allows you to keep an aerial cable plugged in, ~nd to
connect or disconnect the Atari as you wish without disturbing the
TV receiver. It's useful if you have to share a colour TV with the
family. It also saves wear on the aerial connector of the TV receiver

Setting Up The Machine 3

itself. This device is packed with your Atari, and its inclusion IS

typical of the way in which the Atari is made ready for you.
The TV that you use to display the Atari's signals need not be a

colour receiver, not to start with at least. The skills of programming
an Atari do not require you to see the results in colour until you
come to the colour instructions of the Atari in Chapter 7. The signals
which appear in colour on a colour TV will appear in shades of grey
on a black/ white TV so that you need not feel that you are missing
anything essential if you have only a portable B/ W TV available.
Nevertheless, the colour signals that the Atari can produce are so
outstandingly good that you should try to have a colour TV
available when you come to Chapters 7 and 8 of this book.

The big switch-on

Now before you plug in everything in sight and switch on, it's a good
idea to see how many mains sockets you have around. When you are
in full control of your Atari you will need three mains sockets. Two
of these will be for the Atari and the TV receiver, but you will need
one more for the program recorder. Most houses have desperately
few sockets fitted, so you will find it worth while to buy or make up
an extension lead that consists of a three- or four-way socket strip
with a cable and a plug (Fig. 1.3). This avoids a lot of what the
famous advert calls 'spaghetti hanging out the back'. Don't rely on
the old-fashioned type of three-way adaptor - they never produce
really reliable contacts. The Atari has its own mains switch, but this
does not switch the mains supply. The mains plug connects to a
power-pack, which converts the high mains voltage into a low (and

Fig. 1.3. A four-way socket strip which avoids the use of the old-style adaptors.

4 Get More From The Ateri

safe) voltage supply for the Atari. This low voltage supply is taken
along a lead which has a small tubular plug fitted to it. This plugs
into the power input socket at the right-hand side of the Atari. When
you switch off the Atari, using the switch at this right-hand side, you
do not switch off the mains. It's always a good idea to pull out the
mains plug after you have switched off at the machine. In addition,
you should make sure that the power pack is resting in a well
ventilated place, because it will become warm while it is working.

Before you can start to do any serious work with programming
your Atari, you will need to instal the BASIC cartridge, if this has
not already been done by your dealer. At the top edge of the
keyboard, you will see a small catch that is marked PULL OPEN.
Pull it towards you to release the catch, and you can lift the flap
which is just behind it. There are two slots under this flap. The
BASIC cartridge plugs into the left-hand slot, with the title of the
cartridge facing you (see Fig. 1.4). The next step, now, is to shut the

BASIC
CClr'.'lcj(}('

Fig. 1.4. Plugging in the BASIC cartridge. This is illustratedforthe Model 800.
in which the left-hand cartridge socket must be used.

flap again, and switch on the TV receiver and the Atari. The small
built-in loudspeaker of the Atari remains silent as you switch the
machine on. It's job is to deliver warning messages when something
goes wrong. It doesn't, however, deliver the main sound effects.
These are played through the loudspeaker of the TV so that you have
full control over the volume.

An ordinary domestic TV is not ideal for viewing the Atari (or any
other computer) signals. This is because the signals cannot be sent
directly to the TV in the form that would give a clear picture.
Instead, they have to be transmitted, using a miniature transmitter

Setting Up The Machine 5

that is caIled a modulator. This is because most TV receivers cannot
be connected safely to anything except by the aerial lead. Very much
clearer pictures can be obtained by using what is called arnonitor'.
This is a form of stripped-down TV which can't receive broadcast
signals (no licence needed l), but which can be connected safely to the
Atari, and to a few other types of computers, to show high quality
pictures. If you are lucky enough to see a demonstration of Atari
signals displayed on a colour monitor you will get some idea of how
much is lost when a modulator and an ordinary colour TV has to be
used. You can buy a special cable for fitting a monitor to your Atari
if you are so fortunate as to have a monitor available.

The second point is that a TV receiver has to be tuned to the signal
from the Atari. Unless you have been using a video cassette recorder,
and the TV has a tuning button that is marked 'VCR' it's unlikely
that you will be able to get the Atari tuning signal to appear on the
screen of the TV simply by pressing tuning buttons. The next step,
then, is to tune the TV to the Atari's signals. Plug in the mains plugs
of the Atari and the TV, making sure that the small plug from the
Atari power supply is firmly inserted into its socket. Switch on the
TV and turn down the volume control so that you are not distracted
by the noise. Switch on the Atari, using the rocker-switch at the
right-hand side of the machine.

Figure 1.5 shows the three main methods that are used for tuning
TV receivers in this country. The simplest type is the dial tuning
system that is iIlustrated in Fig. 1.5(a). This is the type of tuning
system that you find on black/white portables, and you only have to
turn the dial to get the Atari's signal on the screen. If the dial is
marked with numbers, then you should look for the signal
somewhere between numbers 30 and 40. If the dial isn't marked,
which is unusual, then start with the dial turned fully anticlockwise
as far as it will go, and slowly turn it clockwise until you see the Atari
signal appear. If you turn the volume control up slightly so that you
can hear the rushing noise of the untuned receiver, you will hear
things go quiet as the Atari signal appears. You may find that there is
some reduction in the sound level as you tune to a local TV
transmission, but you'll notice the difference. The Atari doesn't give
you the sound of Coronation Street!

What you are looking for, if the Atari hasn't been touched since
you switched it on, is the word READY on the screen. When you can
see this word, turn the dial carefully, turning slightly in each
direction until you find a setting in which the words are really clear.
On a TV receiver, particularly a colour TV, the words may never be

6 Get More From The A tar;

(U)

(a)

e.--l_----TTunlng oiar
turn to tune.

Seiect eJY pusfllng In
Tune elY tWisting

Seiector SWitch-press

Adjusting
Wheel
(turn to tune)

Fig. 1.5. TV tuning controls. (a) Single dial, as used on black and white
portables, (b) four-button type, (c) the more modern touch-pad or miniature
switch type.

Setting Up The Machine 7

particularly clear, but get them steady at least and as clear as
possible. If you don't have the BASIC cartridge installed at this
stage, all you'll see (on a colour receiver) is a blue background.

The older types of colour and B/ W TV receivers used mechanical
push-buttons (Fig. 1.5(b)) which engage with a loud clonk when you
push them. There are usually four of these buttons, and you'll need
to use a spare one which for most of us means the fourth one. Push
this one in fully. Tuning is now carried out by rotating this button.
Try rotating anticlockwise first of all, and don't be surprised by how
many times you can turn the button before it comes to a stop. If you
tune to the Atari's signal during this time, you'll see and hear the
same signs - the message on the screen and the reduction in the noise
from the loudspeaker. If you've turned the button all the way
anticlockwise and not seen the tuning signal, then you'll have to turn
it in the opposite direction, clockwise, until you do. If you can't find
the Atari signal at any setting, check the TV using an aerial in case
there is something wrong with the tuning of the TV.

Modern TV receivers are equipped with touch pads or very small
push-buttons for selecting transmissions. These are used for
selection only, not for tuning. The tuning is carried out by a set of
miniature knobs or wheels that are located behind a panel which
may be at the side or at the front of the receiver (Fig. 1.5(c). The
buttons or touch pads are usually numbered, and corresponding
numbers are marked on the tuning wheels or knobs. Use the highest
number available (usually 6 or 12), press the pad or button for this
number, and then find the knob or wheel which also carries this
number. Tuning is carried out by turning this knob or wheel. Once
again, you are looking for a clear picture on the screen and silence
from the loudspeaker. On this type of receiver, the picture is usually
'fine-tuned' automatically when you put the cover back on the
tuning panel, so don't leave it off. If you do, the receiver's circuits
that keep it in tune can't operate, and you will find that the tuning
alters, so that you have to keep re-tuning. Figure 1.6 illustrates some
of the faults that can be caused by mis-tuning.

The Atari attractions

Once you have achieved a tuned signal from your Atari, the business
of mastering the Atari attractions can start. It's important to note
that nothing that you can do by pressing keys on the keyboard can
possibly damage the Atari - the worst you can do is to lose a

8 Get More From The Atari

Lines down screen

READY
R1111 'Ghost Images after a letter

RFuzzy letter shape

Light blobs between letters

Fig. 1.6. Picture defects caused by faulty tuning.

program that was stored in the memory. You can, however, damage
the Atari by spilling coffee all over it, dropping it, or connecting it up
to other circuits while the power is switched on. Opening the
cartridge cover will not cause damage, because the computer is
automatically switched offwhen you do this. You will, however, lose
any program that was stored in the computer when you open this
hatch.

It's time now to look at the keyboard, because the keyboard is the
way that you pass instructions to the Atari. Ifwe ignore the keys at
the left- and right-hand sides, most of the Atari keys look like
typewriter keys. The arrangement of letters and numbers is the same
as that of a typewriter and if you've ever used a typewriter,
particularly an electric typewriter, then you should be able to find
your way round the keyboard of the Atari pretty quickly.

There's one very noticeable difference, though. When you use a
typewriter, pressing a letter key gives you a small letter (called lower
case), and pressing a letter key along with the SH IFT key produces a
capital letter (called upper-case). On the Atari, you will get upper
case letters whether you have the SHIFT key pressed or not. This is
because the instructions that you issue to the machine have to be
typed in upper-case letters, so it's set up to give these letters unless
you want to use lower-case. To change over to lower-case, you must
press the CAPS; LOWER key, which is above the SHIFT key on the
right-hand side of the keyboard. After pressing this key, you will get
lower-case letters normally, and capitals when you press the SHIFT

Setting Up The Machine 9

key as well, just like a typewriter. To return to normal computer
style capitals, press SHIFT and the CAPS / LOWER keys at the
same time.

As well as the ordinary typewriter keys, there are a number of
special keys which are not found on any typewriter. Among these are
the keys which are marked ESC (Escape) and CTRL (Control).
These are used in special ways that will be explained later. The ESC
key is always used by pressing it, releasing it, and then pressing
another key. The CTRL key is always used by being held down while
another key is being pressed. Another important key is the BREAK
key, at the top right-hand side of the keyboard. This is a 'panic
button' which when pressed will return the control of the Atari to
you if it appears to have 'locked up' and refuses to obey instructions.
Pressing this key will not cause you to lose a program that is stored
in the memory of the computer. The most important of these special
keys, however, as far as we are concerned at the moment, is the key
that is marked RETURN. This is in the position of the 'carriage
return' key of an electric typewriter, but its action is not the same in
all respects. Pressing the RETU RN key is a signal to the computer
that you have completed typing an instruction and that you now
want the computer to obey it.

If you are accustomed to using an electric typewriter, you will
have to change some of your habits as far as this key is concerned.
During the use of a typewriter, you would press the 'carriage return'
key each time you wanted to select a new line, with typing starting at
the left-hand side of the new line. The RETU RN key of the
computer does rather more than this. If the material that you are
typing into the Atari takes more than one line on the screen, the
machine will automatically select the next screen line for you. The
RETURN key must not be used forthis purpose. The RETURN key
is used only when you want the machine to carry out a command or
store an instruction, not simply when you want to use a new line. It
will always provide a new line for you, however, and select a position
at the left-hand side. The position where a letter or other character
will appear when you press a key is indicated by a flashing block on
the screen. This flashing block is called the 'cursor', and it acts as a
sort of signpost for you, as we'll see later.

Store it away

You can get a lot of enjoyment from a computer system that consists

10 Get More From The Atari

only of the machine and a TV receiver. Each time that you switch the
machine off, however, all the program and other information that
has been stored in the memory of the computer will be lost. Since it
might take several hours to enter a program into the machine by
typing instructions on the keyboard, this waste just has to be
avoided. We avoid the loss of programs by recording them on tape.

The computer has circuits which will convert the instructions ofa
program into musical tones, which can then be recorded on an
ordinary cassette recorder. When these notes are replayed, another
set of circuits will convert the signals back into the form of a
program. In this way, the use of a cassette recorder allows you to
record your programs on tape and to replay them. Before you
tackle the rest of this book, then, it's important to check now that
you can record and replay programs.

Some computers can make use of ordinary cassette recorders, but
such machines were never designed for use with programs, and
troubles with recorders are very common when such machines are
used. The Atari requires its own special recorder. This is purpose
built for program recording, and you cannot use an ordinary
unmodified recorder in its place. The program recorder requires
another power pack, which is also fitted with a three-pin plug for
mains supply, and a small plug for engaging into the power socket of
the recorder.

Start work by switching everything off. Now find the cassette lead
of the Atari. This is attached to the program recorder at one end, and
has a large plug at the other end. The plug fits into a socket at the
right-hand side of the Atari - it's marked 'PERIPHERAL'. Be
careful how you push this plug in. It should fit only one way round,
so don't force it.

Once you have made this connection, the program recorder is
ready for use. The next thing that you have to sort out is a supply of
blank cassettes. There's nothing wrong with using reputable brands
of C90 length cassettes (ordinary 'ferric' tape, not the hi-fi Cr02

type), but you'll find that the short lengths of tape that are sold as
C5, CIO or CIS in computer shops and in most branches of W. H.
Smith's, Boots, and Currys are much more useful.

Put a fresh cassette into the machine. with the I or A side
uppermost. The first part of the cassette consists of a 'leader' which is
plain, not recording, tape. This has to be wound on before you can
record. Reset the counter of the program recorder to zero, and then
fast-wind the cassette to a count of 5.

Now before you can make a recording to test the system, you need

Setting Up The Machine 11

10 REM
20 REM
30 REM
40 REM

Fig. 1.7. A program for testing the cassette recording and replaying actions.

a program to record, and this involves some typing. This is easy if
you have just switched the Atari on, but if you have been pressing
keys at random, then it's a good idea to switch off again, then on.
This gets the machine cleared, and all ready for you to start.

Type the number I~ (I and then ~), and then the word REM.
Check that this looks correct, and then press the RETU RN key. The
effect of this is to place the instruction line I~ RE M into the memory
of the Atari. Now type the rest of the lines, as illustrated in Fig. I. 7,
remembering to press the RETURN key after you have completed
typing each line. The numbers are called 'line numbers', and they are
there for two reasons. One is to remind the computer that this is a
program; the other is to guide it, because the computer will normally
carry out instructions in the same order as the line numbers.

Check that your program looks on the screen like the printed
version in Fig. I. 7, and make sure that the recorder is ready. Now
type CSA VE. The C stands for cassette, and CSA VE is the
instruction to the computer meaning that you want to save (record)
a program on a cassette. Now press RETU R N, and you'll hear the
built-in loudspeaker of the Atari buzz twice at you. Now start the
recorder by pressing its PLAY and RECORD keys. Press them
firmly so that they lock in place. Nothing will happen until you press
RETU RN once more, and you will then see the reels of the cassette
turning. If you turn up the volume control of the TV receiver, you
will hear the sounds that are being recorded. After a rather long
time, the cursor of the Atari will reappear on the screen with a
READY message. This lets you know that the program has been
recorded, and you can press the STOP key of the recorder. The
motor will ha ve been sto pped automatically, but it's not good for the
recorder to leave the PLA Y key depressed for long periods when the
motor is not moving. That's all.

Now comes the crunch. You have to be sure that the recording was
O.K. Wind back the tape again. Type NEW and press RETURN.
This should have wiped your program from the memory. Now type
LIST and press RETURN. Nothing should appear - LIST means
put a list of the program instructions on the screen, and there
shouldn't be any!

You can now load the instructions in from the tape. Type

12 Get More From The Ateri

CLOAD and press RETURN. The loudspeaker will honk at you
again, once only. You can rewind the tape, if you forgot to do so
earlier. Now press the PLAY key of the recorder and press the
RETU RN key of the computer again. The motor will start, and the
program will be entered into the memory of the Atari again. Once
more, the word READY will appear to tell you that the loading
process has finished, and the motor of the program recorder will
stop. Type LIST now, then press the RETU RN key. You should see
your program appear on the screen.

Once you can reliably save programs on tape, and re-load them,
you can confidently start computing. When you have spent an hour
or more typing a program on to the keyboard, it's good to know that
a few minutes' more work will save your effort on tape so that you
won't have to type it again. It's a remarkably foolproof system
compared to the capers that other computer owners have to endure,
and you should find no problems. If you cannot load or save
programs, ask your Atari dealer to sort it all out for you· there's
nothing that you can do for yourself. Ifyou find that some programs
do not record satisfactorily, but others do, then there's advice for
you in Appendix A. For the moment, however, you should
encounter no problems while you stick to simple programming.

One final point. If you leave your Atari switched on for a long
time without typing anything on the keyboard, you will see the
picture on the screen change colour at intervals. This is intentional.
It reminds you that the machine is switched on, and it prevents
possible marking of the TV screen due to displaying one unchanged
colour for a long time. It's just another example of thoughtful Atari
design.

Chapter Two

Words On The Screen

Chapter I will have broken you in to the idea that the Atari, like
practically all computers. takes its orders from you when you type
them on the keyboard. You will also have found that an order is
obeyed when the RETU RN key is pressed. You will by now have
used the command ~EW which clears out a program from the
memory; and LIST which prints your program instructions on to
the screen. You will also have found that the CLEAR key at the top
right-hand side of the keyboard has the effect of wiping the screen
clear when it is pressed at the same time as the SHIFT key.

Now there are two ways in which you can use a computer. One
way is called direct mode, 'Direct mode' means that you type a
command. press R ETU RN. and the command is carried out at once.
This can be useful. but the more important way of using a computer
is in what is called programmode, In 'program mode' the computer
is issued with a set of instructions, with a guide to the order in which
they are to be carried out. A set of instructions like this is called a
program,

The difference is important, because the instructions ofa program
can be repeated as many times as you like with very little effort on
your part. A direct command, by contrast. will be repeated only if
you type the whole command again, and then press RETURN.

Let's take a look at the difference. If you want the computer to
carry out the direct command to add two numbers. 2.6 and 4.4. then
you have to type:

PRINT 2.6 + 4.4 (and then press RETU RN)

You have to start with PRINT because a computer is a dumb
machine, and it obeys only a few set instructions. Unless you use the
word PRINT, the computer has no way of telling that what you
want is to see the answer on the screen. It doesn't recognise
instructions like 'TELL ME' or 'WHAT IS'. only a few words that

14 Get More From The Atari

we call its 'reserved words' or 'instruction words'. PRINT is one of
these words.

When you press RETURN after typing PRINT 2.6 + 4.4, the
screen shows the answer, 7, under the command, and the word
READY appears under this answer. The READY is a 'prompt', a
reminder that the computer is ready for another command. Once
this command has been carried out, however, it's finished.

A program does not work in the same way. A program is typed in,
but the instructions of the program are not carried out when you
press RETURN. Instead, the instructions are stored in the memory,
ready to be carried out as and when you want. The computer needs
some way of recognising the difference between your commands and
your program instructions. On computers that use the 'language'
called BASIC (Beginners' All-purpose Symbolic Instruction Code),
this is done by starting each program instruction with a number
which is called a 'line number'. This must be a positive whole
number, the type of number that is called a 'positive integer'. This is
why you can't expect the computer to understand an instruction like
5.6 + 3= ; it takes the 5 as being a line number, and the rest doesn't
make sense.

Let's start programming, then, with the arithmetic actions of add,
subtract, multiply and divide. Computers aren't used all that much
for calculation, but it's useful to be able to carry out calculations
now and again. Figure 2. I shows a four-line program which will
print some arithmetic results.

Take a close look at this, because there's a lot to get used to in
these four lines. To start with, the line numbers are 1~,2~,3~,4~

rather than 1,2,3,4. This is to allow space for second thoughts. Ifyou
decide that you want to have another instruction between line I~
and line 2~, then you can type the line number 15, or II or 12 or any
other whole number'between I~ and 2~, and follow it with your new
instruction. Even though you have entered this line out of order, the
computer will automatically place it in order between lines I~ and
2~. If you number your lines 1,2,3 then there's no room for these
second thoughts.

The next thing to notice is how the number zero is slashed across

10 PRINT 2.6+5.5
20 PRINT 3.2-1.4
30 PRINT 2.4*4.6
40 PRINT 7.3/2.1

Fig. 2.1. A four-line arithmetic program.

Words On The Screen 15

as it appears on the screen and also in the printed program. This is to
distinguish it from the letter O. The computer simply won't accept
the ~ in place of 0, nor the 0 in place of~, and the slashing makes
this difference more obvious to you so that you are less likely to
make mistakes. Some magazines, unfortunately, reprint computer
programs with the slash-marks removed, so that it's very easy to
make mistakes. There is no slash-mark across the ~ on the Atari
keyboard, because its position makes it less easy to confuse with the
letter O.

Now to more important points. The star or asterisk symbol in line
3~ is the symbol that the Atari uses as a multiply sign. Once again,
we can't use the X that you might normally use for writing
multiplication because this is a letter. There's no divide sign on the
keyboard, so the Atari, like all other small computers, uses the
backslash (j) sign in its place. This backslash sign is on the? key, so
don't confuse it with the other slash symbol which is on the + key.
The Atari keyboard is arranged so that the four arithmetic symbols,
+,-,* and / can be typed without pressing the SHIFT key.

So far, so good. The program is entered by typing it, just as you
see it. You don't need to leave any space between the line number
and the P of PRINT, because the Atari will put one in for you when
it displays the program on the screen. The space that shows on the
screen when you type LIST and press RETU RN does not get stored
in the memory, so we save memory by missing this space out. You
will have to press the RETURN key when you have completed each
instruction line, before you type the next line number. You should
end up with the program looking as it does in the illustration when
you LIST it.

When you have entered the program by typing it, it's stored in the
memory of the computer in the form of a set of code numbers. You
already know how to check that the program is in the memory, by
using the LIST command. What you need to know now is how to
make the machine carry out the instructions of the program. Type
RUN, then press the RETU RN key, and you will see the instructions
carried out.

When you follow the instruction word PRINT with a piece of
arithmetic like 2.4*4.6, then what is printed is the result of working
out that piece of arithmetic. The program doesn't print 2.4*4.6, just
the result of the action 2.4*4.6.

Now this is useful, but it's not always handy to get a set of answers
on the screen, especially if you have forgotten what the questions
were. The Atari allows you a way of printing anything that you like

16 Get More From The Ateri

10 ? "2+2= ";2+2
20 ? "2.5*3.6= ";2.5*3.6
30 ? "9.6-2.7= ";9.6-2.7
40 ? "24.2/4.7= ";24.2/4.7

Fig. 2.2. Using quote marks. In this and other examples, the? has been used in
place of the PRINT instruction word.

on the screen, exactly as you type it, by the use of what is called a
string. In addition, you can cut down the wear and tear of your
typing finger(s) by typing? in place of the word PRINT!

Figure 2.2 illustrates these principles. In each line, some of the
typing is enclosed between quotes (inverted commas) and some is
not. Enter this short program and run it. Can you see how very
differently the computer has treated the instructions? Whatever was
enclosed between quotes has been printed exactly as you typed it.
Whatever was not between quotes is worked out, so that the first
line, for example, gives the unsurprising result:

2+2=4

Now there's nothing automatic about this. If you type a new line:

15 PRINT "2+2= ";5* 1.5

then you'll get the daft reply, when you RUN this, of:

2+2=7.5

The computer does as it's told and that's what you told it to do. One
of the hardest things to appreciate about computers is that they do
exactly what you instruct them, no more, no less. A computer is a
tool, like an electric drill. As for computers taking over the world,
well, electric drills didn't, though most households have one and use
it. Note also that the spaces in the program of Fig. 2.2 between the =
and the" are useful ; just see what happens if you miss them out!

With all of this accumulated wisdom behind us, we can now start
to look at some other printing actions. PRI NT or its abbreviation?,
as far as the Atari is concerned, always means 'print on to the TV
screen'. For activating a paper printer ('hard copy', it's called) there's
a separate instruction LPRINT (and LIST"P:" for program
listings). It's not an indication of Welsh design· the L once meant
'line' in the days when printers for computers were huge pieces of

10 ? "THIS IS"
20 ? "THE REMARKABLE"
30 ? "ATARI COMPUTER"

Fig. 2.3. Using the PRINT instruction (in its? form) to place words on the screen.

Words On The Screen 17

machinery that printed a whole line at a time. You need not use these
instructions unless you have a printer connected and switched on.

Now try the program in Fig. 2.3. You can try typing the lines in
any order that you like, to establish the point that they will be in line
number order when you list the program. When you RUN the
program, the words appear in twos, with two words on each line.
This is because the instruction PRINT doesn't just mean 'print on
the screen'. It also means 'take a new line, and start at the left-hand
side!'

Now this isn't always convenient, and we can change the action by
using punctuation marks that we call print modifiers. Start this time
by acquiring a new habit. Type NEW and then press the RETURN
key. This clears the old program out. If you don't do this, there's a
chance that you will find lines of old programs getting in the way of
new ones. Each time you type a line, you delete any line that had the
same line number in an older program, but if there is a line number
that you don't use in the new program it will remain stored.

10 ? "THIS IS ";
20 ? "THE REMARKABLE ";
30 ? "ATARI"

Fig. 2.4. The effect of semicolons.

Now try the program in Fig. 2.4. There's a very important
difference between Fig. 2.4 and Fig. 2.3, as you'll see when you RUN
it. The effect of a semicolon following the last quote in a line is to
prevent the next piece of printing starting on a new line at the left
hand side. When you RUN this program, all of the words appear in
one line. It would have been a lot easier to do this by just having one
line of program that read:

I~ PRINT "THIS IS THE REMARKABLE ATARI"

but there are times when you have to use the semicolon to force two
different print items on to the same line. We'll look at examples of
that sort of thing later.

Rows and columns

Neat printing is a matter of arranging your words and numbers into
rows and columns, so we'll take a closer look at this particular art
now. To start with, we know already that the instruction PRINT or

18 Get More From The Atari

10 ? CHR$(125):? "THIS IS THE ATARI"
20 ? :?
30 ? "READY TO OBEY YOU"

Fig. 2.5. Clearing the screen with CHR$(125). and using multistatement lines.

its abbreviated form? will cause a new line to be selected, so the
action of Fig. 2.5 should not come as too much ofa surprise. Line 1~
contains two novelty items, though, one in the form of two
instructions in one line. The instructions are separated by a colon (:),
and you can, if you like, have several instructions following one line
number in this way, taking several screen lines. So long as the
number of characters in the 'line' does not exceed 114 (and at 40
characters per screen line that's almost three screen lines), you can
put instructions together in this way. The Atari will remind you of
the limit by sounding a warning bleep after 107 characters and at
each character beyond this number. In a 'rnultistatement' line, the
Atari will deal with the different instructions in a left-to-right order.

The other point about line I~ is that the instruction ?CH R$(I25)
causes the screen to clear. This is the same action as you get when
you press the SHIFT key and the CLEAR key at the same time. It
doesn't affect what is stored in the memory, simply what you see on
the screen. We'll look at another way of programming this
instruction shortly. Moving on, line 2~ causes the lines to be spaced
apart. The two? instructions, with nothing to be printed, each cause
a blank line to be taken. There are other ways of doing this, as we'll
see, but as a simple way of creating a space, it's very handy.

Figure 2.6 deals with columns. Line I~ is a PRINT instruction
that acts on the numbers 1,2,3 and 4. When these appear on the
screen, though, they appear spaced out just as if the screen had been
divided into four columns. The mark which causes this effect is the
comma, and the action is completely automatic. As line 2~ shows,
you can't get five columns. Anything that you try to get into a fifth
column will actually appear on the first column of the next line
down. It will also be displaced in from the left-hand side. The action
works for words as well as for numbers, as line 3~ illustrates. When
words are being printed in this way, though, you have to remember

10 ? 1.2.3.4
20 ? 1.2.3.4.5
30 ? .. ONE TWO..... THREE FOUR..
40 ? "THIS IS TOO LON6! TWO THREE
FOUR"

Fig. 2.6. How the comma causes words to be placed in columns.

Words On The Screen 19

that the commas must be placed outside the quotes. Any commas
that are placed inside the quotes will be printed just as they are and
won't cause any spacing effect. You will also find that if you attempt
to put into columns something that is too large to fit, the long
phrases will spill over to the next column, and the next item to be
printed will be at the start of the next column along. Line 4~

illustrates this - the first phrase spills over from column I into
column 2, and the word TWO is printed starting at column 3. Once
again, the word which 'spills over' is 'indented' - i.e. printed several
spaces in from the left-hand side.

Commas are useful when we want a simple way of creating four
columns. A much more flexible method of placing words along a line
exists, however. It uses the tabulation feature of the Atari. This uses
the TAB key which is located on the left-hand side of the keyboard.
This acts like the TAB key of a typewriter, and its action is to shift
the cursor along to one of a set offixed places on the screen. Imagine
your screen divided into 40 column positions, evenly spaced across.
Of these, only columns 2 to 38 are normally available. When you
switch your Atari on, the TAB positions are fixed at the left margin
(which is the second column of the screen), at position 7,15,23, and
so on every eight columns. Pressing the TAB key will advance the
cursor to the position of the next TAB stop on the right, wherever
the cursor happens to be.

The use of these TAB stops can be placed into a program by
making use of the ESC key. This key is used to convert into program
form an action which otherwise would be immediate. The way the
ESC key is used is to press it, and release it, and then press the key
which you want to use along with ESC. Figure 2.7 is a program
which I have had to have type-set rather than use a print-out. The
reason is that the effect of using the ESC and TAB keys does not
show up on my printer. Where you see the> mark in a line, this is the
result of pressing the ESC key followed by the TAB key. It appears
on the screen as a solid arrowhead. When you RUN this program,
you will see the effect of the standard TAB settings.

l~ ?"START"
2~ ?" ~FIRST TAB"
3~ ?".~SECONDTAB"
4~ ?"~••THIRD TAB"

Note: the~mark is produced on the screen by pressing the TAB key.

Fig. 2.7. Using the tabulation key of the Atari. This progra m has been type-set.
because it cannot be reproduced by my printer.

20 Get More From The Atari

You can clear or set these TAB stops for yourself. Press the TAB
key so as to move the cursor to its next TAB position, then press
CTRL TAB. This means that the CTRL key and the TAB key are to
be pressed at the same time. The effect of this is to clear this TAB, so
that the cursor will not stop at this place again. To place a TAB stop
at another position, move the cursor to where you want it and then
press SHIFT TAB (SHIFT and TAB together). To move the cursor
you can use either the spacebar (which allows only left-to-right
movement) or press the CTR L key along with one of the four keys
which have arrows on them (the keys next to RETURN and
CAPS/LOWER). As you might expect, you can carry out this
rearrangement of the TAB positions within a program also. The
actions are the same, but you have to press ESC before you press the
CTRL TAB or SHIFT TAB key combinations. The use of'tabula
tion', as this is called, can make the a ppearance of printing on the
screen much smarter.

Meantime, there's another very important print modifier to look
at. The POSITION instruction allows us to place the cursor,
invisibly, at any place we like on the screen. By 'invisibly', I mean
that you won't see the cursor appear at its new position until a
PRINT or? instruction is carried out.

~ ~ ~ ~ ~ ~ ~ ~ -r-r- ~ C')O~NM~~~~romO~NM~~~~rom~~~~~~~~~~gM~P~~~~~~

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Normal screen limits

Fig. 2.8. The numbers that are used with the POSITION instruction.

Words On The Screen 21

For the purpose of using POSITION, we imagine the screen
divided into a grid of 40 columns across and 24 rows down. These
are numbered, counting 0 as the number for the left-hand column of
the screen and for the top row. The column at the right-hand side is
numbered 39, and the bottom row is numbered 23, as Fig. 2.8 shows.
We can specify the position of the cursor by two numbers, the
column number and the row number. For example, if we use the
numbers I~, 12, this will mean column number I~ and row number
12. The numbers are always given in this column, then row, order.
What you have to remember, however, is that column numbers ji, I,
and 39 are not normally available. This can be overcome if you want
to use all of the screen by the command:

POKE 82,~:POKE83,39

followed by pressing RETU RN. This allows you to use the whole
width of the screen.

Figure 2.9 shows how POSITION is used. The screen is cleared in

10 7 CHR$(125):POSITION 17,2:7 "TITLE"
20 7 :7
30 POSITION 2,5:7 "LOOKS A LOT SMARTER"

Fig. 2.9. Tabulation in a program by means of the POSITION instruction.

line I~. The next part of line I~ is POSITION 17,2. This selects the
column number 17, and row number 2 (the third row, remember,
because counting starts with ~). Following this is the ,?"TITLE"
instruction which will print the word TITLE starting at the desired

I. Count number of characters in the title, including spaces.
2. Divide by two, ignoring any remainder.
3. Subtract this result from 18, if you are using the normal screen pattern.

If you have extended the screen width to 40 characters, then subtract
from 20.

4. Use the result as the column number in the POSITION instruction, or
as the number of spaces placed before the title. Alternatively, you can
set the TAB key to this number of spaces.

Example

Title: ATARI MAGIC! 12 characters.
12/2=6, and 18 - 6=12. Therefore, use POSITION 12,2 to centre on
line 2.

Fig. 2.10. The formula for centring a title.

22 Get More From The Atari

position. This achieves centring of the word TITLE, and Fig. 2.10
shows how the column number has to be calculated to achieve this.
Finally, in Fig. 2.9, line 3~ prints starting at column 2. This will be
the left-hand side of the normal screen, but will appear set in if you
have shifted the margins by using the POKE instructions.

When you use POSITION you don't have to print in the order of
left to right or top to bottom either, because POSITION allows you
complete freedom to print wherever you want. If your choice of
POSITION places a new word over an old one, then the new letters
will simply replace the old ones.

10 ? II}"

20 POSITION 5,20:? "FIRST ITEM"
30 POSITION 5,10:? "SECOND ITEM"
40 POSITION 5,1:? "THIRD ITEM"

Fig. 2.". How POSITION is used to place words anywhere on the screen.

Finally, then, try the program of Fig. 2.11 as an illustration of the
use of POSITION to place words anywhere on the screen. The screen
is cleared in line I~, this time using a different-looking method.
What has been done here is to press the? mark (for PRINT), then the
quote mark, and then ESC and SHIFT CLEAR in that order.
Remember that this means pressing ESC, releasing it, and then
pressing SHIFT and CLEAR together. The result on the screen
looks like a bent arrow, but on my printer the curly bracket appears.
Wherever you see this sequence of question mark, quote mark and
curly bracket (then another quote mark) in this book, it's an
indication of the ESC SHIFT CLEAR keys being used. The effect in
a program is to clear the screen, as you might expect.

Line 2~ then prints FIRST ITEM near the bottom of the screen.
The words in lines 3~ are printed above this first phrase, showing
that you are not bound by the normal left-to-right or top-to-bottom
order when you make use of POSITION. This is an exceptionally
useful feature. Its equivalent on other computers is the PRINTAT
or PRINT@ instruction.

Chapter Three

A Bit Of Variation

So far, our computing has been confined to printing numbers and
words on the screen. That's one of the main aims of computing, but
we have to look now at some of the actions that go on before
anything is printed. One of these is called assignment, Take a look at
the program in Fig. 3.1. Type it in, run it, and contrast what you see
on the screen with what appears in the program. The first line that is
printed is line 2~. What appears on the screen is:

2 TIMES 25 IS 5~

but the numbers 25 and 5~ don't appear in line 2~! This is because of
the way we have used the letter X as a kind of code for the number
25. The official name for this type of code is a variable name.

5 ? "}"
10 X=25
20 ? "2 TIMES ";X;" IS ";2*X
30 X=5
40 ? "X IS NOW ";X
50 ? "AND 2 TIMES ";X;" IS ";2*X

Fig. 3.1. Assignment in action. The letter X has been used in place of number

Line I~ assigns the variable name X, giving it the value of 25.
'Assigns' means that wherever we use X, not enclosed by quotes, the
computer will operate with the number 25. Since X is a single
character and 25 has two digits, that's a saving of space. It would
have been an even greater saving if we had assigned X differently,
perhaps as X=2174.3256, for example. Line 2~ then proves that X is
taken to be 25, because wherever X appears, not between quotes, 25
is printed, and the 'expression' 2*X is printed as 5~. We're not stuck
with X as representing 25 for ever, though. Line 3~ assigns X as
being 5, and lines 40 and 50 prove that this change has been made.

That's why we call X a 'variable' - we can vary whatever it is we
want it to represent. Until we do change it, though, X stays assigned.

24 Get More From The Atari

Even after you have run the program of Fig. 3.1, providing you
haven't added new lines or deleted any part of it, you can type ?X,
and pressing RETURN will show the value of X on the screen.

This very useful way to handle numbers in code form can use a
'name' which must start with a letter. You can add to that as many
more letters or digits as you like. For example, you could use D,
MYNUMBER or R2D2 as your codes for numbers. You could also
type the line:

I~ 4D=5.67

but though the line would be accepted by the computer, you would
get an error message if you typed ?4D or tried to use this value. Just
to make it even more useful, you can use similar 'names' to represent
words and phrases also. The difference is that you have to add a
dollar sign ($) to the variable name. If N is a variable name for a
number, then N$ (pronounced 'en-string' or 'en-dollar') is a variable
name for a word or phrase. The computer treats these two, Nand
N$, as being entirely separate and different.

Tying it up

Figure 3.2 illustrates 'string variables', meaning the use of variable
names for words and phrases. This is not quite so straightforward as
the use of number variables. Lines I~ and 2~ carry out the
assignment operations, and line 3~ shows how these variable names
can be used. Notice that you can mix a variable name, which doesn't

10 DIM N$(S>,AT$(S>:? "}":N$="NAME"
20 AT$="ATARI"
30 ? AT$;" IS THE ";N$;" TO REMEMBER"

Fig. 3.2. Using string variables. These are distinguished by the dollar sign.
They must also be 'dimensioned',

need quotes around it, with ordinary text, which must be
surrounded by quotes. The important difference is illustrated in line
I~, however. The instruction word DIM means DIMENSION, and
what it does is to prepare the computer's memory for a string
variable. The reason is that the computer stores strings in its memory
in a way that is completely different from the way it stores numbers.
Any number value, whether large or small, will be stored in the same
number of units of memory. We call these units of memory bytes,
and a number is stored in 7 bytes. A string of letters, however, will

A Bit Of Variation 25

need one byte for each letter, so that the computer cannot prepare
space for a string until the length of the string is known. The Atari
gets round this problem by requiring you to declare in advance how
many letters will be needed for each string variable name that you use.
If you type, for example:

I~ DIM NAME$(25)

then you can use up to 25 letters in anything you assign to NAME$.
You aren't forced to use 25 letters, but you must not exceed 25. If
you do, the excessive letters will simply be lost. If you try to use a
string variable name which has not been dimensioned at all, you will
get an error message - ERROR 9.

Now before you go wild on this use of variable names, a word of
warning. There's nothing to stop you from using variable names of
as many characters as you like. Nothing, except the fact that it uses
up precious memory, though that's less of a worry if you are using
the 48K (49,152 bytes) Atari 800. The computer will not be fooled by
names that look alike. Take a look at Fig. 3.3. When you run this

10 DIM NURSE$(7),NUT$(7),NUMB$(5),NUDE$(
8)
20 NURSE$="LINDSAY"
30 NUT$="PEANUTS"
40 NUMB$="GOOFY"
50 NUDE$="STARKERS"
60 ? NURSE$
70 ? NUT$
80 ? NUMB$
90 ? NUDE$

Fig. 3.3. Illustrating long variable names. The Atari regards all of these as
separate. Many computers would treat all of these variables as being NU$.

one, lines 6~ to 9~ all produce different words. The Atari computer
is not confused because all of these variable names have started with
the letters NU. This is something you can't do on a lot of other
computers!

Strings and things

Because the name of a string variable is marked by the use of the $
sign, a variable like A$ is not confused with a number variable like
A. We can, in fact, use both on the same program knowing that the
computer at least will not be confused. Figure 3.4 illustrates that the

26 Get More From The Atari

10 A=2:B=3
20 DIM A$(2J.B$(2J:A$="2":B$="3"
30 ? II}"

40 ? A;" TIMES ";B;" IS ";A*B
45 ? A$;" TIMES ";B$;" IS ?"
50 ? " BUT A$*B$ IS IMPOSSIBLE - THE ATA
RI":? "WILL NOT ACCEPT SUCH A LINE."

Fig. 3.4. String and number variables might look alike when they are printed,
but they are different!

difference is a bit more than skin deep, though. Lines I~ and 2~

assign number variables A and B, and string variables A$ and B$.
The essential dimensioning of A$ and B$ is also carried out in line
2~. When these variables are printed in lines 4~ and 45, you can't tell
the difference between A and A$ or between Band B$. The
difference would appear if you had tried to enter the line:

45 A$;" TIMES ";B$;" IS ";A$*B$

The computer will not accept such a line. It can multiply two number
variables, because numbers can be multiplied, but it can't multiply
string variables. The reason is simple. A string variable can be
anything. We have assigned A$ as '2', but we could just as easily have
assigned it as '2 TRUMPET DRIVE'. You can multiply 2 by 3, but
you can't multiply 2 TRUMPET DRIVE by 3 TROMBONE
AVENUE. The computer therefore refuses to carry out multiplica
tion, division, addition, subtraction or any other arithmetic
operation on strings. Attempting to do a forbidden operation like
this causes an error message to appear whenever you press
RETU RN. The line simply doesn't get entered into the memory.
Later on, we'll see that there are operations that we can carry out on
strings that we can't carry out on numbers, and attempts to do these
operations on numbers will also cause an error message. The
difference is an important one and you have to be aware of it.

Now while we are on the subject of strings and string variables,
there's another string action which is very useful. Figure 3.5
illustrates this action of joining strings, which is often called
concatenation. Concatenation is a very useful way of obtaining very
long strings which can't be typed because of the limit of 114
characters that you can type after each line number. The Atari, in
fact, allows you to use strings which contain as many characters as
you like. The only limitations are the dimensions you have allowed,
and the amount of memory that is available. Take a close look at
Fig. 3.5. This defines strings A$ and B$ in lines 2~ and 3~, but we
have dimensioned another longer string, X$. In line 4~, we assign X$

A Bit Of Variation 27

10 DIM X$(20),A$(10),B$(10)
20 A$="SMITH"
30 B$="JONES"
40 X$=A$
50 X$(6)=B$
60 7 X$

Fig. 3.5. Concatenating or joining strings. The method that the Atari uses for
programming this action is unusual.

to A$, meaning that X$ is now SMITH. Line 5~ then adds B$ to the
end of A$! This is done because the code X$(6) means 'X$ from
position 6 onwards'. The number 6 is the letter count. Since there are
only 5 letters in SMITH, position 6 is the blank space after the H of
SMITH. By instructing: X$(6)=B$, we copy B$ into the space that
starts at position 6 in X$. Line 6~ then prints this concatenated
string, showing you that SMITH and JONES have been united.

10 DIM A$(3),B$(3),AT$(5),N$(20)
20 A$="***":B$="###":AT$="ATARI"
30 ? II}"

40 N$=A$:N$(4)~B$:N$(7)=AT$:N$(12)=B$:N$

(15) =A$
50 7 N$

Fig. 3.6. Using concatenation to make a frame for a title.

Figure 3.6 shows this technique being used in a different way. This
time, we are going to print the name ATARI with asterisks and
hashmarks (#) on each side. Line I~ dimensions the strings- note
that we need only one 01 M in this line, with commas used to
separate the items. The strings are joined up in line 4~, and line 5~

prints the result.

10 7 "}":DIM NM$(50)
20 7 "WHAT IS YOUR NAME"
30 INPUT NM$
40 7 "}":7 :7
50 7 NM$;" - THIS IS YOUR LIFE!!"

Fig. 3.7. Using the INPUT instruction. The name that you type is put into the
phrase in line 50. Note the 'clear-screen' instruction which is typed by using
7", then CTRL, SHIFT CLEAR, and another quote.

Putting it in

So far, everything that has been printed on the screen by a program
has had to be placed in the program before it is run. We don't have to
be stuck with restrictions like this, however, because the computer
allows us another way of putting information, number or name, into

28 Get More From The Ateri

a program while it is running. A step of this type is called an INPUT
and the BASIC instruction word that is used to cause this to happen
is also INPUT.

Figure 3.7 illustrates this with a program that prints your name.
Now I don't know your name, so I can't put it into the program
beforehand. What happens when you run this is that the words:

WHAT IS YOUR NAME

are printed on the screen. On the line below this you will see a
question mark. The computer is now waiting for you to type
something, and then press RETURN. Until the RETURN key is
pressed, the program will hang up at line 3~, waiting for you. If
you're honest, you will type your own name and then press
RETU RN. You don't have to put quotes around your name, simply
type it in the form that you want to see printed. When you press
RETURN, your name is assigned to the variable NM$. The
program can then continue, so that line 4~ clears the screen and
spaces down by two lines. Line Sp then prints the famous phrase
with your name at the start.

You could, or course, have answered MICKEY MOUSE or
DONALD DUCK or anything else that you pleased. The computer
has no way of knowing that either of these is not your true name. The
string variable NM$ must, as usual, be dimensioned. If the name
that you enter is longer than you have dimensioned for, then the
extra is simply ignored. You're all right if your name is SMITH, but
if you're called WILLOUGHBY-FORTESCUE-JONES then you
will have to be generous with your dimensioning. The example uses
DIMNM$(SP), which is pretty safe!

We aren't confined to using string variables along with INPUT.
Figure 3.8 illustrates an INPUT step which uses a number variable
N. The same procedure is used, but of course we don't need to
dimension. When the program hangs up with the question mark
appearing, you can type a number and then press the RETU RN key.
The action of pressing RETU RN will assign your number to N, and
allow the program to continue. Line 4~ then proves that the
program is dealing with the number that you entered. When you use

10 ? "ENTER A NUMBER"
20 INPUT N
30 ?
40 ? "TWICE ";N;" IS ";2*N

Fig. 3.8. An INPUT to a number variable. The quantity that you type must be a
number.

A Bit Of Variation 29

a number variable in an INPUT step, then what you have typed
when you press RETURN must be a number. Ifyou attempt to enter
a string, the computer will refuse to accept it. It will stop running its
program, with an ERROR 8 message showing. If your INPUT step
uses a string variable then anything that you type will be accepted
when you press RETURN, provided that you have dimensioned
enough space.

The way in which INPUT can be placed in programs can be used
to make it look as if the computer is paying some attention to what
you type. Figure 3.9 shows an example - but with a small

10 ? "}": DIM NM$ (3'3)
20 ? "TYPE YOUR NAME, PLEASE ";:INPUT NM
$

30 ?
40 ? "VERY PLEASED TO MEET YOU, ";NM$

Fig. 3.9. Using INPUT to make it appear as if the computer knows you!

improvement in the way the question is asked and answered. In this
example, a PRINT line is used to make the request, and it ends in a
semicolon. This is then followed by a colon and the INPUT NM$
part of the program. The effect of the semicolon is to prevent the
question mark of the INPUT from appearing in the next line. In this
way, the question mark appears in its more natural position at the
end of the question.

The use of INPUT isn't confined to a single name or number. We
can use INPUT with two or more variables, and we can mix variable
types in one INPUT line. Figure 3.10, for example, shows two
variables being used after one INPUT. One of the variables is a
string variable NM$, the other is the number variable N. Nowwhen
the computer comes to line 2~, it will print the message and then wait
for you to enter both of these quantities, a name and then a number.
This has to be done in the correct way. The correct way, as far as
strings, or mixtures of strings and numbers, are concerned is to enter
each separately. In this example, you have to type the name, and

10 ? "}":DIM NM$(20)
20 ? "NAME AND NUMBER, PLEASE ";:INPUT N
M$,N
30 ?
40 ? "THE NAME IS ";NM$
50 ? "THE NUMBER IS ";N

Fig. 3.10. Putting in two variables in one INPUT step. When the variables are
of different types, as here, they must be put in separately.

30 Get More From The A tar;

then press RETU RN. A second question mark then appears to
remind you that your work is not yet finished. You can then type the
number and press RETURN again. The string can consist of
anything, including commas. If, for example, you typed JONES,
2241716 as the name, then this is what would be stored as N M$. You
could then enter another number in response to the request for N.
Other computers operate differently, so you will have to be careful if
you are trying to type into your Atari a program that was designed
for another type of computer.

10 ? ">"
20 ? "TYPE FOUR NUMBERS, PLEASE"
30 INPUT A,B,C,D
40 ? "THE SUM OF THESE IS ";A+B+C+D

Fig. 3.11. An INPUT step which calls for four numbers. These can be entered
in one operation.

Figure 3.11 shows a set of number entries. When only number
variables are used in an INPUT, you have a choice of methods that
you can use when you enter the numbers. You can enter the numbers
separately, as we did in Fig. 3.10. The other method consists of
entering all the numbers in one go, using commas to separate them,
and pressing RETURN only when all of the numbers have been
typed. You could, for example, type:

1,2,3,4

and then press RETURN to enter all four of these numbers.

Reading the data

There's yet another way of getting data into a program while it is
running. This one involves reading items from a list, and it uses two
instruction words READ and DATA. The word READ causes the
program to select an item from the list. The list is marked by starting
each line of the list with the word DAT A. The items of the list can be
separated by commas. Each time an item is read from such a list, a
'pointer' is altered so that the next time an item is needed, it will be
the next item on the list.

We'll look at this in more detail in Chapter 5, but for the moment
we can introduce ourselves to the READ ... DATA instruction.
Figure 3.12 uses the instruction in a very simple way. Line 2~ reads
the first item on the list and assigns it to the variable NM$. This is

A Bit Of Variation 31

10 ? "}":DIM NM$(20)
20 READ NM$
30 ? NM$;
40 ? " IS VALUED AT ";
50 READ N
60 ? N;
70 ? " POUNDS"
100 DATA GOLD WATCH.700

Fig. 3.12. Using the READ and DATA words to place information into a
program

printed in line 3~, with the semicolon keeping printing in the same
line so that the phrase in line 4~ follows it. The semicolon at the end
of line 4~ once more keeps the printing in the same line, and line 5~

reads the number which is the second item in the list. This is assigned
to the variable name N (we could just as easily have used NM$) and
printed in line 6~. Once again, a semicolon prevents a fresh line from
being taken, so that the final word of line 7~ is printed following the
number.

The READ... DATA instructions really come into their own
when you have a long list of items that are read by repeating a
READ step. We're not quite ready for that yet, so having introduced
the idea, we'll leave it for now. As before, though, we have to match
the data items with the variable names that we use for them. We can
read a number item and assign it to a string variable name, but we
can't read a string item and assign it to a number variable name.
Note that a string item in a OATA line does not need to have
quotemarks around it.

Number antics

The amount of computing that we have done so far should have
persuaded you that computers aren't just about numbers. For some
applications, though, the ability to handle numbers is very
important. If you want to use your computer to solve scientific or
engineering problems, for example, then its ability to handle
numbers will be very much more important than if you bought it for
games, for accounts or for word processing. It's time, then, to take a
very brief look at the number abilities of the Atari. It is a brief look
because we simply don't have space to explain what all the
mathematical operations do. In general, if you understand what a
mathematical term like sin or tan or exp means, then you will have
no problems about using these mathematical functions in your

32 Get More From The Atari

programs. If you don't know what these terms mean, then you can
simply ignore the parts of this section that mention them.

The simplest and most fundamental number action is counting.
Counting involves the ideas of incrementing if you are counting up
and decrementing if you are counting down. Incrementing a number
means adding I to it, decrementing means subtracting I from it.
These actions are programmed in a rather confusing looking way in
BASIC, as Fig. 3.13 shows. Line 2~ sets the value of variable X as 5.

10
20
30
40
50
60

? "'II_ J

X=5
? "VALUE OF X IS ";X
X=X+1:?
? "NOW THAT WE'VE USED X=X+1":?
? "VALUE IS NOW ";X

Fig. 3.13. Incrementing, using the equals sign to mean 'becornes.

This is printed in line 3~, but then line 4~ 'increments X'. This is done
using the odd-looking instruction: X = X+ I, meaning that the new
value that is assigned to X is I more than its previous value. The rest
of the program proves that this action of incrementing the value of X
has been carried out.

The use of the = sign to mean 'becomes' is something that you
have to get accustomed to. When the same variable name is used on
each side of the equality sign, this is the use that we are making of it.
We could equally well have a line:

X= X-I

and this would have the effect of making the new value of X one less
than the old value. X has been decremented this time. We could also
use X = 2*X to produce a new value of X equal to double the old
value, or X = Xj 3 to produce a new value of X equal to the old value
divided by three. Figure 3.14 shows another assignment of this type,
in which both a multiplication and an addition are used to change
the value of X.

10 ? "}"
20 X=5:? "X IS ";X
30 ?
40 X=2*X+4
50 ? "NOW IT'S ";X

Fig. 3.14. A more elaborate reassignment, using an 'expression'.

A Bit Of Variation 33

10 ? n}n:X=2.5:NP=2.3025851
20 ? nx SQUARED IS .. ;X 2
30 ?
40 ? nITS SQUARE ROOT IS n;SQR(X)
50 ?
60 ? nITS NATURAL LOG. IS "; LOG(X)
70 ? "ITS ORDINARY LOG. IS n;LOG(X)/NP

Fig. 3.15. Some number functions. In line 70, CLOG(X) can be used in place of
LOG(X)/NP, and NP is not then needed.

Number functions

Figure 3.15 illustrates some number functions. A number function
in this sense is an instruction which operates on a number to produce
another number. Line I~ picks the value of 2.5 for X. Line 2~ then
prints the value of X squared, meaning X multiplied by X. This is
programmed by typing the character which the Atari gets by
pressing SHIFT along with the * key. It looks, as the printout shows,
like an inverted 'Y'. In line 4~, to get the square root of the number
that has been assigned to X, we use the instruction word SQR. An
alternative is X 1\ .5, but SQR(X) is easier to type and remember. For
other roots, like the cu be root, you can use expressions like X 1\ (Yl)
and so on. LOG(X) produces the natural logarithm of X, and line 7~

shows how you can get the value of the ordinary (base I~) logarithm.
Now when you run this one, you will see that the square of 2.5 is

printed as 6.2499999, and any calculator will illustrate that the value
should be 6.25. One of the problems of small computers is precision
of numbers. You probably know that the fraction l/1 cannot be
expressed exactly as a decimal. H ow near we can get to its true value
depends on the number of decimal places we are prepared to print,
so that 0.33 is closer than 0.3, and 0.333 is closer still. The computer
converts most of the numbers it works with into the form of a
fraction and a multiplier. The fraction is not a decimal fraction but a
special form called a binary fraction, and this conversion is seldom

To round up a number, add 0.5, then take the integer part. For
example, the number 23.614 becomes 24.14 when 0.5 is added, and 24
when the INT is taken. The number 23.414 becomes 23.914 when 0.5
is added, and 23 when the INT is taken. When the number is in the
form of a variable X, then use: X = INT(X+.5)

Fig. 3.16. How to round up a number which is in variable form.

34 Get More From The Ateri

exact. The conversion is particularly awkward for numbers like I,
10, 100 and also. I, .01, .001; all the powers often, in fact. You will
find, then, that some number results are slightly out, and you will
need to round them up. Figure 3.16 shows how this rounding up
operation can be carried out in a program, so that you don't find
yourself printing awkward quantities like I. 9999999 instead of 2.

ABS(X)
ATN(X)
CLOG(X)
COS(X)
EXP(X)
INT(X)
LOG(X)
RND(X)

SGN(X)

SIN(X)
SQR(X)

Converts negative sign to positive.
Gives the angle whose tangent has value X.
Gives the common logarithm of X.
Gives the cosine of angle X.
Gives the value of e to the power X.
Gives the whole number part of X.
Gives the natural logarithm of X.
Gives a random number between 0 and I. X is not used, but a
number or variable must be present.
Gives the sign of X. The result is + I if X is positive, -I if X is
negative, 0 if X is zero.
Gives the sine of angle X.
Gives the square root of X.

Fig. 3.17. Atari number functions, with brief notes. Don't worry if you don't
know what some of these do. If you don't know, you probably don't need them!

Figure 3.17 illustrates the various number functions that can be
used, with a brief explanation of what each one does. Some of these
actions will be of interest only if you are interested in programming
for scientific, technical or statistical purposes. Others, however, are
useful in unexpected places, such as in graphics programs. In
addition, you should know that the Atari can accept numbers in two
forms. One is the familiar form in which we usually write numbers,
but with no commas, You can, for example, type numbers like
13456734 or .28462547. The other form is 'scientific form', in which a
number is typed as a value that lies between I and 10, and a power of
ten. A power of ten is a number whose value is that number of tens
multiplied together. Ten to the power 2, for example, is 10*10= 100,
and ten to the power of four is 10*10*10*10= 10000. The number
123456 can be written as 1.23456* 10" 5, and this is written for the
computer in the form 1.23456E5. Your Atari will convert very large
or very small numbers automatically into this form. If you enter a
number in scientific form that can be put into normal form on the
screen, the Atari will carry out this change also. The short program

A Bit Of Variation 35

in Fig. 3.18 shows these actions being carried out. In line 2~, type the
number:

12345678987654321

When you see it listed or printed, it will appear as it has been printed
in the illustration. The computer automatically makes the
conversion when the number offigures exceeds nine. In line 3~, the
amount that was actually typed was IE2, but the Atari has converted
this to its more normal form of I~~.

10 ? "}"
20 ? 1.234567B9E+16
30 ? 100

Fig. 3.18. Numbers in 'standard' or 'scientific' form. You can use either way of
typing a number. This is the only exception to the rule that a letter cannot be
entered as a number variable.

Chapter Four

Repetitions And Decisions

Loops

One of the activities for which any computer is particularly well
suited is repeating a set of instructions. The Atari is no exception,
and we'll start with the simplest of these 'repeater' actions, GOTO.
GOTO means exactly what you would expect it to mean ~ go to
another line number. Normally a program is carried out by
executing the instructions in ascending order of line number. In
plain language that means starting at the lowest numbered line,
working through the lines in order and ending at the highest
numbered line. Using GOTO can break this arrangement, so that a
line or a set of lines will be carried out in the 'wrong' order, or carried
out over and over again.

10 ? "}"
20 ? "ATARI ATARI ATARI ATARI ATARI"
30 GOTO 20
40 REM PRESS BREAK TO STOP

Fig. 4.1. A very simple loop. You can stop this by pressing the BREAK key.

Figure 4.1 shows an example of a very simple repetition or 'loop',
as we call it. Line I~ clears the screen, and line 2~ contains a simple
PRINT instruction. When line 2~ has been carried out, the program
moves on to line 3~, which instructs it to go back to line 2~ again.
This is a never-ending loop, and it will cause the screen to fill with the
word AT ARI until you press the BREAK key to 'break the loop'.
Any loop that appears to be running forever can normally be
stopped by pressing the BREAK key, though if this does not work,
you will have to press the SYSTEM RESET key.

Now try a loop in which there is slightly more noticeable activity.
Figure 4.2 shows a loop in which a different number is printed out
each time the computer goes through the actions of the loop. We call

Repetitions And Decisions 37

10 ? "}":N=10
20 ? N
30 N=N-1
40 GOTO 20
50 REM PRESS BREAK TO STOP

Fig. 4.2. A loop which carries out a count-down action very rapidly. You will
also have to use BREAK to stop this one.

this 'each pass through the loop'. Line l~ sets the starting value of
the variable N at 1~. This is printed in line 2~, and then line 30
decrements the value of N. Line 40 forms the loop, so that the
program will ca use a very rapid count-down to appear on the screen.
Once again, you'll have to use the BREAK key to stop it.

Now an uncontrolled loop like this is not exactly good to have,
and GOTOis a method of creating loops that we prefer not to use!
We don't always have an alternative, but there is one - the FOR ...
NEXT loop. As the name suggests, this makes use of two new
instruction words, FOR and NEXT. The instructions that are
repeated are the instructions that are placed between FOR and
NEXT. Figure 4.3 illustrates a very simple example of the

10 ? "}"
20 FOR N=l TO 10
30 ? "ATARI GENIUS AT WORK~"

40 NEXT N
Fig. 4.3. Using the FOR ... NEXT loop for a counted number of repetitions.

FOR... NEXT loop in action. The line which contains FOR must
also include a number variable which is used for counting, and
numbers which control the start of the count and its end. In the
example, N is the counter variable, and its limit numbers are I and
10. The NEXT N is in line 4~, and so anything between lines 2~ and
40 will be repeated.

As it happens, what lies between these lines is simply the PRINT
instruction, and the effect of the program will be to print ATARI
GENIUS AT WORK ten times. At the first pass through the loop,
the value of N is set to 1, and the phrase is printed. When the NEXT
N instruction is encountered, the computer increments the value of
N, from 1 to 2 in this case. It then checks to see if this val ue exceed s

10 ? "}"
20 FOR N=10 TO 1 STEP -1
30 ? N;" SECONDS AND COUNTING"
40 FOR J=l TO 500:NEXT J
50 ? "}":IIEXT N
60 ? " BLASTOFF"

Fig. 4.4. A program that uses nested loops, with one loop inside another.

38 Get More From The Atari

the limit of I~ that has been set. Ifit doesn't, then line 3~ is repeated,
and this will continue until the value of N exceeds I~ - we'll look at
that point later. The effect in this example is to cause ten repetitions.

You don't ha ve to confine this action to single loops either. Figure
4.4 shows an example of what we call 'nested loops', meaning that
one loop is contained completely inside another one. When loops
are nested in this way, we can describe the loops as inner and outer.
The outer loop starts in line 2~, using variable N which goes from I~
to I in value. Line 3~ is part of this outer loop, printing the value that
the counter variable N has reached. Line 4~, however, is another
loop. This must make use of a different variable name, and it must
start and finish again before the end of the outer loop. We have used
variable J, and we have put nothing between the FOR part and the
NEXT part to be carried out. All that this loop does, then, is to waste
time, making sure that there is some measurable time between the
actions in the main loop. The last action of the main loop is clearing
the screen in line 5~. The overall effect, then, is to show a count
down on the screen, slowly enough for you to see the changes, and
wiping the screen clear each time. In this example we have used
NEXT J in line 4~ and NEXT N in line 5~. This is essential, and if
you omit the letter after the NEXT, or type the wrong letter, the
Atari will refuse to accept the instruction. When you use NEXT J
and NEXT N like this, you must be absolutely sure that you have put
the correct variable names following each NEXT. If you don't, the
computer will remind you!

There's another novelty in this program, though. The loop in Fig.
4.3 counted upwards, adding I to the value of the counter each time.
We don't always want this, and we can add the instruction word
STEP to the end of the FOR line to alter this change of variable
value. We could, for example, use a line like:

FOR N=I TO 9 STEP 2

which would cause the values of N to change in the sequence
1,3,5,7,9. When we don't type STEP, the loop will always use
increments of I. Figure 4.4 uses an outer loop which has a step of -I,
so that the count is downwards. N starts with a value of I~, and is
decremented on each pass through the loop.

Every now and again, when we are using loops, we find that we
need to use the value of N after the loop has finished. It's important
to know what this will be, however, and Fig. 4.5 brings it home. This
contains two loops, one counting up, the other counting down. At
the end of each loop, the value of the counter variable is printed. This

Repetitions And Decisions 39

10 ? II}"

20 FOR N=1 TO 5
30 ? N
40 NEXT N
50 ? uN IS NOW u;N
60 FOR N=5 TO 0 STEP -1
70 ? N
80 NEXT N
90 ? uN IS NOW II;N

Fig. 4.5. Finding the value of the loop variable after a loop action is completed.

reveals that the value ofN is 6 in line 5~, after completing the FOR N
= 1 TO 5 loop, and is -1 in line 9~ after completing the FOR N= 5
TO ~ STEP -1 loop. If you later want to make use of the value of N,
or whatever variable name you have selected to use, you will have to
remember that it will have changed by one more step at the end of
the loop.

One of the most valuable features of the FOR... NEXT loop,
however, is the way in which it can be used with number variables
instead of just numbers. Figure 4.6 illustrates this in a simple way.

10 ? U}U
20 A=2:B=5:C=10
30 FOR N=A TO B STEP B/C
40 ? N
50 NEXT N

Fig. 4.6. A loop instruction that is formed with number variables.

The letters A, Band C are assigned as numbers in the usual way in
line 2~, but they are then used in a FOR...NEXT loop in line 3~. The
limits are set by A and B, and the step is obtained from an
expression, B/C. The rule is that if you have anything that
represents a number or can be worked out to give a number, then
you can use it in a loop like this.

Loops and decisions

It's time to see loops being used rather than just demonstrated. A
simple application is in totalling numbers. The action that we want is
that we enter numbers and the computer keeps a running total,
adding each number to the total of the numbers so far. From what
we have done up to now, it's easy to see how this could be done if we
wanted to use numbers in fixed quantities, like ten numbers in a set.
The program of Fig. 4.7 does just this.

40 Get More From The Atari

10 7 "}":TOTAL=0
20 7 "PROGRAI'1 FOR TOTALLING NUMBERS"
30 7 "ENTER EACH NUMBER AS REQUESTED."
40 7 "THE PROGRAM WILL GIVE THE TOTAL"
50 FOR N=1 TO 10
60 7 "NUMBER ";N;" PLEASE - ";
70 INPUT J:TOTAL=TOTAL+J
80 NEXT N
90 7 :7 "TOTAL IS ";TOTAL

Fig. 4.7 A number-totalling program for ten numbers.

The program starts by setting a number variable called TOTAL to
zero. This is the number variable that will be used to hold the total,
and it has to start at zero. As it happens, the Atari arranges this
automatically at the start of a program, but it's a good habit to
ensure that everything that has to start with some value actually
does so.

Lines 2~ to 4~ issue instructions, and the action starts in line 5~.

This is the start ofa FOR... NEXT loop which will repeat the actions
of lines 6~ and 7~ ten times. Line 6~ reminds you of how many
numbers you have entered by printing the value of N each time, and
line 7~ allows you to INPUT a number which is then assigned to
variable name J. This is then added to the total in the second half of
line 7~, and the loop then repeats. At the end of the program, the
variable TOTAL contains the value of the total, the sum of all the
numbers that have been entered.

It's all good stuff, but how many times would you want to have
just ten numbers? It would be a lot more convenient if we could just
stop the action by signalling to the computer in some way, perhaps
by entering a value like ~ or 999. A value like this is called a
terminator, something that is obviously not one of the normal
entries that we would use, but just a signal. For a number-totalling
program, a terminator of ~ is very convenient, because if it gets
added to the total it won't make any difference.

10 7 "}":7 "ANOTHER TOTAL PROGRAM~"

20 7 : 7 "THE PROGRAM '-HLL TOTAL NUMBERS
FOR YOU"
30 7 "UNTIL YOU ENTER A ZERO TO STOP IT.

40 TOTAL=0
50 7 "NUMBER, PLEASE- ";
60 INPUT N:TOTAL=TOTAL+N
70 7 "TOTAL SO FAR IS ";TOTAL
80 IF N<>0 THEN 60

Fig. 4.8. A number-totalling program which can't use FOR ... NEXT.

Repetitions And Decisions 41

Figure 4.8, therefore, shows an example of this type of program in
action. We can't use a FOR ... NEXT loop, because we don't know
in advance how many times we might want to go through the loop,
so we have to go back to using GOTO. This time, however, we'll
keep GOTO under closer control - the word won't even appear in
the program! This time the instructions appearfirst, but we still have
to make the total variable TOTAL equal to zero in line 4~. Each
time you type a number, then, in response to the request in line 5~,

the number that you type is added to the total in line 6~, and line 7~

prints the value of the total so far. Line 8~ is the loop controller, and
the key to the control is the instruction word IF. IF is used to make a
test, and the test in line 8~ is to see if the value of N is not equal to
zero. The odd-looking sign that is made by combining the 'less-than'
and the 'greater than' signs, <>, is used to mean 'not equal', so the
line reads: 'if N is not equal to zero, then (go to) line 6~'. We can put
the GOTO in, or leave it out. Since it's just a few more letters to type,
I've left it out.

The effect, then, is that if the number which you have typed in line
6~ was not a zero, line 8~ will send the program back to repeat line
6~. This will continue until you do enter a zero. When this ha ppens,
the test in line 8~ fails (N is zero), and the program stops. This kind
of action is called a 'repeat. .. until' loop.

Now this allows you much more freedom than a FOR... NEXT
loop, because you are not confined to a fixed number of repetitions.
The key to it is the use of IF to make a decision - and that's what we
need to look at more closely now.

Sign Meaning

Exact equality.
> Left-hand quantity greater than right-hand quantity.
< Left-hand quantity less than right-hand quantity.
The signs can be combined as follows:
<> Quantities not equal.
>= LHS greater than or equal to RHS.
<= LHS less than or equal to RHS.

Fig. 4.9. The mathematical signs that are used for comparing numbers and
number variables.

42 Get More From The Atari

Decisions, decisions

We can make a number of types of comparisons between number
variables or numbers, and these are listed in Fig. 4.9. The
mathematical signs are used for convenience, and you have to
remember which way round the 'greater than' and 'less than' signs
have to be. It's important to note that the equals sign means
'identical to' when it is used in a test like this. If A is 3.9999999 and B
is 4.M)~~M~ then a test such as IF A = B will fail ~ A is not identical
to B, even though it is close enough to be equal in our eyes.

10 ? " } " : DIM A$ (3)

20 ? "PRESS Y OR N KEY"
30 ? "-THEN PRESS RETURN"
40 INPUT A$
50 IF A$="Y" THEN ? "THAT'S YES"
60 IF A$="N" THEN ? "THAT'S NO"

Fig. 4.10. Testing string variables, in this example to find whether a reply is Y
or N.

Figure 4.10 shows another test this time on string variables. The
instructions are in lines 2~ to 3~; you are asked to type the Y or N
key. Line 4~ gets your answer; you have to type Y or N and then
press RETURN. The key that you have pressed has its value
assigned to A$, so that A$ should be Y or N. Lines 5~ and 6~ then
analyse this result. If the key that you pressed was neither Y nor N,
nothing is printed by the line 5~ or 6~.

The test in this example is for identity. Only if A$ is absolutely
identical to Y will the phrase 'THAT'S YES' be printed. If you typed
a space ahead of Y, or a space following, or typed y in place of Y,
then A$ will not be identical, and the test fails. Failing means that A$
is not identical to Y and everything that follows TH EN in that line

10 ? ")":DIM A$Cl)
20 ? "TYPE Y OR N"
30 INPUT A$
40 IF A$=:"Y" THEN 100
50 IF A$="N" THEN 200
60 ? "YOUR ANSWER ";A$;" IS NOT Y OR N":
? "PLEASE TRY AGAIN":GOTO 30
70 END
100? "THAT WAS YES!"
110 END
200? "THAT WAS NO~"

210 END

Fig. 4.". Testing string variables, with a mugtrap incorporated.

Repetitions And Decisions 43

will be ignored. It's up to you to form these tests so that they behave
in the way that you want!

We often find it better to test so that we can detect an incorrect
reply as well. This is illustrated in Fig. 4.11. If A$ is Y, then the first
test in line 4~ succeeds, and the program moves to line I~~. This
prints a message, and the program ends. If A$ is N, then the first test
in line 4~ fails, but the next test in line 5~ is carried out and, if A$ is
N, the program jumps to line 2~~, prints a different message, and
ends. If both tests fail, though, the program will move from line 5~

to line 6~. Your answer was not exactly Y or N, so that you are asked
to try again, and the GOT03~ at the end of line 6~ causes the
program to repeat from line 3~. This line constitutes a mugtrap . a
way of trapping mistakes. Very often when you have a choice of
answers, you want to be sure that only certain replies are permitted.
A mugtrap is a section of program that is intended to deal with an
incorrect entry. A good mugtrap should show the user the error of
his or her ways, and indicate what answer or answers might be more
acceptable. This is very often important, because an incorrect entry
in some types of program could cause the program to stop with an
error message showing. For the skilled programmer (you, later), this
is just a minor annoyance, but for the inexperienced user it can cause
a minor panic. A good program doesn't allow any entries that would
cause the program to stop. Mugtraps are our method of ensuring
this.

Just to emphasise the sort of power that these simple instructions
give you, Fig. 4.12 illustrates a very simple number-guessing game.

10 ? "}":X=I+INT(RND(0>*10>
20 ? "GUESS THE NUMBER!"
30 ? :? "IF YOU GET NEAR, 1" LL TELL YOU"
40 INPUT N
50 IF N=X THEN? "SPOT ON! ":END
60 IF ABS(N-XH3 THEN? "CLOSE- IT WAS"
;X:END
70 ? "TRY AGAIN -":GOTO 40

Fig. 4.12. A simple number-guessing game which uses number comparisons.

Line I~ clears the screen, and the X = I+INT(RND(P)*IP) step
causes variable X to take a value that lies between I and I~. We can't
predict what this value will be, because RND means 'select at
random' - a fractional number is picked, somewhere in the range of
just above zero to just less than l. Multiplying this fraction by ten
will give a number, picked at random by the computer, which must
be somewhere between almost zero and 9.999999. By taking INT,

44 Get More From The Ateri

which rounds the number down, we get a number which must lie
between ~ and 9. Adding I to this then ensures that the number is a
whole number which lies between I and I~. RND picks numbers
randomly enough for games purposes, but not quite randomly
enough for serious statistical users. In lines 2~ and 3~, the
instructions ask you to guess the size of the number, with the
difference that you don't have to find it exactly. You enter your
number at line 4~, and the tests are made in lines 5~ and 6~. If the
number that you picked is identical to the random number, then you
get the SPOT ON message in line 5~, and the program ends. The less
obvious test is in line 6~. The expression N-X is the difference
between your guess, N, and the number X. If your guess is larger
than the number, then N-X is a positive number. If your guess is less
than X, then N-X is a negative number. The effect of ABS, however,
is to make any number positive, so that if X were 5 and you guessed 6
or 4, then ABS(N-X) would come to I. If you get a difference of I or
2 (less than 3), the message in line 6~ is printed. If you don't get
anywhere near, the program repeats because of its GOTO 4~ in line
7~. It's very simple, but quite effective. How about devising a
scoring system?

Single key reply

So far, we have been putting in Y or N replies with the use of INPUT,
which means pressing the key and then pressing RETU RN. This has
the advantage of giving you time for second thoughts, because you
can delete what you have typed and type a new letter before you
press RETURN. For snappier replies, however, there is an
alternative in the form of GET. GET is an instruction that is used to
find a code number, and we can select where the computer is
required to look for this number. Before GET can be used, however,
we have to specify to the computer where it is to look for the code.
This is done in line I~ by the OPEN instruction (see Fig. 4.13). At
this stage, you will have to take it on trust that the # I,4,~, part is
needed, but we can explain the "K:" - this means 'keyboard'.
Because we have used # I after OPEN, we can use this also with GET
to ensure that what we get comes from the keyboard. By using
GET# I,X, the computer carries out a check of the keyboard to find
if a key is pressed. This checking action is very fast, but it will be
repeated until a key is pressed, so that the computer waits for you.
Line 4~ then prints the value of X. This is a number, not a letter, and

Repetitions And Decisions 45

its value is the number-code that the computer uses to represent the
letter of the key you have pressed. By using the program of Fig. 4.13
you can see the effect of pressing different keys. If you add a line 60:

60 GOTO 2~

you can make this program repeat until you press the BREAK key.
In this way, you can find which keys will have an effect. Some keys
will produce no visible character on the screen in line 4~, but will
nevertheless allow the program to jump out of its loop in line 3~.

Note, by the way, that one key certainly won't work in this way - the
BREAK key!

These number codes need some explanation. The code system
that is used is called ASCII, meaning American Standard Code for
Information Interchange. Figure 4.14 shows the list of these codes as
they apply to this program. The Atari makes use of other code
numbers as well, and we'll look at these when we come to Graphics
in Chapter 7.

10 ? "}":OPEN *1,4,0,"K:"
20 ? "PRESS ANY KEY"
30 GET *1,X
40 ? X
50 ? "THIS MEANS THE ";CHR$(X);" KEY."

Fig. 4.13. Using GET to find the code number for a key.

Menus and subroutines

A choice of two items, such as in Fig. 4.11 isn't exactly a
consumer's dream, not in the West anyway. We can extend the
choice by a program routine that is called a menu. A menu is a list of
choices, usually of program actions. By picking one of these choices,
we can cause a section of the program to be run. One way of making
the choice is by numbering the menu items, and typing the number
of the one that you want to use. We could use a set of lines such as:

IF K = 1THEN 1000
IF K = 2 THEN 20~0

and so on. There is a much simpler method, however, which uses a
new instruction ON N GOTO, where N is a number variable. You
can use any number variable, of course, not just N.

Figure 4.15 shows a typical menu that uses this instruction. Lines

48 Get More From The Atari

10 ? "}":OPEN tt1,4,0,"K:"
20 POSITION 17,1:? "MENU"
30 POSITION 2,3
40 ? "1. ENTER NAMES."
50 ? "2. ENTER PHONE NUMBERS."
60 ? "3. LIST ALL NAMES."
70 ? "4. LIST LOCAL NUMBERS."
80 ? "5. END PROGRAM."
90 ?
100? "PLEASE SELECT BY NUMBER.":? "DO N
OT PRESS RETURN KEY."
110 GET 4H,K
120 IF K<49 OR K>53 THEN? "INCORRECT CH
OICE- 1 TO 5 ONLY":? "PLEASE TRY AGAIN."
:GOTO 110
130 ON K-48 GOTO 150,160,170,180,190
140 END
150 ? "NAMES HERE":END
160 ? "NUMBERS HERE":END
170 ? "NAMES LIST":END
180 ? "LOCAL NUMBERS":END
190 ? "ANNOUNCE END"

Fig. 4.15. A menu choice which uses the ON N GOTO instruction. The actual
quantity that is used is not N but K-48.

I~ to 9~ are concerned with presenting the menu items on the screen,
and line I~~ then invites you to pick one item by typing its number.
The GET action in line I I~ keeps the program looking for a key
until you make your choice, and then line 12~ tests your choice with
a mugtrap. The mugtrap is not as you might expect at first sight. We
don't test for values less than I or greater than 5 because that's
not what GET gets! What is got is an ASCII code number,
remember, and the ASCII codefor I is 49, with 53 used for'5'. These
are the numbers that we have to test for in line 12~.

The choice is then made in line 13~, with the ON K-48 GOTO
instruction. Now what happens here? If K equals 49, then K-48 is I,
and the first line number that follows GOTO is used. If K equals 5~,

then the second line number following GOTO is used, and so on. All
that you have to do is to arrange the line numbers in the same order
as your choices. You needn't have a list that looks neat. A line such
as ONKGOT025~,216,484,714, I~~~would bejust as satisfactory so
long as these numbers contained the start of routines that dealt with
the menu choices. In this example, the line numbers simply lead to
PRINT instructions so as to keep the example reasonably short.
What you must remember, however, is that the ON N GOTO
instruction is organised to use the numbers 1,2,3 ... and so on. You
can't expect it to deal with the codes that are produced by GET

Repetitions And Decisions 49

unless you operate on the codes. The operation of subtracting 48
does just what we want.

This type of menu selection is useful, but an even more useful
method makes use of subroutines. A subroutine is a section of
program which can be inserted anywhere that you like in a longer
program. A subroutine is inserted by typing the instruction word
GOS UB, followed by the line number in which the subroutine starts.
When your program comes to this instruction, it willjump to the line
number that follows GOSU B, just as if you had used GOTO. Unlike
GOTO, however, GOSUB offers an automatic return. The word
RETU RN is used at the end of the subroutine lines, and it will cause
the program to return to the point immediately following the
GOS U B. Figure 4.16 illustrates this. When the program runs, line

10 ? It} ..

20 ? "THE NORTH STAR IS CALLED";
30 GOSUB 1000
40 ?
50 ? "THE";:GOSUB 1000:? "MISSILE USES T
HE SAME NAME."
60 END
1000 ? " POLARIS ";
1010 RETURN

Fig. 4.16. Usi ng a subrouti ne - this is the key to more advanced programming.

2~ prints a phrase, with the semicolon used to prevent a new line
from being selected. The GOSUB I~~~ in line 3~ then causes the
word POLARIS to be printed, but the RETURN in line I~ I~ will
send the program back to line 4~, the instruction that immediately
follows the GOS UBI ~~~. This action will also occur even when the
GOS U B is part of a multistatement line, as line 5~ demonstrates.
The GOSUB I~~~ will cause the word POLARIS to be printed, but
the return is to the PRINT instruction that follows GOSUB I~Min

line 5~; it doesn't jump to line 6~. This is, of course a rare example
of a missile fired from a subroutine.

Now for something more serious. Figure 4.17 shows subroutines
in use as part of an (imaginary) games program. Lines I~ to 8~ offer
a choice, and line 9~ invites you to choose. The familiar GET and
mugtrap actions follow, and then line 12~ causes the choice to be
carried out. This time, however, the program will return to whatever
follows the choice. For example, if you pressed key I, then the
subroutine that starts at line I~~~ is carried out, and the program
returns to line 12~ to check if you might also want subroutines 2~~~,

50 Get More From The Atari

10 ? "}":OPEN .1,4,0,"K:"
20 POSITION 9,1:? "CHOOSE YOUR MONSTER"
30 ?
40 ? "1. FRANKENSTEIN'S CREATION."
50 ? "2. THE CURSED MUMMY."
60 ? "3. THE THING FROM THE LAGOON."
70 ? "4. KING KONG."
80 ? "5. THE GIANT SQUID."
90 ? :? "SELECT NUMBER, PLEASE. DO NOT U
SE RETURN."
100 GET .1,K
110 IF K<49 OR K>53 THEN ? "FAULTY SELEC
TION- 1 TO 5 ONLY":? "PLEASE TRY AGAIN":
GOTO 100
120 ON K-48 GOSUB 1000,2000,3000,4000,50
00
130 ? "THAT'S THE END"
140 END
1000 ? "ANOTHER FRIDAY JOB":RETURN
2000? "ASK YOUR DAD, THEN.":RETURN
3000 ? "IT'S PART OF THE LAGOON SHOW. ":R
ETURN
4000? "SOUNDS LIKE AN ORANG UTANG.":RET
URN
5000 ? "CHANGE IT FOR TWO SFIFTIES":RETU
RN

Fig. 4.17. A menu choice that makes use of subroutines.

3~~~, 4~~~, or 5~~~. Since the value of K is unchanged, the
program then goes to line l3~ and ends. Ifline I~~~ had altered the
value of K, however, you could find that a second subroutine was
selected following the first one. A subroutine is extremely useful in
menu choices, but it's even more useful for pieces of program that
will be used several times in a program. One such example is the
GET#I,K type of routine, but we can have whole sections of a
program which can be written as a subroutine. We sometimes find it
an advantage to have subroutines used even when there is no
repetition - but that's impinging on the material of Chapter 6!

Chapter Five

String Up Your Programs!

String Functions

In Chapter 3, we took a fairly brief look at number functions. If
numbers turn you on, that's fine, but stringfunctions are in many
ways more interesting. What makes them that way is that the really
eye-catching and fascinating actions that the computer can carry out
are so often done using string functions. What's a string function,
then? As far as we are concerned, a string function is any action that
we can carry out with strings. That definition doesn't exactly help
you, I know, so let's look at an example. Figure 5.1 shows a program
that prints ATARI as a title. What makes it more eye-catching is the
fact that the word is printed with twelve hash-marks (#) on each side.
The hash-marks are prod uced by a string function, one called 'string
insertion' that few computers possess.

10 DIM A$(40).B$(12)
20 ? "}"
30 B$=""":8$(12)=B$:B$(2)=B$
40 A$=B$: A$ (13) =nATARI": A$ (18) =B$
50 POSITION 4.5:? A$

Fig. 5.1. String insertion. This is an action which is almost unique to Atari.

Take a look at Fig. 5.1. It starts by dimensioning two strings. Of
these, A$ is dimensioned as long enough to fill one complete line on
the screen - in fact it's longer than we need unless we are using the
complete screen width of 40 characters. B$ is dimensioned to twelve
characters, and we will use it to hold the hash-marks. Line 2~ clears
the screen in the conventional way. Now the real novelty starts in
line 3~, because this shows how we can create a string of twelve
identical characters without typing all twelve! The first part of line
3~, B$="#", causes a hash-mark to be put into the first space in B$.
The second part of line 3~ copies this hash-mark into space twelve.

52 Get More From The Atari

The interesting action is provided by the last part of the line,
B$(2)=B$, which fills the rest of the string with hash-marks!

This is how it works. The command B$(2)=B$ means that the
string on the left should be identical to the string on the right. The
string on the left has a starting position of place two in B$, which
starts as an empty space. The process works one character at a time,
and this is the reason for its effect. It will start by making the
character at B$(2), the second space, equal to the first character of
B$, which is a hash-mark. By the time it has done this, though, B$ is
one hash-mark longer than it was. When it comes to make the third
space of the left hand string equal to the second character of B$, it
finds that this is now a hash-mark, not a blank space. The hash-mark
then is placed in the third space. It then makes the fourth space of the
left-hand string equal to the third space of the right-hand string
and that's now a hash-mark! The process continues until the string
has reached its dimensioned length, and stops there. The result in
this example is a string of hash-marks. Other types of computers use
a command called STRING$ to achieve this useful effect. Figure 5.2
shows another application of this useful technique, which is not
described in the Atari manual. In this example, it creates a complete
line of asterisks so that they can be used to underline a title.

10 ? "}":DII1 A$(37)
20 A$="*":A$(37)=A$:A$(2)=A$
30 POSITION 16.3:? "ATARI"
40 ? A$

Fig. 5.2. Using string insertion to create an underlining.

How long is a piece of string?

String variables allow us to carry out a lot of operations that can't be
done with number variables. One of these operations is finding out
how many characters are contained in a string. Since a string can
contain as many characters as we like, memory space permitting. a
method of counting them is rather useful, and LEN is that method.
LEN has to be followed by the name of the string variable. within
brackets, and the result of using LEN is always a number so that we
can print it or assign it to a number variable.

Figure 5.3 shows a simple example of LEN in use. Line 2~ assigns
a variable and line 3~ tells you how many letters are in this variable.

String Up Your Programs 53

10 ? "}":DIt1 A$(9)
20 A$="ATARI"
30 ? "THERE ARE ";LEN(A$);" LETTERS IN "
;A$

Fig. 5.3. Introducing LEN, a member of the string function family.

This is hardly earth-shattering, but we can turn it to very good use,
as Fig. 5.4 illustrates. This program uses LEN as part of a subroutine
which will print a string called TITLE$ centred on a line. This is an
extremely useful subroutine to use in your own programs, because
its use can save you a lot of tedious counting when you write your
programs. The principle is to use LEN to find out how many
characters are present in the string TITLE$. This number is then
divided by two, and subtracted from 2~, using the formula that we
saw first in Chapter 2. If the number of characters in the string is an
odd number, then 17-LEN(TITLE$)/2 will contain a .5, but this is
completely ignored by POSITION in line l~ l~. Once the
subroutine is in place, we can call it to centre anything that has the
name TITLE$. In line 2~, TITLE$ is assigned to the words AT ARI
GENIUSl, and this phrase is printed centred. In line 5~, TITLE$ is
assigned to a string of thirteen asterisks, using the simple method of
typing them. This also is printed centred by the subroutine.

10 ? "}":DIt1 TITLE$(30)
20 TlTLE$="ATARI 6ENIUS~"

30 Y=1:60SUB 1~
40 ?
50 TITLE$="*************"
60 Y=2:60SUB 1000
70 ? :?
80 END
1000 T=(17-LEN(TITLE$)/2)
1010 POSITION T,Y
1020 ? TI TLE$
1030 RETURN

Fig. 5.4. Using LEN to print titles centred.

Notice, by the way, that if we want anything printed centred by
this subroutine, we have to give it the variable name ofTITLE$. This
action is called 'passing a variable' to the subroutine, and it's
something that we have to keep a careful eye on when we use
subroutines. You can't expect a subroutine that is written to print
TITLE$ centred to have any effect on a string called A$. Another
point that is worth noticing is that LEN gives the correct length for
each string, despite the fact that TITLE$ was dimensioned to 3~

54 Get More From The Atari

characters. LEN gives the number of characters that we place into
the string, not the maximum number that we dimension.

String cutter's delight

The next group of string operations that we're going to look at are
called slicing operations. The result of slicing a string is another
string, a piece copied from the longer string. String slicing is a way of
finding what letters or other characters are present at different
places in a string.

All of that might not sound terribly interesting, so take a look at
Fig. 5.5. The string A$ is assigned in line 2~, and sliced in line 3~.

10 7 "}":DIM A$(20)
20 A$="ATARAXIA"
30 7 A$ C1 , 4) ; : 7 "I"

Fig. 55. Using the Atari string slicing action.

What's printed in line 3~ is the word ATARI. Now how did this
happen? The instruction?A$(1,4) means, take a slice out of A$, start
ing at position I and ending at position4. We number the places in the
string starting with I at the left-hand side. Counting consecutively
towards the right, the first letter is A and the fourth is R, so A$(1,4)
is ATAR. The semicolon keeps the printing on the same line when
we add the I in the next part of the line. That's how ATARI comes
out of ATARAXIA!

For a more serious use of this instruction, take a look at Fig. 5.6.
This has the effect of extracting your initials from your name, and
it's done by using this type of slicing method along with the opposite
process placing letters into a string in the way that we introduced
earlier. The program starts by getting two names. which are assigned
to variables S N$ and FN$. In line 4p, then, I:\fS= FNS(1,1) gets the
first letter of FN$, and assigns it to IN$. You m ust use (I, I) for this

10 7 "}":DIM SN$(20),FN$(20),IN$(5)
20 POSITION 5,2:7 "YOUR SURNAME, PLEASE-

";:INPUT SN$
30 POSITION 5,4:7 "YOUR FIRST NAME, PLEA
SE- ";:INPUT FN$
40 IN$=FN$(1,1):IN$(2)=".":IN$(3)=SN$(1,
1):IN$(4)="."
50 7 "ROUND HERE, YOU ARE ";IN$

Fig 5.6 Extracting initials with string slic.nq

String Up Your Programs 55

if you use (I) only, you will make IN$, starting at character I, equal
to the whole of FN$. The next part of line 4~ places a full-stop in the
second place of IN$. The third part then puts the first letter of SN$
into the third place of IN$, and then we put in another full-stop in
the fourth place. The result is printed in line 5~. If you have two
players in a game, it's often useful to show the initials and score
rather than printing the full name, but the full names can be held
stored for use at various stages in the game.

String slicing isn't confined to copying a selected piece of the left
hand side of a string. We can take a copy of characters from any part
of a string that we want to use. Figure 5.7 illustrates the use of the

10 ? "}":DII'1 A$(20),B$(6)
20 A$="ATARIHAGIC"
30 B$=A$(5,8>
40 ? A$(1,5);" '';A$(6);'' IN ";B$;"ES"

Fig. 5.7. Building up words and phrases by slicing.

instructions to take the letters IMAG out of a word. Line 4~ then
shows how a phrase can be built up out of this and other pieces
snipped from the word. Think, for example, how you could conceal
a message by defining a string consisting of the alphabet, and
selecting letters from it like this. Figure 5.8 illustrates another light
hearted use - making selections from a string that happens to be
your name. There are more serious uses than this. You can, for
example, extract the last four figures from a string of numbers like
~ 1~-242-7~ 16. I said a string of numbers deliberately, because
something like this has to be stored as a string variable rather than as
a number. If you try to assign this to a number variable, you'll get a
silly answer. Why? Because when you type N = ~ 1~-242-7~ 16 then
the computer assumes that you want to subtract 242 from I~ and
7~ 16 from that result. The value for N is -7248, which is not exactly
what you have in mind! If you use N$="~ 1~-242-7~ 16", then all is
well.

The string slicing method that the Atari uses is a very powerful
and simple one, but it is not used by many other computers - though

10 ? "}":DII'1 A$(20)
20 ? "TYPE YOUR SURNAME, PLEASE"
30 INPUT A$:L=LEN(A$)
40 FOR N=l TO L
50 ? A$ (1 , N) ; " " ; A$ (L-N+ 1)
60 !'EXT N

Fig. 5.8. Forming patterns from words by slicing actions.

56 Get More From The Ateri

LEFT$(A$,X) means slice the first X characters from A$.
The Atari equivalent is A$(I ,X).
Example: LEFT$(Q$,5) becomes Q$(1,5).

MID$(A$,X,V) means slice V characters from A$, starting with
character number X.
The Atari equivalent is A$(X,X+ V-I).
Example: MID$(P$,2,5) becomes P$(2,6).

RIG HT$(A$,X) means slice the last X characters from A$.
The Atari equivalent is A$(LEN(A$)-X).
Example: RIGHT$(R$,3) becomes R$(LEN(R$)-3).

When the second number in an Atari slicing instruction is omitted, all the
characters to the right of the starting character are included.

Fig. 5.9. The Atari equivalents of the slicing commands that are used on many
other computers. This can be useful if you want to convert a program to run on
your Atari.

the Sinclair Research machines use a similar method. Most other
computers use a set of three instructions called LEFT$, MIO$ and
RIG HT$ to achieve what the Atari does with the numbers following
the string name. In case you want to convert a program that was
written for another type of computer, Fig. 5.9 shows each of these
instructions in action, and the Atari equivalent.

Getting more value

It's time now to look at some other types of string functions. We've
met VAL previously - it's used to convert a number that is in string
form back into number form so that we can carry out arithmetic.
There's an instruction that does the opposite conversion, STR$.
When we follow STR$ by a number, number variable, or expression
within brackets, we carry out a conversion to a string variable. We
can then print this as a string, or assign it to a string variable name,
or use string functions like slicing, LEN, and all the others. Figure
5.10 illustrates these processes. Lines I~ to 3~ show that we can do
arithmetic on N$ if we use VAL with it. Line 5~ converts the number
variable V into string form. Now V has been assigned to the number
2.5 in line 2~, and line 6~ reveals that there are three characters in
V$. This is what we would expect, since there are two digits and a
decimal point. Line 8~ shows the strings being used in an addition,

String Up Your Programs 57

10 ? "}":DIM N$(5),V$(5)
20 N$="22.5":V=2.5
30 ? N$;" TIMES ";V;" IS ";V*VAL(N$)
40 ?
50 V$=STR$(V)
60 ? "THERE ARE ";LEN(V$);" CHARACTERS I
N ";V
70 ?
80 ? N$;" ADDED TO ";V$;" GIVES ";VAL(N$
)+VAL(V$)

Fig. 5.10. Using STRS and VAL for converting between string and number
form.

using VAL to make a conversion back to number form before
carrying out the addition operation.

If you hark back to Chapter 4 now, you'll remember that we
introduced the idea of ASCII code. This is the number code that is
used to represent each of the characters that we can print on the
screen. We can find out the code for any letter by the function ASC,
which is followed, within brackets, bya string character. The result of
ASC is a number, the ASCII code number for that character. If you
use ASC(" AT AR I"), then you'll get the codefor the A only, beca use
the action of ASC includes rejecting more than one character.
Figure 5.11 shows this in action. String variable A$ is assigned in
line 2~ and in line 3~ a loop starts which will run through all the
letters in A$. The letters are picked out one by one, using A$(N,N) to
slice one letter from each place in the string, and the ASCII code for
each letter is found with ASC. The space between quotes, along with
the semicolons in line 4~ makes sure that the codes are all printed on
one line with a space between the numbers. It's a simple and neat
way of finding what ASCII codes are needed to build up a word,
something that we'll look at later.

ASC has an opposite function, CHR$. What follows CH R$,
within brackets, has to be a code number, and the result is the
character whose code number is given. The instruction PRINT
CHR$(65), for example, will cause the letter A to appear on the
screen, because 65 is the ASCII code for the letter A. We can use this
for concealing messages. Every now and again, it's useful to be able

10 ? "}":DIM A$(5)
20 A$="ATARI"
30 FOR N=1 TO LEN(A$)
40 ? ASC(A$(N,N»;" ";
50 NEXT N

Fig. 5.11. ASCII codes. Using ASC to find the ASCII code for letters

58 Get More From The Ateri

10 ? "}":? :OPEN .1,4,0,"K:"
20 ? "WHAT" S TI-E WORD FOR COt1PUTER?"
30 ?
40 ? "PRESS ANY KEY TO REVEAL"
50 GET .1,X
b0?
70 FOR J=1 TO 5: READ N
B0 ? CHR$ (N) ;

90 IEXT J
100 END
110 DATA 65,84,65,82,73

Fig. 5.12. Using CHRS to obtain the character that corresponds to a code
number.

to hide a message in a program so that it's not obvious to anyone
who reads the listing. Using ASCII codes is not a particularly good
way of hiding a message from a skilled programmer, but for non
skilled users it's good enough. Figure 5.12 illustrates this use. Line
5~ contains a GET # I,X step to make the program wait for you.
Remember that you have to prepare for this by having the OPEN
step at some point in the program earlier than the GET. When you
press a key, the loop that starts in line 7~ prints 5 characters on the
screen. Each of these is read as an ASCII code from a list, using a
READ... DATA instruction in the loop. The PRINT CHR$(N) in
line 8~ then converts the ASCII codes into characters and prints the
characters, using a semicolon to keep the printing in a line. Try it! If
you wanted to conceal the letters more thoroughly, you could use
quantities like one quarter of each code number, or 5 times each
code less 2~, or anything else you like. These changed codes could be
stored in the list, and the conversion back to ASCI I codes made in
the program. This will deter all but really persistent decoders!

Making comparisons

We saw earlier in Fig. 4.12, how numbers can be compared. We can
also compare strings, using the ASCII codes as the basis for
comparison. Two letters are identical if they have identical ASCII
codes, so it's not difficult to see what the identity sign, = , means
when we apply it to strings. If two long strings are identical, then
they must contain the same letters in the same order. It's not so easy
to see how we use the> and < signs until we think of ASCII codes.
The ASCII code for A is 65, and the code for B is 66. In this sense, A
is 'less than' B, because it has a smaller ASCII code. If we want to

String Up Your Programs 59

place letters into alphabetical order, then, we simply arrange them in
order of ascending ASCII codes.

This process can be taken one stage further, though, to comparing
complete words, character by character. Figure 5.13 illustrates this
use of comparison using the = and> symbols. Line 2~ assigns a
nonsense word - it's just the first six letters on the top row of letter
keys. Line 3~ then asks you to type a word. The comparisons are
then carried out in lines 4~ and 5~. If the word that you have typed,
which is assigned to B$ is identical to QWERTY, then the message in

10 ? "}":DIH A$(20),B$(20),C$(20)
20 A$=-QtERTY"
30 ? :? "TYPE A WORD -;: IN'"lJT B$
40 IF B$=A$ TI£N ? - SAI'IE AS HI lIE" : END
50 IF A$>B$ TI-EN C$=A$: A$=B$: B$=C$
60 ? -ORDER IS -;A$; - THEN -;B$
70 END

Fig. 5.13. Comparing words to decide on their alphabetical order.

line 4~ is printed, and the program ends. If QWERTY would come
later in an index than your word, then line 5~ is carried out. If, for
example, you typed POLYGON, then since P comes before Q in the
alphabet and has an ASCII code that is lower than the code for Q,
the word A$, which is QWERTY, scores higher than B$, which is
POLYGON, and line 5~ swaps them round. This is done by
assigning a new string, C$ to A$ (so that C$ = "QWERTY"), then
assigning A$ to B$ (so A$ = "POLYGON"), then B$ to C$ (so that
B$="QWERTY"). Line 6~ will then print the words in the order A$
and then B$, which will be the correct alphabetical order. If the word
that you typed comes later than QWERTY (for example, TAPE)
then A$ is not 'greater than' B$, and the test in line 5~ fails. No swap
is made, and the order A$, then B$, is still the correct one. Note the
important point, though, that words like QWERTZ and QWERTX
will be put correctly into order - it's not just the first letter that
counts.

Lists and letters

The variable names that we have used so far are useful, but there's a
limit to their usefulness. One important limit is the number of
variable names that you can use. You might think that because you
can use variable names of any length, then you could have any

60 Get More From The Atari

number of variable names. This is not so, because the Atari reserves
only a limited amount of its memory for variable names. This limit is
128 variable names. It's not likely, in fact, that you find this a limit,
certainly not in the early days of computing, but it's something you
have to keep tucked away in your memory for use later. Another
point concerned with this is that once you have assigned a variable,
the name of it is stored until you carry out the NEW instruction (or
switch off). If you have a program that continually creates variable
names, then even if these variables have no value (they have been
deleted), the names are still stored, and will count to your limit of
128.

As it happens, there is a way in which we can use a single variable
name to store as many values as we like. Figure 5.14 illustrates this.

10 ? "}":DIM A(10)
20 FOR N=l TO 10
30 A(N)=10+INT(90*RND(0»
40 NEXT N
50 ?
b0 ? .. MARKS LIST"
70 ? :FOR N=l TO 10
80 ? "ITEM "; N;" RECEIVED "; A (N);'' MARKS

90 NEXT N

Fig. 5.14. An array of subscripted number variables. lts simpler than the
na me suggests'

Lines Ip to 4~ generate an (imaginary) set of examination marks.
This is done simply to avoid the hard work of entering the real thing!
The variable in line 3~ is something new, though. It's called a
subscripted variable, and the 'subscript' is the number that is
represented by N. How often do you make a list with the items
numbered 1,2,3 ... and so on? These numbers 1,2,3 are a form of
subscript number, put there simply so that you can identify different
items. Similarly, by using variable names A(I), A(2). A(3) and so on,
we can identify different items that have the common variable name
of A. A member of this group like A(2) has its name pronounced as
'A-of-two'. The whole group is referred to as the 'array A', and a
member of the group, like the value of A(I), is called an 'element of
the array A'.

The usefulness of this method is that it allows us to use one single
variable name for the complete list. picking out items simply by their
identity numbers. Since the number can be a number variable or an
expression, this allows us to work with any item of the list. Figure
5.14 shows the list being constructed from the FOR... NEXT loop in

String Up Your Programs 61

lines 30 to 60. Each item is obtained by finding a random number
between I and 100. and is then assigned to A(N). Ten of these
'marks' are assigned in this way. and then lines 60 to 90 print the list.
It makes for much neater programming than you would have to use
if you needed a separate variable name for each number.

You can't just leap into this array business without some
preparation. though. The preparation is in the second part of line
I~. and it consists of the DIM instruction that we have also used
with strings. This is not accidental. because the computer treats a
string as an array of ASCII code numbers. Following the DIM. we
have the name of the array and. in brackets. the number of elements.
In this example. we want to use ten marks. so we dimension A as ten
items. A(l0). We can. incidentally. dimension more than one array
at a time. If we type. for example. DIM A(10). 8(12) then this has
the effect of dimensioning the variable 8 as well as A. but to 12
elements rather than the ten of A.

Number arrays are very useful when you want to store a whole set
of numbers. particularly because an array name counts as just one
single variable name. no matter how many elements it contains.
Numbers may play little part in the kind of computing you want to
do. though. and it would be useful if you could create and use arrays
of strings. Some computers allow string arrays to be created in
exactly the same way as number arrays. but the Atari does not have
these instructions. That doesn't mean that we can't use string arrays.
only that we have to create them in a different way.

10 ? "}":DIM A$(200),NM$(20),X(10)
20 ? "PLEASE ENTER NAMES .. :J=I:A$=....
30 FOR N=1 TO 10
40 ? "NAME ";:INPUT NM$
50 A$(J)=NM$:X(N)=LEN(A$):J=I+X(N)
60 NEXT N
70 ? "}":X(0)=0:FOR N=0 TO 9
B0 ? A$(X(N)+I,X(N+l»:NEXT N

Fig. 5.15. Using strings in a form of array The names are packed into one long
string, with a number array used to locate the end of each name.

Figure 5.15 shows how a string array can be created. The
techniques are already familiar to you. but the results are not. We
start by dimensioning three items. Of these. A$ is a long string which
is going to be our string array. NM$ is a temporary string that we
will use for entering an item into this array. and X is a number array
which will be used to keep track of the items in the string A$. What
we are going to do is to type names. assign each one to NM$. and

62 Get More From The Atari

then tack it on to the end ofthe previous name that is stored in A$. In
this way, A$ will eventually consist of all the names that we have
typed, joined together. Now since we use string arrays to store
strings that we will eventually want to separate again, we need some
way of keeping track. This is the reason for the number array X.
Each time we add a name to A$, we assign an element of X equal to
the length of A$. In this way, the array X contains a set of figures
which are the lengths of the string A$ at each stage. We can use these
X numbers to find the start and end position of anyone of the
strings.

Now let's look at the program in detail. The entry of names starts
in line 3p, but some preparation has to be made in line 2p. This line
prints brief instructions, and 'initialises the variables'. This
impressive phrase simply means that we set the values of J and A$ to
what we want them to start with. J starts at I, because the string A$
will start at its first character space, and A$ starts as a blank, which is
programmed as A$="", with no space between the quotes. The
entry process starts with the loop in line 3p. At line 4p, the word
NAME is printed, and the INPUT step allows you to type a name.
This will be limited automatically to twenty letters, because of the
dimensioning of NM$ in line Ip. Line Sp then makes A$(J) equal to
NM$. This means, remember, that NM$ is copied into A$, starting
at character position J, which means position I since J is I on the
first pass through the loop. In the second part of line Sp, the length
of A$ is found, and is allocated to X(I), because N= I. The third part
of line Sp then alters the value of J to 1+ X(I), which is the number of
the next blank space in A$.

Think of an example. If you typed SINCLAIR, then this will now
take up the first eight spaces in A$. X(l) will have the value 8, and J
will be set to 9, the next vacant space in A$. In line 6p, the NEXT N
sends the program back to pick up another name. The process is the
same as before, but because J is now 9, in the example, the new name
will be copied in at position 9. Ifyou had typed ATARI this time, A$
would now be SINCLAIRATARI, X(2) would be 13, and J would
be 14, ready for the next name. This continues until all ten names
have been entered and added to the string A$.

Now that the string array has been created, we need to be able to
separate out the names again. This is simple, and line 8P does the
trick. Line 7P clears the screen, assigns X(P) as zero, and starts a
loop. Once again, the easiest way to see what is ha ppening is to think
of the example. In line 8p, when the loop starts, N is p. Since we have
made X(N)=P in line 7P, then X(N)+ I is just I. This is not the same

String Up Your Programs 63

10 ? "}":DIM A$(200),NM$C20),XCI0)
20 ? "PLEASE ENTER NAMES":J=I:A$=""
30 FOR N=1 TO 10
40 ? "NAME ";:INPUT NM$
50 A$CJ)=NM$:XCN)=LENCA$):J=I+XCN)
60 NEXT N
70 ? "}":DIM Q$Cl),B$C20)
80 ? "NOW WE'LL FIND A NAME"
90 ? "PLEASE TYPE THE INITIAL LETTER":?
"OF THE NAME YOU WANT"
100 INPUT Q$
110 X(0)=0:FOR N=0 TO 9
120 B$=A$CX(N)+I,X(N+l»
130 IF Q$=B$Cl,l) THEN? B$
140 NEXT N
150? "NOW ANOTHER ••• ":GOTO 100

Fig. 5.16. Creating a string array and then making use of it to find any name.

as X(N+I), because N+l=l, and N(l) in our example is 8. The
PRINT (or '?) instruction in line 8~ will therefore give A$(I,8) which
is the first eight characters of A$, the word SINCLAIR in my
example. When the NEXT N in line 8~ is reached, the value of N
changes to I. Now X(N) is X(I), and its value is 8, X(N)+ I is
therefore 9. X(N+l) is X(2), and its value is 13. What is printed,
then, is A$(9, 13), which is AT ARI. The loop continues in this same
way, printing out all the names that you typed in.

Figure 5.16 shows a useful variation on this principle. You only
need to alter the lines from 7~ onwards, so if you still have Fig. 5.15
stored in the computer, or available on tape, you can save yourself
some typing. This time, the array is created, and you can select
names that start with a specified letter. As usual, we have to carry
out some dimensioning, and this is done in line 7~. It could just as
easily have been put into line I~, but I wanted to leave the first part
of the program exactly as it was. You type an initial letter in line I~~,
and the dimensioning of Q$ ensures that only one letter is accepted.
Lines II~ to 14~ then extract each name from A$ and assign it, in
turn, to B$. The first letter of B$, found by using B$(I, I) is compared
with Q$ and, if they match, B$ is printed. When the loop is complete,
each name which starts with the letter assigned to B$ will have been
printed. If no names start with that letter, nothing is printed. The
GOTO in line 15~ allows you to make another choice from the same
array. It's simple and neat. Suppose, though, that you wanted to
print a message such as "NO SUCH NAME" if the program did not
find a name starting with your selected letter'? How would you do

64 Get More From The Atari

that? I'll leave that to you, with some broad hints. Suppose you had a
third part to line l3~, which then read:

IF Q$=B$(l,I) THEN? B$:F=1

and we had previously had a line:

15 F=~

You could then have a line:

145 IF F=~ THEN PRINT'NO SUCH NAME"

and this would take care of the problem. You would then ha ve to be
sure that F (called a 'flag' because it signals an event) was reassigned
to ~ in line 15~ before you selected another letter.

Chapter Six

Filing And Planning

Up to now, we have used variables in a program, but we have made
nc attempt to store these variables on tape. As it happens, when you
save a program that has been run, using the CSA VE command, you
will save all the values of variables along with the program. This
means that when you replay a program, using CLOAD, you can
type GOTO (then a line number) instead of RUN, and the program
will start with the variable values that it had when it was recorded.
When you type RUN, you will generally clear all the variable values.
For some purposes, though, it's useful to be able to record variable
values separate from a program. This way, you can use the same
variable values in more than one program. If you have created a
'string array', for example, of all your friends' names and addresses,
you could use this information in a lot of programs, from printing
party invitations to keeping a track on birthdays. It's time, then, for
us to take a look at how we save and load variable values.

10 ? "}":DIM A$(5),B$(50)
20 A$="ATARI":? "PLEASE TYPE YOUR NAME"
30 INPUT B$:C=342.16
40 ? "PLEASE HAVE A DATA CASSETTE READY"
:? "PRESS RECORD/PLAY KEYS ON RECORDER":
? "THEN PRESS RETURN"
50 OPEN #1,8,0,"C:"
60 PRINT #1;A$;CHR$(155);B$;CHR$(155);C;
CHR$ (155)
70 CLOSE #1

Fig. 6.1. The steps that are needed to save variable values on tape.

Figure 6. I demonstrates saving variables. As always, we need
dimensions, and line I~ takes care of this. Lines 2~ and 3~ then
produce some values for us to save. I'll assume that you are using the
cassette program recorder, rather than the disk drive. When you use
cassettes, you have to be sure that there is a cassette in the program
recorder, and that it is wound on to a blank position. You don't, for

66 Get More From The Atari

example, want to record all over a copy of a program. This is the
purpose of the message in line 4~.

The real novelty starts in line 5~. We have met OPEN before,
when we made use of GET, and the principle is the same. OPEN
means that you are instructing the computer to prepare for
transferring data. In the case of a GET, the transfer was from the
keyboard into the memory. In this example, the transfer is from the
memory to the cassette recorder, so the bits that follow OPEN are
rather different. The # I is called the 'channel number' - the hash
mark # is used in the USA in the way that we use No. to mean
'number'. You can use numbers I to 5 freely for this 'channel
number', but it's wise to avoid ~,6, and 7 until you know a lot more
about the Atari. These numbers are reserved for other uses, as we'll
see in the next chapter. If you are using only one OPEN, it makes
sense to use # I. If you want to use two, as when you are using GETas
well as data recording, you can use # I for the GET, and #2 for the
recording. The important point is that you need to use different
numbers.

Having 'opened a channel', then, the rest of the OPEN instruction
is concerned with what you are going to do. By specifying 8
following # I, you are instructing the computer to send data out
using 4 would specify reading data in. The ~ which follows the 8just
reserves a space some types of instruction need a figure here. The
final part is another important one - "C:". This specifies that the
data is being sent out to the cassette recorder, not to the printer, the
screen, the disk drive or anywhere else. When the OPEN# I,8,~,"C:"
instruction is encountered in your program, the built-in loudspeaker
of the Atari will hoot twice, the usual warning that you need to press
the PLAY and RECORD keys of the program recorder, and then
press the RETU RN key of the Atari.

The OPEN instruction is a preparation, though, and we still have
to specify what we want to record. This is done in line 6~, using
PRINT#1. The PRINT#I means that you are putting data out 'on
channel l ', and the instruction has to be followed by a list of what
you want to send out. You have to be rather careful here. The items
must be separated by semicolons, and there must be a CHR$(l55)
following each item. The CHR$(155) is called the 'end of file'
character and, if you forget it, you won't be able to read back your
variables correctly. You don't need the CHR$(l55) if you take a new
line and a new PRINT# I; for each item. Finally, in line 7~, you need
CLOSE# I. This doesn't just set the channels back to normal, it
actually completes the recording process. If you omit this

Filing And Planning 67

instruction, the recording will not end correctly.
The result of these lines 5~ to 7~ is that you hear the warning

hoots, you press PLAY and RECORD, and then press RETURN.
The recorder operates, recording your data on tape, and then stops.
It is at this point that recording is complete. In this example, you
know when the recording is complete because the word READY
appears on the screen. When this recording step is part of a longer
program, you would need to have a PRINT step following the
CLOSE# I to remind you that you could stop the recorder and
remove or rewind the cassette.

10 ? "}":DIM X$(5),Y$(50>
20 ? "PLEASE PREPARE CASSETTE FOR REPLAY
.":? "PRESS PLAY, THEN RETURN."
30 ? :OPEN #1,4,0,"C:"
40 INPUT #1,X$,Y$,Z
50 ? "X$ IS ";X$:?
60 ? "Y$ IS ";Y$:?
70 ? "Z IS ";Z

Fig. 6.2. Replaying variable values from tape.

All of this recording would not be of much use unless we could
also replay the data. Figure 6.2 shows a program which will do just
this for the data that we recorded in Fig. 6.1. Once again, we start by
dimensioning, but the variables have been given different names! It's
the values that we record, not the names, so this is quite permissible
and very useful. We have the usual printed message in line 2~, and
the line 3~ contains the important OPEN instruction. We use
Channel #1 again, but the figure that follows this is 4 now, because
this is the code number for replaying. The rest of the instruction is as
before. This prepares for the replay, and the action is decided by line
4~. This time we use INPUT# I, and it lists once again the names of
the variables. These must be separated by commas. This is
important, because the PRINT# I used semicolons, and it's easy to
forget that the two are different. The variable names must match
with the type of data that you are replaying - don't expect to be able
to read a string value into a number variable name! Finally, lines 5~

to 7~ print the values so that you can see that they have been
replayed correctly.

Array antics

One of the commonest uses for data recording is the recording and

68 Get More From The Atari

10 ? "}":DIM A(40)
20 FOR N=1 TO 40
30 A(N)=10+INT(B0*RND(0»
40 NEXT N:GOSUB 500:OPEN *I,B,0,"C:"
50 FOR J=1 TO 40
b0 PRINT *1,A(J)
70 NEXT J
B0 CLOSE *1
100 END
500 ? "PLEASE PREPARE CASSETTE.":? "PRES
S PLAY/RECORD KEYS, THEN RETURN."
510 RETURN

Fig. 6.3. Recording array values on tape.

replaying of array values. This means number arrays, because as we
have seen, a string array is simulated by a long string variable. The
recording of an array is pretty similar to the recording of simple
variables, except that a loop is used. Figure 6.3 illustrates the
technique. Lines 2~ to 4~ generate some numbers and fill an array
with them. The subroutine then prints the warning about having a
cassette ready, and this is followed by the usual OPEN step. The
recording is done by lines 5~ to 7~, using PRINT#I,A(J) in a loop.
The channel is closed in line 8~, and that's it. Elementary, my dear
Sir or Madam.

There's slightly more to replaying, as Fig. 6.4 shows. Lines l~ to
3~ cover familiar ground, but there's a slight oddity in line 4~. You
cannot have an INPUT#1 to an array name, only to a simple
variable name. Because of this, we have to have INPUT#I,Z, and
then follow this with another assignment, X(Q)=Z, so as to get the
value into the array. Lines 5~ to 7~ then print the values. All in all,
there isn't much more to it.

10 ? "}":DIM X(40)
20 GOSUB see
30 OPEN *I,4,0,"C:":FOR Q=1 TO 40
40 INPUT *1,Z:X(Q)=Z:NEXT Q:CLOSE .1
50 ? "}":FOR J=1 TO 39 STEP 2
b0 ? X(J);" ";X(J+l)
70 NEXT J
100 END
500 ? "PLEASE PREPARE CASSETTE.":? "PRES
S THE PLAY KEY, THEN RETURN."
510 RETURN

Fig. 6.4. Replaying array values - note that you cannot INPUT #1 directlytoan
array variable.

Your own creation

You can get a lot of enjoyment from your Atari when you use it with

Filing And Planning 69

cartridges or cassettes that you have bought. You can obtain even
more enjoyment from typing in programs that you have seen printed
in magazines. Even more rewarding is modifying one of these
programs so that it behaves in a rather different way, making it do
what suits you. Another step to mastery of your Atari is reached
when you can modify a program that was written for another
machine. The pinnacle of satisfaction, as far as computing is
concerned, however, is achieved when you design your own
programs. These don't have to be masterpieces. Just to have decided
what you want, written it as a program, entered it and made it work
is enough.]t's 100% your own work, and you'll enj oy it all the more
for that.

Now] can't tell in advance what your interests in programs might
be. Some readers might want to design programs that will keep tabs
on a stamp collection, a record collection, a set of notes on food
preparation or the technical details of LNER steam locomotives.
Programs of this type are called database programs, because they
need a lot of data items to be typed in and recorded. On the other
hand, you might be interested in games, colour patterns, drawings or
sound. Programs of that type need instructions that we have not
looked at yet, and they are dealt with in the next three chapters.
What we are going to look at in this section is the database type of
program, because it's designed in a way that can be used for all types
of programs.

Two points are important here. One is that experience counts in
this design business. If you make your first efforts at design as simple
as possible, you'll learn much more from them. That's because
you're more likely to succeed with a simple program first time
round. You'll learn more from designing a simple program that
works than from an elaborate program that never seems to do what
it should. The second point is that program design has to start with
the computer switched off, preferably in another room! The reason
is that program design needs planning, and you can't plan properly
when you have temptation in the shape ofa keyboard in front ofyou.
Get away from it!

Put it on paper

We need to start with a pad of paper.] use a 'student's pad' of A4
which is punched so that] can put sheets into a file. This way, I can
keep the sheets tid y, and add to them as I need. I can also throw away

70 Get More From The Ateri

any sheets I don't need, which is just as important. Even a very
simple program is probably going to need more than one sheet of
paper for its design. If you then go in for more elaborate programs,
you may easily find yourself with a couple of dozen sheets of
planning and of listing before you get to the keyboard. Just to make
the exercise more interesting, I'll take an example of a program, and
design it as we go. This will be a fairly simple program, but it will
illustrate all the skills that you need.

You start by writing down what you expect the program to do.
You might think that you don't need to do this, because you know
what you want, but you'd be surprised. Ifyou don't write down what
you expect a program to do, it's odds on the program will never do
it! The reason is that you get so involved in details when you start
writing the lines of BASI C that it's astonishingly easy to forget what
it's all for. If you write it down, you'll have a goal to aim for, and
that's as important in program design as it is in life. Don't just dash
down a few words. Take some time about it, and consider what you
want the program to be able to do. If you don't know, you can't
program it!

Aims:
I. Present the name of a country on the screen.
2. Ask what its capital city is called.
3. The reply must be correctly spelled.
4. User must not be able to read the answer from a listing.
5. Give one point for each correct answer.
6. Allow two chances at each question.
7. Keep a track of the number of attempts.
8. Present the score as a number of successes out of number of attempts.
9. Pick country names at random.

Fig. 6.5. A program outline plan. This is your starter!

As an example, take a look at Fig. 6.5. This shows a program
outline plan for a simple game. The aim of the game is to become
familiar with the capital cities of some countries around the world.
The program plan shows what I expect ofthis game. It must present
the name of a country on the screen, and then ask what the name of
the capital city is. A little bit more thought produces some additional
points. The name of the city will have to becorrectlyspelled. A little bit
of trickery will be needed to prevent the user (son:daughter, brother,
sister) from finding the answers by typing LIST and looking for the
DAT A lines. Every game must have some sort of scoring system, so

Filing And Planning 71

we allow one point for each correct answer. Since spelling is
important, perhaps we should allow more than one try at each
question. Finally, we should keep track of the number of attempts
and the number of correct answers, and present this as the score at
the end of each game. Now this is about as much detail as we need,
unless we want to make the game more elaborate. For a first effort,
this is quite enough. How do we start the design from this point on?

The answer is to design the program the wayan architect designs a
house. That means designing the outlines first and the details later.
The outlines of this program are the steps that make up the sequence
of actions. We shall, for example, want to have a title displayed.
Give the user time to read this, and then show some instructions.
There's little doubt that we shall want to do things like assign
variable names, dimension arrays, and other such preparation. We
then need to play the game. The next thing is to find the score, and
then ask the user if another game is wanted. Yes, you have to put it
all down on paper! Figure 6.6 shows what this might look like at this
stage.

I. Display title, then instructions.
2. Display name of country on the screen.
3. Ask for the name of the capital.
4. Use INPUT for reply.
5. Compare reply with correct answer.
6. If correct, add I to score and ask if another one is wanted.
7. If incorrect. allow another try.
8. II' second attempt is also incorrect, select another question.
9. Ends when user types N in response to 'Do you want another one?'

Fig. 6.6. The next stage in expanding the outline.

Putting down foundations

Now, at last, we can start writing a chunk of program. This will just
be a foundation, though. What you must avoid at all costs is filling
pages with BASIC lines at this stage. As any builder will tell you, the
foundation counts for a lot. Get it right, and you have decided how
good the rest of the structure will be. The main thing you have to
avoid now is building a wall before the foundation is complete!

Figure 6.7 shows what you should aim for at this stage. There are
only fifteen lines of program here, and that's as much as you want.
This is a foundation, remember, not Nelson's Column! It's also a

72 Get More From The Atari

program that is being developed, so we've hung some 'danger - men
at work' signs around. These take the form of the lines that start with
REM. REM means REMinder, and any line ofa program that starts
with REM will be ignored by the computer. This means that you can
type whatever you like following REM, and the point of it all is to
allow you to put notes in with the program. These notes will not be
printed on the screen when you are using the program, and you will
see them only when you LIST. In Fig. 6.7, I have put the REM notes
on lines which are numbered just I more than the main lines. This
way, I can remove all the REM lines later. How much later? When
the program is complete, tested, and working perfectly. REMs are
useful, but they make a program take up more space in memory, and
run slightly more slowly. I always like to keep one copy of a program
with the REMs in place, and another 'working' copy which has no
REMs. That way I have a fast and efficient program for everyday
use, and a fully-detailed version that I can use if I want to make
changes.

10 ? "}":GOSUB 1000
11 REM TI TLE
15 OPEN *1,4,0,"K:"
20 GOSUB 1200
21 REM INSTRUCTIONS
30 GOSUB 1400
31 REM SETUP
40 GOSUB 2000
41 REM PLAY
50 GOSUB 3000
51 REM SCORE
60 GOSUB 4000
61 REM ANOTHER?
80 IF K=89 THEN 40
100 END

Fig. 6.7. A 'core' or 'foundation' program for the example.

Let's get back to the program itself. As you can see, it consists of a
set of GOS UB instructions, with references to lines that we haven't
written yet. That's intentional. What we want at this point,
remember, is foundations. The program follows the plan of Fig. 6.6
exactly, and the only part that is not committed to a GOS UB is the
IF in line 8~. What we shall do is to write a subroutine which will use
GET to look for a 'V' or 'N' being pressed, and line 8~ deals with the
answer. What's the question? Why, it's the 'Do you want another
game' step that we planned for earlier.

Take a good long look at this piece of program, because it's
important. The use of all the subroutines means that we can check

Filing And Planning 73

this program easily - there isn't much to go wrong with it. We can
now decide in what order we are going to write the subroutines. The
wrong order, in practically every example, is the order in which they
a ppear. Always write the title and instructions last, because they are
the least important to you at this stage. In any case, if you write them
too early, it's odds on that you will have some bright ideas about
improving the game soon enough, and you will have to write the
instructions all over again. A good idea at this stage is to write a line
such as:

9 GO TO 3P
which will cause the program to skip over the title and instructions.
This saves a lot of time when you are testing the program, because
you don't have the delay of printing the title and instructions each
time you run it.

The next step is to get to the keyboard (at last!) and enter this core
program. If you use the GOTO step to skip round the title and
instructions temporarily, you can then put in simple PRINT lines at
each subroutine line number. We did this, you remember, in the
program of Fig. 4.15, so you know how to go about it. This allows
you to test your core program and be sure that it will work before
you go any further.

Next steps

The procedure now is to keep adding to the core. Ifyou have the core
recorded, then you can load this into your Atari, add one of the
subroutines, and then test. When you are satisfied that it works, you
can record the whole lot on another cassette. Next time you want to
add a subroutine, you start with this version, and so on. This way,
you keep tapes of a steadily growing program, with each stage tested
and known to work. In addition, if anything goes wrong, you have
all your previous stages of the program on tape.

4000 ? "WOULD YOU LIKE ANOTHER ONE?" ~? "
PLEASE ANSWER Y OR No"
4010 GET *1,K:RETURN

Fig. 6.8. The subroutine for line 4C/lr/Jr/J.

Subroutine routine

The next thing we have to do is to design the subroutines. Now some
of these may not need much designing. Take, for example, the

74 Get More From The Atari

subroutine that is to be placed in line 4~~~. This is just our familiar
GET routine, along with a bit of PRINT, so we can deal with it right
away. Figure 6.8 shows the form it might take. The subroutine is
straightforward, and that's why we can deal with it right away! Type
it in, and now test the core program with this subroutine in place.

The hard part

Now we come to what you might think is the hardest part of the job
the subroutine which carries out the Play action. In fact, you don't
have to learn anything new to do this. The Play subroutine is
designed in exactly the same way as we designed the core program.
That means we have to write down what we expect it to do, and then
arrange the steps that will carry out the action. If there's anything
that seems to need more thought, we can relegate it to a subroutine
to be dealt with later.

I. Keep the answers as an array of ASCII codes in a long string. Use a
number array to keep positions.

2. Keep list of countries in another string, with positions located by
another number array.

3. The number which selects the country will also select the answer.
4. Use variable TR Y to record tries. SCORE to keep score.
5. Use variable GO to record the number of attempts at one question.

Fig. 6.9. Planning the 'Play' subroutine.

As an example, take a look at Fig. 6.9. This is a plan for the Play
subroutine, which also includes information that we shall need for
the setting-up steps. The first item is the result of a bit of thought. We
wanted, you remember, to be sure that some smart user would not
cheat by looking up the answers in the DATA lines. The simplest
deterrent is to make the answers in the form of ASCII codes. It won't
deter the more skilled, but it will do for starters. The codes can be
held as one long string, and we shall also keep the names of the
countries in a long string. We shall treat these strings as arrays, with
separate number arrays used to indicate where each name starts and
finishes. This has several advantages. One of them is that it's
beautifully easy to select one at random if we do this. The other is
that it also makes it easy to match the answers to the questions. If,
for example, we select a number V for an item, we can use an array
item, ARRAY(Y) to find the name that corresponds to that item.
The method should already be familiar from Chapter 5. We can then

Filing And Planning 75

use V to find another number Q, so that ARRAY(Q) gives the
answer! If that sounds confusing, the detailed explanations of the
subroutines will make it much clearer.

The next thing that the plan settles is the names that we shall use
for variables. It always helps if we can use names that remind us of
what the variables are supposed to represent. In this case, using
'SCORE' for the score and 'TRY' for the number of tries looks self
explanatory. The third one, 'GO' is one that we shall use to count
how many times one question is attempted. Finally, we decide on a
name for the string that will hold the country names -Q$.

2000 G0=0:V=I+INT(10+RND(0»
2001 REM PICK AT RANDOM
2010 ? "}H:POSITION 6,5:? "THE COUNTRY I
S _I';
2020 ? Q$(ARRAY(V),ARRAY(V+l)-I)
2030 POSITION 8,8:? "THE CAPITAL IS- ";
2040 INPUT CAP$:TRY=TRY+l
2050 GOSUB 5000
2051 REM FIND CORRECT ANSWER
2060 RETURN

Fig. 6.10. The program lines for the 'Play' subroutine.

Play for today

Figure 6,10 shows what I've ended up with as a result of the plan in
Fig. 6,9. The steps are to pick a random number V, use it to print a
country name, and then find the answer. That's all, because the
checking of the answer and the scoring is dealt with by another
subroutine. Always try to split up the program as much as possible,
so that you don't have to write huge chunks at a time. As it is, I've
had to put another subroutine into this one to keep things short.

We start in line 2~~~ by picking a number, at random, lying
between I and l~. As before, we use line 2~~ I to hold a REM that
reminds us of what's going on. Line 2~ I ~ is straightforward; the line
2~2~ picks the country name out of Q$. This is done by using the
values stored in the number array, and the method is exactly the one
that was illustrated in Fig. 5.15. We print the name of the country
that corresponds to the random number, and ask for an answer, the
capital of that country. The last section of line 2~4~ counts the
number of attempts. This is the logical place to put this step, because
we want to increase the count each time there is an answer. Now it's
chicken-out time! I don't want to get involved in the reading of

76 Get More From The Atari

I. For correct answer, increment SCORE.
2. For first incorrect answer, with GO=O, allow another try and make

GO=1.
3. For second incorrect answer, when GO= I, pass the next question and

make GO=O again.

Fig. 6.11. Planning the 'Score' subroutine.

ASCII codes right now, so I'll leave it to a subroutine, starting in line
5~~~, which I'll write later. The REM in line 2~51 reminds me what
this new subroutine will have to do, and the Play subroutine ends
with the usual RETURN.

Working at the details

With the Play su broutine safely on tape, we can think now about the
details. The first one to look at should be one that precedes or
follows the Play step, and I've chosen the Score routine. As usual, it
has to be planned, and Fig. 6. II shows the plan. Each time that there
is a correct answer, the number variable 'SCORE' will be
incremented, and we can go back to the main program. More is
needed if the answer does not match exactly. We need to print a
message, and allow another go. If the result of this next go is not
correct, that's an end to the attempts.

Figure 6.12 shows the program subroutine developed from this
plan. Line 3~~~ deals with a correct answer, by comparing your
answer, CAP$, with the correct answer, ANS$. The GOTO 3~3~

ensures that if the answer was correct, the rest of the subroutine is
skipped, and the subroutine returns. If the answer is not correct,
though, line 3~ I~ swings into action. This prints a message, and then
calls the subroutine at line 2~ I~ again so that the user can make
another answer entry. The GOTO 3~~~ at the end of line 3~ I~ then
tests this answer again.

3000 IF ANS$=CAP$ THEN SCORE=SCORE+l:? :
? Ml$;" ";SCORE:? "IN ";TRY;" ATTEMPTS.
":GOSUB 7000:GOTO 3030
3010 IF GO=0 THEN? M2$:GOSUB 7000:GO=1:
GOSUB 2010:GOTO 3000
3020 GO=0:? "NO LUCK- TRY THE NEXT ONE."
3030 RETURN

Fig. 6.12. The 'Score' subroutine written.

Filing And Planning 77

Now there's a piece of cunning here. The number variable 'GO'
must start with a value of ~ (make a note of it!). When there is an
incorrect answer, however, and 'GO' is still ~, line 3~ l~ is carried
out. One of the actions of line 3~ I~, however, is to set 'GO' to 1.
When you answer again, with GO= I, line 3~~~ will be used, and if
your second answer is wrong, line 3~ I~ cannot be used, because
'GO' is not zero. The next line that is tried, then is 3~2~. This puts
'GO' back to zero for the next round, prints a sympathetic message,
pauses, and then lets the subroutine return in line 3~3~.

1400 TRY=0:SCORE=0:GO=0
1405 DIM M2$(64),M1$(32),Q$(80),NUM$(160
),NUN$(70),ARRAY(45)
1406 DIM CAP$(20),ANS$(20),REP$(40)
1410 M2$="NOT CORRECT- BUT IT MIGHT BE Y
OUR SPELLING. TRY AGAIN - FREE~"

1412 M1$="CORRECT-YOUR SCORE IS NOW "
1415 Q$="ALBANIAHOLLANDALGERIANORWAYCOLO
MBIATURKEYLIBERIAINDONESIAPAKISTANCHILE"
1420 NUM$="84738265786565778384698268657
7657671736982837983767966797179846565787
56582657779788279867365"
1425 NUN$="74658275658284657383766577656
665688365788473657179"
1430 NUM$(LEN(NUM$)+1)=NUN$
1435 FOR N=1 TO 22:READ A:ARRAY(N)=A:NEX
T N
1450 RETURN

Fig. 6.13. The dimensioning and array subroutine.

Now that we've got the bit between our teeth, we can polish off the
rest of the su broutines. Figure 6. 13 shows the su broutine that deals
with dimensioning and arrays. Line 14~~ sets all the variables for the
scoring system to zero. Lines 14~5 and 14~6 dimension all the
strings and arrays that will be used for the names in the program.
Lines 141~ and 1412 create strings that will be used for messages.
The point of this is that if we printed these messages out in full, we
would either have lines that were too long, or we would have to use
GOTO instructions all over the place. Lines 1415 to 1425 then create
the strings that hold the names of the countries and the ASCII codes
for their capitals, using the same order. The codes have to be put into
two strings and then combined, because of the limit to the number of
characters that can be typed following one line number. The
combining operation is done in line 143~. Finally, the array of
numbers that holds the positions of question and answer words is
read in line 1435, and the subroutine returns in line 145~.

78 Get More From The Atari

5000 Q=V+11:REP$=NUr1$(ARRAY(Q),ARRAY(Q+l
) -1)
5010 ANS$="":FOR N=1 TO LEN(REP$) STEP 2
5015 J= (N+1) /2
5020 ANS$(J,J)=CHR$(VAL(REP$(N,N+l»)
5030 NEXT N
5040 RETURN

Fig. 6.14. Checking the answer.

1200 7 "}": 7 " INSTRUCTIONS"
1210 7 :7 "YOU WILL BE GIVEN THE NAt£ OF

A ": 7 "COUNTRY. YOU ARE ASKED TO TYPE T
HE"
1220 7 "NAf1E OF ITS CAPITAL CITY, AND TH
EN":? "PRESS ENTER. YOU ARE ALLOWED TWO"
1230 7 "ATTEMPTS AT EACH COUNTRY. nE Cot1
PUTER":7 "WILL KEEP Tt-E SCORE."
1240 7 "PRESS ANY KEY TO START."
1250 GET #1,X:RETURN

Fig. 6.15. The instructions - always leave these until you have almost
finished.

Next comes the business of finding the answer. We have planned
this, so it shouldn't need too much hassle. Figure 6.14 shows the
program lines. The variable V is the one that we have selected at
random, and we add II to it so as to find the corresponding answer
number. Since there are ten questions, theeleventh item in the arrayis
the answer to the first question, hence the II. We extract the string of
numbers from NUM$, and assign it to REP$, which is the reply for
this question. We now have to convert each number in REP$ into a
letter and add it to the string ANS$, which starts off blank in line
5~ I~. Lines 5~ I~ to 5~3~ build up the answer string. There are two
digits in each ASCII code, so we need the STEP of2 in the loop. The
limit of the loop is the number of characters in REP$, and we obtain
this by using LEN. Line 5~ 15 is a formula for J which picks out values
of 1,2,3 and so on as N goes in steps of 1,3,5, etc. Line 5~2~ then
places each letter into the answer string, using J as the position
number. The letter has to be found by extracting the number from
REP$ - using REP$(N,N+ I) - then VAL to get the number form,
then CHR$ to convert to a letter. That's the hard work over!

Figure 6.15 is the subroutine for the instructions, and Fig. 6.16 is
the title subroutine. Each of them includes a pause. Finally Fig. 6.17
shows the DATA lines along with another pause subroutine. Now
we can put it all together, and try it out. Because it's been designed in

Filing And Planning 79

1000 7 "}"
1010 POSITION 15,5:7 "CAPITALS"
1030 FOR N=1 TO 3000:NEXT N
1040 RETURN

Fig. 6.16. The title subroutine.

6000 DATA 1,8,15,22,28,36,42,49,58,66,71
,1,13,31,45,53,65,77,93,109,127,143
7000 FOR N=1 TO 200:NEXT N:RETURN

Fig. 6.17. The DATA lines that are needed, along with a time delay subroutine.

sections like this, it's easy for you to modify it. You can use different
names, for example. You can use a lot more names - but remember
to change the dimensioning. You can make it a question-and-answer
game on something entirely different, just by changing the data and
the instructions. Take this as a sort of BASIC 'Meccano set' to
reconstruct in any way you like. It will give you some idea of the
sense of achievement that you can get from mastering your Atari!

Chapter Seven

The Coarser Characters

The word 'resolution' keeps turning up when we discuss computer
graphics. Graphics, to start with, means drawing pictures on the
screen rather than letters or numbers. The resolution of graphics
is a measure of how much detail the pictures can show. Think
of it this way. Suppose you were presented with a picture frame
that was 12" X 9" in size. Imagine that this area was divided into
1000 square holes, and that you were told you could make a
picture by placing a coloured square into each hole. There's no way
that you could make a picture likethis which could display any fine
detail, and it would look reasonably good only if you viewed it at a
distance. That's what we mean by low resolution. The squares are
the picture elements (or pixels), and a comparatively small number
of pixels per picture means low resolution. On the other hand, if we
had divided the frame into 60,000 squares, it would be possible to

Mode Row Row Bytes of
No. Type Columns (S plit (Full memory

screen) screen) Colours used

~ Text 40 24 2 993
1 Text 20 20 24 5 513
2 Text 20 10 12 5 261
3 Graphics 40 20 24 4 273
4 Graphics 80 40 48 2 537
5 Graphics 80 40 48 4 1017
6 Graphics 160 80 96 2 2025
7 Graphics 160 80 96 4 3945
8 Graphics 320 160 192 I or 2 7900
9 Graphics - see text

and higher for examples.

Fig. 7.1. The Graphics Modes ofthe Atari. These are programmed by using the
GRAPHICS instruction.

The Coarser Characters 81

create pictures which showed much more detail. These would be
high resolution pictures. We can measure the resolution of pictures
by the number of pixels that will fit into the frame. A good TV
monitor can operate with about 250,000 pixels, but computers
generally don't give resolution as high as this. In any case, an
ordinary TV receiver can't cope with the sort of resolution that you
can get from a monitor.

Your Atari computer allows you a very wide choice of both text
and graphics arrangements. These arrangements are called modes,
and Fig. 7.1 shows what is available. The text modes allow text
(letters and numbers), as well as some graphics shapes, to appear on
the screen. The simplest of these text modes is mode ji, which is the
mode that is automatically selected when the Atari is switched on. If
you have been using the Atari in any other mode, you can select this
normal one by typing GRAPHICS ~ (or GR.~) and then pressing
RETURN. These different graphics modes require different
amounts of memory, allow different combinations of colours, and
have different figures of resolution.

Mode zero manipulations

Mode zero allows you to use a row of 4~ characters, though the
preset margins limit this to 37 characters unless you change them.
The number of rows is 24. Two colours can be displayed, and the
standard arrangement is blue for the main screen and black for the
border that surrounds it. Text on the screen appears as light blue on
a darker blue background. We can, however, change these border
and screen colours. When we change the background colour for the
screen, the characters of text will always appear as a lighter shade of
the same colour.

The instruction that has to be used to decide on the colour choice
is SETCOLOR (or SE). SETCOLOR has to be followed by three
numbers, thus:

SETCOLOR A,B,C
A is the register number
B is the colour number
C is the luminance number

The first number is a 'register' number, a register being a store for
information, and some registers in the Atari are used to store
information on items like colour and sound. The registers are

82 Get More From The Atari

Colour No. Colour Colour No. Colour

~
I
2
3
4
4
6
7

Grey (Black at zero luminance)
Gold
Orange
Red
Pink
Violet
Purple
Light blue

8
9

l~
II
12
13
14
15

Dark blue
Green-blue
Blue
Dark blue
Green
Dark green
Olive green
Orange

Fig. 7.2. The colours that can be used with the SETCOLOR instruction. The
colour numbers are listed as they appear at luminance 8. The actual colour
that you see depends on the luminance value, and also to some extent on the
tuning of the TV receiver.

numbered, and the one we can use to control the screen colour in
Mode ~ is register 2. The second number in the SETCOLOUR
instruction then specifies which colour we can use on the main part
of the screen. The numbers that we can use range from ~ to 15, and
are listed in Fig. 7.2. The third number is called the 'luminance'
number, and it decides how bright the colour will be. The range is of
the even numbers from ~ to 14. If you use an odd number, the effect
will be the same as that of the next lower even number. Using a
luminance value of zero makes the text on the screen appear very
dark; a value of 14 makes it look almost white. The normal
luminance value for text is 8.

Figure 7.3 is a program which illustrates this use of SETCOLOR.
The loop in lines I~ to 5~ places the complete range of colour
numbers into register 2, one at a time, so that you can see the range
of screen colours. The next loop, in lines 6~ to Ip~, alters the

10 ? "}":FOR N=0 TO 15:GRAPHICS 0
20 SETCOLOR 2,N,B
30 ? "COLOUR ";N
40 FOR J=l TO 1000:NEXT J
50 NEXT N:GRAPHICS 0
60 FOR N=0 TO 14 STEP 2
70 SETCOLOR 1,B,N
B0 ? "LUMINANCE ";N
90 FOR J=l TO 500:NEXT J
100 NEXT N

Fig. 7.3. A program which illustrates the use of SETCOLOR in Mode ¢.

The Coarser Characters 83

luminance of letters on the screen. These are controlled by the
number in register 1, so that SETCOLOR 1,8,N keeps the colour
constant (colour No.8), but alters the luminance. When the
luminance of the letters is the same as the luminance of the screen,

10 GRAPHICS 0:FOR N=0 TO 15
20 SETCOLOR 4,N,7:? "BORDER ";N
30 FOR J=1 TO 1000:NEXT J
40 NEXT N

Fig. 7.4. Alteri ng the border colours.

the letters are invisible - a very useful way of making letters
disappear and reappear instantly.

The other form of control that you can exercise with SETCOLO R
in mode ~ is on the border colour. The border is controlled by
register 4, and is normally set to a sombre black. We can alter this,
however, by use of SETCOLOR, and Fig. 7.4 shows this effect. The
loop that starts in line 1~ runs through the complete range of border
colours, so that the border can be set to any colour that you use for
the rest of the screen, or to a contrasting colour as you please. It is
the particularly wide range of colours and luminances that make the
Atari so very effective for striking displays, and we'll slowly unravel
some of its many secrets in this and the following chapters.

Now take a look at an extension to our notions of mode ~

graphics, in Fig. 7.5. As it stands, lines l~ to 5~ cause the word
ATARI! to flash on the screen. This is because the background is
being printed alternately dark (luminance 2) and bright (luminance
14). The text is being printed in a constant value ofluminance. Ifyou
lengthen the delay loop in line 1~~, you will be able to see these
changes in slow motion. In line 5~, GRAPHICS ~ (which you can

10 GRAPHICS 0:FOR J=1 TO 20
20 SETCOLOR 2,8,2:POSITION 17,12
30 GOSUB 100
40 SETCOLOR 2,8, 14:POSITION 17,12
45 GOSUB 100
50 NEXT J:GRAPHICS 0
60 POKE 752,I:FOR J=1 TO 6:READ D
70 COLOR D:PLOT 16+J,14:NEXT J
80 6OTO 80
90 DATA 65,84,65,82,73,33
95 END
100 PRINT "ATARI!":FOR X=1 TO 20:NEXT X:
RETURN

Fig. 7.5. Using different background luminance values to flash a complete
screen.

84 Get More From The Atari

type as GR.~ - the computer will always print the whole word) will
clear the screen. Line 6~ then introduces a useful instruction, POKE
752,1. This makes the cursor invisible, and it's a handy way of
preventing your graphics from being spoiled by having the cursor
appear to be tacked on to them.

This brings us to another instruction word. COLOR. Now this
one has different uses in different modes. In Mode~, where we are at
the moment, COLOR can be followed by a number. This will
normally be an ASCII code number, and its effect will be to print the
letter that corresponds to the code. The printing action is not carried
out by COLOR, though, but by another instruction PLOT. PLOT,
like POSITION, uses the column and row numbers following it to
determine where on the screen the letter will appear. We could do the
same by using POSITION and PRINT instructions, but it's useful to
have the alternative. Lines 6~ to I~~ illustrate this in action. Note
that line 8~ forms an endless loop. This is done to prevent the
READY appearing at the end of the program, and it's something
that you will see a lot of in graphics programs. Figure 7.6shows what
colours are available in each mode if the SETCOLOR numbers are
left at their 'default' values, that is the values that are fed into them
when you switch on the computer.

Register Colour Luminance Appearance

~ 2 8 Orange
I 12 l~ Sea blue/ green
2 9 4 Blue
3 4 6 Pale red
4 ~ ~ Black

Fig. 7.6. The default register colours in each mode.

Modes 1 and 2

Modes 1 and 2, which we can take together because they are so
similar, are also text modes. They have, however, some features
which don't exist in mode ji. To start with, the screen is split in these
modes. Screen splitting means that different parts of the screen can
be used for different purposes. Some five-sixths of the screen height,
starting at the top, is reserved for display.This means the display of

The Coarser Characters 85

text or graphics, anything that uses COLOR and PLOT, along with
some types of PRINT instructions. The remaining one-sixth of the
screen at the bottom is used for listing the program, putting in
commands, or for putting in the words that are specified by PRINT
instructions. The cursor and the READY will appear only on this
lower section of the screen. When you are in graphics modes 1 or 2
and you LIST, then the listing will be only in this small 'window' of
the screen. This can be a nuisance if you want to see the whole of a
short listing, and it's often useful to type GR.p and press RETURN
before listing. In these modes, the PRINT instruction by itself will
cause printing on the lower text window. If you want to use PRINT
in the main part of the screen, you have to use the modified
instruction PRINT#6. This is what Channel 6 is reserved for,
incidentally. You can, however, still use COLOR and PLOT in the
same way as on the Mode ~ screen.

Modes I and 2 allow you a lot more choice of colours, both for
background and for characters. As before, these colours are decided
by the SETCOLOR instructions, but if you don't use SETCOLOR,
there are default values. These are black for border and background,
and characters in orange, light green, dark blue and red. How do we
decide what character colours are used? Simply by the choice of the
code number for the characters. The strict ASCII code is abandoned
for these modes. Each character can be printed by four different
code numbers, and each different code number specifies a different
colour for the character. For example, the letter A can be placed on
the screen using code 65 (the normal ASCII code for A), which gives
orange. Code 97 gives A in light green, 193 gives dark blue, and 225
gives red. The program in Fig. 7.7 runs through the choice. Try it

10 GRAPHICS 1 J FOR N-l TO 255 STEP 32
20 FOR J-0 TO 31
30 IF N+J=1~ THEN 50
40 PRINT tt6;N+J;" "JCHR.(N+J);" ";
50 t£XT J
60 A-PEEK(764):IF A=~5 THEN 60
70 POKE 764,255
B0 PRINT tt6;CHR.(125)
90 NEXT N

Fig. 7. 7. The use of non-ASCII codes in Mode 1 (and 2) to print characters in
colour.

out, and then replace the GRAPHICS I in line I~ by GRAPHICS 2
to see the difference. The table in Fig. 7.8 shows what to expect. The
colours that are produced are the result of the code numbers that

86 Get More From The Ateri

,c~ .~~""
Character ,0' .~~q",' Character~:.,,,,~,,,~ ",q", q,,~

...:...~ :\ ...'" .~ ~
~ ..'"o.::!

~
.... ~

"
c.~ b'"

,-' ,,0 b'" ~<>'" c.0 ",<:' ..<>",<:' 6- q: ~qJq -s• 2 3 'I" • 2 3

32 0 160 128 0 [!J 64 96 192 224 [ffi [!]
33 161 129 ITJ [E 65 97 193 225 [ill @]
34 2 162 130 ~ OJ 66 98 194 226 [ill lliJ
35 163 131 00 [!] 67 99 195 227 [g [SJ
36 4 164 132 [!] (I] 68 100 196 228 [Q) @]
37 165 133 [%] [i] 69 101 197 229 [[] ~
38 6 166 134 lID lZJ 70 102 198 230 [[J [f]
39 7 167 135 ~ [SJ 71 103 199 231 [g §]
40 8 168 136 W G!il 72 104 200 232 [BJ [EJ
41 9 169 137 [I] [!J 73 105 201 233 [I] rn
42 10 170 138 ~ [iJ 74 106 :!02 234 [ill CD
43 II 171 139 G ~ 75 107 '!O3 235 ffiJ [I]
44 12 172 140 GJ ~ 76 108 204 236 aJ rn
45 13 173 141 0 Ll 77 109 205 237 [R] ~
46 14 174 142 Q [;] 78 110 206 238 [RJ [Q]
47 15 115 143 [Z] [;] 79 III 207 239 [Q] [Q)
48 16 176 144 [ill ~ 80 112 208 240 [£] [E]
49 17 177 145 ITJ [rJ 81 113 209 241 lID ~
SO 18 178 146 [Z] EJ 82 114 210 242 [EJ W
51 19 179 147 @ ~ 83 115 211 243 [§J ~
52 20 180 148 [1] ~ 84 116 212 244 IT] fI]
53 21 181 149 ~ ~ 85 117 213 245 [ill G:!]'"
54 22 182 ISO C?iJ [] 86 118 214 246 [Y] (YJ
55 23 183 151 [Z] [i] 87 119 215 247 (HJ ~
56 24 184 152 [ill ~ 88 120 216 248 [KJ WJ
57 25 185 153 [?J [[] 89 121 217 249 [Y] ~L"

58 26 186 154 IT] [g 90 122 218 2SO [1] 0
59 27 187 None [I] [IJ 91 123 219 251 W 00
60 28 188 IS6 0 00 92 124 220 252 [S] CD
61 29 189 1S7 G [!] 93 None 221 253 OJ ~
62 30 190 158 0 [!J 94 126 222 254 ~ [lJ
63 31 191 1S9 [1J ~ 95 127 223 255 [J [lJ

Fig, 7.8, Table of colours and characters for Modes 1 and 2.

The Coarser Characters 87

5 GRAPHICS·l
10 PRINT CHRS(125):FOR J=0 TO 3:FOR X=0
TO 11:SETCOLOR J,X+J,6:GOSUB 1000
20 FOR Y=l TO 50:NEXT Y
30 NEXT X:NEXT J
100 END
1000 FOR N=l TO 18:READ D
1010 COLOR D:PLOT 1+N,5:NEXT N
1020 RESTORE : RETURN
1030 DATA 65,116,193,242,73,0,109,197,22
5,78,115,0,195,239,76,111,213,242

Fig. 7.9. Obtaining differently coloured letters in a message.

exist in registers ~,I ,2, and 3. These colour and luminance values can
be altered by using the SETCOLOR instruction, as you might
expect. Figure 7.9 demonstrates the use of SETCOLOR in this way
and shows how effective Modes I and 2 are for coloured letters. Try
this one also with GRAPHICS 2 replacing GRAPHICS I in line 5.

The characters that have been displayed on the screen by these last
two programs are not the only ones that exist in Modes I and 2.
There is an alternate character set, which is obtained by a POKE
operation to address 756. We have made some use of these POKE
and PEEK operations, and now it's time to explain them. Each unit
of memory of a computer can store a number, and the range of
numbers is ~ to 255. So that we can get at each unit (or byte) of
memory, each one is numbered, and this number is, very reasonably,
called an 'address number'. A PEEK allows us to find what is stored
at an address, so that PEEK(756) will, for example, give the number
stored at address 756. This can be printed or assigned to a number
variable. POKE performs the opposite operation of altering what is

10 GRAPHICS 1
20 N=0:GOSUB 100
30 N=N+32:GOSUB 100
40 N=N+96:GOSUB 100
50 N=N+32:GOSUB 100
60 IF PEEK(756)=224 THEN POKE 756,226:GO
TO 20
65 END
70 DATA 71,82,65,80,72,73,67,83
100 FOR J=l TO 8:READ D
110 COLOR N+D:PLOT 5+J,12
120 NEXT J
130 RESTORE
140 FOR X=l TO 500:NEXT X
150 RETURN

Fig. 7.10. Using the alternate character set.

88 Get More From The Ateri

stored. POKE 756,226 will place the number 226 into memory
address 756. The rules, if you don't know what's going on inside your
computer, are simple. You can PEEK as much as you like, but don't
POKE unless you know what you are doing! Having said that, try
Fig. 7. 10. This prints a message in the various colours, and then
alters the content of address 756. The result of POKE 756,226 is to
bring in the alternate character set, so that the characters change.
You will have to carry out POKE 756,224, or use SYSTEM RESET
to get back to normal again.

Shapes on the screen

Using modes ~,1, or 2, we can produce patterns on the screen by
using the standard 'built-in' graphics blocks, or by the use of what
are called 'user-defined' characters. The built-in graphics characters
can be obtained from the keyboard by using the ESC key and the
CTRL key. If, for example, you press ESC, then CTRL H, you will
see a triangle shape appear. ESC followed by CTRL] will make the
other triangle shape. These shapes are illustrated in the Atari
manual. They can be printed in the same way as any other character.
All you need to do is to type the? mark followed by the usual quote
mark. You then type the shapes that you want, using ESC followed
by the CTRL key and whatever key will produce the character. At
the end of a row of characters, type another quote mark, and the
whole line can be printed. Unfortunately, I can't illustrate, because
the special shapes do not appear on my printer.

The alternative, which leads to much more interesting graphics
possibilities in these modes, is to create your own character shapes to

Top

Fig. 7. 11 . A grid that you can use to design your own character shapes.

The Coarser Characters 89

use in place of the ordinary text letters. This point is not covered at
all in the Atari manual, so I shall deal wit h it in detail in this chapter.
This facility, called user-defined graphics is available in most
modern designs of computers. At the time when the Atari was
designed, however, it was a most unusual feature, and there may be
many Atari owners who do not even know that it is possible.

Each character that we can print on to the screen, either by using
PRINT or by COLOR and PLOT, is stored in the memory of the
computer as a set of eight code numbers. These code numbers are, in
turn, derived from a set of 64 squares set in an 8 X8 pattern as in Fig.
7. I I. To create a character, you shade in sq uares on this block, or on
tracing paper placed on top of this block. You then write down a
code number for each row of eight squares. The code for each row is
found by adding the column numbers for the shaded squares, as the
illustration in Fig. 7.12 shows. In this way, you end up with a set of
eight code numbers for each character. You must always have eight
numbers. Even if there is a completely blank set of squares, its code
is ~, and this ~ must not be omitted. It's a machine you're dealing
with, remember!

Top

60

66

66

129

66

36
i--+--t

24

60

Fig. 7.12. An example of a 'user-defined' character.

QJ
o,

~ m
O.c

";;; (j)

Qj Qj
D~

E iii
:::J ~

c: ms:
QJ U
D (j)
0
uE

The code numbers which are used for the standard characters are
stored in memory which cannot be altered (called ROM Read
Only Memory). So that the computer can keep track of where these
numbers are stored, however, the starting address for the collection
of code numbers is stored at another place in the memory, and this
one can be altered. We have already met this address - it's 756. Ifwe
carry out:

PRINT PEEK(756)

90 Get More From The Atari

then we normally get the answer 224. This is not the actual address
number for the characters, but we can find the true address number
it's 256*224, which is 57344. The alternate character set is stored
starting at address 57856, which is 256*226. This is how we can
obtain the two character sets that we use in Modes I and 2.

There's nothing to stop us from putting any other number into
address 756, however. If the number that we place in address 756,
when multiplied by 256, happens to be the address of unused
read I write memory (RA M), then we can use that memory to place
code numbers for any shapes that we want, and we can use these
shapes for our own graphics patterns. The three stages in the process
consist of designing the shape, finding some free memory, and then
placing the code numbers into this memory.

Design-a-shape-time

Designing your character shape is the easiest part of the exercise.
Using the grid that was shown in Fig. 7.11, shade in the blocks that
you want to see lit on the screen. There's no particular reason to
work this way round - you can shade the blocks that you want to see
dark if you like, but most users seem to prefer to see shapes appear as
dark marks on white paper. We'll keep to one character block at the
moment, and Fig. 7.12 shows an example. The next thing is to
establish a set of eight code numbers for this character. We do so by
adding up the codes that are shown on top of the block for each
shaded piece of the grid. These numbers have been shown in the
example.

The next step is to find some spare memory. Unless you have
typed in an exceptionally long program, there will always be some
spare memory left, particularly in the 48K machines. The computer
keeps a track of this space memory in address 742. The numberthat
is stored here leads to the highest address that is free, and by
subtracting from this number, we can reserve some memory for our
own purposes. If we want to prepare a complete character set for
Mode~, we need to reserve 1024 units (bytes) of memory; for Modes
I and 2 we need only 512 bytes. If we don't intend to change every
character, we may need less than this, but we can't reserve less than
256 bytes.

The next step is a simple one. We POKE the eight data bytes that
describe our character into the first eight bytes of memory starting at
the address we find from PEEK(742), less the 1024 or 512 bytes

The Coarser Characters 91

(depending on Mode). This can be done by using a FOR... NEXT
loop that runs from ~ to 7, along with a variable name for the
starting address. Suppose, for example, that we have found that we
need to use the memory address 38917. We can assign this number to
some variable name such as CH (for character). The first memory
address that we shall use is CH+~, and the last is CH+7. If we now
want to repeat the loop to store another character, then we can use
CH=CH+8 to get to the next available memory location. We must
use consecutive units of memory for our characters - or keep a very
careful note of what addresses we do use.

As a result of all this, we will have a set of numbers stored in the
memory starting at address CH, and we can use this as an alternate
character set. We now have to 'point' the operating system of the
computer at this new starting address, so that the computer takes its
characters from this address rather than from 57344 or 57856. This is
done by changing the number that is stored in address 756. The
number that we need here is INT(CH/256). INT has been used
because this must be a whole number.

10 GRAPHICS 0:PRINT CHR$(125)
20 CH= (PEEK (742) >*256-1024
30 FOR J=0 TO 7:READ X
40 POKE CH+J,X:NEXT J
50 POKE 75b,INT(CH/256)
b0 FOR Z=l TO 2000:NEXT Z
70 POKE 75b,224
100 DATA b0,bb,bb,l29,bb,3b,24,b0

Fig. 7.13. The program which places the numbers into memory so as to print
the shape.

There's quite a lot to digest here, and it's best digested with the
aid of an example, Fig. 7.13. We have already designed the
character, so we can put its data numbers into a DATA line, and
design the rest of the program to suit. We start as usual by selecting
the graphics mode which also clears the screen. The next step, in line
2~, consists of finding the address of the top of the memory (using
CH=(PEEK(742»*256). Since we are using Mode ~' we need a
maximum of 1024 bytes of memory reserved, so we subtract this
from the result. Having found a starting address 1024 bytes below
the end of memory, and assigned this to CH, we can now POKE
numbers into this address. This is done in lines 30 and 40, using the
loop that runs from 0 to 7, as we outlined earlier. When the numbers
are stored in the memory, we then have to replace the normal
character set of the computer by our own set, and this is done in line

92 Get More From The A tar;

Top

130

198

40

16
(a)

24

36

66

129

10 GRAPHICS 0:PRINT CHR$(125)
15 SETCOLOR 1.2. 14:SETCOLOR 2.2.2
20 CH=(PEEK(742»*256-1024
30 FOR J=0 TO 7
40 POKE CH+J.0:NEXT J
44 FOR J=8 TO 15:READ D (b)
46 POKE CH+J.D:NEXT J
50 POKE 756.INT(CH/256)
55 PRI NT It! I It
60 FOR Z=l TO 2000:NEXT Z
70 POKE 756.224
100 DATA 130.198.40.16.24.36.66.129

Fig. 7.14. (a) The cross shape. (b) A better choice of memory will avoid filling
the screen with characters!

5~. After a delay programmed by line 6~, the normal character set is
restored by line 7~.

We don't have to do anything special to make these characters
appear on the screen! The normal character set of Mode ~ uses code
numbers ~ to 127, a total of 128 characters. Since each character
needs eight numbers in turn to describe it the whole set needs
128*8 = 1~24 bytes of memory, which is the reason for using
this figure. The characters are stored in order, so that the first eight
bytes of memory, starting from address CH, correspond to the
character whose code number is ~. These code numbers are not
ASCII codes, they are the 'internal' codes of the Atari, but the
manual shows you how they correspond to the ASCII codes. The
internal code ~ is a space, so that a blank screen is a screenful of code
~ characters. When we redefine this character, then, it appears all
over the screen!

If we want to print any other characters, however, we will have to
return to the normal character set. When this is done, in line 7~, the
screen will promptly change back to its normal appearance. If you

The Coarser Characters 93

want to keep using your own characters, you need to put them all in
at the memory addresses which start at address CH. For most
purposes, we don't want to fill the screen with new characters, so we
will want to replace a character other than the space character.
Figure 7.14 illustrates this. The character is a cross shape which is
created by the DATA line I~~. We go through the usual procedure
of reserving memory, but this time we fill the first eight bytes with
zero. This ensures that the space character is still a space, so that the
screen will not fill with shapes now. Our own data for the cross shape
is put into the next eight bytes of memory by lines 44 and 46.

Having put the bytes in place, the next step is to switch to this new
character set, if you can call two characters a set! This is done in line
5~ and then we're ready to display the character. Now if you look
again at the internal character set, you'll see that the character whose
internal code is I is the exclamation mark. This is the key we must
use to produce our own character on the screen, and it's done in line
55. The delay loop in line 6~ gives you time to look at your
handiwork, and then we return to the normal character set in line 7~.

Note that if you press BREAK before line 79 has been executed, you
will be left with only one character that can be printed! Your
commands, like GR.~ will, however, still be effective, though you
won't see them appear on the screen.

Cast of thousands?

An object which is only of the size of a single character doesn't make
much impression. You'll find, incidentally, that you may need
higher than normal luminance to make the character appear just as
you want it. For really impressive shapes, you need to use several
characters printed together, and this requires a lot more planning.
You have to start with a multiple-character grid, as in Fig. 7.15. This
allows for 24 character blocks, arranged as six across and four
down. It's a size that should be ample for most purposes. To plan
your shape, you place tracing paper over this grid and draw, keeping
to the path of the small squares inside the 8X8 blocks. If you find
that you need a larger grid, or if you want to work on a larger
surface, draw out your own master grid. The ideal material is the
old-fashioned eighth-inch graph paper, because the inch squares of
such graph paper look ready-made for use as character blocks.

Suppose you have traced a pattern, like the one in Fig. 7.16. How
do you go about plotting it on the screen? The answer is in much the

94 Get More From The Atari

c
C\l
s:-
~
o
E

F
ig

.
7

.1
6

.
A

p
a

tt
e

rn
tr

a
ce

d
on

th
e

g
ri

d
.

T
ra

ce
th

e
o

u
tl

in
e

s
o

n
ly

u
n

ti
l

yo
u

ar
e

sa
ti

sf
ie

d
,

th
e

n
fi

ll
in

th
e

co
rr

e
ct

sh
a

p
e

,
u

si
n

g
b

lo
ck

s
th

a
tc

o
rr

e
sp

o
n

d
as

cl
o

se
ly

as
p

o
ss

ib
le

to
yo

u
r

o
u

tl
in

e
.

7
8 13 16

5
6

~ Ct
l

(
)

(;
) tl> C
I) Ct
l (
) :::r tl> tl> C
")
.

Ct
l C
I) CD 0'
1

96 Get More From The Ateri

same way as before, but we have to make sure that we use characters
that we don't need for other purposes. Looking again at the internal
character set, Character 2 is the quotemark. Each time we have a
PRINT instruction, we need to use the quote mark to separate what
is printed from what is defined as a new character. We know that we
also must avoid redefining the space character. It's safer, then, to
avoid having any new shapes in the first three internal codes, ~,I and
3.

The going starts to get rough now. I want to illustrate the creation
and use of these characters in graphics Mode I rather than in Mode
~ (fig. 7.17). If, however, you switch to Mode I at the start of the
program, you will find that things don't exactly work out right. You
have to carry out the preparation work in Mode~, and then switch
to Mode I only when you are ready to roll. Lines I~ to 8~ are the

10 GRAPHICS 0
15 SETCOLOR 4,0,0
20 CH=(PEEK(742> >*256-512: ST=CH
30 FOR J=0 TO 23:POKE CH+J,0:NEXT J
40 CH=CH+16:FOR X=1 TO 16
50 CH=CH+8
60 FOR J=0 TO 7:READ D
70 POKE CH+J,D:NEXT J
80 NEXT X
85 GRAPHICS 1
90 POKE 756,INT(ST/256>
100 PRINT .0; ".$Y.&' ("
110 PRINT .6;")*+,-."
120 PRINT .6;" 101"
130 PRINT .6;" 2"
140 END
500 DATA 0,8,28,28,62,63,127,127
510 DATA 0,30,15,1,0,0,0,3
520 DATA 0,0,254,255,127,31,127,255
530 DATA 0,0,0,240,255,255,255,255
540 DATA 0,0,0,0,255,255,249,249
550 DATA 0,0,0,0,192,252,158,156
560 DATA 255,255,255,15,0,0,0,0
570 DATA 255,255,255,1,0,0,0,0
580 DATA 255,255,255,255,127,255,255,255
590 DATA 255,255,255,255,254,252,240,224
600 DATA 255,255,255,248,0,0,0,0
610 DATA 248,240,192,0,0,0,0,0
620 DATA 1,1,3,3,7,7,15,15
630 DATA 255,255,252,248,224,192,128,0
640 DATA 128,0,0,0,0,0,0.0
650 DATA 24,16,0,0,0,0,0,0

Fig. 7.17. Plotting the shape in Mode 1 is not so easy as in Mode 0.

The Coarser Characters 97

preparation lines for this example. The first thing to notice is that
less memory has to be used, because Mode I graphics need less. The
loop in line 3~ then places zero into the first three character
positions (24 bytes) so that we don't have any shapes corresponding
to the space, the exclamation mark, or the quote mark. The loop
that starts in line 4~ then changes the start-of-memory address, and
pokes our data into sixteen character positions. These will have
internal codes starting at 3, the # sign, and going up to 18, which is
the figure 2. Only when all this has been done can we change to
Mode I in line 85, poke the address of the new character set into 756,
and then print the shapes on the screen. Since we are using Mode I,
this needs the PRINT#6 instruction. The characters that are placed
between the quotes are the keyboard characters which normally use
the internal codes 3 to 18.

That's it! It takes a lot of planning and a rot of programming, but
the effect can be very gratifying. Now you may very reasonably
complain that all the shapes we have produced have been static, not
moving. It's possible to move a shape, like any of the ones we have
considered, by printing it at one position, waiting, printing a blank
shape of the same size, waiting and then repeating the process at
another position. On the comparatively low resolution screens that
we use with Modes ~,I and 2, though, the movement looks rather
jerky. Any kind of animation looks better on a higher-resolution
screen, and we'll look at that in the next chapter. In addition, you
will find that the Atari makes special provision for creating movable
user-defined graphics. These are often called 'sprites', but the Atari
users prefer to call them 'player-missile graphics'. Their main
advantage is that movement is much more easily programmed.

Chapter Eight

More Resolution

The graphics modes that we can obtain by using numbers 3 to 8
inclusive permit a wider choice of colours and resolution, and also
the use of some new instructions. The action of the COLOR
instructions is also changed when these modes are in use. There are
also some modes that the Atari manual doesn't mention, and we'll
take a look at these too.

The simplest way of approaching Modes 3 to 8 is by forming them
into groups. Modes 3, 5 and 7 permit four colours to be displayed by
simple instructions. Of these four, one is the border and background
colour, whose code number is stored in register 4. This colour will be
black by default - if you don't change it. Registersji, I and 2 are used
for foreground colours whose default values are orange, light green
and dark blue respectively. As usual, the actual numbers which are
stored in these registers can be altered by using the SETCOLOR
instruction. The COLOR instruction then selects which of the
registers will be used to provide the colour for any particular part of
the screen. The instruction COLOR ~ always selects the background
colour (register 4 in this case), and COLOR followed by numbers I
to 3 will select registers whose number is one less than the COLOR
number. In other words, if we use COLOR 2, we will select the
colour of register I; if we select COLO R 3, we take the colour code
from register 2, and so on.

Though these three Modes all permit the same choices of colours,
they differ considerably in the amount of resolution they can offer.
GRAPHICS 3 allows 40 columns and 20 rows when we use the split
screen. and 24 rows if we use the full height of the screen. The
extended height is obtained by adding 16 to the GRAPH ICS
number. so that GRAPHICS 19will give the effect ofG RAPHICS 3
but with all of the screen used for patterns. This is something that
you have to use with some caution, because it leaves no space for
messages. If there is an error message, or if the program ends with a

More Resolution 99

'READY', then the display automatically goes back to GRAPHICS
~ in order to display the printing. If you are using all of the screen,
then, you should disable the cursor and prevent the READY prompt
message by using an endless loop in your program.

GRAPHICS 5 uses 80 columns and 40 rows on its split screen,
with 48 rows available on the full screen. This offers four times as
much resolution as Modes I or 3. GRAPHICS 7 uses 160 columns
and 80 rows (split screen) or 96 rows (full screen), which gives sixteen
times as much resolution as Mode I or 3. These increased amounts
of resolution, along with the choice of four colours, are paid for in
use of memory. Mode 3 is economical, requiring less memory than
Mode ~ (432 bytes for a full screen). Mode 7, at the other extreme,
requires 4200 bytes of memory for a full-size screen display. The
Atari automatically commandeers as much memory as it might need
from the RAM. If you select GRAPHICS 7, for example, 4200 bytes
of memory will be reserved. You cannot use this memory for
program storage, even if nothing is placed on the screen. You can
find out how much memory is available by typing:

?FRE(~)

and pressing RETURN. The quantity which appears is the amount
of memory that is still available, not reserved or used in any way.

The drawing instructions

The two main drawing instructions for the high resolution graphics
are PLOT and DRAWTO. Each of these instructions has to be
followed by two numbers that locate the pixel on the screen. These
numbers are called co-ordinates, and they are our familiar column
and row numbers. The column number is referred to as the X co
ordinate number, and the row number is referred to as the Y co
ordinate number. The range of values that you can use for these X
and Y co-ordinates varies according to the graphics mode that you
are using. In Mode 3, assuming that the screen is split, you have the
use of 40 columns and 20 rows. This allows the use of numbers ~ to
39 as X co-ordinates, and ~ to 19 as Y co-ordinate numbers. As
usual, X=~ means the left-hand side of the screen, and Y=~ means
the top of the screen. For a full screen in Mode 3 (after using
GRAPHICS 19), the range of the Y co-ordinate numbers are ~ to 23.
In Mode 5 the X range is ~ to 79, and the Y range is ~ to 39 for the
split screen or ~ to 47 for the full screen. In Mode 7, the X co-

100 Get More From The Ateri

ordinate range is ~ to 159 and the Y range is ~ to 79 for a split screen,
or ~ to 95 for the full screen. Mode 7 corresponds to the high
resolution mode of many tow-cost computers which allow only one
text mode and one graphics mode.

PLOT graphics

Unlike POSITION, PLOT causes a pixel to be lit, assuming that a
foreground colour is used for the pixel. The main use of PLOT by
itself is to create graphs and other shapes that can be produced by
the use of equations. Figure 8. I shows an example of PLOT being

10 GRAPHICS 7:POSITION 0.40
20 COLOR 1:DEG
30 FOR X=5 TO 155
40 PLOT X.40+(COS(3*X>A3>*30
50 NEXT X

Fig. 8.1. The PLOT instruction being used to draw a graph.

used in this way, with Mode 7 graphics so as to obtain reasonably
high resolution. Line I~ sets the mode and also defines the starting
position. Line 2~ then uses COLOR I to ensure that the foreground
colour for the pixels will be the colour that is stored in register ~,

which is orange. This is the default colour, and we can change it by
use of SETCOLOR if we wish. For the moment, the default colour
will do very nicely. The second part of line 2~ uses DEG as an
instruction which prepares the computer to work with angles. When
DEG is used, the computer will take any figures for the size of angles
as being in degrees. If you do not use DEG, all angles are taken as
being in units of radians. A radian is about 57 degrees. Lines 3~ to 5~

then draw the graph. The quantity X is taken as the size of an angle,
and what is plotted as Y is the cube of the cosine of three times X,
multiplied by 3~, and to which 4~ has been added. The reason for
adding 4~ is so that the graph is centred on the screen. The cosine of
an angle can take values which range from -I to + I, and the cubes
will also be within this range. Multiplying by 3~ gives a range of - 3~

to +3~, and we add 4~ to make sure that the Y number is never
negative. The permitted range of Y, remember, is ~ to 79, and the
program will stop with an error message if you try to use any number
outside this range. The reason for using 3*X, incidentally, is so that
more than one complete cycle of the wave is drawn. The range of
angle for a complete cycle is 360 degrees, and our X range is only 5 to
155 in this example.

More Resolution 101

10 GRAPHICS 7+16:POSITION 0,40
20 DEG
30 FOR X=5 TO 155
40 COLOR l:PLOT X,48+COS(3*X>*45
50 COLOR 2:PLOT X,48+COS(3*X>~2*45

60 COLOR 3:PLOT X.48+COS(3*X>~3*45

70 NEXT X
80 GOTO 80

Fig. 8.2. Drawing multiple graphs in three colours.

Figure 8.2 shows the use of PLOT for more than one graph shape.
The preparatory steps in lines I~ to 3~ are as before, but the PLOT
steps in lines 4~ to 6~ will draw three graphs in different colours.
This is because each PLOT has been preceded by a COLOR
instruction which selects a different register. Once again, we are
making use of the default values in these registers, but we could alter
them by using SETCOLOR. The graphs are held on the screen at the
end of the plotting by using an endless loop in line 8~. This is
necessary because we are using the full height of the screen, having
typed GRAPHICS7+16 in line I~. Notice that we don't even have
to do the addition for ourselves!

DRAWTO in action

ORAWTO has to be followed by a pair of co-ordinate numbers in
the usual X-then- Y order. The action of ORA WTO is to draw a
straight line from the last point that was plotted, or drawn to, up to
the new point specified by the co-ordinate numbers. For example:

PLOT~,~:ORAWTO 39,23

will draw a diagonal line from the top left-hand corner (~,~) to the
bottom right-hand corner (39,23) in Mode 3, full screen. If
ORA WTO 39,23 were then followed by ORA WTO ~,23, then a line
would be drawn along the bottom of the screen from 39,23 to the
~,23 position.

All of that sounds quite straightforward, but there are a few
pitfalls for the newcomer. One is that you can't assume that the
drawing will be visible! Unless you specify a colour (using CO LO R)
for your drawing, you may find that it simply doesn't appear,
because the default is COLOR~, and that's background colour. The
other thing you have to watch is that the starting position of a
ORA WTO is not altered by the POSITION instruction, only by the
use of PLOT or another ORA WTO.

102 Get More From The Atari

10 GRAPHICS 7+16
20 COLOR 1
30 PLOT 30.10
40 FOR N=l TO 20:READ X.Y
50 DRAWTO X.Y:NEXT N
60 PLOT 70.30:DRAWTO 70.3:DRAWTO 65.6:DR
AWTO 70,9
70 PLOT 40.40:DRAWTO 40.50:DRAWTO 45.50:
DRAWTO 45.40:DRAWTO 40.40
80 PLOT 95.40:DRAWTO 95,50:DRAWTO 100.50
:DRAWTO 100.40:DRAWTO 95,40
90 PLOT 65,70:DRAWTO 50.95
100 PLOT 75,70:DRAWTO 90.95
110 GOTO 110
500 DATA 30.70,65.70.65.60.75.60,75,70.1
10.70
510 DATA 110.10.105.10.105.15,100.15.100
.10.95,10.95.30
520 DATA 45.30.45.10.40.10.40.15.35.15,3
5,10.30.10

Fig. 8.3. A shape formed with the use of PLOT and DRAWTO.

To work, then, on an example, Figure 8.3 shows a shape which
has been created with the use of PLOT and DRA WTO. The full
Mode 7 screen is used, and the colour is specified in line 2~. The
main outline of the shape is created by using a loop in lines 3~ and
4~. This reads X and Y numbers from DATA lines, and uses them in
the D RA WTO instruction. The fine details are then provided by
lines 6~ to I~~, and the pattern is maintained on the screen by the
closed loop in line II ~. Type it in and try it out. If you haven't done
anything like this before, the main astonishment is how quickly the
pattern is drawn!

Now before we launch into greater things, you should know how a
pattern like this is planned. Figure 8.4 shows what is involved. I used
graph paper which was scaled in 2cm and 2mm squares. I numbered
these in tens along the top and one side, placing the numbers on the
lines instead of on the spaces, and ignoring the ~ starting positions.
This way, it's easier to make use of the graph paper. The pattern is
drawn out, once again following the lines rather than trying to shade
in the spaces, and the X, Y numbers at each change of direction are
noted. I chose a starting position - it could have been any point, but
the top left-hand corner of 3~, I~ was convenient. From that, I got the
PLOT in line 3~, and the DATA numbers were derived from the
other points in the main shape. It's usually a good idea to put a small
cross at each point that you intend to use as DATA, and that's what
I did. From then on, it's plain sailing ... or castlebuilding!

:s:
<::>...
<b

:::0
<b
CIl
<::>

2"....
o'
:;:)

...
o
w

110,70

90,9550.95

30.70
70

80

x
--+

30 110
i I I I i I I I i

35.10 4010 65.5170
., 100,10 105,10

10t- 30'0M"·'0
70.7 \ /

95.10ClJ=r 10.10

3515Y 40,15 10015 105.15

20

30~ I 4530 1 I 195.30
7030

40.40045.40 95.400'00.41

4050 45.50 9550 10050

Fig. 84. Planning the pattern for the program.

90

104 Get More From The Atari

Circling around the point

One noticeable lack in the Atari graphics instructions is a CIRCLE
instruction. This is a pity, because circles are a useful part of your
drawing kit. Using BASIC, we can create circles, but the drawing is
slow. Figure 8.5 shows two methods which differ in appearance and
speed. The first method makes an approximation to the shape of a
circle by using straight lines. This is done by ORAWTO. The
drawing can be considerably speeded up by using a larger STEP size
in the loop of line 4p, but the shape is then less circular. The second
method uses plotting, but does not produce such a good appearance
unless you are looking for dotted circles. Take your pick!

10 GRAPHICS 7
20 X=80:Y=40:R=15
30 PLOT X,Y+R:OEG
40 FOR N=0 TO 360
500RAWTO X+R*SIN(N),Y+R*COS(N)
60 NEXT N
70 PRINT "FIRST METHOO"
80 FOR J=l TO 5000:NEXT J
85 GRAPHICS 7
90 PLOT X-R,Y
100 FOR J=(X-R) TO (X+R)
110 P=SQR(R~2-(J-X)~2)

120 PLOT J,Y+P:PLOT J,Y-P
130 NEXT J
140 PRINT "SECONO METHOO"

Fig. 8.5. Two circle-drawing routines.

10 GRAPHICS 7+16
20 COLOR 1
30 GOSUB 1000
40 COLOR 0
50 GOSUB 1000
60 GOTO 20
1000 PLOT 80, 10:0RAWTO 70,40:0RAWTO 80,7
0:0RAWTO 90,40:DRAWTO 80,10
1010 ORAWTO 75,35:DRAWTO 80,70:DRAWTO 85
,35:0RAWTO 80,10
1020 PLOT 70,40:0RAWTO 75,35:DRAWTO 85,3
5:0RAWTO 90,40
1030 FOR J=1 TO 100:NEXT J:RETURN

Fig. 8.6. Drawing alternately in foreground and in background colour to give a
twinkling appearance.

More Resolution 105

Now for something more ambitious, a touch of twinkle, twinkle
little star. Figure 8.6 is a program which illustrates the use of
COLOR in drawings. The drawing, of a double diamond pattern, is
carried out by a subroutine which starts at line l~~~. The closed
loop between lines 2~ and 7~ alternately draws this pattern in
COLOR 1, which makes the pattern visible, and in COLOR ~,

which makes the pattern invisible. There is no delay loop, so the
speed at which you see the pattern appear and disappear shows the
speed of the ORAWTO instructions. A curious point about this is
that it seems to present a 3-dimensional appearance. On my screen
at least, viewing the pattern from different angles made it look as if it
was quite solid.

Painting the picture

One of the glories of the Atari graphics instructions is a very odd
looking one, XIO. Most of its uses are for purposes that most of us
might never think of, but it has one application that is of very great
interest. That is to fill in a shape with colour! The rules for this action
are rather precise, and you will get odd results if you deviate from
them. Nevertheless, the action is very useful and surprisingly fast.

The rules are as follows:

I. PLOT a point at the lower right-hand edge of the space.
2. Use ORAWTO to make a line to the top right-hand corner.
3. Use DRA WTO to make a line across to the top left-hand corner.
4. Use POSITION to place the cursor at the bottom left-hand
corner.
5. POKE765,n:XIO 18,#6,~,~,"S: "

In this last command line, the 'n' is the same colour number that has
been used for drawing the lines in the first steps.

The XIO sequence will work perfectly only if you have gone
through these steps correctly. It is designed to be used with four
sided shapes but, if you make two of the points very close together,
the shape is as near as makes no difference a triangle. With a lot of
effort, it is possible to fill practically any shape with colour. Figure
8.7 demonstrates the stunning effect of watching XIO in action.
Mode 7 is used, and the SETCOLOR in line 2~ changes the colour
of the zero register to a high luminance light blue. The rectangle that
is defined by the instructions in lines 3~ and 4~ is then filled by line
5~, using a I poked to 765. Remember that a I here is like a COLOR

106 Get More From The Atari

10 GRAPHICS 7
20 SETCOLOR 0,9,12
30 PLOT 159,20:DRAWTO 159,0
4~ DRAWTO 0,0:POSITION 0,20
50 POKE 765,l:XIO 18,*6,0,0,"5:"
60 PLOT 159,79:DRAWTO 159,20
70 DRAWTO 0,20:POSITION 0,79
80 POKE 765,2:XIO 18,*6,0,0,"5:"
90 A=0.5:X1=60:X2=70:COLOR 3
100 FOR Y=20 TO 79
110 PLOT INT(X1-A>,Y:DRAWTO INT(X2+A>,Y
120 A=A+0.5
130 NEXT Y

Fig. 8.7. Using the XID instruction to fill a shape with colour.

I; it uses the colour of register zone. The next area is then defined by
lines 6~ and 7~, and filled by line 8~ with COLOR 2, a light green.
The awkward part is then performed by a more conventional action.
Lines 9~ to 13~ draw a set of coloured lines in dark blue across the
screen to fill in a shape which couldn't so easily be dealt with by XIO.
It's impressive .- watch it!

Two-colour modes

Modes 4 and 6 operate with two colours at a time, using register 4 for
the background and the border, and register ~ for the foreground.
As usual, the actual colour numbers in the registers can be changed
by using SETCOLOR, and the colours that are selected are put in
place by using COLOR ~ for background (remember that COLOR
~ is always background) and COLOR I for foreground. Mode 4
allows you the use of 80 columns and 40 rows (split) or 48 rows (full
screen). Mode 6 allows 160 columns by 80 (split) or 96 (full) rows.
These modes are used when the same resolution as modes 5 or 7
respectively is needed, but where only one foreground and one
background colour need be used. The advantage is that less memory
is needed as compared to Modes 5 or 7. Mode 4 needs 696 bytes for
full-screen display, as compared to the 1176 bytes that Mode 5, with
the same resolution but four colours, needs. Mode 6 needs 2184
bytes for the full screen.

To see these modes in action, take a look at the program in Fig.
8.8. This indicates the difference in the resolution of these two modes
by drawing a cross in each mode. The drawing action is carried out
by the subroutine which starts at line l~~~. This incorporates a

More Resolution 107

10 GRAPHICS 4:COLOR 1
20 GOSUB 1000
30 PRINT "I'1ODE 4"
40 FOR J=1 TO 3000:IIEXT J
50 GRAPHICS 6
60 60SUB 1000
70 PRINT "I'1ODE 6"
80 END
1000 PLOT 0,0:X=79:Y=39
1010 IF PEEK(87)=6 THEN X=159:Y=79
1020 DRANTO X, Y:PLOT 0, Y
1030 DRAWTO X,0:RETURN

Fig. 8.8. Comparing the resolutions of Mode 4 and Mode 6. Adiagonalline in a
lower resolution mode looks 'stepped'.

rather useful feature - how to find which mode you are using. Line
I~~~ places the cursor at the top left-hand corner, and then sets
values for X and Y which are the maximum possible values. Now the
values in line I~~~ are the values for Mode 4, and we need a different
set if we want to cover the whole screen in Mode 6. Line I~ I~

therefore tests for Mode 6. This is done using PEEK(87). The result
of this PEEK isa number which is the mode number. If the subroutine
has been called while Mode 6 is being used, then larger values
of X and Yare set before the ORAWTO and PLOT steps of line
1~2~ and 1~3~.

Mastering Mode 8

Mode 8 is the mode which is used for the highest resolution
graphics. Only one colour can be used in this mode, with two levels
of luminance, and control is exerted through registers 1,2 and 4.
Register I is used for the foreground, register 2 for background, and
register 4 for the border. COLOR I will select the foreground colour
for drawing, and COLOR ~ will, as usual, select background colour.
The resolution is 320 columns by 160 rows (split), or 192 rows (full
screen), and the memory that is needed is 8112 bytes for the split
screen or 8138 for the full screen display.

Mode 8 differs from the other graphics modes in having no way of
selecting foreground colour separate from background colour.
Though register I controls foreground, the colour of the foreground
is always the same as that of the background, and only the
luminance has any effect. The colour that appears for lines drawn in
this mode therefore depends on what colour you choose for the

108 Get More From The Ateri

10 GRAPHICS 8
20 1=319:W=159:GOSUB 1000
30 FOR Q=0 TO 15
40 SETCOLOR 2,Q,2
50 FOR J=l TO 500:NEXT J
60 NEXT Q
70 FOR Q=0 TO 14 STEP 2
80 SETCOLOR 2,2,Q
90 NEXT Q:GOTO 70
1000 FOR Y=0 TO W STEP 3
1010 PLOT 0,0:DRAWTO I,Y
1020 NEXT Y
1030 RETURN

Fig. 8.9. Fan patterns drawn in Mode 8.

background. The high resolution of this mode is nicely demonstrated
by drawing fan patterns, and Fig. 8.9 illustrates the appearance of
fine patterns drawn in Mode 8. The pattern is drawn by the
subroutine in lines I~~~ to 1~3~, and the various combinations of
background colour and foreground luminance are tried. Lines 3~ to
6~ alter the colour of register 2, so controlling the background
colour. Lines 7~ to 9~ then show the effect of altering the luminance
of the background. Once you have tried this, alter the register
number in line 8~ to I, and explore the effect of different foreground
luminance values.

The other graphics modes

Though the Atari manual mentions only Modes ~ to 8, you will find

10 GRAPHICS 9:1=79:W=159
15 COLOR 7
20 GOSUB 10043
30 FOR Q=0 TO 15
40 SETCOLOR 4,Q.Q
50 FOR J=l TO 500:NEXT J
60 NEXT Q
70 SETCOLOR 4,2,0
80 FOR C=0 TO 16:COLOR C
90 GOSUB 10t~0

100 FOR J=1 TO 100:NEXT J
110 COLOR 0:GOSUB 1000
120 NEXT C
130 END
1000 FOR Y=0 TO W STEP 3
1010 PLOT 0,0:DRAWTO I,Y
1020 NEXT Y
10343 RETURN

Fig. 8.10. Using Mode 9, which is not listed in the Manual.

More Resolution 109

that typing higher numbers will get you into graphics modes that are
quite different from the lower-numbered ones. As an example, try
GRAPHICS 9, illustrated in Fig. 8.10. This is a one-colour mode,
which allows register 4 to control the colour and the COLOR
instruction to affect the brightness. The resolution is 80 columns X
160 rows, unlike any other modes. In the example, the subroutine in
line I~~~ plots the pattern which will be familiar by now, and using
the brightness that is set by COLOR7. The loop in lines 3~ to 6~ then
runs through the range of colours that can be obtained. Lines 7~ to
I~~ then use a fixed setting of SETCOLOR, and explore the range
of COLOR which for this mode can be ~ to 16!The use of COLOR ~

in line II ~ followed by the GOS UBI~M then blanks out the
pattern. It's different!

There's more, though. Figure 8.11 demonstrates Mode I~, which
is a multi-colour mode. This again has resolution of 80 X 160, and it
uses register 3 to control the appearance of the first set of patterns,
and COLOR to control the second set. The useful range for COLOR
is 4 to 7 inclusive - other numbers will give the same colour range.
Figure 8.12 demonstrates Mode II in use. This is controlled by
register 4 and by the COLOR instruction once again, and offers a
wide range of colours, but with only two tones on the screen at one
time.

10 GRAPHICS 10:Z=79:N=159
15 COLOR 7
20 GOSUB 1eee
30 FOR Q=0 TO 15
40 SETCOLOR 0, Q, 0
50 FOR J=1 TO 500:NEXT J
60 NEXT g
70 SETCOLOR 3,2,7
80 FOR C=4 TO 7: COLOR C
90 GOSUB 1000
100 FOR J=1 TO 100:NEXT J
110 COLOR 0:GOSUB 1090
120 NEXT C
130 END
1000 FOR Y=0 TO W STEP 3
1010 PLOT 0,0:DRANTO Z,Y
1020 NEXT Y
1030 RETURN

Fig. 8.11. Mode 1¢ in action.

110 Get More From The Atari

10 GRAPHICS 11:1=79:W=159
15 COLOR 7
20 GOSUB 1000
30 FOR Q=0 TO 15
40 SETCOLOR 4,Q,0
50 FOR J=l TO 500:NEXT J
60 NEXT Q
70 SETCOLOR 4,2,7
80 FOR C=0 TO 16:COLOR C
90 GOSUB 1000
100 FOR J=l TO 100:NEXT J
110 COLOR 0:GOSUB 1000
120 NEXT C
130 END
1000 FOR V=0 TO W STEP 3
1010 PLOT 0,0:DRAWTO I,V
1020 NEXT V
1030 RETURN

Fig. 8.12. Mode 11 also exists and is demonstrated here.

Locating the plot

A lot of games programs need to be able to detect when an object
strikes another one, and one of the ways in which this can be done is
the LOCATE instruction. LOCATE has to be followed by three
variables. Of these, the first two are the familiar X and Y co-ordinate
numbers, but the third is a variable whose value will be assigned by
the LOCATE instruction. Suppose, for example, that you had
LOCATE 2~, I~,Q. The value that variable Q has, after this
instruction has been carried out, will depend on what was at position
2~, I~. Exactly what it is depends on which graphics mode you are
using. If you are using Mode ~, then Q will take the value of the

10 GRAPHICS 7:X=80:V=40:COLOR 1
20 PLOT 5,0:DRAWTO 5,79
30 PLOT 155,0:DRAWTO 155,79
40 POSITION X,V:K=l
50 GOSUB 1000
60 LOCATE X+K,V,Q
70 IF Q=1 THEN K=-K
80 GOTO 50
1000 COLOR 2:PLOT X,V
1010 FOR J=l TO 50:NEXT J
1020 COLOR 0:PLOT X,V
1030 X=X+K:RETURN

Fig. 8.13. Animating a dot, using alternate background and foreground
colours along with LOCATE.

More Resolution 111

ASCII code for whatever character is at position 2~, I~. In Modes I
and 2, the number will give the colour and character, using the codes
shown in the manual. In the high resolution graphics modes, the
value of Q will show which colour register is in use at the chosen
position.

Figure 8.13 shows a simple program which draws a pair of vertical
walls using COLOR I. The subroutine plots a point in colour 2,
then 'unplots' it by using COLOR ~, and shifts the X value. The
LOCATE test in line 6~ then discovers what register is in use at this
new position, and line 7~ tests this value. If a wall has been reached,
then the X values are reversed, and X becomes smaller each time K is
added. This causes the dot to carry out its Harvey Wallbanger
action, bouncing from one side to the other.

Sprites, or players and missiles

Several modern computers feature what are termed 'sprite graphics'.
A sprite is a user-defined character which can be moved around the
screen by the use of comparatively simple instructions. These
instructions obviate the need to draw the shape, undraw it, shift,
draw again and so on. Though sprite graphics are not mentioned in
the Atari manual, the Atari nevertheless possesses a very effective
sprite graphics system. The system is by no means elementary to use,
but the introduction to user-defined graphics in Chapter 7 should
have broken you in to the ideas that are needed for the creation of
characters at least.

There are two types of sprites available on the Atari, called
'players' and 'missiles' respectively. The width of a player can be up
to eight pixels, but its depth can be up to 256. These dimensions are
constant, no matter which graphics mode we are using. This allows a
player to take up the whole height of the screen if we want it to, but
its width is limited to the eight pixels, one column of a 40-column
screen. Missiles are only two pixels wide, and would normally use a
comparatively small depth, perhaps 8 pixels or so. The full screen
depth can be used, however, if you wish.

The particular advantage of these players and missiles is that they
can be moved around the screen so easily. They do not require the
character set to be changed, unlike user-defined characters and,
most remarkably, they use their own colour registers. Each sprite
object has its own colour register allocated to it, up to a maximum of
four players and four missiles. The use of these extra colour registers

112 Get More From The Atari

can permit up to four extra colours to appear on the screen. In this
way, by using Mode 1, which is normally a 5-colour mode, it would
be possible to display nine colours on the screen at one time by using
all four players (or missiles).

The problem about player-missile graphics, however, is that there
are no BASIC instructions for creating or using these objects. We
have to carry out all of these graphics operations by using POKE
instructions to place code numbers direct into memory, and this is
never quite so simple or straightforward. One minor consolation is
that the Atari system is no more complicated than any others, and
easier than some!

Creating sprites

As usual, we have to start by drawing out the shape or shapes that we
want. We have to use a planning chart which is eight blocks wide and
can be up to 256 blocks deep. In practice, we very seldom need so
much depth except when we are creating fancy borders on the
screen, so an 8 X 80 block as shown in Fig. 8.14, is usually enough.

The rules for creating a player pattern on this grid now resemble
very closely the rules for creating a user-defined character. The
squares which we shade in represent the pixels that will be lit, and
each line of eight pixels across can be represented by a code number.
The number is obtained, as before, by adding up the column
numbers for the shaded portions only. One important difference,
however, is that the position of the pattern vertically on an 8 X 256
grid will decide the vertical position of the player. If you make a

i 128

64

32
CD
u 16
(5

~ 8
4

2

1

<

\

)

128

64
l--+--+--+-I--+--I-~

32

16
-+-I--~--+--+---+--l

8

4
-+--+~-l----+--+-+--l

2

Fig. 8.14. An 8 by 80 block for creating sprite patterns.

More Resolution 113

player which is 6 pixels deep, and these are the first six pixels in a 256
block, then the player will appear at the top of the screen. Ifyou use
the last six pixels in the 256 deep block, the player will appear at the
bottom of the screen. For missile creation, you need to use only two
pixels' width, so that your artistic creativity is rather more restricted.

The next problem is that of storing the numbers. Strict rules have
to be applied here, because the computer must be able to make use of
the codes that you enter, whether the player is of full height or not.
The first thing that you have to decide on is whether you want to use
fine or coarse resolution for your sprite. Fine resolution sprites
require 256 bytes of memory to be set aside for each player, whether
the player is full height or not. Coarse resolution sprites need only
128 bytes each. The difference may not be important, depending on
the appearance that you want, but the amount of memory that has to
be set aside may be important. If we set our player codes starting at
intervals of 128 bytes, then the computer will display them as coarse
resolution. If we set them at 256 byte intervals, then the computer
will use fine resolution.

Placing the codes

We can place the codes for the sprites in the memory by using POKE
instructions, but there are restrictions on the starting address. If we
are using coarse resolution sprites, we have to use a starting address
that divides exactly by 1024. If we are using fine resolution sprites,
the starting address must be one that divides exactly by 2048. In
addition, the amount of memory that is needed will be either 1024
bytes (for coarse) or 2048 bytes (for fine). This is true whether you
use all of this memory or not. Even if each player uses only eight
bytes, the full allocation of memory must be available so that the
player can move vertically, and so that the set of numbers can start at
the correct address.

The allocation of memory for coarse sprites is illustrated in Fig.
8.15. If we number the first address in this part of memory as p, then
the bytes from ~ to 384 must not be used. This is because the
machine has to make use of them for other purposes. The addresses
between 384 and 512 are reserved for missiles, with up to four
missiles stored. A missile consists of only two pixels of width, so we
can pack four missiles into a block of eight pixels across, and this is
how missile information is stored. In this way, the data on four
missiles can take up the same memory as one player (Fig. 8.16).

114 Get More From The Atari

Coarse resolution Player No. Fine resolution

X+512 ~ X+I~24

X+64~ I X+128~

X+768 2 X+1536
X+896 3 X+1792
X+I~24 End of space X+2~48

Fig. 8.15. Allocation of memory for sprites. The number X is the address for
the start of the storage space.

Coarse resolution

X+384
X+511

Start of space
End of space

Fine resolution

X+768
X+I~23

Fig. 8.16. Allocation of memory for missiles. The number X is the address for
the start of the storage space.

The first memory space that can be used for a player starts at 512,
and subsequent players start at 64p,768 and 896. For fine resolution,
these numbers are 768 for missiles, and 1p24, 128p, 1536 and 1792 for
players. These numbers, remember, are added to the memory
address of the start of the reserved part of the memory.

We can use any part of the available memory for storing these
numbers, but it makes sense to use a part of memory which can't be
allocated to anything else. The snag is that the machine allocates its
memory differently when you change graphics modes, and this can
result in your numbers being wiped from the memory. The end of
memory is convenient for many purposes when no fancy effects are
being used, so we'll stick to this simple method.

The highest memory address that you can use is given by the
instruction PEEK(l96)*256. If you want to use coarse resolution
sprites, you must subtract IP24 from this number to obtain the
starting address for your sprite graphics numbers. For fine
resolution sprites, the number to subtract is 2~48. The result of this
su btraction is the start of the block of memory at which we can store
our sprite data. You can protect this address by preventing the

More Resolution 115

computer from using these addresses. This is done by dividing the
starting address by 256 and poking the result back into location I~ 6.
The computer cannot use any address higher than this value, so
preserving your graphics code numbers. For example, if PEEK(106)
*256 gives 4~96~, then the start address for coarse resolution sprites
will be 4~96~ - 1~24, which is 39936. This, divided by 256, is 156, so
that POKE I~6, 156 will ensure that the data is safe from the normal
action of the computer.

You can't, however, assume that the piece of memory that you
have roped off in this way will be clear, with each byte storing a zero.
The computer may have stored some bytes in this part of memory
during earlier parts of the program, and these bytes will affect the
appearance of your graphics if you allow them to stay in place. The
next step must therefore be to clean up this piece of memory for
each player or missile that you are going to use. Since each player or
group of missiles uses 128 bytes (coarse resolution), all 128 must be
cleared. This can be done by using a FOR... NEXT loop to poke ~

into each memory address.

10 GRAPHICS 5
20 REM
30 X=PEEK(106)-4:POKE 106,X/256
40 ST=X*256+512
50 FOR J=ST TO ST+127
60 POKE J,0:NEXT J

Fig. 8.17. A fragment of program showing how memory is allocated and
cleared.

Figure 8.17 shows where we have got to so far - it's not a working
program. By using X=PEEK(1~6)-4 in line 3~, we set X to a
number which when multiplied by 256 will give an address that is
1~24 bytes below the end of usable memory. This is because
4*256=1~24. We never need to clear the unused piece of this
memory, from the start to 384 for coarse players, to 768 for fine. If
we are not using missiles, then we don't have to clear the missile
memory region. We can start clearing at address ST, which is
X*256+512, as in line 4~. This is 512 bytes from the start of the
reserved piece of memory. We clear the memory for players by using
a loop in lines 5~ and 6~, which pokes a ~ into each address that will
be used by one low resolution player. Ifwe are using only one player,
we don't need to clear any more of the memory. One thing to watch
here is for repetition. Each time you repeat the steps in lines I~ to 6~

of Fig. 8.17, you will rope off more memory, until there is none left
to use! If you are likely to be running this piece of program several

116 Get More From The A tar;

times, then you should either poke back the original value into
address I~6 at the end of the program, or use the SYSTEM RESET
key to put all these values back to normal.

The range of memory that has been cleared in this way represents
the range of vertical positions for the player. Ifyou want your player
to appear first at the top of the screen, then you will poke the player
data bytes at the start of the cleared section of memory. If you want
the player to appear at the bottom of the screen,then you will poke
the player data bytes near the end of the cleared section. By shifting
all the data bytes together in the memory, you can make the player
image move vertically - but more of that later!

To make the image of the player appear, we ha ve to place the data
bytes into the memory, and then carry out some poking into
registers that control this image. Placing the data bytes into memory
is simple enough, using READ and POKE, and-we won't dwell on it.
The only point to note is that you might want to start poking the
bytes at an address such as ST+6~ rather than at ST, if you want the
image to appear about halfway down the screen.

This is where the tricky bits start. If the computer is to control the
antics of the player that you have created, it has to keep track of
where the data is stored. The first part of this is to store the address
X, which is the start of the whole block of reserved memory, into
address 54279. This allows the computer to find your data. You then
have to poke two 'enabling' addresses. The first of these enabling
addresses is 53277. This normally contains p, and a zero value does
not permit any sprites to appear. Poking 2 into this address enables
players, poking I enables missiles, and poking 3 enables both. The
second enabling address is 559. This normally contains ji, disabling
sprites. To enable players, poke 8, to enable missiles, poke 4, and to
enable both, poke 12 into this address. If you want to see fine
resolution sprites, you have to add 16 to each figure.

POKE No.

~ or 2
I
3

Effect

Normal width
Twice normal width
Four times normal width

Fig. 8.18. Poking different missile widths. POKE address 53260 controls the
width of all four missiles - you cannot select the width of anyone missile
independently.

More Resolution 117

These pokes allow the computer to locate a player or missile set of
data, and allow the result to be displayed. We now have to look at
how the size of sprites, their location and their colour can be
controlled. This, as you might expect, is also done by poking values
into register addresses. The width of both player and missile images
on the screen can be controlled. The normal width of a player is eight
pixels, and a missile is two pixels. We can, however, double or
quadruple the size of both players and missiles on the screen. The
width of players is governed by addresses 53256 to 53259, with 53256
controlling the first player. Ifyou don't intend to change the width of
a player, these registers can be left alone - the normal value is~. A
value of 1 will set double width, a value of 3 will set quadruple width,
but a value of 2 resets to normal again. The width of all missiles is
dealt with by the one address 5326~, and Fig. 8.18 shows how this
address has to be poked to affect the different missiles. Ifyou use one
missile only, then the numbers are the same as for a player,~, lor 3.

Start No.

~
16
32
48
64
8~
96

112
128
144
16~

176
192
2~8
224
24~

Colour

Black (white at max. luminance)
Gold
Orange
Red
Pink
Violet
Purple
Blue
Blue
Pale blue
Blue-green
Blue-green
Green
Dark yellow
Khaki
Pale orange

These are described as 'start numbers' because a luminance number ranging from
~ to 14 can be added. Even luminance numbers should be used. 9 gives no
luminance; 14 gives maximum luminance.

Fig. 8.19. Colour and luminance values for sprites.

118 Get More From The Atari

I. Decide on coarse or fine resolution.
2. Find starting address for POKEing values.
3. Write down starting addresses for each player and missile.
4. Write program lines to reserve memory and clear memory.
5. POKE number data for player/missile into memory.
6. POKE start address into 54279.
7. POKE 53277 to enable players, missiles or both.
8. POKE 559 to enable players, missiles or both. Remember to add 16to

the number if fine-resolution is being used.
9. POKE start positions for each player and missile.

10. POKE colours for each player and missile.

After this, POKE vertical and horizontal position as needed, along with
width and colour.

Fig. 8.20. A summary of the steps that are needed for creating sprite graphics.

The position of a player or missile in the vertical direction is
controlled by the position of the data in the 128 bytes (for coarse
resolution) that are allocated. Horizontal movement is controlled by
another set of addresses. For players, these are 53248 (first player) to
53251 (fourth player); for missiles, they are 53252 (first) to 53255
(fourth). A value of~ poked into one of these addresses will place the
player or missile at the extreme left-hand side of the screen, and 227
will place the object at the extreme right-hand side. Depending on
the width of the object, you may have to use numbers greater than ~

for the left-hand side, and less than 227 for the right-hand side if the
whole of the object is to be visible.

All that is left now is to decide the colour of players and missiles. A
player and its missile of the same number (l,2,3 or 4) will have the
same colour. The addresses which are used range from 7~4 (first) to
7~7 (fourth). Both the colour and the luminance can be set by a
number which is poked into the appropriate address. The
colourjluminance numbers are shown in Fig. 8.19. These are the
zero-luminance numbers, and you can add a luminance number of~
to 14 (even numbers only) to any of these colour numbers. In this
way, 192 will set the colour to green, and adding 8 will set the
brightness to about half of maximum.

That's it! Figure 8.20 summarises the steps that are needed for the
full specification of a single player. There's quite a lot of work here
but, as you will see, it can be very rewarding. The next step is to look
at an example of a player in use.

More Resolution 119

10 GRAPHICS 4
20 SETCOLOR 0, 12,4:SETCOLOR 4,8.4
30 X=PEEK(106)-4:POKE 106,X
40 ST=256*X+512
50 FOR J=ST TO ST+127
60 POKE J,0:NEXT J
70 FOR J=ST+60 TO ST+71
80 READ D:POKE J,D:NEXT J
90 POKE 54279,X:REM START OF TABLE
100 POKE 53277.2:REM PLAYER ONLY
110 POKE 559,8:REM PLAYER 1
120 POKE 53248,0:REM START POSITION
130 POKE 705,56:REM RED. LUM 8
140 GOSUB 1000
150 FOR J=0 TO 115
155 FOR Z=l TO 20:NEXT Z
160 POKE 53248,J:NEXT J:REM MOVE HORIZON
TALLY
170 GOSUB 1000
180 POKE 53256,l:REM DOUBLE WIDTH
190 GOSUB 1000
200 POKE 53256,3:REM QUAD
210 GOSUB 1000
220 POKE 53256,0:REM NORMAL
230 GOSUB 1000
240 FOR P=ST+60 TO ST+30 STEP -1
250 FOR J=0 TO 10
260 POKE P+J-l,PEEK(P+J)
270 NEXT J:POKE P+J,0
280 NEXT P
290 POKE 704,132:REM DISAPPEAR
300 POKE 54279,255:POKE 53277,15
310 POKE 559,34:POKE 53248.0
320 POKE 704,0:POKE 106,160
330 GRAPHICS 0:END :REM RESTORE NORMALIT
Y.
500 DATA 60,60,145,74,145.74,145.74.145.
74,145,74
1000 FOR Z=l TO 500:NEXT Z
1010 RETURN

Fig. 8.21. A program which illustrates the creation, movement, width and
colour control of a player.

Figure 8.21 contains the program which illustrates the creation of
a player, and of movement and expansion. Mode 4 is used, in which
points that are plotted on the screen will use register jl, so that line 2~

sets the contents of this register. The background is set to mid-blue
by putting colour 8 into register 4. Since we do not have any
COLOR or PLOT instructions in the program, there will be no
green lines drawn or areas coloured.

The steps in lines 4~ to l3~ have already been described in detail.

120 Get More From The Atari

Line 3~ finds a starting address X for the player data, using I~24
bytes, and protects this address. Line 4~ locates the starting address
for the first player, the only one that is used in this example. Lines 5~

and 6~ then clear this section of the memory, and lines 7~ and 8~ put
2 bytes of data into the memory - a jellyfish shape. The data for the
READ step is in line 5~~. Following this, a series of pokes sets up the
controls. Line 9~ places the start-of-data address into 54279, and
lines I~~ and II ~ enable player action. The starting position at the
left-hand side ofthe screen is determined in line 12~, and the colour
in line 13~. From this point on, all that we do is to manipulate the
position, width and colour of the player. So that you can see each
action, one at a time, a delay subroutine has been programmed in
line I~~~, and is called between each pair of steps.

Lines 15~ to 16~ move the jellyfish horizontally. This movement
is rather fast as jellyfish go, and it has to be slowed down by a delay
routine in line 155. You can control the speed of the horizontal
movement by altering the size of the count in the delay loop. Lines
l8~ to 22~ then demonstrate the effect of altering width, returning to
normal in line 22~. The routine that starts at line 24~ then moves the
jellyfish vertically. This is done by shifting each byte of data one
address number lower in its block of memory, and poking a zero into
the highest address (the last one used) each time. This is not a
particularly fast method of achieving vertical movement, but it's
good enough for a jellyfish. For faster movement, you may have to
resort to machine code rather than BASIC. Lines 3~~ to 33~ are
then used to restore normal operating conditions by putting the
normal values back in the registers.

Players and priorities

Finally, Fig. 8.22 shows a combination of ordinary graphics and
players, along with some more advanced techniques. Lines l~ to 4~

carry out a comparatively straightforward piece of drawing, with a
coloured column running down the centre of the screen. Some Atari
users refer to a piece of graphics like this as a 'playfield'. Line 5~

chooses a starting address for the player data - this is considerably
lower than we have used up to now. This lower starting address is
necessary, because the techniques that we shall use simply don't
work if higher addresses are used. Lines 7~ to 8~ clear the portion of
memory for two players, and the player code numbers are poked in
place in lines 9~ to 13~. There's nothing particularly impressive

More Resolution 121

10 GRAPHICS 7+16
20 COLOR l:PLOT 90,95:DRAWTO 90,0
30 DRAWTO 70,0:POSITION 70,95
40 POKE 765,1:XIO 18,#6,0,0,"S:"
50 X=PEEK(106)-24
60 ST=256*X+512
70 FOR J=ST TO ST+512
80 POKE J,0:NEXT J
90 FOR J=ST+63 TO ST+68:READ D
100 POKE J,D
110 NEXT J
120 FOR J=ST+317 TO ST+324
130 READ D:POKE J,D:NEXT J
140 POKE 54279,X
150 POKE 53277,2
160 POKE 559,42:REH 34+8 FOR BOTH
170 POKE 53248,0:POKE 53250, 159:REH POS
TION
180 POKE 704, 50: POKE 706,202:REH COLOUR
190 POKE 623,1
200 GOSUB 1000:REH HOVE
210 POKE 623,2
220 GOSUB 2000:REH RETURN
230 POKE 623,4
240 GOSUB 1000
250 POKE 623,8
260 GOSUB 2000
270 FOR Z=1 TO 500:NEXT Z
280 POKE 54279,255:POKE 53277,15
290 POKE 559,34:POKE 53248,0
300 POKE 704,0:POKE 106,160
310 GRAPHICS 0:END
500 DATA 16,16,56,124,254,255
510 DATA 129,66,34,18,10,6,126,128
1000 FOR J=1 TO 227
1010 POKE 53248,J:POKE 53250,228-J
1020 FOR Z=1 TO 30:NEXT Z
1030 NEXT. J:RETURN
2000 FOR J=227 TO 1 STEP -1
2010 POKE 53248,J:POKE 53250,228-J
2020 FOR Z=1 TO 30:NEXT Z
2030 NEXT J:RETURN

Fig. 8.22. Illustrating player priority selection. Priority can be allocated with
reference to scenery or other players.

about the shapes - I simply want two shapes that are distinctly
different. One of the players is a Player I, the other is a Player 3. I
have done this in preference to a I and a 2 so as to illustrate some of
the remarkable effects that the Atari can achieve when these two (or
a 2 and a 4) are used.

The pokes in lines 14~ to 19~ then plan out how the players will

122 Get More From The Ateri

appear. One important difference here is the number that is poked
into 559. We would normally poke 8 into this address to enable
coarse resolution players, and 24 to enable fine resolution players.
When we want to display a background of normal graphics as well,
however, different numbers have to be used. The rules here are not
so clear, but I found that using the number 34 added to the normal
player number gave the results I wanted. In this case, to enable
players means adding 8, so that the number to be poked is 34+8=42.
The other pokes in these lines should be clear enough, remembering
that we are using two players.

Now for the novelty. The Atari provides for what is called
'priority'. Priority comes into effect when a sprite moves across
graphics, or when one sprite crosses the path of another. By
assigning priority numbers, we can make sprites appear to pass in
front of non-moving graphics shapes (playfield), or behind these
shapes. We can also make sprites appear to move so that one will
always appear to pass in front of another, or so that one colour will
always appear to be in front of another. This takes us perilously
close to really advanced programming, much more than should be in
a beginners' book, but it's such an interesting and little-known
aspect of the Atari that it's worth a mention.

The register address that decides priority is 623, and the effect of
poking different numbers into this register is shown in Fig. 8.23. Just

POKE instructions into address 623

1. All players have priority over normal graphics.
2. Players ~ and 1 have priority over other players and normal graphics.
4. Normal graphics have priority over all players.
8. Graphics using colour registers ~ and 1 have priority over all players

and over graphics in colour registers 2 and 3.

Fig. 8.23. The effects of poking different numbers into address 623.

to demonstrate this, look back to the program of Fig. 8.22 which
starts a series of moves in line 19~. Line 19~ pokes I into register 623,
which has the effect of giving priority to players over the playfield
graphics. The subroutine at line l~~~ then causes the two players to
move in opposite directions, and you will see them both pass 'in

More Resolution 123

front' of the column at the centre of the screen. In line 21~, the
number that is poked into 623 is 2, which gives the first two players
priority. Since we have a first player and a third player, this gives the
first player priority over both the playfield and the third player
(there's no second or fourth), and we will see the first player pass in
front and the other one pass behind. This uses the subroutine at line
2~~~ to reverse the direction of both players. Next time, with 4
poked into 623, the background has priority over both players, so
that the moving players seem to pass behind the column. Finally, in
line 25~, poking 8 into the register gives priority to any graphics that
use colour registers ~ or I, and the players again seem to pass behind
the column. Finally, lines 28~ to 31~ restore normal conditions in
the registers, so that you aren't left with a paralysed computer at the
end of the show! If you forget these steps, you will have to press the
SYSTEM RESET key when the program has finished.

Chapter Nine

Sounding Out The Atari

The ability to produce sound is an essential feature of all modern
computers. The sound of the Atari comes from two places. One of
these is the loudspeaker of the TV receiver that you use to see the
display, so you have more control over the volume of this sound
than is possible with a lot of other computers. In addition, the Atari
has its built-in speaker which is normally used to deliver the warning
honks that you hear when you are using the program recorder.

What we call sound is the result of rapid changes of the pressure of
the air round our ears. We don't notice these pressure changes unless
they are fairly fast, and we measure the rate in terms of cycles per
second, or hertz. A cycle of a wave is a set of changes of pressure.
first in one direction, then in the other and back to normal, which we
can illustrate by the graph in Fig. 9.1. The reason that we talk about
a sound wave is because the shape of this graph is a wave shape.

The frequency of sound is its number of hertz - the number of
cycles of changing air pressure per second. If this amount is less than
about 20 hertz, we simply can't hear it, though it can still have
disturbing effects. We can hear the effect of pressure waves in the air
at frequencies above 20 hertz, going up to about 15000 hertz. The
frequency of the waves corresponds to what we sense as the 'pitch' of
a note. A low frequency of 80 to 120 hertz corresponds to a low
pitch bass note. A frequency of 400 or above corresponds to a high
pitch treble note.

The amount of pressure change determines what we call the
loudness of a note. This is measured in terms of amplitude, which is
the maximum change of pressure of the air from its normal value.
For complete control over the generation of sound, we need to be
able to specify the amplitude, frequency, shape of wave, and also the
way that the amplitude of the note changes during the time when it
sounds.

The""Atari allows you very little control over the built-in

Sounding Out The Atari 125

Direction of Wave..
I III II-.

High pressure Low pressure

Small amplitude Larger amplitude

Frequency = Number of
waves passing a fixed
point in one second

~l,econd~
Fig. 9.1. A graph of a sound 'wave', illustrating amplitude and frequency.

loudspeaker with ordinary BASIC commands. Very much more can
be done with machine code, but that is beyond the scope of this
book. We can exert some influence by means of POKE instructions,
as Fig. 9.2 shows. The effect of POKE 53279;~ is to push air forward
from the speaker. POKE 53279,8 pulls the air back, and the two
together cause a wave of sound. The Atari will perform the action of
POKE 53279,8 automatically at a time which is about a fiftieth of a
second after the POKE 53279,~, so that we can produce sounds by
this one command. In Fig. 9.2, the loop in lines 2~ to 5~ performs
this poke so that a buzz is produced. In lines 6~ to 9~, a delay loop is
added to alter the pitch of the buzz. Try for yourself the effect of an
extra line:

4~ POKE 53279,8

on the sound that is produced by the first part of the program. You'll

126 Get More From The Atari

10 GRAPHICS 0
20 FOR J=l TO 200
30 POKE 53279.0:REM PULSE
5') NEXT J
60 FOR J=l TO 10
70 POKE 53279,0
80 FOR 1=1 TO 50:NEXT 1
90 NEXT J

Fig. 9.2. Controlling the built-in loudspeaker directly. Only buzzing sounds
can be produced with programs of this type.

find that this produces a more highly pitched buzz.
These buzzes are useful for some warning purposes but more is

needed for most of the applications that we have for sound effects.
This is provided by the SOUND instruction. The SOUND
instruction has to be followed by four numbers. Of these, the first
number is a channel number. The Atari can produce four notes of
sound at the same time, and all four notes can be separately
controlled. This is done by allocating each note to a separate
'channel'. These channel numbers can range from ~ to 3; any
attempt to use higher numbers will cause an 'ERROR 3' message.

The second number that follows the SOUND instruction is the
pitch number. This controls the pitch of the note that is produced by
the Atari, and its range is ~ (highest pitch note) to 255 (lowest note).
The musical equivalents are shown in Fig. 9.3, which shows the

:II I 1I II II : I I I II~I

D E F G A B C D E F G A B C D E F G I
A

Mlc1dll'C

__ ---y ----.J,~__~y......---.-//\'-.. ----y- -
01 02 en

Fig.9.3(a)

TREBLE

n
II" E

/ c
1 1 A
-, :;7 F

L

F

o
B
c;
E

c-e-

G
A

E F
CD

A B
--------------:..:.G

IlASS B~:-----------:;:...
Fig.9.3(b)

Sounding Out The Atari 127

C 29
B 31
A# or B~ 33
A 35
G# or A~ 37

Octave G 40
3 F# or G~ 42

F 45
E 47
D# or E~ 50
D 53
C# or D~ 57
C 60

Treble B 64
A# or B~ 68
A 72
G# or A~ 76
G 81

Octave F# or G~ 85
2 F 91

E 96
D# or E~ 102
D 108
C# or D~ 114

Middle C > C 121
B 128
A# or B~ 136
A 144
G# or ~ 153
G 162

Octave F# or G~ 173
I F 182

E 193
Bass D# or E~ 204

1
D 217
C# or D~ 230
C 243

(c)

Fig. 9.3. (a) The piano keyboard, showing the notes and Middle C. (b)A table of
notes with their corresponding pitch numbers. (c) Musical notation showing
the notes set out on the treble and bass staves. Note the position of Middle C,
between treble and bass.

128 Get More From The Ateri

piano scale and also the pitch numbers that correspond to written
notes. The piano is the most familiar type of musical instrument, and
its keyboard is set out so as to make it very easy to play one
particular series of notes, called the 'scale of C Major'. The scale
starts on a note that is called Middle C, and ends on a note that is
also called C, but which is the eighth note above middle C. A group
of eight notes like this is called an octave, so that the note you end
with in this scale is the C which is one octave above Middle C.

The appearance of these keys on the piano keyboard is illustrated
in Fig. 9.3(a). Middle C is, logically enough, at the centre of the
keyboard, and we move right for higher notes, left for lower notes.
One of the complications of music, however, is that the frequencies
of the notes of a scale are not evenly spaced out. The 'normal' full
spacing is called a 'tone' and the smaller spacing is called a
'semitone', Each scale will contain twelve semitones.

The third number in the SOUND instruction is one that is much
less simple to use. It is called a distortion number, and it controls the
type of note that you get from the sound system. Its value has to be
an even number between ~ and 14. Odd numbers cause only a single
click in the loudspeaker. We shall look at the effect of different
values of this number later in this chapter. For now, the value of l~

is a useful one to know, because this produces a pure tone, more
suitable for music.

Finally, the fourth number sets the relative volume of the note.
Relative volume means that if you use different values of this
number with the same setting of the volume control of the TV
receiver, you will hear different volumes of sound. You can set the
absolute volume as you wish by using the volume control of the
receiver as usual. The range of values for this number is ~ (silence) to
15 (full volume). Numbers greater than 15 will not cause an error
message, but they won't cause any sound either!

Let's start our investigation of the SOUND instruction with a
simple single note. This is illustrated in Fig. 9.4, which has the
SOUND instruction in line 2~. Channel ~ is used, and the pitch of
the note is selected by the nurnber 121, which gives Middle C. This is
the note which is placed at the centre of the piano keyboard. A

10 GRAPHICS °
20 SOUND O,121,10,10
30 FOR Z=1 TO S00:NEXT Z
40 SOUND O,O,O,O

Fig. 9.4. A simple single note program.

Sounding Out The Atari 129

distortion number of l~ is used to give a pure sound, and a volume
of 8 is used. When you are using one channel, as we are here, you
have complete freedom with these volume numbers. When more
than one channel is in use, however, the volume numbers have to be
more carefully selected, as we shall see later.

Line 2~ turns the sound on, and the action is that the sound will
continue until something happens to turn it off. To control how long
the sound lasts, we use a delay loop in line 3~. The turn-off
instruction is in line 4~, in the form of SOUND ~,~,~,~. This is the
method of turning off the sound that we shall use throughout this
chapter. Pressing the SYSTEM RESET also turns off the sound,
but that's a desperate measure!

The next step is to investigate the use of more than one channel of
sound. When we do this, we have to be careful about the volume
numbers. The sum of all the volume numbers of all the channels we
use should not exceed 32. If it does, the sound will be distorted. This
can cause some interesting effects, but for the moment we'll stick to
the straightforward sound instructions. Figure 9.5 shows a chord

10 ? "}"
20 SOUND 0,255,10,8
30 SOUND 1,173,10,8
40 SOUND 2,144,10,8
50 SOUND 3,108,10,8
60 FOR Z=1 TO 500:NEXT Z
70 FOR C=0 TO 3:SOUND C,0,0,0:NEXT C
80 END

Fig. 9.5. A chord using all four channels.

being sounded with all four channels. A volume number of 8 has
been used on each channel so as to keep to the limit of 32 for the total
volume. As it happens, you will find when you use these instructions
for music that it's often better to use lower values of volume for notes
of higher pitch. This is because your ear is more sensitive to high
notes than to low notes, but you will have to experiment with this
for yourself. The sound is turned off in this example by using a loop
in line 7~ which sets all the numbers to zero in all four channels.

10 ? "}":FOR J=255 TO 1 STEP -1
20 SOUND 0,J,10,8
30 FOR Z=1 TO 5:NEXT Z
40 NEXT J
50 SOUND O,O,O,O
60 END

Fig 9.6. Programming for a rising pitch note.

130 Get More From The Atari

10 ? "}":FOR J=1 TO 200
20 SOUND O,121,10,8
25 FOR Z=1 TO 20:NEXT Z
30 SOUND O,130,10,8
40 NEXT J
50 SOUND O,0,0,O
b0 END

Fig. 9.7. A warbling note program.

Special effects department

The SOUND instruction can produce a large range of useful sound
effects. Let's start with a rising pitch of note which makes a useful
warning, or a 'something about to happen' note. This is illustrated in
Fig. 9.6. The loop that starts in line l~ uses values of J that range
from 255 to I, the full range that the SOUND instruction permits.
These are the numbers that we shall use as pitch numbers in the
SOUND instruction in line 2~. Line 3~ is a short delay which
stretches out the note.

Figure 9.7 shows a program that produces a warbling note. This is
particularly useful for attracting attention, or for announcing an
event in a game. For some reason, a warbling note attracts our
attention more than a single note, which is why a warbling note was
chosen for the later types of telephones. The warble in this program
uses the loop that starts in line l~. This sounds 200 pairs of notes,
which are short with a duration set by the short time delay loop in
line 25. The two pitch numbers that have been chosen in this
example are 121 and 13~. Higher pitches are even more effective,
and values like 2~ and 3~ give effective attention-getting warbles.

Distortion unlimited

It's time now to investigate the effect of the distortion number on the

10 ? "}":FOR J=0 TO 15
20 POSITION 5,5:? "DISTORTION ";J
30 SOUND 0,121,J,8
40 FOR Z=1 TO 500:NEXT Z
50 NEXT J
b0 SOUND O,O,O,O
70 END

Fig. 9.8. Investigating the effect of different distortion numbers on one note.
Try this with other note values also.

Sounding Out The Atari 131

sound that you hear. The effect is anything but simple, and because
it's difficult to describe in words what a noise sounds like, you simply
have to try the programs and listen! We'll start in Fig. 9.8 with a
simple example. This sounds Middle C, and allows the note to be
sounded with all possible values of distortion number. Each number
is printed on the screen just as you hear the sound. The delay loop in
line 4~ holds the sound long enough to make an impression. At the
end of the program, line 6~ cuts off the sound as usual. It's
particularly interesting to try this program out with a number of
different pitch values.

Now while this will introduce you to some of the effects that can
be generated by the use of different distortion numbers, it tells you
only part of the story. Distortion numbers of 4 and 8 are very useful
for noises, but the use of a single note does not illustrate the
remarkable effects that you can get with a distortion number of 12.
This can have the effect of generating notes that are outside the
normal range of pitch, as Fig. 9.9 illustrates. In this program, a

10 ? "}":FOR N=255 TO 0 STEP -1
20 POSITION 5,5:? "NOTE ";N
30 SOUND 0,N,12,14
40 FOR Z=1 TO 100:NEXT Z:? "}"
b0 NEXT N
70 SOUND O,O,O,O
80 END

Fig. 9.9. The effect of different note numbers when distortion number 12 is
used.

distortion number of 12 is used along with the full range of note
numbers. As the program proceeds, you will hear very low-pitched
notes being produced at certain note numbers. If you want to make
use of these notes, which need a large loudspeaker for good
reproduction, you may want to place a GET step in line 4~ rather
than a delay loop. You can then listen to each note more carefully,
and compare it with notes sounded on a piano or other instrument.

More special effects

Back to the effects! Figure 9.10 shows the effect of varying the
volume number in a loop that contains a SOUND instruction. The
effect can be a very useful one, and it can be extended. For
example, the piece of program in Fig. 9.10 can be used as a
subroutine, and repeated several times. Alternatively, the volume

132 Get More From The Atari

10 ? U}":FOR N=0 TO 15
20 SOUND 0,B1,14,N
30 FOR J=l TO 50:NEXT J
40 NEXT N

Fig. 9.10. Varying the volume number in a loop.

can be decreased instead of being increased, or it can be alternately
increased and decreased. As is the case with all of these Atari
instructions, there is a lot of room for experimenting to find the
effect that you want.

After that introduction, let's go to some more full-blooded sound
effects which make use of all that we have discovered so far. Figure
9.11 gives a reasonable impression of surf breaking on a distant
shore. The number of waves is given by the outer loop, using Z. The
pitch of the sound is regulated by the number N in the next loop, and
the type of noise is chosen by using a distortion number of 8 in line
2~. The delay loop in line 3~ holds the sound long enough to appear
realistic, and when all of the loops have finished, line 5~ stops it all
and brings you back to reality.

10 ? U}u:FOR Z=l TO 5:FOR N=50 TO 0 STEP
-1

20 SOUND 0,N,B,10
30 FOR J=l TO 50:NEXT J
40 NEXT N:NEXT Z
50 SOUND 0,0,0,0
60 END

Fig. 9.11. A program that creates a surf sound.

Next item, gunshots. Figure 9.12 attends to this useful sound
effect, using a distortion number of ~. The pitch number of 2 is used
(there is plenty of scope for experiment here), along with maximum
volume. The duration ofthe shot is fixed by the delay loop in line 3~,

and the number of shots (six, of course) by the loop that starts in
line 1~. You can modify this type of sound to give a 'pneumatic drill'
effect, as Fig. 9.13 shows. This one uses a distortion number of 2 and
a pitch number of 1~~. The loop in line 3~ controls the time for
which the drill is operating, and the loop in line 6~ controls the off

10 ? "}":FOR X=l TO 6
20 SOUND 0,2,0,15
30 FOR J=l TO 100:NEXT J
40 SOUND 0,0,0,0
50 FOR J=l TO 500:NEXT J
60 NEXT X
70 END

Fig. 9.12. A gunshot effect.

Sounding Out The Atari 133

10 ? "}":FOR X=1 TO 5
20 SOUND 0,100,2,15
30 FOR J=1 TO 500:NEXT J
40 SOUND 0,0,0,0
60 FOR J=1 TO 1000:NEXT J
70 I'IEXT X

Fig. 9.13. A pneumatic drill effect.

10 ? "}":FOR X=1 TO 10
20 GOSUB 1000
30 FOR J=1 TO 100:NEXT J
40 GOSUB 1000
50 FOR J=1 TO 500:NEXT J
60 NEXT X
70 END
1000 SOUND 0,80,10,10
1010 SOUND 1,100,4,10
1020 FOR J=1 TO 100INEXT J
1030 SOUND 0,0,0,0:SOUND 1,0,0,0
1040 RETURN

Fig. 9.14. The sound of an unanswered phone!

time. The actual pulsating noise of the drill is produced by the
combination of distortion and pitch numbers that is used.

Another noise is produced by the program in Fig. 9.14. This time,
the sound is the one you hear when you dial a number on the
telephone. In my case, I hear it too often - I wish someone would
answer now and again! Two channels are used to produce this
mixture of noises. Channel ~ produces a pure tone, with channel I
being used to add the noise to it. The two different delay loops
produce the correct spacing of sounds for the British telephone
system.

Looking for aircraft noises? Try Fig. 9.15 for the sound of a plane

10 ? "}"
20 FOR X=20 TO 60
30 SOUND 0,X,8,X/4
35 GOSUB 1000
40 NEXT X
50 FOR X=60 TO 20 STEP -1
60 SOUND 0,X,8,X/8+5
65 GOSUB 1000
70 NEXT X
80 SOUND 0,0,0,0
90 END
1000 FOR J=1 TO 50: I'IEXT J
1010 RETURN

Fig. 9.15. An aircraft taking off and passing overhead.

134 Get More From The Atari

10 FOR D=1 TO 500
20 SOUND O,20,O,15
40 SOUND O,20,1,15
60 NEXT D
70 SOUND 0,0,0,0

Fig. 9.16. Piston-engined sound for the fanatic.

taking off and passing overhead. Both volume and pitch are being
changed here in the loop that starts in line 2~, and also in the second
loop of lines 5~ to 7~. If you hanker after piston engines, try the
sound from Fig. 9.16!

Melodies for you!

After that barrage of shots and other noises, let's end with a piece of
Atari music. The fact that the Atari can make use offour channels of

5 OPEN 4t1, 4, 0, "K: "
10 ? "}":FOR J=1 TO 16:READ A,B,C,T
20 SOUND 0,A,10,6:SOUND I,B,10,6:S0UND 2
,C,10,8
30 FOR N=l TO T:NEXT N
40 FOR N=1 TO 100:NEXT N
50 NEXT J
70 SOUND 0,128, 10, 10: SOUND 1,204,10,8:S0
UND 2,255,10,8
80 FOR N=1 TO 500:NEXT N
110 SOUND 0,0,0,0:S0UND 1,0,0,0:S0UND 2,
0,0,0
120 END
500 DATA 81,121,193,100,60,121,193,100
510 DATA 96,144,193,100,81,144,193,50,91
,144,193,50
520 DATA 96,144,193,100,102,121,193,100,
96,144,193,100
530 DATA 128,162,217,100,136,173,217,100
540 DATA 128,182,230,100,108,144,217,100
550 DATA 114,162,217,50,128,162,217,50
560 DATA 81,114,193,100,85,121,193,100

Fig. 9.17. Illustrating the use of SOUND to produce melody and harmony. The
first line is put in for fault-finding purposes, as the text explains.

Sounding Out The Atari 135

sound allows you an excellent capability for music-making. The
ideal way of writing a music program is by following a musical score,
but that's not quite so easy if you can't read music! If you have a
good ear for music, though, you can get by with some patience and a
lot of typing.

Figure 9.17 shows a program which produces a melody with
harmony. Line 1~ is the important opener, with the number of notes
specified in the loop, and the READ instruction. Only three
channels are used, and the variables A, Band C are used for the note
numbers of the channels. The fourth variable, T, is used to control
the time of each note. By reading a set offour numbers for each note,
we can change the sound more easily if we want to. The SOUND
instructions are then placed in line 2~.

The delay in line 3~ is controlled by the time numbers that are
placed in the data lines. In addition, there is an extra delay in line 4~.

This is fixed, and it's a useful way of controlling the timing of the
whole piece. If you use the variable T to control time completely,
then if you want to play the music faster, you will have to alter all of
the values of T in the data lines. By using a separate delay loop, it's
easy to adjust the timing (unless you want a large change) by a single
alteration. The last note is programmed separately, and line 11 ~
restores silence.

Now it's one thing to write the program and put in values for the
notes, but how do you sort it out? The answer is, as you might
expect, a bit at a time. Notice line 5? This is the OPEN instruction
that you need for a GET, but there's no GET in the program. The
point is that you can add a GET in place of the delay in line 4~. This
allows you to listen to each sound until you press a key. Having time
to listen makes it easier to decide if it's right or not. Another help is
to alter line 2~. If, for example, you make the volume numbers in
channels 1 and 2 equal to ~, then you will hear only the melody in
channel ~. You can then make whatever alterations you need to get
this right. Having done so, you can then restore channell, and
concentrate on getting this so that it's a good accompaniment to the
melody in channel ~. When you have sorted out these two channels,
you can then try adding channel 2. Taking the problem note by note
in this way makes it much easier to handle if you are working 'by
ear'. If you are working from a score, of course, all you need is the
chart in Fig. 9.3. Happy listening!

Chapter Ten

Odds And Ends

A computer which is as complicated as the Atari contains lots of
secrets. A book which sets out to document all of the possibilities in
detail would be ofencyclopaedic length, and would have to be added
to continually. In this book, I have tried to equip you with enough
fundamental knowledge of your Atari to set you on the path of
learning. Inevitably, some topics have been omitted, some because
they require more knowledge of how the computer works than you
may have at this stage. Other topics, however, simply have not fitted
in to the arrangement of chapters, and some of this chapter will be
devoted to sorting out these omissions. If this book has stimulated
you to seek more information on your Atari, then your best step is to
join a User Group - one address is given in Appendix B. Members of
User Groups interchange information continually, and their efforts
result in much more being known about the computer than is
available from the manufacturers.

Editing

The first of the neglected topics is editing. Editing means altering a
line that has been entered by pressing the RETURN key. While you
are typing a line, you can edit by back-spacing over a mistake, using
the BACK SPACE key at the right-hand top row of keys. This is no
longer possible once the line has been entered into memory,
however, and the process of altering such a line comes under the
heading of editing.

All editing must start by having the line that you want to edit
visible on the screen. This can be achieved by using LIST, and if you
know the number of the line that you want, say 2~~, then you can use
a command such as LIST 2~~ to get that line by itself. The next step
is to shift the cursor to that line by making use of the CTRL key

Odds And Ends 137

along with the arrowed keys. These are the keys which are normally
used for the arithmetic operations of +,-,=, and *, and the arrow
directions are also marked on them. They operate as editing keys
only when the CTRL key is pressed at the same time. Normally, you
will get to the start of a line by using the up-arrow key.

When the cursor is on the correct line, it can be moved to the error
by using another arrowed key, usually the right-arrow. As before,
the CTRL key must be held down while this is being done. When you
get the cursor to the error you have the choice of replacing the
character, deleting it, or adding more characters. To replace the
character, place the cursor directly over it, release the CTRL key,
and just type the correct character. This will replace the incorrect
character. If you want to delete a character, place the cursor over it,
keep the CTRL key pressed, and press the DELETE key, which is
the same as the BACKSPACE key. If you want to add more
characters, press the CTRL key and the INSERT key (on the> key)
and hold down both until you have enough space to put in what you
want. You can then release the CTRL key and type as many
characters as will fill the space. Ifyou haven't allowed enough space,
use INSERT again. If you have space left, you can use DELETE to
remove spaces.

Once you have made all the changes that you want, you can
confirm the changes by pressing RETURN. If you move the cursor
away from the line before you press RETURN, the changes will not
be carried out. You have to be careful after pressing RETURN.
When you do this, the cursor will appear at the start of the next line.
If the rest of this line is blank, then you can type a command, like
LIST or RUN, and it will be obeyed when you press RETURN. You
may find, however, that the cursor lies over the R of 'READY', If
you press RETURN while the cursor is in this position, you will get
an error message. You will also get an error message if you have
typed LIST or RUN in this situation, because the word that you type
replaces only part of the READY word. You should use the CTRL
key along with the arrow keys to place the cursor clear of any lines
before you attempt to make any new command.

The TRAP instruction

Among other interesting and useful functions of the Atari that we
have not looked at so far is the TRAP instruction. TRAP is a way of
detecting errors so that you can avoid the normal error message

138 Get More From The Atari

system. Normally, when an error occurs during a program, the
program halts and displays an error message. This can be a nuisance,
particularly if an inexperienced operator is in charge, so that the
Atari allows you to write your own error-handling programs! This is
done by using TRAP to direct the program to a subroutine which
will deal with the error and then return the program to normal
running. Obviously, if you are to incorporate this sort of automatic
error-handling, you must know what type of errors you are likely to
find.

As usual, an example is more useful than a lot of explanation, and
Fig. 10.1 shows a very simple example of TRAP in action. Line I~

10 ? "}":TRAP 1000
20 FOR J=l TO 5:READ A
30 ? A;
35 POSITION 10,J:? SQR(A)
40 NEXT J
50 DATA 4,9,-12,16,20
60 END
1000 E=PEEK(195):REM FIND ERROR
1010 L=PEEK(187)*256+PEEK(186):REM FIND
ADDRESS
1020 IF E=3 THEN A=-A
1030 TRAP 1000
1040 GOTO L

Fig. 10.1. Illustrating the use of TRAP.

clears the screen, and contains the instruction TRAP I~~~.This will
cause the program to go to line 1~~~ if any error is detected, so that
I~~~ is the start of the error subroutine. At line l~~~, the action of
PEEKing address 195 will give the code number of the error. For a
list of these codes, see your Atari manual. In line 1~ 1~, the formula
for L will give the line number in which the error was found. Once
you have these two pieces of information, you can set about
correcting errors. For example, if you know that an error 3 is likely,
you can test for it, as is done in line 1~2~. If, on the other hand, you
know that an error can occur in a line whose number you know, then
you can use a test such as:

IF L= 15~ THEN (whatever you need)

The use of TRAP is self-cancelling - once an error is found, the
line TRAP 1~~~ will have to be executed again if another error is to
be trapped. This line therefore used at the end of the trapping
subroutine. Finally, line 1~4~ uses GOTO L to get the program back
to the line that caused the trouble. In the example, square roots are

Odds And Ends 139

being found, and the TRAP routine deals with the problem of a
negative number. Instead of stopping the program, the negative
number is converted to positive, and the result of this used.

The important point about using TRAP is that you have to know
either what type of error you expect, or in which line it might occur.
This simple example has used data taken from a data line, but it's
more likely that you would want to use TRAP when an input was
being taken from tape or disk, or from the keyboard.

The games keys

The keys on the extreme right-hand side of the keyboard are not
normally used when you are writing your own programs, but are
extensively used in games that are in cartridge form. You can,
however, make use of the OPTION, SELECT and START keys for
yourself. This is done by using PEEK (53279). The number which is
produced by this action depends on which of these keys is or are
pressed. The number can also detect combinations of these keys, as
the table in Fig. 10.2 shows. You can use a test such as:

IF PEEK (53279) = 5 THEN LIST

to make these keys carry out program actions for you.

Values of PEEK(53279)

Value

~
I
2
3
4
5
6
7

Key or Keys pressed

OPTION, SELECT and START
OPTION and SELECT
OPTION and START
OPTION
SELECT and START
SELECT
START
None of these keys.

Fig. 10.2. Making use of the games keys.

140 Get More From The Ateri

The Atari add-ons

One of the particular advantages of the Atari system is that every part
of it is available now, not simply a 'this year, next year, sometime'
promise. The computer has been planned out so as to offer a large
selection of add-ons, all of which can be obtained from your Atari
dealer.

For example, up to four joysticks or paddles can be plugged into
the sockets that are on the front of the computer below the
keyboard. They allow for control of games programs, and the
BASIC also allows you to write your joystick/paddle programs,
using the instruction words PADDLE, PTRIG, STICK and
STRIG. The techniques are explained in the Manual.

Other additions to the AT ARI system require the use of the Atari
850 interface module. This plugs into the socket that is otherwise
used for the program recorder, and the correct cable and plugs are
supplied. The program recorder can, in turn, be plugged into the
interface. In addition, the interface permits the use of printers.
Either Atari printers or printers of other makes can be connected to
the interface, and the floppy disk drives are also connected to this
unit.

The use of floppy disks is a major step forward for you in the use
of your computer. The disk system replaces the program recorder,
allowing very rapid storing and loading of programs or data. Details
of disk operation are, however, beyond the scope of this book.

Appendix A

SAVE and LOAD
Problems

A minor problem of the Atari computers is that occasionally a
program which has been saved by using the CSA VE instruction will
not correctly load again using the CLOAD instruction. The problem
is intermittent, and can be overcome by using the LPRINT
command before the program is saved. This has the action of
completely clearing the part of memory that is used when the
CSAVE instruction is carried out.

An alternative is to use a different type of saving and loading
command. The most useful alternative is SAVE"C" for saving and
LOAD"C: " for loading. In this type of command, the "C: " name
refers to the cassette recorder. Both CSAVE and SA VE"C: " save
the program in the same abbreviated form, but you cannot load a
program, using CLOAD, if it has been saved using SA VE"C: ".
Similarly, you cannot load with LOAD"C: "a program which has
been saved using CSAVE. The use of SAVE"C: " and LOAD"C: "
is slightly slower than the use of CSAVE and CLOAD.

There is yet another pair of save and load commands, LIST"C: "
and ENTER"C: " These operate in a different way, because what
LIST"C: " stores on tape is a representation of the ASCII codes of
the program as typed. LIST"C: " can, in fact, be treated in the same
way as LIST, so that it is possible to LIST"C: "one line, or a range
oflines as well as a complete program. This is done by using the same
format as you would use for a LIST to screen. This is of considerable
use if you want to save only part of a program, such as a number of
subroutines.

The matching loading command, ENTER"C: " causes the ASCII
codes of a program recorded on tape to be entered into the Atarijust
as if they had been entered from the keyboard. Whereas the CLOAD
and the LOAD"C: " commands automatically clear memory before
they start loading, the ENTER"C: " does not. It is therefore
possible to merge one program with another, providing that the

142 Get More From The Ateri

programs have different line numbers. This allows you to keep a
'library' of subroutines which you can place into any other program
as needed. The only proviso is that the subroutines must have been
recorded on tape using the LIST"C: " command. Material that has
been recorded using CSAVE of SA VE"C:" will not successfully load
using ENTER"C: ".

Appendix B

Useful Addresses

Selmor Industries Ltd
24 Mulberry Street
Tower Hamlets
London EI IEH
Selmor Industries are makers of the computer stand which is
mentioned in Chapter I, and a wide range of other devices, including
methods of locking computers to tables. They supply educational
authorities, and their prices are very much lower than those asked by
firms advertising in the Press.

Silica Atari 400/800 Users Club
Richard Hawes
1-4 The Mews
Hatherly Road
Sidcup
Kent DA 14 4DX

Note: The magazine, Practical Computing runs a section which deals
with specific machines. Useful information on Atari models is now
beginning to appear in this section of the magazine.

Index

adaptor, 2-to-l, I
add-ons, 140
address for sprite data, 113
aerial plug, I
aircraft noise, 132
alphabetical order, 59
alternate character set, 87
amplitude of sound, 124
angles, 100
animating a dot, 110
animation, 97
array subroutine, 77
ASC,57
ASCII codes, 45
assignment, 23
asterisk, 15

background colour, lOl
backslash, 15
BACKSPACE,137
BASIC, 14
BASIC cartridge, 4
becomes sign, 32
bent arrow shape, 22
binary fraction, 33
blank cassettes, 10
border colours, 83
BREAK key, 9
brightness, 82
built-in speaker, 124
buzz, 125
bytes, 24

carriage return, 9
cassette lead, 10
centring a title, 21
channel number, 66
channel number, sound, 126
character design grid, 88
character number, 18

chord, 129
CHR$,57
circles, 104
CLEAR key, 13
CLOAD,12
CLOG,33
CLOSE#I,67
co-ordinates, 99
coarse-resolution sprites, 113
COLOR,84
colour changes, 12
colour monitor, 5
colour of sprites, 117
colour receiver, 3
coloured letters, 87
column number, 99
columns, 18
commas, 18
compare strings, 58
concatenation, 26
counting, 32
creating sprites, 112
creating string arrays, 63
CSAVE, II
CTRL key, 9
curly bracket, 22
cursor, 9
cycle of wave, 124

DATA,30
database programs, 69
decisions, 42
decrementing, 32
DEG,lOO
DELETE,137
designing character, 90
designing programs, 69
dial tuning, 5
DIM, 24, 61
direct mode, 13

146 Index

distortion number, 128, 130
dimensioning string, 24
DRAWTO,99,101

editing, 136
enabling addresses, sprite, 116
end of file, 66
ENTER "C:", 141
equations, 100
ESC key, 99
expanding outline, 71
expression, 23
extracting initials, 54

fan patterns, 108
fine-resolution sprites, 113
flag, 64
floppy-disk, 140
FOR,37
forbidden operation, 26
frequency of sound, 124

games keys, 139
GET,44
GOSUB, 49, 72
GOTO,36
graphics, 80
graphics blocks, 88
graphics modes list, 80
graphs, 100
grid, character design, 88
grid, multiple character, 93
gunshots, 132

hard copy, 16
harmony, 134
hertz, 124
high resolution, 81
higher modes, 108

identity sign, 58
impressive shapes, 93
incrementing, 32
indented word, 19
INPUT, 28
INSERT,137
instruction words, 14
instructions, 78
INT,43
interface module, 140
internal codes, 92
inverted commas, 16

jellyfish, 120

joining strings, 26
joysticks, 140

leader of tape, IO
LEFT$,56
LEN,52
line number, 14
line numbers, II
LIST"C:", 141
LIST, 1I
LOAD"C:", 141
LOCATE,IIO
LOG,33
long variable names, 25
loops, 36
loudspeaker, 4
low resolution, 80
lower-case, 8
LPRINT,16
luminance, 82
luminance of sprites, 117

mains sockets, 3
melody, 134
memory allocation, sprite, 114
menu, 45
MID$,56
Middle C, 128
missile memory allocation, 114
missile widths, 116
missiles, I I 1
mistuning faults, 7
Mode 1characters, 86
Mode 2 characters, 86
Mode 8,107
Mode zero, 81
modes 3-8, 98
modes of graphics, 81
modulator, 5
monitor, 5
mugtrap,43
multiple-character grid, 93
multistatement line, 18

name, 24
neat printing, 17
nested loops, 37
NEW,II
NEXT,37
not-equal sign, 41
number abilities, 31
number comparisons, 41
number functions, 33, 34
number of variables, 59

number totalling program, 40

octave, 128
OPEN, 44
open channel, 66
OPTION, 139

paddles, 140
painting in colour, 105
passing a variable, 53
PEEK,87
pictures, 80
piston engine sound, 132
pitch, 124
pitch number, 126
pixels, 80
planning chart, sprite, 122
planning pattern, 102
player demonstration, I 19
player widths, 116
player-missile graphics, 97
players, III
playfield, 120
PLOT,99
pneumatic drill, 132
POKE, 87
POSITION, 20
positive integer, 14
power input socket, 4
power pack, 3
precision of number, 33
pressure changes, 124
print modifiers, 17
PRINT#I,66
PRINT#6,85
PRINT@,22
PRINTAT,22
printer, 140
priority, 120
program, 13
program mode, 13
program outline plan, 70
program recorder, 10
prompt, 14
pure sound, 129
push-button tuning, 7

question and answer game, 79
quotes, 16

radians, 100
random number, 43
READ, 30
READY, 14

Index 147

recording programs, 10
recording array values, 68
relative volume, 128
REM,n
repeat actions, 36
replaying array values, 68
reserved words, 14
resolution, 80
RETURN,9
RIGHT$,56
rising pitch note, 129
RND,43
ROM,89
rounding up, 33
row number, 99

SAVE"C:",141
saving variables, 65
scale, music, 128
scientific form, 34
score subroutine, 76
scoring system, 70
screen limits, 20
screen splitting, 84
SELECT, 139
Selmor, I
semicolon, 17
sernitonc, 128
SETCOLOR,81
setting up, I
SHIFT key, 8
short length tapes, 10
single key reply, 44
skipping stages, 73
slash-mark, 15
slicing, 54
socket strip, 3
SO~ND, 126
sound, 124
sound effects, 132
split screen, 98
sprite, III
sprite design summary, 118
sprite graphics, III
sprites, 97
SQR,33
stands, I
START, 139
STEP, 38
STR$,56
string, 16
string arrays, 61
string functions, 51
string insertion, 51

148 Index

string slicing, 54
string variables, 24
STRING$,52
subroutine design, 73
subroutines, 49
subscript, 60
subscripted variable, 60
surf breaking sound, 132

TAB stops, 19
table of notes, 127
tabulation, 19
terminator, 40
testing strings, 42
title, 79
tone, 128
totalling numbers, 39
TRAP, 137
TV cable, I
TV receiver, I
TV tuning, 5

twinkling pattern, 105
two-colour modes, 106
typewriter keyboard, 8

uncontrolled loop, 37
underlining, 52
upper-case, 8
user defined graphics, 89
user group, 136
user-defined characters, 88

VAL, 56
variable name, 23
VCR tuning, 5

warbling note program, 130
wave of sound, 124
working copy, 72

XIO,105

TheTI99/4A

GET MOREFROM
THE TI99/4A
Garry Marshall
024612281 1

The VIC 20

GET MORE
FROMTHE VIC 20
Owen Bishop
0246121483

THEVIC 20
GAMES BOOK
Owen:Bishop
0246121874

The ZX Spectrum

THE ZX SPECTRUM
And How ToGet
TheMost From It
Ian Sinclair
0246120185

THE SPECTRUM
PROGRAMMER
S. M. Gee
0246120258

THE SPECTRUM
BOOKOF GAMES
M. James, S. M. Gee
and K. Ewbank
0246120479

INTRODUCING
SPECTRUM
MACHINECODE
Ian Sinclair
0246120827

SPECTRUM GRAPHICS
AND SOUND
Steve Money
0246121920

THE ZX SPECTRUM
How to Use and
Program
Ian Sinclair
0586 06104 5

The ZX81

THE ZX81
How to Use and
Program
S. M. Gee and
Mike James
0586061053

Which Computer?

CHOOSING A
MICROCOMPUTER
Francis Samish
0246120290

Languages

COMPUTER
LANGUAGES AND
THEIR USES
Garry Marshall
0246120223

EXPLORING
FORTH
Owen Bishop
0246121882

Machine Code

z-eo MACHINE
CODE FOR HUMANS
Alan Tootill and
David Barrow
0246120312

6502MACHINE
CODE FOR HUMANS
Alan Tootill and
David Barrow
0246120762

Using YourMicro

COMPUTING FOR
THE HOBBYIST AND
SMALL BUSINESS
A. P. Stephenson
0246120231

DATABASES FOR
FUN AND PROFIT
Nigel Freestone
0246120320

SIMPLE INTERFACING
PROJECTS
Owen Bishop
0246 120266

INSIDE YOUR
COMPUTER
Ian Sinclair
0246 122358

Programming

THE COMPLETE
PROGRAMMER
Mike James
0246120150

PROGRAMMING
WITHGRAPHICS
Garry Marshall
0246120215

	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Appendix A: SAVE and LOAD Problems
	Appendix B: Useful Address
	Index

