An intermediate programming tutorial
for the best selliﬂg BASIC...
GFA BASIC.

for the Atari ST

%

The GFA BASIC
Book

An Intermediate Tutorial

For the GFA BASIC Interpreter

With Disk E_r%closed

For the Atari ST Series of Personal Computers

Written by Frank Ostrowski,
GFA Systemtechnik

»

Distributed By MICHTRON, Inc.
576 South Telegraph
@: (313) 334-5700
BBS: (313) 332-5452

YOUR RIGHTS AND OURS. This copy of THE GFA BASIC BOOK

is licensed to you. You may make copies of the disk for your own use or for archival
storage. You may also sell your copy without notifying us. However, we retain copy-
right and other property rights in the program code and documentation. We ask that THE
GFA BASIC BOOK be used either by a single user on one or more computers or on a
single computer by one or more users.” If you expect several users of THE GFA BASIC
BOOK on several computers, contact us for quantity discounts and site-licensing agree-
ments. Also if you intend to rent this program, or place this program on a BBS, contact
us for the appropriate license and fee.

We think this user policy is fair to both you and us; please abide by it. We will not toler-
ate use or distribution of all or part of THE GFA BASIC BOOK or its documentation by
any other means.

LIMITED WARRANTY. In return for your understanding of our legal rights,
we guarantee THE GFA BASIC BOOK will reliably perform as detailed in this docu-
mentation, subject to limitations here described, for a period of thirty days. If THE GFA
BASIC BOOK fails to perform as specified, we will either correct the flaw(s) within 15
working days of notification or let you return THE GFA BASIC BOOK 1o the retailer for
a full refund of your purchase price. If your retailer does not cooperate, return THE GFA
BASIC BOOK 1o us. While we can’t offer you more cash than we received for the pro-
gram, we can give you this choice: 1) you may have a cash refund of the wholesale price,
or 2) you may have a merchandise credit for the retail price, which you may apply toward
buying any of our other software. Naturally, we insist that any copy retumned for refund
include proof of the date and price of purchase, the original program disk, all packaging
and documentation, and be in salable condition.

If the THE GFA BASIC BOOK disk becomes defective within the warranty period, re-
turn it to us for a free replacement. After the warranty period, we will replace any defec-
tive program disk for $5.00.

We cannot be responsible for any damage to your equipment, reputation, profit-making
ability or mental or physical condition' cauced by the use (or raisuse) of our program.

We cannot guarantee that this prograia will work with hardware or software not generally
available when this program was released, or with special or custom modifications of
hardware or software, or with versions of accompanying or required hardware or software
other than those specified in the documentation.

Under no circumstances will we be liable for an amount greater than your purchase price.

Please note: Some states do not allow limitations on how long an implied or express war-
ranty lasts, or the exclusion or limitation of incidental or consequential damages, so some
of the above limitations or exclusions may not apply to you.

UPGRADES AND REV/S/ONS If you return your information card,
we will notify you if upgrades to THE GFA BASIC BOOK become available. For minor
upgrades and fixes, return the original disks to us with $5.00. For major revisions, the
upgrade fee is typically 15-20% of “ original suggested retail price.
FEEDBACK: Customer comments are VERY important to us. We think that the
use, warranty and upgrade policies outlined above are among the fairest around. Please
let us know how you feel about them.

Many of the program and documentation modifications we make result from customer
suggestions. Please tell us how you feel about THE GFA BASIC BOOK - your ideas
could make the next version better for all of us.

COPYRIGHT NOTICE.: The THE GFA BASIC BOOK program code and

its documentation are Copyright © 1987 GFA Systemtechnik.

The GFA BASIC Book

Published in the U.S.A. by MicaTroN, Inc.
576 South Telegraph
Pontiac, Michigan 48053

© 1987 GFA Systemtechnik

1st English Edition: September 1987
2nd English Edition: April 1988

All Rights Are Reserved. No Portion Of This
Documentation May Be Reproduced In Any Form Without
The Express Written Permission Of The Owner Oof

Copyright.

Manual Written by Frank Ostrowski
Text Translated by Wilford Niepraschk
Book Design by Thomas L. Logan
Cover Design by Paul Deckard

88899091921098765432
ISBN 0-923213-85-6

Further Trademark and Copyright Notices:

Commodore 64 is a registered trademark of Commodore Computers.
DEC, VT, & VT52 are registered trademarks of Digital Equipment
Corporation.

GEM is a registered trademark of Digital Research Inc.

Atari, 520ST, 1040ST, Mega, and TOS are registered trademarks of
ATARI Corp.

MS DOS is a registered trademark of Microsoft.
D.E.G.A.S. is a registered trademark of Batteries Included.

Printed in the United States

iii

Table of Contents

INTRODUCTION ; . . iviils vins sonmsn's o xnus \%
The Origins.of GEA BASIC #Esmiisky s & 4.1 THg: vi
Chapter 1: OPTIMIZATION. 1
L1 - Title Sereen:. . N821 mdprnasd pohild dznuns o, 3
1.2 Disketfedata. . " HBCE Logph il it d8iben |, .
13 o CACHIAAONS . e 15 e e o' e o o o o e 6
Lak- Sortmoierl, oV o clopeass A gl 11
lgu-MinibDasd, of B obsis & sif il ik 14
Chapter2: GRAPHICS 19
B (i (o) R R e R R 22
2.2 "Clipping . o leatet il 6l wdl miniii i Teis 24
2.3 -Raster GraphiciCommandsesiizir i buts s b 27
24 -Graphics mode . g BF Vspend T ok oottt 30
2.5 'Graphics on DiSkeft: et Liaet oo st Loias 34
2.6 Flicker Free Graphics.. s s v xn o b v s 42
Chapter 3: TIPS & PROGRAMS 47
3.1 Dialog Boxes Homemade 49
1 151111 R S e o P o P 61
S COpying BIleS -, s L 25 Th b v e s o 70
5D SOACOUCE . ; | s ettty e 72
3.6, Directory.. HE e O S 74
3.7 Formatting i e s g 88
S ETEErs. P, oty (OGS 3P S Lo s 93
0 Ao | o e a0 s RO 97
3.10°Reeursion [7937 ‘il lnsmurbat Bhanize Bar N 101
3 ERECamyai, s, 07 R g TSN JRalt Ty 113
L2 BOMIS ;. oo e 5% i gl ot B e, 2 AL 121
Chapter 4: GEMDOS, BIOS and XBIOS 131
o N €150,9)1010) i i i ot At 135
il OB o 5 A - e B gt 144

iv

A3 XBIOS. vnwm s am®dtsii@ne o ot 147

otk BLISE . ; o s s s 05 ¢ 45 5 wialpa C bt « 5 164
45 VTS52-Emulator., i viuudeenen |
Chapter5: AES. 173
5.1 APPLication Library. 178
22 ENVENTTIABISIY . o o 5 5 ¢ somw =6 5 oSl T T of ae 181
5.3 MENU Library (Menuusage). 188
54 OBJectLibrary. 191
59 FORMULIbrary « « st o s sompo mio o wld s 195
56 GRAFLibrary..................... 198
oer SCRAPLIDEIRY . . . o cibobei(s stBd Sosis « FF 1 203
5.8 FileSELectorLibrary 205
5.9 WINDow Library. Mok TSI A3+ agab 206
5.10 ReSouRCe Library. Lo, 3 B il - igh B 214
el " SHELLFTABTAY o o ocvcine, s s 5545 % wb « o0 5 217
Chapter6: RSC. 221
6.1 Resource Construction. 226
62 RSCIBAS............ 233
6.3 TestingtheObjects. 240
64 ICONS.'iiiiiminnnn.. 244
6.5 Touchexit...........: I a5 BEE S GE 249
6.6 Dialog............. 255
Chapter 7: USING WINDOWS 261
APPENDICES. 289
Appendix A: BIOS et 290
AppendixB: XBIOS. 291
Appendix C: GEMDOS 293
AppendixD: GEMSYS. 295
INDEX e 299

Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1:

2:
3:
4:
5
6:
q:
8:
9:

10:
Tel
12:
13:
14:
15:
16:
17:
18:
19:

21
22:
23:
24:

List of Diagrams

Graphmode Settings. 31
1310015023 T 1 N S SR B - A 55
SOUND and WAVE ¢ o o s vi ovsvs o 66
HARDCOPY-Rouline - . .4 50 0 e 0. . 69
Hexidecimal Key Codes ., . . v awi - 2d e 73
Example of SORTDIR 80
Bramplegf KPR © & o e & 81
e e e e e 86
|28 RN EIE ot B el it e g 90
An Example of Recursion., 104
Recursion Modification. 107
Font Examples: oo s s e s e 127
RSC-fileDialogBax’, -, . @55 a0 Do 233
T SIUBIIIE ;5B s o 234
RSC-file Pablere . L L s e e 235
Object Tree construction, , 236
RSCTEST.BAS hardcopy 239
SERILABIEEL = i e R 241
Textin afilledreetangle« c i i s 243
TEONS 5 b s o aach (e 247
Dialog Box with Slider. 249
Positioning the Shider ", ".°. ", ., | . vsiwas s 254
Dialog Box with TextInput. 256
WAOWS , . 2 vk 5w v b e Tl e s 263

vi

INTRODUCTION

viii

The GFA BASIC Book

%

THE ORIGINS OF
GFA BASIC

It began with an Atari 400, a small computer sim-
ilar to the Commodore 64 There existed a BASIC for that
computer. This BASIC was neither fast nor comfortable to
use, but, with only 16K of RAM, large programs could not
be written for it anyway. After upgrading the computer to
48K of memory and 88K of disk space, I wrote some pro-
grams in assembly code. Eventually I ended up with a
number of help routines, and a BASIC language with
which I could marginally use these routines. After trying
FORTH, I decided to_take a closer look at BASIC, and
slightly modified it. ‘These modifications eventually be-
came so numerous that I decided to completely replace
many of the routines. To remain compatible, some of the
routines were left untouched. There were a lot of com-
mands I did not like, such as computed GOTOs, and line
numbers were a nuisance.

This new BASIC was published in a computer maga-
zine. Shortly thereafter I received an offer from GFA Sys-
temtechnik GmbH to write a workable BASIC for a new
computer, the Arari ST.

Introduction

The GFA BASIC Book

ix

The Atari ST incorporates a fresh modern processor. Its
operating system, although certainly not the newest or
fastest (nor is it very compact, having been written in C
language) is very powerful. And, even though it lacks
multitasking, one can write programs in high level lan-
guages that offer exciting performance.

Shipped with a BASIC language that did not even mea-
sure up to the one included with the Atari 400, the ST was
destined to become a language developers dream. It was
possible now to develop a BASIC that did not have to con-
form to the standard of any other interpreter.

This new BASIC should have the simplicity of BASIC
combined with the possibility of writing well structured
code. The first step was to eliminate the line numbers.
This made the task difficult from the outset because a solu-
tion had to be found to avoid the usual confusion of GO-
TOs and GOSUBs. It was important to be able to pass pa-
rameters to procedures and to declare local variables, thus
enabling the programmer to use recursive programming
techniques. The BASIC should also make sure that all
loops are properly closed before the program starts execu-
tion.

The GOTO statement was one of the last statements
added to this BASIC. After much thought, I even allowed
the GOTO command to be used between different proce-
dures. ‘

In an Interpreter it is possible to use segmented PEEKS
and POKEs to simulate one of the Intel-processors. In a
compiled program, this would greatly affect execution
time.

The unsuitable 16 bit integers would not be used either,
as this makes it harder to address all of the memory. Be-
sides, the processor already uses 32 bits internally, thus al-
lowing it to process larger numbers without speed loss.

The Origins of GFA Basic

X The GFA BASIC Book

The editor of this BASIC had to be screen oriented and
not use the windows of GEM. It would be virtually impos-
sible to create non GEM programs from within the GEM

interface. Other reasons exist for not having the editor run
under GEM.

In the case of a program error, it is often possible to save
program changes that were made. Something that cannot
always be done from within GEM because the windows
lock up. So it happened that a relatively fast editor, one
that could be used without a mouse, was created.

I wanted to write the BASIC completely in machine
language so that it would be fast and take up only a small
portion of memory. Other languages like C use only a few
machine instructions outside of the library, and they always
pass parameters through the stack. The MC68000 has a
very powerful instruction set that can be better utilized with
an Assembler. <

Taking all this into consideration, Version 1.0 of
GFA BASIC came into existence less then 6 months later.

While I was writing the interpreter, I carefully made
sure that the finished programs could be easily compiled.
That is why the MERGE command is missing. This com-
mand may be useful in an interpreter, but is of little value
in a compiler.

While I was working on the compiler, I was confronted
with requests to expand the command set. Some of those
requests I was able to incorporate in Version 2.0 of the in-
terpreter. Most new commands, like VOID, BASEPAGE,
and OPTION, were inserted to give the compiler more op-
timization opportunities, and to provide the programmer
with more control over the compiling process.

Even an extensive computer language cannot fulfill all
the wishes of everyone who uses it. This book will, there-

Introduction

The GFA BASIC Book

Xi

fore, show you how to create necessary routines using
GFA BASIC.

This book does not present you with completed applica-
tions; it gives routines that can be incorporated into your
own programs.

GFA BASIC is only a BASIC and not a Modula 2,
therefore you cannot create modules in quite the same way.
Modula 2 takes a lot more coding and a multitude of small
modules to write an application. Modula 2 can only be
used as a compiler. BASIC includes numerous commands
that would have to be created within libraries in Modula 2.

Part of this book discusses many different operating
system routines which include examples wherever I felt
they were needed. Naturally, there are routines that can be
run directly without going to the low-level operating sys-
tem routines, but rather with built in commands.

An important part of the book is the last chapter, where
a complete GEM program is shown. It demonstrates how
to use all parts of a window. This is not easy to do in
GEM, but it makes it convenient for the user of the pro-
gram. For the programmer, GEM always means extra
work. There are many programs where most of the code is
written just to manipulate the window.

I hope that you find the routines and tips in this book
useful, and I wish you much success.

The Origins of GFA Basic

A

CHAPTER 1

OPTIMIZATION

2 The GFA BASIC Book

After you have written a good program you natu-
rally want to distribute it, sell it, or use it yourself. Now

you discover that the program runs, but it is unacceptably
slow.

The first step toward Optimization is to determine which
part of the program takes up so much time...

<

Chapter 1: Optimization

The GFA BASIC Book 3

%

1.1 Title Screen

Often a program displays a graphic screen which con-
tains many pieces of information inside little rectangles.
The remaining area of these rectangles is filled using the
FILL command. This FILL command takes up a lot of
time, and, if used every time you return to the main menu,
it could easily daunt you with its slowness. It would be
better to use the PBOX command on the background and
the PBOX command on the foreground, but without a fill
pattern.

Or you can draw the title picture once and then use the
SGET/SPUT command to quickly display it on the screen.
This has the disadvantage that 32K bytes of memory are
needed to store the picture. But this is usually not a prob-
lem on the 1040ST or MEGA ST.

A third method is to use many screen pages with a
method called page flipping (see graphics without flicker).

The final, and most elegant, method is to use a RCS file
that will create the screen almost by itself. This usually
means more coding, but it is advantageous in that you can
change the screen independently of the program. If this is
still too slow then you will have to wait until the blitter
chip becomes available.

Title Screen

4 The GFA BASIC Book

IS

1.2 Diskette data

Another source of slowness is receiving data from
diskettes. Take this for example:

OPEN *O" #1,"TEST.DAT"
FOR 1%=0 TO 999

PRINT #1,A(1%)
NEXT 1%
CLOSE #1
OPEN "I" #1,"TEST.DAT"
FOR I%=0 TO 999

INPUT #1,A(1%)
NEXT 1%
CLOSE #1

BSAVE "TEST.DAT",VARPTR(A(0)),6000
BLOAD "TEST.DAT",VARPTR(A(0))

The first routine takes about six times as long as the
BSAVE command (four times for a hard disk) and about
twelve times as long to read compared to the BLOAD
command (40 times with a hard disk). The BSAVE com-
mand takes about 6000 bytes of file space while the print
command takes anywhere between 3000 and 20,000 bytes
(depending on the number: "1" to "-1.2345678901E+123"
and a CR-LF character sequence as a separator.

Chapter 1: Optimization

The GFA BASIC Book S

Reading from a diskette using:

OPEN "I #1,"TEST.DAT"
BGET #1,VARPTR(A(0)),6000
CLOSE #1

is quicker than BLOAD, but not on the hard disk. Also
A(1%)=CVF(INPUT$(6,41)) is pretty fast, but PRINTH# MKF$(A$(1%)) is
not.

If you would like to write your program so that you are
able to transfer data to future GFA BASIC versions that
might have different internal number representation, you
may want to use PRINT/INPUT. If the program is con-
verted to the new interpreter, you can then write a conver-
sion program to convert like this:

numsize=VARPTR(a(1))-VARPTR)a(0))
BSAVE "TEST. DATA",VARPTR(a(0)),1000°numsize

Diskette data

6 The GFA BASIC Book

&%

1.3 Calculations

If the program spends a lot of its time computing
(SIN/COS...), you have the following options:

@ Add a floating point processor (68881)

Advantages
Very quick
Little or no programming changes

Disadvantages

Computer needs to be modified (soldering?)

Expensive (68881 costs several hundred dollars (now!?))
Runs only on a computer that is modified

@ Search for faster algorithms:
Advantages
No hardware changes
Often faster than with the 68881
Disadvantages

Often very difficult and time consuming during de-
velopment

Chapter 1: Optimization

The GFA BASIC Book 7

This leaves you with two choices: expensive hardware
or expensive software, where the latter choice represents a
true accomplishment. Anyone can make a program run
faster by improving the hardware — if you have the money.
(This is why I have asked you to please not pirate software,
because even in short programs a lot of mental work has
often been invested). No one can help you find new algo-
rithms, but by studying mathematic books and magazines
you can often find your own. Computer magazines like
BYTE, etc, are also very helpful.

Programs can also be optimized without changing the
existing algorithm.

FOR-NEXT loops should not use floating point vari-
ables. They should use integers instead. This is especially
true if those variables are used to index an array.

For compiled programs:

FOR %=1 to 1000
NEXT i%
should be replaced with:

%=1
REPEAT

INC i%
UNTIL i%>1000

o Use INC a or INC a% instead of a=a+1 or a%=a%+1

s Calculate numbers in advance (like deg.rad=PI/180
instead of /180*PI)

o Create tables:

FOR 1%=0 TO 359

Calculations

The GFA BASIC Book

A(1%)=A(1%)*SIN(1%/180*PI)

MUL a(i%),SIN(i%*deg. rad)

NEXT 1%
@
deg.rad=P1/180
for i%=1to 359
next i%
@
DIM sinus(360)

FOR i%=0 to 360

sinus(i%)=sin(i%*P1/180)

NEXT i%

FOR i%=0 to 359

MUL a(i%),sinus(i%)

NEXT i%

The last version gains most by compiling — but it’s
fastest for the interpreter as well. In this routine it would
not be advisable to replace the FOR-NEXT with a
REPEAT-UNTIL, because the looping takes only a minimal
part of the execution time, and the interpreted version

would slow down greatly.

¢ Fill arrays with constants using ARRAYFILL

* Move one numeric field to another using this method:

BMOVE VARPTR(a(0)), VARPTR(b(0)),6*DIM?(a())

This is equivalent to:

FOR i%=0 TO DIM?(a())-1

b(i%)=a(i%)
NEXT i%

Chapter 1: Optimization

The GFA BASIC Book 9

but much faster.

Optimizing is often best learned by looking at other pro-
grams (public domain or from magazines). Many of these
are not particularly good, but they can be useful neverthe-
less. By looking at a program, it is usually easy to deter-
mine how long the programmer has been using the com-
puter language.

Take a program from a magazine and try to optimize it
until you are completely satisfied with the performance.

Let the program rest for two weeks and then try to read
it. Do you still understand what it is doing? Is it well doc-
umented? Did you flag the changes that were made? Does
the program have a date? Are all the improvements you
made worthwhile? Could further improvements be made?

Of course it’s a matter of taste, how meaningful your
variable names are — but long names have no effect on ex-
ecution speed.

After practicing in this way, you will be able to deter-
mine quickly if a program in a magazine has been written
well, or whether it was written in haste. When the program
was written by many authors, you will often be able to tell
which person wrote a particular section.

It is also important to limit yourself: If the program runs
without errors and is fairly fast and does not use too much
memory; then by all means please leave it alone. Making a
program wOorse is very easy.

One more tip: If you have corrected a program,
please save the old version on diskette.

With GFA BASIC it is also important to save a version

as a LST-file, since it happens that the ST computer will oc-
casionally destroy a file. With a tokenized file it is almost

Calculations

10 The GFA BASIC Book

impossible to repair the file. It may, however, be possible
with a LST-file.

Chapter 1: Optimization

The GFA BASIC Book 11

&%

1.4 Sorting

It happens quite often that a field must be sorted. A
rapid sort process is available with QUICKSORT, a recur-
sive sort method that is often used to show the advantage of
PASCAL or other similar languages. There are some
BASIC versions of QUICKSORT available that simulate re-
cursion, since normal BASICs do ngt know what recursion
is. When using GFA BASIC it is best to use the real recur-
sive method.

"QSORT. BAS

DIM a$(1000)

t%=TIMER

FOR i%=0 TO 999
a$(i%)=MKI$(XBIOS(17))+MKI$(XBIOS(17))+MKI$(XBIOS(17))
a$(i%)=a$(i%)+MKI$(XBIOS(17))+MKI$(XBIOS(17))

NEXT i%

PRINT (TIMER-t%)/200

1%=TIMER

@quicksort(*a$(),0,999)

PRINT (TIMER-t%)/200

PROCEDURE quicksort(str. arr%,|%,r%)
LOCAL x$

SWAP *str. arr%,a$()

@quick(1%,r%)

Sorting

12

The GFA BASIC Book

SWAP *str. arr%,a$()
RETURN
PROCEDURE quick(1%,r%)
LOCAL 1%, 1%
1%=1%
%=r%
x$=a$((1%+r%)/2)
REPEAT
WHILE a$(1%)<x$
INC 1%
WEND
WHILE a$(r%)>x$
DEC %
WEND
IF 1%<=r%
SWAP a$(1%),a$(1%)
INC 1%
DEC 1%
ENDIF
UNTIL 1%>r%
IF 1%<r% B
@quick(l1%,r%)
ENDIF
IF 1%<r%
@quick(1%, %)
ENDIF
RETURN

The QUICKSORT can be further improved: It takes a
long time to sort if most of the fields are already in order.
The biggest improvement is made by checking if the range
from the left limit and the right limit exceeds a determined
amount, and then sort those fields using a different method.

Example:

Procedure quick(I%,r%)
IF r%-1%=1
IF a$(1%)>a$(r%)
SWAP a$(1%),a$(r%)

Chapter 1: Optimization

The GFA BASIC Book 13

ENDIF
GOTO gsortx
ENDIF
" Insert the above procedure
gsortx:
RETURN

This small change will improve the sort by about 4 per-
cent when using the interpreter. In compiled programs this
version is a few milliseconds slower, since in the compiler
the recursion is greatly accelerated. This can change in
future versions of the compiler or the interpreter. No pro-
gram will absolutely be slower, only the relationship will
change.

Further speed improvements can be made by setting the
limit to 2 or 3 instead of 1.

Sorting

14 The GFA BASIC Book

%

1.5 Mini Data

The following program demonstrates how to search
quickly through a set of data in a file which is not sorted:

" minidat
Max%=100 'number of data sets

Open "0" #1,"test.dat"
Dim Ind%(1000),Key$(1000)
[%=0
Repeat
A$=""
For L%=0 To 10+Random(20)
A$=A$+Chr$(Random(26)+65)
Next L%
Ind%(1%)=Loc(#1)
Key$(1%)=A$! Key field
Inc 1%
Print #1,A$
Print #1,A$+A$ I Data field
Print #1,A$+A$+A$
Until 1%>Max%
Close #1

Chapter 1: Optimization

The GFA BASIC Book

15

@Sort

Open "i" #1,"test. dat"
Do
Line Input "Search after (+/-)";A$
If A$="+"
Q%=Min(Q%+1,Max%)
Else
If A$="-"
Q%=Max(Q%-1,0)
Else
V%=Max%/2
S$%=V%
While S%>1
Sub $%,5% Div 2
If Key$(V%)>A$
V%=Max(V%-S%,0)
Else
V%=Min(V%+S%,Max%)
Endif
Wend
Q%=Max(V%-2,0)
While Key$(Q%)<A$ And Q%<Max%
Inc Q%
Wend
Endif
Endif
Print Q%
Seek #1,Ind%(Q%)
Line Input #1,A$
Line Input #1,B%
Line Input #1,C$
Print A$
Print B$
Print C$
Loop

"Now insert the QUICKSORT program

'Afterevery : SWAP a$(1%),a$(r%)

Mini Data

16

The GFA BASIC Book

' Insert - SWAP ind%(1%),ind%(r%)

(The demo program on the diskette sorts directly on the key
field key$()).

The data consists of random input that contains one key
and two data fields.

For every record the program stores the key and (LOC)
the corresponding LOC-Pointer in two arrays.

The key field key$() is then sorted and the pointers in
the other array are arranged in the same order.

One can then search for the data by using the key field
that is in memory and then locating the rest of the data by
using the data pointer.

It is actually not necessary to sort the data if it is con-
tained in memory, but it is still faster to search for the data
by using a binary search.

This routine is not very elegant, but it fulfills its pur-
pose.

Adbvice for building a real data manager:

+ Keep the sort key the same length (By using LSET for ex-
ample).

The data can be built up in the following manner:
XXX.DAT :The complete data

XXX.IDX : The keyfield along with the record pointer
(using MKL$/CVL)

or:

Chapter 1: Optimization

The GFA BASIC Book

17

XXX.DAT :The complete data set

XXX.IDX :Save only the record pointer by using
BSAVE "XXX.IDX",VARPTR(ind%(0),max%*4 (this is
the fastest way)

Hint: If it is possible to make the key field 4 (or
8,12,...) characters long, then you can save the key
as an integer rather then as a string. This way you
will save having to build the descriptors and you
will also be able to save the keys with the
BSAVE/BLOAD (or BPUT/BGET).

OPEN "O" #1,"XXX. IDX*

BPUT #1,VARPTR(idx%(0)),max%4
BPUT #1,VARPTR(key0%(0)),max%+4
'BPUT #1,VARPTR(key1%(0)),max%*4
CLOSE #1

The security of the data is extremely important. In the
above examples it is easy to reconstruct the key field in
case the index file is distorted or lost.

You can also save disk space by using only CHR$(10)
instead of the normal CHR$(13)+CHR$(10) combination
as it happens when using the PRINT command. In the
MINIDAT program just replace the line as follows: PRINT
#1,a8,chr$(10);

This does not have any effect on the data other then
saving disk space. The data input routine does not have to
be altered. It will simply read the data slightly faster.

The problem with these methods of storing data is that if
you add a new record, or the length of the data changes,
then it must be added at the end of the file, the record index
must be updated, and some parts of the file will contain
garbage.

Mini Data

18

The GFA BASIC Book

It is best to replace the record with the null character. In
this case the records will automatically move toward the
front of the file during a sort and can thus be easily re-
moved.

You could also include the current length of the record
as part of the data, and when the record changes, or new
records are added, the program merely has to match the
length with an already existing record previously deleted in
the program.

Eventually you must run a routine that will remove all
the dead space.

It is also possible to speed up the search process of mul-
tiple fields by creating key fields for more than one field.

The purpose of this chapter was to show you that there
is not a given recipe to optimize a program. Often it is not
possible to improve the program by optimizing the struc-
ture of the data. \

Chapter 1: Optimization

CHAPTER 2

GRAPHICS

19

20

The GFA BASIC Book

There are many graphic commands in
GFA BASIC and most of them are fairly easy to use. For
example, to draw a box all you need are the coordinates of
two opposite corners.

BOX = Draws a box

PBOX = Draws a painted box

RBOX = Draws a box with rounded corners
PRBOX = Draws a painted and rounded box
CIRCLE = Draws a circle

These simple graphic commands (called primitives in
the GEM-VDI nomenclature) are easy to understand and
simple to use. Before we move on to the more complicated
graphic operations, let’s look at a few "forgotten" graphic
commands. Whenever you draw a filled rectangle using
the PBOX command, it contains a border. There is a VDI-
routine that will eliminate that border or perimeter. PBOX,
PCIRCLE, PELLIPSE and PRBOX can all be drawn with-
out a frame.

Procedure vsf_perimeter(fig)
DPOKE INIT, flg!
DPOKE CONTRL+2,0
DPOKE CONTRL+6,1
VDISYS 104

RETURN

Chapter 2: Graphics

The GFA BASIC Book

21

Setting the flag! to true turns the frame on and false
turns the frame off. If you would like to call this routine by
some other name, you may do so, but I tried to use the de-
scriptions in the GEM-VDI literature.

The FILL-command in GFA BASIC calls the
v_contour-routine. The area is filled from the starting point
to the edge of the screen, or to a change of color. So the
GFA BASIC FILL-command can be used with color mon-
itors, a -1 must be chosen for edge color, in other words,
the fill is terminated as soon as a pixel with a color other
then the starting one is encountered.

Procedure v_contour(x%,y%.,{%)
DPOKE PTSIN,x% I coordinates just
DPOKE PTSIN+2,y% las the FILL
DPOKE INTIN, % | frame color!!
DPOKE CONTRL+2,1
DPOKE CONTR+6,1
VDISYS 103

Return

This routine, for example, would allow you to fill ev-
erything on the color screen that was not enclosed by a
green line or a line of any color L%. Since this is used very
seldom, I did not want to modify the FILL command to ac-
commodate this.

Chapter 2: Graphics

22 The GFA BASIC Book

%

2.1 Setcolor

There is also a routine in GFA BASIC that allows you
to change the color registers: SETCOLOR n%, r%, g%, b%
or SETCOLOR n%,&Hrgb. To determine the color register
use the following routine:

DEFEN getcolor(n%)=XBIOS(7,n%,-1) AND &H777

Unfortunately, the order between COLOR and
SETCOLOR was totally mixed up by either ATARI or
DIGITAL RESEARCH. The VDI also contains a
SETCOLOR-Routine that works somewhat differently:

PROCEDURE v_setcolor(n%,r%,9%,b%)
DPOKE CONTRL+6,4
DPOKE INTIN,n%
DPOKE INTIN+2. 1%
DPOKE INTIN+4,9%
DPOKE INTIN+6,b%
VDISYS 14
RETURN

The colors red (r%), green (g%) and blue (b%) must be
set between 0 and 1000. You may also inquire as to the
current color as follows:

PROCEDURE v_getcolor(n%)

Chapter 2: Graphics

The GFA BASIC Book

23

DPOKE CONTRL+6,2
DPOKE INTIN,n%
DPOKE INTIN+2,0
VDISYS 26

RETURN

The result can be found as:

n%:= DPEEK(INTOUT),r%:= DPEEK(INTOUT+2) efc.

Setcolor

24 The GFA BASIC Book

%

2.2 Clipping

Whenever you open a window, these graphic commands
work slightly different. For example, the null point moves
from the top left corner of the screen to the top left corner
of the window. Other functions like lines, circles, etc. are
truncated at the window’s border.

Moving the origin:

PROCEDURE origin(x%,y%)
DPOKE WINDTAB+64,x%
DPOKE WINDTAB+66,y%

RETURN

To truncate lines at the borders of a rectangular area:

PROCEDURE vs._clip(xI%,y1%,X2%,y2%)
DPOKE PTSINx1%
DPOKE PTSIN+2,y1%
DPOKE PTSIN+4.x2%
DPOKE PTSIN+6,y2%
DPOKE INTIN, 1
DPOKE CONTRL+2,2
DPOKE CONTRL+6,1
VDISYS 129
RETURN

Chapter 2: Graphics

The GFA BASIC Book

25

Example: If using @vs_clip(100,120,200,180), confines
the graphic output to a section of the rectangle at (100,120)
to (200,180); then using @origin(100,120), sets the origin
point for graphic input to the top left corner of this rectan-
gle.

The ORIGIN and CLIPPING commands are only valid
for normal graphics commands, not for the PUT, GET,
BITBLT, or any AES commands. Nor can they be used
with almost anything that contains PTSIN+... or
PTSOUT+..., GINTIN+... or GINTOUT+..., MENU com-
mands, or coordinates contained within object trees (see
Chapter 6 on RSC-files).

CLIPPING can be completely turned off if desired. This
speeds up the drawing commands by about two percent, It
can, however, cause even a simple PLOT command to
change memory locations outside the screen buffer thus
causing bombs or other malfunctions within the computer:
use caution!

DPOKE INTIN,0
POKE CONTRL+2,2
DPOKE CONTRL+6,1
VDISYS 129

CLIPPING can be restored by calling the vs_clip rou-
tine. Unfortunately, moving the origins does not cause the
mouse input (MOUSEX, MOUSEY, MOUSE ...) to return a
negative number whenever the mouse is above or to the left
of the origin. Instead, 65536 is added to those negative co-
ordinates. For those who would rather have a more mean-
ingful value returned the @ex((MOUSEX) or
@ext(DPEEK(X) routine may be used:

DEFFN ext(x%)=x%+65536"(x%>32767)

Clipping

26 The GFA BASIC Book

That covers the simple graphics command. Let us move
on to the somewhat more difficult Raster Graphic
Commands.

Chapter 2: Graphics

The GFA BASIC Book 237

%

2.3 Raster Graphic Commands

If you take a close look at the picture on your monitor
you will determine that it is composed of many small dots
that are organized by rows and columns. Therefore, a ver-
tical line will always appear ragged (viewing at low reso-
lution will make this more obvious than at high resolution).
Every pixel on the screen represents one bit of memory on
a Mono ST computer or two or four bits on the Color mon-
itor. There are many commands in GFA BASIC that allow
you to manipulate these pixel-blocks.

Raster Graphic Commands

28 The GFA BASIC Book

B GET, PUT and BITBLT

The GET command allows you to copy a screen seg-
ment to a string and the PUT command allows you to re-
store that segment to the screen. The BITBLT command
does the same thing, but is somewhat more flexible — and
more prone to errors.

A string built by using the GET/PUT command is com-
posed as follows:

svar$ = mki$(Width)
+ mki$(Height)
+ mki$(Bitcount)
+ Bitpattern

Where the width is the difference between both X coor-
dinates of the box.

The height is the difference between the Y coordinates.

Bitcount is the number of bits it takes for each pixel (1,2
or 4 as explained above).

And Bitpattern is the actual graphic information.

The construction of that bit pattern is very complex.
Each word consists of 16 bits (This shows that the ST is a
16-bit computer). A mono computer contains 16 pixels per
word. A color computer is made up of either two or four
adjacent words. This is repeated until one line is filled.
The remaining part of the word will contain junk (some
random data). This line and all following lines are always
represented by an even number of bytes (8 bits).

Chapter 2: Graphics

The GFA BASIC Book 29

B Memory Usage

You will have noticed that this procedure creates a lot of
overhead. Which explains why it often takes a lot of mem-
ory to store a bit pattern. Now take a look at a mono
screen:

GET 0,0,00,79,a$
GET 0,0,01,79,b$
GET 0,0,15,79,c$
GET 0,0,16,79,d$

Where a$ contains the 6 byte prefix and 80 rows of
words (+2*80+6=166 Bytes). Every row contains only one
bit (80/8=10 Bytes). This shows that 90% of a¥ is just
ballast.

The b$ is just as long, but two bits are used instead
of one.

The c$ is also as long as a$, but it is put to optimal
use.

And d$ contains an extra word which increases the
length to 326 Bytes (6+2*80+2*80=320).

With color the string Lengths are 326 and 646 bytes

(medium resolution) or 646 and 1286 bytes (high resolu-
tion) instead of the 166 and 326 on the mono screen.

Raster Graphic Commands

30 The GFA BASIC Book

%

2.4 Graphics Mode

GFA BASIC has a Graphmode command that allows
you to select the drawing mode for graphics operations.

Graphmode 1 = Replace
This is the normal mode which replaces the
old picture with a new one.

Graphmode 2 = Transparent
The old picture can still be seen behind the
new transparent one.

Graphmode 3 = Xor
This mode intermixes the new picture with
the old one (an off pixel turns on and an on
pixel turns off). This mode allows you to
create blinking screen segments, like the
rubberband in drawing programs.

Graphmode 4 = Inverse Transparent

This mode is similar to mode 2 except the
new picture is shown in inverse.

Chapter 2: Graphics

The GFA BASIC Book

31

Figure 1: Graphmode Settings

Graphmode 0 Graphnode 1 Graphnode

o
g

.

i

This Graphmode-setting does not apply to the PUT and
BITBLT commands. There are sixteen Graphmodes that
can be passed on with these commands. If no mode is se-
lected with the PUT command, mode 3 is automatically
chosen (this is the same as Graphmode I or the other com-
mands).

The following shows "s" as a bit for the source raster
and "d" for the destination raster.

Graphics Mode

32

The GFA BASIC Book

Nr. Result

0 0 All bits are cleared.

1 sand d Only those bits contained in both
stay set.

2 s and (not d) Set only the bits which are set in
the source and not set in
the destination.

3 S The source is transferred
unchanged (Graphmode 1).

4 (not s) and d Set only the bits which are
not set in the source and
are set in the destination.

5 d Do nothing (does not make much
sense).

6 s xor d Source is Xor with the destination
(Graphmode 3).

7 sord All bits are set that set in either
the source or destination
(Graphmode 2).

8 not (s or d) Set all bits that are not set in the
source or destination.

9 not(s xor d) Set all bits that set in both
rasters or that are not set in both
rasters.

10 notd The destination raster is inverted.

11 s or (not d) Set all bits that are set in
the source and that are not set
in the destination.

12 not s The source raster is inverted
before it is transferred.

13 (nots)ord Graphmode 4.

14 not (s and d) Set all bits not set in either the
destination or source.

15 1 All bits are set.

Chapter 2: Graphics

The GFA BASIC Book

33

The important modes are:

3 =replace
4 =XOr
7 =transparent

13 =inverse transparent

Graphics Mode

34 The GFA BASIC Book

&%

2.5 Graphics on Diskette

It is quite easy to save a graphic picture to diskette by
using the BSAVE command. To load it just use the BLOAD
command. A problem arises when many small pictures are
to be saved to the diskette since 100 pictures would require
100 files on the diskette (they each contain at least 1
Kbytes plus 32 bytes for the directory). The following is a
program that will save and load 100 GET/PUT segments
from the diskette as one file.

To save:

OPEN "O" #1,#1,"file.get"
FOR i%=0 TO 99

PRINT #1,MKI$(LEN(a$(i%))):a$(%);
CLOSE #1

To load:

OPEN "I" #1,"file. get"

FOR i%=0 TO 99
a$(i%)=INPUTS(CVI(INPUT$(2,#1))#1)
NEXT i%

CLOSE #1

Chapter 2: Graphics

The GFA BASIC Book 35

Explanation: This GET/PUT string (a$) can contain any
character (comma, backspace, line feed, etc.) which makes
it impossible to use the /NPUT command. Instead, the
INPUT$-function is used. The length is stored in two bytes
by using MKI$. When reading the data the length is ex-
tracted using CVI(INPUT$(2,#1)). This length is then used
in the outer INPUT$ function.

Graphics On Diskette

36

The GFA BASIC Book

B BITBLT

This command performs roughly the same function as
the GET/PUT combination. This command is somewhat
more flexible, but it is also harder to use.

BITBLT smfdb2%(),dmidb%(),p%()

These parameters already hint that this command is very
powerful. The smfdb stands for Source Memory Form
Description Block, which describes the form and dmfdb de-
scribes the form for the destination. The p stands for point
and contains the coordinates for the source and destination
rectangles and also the mode of how they overlap (see PUT
above).

_mfdb%(0) contains the raster address. Usually, at least
one of either smfdb%(0) or dmfdb%(0) equals the
screen address (XBIOS(2)). This address must be
even.

_mfdb%(1) contains the width of the raster in pixels units
(640 for mono, 320 or 640 for color). Other num-
bers divisible by 16 could also be used.

_mfdb%(2) contains the raster height (400 or 200 or ...).

_mfdb%(3) contains the raster width in words. This is al-
ways the pixel count divided by 16.

_mfdb%(4) this is always zero in Atari GEM since an inde-
pendent format was not yet implemented.

_mfdb%(5) contains the number of bit planes (mono 1,
color 2 or 4).

Chapter 2: Graphics

The GFA BASIC Book 37

_mfdb%(6) to mfdb%(8) are reserved for future additions
(very unlikely).

If mfdb%(0)=0, GEM will create the rest of the MFDB’s
by itself pointing to the current screen.
Example (Hires!Midres/Lores):

GET 100,110,120,130,a$

a$=MKI$(20)+MKI$(20)+MKIS(1)+SPACE$(84) !168/336
smidb%(0)=XBIOS(3)

smidb%(1)=640 1 640/320
smidh%(2)=400 1 200/200
smidb%(3)=40 140/ 20

smidb%(5)=1 12/ 4
dmfdb%(0)=VARPTR(a$)+6

dmfdb%(1)=32 | (Width+16) and &FFFO
dmfdb%(2)=21 | Height

dmfdb%(3)=2 I dmfdb%(1)/16
dmfdb%(5)=1 12/ 4

p%(0)=100

p%(1)=110

p%(2)=120

p%(3)=130

p%(4)=0 I always the left top corner
p%i(5)=0

p%(6)=20

p%(7)=20

p%(8)=3 I copy mode

BITBLT smfdb%(),dmfdb%(),p%()

Both strings are identical as far as the relevant bits are
concerned. The GET-command leaves the input string un-
changed if the bits are not inside the rectangle. Adding a
a$=SPACE$(90) (/174/342) before the GET-command will
result in identical strings. Let us continue with a more de-
manding example, as might be used in a graphics program,

Graphics On Diskette

38 The GFA BASIC Book

a routine that mirrors a rectangle across the vertical or hori-
zontal axis that was read with the GET command.
GETI/PUT is slow and if you are not careful you could eas-
ily use up more than half of a megabyte of memory just for
a mirror effect.

Dim Smfdb%(8),Dmfdb%(8),P%(8)
For 1%=0 To 639 Step 8
Line 1%,0,639-1%,399

Next 1%

Get 0,0,639,399,A% I change if color

T%=Timer

@Mirrorput(0,0,*A$)

Print Timer-T%

Procedure Mirrorput(X%,Y%,S.%)

If Dpeek(S.%+4)>6 Lonly if something is there
A%=Lpeek(S.%)
B%=Dpeek(A%) I width
H%=Dpeek(A%+2) I'height
Smfdb%(0)=A%+6
Smfdb%(1)=(B%+16) And &HFFFO
Smfdb%(2)=H%+1
Smfdb%(3)=Smfdb%(1)/16
Smfdb%(5)=Dpeek(A%+4)
Dmfdb%(0)=XBIOS(3)
On XBIOS(4)+1 Gosub
Midb.lores,Mfdb.midres,Mfdb.hires

P%(1)=0 e
P%(3)=H% o
P%(5)=Y% e
P%(7)=Y%+H% s
P%(8)=3 el
P%(4)=X%+B% g
P%(6)=X%+B% e
For 1%=0 To B% [
P%(0)=1% i
P%(2)=1% e
Bitblt Smfdb%(),Dmfdb%(),P%() 1***
Dec P%(4) 134
Dec P%(6) 2y

Chapter 2: Graphics

The GFA BASIC Book 39

Next 1% [**x

Endif

Return

Procedure Mfdb.hires
Dmfdb%(1)=640
Dmfdb%(2)= 400
Dmfdb%(3)=4
Dmfdb%(5)= 1

Return

Procedure Mfdb.midres
Dmfdb%(1)=640
Dmfdb%(2)= 200
Dmfdb%(3)=4

Dmfdb%(5)= 2

Return

Procedure Mfdb.lores
Dmfdb%(1)=320
Dmfdb%(2)=200
Dmfdb%(3)=20
Dmfdb%(5)=4

Return

The program lines marked with !*** must be replaced
with the following to mirror across the horizontal axis:

P%(0)=0
P%(2)=B%
P%(4)=X%
P%(6)=X%+B%
P%(8)=Modus%
P%(5)=Y%+H%
P%(7)=Y%+H%
For 1%=0 To B%
P%(1)=1%
P%(3)=1%
Bitblt Smfdb%(),Dmfdb%(),P%()
Dec P%(5)
Dec P%(7)
Next 1%

Graphics On Diskette

40

The GFA BASIC Book

At the start of the program, a simple pattern is drawn to
the screen and this pattern is then copied to a string (a$)
with the GET command. Procedure @mirrorput takes this
pattern and mirrors it across the vertical axis. The param-
eters are similar to the ones needed with a PUT command:
X coordinates, Y coordinates, String and Mode. The string
1s not passed by value, but rather by the pointer using the
asterisk symbol.

This results in the string not having to be passed to the
corresponding local variable (this saves time). The address
(=Varptr) is determined with LPEEK(*a$) and the length
with DPEEK(*a$+4). The procedure mirrorput checks to
see if the string is longer than 6 characters (it must be
longer than 6 for the GET command). Next, the starting
address, width and height of the GET-string are determined
and the mfdbs (Memory Form Description Blocks) are cre-
ated. Notice that the width and the height must be incre-
mented by one.

The XBIOS(4) routine is called to determine the current
screen resolution so that the correct dmfdb procedure can
be called. Next, a loop is executed that increments or de-
creases the X-coordinates of the source rectangle and desti-
nation rectangle so that the mirror effect is created.

The following is a demonstration program that allows
you to move a picture segment by using the corresponding
mouse coordinates. This allows you to test the speed gain
that might be achieved with the blitter chip whenever it be-
comes available.

Dim Smfdb%(8),Dmfdb%(8),P%(8)
Graphmode 3
For 1%=0 To 639 Step 8
Line 1%,0,639-1%,399
Next 1%
For 1%=0 TO 399
LINE 639,1%,0,399-1%

Chapter 2: Graphics

The GFA BASIC Book 41

Next 1%
Dmfdb%(0)=XBIOS(3)
On XBIOS(4)+1 Gosub Mfdb.lores,Mfdb.midres,Mfdb.hires
Repeat
Mouse X%,Y%,K%
If X%<>0 And X%<>639 And Y%<>0 And Y%<>399
P%(0)=X%
P%(1)=Y%
P%(2)=639-X%
P%(3)=399-Y%
Q%=Even(X%+Y%)-0dd(X%+Y%)
P%(4)=P%(0)+Q%
P%(5)=P%(1)+Q%
P%(6)=P%(2)+Q%
P%(7)=P%(3)+Q%
P%(8)=3
Bitblt Smfdb%(),Dmfdb%(),P%()
Endif
Until K% And 2
"Now add the mfdb. xxxx routines from above.

Caution: It is extremely important that the coor-
dinates of the destination rectangle reside
within the picture. There is no safety check
in the VDI routine. With color, the coordi-
nates (639 and 399) must be adjusted. If
the source and destination rectangles
overlap, the destination is never changed,
before the corresponding part of the screen
is used as source. A similar effect is done
inside the BMOVE routine.

If the size of the source and destination rectangle are
different, the connection is made with the size of the source
rectangle. Nevertheless, both corner points of the rectangle
must always be supplied.

Graphics On Diskette

42 The GFA BASIC Book

&%

2.6 Flicker Free Graphics

When moving Bit blocks (with BITBLT or GET/PUT),
the picture on the screen may flicker. To eliminate this
flickering, you would want to display a picture on screen
and then build a new picture off screen in memory and dis-
play it when the first is done.

The ST contains a XBIOS routine that helps with this
process called setscreen. This routine allows you to switch
between the physical (as displayed) and the logical (as be-
ing built) screen address. It is important that the screen ad-
dress is divisible by 256.

Dim Screen%(32255/4)
Graphmode 3
For 1%=0 to 639 Step 4

Line 0,0 1%,399

Line 639,0,1%,399
Next 1%
Get 0,0,99,99,A%
A%=XBIOS(3)
B%=(Varptr(screen%(0)+255) And &HFFFF00
Sget H$
Repeat

Swap A%,B%

Void XBIOS(5,L:A%,L:B%,-1)

Chapter 2: Graphics

The GFA BASIC Book 43

Sput H$

Mouse X%,Y%,K%

Put Xo/o,Yo/o,As

If K%=1

Sget H$

Endif

Line X%,0,X%,399

Line 0,Y%,639,Y%
Until K%=2
A%=Max(A%,B%)
Void XBIOS(5,L:A%,L:A%,-1)
Sput H$

A second screen is stored in an integer field. The size of
this field is 32000 Bytes (screensize) plus 255 bytes to
make sure the screen address resides within a 256-byte
boundary. This number 32255 is then divided by 4, the
size of the integer number. The screen address is the first
address within this field that is divisible by 256 (this is ac-
complished with AND &HFFFF00). The screen back-
ground is saved into string H$ (also with a simple pattern).

XBIOS(5,L:A%,L:B%,-1) I'setscreen

This XBIOS call sets the logical screen address to the
value in variable A% and the physical screen address to the
value in variable B%.

One of the variables contains the old screen address
(XBIOS(3)) and the other variable contains the second
screen address. The two screen addresses are then used to
set the logical and physical screen base to different values.
The swap makes sure that next time the XBIOS(5...) is
called, one image pops onto the screen while the other
vanishes and waits to be replaced by a new one.

The SPUT command restores the background of the
logical screen. After the mouse input, the screen segment
is drawn with the PUT command. If the mouse button is
pressed, the current picture is copied into the background

Flicker Free Graphics

44

The GFA BASIC Book

string. A cross is then drawn which disappears the next
time the SPUT command is issued. This process is re-
peated until the right mouse button is pressed. Finally both
screen addresses are set to the original value (this is easy
with the max() function). You can also reserve more than
two screen sections (16 of them will occupy 1/2
megabytes).

It is also possible to vertically scroll through more than
one picture by changing the screen address in smaller steps.
The screen address can only be changed in steps of 256
bytes. Since a screen line contains 80 bytes (160 bytes
with color), the scrolling is only possible in steps of 16
lines (the smallest common denominator of 256 and 80 is
1280, 16*80, or 2560, 16*%160 for color). This small pro-
gram puts three overlapping pictures into an integer field
and then scrolls them.

"Scroll Demo

Dim A%((32000*3+255)/4)
A%=Varptr(A%(0))+255 And &HFFFF00
Graphmode 3
For 1%=0 To 639
Line 0,0,1%,399
Next 1%
Bmove XBIOS(3),A%,32000
Cls
For 1%=0 To 639
Line 0,399,1%,0
Next 1%
Bmove XBIOS(3),A%+32000,32000
Bmove A%,A%+64000,32000
Repeat
For B%=A% To A%+64000-1280 Step 1280
Void XBIOS(5,L:-1,L:B%,-1)
Vsync
Next B%
Until Mousek

Chapter 2: Graphics

The GFA BASIC Book

45

Void XBIOS(5,L:-1,L:XBIOS(3),-1)

The last parameter in XBIOS(5) (-1) indicates that the
resolution should not be changed. Unfortunately, an or-
derly change in the resolution is not possible with GEM. In
any case, 0 is for low, 1 for medium, and 2 for high resolu-
tion. Parameters can be set to -1, which tells the operating
system not to change the corresponding value.

You can, of course, change not only the address, but
also find out the current values.

Physical_address=XBIOS(2) I physbase
Logical_address=XBIOS(3) I'logbase
Resolution=XBIOS(4) I getrez

If you now think that BITBLT is only a pure graphic
command, I must disappoint you. It is possible to use the
BITBLT command in a bit pattern that is contained in
memory as long as it can be interpreted as a raster. For ex-
ample, you could create such a raster in an integer field and
then set all field elements to null (ARRAYFILL) or change
only certain bits within each field. Possible uses are left to
your imagination.

For fans of nice looking character sets, here is a tip: The
bit pattern of fonts may be moved relatively easily with the
BITBLT command as is often needed with proportional
spacing.

Flicker Free Graphics

46

CHAPTER 3

TIPS &
PROGRAMS

47

48

The GFA BASIC Book

As the title of this chapter indicates, the follow-
ing pages will try to show a variety of different concepts.
Some pages contain programs that could be put to immedi-
ate use.

Examples of these are the Input-routine (Chapter 3.1) or
the FONTDEMO at the end of this chapter (Chapter 3.12).
Some of the concepts in these examples may not be clear to
you until after you have studied Chapters 4 through 6.

There are many other things discussed in this chapter,
like SCAN-Codes (Chapter 3.5) and Recursion (Chapter
3.10).

Since most of the concepts in this Chapter are not re-
lated to each other as in previous chapters every sub chap-
ter will start on a new page.

Chapter 3: Tips and Programs

The GFA BASIC Book

49

%

3.1 Dialog Boxes Homemade

It is possible to create Dialog boxes using a Resource
Construction Set and then manipulate these boxes using the
corresponding GEM calls. But it is also possible to write
your own Input-Routine using GFA BASIC and thereby
gain a lot more control over your input.

The following program contains an Input-Routine
somewhat similar to the one used with GEM.

" Input.bas

Dim X%(10),Y%(10),T$(10),L%(10),1$(10),V%(10)
For 1%=0 To 6
Read X%(1%),Y%(1%), T$(1%),L%(1%),V%(1%)
1$(1%)=""
Next 1%
Data 0,0,"Last Name :",20,0
Data 0,1,"First Name :",20,0
Data 0,2,"Street *,20,0
Data 0,3,"City:",16,0
Data 23,3,"State :",2,0
Data 0,4,"Zip Code:",5,1
Data 16,4,"Tel. 20,2
Do
@Input_routine(6,100,100,1)
For 1%=0To 6

Dialog Boxes Homemade

50 The GFA BASIC Book

Print T$(1%)'1$(1%)
Next 1%
Print
Loop
Procedure Input_routine(N%,X%,Y%,F%)
Vdisys 38 I gets character size
Cb%=Dpeek(Ptsout+4) l'in pixels and character
Ch%=Dpeek(Ptsout+6) I'spacing
Lh%=Dpeek(Ptsout+2)
LI%=Ch%-Lh%
Insflg!=True
Spec$=Chr$(8)+Chr$(13)+Chr$(27)
Sp.scan$=Chr$(&H48)+Chr(&H4B)+Chr(&H50)+Chr$(
&H4D)+Chr§(&H52)
Spre=Mki$(0)+Mki$(Lh%)+Mki$(-1)+Mki$(1)+MKki$(0)
For 1%=1To Ch%
Spré=Spr$+MkI$(&H8000)
Next 1%
Spr=Leftp(Spré+String$(74,0),74)
U$=String$(100," ")
Dim Tx%(N%), Ty%(N%)
Mx%=0
Myo/o=0
For 1%=0 To N%
Tx%(1%)=X%+Cb%"(X%(1%)+Len(T$(1%)))
Ty%(1%)=Y%+Ch%"Y%(1%)
Mx%=Max(Mx%, Tx%(1%)+Cb%*L%(1%))
My%=Max(My%, Ty%(1%))
Next 1%
If F%
Get X%-10,Y%-10-Ch%,Mx%+10,My%+10,Temp$
Endif
Deffill 1,0
Color 1
Pbox X%-10,Y%-10-Ch%,Mx%+10,My%+10
Box X%-5,Y%-5-Ch%,Mx%+5,My%+5
"or deffill ,2,1 pbox . . .
For 1%=0 To N%
T$=T$(1%)+Left$(1$(1%)+US$,L%(1%))
Text X%+X%(1%)*Ch%, Y %+Y%(1%)*Ch%, T$

Chapter 3: Tips and Programs

The GFA BASIC Book 51

Next 1%
E%=0
T$=I$(E%)
C%=0
Repeat
@E.curson
Repeat
Mouse Mox%,Moy%,Mok%
K$=Inkey$
Until Len(K$) Or Mok%
@E. cursoff
If K$<>""
If Len(K$)=1
@E.do_char(Asc(K$))
Else
@E.do_scan(Asc(Right$(K$)))
Endif
Endif
If Mok%
If Mox%>=X% And Moy%>=Y%-Ch%
If Mox%<=Mx% And Moy%<My%
@E.do_mouse
Endif
Endif
Endif
Until E%>N% Or E%<0
If F%
Put X%-10,Y%-10-Ch%,Temp$
Endif
Erase Tx%()
Erase Ty%()
Return
Procedure E.dsp.In
If Len(T$)>L%(E%)
Out 2,7
T$=Left$(T$,L%(E%))
Endif
C%=Min(C%,Len(T$),L%(E%))
Text Tx%, Ty%, Left$(T$+U$,L%(E%))
Return

Dialog Boxes Homemade

52

The GFA BASIC Book

Procedure E.curson
Tx%=Tx%(E%)
Ty%=Ty%(E%)
Sprite Spr$, Tx%+C%*Cb%, Ty%
Return
Procedure E. cursoff
Sprite Spr$
Return
Procedure E. ins_char(K%)
Do
Exit If V%(E%)=1 AndInstr("0123456789",
Chr$(K%))=0
Exit If V%(E%)=2 And Instr("0123456789/()-",Chr$
(K%))=0
"here you can easily add your own types
If Insflg! Or C%=Len(T$)
T$=Left$(T$,C%)+Chr$(K%)+Mid$(T$,C%+1)
Else
Mid$(T$,C%)=Chr$(K%)
Endif
Inc C%
@E.dsp.In
Goto E.insx
Loop
Out2,7
E.insx:
Return
Procedure E.do_char(K%)
V%=Instr(Spec$,Chrd(K%))
If V%
On V% Gosub E.backs,E.enter,E.esc
Else
@E.ins_char(K%)
Endif
Return
Procedure E.backs
If C%>0
T$=Left(T$,C%-1)+Mid$(T$,C%+1)
Dec C%
@E.dsp.In

Chapter 3: Tips and Programs

The GFA BASIC Book 53

Endif
Return
Procedure E.enter
I$(E%)=T$
Inc E%
T$=I$(E%)
C%=0
Return
Procedure E.esc
Tg="
C%=0
@E.dsp.In
Return
Procedure E. do_scan(K%)
V%=Instr(Sp.scan$,Chr$(K%))
If V%
On V% Gosub E.up,E.Ift, E.dwn,E.rgt,E.insert
Else I'see text
Endif
Return
Procedure E.up
I$(E%)=T$
If E%
Dec E%
Else
E%=N%
Endif
T$=I$(E%)
C%=Len(T$)
Return
Procedure E.dwn
I$(E%)=T$
If E%<N%
Inc E%
Else
E%=0
Endif
T$=I8(E%)
C%=Len(T$)
Return

Dialog Boxes Homemade

54

The GFA BASIC Book

Procedure E.Ift
If C%
Dec C%
Endif
Return
Procedure E.rgt
If C%<Len(T$)
Inc C%
Endif
Return
Procedure E.insert
Insflg!=Not Insflg!
Return
Procedure E.do_mouse
Qx%=(M0x%-X%)/Cb%
Qy%=(Moy%-Y%)/Ch%+1
[%=0
Repeat
If Qy%=Y%(1%)
Q%=Qx%-X%(1%)-Len(T$(1%))
If (Q% And 255)<=L%(1%)
Goto E.dom.ok
Endif
Endif
Inc 1%
Until 1%>N%
If 0
E.dom.ok:
I$(E%)=T$
E%=1%
T$=I$(E%)
C%=Min(Q%,Len(T$))
@E.curson
@E.dsp.In
Endif
Return

First, all of the global arrays are dimensioned.

Chapter 3: Tips and Programs

The GFA BASIC Book 55

The Data arrays describe the input:

The first two numbers determine the row and col-
umn position at which the input field should start
(0,0 1s top left corner and 0,1 is the line below it).

Next the actual text that describes the field is given.

The next number indicates the maximum number of
digits or characters that this field may contain.

The last number decides what kind of input is legal.
The following kinds are legal for this program:

0 - All characters are allowed.

1 - Only numeric digits (0-9) are allowed.

2 - Only a number, a slash, a parenthesis, or
a minus sign is allowed, as would be
used in a telephone number.

Figure 2: Input Screen

Last Hame }_—___
First Hame _____
Street AT
City)
Zip Codef

Dialog Boxes Homemade

56

The GFA BASIC Book

After the data is read into the corresponding fields, the
number of fields (N%), screen position (X%,Y%) and a flag
(F%) are passed to the Input-Routine. The flag determines
whether the corresponding segment should be saved with a
GET/PUT command. The Input-Routine determines the
size of the text. VDISYS 38 returns in PTSOUT the width
and the height of the text and also the width and height of
the box that surrounds the box. This procedure is used to
allow the text to be displayed in any resolution by calcu-
lating the pixel oriented screen coordinates. This size is
also used to determine the size of the vertical line which is
used as the cursor.

The string Spec$ contains the ASCII value for special
keys, (Backspace, Return and Esc), which are easily distin-
guished from the other keys by using the /NSTR command.
The string Sp.scan$ contains the SCAN-codes for special
keys, here the codes for the Arrows and the Insert key are
used.

String Spr$ is a sprite, which will serve as the cursor.
The vertical offset MKI$(lh%) serves to quickly position
the cursor to the correct vertical line. The Format-flag
MKI$(-1) makes sure that the sprite is inverted
(Graphmode 3) whenever the matching foreground-bit is
set. In some documentation this value is given incorrectly
as plus 1. The color data is not important here.

The sprite is constructed with a vertical line which cor-
responds to the text height. If you replace MKL$(&H8000)
with MKL$(&HFF00), the sprite would be 8 pixels wide.
The LEFT$ assures that too small of a text size will be
filled with nulls and that too big of a text size is truncated
to match the size of the text to the allowed size of sprites.

The string U$ contains the underline characters that are
used to mark the input fields.

Next, the individual screen coordinates are calculated
for each field as well as the size of the input window.

Chapter 3: Tips and Programs

The GFA BASIC Book

7

If the flag f% is set, the picture is saved in string Temp3.

The PBOX command erases the window. The BOX
command draws the double border around the text.

Next, all the field names, as well as the underline char-
acters or the already existing input data contained in string
I$, are put into string T$. This string is then used in the
TEXT command to display the fields.

After the initialization of a few variables (e%=number
of the field that contains the cursor, T$=the actual field
contents and C%=the relative cursor position), the program
continues with the main loop.

Next, the cursor is made visible and the program will
loop until either a key is struck or the mouse button is
pressed.

Next, the cursor is turned off.

If a key has been pressed, a routine to handle the ASCII
character (do_char) or a routine for a SCAN-Code
(do_scan) is called. Whenever a mouse button is pressed
that resides within the range of the input, the cursor posi-
tion is changed to that new position. If the cursor has not
reached the end (pressing Return in the last field) and there
was no error (e%=-1), the main loop is continued.

Otherwise, the picture is restored and the fields that
contained the pixel coordinates,(tx% and ty%) are erased.

Routine E.dsp.ln displays the input field. If the maxi-
mum length is exceeded, the bell will sound and the string
is truncated. The cursor cannot move past the end of the
field.

Dialog Boxes Homemade

58

The GFA BASIC Book

Routine E.curson places the cursor position in variables
Tx% and Ty% and then turns the sprite cursor on.

Routine E.cursoff turns the sprite off.

Routine E.ins _char inserts a character from the cursor
position into string 7§ and then displays that line.

This construction with the DO-LOOP and the EXIT
command is one possible means of checking for legal char-
acters. You could have used nested /F statements, but the
DO-LOOP-EXIT combination is easier to expand upon. A
GOTO command was used to ring the bell only in case of
an error.

Routine E.do_char calls special routines to handle the
Backspace, the Return/Enter and the Esc key. All other
characters are passed to the field by means of the
E.ins_char routine.

Routine E.do.scan calls on special routines for arrow
keys and for the Insert key (to change between add and in-
sert mode).

You can also substitute the following for the ELSE
branch:

@e.inschar(k% XOR 128)
something similar is performed by the GFA BASIC editor.

If you wish to use function keys use the following rou-
tine:

Procedure E.f1
If Not Inp?(2)
@E.dostring(Chr§(27)+"Werner"
Endif
Return
Procedure E.dostring(A$)

Chapter 3: Tips and Programs

The GFA BASIC Book

39

For li%=1 To Len(A$)
@E.do_char(Asc(Mid$(A$, 1i%))
Next li%
Return

INP?(2) checks to see if another key was pressed before
it executes the F1-Routine.

If you replace the E.do_char with E.ins _char, the rou-
tine would be faster but you would not be able to use
Control characters, like the Esc key .

It would be even faster if you would write a routine that
would directly manipulate the String T$, similar to the
E.ins char. This would also eliminate the need for the
INP ?(2)-function.

The function keys could be used in data files to read the
next or previous record.

The UNDO key could also have some useful function.

The E.do mouse-Routine changes the mouse coordi-
nates to line coordinates. A check is made to determine if
the mouse points to one of the input fields. It then changes
the cursor position.

Dialog Boxes Homemade

60 The GFA BASIC Book

B Remarks:

The program contains some sloppy code. I decided to
leave it in the program to show that even the GOTO state-
ment can have a useful purpose.

The GOTO in the E.ins_char routine could easily be re-
placed with a couple of nested /F statements.

The GOTO in the E.do_mouse routine could be removed
by simply moving the program part between the If 0 and
the Endif to where the GOTO is.

The E.curson routine was called in the Mouse-routine to
set the cursor to Tx% and Ty%.

Also, not all the variables in the Input-routine were de-
clared as local, even though this would not have been hard
to do. To keep a program short, you can sometimes skip
declaring the variables as local as long as you use some
discipline to name your variables.

Example:
e Variables that contain only one character
or start with the letters T or Q may

be used for subroutines.

o All global variables must be a least four
characters long.

o All variables that return an error code
should start with the letter E.
e etc.

Make your own rules and obey them!

Chapter 3: Tips and Programs

The GFA BASIC Book 61

%

3.2 Sound

To find the parameters necessary to create a certain
noise with the SOUND and WAVE command, it is usually
best just to experiment. The following program will help to
experiment with sound, and also show you how to use the
mouse without using AES (resource file).

" SoundExp
* Sound Experiment program

@Draw_box(0) I for sound. per
Xa%=-99
@Draw_box(50) I for wave.per
Xb%=-99
@Draw_box(100) I for noise
Xd%=-99
@Draw_box(160) I for envelope curve
Xc%=-99
For 1%=0To 7

Text 29+1%*35,176,1%+8

Next 1%
Do
Repeat
Mouse X%,Y%,K%
Until K%
If Y%>0 And Y%<19 I A Quick check to see
@Sound.per lif one of the rectangles

Sound

62 The GFA BASIC Book

Endif I'was selected
If Y%>50 And Y%<69
@Wave.per
Endif
If Y%>100 And Y%<119
@Noise
Endif
If Y%>160 And Y%<179
@Wave.form

Endif
Loop
Procedure Sound.per I Selecting the

If X%>300 And X%<320 I frequency

Per%=Min(Per%+1,4095)

Else

If X%>0 And X%<20
Per%=Max(Per%-1,0)

Else
If X%>20 And X%<300

Per%=(X%-20)/280*4096

Endif

Endif

Endif I Tone Changes

Sound 1,8 #Per%

Wave Ri%*256+1-8%(Ri%<>0),1,Wform%,Wper%

Text 100,35,"SOUND 1,8,"+Str$(Per%)+" " lnfo-line

X%=Per%/4096"280+20

Color 0

Line Xa%,1,Xa%,18

Color 1

Line X%,1,X%,18

Xa%=X%

Pause 2 I a short pause otherwise
Return lit would be too fast
Procedure Wave.per I'a selection of the Wave period

S$%=10MK%-1) Heft:%=1/right:s%=10/both:5%=100

If X%>300 And X%<320

Wper%=Min(Wper%+S%,65535)

Else

If X%>0 And X%<20

Chapter 3: Tips and Programs

The GFA BASIC Book

63

Wper%=Max(Wper%-S%,0)

Else
If X%>20 And X%<300

Wper%=(X%-20)/280*65536

Endif
Endif
Endif
@Disp_wave
X%=Wper%/65536*280+20
Color 0
Line Xb%,51,Xb%,68
Color 1
Line X°/o,51 ,Xo/o,68
Xb%=X%
Return
Procedure Noise
If X%>300 And X%<320
R{%=Min(Rf%+1,31)
Else
If X%>0 And X%<20
Ri%=Max(R{%-1,0)
Else
If X%>20 And X%<300
Rf%=(X%-20)/280"32
Endif
Endif
Endif
@Disp_wave
X%=R{%/32*280+20
Color 0
Line Xd%,101,Xd%,118
Color 1
Line X%,101,X%,118
Xd%=X%
Return
Procedure Wave.form
If X%>300 And X%<320
Wform%=Min(Wform%+1,15)
Else
If X%>0 And X%<20

I Info-line

I setting noise period

I Info-line

| set envelope curve

Sound

64

The GFA BASIC Book

Wrorm%=Max(Wform%-1,8)
Else
If X%>20 And X%<300
Wform%=(X%-20)/280*8+8
Endif
Endif
Endif
@Disp_wave I'Info-line
X%=(Wform%-8)*35+20
Color 0
Box X¢c%,161,Xc%+34,178
Color 1
Box X%,161,X%+34,178
Xc%=X%
Deffill 0
Pbox 20,180,300,199
On Wform%-7 Gosub W8,W9,W10,W11 W12 W13,W14 W15
Return I This ON-GOSUB serves to quickly
Procedure W8 I display the envelope curve
For 1%=20 To 290 Step 10
Draw 1%,185 To 1%+10,195 To 1%+10,185
Next 1%
Return
Procedure W9
Draw 20,185 To 30,195 To 300,195
Return
Procedure W10
For 1%=20 To 280 Step 20
Draw 1%,185 To 1%+10,195 To 1%+20,185
Next 1%
Return
Procedure W11
Draw 20,185 To 30,195 To 30,185 To 300,185
Return
Procedure W12
For 1%=20 To 290 Step 10
Draw 1%,195 To 1%+10,185 To 1%+10,195
Next 1%
Return
Procedure W13

Chapter 3: Tips and Programs

The GFA BASIC Book

65

Draw 20,195 To 30,185 To 300,185
Return
Procedure W14
For 1%=20 To 280 Step 20
Draw 1%,195 To 1%+10,185 To 1%+20,195
Next 1%
Return
Procedure W15
Draw 20,195 To 30,185 To 30,195 To 300,195
Return
Procedure Disp_wave I Output Wave-Info
If Rf%
Wave 9+Rf%*256,1,Wform%,Wper% ! and wave selection
Text 100,85,"WAVE "+Str$(Rf%)+"*256+9,1,
"+Str§(Wrorm%)+","+Str$(Wper%)+" "
Else
Wave 1+Rf%*256,1,Wform%, Wper%
Text 100,85,"WAVE 1,1,"+Str§(Wiorm%)+""+Str$(Wper%)+" "
Endif
Return
Procedure Draw_box(Y%) I'subroutine to display boxes with
Box 0,Y%,319,Y%+19 I arrows on both sides
Line 19,Y%,19,Y%+19
Line 300,Y%,300,Y%+19
Text 6,Y%+16,Chr(4)
Text 307,Y%+16,Chr$(3)
Return

The program displays four horizontal rectangles. If you
click in any of the rectangles, a vertical line will appear in
the first rectangle. The first rectangle indicates the period
of the tone. Directly below that rectangle, the correspond-
ing SOUND command is shown. The next rectangle selects
the period of the envelope; after which, the rectangle for
the period of noise is shown. The last rectangle allows you
to set the envelope curve. A graphic display of that curve
is shown below that rectangle. The corresponding WAVE
command is also shown.

Sound

66

The GFA BASIC Book

Figure 3: SOUND and WAVE

SOUND 1,8,69

WAVE 1,1,12,31

Le] [0]

[«Td 9700 I[agFiy 14 1505

You can, by the way, also listen to the whole thing.

By clicking inside of the rectangle, you can change the
corresponding value. And by clicking the arrows, the
change is made in single steps. The WAVE-period allows
you to move in ten step increments by pressing the right
mouse button and by one hundred step increments by
pressing both mouse buttons.

The drawing of the rectangles with the arrows is per-
formed by procedure draw box. The variables Xa%, etc.
serve to store the coordinates for markers. The TEXT-
command writes the value 8 to 15 into the envelope curve
rectangle.

The program performs a loop until a mouse button is
pressed. If the mouse Y-position indicates that a rectangle

Chapter 3: Tips and Programs

The GFA BASIC Book

67

was chosen, the corresponding routine is called. The main
loop is never ending. Every program should always have
an exit from a loop, but it was omitted here for clarity.

The next procedures contain routines for each of the
rectangles. By using the MAX and the MIN command, you
can easily increase or decrease a value and still stay within
bounds.

The envelope curve could have been drawn using the
GET/PUT command, which would have been faster but
would have used more memory. Speed is not that impor-
tant in this program.

The operating system of the ST computer contains a
hardcopy routine, which is very easy to call. This routine,
however, has a small drawback: The picture of a circle is
indeed round, but definitely it is not a circle. The follow-
ing is a small routine that uses the Plotter-graphic mode of
an Epson-compatible printer to draw a circle.

" hardi
Graphmode 3
For 1%=0 To 639
Line 1%,0,639-1%,399
Next 1%
For 1%=0 To 399
Line 639,1%,0,399-1%
Next 1%
T%=Timer
@Hardcopy
Lprint
Lprint Timer-T%
Out0,12
T%=Timer
Hardcopy
Lprint
Lprint Timer-T%
Out 0,12
Procedure Hardcopy

Sound

68

The GFA BASIC Book

A$=Space$(400)
G$=""+Chr§(27)+"**+Chr$(5)+Chr8(400)+Chr$(400/256)
Open ™ #99,"LST:"
For S%=Xbios(3) To S$%+79
X%=Varptr(A$)
For Q%=5%+399"80 To S% Step -80
Poke X%,Peek(Q%)
Inc X%
Next Q%
Print #99,G$;A$;Chr$(13);
Print #39,Chr§(27);"J";Chr§(24);
Next S%
Close #99
Return

Within procedure Hardcopy, the string A$ is initialized
with 400 spaces. This string serves as the buffer for each
graphic line. This buffer is not really necessary, but it
serves to repeat the print line (PRINT #99,G$,A$;Chrs$(13);) in or-
der to produce a darker imprint.

In this example, a STAR SD-19 printer using IBM mode
was used. The control sequence ESC-*-5-400 was used to
enable the graphics mode with 400 columns and ESC-J-24
was used to set the line feed to 8 dots (you may have to re-
place these values with the ones taken from your own
printer manual).

You have probably already noticed that the hardcopy
was rotated by 90 degrees. This is necessary since 600 dots
will not fit on one print line while in Plotter-mode. Besides,

this method allows for much faster retrieval from memory
(by dots).

This routine is somewhat faster than the corresponding
GEM routine, but that could change with a different printer.

Chapter 3: Tips and Programs

69

The GFA BASIC Book

Figure 4: HARDCOPY Routine

Sound

70 The GFA BASIC Book

%

3.4 Copying Files

Often it is necessary to copy files, maybe to copy a
datafile from the diskette to a Ram-Disk or whatever.

The following small procedure will do the job.

Procedure Filecopy(Old$,New$)
Open "I"#1,01d$
Open "O" #2,New$
L%=Lof(#1) While L%>32000
Print #2,Input§(32000,#1);
Sub L%,32000
Wend
Print #2,Input$(L%,#1);
Close #1
Close #2
Return

To use this routine simply call @filecopy("A:DATA DAT",
"D:DATA.DAT").

Two files are opened, one to read the data and the other
to write. The contents of the file are copied using just one
command. If the file contains more than 32000 characters,
the file is first copied using 32000 character segments and,
finally, the remaining characters are copied. One could

Chapter 3: Tips and Programs

The GFA BASIC Book 71

copy less than 32000 characters at one time, but this would
affect the total copy time.

One could also load the complete file into the memory,
make changes, and then copy the file back to the diskette. It
is also possible to save the old file as a BAK-file as follows:

If Exist("FILE.DAT")

If Exist("FILE.BAK")

Kill "FILE.BAK")

Endif

Name "FILE.DAT" as "FILE.BAK"

Endif

"Now you may write the file in the normal fashion

Thus: If the file exists, it is renamed to BAK and a check

is made to see if a BAK-file by that name already exists, in
which case it is deleted.

Dialog Boxes Homemade

72

The GFA BASIC Book

&%

3.5 Scan Codes

The keyboard not only transmits an ASCII code but also
a SCAN-Code for every key. For example, all keys that are
not assigned in the ASCII table return a string containing
two characters whenever the INKEY$ function is called
(Chr$(0)+Chr$(SCAN-Code)).

BIOS(2,2) or ON MENU GOSUB also return the SCAN-
code besides the ASCII value.

Obtain the value of the SCAN-code for each key from
the table below.

The small number for the function keys represents the
SCAN-code whenever the key is pressed in combination
with the shift key.

The small number above the keys contains the values
when the key is pressed in combination with the
ALTERNATE key.

There are also separate codes for CONTROL-ARROW-
LEFT and CONTROL-ARROW-RIGHT.

The codes for the shift keys (Shift, Control and
Alternate) are also shown. They may be used for writing

Chapter 3: Tips and Programs

The GFA BASIC Book 73

your own keyboard driver. All codes are given in
Hexadecimal.

Figure 5: Hexidecimal Key Codes

[5 [s fw [3 i i [fa /s /a)

78 |72 |7R |78

02 103 184 185

72C

6

70 |7E | 7F

07108 {89

80 |81 |82

0A (0B |0C

83

6l29] o || 62 L61 |[63]edles s
of [1aluefizli3lialisTielizluslusfunlen] [s3]|s2]as [47] |62 |63 |69 |4
w [1E[1F |20]21 [22]23 |24 25 26 |22 [28] 1c128] |48 |50 |4D | |67 68 6C [4E
60 J2c [z |2€ [2F [30 [31 32 [33 [34 [35] = | 60 |6E |6F
o | 39 [o] 20 1710

0l

2

2

Scan Codes

74 The GFA BASIC Book

%

3.6 Directory

GFA BASIC contains commands that retrieve the con-
tents of a diskette. Three routines follow that read the table
of contents (directory).

First, the directory is read into an array, sorted and then
printed in three column format. The file size is also
printed.

' SORT DIR
Dim A$(1000)
@Getdir("™.*",&H37,*A%$(),"N%)
@Quicksort(*A$(),0,N%)
For 1%=0 To N% Step 3

Print A$(1%) " A$(1%+1)"A$(1%+2)
Next 1%

Procedure Getdir(File_$,Attr%,Str.arr%,Num.%)
Local |_%,E_%,X$
Swap *Str.arr%,File$()

Void Gemdos(26,L:Basepage+128) I setdta
File_$=File_$+Chr$(0)
E_%=Gemdos(78,L:Varptr(File_$),Attr%) I fsfirst

While E_%=0 'more Files
X$=Space$(20)
Bmove Basepage+158,Varptr(X$),14

Chapter 3: Tips and Programs

The GFA BASIC Book 75

X$=Left$(X$,Instr(X$,Chr§(0))-1)
X$=Left§(X$+Space$(20),15)
L$=Space$(7)
If Peek(Basepage+149) And 16
Idta+21=attribute
Rset L$="<<DIR>>"
Else
Rset L$=Str$(Lpeek(Basepage+154))
| dta+26=file size
Endif
X$=X$+L$
File$(I_%)=X$
Incl_%
E_%=Gemdos(79) I fsnext
Wend
File$(l_%)=""
Swap *Str.arr%,File$()
*Num.%=1_%-1 I' Highest Index with data
Return
Procedure Quicksort(Str.arr%,L%,R%)
Local X$
Swap *Str.arr%,A$()
@Quick(L%,R%)
Swap *Str.arr%,A$()
Return
Procedure Quick(L%,R%)
Local LI%,Rr%
LI%=L%
Rr%=R%
X$=A%((L%+R%)/2)
Repeat
While A$(L%)<X$
Inc L%
Wend
While A$(R%)>X$
Dec R%
Wend
If L%<=R%
Swap A$(L%),A$(R%)

Directory

76 The GFA BASIC Book

Inc L%
Dec R%
Endif
Until L%>R%
If LI%<R%
@Quick(LI%,R%)
Endif
If L%<Rr%
@Quick(L%,Rr%)
Endif
Return

By making some small changes, the program could also
display the date, the time, the volume name and the data
status (read only, hidden, etc.). In this program only one
file can be displayed per line.

' XDIR

Dim A$(1000)
@Getdir(**.*",-1,*A%(),"N%) !-1 means with LABEL
@Quicksort(*A$(),0,N%)
For 1%=0 To N%
Print A$(1%)
Next 1%

Procedure Getdir(File_$,Attr%,Str.arr%,Num.%)
Local |_%,E_%,X$
Swap *Str.arr%,File$()

Void Gemdos(26,L:Basepage+128) I setdta
File_$=File_$+Chr§(0)
E_%=Gemdos(78,L:Varptr(File_$),Attr%) I sfirst
While E_%=0 I'more Files

X$=Space$(20)

Bmove Basepage+158,Varptr(X$),14
" Filename

X$=Left$(X$, Instr(X$,Chr$(0))-1)

" fill with equal lengths
X$=Left$(X$+Space$(20),15)

Chapter 3: Tips and Programs

The GFA BASIC Book

(¥

' file size or <<DIR>>

L$=Space$(7)

A%=Peek(Basepage+149)

If A% And 16

Rset L$="<<DIR>>"

Else
If A% And 8

Idta+21 Attribute

Rset L$="<LABEL> IDiskette name

Else

Rset L$=Str$(Lpeek(Basepage+154) ! dta+26=file size

Endif
Endif
X$=X$+L$

" Attribute

If A% And 32
X$=X$+" "
Else
X$=X$+" "
Endif
If A% And 16
X$=X$+"D"
Else
X$=X$+" "
Endif
If A% And 8
X$=X$+"L"
Else
X$=X$+" "
Endif
If A% And 4
X$=X$+"S"
Else
XP=X$+" "
Endif
If A% And 2
X$=X$+"H"
Else
X$=X$+" "

I'. means set archive bit
lis seldom done by TOS

I'D = Directory

I'L = Label

I'S = Systemfile

I'H = hidden File

Directory

78 The GFA BASIC Book
Endif
If A% And 1 I'R = read-only
X$=X$+"R"
Else
X$=X$4+" "
Endif
'Data dpeek(dta+24)

D%=Dpeek(Basepage+152)
D$=""+Right$("0"+Str$(D%/32 And 15),2)+"/"
D$=D$+Right$("0"+Str$(D% And 31),2)+"/"
D$=D$+Str$(D% Div 512+1980)

X$=X$+D$

"time dpeek(dta+22)

T%=Dpeek(Basepage+150)
T$=""+Right$("0"+Str$(T% Div 2048),2)+":"
T$=T$+Right$("0"+Str$(T% Div 32 And 63),2)+":"
T$=T$+Right$("0"+Str$(T%+T% And 63),2)
X$=X$+T$

File$(l_%)=X$

Inc I_%

E_%=Gemdos(79) I fsnext

Wend

File$(l_%)=""

Swap *Str.arr%,File$()

*Num.%=I_%-1 I Highest index with data

Procedure Quicksort(Str.arr%,L%,R%)
Local X$
Swap *Str.arr%,A$()
@Quick(L%,R%)
Swap *Str.arr%,A%()

Procedure Quick(L%,R%)
Local LI%,Rr%
LI%=L%

Chapter 3: Tips and Programs

The GFA BASIC Book

79

Rr%=R%
X$=A$((L%+R%)/2)
Repeat
While A$(L%)<X$
Inc L%
Wend
While A$(R%)>X$
Dec R%
Wend
If L%<=R%
Swap A$(L%),A$(R%)
Inc L%
Dec R%
Endif
Until L%>R%
If LI%<R%
@Quick(LI%,R%)
Endif
If L%<Rr%
@Quick(L%,Rr%)
Endif
Return

Directory

80 The GFA BASIC Book

Figure 6: Example of SORTDIR

BAUDRATE.BAS 608 BAUDTEST.BAS 528 BLITDEMO.BRS 1862
BLTMODES . BAK 800 BLTMODES.BARS 800 BOXRSC.BAS 1212
CONRWS . LST 335 DIALDG.BAK 3144 DIALOG.BAS 3144
DIALOG.RSC 1268 ELISE.BAS 2486 ELISE.SHD 582
ELISEDMO.BAS 566 EVNT.LST 1345 EXEC3.BAS 308
EXEC3.LST 243 FADEN.BRS 552 FBOXTEXT.BAS 1448
FONTTEST.BAS 2236 FORM.LST 636 FS.BAK 1644
FS.BAS 1658 FS.TTP 7146 FSEL.LST 162
GFABASIC.PRG 57378 GRAF.LST 1742 GROSS.FNT 16984
HARDI.BAS 737 INPUT.BAS 3212 JOYSTICK.BAS 848
KEYTAB . BAS 640 LUPE.ASH 1845 LUPE.BAS 1268
LUPE.PRG 150 MAKEFOMNT.BAS 2304 HAKEICON.BAS 954
MAKEPRPT. BAS 2118 HENU,LST 837 MIDIBUF.BAS 444
MINIDAT.BAS 1278 MIRRORPU.BAS 1158 MKDATAW.LST 350
MINIDAT.BAS 1278 HIRRORPU.BAS 1156 MKDATAM.LST 358
MOUSE . BAS 1630 MOUSE.LST 441 0BJC.LST 1451
PGZ74DEM.BAS 11622 PG7SDEML.BAK 1892 PG7SDEM1.BAS 1092
PG7SDEMZ ., BAK 1892 PG75DEMZ.BAS 1892 QSORT.BAS 832
OSORT.LST 743 QOS_TEST.BAS 320 REKURS.BAS 772
RS23ZBUF . BAS 374 RSCTEST.BAS 2378 RSRC.LST 591
SCREEN. ASH 2930 SCREEN.PRG 320 SCREENTS.BAS 448
SCROLL . BAS 584 SCRP,LST 133 SEARCH.BAS 1494
SHEL,LST 807 SLIDER.BAS 3006 SLIDER.RSC 228
SORTDIR.BAS 1254 SOUNDEXP.BAS 3428 TEST.DAT 13098
TEST.RSC 208 WIND.LST 1286 WIND.RSC 4320

Chapter 3: Tips and Programs

The GFA BASIC Book

81

APPL.LST
BAUDRATE . BAS
BAUDTEST . BAS
BLITDEMO.BAS
BLTHODES . BAK
BLTHODES . BAS
BOXRSC.BAS
COHRMS, LST
DIALOG.BAK
DIALOG.BAS
DIALOG.RSC
ELISE.BAS
ELISE.SND
ELISEDMO.BAS
EVNT.LST
EXEC3.BAS
EXEC3.LST
FADEH.BAS
FBOXTEXT.BAS
FOHTTEST.BAS
FORM.LST
FS.BAK
FS.BAS
FS.TTP
FSEL.LST
GRAF.LST
GROSS . FHT
HARDTI.BAS
INPUT.BAS
JOYSTICK.BAS
KEYTAB.BAS
LUPE. ASH
LUPE.BAS
LUPE.PRG
MAKEFONT . BAS
MAKEICOH.BAS

Figure 7: Example of XDIR

<DIR>> D
<<DIR>> D

651
608
928
1862
868
8ee
1212
335
3144
3144
1268
2486
582
366
1345
308
243
932
1448
2236
636
1644
1658
7146
102
1742
16384
732
3212
848
640
1845
1268
158
2904
954

80/14/2835
00/14/2855
04/2271987
04/22/1987
04/22/1387
04/22/1387
04/22/1987
04/2271987
04/22/1987
04/2271987
04/2271387
04/22/1987
04/2271987
04/2271987
04/22/1387
84/22/1987
04/22/1987
84/2271387
04/22/1987
84/2271387
04/22/1987
04/22/1987
84/22/1987
04/2271987
04/22/1387
84/22/1987
84/2271387
04/22/1387
84/22/1387
04/22/1387
84/22/1387
84/22/1387
04/22/1987
84/22/1987
84/22/1987
84/22/1987
04/22/1987
04/22/1987

83:40:00
83:40:008
pe:01:18
80:81:18
88:81:26
60:081:34
81:50:32
B1:58:16
00:01:42
po:@1:50
86:81:58
B0:082:06
B0:62:14
00:082:22
80:02:30
60:02:38
80:02:46
80:82:54
80:683:82
60:83:18
B0:083:28
80:083:28
80:083:36
00:083:46
B0:83:54
00:04:04
60:04:12
00:04:36
B0:04:46
60:84:56
80:085:04
80:05:14
80:085:22
80:85:30
00:085:48
00:05:48
80:05:58
00:06:86

Directory

82 The GFA BASIC Book

Example of XDIR (Cont.)
HAKEPRPT.BAS 2118 04/22/1987 080:86:16
MEHU,LST 897 04/22/1987 60:06:24
MIDIBUF.BAS 444 04/22/1987 00:06:32
MINIDAT.BAS 1278 04/22/1987 00:086:42
MIRRORPU.BAS 1158 04/22/1987 086:06:50
MKDATAM, LST 350 04/22/1987 080:07:00
MOUSE . BAS 1838 04/22/1987 00:07:08
MOUSE . BAS 1038 04/22/1987 00:07:08
MOUSE. LST 441 04/22/1987 080:87:18
0BJC.LST 1451 04/22/1987 080:07:26
QSORT.BAS 832 04/22/1987 00:08:26
NSORT.LST 743 04/22/1987 00:08:34
NS_TEST.BAS 920 04/22/1987 00:08:44
REKURS . BAS 772 04/22/1987 06:08:52
RS232BUF .BAS 374 04/22/1987 060:09:00
RSCTEST.BAS 2378 04/22/1987 00:09:18
RSRC.LST 591 04/22/1987 00:09:20
SCREEN. ASH 2938 04/22/1987 00:09:28
SCREEH.PRG 328 04/22/1987 00:09:38
SCREENTS . BAS 448 B4/22/1987 00:09:46
SCROLL.BAS 504 B4/22/1987 80:089:56
SCRP.LST 139 04/22/1987 00:10:04
SERRCH.BRS 1494 04/22/1987 00:10:14
SHEL.LST 807 04/22/1987 00:108:24
SLIDER.BAS 3006 04/22/1987 00:10:32
SLIDER.RSC 228 04/22/1987 008:18:42
SORTDIR.BAS 1254 04/22/1987 00:10:52
SOUNDEXP .BAS 3428 04/22/1987 00:11:08
TEST.DAT 13098 04/22/1987 00:11:12
TEST.RSC 208 04/22/1987 00:11:22
WIND.LST 1286 p4/22/1987 00:11:38
WIND.RSC 4320 04/22/1987 00:11:40
WINDH.RSC 2520 04/22/1987 60:11:58
WINDOW ., BAK 11620 04/22/1987 00:12:00
WINDOKW,BAS 11680 0472271987 00:01:58
WIND_MID.BAS 11714 04/22/1987 00:12:12
WOOF1.PI2 320834 04/22/1987 00:12:24
WOOF1.PI3 32034 04/22/1987 00:12:38
%DIR.BAS 2182 04/22/1987 00:12:48
XPRPATCH.PRG 544 B4/22/1987 00:12:58

Chapter 3: Tips and Programs

The GFA BASIC Book 83

The final program allows you to display the contents of
a diskette or a hard disk partition, or it allows you to search
the diskette for a particular file and then display the full
name including the pathname.

' SEARCH

@Search("A:\",* ASM","CON:")

Procedure Search(Path$,File$,0ut$)
Oldpath$=Dir$(0)
Olddrv%=Gemdos(25)+1
Open "O" #1,0ut$
If Instr(Path$,":")

Chdrive Asc(Path$) And 31
Path$=Mid$(Path$,Instr(Path$,":")+1)
Endif
Chdir Path$
Void Gemdos(26,L:Basepage+128) I setdta
File$=File$+Chr$(0)
Star$="*.*"+Chr$(0)
Drv$=Chr$(Gemdos(25)+65)+""
@Searcht
Close #1
Chdir "\"+Olddir$
Chdrive Olddrv%

Return

Procedure Search1
Local W%

@Fsfirst

While E%=0
Print #1,Drv$+Dir$(0)+"\"+X$
@Fsnext

Wend

@Fsfirstdir

Q%=0

While E%=0
If T% And 16

Directory

84 The GFA BASIC Book

If X$<>"." And X$<>".."
W%=Q%
Chdir X$
@Search1
Chdir ".."
@Fsfirstdir
Q%=0
While W%<>Q%
Void Gemdos(79)
Inc Q%
Wend
Endif
Endif
@Fsnext
Inc Q%
Wend
Return
Procedure Fsfirst)
E%=Gemdos(78,L:Varptr(File$),&H27) I fsfirst
@Getnam
Return
Procedure Fsfirstdir
E%=Gemdos(78,L:Varptr(Star$),16)
@Getnam
Return
Procedure Fsnext
E%=Gemdos(79)
@Getnam
Return
Procedure Getnam
If E%
X$=""
T%=0
Else
X$=Space$(20)
Bmove Basepage+158,Varptr(X$),14
X$=Left$(X$,Instr(X$,Chr$(0))-1)
T%=Peek(Basepage+149) I dta+21 Attribute
Endif
Return

Chapter 3: Tips and Programs

The GFA BASIC Book 85

If you replace the PRINT-command with:

File$(1%)=.......
Inc 1%

This would make it possible to sort the directory by file-
name. In this case, I would address the field directly rather
than by pointer since the complete Directory-tree is seldom
used.

After the fsfirst or fsnext (GEMDOS(78/79) call, this
program returns the filename and other information about
the file via the DTA-buffer.

In this program all directories found are opened and then
the search process continues from within this directory.

When the end of a directory is reached, the program will
read the previous read parent directory again. This is not
very elegant or quick, but it is faster to program.

You could have created a separate buffer for each di-

rectory which would have saved you the time necessary to
read the previous directory.

Directory

86

The GFA BASIC Book

o

278638 bytes used in 78 items.

W 3.61TTP

Figure 8: TTP

Desk File View Options

DIALOG RSC 1268 11-20-85 12:02 am
ELISE BAS 2486 11-20-85 12:02 an
ELISE SND 582 11-20-85 12:02 an
ELISEDMO BAS 566 11-20-85 12:03 an
EWT LST

EXECS BAS OPEN APPLICATION

EXEC3 LST

FADEN BAS Nane!: FS TP
FBOXTEXT BAS Paraneters:

FONTTEST BAS || c:\¥.BAK PRH:

FORM LST

FS BAK Lok | [Cancel |
FS BAS

FS TIP 7146 $1-20-85 12:83 an
FSEE” " IST 102 11-20-85 12:03 an

The previous search program could be changed for the
compiler version of GFA BASIC. Just add the following
lines to the beginning of the program, compile it and then
save it as a .TTP file. Now you can pass the parameters as
text from the desktop or a shell (or even through the EXEC-
command). Parameters are as follows: Pathname, includ-
ing the drive ("C:") and the root directory ("\"); the name of
the file you wish to find (you may also use wildcards like
"k *"). and the output device ("CON:" or "PRN:" or
"FILE.EXT"). Do not include the quotation marks.

'FS.TTP

a$=SPACE(128)
BMOVE BASEPAGE+129,VARPTR(a$),127

Chapter 3: Tips and Programs

The GFA BASIC Book 87

FOR i%=1TO LEN(a$)

IF MID$(a$,1%)=""

MID$(a$,i%)=CHR$(0)

ENDIF
NEXT i%
path$=a$
file$= MID$(a$,INSTR(a$,CHR$(0))+1)
ofile$=MID$(file$,INSTR(file$,CHR$(0))+1)
‘@search(path$ file$,ofile$)

followed by the previous program starting with PROCEDURE search

Directory

88

The GFA BASIC Book

%

3.7 Formatting Diskettes

At times, it might be useful to format a diskette from
within a program or you might need more storage on your
diskette. The following procedure is for that purpose.

The parameters for the format-call are as follows:

arv%
sid%

trk%

spt%

fat%

dir%

med%

Drive number, O for A:, 1 for B:

1 for single-sided diskettes, 2 for double-sided
diskettes. (Disk drive must be capable of
selected option)

Number of tracks diskette should contain
(usually 80, but 81 and 82 tracks are possi-
ble with most drives)

Number of sectors per track (normally 9, but 10
sectors are also possible)

Size of the file allocation table, usually 5. One
and a half bytes per sector are normally used
(One FAT-sector per 340 diskette sectors).

Maximum number of files diskette may contain
(the standard is 112, must be a multiple of 4
starting with 16).

Media number, a number that describes the
diskette type. The only importance on the ST
appears to be that the number is even for

Chapter 3: Tips and Programs

The GFA BASIC Book

89

single-sided diskettes and odd for double-
sided diskettes.

The normal format is as follows:

sid% trk% spt%e fat% dire med%
single-sided 1 80 9 5 112 248
double-sided 2 80 9 5 112 249

There is also a 40 track format

sid% trk% spt% fat% dir%e med%
single-sided 1 40 9 2 64 252
double-sided 2 40 9 2 112 253

For example:

@format(0,2,82,10,6,160,101) will format a double-
sided diskette with 82 tracks consisting of 10 sectors per
track. Diskettes that were formatted by using a format
other than the standard format routine (desktop format
command) may not be duplicated by placing drive icons
together, but rather must be copied a file at a time. You
could, of course, write your own copy routine.

Formatting Diskettes

90 The GFA BASIC Book

Figure 9: FORMAT.LST

278638 bytes used in 78 items. : L= mx
SORTDIR BAS 1254 11-20-85 12:07 an
SOUNDEXP BAS 3428 11-20-85 12:07 an

=

WINDOW BAS 44020 1.20-08 12,00 oo FLOPF7 DISK
WIND_MID BAS -
DR BAS ITEM INFORMATION m_?D;SK
TEST ~ DAT Name: FORM .LST]
GROSS FNT Size in bytes: _____636 S
APPL LST Last modified: 11/20/85 12:03 am ARG B1sK
COHRWS LST :
EUNT LST Attributes: Read/Nrite
EXEC3 LST T
FSEL LST
SR &1 |
HENU LST mo
% MUDATAIL 1 €T 5 = H £ 2
T caae

Procedure Format(Drv%,Sid%, Trk%,Spt%,Fat%,Dir%,Med%)
Buf$=Space$(1000)
Void Fre(0)
Buf%=Varptr(Buf$)
For T%=0 To Trk%-1
For S%=0 To Sid%-1
E%=Xbios(10,L:Buf%,L:0,Drv%,Spt%, T%,S%, 1,L:&H876
54321,0)
If E%
Print
Print "Side ";S%;" Track ";T%;" Error ";E%;" sector *;
B%=Bui%
While Dpeek(B%)
Print Dpeek(B%)’
Add B%,2
Wend
Else
Out 5,42

Chapter 3: Tips and Programs

The GFA BASIC Book 91

Endif

Next S%
Next T%
Sec%=Trk%"Spt%*Sid%
Buf$=String$(6,0)+MKI$(Xbios(17)+Chr$(0)+Mki(2)+Chr$(2)
Buf$=Buf$+Mki$(&H100)+Chr$(2)+Chr$(Dir%)+Chr(Dir%/256)
Buf$=Buf$+Chr$(Sec%)+Chr$(Sec%/256)+Chri(Med%)
Buf$=Buf$+Mki$(Fat%*256)+Mki$(Spt%*256)+Mki$(Sid%"256)
Buf$=Buf$+Mki$(0)+String$(512,0)
Void Xbios(9,L:Varptr(Buf$),L:0,0rv%,1,0,0,1)
Void Bios(7,Drv%)
Buf$=MkI$(&HF7FFFF00)+String$(508,0)
Void Bios(4,1,L:Varptr(Buf$),1,1,Drv%)
Void Bios(4,1,L:Varptr(Buf$),1,Fat%+1,Drv%)
Print
Print Dfree(Drv%o+1);" Bytes free”

Return

The procedure starts by initializing a string to serve as
the buffer for the format routine XBIOS(10....). To make
sure that the string is not moved during the garbage collec-
tion (cleanup, whenever the memory allocated for the stor-
age of strings is exceeded), a FRE(0) call is issued. That
string address is then passed to a variable.

Next, all tracks are formatted starting with track 0. It
makes more sense to alternate between sides on double-
sided drives, otherwise all tracks on side 0 would be for-
matted before side 1.

The actual formatting is performed with the
XBIOS(10....) call. Should an error occur during the for-
matting, a list of all bad sectors is displayed without inter-
rupting the formatting.

After all tracks are formatted (unfortunately, there is no
error message if the maximum track size is exceeded), the
boot sector is written to the diskette. All those Buf$ as-
signments up to XBI0S(9...) are used for that purpose.

Formatting Diskettes

92

The GFA BASIC Book

The BIOS(7...) call reads the newly created boot sector
from the diskette so that the start of the FAT table may be
written to the diskette with the BIOS(4...) call. The FAT is
always written to two different locations on the diskette and
always starts with F7 FF FF FF.

Finally, the amount of available storage on this newly
formatted diskette is displayed on the screen.

You could further modify this routine to verify the just
formatted tracks or overwrite the tracks with information
from another diskette.

By the way, this routine will not copy protected
diskettes. It would require a lot more code to accomplish
that task. Programmers that use the format routine as copy
protection would not appreciate it if those details were
made public.

Chapter 3: Tips and Programs

The GFA BASIC Book

93

%

3.8 Printers

There exists a variety of printers and computers with
many different character sets. Since most of the sets are
foreign characters, I have included a small patch program
written in GFA BASIC that will convert those characters.
Because this task is easier to accomplish with an assembler,
I have written the program so that it loads the machine
code using DATA statements.

' MAKEPRPT
Mc$=""
Do
Read A%
Exit If A%<0
Mc$=Mc$+Mki$(A%)
Loop
Mid$(Mc$,Len(Mc$)-17)="EPSON "+Chr§(0)
Do
Read A$
Exit If AS=""
If Val?(A$)=Len(A$)
A$=Chr$(Val(A$))
Endif
B$=un
Do
Read C$
Exit If C$=""

Printers

94 The GFA BASIC Book

If Val?(C$)=Len(C$)
B$=B$+Chr(Val(C$))
Else
B$=B$+C$
Endif
Loop
Mc$=Mc$+Chr$(Len(BS))+A$+B$
Loop
Mc$=Mc$+Chr$(-1)
If Len(Mc$) And 1
Mc$=Mc$+Chr$(0)
Endif

" MID$(mc$,109)=MKI$(2) I This line for serial printers

Open "0" #1,"XPRPATCH.PRG"

Print #1,Mki$(&H601A);MKI$(Len(Mc$));String$(22,0);Mc$;MKI$(0);
Close #1

"MCODE \XPTGRAPH.PRG

DATA 24576,204,4660,34661,12311,20072,2048,13

DATA 26372,16879,6,3160,64,26204,3160,65533

DATA 26198,8728,26450,16135,18513,8784,18513,24596
DATA 4121,24650,4288,17914,65452,45514,25866,24860
DATA 18951,26122,16890,65338,21377,27364,24846,37855
DATA 18951,26114,8201,8799,15903,20083,18513,12033
DATA 17402,65310,37321,18513,18512,16188,65533,16188
DATA 64,18554,44,16615,20217,4660,22136,18514

DATA 17914,76,16967,7706,27400,45082,26378 54471
DATA 24820,9311,24734,4314,20943,65532,9311,24726
DATA 22671,45215,22215,22671,8735,8799,20085,28672
DATA 4120,4800,27400,4824,20936,65532,248 16,8201
DATA 37002,512,254,12032,16188,49,20033,17400

DATA 65535,24894,3232,4660,34661,26126,8800,24882
DATA 16890,102,24894,16999,20033,17402,65308,24866
DATA 17914,65294,9352,17914,65410,9352,16890,78
DATA 24866,16890,170,17402,65478,16999,17914,65009
DATA 24732,18513,16188,33,16188,5,20045,8256

DATA 20623,20085,18512,16890,48,24848,8287,24844
DATA 28927,20936,65534,20936,65534,20085,18512,16188
DATA 9,20033,23695,20085,28271,29728,26990,29556

Chapter 3: Tips and Programs

The GFA BASIC Book 95

DATA 24940,27749,25613,2560,3338,18246,16672,28769
DATA 29795,26656,26223,29216,20562,20026,3338,12601
DATA 14390,8263,17985,8275,31091,29797,28020,25955
DATA 26734,26987,3338,8224,8224,8262,29281,28267
DATA 8271,29556,29295,30579,27497,3338,17744,21327
DATA 20000,8224,8224,8224,8224,8192,0

DATA -1

DATA A,27,R,2,A27.R0,

DATA 0,27,R,2,0,27,R.0,

DATA U,27R,2,U0,27,R.0,

DATA 4,27,R,2,4,27,R,0,

DATA 6,27,R,2,6,27,R,0,

DATA 01,27,R,2,0,27,R,0,

DATA B,27,R,2,8,27,R.0,

DATA 225,27,R,2,8,27,R0,

DATA §,27,R,2,8,27,R,0,

DATA

The last few DATA statements show how the character
set is submitted. First, the character to be replaced is given.
Then the Control character sequence of the new character
is given. Each line ends with a zero. Two zeroes in a row
terminate the table. The characters can be supplied as let-
ters, as ASCII values or as the hexadecimal, octal or binary
equivalent. More than one character like:

DATA A,ABCDDCBA

would result that the letter "A" would print "ABCDDCBA"
whenever it is passed to the printer (with LPRINT, LLIST or
OPEN.."PRN:").

The following short program was used to create the
DATA statements from the compiled file.

' makedataw

FILESELECT "*.PRG",".PRG" file$
OPEN "I" #1 file$

OPEN "O" #2,"DATA.LST"

SEEK #1,28

Printers

96 The GFA BASIC Book

I%=LOF(#1)
PRINT #2," MCODE "file$;
FOR i%=29 TO |%-8 STEP 2 levtl -4
IF ((1%-29) AND 15)=0
PRINT #2
PRINT #2,'D
ELSE
PRINT #2," "
ENDIF
PRINT #2,CVI(INPUTS(2,41));
NEXT i%
PRINT #2
PRINT #2,"D -1"

The first 28 bytes of a PRG-file contain information
about the program size, which is of no importance when
using a relocatable machine program. The last 8
(sometimes 4 depending on the assembler) bytes are null
and may not be ignored. These bytes also indicate whether
or not the program is relocatable.

The resulting file DATA.LST may then be merged into a

GFA BASIC program which will read the data into a
string. This string can then be called using CALL or C:.

Chapter 3: Tips and Programs

The GFA BASIC Book

97

%

3.9 Magnify

The following example demonstrates how to use a ma-
chine-routine in GFA BASIC to serve as a magnify func-
tion. This program will serve as an example for making

your own routines.

section

X: move.|
move.w
move.w
move.l
cmp.w

bhi.s
cmp.w
bhi.s
cmpl
bhi.s
cmpl
bhi.s

10: move.|
move.w

It move.w
moveq

12: moveq

text ;xlupe.asm

;sre-adr
width
;height
dest-adr

4(sp),a0
8(sp),d0
10(sp),di
12(sp),at
#400/8,d1

error
#640/8,d0
error
#300ffffff,a0
error
#$00fffff,al
error

al,a2
d0,d3
(a0)+,d6
#15,d5
#0,d7

Magnify

98 The GFA BASIC Book

add.w d6,d6é
bee.s 13
moveq #$71,d7

13: move.b d7,80(at)
move.b d7,160(a1)
move.b d7,240(at)
move.b d7,320(a1)
move.b d7,400(at)
move.b d7,480(a1)
clr.b 560(al)
move.b d7,(at)+
subq.w #1,d3
dbeq ds,12
bne.s 1 ;next word
lea 640(a2),a1
dbra d1,0
moveq #0,d0
s

error: moveq #-1,d0
s
end

This routine has the following attributes:

-short
-fast
-fully relocatable

That is why it is possible to use this routine in the form

of DATA statements as follows:

Lupe$=""

Do
Read A%
Exit If A%<0

Chapter 3: Tips and Programs

The GFA BASIC Book

99

Lupe$=Lupe$+MkiB(A%)
Loop
Void Fre(0)
" MCODE \BAS\LUPE.PR
DATA 8303,4,12335,8,12847,10,8815,12
DATA 3137,50,25172,3136,80,25166,45564,255
DATA 65535,25158,46076,255,65535,25150,9289,13824
DATA 15384,31247,32256,56390,25602,32383,4935,80
DATA 4935,160,4935,240,4935,320,4935,400
DATA 4935,480,4807,21315,22477,65498,26322,17386
DATA 640,20937,65480,28672,20085,28927,20085
DATA -1
Graphmode 3
For 1%=0 To 319
Line 1%,0,319-1%,319
Line 0,1%,319,319-1%
Next 1% Graphmode 1
Do
Get X%,Y%,X%+39,Y%+39,A%
Lupe%=Varptr(Lupe$)
Hidem
Void C:Lupe%(L:Varptr(A$)+6,40,39,L:Xbios(3)+40)
Showm
Repeat
Mouse A%,B%,C%
Until C%
If A%<320-40 And B%<320-40
X%=A%
Y%=B%
Else
Color C% And 1 Plot X%+(A%-320)/8,Y%+(B%/8)
Endif
Loop

After the initializing of the magnify routine, a pattern is
drawn on the screen. Then a segment is cut from the left
side of the screen, after which that segment is enlarged by
using the magnify routine. Whenever a mouse button is
pressed, the segment is either moved or a point is plotted
depending on the mouse position (Graphmode 3).

Magnify

100

The GFA BASIC Book

If you look closely, you will discover an error in the
program that forced me to decrease the length of the C:-call
by one. This error is a holdover from the testing phase of
the machine routine.

The screen segment is read into a string with the GET
command and the address of that string is then incremented
by six and passed to the magnify routine. In this case, the
destination address happened to be within the screen
boundaries, but you could easily change the machine pro-
gram so that a GET/PUT-string could be used as the desti-
nation.

By the way, this Basic program is not optimal. A good
program should not always call the magnify routine but
rather use the PBOX, the PUT,...0 or PUT,...15 command
to set the individual points. The magnify routine should
only be called whenever large changes are made (like the
drawing of lines and circles or the displacement or invert-
ing of a picture segment).

Chapter 3: Tips and Programs

The GFA BASIC Book 101

%

3.10 Recursion

There exists a very powerful method of programming,
which is called recursion. This method usually shortens the
programs, but it makes them harder to understand if you are
not used to recursive thinking.

With recursion you can solve problems by separating
them into ever decreasing steps.

A small example:

'recurs
Faktor=0.55
@Rek(320,200,100) Ichange to 320,100,50 for color
Procedure Rek(X%,Y%,R%)
Box X%-R%,Y%-R%,X%+R%,Y%+R%
If R%>10
@Rek(X%+R%,Y%,R%*Faktor)
@Rek(X%,Y%+R%,R%"Faktor)
@Rek(X%-R%,Y%,R%"Faktor)
@Rek(X%,Y%-R%,R%*Faktor)
Endif
Return

That was short, was it not?

Recursion

102 The GFA BASIC Book

Call @rek(320,200,100) passes the value 320 for X%
and 200 for Y% and also 100 for R% (for color monitor
change to 160,100,150).

The procedure draws a box with the a length of twice
R%.

This procedure is called four more times as long as R%
is greater than 10. The mid-point is always moved by R%,
first to the right, then to the bottom, then to the left and fi-
nally to the top. The important thing is that R% is changed
every time the procedure is called.

The first of these four procedures draws a box half as
large as the original (R%*Factor where Factor=0.5),
whose mid-point is located exactly in the middle of the
right side of the larger box. Since R% will still be larger
than 10, the procedure will draw another box on the right
side of this newly created box.

As soon as the lower limit of the box size is reached
(R% is not greater than 10), the recursion jumps a level
higher (the RETURN statement).

Next, the bottom procedure is called. This procedure
draws a box in similar fashion, but this time the mid-point
is always on the lower side. Next, the left procedure draws
boxes on the left mid-point.

The last procedure (top) draws the upper mid-point.

By now all of the routines between the IF and ENDIF
have been executed.

Now the bottom box routine is called with a value of
R% equal to the previous box. In other words, the size is
again large enough so that the four subroutines can be exe-
cuted again. Again, the smaller boxes are drawn.

Chapter 3: Tips and Programs

The GFA BASIC Book 103

Now the left box routine with the larger box is called,
then the top box routine.

Next, the bottom box routine that draws an even larger
box is called. This routine again calls all those other rou-
tines to draw the smaller boxes. This is then repeated for
the left and upper boxes.

Next, the bottom box routine is called which will draw
an even bigger box.

This program continues until the upper box routine drew

the second largest box and all the smaller boxes that con-
nect to that box.

Recursion

104 The GFA BASIC Book

Figure 10: An Example of Recursion

Chapter 3: Tips and Programs

The GFA BASIC Book 105

The first of these pictures shows the program in progress
and the other shows the finished product.

-
]
— 4 J——
|
I |
11 1
il [
T
HE BE i |
r BE e B 1
[[]
1 NE = BE 1
s | a8 an
[] I |
I | 171 Tl T
11 1 BE 11 11 1
[HN| fE IF[E! T]
| n 1] T i inl
= 4 4 - - -
1 [11
E & 111 @i &) S§ Bl inl
1] N Cl] B T
[i i 1] B 11 iH] |
R HE 1T Bl 110 HE 11T 11
1 75 Nl 5 B NN ol I])
- - -- — - 1) -
i i
T =i BE VB B Y= i
Il 17 17 NN)|
[l] N 1]
T 1
I X | 1
YTy = T}
‘1 L1 1 'L-‘— L1
NN
45 B
e L-
I = 1
1] 5
|

Recursion

106

The GFA BASIC Book

The following modifications to the program will allow
you to look at the drawing one box at a time. Values for
X%,Y%,R% and which of the routines was last called is
displayed in the top left corner. Just press any key to con-
tinue with drawing the next box.

"RECURS1

FACTOR=0.55

@REK(320,100,50) ICHANGE TO 320,200,100 FOR HIGH
PROCEDURE REK(X%,Y%,R%) 'RESOLUTION

BOX X%-R%,Y%-R%,X%+R%,Y%+R%
PRINT AT(1,1);"X="X%;"Y="Y%:" R=":R%:""B$;SPC(10)
VOID INP(2)

IF R%>10 B$="RIGHT *
@REK(X%+R%,Y%,R%FACTOR) B§="BOTTOM"
@REK(X%,Y%+R%,R%*FACTOR) B$="LEFT *
@REK(X%-R%,Y%,R%FACTOR) B$="TOP *
@REK(X%,Y%-R%,R%FACTOR)

ENDIF

RETURN

By the way: You could also add a REPEAT UNTIL
MOUSEK which would cause the program to wait as long
as the mouse button is not pressed. The following routine
would also do nicely:

REPEAT
UNTIL BIOS(11,-1) AND 16

This causes the program to wait if the CAPS-LOCK key
is activated. The program will continue when the key is
pressed again.

Which halt procedure you choose for testing your rou-
tine should depend on the complexity of the recursion. It is
absolutely possible that thousands of steps are performed
before you will discover the error.

Chapter 3: Tips and Programs

The GFA BASIC Book 107

Possible experimental alternatives:

There are many possibilities for modifying this program.
This includes changing the range of R% (IF R% > 10) or
changing the factor (The factor must, however, be less than
one so that the program will eventually come to a stop, you
could of course modify the corresponding R% > 10). The
factor could be created with the RND function, or you
could change the BOX command to a CIRCLE X%,Y% ,R%,
or you could use a simple PLOT command, or ...

One of these modifications is represented in the picture
below.

Figure 11: Recursion Modification

save |Save,A | Quit | New - [Blk StalReplace| Pg up [Text 16]Direct | Run |
| Load | Merge | Llist | Block [Blk End| Find iPg downilnsert | Flip | Test |
[faktor=8.6
eRek (328,288, 188)
Print N4
Procedure Rek (X%, Y%,R%)

Inc N4
 Box XA-R%,YA-RA,XA+R%, YA+RZ
Plot X%4,Y4
If R>3
ERek (X%+R%, Y4, R%¥Rnd)
BRek (X%, Y4+R4,R%¥Rnd)
€Rek (X%-R%, Y4,R%¥Rnd)
€Rek (X%; YA-R¥,R%¥Rnd)
Endif
Return

44969

Recursion

108 The GFA BASIC Book

Let us move on to another recursive procedure, namely

the often used Quicksort.
"QS_TEST.BAS

DIM A$(9)
FOR I%=0TO 9

READ A$(1%)
NEXT 1%
DATA52,4,6,13,809,7
@QUICKSORT(*A$(),0,9)
@D

PROCEDURE D
LPRINT "
FOR 1%=0TO 9
LPRINT A$(1%)
NEXT 1%
LPRINT "'L%'R%"LL% RR%
RETURN
PROCEDURE D1
LPRINT ***
FOR I%=0TO 9
LPRINT A$(1%)
NEXT 1%
LPRINT "X$'L% R%"LL%RR%
RETURN

PROCEDURE QUICKSORT(STR.ARR%,L.%,R%)
LOCAL X$
SWAP *STR.ARR% AS()
@QUICK(L%,R%)
SWAP *STR.ARR%,A$/)
RETURN
PROCEDURE QUICK(L%,R%)
@D
LOCAL 11%,11%
[1%=1%
1M%=%
X$=AS$((L%+R%)/2)

Chapter 3: Tips and Programs

The GFA BASIC Book

109

REPEAT
WHILE A$(L%)<X$
INC 1%
WEND
WHILE A$(R%)>X$
DEC 1%
WEND
IF L%<=R%
SWAP A$(L%),A$(R%)
@D1
INC L%
DEC R%
ENDIF
UNTIL L%>R%
IF LL%<R%
@QUICK(LL%,R%)
ENDIF
IF L%<RR%
@QUICK(L%,RR%)
ENDIF
RETURN

This program contains the previously introduced
Quicksort, an initialize routine and two report routines.

First, the array A$() is filled with data that will then be
sorted.

The printer routines d and d! print the field contents of
A$(),L%,R%,l1% and rr%. The dl routine also prints an
asterisk and the variable X$ (this variable is used to com-
pare the elements).

The address of the sort field and the left and right
boundaries are then passed to the quicksort routine. The
variables L% and R% select the portion of the array that
should be sorted. After the local variable X$ is declared
and the array A$ is swapped, the program calls the actual
quicksort procedure (quick).

Recursion

110

The GFA BASIC Book

This sort routine is the most important routine of the
program.

For testing purposes, the print routine (the one without
the asterisk) is called. The variable L% and R% are then
passed to the local variables L/% and Rr%.

Next, variable X§ is assigned an element from the array
(here the middle element).

The array is then divided into two parts. The left
(lower) part contains all elements that are smaller than the
compare element and the right (upper) part contains all the
elements that are greater. The dividing of the array is as
follows:

Starting with the lowest array element, the table is
searched until it is greater or equal to the compare
element (X§). Next, the table is searched for the
first element by starting with the highest (left) ele-
ment and searching downward (this is performed by
the two WHILE loops). Whenever both elements
are found, they are switched and then skipped with
the INC and the DEC command (they could have
been equal). This is repeated until the left range is
greater than the right range, which indicates that
both tables contain no more elements which do not
belong to them. If the tables contain more then one
element, they are then sorted.

Just in case it is still not clear to you, let me give you the
listing of the sort process of the table mentioned above.

The original input

5246138097 09 00 (L%,R%,L1%,Rt%)
The compare element is 1. The first element
on the left that is not less than 1 is 5 and the

Chapter 3: Tips and Programs

The GFA BASIC Book 111

first element that is not larger is the 0. Those
two elements are switched.

*0246138597 107 09 (X$,L%,R%,L1%,Rr%)
Continue the search. The 2 on the left and
the 1 on the right are switched.

*0146238597 11409
The left range is now larger then the right.
The two parts are 0-1 and 2-9. The 0-1 is
sorted first.

0146238597 0109
The zero is the compare elements and it
switched with itself.

*0146238597 00001

Now we sort the right part 2-9.
0146238597 2909

Compare element is 3, after switching....
*0136248597 32529
*0132648597 334129

...is divided in parts 2-3
0132648597 2329
*0123648597 32323

...and 4-9
0123648597 4929
*0123647598 869 49

4-9 is split into 4-7 and 8-9
0123647598 47 49
*0123467598 445 47

4-7 is split into 4 and 5-7

67598 57 47
465798 767 57
5-7 is split into 5-6 and 7

0123465798 5657

¥012345679865656
Now we do the 8 and 9

012
*

1234
0123

Recursion

112 The GFA BASIC Book

0123456798 89 49

*¥0123456789 989 89
That is all.

0123456789 0000

Chapter 3: Tips and Programs

The GFA BASIC Book

113

%

3.11 EXEC

It is relative easy to load and start a complete program
with the EXEC O,"name.prg"”,"cmd”,"env" command.

It is somewhat harder if you wish to load a routine writ-
ten in machine code or C only once and then execute it
many times. While this is possible with the EXEC O com-
mand, it would require the routine to be loaded from the
diskette or the RAM-Disk. Loading from the diskette is
very slow and loading from a RAM-Disk requires twice the
memory since the data must be copied to a RAM-Disk.

You could also transform the machine routine into
DATA statements and then read that data with a corre-
sponding READ-POKE loop (or READ-A$=A3$+Mki$()).
This uses a lot of memory; time to read the DATA state-
ments and the program would not be relocatable. The ad-

vantage, however, is that only one program needs to be
loaded.

You could also load the routine(s) with the EXEC(3...)
command and then execute it with the C: command. The
problem exists that these routines can not manage their own
memory like normal programs can. It is also harder to re-
cover the memory that was used for those routines.

EXEC

114

The GFA BASIC Book

'EXEC3
adr%=EXEC(3,"SCREEN.PRG",","")
"IF adr% AND I TOS was supposed to deliver a &FFFFFFd9
" ERROR adr% 1(-39) on errors, but it really returns a
"ENIF 1 &D9(217). Without an error check you may
screen%=adr%+256 lget 3 bombs (address error).
BLOAD "woof1.pi3" XBIOS(3)-34
HIDEM
REPEAT
VOID C:screen%(2,1)
VOID INP(2)
VOID C:screen%(1,2)
VOID INP(2)
UNTIL MOUSEK
SHOWM
VOID GEMDOS(73,L:HIMEM)
VOID GEMDOS(73,L:adr%)

This small program demonstrates all that is necessary to
load a small machine code routine in an orderly manner, to
execute that routine with parameters, and to release the
memory after the program is finished.

The EXEC(3...) command loads the program, relocates it
and delivers the address of the corresponding Basepage.
Since this routine contains only one starting address, it can
be computed by adding 256 to the Basepage. With many
routines you could have built a table that consisted of a row
of JMP commands or as shown here, by passing parameters
through the stack.

The first of the two GEMDOS(73)=m_free calls returns
the memory used for the environment string (at least two
bytes), which is always located in the lowest possible ad-
dress (HIMEM) and the second returns the actual memory
of the program.

With larger routines you may have to reserve memory
before you load the routines using the reserve command. If
you wish to also use GEM routines (RSC-files,Fileselect)

Chapter 3: Tips and Programs

The GFA BASIC Book

115

or more EXEC(3...) commands, you must reserve the nec-
essary memory by using the GEMDOS routines m-shrink.

Example: A machine program XXX.PRG requires 20
Kbytes of memory. The Basic program requires 100 Kbytes
for variables and strings and the rest of the memory may be
used for RSCfiles, etc.

RESERVE 100000 IBASIC-memory usage
xxx.base%=EXEC(3,"XXX.PRG","","")
IF xxx.base%<BASEPAGE
ALERT 1,"Unable to load XXX.PRG",1,"Cancel",dumm%
END
ENDIF
£%=GEMDOS(74,0,L:xxx.base%,L:20000)
IF e%<0
ERROR €%
ENDIF’
Here comes the rest of the program

VOID GEMDOS(73,L:HIMEM)

"or, if something else was loaded before the EXEC(3...)
"VOID GEMDOS(73,L:xxx.base%-2)

VOID GEMDOS(73,L:xxx.base%)

Attention: There is a serious bug with the current
version of TOS when using the m_alloc and
m_free calls that will cause the system to lock-up
after issuing those commands about 20 times.
Even the saving to diskette may not work anymore.
It is very hard to duplicate this error since it seems
to pop up whenever it is least wanted. You should
never abort in the middle of a program that uses
this kind of memory management.

EXEC

116

The GFA BASIC Book

Here is an assembly program that will change the pic-
ture between the different resolutions of the ST, even
though this book is supposed to be about BASIC.

* screen.asm

* Change screen after changing from resolution a to b

*VOID C:screen%(a,b)
Section Text Llext
start move.w #3,-(sp)
trap #14
adda.| #2,5p
move.l d0,a0 ;logbase
move.w 4(sp),d0
move.w 6(sp),d1
beq tolo
subgq.w #1,d1
beq.s tomid
subgq.w #1,d0
bmi.s lohi
beq.s mihi
s
lohi move.l a0,a3
bsr.s lomi
move.| ad,al
mihi move.w #199,d0 ;200 linex
mihii moveq #39,d1 ;40*2 Words
move.l a0,atds
mihi2 move.w (a0)+,(at)+
move.w (a0)+,-(sp)
dbra d1,mihi2
moveq #39,d1
move.l a0,al
mihi3 move.w (sp)+,-(at)
dbra d1,mihi3
dbra d0,mihit
rs
lomi move.w #32000/8-1,d0

Chapter 3: Tips and Programs

The GFA BASIC Book 117
lomi1 move.l (a0)+,d6
move.l (a0)+,d7
moveq #7,d1
lomi2 add.w d6,d6
addx.w d3,d3
add.w d7,d7
addx.w d3,d3
dbra d1,lomi2
moveq #7,d1
lomi3 add.w d6,d6
addx.w d5,d5
add.w d7,d7
addx.w d5,d5
dbra d1,lomi3
swap dé
swap d7
moveq #7,d1
lomi4 add.w d6,d6
addx.w d2,d2
add.w d7,d7
addx.w d2,d2
dbra di,lomi4
moveq #7,d1
lomi5 add.w d6,d6
addx.w d4,d4
add.w d7,d7
addx.w d4,d4
dbra d1,lomi5
movem.w d2/d3/d4/d5,-8(a0)
dbra d0,lomi1
rts
tomid subq.w #1,d0
bmi.s lomi
beq.s mimi
himi move.w #199,d0
himi1 moveq #39,d1 ;402 Words
lea 80(a0),al
himi2 move.w -(a1),(sp)
dbra d1,himi2
lea 80(a0),a1

EXEC

118 The GFA BASIC Book

moveq #39,d1

himi3 move.w (sp)+,(a0)+
move.w (at)+,(a0)+
dbra d1,himi3
dbra do,himit
mimi rs

tolo subq.w #1,d0
beq.s milo
bmi.s lolo

hilo move.l a0,a3
bsr.s himi
move.| a3, a0

milo move.w #32000/8-1,d0
milo1 movem.w (a0),d2/d3/d4/d5

moveq #7,d1
milo2 add.w d2,d2
addx.w d6,d6
add.w d2,d2
addx. wd7,d7
dbra d1,milo2
moveq #7,d1
milo3 add.w d4,d4
addx.w d6,d6
add.w d4,d4
addx.w d7,d7
dbra d1,milo3
swap dé
swap d7
moveq #7,d1
milo4 add.w d3,d3
addx.w d6,d6
add.w d3,d3
addx.w d7,d7
dbra d1,milo4
moveq #7,d1
milo5 add.w d5,d5
addx.w d6,d6
add.w d5,d5
addx.w d7,d7
dbra d1,milo5

Chapter 3: Tips and Programs

The GFA BASIC Book 119
move.l d6,(a0)+
move.l d7,(a0)+
dbra do,milo1
lolo rts
end

Two parameters are passed to this routine via the stack.
The two parameters are the source and destination resolu-
tion in the format just like the XBIOS(4) function uses (0
for low resolution, 1 for medium resolution and 2 for high
resolution).

Color is changed to the equivalent grey scale and vice
versa. A color picture is thus converted to a black and
white picture that should somewhat resemble the color
picture. You could also look at a black and white picture
on a color monitor, but you would then have to change the
color register to the corresponding grey scale.
Experimenting could be a lot of fun.

The previous program (EXEC3) loads Woof as a high
resolution Degas picture from the diskette and changes it to
a similar color picture in medium resolution.

Owners of monochrome monitors will most likely have
some Degas color pictures stored on a diskette. With this
routine you can look at those color pictures as black and
white pictures.

The reason that the routine to change pictures was not
written in GFA BASIC is because there is just too much
bit manipulation. No high level language comes close to
performing the routine as well as machine language. To
change the pictures from low to medium resolution or vice
versa requires 256,000 additions, besides loops and other
things. The whole process only takes about half a second.
You could write similar routines that could be treated as
extensions to the GFA BASIC commands. When using C
it is important that the routine is linked without the usual

EXEC

120 The GFA BASIC Book

heading files. It is best to use compilers that create assem-
bler source files. Some compilers may require you to save
and restore all the registers.

Chapter 3: Tips and Programs

The GFA BASIC Book

121

%

3.12 Fonts

The ST computer is capable of mixing graphic and text
on the same screen. Using the DEFTEXT you can modify
the appearance of the text. But even this powerful com-
mand has its limitations when it comes to displaying ex-
ceptionally pretty lettering or very large characters. You
could of course use the GET/PUT command to display the
desired graphic, along with characters. This could, how-
ever, result in a lot of overhead.

But...

The ST comes with GEM, and GEM can (most of the
time) create many different character sets. Unfortunately,
the corresponding VDI-functions (load_fonts...) are not yet
implemented on the current version of the ATARI ST, at
least not to the fullest extent.

But...

You can bypass the corresponding functions
(vst_load_fonts and vst_unload_fonts form GDOS) and still
create GEM character sets (like a proportional character
set).

The program Fontdemo demonstrates how this works.

Fonts

122

The GFA BASIC Book

The main program loads two character sets from the
diskette after it reserved the necessary memory (a generous
100,000 bytes). The program then displays short text in the
standard ST format and also in the two loaded fonts.

Next, those letters are shown in different sizes which
tend to be somewhat slow without the blitter chip, but then,
only a few large characters can fit on the screen anyway.

Procedure load_font(file$,adr.%)

This procedure is the real workhorse. After opening the
files (with LOF(#1)), the memory is reserved by using the
GEMDOS-function malloc. The files are then loaded into
that memory using the BGET command. Should an error
occur during the GEMDOS call (malloc=0), GFA BASIC
will return the corresponding error message.

The beginning of the FNT-files contain a row of num-
bers as 2 or 4 byte integers. Unfortunately, these numbers
are not in the 68000 processor format but rather in the Intel
processor (8080,8088, 8086, 80286) format. A loop is gen-
erated to convert those numbers. However, not all of the
data is converted since the actual data for the characters is
already in the correct format.

First, the offset of the font data is determined (I assume
that all numbers will come first and then the actual font
data). The DPOKE-command converts the bytes.

The three following LPOKE-commands switch the low
value word (just like Intel) with the high value word and
add the starting addresses of the Font-headers, so that the
correct pointer is stored in the memory for the 68000
(Since the offset of the pointer is always less than 65536,
the high value word, which is null anyway, is dropped). For
those that want the exact version can change the line to:

Chapter 3: Tips and Programs

The GFA BASIC Book

123

LPOKE a_%+68,a_%+DPEEK(a_%+68)+65536'DPEEK(a_%+70) etc.

Next, the pointer that ties all the character sets together
is changed. The address of the Font-header is returned to
the calling program.

PROCEDURE get_chrlinkO

This procedure determines the address of the first font-
header that is stored in the memory of the ST. The follow-
ing small machine program serves that purpose:

dew $a000 ;2000
move.l al,do ;2009
rts :4e75

Here the Line-A-init-call is used to determine the ad-
dress of the table that contains the addresses of the three
internal character sets. The second of these character sets
(standard 8*8 for color monitor) contains the pointer that
points to the corresponding Font-Headers.

PROCEDURE get_chrlink

This procedure uses get chrlink0 and processes the
whole list until the end is reached.

PROCEDURE unload_font(adr%)

This routine unloads the font at Adr% (in other words
that font may no longer be used) by replacing the pointer of
the previous character with the current character set. The
memory that was used by that character set is returned to
the system.

Fonts

124

The GFA BASIC Book

PROCEDURE kill _fonts

This routine serves as an emergency exit during the pro-
gram development. This procedure erases all character sets
that were loaded with GFA BASIC, independent of
whether the corresponding pointers are known (like
ibmhss36%) or not.

PROCEDURE unreserve

This procedure frees the memory that was reserved with
the RESERVE-command.

The RESERVE XBIOS(2)-16386-HIMEM+FREE(0)-
nnnn reserves nnnn bytes of memory. This long command
allows you to test your program more often without even-
tually reserving all the available memory as would be the
case with the RESERVE FRE(0)-nnnn command.

For a finished program it is usually better to use the
RESERVE aaaaaa command since the memory usage is
fixed and no more changes should take place.

Attention: If the program is compiled, you must re-
serve at least 32500 Bytes of memory for the
FILESELECT-box. Therefore if an external pro-
gram is selected with the FILESELECT-Box, you
should issue a RESERVE 1000 call only after the
FILESELECT-call was made. This is not necessary
for the interpreter.

DEFFN malloc(siz%)
DEFFN mfree(adr%)
DEFFN mshrink(adr%,size%)

These are the GEMDOS functions that control memory
usage.

Chapter 3: Tips and Programs

The GFA BASIC Book

125

@malloc(nnnn) reserves nnnn bytes of available mem-
ory (above HIMEM). The starting address of that memory
is returned after calling this function. If no memory was
available, a null is returned.

Special case: @malloc(-1) returns the number of bytes
of the largest available memory block.

@mfree(aaaa) frees up the memory block at address
aaaa and releases it to the operating system. An error has
occurred if a negative value is returned (like -40=ERROR -
40).

@mshrink(aaaa,nnnn) allows you to decrease the size of
an already allocated memory block. A negative number is
returned if an error occurs.

CAUTION: There is a bug in the operating system
that crashes the computer after about 20-40
@malloc and @mfree cycles. This error will cause
the computer to display "memory full'' whenever a
diskette command (OPEN, SAVE...) is issued. The
only option available to you is to issue a LLIST
command and then reset the computer.

DEFTEXT color,style,rotation, height,face

You should already be familiar with the DEFTEXT-
command, but only with four parameters. There is a fifth
parameter (until now undocumented) that allows you to
select the font. You must have called the corresponding
VDI-call (vst_font). The number of the font (called face) is
easily determined. This number is always found in the first
two bytes of the font. The standard font contains the num-
ber 1. All other fonts that are loaded can contain any num-
ber and can be selected by you (like DPOKE ibmhss36,2,
etc). If more than one version of the same font exists in
memory, the one that matches the text height the closest
(byte 2 and 3) is used.

Fonts

126

The GFA BASIC Book

The Font-header:

Byte
0-1
2-3
4-35
36-37

38-39

40-41
42-43
44-45
46-47
48-49
50-51
52-53

54-55
56-57
58-59
60-61
62-63
64-65
66-67

68-71
72-75
76-79
80-81
82-83
84-87

Function

Font ID (face number)

Character size in points (1/72 inches)

Name of the font (8*16 Systemfont...)

First character in the font (often the character
after code 32)

Last character in the font (usually not greater
than 127). This is why no foreign characters
can be displayed with the example fonts
given.

Top line These are the distances

Ascent line between the letters

Half line from the baseline

Descent line

Bottom line

Width of the widest character

Width of the widest character cell incl. empty
space

Left Offset for cursive text

Right Offset -"- -"-

Thickness width (4=extra wide)

Underline size (7=very thick line)

Mask for Light text (usually &5555)

Mask for skewed (italic) text (usually &5555)

Flags:

bit 0=System Font

bit 1=Uses horizontal offset table

bit 2=Byte-swap-flag for font data
Intel=0,Motorola(1)

bit 3=Proportional(0)

Pointer to the Horizontal offset table

Pointer to the Character offset table

Pointer to the Font data

Total width of all characters in pixels

Height of the character matrix(must match 2-3)

Pointer to the next font or null

Chapter 3: Tips and Programs

The GFA BASIC Book 127

This is followed by the Character-Offset-Table which
contains the number of pixels of all the preceding charac-
ters in the font.

There may also be a Horizontal-Offset-Table which
contains the additional space required for each character.
Finally, the actual character data follows which is stored in

an extremely compact format so that each line can start on
a word boundary. Compare to BITBLT.

Figure 12: Font Examples

Hello, STandard
’ 118

Hello, ibmhssi6

Hello, epshssdb 113

Fonts

128 The GFA BASIC Book
" FONTDEMO *
"FONTTEST"'
Reserve Fre(0)-100000 I' Place for Fonts '

@load_font("ibmhss36.fnt", ‘ibmhss36%)
@Load_font("GROSS.FNT",*Ibmhss36%)
Dpoke Ibmhss36%,2 '
@load_font("epshss36.fnt",*epshss36%)
@Load_font("GROSS.FNT",*Epshss36%)
Dpoke Epshss36%,3
Deftext ,,,36,1
Text 50,100,"Hello, STandard"
Deftext ,,,36,2
Text 50,200,"Hello, ibmhss36"
Deftext ,,,36,3
Text 50,300,"Hello, epshss36"
For 1%=0 To 120

Deftext ,,2,1%

Text 450,140,1%

Deftext ,,3,1%

Text 450,300,1%
Next 1% @Unload_font(Epshss36%)
@Unload_font(Ibmhss36%)

"@kill_fonts
@Unreserve

Deffn Malloc(Size%)=Gemdos(&H48,L:Size%)
Deffn Mireg(Adr%)=Gemdos(&H49,L:Adr%)
Deffn Mshrink(Adr%,Size%)=Gemdos(&H4A,0,L:Adr%, L:Size%)

Procedure Load_font(File$,Adr.%)
Local L_%,A_%,| %
Open "I" #1,File$

A_%=@Malloc(Lof(#1)) I Place reserve
If A %<=0

Error 101 I that was nothing
Endif

Chapter 3: Tips and Programs

The GFA BASIC Book 129

Bget #1,A_%,Lof(#1) I'Font load

Close #1

L_Y%=Peek(A_%+76)+255*Peek(A_%+77) IL_% Bytes Font-Data

For |_%=A % To A %+L_%-1 Step 2 I Intelinto Motorola
Dpoke |_%,Peek(|_%)+256*Peek(l_%+1) !Format calculating

Next |_°/o

Lpoke A_%+68,A_%+Dpeek(A_%+68) I Hor-Offs-Tab

Lpoke A_%+72,A_%+Dpeek(A_%+72) ! Chr-Offs-
Tab Lpoke A_%+76,A_%+Dpeek(A_%+76) ! Font-Data
@Get_chrlink
Lpoke Chrlink%+84,A_% *Adr.%=A_%
Return

Procedure Get_chrlink
@Get_chrlink0
Chrlink%=Chrlink0%
While Lpeek(Chrlink%+84)
Chrlink%=Lpeek(Chrlink%+84)
Wend
Return

Procedure Get_chrlink0
Local A_$,A %
A_$=MKI$(&HA0002009)+Mki$(&H4E75) ! A000 move.lal,do rts
A_%=Varptr(A_$)
Chrlink0%=Lpeek(Lpeek(C:A_%()+4)+84) I see text
Return

Procedure Kill_fonts
Do
@Get_chrlink
Exit If Chrlink%<Basepage
@Unload_font(Chrlink%)
Loop
Deftext ,,,,1
Return

Procedure Unreserve

Reserve Xbios(2)-16384-Himem+Fre(0)
Return

Fonts

130 The GFA BASIC Book

Procedure Unload_font(Adr%)
@Get_chrlink0
While Lpeek(Chrlink0%+84)<>Adr%

Chrlink0%=Lpeek(Chrlink0%+84)

Wend
Lpoke Chrlink0%+84,Lpeek(Adr%+84)
Void @Mfree(Adr%)

Return

Chapter 3: Tips and Programs

CHAPTER 4

GEMDOS, BIOS and
XBIOS

131

132

The GFA BASIC Book

Many separate components, with different
functions, make up the operating system of the ST com-

Let us start from the top:

TOS (Tramiel Operating System)
The total operating system including GEM

GEM (Graphic Environment Manager)

A subsystem of the operating system that
contains standardized graphics routines that
can run independent of the machine. GEM
can also be run on an /BM or other micro
computers.

AES (Application Environment Services)
Responsible for the graphic input
functions like the Mouse-Menu-
System.

VDI (Virtual Device Interface)
Currently this is limited on the ST to
the screen with few exceptions.
Help routines for AES and programs,
like drawing lines, fill areas, select-
ing line thickness, etc. The actual

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 133

drawing routines for the screen are
implemented through the Line-A-
routines. The VDI directs the draw-
ing commands to the Line-A-
Routines (or to a printer or diskette
file)

GEMDOS (GEM Disk Operating System)

This is the actual operating system that was imple-
mented on the ST computer. Similar to CP/M or
MS-DOS, it is used for the orderly operation related
to accessing disk drives. Through GEMDOS the
data can only be accessed through the directory (not
by sectors). GEMDOS controls all saving of disk
files on the ST.

BIOS (Basic Input/Output System)

XBIOS (Extended Basic Input/Output System)
These two interfaces are used to control disk
access by sectors and for accessing other pe-
ripherals, just like the BIOS for CP/M or
MS-DOS. The BIOS performs all the nor-
mal /O routines (Input/Output). The XBIOS
allows one to access the enhanced services
of the ST computer: screen addresses, col-
ors, sound, hardware registers, Interrupt
vectors, etc.

It is known that the BIOS calls XBIOS routines and
GEMDOS uses BIOS and XBIOS routines. Eventually the
AES will call all lower levels.

To use the ST efficiently, one must know all aspects of
the operating system so that one can select the routines that
are best suited. It does not have to be the best or the fastest
and if you already have a routine that would be satisfactory
then go ahead and use it. It would be senseless for you to
write your own routine instead of using an existing
GFA BASIC one if all that is saved is a few milliseconds.

Chapter 4: GEMDOS, BIOS and XBIOS

134 The GFA BASIC Book

For example: GFA BASIC uses the BIOS routines for
the PRINT command because it is much faster then the one
used by GEMDOS. There is also a problem with Control-C
in GEMDOS. Direct Use of the BIOS often results in the
loss of GEMDOS 1/O redirection capabilities, but permits
greater values.

In the following pages I will give a short description of
the GEMDOS, BIOS and XBIOS routines and give an ex-
ample where appropriate.

Errors are returned as a negative number and should
match the error number of GFA BASIC.

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 135

<>
&+
4.1 GEMDOS
B GEMDOS(0) p_termold
This routine ends the program. May not be used in
GFA BASIC.
B GEMDOS() c_conin

Reads a character from the console (keyboard). Itis
similar to the INP(2) function call. It returns a 32
bit word. In the lower eight bits (c% and 255) you
will find the ASCII value for the pressed key (if an
ASCII key was pressed). In bits 16 to 23
(c%/65536 and 255) you will find the SCAN-code
of the keystroke. Every key has a code, even the
function keys. Bits 24 to 31 contain the keyboard
shift key (c%/&h1000000), just like BIOS(11)
would return. For example ALT-Left-Shift-A would
return the value &0A1E0041.

Some programs assume bits 24 to 31 are set to null.
These bits are cleared (before EXEC) by

SPOKE &H484,PEEK(&484) OR &HF7

To set it to normal:

GEMDOS

136 The GFA BASIC Book

SPOKE &H484,PEEK(&H484) OR 8

The character that corresponds to the key pressed is
displayed on the screen. Use of Control-C termi-
nates the program (crashes GEM programs).

B GEMDOS(2,c%) ¢_conout

Prints a character to the console (screen).

B GEMDOS(3) ¢_auxin

Reads a character from the serial port.

B GEMDOS4,c%) c_auxout

Writes a character to the serial port.

B GEMDOS(5,c%) c_prnout

Writes a character to the printer.

B GEMDOS(6,c%) c_rawio

Writes a character to the console or if ¢%=255 an
INKEY-routine is executed. If a key is pressed a
value will be returned, otherwise, a null is returned.

B GEMDOS(7) c_rawcin
See GEMDOS(8).
B GEMDOS(8) ¢_necin

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 137

More key input routines. These two do not display
the character and Control-C does not cause a break.
It returns code as GEMDOS(1).

B GEMDOS(9,L:adr%) c_conws
Writes a null-terminated string to console:
a$="Hello"+chr$(0)

VOID GEMDOS(9,L:VARPTR(a$))
B GEMDOS(10,L:adr %) c_conrs

@conrs(10,"a$)
PRINT a$

PROCEDURE conrs(n%,str. %)
LOCAL a_$,a%
a_$=CHR$(n%)+STRINGS$(n%+2,0)
a%=GEMDOS(10,L:VARPTR(a_$))
*str.%=MID$(a_$,3,ASC(MID$(a_$,2))
RETURN
This routine reads an edited string. Because of the
Control-C problem, it is almost impossible to use.
B GEMDOS(1) c_conis

Returns null if no key was pressed

B GEMDOS14,d %) d_setdrv

Selects current drive like CHDRIVE d%+1.
B GEMDOS(16) c_conos

GEMDOS

138

The GFA BASIC Book

Returns null if console is not ready to receive a
character. This should never happen.

B GEMDOS(17) c_prnos

Returns null if printer is not ready.

B GEMDOS(18) ¢_auxis
Returns null if no character is available on the serial
port.

B GEMDOS®19) C_auxos
Returns null if serial port is not ready to receive a
character.

B GEMDOS(25) c_getdrv

Returns number of current drive DEFFN
gdrive=GEMDOS(25)+1

B GEMDOS(Q26L:adr%) f setdta
Set buffer address for f sfirst and f snext.
GFA BASIC sets this to BASEPAGE+128 at pro-
gram start or when DIR or FILES command is used.

B GEMDOS@42) t getdate
Returns a 16 bit number containing the date

(DATES) in this format (Year-
1980)*512+month*32+day.

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 139

B GEMDOS(43,d%) t setdate
Set the date (SETTIME) as above.

HE GEMDOS(44) t gettime

Read time (TIME$). Returns a 16 bit number in this
format Hour*2048+minute*32+seconds/2.

B GEMDOS45,t%) t_settime
Set time (SETTIME) as above.

B GEMDOS47) f getdta

Returns buffer address for f sfirst, f_snext.

B GEMDOS(48) s_version

Returns current GEMDOS version number.

B GEMDOS(49,L:size % ret %) p_termres
Terminate program and reserve size% bytes in
BASEPAGE. Cannot be used in GFA BASIC.

B GEMDOS(54,L:adr%,d %) d free
Returns information about free disk space on drive
d% like the function DFREE(d%). The information

is stored in a buffer that is four long words long
starting at address adr%. You can obtain the space

GEMDOS

140

The GFA BASIC Book

by multiplying the first long word with the third and
the fourth (DFREE). The capacity by multiplying
the second long word with the third and the fourth.

B GEMDOS(57,L:adr%) d_create
Create a directory, MKDIR ...

B GEMDOS(58,L:adr%) d_delete
Delete a directory, RMDIR ...

B GEMDOS(59,L:adr %) d_setpat
Change directory, CHDIR ...

B GEMDOS(60,L:adr %,attr %) f create

Create a new file (Name starts at adr%). Returns a
file handle that is used in any further operations.
The same as OPEN "0O". If attr% is zero the file is
normal, a 1 means file can only be read, a 2 means
hidden file, a 4 is a system file and a 8 is the vol-
ume label (set while formatting the disk).

B GEMDOS(61,L:adr%,mode %) f open
Opens a file. Mode%=0 corresponds to OPEN "I",
mode%=1 corresponds to OPEN "O" and

mode%=2 corresponds to OPEN "U". Returns in-
formation similar to f create.

B GEMDOS(62,h %) f close

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

141

Closes file with handle 4%, corresponds to
CLOSE#n.

B GEMDOS(63,h%,L:len%,L:adr %) f read
Read len% bytes from the file that was opened with
file handle 4% into buffer at address adr%. Similar
to BGET #h,adr%,len% and is also used by it and
INPUT, etc.

B GEMDOS(64,h%,L:len%,L:adr %) f write
Writes len% bytes to adr% into file h%.
Corresponds to BPUT #h,adr%,len%. Is used by
the PRINT command, etc.

B GEMDOS(65,L:adr%) f delete

Deletes a file, KILL ...

B GEMDOS(66,L:n% h % ,mode%) f seek
mode%-=0: SEEK #h,n%
mode%=1: RELSEEK #h,n%
mode%=2: SEEK #h,-n%

B GEMDOS(67,L:adr %,flg % attr %) f_attrib

This routine reads or modifies the file attributes.

PROCEDURE chmod(file$,attr%)
LOCAL e%
file§=file$+CHR$(0)
e%=GEMDOS(67,L:VARPTR(fle$), 1,attr%)
IF %<0

GEMDOS

142

The GFA BASIC Book

ERROR e%
ENDIF
RETURN

To protect a file: @chmod("NAME.EXT",1). By
changing the file type to directory or the reverse,
files can be well protected from unauthorized use.

A tip: Change the directory to a normal file and
scramble the contents.

H GEMDOS(69,h%) f dup

B GEMDOS(70,n%,s %) f force
These routines allow you to reroute the input and
output of the GEMDOS-output_routines (not usable
for GFA_BASIC).

B GEMDOS(71,L:adr%,d%) d_getpath

Corresponds to DIR$(d%), Buffer starts at adr%

B GEMDOS(72,L:size %) m_malloc

Reserves size% bytes of memory for the program.
Returns the starting address, if size%=-1 it returns
the maximum available memory. This routine is
known to have some bugs in the current TOS.

B GEMDOS(73,L:adr%) m_free

Frees the memory starting at address adr% (adr%
was the return from m_malloc).

B GEMDOS(74,0,L:adr%,L:size %) m_shrink

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

143

Frees all memory starting at address adr% that ex-
ceeds size%.
B GEMDOS(75,f%,L:nam%,L:cmd %,L:env %) p_exec

Executes program as subprogram from the diskette.
Corresponds to EXEC f%,nam$,cmd$,env$.

B GEMDOS(76,ret%) p_term
Terminates the program and passes ret% to parent
program. Cannot be used in GFA BASIC.

B GEMDOS(78,L:nam% attr %) f_sfirst

B GEMDOS(79) f snext

These two routines are useful for searching through
a directory. See program SORTDIR.BAS in chapter
3.6.

B GEMDOS(86,0,L:0ld %,L:neu%) f rename

Corresponds to NAME old$ AS new$.

B GEMDOS(87,L:tdbuf%,h%,f1g %) f datime

With this routine you can change the date and time
of a file. You must pass the file handle and the 4
byte address of a buffer (like *A%) in which the
date is stored. If flg%=1 then write the date and if
flg%=0 get the date.

GEMDOS

144 The GFA BASIC Book
IS
%
4.2 BIOS
B BIOS(0,L:ptr%) getmpb

This routine determines how GEMDOS uses the
memory, but without further knowledge of the op-
erating system it is impossible to use.

M BIOS(1,d%) bconstat
Similar to INP?(d%)

M BIOS(2,d%) bconin
Corresponds to INP(d%). It returns a long word
just like GEMDOS(1).

M BIOS(3,d%.,c%) bconout
Corresponds to OUT d%,c%.

B BIOS4,f%,L:buf% ,n%,rec%,d %) rwabs

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 145

f%=0: Reads n% sectors starting at sector rec% on
drive d% at buffer address buf%.

f%=1: Writes the sectors to the disk drive.

f%=2: Like 0, but ignores media-change.

f%=3: Like 1, but ignores media-change.

B BIOS(5,n%,L:adr% setexec
Changes an exception vector of the 68000, n% is
the number of the exception, adr% is the new value
for the vector. A negative value returns the previ-
ous value.

B BIOS(6) tickcal

Result is a 20, 20 ms time-tick.

B BIOS(7,d%) getbpb

Returns the address of disk drive parameter block,
only useful to monitor disk drives. Divided in 16
bit words: sector size (512), sector number per
cluster (2), cluster size (1024), directory size, sector
number of second FAT, sector number of first data-
cluster, number of data-clusters, and flags. d% is
the number of the drive.

B BIOS(8,d%) bcostat
Corresponds to OUT?(d%)

B BIOS(9,d%) mediach

Determines if diskette was changed.
0 = definitely was not changed (Harddisk)

BIOS

146 The GFA BASIC Book

1 = maybe it has been changed
2 = definitely was changed

B BIOS(10) drvmap
Returns a bit pattern with a bit set for each drive
that 1s attached. &x10011 says: drive A:,B: and E:
are attached.

B BIOS(11,x%) kbshift
Returns status of the shift key. By x%=-1 the old

status of the key is returned. If value is between 0
and 255, the corresponding key is simulated.

&X o fnitivins

% S T 1 Right shift key

B v b ap 1. Leftshift key

G vimat 1 aes Control key

e U Alternate key

@il Lk e Caps-lock

Sl s AlternateClr/Home

&30 1id &4 v Alternate Insert
Simulate Caps-Lock:

On: VOID BIOS(11,BI0S(11,-1) OR &H10)
Off: VOID BIOS(11,BI0S(11,-1) AND &HEF)

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 147

%

4.3 XBIOS

B XBIOS(0,t%,L:par%,L:vec%) initmous

This routine allows you to write your own mouse
handler. It is not compatible with GEM.

B XBIOS(1,n%) ssbrk

Reserve memory for the ROM-Module.

H XBIOS(2) physbase
Get the screen’s physical base address currently in
use.

B XBIOS(3) logbase

Get the screen’s logical base address when drawing
to the screen.

Bl XBIOS4) getrez

XBIOS

148

The GFA BASIC Book

Returns the screen resolution: 0 = Lores, 1 =
Midres, 2 = Highres, 3 = reserved for modified
ST's.

B XBIOS(5,L:1%,L:p%,r %) setscreen

Makes it possible to change resolution (with the
color monitor between lowres and highres).
Unfortunately may not be used with GEM. The
screen address may also be changed, separated by
the physical and the logical address. See the chap-
ter on flicker free graphics.

B XBIOS(6,L:adr%) setpallete

This routine allows you to change all of the color
registers at one time, as when loading a DEGAS
picture:

BLOAD "DEGAS. PIx",XBIOS(3)-34,32034
VOID XBIOS(6,L:XBIOS(3)-32)

B XBIOS(7,n%,c%) setcolor

This routine lets you change one color at a time.
SETCOLOR 3,&123 corresponds to VOID
XBIOS(7,3,&123). If ¢% is a negative value, the
old color register is returned.

DEFFN getcolor(n%)=XBIOS(7,n%,-1) AND &777

B XBIOS(8,L:a%,L:0,d%,s % t% ,si%,n%) floprd
B XBIOS(9,L:a%,L:0,d%,s%,t%,si%,n%) flopwr
B XBIOS(10,L:a%,L:0,d%,s%,t%,

si% ,i%,L:magic%,vir %) flopfmt

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

149

These routines control the floppy drives at the low-
est level. The following values are used:

a% =
d% =
5% =

1% =
5i% =
n% =

i% =

magic% =

virgin =

address buffer.

disk drive number (0/1).

sector number, with flopfmt it con-
tains the number of sectors per track.
track number.

side (0/1).

Number of sectors to be read or
written.

Interleave, determines the order of
the sectors within the track, usually
set to 1.

is a constant that is used during for-
matting &H87654321.

determines what values the sectors
will contain after a format command.
It can be changed, however, as long
as the high nibbles are not F.
&HESES.

H XBIOS(11) getdsb
Not used.

B XBIOS(12,n%,L:a%) midiws
Writes a string of n% + I bytes starting at address
a% to the MIDI-port.

B XBIOS(13,n%,L:v%) mfpint

Set the MFP interrupt vector on the ST. May only
be used with assembly or "C".

XBIOS

150

The GFA BASIC Book

B XBIOS(14,d%)

iorec

Returns the address of the table that is used by the

serial device.

XBIOS(14,0) AUX:-Input
XBIOS(14,1)+14 AUX:-Output
XBIOS(14,1) Keyboard buffer
XBIOS(14,2) Midi-Buffer, only input

The table is as follows:

long word
word
word
word

word
word

Buffer address
Buffer size
head index

tail index

The range between head and tail
contains data. Buffer is empty if
they are equal. If the buffer size is
exceeded it will start at the begin-
ning.

low water mark

high water mark

If handshaking is active and the
characters in the buffer reaches the
high water mark, the computer will
send a signal to the sender to stop
sending data until the low water
mark is reached. Normally:1/4 to
3/4 of the buffer size.

To erase the keyboard buffer:

LPOKE XBIOS(14,1)+6,0

To erase the serial output buffer:

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

151

LPOKE XBIOS(14,0)+14+6,0

To enlarge the buffer for MIDI:
midipar%=XBIOS(14,2)
oldmidibuf%=LPEEK(midipar%)
oldmidisize%=DPEEK(midipar%+4)

DIM temp%(20000/4)

SLPOKE midipar%,VARPTR(temp%(0))

SDPOKE midipar-+4,20000
SLPOKE midpar%+6,0

" Now we have time to do INP(3)

SDPOKE midpar%-+4,0ldmidisize%
SLPOKE midoar%+6,0

SLPOKE midipar%,oldmidibuf%
SLPOKE midipar%+6,0

ERASE temp%()

If the buffer for the serial port is changed then you
should also change the low and high water marks.

B XBIOS(15,b%,f% ,u% ,r %0t % ,s%)

rsconf

Configure the serial port. By -1 the parameters are

not changed.
*b%=baudrate

0=19200 1=9600 2=4800 3=3600
6=1800 7=1200 8=600 9=300
12=134 13=110 14=75 15=50

f%=handshake mode

O=none, 1=XON/XOFF,
3=BOTH??

4=2400 5=2000
10=200 11=150

2=RTS/CTS,

XBIOS

152 The GFA BASIC Book

u%=MF P-registers in binary format

&K e ory 0.. No parity
5 R 10. Odd parity
EXe v v 11. Even parity

&X .« « HOIL . T Testapibit
XG0 2 3V S istopbits
ERs 5o llaes.: 25t0pbits

G 00 ssk ol 8 data bits
&IOS VARAS 7 data bits
(5 SEH G 6 data bits
Exo il e B 5 data bits
&x0..00... Synchronized,frequency form TC/RC

&x1..00... Synchronized, divided by 16
1% ,t%,s%=MFP-registers rsr,trs,scr

A complete description of these binary registers
would take up too much space and is seldom used.
Normally just set these parameters to -1.

B XBIOS(16,L:u%,L:s%,L:c%) keytbl

With this routine you can change the keyboard
translation tables. It consists of three tables, each
with 128 bytes. The keys are converted to the
ASCII-Code as follows: u%=unshifted, s%=shifted
and c%=caps-lock. A parameter of -1 means not to
change the address. The following is an example of
how to change the keys of the numbers block to the

Greek alphabet.

"keytab

Void Xbios(24) Ibioskeys
0%=Xbios(16,L:-1,L:-1,L:-1) Iget pointers
Dim K%(128*3/4) Ibuffer

K%=Varptr(K%(0))
Bmove Lpeek(0%),K%,128
Bmove Lpeek(O%+4),K%+128,128

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 153

Bmove Lpeek(0%+8),K%+256,128

For 1%=0 To 14
Poke K%+&H63+1%,224+1% IGreek Text
Poke K%+&HE3+1%,239+1% !more when pressing the shift key
Poke K%+&H163+1%,128+1% ICaps: a few international

Next 1%

Void Xbios(16,L:K%,L:K%+128,L:K%+256)

Repeat
Out 5,Bios(2,2)

Until Mousek

Void Xbios(24)

Use XBIOS(24) to return the keys to normal. An
address pointing to the three tables is also returned
by XBIOS(16). Field k% serves only to store the
key. The three Bmoves copy the original table
which is then changed for all three conditions. The
program then performs a loop that allows you to
enter keys until the mouse button is pressed. The
XBIOS(24) at the end is very important since you
would not be able to use the keyboard properly
without it. You may want to put in a STOP after the
first XBIOS(24) during program development so
that you can run the program with the mouse to re-
turn you to normal keys.

H XBIOS(17) random
Returns random number from 0 to 16777215,24
bits.

B XBIOS(18,L:a%,L:0,L:5% .t %,f%) protobt

This routine creates a boot sector for the diskette in
memory, a% points to a 512 byte buffer, s% is a se-
rial number that is written as part of the boot sector.
If the number is greater than 24 bits a random num-

XBIOS

154 The GFA BASIC Book

ber is created. Where -1 is the serial unchanged,
and % is the disktype:

0 =single sided, 40 tracks (180K)

1 =double sided, 40 tracks (360K) IBM

2 =single sided, 80 tracks (360K) SF 340
3 =double sided, 80 tracks (720K) SF 314
-1 =disktype is unchanged

f% =0 diskette does not have TOS

f% =1 diskette contains TOS

f% =-1 unchanged

M XBIOS(19,L:a%,L:0,d%,s %t %,si%,n%) flopver

Verifies storage of the floppy disk. If the value is
null then everything checks out OK. If there is an
error, you can find the sectors that were bad starting
at address a%, just like flopfmt.

H XBIOS(20) serdmp

Dump screen to printer, just like HARDCOPY.

B XBIO0S(21,a%,r%) curscon

Allows you to configure the cursor of the operating
system.

fP0=0 hide cursor

fPo=1 show cursor

fPo=2 blinking cursor

fPo=3 solid cursor

fYo=4 set blink rate

fYo=5 return current blink rate

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

155

if fJo=4 then r% contains the blink rate of the
screen (50hz, 60hz for color or 71hz for

monochrome).
B XBIOS(22,L:dt%) bsettime
B XBIOS(23) bgettime

These functions correspond to the GEMDOS-rou-
tines SGET/GET time/date. The date is multiplied
by 65536 and then added to the time.

B XBIOS(24) bioskeys

see XBIOS(16)=keytbl

B XBIOS(25,n%,L:a%) ikbdws
Writes n%-1 bytes from address a% to the keyboard
Processor.

B XBIOS(26,n%) jdisint

Disable interrupt number n%(0-15) of the MFP.

B XBIOS(27,n%) jenabin

Enables interrupt n% of the MFP.

B XBIOS(28,c%,n%) giacces

n%=&00..&0F reads the sound register n%
n%=&80..&8F writes c% to register n%

B XBIOS(29,m%) offgibit

XBIOS

156 The GFA BASIC Book

B XBIOS(30,m%) ongibit

Sets the bit of port A on the sound chip to zero or
one. With ONGIBIT the bit pattern is ORed with
the current value, by OFFGIBIT the pattern is made

with AND.

m%-=1: Select floppy side 0 or side 1

m%= 2. Floppy A on/off

m%=4: Floppy B on/off

m%-= 8: RTS on/off

m%=16: DTR on/off

m%=32: Centronics strobe on/off

m%=64: GPO on/off (a pin in the connector

of the moniter (13 Pins))

Example:

VOID XBIOS(29,NOT 2)

PRINT "Floppy A:is on”

PAUSE 100

VOID XBI0S(30,2)

PRINT "Floppy A: s off*

B XBIOS(31,n%,c%,d%. L:vec%) xbtimer

Change Timer Nr. n% (0=A, 1=B, 2=C, 3=D) of the
MFP. c¢% and d% are written to the Control and
Data registers, vec% is the pointer to the corre-
sponding interrupt vector.

Example: match the baud rate with timer D:

" Baud rate calculation
Dim A%(7)
For I%=1To 7
Read A%(1%)
Next 1%
Data 4,10,16,50,64,100,200

Chapter 4: GEMDOS. BIOS and XBIOS

The GFA BASIC Book 157

FO=" #HitH# HHHHHH JHEHHEHEE HEHE R FHERARE
Do
Input "Baud rate ",A
For 1%=1To 7
B=19200"4/A%(1%)/A
B1=Int(B)
B2=Int(B+1)
B1=Max(B1,1)
B2=Max(B2,1)
Print Using F$,1%,B1,192004/A%
(1%)/B1,B2,19200*4/A%(1%)/B2
Next 1%
Loop
* Select the Baud rate:
" VOID XBIOS(31,3,i%,b1,1-1)
"b1>0 und b1<256

Caution: These baud rates are real rates for the
ST, but when using XBIOS(15..) (rsconf) it does
not set 50 or 75 baud, but 80 or 120 instead. A
small program follows that uses rsconf
(XBIOS(15..)) and then displays the real baud
rates.

' Baudtest.bas

Dim A%(7)

For 1%=1To 7
Read A%(1%)

Next 1%

Data 4,10,16,50,64,100,200

Print "Index","Timer D","Control Data","Result"

For 1%=0 To 15
Void Xbios(15,1%,-1,-1,-1,-1,-1,-1)
D%=Peek(&HFFFA1D) And 7
Q%=0
For J%=1 To 500
Q%=Max(Q%,Peek(&HFFFA25))
Next J%
Print 1%,D%,Q%,

XBIOS

158

The GFA BASIC Book

Print 19200*4/A%(D%)/Q%

Next 1%

The result will be as follows:

Index

ONOO U~ WOND - O

©

10
11
12
13
14
15

The last two lines could also be:

Timer D Control Data Result

(G2 I~ A

8
10
11
16
32
64
96
128
143
175
64
96

(G M I = Sl S S PO (U SO S S S 1 SH 2 SO g T

3 64
3 96

19200
9600
4800
3840
2400
1920
1745.45
1200
600
300
250
150
134.26
109.71
120

80

75
50

This is an error in the operating system that will
most likely never be corrected. For 50 Baud use:

VOID XBIOS(31,3,3,64,L:-1)

B XBIOS(32,L:adr%)

dosound

This routine allows you to play music independent
of the program. The SOUND-buffer starting at
adr% contains the music in form of control bytes.

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

159

The end of this chapter contains a program named
Elise that contains these control bytes. The files
that are created by this program may then be read
by other programs and played back by using this

interrupt.

Used control bytes:

00yz:
010z:

02yz03 0x :
04yz050x:
06 ff:

07 xx :

08 11:

0911:

0A11:
0Bxy0Czt:
0DOh:

80 xx :

81 Orsseeww:

Low-Byte duration sound channel 1

High-Byte duration sound channel 1 as
by Sound ... #&xyz

same for channel 2
same for channel 3

frequency of the wave generators
(0..63)

selects the sound channel like Wave,
but xx inverted Wave 1 corresponds to
07 FE (NOT 1=&FF) Wave &1009 cor-
responds to 06 10 07 F6

volume channel 1

volume channel 2

volume channel 3

duration of envelope curve

envelope curve form Wave ?,h,? &ztxy
loads xx into a temporary register

loads the register r with the value taken
from partition (80 xx). Increases it after
ww/50 seconds by ss. When it reaches
the final value eg it stops.

Caution: The interrupt routine uses 4
values, but the counter is only in-
creased by 3 after completion.
Therefore, you must follow it with the

XBIOS

160 The GFA BASIC Book

value ww (01..0D) to be able to get a
meaningful sound routine.

82 xxto FF xx: Waits xx/50 seconds. Terminates if xx
is equal to zero.

M XBIOS(33,m%) setprt

This routine allows you to configure the
printer just like you would with the

accessory.
Y R ? O=matrix, 1=Daisy Wheel
&X....2. 0=Color, 1=black and white
&x...2.. 0=1280, 1=960 dots per line
&Tone 245 Japs0=Dradft, 1=NEO
&X.?2...., O=parallel,1=serial
- B R O=continuous, 1=single page

&x000110 Normal configuration for
Epson compatible printers.
(VOID XBIOS(33,6)).

Negative values return the old configuration.

B XBIOS(34) kbdvbas

This routine returns the address to a table that con-
tains the pointer of the interrupt vectors for com-
munication with the keyboard processor (and midi).

The possible vectors:
midivec ;MIDI input (d0)

vkbderr ;Keyboard error
vmiderr ;MIDI error
statvec ;Keyboard status-packet

mousevec ;Mouse-packet (-->GEM)
clockvec ;Clock-_packet

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 161

joyvec ;Joystick-packet

The A0 register of the processor points to the input
data. The joyvec vector may be of great interest to
BASIC programmers.

The following program uses this vector to get the joystick
values. The string mc$ contains the interrupt routine which
is only used once and stores the address of the joystick
from the register A0 to the variable a% (The program is:
move.l a0, ¥*a% rts). This address is later used to PEEK the
joystick values.

First, the address of the interrupt vector table is lo-
cated by using XBIOS(34). Then the old vector is
routed to your own routine. The OUT 4,&16 allows
you to get the keyboard processor to read and send
the values for both joysticks. As soon as the data is
present (when a% does not equal null anymore), the
old routine is restored. a% now points to the data
that contains the joystick number (254 for joystick 1
and 255 for joystick 2). The bytes following these
are the data. The addresses are stored in the vari-
ables joy0% and joyl%. The OUT 4,&14 puts the
keyboard processor into the joystick mode. The
mouse cannot be read anymore, but the joysticks
will now automatically return values.

It is also possible to use the mouse by issuing an
OUT 4,&16 before every joystick request (Port
1=mouse,Port 2=joystick). This is strongly recom-
mended during the testing phase since an error
would otherwise require you to manually type an
OUT 4,8. The OUT 4,8 returns the keyboard pro-
cessor to mouse mode. The joystick values are in
bit format. You may look at the program to deter-
mine the bit pattern.

" joystick.bas
Mc$=Mki$(&H23C8+MKIS(*A%)+MkiS(&H4ET5)

XBIOS

162

The GFA BASIC Book

V%=Xbios(34)+24
0%=Lpeek(V%)
Lpoke V%, Varptr(Mc$)
A%=0
Out 4,&H16
Repeat I Wait for Interrupt
Until A%
Lpoke V%,0%
Joy_0%=A%+1
Joy_1%=A%+2
Out 4,&H14
Print At(1,20);"Press any key to quit";
Repeat
Print At(1,9);"Last: Joystick *;(Peek(A%) And 1)+1
@Output(Peek(Joy_0%))
@Output(Peek(Joy_1%))
Until Inkey$<>""
Out4,8
Procedure Output(X%)
If X% And 128
Print "Button *;
Endif
If X% And 1
Print"Up *;
Endif
If X% And 2
Print "Down *;
Endif
If X% And 4
Print "Left *;
Endif
If X% And 8
Print "Right *;
Endif
Print Chr$(27);"K"
Return

Chr$(27),"K" erases from the cursor to the end of
the line. There is a table at the end of the chapter

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 163

that explains the Escape sequences you may use for
screen display without a window (VT52).

B XBIOS(35,d%,r%) kbrate

This routine sets the repeat delay (d%) and the re-
peat rate (r%). It returns the old key repeat values
(d%*256+1r%). d%=0 turns the repeat rate off. As
usual a negative value does not change the parame-
ters.

B XBIOS(36,L:pointer) prtblk

This routine is a subprogram of the Hardcopy-rou-
tine and points to an address that contains all sorts

of parameters.

B XBIOS(37) vsyne
Corresponds to VSYNC

B XBIOS(38,L:vec%) superx

Executes a machine language routine at address
vec% in supervisory mode without using GEMDOS.

B XBIOS(39) pntaes

Turns off AES if it is not in ROM (reboots).

XBIOS

164 The GFA BASIC Book

<>
&<
4.4 ELISE
"ELISE
@Init
M§="" I'stores sound string
Oct%=4 I default
Dur%=10
L%=10
Do
Read A$ I'Read data
Exit If A$=""
While A$<>" I'executing more than one string
B$=Upper$(Leftd(A$)) I'by passing the string after use
While B$="" la$=MIDS$...

M$=M$+MkI$(&H100)+Chr(-1)+Chr(1)
A$=Mid$(A$,2)
B$=Upper$(Left5(A$))

Wend

A$=Mid$(A$,2)

On Instr("CDEFGABHPOXL+-WR",B$) Gosub

C,D,E,F,G,AB,B,P,0,X,L,PI,Mi,Wave,R

I This line was split because of lack of space

Wend
Loop
M$=Chr$(7)+Chr$(-2)+M$+Mki$(&HFF00) I Tone end
Void Fre(0)
Void Xbios(32,L:Varptr(M$)) I play tones

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 165

Print "Write file"

Fileselect "*.SND",".SND",A$

If Len(A$)
Bsave A$,Varptr(M$),Len(M$) I save

Endif

Data 05115

' DATA l16w+10. 1000

Data ed# ed#e-h+dc,-aaacea

Data hhheg#h,+cccp

Data ed#,ed#e-h+dc,-aaacea

Data hhhd+c-h,aaph

Data +cd,eee-g+fe,ddd-f+ed

Data ccc-e+dc,-hhpe+

Data ed#,ed#e-h+dc,-aaacea

Data hhhd+c-h,aaap

Data

Procedure C I for single notes the note number is
@Note(1) I passed to the procedure

Return

Procedure D
@Note(3)

Return

Procedure E
@Note(5)

Return

Procedure F
@Note(6)

Return

Procedure G
@Note(8)

Return

Procedure A
@Note(10)

Return

Procedure B IH=B
@Note(12)

Return

Procedure P | Pause
D%=Val(A$) I with parameter and without
If D%=0

ELISE

166 The GFA BASIC Book

D%=Dur%
Endif
MB=M$+Mki$(&H800)+Chr$(-1)+Chr$(D%)+Chr$(8)+Chr(L%)
A$=Mid$(A$,Val?(A$)+1)
Return
Procedure X I Pause without turning tone off
D%=Val(A$)
A$=Mid$(A$,Val?(A$)+1)
If D%
M$=M$+Chr$(-1)+Chr$(D%)
Else
M$=M$+Chr$(-1)+Chr$(Dur%)
Endif
Return
Procedure O I'change only the octave
Oct%=Val(A$)
A$=Mid$(A$,Val?(A$)+1)
Return
Procedure Pl lincrease the octave
Inc Oct%
Return
Procedure Mi I decrease the octave
Dec Oct%
Return
Procedure Note(N%) I'subroutine for note
If Left$(AS)="#" I# increases note
A$=Mid$(A$,2) lalso e#...
Inc N%
D%=Val(A$) I change note duration
Else
D%=Val(A$)
Endif
A$=Mid$(AS$,Val?(A$)+1)
If D%
Dur%=D%
Else
D%=Dur%
Endif
" frq%=125000/(2%0ct%*440* (2A(n%/12))/(24(10/12))/16)+0.5
M$=M$+MkI$(Fra%(Oct%,N%))+Chr$(-1)+Chr$(D%)

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

167

If Wav!
M$=M$+W$

Endif

Return

Procedure L I'volume
L%=Val(A$)
M$=M$+Chr$(8)+Chr$(L%)
A$=Mid$(AS,Val?(A$)+1)

Return
Procedure Wave I'envelope curve
Out 2,7
If Left$(A$)="+" I'turn wave on
Wav!=True
A$=Mid$(A$,2)
Endif
If Left$(AS)="-" I disable wave
Wav!=False
A$=Mid$(A$,2)
Endif
If Val?(A$) ' When parameter:
Huell%=Val(A$) I'set both

Per%=Val(Mid$(A$, Instr(A$,". ")+1))
W$=Chr$(13)+Chré(Huell%)+Chr§(11)+Chr$(Per%)+Chr$(12) +
Chr$(Per% Div 256)
M$=M$+W$
A$=Mid$(A$,Val?(A$)+1)
Endif
Return
Procedure R I'noise
If Left$(AS)="+" l'enable
M$=M$+Mki$(&H7F6)
A$=Mid$(A$,2)
Endif
If Left$(A$)="-" I disable
M$=M$+Mki$(&H7FE)
A$=Mid$(A$,2)
Endif
If Val(A$) I change period
M$=M$+Chr$(6)+Chr(Val(A$))
A$=Mid$(A$,Val?(A$)+1)

ELISE

168 The GFA BASIC Book

Endif

Return

Procedure Init I Taken from notes of
Dim Frq%(12,12) I'my Physics class

For N%=0 To 12
For 0%=0To 12
F%=125000/(2*0%"440"(2A(N%/12))/(27(10/12))/16)+0.5
Frq%(0%,N%)=(F% And 255)*65536+(F% Div 256)+&H100

Next O% l'a=440 hz
Next N% 112 notes per octave
Return I'1 octave=frequency doubler

Note ?? stands for value (0 15 1000 &38):

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

cdefgahbc=

w?2.1777 =

Notes
by adding a # (sharp)the note is
made higher. Optional tone length in
1/50 second is used by all following
notes

Chooses octave
Increases octave by one
Decreases octave by one

Selects volume (0..15, 16 means
with envelope curve).

Set Noise
On
Off

Selects noise frequency 0..31 also
r+7? and r-7?

Set the envelope. Before the "." sets
the form and after the "." selects the
period. After a w+ or a w+?2.777?
the envelope is reset after every note.
w- or w-?2.277? turns this mode off.

Pause. The tone generation stops but
unfortunately some noise continues
with Wave.

Pause without turning off noise gen-
erator.

Who could possibly think of more? Programs that use
the SOUND and WAVE commands or that use the
Dosound-routine (XBIOS(32)) are often disturbed by the
keyclick. With the following command it may be disabled:

SPOKE &H484,PEEK(&H484) AND NOT 1 ! Keyclick on

SPOKE &H484,PPEK(&H484) OR 1 I Keyclick off
SPOKE &H484,PEEK(&H484) AND NOT 4 | Control-G CHR$(7) Bell off
SPOKE &H484 PEEK(&H484) OR 4 I'Bell on

ELISE

170 The GFA BASIC Book

The key repeat may be disabled by AND NOT 2 and en-
abled by OR 2.

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Beok

171

%

4.5 VT 52-Emulator

The ST contains a VT-52-emulator, which was fashioned
after a popular terminal. It may be used for screens that do
not use windows.

All the sequences begin with the ESC code (CHR$(27)).

ESCA:
ESCB:
ESC C:
ESCD:
ESCE:
ESCH:
ESCI:
ESC1I:
ESCK:
ESCL:
ESC M:
ESCY s z:

ESCbn:

Cursor moves up one line. It stops at top of
sereen.

Cursor moves down one line. It stops at
bottom.

Cursor moves to the right. It stops at right
corner.

Cursor moves to the left. It stops at left cor-
ner.

CLS (Clear screen).

Cursor Home (PRINT AT(1,1)).

Cursor moves up one line., scrolls on top.
Erases from cursor to the end of page.
Erases from cursor to the end of the line.
Insert a line.

Erases a line,moves following lines up one
line.

Print AT(row,column); s=chr$(row+32) z=
chr$(column+32)

Selects the color for the text, n=chr$(color).
By high resolution only AND 1 is used, by

VT 52-Emulator

172

The GFA BASIC Book

ESCcn:

ESC d:
ESCe:
ESCf:
ESCj:
ESCk:
ESC:
ESC o:
ESC p:
ESCq:
ESC v:
ESC w:

medium AND 3 and by low resolution AND
5%

like b, except background color.

Erase from top of page to cursor.

Enable cursor.

Disable cursor.

Save cursor position.

Restores cursor that was saved with ESC j.
Erase line.

Erase line from beginning to cursor.

Select reverse video.

Turns reverse video off.

Wrap at end of line.

Truncate at end of line.

Chapter 4: GEMDOS, BIOS and XBIOS

CHAPTER 5

AES

173

174

The GFA BASIC Book

Not only are there many different routines in
GEMDOS, BIOS and XBIOS, but also in GEM itself.

Most VDI routines exist as GFA BASIC commands
(CIRCLE, BOX, BITBLT, etc.). Some important routines
that are not present in BASIC like load font, open work
are not easy to use on the ST. These routines were dis-
cussed in the chapter on Graphics and Fonts.

I have, for the most part, omitted the parameter value
returned since this value will usually be something other
then null unless an error was found DPEEK(GINTOUT). If
you want, you may add the @gemerr call to all routines
that have the ?E table below.

PROCEDURE gemerr
IF DPEEK(GINTOUT)=0
ERROR 77
ENDIF
RETURN

NOTICE: In case I decide to include some
of these AES-routines in GFA BASIC
Version 3.0, I will use error numbers be-
tween 70 and 79. Some routines like

wind_get return many different values. It is
faster to use DPEEK(GINTOUT+8) instead

Chapter 5: AES

The GFA BASIC Book

175

of returning the value through a pointer.
This is especially true for the compiler.

I mark all variables that are used as pointers by attach-
ing a ".%", local variables in the same procedure by at-
tachinga " %"ora" §"ora" /". Unfortunately you may
not use a pointer to a global variable in GFA BASIC if a
local variable with the same name exists. The reason for
this is simple: To be able to use the GOTO command to
exit into another procedure, the local variables must always
be found at the same location.

In the following example, Tree% indicates that the vari-
able is the address of an object tree. This is the structure
contained in RSC-files and is automatically created with the
MENU m$() command. Further explanation may be found
in the chapter on Resource.

Let us move on to the AES-calls. These routines are
represented in decimal number order, /x stands for

appl_xxx, 2x stands for evnt xxx, etc.

##H# Name GINTOUT
10 appl_init ap_id

11 appl_read E

12 appl_write 7E

13 appl_find ap_id/-1

14 appl_tplay 1

15 appl_trecord quantity

19 appl_exit 1E

20 evnt_keybd Key

21 evnt_button
22 evnt_mouse
23 evnt_message

clicks x y button shift
1 x y button shift

24 evnt_timer 1
25evnt multi ...
26 evnt_dclisk speed
30 menu_bar 7E

31 menu_icheck 7E

Chapter 5: AES

176 The GFA BASIC Book
32 menu_ienable 7E
33 menu_tnormal E
34 menu_text 7E
35 menu_register 0-5/-1
40 objc_add B
41 objc_delete 7E
42 objc_draw 7E
43 objc_find index/-1
44 objc_offset IExy
45 objc_order 7E
46 objc_edit ?E pos
47 objc_chnge B
50 form_do exit_obj
51 form_dial 7E
52 forn_alert exit_but
53 form_error 1
54 form_center .xywh
70 graf_ruberbox ZEwh
71 graf_dragbox ’Exy
72 graf_movebox 7E
73 graf_growbox E
74 graf_shrinkbox E
75 graf_watchbox 0/1
76 graf_slidebox 0-1000
77 graf_handle handle we hc wb hb
78 graf_mouse E
79 graf_mkstate . X y but shift
80 scrp_read E
81 scrp_write E
90 fsel_input 7E 0/1
100 wind_create handle/-x
101 wind_open 7E
102 wind_close 7E
103 wind_delete E
104 wind_get E
105 wind_set 7E
106 wind_find handle
107 wind_update 7E
108 wind_calc ’Exywh
110 rsrc_load 7E

Chapter 5: AES

The GFA BASIC Book 177

111 rsrc_free 7E

112 rsrc_gaddr 7E (addrout)
113 rsrc_saddr 7E

114 rsrc_obfix ?

120 shel_read 7E

121 shel_write 7E

122 shel_get 7E

123 shel_put 1E

124 shel_find ?

125 shel_envrn ?

? reserved/undefined
?E O=error, otherwise OK
...... many values

. meaning changes

Chapter 5: AES

178 The GFA BASIC Book

%

5.1 APPLication Library

The appl_xxx routines allow you to have more than one
program or application in memory at one time. They are
usually used by GEM for accessories, but would be even
more useful if a multi-tasking version of GEM ever ap-
pears.

PROCEDURE appl_init
GEMSYS 10
RETURN

PROCEDURE appl_read(id%,len%,buf%)
DPOKE GINTIN, id%
DPOKE GINTIN+2,len%
LPOKE ADDRIN,buf%
GEMSYS 11
RETURN
PROCEDURE appl_write(id%,len%,buf%)
DPOKE GINTIN,id%
DPOKE GINTIN+2,len%
LPOKE ADDRIN,buf%
GEMSYS 12
RETURN

These two routines allow you to pass messages between
several resident GEM-applications. The message starts at

Chapter 5: AES

The GFA BASIC Book

179

address buf% and is len% bytes long. The destination
(appl_write) or source (appl_read) is always the GEM-in-
ternal message buffer of the application id%.

PROCEDURE appl_find(name$)
nam$=nam$+CHR$(0)
LPOKE ADDRIN,VARPTR(nam$)
GEMSYS 13

RETURN

This routine finds the simultaneous running application
with the name of nam$ and then returns the corresponding
ap_id or -1 using GINTOUT.

PROCEDURE appl_tplay(adr%,num%,scale%)
LPOKE ADDRIN,adr%
DPOKE GINTIN,num%
DPOKE GINTIN,scale%
GEMSYS 14
RETURN
PROCEDURE appl_trecord(adr%,num%)
DPOKE GINTIN,num%
LPOKE ADDRIN,adr%
GEMSYS 15
RETURN

These two routines act like a software recorder. A num-
ber (num%) of events (mouse, timer, keyboard and button)
are written to a buffer (at adr%) with TRECORD which
may then be replayed with the TPLAY. When replaying
you may also apply a sliding scale between 1-1000 that
determines the speed at which the user actions are played
back. Unfortunately, this routine does not work as de-
scribed in the GEM documentation and, in any case, I can-
not determine any practical use of this routine.

PROCEDURE appl_exit
GEMSYS 19
RETURN

APPLication Library

180 The GFA BASIC Book

This routine must always be called before exiting a GEM
program. GFA BASIC automatically calls this routine be-
fore exiting.

Chapter 5: AES

The GFA BASIC Book

181

&%

5.2 EVENT Library

The event xxx routines cause the program to wait for an
external event (like the user pressing a key). They also
supply the limited multi-tasking capabilities of GEM.
Unfortunately, routines like evnt _fileopen or evnt _diskwrite
are missing (the corresponding BIOS call would even be
better). Even so, these routines make it possible for other
programs (accessories) to run in the background without
greatly affecting the performance of the main program.

PROCEDURE evnt_keybd
GEMSYS 20
RETURN

This is a simple keyboard input routine that still allows
the use of accessories. Use PEEK(GINTOUT+1) to deter-
mine the ASCII value of the pressed key and
PEEK(GINTOUT) to determine the scan code (similar to
bconin, etc. in BIOS). DPEEK(GINTOUT) will return the
combination of those two values.

PROCEDURE evnt_button(clicks%,mask%,state%)
DPOKE GINTIN,clicks%
DPOKE GINTIN+2,mask%
DPOKE GINTIN+4,state%
GEMSYS 21
RETURN

EVENT Library

182

The GFA BASIC Book

If you would like to wait until the user presses a certain
mouse button (like double clicking on the right mouse but-
ton), you can use the above routine. Click% is the maxi-
mum number of mouse clicks to wait (usually 2). With
mask% you can select if the left (1), the right (2) or both (3)
mouse buttons are used. State% determines the button state
for which the application 1is waiting (usually
state%o=mask%).

PROCEDURE evit_mouse({%,x%.y%,w%,h%)
DPOKE GINTIN,{%
DPOKE GINTIN+2,x%
DPOKE GINTIN44,y%
DPOKE GINTIN+6w%
DPOKE GINTIN48,h%
GEMSYS 22
RETURN

This routine allows you to wait until your mouse pointer
is within (f%=0) or outside (f%=1) the given rectangle.

Important: Here and with all other AES
routines the coordinates of the rectangle
point to the top left corner, the width and
the height. Instead VDI, gives these coor-
dinates as two opposite corners of the rect-
angle.

PROCEDURE evnt_mesag(adr%)
LPOKE ADDRIN,adr%
GEMSYS 23

RETURN

A message in GEM is an event (like the closing of a
window). This message is stored in a buffer (starting at
adr%) containing 16 bytes. The worst message is the
Redraw message since it requires a lot of work for a pro-
grammer because GEM does not use its own buffers for
graphics.

Chapter 5: AES

The GFA BASIC Book

183

PROCEDURE evnt_timer(1%)
LPOKE GINTIN+2,t%
DPOKE GINTIN,t%
GEMSYS 24

RETURN

This routine is a very unproductive wait loop. The pa-
rameter t% contains the time in milliseconds that the pro-
gram must wait. This long word (a day has only 86400
seconds) must be represented using the /ntel format. The
switching to 68000 format is performed by the two POKE
command; this 18 only possible because
DPEEK(GINTIN+4) is not used.

PROCEDURE evnt_multi Imore than one
DPOKE GINTIN,ev_mflags% Iflags
DPOKE GINTIN+2,ev_mbcclicks levnt_button

DPOKE GINTIN+4,ev_mbmask%

DPOKE GINTIN+6,ev_mbstate%

DPOKE GINTIN+8,ev_mm1flag% levent mouse 1
DPOKE GINTIN+10,ev_mm1x%

DPOKE GINTIN+12,ev_mm1y%

DPOKE GINTIN+14,ev_mmiw%

DPOKE GINTIN+16,ev_mm1h%

DPOKE GINTIN+18,ev_mm2flg% levent mouse 2
DPOKE GINTIN+20,ev_mm2x%

DPOKE GINTIN+22,ev_mm2y%

DPOKE GINTIN+24,ev_mm2w%

DPOKE GINTIN+26,ev_mm2h%

DPOKE GINTIN+28,ev_mtlocount% levent_timer
DPOKE GINTIN+30,ev_mthicount%
LPOKE ADDRIN,ev_mmgpbuff% Ifor message
GEMSYS 25

RETURN

Do you think ON MENU is simpler? ON MENU uses
the exact routine to sample all possible events. The param-
eters for the timer (ev_mixxcount%) are set to null so that
this routine always returns.

EVENT Library

184 The GFA BASIC Book

Evnt_multi is a combination of the preceding routines.
The first parameter selects the type of events the program is
waiting for. Ev_mflags% is a six digit binary number.

2 S 1 =keybd
&X....1l. =button
&Xwil oo < r=mouse:l
EXaB Answd =moeuser?
&2 M e = message
5, G E R = timer

&X110001 =timer,message.keybd
The parameters are similar to the single events. Results
are returned with DPEEK(GINTOUT) to
DPEEK(GINTOUT+2%*6).
With ON MENU the parameters are returned with ON

MENU (xxx) GOSUB (KEY, BUTTON, OBOX, IBOX,
MESSAGE). Results are found in MENU(0) to MENU(15).

MENU(0) returns the number of the pulled down menu.
Menu(1)=10 would key on the 10th element in the
array.

MENU(1) To MENU(8) contains the message buffer.

MENU() and DPEEK(GINTOUT) contains a flag that
contains which event last occurred.

MENU(10) X-position of the mouse.
MENU(11) Y-position of the mouse.
MENU(12) Mouse buttons.
MENU(13) SHIFT-Status

Chapter 5: AES

The GFA BASIC Book 185

MENU(14) returns key pressed (high value byte=ASCII,
low value byte=SCANCODE).

MENU(15) Number of mouse clicks.

MENU(©9) TO MENU(15) correspond to
DPEEK(GINTOUT) to DPEEK(GINTOUT+12).

These values are only valid whenever the corresponding
Bit is set in Menu(9).

The following messages are possible (the identification
number may always be found in menu(1)):

10 mn_selected: A drop-down menu was selected.
(0) Calculated array index.
(4) Object-index of the menu title
(5) Object-index of the menu input

20 wm_redraw: Part of the screen must be redrawn.
(4) Window handle
(5-8) XYWH, coordinates, width and height of
the area that must be redrawn.

21 wm_topped: A window was selected.
(4) Window handle

22 wm_closed: The close box was clicked.
(4) Window handle

23 wm_fulled: The full window box was clicked.
(4) Window handle

24 wm_arrowed: One of the arrows was clicked.
(4) Window handle
(5) Number of the arrow that was clicked
0=Page up, 1=Page down
2=Line up, 3=Line down
4=Page left, 5=Page right

EVENT Library

186 The GFA BASIC Book

6=Column left, 7=Column right

25 wm_hslid: Horizontal slider was moved.
(4) Window handle
(5) Relative position of the slider 0..1000

26 wm_vslid: Vertical slider was moved.
(4) Window handle
(5) Relative position of the slider 0..1000

27 wm_sized: The size of the window was changed.
(4) Window handle
(5-8) XYWH, position and (new) size of the
window

28 wm_moved: The position of the window was changed.
(4) Window handle
(5-8) XYWH, (new) position and size of the
window

29 wm_newtop: A new window was activated.
(4) Window handle (Accessory)

40 ac_open: An accessory was selected.
(4) Menuld. (Accessory)
Should be in four according to GEM documentation
but instead is found in Menu(5).

41 ac_close: The accessory was closed.

(4) Menuld. (Accessory)

PROCEDURE evnt_dclick)speed%,%)
DPOKE GINTOUT,speed% I 0= slow..4=fast
DPOKE GINTIN+2,{% I 1=set, O=read
GEMSYS 26 I Double click-Speed

RETURN

The routine evnt_dclick allows you to change the speed
at which the double clicks are processed. The first param-

Chapter 5: AES

The GFA BASIC Book 187

eter must be a number between 0 and 4 (just like in the
Control panel). The second parameter must be 1 to set the
speed or a 0 to read the current speed setting.

EVENT Library

188 The GFA BASIC Book

%

5.3 MENU library (Menu usage)

PROCEDURE menu_bar(tree%,flg%)
LPOKE ADDRIN,tree% 'menu m$()
DPOKE GINTIN, flg%

GEMSYS 30

RETURN

Menu_bar allows you to activate (flg%=1) or deactivate
(flg%=0) a menu object tree at address tree%.
GFA BASIC first creates a corresponding tree with MENU
m$() that is then activated with an internal menu_bar call.
MENU KILL deactivates the menu (flg%=0).

PROCEDURE menu_icheck(tree%,item%,flg%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,item%
DPOKE GINTIN+2,flg%
GEMSYS 31
RETURN

Menu_icheck allows you to insert (fIg%=1) or to erase
(flg%=0) a check mark to the left of the menu bar. This
corresponds to the MENU n,l or Menu n,0. MENU n re-
quires the index to the array while menu_icheck requires
the number of the menu object tree.

PROCEDURE menu_ienable(tree%,item%,flg%)

Chapter 5: AES

The GFA BASIC Book 189

LPOKE ADDRIN,tree%
DPOKE GINTIN,item%
DPOKE GINTIN+2,flg%
GEMSYS 32

RETURN

Menu_ienable allows you to activate (fIg%=1) or deac-
tivate (f/g%=0) a menu entry. GFA BASIC uses MENU
n,3 or MENU n,2.

PROCEDURE menu_tnormal(tree%,item%,flg%)
LPOKE ADDRIN,tree%
DPOKE GINTIN, item%
DPOKE GINTIN+2,fig%
GEMSYS 33
RETURN

Menu-tnormal allows you to display an individual menu
entry in inverse (flg%=0) or normal (fIg%=1). The corre-
sponding Basic command is MENU OFF, but this com-
mand automatically returns all menu entries to normal.

PROCEDURE menu_text(tree%,item%, xt$)
xt$=txt$+chr$(0)
LPOKE ADDRIN,tree%
DPOKE GINTIN,item%
LPOKE ADDRIN+4,VARPTR(xt$)
GEMSYS 34

RETURN

Menu_text allows you to change the text of a menu en-
try. It is important that the new text is not any longer than
the old text. The number of the object tree must be given
as well as the address of a string that is terminated with a
null (+CHR$(0)). This command is not used in
GFA BASIC, instead you must use the MENU m$()
command to activate a new menu tree.

PROCEDURE menu_register(ap. id%,nam$)
nam$=nam$+

MENU Library

190

The GFA BASIC Book

CHR$(0)
BMOVE VARPTR(nam$),BASEPAGE+192,LEN(nam$) DPOKE
GINTINal.id%
LPOKE ADDRIN,BASEPAGE+192
GEMSYS 35
RETURN

The last routine is probably the most interesting since it
allows you to activate an accessory by name.
Unfortunately, this routine may not be used in
GFA BASIC (or even the compiler) since the string must
remain at a fixed address. You could of course place this
string into the Basepage or into an integer array.

The GFA BASIC Book 191

%

5.4 OBJect library (Object manipulation)

The Object-Library allows you to manipulate objects.
Objects are the cornerstone of object trees.

An object in GEM 1is always at least 24 bytes long.
Some objects may reach the maximum of 64 Kbytes, but
most of the time objects are between 24 to 1000 bytes.

The tree structure and the creation of objects are dis-
cussed in more detail in the chapter on resources.

PROCEDURE obj_add(tree%,parent%,child%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,parent%
DPOKE GINTIN+2,child%
GEMSYS 40
RETURN

Objc_add establishes a logical link between the object
(child%) and its parent object. It is important that the par-
ent object was already correctly defined (ob_head and
ob_tail are usually -1). The object specifications are never
moved in memory; only the pointers are changed.

PROCEDURE obj_delete(tree%,0bj%)

LPOKE ADDRIN,tree%
DPOKE GINTIN,0bj%

Object Library

192 The GFA BASIC Book

GEMSYS 41
RETURN

This routine removes an object from the tree. Just as
with objc_add only the pointer is changed.

PROCEDURE objc_draw(tree%,start%,depth%,x%,y%,w%,h%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,start%
DPOKE GINTIN+2,depth%
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,y%
DPOKE GINTIN+8,w%
DPOKE GINTIN+10,h%
GEMSYS 42
RETURN

Objc_draw draws an object on the screen. Besides the
address of the object tree, the index of the starting tree is
given (start%). Then the number of levels of subordinate
objects that are supposed to be drawn (depth%, O=only ob-
ject, 1=object and children, 2=object, children and grand-
children,etc.) is given. Next, the position and the size
(XYWH) of the clipping rectangle are given.

PROCEDURE objc_find(tree%,start%,depth%,x%,y%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,start% D
POKE GINTIN+2,depth%
DPOKE GINTIN+4 X%
DPOKE GINTIN+6,y%
GEMSYS 43
RETURN

There are times when you need to know that an object
on the screen was selected and then pass along that object’s
number. With objc_draw you can determine which object
from the object tree at a certain screen address was selected
(x%ly%, MOUSEX/MOUSEY). Like objc_draw the object
index start% and levels (depth%) are passed along.

Chapter 5: AES

The GFA BASIC Book 193

PROCEDURE objc_offset(tree%,0bj%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,0bj%
GEMSYS 44

RETURN

Objc_offset computes the coordinates of the screen ob-
ject. DPEEK(GINTOUT) contains the X-position and
DPEEK(GINTOUT+2) contains the Y-position.

PROCEDURE objc_order(tree%,0bj%,new%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,obj%
DPOKE GINTIN+2,chr%
GEMSYS 45
RETURN

Here the object is logically moved, that means the
pointer of the obj% is changed to new% just like in
objc_add and objc_delete no data is ever moved.

PROCEDURE objc_edit(tree%,0bj%,chr%,pos%,kind%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,0bj%
DPOKE GINTIN+2,chr%
DPOKE GINTIN+4,p0s%
DPOKE GINTIN+6,kind%
GEMSYS 46
RETURN

This is a subroutine of form_do. It lets the user edit the
text in an object tree. The character chr% is placed at po-
sition pos%. The following editor functions may be per-
formed: Initialize (kind %=1), edit character (kind %=2)
and done (kind%=3). An error is returned in
DPEEK(GINTOUT) and the new character position is
placed in DPEEK(GINTOUT+2).

Object Library

194 The GFA BASIC Book

PROCEDURE objc_change(tree%,0bj%,x%,y%,w%,h%,new%,flg%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,0bj%
DPOKE GINTIN+2,0 Ireserved
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,y%
DPOKE GINTIN+8,w%
DPOKE GINTIN+10,h%
DPOKE GINTIN+12,new%
DPOKE GINTIN+14,flg%
GEMSYS 47

RETURN

Objc_change allows you to change the object status and
if flg% =1 the object will be redrawn. You could also re-
ceive the same results with DPOKE
tree%o+24*obj%+10,new% or even with objc_draw.

Chapter 5: AES

The GFA BASIC Book 195

%

5.5 FORM library (Form handling)

PROCEDURE form_do(tree%,start%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,start%
GEMSYS 50

RETURN

Just like objc_draw, this routine is used for handling
forms that were previously drawn with the objc draw
command. Parameter start% passes the index of the object
on which the text cursor (vertical line) is to be positioned.
The index of the object that caused the end of the input
(EXIT) is returned with DPEEK(GINTOUT).

Caution: A missing EXIT-object will cause
the computer to lock up.

PROCEDURE form_dial(1%,x%,y%W%,1%,yb% wb%,hb%)

DPOKE GINTIN,{%

DPOKE GINTIN+2,x%

DPOKE GINTIN+4.y%

DPOKE GINTIN+6,w%

DPOKE GINTIN+8,h%

DPOKE GINTIN+10,xb%

DPOKE GINTIN+12,yb%

DPOKE GINTIN+14,wb%

FORM Library

196 The GFA BASIC Book

DPOKE GINTIN+16,hb%
GEMSYS 51
RETURN

form_dial contains four routines that perform the fol-
lowing functions depending on flg%.

0= Reserve a screen memory area. Unfortunately,
GEM does not contain its own buffers for the
screens so that form_dial(0..) only sets aside the
memory for later restoration with the Redraw com-
mand. All of the programs that use forms contain
message #20 (wm_redraw) and the screens must be

reconstructed.

1= Draws an expanding box that starts at
x%ly%/w%lh% and grows until it reaches
xb%1yb%Iwb%!hb%.

Same as 1 except for shrinking box.
Frees the screen space reserved (Causes Redraw
messages to be sent).

W N

1 and 2 are used for the appearance of a program, 0 and
3 could have been replaced with (S)GET and (S)PUT. This
has the advantage of much greater speed.

PROCEDURE form_alert(def%,xi$) txt$=txi$+CHR$(0)
DPOKE GINTIN,def%
LPOKE ADDRIN,VARPTR(1x($)
GEMSYS 52

RETURN

This is the routine which is similar to the ALERT com-
mand.

@form_alert(1,[2][This is a test][Ok]")
corresponds to:

ALERT 2,"This is a test",1,"Ok",dummy%

Chapter 5: AES

The GFA BASIC Book

197

The number of the button is returned with
DPEEK(GINTOUT).

PROCEDURE form_error(num%)
DPOKE GINTIN,num%
GEMSYS 53

RETURN

This routine displays a warning message. The routine is
not very useful since it displays the MS-DOS errors found
in IBM compatible computer (-33=data not found) rather
than the TOS errors.

PROCEDURE form_center(tree_% X.%,y.%W.%,h.%)
LPOKE ADDRIN,ree%
GEMSYS 54
*X.%=DPEEK(GINTOUT+2)
*y.%=DPEEK(GINTOUT+4)
*w.%=DPEEK(GINTOUT+6)
*h.%=DPEEK(GINTOUT+8)

RETURN

A dialog box is positioned at 0/0 after being loaded to
the screen with the rsrc_load command. This routine may
be used to center the box. Only the coordinates of the root
object are changed (Compare RSC).

This routine was written using the long form which re-
turns the full set of parameters. I usually prefer the shorter
form that passes the parameters with
DPEEK(GINTOUT+...) instead of the pointers. This has
the advantage of speed since the returned values are seldom
used anyway.

You could also use LPOKE X.%,DPEEK(GINTOUT+2)
instead of *x.%=DPEEK(GINTOUT+2). This would exe-
cute faster, but you would then have to make sure that no
false address is ever passed to the routine.

FORM Library

198 The GFA BASIC Book

%

5.6 GRAF library (Graphic and mouse routines)

PROCEDURE GRAF_RUBBERBOX(X_%,y_%W_%_%w.%h.%)
DPOKE GINTIN,X_%
DPOKE GINTIN:+2,y_%
DPOKE GINTIN+4,w_%
DPOKE GINTIN+6,1_%
GEMSYS 70
“W.%=DPEEK(GINTIN)
*h.%=DPEEK(GINTIN+2)
RETURN

This routine draws the famous rubberbox. This routine
should only be called whenever the mouse button is
pressed; the routine terminates as soon as the button is re-
leased. Only the left mouse button performs any useful
function in GEM. The right button may be used in your
programs. The parameters consist of the position (usually
the mouse position) and the size of the box. The new size
of the box is returned after the mouse button is released.

PROCEDURE
graf_dragbox(w_%,h_%,x_%,y_%,bx_%,by_%,bw_%,bh_%,x.%,y.%)
DPOKE GINTIN,w%
DPOKE GINTIN+2,y_%
DPOKE GINTIN+4,x_%

Chapter 5: AES

The GFA BASIC Book

199

DPOKE GINTIN+6,y_%
DPOKE GINTIN+8,0x_%
DPOKE GINTIN+10,by_%
DPOKE GINTIN+12,0w_%
DPOKE GINTIN+14,bh_%
GEMSYS 71
*x %=DPEEK(GINTIN)

*y %=DPEEK(GINTIN+2)

RETURN

This routine allows the user to move a predefined box
within a boundary rectangle. The mouse button works the
same way as it did for graf rubbox. The strange way of
passing parameters (size,position,position,size) is important
since this is the usual method that GEM uses. The new po-
sition of the box is returned when the mouse button is re-

leased.

PROCEDURE graf_movebox(w%,h%,x%,y%.dx%,dy%)
DPOKE GINTIN,w%
DPOKE GINTIN+2,h%
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,y%
DPOKE GINTIN+8,dx%
DPOKE GINTIN+10,dy%
GEMSYS 72
RETURN

PROCEDURE graf_growbox(x%,y%,w%;h%,dx%,dy%.,dw%,dh%)

DPOKE GINTIN x%
DPOKE GINTIN+2,y%
DPOKE GINTIN+4,w%
DPOKE GINTIN+6,h%
DPOKE GINTIN+8,dx%
DPOKE GINTIN+10,dy%
DPOKE GINTIN+12,0w%
DPOKE GINTIN+14,dh%
GEMSYS 73

RETURN

GRAF Library

200 The GFA BASIC Book

PROCEDURE graf_shrinkbox(x%,y%,w%,h%,dx%,dy%,dw%,dh%)
DPOKE GINTIN x%
DPOKE GINTIN+2,y%
DPOKE GINTIN+4,w%
DPOKE GINTIN+6,h%
DPOKE GINTIN+8,dx%
DPOKE GINTIN+10,dy%
DPOKE GINTIN+12,dw%
DPOKE GINTIN+14,dh%
GEMSYS 74

RETURN

These three routines are for the moving of dialog boxes.
Graf movebox allows you to move a box from one position
to another without changing its size. With graf growbox
the box is enlarged and with graf shrinkbox the box be-
comes smaller.

PROCEDURE graf_watchbox(tree%,0bj%,instate%outstate%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,0
DPOKE GINTIN+2,0bj%
DPOKE GINTIN+4,instate%
DPOKE GINTIN+6,0utstate%
GEMSYS 75
RETURN

This routine should really belong to the obj xxx rou-
tines. Here the object 0bj% of a tree is monitored. This
routine is called whenever the mouse button is pressed.
The status of the selected object, whenever the mouse
pointer is inside the box, is put in instate% otherwise the
status is put in outstate%. A one is returned in GINTOUT
if the mouse button was released while inside the box, oth-
erwise a null is returned.

Chapter 5: AES

The GFA BASIC Book 201

PROCEDURE graf_slidebox(tree%,parent%,0bj%,flg%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,parent%%
DPOKE GINTIN+2,0bj%
DPOKE GINTIN+4,flg%
GEMSYS 76
RETURN

This routine should also belong to the obj xxx routines
and it is also activated whenever the mouse button is
pressed. Within the parent object parent% (always a box),
the object 0bj% may be moved. FIg% selects whether the
object is moved horizontal (flag%=0) or vertical
(flag%=1). This routine returns a 0 whenever the object is
in the far left (top for vertical) or a 1000 whenever the ob-
ject is to the far right (bottom for vertical). The object
contained in the resource tree is not updated and it is up to
the program to match the coordinates of the object tree and
to issue a redraw (obj draw).

PROCEDURE graf_handle
DPOKE GINTIN,num%
LPOKE ADDRIN,adr%
GEMSYS 78

RETURN

Graf handle selects the VDI-handle that AES uses for
sharing the graphics commands with VDI. The width and
height of the characters that are used by AES along with the
width and height of the character cell are also determined.

This is the routine used by DEFMOUSE.

graf_mouse(n,xxxxx) = = Defmouse n(n=0..7)
graf_mouse(255,adr) = = Defmouse A$(adr=Varptr(a$)

GRAF Library

202 The GFA BASIC Book

Num %=256 turns the mouse pointer off and num%
=257 turns the mouse pointer on again.

PROCEDURE graf_mkstate(x.%,y.%,but.%,shft.%)
GEMSYS 79
*X.%=DPEEK(GINTOUT+2)
*y.%=DPEEK(GINTOUT+4)
*but.%=DPEEK(GINTOUT+6)
*shft.%=DPEEK(GINTOUT+8)

RETURN

This is the AES mouse input routine. Just like the other
mouse routines, this routine determines the position and
status of the mouse buttons and the status of the keyboard
(bios(11)). Since this routine runs under AES it is impossi-
ble to query the menu line.

Chapter 5: AES

The GFA BASIC Book 203

A

5.7 SCRaP Library (Clipboard)

PROCEDURE scrp_read(adr%)
LPOKE ADDRIN,adr%
GEMSYS 80

RETURN
PROCEDURE scrp_write(adrd%)
LPOKE ADDRIN,adr%
GEMSYS 81

RETURN

These routines manage the data communication between
GEM programs. Scrp_write copies a string (terminated
with a null) into an internal GEM buffer that can then be
retrieved with the scrp _read routine. The GEM documen-
tation does not mention a limit but using more than 100
characters may cause some sensitive memory to be over-
written.

This routine can also be used to communicate between
different programs like the ones called with the CHAIN
command. It could also be used to pass a filename. The
following routine simplifies the procedure of passing string
while using GFA BASIC.

PROCEDURE scrp_read(str.%)

SCRaP Library

204 The GFA BASIC Book

LOCAL tmp_$
tmp_$=STRING(200,0)
LPOKE ADDRIN,VARPTR(tmp_$)
GEMSYS 80
*str.%=LEFT$(tmp_$,INSTR(tmp_$,CHR$(0))-1)
RETURN
PROCEDURE scrp_write(x$)
x$=x$+CHR$(0)
LPOKE ADDRIN,VARPTR(x$)
GEMSYS 81
RETURN

Chapter 5: AES

The GFA BASIC Book 205

%

5.8 FileSELector library

This library only contains a single routine, the well
known Fileselect routine.

PROCEDURE fsel_input(padr_%,fadr%)
LPOKE ADDRIN,padr_%
LPOKE ADDRIN+4,fadr_%
GEMSYS 90

RETURN

The parameters contain the address of two strings which
contain the pathname and the filename. Both strings are
filled with null bytes so that they can contain the longest
possible path or filename. After selection the path name
and the filename are changed within those strings. The
usual error message is returned in DPEEK(GINTOUT).
DPEEK(GINTOUT+2) contains a 1 if the Ok box was
pressed and a 0 if the Cancel box was pressed. The result-
ing filename is created by combining the path and file-
name. The pathname is separated from the filename by a
"\,

FileSELector Library

206

The GFA BASIC Book

%

5.9 WINDow library

PROCEDURE wind_create(attr_%,Xx_%,y_%,w_%,h_%,h.%)

DPOKE GINTIN,attr_%
DPOKE GINTIN+2,x_%
DPOKE GINTIN+4,y_%
DPOKE GINTIN+6,W_%
DPOKE GINTIN+8,h_%
GEMSYS 100
*h.%=DPEEK(GINTOUT)

RETURN

PROCEDURE wind_open(h%,x%,w%,h%)
DPOKE GINTIN,h%
DPOKE GINTIN+2,x%
DPOKE GINTIN+4,y%
DPOKE GINTIN+6,w%
DPOKE GINTIN+8,h%
GEMSYS 101

RETURN

PROCEDURE wind_close(h%)
DPOKE GINTIN,h%
GEMSYS 102

RETURN

PROCEDURE wind_delete(h%)
DPOKE GINTIN,h%
GEMSYS 103

RETURN

Chapter 5: AES

The GFA BASIC Book

207

The wind_create creates a GEM window along with its
elements (attributes) and the maximum size of the window.
This routine returns the handle, a number by which the
window will be identified in other routines. Wind-open
displays a window with its initial size. Wind_close closes
the window, it disappears from the screen. Wind_delete
erases the handle of that GEM window.

In GFABASIC I used an expanded form of the
OPENW command because the GEM routine is very sensi-
tive to erroneous handles. The GFA BASIC CLOSEW
command is much more robust.

PROCEDURE openw(nr¥%,attr%,x%,y%,w%,n%)
LOCAL adr%
adr¥%=windtab+12"nr%-12
DPOKE adr%+2,attr%
DPOKE adr%+4,x%
DPOKE adr%+6,y%
DPOKE adr%+8,w%
DPOKE adr%+10,h%
OPENW nr%
RETURN

This routine allows you to use the normal CLOSEW
command to close the window. All of the attributes may be
used and the window may be positioned anywhere you like.

attr% is represented with bits:

binary hex Name The window...
&x000000000001 &h001 name hasa title line
&x000000000010 &h002 close hasa close box
&x000000000100 &h004 full has a full box
&x000000001000 &h008 move hasa move box
&x000000010000 &h010 info has an information line

WINDow Library

The GFA BASIC Book

&x000000100000
&x000001000000
&x000010000000
&x000100000000
&x001000000000
&x010000000000
&x100000000000

&x000000100011

&h020
&h040
&h080
&h100
&h200
&h400
&h800

&h023

size
uparrow
dnarrow
vslid
Ifarrow
rtarrow
hslid

may be enlarged
has an up-arrow
has a down-arrow
has a vertical slider
has a left arrow
has a right arrow
has a horizontal slider

has a title, close box,

and may be enlarged

When using Name and Info you must be careful to issue
the corresponding TITLEW- and INFOW- command before
you call the OPENW routine, otherwise the corresponding
bit will automatically be reset during the OPENW com-
mand. This turns out to be pretty good since GEM always
uses constant strings for the name and infoline. This is
automatically performed with the TITLEW/INFOW com-

mand.

PROCEDURE wind_get%(h%.,{%)

DPOKE GINTIN,h%
DPOKE GINTIN+2,{%
GEMSYS 104

RETURN
PROCEDURE wind_set(h%,{%,a1%,a2%,a3%,a4%)

DPOKE GINTIN,h%
DPOKE GINTIN+2,{%
DPOKE GINTIN+4,21%
DPOKE GINTIN+6,a2%
DPOKE GINTIN+8,a3%
DPOKE GINTIN+10,a4%
GEMSYS 105

RETURN

Chapter 5: AES

The GFA BASIC Book 209

These routines allow the user to retrieve or change in-
formation about a window.

h% is The handle of the window, or null for the desktop
background. f% selects what kind of information is to be
examined or changed. Values for al% to a4% depend on
f%. Returned values can be found starting in GINTOUT+2.

wind get Name Returns
h%,4 workxywh xywh
the coordinates of the work window,
h%=0: window size without menu bar.
h%,5 cyrrxywh xywh

the coordinates of the entire window,
h%=0: window size with menu bar.

h%,6 prexywh xywh

the coordinates of the previous window.
h%,7 fullxywh xywh

the maximum size of the window.
h%,8 hslide 0-1000

position of the horizontal sliders
O=far left to 1000=far right

h%,9 vslide 0-1000
position of the vertical slider
0=top to 1000=bottom

h%,10 top handle
handle of the top window (active)
h%,11 firstxywh xywh

the coordinates of the first
window in the windows rectangle list.

h%,12 nextxywh xywh
the coordinates of the next
rectangle in the rectangle list.

h%,15 hslsize 0-1000

WINDow Library

210

The GFA BASIC Book

h%,16 visize

relative size of the horizontal slider in
171000, -1 = minimum size (a square)

0-1000
relative size of the vertical sliders

Wind_set also contains numerous possibilities.

wind_set Name

h%,1,attr kind Changes attributes

h%,2,L:adr name <=> Titlew

h%,3,L:adr info <=> Infow

h%,5,xywh currxywh Changes window size and/or position

h%,8,hslid hslide Changes position of the horizontal

slider
(0-1000)

h%,9,vslid vslide Changes position of the vertical slider
(0-1000)

h%,10 top Makes window the top (active) window
like the openw command on
an open window

h%,14,... newdesk

h%,15,x hslsize Changes the relative size of the
horizontal slider

h%,16,x vslsize Changes the relative size of the vertical

slider

PROCEDURE newdesk(tree%,index%)

LPOKE GINTIN, 14
LPOKE GINTIN+4,tree%

DPOKE GINTIN+6,index%
GEMSYS 105

RETURN

Chapter 5: AES

The GFA BASIC Book 211

This routine allows the user to create a new desktop back-
ground in the form of an object tree or with (0,0) the de-
fault background is drawn.

PROCEDURE wind_find(x_%,y_%,1.%)
DPOKE GINTIN,x_%
DPOKE GINTIN+2,y_%
GEMSYS 106
*h.%=DPEEK(GINTOUT)

RETURN

This routine returns the handle of a window that is posi-
tioned at a certain screen position (usually the mouse posi-
tion).

PROCEDURE wind_update(flg%)
DPOKE GINTIN, flg%
GEMSYS 107

RETURN

This routine freezes the rectangle lists of all the win-
dows on the screen. @window update(1) begins update
mode and other programs including accessories may no
longer modify the screen. @window update(0) ends the
update. @wind_update(3) allows application to take over
full control of the mouse, in other words the GEM func-
tions for menu bars and window attributes are no longer
active. @wind_update(2) returns mouse to GEM. In spite
of @windupdate(3) , the MENU KEY, the ON MENU
BUTTON and the ON MENU IBOX/OBOX are still active.
This allows the user to use the following procedure for
drawing programs:

WINDow Library

212 The GFA BASIC Book

@wind_update(1) freeze rectangle list
@wind_get(handle%,11) irst rectangle
@wind_get(handle%,12) I'next rectangle
IF LPEEK(GINTOUT+6)=0 l'only one rectangle?

@wind_update(3)

............ I'many commands without being
............ linterrupted by menus or
............ I accessories for as long as
............ I'no cancel request is issued like

............ I Obox (window).
............ I Then capture input and enable
@wind_update I messages/mouse.

ENDIF

@wind_update(0) I and release the rectangle list

It is also possible to execute a drawing program that
uses the full screen; this will naturally contain null for the
window handle and the redrawing is left to GEM. A new
desktop is created with the wind newdesk routine that
contains a filled white rectangle with maximum size and
the bit pattern of the picture as g image (BITBLK). This
has the advantage that you do not have to concern yourself
with REDRAW. Also study the chapter on resources.

PROCEDURE wind_cal({%,attr%,x%,y%,w%,h%)
DPOKE GINTIN, %
DPOKE GINTIN+2,attr%
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,y%
DPOKE GINTIN+8,w%
DPOKE GINTIN+10,h%
GEMSYS 108
RETURN

This routine calculates the dimensions of the total area
(including borders) from the the inner dimensions (f%=0)
or it calculates the inner (working area) dimension from the

Chapter 5: AES

The GFA BASIC Book 213

total area of the window (f%=I). This routine is usually
used to calculate the correct window size required to hold
an object (usually the object was created with RCS).

WINDow Library

214 The GFA BASIC Book

N

5.10 ReSouRCe Library (Resources, Object trees)

PROCEDURE rsrc_load(nam$)
nam$=nam$+CHR$(0)
LPOKE ADDRIN,VARPTR(nam$)
GEMSYS 110

RETURN

Rsrc_load loads a RSC file. It is important to reserve
enough memory. If the file is not found or the memory was
not sufficient or another error was found, a null will be re-
turned in DPEEK (gintout).

Caution: This function will search the given disk
drive first and then it will search drive A:!

PROCEDURE rsrc_free
GEMSYS 111
RETURN

Rsrc_free frees the memory that was allocated by the re-
source.

Chapter 5: AES

The GFA BASIC Book 215

PROCEDURE rsrc_gaddr(type_%,index_%,adr.%)
DPOKE GINTIN,type_%
DPOKE GINTIN+2,index_%

GEMSYS 112
*ADR.%=LPEEK(ADDROUT)
RETURN

Rsrc_gaddr returns the addresses of objects and object
trees. On the ST, this function seems to only work properly
for tree structures (type %=0). From this value you can
easily determine the addresses of the object (object address
equals tree address plus 24 times the object number).

PROCEDURE rsrc_tree(index_%,tree.%)
LPOKE GINTIN,index_%
GEMSYS 112
*tree.%=LPEEK(ADDROUT)
RETURN

This routine allows you to determine the addresses of
object trees.

PROCEDURE shel_find(adr%)
LPOKE ADDRIN,adr%
GEMSYS 124

RETURN

This routine is supposed to store the addresses of the

object trees, but unfortunately you have to use the corre-
sponding LPOKE commands--sorry.

ReSouRCe Library

216 The GFA BASIC Book

PROCEDURE rsrc_objfix(tree%,index%)
LPOKE ADDRIN, tree%
DPOKE GINTIN,index%
GEMSYS 114

RETURN

This routine converts the coordinates of an object within
the tree from character coordinates to pixel coordinates.
Rsrc_load automatically performs this function for the en-
tire tree structure.

Chapter 5: AES

The GFA BASIC Book 217

%

5.11 SHELI Library

This is the routines that the GEM desktop uses to start
programs and also for the construction of the desktop.

PROCEDURE shel_read(nam.%,cmd.%)
LOCAL nam_$,cmd_$
nam_$=SPACE$(200)
cmd_$=SPACES$(200)
LPOKE ADDRIN,VARPTR(nam_$)
LPOKE ADDRIN+4,VARPTR(cmd_$)
GEMSYS 120
“nam.%=LEFT$(nam_$,INSTR(nam_$,CHR$(0))-1)
*emd.%=LEFT$(cmd_$,INSTR(cmd_$,CHR$(0))-1)
RETURN

This routine allows the program to identify the com-
mand by which it was invoked (this could be the name of a
file or a command line). It can be used to match the corre-
sponding RCS name.

PROCEDURE shel_writr(f1%,12%,{3%,nam$,cmd$)
nam$-nam$+CHR$(0)
cmd$=cmd$+CHRS$(0)

SHELI Library

218 The GFA BASIC Book

LPOKE ADDRIN,VARPTR(nam$)
LPOKE ADDRIN+4,VARPTR(cmdS$)
GEMSYS 121

RETURN

This routine makes the CHAIN command possible in the
compiler version of GFA BASIC. Nams$ is the filename of
a program and cmd$ is the command that is passed to that
program. Flags fI1% to 3% selects different codes for the
program:

f1% =0:Exit GEM (not very useful with the ST)
f1% =1:Run another program

f2% =0:Program runs without graphics

f2% =1:Program uses graphics

f3% =0:Program is not a GEM application

f3% =1:Program is a GEM application

The CHAIN command in the compiler sets all flags to 1.
Nam$ contains the passed name and cmd$ is passed to
Basepage+128.

PROCEDURE rsrc_tree(index_%,tree.%)
LPOKE GINTIN,index_%

GEMSYS 112
*ree.%=LPEEK(ADDROUT)
RETURN

This routine allows the DESKTOP INF to be read from
the memory and a changed version may then be written
back. If you are familiar with the file format, you could,
for example, change the serial baudrate and then write the
file to the diskette so that the next boot process will auto-

Chapter 5: AES

The GFA BASIC Book 219

matically set the correct baudrate. You could also change
any other parameter.

PROCEDURE shel_find(adr%)
LPOKE ADDRIN,adr%
GEMSYS 124

RETURN

This routine searches for a file whose name starts at
adr%. If the file was not found on the current disk drive
then drive A: is also searched. If successful, the full file-
name is passed to adr% otherwise DPEEK(gintout)=0.

nam$="B:ABC*.BAS"+STRING$(80,0)
@shel_find(VARPTR(nam$))
IF DPEEK(gintout)
nam$=LEFT$(nam$,INSTR(nam$,CHR$(0))-1)
ELSE
nam$=""
ENDIF

This routine searches for a .BAS file whose name starts
with ABC. It first checks drive B: and then drive A:. If
found, it returns the full filename; wildcards ("?" and "*")
are not changed (like "A\ABC* .BAS").

PROCEDURE shel_envrn(ptr%,env%)
LPOKE ADDRIN,ptr%
LPOKE ADDRIN+4,env%
GEMSYS 125

RETURN

SHELI Library

220 The GFA BASIC Book

The exact purpose of this routine is unknown to me. It
is supposed to search the environment for a string at ad-
dress adr% and to store the byte that immediately follows

at address ptr%.

Chapter 5: AES

CHAPTER 6

RSC

221

222

The GFA BASIC Book

You have probably already noticed that many
programs not only consist of a PRG-file but also of a RSC-
file. What is the purpose of this file?

These resource files contain menu bars, dialog boxes
and the like. They contain everything that is possible with
GEM (AES). A perfect example of a resource file is the
GFA_BCOM RSC file which contains a box with all of the
possible adjustments.

Many programs exist that do not use a resource file and
are still able to use menu bars and dialog boxes. This has
the advantage that only one file needs to be loaded and the
disadvantage that it is much harder to translate to another
language. It is possible that all of the text is contained in
the resource file, but usually text is found in many places in
the program. It is also usually much harder to create an er-
ror free structure in your program than to load it from the
diskette as a resource. Writing a program to run under dif-
ferent resolutions is also easier with a resource. In theory
you should be able to write the programs in sections that
are language independent, but the resulting compilation
would probably be larger than if the program was newly
compiled with the new language elements.

For the creation of normal resource there exists a RCS
(Resource Construction Set, a construction set for the cre-
ation of RCS files). The development package from Atari

Chapter 6: RSC

The GFA BASIC Book

223

contains the original construction set from Digital
Research. Since the instructions for the construction set
are rather flimsy let me give you the structure of those re-
sources.

After you start the RSC you will see two windows and
two icons (trash and clipboard) displayed. The top win-
dow contains the symbols for the many different kinds of
object trees. Unknown is for any object tree that is not
identified; this happens when a RSC file is to be edited and
the corresponding DEF-file is missing. Alert is the
Alertbox (unfortunately the symbols that appear here are
not the ones that appear in the final program). Menu is a
menu tree that contains the menu bars. Dialog represents
the dialog box which is the most used form of an object
tree; it allows you to create very complex input forms.
Free is a special form of the dialog box which allows you
more freedom in designing the individual objects.

These symbols are moved with the mouse to the work-
ing window (It requires extensive use of the mouse button
to activate the individual windows). Double-clicking al-
Jows you to edit the graphics of the object tree. The corre-
sponding object tree appears in the working window and
the top window changes into a Resource-Partbox from
which many different objects may be selected. You can
then manipulate these objects with the mouse.

The size of the objects can usually be changed by
clicking the right lower corner of the object and then mov-
ing the mouse (mouse pointer changes to a hand). Clicking
in the middle of the object allows you to move the object to
a new location.

The objects may be changed by double-clicking (zext,
color, fill pattern, Radio-Buttons, Touchexit, etc.).

By single-clicking the corresponding selection from the
menu bar, the objects or the object trees may be given a
name or the information about the objects (trees) may be

Chapter 6: RSC

224

The GFA BASIC Book

retrieved or sorted and the bit pattern of the corresponding
data loaded as ICN-files., or....

The type of the object tree may also be changed like
changing a dialog to a free in order to change the size of
the box and then back to dialog in order to position the box
in an orderly fashion.

Tip: If you hold down the shift key while moving
the object, the object is copied instead of moved. It
is also possible to create an Alertbox, change the
type to dialog (by name), and this will put the newly
created icon into your resource. The clipboard also
has many possibilities.

It is important to name all of the objects that are used, or
you could sort the objects so that they are in a certain order.
If the output is created for Pascal (.I) or as a header for C
(.H), the resulting lines may be merged into a GFA BASIC
program and be edited:

Pascal:
DESKRSC =0; (*TREE")
WINDRSC = 1; (*TREE?)
C:
#define DESKRSC 0 [*TREE?/
#define WINDRSC 1 [*TREE*/
GFA BASIC:

DESKRSC% = 0; ITREE
WINDRSC% = 1; ITREE

Now we just need to find out how to use the newly cre-
ated RSC file.

Chapter 6: RSC

The GFA BASIC Book

225

A resource file is loaded with the rsrc_load command
(an AES routine) and can then be manipulated by many
AES routines. Often some DPOKES are required in the
corresponding memory to make it work.

I have tried to limit myself to the structure of the object
tree just as it is loaded by the rsrc_load. The RSC file
contains pointers to offsets and the coordinates are charac-
ter oriented rather than pixel oriented so that it is easier to
change the resource file to the current resolution. Often,
however, it is better to write a different resource file for
each resolution since icons and other things might look
somewhat distorted under a different resolution. The pro-
gram can check for the resolution by using XBIOS(4):

on xbios(4) gosub rsc0,rsc1,rsc2,rsc2

Procedure rsc0
@rsrc_load("demolo.rsc”)

return

Procedure rsci
@rsrc_load("demomid.rsc”)

return

Procedure rsct
@rsrc_load("demonhi.rsc”)

return

Chapter 6: RSC

226

The GFA BASIC Book

%

6.1 Resource Construction

An object tree consists of objects (really!) that are de-
fined in a structure consisting of 24 bytes. Often they also
contain a data structure like some text or a bit pattern. A
RSC file can contain many object trees. Each object con-
sists of 10 words (DPOKE, DPEEK) or a long word
(LPOKE, LPEEK) that points to some data.

+0 +2 +4 +6 +8 +10 +12 +16 +18 +20 +22
NEXT HEAD TAIL TYPE FLAGS STATE SPECL X Y W H

NEXT is the number of the next object on the same level
that belongs to the same parent object, or the number of the
parent object, or the root object (-1, with DPEEK=65535).

HEAD is the number of the first subordinate object if
one exists or again a -1 (65535).

TAIL is the number of the last subordinate object. TAIL
is actually not necessary since you could use HEAD and
NEXT to traverse through the tree. It was added to obtain
greater speed.

TYPE describes the kind of object as listed in the table
below.

Chapter 6: RSC

The GFA BASIC Book 227

FLAGS describes the attributes of an object such as
whether or not the object may be selected. See table.

STATE describes the status of the object such as whether
the object selected or not, etc. See table.

SPEC is a long word that contains an address or other
data depending on the TYPE of the object. Again see table.

X, Y, W and H contain the coordinates of an object (X
and Y), the width (W) and the height (/). The coordinates
relate to the full screen with the root object and to the par-
ent object for a subordinate object.

Important: Subordinate objects must always
be fully contained within the parent object. This
requires that the parent object be some kind of a
box object.

Type Nr. Spec.

G_BOX 20 BOXINFO
rectangle

G_TEXT 21 Pointer to TEDINFO
Graphic text

G_BOXTEXT 22 Pointer to TEDINFO
Text contained within a box

G_IMAGE 23 Pointer to BITBLK
bit image graphic

G_PROGDEF 24 Pointer to APPLBLK
machine code or 'C’

G_IBOX 25 BOXINFO
invisible box, marked by a double
framed box

G_BUTTON 26 Pointer to C-String
centered text in a box

Resource Construction

228

The GFA BASIC Book

G_BOXCHR 27 BOXINFO
single character in a box

G_STRING 28 Pointer to C-String
text of a menu

G_FTEXT 29 Pointer to TEDINFO
Editable graphic text

G_FBOXTEXT 30 Pointer to TEDINFO

Editable graphic text in a box
G_ICON 31 Pointer to ICONBLK

icon, differs from G_IMAGE by being

visible

on a non white background
G_TITLE 32 Pointer to C-String

menu title

BOXINFO: this long word is in bit format:

[@]

"'hB N

Chapter 6:

&x ccc cece dddd dddd rrr zzzz gmmm ffff

=Character code for G BOXCHAR
=width of the border.
0 =no border
1.1 =border grows inward
255.128 =border grows outward (256-xxxx)
=color of the border
=color of the character (c)
=flag to draw character with (1) or without (0) white
box (Graphmode 1/2)
=fill pattern (8 possibilities, O=empty...)
=color of fill pattern

RSC

The GFA BASIC Book 229

Example:

&H41031233
41
03
1
2
3
3

character "A"=CHR$(&41)

border thickness 3 inward

border color 1

character color 2

fill pattern 3, without white around "A"
fill color 3

C-String: The address of a text that ends with a null.

TEDINFO: The address of a table which contains all
sorts of information about a stored text.

Contents of this table (3 long words for the address and

8 words, 28 bytes):

te_ptext
te_ptmplt
te_pvalid

te_font
te_resvdi
te_just
te_color
te_resvd2
te_thickness
te_txtlen
te_tmplen

te_ptext
te_ptmplt
te_pvalid

address of the text

address of the text template

address of the text that contains the validation
characters

character set (5=normal, 3=small)

reserved

justify text , 0=left, 1=right, 2=centered

color of text &x rrrr zzzz qmmm ffff (see above)

reserved

border width (0,1..127, 255..128, see above)

length of te_ptext+1 (with null byte)

length of te_ptmplt+1 (with null byte)

points to "1234+chr$(0)
points to "Price $__.__"+chr(4)
points to "3999"+chr§(0)

The output shows: Price $12.34

Resource Construction

230 The GFA BASIC Book

The text (te_ptext9) replaces the underline characters in
the validation string (p-ptmplt). While inputting the text
(using form do or objc_edit), the characters can be re-
stricted by using te_pvalid.

The following are legal:

9 = number

A = uppercase character or space

a = upper and lower case character or space

N = uppercase character, number or space

N = upper and lower case character, number or space
F = TOS-filename and : 2 *

P = TOS-filename and \ :

p = TOS-filename and \: 2 *

X = any character

In the current version of TOS all validation characters
other than 9 and X will often cause the computer to crash.

While inputting text into a template like the previous
example, you can enter a "." to jump past that character.
This may be used for any of the template characters that are
not permitted in the text.

BITBLK: This structure marks G IMAGE, it is a bit
pattern graphic (like GET/PUT) that is always displayed in
transparent mode (PUT ...,7). This structure is usually only
available with a white background, but it saves about half
of the memory when compared to ICONBLK.

First, comes a long word that contains the address of the
bit pattern; next, the width of the bit pattern in bytes (one
word) and the height; then the X and Y offsets to the pat-
tern (&x7000 represents an offset of 3); finally we have the
color (0..15).

ICONBLK: This structure is for ICONS (graphic sym-
bols). The difference between BITBLK and ICONBLK is

Chapter 6: RSC

The GFA BASIC Book

231

that JTCONBLK contains two bit patterns. The first pattern
contains the mask which erases all pixels from the screen
for which a bit is set. The second pattern contains the data
necessary to set the correct pixels. This is how the white
frame around an icon is drawn. You can also draw an icon
that contains two colors. The icon could also contain a text
line and a single character like the drive symbols displayed
with the desktop.

This structure is somewhat more complex than the oth-
ers; there are three pointers (long words), followed by
eleven words.

ib_pmask address of the mask
ib_pdata address of the data

ib_char address of the icon text
ib_char the single character

ib_xchar x coordinates of the character (always relative)
ib_ychar y coordinates of the character
ib_xicon x coordinates of the icon
ib_yicon y coordinates of the icon
ib_wicon width of the icon in pixels
ib_hicon height of the icons in pixels
ib_xtext x coordinates of the text
ib_ytext y coordinates of the text
ib_wtext width of the text in pixels
ib_htext height of the text in pixels

APPLBLK: This is an address for machine code or C
routines that are responsible for the drawing of the objects.
An APPLEBLK contains two long words of which the first
points to the executable routine and the second is passed to
the routine.

Run the WINDOW.BAS from the enclosed diskette and
try to find which object types are used in this program.

Resource Construction

232 The GFA BASIC Book

If you think that you have learned how to use RCS (If
you don’t have one then buy one — it is a nightmare to cre-
ate objects without the RCS) then try to follow the structure
of the resource. This book contains three pictures that use
resources (Unfortunately, each resource is stored by itself,
otherwise one could have saved half the file space when
using it more than once).

Can you discover how many objects were saved as /cons

and how many were saved as an Image? The screen resolu-
tion may be discovered by using the RCS Info command.

Chapter 6: RSC

The GFA BASIC Book 233

%

6.2 RSCI.BAS

Let us examine a simple RSC-file in more detail.

Figure 13: RSC-file: Dialog Box

Desk File Options Global

DIALOG PARTAOX
BUTTON] STRING EDIT: EDIT: C_] TERT [T

This RSC-file contains one dialog box (BOX) that contains
three smaller rectangles (BOX) of which one also contains
three smaller rectangles.

RSC1.BAS

234

The GFA BASIC Book

Figure 14: Tree Structure

|
: T\
H P H o H
H I H

affend =T
gy —{
s

gl —f

ey =T
amm, —i

This drawing shows the connection between the tree
structure. Notice that each object contains three arrows
that interconnect the tree.

You can follow the arrows through the tree. To traverse
the whole tree just follow the Head-pointer and when that
pointer is empty just follow the Next-pointer. This is ex-
actly how GEM does it. GEM also needs to know the
maximum level by which the tree should be searched.

The following table shows the RSC-file of the above
example, first how it looks on the diskette and second, how
it looks in memory.

Chapter 6: RSC

The GFA BASIC Book 235

Figure 15: RSC-file Table

On Disk
0000 0024 0024 8624 BO24 0000 0024 6024 0060
§6CC 00067 §OOL 006G 0060 0GOO 0OOO 06OO 68D6
Next Head Tail Type Flag Stat Spec b Y B H
FFFF 6601 6666 8614 0000 0010 00021160 0000 0060 083D OOGE
0082 FFFF FFFF 8814 06060 0008 BOFFLL00 0009 6002 0OOF 0OOA
0686 8003 0805 8814 0000 0660 GOFFL100 0GL9 60082 BOBE 068A
8004 FFFF FFFF 8014 0000 0000 BOFFL100 8061 0001 000C 0002
0085 FFFF FFFF 6014 0060 8060 BOFFLL00 0001 6004 86OC 8002
9002 FFFF FFFF 0814 8000 08008 Q0FFL180 6001 6087 B86AC 8802
0086 FFFF FFFF 0014 0020 0000 00FFL100 0029 06002 GOOE 006A
00800024

In Memory
0608 8024 0874 0024 0024 0000 0024 0024 0000
06CC 0007 0061 000G 006G 0808 0000 60GO 6ODO
Next Head Tail Type Flag Stat Spec X Y B H
FFFF 0001 8086 8014 06000 0010 06021100 6000 0080 GLES O0EO
8002 FFFF FFFF 0014 0000 8000 OOFFL1100 0048 0020 6078 00AO
0006 0003 0005 00L4 0000 0000 BOFFLL00 DOCS 06028 6070 GOAD
0004 FFFF FFFF 0014 0000 0008 OOFFL100 0008 0010 0060 6026
0005 FFFF FFFF 0014 0000 0000 OOFFLL00 0008 0040 0066 8020
0002 FFFF FFFF 0014 0000 0000 0OFF1100 6008 0070 0060 0020
0000 FFFF FFFF 0014 0020 0060 OOFFL100 0148 6020 0070 00AQ
000F4024

The beginning of the file contains 18 16-bit numbers
that function as pointers. Seven objects follow. The root
object can easily be recognized by the FFFF in the NEXT
pointer. The last object has bit #5 set in the Flag-word.

More trees can follow with the corresponding construc-
tion. The end of the file contains a long word that contains
the relative address of the tree at which the file starts. If
there is more than one tree the process is repeated. This
address will be incremented with the base address during
the rsrc_load (HIMEM, here &HF4000).

Looking at the coordinates you can determine that this
tree was loaded with a character width of 8 and a character
height of 16 (high resolution). With FREE-objects the first
byte of the coordinates can also contain a gradual step in-
crease of the symbol. This is the reason why there should
be different RSC-files for each resolution, especially when
they contain Icons or Images. The following hardcopy

RSCI1.BAS

236 The GFA BASIC Book

shows an object tree during the construction with the RSC
from Digital Research.

Figure 16: object tree construction

Desk File JTITTEN Global
DIALOG PARTBOX

BUTTON] STRING EDIT: 01T | | e . A U
surer] i)l (A1)

1

Information for:
BAUH

Objects: 7 Tedinfos: 8
Iconblks: @ Inages: 0
Bitblks: 0 Strings: 0

Total bytes for abave: 168

k
Bytes remaining in workspace: 29791

This small program draws that tree in the center of the
screen and inverts the object that the mouse pointer is
pointing to.

"RSCTEST.BAS

@Rsrc_free
@Rsrc_load("TEST.RSC")

@Rsrc_gaddr(0,0)
Tree%=Lpeek(Addrout)
@Form_center(Tree%)
@Objc_draw(Tree%,0,7,0,0,640,400)
REPEAT

Chapter 6: RSC

The GFA BASIC Book 237

@Objc_find(Tree%,0,7,Mousex,Mousey)
0%=Dpeek(Gintout)
If 0%>0 And 0%<1000
@Objc_change(Tree%,0%,0,0,640,400,1,1)
Repeat
@0Objc_find(Tree%,0,7,Mousex,Mousey)
Until O%<>Dpeek(Gintout)
@Objc_change(Tree%,0%,0,0,640,400,0,1)
Endif
Until Mousek
@Rsrc_free

Procedure Objc_draw(Tree%,Start%,Depth%,X%, Y%,B%,H%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+10,H%
Gemsys 42
Return
Procedure Obijc_find(Tree%,Start%,Depth%,X%, Y %)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Gemsys 43
Return
Procedure Objc_change(Tree%,0bj%,X%, Y%,B%,H%,Neu%,Flg%)
Lpoke Addrin,Tree%
Dpoke Gintin,Obj%
Dpoke Gintin+2,0 Ireserved
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+10,H%
Dpoke Gintin+12,Neu%
Dpoke Gintin+14,Flg%

RSC1.BAS

238 The GFA BASIC Book

Gemsys 47

Return

Procedure Form_do(Tree%,Start%)
Lpoke Addrin, Tree%
Dpoke Gintin,Start%
Gemsys 50

Return

Procedure Form_dial(F%,X%, Y%,B%,H%,Xb%,Yb%,Bb%,Hb%)
Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+10,Xb%
Dpoke Gintin+12,Yb%
Dpoke Gintin+14,Bb%
Dpoke Gintin+16,Hb%
Gemsys 51

Return

Procedure Form_center(Tree%)
Lpoke Addrin, Tree%
Gemsys 54

Return

Procedure Rsrc_load(Nam$)
Nam$=Nam$+Chr§(0)
Lpoke Addrin,Varptr(Nam$)
Gemsys 110

Return

Procedure Rsrc_free
Gemsys 111

Return

Procedure Rsrc_gaddr(Type%,Index%)
Dpoke Gintin, Type%
Dpoke Gintin+2,Index%
Gemsys 112

Return

Chapter 6: RSC

The GFA BASIC Book 239

A hardcopy of the screen is shown below.

Figure 17: RSCTEST.BAS hardcopy

RSC1.BAS

240 The GFA BASIC Book

IS

6.3 Testing the Objects

While it is not as simple to create a full object tree, it
should be relatively easy to create just a single object that
can then be used for testing the different parameters
(STATE).

'BOXRSC

Dim A%(100)
A%=Varptr(A%(0))
Dpoke A%,-1
Dpoke A%+2,-1
Dpoke A%+4,-1
Dpoke A%+6,27 I G_BOXCHAR
Dpoke A%+8,&H20 lastob
Dpoke A%+10,0
Lpoke A%+12,&H41031233
Dpoke A%+16,0
Dpoke A%+18,0
Dpoke A%+20,50
Dpoke A%+22,30 I color change to ,15
For 1%=0 To 63
Dpoke A%+10,1%
Dpoke A%+16,10+(1% And 7)*78
Dpoke A%+18,10+(1%/8 And 7)*50 I color change to *25
@Objc_draw(A%,0,0,0,0,640,400)

Chapter 6: RSC

The GFA BASIC Book 241

Next 1%

Procedure Objc_draw(Tree%,Start%,Depth%,X%, Y%,B%,H%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,8%
Dpoke Gintin+10,H%
Gemsys 42

Return

First, a small object is defined in the tiny program above
(BOXCHAR, the letter "A" inside of a filled rectangle).
Then the position and the STATE flags are incremented 64
times, each time showing a different picture on the screen.
The result is shown in the printout below. You can easily
see the result that the STATE attribute has on the object.

Figure 18: Small Object incremented

&l 1= 1= =1

Testing the Objects

242 The GFA BASIC Book

Those with color monitors will have to change the two
lines marked in the comment line.

FBOXTEXTFBOXTEXT
' FBOXTEXT

Dim Tree%(100),Ted%(100)
Tree%=Varptr(Tree%(0))

Ted%=Varptr(Ted%(0))

Dpoke Tree%,-1

Dpoke Tree%+2,-1

Dpoke Tree%+4,-1

Dpoke Tree%+6,30 | G_FBOXTEXT
Dpoke Tree%+8,&H20 Iastob
Dpoke Tree%+10,0

Lpoke Tree%+12,Ted%

Dpoke Tree%+16,10

Dpoke Tree%+18,50

Dpoke Tree%+20,300

Dpoke Tree%+22,130

Ptext$="1234"+Chr$(0)

Ptmplt$="Price __._ "+Chr$(0)
Pvalid$="9999"+Chr§(0)

Lpoke Ted%,Varptr(Ptext$)

Lpoke Ted%+4,Varptr(Ptmplt$)

Lpoke Ted%+8,Varptr(Pvalid$)

Dpoke Ted%+12,3 I'font 5
Dpoke Ted%+16,2 I centered
Dpoke Ted%+18,&H1111

Dpoke Ted%+22,7 I thickness 7

Dpoke Ted%+24,Len(Ptext$)

Dpoke Ted%+26,Len(Ptmplt$)
@Objc_draw(Tree%,0,0,0,0,640,400)
" objc_draw wie oben

Chapter 6: RSC

The GFA BASIC Book 243

Figure 19: Text inside a filled rectangle

This program writes a formatted graphic text inside of a
filled rectangle.

Both of the above programs indicate that it takes a lot of
effort just to receive some minor results. If you use a RCS
instead to construct the objects, you can do all of the con-
struction graphically by using the mouse. You can then
also change the objects without changing the program as
long as the objects remain in the same order. With longer
programs all of the AES-subroutines necessary for RSC will
appear to occupy less space.

Testing the Objects

244

The GFA BASIC Book

%

6.4 ICONs

So far, so good. RCS is not bad, but where does the data
for the Icons and Images come from? GFA BASIC con-
tains commands that allow you to format the graphic data
used with RCS. These commands are GET and PUT.

There are already many icon editors available that are
written in GFA BASIC. These will allow you to save
screen segments to a diskette. They are usually constructed
like this:

GET x0,y0,x1,y1,x$
BSAVE "ICON.GET",VARPTR(x$),LEN(x$)

The same could of course be accomplished from within
a program.

The RCS expects the source text for the Icon and Image
data to be in C-compiler format. The conversion, changing
a GFA BASIC screen segment into that source text, is
shown in the program beginning on the next page:

Chapter 6: RSC

The GFA BASIC Book 245

" - MAKEICON.BAS -
"GET x,y,z,t,x$ I'Read into string
" BSAVE "TEST.GET",VARPTR(x$),LEN(x$) lto Diskette

Open "I"#1,"TEST.GET"
A$=Input$(Lof(#1),#1)
Close #1

B%=Cvi(A$)+16 And &HFFFOQ

H%=Cvi(Mid$(A$,3))+1

R%=Cvi(Mid$(A$,5))*2 IDouble amount of Bitplanes
Cls

Put 0,0,A%

Get 0,0,B%-1,H%-1,A$

Open "O" #1,"TEST.ICN"
Print #1,"/* GFA SHAPE */"
Print #1,"#define SHAP_W ";@H$(B%)
Print #1,"#define SHAP_H ";@H$(H%)
Print #1,"#define DATASIZE ";@H$(B%"H%/16)
Print #1,"int image[DATASIZE] = int mas"
Print #1,"{";
For 1%=1 To B%*H%/16-1
Print #1,@H$(Cvi(Mid$(AS,1%*2+5)));", "
If 1% Mod 4=0
Print #1
Print #1," ";
Endif
Next 1%
Print #1,@H$(Cvi(Mid$(AS$,1%"2+5)))
Print #1,"};"
Close #1
RETURN

Deffn H$(X%)="0x"+Right$("000"+ Hex$(X%),4)

ICONs

246

The GFA BASIC Book

This program will create a file with the extension of
"ICON " which may then be used with the RCS.
Unfortunately, the size of an icon may not exceed 700
bytes when using RCS. If b%*h%/16 is larger than about
350, you must be cautious or the RCS will show a mutilated
graphic picture (maybe other RCS programs can do a better
job).

It is also necessary to create a mask for the icon. You
can design your own or you can pass on this task to a pro-
gram. The programmatic solution (never perfect) allows
you to surround an all black pixel with other black pixels.
It is also possible to create white areas within the inner sur-
face of the symbol.

The program also creates two other files besides
ICON.ICN. The file ICONM.ICN contains a mask with the
first format and file /CONW.ICN contains a file with the
second format.

Chapter 6: RSC

The GFA BASIC Book 247

Figure 20: Icons

Desk File Options Global

The above picture shows three images in the top row
consisting of ICON.ICN, ICONM.ICN and ICONW.ICN
(from left to right). The second row contains two icons, the
left contains /[CONM.ICN as its mask and the other con-
tains /CONW ICN.

If you want to use this program often, you could further
develop it by asking for the filename with FILESELECT,
offer choices of masks, etc.

If you already have a GFA BASIC drawing program,
you can expand it by adding an /CON-editor option.

It is also possible to convert a drawing program to an
ICON-editor.

'READICON.BAS
FILESELECT "\".ICN",".ICN" file$

OPEN "I" #1 file$

ICONs

248

The GFA BASIC Book

REPEAT

LINE INPUT #1,a$

q%=INSTR(a$,"0X")
UNTIL g%
b%=VAL("&"+MID$(a$,q%+2))
LINE INPUT #1,a$
h%=VAL("&"+MID$(a$,INSTR(a$,"0x")+2))
LINE INPUT #1,a$
size%=VAL("&"+MID$(a$,INSTR(a$,"0x)+2))
GET 0,0,b%-1,h%-1,x$
p%=CVI(MID$(x$,5))
x$=LEFT$(x$,6)
ag=""
FOR %=1 TO size%

WHILE INSTR(a$,"0x")=0

LINE INPUT #1,a$

WEND

0%=INSTR(a$,"0x")

a$=MID$(a$,q%+2)

x$=x$+STRING$(p%,MKIS(VAL("&" +a$)))
NEXT i%
CLOSE #1
PUT 0,0,x$
"BSAVE "ICON.GET",VARPTR(x$),LEN(x$)

You will have to imbed this routine in a drawing pro-
gram to make it work properly.

Chapter 6: RSC

The GFA BASIC Book 249

%

6.5 Touchexit

Figure 21: Dialog Box with Slider

Ok

Here is an example of a dialog box (bjc_draw and
form_do) for moving an object within a s/ider bar.

Touchexit

250

The GFA BASIC Book

In this program a button consisting of four numbers is
moved within a frame. By using the top and bottom ar-
rows, the slider can be moved in single steps. Even though
the button as well as the arrows were defined as Touchexit,
the control of the resource is passed to the program using
form_do. The program checks to see if the slider or one of
the arrows was selected. If OK or Cancel was selected, the
form_do will terminate; otherwise, it exits. The subroutine
slide controls the sliders. This routine uses the GEM-rou-
tine (graf slidebox) to adjust and reposition the slider.

Using the arrows is very simple. First, the selection of
the object is canceled. Then the slider is moved in the cor-
responding direction until the mouse button is released (it
must of course be between 0 and 1000).

Within the routine that sets and draws the slider, the new
slider position is stored in memory. Then the slider posi-
tion, a number between zero and a thousand, is converted
to the corresponding screen positions. Next the height of
the outer box is multiplied by the slider position and then
divided by 1000. The current value is written to the re-
source button as text so that it is visible to the user. The
object is drawn using the objc_draw routine.

Other programs could scale the slider position from the
start like a number between zero and seven
(current%=s%*7/1000+0.5). The calculation of the posi-
tion must also be changed.

'SLIDER
@Rsrc_free
@Rsrc_load("SLIDER.RSC")

T tree%=0 | (* TREE *)

0.slider%=2 | (* OBJECT in TREE #0 %)
O.parent%s=1 | (* OBJECT in TREE #0 *)
Aup%=3 | (* OBJECT in TREE #0*)
Adown=4 | (* OBJECT in TREE #0 *)
B.0k%=5 | (* OBJECT in TREE #0 *)

Chapter 6: RSC

The GFA BASIC Book 251

B.cancel%=6 I (* OBJECT in TREE #0 *)

@Rsrc_gaddr(0,T.tree%)
Tree%=Lpeek(Addrout)
@Form_center(Tree%)
@Set_slide(500)

@Objc_draw(Tree%,0,7,0,0,639,399)
Repeat
@Form_do(Tree%,0)
X%=Dpeek(Gintout)
If X%=0.slider%
@Slide
Else
If X%=A.up%
@Slide_up
Else
If X%=A.down%
@Slide_down
Endif
Endif
Endif
Until X%=B.0k% Or X%=B.cancel%
@Rsrc_free

Procedure Slide
@Graf_slidebox(Tree%,0.parent%,0.slider%,1)
@Set_slide(Dpeek(Gintout))

Return

Procedure Set_slide(S%)
Current%=S%
Mh%=Dpeek(Tree%+24*O.parent%+22) I Height parent
Sub Mh%,Dpeek(Tree%+24*0.slider%+22) !Height Slider
Dpoke Tree%+240.slider%+18,5% "Mh%/1000
S$=Right$(" "+Str$(S%),4)
Sa%=Lpeek(Tree%+24*0.slider%+12)
Lpoke Sa%,CvI(S$)
@Objc_draw(Tree%,0.parent%,1,0,0,639,399)

Return

Procedure Slide_up

Touchexit

252 The GFA BASIC Book

@Objc_change(Tree%,A.up%,0,0,640,400,0,1)
Repeat
@Set_slide(Max(0,Current%-1))
Until (Mousek And 1)=0
Return
Procedure Slide_down
@Objc_change(Tree%,A.down%,0,0,640,400,0,1)
Repeat
@Set_slide(Min(1000,Current%+1))
Until (Mousek And 1)=0
Return

Procedure Objc_draw(Tree%,Start%,Depth%,X%, Y%,B%,H%)
Lpoke Addrin, Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+10,H%
Gemsys 42
Return
Procedure Objc_change(Tree%,0bj%,X%,Y%,B%,H%,Neu%,Flg%)
Lpoke Addrin, Tree%
Dpoke Gintin,Obj%
Dpoke Gintin+2,0 Ireserved
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,8%
Dpoke Gintin+10,H%
Dpoke Gintin+12,Neu%
Dpoke Gintin+14,Flg%
Gemsys 47
Return
Procedure Form_do(Tree%,Start%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Gemsys 50
Return
Procedure Form_dial(F%,X%,Y%,B%,H%,Xb%,Yb%,Bb%,Hb%)

Chapter 6: RSC

The GFA BASIC Book 253

Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+10,Xb%
Dpoke Gintin+12,Yb%
Dpoke Gintin+14,Bb%
Dpoke Gintin+16,Hb%
Gemsys 51

Return

Procedure Form_center(Tree%)
Lpoke Addrin,Tree%
Gemsys 54

Return

Procedure Rsrc_load(Nam$)
Nam$=Nam$+Chr$(0)
Lpoke Addrin,Varptr(Nam$)
Gemsys 110

Return

Procedure Rsrc_free
Gemsys 111

Return

Procedure Rsrc_gaddr(Type%,Index%)
Dpoke Gintin, Type%
Dpoke Gintin+2,Index%
Gemsys 112

Return

Procedure Graf_slidebox(Tree%,Parent%,0bj%,Flg%)
Lpoke Addrin,Tree%
Dpoke Gintin,Parent%

Dpoke Gintin+2,0bj%

Dpoke Gintin+4,Flg%
Gemsys 76

Return

Touchexit

254 The GFA BASIC Book

Figure 22: Positioning the Slider

Ok

Chapter 6: RSC

The GFA BASIC Book

255

N

6.6 Dialog

Now the most extensive example of this chapter: A di-
alog box with text input.

If you have made it this far in AES programming, this
should not be any harder. This resource consists of a dia-
log box with some text fields, some radio buttons
(contained in a box without a frame), and an OK and
CANCEL button. After rsrc_load is called, the tree address
is determined. Then form center is called to get the coor-
dinates of this dialog box. After the initializing of the ob-
jects, the input routine is called. This routine saves the
background with the SGET and the SPUT command (this is
simpler and faster than using form_dial(0,..) and
form_dial(3,...)).

Next, the routine draws an expanding box and also the
object. After calling form_do the Exit object is deselected.
After cancellation, the input is repeated (a real program
would handle this differently).

Dialog

256

The GFA BASIC Book

Figure 23: Dialog Box with Text Input

If OK is selected, the screen is restored by the form_dial
effect and the SPUT command. Then the text fields are
read and the radio buttons are interpreted.

The status (STATE) of an object is easy to read or
change with the DPEEK and DPOKE commands.

To read the text is somewhat harder since the object ad-
dress must be determined and the pointers Spec and Ptext
must be read. By using the combination of BMOVE and
INSTR, we were able to eliminate a loop to check for the
null byte and also additions of strings. The writing of the
text is somewhat awkward; the MIN serves to make sure
that the text field does not interfere with the memory of the
resource.

While constructing this resource, it is important that the
radio buttons are sorted (this greatly simplifies the interro-
gation) and that all editable text objects contain the full

Chapter 6: RSC

The GFA BASIC Book 257

length (this may be recognized in the DR-RCS in that the
line cursor is positioned at the last character of the last
line).

' DIALOG

Demo%=0 | (* TREE*)

Title%=2 I (* OBJECT in TREE #0 *)
Nam%=3 I(* OBJECT in TREE #0 ¥)
Street%=4 I(* OBJECT in TREE #0 *)
City%=5 I (* OBJECT in TREE #0 *)
Tel%=6 I(* OBJECT in TREE #0 *)
Ok%=18 | (* OBJECT in TREE #0 *)
Cancel%=19 I (* OBJECT in TREE #0 *)
Null%=8 I(* OBJECT in TREE #0 *)

@Rsrc_load("dialog.rsc")
@Rsrc_gtree(Demo%, Tree%)
@Form_center(Tree%)
X%=Dpeek(Tree%+16)
Y%=Dpeek(Tree%+18)
B%=Dpeek(Tree%+20)
H%=Dpeek(Tree%+22)

@Sstate(Tree%,Null%, 1) 10 selected!!!
For 1%=Null%+1 To Null%+9 1'1-9 not
@Sstate(Tree%,1%,0)

Next 1%

@Stext(Tree%, Title%,"Firma")
@Stext(Tree%,Nam%,"GFA Systemtechnik GmbH")
@Stext(Tree%,Street%,"Heerdter Sandberg 30")
@Stext(Tree%,City%,"4000 D sseldorf 11")
@Stext(Tree%,Tel%,"0211/588011")

@Input_routine
Print "Title : *;Title$
Print "Name : ";Nam$

Print "Street: ";Street$
Print "City : ";City$

Dialog

258 The GFA BASIC Book

Print "Tel. : ;Tel$
Print "Call# : ";Radio%

Procedure Input_routine

Sget Temp$

Do
@Form_dial(1,10,10,0,0,X%,Y%,B%,H%)
@Objc_draw(Tree%,0,8,X%,Y%,B%,H%)
@Form_do(Tree%, Title%)
Ex%=Dpeek(Gintout)
@Sstate(Tree%,Ex%,0)
Exit If Ex%=0k%
Out2,7

Loop

@°Form_dial(2,0,0,0,0,X%,Y%,B%,H%)

Sput Temp$

@Gtext(Tree%, Title%, Title$)
@Gtext(Tree%,Nam%, ‘Nam$)
@Gtext(Tree%,Street%, *Street$)
@Gtext(Tree%,City%, *City$)
@Gtext(Tree%,Tel%, Tel$)

For Radio%=Null% To Null%+9
@Gstate(Tree%,Radio%,*S%)
Exit If S% And 1

Next Radio%

Sub Radio%,Null%

Return

Procedure Objc_draw(Tree%,Start%,Depth%,X%,Y%,B%,H%)
Lpoke Addrin, Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+10,H%
Gemsys 42

Chapter 6: RSC

The GFA BASIC Book 259

Return
Procedure Form_do(Tree%,Start%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Gemsys 50
Return
Procedure Form_dial(F%,X%,Y%,B%,H%,Xb%,Yb%,Bb%,Hb%)
Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+10,Xb%
Dpoke Gintin+12,Yb%
Dpoke Gintin+14,Bb%
Dpoke Gintin+16,Hb%
Gemsys 51
Return
Procedure Form_center(Tree%)
Lpoke Addrin,Tree%
Gemsys 54
Return
Procedure Rsrc_load(Nam$)
Nam$=Nam$+Chr$(0)
Lpoke Addrin,Varptr(Nam$)
Gemsys 110
Return
Procedure Rsrc_free
Gemsys 111
Return
Procedure Rsrc_gaddr(Type%, Index%)
Dpoke Gintin, Type%
Dpoke Gintin+2,Index%
Gemsys 112
Return
Procedure Rsrc_gtree(Index_%,Tree.%)
Lpoke Gintin,Index_%
Gemsys 112
“Tree.%=Lpeek(Addrout)
Return

Dialog

260

The GFA BASIC Book

Procedure Gstate(T_%,N_%,X.%)
*X.%=Dpeek(T_%+24*N_%+10)
Return

Procedure Sstate(T_%,N_%,X_%)
Dpoke T_%+24*N_%+10,X_%
Return

Procedure Gtext(T_%,N_%,X.%)
Local X_$
X_$=Space$(100)
T_%-=Lpeek(Lpeek(T_%+24*N_%+12))
Bmove T_%,Varptr(X_$),100
*X.Yo=Left$(X_8,Instr(X_$,Chr$(0))-1)
Return

Procedure Stext{(T_%,N_%,X_$)
X_$=X_$+Chr$(0)
T_%=Lpeek(T_%+24*"N_%+12)

Bmove Varptr(X_$),Lpeek(T_%),Min(Len(X_$),Dpeek(T_%+24)-

1)
Return

Chapter 6: RSC

CHAPTER 7

USING WINDOWS

261

262

The GFA BASIC Book

This chapter consists of a long demo program
called WINDOWDEMO. The source listing is included.
This program contains a lot of information since many
things can be done with windows. You can move them,
enlarge them, shrink them, select them, or you can turn the
sliders on and off. The window can also contain text with
many different attributes (thick,cursive), or it can contain
many different character sets, or a graphic picture in bit
pattern format like in drawing programs, or as vector
graphic, or as object, resource file, or ...

When you run this program you will see a screen with
many different windows. There are four windows all to-
gether that partially overlap each other. One window
shows text, another shows simple line graphic, another
shows a typical object tree and another shows a picture that
could have come from a drawing program. There are also
ten boxes on the left side of the screen that represent the F1
to F10 function keys. The background is the normal desk-
top.

~ As you play with the mouse you will notice the follow-
ing:

As you click one of the F-boxes, this box is in-
verted. Pressing the function key gives you the
same result.

Chapter 7: Windows

The GFA BASIC Book 263

The resource window may be moved or closed.

You can enlarge both the text and the graphic win-
dows and you can move the contents around by us-
ing the arrows or sliders.

The window with the line graphics can only be
moved eight steps at a time in the horizontal direc-
tion. The Fullw-fields can also be activated. You
can also call accessories.

The menu bar shows the Atari symbol and the Quit
command which is shown under the File-Menu. If
you move the window (also accessories), the old
contents are restored.

Figure 24: Windows

] /M File

Woof
Degas picture

Graphic window

: Text Window
P Tkt Line 8. 5757 i}
i Text Ling"] ====Fs=s==2

eyt line 2 so-=r=3sTr

ext Line I ==F========
Taxt Ling 4 ~===s==s===
Text Ling § cm——===o==-

F10

For the creation of this program:
After a procedure is called to set the GEM-parameters

(close window, rsrc_free, etc.), a Resource-File is loaded in
reserved memory.

Chapter 7: Windows

264

The GFA BASIC Book

This RSC-File contains two object trees, a Deskrsc for
the Function key symbols and a Windrsc for one of the
windows.

The Deskrsc is modified since it is not possible to dis-
play a full screen with Resource. Wind_get(0,4) is called to
set the size of the screen without a menu bar. Afterwards
this tree is installed as the new desktop background (with
wind_set(0,14)).

The default text size and the maximum window size is
then determined. It is not always possible to use Gemsys
77(graf handle).

Next a menu bar is created by reading the selections
from a data statement and issuing the Menu command.
Chr$(14)+Chr$(15) is the Atari symbol. This symbol
could have been created by using Control-N and Conirol-
O, but it would then be impossible to list the file to the
printer.

A string array (zxz$) is then built which will contain the
text data for the window. The position of the text is calcu-
lated using the txts0% for the row and texrz0% for the col-
umn. The window is then opened with the Info line con-
taining "Text Window". The &HFFF selects all possible
markers and the calc_slid sets the size and location of the
sliders.

The same procedure is used for window 2, except no
text field is required. The coordinates grs0% and grz0%
are initialized.

The Resource-Window (3) contains only a title, a move
bar, and a close box (&X1011). The window size is se-
lected using wind_calc so that the corresponding Resource
fits exactly into that window. This window does not con-
tain any sliders or a size box, making it impossible to select

Chapter 7: Windows

The GFA BASIC Book

265

those fields. The routines for those attributes are therefore
not part of this program.

The fourth window has all the attributes. This window
contains a graphic that is loaded from the diskette into a
string (X$). This is similar to the text field for window (1).
The screen is then loaded with the INPUT$ command. A
title and an info line are also added.

By using the form dial command the new screen in-
cluding the new background are redrawn. The three win-
dows would be redrawn even without this call.

After the ON-MENU routines are set, the program per-
forms the main loop which can only be interrupted by set-
ting the end! flag. The loop contains only the evni_multi
call (ON MENU,).

The following lines are only used while testing the pro-
gram and should be replaced with the END command on a
finished product.

Entry #1 in the Menu routine shows an alert box and
entry #14 sets the flag (end!) to indicate the end of the pro-
gram. For easier visibility of the menu bar it is very im-
portant to issue the MENU-OFF command.

The Key-routine selects the SCAN-Code to see if a func-
tion key was pressed, then it selects the corresponding rou-
tine for inverting the F-box.

Within the Button-routine, it is determined if the mouse
was pointing to the background or a window (wind_find).
If it points to the background then the (obj_find) routine is
called to check if the mouse is pointing to a Function box.
If a function box was found, the box is inverted.

The routine desk _change changes the status of the F-
symbols. The address of the object is determined
(rsrc_gaddr does not seem to work) and the new status of

Chapter 7: Windows

266

The GFA BASIC Book

the function key displayed (with XOR I). A real program
would copy this status to a field for further use. The new
inverted symbol is then redrawn by using obj draw.

The Message-routine must be able to react to many dif-
ferent actions. First, a check is made to see if a Wm_Xxx-
message exists. If none exists, this program will ignore the
messages.

The Window-handle is assigned to a variable (hand%).
The window number is also assigned to the corresponding
variable. This somewhat odd looking routine is the most
efficient for the compiler.

Every possible message calls its own routine.

The wm_closed routine is very simple. If you want
more security, you could add an alert box.

The wm_topped rtoutine uses the corresponding GEM
routine to open the window.

The wm_moved routine is not very difficult either since
the wind_set routine or the wm_redraw routine do most of
the work. If changes are made to the window, the modwind
routine is called. This routine checks to make sure that
sliders, window size and other functions are within the cur-
rent limits. The WINDTAB is also set to the new position.

The same goes for wm_sized.

The routine wm_fulled checks to see if the window is al-
ready full and then changes the window to the previous
size. Variables wf!(), wx%(), wy%(),wb%() and wh%() are
used for that purpose.

The Modwind routine is then called to change the posi-
tion or size of the window with the help of variables x%,
y%, b% and h%. After these parameters are passed to
GEM (with wind_set), the new inner size of the window is

Chapter 7: Windows

The GFA BASIC Book

267

inquired so that it can be matched with the coordinates
(grs0% etc.) to make sure that the graphic or whatever does
not overflow the window. The new values for WINDTAB
and the size and position of the sliders are also updated
during this routine.

The wm hslid and the wm vslid routines serve to set the
size of the sliders to the overall window (like £xts0%, etc.).
There are different routines for each window. The
calc_slid routine adjusts the sliders and do_redraw draws
the new screen.

The same happens for all the arrows that were defined in
the openw command. There can be up to eight arrow
events per window. This arrowx routine calls the corre-
sponding routine (MENU(5)=0 to MENU(5)=7). The hori-
zontal scroll size is determined by the size of the window --
one could have used a constant value of course. After the
rows and columns are adjusted the new slider positions are
set and the Redraw-routine is called. For a faster program
you could test to see if the Redraw routine is even neces-
sary or if part of the picture could be changed by using the
GET/PUT or BITBLT routines. The do_redraw routine is
now called upon to draw the top window according to the
wm_hslid, the wm_vslid and the wm_arrow events.

The Redraw-routine is the most difficult. This routine
(wm_redraw) controls the drawing of new screens caused
by event function (like sliders). The routine is split into
two parts, wm_redraw and xredraw, to simplify the slider
and arrow events.

The rectangle for the corresponding window is then cre-
ated. Wind gei(...,11) selects the first rectangle in the list
and Wind_gex(....1 2) selects all the others. This step is re-
peated until the w1dth (DPEEK(gintout+6)) and the height
(DPEEK)gintout+8)) return a null to indicate the end of the
list.

Chapter 7: Windows

268

The GFA BASIC Book

The screen segment for every one of those rectangles
must be redrawn. Variables tb%, th%, tx% or ty% are used
for that purpose. If the width (%) and the height (th%) is
greater than zero the corresponding segment is redrawn.

The routine Redraw must now restore this segment. A
clipping rectangle is then defined and the origins are set to
point to the upper left corner. After erasing this segment
by using a white PBOX, a specific routine is called to
recreate the window.

Redrawing the Text Window is very simple. After cal-
culating the number of visible text lines (window height di-
vided by text height plus 2), the column offset is computed
(how much the text must be moved to match the window).
A vertical offset is then computed so that the first line of
the text is visible in the window. Only a few of the lines
are released to the redraw routine, though it would have
been possible to select all lines.

That, however, would have been much slower and could
cause a problem because of the 32000 offset range limit.
Therefore only those lines which will fit in the visible win-
dow are submitted. After every text the vertical position is
incremented by the height of the text. If you use a different
font, this size may have to be adjusted.

The Redraw routine for the window 2 is even simpler.
The origin for the graphic commands are set and the boxes
are drawn.

The Redraw for the Resource window is handled by
GEM. The origin must be changed in the Resource - this is
accomplished with the LPOKE command. The objects are
then drawn on the screen by using obj draw.

For the graphic windows the BITBLT command is used
to simply copy the picture segment into the window.

Chapter 7: Windows

The GFA BASIC Book

269

It is also possible to pass a different graphic resolution
to the BITBLT (like 1280%1600 dots=256 KByte), to work
on the window in smaller sections and then copy the results
back using BITBLT. It is also possible to use more than
one window for the picture, or to use more than one picture
per window, or create an art clipboard (like the function
key symbols), or create a window in a loop. While drawing
you must use the Button-routine and you must update the
window contents by using wind update(l) and
wind_update(0). The graphic program could also be sup-
plemented with an editor. If the button is pressed on a
window, the graphic picture, or the symbol, is modified.
With graphic it makes sense to make sure that window
boundaries are not exceeded by using the MENU OBOX
command (also see the explanation of wind _update in
chapter 5). Let’s continue with the program...

The calc_slide routine determines the inner size of the
window and calls the routine that calculates the slider posi-
tion and size and passes those parameters to the ser_slid
routine.

The set slid routine changes all four slider positions
(GEM expects an integer between 0 and 1000). Those val-
ues are then rounded.

The procedure reset serves to protect you while the pro-
gram is being tested. The desktop is restored, all memory
that was taken up for the RSC is freed, the menu is deacti-
vated and all of the windows are closed. If the program
was started from the desktop, it will return to the desktop
otherwise it is accomplished automatically with the QUIT
or SYSTEM command.

The procedure openw is an extension of the OPENW
command. With it, the border elements may be defined
and the window may be freely positioned.

The procedure clip fits the rectangle into the window
and sets the corner point for further graphics commands.

Chapter 7: Windows

270

The GFA BASIC Book

The rest of the program creates an interface for the cor-
responding GEM-Routines.

The last routine selects the text size. This could have
been handled by GEMSYS 77 (graf handle), but this rou-
tine does not always seem to work properly. The
graf _handle routine is called and the handle is used as a pa-
rameter to the corresponding VDI call. That’s all.

Final word: The redraw was difficult but not impossible
to solve. Even professional programmers cannot always
perform miracles, but they will use those routines that will
create the right effect.

Unfortunately, GEM does not have internal buffers for
window content (even so this would easily be possible in a
megabyte of memory), but it puts all of the responsibility of
creating orderly windows in the hands of the programmers.
It would have been helpful if it at least gave a message
whenever a segment or an accessory was called.

As a last reminder: It makes sense to put the PBOX
command in the Redraw routine for erasing a screen seg-
ment in procedures redrawl and redraw2. With this the
unnecessary erasing of screen segments is eliminated, be-
cause the BITBLT command or the obj draw call over-
writes the contents of the background anyway.

Using GEM, it is only possible to use programs that always
know the content of that window.

Chapter 7: Windows

The GFA BASIC Book

271

" WINDOW.BAS

If Xbios(4)<>2
Alert 1,"This Demo runseonly in Hi-rez",1,"Cancel",Dummy%
End

Endif

Dim Wfl(4),Wx%(4),Wy%(4), Wb%(4), Wh%(4)
@Reset

Reserve Xbios(2)-Himem+Fre(0)-16384-5000
@Rsrc_load("wind.rsc")
@Rsrc_gtree(0,"Deskrsc%)
@Rsrc_gtree(1,"Windrsc%)

@Wind_get(0,4) I get desk size

Bmove Gintout+2,Deskrsc%+16,8 I'setinto rsc
@Wind_newdesk(Deskrsc%,0) lnstall

@Get_textsize

Chrb%=Dpeek(Ptsout) I Text width
Chrh%=Dpeek(Ptsout+2) I'text height
Chrbb%=Dpeek(Ptsout+4) I Text box width
Chrbh%=Dpeek(Ptsout+6) I Text box height
@Wind_get(0,4) I' maximum Window parameter

Scrx%=Dpeek(Gintout+2)
Scry%=Dpeek(Gintout+4)
Scrb%=Dpeek(Gintout+6)
Scrh%=Dpeek(Gintout+8)

" Initialize Menu bar
Dim M$(50)
For 1%=0 To 50
Read M$(1%)
Exit If M$(I%)="***"
Next 1%
M$(1%)=""
M$(0)=Chr§(14)+Chr$(15) I The Atari symbol
Menu M$()
Erase M$()

Chapter 7: Windows

272 The GFA BASIC Book

Data Desk, Window Demo,--------------------- 1,233,456,
Data File, Load, Save,-------- . -Quit*

" Initialize Window 1

Dim Txt$(99)
For 1%=0 To 99
Txt$(1%)="Text Line "+Str$(I%)+" ---------- "+Str$(1%)
Next 1%
Txtz0%=0
Txts0%=0
Titlew 1,"Text Window"
Infow 1,""
@Openw(1,&HFFF 50,100,150,180)
@Calc_slid(1)

" Init window 2

Grs0%=0

Grz0%=0

Titlew 2,"Graphic window"

Infow 2,""
@Openw(2,&HFFF,110,25,170,190)
@Calc_slid(2)

" Init window 3

Titlew 3,"Resource window"

Infow 3,"
@Wind_calc(0,3,0,0,Dpeek(Windrsc%+20),Dpeek(Windrsc%+22))
@Openw(3,&HB,250,80,Dpeek(Gintout+6),Dpeek(Gintout+8))

Dim Smfdb%(8),Dmfdb%(8),P%(8)
Open "I"#1,"WOOF1.PI3"

Seek #1,34

X$=Input$(32000,#1)

Close #1

Chapter 7: Windows

The GFA BASIC Book

273

Dmfdb%(0)=Xbios(3)
Dmfdb%(1)=640
Dmfdb%(2)=400
Dmfdb%(3)=40
Dmfdb%(5)=1
Smfdb%(1)=640
Smfdb%(2)=400
Smfdb%(3)=40
Smfdb%(5)=1

Titlew 4,"Woof"

Infow 4,"a Degas picture"
@Openw(4,&HFFF,150,150,250,225)

On Menu Message Gosub Message
On Menu Button 2,1,1 Gosub Button
OnMenu Gosub Menu

On Menu Key Gosub Key

@Form_dial(3,0,0,0,0,0,0,640,400) I'redraw all

Repeat
On Menu
Until End!

" All done QUIT

@Reset
@Wind_get(0,10)
If Dpeek(Gintout+2)
Alert 1,"Accessories",1,"CloseQuit", X%
If X%=2
Quit
Endif
Repeat
@Wind_get(0,10)
Until Dpeek(Gintout+2)=0
Endif
Reserve Xbios(2)-Himem+Fre(0)-16384

Chapter 7: Windows

274 The GFA BASIC Book

Procedure Menu
If Menu(0)=1
Alert 1,"This is an example ofeWindow technics",1,
"GFA-BASIC",Dummy%
Endif
If Menu(0)=14
Let End!=True
@Reset
Endif
Menu Off
Return

Procedure Key
A%=Menu(14) Div 256-58
If (Menu(14) And 255)=27
@Wind_update(3)
Endif
If (Menu(14) And 255)=13
@Wind_update(2)
Endif
If A%>0 And A%<11
@Desk_change(A%)
Endif
Return

Procedure Button

@Wind_find(Menu(10),Menu(11))

If Dpeek(Gintout=0)
@Objc_find(Deskrsc%,0,1,Menu(10),Menu(11))
0%=Dpeek(Gintout)

If 0%>0 And 0%<1000
@Desk_change(0%)
Endif
Endif
Return

Procedure Desk_change(Nr%)
Adr%=Deskrsc%+24*"Nr%+10
Ostate%=Dpeek(Adr%) ! alter status
Dpoke Adr%,0Ostate% Xor 1

Chapter 7: Windows

The GFA BASIC Book 295

@Wind_get(0,11)
B%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)
While B% Or H%
@Objc_draw(Deskrsc%,Nr%,7,Dpeek(Gintout+2),Dpeek(Gintout+4),
B%,H%)
@Wind_get(0,12)
B%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)
Wend
Return
Procedure Message
If Menu(1)>19 And Menu(1)<29 IWM_XXXXX
Hand%=Menu(4)
If Hand%=Dpeek(Windtab) I'this way is best for compiling
Wind%=1
Else
If Hand%=Dpeek(Windtab+12)
Wind%=2
Else
If Hand%=Dpeek(Windtab+24)
Wind%=3
Else
If Hand%=Dpeek(Windtab+36)
Wind%=4
Else
Wind%=0
Endif
Endif
Endif
Endif
On Menu(1)-19 Gosub
Wm_redraw,Wm_topped,Wm_closed,Wm_fulled,

Wm_arrowed

On Menu(1)-24 Gosub Wm_hslid,Wm_vslid, Wm_sized, Wm_moved
Else

" Unknown
Endif

Chapter 7: Windows

276

The GFA BASIC Book

Return

Procedure Wm_closed
Closew Wind%

Return

Procedure Wm_topped
Openw Wind%

Return

Procedure Wm_moved
Adr%=Windtab+12*Wind%-12
Dpoke Adr%+4,Menu(5)
Dpoke Adr%+6,Menu(6)
@Modwind(Wind%,Menu(5),Menu(6),Menu(7),Menu(8))

Return

Procedure Wm_sized
Adr%=Windtab+12*Wind%-12
Dpoke Adr%+8,Menu(7)
Dpoke Adr%+10,Menu(8)
@Modwind(Wind%,Menu(5),Menu(6),Menu(7),Menu(8))
@Calc_slid(Wind%)
Wfl(Wind%)=False

Return

Procedure Wm_fulled
Adr%=Windtab+12*Wind%-12

If WH(Wind2%)

Else

lalready big
X%=Wx%(Wind%)
Y%=Wy%(Wind%)
B%=Wb%(Wind%)
H%=Wh%(Wind%)
Wil(Wind%)=False

@Wind_get(Hand%,5)

Wx%(Wind%)=Dpeek(Gintout+2)
Wy%(Wind%)=Dpeek(Gintout+4)
Wb%(Wind%)=Dpeek(Gintout+6)

Chapter 7: Windows

The GFA BASIC Book

277

Wh%(Wind%)=Dpeek(Gintout+8)
X%=Scrx%
Y%=Scry%
B%=Scrb%
H%=Scrh%
Wi(Wind%)=True
Endif
Dpoke Adr%+4,X%
Dpoke Adr%+6,Y%
Dpoke Adr%+8,B%
Dpoke Adr%+10,H%
@Modwind(Wind%,X%,Y%,B%,H%)
Return

" This routine is called to expand or change the position

" of a window. Here it is possible to put the window on

" a Byte boundary, to set a maximum ansd minimum size,

"to hold a complete window on the screen at all times,

"and to match the slide bars according to size.

Procedure Modwind(Wind%, X%, Y%,B%,H%)
On Wind% Gosub Modw1,Modw2,Modw3,Modw4
@Wind_set(Hand%,5,X%,Y%,B%,H%)
@Wind_get(Hand%,4)
On Wind% Gosub Mods1,Mods2,Mods3,Mods4
@Calc_slid{Wind%)

Return

Procedure Modw1

Return

Procedure Modw2
X%=X%+4 And &HFFF8 1Only in 8 steps movable

Return

Procedure Modw3

Return

Procedure Modw4

Return

Procedure Mods
Txts0%=Min(Txts0%,80-Dpeek(Gintout+6)/Chrbb%)
Txtz0%=Min(Txtz0%,100-Dpeek(Gintout+8)/Chrbh%)

Return

Chapter 7: Windows

278 The GFA BASIC Book

Procedure Mods2
Grs0%=Min(Grs0%,1280-Dpeek(Gintout+6))
Grz0%=Min(Grz0%,800-Dpeek(Gintout+8))

Return

Procedure Mods3

Return

Procedure Mods4
Pais0%=Min(Pais0%,640-Dpeek(Gintout+6))
Paiz0%=Min(Paiz0%,400-Dpeek(Gintout+8))

Return

Procedure Wm_hslid
@Wind_get(Wind%,4)
B%=Dpeek(Gintout+6)
On Wind% Gosub Hslid1,Hslid2,Hslid3,Hslid4
@Calc_slid(Wind%)
@Do_redraw

Return

Procedure Hslid1
Txts0%=Menu(5)*(80-B%/Chrbb%)/1000+0.5
Return

Procedure Hslid2
Grs0%=Menu(5)*(1280-B%)/1000+0.5

Return

Procedure Hslid4
Pais0%=Menu(5)*(640-B%)/1000+0.5

Return

Procedure Wm_vslid
@Wind_get(Wind%,4)
H%=Dpeek(Gintout+8)
On Wind% Gosub Vslid1,Vslid2,Vslid3,Vslid4
@Calc_slid(Wind%)
@Do_redraw

Return

Procedure Vslid1

Chapter 7: Windows

The GFA BASIC Book

279

Txtz0%=Menu(5)*(100-H%/Chrbh%)/1000+0.5 Imax 100 Lines
Return

Procedure Vslid2
Grz0%=Menu(5)*(800-H%)/1000+0.5
Return

Procedure Vslid4
Paiz0%=Menu(5)*(400-H%)/1000+0.5
Return

Procedure Wm_arrowed
@Wind_get(Wind%,4)
B%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)
On Wind% Gosub Arrow1,Arrow2,Arrow3,Arrow4
@Calc_slid(Wind%)
@Do_redraw
Return

Procedure Arrow1
On Menu(5)+1 Gosub 1pu,1pd,ilu,1ld,1pl,1pr, 11, 1Ir
Return
Procedure 1pu
Txtz0%=Max(Txtz0%-H%/Chrbh%,0)
Return
Procedure 1pd
Txtz0%=Min(Txtz0%+H%/Chrbh%,100-H%/Chrbh%)
Return
Procedure 1lu
Txtz0%=Max(Txtz0%-1,0)
Return
Procedure 1Id
Txtz0%=Min(Txtz0%+1,100-H%/Chrbh%)
Return
Procedure 1pl
Txts0%=Max(Txts0%-B%/Chrbb%,0)
Return
Procedure 1pr
Txts0%=Min(Txts0%+B%/Chrbb%,80-B%/Chrbb%)

Chapter 7: Windows

280 The GFA BASIC Book

Return
Procedure 1ll
Txts0%=Max(Txts0%-1,0)
Return
Procedure 1Ir
Txts0%=Min(Txts0%+1,80-B%/Chrbb%)
Return

Procedure Arrow2
On Menu(5)+1 Gosub 2pu,2pd,2lu,2ld,2pl,2pr 21l 2Ir

Return

Procedure 2pu
GrZO%=Max(GrzO%-H%,O)

Return

Procedure 2pd
Grz0%=Min(Grz0%+H%,800-H%)

Return

Procedure 2lu
Grz0%=Max(Grz0%-10,0)

Return

Procedure 2ld
Grz0%=Min(Grz0%+10,800-H%)

Return

Procedure 2pl
Grs0%=Max(Grs0%-B%,0)

Return

Procedure 2pr
Grs0%=Min(Grs0%+B%,1280-B%)

Return

Procedure 2l
Grs0%=Max(Grs0%-10,0)

Return

Procedure 2Ir
Grs0%=Min(Grs0%+10,1280-B%)

Return

Procedure Arrow4

On Menu(5)+1 Gosub 4pu,4pd,4lu,4ld,4pl,4pr,4il,4ir
Return
Procedure 4pu

Chapter 7: Windows

The GFA BASIC Book

281

Paiz0%=Max(Paiz0%-H%,0)

Return

Procedure 4pd
Paiz0%=Min(Paiz0%+H%,400-H%)

Return

Procedure 4lu
Paiz0%=Max(Paiz0%-10,0)

Return

Procedure 4ld
Paiz0%=Min(Paiz0%+10,400-H%)

Return

Procedure 4pl
Pais0%=Max(Pais0%-B%,0)

Return

Procedure 4pr
Pais0%=Min(Pais0%+B%,640-B%)

Return

Procedure 4|
Pais0%=Max(Pais0%-10,0)

Return

Procedure 4Ir
Pais0%=Min(Pais0%+10,640-B%)

Return

Procedure Do_redraw

@Wind_get(Hand%,4)
@Xredraw(Dpeek(Gintout+2),Dpeek(Gintout+4),Dpeek(Gintout+6),
Dpeek(Gintout+8))

Return

Procedure Wm_redraw

@Xredraw(Menu(5),Menu(6),Menu(7),Menu(8))

Return
Procedure Xredraw(M5%,M6%,M7%,M8%)

@Wind_update(1)

@Wind_get(Hand%,11)

While Lpeek(Gintout+6) width or height <>0
Tb%=Dpeek(Gintout+2)+Dpeek(Gintout+6)
Th%=Dpeek(Gintout+4)+Dpeek(Gintout+8)
Tx%=Max(Dpeek(Gintout+2),M5%)

Chapter 7: Windows

282

The GFA BASIC Book

Ty%=Max(Dpeek(Gintout+4),M6%)
Tb%=Min(Tb%,M5%+M7%)-Tx%
Th%=Min(Th%,M6%+M8%)-Ty%
If To%>0
If Th%>0
@Redraw(Wind%, Tx%, Ty%, Tb%, Th%)
Endif
Endif
@Wind_get(Hand%,12)
Wend
@Wind_update(0)

Return

Procedure Redraw(Wind%,X%,Y%,B%,H%)

@Wind_get(Hand%,4)
@Clip(X%,Y%,B%,H%,Dpeek(Gintout+2),Dpeek(Gintout+4))
Graphmode 0
Deffill ,0

PBOX -99,-99,999,999 Iclear box
"moved, otherwise there will be flickering
On Wind% Gosub Redraw1,Redraw2,Redraw3,Redraw4

Return

Procedure Redraw1

Pbox -99,-99,999,399

Deftext 1,0,0,Chrh%, 1 lInitial deftext
Anz%=Dpeek(Gintout+8)/Chrbh%+2
X%=-Txts0%*Chrbb% Isplit offset

Y%=Chrh%-Chrbh%
Q%=Txtz0%
For 1%=0 To Anz%
Add Y%,Chrbh%
Exit If Q%>99
Text X%, Y%, Txt$(Q%)
Inc Q%
Next 1%

Return

Procedure Redraw?2

Pbox -99,-99,999,999

Chapter 7: Windows

The GFA BASIC Book

283

Defline 1,1,0,0
Dpoke Windtab+64,Dpeek(Windtab+64)-Grs0%
Dpoke Windtab+66,Dpeek(Windtab+66)-Grz0%
For 1%=0 To 1279 Step 16
Box 1%,1%,1279-1%,799-1%
Next 1%
Return

Procedure Redraw3
Lpoke Windrsc%+16,Lpeek(Gintout+2)
@Objc_draw(Windrsc%,0,7,X%,Y%,B%,H%)
Return

Procedure Redraw4
P%(0)=Pais0%+X%-Dpeek(Gintout+2)
P%(1)=Paiz0%+Y%-Dpeek(Gintout+4)
P%(2)=P%(0)+B%-1
P%(3)=P%(1)+H%-1
P%(4)=X%
P%(5)=Y%

P%(6)=X%+B%-1
P%(7)=Y%+H%-1

P%(8)=3
Smfdb%(0)=Varptr(X$)

Bitblt Sfdb%/(),Dmfdb%(),P%()

Return

1

Procedure Calc_slid(Wind%)
Hand%=Dpeek(Windtab+12*Wind%-12)
@Wind_get(Hand%,4)
B%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)

On Wind% Gosub Cslid1,Cslid2,Cslid3,Cslid4

Return

Chapter 7:

Windows

284 The GFA BASIC Book

Procedure Cslid1
Hp=Txts0%/(80-B%/Chrbb%)
Vp=Txtz0%/(100-H%/Chrbh%)
@Set_slid(Hand%,B%/80/Chrbb%,H%/100/Chrbh%,Hp,Vp)
Return

Procedure Cslid2
@Set_slid(Hand%,B%/1280,H%/800,Grs0%/(1280-B%),Grz0%/(800-H%))

Return

Procedure Cslid3

Return

Procedure Cslid4
@Set_slid(Hand%,B%/640,H%/400,Pais0%/(640-B%),Paiz0%/(400-H%))
Return

Procedure Set_slid(Hand%,Hs,Vs,Hp,Vp)
@Wind_set(Hand%,15,Hs*1000+0.5,0,0,0)
@Wind_set(Hand%,16,Vs*1000+0.5,0,0,0)
@Wind_set(Hand%,8,Hp*1000+0.5,0,0,0)
@Wind_set(Hand%,9,Vp*1000+0.5,0,0,0)

Return

Procedure Reset
@Wind_olddesk
Gemsys 111
Menu Kill
For 1%=4 Downto 0

Closew 1%
Next 1%
Return

Procedure Openw(Nr%,Attr%,X%,Y%,B%,H%)
Local Adre
Adr%=Windtab+12*Nr%-12
Dpoke Adrde+2,Attr%
Dpoke Adr¥%+4,X%

Chapter 7: Windows

The GFA BASIC Book 285

Dpoke Adr%+6,Y%
Dpoke Adr%+8,B%
Dpoke Adr%+10,H%
Openw Nr%

Return

Procedure Clip(X%,Y%,B%,H%,X0%,Y0%)
Dpoke Ptsin, X%
Dpoke Ptsin+2,Y%
Dpoke Ptsin+4,X%+B%-1
Dpoke Ptsin+6,Y%+H%-1
Dpoke Intin, 1
Dpoke Contrl+2,2
Dpoke Contrl+6,1
Vdisys 129
Dpoke Windtab+64,X0%
Dpoke Windtab+66,Y0%
Return

* GEMSYS Routines

Procedure Objc_draw(Tree%,Start%,Depth%,X%, Y%,B%,H%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+10,H%
Gemsys 42
Return
Procedure Objc_find(Tree%,Start%,Depth%,X%,Y%)
Lpoke Addrin, Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Gemsys 43
Return
Procedure Objc_change(Tree%,0bj%,X%,Y%,B%,H%,Neu%,Flg%)

Chapter 7: Windows

286 The GFA BASIC Book

Lpoke Addrin, Tree%
Dpoke Gintin,Obj%
Dpoke Gintin+2,0 Ireserved
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,8%
Dpoke Gintin+10,H%
Dpoke Gintin+12,Neu%
Dpoke Gintin+14,Flg%
Gemsys 47
Return
Procedure Form_dial(F%,X%,Y%,B%,H%,Xb%,Yb%,Bb%,Hb%)
Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+10,Xb%
Dpoke Gintin+12,Yb%
Dpoke Gintin+14,Bb%
Dpoke Gintin+16,Hb%
Gemsys 51
Return
Procedure Rsrc_load(Nam$)
Nam$=Nam$+Chr$(0)
Lpoke Addrin,Varptr(Nam$)
Gemsys 110
Return
Procedure Rsrc_free
Gemsys 111
Return
Procedure Rsrc_gaddr(Type%,Index%)
Dpoke Gintin,Type%
Dpoke Gintin+2,Index%
Gemsys 112
Return
Procedure Rsrc_gtree(Index_%,Tree.%)
Lpoke Gintin,Index_%
Gemsys 112
“Tree.%=Lpeek(Addrout)

Chapter 7: Windows

The GFA BASIC Book 287

Return

Procedure Wind_get(H%,F%)
Dpoke Gintin,H%
Dpoke Gintin+2,F%
Gemsys 104

Return

Procedure Wind_set(H%,F%,A1%,A2%,A3%,A4%)
Dpoke Gintin,H%
Dpoke Gintin+2,F%
Dpoke Gintin+4,A1%
Dpoke Gintin+6,A2%
Dpoke Gintin+8,A3%
Dpoke Gintin+10,A4%
Gemsys 105

Return

Procedure Wind_find(X%,Y%)
Dpoke Gintin,X%
Dpoke Gintin+2,Y%
Gemsys 106

Return

Procedure Wind_calc(F%,Attr%, X%, Y%,B%,H%)
Dpoke Gintin,F%
Dpoke Gintin+2,Attr%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+10,H%
Gemsys 108

Return

Procedure Wind_update(Flg%)
Dpoke Gintin,Flg%
Gemsys 107

Return

Procedure Wind_newdesk(Tree%,Start%)
Lpoke Gintin,14
Lpoke Gintin+4,Tree%
Dpoke Gintin+8,Start%
Gemsys 105

Return

Procedure Wind_olddesk

Chapter 7: Windows

288

The GFA BASIC Book

@Wind_newdesk(0,0)
Return

Procedure Get_textsize
V%=Dpeek(Contrl+12)
Gemsys 77
Dpoke Contrl+12,Dpeek(Gintout)
Vdisys 38
Dpoke Contrl+12,V%

Return

Chapter 7: Windows

I creates normal text size

I gemsys 77 should do it

I'but I have not had much luck
Iwith it.

I'Out: (in ptsout)

I'h/h (Symbol) b/h (box)

APPENDICES

289

290 The GFA BASIC Book

%

APPENDIX A: BIOS

BIOS(0,L:ptr%) getmpb 144
BI10S(1,d%) bconstat 144
BIOS(2,d%) bconin 144
BIOS(3,d%,c%) bconout 144
BIOS(4,f%,L:buf% ,n%,rec%,d%) rwabs 144
BIOS(5,n%,L:adr% setexec 145
BIOS(6) tickcal 145
BIOS(7,d%) getbpb 145
BIOS(8,d %) bcostat 145
BIOS(9,d%) mediach 145
BIOS(10) drvmap 146
BIOS(11,x%) kbshift 146

Appendix A: BIOS CALLS

The GFA BASIC Book

291

XBIOS(0,t%,L:par%,L:vec%)
- XBIOS(1,n%)

XBIOS(2)
XBIOS(3)
XBIOS(4)

XBIOS(5,L:1%,L:p % ,r %)
XBIOS(6,L:adr %)

XBIOS(7,n% ,c%)
XBIOS(8,L:a%,L:0,d%,s %\ %,si%,n %)
XBIOS(9,L:a%,L:0,d % ,s %t % ,si%,n %)
XBIOS(10,L:a%,L.:0,d % ,s %t %,

XBIOS(11)

XBIOS(12,n%,L:a%)
XBIOS(13,n%,L:v%)
XBIOS(14,d %)

XBIOS(15,b % ,f % ,u% v Yot Y0 ;s J0)
XBIOS(16,Lu%,L:s%,L:c%)

XBIOS(17)

XBIOS(18,La%,L:0,L:s %t %f %)
XBIOS(19,L:a%,L:0,d % ,s %t %,si % ,n %)

XBIOS(20)

XBIOS(21,a% ,r %)
XBIOS(22,L:dt%)

XBIOS(23)
XBIOS(24)

XBIOS(25,n%,L:a%)

APPENDIX B: XBIOS

initmous
ssbrk
physbase
logbase
getrez
setscreen
setpallete
setcolor
floprd
flopfnt
flopwr
getdsb
midiws
mfpint
iorec
rsconf
keytbl
random
protobt
flopver
scrdmp
curscon
bsettime
bgettime
bioskeys
ikbdws

147
147
147
147
147
148
148
148
148
148
148
149
149
149
150
151
152
153
153
154
154
154
155
155
155
155

Appendix B: XBIOS CALLS

292 The GFA BASIC Book
XBIOS(26,n%) jdisint 155
XBIOS(27,n%) jenabin 155
XBIOS(28,c% ,n%) giacces 155
XBIOS(29,m%) offgibit 155
XBIOS(30,m%) ongibit 156
XBIOS(31,n% ,c%,d%. L:vec%) xbtimer 156
XBIOS(32,L:adr%) dosound 158
XBIOS(33,m%) setprt 160
XBIOS(34) kbdvbas 160
XBIOS(35,d % ,r %) kbrate 163
XBIOS(36,L:pointer) prtblk 163
XBIOS(37) vsync 163
XBIOS(38,L:vec%) superx 163
XBIOS(39) pntaes 163

Appendix B: XBIOS CALLS

The GFA BASIC Book

293

{}

&%

APPENDIX C: GEMDOS

GEMDOS(0)
GEMDOS(1)
GEMDOS(2,c%)
GEMDOS(3)
GEMDOS(4,c%)
GEMDOS(5,c%)
GEMDOS(6,c%)
GEMDOS(7)
GEMDOS(8)
GEMDOS(9,L:adr %)
GEMDOS(10,L:adr %)
GEMDOS(11)
GEMDOS((14,d %)
GEMDOS(16)
GEMDOS(17)
GEMDOS(18)
GEMDOS(19)
GEMDOS(25)
GEMDOS(26L:adr %)
GEMDOS(42)
GEMDOS(43,d%)
GEMDOS(44)
GEMDOS(45,t%)
GEMDOS(47)
GEMDOS(48)
GEMDOS(49,L:size %,ret %)

p_termold 135

c_conin
¢_conout
c_auxin
¢_auxout
¢_prnout
c_rawio
c_rawcin
c_neci
C_COnws
c_conrs
¢_coni
d_setdrv
€_conos
c_prnos
c_auxis
C_auxos
c_getdrv
f setdta
t getdate
t setdate
t gettime
t_settime
f getdta
s_version

|

|

135
136
136
136
136
136
136
136
137
137
137
137
137
138
138
138
138
138
138
139
139
139
139
139

p_termres 139

Appendix C: GEMDOS

294 The GFA BASIC Book

GEMDOS(54,L:adr %,d %)
GEMDOS(57,L:adr%)
GEMDOS(58,L:adr%)
GEMDOS(59,L:adr %)
GEMDOS(60,L:adr %,attr %)
GEMDOS(61,L:adr %,mode %)
GEMDOS(62,h %)
GEMDOS(63,h%,L:len%,L:adr%)
GEMDOS(64,h %,L:1en %,L:adr %)
GEMDOS(65,L:adr %)
GEMDOS(66,L:n % ,h % ;mode %)
GEMDOS(67,L:adr%,flg%,attr%)
GEMDOS(69,h %)
GEMDOS(70,n%,s%)
GEMDOS(71,L:adr %,d %)
GEMDOS(72,L:size %)
GEMDOS(73,L:adr %)
GEMDOS(74,0,L:adr%,L:size%)
GEMDOS(75,f%,L:nam %,L:cmd %,L:env %)
GEMDOS(76,ret%)
GEMDOS(78,L:nam%,attr%)
GEMDOS(79)
GEMDOS(86,0,L:0ld %,L:neu%)
GEMDOS(87,L:tdbuf%,h%,ﬂg%)

Appendix C: GEMDOS

d free
d_create
d_delete
d_setpat
f create
f_open
f_close

f read
f_write
f_delete
f_seek
f_attrib

f dup
f_force
d_getpath
m_malloc
m_free
m_shrink
p_exec
p_term
f_sfirst

-f_snext

f_rename
f_datime

139
140
140
140
140
140
140
141
141
141
141
141
142
142
142
142
142
142
143
143
143
143
143
143

The GFA BASIC Book

295

&%

APPENDIX D: GEMSYS

GEMSYS10,.......c0i00ivoennnninin 178
GEMSYS11........ 178
GEMBYS 12 . .. « i vunwanns s mnnsss fidsn 178
GEMSYS13. i 179
GEMSYS14. i 179
GEMSYSTIS. . . . csvuwessnsnmnns s sinsdd 179
GEMSYS19. e 179
GEMSYS20.......... i 181
GEMSYS2L,cc. i onvnmmnnmussdiiasa 181
GEMSYS 22, i 182
GEMSYS23. e 182
GEMSYS 24, covawnartomaimis s 183
GEMSYS 25, e 183
GEMSYS 26 . . ccovn v v vmensn o rimmadihis 186
GEMSYS30........... i 188
GEMBYS 3L, cvconnuvornnnnmipiosdu 188
GEMSYS 32, ccsneiiinnwnnmvnndds 189
GEMSYS33. i 189
GEMSYS 3. . . covcuncesvmanmssdbimays 189
GEMSYS 35,0niiivuvammevuimain 190
GEMSYS40. i 191
GEMSYS AL, . . :vcnveissnmnmpens nissds 192
GEMSYS 42, iisvannannisonnpfds 192
GEMSYS43. e 192
GEMSYS44. 193
GEMBYSAS., . o con s snunmnames s ndnh g 193

Appendix D: GEMSYS

296 The GFA BASIC Book
GBS Al . |, 5 s T 30 b e i s it 193
GEMSYS A7 . .\ i e ne b o snscn e 194
GEMBNS B -, . ;oo s 5 m w5 s mmn e 195
GEMEN NS . om0 8 s s e s Tori s v w 196
GEMSYS T2 .\ iinw i 55 at asn in s 196
GEMSYS S, , o e bt iy i s s ot 197
GEMSYE ST st ms do do Blasl oy o 197
GENBVS I F s P e e 198
LB Y ST o o o th ae s o o Bt o o 199
GEMSYS 70 . s e n e henesnse e, 199
GEMBY B3 o) e € it e b v o 555 199
GEMSYS 74. ooy iims s o 200
GENISYS 75 . .o ohiniin b ot o o ol i 200
GENIRE ST .o v a0 i v & i T 201
GEMBYS TS v . oo ba iyl o USSR 201
GENISYS T o vy G E st o i o s TS 202
GENTSVSRIL, (i wafmecy wn o Sl e 203
BRSNS : .« 0 b s gt sha e e 203
GEMSYS S ;o sy bn f bt 204
S R e A TR b 204
GEMEVSIN: g e 08 s i it SRk 205
GEMBNEIO0 = oz 0 27 vl s 0ol e hs 206
GEMSYSTOL . .o v iy g i m i s 206
CEMBNBA0D - oy o 1) o o Aeede 206
L0 2 (1 e L SR e i 206
GEMSERTOE. 7 Gy vmgr . 2 52 pioaas) MR 208
GEMSYS IS ¢ ¢ fonls v (7 0 PN ES ol iR 208
Sahiich G e T e B A I R 210
610010 Gk (] R I RN A RS 5 211
GEMBN GO o s sy e iy - ERE SR 211
GENISYRAO8" y o oo v i meieiin e A8 212
GEMY ST o o f i sl G FS 214
CENISYS Bl 5 or 0y co iy o - B ARt 214
CEMY SRR, -, oy B s B 215
GBI I) - o S g o 3 i o RS 215
LU0 R . S PRV o5 215
GEMSNS LI . 50 o0y ol o g g e 216
&1 R o b SRR e R I I Rt s . 217
CIENISVS ROE -) plsns 5 0 oo o S SRR 218
GIENMSYSNAD. ¢ 3 g 3 Tl o peia s it 218

Appendix D: GEMSYS

The GFA BASIC Book 297

GEMSYS124. 219
GEMSYS125......... 219

Appendix D: GEMSYS

298

INDEX

299

300

GFA BASIC Book

10 mn_selected 185
20 wm_redraw 185
21 wm_topped 185
22 wm_closed 185
23 wm_fulled 185
24 wm_arrowed 185
25 wm_hslid 186
26 wm_vslid 186
27 wm_sized 186
28 wm_moved 186
29 wm_newtop 186
40 ac_open 186
40 track format 89
41 ac_close 186
80 track format 89
AES 132

turn off 163
AES-routines 174
ALERT command 196
Alertbox 224

Application Environment

Services 132
ARRAYFILL 8,45
Arrow events 267
Arrowx 267

Index

Index

Assembly picture switch
116
Bad sectors 91
Basepage 114, 190
Basic Input/Output System
133
Baud rate and timer 156
BIOS 133
See Also Appendix A
page 290
BITBLT 28, 36, 42, 45,
127, 174, 230, 267,
269, 270
Bjc_draw 249
Blitter chip 3
BLOAD 5, 34
BMOVE 256
Boot sector 153
BOX 20
BOXCHAR 241
BOXINFO 228
BOXRSC 240
BPUT/BGET 17
BSAVE 4, 34
BSAVE/BLOAD 17

GFA BASIC Book

301

Buffer size 150
Bug in TOS 115, 125, 142
Button-routine 265
C viii
C-String 229
Calc_slide 269
Calculations
faster algorithms 6
floating point processor
6
CHAIN command 203, 218
Character Conversion
program 93
Character sets 121
Character-Offset-Table
127
CIRCLE 20
Clipping 268
restored 25
turned off 25
COLOR 22
Commands
ALERT 196
ARRAYFILL 8
BITBLT 28, 45
BLOAD 5, 34
BOX 20
BSAVE 4, 34
CHAIN 203, 218
CIRCLE 20
Clipping 25
DEFTEXT 121
DPOKE 122
EXEC 113
FILL 21
GET 28, 37
GOTO 175
Graphmode 30
INPUT 35
Input-Routine 49

JMP 114

LPOKE 122

MAX 67

MIN 67

OPENW 207

origin 25

PBOX 3, 20

PRBOX 20

PUT 28

RBOX 20

RESERVE 124

SGET 3

SPUT 3,43

TEXT 66
Commodore 64 vi
Computer lock up 195
Corner points 41
Data arrays 55
Data security 17
Data sort 16
DATA statements 95, 98
DEFFN 124, 138
DEFMOUSE 201
DEFTEXT 121,125
Desk_change 265
Deskrsc 264
DESKTOP.INF 218
Destination rectangle 41
DIALOG 257
Dialog box 249, 255
Directory retrieve program

74

DO-LOOP-EXIT 58
Do_redraw 267
Dosound-routine 169
DPEEK 174, 226, 256
DPOKE 122, 226, 256
ELISE program 164
END command 265
ESC code 171

Index

302

GFA BASIC Book

Index

Ev_mflags% 184
Event_xxx 181
Evnt_dclick 186
Evnt_multi 184
EXEC 113
EXIT-object 195
Extended Basic
Input/Output System
133
F-box 262, 265
FBOXTEXT 242
Filecopy 70
Fileselect routine 205
FILESELECT-box 124
FILL 3, 21
FLAGS 227
Flicker Free Graphics 42
FNT-files 122
Font 121,125
FONT DEMO program 128
Font-header 122, 126
Fontdemo 121
FOR-NEXT 7, 8
Form_alert 196
Form_center 197, 255
Form_dial 196, 256, 265
Form_do 193, 249, 250,
255
Form_error 197
Format 88, 90
FORTH vi
FS.TTP program 86
Fsel_input 205
GEM viii, 132
GEM Disk Operating
System 133
GEM-VDI 20
GEMDOS 122,133
See Also Appendix C
page 293

GEMSYS 77 270
See Also Appendix D
page 295
GET 28, 37, 100, 123, 244,
267
Get_chrlink 123
GFA BASIC viii
GOTO command 58, 175
Graf_dragbox 199
Graf_growbox 199, 200
Graf_handle 201, 270
Graf_mkstate 202
Graf_movebox 199, 200
GRAF_RUBBERBOX 198
Graf_shrinkbox 199, 200
Graf_slidebox 201
Graf_watchbox 200
Graphic Environment
Manager 132
Graphmode command 30
important modes 33
Inverse Transparent 30
Replace 30
Transparent 30
Xor 30
Graphmode-setting 31
Hardcopy 68, 154
HEAD 226
Head index 150
Head-pointer 234
Horizontal-Offset-Table
127
1/0 redirection capabilities
134
ICON-editor 247
ICONBLK 230
ICONS 246, 230, 232
Image 232
INC 7
INFOW 208

GFA BASIC Book

303

Initialization Program 178

INPUT command 35

Input-Routine 49

Inserting machine code
114

INSTR 256

Integer array 190

Intel format 183

JMP command 114

JOYSTICK.BAS 161

Keyclick disabled 169

Load_font 122,174

LOC-Pointer 16

Long word 150, 230

LPEEK 226

LPOKE 122, 226

LST-file 10

Magnify function program
97

MAKEICON.BAS 245

Mask 246

MAX command 67

MC68000 viii

Memory Usage 29

MENU KILL 188

MENU OBOX 269

MENU(0)-MENU(15) 184

Menu-tnormal 189

Menu_bar 188

Menu_icheck 188

Menu_ienable 189

Menu_text 189

Message-routine 266

MIN command 67

MINIDAT program 17

Mirror effect 38

Modwind 266

Moving Bit blocks 42

MS-DOS 197

Multi-tasking 181

Multiple programs in
memory 178
Newdesk 210
NEXT 226, 235
Next-pointer 234
Normal format 89
Obj_delete 192
Obj_draw 266, 270
Objc_add 191
Objc_change 194
Objc_draw 192, 195
Objc_edit 193
Objc_find 192
Objc_offset 193
Objc_order 193
Object tree 191, 224
Object-Library 191
OFFGIBIT 156
ON MENU 183, 265
ONGIBIT 156
Open_work 174
Openw 207, 267
Optimization 2
Page_Flipping 3
Parent object 227
PASCAL 11
PBOX 3, 20, 57, 270
PCIRCLE 20
PEEK 161
PELLIPSE 20
Plotter-graphic mode 67
Plotter-mode 68
PRBOX 20
PRG-file 96, 222
Primitives 20
PRINT/INPUT 5
Programs
Assembly picture
switch 116
baud rate and timer 156

Index

304

GFA BASIC Book

Index

Programs (Cont.)

BOXRSC 240
Character Conversion
93
Check Resolution 225
copy files 70
DATA statements 95
DIALOG 257
directory retrieve 74
draw a circle 67
ELISE 164
evnt_dclick 186
exiting GEM 180
FBOXTEXT 242
Fileselect 205
FONT DEMO 128
form_alert 196
form_center 197
form_dial 196
form_do 195
form_error 197
Format 90
FS.TTP 86
fsel_input 205
graf_dragbox 199
graf_growbox 199
Graf_handle 201
graf_mkstate 202
graf_movebox 199
GRAF_RUBBERBOX
198
graf_shrinkbox 199
graf_slidebox 201
graf_watchbox 200
ICON-editor 247
inserting machine code
114
JOYSTICK.BAS 161
keyclick disabled 169
maghnify function 97

MAKEICON.BAS 245
Menu-thormal 189
Menu_bar 188
Menu_icheck 188
Menu_ienable 189
Menu_text 189
mirror effect 38
mouse dependant 182
mouse pointer
dependant 182
move a picture segment
40
Multiple programs in
memory 178
newdesk 210
obj_delete 192
Objc_add 191
Objc_change 194
Objc_draw 192
objc_edit 193
objc_find 192
Objc_offset 193
objc_order 193
OPENW 207
pass messages 178
Quicksort 108
recursion example 101
Recursion Modification
106
reserving memory 115
RSCTEST.BAS 236
Rsrc_free 214
Rsrc_gaddr 215
Rsrc_load 214
rsrc_obijfix 215
rsrc_tree 215,218
save and load 100
save the old file 71
Scroll Demo 44
scrp_read 203

GFA BASIC Book 305
Programs (Cont.) Reserving memory 115
search 83 Resource Construction Set

shel_envrn 219
shel_find 215, 219
shel_read 217
shel_writr 217
simultaneous running
179
SLIDER 250
software recorder 179
sound 61
use of accessories 181
wait loop 183
wind_cal 212
wind_close 206
wind_create 206
wind_delete 206
wind_find 211
wind_get 208
wind_open 206
wind_set 208
wind_update 211
WINDOW.BAS 231, 271
PTSOUT command 56
PUT 28, 244, 267
Quicksort 11,108
QUICKSORT program 15
RBOX 20
RCS file 3
Receiving data 4
Recursion 101
solving problems in
ever decreasing
steps 101
Recursion example 101
Relocatable program 96
REPEAT UNTIL MOUSEK
106
REPEAT-UNTIL 8
RESERVE 124

49, 222
Resource window 263, 264
RSC 197
RSC-file 175, 222, 233
RSCTEST.BAS 236
Rsrc_free 214
Rsrc_gaddr 215
Rsrc_load 197, 214, 216,
255
Rsrc_objfix 215
Rsrc_tree 215,218
SCAN-code 72
Scroll Demo 44
Scrp_read 203
SEARCH program 83
Serial port 136
Set_slid 269
SETCOLOR 22
Setscreen 42
SGET 3, 255
Shel_envrn 219
Shel_find 215, 219
Shel_read 217
Shel_writr 217
Simulate Caps-Lock 146
Slider 269
Slider bar 249
SLIDER program 250
Sorting 11
Sorting data 16
SOUND 61, 65, 169
Source Memory Form
Description Block
36
Source rectangle 41
SPEC 227
SPUT 3, 43, 255, 256
Start% 192

Index

306 GFA BASIC Book
Starting tree 192 Wind_cal 212
STATE 227, 241 Wind_calc 264

Index

Subordinate objects 227
TAIL 226
Tail index 150
Te_color 229
Te_font 229
Te_just 229
Te_ptext 229
Te_ptmplt 229
Te_pvalid 229
Te_resvdi 229
Te_resvd2 229
Te_thickness 229
Te_tmplen 229
Te_txtlen 229
TEDINFO 229
TEXT-command 66
TITLEW 208
TOS 132
Touchexit 250
Tramiel Operating System
132
Tree structure 234
Tree% 175, 188
Truncate lines 24
TYPE 226
Unload_font 123
Unreserve 124
VDI-functions 121
bypassing 121
VDI 132
VDI-handle 201
Virtual Device Interface
132
Vst_font 125
VT-52-emulator 171
WAVE 61, 65, 169
WAVE-period 66
Wind-open 207

Wind_close 206, 207
Wind_create 206, 207
Wind_delete 206, 207
Wind_find 211
Wind_get 208, 209, 264
Wind_open 206
Wind_set 208, 210
Wind_update 211
Window 262
Window-handle 266
WINDOW.BAS 231, 271
Windtab 266
Wm_arrow 267
Wm_closed 266
Wm_fulled 266
Wm_hslid 267
Wm_moved 266
Wm_redraw 267
Wm_sized 266
Wm_topped 266
Wm_vslid 267
XBIOS 133

See Also Appendix B

page 291

Xbios call 43
XBIOS(4) routine 40
Xredraw 267

GFA BASIC Book 307

308

GFA BASIC Book

Come and join us at the Roundtable,m
Where the GEniet™ and the Griffin meet!

Does this sound like a fantasy? Well, it may just be a dream come
true! When General Electric’s high-tech communications network
meets MICHTRON’s programmers and support crew, ST users around
the country will hear more, know more, and save more.

We know that our low prices and superior quality wouldn’t mean as
much to you without the proper support and service to back them up.

So we are now available on GEnie, the General Electric Network for
Information Exchange. GEnie is a computer communications system
which lets you use your personal computer, modem, and
communication software to gain access to the latest news, product
information, electronic mail, games, and MICHTRON’S own
Roundtable!!

The Roundtable Special Interest Groups (SIG) gives you a means of
conveniently obtaining news about our current products, new releases,
and future plans. Messages directly from the authors give you valuable
technical support of our products, and the chance to ask questions
(usually answered within a single business day).

GEnie differs from other computer communication networks in its
incredibly low fees. With GEnie, you don’t pay any hidden charges or
minimum fees. You pay only for the time you’re actually on-line with
the MICHTRON product support Roundtable, and the low first-time
registration fee.

For more information on GEnie, follow this simple procedure for a free
trial run. Then if you like, have ready your VISA, Mastercard or
checking account number and you can set up your personal account
immediately -- right on-line!

1. Set your modem for half duplex (local echo)--300 or 1200 baud.

2. Dial 1-800-638-8369. When connected, type HHH and press
Return.

3. At the U#= prompt, type XJM11957,GENIE and press Return.

And don’t forget, MICHTRON’s Bulletin Board System, The Griffin
BBS, is still going strong (the griffin is the half-lion/half-eagle creature
on our logo). Our system is located at MICHTRON headquarters in
Pontiac, Michigan. For a trial run, call (313) 332-5452.

GEnie and Roundtable are Trademarks of General Electric Information Services.

T e T PRGN s :;-._ﬂ.

by GFA Systemtechnik

You've seen the program, now it's time to read the Book: The GFA BASIC
BOOK. The Book that will transform you into the programmer you were
meant to be. This easy to comprehend intermediate manual, written by Frank
Ostrowski —author of the GFA BASIC Interpreter, is designed for the person
with a casual knowledge of BASIC who wants to gain an understanding of the
more complicated aspects of the programmers art. It guides you step by step
through many intricate facets of BASIC and GEM programming.

Best of all, there is a disk enclosed
with over 75 programs and files.
Virtually every program and prin-
ciple discussed in the manual is
present as .LST or .BAS files, so
youwill nothavetoengageinlotof
bothersome typing before you see
results. Many of these files and
procedures can be imbedded di-
rectly into your own programs.

Chapter topics include:

OPTIMIZATION: a list of rou-
tines that will make your programs
run faster and more efficiently.

GRAPHICS: which contains sec-
tions on Clipping, Raster Graphics
Commands, Flicker Free Graph-
ics, and more.

TIPS & PROGRAMS: apotpourri
of features dealing with everything
from Sound and Magnify tech-
niques, to Procedures for Copying
files, Formatting disks, and obtain-

ing Directories from within BA-
SIC programs, as well as the use of
Recursion, Scan Codes, different
Fonts and the EXEC command. .

Design multiple Windows easily:
Just one of many programs included

This brief summary doesn't begin
to cover the wealth of tips and in-
formation you'll find in the pages
of this book, and on the accompa-
nying disk. Itis an essential teach-
ing guide and a remarkable refer-
ence for anyone who uses GFA
BASIC - or plans to, and who
wants to do so with more skill and
expertise.

GFA BASIC BOOK | B GFA BASIC 3.0
Afarl ST Intermediate Programmers Tutorial B The Atari ST Programming Language
By GFA Systemtechnik" _ B B by GFA Systemtfechnik

