

The GF A BASIC
Book

An Intermediate Tutorial

For the GFA BASIC Interpreter

With Disk Enclosed

For the Atari ST Series of Personal Computers

Written by Frank Ostrowski,
GFA Systemtechnik

Distributed By MICHTRON, Inc.
576 South Telegraph
'3': (313) 334-5700

BBS: (313) 332-5452

YOUR RIGHTS AND OURS: This copy of THE GFA BASIC BOOK
is licensed to you. You may make copies of the disk for your own use or for archival
storage. You may also sell your copy without notifying us. However, we retain copy­
right and other property rights in the program code and documentation. We ask that THE
GF A BASIC BOOK be used either by a single user on one or more computers or on a
single computer by one or more users. If you expect several users of THE GF A BASIC
BOOK on several computers, contact us for quantity discounts and site-licensing agree­
ments. Also if you intend to rent this program, or place this program on a BBS, contact
us for the appropriate license and fee.

We think this user policy is fair to both you and us; please abide by it. We will not toler­
ate use or distribution of all or part of THE GFA BASIC BOOK or its documentation by
any other means.

LIMITED WA R RANTY In return for your understanding of ourlegal rights,
we guarantee THE GFA BASIC BOOK will reliably perform as detailed in this docu­
mentation, subject to limitations here described, for a period of thirty days. If THE GFA
BASIC BOOK fails to perform as specified, we will either correct the flaw(s) within 15
working days of notification or let you return THE GF A BASIC BOOK to the retailer for
a full refund of your purchase price. If your retailer does not cooperate, return THE GFA
BASIC BOOK to us. While we can't offer you more cash than we received for the pro­
gram, we can give you this choice: 1) you may have a cash refund of the wholesale price,
or 2) you may have a merchandise credit for the retail price, which you may apply toward
buying any of our other software. Naturally, we insist that any copy returned for refund
include proof of the date and price of purchase, the original program disk, all packaging
and documentation, and be in salable condition.

If the THE GFA BASIC BOOK disk becomes defective within the warranty period, re­
turn it to us for a free replacement. After the warranty period, we will replace any defec­
tive program disk for $5.00.

We cannot be responsible for any damage to your equipment, reputation, profit-making
ability or mental or physical condition cau~ed by the use (or r.1isuse) of our program.

We cannot guarantee that this progralll will work with hardware or software not generally
available when this program was released, or with special or custom modifications of
hardware or software, or with versions of accompanying or required hardware or software
other than those specified in the documentation.

Under no circumstances will we be liable for an amount greater than your purchase price.

Please note: Some states do not allow limitations on how long an implied or express war­
ranty lasts, or the exclusion or limitation of incidental or consequential damages, so some
of the above limitations or exclusions may not apply to you.

UPGRADES AND REVISIONS: If you return your information card,
we will notify you if upgrades to THE GFA BASIC BOOK become available. For minor
upgrades and fixes, return the orig~ disks to us with $5.00. For major revisions, the
upgrade fee is typically 15-20% of original suggested retail price.

FEEDBACK Customer comments are VERY important to us. We think that the
use, warranty and upgrade policies outlined above are among the fairest around. Please
let us know how you feel about them.

Many of the program and documentation modifications we make result from customer
suggestions. Please tell us how you feel about THE GFA BASIC BOOK - your ideas
could make the next version better for all of us.

COPYRIGHT NOTICE The TilE GFA BASIC BOOK program code and
its documentation are Copyright © 1987 GFA Systemtechnik.

ii

The GF A BASIC Book

Published in the U.S.A. by MICHTRON, Inc.
576 South Telegraph
Pontiac, Michigan 48053

© 1987 GFA Systemtechnik

1 st English Edition: September 1987
2nd English Edition: April 1988

All Rights Are Reserved. No Portion Of This
Documentation May Be Reproduced In Any Form Without
The Express Written Permission Of The Owner Of
Copyright.

Manual Written by Frank Ostrowski
Text Translated by Wilford Niepraschk
Book Design by Thomas L. Lo.glfill
Cover Design by Paul Deckard

88 89 9091 92 10 9 8 7 654 3 2

ISBN 0-923213-85-6

Further Trademark and Copyright Notices:

Commodore 64 is a registered trademark of Commodore Computers.

DEC, VT, & VT52 are registered trademarks of Digital Equipment
Corporation.

GEM is a registered trademark of Digital Research Inc.

Atari,520ST, 1040ST, Mega, and TOS are regi*red trademarks of
ATARI Corp.

MS DOS is a registered trademark of Microsoft.

D.E.G.A.S. is a registered trademark of Batteries Included.

Printed in the United States

iii

Table of Contents

INTRODUCTION v
The Origins of GF A BASIC. vi

Chapter 1: OPTIMIZATION 1
1.1 Title Screen. 3
1.2 Diskette data. 4
1.3 Calculations 6
1.4 Sorting.......................... 11
1.5 Mini Data. .. 14

Chapter 2: GRAPHICS. 19
2.1 Setcolor.......................... 22
2.2 Clipping......................... 24
2.3 Raster Graphic Commands. 27
2.4 Graphics mode. . t.(.. 30
2.5 Graphics on Diskette. 34
2.6 Flicker Free Graphics. 42

Chapter 3: TIPS & PROGRAMS. 47
3.1 Dialog Boxes Homemade 49
3.2 Sound 61
3.4 Copying Files 70
3.5 Scan Codes. .. 72
3.6 Directory :; 74
3.7 Formatting Diskettes 88
3.8 Printers 93
3.9 Magnify 97
3.10 Recursion 101
3.11 EXEC 113
3.12 Fonts. .. 121

Chapter 4: GEMDOS, BIOS and XBIOS 131
4.1 GEMDOS....................... 135
4.2 BIOS.......................... 144

iv

4.3 XBIOS......................... 147
4.4 ELISE 164
4.5 VT 52-Emulator 171

Chapter 5: AES 173
5.1 APPLication Library. 178
5.2 EVENT Library 181
5.3 MENU Library (Menu usage) 188
5.4 OBject Library. 191
5.5 FORM Library. 195
5.6 GRAF Library 198
5.7 SCRaP Library 203
5.8 FileSELector Library. 205
5.9 WINDow Library 206
5.10 ReSouRCe Library \ 214
5.11 SHELl Library 217

Chapter 6: RSC 221
6.1 Resource Construction. 226
6.2 RSC1.BAS................. 233
6.3 Testing the Objects. 240
6.4 ICONs 244
6.5 Touchexit........................ 249
6.6 Dialog............ '. 255

Chapter 7: USING WINDOWS 261

APPENDICES 289
Appendix A: BIOS. 290
Appendix B: XBIOS 291
Appendix C: GEMDOS 293
Appendix D: GEMSYS 295

INDEX 299

v

Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4:
Fig. 5:
Fig. 6:
Fig. 7:
Fig. 8:
Fig. 9:
Fig. 10:
Fig. 11:
Fig. 12:
Fig. 13:
Fig. 14:
Fig. 15:
Fig. 16:
Fig. 17:
Fig. 18:
Fig. 19:
Fig. 20:
Fig. 21:
Fig. 22:
Fig. 23:
Fig. 24:

List of Diagrams

Graphmode Settings. ,31
Input Screen 55
SOUND and W A VB. 66
HARDCOPY Routine. 69
Hexidecimal Key Codes. 73
Example of SORTDIR 80
Example of XDIR 81
TTP 86
FORMA T.LST ,90
An Example of Recursion. 104
Recursion Modification. 107
Font Examples. 127
RSC-file Dialog Box. 233
Tree Structure. 234
RSC-file Tabl~,c. 235
Object Tree construction. 236
RSCTEST.BAS hardcopy 239
Small Object 241
Text in a filled rectangle. 243
Icons 247
Dialog Box with Slider. 249
Positioning the Slider 254
Dialog Box with Text Input. 256
Windows. 263

vi

INTRODUCTION

(

vii

viii The GFA BASIC Book

THE ORIGINS OF

GFABASIC

It began with an Atari 400, a small computer sim­
ilar to the Commodore ~4 There existed a BASIC for that
computer. This BASIC was neither fast nor comfortable to
use, but, with only 16K of RAM, large programs could not
be written for it anyway. After upgrading the computer to
48K of memory and 88K of disk space, I wrote some pro­
grams in assembly code. Eventually I ended up with a
number of help routines, and a BASIC language with
which I could marginally use these routines. After trying
FORTH, I decided to take a closer look at BASIC, and
slightly modified it. 7rhese modifications eventually be­
came so numerous that I decided to completely replace
many of the routines. To remain compatible, some of the
routines were left untouched. There were a lot of com­
mands I did not like, such as computed GaTOs, and line
numbers were a nuisance.

This new BASIC was published in a computer maga­
zine. Shortly thereafter I received an offer from GF A Sys­
temtechnik GmbH to write a workable BASIC for a new
computer, the Atari ST.

Introduction

The GFA BASIC Book

The Atari ST incorporates a fresh modern processor. Its
operating system, although certainly not the newest or
fastest (nor is it very compact, having been written in C
language) is very powerful. And, even though it lacks
multitasking, one can write programs in high level lan­
guages that offer exciting performance.

Shipped with a BASIC language that did not even mea­
sure up to the one included with the Atari 400, the ST was
destined to become a language developers dream. It was
possible now to develop a BASIC that did not have to con­
form to the standard of any other interpreter.

This new BASIC should have the simplicity of BASIC
combined with the possibility of writing well structured
code. The fIrst step was to eliminate the line numbers.
This made the task difficult from the outset because a solu­
tion had to be found to avoid the usual confusion of Ga­
TOs and GOSUBs. It was important to be able to pass pa­
rameters to procedures and to dec1~e local variables, thus
enabling the programmer to use recursive programming
techniques. The BASIC should also make sure that all
loops are properly closed before the program starts execu­
tion.

The GOTO statement was one of the last statements
added to this BASIC. After much thought, I even allowed
the GOTO command to be used between different proce-
dures. '

In an Interpreter it is possible to use segmented PEEKs
and POKEs to simulate one of the Intel-processors. In a
compiled program, this would greatly affect execution
time.

The unsuitable 16 bit integers would not be used either,
as this makes it harder to address all of the memory. Be­
sides, the processor already uses 32 bits internally, thus al­
lowing it to process larger numbers without speed loss.

.
IX

The Origins of GF A Basic

x The GFA BASIC Book

The editor of this BASIC had to be screen oriented and
not use the windows of GEM. It would be virtually impos­
sible to create non GEM programs from within the GEM
interface. Other reasons exist for not having the editor run
under GEM.

In the case of a program error, it is often possible to save
program changes that were made. Something that cannot
always be done from within GEM because the windows
lock up. So it happened that a relatively fast editor, one
that could be used without a mouse, was created.

I wanted to write the BASIC completely in machine
language so that it would be fast and take up only a small
portion of memory. Other languages like C use only a few
machine instructions outside of the library, and they always
pass parameters through the stack. The MC68000 has a
very powerful instruction set that can be better utilized with
an Assembler.

Taking all this into consideration, Version 1.0 of
GFA BASIC came into existence less then 6 months later.

While I was writing the interpreter, I carefully made
sure that the finished programs could be easily compiled.
That is why the MERGE command is missing. This com­
mand may be useful in an interpreter, but is of little value
in a compiler. -

While I was working on the compiler, I was confronted
with requests to expand the command set. Some of those
requests I was able to incorporate in Version 2.0 of the in­
terpreter. Most new commands, like VOID, BASEPAGE,
and OPTION, were inserted to give the compiler more op­
timization opportunities, and to provide the programmer
with more control over the compiling process.

Even an extensive computer language cannot fulfill all
the wishes of everyone who uses it. This book will, there-

Introduction

The GFA BASIC Book

fore, show you how to create necessary routines using
GFA BASIC.

This book does not present you with completed applica­
tions; it gives routines that can be incorporated into your
own programs.

GFA BASIC is only a BASIC and not a Modula 2,
therefore you cannot create modules in quite the same way.
Modula 2 takes a lot more coding and a multitude of small
modules to write an application. Modula 2 can only be
used as a compiler. BASIC includes numerous commands
that would have to be created within libraries in M odula 2.

Part of this book discusses many different operating
system routines which include examples wherever I felt
they were needed. Naturally, there are routines that can be
run directly without going to the low-level operating sys­
tem routines, but rather with built in commands.

An important part of the book is the last chapter, where
a complete GEM program is shown. It demonstrates how
to use all parts of a window. This is not easy to do in
GEM, but it makes it convenient for the user of the pro­
gram. For the programmer, GEM always means extra
work. There are many programs where most of the code is
written just to manipulate the window.

I hope that you find the routines and tips in this book
useful, and I wish you much success.

.
Xl

The Origins oj GF A Basic

xii

CHAPTER 1

OPTIMIZATION ,

1

2 The GFA BASIC Book

After you have written a good program you natu­
rally want to distribute it, sell it, or use it yourself. Now
you discover that the program runs, but it is unacceptably
slow.

The fIrst step toward Optimization is to determine which
part of the program takes up so much time ...

Chapter 1: Optimization

The GFA BASIC Book

1.1 Title Screen

Often a program displays a graphic screen which con­
tains many pieces of infonnation inside little rectangles.
The remaining area of these rectangles is filled using the
FILL command. This FILL command takes up a lot of
time, and, if used every time you return to the main menu,
it could easily daunt you with its slowness. It would be
better to use the PBOX command on the background and
the PBOX command on the foreground, but without a fill
pattern.

Or you can draw the title picture once and then use the
SGETISPUT command to quickly display it on the screen.
This has the disadvantage that 32K bytes of memory are
needed to store the picture. But this is usually not a prob­
lem on the l040ST or MEGA ST.

A third method is to use many screen pages with a
method called page Jlipping (see graphics without flicker).

The final, and most elegant, method is to use a ReS file
that will create the screen almost by itself. This usually
means more coding, but it is advantageous in that you can
change the screen independently of the program. If this is
still too slow then you will have to wait until the blitter
chip becomes available.

3

Title Screen

4 The GFA BASIC Book

1.2 Diskette data

Another source of slowness is receiving data from
diskettes. Take this for example:

OPEN "O",#1,"TEST.DAT"
FOR 1%=0 TO 999

PRINT #1 ,A(I%)
NEXT 1%
CLOSE #1
OPEN "1",#1 ,"TEST.DAT"
FOR 1%=0 TO 999

INPUT #1 ,A(I%)
NEXT 1%
CLOSE #1

BSAVE "TEST.DAT",V.ARPTR(A(0)),6000
BLOAD "TEST.DAT",VARPTR(A(O))

The first routine takes about six times as long as the
BSA VE command (four times for a hard disk) and about
twelve times as long to read compared to the BLOAD
command (40 times with a hard disk). The BSAVE com­
mand takes about 6000 bytes of file space while the print
command takes anywhere between 3000 and 20,000 bytes
(depending on the number: "1" to "-1.2345678901E+123"
and a CR -LF character sequence as a separator.

Chapter 1: Optimization

The GF A BASIC Book

Reading from a diskette using:

OPEN "1',#1 ,"TEST.DAT"
BGET #1 ,VARPTR(A(O)),6000
CLOSE#1

is quicker than BLOAD, but not on the hard disk. Also
A(I%)=GVF(lNPUT$(6,#1)) is pretty fast, but PRINT#1,MKF$(A$(I%)) is
not.

If you would like to write your program so that you are
able to transfer data to future GF A BASIC versions that
might have different internal number representation, you
may want to use PRINT/INPUT. If the program is con­
verted to the new interpreter, you can then write a conver­
sion program to convert like this:

numsize= VARPTR(a(1))-VARPTR)a(O))
BSAVE 'TEST. DATA', VARPTR(a(O)), 1 OOO'numsize

5

Diskette data

6 The GFA BASIC Book

1.3 Calculations

If the program spends a lot of its time computing
(SIN/COS ...), you have the following options:

CD Add a floating point processor (68881)

Advantages r

Very quick '
Little or no programming changes

Disadvantages
Computer needs to be modified (soldering?)
Expensive (68881 costs several hundred dollars (now!!))
Runs only on a computer that is modified

@ Search for faster algorithms:

Advantages
No hardware changes
Often faster than with the 68881

Disadvantages
Often very difficult and time consuming during de­
velopment

Chapter 1: Optimization

The GFA BASIC Book

This leaves you with two choices: expensive hardware
or expensive software, where the latter choice represents a
true accomplishment. Anyone can make a program run
faster by improving the hardware - if you have the money.
(This is why I have asked you to please not pirate software,
because even in short programs a lot of mental work has
often been invested). No one can help you find new algo­
rithms, but by studying mathematic books and magazines
you can often find your own. Computer magazines like
BYTE, etc, are also very helpful.

Programs can also be optimized without changing the
existing algorithm.

FOR-NEXT loops should not use floating point vari­
ables. They should use integers instead. This is especially
true if those variables are used to index an array.

For compiled programs:

FOR i%= 1 to 1000

NEXT i%

should be replaced with:

i%=1
REPEAT

INCi%
UNTIL i%> 1 000

• Use INC a or INC a% instead of a=a+ 1 or a%=a%+ 1

• Calculate numbers in advance (like deg.rad=PII180
instead of 1180*Pl)

• Create tables:

FOR 1%=0 TO 359

7

Calculations

8

@

A(I%)=A(I%)*SIN(I%/180*PI)
NEXT 1%

deg.rad=PI/180
for i%= 1 to 359

MUL a(i%),SIN(i%*deg. rad)
nexti%

DIM sinus(360)
FOR i%=O to 360

sinus(i%)=sin(i% *PI/180)
NEXT i%

FOR i%=O to 359
MUL a(i%),sinu;;(i%)

NEXT i% '

The GF A BASIC Book

The last version gains most by compiling - but it's
fastest for the interpreter as well. In this routine it would
not be advisable to replace the FOR-NEXT with a
REPEAT-UNTIL, because the looping takes only a minimal
part of the execution time, and the interpreted version
would slow down greatly.

• Fill arrays with constants using ARRAYFILL

• Move one numeric field to another using this method:

BMOVE VARPTR(a(O)), VARPTR(b(0)),6*DIM?(a())

This is equivalent to:

FOR i%=O TO DIM?(a())-1
b(i%)=a(i%)

NEXT i%

Chapter 1: Optimization

The GFA BASIC Book

but much faster.

Optimizing is often best leamed by looking at other pro­
grams (public domain or from magazines). Many of these
are not particularly good, but they can be useful neverthe­
less. By looking at a program, it is usually easy to deter­
mine how long the programmer has been using the com­
puter language.

Take a program from a magazine and try to optimize it
until you are completely satisfied with the performance.

Let the program rest for two weeks and then try to read
it. Do you still understand what it is doing? Is it well doc­
umented? Did you flag the changes that were made? Does
the program have a date? Are all the improvements you
made worthwhile? Could further improvements be made?

Of course it's a matter of taste, how meaningful your
variable names are - but long names have no effect on ex­
ecution speed.

After practicing in this way, you will be able to deter­
mine quickly if a program in a magazine has been written
well, or whether it was written in haste. When the program
was written by many authors, you will often be able to tell
which person wrote a particular section.

It is also important to limit yourself: If the program runs
without errors and is fairly fast and does not use too much
memory; then by all means please leave it alone. Making a
program worse is very easy.

One more tip: If you have corrected a program,
please save the old version on diskette.

With GF A BASIC it is also important to save a version
as a LST-file, since it happens that the ST computer will oc­
casionally destroy a file. With a tokenized file it is almost

9

Calculations

10 The GFA BASIC Book

impossible to repair the file. It may, however, be possible
with a LST-file.

Chapter 1: Optimization

The GFA BASIC Book

1.4 Sorting

It happens quite often that a field must be sorted. A
rapid sort process is available with QUICKSORT, a recur­
sive sort method that is often used to show the advantage of
PASCAL or other similar languages. There are some
BASIC versions of QUICKSORT available that simulate re­
cursion, since normal BASICs do n t know what recursion
is. When using GF A BASIC it is best to use the real recur­
sive method.

' QSORT. BAS

DIM a$(1000)
t%=TIMER
FOR i%=O TO 999

a$(i%)=MKI$(XBIOS(17))+MKI$(XBIOS(17))+MKI$(XBIOS(17))
a$(i%)=a$(i%)+MKI$(XBIOS(17))+MKI$(XBIOS(17))

NEXT i%
PRINT (TIMER-t%)/200
t"/o=TIMER
@quicksort(*a$O,O,999)
PRINT (TIMER-t%)/200
,

PROCEDURE quicksort(str. arr%,I%,r%)
LOCAL x$
SWAP *str. arr%,a$O
@quick(I%,r%)

11

Sorting

12

SWAP ·slr. arr%,a$O
RETURN
PROCEDURE quick(I%,r%)

LOCAL 1I%,rr%
11%=1%
rr%=r%
x$=a$((I%+r%)/2)
REPEAT

WH ILE a$(I%)<x$
INCI%

WEND
WHILE a$(r%»x$

DECr%
WEND
IFI%<=r%

SWAP a$(I%),a$(r%)
INCI%
DECr%

ENDIF
UNTIL I%>r%
IF 1I%<r% './

@quick(II%,r%)
ENDIF
IF I%<rr%

@quick(I%,rr%)
ENDIF

RETURN

The GFA BASIC Book

The QUICKSORT can be further improved: It takes a
long time to sort if most of the fields are already in order.
The biggest improvement is made by checking if the range
from the left limit and the right limit exceeds a determined
amount, and then sort those fields using a different method.

Example:

Procedure quick(I%,r%)
IFr%-I%=l

IF a$(I%»a$(r%)
SWAP a$(I%),a$(r%)

Chapter 1: Optimization

The GFA BASIC Book

ENDIF
GOTO qsortx

ENDIF
, Insert the above procedure
qsortx:

RETURN

This small change will improve the sort by about 4 per­
cent when using the interpreter. In compiled programs this
version is a few milliseconds slower, since in the compiler
the recursion is greatly accelerated. This can change in
future versions of the compiler or the interpreter. No pro­
gram will absolutely be slower, only the relationship will
change.

Further speed improvements can be made by setting the
limit to 2 or 3 instead of 1.

13

Sorting

14 The GFA BASIC Book

1.5 MiniData

The following program demonstrates how to search
quickly through a set of data in a file which is not sorted:

, minidat

Max%=100

Open "0" ,#1 ,"test.dat"
Dim Ind%(1000),Key$(1000)
1°10=0
Repeat

A$=II"
For L°Io=O To 10+Random(20)

! number of data sets

A$=A$+Chr$(Random(26)+65)
Next L%
Ind%(1%)=Loc(#1)
Key$(I%)=A$! Key field
Inc 1%
Print #1 ,A$
Print #1 ,A$+A$! Data field
Print #1 ,A$+A$+A$

Until 1%>Max%
Close #1

Chapter 1: Optimization

The GF A BASIC Book

@Sort

Open "i",#1 ,"test. dat"
Do

Line Input "Search after (+/-)";A$
If A$="+"

Q%=Min(Q%+ 1 ,Max%)
Else

If A$="-"
Q%=Max(Q%-1,0)

Else
V%=Max%/2
S%=V%
While S%>1

Sub S%,S% Div 2
If Key$(V%»A$

V%=Max(V%-S%,O)
Else

V%=Min(V%+S%,Max%)
Endif

Wend
Q%=Max(V%-2,0)
While Key$(Q%)<A$ And Q%<Max%

IncQ%
Wend

Endif
Endif
PrintQ%
Seek #1 ,lnd%(Q%)
Line Input #1 ,A$
Line Input #1 ,B$
Line Input #1 ,C$
Print A$
Print B$
Print C$

Loop
,

, Now insert the QUICKSORT program

, After every : SWAP a$(I%),a$(r%)

15

Mini Data

16 The GFA BASIC Book

, Insert : SWAP ind%(I%),ind%(r%)

(The demo program on the diskette sorts directly on the key
field key$()).

The data consists of random input that contains one key
and two data fields.

For every record the program stores the key and (LOC)
the corresponding LOC-Pointer in two arrays.

The key field key$() is then sorted and the pointers in
the other array are arranged in the same order.

One can then search for the data by using the key field
that is in memory and then locating the rest of the data by
using the data pointer.

It is actually not necessary to sort the data if it is con­
tained in memory, but it is still faster to search for the data
by using a binary search.

This routine is not very elegant, but it fulfills its pur­
pose.

Advice for building a real data manager:

• Keep the sort key the same length (By using LSET for ex­
ample) .

The data can be built up in the following manner:

XXX.DAT
XXX.IDX

or:

: The complete data
: The keyfield along with the record pointer
(using MKL$/CVL)

Chapter 1: Optimization

The GFA BASIC Book

XXX.DAT : The complete data set
XXX.IDX : Save only the record pointer by using

BSAVE ·XXX.IDX·,VARPTR(ind%(O),max%*4 (this is
the fastest way)

Hint: If it is possible to make the key field 4 (or
8,12, ...) characters long, then you can save the key
as an integer rather then as a string. This way you
will save having to build the descriptors and you
will also be able to save the keys with the
BSA VE/BLOAD (or BPUT/BGET).

OPEN '0',#1 ,"XXx. IDX'
BPUT #1 ,VARPTR(idx%(O)),max%*4
BPUT #1 ,VARPTR(keyO%(O)),max%+4
'BPUT #1 ,VARPTR(key1%(O)),max%*4
CLOSE #1

The security of the data is extremely important. In the
above examples it is easy to reconstruct the key field in
case the index file is distorted or lost.

You can also save disk space by using only CHR$(10)
instead of the normal CHR$(l3)+CHR$(lO) combination
as it happens when using the PRINT command. In the
MINIDAT program just replace the line as follows: PRINT
#1,a$;chr$(lO);

This does not have any effect on the data other then
saving disk space. The data input routine does not have to
be altered. It will simply read the data slightly faster.

The problem with these methods of storing data is that if
you add a new record, or the length of the data changes,
then it must be added at the end of the file, the record index
must be updated, and some parts of the file will contain
garbage.

17

Mini Data

18 The GFA BASIC Book

It is best to replace the record with the null character. In
this case the records will automatically move toward the
front of the file during a sort and can thus be easily re­
moved.

You could also include the current length of the record
as part of the data, and when the record changes, or new
records are added, the program merely has to match the
length with an already existing record previously deleted in
the program.

Eventually you must run a routine that will remove all
the dead space.

It is also possible to speed up the search process of mul­
tiple fields by creating key fields for more than one field.

The purpose of this chapter was to show you that there
is not a given recipe to optimize a program. Often it is not
possible to improve the program by optimizing the struc-
ture of the data. '

Chapter 1: Optimization

CHAPTER 2

GRAPHICS

19

20 The GFA BASIC Book

T here are many graphic commands in
GF A BASIC and most of them are fairly easy to use. For
example, to draw a box all you need are the coordinates of
two opposite comers.

BOX
PBOX
RBOX
PRBOX
CIRCLE

= Draws a box
= Draws a painted box
= Draws a box with rounded comers
= Draws a painted and rounded box
= Draws a circle

These simple graphic commands (called primitives in
the GEM-VDI nomenclature) are easy to understand and
simple to use. Before we move on to the more complicated
graphic operations, let's look at a few ''forgotten'' graphic
commands. Whenever you draw a filled rectangle using
the PBOX command, it contains a border. There is a VDI­
routine that will eliminate that border or perimeter. PBOX,
PCIRCLE, PELLlPSE and PRBOX can all be drawn with­
out a frame.

Procedure vsfyerimeter(flg!)
DPOKE INIT, fig!
DPOKE CONTRL+2,0
DPOKE CONTRL+6,1
VDISYS 104

RETURN

Chapter 2: Graphics

The GFA BASIC Book

Setting the flag! to true turns the frame on and false
turns the frame off. If you would like to call this routine by
some other name, you may do so, but I tried to use the de­
scriptions in the GEM-VDI literature.

The FILL-command in GFA BASIC calls the
v contour-routine. The area is filled from the starting point
to the edge of the screen, or to a change of color. So the
GF A BASIC FILL-command can be used with color mon­
itors, a -1 must be chosen for edge color, in other words,
the fill is terminated as soon as a pixel with a color other
then the starting one is encountered.

Procedure v_contour(x%,y%,f%)
DPOKE PTSIN,x%
DPOKE PTSIN+2,Y%
DPOKE INTIN,f%
DPOKE CONTRL+2,1
DPOKE CONTR+6,1
VDISYS 103

Return

! coordinates just
! as the FILL
! frame color!!

This routine, for example, would allow you to fill ev­
erything on the color screen that was not enclosed by a
green line or a line of any color L%. Since this is used very
seldom, I did not want to modify the FILL command to ac­
commodate this.

21

Chapter 2: Graphics

22 The GF A BASIC Book

2.1 Setcolor

There is also a routine in GF A BASIC that allows you
to change the color registers: SETCOLOR n%, r%, g%, b%
or SETCOLOR n%,&Hrgb. To determine the color register
use the following routine:

DEFFN getcolor(n%)=XBIOS(7,n%,-1) AND &H777

Unfortunately, the order between COWR and
SETCOLOR was totally mixed up by either ATARI or
DIGITAL RESEARCH. The VDI also contains a
SETCOLOR-Routine that works somewhat differently:

PROCEDURE v_setcolor(n%,r%,g%,b%)
DPOKE CONTRL+6,4
DPOKE INTIN,n%
DPOKE INTlN+2. r%
DPOKE INTIN+4,g%
DPOKE INTIN+6,b%
VDISYS 14

RETURN

The colors red (r%), green (g%) and blue (b%) must be
set between a and 1000. You may also inquire as to the
current color as follows:

PROCEDURE v-l)etcolor(n%)

Chapter 2: Graphics

The GFA BASIC Book

DPOKE CONTRL+6,2
DPOKE INTIN,n%
DPOKE INTIN+2,O
VDISYS 26

RETURN

The result can be found as:

n%:= DPEEK(INTOUT),r%:= DPEEK(INTOUT +2) etc.

23

Setcolor

24 The GFA BASIC Book

2.2 Clipping

Whenever you open a window, these graphic commands
work slightly different. For example, the null point moves
from the top left corner of the screen to the top left corner
of the window. Other functions like lines, circles, etc. are
truncated at the window's border.

Moving the origin:

PROCEDURE origin(x%,Y%)
DPOKE WINDTAB+64,x%
DPOKE WINDTAB+66,Y%

RETURN

To truncate lines at the borders of a rectangular area:

PROCEDURE vs_clip(xl%,yl%,x2%,y2%)
DPOKE PTSIN,x1%
DPOKE PTSIN+2,yl%
DPOKE PTSIN+4,x2%
DPOKE PTSIN+6,y2%
DPOKE INTIN,1
DPOKE CONTRL+2,2
DPOKE CONTRL+6,1
VDISYS 129

RETURN

Chapter 2: Graphics

The GFA BASIC Book

Example: If using @vs_clip(100,120,200,180), confines
the graphic output to a section of the rectangle at (100,120)
to (200,180); then using @origin(100,120), sets the origin
point for graphic input to the top left corner of this rectan­
gle.

The ORIGIN and CUPPING commands are only valid
for normal graphics commands, not for the PUT, GET,
BITBLT, or any AES commands. Nor can they be used
with almost anything that contains PTSIN+... or
PTSOUT+ ... , GINTIN+ ... or GINTOUT+ ... , MENU com­
mands, or coordinates contained within object trees (see
Chapter 6 on RSC-files).

CLIPPING can be completely turned off if desired. This
speeds up the drawing commands by about two percent, It
can, however, cause even a simple PLOT command to
change memory locations outside the screen buffer thus
causing bombs or other malfunctions within the computer:
use caution!

DPOKE INTIN,O
POKE CONTRL+2,2
DPOKE CONTRL+6,1
VDISYS 129

CLIPPING can be restored by calling the vs clip rou­
tine. Unfortunately, moving the origins does not-cause the
mouse input (MOUSEX, MOUSEY, MOUSE ...) to return a
negative number whenever the mouse is above or to the left
of the origin. Instead, 65536 is added to those negative co­
ordinates. For those who would rather have a more mean­
ingful value returned the @ext(MOUSEX) or
@ext(DPEEK(X) routine may be used:

DEFFN ext(x%)=x%+65536*(x%>32767)

25

Clipping

26 The GFA BASIC Book

That covers the simple graphics command. Let us move
on to the somewhat more difficult Raster Graphic
Commands.

Chapter 2: Graphics

The GFA BASIC Book

2.3 Raster Graphic Commands

If you take a close look at the picture on your monitor
you will determine that it is composed of many small dots
that are organized by rows and columns. Therefore, a ver­
tical line will always appear ragged (viewing at low reso­
lution will make this more obvious than at high resolution).
Every pixel on the screen represents one bit of memory on
a Mono ST computer or two or four bits on the Color mon­
itor. There are many commands in GF A BASIC that allow
you to manipulate these pixel-blocks.

27

Raster Graphic Commands

28 The GFA BASIC Book

• GET, PUT and BITBLT

The GET command allows you to copy a screen seg­
ment to a string and the PUT command allows you to re­
store that segment to the screen. The BITBLT command
does the same thing, but is somewhat more flexible - and
more prone to errors.

A string built by using the GET/PUT command is com­
posed as follows:

svar$ = mki$(Width)
+ mki$(Height)
+ mki$(Bitcount)
+ Bitpattern

Where the width is the difference between both X coor­
dinates of the box.

The height is the difference between the Y coordinates.

Bitcount is the number of bits it takes for each pixel (1,2
or 4 as explained above).

And Bitpattern is the actual graphic information.

The construction of that bit pattern is very complex.
Each word consists of 16 bits (This shows that the ST is a
16-bit computer). A mono computer contains 16 pixels per
word. A color computer is made up of either two or four
adjacent words. This is repeated until one line is filled.
The remaining part of the word will contain junk (some
random data). This line and all following lines are always
represented by an even number of bytes (8 bits).

Chapter 2: Graphics

The GFA BASIC Book

• Memory Usage

You will have noticed that this procedure creates a lot of
overhead. Which explains why it often takes a lot of mem­
ory to store a bit pattern. Now take a look at a mono
screen:

GET 0,0,00,79,a$
GET 0,0,01 ,79,b$
GET 0,0, 15,79,c$
GET 0,0,16,79,d$

Where a$ contains the 6 byte prefix and 80 rows of
words (+2*80+6=166 Bytes). Every row contains only one
bit (80/8=10 Bytes). This shows that 90% of a$ is just
ballast.

The b$ is just as long, but two bits are used instead
of one.

The c$ is also as long as as, but it is put to optimal
use.

And d$ contains an extra word which increases the
length to 326 Bytes (6+2*80+2*80=326).

With color the string Lengths are 326 and 646 bytes
(medium resolution) or 646 and 1286 bytes (high resolu­
tion) instead of the 166 and 326 on the mono screen.

29

Raster Graphic Commands

30 The GFA BASIC Book

2.4 Graphics Mode

GF A BASIC has a Graphmode command that allows
you to select the drawing mode for graphics operations.

Graphmode 1 = Replace
This is the normal mode which replaces the
old picture with a new one.

Graphmode 2 = Transparent
The old picture can still be seen behind the
new transparent one.

Graphmode 3 = Xor
This mode intermixes the new picture with
the old one (an off pixel turns on and an on
pixel turns off). This mode allows you to
create blinking screen segments, like the
rubberband in drawing programs.

Graphmode 4 = Inverse Transparent
This mode is similar to mode 2 except the
new picture is shown in inverse.

Chapter 2: Graphics

The GFA BASIC Book

Figure 1: Graphmode Settings

GraphMode 0

This Graphmode-setting does not apply to the PUT and
BITBLT commands. There are sixteen Graphmodes that
can be passed on with these commands. If no mode is se­
lected with the PUT command, mode 3 is automatically
chosen (this is the same as Graphmode 1 or the other com­
mands).

The following shows "s" as a bit for the source raster
and "d" for the destination raster.

31

Graphics Mode

32 The GFA BASIC Book

Nr. Result

0 0 All bits are cleared.
1 sand d Only those bits contained in both

stay set.
2 s and (not d) Set only the bits which are set in

the source and not set in
the destination.

3 s The source is transferred
unchanged (Graphmode 1).

4 (not s) and d Set only the bits which are
not set in the source and
are set in the destination.

5 d Do nothing (does not make much
sense).

6 s xor d Source is Xor with the destination
(Graphmode 3).

7 sord All bits are set that set in either
the source or destination
(Graphmode 2).

8 not (s or d) Set all bits that are not set in the
source or destination.

9 not(s xor d) Set all bits that set in both
rasters or that are not set in both
rasters.

10 notd The destination raster is inverted.
11 s or (not d) Set all bits that are set in

the source and that are not set
in the destination.

12 nots The source raster is inverted
before it is transferred.

13 (not s) or d Graphmode 4.
14 not (s and d) Set all bits not set in either the

destination or source.
15 1 All bits are set.

Chapter 2: Graphics

The GFA BASIC Book 33

The important modes are:

3 =replace
4 =xor
7 =transparent
13 =inverse transparent

Graphics Mode

34 The GF A BASIC Book

2.5 Graphics on Diskette

It is quite easy to save a graphic picture to diskette by
using the BSA VE command. To load it just use the BLOAD
command. A problem arises when many small pictures are
to be saved to the diskette since 100 pictures would require
100 files on the diskette (they each contain at least 1
Kbytes plus 32 bytes for the directory). The following is a
program that will save and load 100 GET/PUT segments
from the diskette as one file.

To save:

OPEN '0',#1,#1 ,'file.get"
FOR i%=O TO 99

PRINT #1 ,MKI$(LEN(a$(i%)));a$(i%);
CLOSE #1

To load:

OPEN '1",#1 ,' file. get"
FOR i%=O TO 99
a$(i%)=INPUT$(CVI(INPUT$(2,#1)),#1)
NEXT i%
CLOSE #1

Chapter 2: Graphics

The GFA BASIC Book

Explanation: This GET/PUT string (a$) can contain any
character (comma, backspace, line feed, etc.) which makes
it impossible to use the INPUT command. Instead, the
INPUT$-function is used. The length is stored in two bytes
by using MKI$. When reading the data the length is ex­
tracted using CVI(INPUT$(2,#1)). This length is then used
in the outer INPUT$ function.

35

Graphics On Diskette

36 The GF A BASIC Book

• BITBLT

This command performs roughly the same function as
the GETIPUT combination. This command is somewhat
more flexible, but it is also harder to use.

BITBLT smfdb%O,dmfdb%O,p%O

These parameters already hint that this command is very
powerful. The smfdb stands for Source Memory Form
Description Block, which describes the form and dmfdb de­
scribes the form for the destination. The p stands for point
and contains the coordinates for the source and destination
rectangles and also the mode of how they overlap (see PUT
above).

_mfdb%(O) contains the raster address. Usually, at least
one of either smfdb%(O) or dmfdb%(O) equals the
screen address (XBfOS(2)). This address must be
even.

_mfdb%(1) contains the width of the raster in pixels units
(640 for mono, 320 or 640 for color). Other num­
bers divisible by 16 could also be used.

_mfdb%(2) contains the raster height(400 or 200 or ...).

mfdb%(3) contains the raster width in words. This is al-
- ways the pixel count divided by 16.

_mfdb%(4) this is always zero in Atari GEM since an inde­
pendent format was not yet implemented.

mfdb%(5) contains the number of bit planes (mono 1,
- color 2 or 4).

Chapter 2: Graphics

The GFA BASIC Book

_mfdb%(6) to mfdb%(8) are reserved for future additions
(very unlikely).

If mfdb%(O)=O, GEM will create the rest of the MFDB's
bYltself pointing to the current screen.

Example (Hires!MidreslLores):

GET 100,110,120,130,a$

a$=MKI$(20)+MKI$(20)+MKI$(1)+SPACE$(84) !168/336
smfdb%(0)=XBIOS(3)
sm fdb%(1)=640
smfdb%(2)=400
smfdb%(3)=40
smfdb%(5)=1
dmfdb%(O)= VARPTR(a$)+6
dmfdb%(1)=32
dmfdb%(2)=21
dmfdb%(3)=2
dmfdb%(5)=1
p%(0)=100
p%(1)=110
p%(2)=120
p%(3)=130
p%(4)=0
p%(5)=0
p%(6)=20
p%(7)=20
p%(8)=3
BITBL T smfdb%O,dmfdb%(),p%O

! 640/320
! 200/200
! 40/ 20
! 214

! (Width+ 16) and &FFFO
! Height
! dmfdb%(1)/16
! 214

! always the left top corner

! copy mode

Both strings are identical as far as the relevant bits are
concerned. The GET-command leaves the input string un­
changed if the bits are not inside the rectangle. Adding a
a$=SPACE$(90) (1174/342) before the GET-command will
result in identical strings. Let us continue with a more de­
manding example, as might be used in a graphics program,

37

Graphics On Diskette

38 The GF A BASIC Book

a routine that mirrors a rectangle across the vertical or hori­
zontal axis that was read with the GET command.
GET/PUT is slow and if you are not careful you could eas­
ily use up more than half of a megabyte of memory just for
a mirror effect.

Dim Smfdb%(8),Dmfdb%(8),P%(8)
For 1%=0 To 639 Step 8

Line 1%,0,639-1%,399
Next 1%
Get 0,0,639,399,A$! change if color
T%= Timer
@Mirrorput(O,O,'A$)
Print Timer-TO/o
Procedure Mirrorput{X%,Y%,S.%)

If Dpeek(S.%+4»6
A%=Lpeek(S.%)

! only if something is there

B%=Dpeek(A%)
H%=Dpeek(A%+2)
Smfdb%(O)=A%+6
Smfdb%(1)=(B%+ 16) And &HFFFO
Smfdb%(2)=H%+ 1
Smfdb%(3)=Smfdb%(1)/16
Smfdb%(5)=Dpeek(A%+4)
Dmfdb%(O)=XBIOS(3)

!width
! height

On XBIOS(4)+ 1 Gosub
Mfdb.lores,Mfdb.midres,Mfdb.hires

P%(1)=0 !U.
P%(3)=H% !'"
P%(5)=Y% ! ...
P%(7)=Y%+H% !'"
P%(8)=3 ! .. .
P%(4)=X%+B% ! .. .
P%(6)=X%+B% ! .. .
For 1%=0 To B% ! .. .

P%(O)=I% ! .. .
P%(2)=I% ! .. .
Bitblt Smfdb%O,Dmfdb%O,P%O ! .. .
Dec P%(4) !'"
Dec P%(6) ! ...

Chapter 2: Graphics

The GFA BASIC Book

Next 1%
Endif

Return
Procedure Mfdb.hires

Dmfdb%(1)=640
Dmfdb%(2)=400
Dmfdb%(3)=40
Dmfdb%(5)=1

Return
Procedure Mfdb.midres

Dmfdb%(1)=640
Dmfdb%(2)=200
Dmfdb%(3)=40
Dmfdb%(5)=2

Return
Procedure Mfdb.lores

Dmfdb%(1)=320
Dmfdb%(2)=200
Dmfdb%(3)=20
Dmfdb%(5)=4

Return

!*tt

The program lines marked with !*** must be replaced
with the following to mirror across the horizontal axis:

P%(O)=O
P%(2)=B%
P%(4)=X%
P%(6)=X%+B%
P%(8)=Modus%
P%(5)=Y%+H%
P%(7)=Y%+H%
For 1%=0 To B%

P%(1)=I%
P%(3)=I%
Bitblt Smfdb%O,Dmfdb%O ,P%O
Dec P%(5)
Dec P%(7)

Next 1%

39

Graphics On Diskette

40 The GFA BASIC Book

At the start of the program, a simple pattern is drawn to
the screen and this pattern is then copied to a string (a$)
with the GET command. Procedure @mirrorput takes this
pattern and mirrors it across the vertical axis. The param­
eters are similar to the ones needed with a PUT command:
X coordinates, Y coordinates, String and Mode. The string
is not passed by value, but rather by the pointer using the
asterisk symbol.

This results in the string not having to be passed to the
corresponding local variable (this saves time). The address
(=Varptr) is determined with LPEEK(*a$) and the length
with DPEEK(*a$+4). The procedure mirrorput checks to
see if the string is longer than 6 characters (it must be
longer than 6 for the GET command). Next, the starting
address, width and height of the GET-string are determined
and the mfdbs (Memory Form Description Blocks) are cre­
ated. Notice that the width and the height must be incre­
mented by one.

The XBIOS(4) routine is called to determine the current
screen resolution so that the correct dmfdb procedure can
be called. Next, a loop is executed that increments or de­
creases the X-coordinates of the source rectangle and desti­
nation rectangle so that the mirror effect is created.

The following is a demonstration program that allows
you to move a picture segment by using the corresponding
mouse coordinates. This allows you to test the speed gain
that might be achieved with the blitter chip whenever it be­
comes available.

Dim Smfdb%(8),Dmfdb%(8),P%(8)
Graphmode 3
For 1%=0 To 639 Step 8
Line 1%,0,639-1%,399
Next 1%
For 1%=0 TO 399

LINE 639,1%,0,399-1%

Chapter 2: Graphics

The GFA BASIC Book

Next 1%
Dmfdb%(O)=XBIOS(3)
On XBIOS(4)+ 1 Gosub Mfdb.lores,Mfdb.midres,Mfdb.hires
Repeat

Mouse X%,Y%,K%
If X%oO And X%o639 And Y%oO And Y%o399

P%(O)=X%
P%(1)=Y%
P%(2)=639-X%
P%(3)=399-Y%
O%=Even(X%+ Y%)-Odd(X%+ Y%)
P%(4)=P%(O)+O%
P%(5)=P%(1)+0%
P%(6)=P%(2)+0%
P%(7)=P%(3)+0%
P%(8)=3
Bitblt Smfdb%O,Dmfdb%O,P%()

Endif
Until K% And 2
'Now add the mfdb. xxx x routines from above.

Caution: It is extremely important that the coor­
dinates of the destination rectangle reside
within the picture. There is no safety check
in the VDI routine. With color, the coordi­
nates (639 and 399) must be adjusted. If
the source and destination rectangles
overlap, the destination is never changed,
before the corresponding part of the screen
is used as source. A similar effect is done
inside the BMOVE routine.

If the size of the source and destination rectangle are
different, the connection is made with the size of the source
rectangle. Nevertheless, both comer points of the rectangle
must always be supplied.

41

Graphics On Diskette

42 The GF A BASIC Book

2.6 Flicker Free Graphics

When moving Bit blocks (with BITBLT or GET/PUT),
the picture on the screen may flicker. To eliminate this
flickering, you would want to display a picture on screen
and then build a new picture off screen in memory and dis­
play it when the first is done.

The ST contains a XBIOS routine that helps with this
process called setscreen. This routine allows you to switch
between the physical (as displayed) and the logical (as be­
ing built) screen address. It is important that the screen ad­
dress is divisible by 256.

Dim Screen%(32255/4)
Graphmode 3
For 1%=0 to 639 Step 4

Line 0,0 1%,399
Line 639,0,1%,399

Next 1%
Get 0,O,99,99,A$
A%=XBIOS(3)
B%=(Varptr(screen%(O)+255) And &HFFFFOO
Sget H$
Repeat

SwapA%,B%
Void XBIOS(5,L:A%,L:B%,-1)

Chapter 2: Graphics

The GF A BASIC Book

Sput H$
Mouse X%,Y%,K%
Put X%,Y%,A$
If K%=1

SgetH$
Endif
Line X%,o,X%,399
Line O,Y%,639,Y%

Until K%=2
A%=Max(A%,B%)
Void XBIOS(S,L:A%,L:A%,-1)
Sput H$

A second screen is stored in an integer field. The size of
this field is 32000 Bytes (screensize) plus 255 bytes to
make sure the screen address resides within a 256-byte
boundary. This number 32255 is then divided by 4, the
size of the integer number. The screen address is the first
address within this field that is divisible by 256 (this is ac­
complished with AND &HFFFFOO). The screen back­
ground is saved into string H$ (also with a simple pattern).

XBIOS(S,L:A%,L:B%,-1) ! setscreen

This XBIOS call sets the logical screen address to the
value in variable A % and the physical screen address to the
value in variable B%.

One of the variables contains the old screen address
(XBIOS(3)) and the other variable contains the second
screen address. The two screen addresses are then used to
set the logical and physical screen base to different values.
The swap makes sure that next time the XBIOS(5 ...) is
called, one image pops onto the screen while the other
vanishes and waits to be replaced by a new one.

The SPUT command restores the background of the
logical screen. After the mouse input, the screen segment
is drawn with the PUT command. If the mouse button is
pressed, the current picture is copied into the background

43

Flicker Free Graphics

44 The GFA BASIC Book

string. A cross is then drawn which disappears the next
time the SP UT command is issued. This process is re­
peated until the right mouse button is pressed. Finally both
screen addresses are set to the original value (this is easy
with the maxO function). You can also reserve more than
two screen sections (16 of them will occupy 1/2
megabytes).

It is also possible to vertically scroll through more than
one picture by changing the screen address in smaller steps.
The screen address can only be changed in steps of 256
bytes. Since a screen line contains 80 bytes (160 bytes
with color), the scrolling is only possible in steps of 16
lines (the smallest common denominator of 256 and 80 is
1280, 16*80, or 2560, 16*160 for color). This small pro­
gram puts three overlapping pictures into an integer field
and then scrolls them.

'Scroll Demo
===========

Dim A%((32000*3+255)/4)
A%=Varptr(A%(0))+255 And &HFFFFOO
Graphmode 3
For 1%=0 To 639

Line 0,0,1%,399
Next 1%
Bmove XBIOS(3),A%,32000
Cis
For 1%=0 To 639

Line 0,399,1%,0
Next 1%
Bmove XBIOS(3),A%+32000,32000
Bmove A%,A%+64000,32000
Repeat

For B%=A% To A%+64000-1280 Step 1280
Void XBIOS(5,L:-1,L:B%,-1)
Vsync

Next B%
Until Mousek

Chapter 2: Graphics

The GF A BASIC Book

Void XBIOS(5,L:-1J:XBIOS(3),-1)

The last parameter in XBIOS(5) (-1) indicates that the
resolution should not be changed. Unfortunately, an or­
derly change in the resolution is not possible with GEM. In
any case, 0 is for low, 1 for medium, and 2 for high resolu­
tion. Parameters can be set to -1, which tells the operating
system not to change the corresponding value.

You can, of course, change not only the address, but
also find out the current values.

Physical_address=XB IOS(2)
Logical_address=XBIOS(3)
Resolution=XB IOS(4)

! physbase
! logbase
! getrez

If you now think that BITBLT is only a pure graphic
command, I must disappoint you. It is possible to use the
BITBLT command in a bit pattern that is contained in
memory as long as it can be interpreted as a raster. For ex­
ample, you could create such a raster in an integer field and
then set all field elements to null (ARRAYFILL) or change
only certain bits within each field. Possible uses are left to
your imagination.

For fans of nice looking character sets, here is a tip: The
bit pattern of fonts may be moved relatively easily with the
BITBLT command as is often needed with proportional
spacing.

4S

Flicker Free Graphics

46

CHAPTER 3

TIPS &
PROGRAMS

47

48 The GFA BASIC Book

As the title of this chapter indicates, the follow­
ing pages will try to show a variety of different concepts.
Some pages contain programs that could be put to immedi­
ate use.

Examples of these are the Input-routine (Chapter 3.1) or
the FONTDEMO at the end of this chapter (Chapter 3.12).
Some of the concepts in these examples may not be clear to
you until after you have studied Chapters 4 through 6.

There are many other things discussed in this chapter,
like SCAN-Codes (Chapter 3.5) and Recursion (Chapter
3.10).

Since most of the concepts in this Chapter are not re­
lated to each other as in previous chapters every sub chap­
ter will start on a new page.

Chapter 3: Tips and Programs

The GFA BASIC Book

3.1 Dialog Boxes Homemade

It is possible to create Dialog boxes using a Resource
Construction Set and then manipulate these boxes using the
corresponding GEM calls. But it is also possible to write
your own Input-Routine using GFA BASIC and thereby
gain a lot more control over your input.

The following program contains an Input-Routine
somewhat similar to the one used with GEM.

, Input.bas

Dim X%(10),Y%(10),T$(10),L%(10),I$(10),V%(10)
For 1%=0 To 6

Read X%(I%),Y%(I%),T$(I%),L%(I%),V%(I%)
1$(1%)=""

Next 1%
Data O,O,"Last Name :",20,0
Data 0,1,"First Name :",20,0
Data 0,2,"Street :",20,0
Data 0,3,"City:",16,0
Data 23,3,"State :",2,0
Data O,4,"Zip Code:",5,1
Data 16,4,"Tel. :",20,2
Do

@lnpuUoutine(6,100,100,1)
For 1%=0 To 6

49

Dialog Boxes Homemade

50 The GFA BASIC Book

Print T$(I%)'I$(I%)
Next 1%
Print

Loop
Procedure InpuUoutine(N%,X%,Y%,F%)

Vdisys 38
Cb%=Dpeek(Ptsout+4)
Ch%=Dpeek(Ptsout+6)
Lh%=Dpeek(Ptsout+2)
LI"Io=Ch"Io-Lh"Io
Insflg!= True

! gets character size
! in pixels and character
! spacing

Spec$=Chr$(8)+Chr$(13)+Chr$(27)
Sp.scan$=Chr$(&H48)+Chr$(&H4B)+Chr$(&HSO)+Chr$(

&H4D)+Chr$(&HS2)
Spr$=Mki$(O)+Mki$(Lh%)+Mki$(-1)+Mki$(1)+Mki$(O)
For 1%=1 To Ch%

Spr$=Spr$+ Mkl$(& H8000)
Next 1%
Spr$=Left$(Spr$+String$(7 4,0),74)
U$=String$(1 00, '_')
Dim Tx%(N%),Ty%(N%)
Mx%=O
My%=O
For 1%=0 To N%

Tx%(I%)=X%+Cb%*(X%(I%)+Len(T$(I%)))
Ty%(1%)= Y%+Ch% 'Y%(1%)
Mx%=Max(Mx%,T x%(I%)+Cb% *L %(1%))
My%=Max(My%,Ty%(I%))

Next 1%
IfF%

Get X%-10,Y%-10-Ch%,Mx%+ 10,My%+ 10,Temp$
Endif
Deffi111,0
Color 1
Pbox X%-10,Y%-10-Ch%,Mx%+ 10,My%+ 10
Box X%-S,Y%-S-Ch%,Mx%+S,My%+S
, or deffill ,2,1 pbox .. .
For 1%=0 To N%

T$= T$(I%)+Left$(I$(I%)+U$,L%(I%))
Text X%+X%(I%)*Cb%,Y%+Y%(I%)*Ch%,T$

Chapter 3: Tips and Programs

The GFA BASIC Book

Next 1%
E%=O
T$=I$(E%)
C%=O
Repeat

@E.curson
Repeat

Mouse Mox%,MoY%,Mok%
K$=lnkey$

Until Len(K$) Or Mok%
@E. cursoff
II K$<>""

II Len(K$)=1
@E.do_char(Asc(K$))

Else
@E.do_scan(Asc(Right$(K$)))

Endil
Endil
II Mok%

II Mox%>=X% And Moy%>=Y%-Ch%
II Mox%<=Mx% And Moy%<My%

@E.do_mouse
Endil

Endil
Endil

Until E%>N% Or E%<O
IIF%

Put X%-10,Y%-10-Ch%,Temp$
Endil
Erase Tx%()
Erase Ty%()

Return
Procedure E.dsp.ln

II Len(T$» L%(E%)
Out 2,7
T$=Left$(T$,L %(E%))

Endil
C%=Min(C%,Len(T$),L %(E%))
Text Tx%,TY%,Left$(T$+U$,L %(E%))

Return

51

Dialog Boxes Homemaae

52

Procedure E.curson
Tx%= Tx%(E%)
Ty%= Ty%(E%)
Sprite Spr$,T x%+C% 'Cb%, Ty%

Return
Procedure E. cursoff

Sprite Spr$
Return
Procedure E. ins_char(K%)

Do

The GFA BASIC Book

Exit II V%(E%)=1 Andlnstr("0123456789",
Chr$(K%))=O

Exit II V%(E%)=2 And Instr("0123456789/0-",Chr$
(K%))=O

, here you can easily add your own types
II Insllg! Or C%=Len(T$)

T$=Left$(T$, C%)+Chr$(K%)+Mid$(T$, C%+ 1)
Else

Mid$(T$,C%)=Chr$(K%)
Endil
Inc C%
@E.dsp.ln
Goto E.insx

Loop
Out 2,7
E.insx:

Return
Procedure E.do_char(K%)

V%=lnstr(Spec$,Chr$(K%))
IIV%

On V% Gosub E.backs,E.enter,E.esc
Else

@E.ins_char(K%)
Endil

Return
Procedure E.backs

IIC%>O
T$=Left$(T$,C%-1)+Mid$(T$,C%+ 1)
DecC%
@E.dsp.ln

Chapter 3: Tips and Programs

The GFA BASIC Book

Endif
Return
Procedure E.enter

I$(E%)=T$
Inc E%
T$=I$(E%)
C%=O

Return
Procedure E.esc

T$=""
C%=O
@E.dsp.ln

Return
Procedure E. do_scan(K%)

V%= Instr(Sp.scan$, Chr$(K%))
IfV%

On V% Gosub E.up,E.lft,E.dwn,E.rgt,E.insert
Else ! see text
Endif

Return
Procedure E.up

I$(E%)=T$
IfE%

Dec E%
Else

E%=N%
Endif
T$=I$(E%)
C%=Len(T$)

Return
Procedure E.dwn

I$(E%)=T$
If E%<N%

Inc E%
Else

E%=O
Endif
T$=I$(E%)
C%=Len(T$)

Return

53

Dialog Boxes Homemade

S4

Procedure E.11t
IIC%

DecC%
Endil

Return
Procedure E.rgt

II C%<Len(T$)
IncC%

Endil
Return
Procedure E.insert

Insflg!=Not Insflg!
Return
Procedure E.do_mouse

Ox%=(Mox%-X%)/Cb%
Oy%=(Moy%-Y%)/Ch%+ 1
1%=0
Repeat

110y"/o=Y%(I%)

The GFA BASIC Book

O%=Ox%-X%(1%)-Len(T$(1%))
II (0% And 255)<=L%(I%)

Goto E.dom.ok
Endil

Endil
Inc 1%

Untill%>N%
110

E.dom.ok:
I$(E%)=T$
E%=I%
T$=I$(E%)
C%=Min(O%,Len(T$))
@E.curson
@E.dsp.ln

Endil
Return

First, all of the global arrays are dimensioned.

Chapter 3: Tips and Programs

The GFA BASIC Book

The Data arrays describe the input:

The first two numbers determine the row and col­
umn position at which the input field should start
(0,0 is top left corner and 0,1 is the line below it).

Next the actual text that describes the field is given.

The next number indicates the maximum number of
digits or characters that this field may contain.

The last number decides what kind of input is legal.
The following kinds are legal for this program:

° -All characters are allowed.
1 - Only numeric digits (0-9) are allowed.
2 - Only a number, a slash, a parenthesis, or

a minus sign is allowed, as would be
used in a telephone number.

Figure 2: Input Screen

1

55

Lastl NaMe
First NaMe
Street

1 ____ _

1
1 ____ -

1 1 ____ -

City: ___________ _
Zip Code: _____ =

Dialog Boxes Homemade

56 The GFA BASIC Book

After the data is read into the corresponding fields, the
number of fields (N%), screen position (X%,Y%) and a flag
(F%) are passed to the Input-Routine. The flag determines
whether the corresponding segment should be saved with a
GET/PUT command. The Input-Routine determines the
size of the text. VDISYS 38 returns in PTSOUT the width
and the height of the text and also the width and height of
the box that surrounds the box. This procedure is used to
allow the text to be displayed in any resolution by calcu­
lating the pixel oriented screen coordinates. This size is
also used to determine the size of the vertical line which is
used as the cursor.

The string Spec$ contains the ASCII value for special
keys, (Backspace, Return and Esc), which are easily distin­
guished from the other keys by using the INSTR command.
The string Sp.scan$ contains the SCAN-codes for special
keys, here the codes for the Arrows and the Insert key are
used.

String Spr$ is a sprite, which will serve as the cursor.
The vertical offset MKI$(lh%) serves to quickly position
the cursor to the correct vertical line. The Format-flag
MKI$(-l) makes sure that the sprite is inverted
(Graphmode 3) whenever the matching foreground-bit is
set. In some documentation this value is given incorrectly
as plus 1. The color data is not important here.

The sprite is constructed with a vertical line which cor­
responds to the text height. If you replace MKL$(&H8000)
with MKL$(&HFFOO), the sprite would be 8 pixels wide.
The LEFT$ assures that too small of a text size will be
filled with nulls and that too big of a text size is truncated
to match the size of the text to the allowed size of sprites.

The string U$ contains the underline characters that are
used to mark the input fields.

Next, the individual screen coordinates are calculated
for each field as well as the size of the input window.

Chapter 3: Tips and Programs

The GFA BASIC Book

If the flagj% is set, the picture is saved in string Temp$.

The PBOX command erases the window. The BOX
command draws the double border around the text.

Next, all the field names, as well as the underline char­
acters or the already existing input data contained in string
1$, are put into string T$. This string is then used in the
TEXT command to display the fields.

After the initialization of a few variables (e%=number
of the field that contains the cursor, T$=the actual field
contents and C%=the relative cursor position), the program
continues with the main loop.

Next, the cursor is made visible and the program will
loop until either a key is struck or the mouse button is
pressed.

Next, the cursor is turned off.

If a key has been pressed, a routine to handle the ASCII
character (do char) or a routine for a SCAN-Code
(do _scan) is called. Whenever a mouse button is pressed
that resides within the range of the input, the cursor posi­
tion is changed to that new position. If the cursor has not
reached the end (pressing Return in the last field) and there
was no error (e% =-l), the main loop is continued.

Otherwise, the picture is restored and the fields that
contained the pixel coordinates,(tx% and ty%) are erased.

Routine E.dsp .ln displays the input field. If the maxi­
mum length is exceeded, the bell will sound and the string
is truncated. The cursor cannot move past the end of the
field.

57

Dialog Boxes Homemade

58 The GF A BASIC Book

Routine E.curson places the cursor position in variables
Tx% and Ty% and then turns the sprite cursor on.

Routine E.cursoffturns the sprite off.

Routine E.ins char inserts a character from the cursor
position into string T$ and then displays that line.

This construction with the DO-LOOP and the EXIT
command is one possible means of checking for legal char­
acters. You could have used nested IF statements, but the
DO-LOOP-EXIT combination is easier to expand upon. A
GOTO command was used to ring the bell only in case of
an error.

Routine E.do char calls special routines to handle the
Backspace, the Return/Enter and the Esc key. All other
characters are passed to the field by means of the
E.ins char routine.

Routine E.do.scan calls on special routines for arrow
keys and for the Insert key (to change between add and in­
sert mode).

You can also substitute the following for the ELSE
branch:

@e.inschar(k% XOR 128)

something similar is performed by the GF A BASIC editor.

If you wish to use function keys use the following rou­
tine:

Procedure E.11
II Not Inp?(2)

@E.dostring(Chr$(27)+"Werner"
Endil

Return
Procedure E.dostring(A$)

Chapter 3: Tips and Programs

The GFA BASIC Book

For li%=1 To Len(A$)
@E.do_char(Asc(Mid$(A$,li%))

Next Ii%
Return

INP ? (2) checks to see if another key was pressed before
it executes the F i-Routine.

If you replace the E.do_char with E.ins_char, the rou­
tine would be faster but you would not be able to use
Control characters, like the Esc key.

It would be even faster if you would write a routine that
would directly manipulate the String T$, similar to the
E.ins char. This would also eliminate the need for the
INP ?(2)-function.

The function keys could be used in data files to read the
next or previous record.

The UNDO key could also have some useful function.

The E.do mouse-Routine changes the mouse coordi­
nates to line coordinates. A check is made to detennine if
the mouse points to one of the input fields. It then changes
the cursor position.

59

Dialog Boxes Homemade

60 The GFA BASIC Book

• Remarks:

The program contains some sloppy code. I decided to
leave it in the program to show that even the GOTO state­
ment can have a useful purpose.

The GOTO in the E.ins_char routine could easily be re­
placed with a couple of nested IF statements.

The GOTO in the E.do mouse routine could be removed
by simply moving the program part between the If 0 and
the Endif to where the GOTO is.

The E.curson routine was called in the Mouse-routine to
set the cursor to Tx% and Ty%.

Also, not all the variables in the Input-routine were de­
clared as local, even though this would not have been hard
to do. To keep a program short, you can sometimes skip
declaring the variables as local as long as you use some
discipline to name your variables.

Example:

• Variables that contain only one character
or start with the letters T or Q may
be used for subroutines.

• All global variables must be a least four
characters long.

• All variables that return an error code
should start with the letter E.

• etc.

Make your own rules and obey them!

Chapter 3: Tips and Programs

The GFA BASIC Book

3.2 Sound

To find the parameters necessary to create a certain
noise with the SOUND and WA VE command, it is usually
best just to experiment. The following program will help to
experiment with sound, and also show you how to use the
mouse without using AES (resource file).

, SoundExp
, Sound Experiment program
,

@Draw_box(O)
Xa%=-99
@Draw_box(50)
Xb%=-99
@Draw_box(100)
Xd%=-99
@Draw_box(160)
Xc%=-99
For 1%=0 To 7

Text 29+1%*35,176,1%+8
Next 1%
Do

Repeat
Mouse X%,Y%,K%

Until K%
If Y%>O And Y%<19

@Sound.per

! for sound. per

! for wave.per

! for noise

! for envelope curve

! A Quick check to see
! if one of the rectangles

61

Sound

62 The GFA BASIC Book

Endif ! was selected
If Y°1o>50 And Y%<69

@Wave.per
Endif
If Y%> 100 And Y%<119

@Noise
Endif
If Y%> 160 And Y%<179

@Wave.form
Endif

Loop
Procedure Sound.per

If X°1o>300 And X%<320
Per"/o=Min(Per%+ 1 ,4095)

Else
If X°Io>O And X%<20

Per"/o=Max(Per%-1,0)
Else

If X°1o>20 And X%<300
Per"/o=(X%-20)/280* 4096

Endif
Endif

Endif
Sound 1,8,#Per%

! Selecting the
! frequency

! Tone Changes

Wave Rf%*256+ 1-8*(Rf%<>0), 1 ,Wform%,Wper%
Text 100,35,"SOUND 1 ,8,"+Str$(Per"/o)+" , ! Info-line
X%=Per"/o/4096*280+20
Color 0
Line Xa%,1 ,Xa%, 18
Color 1
Line X%,1 ,X%, 18
Xa%=X%
Pause 2

Return
! a short pause otherwise
! it would be too fast

Procedure Wave.per
S%= 10"(K%-1)

! a selection of the Wave period
! left:%= 1 /righl:s%= 1 O/both:s%= 100

If X°1o>300 And X%<320
Wper%=Min(Wper"/o+S%,65535)

Else
If X°Io>O And X%<20

Chapter 3: Tips and Programs

The GF A BASIC Book

Wper%=Max(Wper%-S%,O)
Else

II X%>20 And X%<300
Wper%=(X%-20)/280t65536

Endil
Endil

Endil
@Disp_wave ! Inlo-line
X%= Wper%/65536t280t20
Color 0
Line Xb%,51 ,Xb%,68
Color 1
Line X%,51 ,X%,68
Xb%=X%

Return
Procedure Noise

II X%>300 And X%<320
Rf'/o=Min(Rf%t 1,31)

Else
II X%>O And X%<20

Rf'/o=Max(RI%-1,0)
Else

II X%>20 And X%<300
Rf'/o=(X%-20)/280t32

Endif
Endil

Endil
@Disp_wave
X%=RI%/32t280t20
Color 0
Line Xd%,1 01 ,Xd%, 118
Color 1
Line X%, 101 ,X%, 118
Xd%=X%

Return
Procedure Wave.form

If X%>300 And X%<320
Wlorm%=Min(Wlorm%t 1,15)

Else
II X%>O And X%<20

! setting noise period

! Info-line

! set envelope curve

63

Sound

64 The GFA BASIC Book

Wform%=Max(Wform%-1,8)
Else

If X%>20 And X%<300
Wform%=(X%-20)/280*8+8

Endif
Endif

Endif
@Disp_wave
X%=(Wform%-8)*35+20
Color °
Box Xc%,161 ,Xc%+34,178
Color 1
Box X%,161 ,X%+34,178
Xc%=X%
DeffillO
Pbox 20,180,300,199

! Info-line

On Wform%-7 Gosub W8,W9,WlO,W11 ,W12,W13,W14,w15
Return ! This ON-GOSUB serves to quickly
Procedure W8 ! display the envelope curve

For 1%=20 To 290 Step 10
Draw 1%,185 To 1°10+ 10,195 To 1°10+ 10,185

Next 1%
Return
Procedure W9

Draw 20,185 To 30,195 To 300,195
Return
Procedure W1 °

For 1%=20 To 280 Step 20
Draw 1%,185 To 1°10+10,195 To 1°10+20,185

Next 1%
Return
Procedure W11

Draw 20,185 To 30,195 To 30,185 To 300,185
Return
Procedure W12

For 1%=20 To 290 Step 10
Draw 1%,195 To 1%+ 10,185 To 1%+ 10,195

Next 1%
Return
Procedure W13

Chapter 3: Tips and Programs

The GFA BASIC Book

Draw 20,195 To 30,185 To 300,185
Return
Procedure W14

For 1%=20 To 280 Step 20
Draw 1%,195 To 1%+10,185 To 1%+20,195

Next 1%
Return
Procedure W15

Draw 20,195 To 30,185 To 30,195 To 300,195
Return
Procedure Disp_wave ! Output Wave-Info

IfRf%
Wave 9+Rf%*256,1,Wform%,Wper% ! and wave selection
Text 1 00,85,"WAVE '+Sir$(Rf%)+'*256+9, 1,

"+Str$(Wform%)+',"+Str$(Wper%)+" ,
Else

Wave 1 +Rf% *256,1 ,Wform%,wper%
Text 100,8S,"WAVE 1,1," +Str$(Wform%)+"," +Str$(Wper%)+" "

Endif
Return
Procedure Draw_box(Y%)

Box 0,Y%,319,Y%+ 19
Line 19,Y%,19,Y%+19
Line 300,Y%,300,Y%+ 19
Text 6,Y%+ 16,Chr$(4)
Text 307,Y%+ 16,Chr$(3)

Return

! subroutine to display boxes with
! arrows on both sides

The program displays four horizontal rectangles. If you
click in any of the rectangles, a vertical line will appear in
the first rectangle. The first rectangle indicates the period
of the tone. Directly below that rectangle, the correspond­
ing SOUND command is shown. The next rectangle selects
the period of the envelope; after which, the rectangle for
the period of noise is shown. The last rectangle allows you
to set the envelope curve. A graphic display of that curve
is shown below that rectangle. The corresponding WAVE
command is also shown.

65

Sound

66 The GFA BASIC Book

Figure 3: SOUND and WAVE

I¢II 101
SOUND 1,8,69

I¢I 10 1
WAVE 1,1,12,31

I¢I 101

9 10 11 1 12 1 13 14 15 1 0 1

You can, by the way, also listen to the whole thing.

By clicking inside of the rectangle, you can change the
corresponding value. And by clicking the arrows, the
change is made in single steps. The WAVE-period allows
you to move in ten step increments by pressing the right
mouse button and by one hundred step increments by
pressing both mouse buttons.

The drawing of the rectangles with the arrows is per­
formed by procedure draw _box. The variables Xa%, etc.
serve to store the coordinates for markers. The TEXT­
command writes the value 8 to 15 into the envelope curve
rectangle.

The program performs a loop until a mouse button is
pressed. If the mouse Y-position indicates that a rectangle

Chapter 3: Tips and Programs

The GFA BASIC Book

was chosen, the corresponding routine is called. The main
loop is never ending. Every program should always have
an exit from a loop, but it was omitted here for clarity.

The next procedures contain routines for each of the
rectangles. By using the MAX and the MIN command, you
can easily increase or decrease a value and still stay within
bounds.

The envelope curve could have been drawn using the
GET/PUT command, which would have been faster but
would have used more memory. Speed is not that impor­
tant in this program.

The operating system of the ST computer contains a
hardcopy routine, which is very easy to call. This routine,
however, has a small drawback: The picture of a circle is
indeed round, but definitely it is not a circle. The follow­
ing is a small routine that uses the Plotter-graphic mode of
an Epson-compatible printer to draw a circle.

, hardi
Graphmode 3
For 1%=0 To 639

Line 1%,0,639-1%,399
Next 1%
For 1%=0 To 399

Line 639,1%,0,399-1%
Next 1%
T%=Timer
@Hardcopy
Lprint
Lprint Timer-T%
Out 0,12
T%=Timer
Hardcopy
Lprint
Lprint Timer-Pic
OutO,12
Procedure Hardcopy

67

Sound

68 The GFA BASIC Book

A$=Space$(400)
G$=· • +Chr$(27)+ .,. +Chr$(5)+Chr$(400)+Chr$(400/256)
Open ··,#99,"LST:·
For S%=Xbios(3) To S%+79

X%= Varptr(A$)
For 0%=S%+399'80 To S% Step -80

Poke X%,Peek(O%)
IncX%

Next 0%
Print #99,G$;A$;Chr$(13);
Print #99,Chr$(27);· J";Chr$(24);

Next S%
Close #99

Return

Within procedure Hardcopy, the string A$ is initialized
with 400 spaces. This string serves as the buffer for each
graphic line. This buffer is not really necessary, but it
serves to repeat the print line (PRINT #99,G$,A$;Chrs$(13);) in or­
der to produce a darker imprint.

In this example, a STAR SD-19 printer using IBM mode
was used. The control sequence ESC-*-5-400 was used to
enable the graphics mode with 400 columns and ESC-J-24
was used to set the line feed to 8 dots (you may have to re­
place these values with the ones taken from your own
printer manual).

You have probably already noticed that the hardcopy
was rotated by 90 degrees. This is necessary since 600 dots
will not fit on one print line while in Plotter-mode. Besides,
this method allows for much faster retrieval from memory
(by dots).

This routine is somewhat faster than the corresponding
GEM routine, but that could change with a different printer.

Chapter 3: Tips and Programs

The GFA BASIC Book 69

Figure 4: HARDCOPY Routine

\ ~I{il \
\ "

\ ' ,

I II \

/ I J
I

Y'I/

ITm /

/

Sound

70 The GF A BASIC Book

3.4 Copying Files

Often it is necessary to copy files, maybe to copy a
datafile from the diskette to a Ram-Disk or whatever.

The following small procedure will do the job.

Procedure Filecopy(Old$,New$)
Open "1",#1 ,Old$
Open "O",#2,New$
L %=Lof(#l) While L %>32000

Print #2, lnput$(32000,#1);
Sub L %,32000

Wend
Print #2,lnput$(L%,#1);
Close #1
Close #2

Return

To use this routine simply call @Jilecopy("A:DATADAT",
liD :DATADAT").

Two files are opened, one to read the data and the other
to write. The contents of the file are copied using just one
command. If the file contains more than 32000 characters,
the file is first copied using 32000 character segments and,
finally, the remaining characters are copied. One could

Chapter 3: Tips and Programs

The GFA BASIC Book

copy less than 32000 characters at one time, but this would
affect the total copy time.

One could also load the complete file into the memory,
make changes, and then copy the file back to the diskette. It
is also possible to save the old file as a BAK-file as follows:

If Exist("FILE.DA T")
If Exist("FILE.BAK")
Kill "FILE.BAK")
Endif
Name "FILEDA T" as "FILE.BAK"
Endif
'Now you may write the file in the normal fashion

Thus: If the file exists, it is renamed to BAK and a check
is made to see if a BAK-file by that name already exists, in
which case it is deleted.

71

Dialog Boxes Homemade

72 The GFA BASIC Book

3.5 Scan Codes

The keyboard not only transmits an ASCII code but also
a SCAN-Code for every key. For example, all keys that are
not assigned in the ASCII table return a string containing
two characters whenever the INKEY$ function is called
(Chr$(O)+C hr$(SCAN-Code)).

BIOS(2,2) or ON MENU GOSUB also return the SCAN­
code besides the ASCII value.

Obtain the value of the SCAN-code for each key from
the table below.

The small number for the function keys represents the
SCAN-code whenever the key is pressed in combination
with the shift key.

The small number above the keys contains the values
when the key is pressed in combination with the
ALTERNATE key.

There are also separate codes for CONTROL-ARROW­
LEFT and CONTROL-ARROW-RIGHT.

The codes for the shift keys (Shift, Control and
Alternate) are also shown. They may be used for writing

Chapter 3: Tips and Programs

The GFA BASIC Book 73

your own keyboard driver. All codes are gIven in
Hexadecimal.

Figure 5: Hexidecimal Key Codes

f=-J'-'i-"'-'-'i-"--'T-'-'r'-'T"-'-'T-'--'-'P'-'-'1r--u;-'-'---'-T"--.I..'f'''-'-T''--'-T''--'--r'''''-I t-=r-'-;-=--; 63 6 4 6 5 66
67 63 6~ 4A

f---,r-';-"--'-"j-'-'-;-"---'-'r"--'-'T''---'-T''--'-'T-''-'-'i-'''-'-''i-''--'-'T-'--,-;-,!-'-r'-''-'-''-'''-' '-'-=-=~'--' 6 A 6 B 6 C 4 E _
60 6E 6f 7'"

70 71 L

Scan Codes

74 The GF A BASIC Book

3.6 Directory

GF A BASIC contains commands that retrieve the con­
tents of a diskette. Three routines follow that read the table
of contents (directory).

First, the directory is read into an array, sorted and then
printed in three column format. The file size is also
printed.

' SORT DIR
Dim A$(1000)
@Getdir(·*"·,&H37,*A$O,*N%)
@Quicksort(*A$O,O,N%)
For 1%=0 To N% Step 3

Print A$(I%)"'A$(I%t 1)",A$(I%t2)
Next 1%

Procedure Getdir(File_$,Attr%,Str .arr%, Num. %)
Local L%,E3o,X$
Swap *Str.arr%,File$O
Void Gemdos(26,L:Basepaget 128) ! setdta
File_$=File_$tChr$(O)
E_%=Gemdos(78,L:Varptr(File_$),Attr%) ! tstirst
While E_%=O !more Files

X$=Space$(20)
Bmove Basepaget 158,Varptr(X$), 14

Chapter 3: Tips and Programs

The GFA BASIC Book

X$=Left$(X$,lnstr(X$,Chr$(O))-1)
X$=Left$(X$tSpace$(20),15)
L$=Space$(7)
If Peek(8asepaget 149) And 16

!dtat21 =attribute
Rset L$="«DIR»"

Else

75

Rset L$=Str$(Lpeek(8asepaget 154))

Endif
X$=X$tL$
File$(I_%)=X$
Inc 1_%
E5o=Gemdos(79)

Wend
File$(I_%)=""
Swap *Str.arr%,File$O
*Num.%=I_%-1

Return

Procedure Quicksort(Str.arr%,L %,R%)
Local X$
Swap *Str.arr%,A$O
@Quick(L%,R%)
Swap *Str.arr%,A$O

Return
Procedure Quick(L%,R%)

Local LI%,Rr%
LI%=L%
Rr%=R%
X$=A$((L %tR%)/2)
Repeat

While A$(L%)<X$
Inc L%

Wend
While A$(R%»X$

DecR%
Wend
If L%<=R%

Swap A$(L%),A$(R%)

! dtat26=file size

! fsnext

! Highest Index with data

Directory

76 The GFA BASIC Book

Inc L%
DecR%

Endil
Until L%>R%

II LI%<R%
@Quick(LI%,R%)

Endil
II L%<Rr%

@Quick(L%,Rr%)
Endil

Return

By making some small changes, the program could also
display the date, the time, the volume name and the data
status (read only, hidden, etc.). In this program only one
file can be displayed per line.

, XDIR

Dim A$(1000)
@Getdir("*.",-1,*A$O,*N%) !-1 means with LABEL
@Quicksort(*A$O,O,N%)
For 1%=0 To N%

Print A$(I%)
Next 1%

Procedure Getdir(File _$,Atlr%,Str .arr%, Num. %)
Locall_%,EYo,X$

Swap *Str.arr%,File$O
Void Gemdos(26,L:Basepage+ 128)
File_$=File_$+Chr$(O)
E_%=Gemdos(78,L:Varptr(File_$),Atlr%)
While E_%=O

X$=Space$(20)
Bmove Basepage+ 158,Varptr(X$), 14
, Filename
X$=Left$(X$, lnstr(X$,Chr$(0))-1)
, lill with equal lengths
X$=Left$(X$+Space$(20),15)

! setdta

! Isfirst
! more Files

Chapter 3.' Tips and Programs

The GFA BASIC Book

, file size or «DIR»
L$=Space$(7)
A%=Peek(Basepaget 149) !dtat21 Attribute
If A% And 16

Rset L$="«DIR»"
Else
If A% And 8

Rset L$="<LABEL> !Diskette name
Else

Rset L$=Str$(Lpeek(Basepaget 154) ! dtat26=file size
Endif
Endif

X$=X$tL$

, Attribute

If A% And 32 .
X$=X$t' .'

Else
X$=X$t' "

Endif
If A% And 16

X$=X$t'D"
Else

X$=X$t' "
Endif
If A% And 8

X$=X$t'L'
Else

X$=X$t' "
Endif
If A% And 4

X$=X$t'S'
Else

X$=X$t' "
Endif
If A% And 2

X$=X$t'H'
Else

X$=X$t' "

! . means set archive bit
! is seldom done by TOS

! D = Directory

! L = Label

! S = System file

! H = hidden File

77

Directory

78 The GFA BASIC Book

Endil
II A% And 1

X$=X$+"R"
Else
X$=X$+" •
Endil

! R = read-only

, Data dpeek(dta+24)

D%=Dpeek(8asepage+ 152)
D$=" "+Right$("0"+Str$(D%/32 And 15),2)+"f
D$=D$+Right$("O" +Str$(D% And 31),2)+"/"
D$=D$+Str$(D% Div 512+1980)
X$=X$+D$

, time dpeek(dta+22)

T%=Dpeek(8asepage+ 150)
T$=" " +Right$("O" +Str$(T% Div 2048),2)+":"
T$= T$+Right$("O" +Str$(T% Div 32 And 63),2)+":"
T$= T$+Right$("O" +Str$(T%+ T% And 63),2)
X$=X$+T$
File$(15o)=X$
Inc 1_%
E5o=Gemdos(79) ! Is next

Wend
File$(I_%)=""
Swap *Str.arr%,File$O
*Num.%=L%-1 ! Highest index with data

Return

Procedure Quicksort(Str .arr%, L %, R%)
Local X$
Swap ·Str.arr%,A$O
@Quick(L%,R%)
Swap ·Str.arr%,A$O

Return
Procedure Quick(L%,R%)

Local LI%,Rr%
LI%=L%

Chapter 3: Tips and Programs

The GFA BASIC Book

Rr%=R%
X$=A$((L %+R%)/2)
Repeat

While A$(L%)<X$
Inc L%

Wend
While A$(R%»X$

DecR%
Wend
If L%<=R%

Swap A$(L%),A$(R%)
Inc L%
Dec R%

Endif
Until L%>R%

If LI%<R%
@Quick(LI%,R%)

Endif
If L%<Rr%

@Quick(L%,Rr%)
Endif

Return

79

Directory

80 The GFA BASIC Book

Figure 6: Example of SORTDIR

BAUDRATE.BAS 608 BAUDTEST.BAS 528 BLITDEHO.BAS 1862
BLTHODES.BAK 800 BL TMODES . BAS 800 BOXRSC.BAS 1212
COHRIoIS.LST 335 DIALOG.BAK 3144 DIALOG.BAS 3144
DIALOG.RSC 1268 ELISE. BAS 2486 ELISE. SHD 582
ELISEDMO.BAS 566 EVHT.LST 1345 EXEC3.BAS 308
EXEC3.LST 243 FADEH.BAS 552 FBOXTEXT. BAS 1448
FOHTTEST . BAS 2236 FORH.LST 636 FS.BAK 1644
FS.BAS 1658 FS. TTP 7146 FSEL.LST 102
GFABASIC.PRG 57378 GRAF. LST 1742 GROSS.FHT 16984
HARDI.BAS 732 IHPUT.BAS 3212 JOYSTICK. BAS 848
KEYTAB.BAS 640 LUPE.ASH 1045 LUPE.BAS 1268
LUPE. PRG 150 MAKEFOHT.BAS 2904 MAKEICOH.BAS 954
MAKEPRPT . BAS 2118 HEHU.LST 897 MIDIBUF.BAS 444
MIHIDAT.BAS 1278 MIRRORPU.BAS 1150 MKDATAIoI.LST 350
MIHIDAT.BAS 1278 MIRRORPU.BAS 1150 MKDATAIoI.LST 350
HOUSE.BAS 1030 MOUSE.LST 441 OBJC.LST 1451
PG274DEM.BAS 11622 PG75DEM1. BAK 10n PG75DEM1.BAS 1092
PG75DEM2.BAK 10n PG75DEM2.BAS 10n OSORT.BAS 832
aSORT.LST 743 OS_TEST.BAS no REKURS.BAS 772
RS232BUF.BAS 374 RSCTEST.BAS 2378 RSRC.LST 591
SCREEH.ASM 2930 SCREEH.PRG 320 SCREEHTS.BAS 448
SCROLL. BAS 504 SCRP.LST 139 SEARCH.BAS 1494
SHEL.LST 807 SLIDER. BAS 3006 SLIDER.RSC 228
SORTDIR.BAS 1254 SOUHDEXP.BAS 3428 TEST.DAT 13098
TEST .RSC 208 IoIIHD.LST 1286 IoIIHD.RSC 4320

Chapter 3: Tips and Programs

The GFA BASIC Book 81

Figure 7: Example ofXDIR

, ,
APPL,LST
BAUDRATE,BAS
BAUDTEST,BAS
BLITDEMO,BAS
BLTMODES,BAK
BLTMODES,BAS
BOXRSC,BAS
COHRWS,LST
DIALOG,BAK
DIALOG,BAS
DIALOG,RSC
ELISE,BAS
ELISE,SND
ELISEDMO,BAS
EVNT,LST
EXEC3,BAS
EXEC3,LST
FADEN,BAS
FBOXTEXT,BAS
FONTTEST,BAS
FORM,LST
FS,BAK
FS,BAS
FS,TTP
FSEL,LST
GRAF,LST
GROSS,FHT
HAROI,BAS
IHPUT,BAS
JOYSTICK, BAS
KEYTAB,BAS
lUPE,ASM
lUPE,BAS
lUPE,PRG
MAKEFOHT,BAS
MAKEICOH,BAS

«OIR» D
«OIR» 0

651
608
528

1062
800
800

1212
335

3144
3144
1268
2486

582
566

1345
308
243
552

1448
2236

636
1644
1658
7146
102

1742
16984

732
3212

848
640

1045
1268
150

2904
954

00/14/2055 93:40:00
90/14/2055 93:40:00
94/22/1987 00:01:10
94/22/1987 00:01:18
94/22/1987 90:01:26
04/22/1987 00:01:34
04/22/1987 91:50:32
94/22/1987 91:58:16
94/22/1987 99:01:42
94/22/1987 00:01:50
94/22/1987 90:01:58
94/22/1987 90:02:06
94/22/1987 99:02:14
94/22/1987 09:92:22
94/22/19a7 90:02:30
94/22/1987 90:02:38
04/22/1987 00:02:46
04/22/1987 09:92:54
94/22/1987 00:93:92
04/22/1987 00:03:19
94/22/1987 90:03:20
94/22/1987 00:93:28
94/22/1987 00:93:36
04/22/1987 00:03:46
04/22/1987 00:03:54
94/22/1987 09:04:04
94/22/1987 00:94:12
94/22/1987 00:04:36
94/22/1987 00:04:46
04/22/1987 00:04:56
04/22/1987 00:05:04
04/22/1987 00:05:14
04/22/1987 00:05:22
04/22/1987 00:05:30
04/22/1987 00:05:40
04/22/1987 00:05:48
04/22/1987 00:05:58
04/22/1987 00:06:06

Directory

82 The GFA BASIC Book

Example of XDIR (Cant.)

MAKEPRPT,BAS
MEHU,LST
MIDIBUf,BAS
MIHIDAT,BAS
MIRRORPU,BAS
MKDATAW,LST
MOUSE,BAS
MOUSE,BAS
MOUSE,LST
OBJC,LST
OSORT,BAS
OSORT,LST
OS_TEST,BAS
REKURS,BAS
RS232BUf,BAS
RSCTEST,BAS
RSRC,LST
SCREEH,ASM
SCREEH,PRG
SCREEHTS,BAS
SCROLL,BAS
SCRP,LST
SEARCH,BAS
SHEL,LST
SLIDER, BAS
SLIDER ,RSC
SOR TOIR , BAS
SOUHDEXP,BAS
TEST, OAT
TEST,RSC
WIHD,LST
WIHD,RSC
WIHDM,RSC
WIHDOW,BAK
WIHDOW,BAS
WIHD_MID,BAS
WOOf1,PI2
WOOf1, PH
XDIR,BAS
XPRPATCH,PRG

2118
897
444

1278
1150

350
1030
1030

441
1451
832
743
no
772
374

2378
591

2no
320
448
504
139

1494
807

3006
228

1254
3428

13098
208

1286
4320
2520

11620
11680
11714
32034
32034
2182

544

Chapter 3: Tips and Programs

04/22/1987 00:06:16
04/22/1987 00:06:24
04/22/1987 00:06:32
04/22/1987 00:06:42
04/22/1987 00:06:50
04/22/1987 00:07:00
04/22/1987 00:07:08
04/22/1987 00:07:08
04/22/1987 00:07:18
04/22/1987 00:07:26
04/22/1987 00:08:26
04/22/1987 00:08:34
04/22/1987 00:08:44
04/22/1987 OD:08:52
04/22/1987 00:09:00
04/22/1987 00:09:10
04/22/1987 00:09:20
04/22/1987 00:09:28
04/22/1987 00:09:38
04/22/1987 00:09:46
04/22/1987 00:09:56
04/22/1987 00:10:04
04/22/1987 00:10:14
04/22/1987 00:10:24
04/22/1987 00:10:32
04/22/1987 00:10:42
04/22/1987 00:10:52
04/22/1987 00:11:00
04/22/1987 00:11:12
04/22/1987 00:11:22
04/22/1987 00:11:30
04/22/1987 00:11:40
04/22/1987 00:11:50
04/22/1987 00:12:00
04/22/1987 00:01:50
04/22/1987 00:12:12
04/22/1987 00:12:24
04/22/1987 00:12:38
04/22/1987 00:12:48
04/22/1987 00:12:58

The GFA BASIC Book

The final program allows you to display the contents of
a diskette or a hard disk partition, or it allows you to search
the diskette for a particular file and then display the full
name including the pathname.

'SEARCH

@Search("A:\",··.ASM","CON:")
,

Procedure Search(Path$,File$,Out$)
Oldpath$=Dir$(O)
0Iddrv%=Gemdos(25)+ 1
Open '0",#1 ,Out$
II Instr(Path$,":")

Chdrive Asc(Path$) And 31
Path$=Mid$(Path$,lnstr(Path$,":")+ 1)

Endil
Chdir Path$
Void Gemdos(26,L:Basepage+ 128) ! setdta
File$=File$+Chr$(O)
Star$=··.·· +Chr$(O)
Drv$=Chr$(Gemdos(25)+65)+ ":"
@Search1
Close #1
Chdir '\' +Olddir$
Chdrive Olddrv%

Return
Procedure Search1

Local W%
@Fslirst
While E%=O

Print #1 ,Drv$+Dir$(O)+"\" +X$
@Fsnext

Wend
@Fslirstdir
Q%=O
While E%=O

II T% And 16

83

Directory

84 The GFA BASIC Book

II X$<>"." And X$<>" . ."
W%=O%
Chdir X$
@Search1
Chdir " .. "
@Fslirstdir
0%=0
While W%<>O%

Void Gemdos(79)
Inc 0%

Wend
Endil

Endil
@Fsnext
Inc 0%

Wend
Return
Procedure Fslirst

E%=Gemdos(78,L:Varptr(File$),&H27) , ! Isfirst
@Getnam

Return
Procedure Fslirstdir

E%=Gemdos(78,L:Varptr(Star$),16)
@Getnam

Return
Procedure Fsnext

E%=Gemdos(79)
@Getnam

Return
Procedure Getnam

IIE%

T%=O
Else

X$=Space$(20)
Bmove Basepaget 158,Varptr(X$), 14
X$=Left$(X$,lnstr(X$,Chr$(0))-1)
T%=Peek(Basepaget 149)

Endil
Return

I dta+21 Attribute

Chapter 3: Tips and Programs

The GFA BASIC Book

If you replace the PRINT-command with:

File$(I%)=
Inc 1%

This would make it possible to sort the directory by file­
name. In this case, I would address the field directly rather
than by pointer since the complete Directory-tree is seldom
used.

After the fsfirst or fs next (G EMDOS(78179) call, this
program returns the filename and other information about
the file via the DT A-buffer.

In this program all directories found are opened and then
the search process continues from within this directory.

When the end of a directory is reached, the program will
read the previous read parent directory again. This is not
very elegant or quick, but it is faster to program.

You could have created a separate buffer for each di­
rectory which would have saved you the time necessary to
read the previous directory.

85

Directory

86 The GFA BASIC Book

• 3.6.1 TTP

Figure 8: ITP

DIALOG RSC
ELISE BAS
ELISE SHD
ELISEDMO BAS
EVHT LST
EXEC3 BAS
EXEC3 LST
FADEH BAS
FBOXTEXT BAS
FOHTTEST BAS
FORM LST
FS BAK
FS BAS

1268 11-20-85 12:02 aM
2486 11-20-85 12:02 aM

582 11-20-85 12:02 aM
566 11-20-85 12:03 aM

OPEH APPLICATIOH

HaMe: FS , TTP
ParaMeters: c : *, BAK PRH: ! ________________ _

I OK I

FS TTP 714& 11-20-85 12:03'an
LST 102 11-20-85 12:03 aM

The previous search program could be changed for the
compiler version of GF A BASIC. Just add the following
lines to the beginning of the program, compile it and then
save it as a .TIP file. Now you can pass the parameters as
text from the desktop or a shell (or even through the EXEC­
command). Parameters are as follows: Pathname, includ­
ing the drive ("e:") and the root directory (''\''); the name of
the file you wish to find (you may also use wildcards like
"*.*"); and the output device ("CON:" or "PRN:" or
"FILE.EXT'). Do not include the quotation marks.

'FS.TTP

a$=SPACE(128)
BMOVE BASEPAGE+ 129, VARPTR(a$), 127

Chapter 3: Tips and Programs

The GFA BASIC Book

FOR i%=1 TO LEN(a$)
IF MID$(a$,1 %)=""

MID$(a$,i%)=CHR$(O)
ENDIF

NEXT i%
path$=a$
file$= MID$(a$, INSTR(a$,CHR$(O))+ 1)
ofile$=MID$(file$, INSTR(file$,CHR$(O))+ 1)
'@search(path$,file$,ofile$)
,

87

'followed by the previous program starting with PROCEDURE search
,

Directory

88 The GFA BASIC Book

3.7 Formatting Diskettes

At times, it might be useful to format a diskette from
within a program or you might need more storage on your
diskette. The following procedure is for that purpose.

The parameters for theJormat-cali are as follows:

drv%
sid%

trk%

spt%

Jat%

dir%

med%

Drive number, ° for A: , 1 for B:
1 for single-sided diskettes, 2 for double-sided

diskettes. (Disk drive must be capable of
selected option)

Number of tracks diskette should contain
(usually 80, but 81 and 82 tracks are possi­
ble with most drives)

Number of sectors per track (normally 9, but 10
sectors are also possible)

Size of the file allocation table, usually 5. One
and a half bytes per sector are normally used
(One FAT-sector per 340 diskette sectors).

Maximum number of files diskette may contain
(the standard is 112, must be a multiple of 4
starting with 16).

Media number, a number that describes the
diskette type. The only importance on the ST
appears to be that the number is even for

Chapter 3: Tips and Programs

The GF A BASIC Book

single-sided diskettes and odd for double­
sided diskettes.

The nonnal fonnat is as follows:

single-sided
double-sided

sid% trk%
1 80
2 80

spt% fal%
9 5
9 5

There is also a 40 track fonnat

sid% trk% Spl% fal%
single-sided 1 40 9 2
double-sided 2 40 9 2

For example:

dir% med%
112 248
112 249

dir% med%
64 252
112 253

@jormat(O,2,82,IO,6,160,IOI) will fonnat a double­
sided diskette with 82 tracks consisting of 10 sectors per
track. Diskettes that were fonnatted by using a fonnat
other than the standard fonnat routine (desktop fonnat
command) may not be duplicated by placing drive icons
together, but rather must be copied a file at a time. You
could, of course, write your own copy routine.

89

Formatting Diskettes

90

SORTDIR BAS
SOUHDEXP BAS
IoI-IHDOW BAS
WIHDJ1ID BAS
XDIR BAS
TEST OAT
GROSS fHT
APPl lST
COHRWS lST
E1JHT lST
EXEC3 lST

lST
LST
LST

The GFA BASIC Book

Figure 9: FORMATLST

12:07 aM

12:07 aM
.,," _a~ I"

ITEM IHfORMATION

NaMe: fORM .LS~
Size in bytes: __ 636
last Modified: 11/20/85 12:03 aM

Attributes: Ijmmrna
IRead-Only l

OK I Cancel I
UJ J..L LU U.J J.L ,U.J ai'

Procedure Format(Drv%,Sid%,Trk%,Spt%,Fat%,Dir%,Med%)
Buf$=Space$(1000)
Void Fre(O)
Buf"/o=Varptr(Buf$)
For T%=O To Trk%-1

For S%=O To Sid%-1
E%=Xbios(1 O,L:Buf%,L:O,Drv%,Spt%,T%,S%, 1 ,L:&H876

54321,0)
IfE%

Print
Print "Side ";S%;" Track ";T%;" Error ";E%;" sector ";
B%=Buf"/o
While Dpeek(B%)

Print Dpeek(B%)'
Add B%,2

Wend
Else

Out 5,42

Chapter 3: Tips and Programs

The GF A BASIC Book

Endif
Next S%

NextT%
Sec%= Trk%*Spt%*Sid%
Buf$=String$(6,0)+Mkl$(Xbios(17)+Chr$(0)+Mki$(2)+Chr$(2)
Buf$=Buf$+Mki$(&H100)+Chr$(2)+Chr$(Dir%)+Chr$(Dir%/256)
Buf$=Buf$+Chr$(Sec%)+Chr$(Sec%/256)+Chr$(Med%)
Buf$=Buf$+Mki$(Fat% *256)+Mki$(Spt%*256)+Mki$(Sid% *256)
Buf$=Buf$+Mki$(0)+String$(512,0)
Void Xbios(9,L:Varptr(Buf$),L:0,Drv%,1 ,0,0,1)
Void Bios(7,Drv%)
Buf$=Mkl$(&HF7FFFFOO)+String$(508,0)
Void Bios(4,1 ,L:Varptr(Buf$), 1,1 ,Drv%)
Void Bios(4,1 ,L:Varptr(Buf$), 1 ,Fat%+ 1 ,Drv%)
Print
Print Dfree(Drv%+ 1);" Bytes free"

Return

The procedure starts by initializing a string to serve as
the buffer for the format routine XBIOS(lO). To make
sure that the string is not moved during the garbage collec­
tion (cleanup, whenever the memory allocated for the stor­
age of strings is exceeded), a FRE(O) call is issued. That
string address is then passed to a variable.

Next, all tracks are formatted starting with track O. It
makes more sense to alternate between sides on double­
sided drives, otherwise all tracks on side 0 would be for­
matted before side 1.

The actual formatting is performed with the
XBIOS(lO) call. Should an error occur during the for­
matting, a list of all bad sectors is displayed without inter­
rupting the formatting.

After all tracks are formatted (unfortunately, there is no
error message if the maximum track size is exceeded), the
boot sector is written to the diskette. All those Buj$ as­
signments up to XBIOS(9 .. .) are used for that purpose.

91

Formatting Diskettes

92 The GFA BASIC Book

The BIOS(7 ...) call reads the newly created boot sector
from the diskette so that the start of the FAT table may be
written to the diskette with the BI OS(4 .. .) call. The FAT is
always written to two different locations on the diskette and
always starts with F7 FF FF FF.

Finally, the amount of available storage on this newly
formatted diskette is displayed on the screen.

You could further modify this routine to verify the just
formatted tracks or overwrite the tracks with information
from another diskette.

By the way, this routine will not copy protected
diskettes. It would require a lot more code to accomplish
that task. Programmers that use the format routine as copy
protection would not appreciate it if those details were
made public.

Chapter 3: Tips and Programs

The GFA BASIC Book

3.8 Printers

There exists a variety of printers and computers with
many different character sets. Since most of the sets are
foreign characters, I have included a small patch program
written in GF A BASIC that will convert those characters.
Because this task is easier to accomplish with an assembler,
I have written the program so that it loads the machine
code using DATA statements .

• MAKEPRPT
Mc$=""
Do

Read A%
Exit If A%<.O
Mc$=Mc$+Mki$(A%)

Loop
Mid$(Mc$.Len(Mc$)-17)="EPSON "+Chr$(O)
Do

Read A$
Exit If A$=""
If Val?(A$)=Len(A$)

A$=Chr$(Val(A$))
Endif
B$=""
Do

Read C$
Exit If C$=""

93

Printers

94

II Val?(C$)=Len(C$)
B$=B$+Chr$(Val(C$))

Else
B$=B$+C$

Endil

The GF A BASIC Book

Loop
Mc$=Mc$+Chr$(Len(B$))+A$+B$

Loop
Mc$=Mc$+Chr$(-1)
II Len(Mc$) And 1

Mc$=Mc$+Chr$(O)
Endil

, MID$(mc$,109)=MKI$(2)
,

Open "0",#1 ,'XPRPATCH.PRG"

! This line lor serial printers

Print #1 ,Mki$(&H60 1 A);Mkl$(Len(Mc$));String$(22,0);Mc$;Mkl$(0);
Close #1
, MCODE \XPTGRAPH.PRG
DATA 24576,204,4660,34661,12311,20072,2048,13
DATA 26372,16879,6,3160,64,26204,3160,65533
DATA 26198,8728,26450,16135,18513,8784,18513,24596
DATA 4121,24650,4288,17914,65452,45514,25866,24860
DATA 18951,26122,16890,65338,21377,27364,24846,37855
DATA 18951,26114,8201,8799,15903,20083,18513,12033
DATA 17402,65310,37321,18513,18512,16188,65533,16188
DATA 64,18554,44,16615,20217,4660,22136,18514
DATA 17914,76,16967,7706,27400,45082,26378,54471
DATA 24820,9311,24734,4314,20943,65532,9311,24726
DATA 22671,45215,22215,22671,8735,8799,20085,28672
DATA 4120,4800,27400,4824,20936,65532,24816,8201
DATA 37002,512,254,12032,16188,49,20033,17400
DATA 65535,24894,3232,4660,34661,26126,8800,24882
DATA 16890,102,24894,16999,20033,17402,65308,24866
DATA 17914,65294,9352,17914,65410,9352,16890,78
DATA 24866,16890,170,17402,65478,16999,17914,65009
DATA 24732,18513,16188,33,16188,5,20045,8256
DATA 20623,20085,18512,16890,48,24848,8287,24844
DATA 28927,20936,65534,20936,65534,20085,18512,16188
DATA 9,20033,23695,20085,28271 ,29728,26990,29556

Chapter 3: Tips and Programs

The GF A BASIC Book

DATA 24940,27749,25613,2560,3338,18246,16672,28769
DATA 29795,26656,26223,29216,20562,20026,3338,12601
DATA 14390,8263,17985,8275,31091,29797,28020,25955
DATA 26734,26987,3338,8224,8224,8262,29281,28267
DATA 8271,29556,29295,30579,27497,3338,17744,21327
DATA 20000,8224,8224,8224,8224,8192,0
DATA -1
DATA A,27,R,2,A,27,R,0,
DATA Q,27,R,2,Q,27,R,0,
DATA Q,27,R,2,Q,27,R,0,
DATA a,27,R,2,a,27,R,0,
DATA b,27,R,2,b,27,R,0,
DATA O,27,R,2,O,27,R,0,
DATA B,27,R,2,B,27,R,0,
DATA 225,27,R,2,B,27,R,0,
DATA 8,27,R,2,8,27,R,0,
DATA

The last few DATA statements show how the character
set is submitted. First, the character to be replaced is given.
Then the Control character sequence of the new character
is given. Each line ends with a zero. Two zeroes in a row
terminate the table. The characters can be supplied as let­
ters, as ASCII values or as the hexadecimal, octal or binary
equivalent. More than one character like:

DATA A,ABCDDCBA

would result that the letter "A" would print "ABCDDCBA"
whenever it is passed to the printer (with LPRINT, LUST or
OPEN., "PRN:").

The following short program was used to create the
DATA statements from the compiled file.

, makedataw
FILESELECT "'*,PRG",".PRG",file$
OPEN "1",#1 ,file$
OPEN "O",#2,"DATA.LST"
SEEK #1 ,28

95

Printers

96 The GFA BASIC Book

1%=LOF(#1)
PRINT #2," MCODE ";file$;
FOR i%=29 TO 1%-8 STEP 2 !evtl -4

IF ((i%-29) AND 15)=0
PRINT #2
PRINT #2,"0 ";

ELSE
PRINT #2,",";

ENDIF
PRINT #2,CVI(INPUT$(2,#1));

NEXT i%
PRINT #2
PRINT #2,"0 -1"

The first 28 bytes of a PRG-file contain information
about the program size, which is of no importance when
using a relocatable machine program. The last 8
(sometimes 4 depending on the assembler) bytes are null
and may not be ignored. These bytes also indicate whether
or not the program is relocatable_

The resulting file DATALST may then be merged into a
GFA BASIC program which will read the data into a
string. This string can then be called using CALL or C:.

Chapter 3: Tips and Programs

The GF A BASIC Book

3.9 Magnify

The following example demonstrates how to use a ma­
chine-routine in GF A BASIC to serve as a magnify func­
tion. This program will serve as an example for making
your own routines.

section text ;xlupe.asm

x: move.! 4(sp),aO ;src-adr
move.w 8(sp),dO ;width
move.w 10(sp),d1 ;height
move.1 12(sp),a1 ;dest-adr
cmp.w #400/S,d1

bhLs error
cmp.w #640/S,dO
bhLs error
cmp.! #$OOffffff ,aO
bhLs error
cmp.l #$OOffffff ,a 1
bhLs error

10: move.1 a1,a2
move.w dO,d3

11: move.w (aO)+,d6
moveq #15,d5

12: moveq #O,d?

97

Magnify

98 The GF A BASIC Book

add.w d6,d6
bcc.s 13
moveq #$7f,d7

13: move.b d7,80(a1)
move.b d7,160(a1)
move.b d7,240(a1)
move.b d7,320(a1)
move.b d7,400(a1)
move.b d7,480(a1)
clr.b 560(a1)
move.b d7,(a1)+
subq.w #1,d3
dbeq d5,12
bne.s 11 ;next word
lea 640(a2),a1
dbra d1,IO
moveq #O,dO
rts

error: moveq #-1 ,dO
rts
end

This routine has the following attributes:

-short
-fast
-fully relocatable

That is why it is possible to use this routine in the fonn
of DATA statements as follows:

Lupe$=''''
Do

Read A%
Exit If A%<O

Chapter 3: Tips and Programs

The GFA BASIC Book

Lupe$=Lupe$+Mki$(A%)
Loop
Void Fre(O)
, MCODE \BAS\LUPE.PR
DATA 8303,4,12335,8,12847,10,8815,12
DATA 3137,50,25172,3136,80,25166,45564,255
DATA 65535,25158,46076,255,65535,25150,9289,13824
DATA 15384,31247,32256,56390,25602,32383,4935,80
DATA 4935,160,4935,240,4935,320,4935,400
DATA 4935,480,4807,21315,22477,65498,26322,17386
DATA 640,20937,65480,28672,20085,28927,20085
DATA-1
Graphmode 3
For 1%=0 To 319

Line 1%,0,319-1%,319
Line 0,1%,319,319-1%

Next 1% Graphmode 1
Do

Get X%,Y%,X%+39,Y%+39,A$
Lupe%= Varptr(Lupe$)
Hidem
Void C:Lupe%(L:Varptr(A$)+6,40,39,L:Xbios(3)+40)
Showm
Repeat

Mouse A%,B%,C%
UntilC%
If A%<320-40 And B%<320-40

X%=A%
Y%=B%

Else
Color C% And 1 Plot X%+(A%-320)/8,Y%+(B%/8)

Endif
Loop

After the initializing of the magnify routine, a pattern is
drawn on the screen. Then a segment is cut from the left
side of the screen, after which that segment is enlarged by
using the magnify routine. Whenever a mouse button is
pressed, the segment is either moved or a point is plotted
depending on the mouse position (Graph mode 3).

99

Magnify

100 The GFA BASIC Book

If you look closely, you will discover an error in the
program that forced me to decrease the length of the C:-call
by one. This error is a holdover from the testing phase of
the machine routine.

The screen segment is read into a string with the GET
command and the address of that string is then incremented
by six and passed to the magnify routine. In this case, the
destination address happened to be within the screen
boundaries, but you could easily change the machine pro­
gram so that a GET/PUT-string could be used as the desti­
nation.

By the way, this Basic program is not optimal. A good
program should not always call the magnify routine but
rather use the PBOX, the PUT, ... O or PUT, .. .15 command
to set the individual points. The magnify routine should
only be called whenever large changes are made (like the
drawing of lines and circles or the displacement or invert­
ing of a picture segment).

Chapter 3: Tips and Programs

The GFA BASIC Book

3.10 Recursion

There exists a very powerful method of programming,
which is called recursion. This method usually shortens the
programs, but it makes them harder to understand if you are
not used to recursive thinking.

With recursion you can solve problems by separating
them into ever decreasing steps.

A small example:

'recurs
Faktor=0.55
@Rek(320,200,100) !change to 320,100,50 lor color
Procedure Rek(X%,Y%,R%)

Box X%-R%,Y%-R%,X%+R%,Y%+R%
II R%>10

@Rek(X%+R%,Y%,R%*Faktor)
@Rek(X%,Y%+R%,R%*Faktor)
@Rek(X%-R%,Y%,R%*Faktor)
@Rek(X%,Y%-R%,R%*Faktor)

Endil
Return

That was short, was it not?

101

Recursion

102 The GFA BASIC Book

Call @rek(320,200,lOO) passes the value 320 for X%
and 200 for Y% and also 100 for R% (for color monitor
change to 160,100,150).

The procedure draws a box with the a length of twice
R%.

This procedure is called four more times as long as R%
is greater than 10. The mid-point is always moved by R%,
first to the right, then to the bottom, then to the left and fi­
nally to the top. The important thing is that R% is changed
every time the procedure is called.

The first of these four procedures draws a box half as
large as the original (R%*Factor where Factor=0.5),
whose mid-point is located exactly in the middle of the
right side of the larger box. Since R% will still be larger
than 10, the procedure will draw another box on the right
side of this newly created box.

As soon as the lower limit of the box size is reached
(R% is not greater than 10), the recursion jumps a level
higher (the RETURN statement).

Next, the bottom procedure is called. This procedure
draws a box in similar fashion, but this time the mid-point
is always on the lower side. Next, the left procedure draws
boxes on the left mid-point.

The last procedure (top) draws the upper mid-point.

By now all of the routines between the IF and ENDIF
have been executed.

Now the bottom box routine is called with a value of
R% equal to the previous box. In other words, the size is
again large enough so that the four subroutines can be exe­
cuted again. Again, the smaller boxes are drawn.

Chapter 3: Tips and Programs

The GF A BASIC Book

Now the left box routine with the larger box is called,
then the top box routine.

Next, the bottom box routine that draws an even larger
box is called. This routine again calls all those other rou­
tines to draw the smaller boxes. This is then repeated for
the left and upper boxes.

Next, the bottom box routine is called which will draw
an even bigger box.

This program continues until the upper box routine drew
the second largest box and all the smaller boxes that con­
nect to that box.

103

Recursion

104 The GFA BASIC Book

Figure 10: An Example of Recursion

II II

~

Chapter 3: Tips and Programs

The GFA BASIC Book

The first of these pictures shows the program in progress
and the other shows the finished product.

~

l-

II

t::
L-

lOS

11

Recursion

106 The GF A BASIC Book

The following modifications to the program will allow
you to look at the drawing one box at a time. Values for
X%,Y%,R% and which of the routines was last called is
displayed in the top left corner. Just press any key to con­
tinue with drawing the next box.

, RECURS1
FACTOR=0.55
@REK(320,100,50) !CHANGE TO 320,200,100 FOR HIGH
PROCEDURE REK(X%,Y%,R%) !RESOLUTION

BOX X%-R%, Y%-R%,X%+R%,Y%+R%
PRINT AT(1, 1);"X=";X%;",Y=";Y%;",R=";R%;" ,";B$;SPC(1 0)
VOID INP(2)
IF R%>10 B$="RIGHT"

@REK(X%+R%,Y%,R%"FACTOR) B$="BOnOM"
@REK(X%,Y%+R%,R%"FACTOR) B$="LEFT"
@REK(X%-R%,Y%,R%"FACTOR) B$="TOP"
@REK(X%,Y%-R%,R%"FACTOR)

ENDIF
RETURN

By the way: You could also add a REPEAT UNTIL
MOUSEK which would cause the program to wait as long
as the mouse button is not pressed. The following routine
would also do nicely:

REPEAT
UNTIL BIOS(11 ,-1) AND 16

This causes the program to wait if the CAPS-LOCK key
is activated. The program will continue when the key is
pressed again.

Which halt procedure you choose for testing your rou­
tine should depend on the complexity of the recursion. It is
absolutely possible that thousands of steps are performed
before you will discover the error.

Chapter 3: Tips and Programs

The GFA BASIC Book

Possible experimental alternatives:

There are many possibilities for modifying this program.
This includes changing the range of R% (IF R% > 10) or
changing the factor (The factor must, however, be less than
one so that the program will eventually come to a stop, you
could of course modify the corresponding R% > 10). The
factor could be created with the RND function, or you
could change the BOX command to a CIRCLE X%,Y%,R%,
or you could use a simple PLOT command, or .. .

One of these modifications is represented in the picture
below.

€Rek (32B ,2BO ,lBBl
Pr int H~

Figure 11: Recursion Modification

Procedure Rek (XX, Y~, R~l
rnc HX
, Box XX -RX, Y~-RX,X~.R~, YHRX
Plot xx, yz
If RX>3

€Rck (XZ+RX, YX, RXlIRndl
€Rek (XX, YZ.R~, RXlIRndl
€Rek (XX-RX, YX, RXlIRndl
€Rek (XX; YX-RX, RXlIRndl

Endi f
Return

W6l

107

Recursion

108 The GFA BASIC Book

Let us move on to another recursive procedure, namely
the often used Quicksort.

DIM A$(9)
FOR 1%=0 T09

READ A$(I%)
NEXT 1%
DATA 5,2,4,6,1,3,8,0,9,7
@QUICKSORT(*A$O,0,9)
@D

PROCEDURE D
LPRINT"
FOR 1%=0 T09

LPRINT A$(I%)'
NEXT 1%
LPRINT ""L%'R%"LL%'RR%

RETURN
PROCEDURE D1

LPRINT N*",
FOR 1%=0 TO 9

LPRINT A$(I%)'
NEXT 1%
LPRINT "X$'L%'R%"LL%'RR%

RETURN

PROCEDURE QU ICKSORT(STR.ARR%,L %,R%)
LOCAL X$
SWAP *STR.ARR%,A$O
@QUICK(L%,R%)
SWAP *STR.ARR%,A$O

RETURN
PROCEDURE QUICK(L%,R%)

@D
LOCAL 1I%,rr%
11%=1%
rr%=r%
X$=A$((L%+R%)/2)

Chapter 3: Tips and Programs

The GFA BASIC Book

REPEAT
WHILE A$(L%)<X$

INCI%
WEND
WHILE A$(R%»X$
DECr%
WEND
IF L%<=R%

SWAP A$(L%),A$(R%)
@D1
INCL%
DECR%
ENDIF

UNTIL L%>R%
IF LL%<R%

@QUICK(LL%,R%)
ENDIF
IF L%<RR%

@QUICK(L%,RR%)
ENDIF

RETURN

This program contains the previously introduced
Quicksort, an initialize routine and two report routines.

First, the array A$() is filled with data that will then be
sorted.

The printer routines d and dl print the field contents of
A$(),L%,R%,Il% and rr%. The dl routine also prints an
asterisk and the variable X$ (this variable is used to com­
pare the elements).

The address of the sort field and the left and right
boundaries are then passed to the quicksort routine. The
variables L% and R% select the portion of the array that
should be sorted. After the local variable X$ is declared
and the array A$ is swapped, the program calls the actual
quicksort procedure (quick).

109

Recursion

110 The GFA BASIC Book

This sort routine is the most important routine of the
program.

For testing purposes, the print routine (the one without
the asterisk) is called. The variable L% and R% are then
passed to the local variables Ll% and Rr%.

Next, variable X$ is assigned an element from the array
(here the middle element).

The array is then divided into two parts. The left
(lower) part contains all elements that are smaller than the
compare element and the right (upper) part contains all the
elements that are greater. The dividing of the array is as
follows:

Starting with the lowest array element, the table is
searched until it is greater or equal to the compare
element (X$). Next, the table is searched for the
first element by starting with the highest (left) ele­
ment and searching downward (this is performed by
the two WHILE loops). Whenever both elements
are found, they are switched and then skipped with
the INC and the DEC command (they could have
been equal). This is repeated until the left range is
greater than the right range, which indicates that
both tables contain no more elements which do not
belong to them. If the tables contain more then one
element, they are then sorted.

Just in case it is still not clear to you, let me give you the
listing of the sort process of the table mentioned above.

The original input

5246138097 09 00 (L%,R%,Ll%,Rr%)
The compare element is 1. The fIrst element
on the left that is not less than 1 is 5 and the

Chapter 3: Tips and Programs

The GFA BASIC Book

first element that is not larger is the O. Those
two elements are switched.

*0246 1 3 8597 107 09 (X$,L%,R%,Ll%,Rr%)
Continue the search. The 2 on the left and
the 1 on the right are switched.

*0 1 4 6 2 3 8 5 9 7 1 1 4 0 9
The left range is now larger then the right.
The two parts are 0-1 and 2-9. The 0-1 is
sorted first.

0146238597 0109
The zero is the compare elements and it
switched with itself.

*0 1 4 6 2 3 8 5 9 7 0 0 0 0 1
Now we sort the right part 2-9.

0146238597 2909
Compare element is 3, after switching

*0 1 3 6 2 4 8 5 9 7 3 2 5 2 9

*0 1 3 2 6 4 8 5 9 7 3 3 4 2 9
.. .is divided in parts 2-3

0132648597 2329

*0 1 2 3 6 4 8 5 9 7 3 2 3 2 3
... and 4-9

0123648597 4929
*0 1 2 3 6 4 7 5 9 8 8 6 9 4 9

4-9 is split into 4-7 and 8-9

01236475984749

*0 1 2 3 4 6 7 5 9 8 4 4 5 4 7
4-7 is split into 4 and 5-7

01234675985747
*0 1 2 3 4 6 5 7 9 8 7 6 7 5 7

5-7 is split into 5-6 and 7

01234657985657

*0 1 2 3 4 5 6 7 9 8 6 5 6 5 6
Now we do the 8 and 9

111

Recursion

112

01234567988949
*0 1 2 3 4 5 6 7 8 9 9 8 9 8 9

That is all.

0123456789 0000

Chapter 3: Tips and Programs

The GFA BASIC Book

The GF A BASIC Book

3.11 EXEC

It is relative easy to load and start a complete program
with the EXEC O,"name.prg","cmd","env" command.

It is somewhat harder if you wish to load a routine writ­
ten in machine code or C only once and then execute it
many times. While this is possible with the EXEC 0 com­
mand, it would require the routine to be loaded from the
diskette or the RAM-Disk. Loading from the diskette is
very slow and loading from a RAM-Disk requires twice the
memory since the data must be copied to a RAM-Disk.

You could also transform the machine routine into
DATA statements and then read that data with a corre­
sponding READ-POKE loop (or READ-A$=A$+Mki$()).
This uses a lot of memory; time to read the DATA state­
ments and the program would not be relocatable. The ad­
vantage, however, is that only one program needs to be
loaded.

You could also load the routine(s) with the EXEC(3 .. .)
command and then execute it with the C: command. The
problem exists that these routines can not manage their own
memory like normal programs can. It is also harder to re­
cover the memory that was used for those routines.

113

EXEC

114 The GFA BASIC Book

'EXEC3
adr%=EXEC(3,'SCREEN.PRG",",·')
, IF adr% AND ! TOS was supposed to deliver a &FFFFFFd9
, ERROR adr% ! (-39) on errors, but it really returns a
'ENIF ! &09(217). Without an error check you may
screen%=adr%t256 !get 3 bombs (address error).
BLOAO 'woof1.pi3',XBIOS(3)-34
HIOEM
REPEAT

VOID C:screen%(2,1)
VOID INP(2)
VOID C:screen%(1 ,2)
VOID INP(2)

UNTIL MOUSEK
SHOWM
VOID GEMOOS(73,L:HIMEM)
VOID GEMOOS(73,L:adr%)

This small program demonstrates all that is necessary to
load a small machine code routine in an orderly manner, to
execute that routine with parameters, and to release the
memory after the program is finished.

The EXEC(3 ...) command loads the program, relocates it
and delivers the address of the corresponding Basepage.
Since this routine contains only one starting address, it can
be computed by adding 256 to the Basepage. With many
routines you could have built a table that consisted of a row
of JMP commands or as shown here, by passing parameters
through the stack.

The first of the two GEMDOS(73)=m Jree calls returns
the memory used for the environment string (at least two
bytes), which is always located in the lowest possible ad­
dress (HIMEM) and the second returns the actual memory
of the program.

With larger routines you may have to reserve memory
before you load the routines using the reserve command. If
you wish to also use GEM routines (RSC-filesFileselect)

Chapter 3: Tips and Programs

The GFA BASIC Book

or more EXEC(3 ...) commands, you must reserve the nec­
essary memory by using the GEMDOS routines m-shrink.

Example: A machine program XXX.PRG requires 20
Kbytes of memory. The Basic program requires 100 Kbytes
for variables and strings and the rest of the memory may be
used for RSC-files, etc.

RESERVE 100000 !BASIC-memory usage
xxx.base%=EXEC(3,"XXX.PRG","","")
IF xxx.base%<BASEPAGE

ALERT 1 ,"Unable to load XXX.PRG",1,"Cancel",dumm%
END

ENDIF
e%=GEMDOS(74,O,L:xxx.base%,L:20000)
IF e%<O

ERRORe%
ENDIF'
Here comes the rest of the program
,

VOID GEMDOS(73,L:HIMEM)
, or, if something else was loaded before the EXEC(3 ...)
, VOID GEMDOS(73,L:xxx.base%-2)
VOID GEMDOS(73,L:xxx.base%)
,

Attention: There is a serious bug with the current
version of TOS when using the m alloc and
m free calls that will cause the system -to lock-up
after issuing those commands about 20 times.
Even the saving to diskette may not work anymore.
It is very hard to duplicate this error since it seems
to pop up whenever it is least wanted. You should
never abort in the middle of a program that uses
this kind of memory management.

115

EXEC

116 The GF A BASIC Book

Here is an assembly program that will change the pic-
ture between the different resolutions of the ST, even
though this book is supposed to be about BASIC.

* screen.asm
* Change screen after changing from resolution a to b
*

* VOID C:screen%(a,b)
*

Section Text ;.text
start move.w #3,-(sp)

trap #14
addq.! #2,sp
move.! dO,aO ;Iogbase
move.w 4(sp),dO
move.w 6(sp),d1
beq tolo
subq.w #1,d1
beq.s tomid
subq.w #l,dO
bmi.s lohi
beq.s mihi
rts

lohi move.! aO,a3
bsr.s lomi
move.! a3,aO

mihi move.w #199,dO ;200 Iinex
mihi1 moveq #39,d1 ;40*2 Words
move.! aO,a1ds

mihi2 move.w (aO)+,(a1)+
move.w (aO)+,-(sp)
dbra d1,mihi2
moveq #39,d1
move.! aO,a1

mihi3 move.w (sp)+,-(a1)
dbra d1,mihi3
dbra dO,mihi1
rts

lomi move.w #32000/8 -1 ,dO

Chapter 3: Tips and Programs

The GF A BASIC Book 117

lomil move.l (aO)+,d6
move.l (aO)+,d7
moveq #7,dl

lomi2 add.w d6,d6
addx.w d3,d3
add.w d7,d7
addx.w d3,d3
dbra dl,lomi2
moveq #7,dl

lomi3 add.w d6,d6
addx.w d5,d5
add.w d7,d7
addx.w d5,d5
dbra dl,lomi3
swap d6
swap d7
moveq #7,dl

lomi4 add.w d6,d6
addx.w d2,d2
add.w d7,d7
addx.w d2,d2
dbra dl,lomi4
moveq #?,dl

lomi5 add.w d6,d6
addx.w d4,d4
add.w d7,d7
addx.w d4,d4
dbra dl,lomi5
movem.w d2/d3/d4/d5, -8 (aO)
dbra dO,lomil
rts

tomid subq.w #1,dO
bmi.s lomi
beq.s mimi

himi move.w #199,dO
himi1 moveq #39,dl ;40*2 Words

lea 80(aO),al
himi2 move.w -(al),-(sp)

dbra d1,himi2
lea 80(aO),a1

EXEC

118 The GFA BASIC Book

moveq #39,d1
himi3 move.w (sp)+,(aO)+

move.w (a1)+,(aO)+
dbra d1,himi3
dbra dO,himi1
mimi rts

1010 subq.w #1,dO
beq.s milo
bmi.s 1010

hilo move.l aO,a3
bsr.s himi
move.l a3,aO

milo move.w #32000/8-1 ,dO
mil01 movem.w (aO),d2/d3/d4/d5

moveq #7,d1
mil02 add.w d2,d2

addx.w d6,d6
add.w d2,d2
addx. wd7,d7
dbra d1,mi102
moveq #7,d1

mil03 add.w d4,d4
addx.w d6,d6
add.w d4,d4
addx.w d7,d7
dbra d1,mi103
swap d6
swap d7
moveq #7,d1

mil04 add.w d3,d3
addx.w d6,d6
add.w d3,d3
addx.w d7,d7
dbra d1,mil04
moveq #7,d1

mil05 add.w d5,d5
addx.w d6,d6
add.w d5,d5
addx.w d7,d7
dbra d1,mi105

Chapter 3: Tips and Programs

The GF A BASIC Book

move.!
move.!
dbra

1010 rts

end

d6,(aO)+
d7,(aO)+
dO,mil01

Two parameters are passed to this routine via the stack.
The two parameters are the source and destination resolu­
tion in the format just like the XBIOS(4) function uses (0
for low resolution, 1 for medium resolution and 2 for high
resolution).

Color is changed to the equivalent grey scale and vice
versa. A color picture is thus converted to a black and
white picture that should somewhat resemble the color
picture. You could also look at a black and white picture
on a color monitor, but you would then have to change the
color register to the corresponding grey scale.
Experimenting could be a lot of fun.

The previous program (EXEC3) loads Woof as a high
resolution Degas picture from the diskette and changes it to
a similar color picture in medium resolution.

Owners of monochrome monitors will most likely have
some Degas color pictures stored on a diskette. With this
routine you can look at those color pictures as black and
white pictures.

The reason that the routine to change pictures was not
written in GF A BASIC is because there is just too much
bit manipulation. No high level language comes close to
performing the routine as well as machine language. To
change the pictures from low to medium resolution or vice
versa requires 256,000 additions, besides loops and other
things. The whole process only takes about half a second.
You could write similar routines that could be treated as
extensions to the GF A BASIC commands. When using C
it is important that the routine is linked without the usual

119

EXEC

120 The GFA BASIC Book

heading files. It is best to use compilers that create assem­
bler source files. Some compilers may require you to save
and restore all the registers.

Chapter 3: Tips and Programs

The GF A BASIC Book

3.12 Fonts

The ST computer is capable of mixing graphic and text
on the same screen. Using the DEFTEXT you can modify
the appearance of the text. But even this powerful com­
mand has its limitations when it comes to displaying ex­
ceptionally pretty lettering or very large characters. You
could of course use the GET/PUT command to display the
desired graphic, along with characters. This could, how­
ever, result in a lot of overhead.

But. ..

The ST comes with GEM, and GEM can (most of the
time) create many different character sets. Unfortunately,
the corresponding VDI-functions (loadJonts ...) are not yet
implemented on the current version of the ATARI ST, at
least not to the fullest extent.

But. ..

You can bypass the corresponding functions
(vst_IoadJonts and vst_unloadJonts form GDOS) and still
create GEM character sets (like a proportional character
set).

The program F ontdemo demonstrates how this works.

121

Fonts

122 The GFA BASIC Book

The main program loads two character sets from the
diskette after it reserved the necessary memory (a generous
100,000 bytes). The program then displays short text in the
standard ST format and also in the two loaded fonts.

Next, those letters are shown in different sizes which
tend to be somewhat slow without the blitter chip, but then,
only a few large characters can fit on the screen anyway.

Procedure /oadJont(jile$,adr.%)

This procedure is the real workhorse. After opening the
files (with LOF(#J)), the memory is reserved by using the
GEMDOS-function maUoc. The files are then loaded into
that memory using the BGET command. Should an error
occur during the GEMDOS call (malloc=O), GF A BASIC
will return the corresponding error message.

The beginning of the FNT-files contain a row of num­
bers as 2 or 4 byte integers. Unfortunately, these numbers
are not in the 68000 processor format but rather in the Intel
processor (8080,8088, 8086,80286) format. A loop is gen­
erated to convert those numbers. However, not all of the
data is converted since the actual data for the characters is
already in the correct format.

First, the offset of the font data is determined (I assume
that all numbers will come first and then the actual font
data). The DPOKE-command converts the bytes.

The three following LPOKE-commands switch the low
value word Gust like Intel) with the high value word and
add the starting addresses of the Font-headers, so that the
correct pointer is stored in the memory for the 68000
(Since the offset of the pointer is always less than 65536,
the high value word, which is null anyway, is dropped). For
those that want the exact version can change the line to:

Chapter 3: Tips and Programs

The GF A BASIC Book

LPOKE a_o/o+68,a_°/o+OPEEK(aYo+68)+65536'OPEEK(aYo+70) etc.

Next, the pointer that ties all the character sets together
is changed. The address of the Font-header is returned to
the calling program.

PROCEDURE get_chrlinkO

This procedure determines the address of the first Jont­
header that is stored in the memory of the ST. The follow­
ing small machine program serves that purpose:

.de.w $aOOO ;aOOO
move.l a 1 ,dO ;2009
rts ;4e75

Here the Line-A-init-call is used to determine the ad­
dress of the table that contains the addresses of the three
internal character sets. The second of these character sets
(standard 8*8 for color monitor) contains the pointer that
points to the corresponding Font-Headers.

PROCEDURE get_chrlink

This procedure uses get _ chrlinkO and processes the
whole list until the end is reached.

PROCEDURE unloadJont(adr%)

This routine unloads the font at Adr% (in other words
that font may no longer be used) by replacing the pointer of
the previous character with the current character set. The
memory that was used by that character set is returned to
the system.

123

Fonts

124 The GFA BASIC Book

PROCEDURE killJonts

This routine serves as an emergency exit during the pro­
gram development. This procedure erases all character sets
that were loaded with GF A BASIC, independent of
whether the corresponding pointers are known (like
ibmhss36%) or not.

PROCEDURE unreserve

This procedure frees the memory that was reserved with
the RESERVE-command.

The RESERVE XBIOS(2)-16386-HIMEM+FREE(0) ­
nnnn reserves nnnn bytes of memory. This long command
allows you to test your program more often without even­
tually reserving all the available memory as would be the
case with the RESERVE FRE(O)-nnnn command.

For a finished program it is usually better to use the
RESERVE aaaaaa command since the memory usage is
fixed and no more changes should take place.

Attention: If the program is compiled, you must re­
serve at least 32500 Bytes of memory for the
FILESELECT-box. Therefore if an external pro­
gram is selected with the FILES ELECT-Box, you
should issue a RESERVE 1000 call only after the
FILESELECT-call was made. This is not necessary
for the interpreter.

DEFFN malloc(siz%)
DEFFN mfree(adr%)
DEFFN mshrink(adr%,size%)

These are the GEMDOS functions that control memory
usage.

Chapter 3: Tips and Programs

The GFA BASIC Book

@malloc(nnnn) reserves nnnn bytes of available mem­
ory (above HIMEM). The starting address of that memory
is returned after calling this function. If no memory was
available, a null is returned.

Special case: @malloc(-l) returns the number of bytes
of the largest available memory block.

@mfree(aaaa) frees up the memory block at address
aaaa and releases it to the operating system. An error has
occurred if a negative value is returned (like -40=ERROR -
40) .

@mshrink(aaaa,nnnn) allows you to decrease the size of
an already allocated memory block. A negative number is
returned if an error occurs.

CAUTION: There is a bug in the operating system
that crashes the computer after about 20-40
@malloc and @mfree cycles. This error will cause
the computer to display "memory full" whenever a
diskette command (OPEN, SAVE ...) is issued. The
only option available to you is to issue a LLIST
command and then reset the computer.

DEFTEXT color,style,rotation,height,face

You should already be familiar with the DEFJEXT­
command, but only with four parameters. There is a fifth
parameter (until now undocumented) that allows you to
select the font. You must have called the corresponding
VDI-call (vst Jont). The number of the font (called face) is
easily determined. This number is always found in the first
two bytes of the font. The standard font contains the num­
ber 1. All other fonts that are loaded can contain any num­
ber and can be selected by you (like DPOKE ibmhss36,2,
etc). If more than one version of the same font exists in
memory, the one that matches the text height the closest
(byte 2 and 3) is used.

125

Fonts

126 The GFA BASIC Book

The Font-header:

Byte
0-1
2-3
4-35
36-37

38-39

40-41
42-43
44-45
46-47
48-49
50-51
52-53

54-55
56-57
58-59
60-61
62-63
64-65
66-67

68-71
72-75
76-79
80-81
82-83
84-87

Function
Font ID (face number)
Character size in points (ln2 inches)
Name of the font (8*16 Systernfont...)
First character in the font (often the character

after code 32)
Last character in the font (usually not greater

than 127). This is why no foreign characters
c~ be displayed with the example fonts
gIVen.

Top line These are the distances
Ascent line between the letters
Half line from the baseline
Descent line
Bottom line
Width of the widest character
Width of the widest character cell incl. empty

space
Left Offset for cursive text
Right Offset -"- -"-
Thickness width (4=extra wide)
Underline size (7 =very thick line)
Mask for Light text (usually &5555)
Mask for skewed (italic) text (usually &5555)
Flags:

bit O=System Font
bit I=Uses horizontal offset table
bit 2=Byte-swap-flag for font data

Intel=O,Motorola(1)
bit 3=Proportional(0)

Pointer to the Horizontal offset table
Pointer to the Character offset table
Pointer to the Font data
Total width of all characters in pixels
Height of the character matrix(must match 2-3)
Pointer to the next font or null

Chapter 3: Tips and Programs

The GF A BASIC Book

This is followed by the Character-OJfset-Table which
contains the number of pixels of all the preceding charac­
ters in the font.

There may also be a Horizontal-OJfset-Table which
contains the additional space required for each character.
Finally, the actual character data follows which is stored in
an extremely compact format so that each line can start on
a word boundary. Compare to BITBLT.

Figure 12: Font Examples

Hello, STandard 118
He 11 0, i bfl1hss36

Hello, epshss36 118

127

Fonts

128 The GFA BASIC Book

I •••••••••••••••••••••••

FONT DEMO
I tt. t _.*.*., .tt • •• • • • •• •

' FONTTEST'
Reserve Fre(O)-100000
@loadjont("ibmhss36.fnt",'ibmhss36%)
@Loadjont("GROSS.FNT",'lbmhss36%)
Dpoke Ibmhss36%,2 '
@loadjont("epshss36.fnt",'epshss36%)
@Loadjont("GROSS.FNT",'Epshss36%)
Dpoke Epshss36%,3
Deftext ",36,1
Text 50,1 OO,"Hello, STandard"
Deftext " ,36,2
Text 50,200,"Hello, ibmhss36"
Deftext ",36,3
Text 50,300,"Hello, epshss36"
For 1%=0 To 120

Deftext ,,2,1%
Text 450,140,1%
Deftext ,,3,1%
Text 450,300,1%

Next 1% @Unloadjont(Epshss36%)
@Unloadjont(lbmhss36%)
,

"'@killJonts
@Unreserve

Deffn Malloc(Size%)=Gemdos(&H48,L:Size%)
Deffn Mfree(Adr%)=Gemdos(&H49,L:Adr%)

! Place for Fonts'

Oeffn Mshrink(Adr%,Size%)=Gemdos(&H4A,0,L:Adr%,L:Size%)
,

Procedure Loadjont(File$,Adr.%)
Local L_%,A_%,I_%
Open ' 1",#1 ,File$
A_%=@Malloc(Lof(#1))
If A5o<=0

Error 101
Endif

! Place reserve

! that was nothing

Chapter 3: Tips and Programs

The GFA BASIC Book 129

Bget #1 ,A_%,Lol(#1) ! Font load
Close #1
L_%=Peek(A3o+76)+2SS*Peek(A3o+77) IL_%Bytes Font-Data

For L%=A3o To A_%+L3o-1 Step 2 I Intel into Motorola

Dpoke L%,Peek(L%)+2S6*Peek(L%+ 1) !Format calculating

Next L%
Lpoke A_%+68,A3o+Dpeek(A3o+68) ! Hor-Ofts-Tab

Lpoke A_%+72,A_%+Dpeek(A3o+72) ! Chr-Ofts-
Tab Lpoke A_%+76,A3o+Dpeek(A3o+76) ! Font-Data
@Get_chrlink
Lpoke Chrlink%+84,A3o *Adr.%=A3o

Return

Procedure Getchrlink
@GetchrlinkO
Chrlink%=ChrlinkO%
While Lpeek(Chrlink%+84)

Chrlink%=Lpeek(Chrlink%+84)
Wend

Return

Procedure GeUhrlinkO
Local A_$,A_%
A_$=Mkl$(&HA0002009)+Mki$(&H4E7S) ! AOOO move.1 a1,dO rts

A_%=Varptr(A_$)
ChrlinkO%=Lpeek(Lpeek(C:A300+4)+84) ! see text

Return

Procedure KiliJonts
Do

@Get_chrlink
Exit II Chrlink%<Basepage
@UnloadJont(Chrlink%)

Loop
Deftext "" 1

Return

Procedure Unreserve
Reserve Xbios(2)-16384-Himem+Fre(O)

Return

Fonts

130

Procedure Unloadjont(Adr%)
@GetchrlinkO

The GFA BASIC Book

While Lpeek(ChrlinkO%t84)<>Adr%
ChrlinkO%=Lpeek(ChrlinkO%t84)

Wend
Lpoke ChrlinkO%t84,Lpeek(Adr%t84)
Void @Mfree(Adr%)

Return

Chapter 3: Tips and Programs

CHAPTER 4

GEMDOS, BIOS and

XBIOS

131

132 The GFA BASIC Book

Many separate components, with different
functions, make up the operating system of the ST com­
puter.

Let us start from the top:

TOS (Tramiel Operating System)
The total operating system including GEM

GEM (Graphic Environment Manager)
A subsystem of the operating system that
contains standardized graphics routines that
can run independent of the machine. GEM
can also be run on an IBM or other micro
computers.

AES (Application Environment Services)
Responsible for the graphic input
functions like the Mouse-Menu­
System.

VDI (Virtual Device Interface)
Currently this is limited on the ST to
the screen with few exceptions.
Help routines for AES and programs,
like drawing lines, fill areas, select­
ing line thickness, etc. The actual

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

drawing routines for the screen are
implemented through the Line-A­
routines. The VDI directs the draw­
ing commands to the Line-A­
Routines (or to a printer or diskette
file)

GEMDOS (GEM Disk Operating System)
This is the actual operating system that was imple­
mented on the ST computer. Similar to CP/M or
MS-DOS, it is used for the orderly operation related
to accessing disk drives. Through GEMDOS the
data can only be accessed through the directory (not
by sectors). GEMDOS controls all saving of disk
files on the ST.

BIOS (Basic Input/Output System)
XBIOS (Extended Basic Input/Output System)

These two interfaces are used to control disk
access by sectors and for accessing other pe­
ripherals, just like the BIOS for CP/M or
MS-DOS. The BIOS performs all the nor­
mal I/O routines (Input/Output). The XBIOS
allows one to access the enhanced services
of the ST computer: screen addresses, col­
ors, sound, hardware registers, Interrupt
vectors, etc.

It is known that the BIOS calls XBIOS routines and
GEMDOS uses BIOS and XBIOS routines. Eventually the
AES will call all lower levels.

To use the ST efficiently, one must know all aspects of
the operating system so that one can select the routines that
are best suited. It does not have to be the best or the fastest
and if you already have a routine that would be satisfactory
then go ahead and use it. It would be senseless for you to
write your own routine instead of using an existing
GFA BASIC one if all that is saved is a few milliseconds.

133

Chapter4: GEMDOS, BIOS and XBIOS

134 The GF A BASIC Book

For example: GF A BASIC uses the BIOS routines for
the PRINT command because it is much faster then the one
used by GEMDOS. There is also a problem with Control-C
in GEMDOS. Direct Use of the BIOS often results in the
loss of GEMDOS I/O redirection capabilities, but permits
greater values.

In the following pages I will give a short description of
the GEMDOS, BIOS and XBIOS routines and give an ex­
ample where appropriate.

Errors are returned as a negative number and should
match the error number of GF A BASIC.

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

4.1 GEMDOS

• GEMDOS(O) p_termold

This routine ends the program. May not be used in
GFA BASIC.

• GEMDOS(l) c conin

Reads a character from the console (keyboard). It is
similar to the INP(2) function call. It returns a 32
bit word. In the lower eight bits (c% and 255) you
will find the ASCII value for the pressed key (if an
ASCII key was pressed). In bits 16 to 23
(c%/65536 and 255) you will find the SCAN-code
of the keystroke. Every key has a code, even the
function keys. Bits 24 to 31 contain the keyboard
shift key (c%/&hlOOOOOO), just like BIOS(ll)
would return. For example ALT-Left-Shift-A would
return the value &OA1E0041.

Some programs assume bits 24 to 31 are set to null.
These bits are cleared (before EXEC) by

SPOKE &H484,PEEK(&484) OR &H F7

To set it to normal:

135

GEMDOS

136 The GFA BASIC Book

SPOKE &H484,PEEK(&H484) OR 8

The character that corresponds to the key pressed is
displayed on the screen. Use of Control-C termi­
nates the program (crashes GEM programs).

• GEMDOS(2,c%) c conout

Prints a character to the console (screen).

• GEMDOS(3) c auxin

Reads a character from the serial port.

• GEMDOS(4,c%) c auxout

Writes a character to the serial port.

• GEMDOS(5,c%)

Writes a character to the printer.

• GEMDOS(6,c%) c rawio

Writes a character to the console or if c%=255 an
INKEY-routine is executed. If a key is pressed a
value will be returned, otherwise, a null is returned.

• GEMDOS(7) c rawcin

See GEMDOS(8).

• GEMDOS(8) c necin

Chapter 4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

More key input routines. These two do not display
the character and Control-C does not cause a break.
It returns code as GEMDOS(1).

• GEMDOS(9,L:adr%)

Writes a null-terminated string to console:

a$='Hello" +chr$(O)
VOID GEMDOS(9,L:VARPTR(a$))

• GEMDOS(lO,L:adr%)

@conrs(10,'a$)
PRINT a$

PROCEDURE conrs(n%,str. %)
LOCAL a_$,a%
a_$=CHR$(n%)+STRING$(n%+2,O)
a%=G EMDOS(1 O,L:VARPTR(a_$))
'str,%=MID$(a_$,3,ASC(MID$(a_$,2)))

RETURN

c conws

c conrs

This routine reads an edited string. Because of the
Control-C problem, it is almost impossible to use.

• GEMDOS(ll) c conis

Returns null if no key was pressed

• GEMDOS(14,d %) d setdrv

Selects current drive like CHDRIVE d%+l.

• GEMDOS(16) c conos

137

GEMDOS

138 The GFA BASIC Book

Returns null if console is not ready to receive a
character. This should never happen.

• GEMDOS(17)

Returns null if printer is not ready.

• GEMDOS(18) c auxis

Returns null if no character is available on the serial
port.

• GEMDOS(19) c auxos

Returns null if serial port is not ready to receive a
character.

• GEMDOS(25) c_getdrv

Returns number of current drive DEFFN
gdrive=GEMDOS(25)+ 1

• GEMDOS(26L:adr%) f setdta

Set buffer address for f sfirst and f snext.
GFA BASIC sets this to BASEPAGE+128 at pro­
gram start or when DIR or FILES command is used.

• GEMDOS(42)

Returns a 16 bit number containing the date
(DATE$) in this format (Year-
1980)*5 12+month*32+day.

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

• GEMDOS(43,d%) t setdate

Set the date (SETTIME) as above.

• GEMDOS(44) t_gettime

Read time (TIME$). Returns a 16 bit number in this
format Hour*2048+minute*32+seconds/2.

• GEMDOS(45,t%) t settime

Set time (SETTIME) as above.

• GEMDOS(47) f getdta

Returns buffer address for f sfirst,f snext. - -

• GEMDOS(48) s version

Returns current GEMDOS version number.

• GEMDOS(49,L:size%,ret%) p_termres

Terminate program and reserve size% bytes In

BASEPAGE. Cannot be used in GFA BASIC.

• GEMDOS(54,L:adr%,d %) d free

Returns information about free disk space on drive
d% like the function DFREE(d%). The information
is stored in a buffer that is four long words long
starting at address adr%. You can obtain the space

139

GEMDOS

140 The GFA BASIC Book

by multiplying the first long word with the third and
the fourth (DFREE). The capacity by multiplying
the second long word with the third and the fourth.

• GEMDOS(57,L:adr%) d create

Create a directory, MKDIR ...

• GEMDOS(58,L:adr%) d delete

Delete a directory, RMDIR ...

• GEMDOS(59,L:adr%)

Change directory, CHDIR ...

• GEMDOS(60,L:adr%,attr%) f create

Create a new file (Name starts at adr%). Returns a
file handle that is used in any further operations.
The same as OPEN "0". If attr% is zero the file is
normal, a 1 means file can only be read, a 2 means
hidden file, a 4 is a system file and a 8 is the vol­
ume label (set while formatting the disk).

• GEMDOS(61,L:adr%,mode%)

Opens a file. Mode%=O corresponds to OPEN "[",
mode%=l corresponds to OPEN "0 " and
mode%=2 corresponds to OPEN "U". Returns in­
formation similar to f_ create.

• GEMDOS(62,h %) f close

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

Closes file with handle h%, corresponds to
CLOSE#n.

• GEMDOS(63,h %,L:len %,L:adr%) f read

Read len% bytes from the file that was opened with
file handle h% into buffer at address adr%. Similar
to BGET #h,adr%,ien% and is also used by it and
INPUT, etc.

• GEMDOS(64,h%,L:len%,L:adr%) f write

Writes len% bytes to adr% into file h%.
Corresponds to BPUT #h,adr% ,len%. Is used by
the PRINT command, etc.

• GEMDOS(65,L:adr%)

Deletes a file, KILL '"

• GEMDOS(66,L:n%,h%,mode%)

mode%=O:
mode%=1:
mode%=2:

SEEK #h,n%
RELSEEK #h,n%
SEEK #h,-n%

• GEMDOS(67,L:adr%,flg%,attr%)

f delete

f seek

f attrib

This routine reads or modifies the file attributes.

PROCEDURE chmod(file$,attr%)
LOCALe%
file$=file$tCHR$(O)
e%=GEMDOS(67,L:VARPTR(file$),1,attr"/o)
IF e%<O

141

GEMDOS

142 The GFA BASIC Book

ERROR e%
ENDIF

RETURN

To protect a file : @chmod("NAME.EXT',l). By
changing the file type to directory or the reverse,
files can be well protected from unauthorized use.

A tip: Change the directory to a normal file and
scramble the contents.

• GEMDOS(69,h %)

• GEMDOS(70,n%,s%) f force

These routines allow you to reroute the input and
output of the GEMDOS-output routines (not usable
for GF A _BASIC). -

• GEMDOS(71,L:adr%,d%)

Corresponds to DIR$(d%), Buffer starts at adr%

• GEMDOS(72,L:size%) m malloc

Reserves size% bytes of memory for the program.
Returns the starting address, if size%=-l it returns
the maximum available memory. This routine is
known to have some bugs in the current TOS.

• GEMDOS(73,L:adr%) m free

Frees the memory starting at address adr% (adr%
was the return from m _ malloc).

• GEMDOS(74,O,L:adr%,L:size%) m shrink

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

Frees all memory starting at address adr% that ex­
ceeds size%.

• GEMDOS(7S,f%,L:nam%,L:cmd%,L:env%) p_exec

Executes program as subprogram from the diskette.
Corresponds to EXEC j%,nam$,cmd$,env$.

• GEMDOS(76,ret %) p_term

Terminates the program and passes ret% to parent
program. Cannot be used in GF A BASIC.

• GEMDOS(78,L:nam%,attr%) f sfirst

• GEMDOS(79) f snext

These two routines are useful for searching through
a directory. See program SORTDIR.BAS in chapter
3.6.

• GEMDOS(86,O,L:old %,L:neu %)

Corresponds to NAME old$ AS newS.

• GEMDOS(87,L:tdbuf%,h %,flg%)

f rename

f datime

With this routine you can change the date and time
of a file. You must pass the file handle and the 4
byte address of a buffer (like *A%) in which the
date is stored. If flg%=l then write the date and if
flg%=O get the date.

143

GEMDOS

144 The GF A BASIC Book

4.2 BIOS

• BIOS(O,L:ptr%) getmpb

This routine determines how GEMDOS uses the
memory, but without further knowledge of the op­
erating system it is impossible to use.

• BIOS(l,d %) bconstat

Similar to INP?(d%)

• BIOS(2,d %) bconin

Corresponds to INP(d%). It returns a long word
just like GEMDOS(1).

• BIOS(3,d%,c%) bconout

Corresponds to OUT d%,c%.

• BIOS(4,f%,L:buf%,n%,rec%,d%) rwabs

Chapter4: GEMDOS, Bros and XBrOS

The GFA BASIC Book

j%=O: Reads n% sectors starting at sector rec% on
drive d% at buffer address buj%.

j%=]: Writes the sectors to the disk drive.
j% =2: Like 0, but ignores media-change.
j%=3: Like 1, but ignores media-change.

@

• BIOS(5,n%,L:adr% setexec

Changes an exception vector of the 68000, n% is
the number of the exception, adr% is the new value
for the vector. A negative value returns the previ­
ous value.

• BIOS(6) tickcal

Result is a 20, 20 ms time-tick.

• BIOS(7,d %) getbpb

Returns the address of disk drive parameter block,
only useful to monitor disk drives. Divided in 16
bit words: sector size (512), sector number per
cluster (2), cluster size (1024), directory size, sector
number of second FAT, sector number of fIrst data­
cluster, number of data-clusters, and flags. d% is
the number of the drive.

• BIOS(8,d %) bcostat

Corresponds to QUT?(d%)

• BIOS(9,d %) mediach

Determines if diskette was changed.
0= definitely was not changed (Harddisk)

145

BIOS

146

• BIOS(lO)

The GFA BASIC Book

1 = maybe it has been changed
2 = definitely was changed

drvrnap

Returns a bit pattern with a bit set for each drive
that is attached. &xlOOll says: drive A:,B: and E:
are attached .

• BIOS(ll,x%) kbshift

Returns status of the shift key. By x%= -l the old
status of the key is returned. If value is between 0
and 255, the corresponding key is simulated.

&x •...••.•
&x •.....• 1
&x •••... 1.
&x •••.• 1 ..
&x •••• 1 .. .
&x ••. 1
&x .• 1
&x.1 ••••••

Simulate Caps-Lock:

Right shift key
Left shift key
Control key
Alternate key
Caps-lock
AlternateClr/Home
Alternate Insert

On: VOID BIOS(11,BIOS(11,-1) OR &H10)
Off: VOID BI05(11,BIOS(11,-1) AND &HEF)

Chapter4: GEMDOS, BIOS and XBIOS

The GF A BASIC Book

4.3 XBIOS

• XBIOS(O,t %,L:par%,L:vec%) initmous

This routine allows you to write your own mouse
handler. It is not compatible with GEM.

• XBIOS(l,n%) ssbrk

Reserve memory for the ROM-Module.

• XBIOS(2) physbase

Get the screen's physical base address currently in
use.

• XBIOS(3) logbase

Get the screen's logical base address when drawing
to the screen.

• XBIOS(4) getrez

147

XBIOS

148 The GFA BASIC Book

Returns the screen resolution: 0 = Lares, 1 =
Midres, 2 = Highres, 3 = reserved for modified
ST's.

• XBIOS(S,L:I%,L:p%,r%) setscreen

Makes it possible to change resolution (with the
color monitor between lowres and highres).
Unfortunately may not be used with GEM. The
screen address may also be changed, separated by
the physical and the logical address. See the chap­
ter on flicker free graphics.

• XBIOS(6,L:adr%) setpallete

This routine allows you to change all of the color
registers at one time, as when loading a DEGAS
picture:

BLOAD'DEGAS. Plx",XBIOS(3)-34,32034
VOID XBIOS(6,L:XBIOS(3)-32)

• XBIOS(7,n%,c%) setcolor

This routine lets you change one color at a time.
SETCOLOR 3,&123 corresponds to VOID
XBIOS(7,3,&123). If c% is a negative value, the
old color register is returned.

DEFFN getcolor(n%)=XBIOS(7,n%,-1) AND &777

• XBIOS(8,L:a%,L:O,d%,s%,t%,si%,n%)
• XBIOS(9,L:a%,L:O,d %,s%,t%,si%,n %)
• XBIOS(lO,L:a%,L:O,d%,s%,t%,

si %,i %,L:magic%,vir%)

floprd
flopwr

flopfmt

Chapter4: GEMDOS, BIOS and XBIOS

The GF A BASIC Book

These routines control the floppy drives at the low­
est level. The following values are used:

a%=
d%=
s%=

t% =
si% =
n%=

i% =

magic% =

virgin% =

• XBIOS(ll)

Not used.

address buffer.
disk drive number (0/1).
sector number, with flopfmt it con­
tains the number of sectors per track.
track number.
side (0/1).
Number of sectors to be read or
written.
Interleave, determines the order of
the sectors within the track, usually
set to 1.
is a constant that is used during for­
matting &H87654321.
determines what values the sectors
will contain after a format command.
It can be changed, however, as long
as the high nibbles are not F.
&HE5E5.

getdsb

• XBIOS(12,n%,L:a%) midiws

Writes a string of n% + 1 bytes starting at address
a% to the MIDI-port.

• XBIOS(13,n%,L:v%) mfpint

Set the MFP interrupt vector on the ST. May only
be used with assembly or "C".

149

XBIOS

150 The GFA BASIC Book

• XBIOS(14,d%) iorec

Returns the address of the table that is used by the
serial device.

XBIOS(14,O)
XBIOS(14,1)+ 14
XBIOS(14,1)
XBIOS(14,2)

AUX:-Input
AUX:-0utput
Keyboard buffer
Midi-Buffer, only input

The table is as follows:

long word

word

word

word

word

word

Buffer address

Buffer size

head index

tail index
The range between head and tail
contains data. Buffer is empty if
they are equal. If the buffer size is
e~ceeded it will start at the begin­
mng.

low water mark

high water mark
If handshaking is active and the
characters in the buffer reaches the
high water mark, the computer will
send a signal to the sender to stop
sending data until the low water
mark is reached. Normally: 1/4 to
3/4 of the buffer size.

To erase the keyboard buffer:

LPOKE XBIOS(14,1)+6,0

To erase the serial output buffer:

Chapter4: GEMDOS, BIOS and XBIOS

The GF A BASIC Book

LPOKE XBIOS(14,O)+ 14+6,0

To enlarge the buffer for MIDI:

midipar"/o=XBIOS(14,2)
oldmidibuf%=LPEEK(midipar%)
oldmidisize%=DPEEK(midipar"/o+4)
,

DIM temp%(20000/4)
SLPOKE midipar"/o,VARPTR(temp%(O))
SDPOKE midipar"/o+4,20000
SLPOKE midpar%+6,0
,

, Now we have time to do INP(3)
,

SDPOKE midpar"/o+4,0Idmidisize%
SLPOKE midoar%+6,0
SLPOKE midipar"/o,oldmidibuf%
SLPOKE midipar"/o+6,0
ERASE temp%O

If the buffer for the serial port is changed then you
should also change the low and high water marks .

• XBIOS(lS,b%,f%,u%,r%,t%,s%) rsconf

Configure the serial port. By -1 the parameters are
not changed.

*b%=baudrate

0=19200 1=9600
6=1800 7=1200
12=134 13=110

f%=handshake mode

2=4800
8=600

14=75

3=3600
9=300
15=50

4=2400 5=2000

10=20011=150

O=none, 1=XON/XOFF, 2=RTS/CTS ,
3=BOTH??

151

XBIOS

152 The GFA BASIC Book

u%=MFP-registers in binary format
&x 0. . No parity
&x 10. Odd parity
&x 11. Even parity
&x ... 01. . . 1 stop bit
&x ... 10. . . 1.5 stop bits
&x ... 11. • . 2 stop bits
& x . 0 0 8 data bits
& x . 0 1 7 data bits
& x . 10 6 data bits
& x . 11 • 5 data bits
& x 0 •• 00 . .. Synchronized,frequency form TC/RC
& x l .. 00 . .. Synchronized, divided by 16

r%,t%,s%=MFP-registers rsr,trs,scr

A complete description of these binary registers
would take up too much space and is seldom used.
Normally just set these parameters to-1.

• XBIOS(16,L:u%,L:s%,L:c%) keytbl

With this routine you can change the keyboard
translation tables. It consists of three tables, each
with 128 bytes. The keys are converted to the
ASCII-Code as follows: u%=unshifted, s%=shifted
and c%=caps-Iock. A parameter of -1 means not to
change the address. The following is an example of
how to change the keys of the numbers block to the
Greek alphabet.

, key tab
Void Xbios(24)
O%=Xbios(16,L:-1 ,L:-1 ,L:-1)
Dim K%(128*3/4)
K%=Varptr(K%(O))
Bmove Lpeek(O%),K%,128
Bmove Lpeek(O%+4),K%+ 128, 128

!bioskeys
!get pOinters

!buffer

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

Bmove Lpeek(O%t8),K%t256,128
For 1%=0 To 14

Poke K%t&H63tl%,224tl% !Greek Text
Poke K%t&HE3tl%,239tl% !more when pressing the shift key
Poke K%t&H163tl%,128tl% !Caps: a few international

Next 1%
Void Xbios(16,L:K%,L:K%t 128,L:K%t256)
Repeat

Out 5,Bios(2,2)
Until Mousek
Void Xbios(24)

Use XBIOS(24) to return the keys to normal. An
address pointing to the three tables is also returned
by XBIOS(l6) . Field k% serves only to store the
key. The three Bmoves copy the original table
which is then changed for all three conditions. The
program then performs a loop that allows you to
enter keys until the mouse button is pressed. The
XBIOS(24) at the end is very important since you
would not be able to use the keyboard properly
without it. You may want to put in a STOP after the
first XBIOS(24) during program development so
that you can run the program with the mouse to re­
turn you to normal keys .

• XBIOS(17) random

Returns random number from 0 to 16777215,24
bits .

• XBIOS(18,L:a%,L:O,L:s%,t%,f%) protobt

This routine creates a boot sector for the diskette in
memory, a% points to a 512 byte buffer, s% is a se­
rial number that is written as part of the boot sector.
If the number is greater than 24 bits a random num-

153

XBIOS

154 The GFA BASIC Book

ber is created. Where -1 is the serial unchanged,
and t% is the disktype:

o =single sided, 40 tracks (180K)
1 =double sided, 40 tracks (360K) IBM
2 =single sided, 80 tracks (360K) SF 340
3 =double sided, 80 tracks (720K) SF 314
-1 =disktype is unchanged
f% =0 diskette does not have TOS
f% =1 diskette contains TOS
f% =-1 unchanged

. • XBIOS(19,L:a%,L:O,d%,s%,t%,si%,n%) flopver

Verifies storage of the floppy disk. If the value is
null then everything checks out OK. If there is an
error, you can find the sectors that were bad starting
at address a%, just like flopfmt.

• XBIOS(20) scrdmp

Dump screen to printer, just like HARDCOPY .

• XBIOS(21,a %,r%) curscon

Allows you to configure the cursor of the operating
system.

j%=0
j%=1
j%=2
j%=3
j%=4
j%=5

hide cursor
show cursor
blinking cursor
solid cursor
set blink rate
return current blink rate

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

if j%=4 then r% contains the blink rate of the
screen (50hz, 60hz for color or 71hz for
monochrome).

• XBIOS(22,L:dt%)
• XBIOS(23)

bsettime
bgettime

These functions correspond to the GEMDOS-rou­
tines SGETIGET time/date. The date is multiplied
by 65536 and then added to the time.

• XBIOS(24) bioskeys

see XBIOS(16)=keytbl

• XBIOS(25,n%,L:a%) ikbdws

Writes n%-1 bytes from address a% to the keyboard
processor.

• XBIOS(26,n %) jdisint

Disable interrupt number n%(O-15) of the MFP.

• XBIOS(27,n%)

Enables interrupt n% of the MFP.

• XBIOS(28,c%,n%)

n%=&OO .. &OF reads the sound register n%
n%=&80 .. &8F writes c% to register n%

• XBIOS(29,m %)

jenabin

giacces

offgibit

155

XBIOS

156 The GFA BASIC Book

• XBIOS(30,m%) ongibit

Sets the bit of port A on the sound chip to zero or
one. With ONGIBIT the bit pattern is ORed with
the current value, by OFFGIBIT the pattern is made
with AND.

m%=l:
m%=2:
m%=4:
m%=8:
m%=16:
m%=32:
m%=64:

Select floppy side 0 or side 1
Floppy A on/off
Floppy Bon/off
RTS on/off
DTRon/off
Centronics strobe on/off
GPO on/off (a pin in the connector
of the moniter (13 Pins))

Example:

VOID XBIOS(29,NOT 2)
PRINT "Floppy A: is on"
PAUSE 100
VOID XBIOS(30,2)
PRINT "Floppy A: is orr

• XBIOS(31,n%,c%,d%. L:vec%) xbtimer

Change Timer Nr. n% (O=A, l=B, 2=C, 3=D) of the
MFP. c% and d% are written to the Control and
Data registers, vec% is the pointer to the corre­
sponding interrupt vector.

Example: match the baud rate with timer D:

, Baud rate calculation
Dim A%(7)
For 1%=1 To 7

ReadA%(I%)
Next 1%
Data 4,10,16,50,64,100,200

Chapter4: GEMDOS. BIOS and XBIOS

The GFA BASIC Book

F$='# #### ######.#11#.111### #### ######.r¥r¥Nh'lfffll"
Do

Input "Baud rate' ,A
For 1%=1 To 7

B=19200*4/A%(I%)/A
B1=lnt(B)
B2=lnt(B+ 1)
B1=Max(B1,1)
B2=Max(B2,1)

Print Using F$,I%,B1,19200*4/A%

Next 1%
Loop

(1%)/B1 ,B2, 19200*4/A%(I%)/B2

, Select the Baud rate:
, VOID XBIOS(31 ,3,i%,b1 ,1:-1)
, b bO und b 1<256

Caution: These baud rates are real rates for the
ST, but when using XBIOS(lS ..) (rsconf) it does
not set 50 or 75 baud, but 80 or 120 instead. A
small program follows that uses rsconf
(XBIOS(l5 .. » and then displays the real baud
rates.

, Baudtest.bas

Dim A%(7)
For 1%=1 To 7

ReadA%(I%)
Next 1%
Data 4,10,16,50,64,100,200
Print 'Index",'Timer D','Control Data','Result"
For 1%=0 To 15

Void Xbios(15,1%,-1 ,-1 ,-1 ,-1 ,-1 ,-1)
D%=Peek(&HFFFA1D) And 7
0%=0
For J%=1 To 500
0%=Max(0%,Peek(&HFFFA25))
NextJ%
Print 1%,0%,0%,

157

XBIOS

158 The GFA BASIC Book

Print 19200*4/A%(D%)/Q%
Next 1%

The result will be as follows:

Index Timer D Control Data Result

0 1 19200
1 2 9600
2 4 4800
3 5 3840
4 8 2400
5 10 1920
6 11 1745.45
7 16 1200
8 32 600
9 64 300
10 96 250
11 128 150
12 143 134.26
13 1 175 109.71
14 2 64 120
15 2 96 80

The last two lines could also be:

3 64 75
3 96 50

This is an error in the operating system that will
most likely never be corrected. For 50 Baud use:

VOID XBIOS(31 ,3,3,64,L:-1)

• XBIOS(32,L:adr%) dosound

This routine allows you to play music independent
of the program. The SOUND-buffer starting at
adr% contains the music in form of control bytes.

Chapter 4: GEMDOS, BIOS and XBIOS

The GF A BASIC Book

The end of this chapter contains a program named
Elise that contains these control bytes. The files
that are created by this program may then be read
by other programs and played back by using this
interrupt.

Used control bytes:

00 yz:

01 Oz:

02 yz 03 Ox:

04 yz 05 Ox:

06 If :

07 xx:

0811 :

0911 :

OA 11 :

OB xy OC zt :

00 Oh :

80 xx:

81 Or ss ee ww :

Low·By1e duration sound channel 1

High-Byte duration sound channel 1 as
by Sound ... #&xyz

same for channel 2

same for channel 3

frequency of the wave generators
(0 .. 63)

selects the sound channel like Wave,
but xx inverted Wave 1 corresponds to
07 FE (NOT 1 =&FF) Wave & 1009 cor­
responds to 06 10 07 F6

volume channel 1

volume channel 2

volume channel 3

duration of envelope curve

envelope curve form Wave ?,h,?,&ztxy

loads xx into a temporary register

loads the register r with the value taken
from partition (80 xx). Increases it after
ww/50 seconds by 55. When it reaches
the final value ee it stops.

Caution: The interrupt routine uses 4
values, but the counter is only in­
creased by 3 after completion.
Therefore, you must follow it with the

159

XBIOS

160 The GFA BASIC Book

value ww (Ol..OD) to be able to get a
meaningful sound routine.

82 xx to FF xx: Waits xx/50 seconds. Terminates if xx
is equal to zero.

• XBIOS(33,m %) setprt

This routine allows you to configure the
printer just like you would with the
accessory.

&x ••••• ?
&x •••• ?
&x ••• ? .
&x •• ? ..
&x. ? .. .
&x?
&xOOOll0

O=matrix, 1 =Daisy Wheel
O=Color, l=black and white
0=1280, 1=960 dots per line
O=Draft,l=NLQ
O=parallel, 1 =serial
O=continuous, l=single page
Normal configuration for
Epson compatible printers.
(VOID XBIOS(33,6» .

Negative values return the old configuration .

• XBIOS(34) kbdvbas

This routine returns the address to a table that con­
tains the pointer of the intenupt vectors for com­
munication with the keyboard processor (and midi).

The possible vectors:
midivec ;MIDI input (dO)
vkbderr ;Keyboard error
vmiderr ;MIDI error
statvec ;Keyboard status-packet
mousevec ;Mouse-packet (-->GEM)
clockvec ;Clock-packet

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book 161

joyvec ;Joystick-packet

The AD register of the processor points to the input
data. The joyvee vector may be of great interest to
BASIC programmers.

The following program uses this vector to get the joystick
values. The string me$ contains the interrupt routine which
is only used once and stores the address of the joystick
from the register AD to the variable a% (The program is:
move.l aD, *a% rts) . This address is later used to PEEK the
joystick values.

First, the address of the interrupt vector table is lo­
cated by using XBIOS(34). Then the old vector is
routed to your own routine. The OUT 4,&16 allows
you to get the keyboard processor to read and send
the values for both joysticks. As soon as the data is
present (when a% does not equal null anymore), the
old routine is restored. a% now points to the data
that contains the joystick number (254 for joystick 1
and 255 for joystick 2). The bytes following these
are the data. The addresses are stored in the vari­
ables joyD% and joy1%. The OUT 4,&14 puts the
keyboard processor into the joystick mode. The
mouse cannot be read anymore, but the joysticks
will now automatically return values.

It is also possible to use the mouse by issuing an
OUT 4,&16 before every joystick request (Port
l=mouse,Port 2=joystick). This is strongly recom­
mended during the testing phase since an error
would otherwise require you to manually type an
OUT 4,8. The OUT 4,8 returns the keyboard pro­
cessor to mouse mode. The joystick values are in
bit format. You may look at the program to deter­
mine the bit pattern .

• joystick. bas
Mc$=Mki$(&H23C8+Mkl$(*A%)+Mki$(&H4E7S)

XBIOS

162 The GFA BASIC Book

V%=Xbios(34)+24
O%=Lpeek(V%)
Lpoke V%,Varptr(Mc$)
A%=O
Out 4,&H16
Repeat
UntilA%
Lpoke V%,O%
Joy-O%=A%+ 1
Joy-1%=A%+2
Out 4,&H14
Print At(1 ,20);'Press any key to quit";
Repeat

! Wait for Interrupt

Print At(1 ,9);"Last: Joystick ";(Peek(A%) And 1)+ 1
@Output(Peek(Joy_O%))
@Output(Peek(Joy-1%))

Untillnkey$<>"'
Out 4,8
Procedure Output(X%)

If X%And 128
Print 'Button ";

Endif
If X%And 1

Print "Up ';
Endif
If X% And 2

Print "Down ';
Endif
If X%And 4

Print "Left ";
Endif
If X% And 8

Print "Right ";
Endif
Print Chr$(27);"K"

Return

Chr$(27);"K" erases from the cursor to the end of
the line. There is a table at the end of the chapter

Chapter4: GEMDOS, BIOS and XBIOS

The GF A BASIC Book

that explains the Escape sequences you may use for
screen display without a window (VT52).

• XBIOS(35,d%,r%) kbrate

This routine sets the repeat delay (d%) and the re­
peat rate (r%). It returns the old key repeat values
(d%*256+r%). d%=O turns the repeat rate off. As
usual a negative value does not change the parame­
ters.

• XBIOS(36,L:pointer) prtblk

This routine is a subprogram of the Hardcopy-rou­
tine and points to an address that contains all sorts
of parameters.

• XBIOS(37) vsync

Corresponds to VSYNC

• XBIOS(38,L:vec%) superx

Executes a machine language routine at address
vec% in supervisory mode without using GEMDOS.

• XBIOS(39) pntaes

Turns off AES if it is not in ROM (reboots).

163

XBIOS

164 The GF A BASIC Book

4.4 ELISE

'ELISE

@Init
M$="'
Oct%=4
Dur%=10

! stores sound string
! default

L%=10
Do

Read A$! Read data
Exit If A$=""
While A$<>"" ! executing more than one string

B$=Upper$(Left$(A$)) ! by passing the string after use
While B$="." ! a$=MID$...

M$=M$+Mkl$(&H 1 OO)+Chr$(-1)+Chr$(1)
A$=Mid$(A$,2)
B$=Upper$(Left$(A$))

Wend
A$=Mid$(A$,2)
On Instr("CDEFGABHPOXL+-WR",B$) Gosub

C,D,E,F,G,A,B,B,P,O,X,L,PI,Mi,Wave,R
! This line was split because of lack of space

Wend
Loop
M$=Chr$(7)+Chr$(-2)+M$+ Mki$(&H FFOO)
Void Fre(O)
Void Xbios(32,L:Varptr(M$))

! Tone end

! play tones

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

Print 'Write file"
Fileselect "*.SND' ,' .SND' ,A$
If Len(A$)

Bsave A$, Varptr(M$),Len(M$)
Endif
Data 05115
' DATA 116w+10. 1000
Data ed#,ed#e-h+dc, -aaacea
Data hhheg#h,+cccp
Data ed#,ed#e-h+dc, -aaacea
Data hhhd+c-h,aaph
Data +cd,eee-g+fe,ddd-f+ed
Data ccc-e+dc, -hhpe+
Data ed#,ed#e-h+dc, -aaacea
Data hhhd+c-h,aaap
Data

! save

Procedure C
@Note(1)

Return
Procedure 0

@Note(3)
Return
Procedure E

@Note(5)

! for single notes the note number is
! passed to the procedure

Return
Procedure F

@Note(6)
Return
Procedure G

@Note(8)
Return
Procedure A

@Note(10)
Return
Procedure B

@Note(12)
Return
Procedure P

D%=Val(A$)
If 0%=0

! Pause
! with parameter and without

165

ELISE

166

D%=Dur%
Endif

The GFA BASIC Book

M$=M$+Mki$(&H800)+Chr$(-1)+Chr$(D%)+Chr$(8)+Chr$(L %)
A$=Mid$(A$,Val?(A$)+ 1)

Return
Procedure X ! Pause without turning tone off

D%=Val(A$)
A$=Mid$(A$,Val?(A$)+ 1)
IfD%

M$=M$+Chr$(-1)+Chr$(D%)
Else

M$=M$+Chr$(-1)+Chr$(Dur%)
Endif

Return
Procedure 0

Oct"/o=Val(A$)
A$=Mid$(A$,Val?(A$)+ 1)

Return
Procedure PI

Inc Oct"/o
Return
Procedure Mi

Dec Oct"/o
Return
Procedure Note(N%)

If Left$(A$)="#"
A$=Mid$(A$,2)
IncN%
D%=Val(A$)

Else
D%=Val(A$)

Endif
A$=Mid$(A$,Val?(A$)+ 1)
IfD%

Dur%=D%
Else

D%=Dur%
Endif

! change only the octave

! increase the octave

! decrease the octave

! subroutine for note
! # increases note
! also e# ...

! change note duration

, frq%=125000/(2Aoct% *440*(2A(n%/12))/(2A(1 0/12))/16)+0.5
M$=M$+Mkl$(Frq%(Oct"/o,N%))+Chr$(-1)+Chr$(D%)

Chapter4: GEMDOS, BIOS and XBIOS

The GF A BASIC Book

IIWavl

M$=M$+W$
Endil

Return
Procedure L ! volume

L%=Val(A$)
M$=M$+Chr$(8)+Chr$(L %)
A$=Mid$(A$,Val?(A$)+ 1)

Return
Procedure Wave ! envelope curve

Out 2,7
II Left$(A$)=' +' ! turn wave on

Wav!= True
A$=Mid$(A$,2)

Endil
II Left$(A$)='·" ! disable wave

Wav!=False
A$=Mid$(A$,2)

Endil
II Val?(A$) ! When parameter:

Huell%=Val(A$) ! set both
Per%=Val(Mid$(A$,lnstr(A$,'. ')+1))
W$=Chr$(13)+Chr$(Huell%)+Chr$(11)+Chr$(Per%)+Chr$(12)+

M$=M$+W$
A$=Mid$(A$,Val?(A$)+ 1)

Endif
Return
Procedure R ! noise

II Left$(A$)=' +" ! enable
M$=M$+Mki$(&H7F6)
A$=Mid$(A$,2)

Endil
II Left$(A$)="·" ! disable

M$=M$+Mki$(&H7FE)
A$=Mid$(A$,2)

Endil

Chr$(Per% Div 256)

II Val(A$) ! change period
M$=M$+Chr$(6)+Chr$(Val(A$))
A$=Mid$(A$,Val?(A$)+ 1)

167

ELISE

168

Endif
Return
Procedure Init

Dim Frq%(12,12)
For N%=O To 12

For 0%=0 To 12

The GFA BASIC Book

! Taken from notes of
! my Physics class

F%= 125000/(2"'0% ' 440' (2"'(N%/12))/(2"'(1 0/12))/16)+0.5
Frq%(O%,N%)=(F% And 255)'65536+(F% Div 256)+&H100

Next 0% ! a=440 hz
Next N%

Return
! 12 notes per octave
! 1 octave=frequency doubler

Note ?? stands for value (0 15 1000 &38):

Chapter4: GEMDOS, BIOS and XBIOS

The GFA BASIC Book

cdefgahbc=

o??=

+=

I?? =

r=

r+ =
r- =
r?? =

w?????? =

p=

X=

Notes
by adding a # (sharp)the note is
made higher. Optional tone length in
1/50 second is used by all following
notes

Chooses octave

Increases octave by one

Decreases octave by one

Selects volume (0 .. 15, 16 means
with envelope curve).

Set Noise

On

Off

Selects noise frequency 0 .. 31 also
r+?? and r-??

Set the envelope. Before the "." sets
the form and after the "." selects the
period. After a w+ or a w+?? ????
the envelope is reset after every note.
w- or w-?? ???? turns this mode off.

Pause. The tone generation stops but
unfortunately some noise continues
with Wave.

Pause without turning off noise gen­
erator.

Who could possibly think of more? Programs that use
the SOUND and WAVE commands or that use the
Dosound-routine (XBIOS(32) are often disturbed by the
keyc1ick. With the following command it may be disabled:

SPOKE &H484,PEEK(&H484) AND NOT 1
SPOKE &H484,PPEK(&H484) OR 1
SPOKE &H484,PEEK(&H484) AND NOT 4
SPOKE &H484,PEEK(&H484) OR 4

! Keyclick on
! Keyclick off
! Control-G CHR$(7) Bell off

! Bell on

169

ELISE

170 The GFA BASIC Book

The key repeat may be disabled by AND NOT 2 and en­
abled by OR 2.

Chapter4: GEMDOS, BIOS and XBIOS

The GF A BASIC Book

4.5 VT 52-Emulator

The ST contains a VT-52-emulator, which was fashioned
after a popular terminal. It may be used for screens that do
not use windows.

All the sequences begin with the ESC code (CHR$(27)).

ESC A:

ESCB:

ESCC:

ESCD:

ESCE:
ESCH:
ESC I:
ESCJ:
ESCK:
ESCL:
ESCM:

ESC Y s z:

ESC b n:

Cursor moves up one line. It stops at top of
screen.
Cursor moves down one line. It stops at
bottom.
Cursor moves to the right. It stops at right
corner.
Cursor moves to the left. It stops at left cor­
ner.
CLS (Clear screen).
Cursor Home (PRINT AT(1,l)).
Cursor moves up one line., scrolls on top.
Erases from cursor to the end of page.
Erases from cursor to the end of the line.
Insert a line.
Erases a line, moves following lines up one
line.
Print AT(row,column); s=chr$(row+32) Z=
chr$(column+ 32)
Selects the color for the text, n=chr$(color).
By high resolution only AND 1 is used, by

171

VT 52-Emulator

172

ESC c n:
ESCd:
ESCe:
ESCf:
ESCj:
ESCk:
ESCl:
ESCo:
ESCp:
ESCq:
ESCv:
ESCw:

The GFA BASIC Book

medium AND 3 and by low resolution AND .
15.
like b, except background color.
Erase from top of page to cursor.
Enable cursor.
Disable cursor.
Save cursor position.
Restores cursor that was saved with ESC j.
Erase line.
Erase line from beginning to cursor.
Select reverse video.
Turns reverse video off.
Wrap at end of line.
Truncate at end of line.

Chapter4: GEMDOS, BIOS and XBIOS

CHAPTERS

AES

173

174 The GFA BASIC Book

Not only are there many different routines in
GEMDOS, BIOS andXBIOS, but also in GEM itself.

Most VDI routines exist as GF A BASIC commands
(CIRCLE, BOX, BITBLT, etc.). Some important routines
that are not present in BASIC like load Jont, open_work
are not easy to use on the ST. These routines were dis­
cussed in the chapter on Graphics and Fonts.

I have, for the most part, omitted the parameter value
returned since this value will usually be something other
then null unless an error was found DPEEK(GINTOUT). If
you want, you may add the @gemerr call to all routines
that have the? E table below.

PROCEDURE gemerr
IF DPEEK(G INTOUT)=O

ERROR 77
END IF

RETURN

NOTICE: In case I decide to include some
of these AES-routines in GFA BASIC
Version 3.0, I will use error numbers be­
tween 70 and 79. Some routines like
wind _get return many different values. It is
faster to use DPEEK(GINTOUT +8) instead

Chapter 5: AES

The GFA BASIC Book

of returning the value through a pointer.
This is especially true for the compiler.

I mark all variables that are used as pointers by attach­
ing a ".%", local variables in the same procedure by at­
taching a "_ %" or a "_$" or a "_I". Unfortunately you may
not use a pointer to a global variable in GF A BASIC if a
local variable with the same name exists. The reason for
this is simple: To be able to use the COTO command to
exit into another procedure, the local variables must always
be found at the same location.

In the following example, Tree% indicates that the vari­
able is the address of an object tree. This is the structure
contained in RSC-files and is automatically created with the
MENU m$() command. Further explanation may be found
in the chapter on Resource.

Let us move on to the AES-calls. These routines are
represented in decimal number order, 1x stands for
appl_ xxx, 2x stands for evnt _ xxx, etc.

###Name

10 appl_init
11 appl_read
12 appl_ write
13 appl_find
14 appl_tplay
15 appl_trecord
19 appl_exit
20 evnckeybd
21 evnCbutton
22 evnCmouse
23 evnCmessage
24 evnCtimer
25 evncmulti
26 evnCdclisk
30 menu_bar
31 menu_icheck

GINTOUT

ap_id
?E
?E
ap_id/-l
1
quantity
?E

Key
clicks x y button shift
1 x y button shift
1
1

speed
?E
?E

175

Chapter 5: AES

176

32 menu_ienable
33 menu_tnormal
34 menu_text
35 menu_register
40objc_add
41 objc_delete
42objc_draw
43 objc_find
44objc_offset
45 objc_order
46objc_edit
47 objc_chnge
50 form_do
51 form_dial
52 fom_alert
53 form_error
54 form_center
70 graCruberbox
71 graCdragbox
72 graCmovebox
73 graCgrowbox
74 graCshrinkbox
75 graC watchbox
76 graCslidebox
77 graChandle
78 graCmouse
79 graCmkstate
80 scrp_read
81 scrp_ write
90 fsel_input
100 wind_create
101 wind_open
102 wind_close
103 wind_delete
104 wind_get
105 wind_set
106 wind_find
107 wind_update
108 wind_calc
110 rsrc_load

Chapter 5: AES

The GFA BASIC Book

?E
?E
?E
0-5/-1
?E
?E
?E
index/-1
?E x y
?E
?E pos
?E
exicobj
?E
exicbut
1
. xywh
?Ewh
?E x y
?E
?E
?E
0/1
0-1000
handle wc hc wb hb
?E
. x y but shift
?E
?E
?E 0/ 1
handle/-x
?E
?E
?E
?E
?E
handle
?E
?E x Y w h
?E

The GFA BASIC Book

111 rsrc_free
112 rsrc_gaddr
113 rsrc_saddr
114 rsrc_obfix
120 shel_read
121 shel_write
122 shel_get
123 shel_put
124 sheljind
125 sheLenvrn

?E
?E (addrout)
?E
?
?E
?E
?E
?E
?
?

? reserved/undefined
?E O=error, otherwise OK
...... many values
. meaning changes

177

Chapter 5: AES

178 The GF A BASIC Book

5.1 APPLication Library

The app/ xxx routines allow you to have more than one
program or application in memory at one time. They are
usually used by GEM for accessories, but would be even
more useful if a multi-tasking version of GEM ever ap­
pears.

PROCEDURE appUnit
GEMSYS10

RETURN

PROCEDURE appUead(id%,len%,buf%)
DPOKE GINTIN, id%
DPOKE GINTIN+2,len%
LPOKE ADDRIN,buf%
GEMSYS 11

RETURN
PROCEDURE appl_write(id%,len%,buf%)

DPOKE GINTIN,id%
DPOKE GINTIN+2,len%
LPOKE ADDRIN,buf%
GEMSYS 12

RETURN

These two routines allow you to pass messages between
several resident GEM-applications. The message starts at

Chapter 5: AES

The GFA BASIC Book

address buj% and is len% bytes long. The destination
(appl write) or source (appl read) is always the GEM-in­
temafmessage buffer of the application id%.

PROCEDURE appljind{name$)
nam$=nam$+CHR$(O)
LPOKE ADDRIN,VARPTR(nam$)
GEMSYS13

RETURN

This routine finds the simultaneous running application
with the name of nam$ and then returns the corresponding
ap_id or -1 using GINTOUT.

PROCEDURE appUplay(adr%,num%,scale%)
LPOKE ADDRIN,adr%
DPOKE GINTIN,num%
DPOKE GINTIN,scale%
GEMSYS14

RETURN
PROCEDURE appUrecord(adr%,num%)

DPOKE GINTIN,num%
LPOKE ADDRIN,adr%
GEMSYS15

RETURN

These two routines act like a software recorder. A num­
ber (num%) of events (mouse, timer, keyboard and button)
are written to a buffer (at adr%) with TRECORD which
may then be replayed with the TPLAY. When replaying
you may also apply a sliding scale between 1-1000 that
determines the speed at which the user actions are played
back. Unfortunately, this routine does not work as de­
scribed in the GEM documentation and, in any case, I can­
not determine any practical use of this routine.

PROCEDURE appl_exit
GEMSYS19

RETURN

179

APPLication Library

180 The GF A BASIC Book

This routine must always be called before exiting a GEM
program. GF A BASIC automatically calls this routine be­
fore exiting.

Chapter 5: AES

The GF A BASIC Book

5.2 EVENT Library

The event JXX routines cause the program to wait for an
external event (like the user pressing a key). They also
supply the limited multi-tasking capabilities of GEM.
Unfortunately, routines like evnt Jileopen or evnt _ diskwrite
are missing (the corresponding BIOS call would even be
better). Even so, these routines make it possible for other
programs (accessories) to run in the background without
greatly affecting the performance of the main program.

PROCEDURE evntkeybd
GEMSYS 20

RETURN

This is a simple keyboard input routine that still allows
the use of accessories. Use PEEK(GINTOUT+l) to deter­
mine the ASCII value of the pressed key and
PEEK(GINTOUT) to determine the scan code (similar to
bconin, etc. in BIOS). DPEEK(GINTOUT) will return the
combination of those two values.

P ROC ED U R E evnt button(clicks%,m ask%, state%)
DPOKE GINTIN,clicks%
DPOKE GINTIN+2,mask%
DPOKE GINTIN+4,state%
GEMSYS 21

RETURN

181

EVENT Library

182 The GFA BASIC Book

If you would like to wait until the user presses a certain
mouse button (like double clicking on the right mouse but­
ton), you can use the above routine. Click% is the maxi­
mum number of mouse clicks to wait (usually 2). With
mask% you can select if the left (1), the right (2) or both (3)
mouse buttons are used. State% determines the button state
for which the application is waiting (usually
state%=mask%).

PROCEDURE evntmouse(f%,x%,Y%,vI'Io,h%)
DPOKE GINTIN,f%
DPOKE GINTIN+2,x%
DPOKE GINTIN+4,Y%
DPOKE GINTIN+6,w%
DPOKE GINTIN+8,h%
GEMSYS 22

RETURN

This routine allows you to wait until your mouse pointer
is within (j%=O) or outside (j%=1) the given rectangle.

Important: Here and with all other AES
routines the coordinates of the rectangle
point to the top left corner, the width and
the height. Instead VDI, gives these coor­
dinates as two opposite corners of the rect­
angle.

PROCEDURE evntmesag(adr%)
LPOKE ADDRIN,adr%
GEMSYS 23

RETURN

A message in GEM is an event (like the closing of a
window). This message is stored in a buffer (starting at
adr%) containing 16 bytes. The worst message is the
Redraw message since it requires a lot of work for a pro­
grammer because GEM does not use its own buffers for
graphics.

Chapter 5: AES

The GF A BASIC Book

PROCEDURE evnUimer(t%)
LPOKE GINTIN+2,t%
DPOKE GINTIN,t%
GEMSYS 24

RETURN

This routine is a very unproductive wait loop. The pa­
rameter t% contains the time in milliseconds that the pro­
gram must wait. This long word (a day has only 86400
seconds) must be represented using the Intel format. The
switching to 68000 format is performed by the two POKE
command; this is only possible because
DPEEK(GINTIN+4) is not used.

PROCEDURE evntmulti
DPOKE GINTIN,ev_mflags%
DPOKE GINTIN+2,ev_mbcclicks
DPOKE GINTIN+4,ev_mbmask%
DPOKE GINTIN+6,ev_mbstate%
DPOKE G INTIN+8,ev _mm 1 flag%
DPOKE GINTIN+ 10,ev_mm1x%
DPOKE G INTIN+ 12,ev _mm 1 y%
DPOKE G INTIN+ 14,ev _mm 1 w%
DPOKE GINTIN+ 16,ev_mm1h%
DPOKE G INTIN+ 18,ev _mm2flg%
DPOKE GINTIN+20,ev_mm2x%
DPOKE GINTIN+22,ev_mm2y%
DPOKE GINTIN+24,ev_mm2w%
DPOKE GINTIN+26,ev_mm2h%
DPOKE GINTIN+28,ev_mtlocount%
DPOKE GINTIN+30,ev_mthicount%
LPOKE ADDRIN,ev_mmgpbuff%
GEMSYS 25

RETURN

!more than one
!flags
!evntbutton

!event mouse 1

!event mouse 2

!evenUimer

!for message

Do you think ON MENU is simpler? ON MENU uses
the exact routine to sample all possible events. The param­
eters for the timer (ev mtxxcount%) are set to null so that
this routine always returns.

183

EVENT Library

184 The GFA BASIC Book

Evnt _multi is a combination of the preceding routines.
The first parameter selects the type of events the program is
waiting for. Ev _ mflags% is a six digit binary number.

&x 1
&x 1.
&x ... 1 ..
&x .. 1. ..
&X.1
&X1

&X110001

= keybd
= button
= mouse 1
= mouse 2
= message
= timer

= timer,message,keybd

The parameters are similar to the single events. Results
are returned with DPEEK(GINTOUT) to
DPEEK(GINTOUT +2*6).

With ON MENU the parameters are returned with ON
MENU (xxx) GOSUB (KEY, BUTTON, OBOX, IBOX,
MESSAGE). Results are found in MENU(O) to MENU(15).

MENU(O) returns the number of the pulled down menu.
Menu(1)=l0 would key on the 10th element in the
array.

MENU(1) To MENU(8) contains the message buffer.

MENU(9) and DPEEK(GINTOUT) contains a flag that
contains which event last occurred.

MENU(lO) X-position of the mouse.

MENU(11) Y-position of the mouse.

MENU(12) Mouse buttons.

MENU(13) SHIFT-Status

Chapter 5: AES

The GFA BASIC Book

MENU(14) returns key pressed (high value byte=ASCII,
low value byte=SCANCODE) .

MENU(15) Number of mouse clicks.

MENU(9) TO MENU(15) correspond to
DPEEK(GINTOUT) to DPEEK(GINTOUT+12).

These values are only valid whenever the corresponding
Bit is set in Menu(9).

The following messages are possible (the identification
number may always be found in menu(1»:

10 mn_selected: A drop-down menu was selected.
(0) Calculated array index.
(4) Object-index of the menu title
(5) Object-index of the menu input

20 wm redraw: Part of the screen must be redrawn.
- (4) Window handle
(5-8) XYWH, coordinates, width and height of

the area that must be redrawn.

21 wm topped: A window was selected.
- (4) Window handle

22 wm closed: The close box was clicked.
- (4) Window handle

23 wm Julled: The full window box was clicked.
(4) Window handle

24 wm arrowed: One of the arrows was clicked.
-(4) Window handle
(5) Number of the arrow that was clicked

O=Page up, 1=Page down
2=Line up, 3=Line down
4=Page left, 5=Page right

185

EVENT Library

186 The GFA BASIC Book

6=Colurnn left, 7=Colurnn right

25 wm hslid: Horizontal slider was moved.
- (4) Window handle
(5) Relative position of the slider 0 .. 1000

26 wm vslid: Vertical slider was moved.
-(4) Window handle
(5) Relative position of the slider 0 .. 1000

27 wm _sized: The size of the window was changed.
(4) Window handle
(5-8) XYWH, position and (new) size of the
window

28 wm _moved: The position of the window was changed.
(4) Window handle
(5-8) XYWH, (new) position and size of the
window

29 wm newtop: A new window was activated.
- (4) Window handle (Accessory)

40 ac _open: An accessory was selected.
(4) Menu Id. (Accessory)
Should be in four according to GEM documentation
but instead is found in Menu(5).

41 ac _close: The accessory was closed.
(4) Menu Id. (Accessory)

PROCEDURE evntdclick)speed%,f%)
DPOKE GINTOUT,speed%
DPOKE GINTIN+2,f%
GEMSYS 26

RETURN

! 0= slow . .4=fas!
! 1 =se!, O=read
! Double click-Speed

The routine evnt dclick allows you to change the speed
at which the double clicks are processed. The fIrst param-

Chapter 5: AES

The GFA BASIC Book

eter must be a number between 0 and 4 (just like in the
Control panel). The second parameter must be 1 to set the
speed or a 0 to read the current speed setting.

187

EVENT Library

188 The GFA BASIC Book

5.3 MENU library (Menu usage)

PROCEDURE menu_bar(tree%,flg%)
LPOKE ADDRIN,tree% !menu m$O
DPOKE GINTIN,flg%
GEMSYS 30

RETURN

Menu _bar allows you to activate (flg%=i) or deactivate
(flg%=O) a menu object tree at address tree%.
GFA BASIC first creates a corresponding tree with MENU
m$() that is then activated with an internal menu bar call.
MENU KiLL deactivates the menu (jIg%=O). -

PROCEDURE menujcheck(tree%,item%,flg%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,item%
DPOKE GINTIN+2,flg%
GEMSYS 31

RETURN

Menu icheck allows you to insert (jIg%=i) or to erase
(jig % =0) a check mark to the left of the menu bar. This
corresponds to the MENU n,1 or Menu n,O. MENU n re­
quires the index to the array while menu_icheck requires
the number of the menu object tree.

PROCEDURE menujenable(tree%,item%,flg%)

Chapter 5: AES

The GFA BASIC Book

LPOKE ADDRIN,tree%
DPOKE GINTIN,item%
DPOKE GINTIN+2,flg%
GEMSYS 32

RETURN

Menu_ienable allows you to activate iflg%=l) or deac­
tivate iflg%=O) a menu entry. GF A BASIC uses MENU
n,3 or MENU n,2.

PROCEDURE menu_tnormal(tree%,item%,flg%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,item%
DPOKE GINTIN+2,flg%
GEMSYS 33

RETURN

Menu-tnormal allows you to display an individual menu
entry in inverse iflg%=O) or normal iflg%=l). The corre­
sponding Basic command is MENU OFF, but this com­
mand automatically returns all menu entries to normal.

PROCEDURE menu_text(tree%,item%,txt$)
txt$=txt$+chr$(O)
LPOKE ADDRIN,tree%
DPOKE GINTIN,item%
LPOKE ADDRIN+4,VARPTR(txt$)
GEMSYS 34

RETURN

Menu_text allows you to change the text of a menu en­
try. It is important that the new text is not any longer than
the old text. The number of the object tree must be given
as well as the address of a string that is terminated with a
null (+CHR$(O)). This command is not used in
GFA BASIC, instead you must use the MENU m$()
command to activate a new menu tree.

PROCEDURE menu_register(ap. id%,nam$)
nam$=nam$+

189

MENU Library

190 The GFA BASIC Book

CHR$(O)
BMOVE VARPTR(nam$),BASEPAGE+ 192,LEN(nam$) DPOKE

GINTIN,al.id%
LPOKE ADDRIN,BASEPAGE+ 192
GEMSYS 35

RETURN

The last routine is probably the most interesting since it
allows you to activate an accessory by name.
Unfortunately, this routine may not be used in
GFA BASIC (or even the compiler) since the string must
remain at a fixed address. You could of course place this
string into the Basepage or into an integer array.

The GF A BASIC Book

5.4 OBject library (Object manipulation)

The Object-Library allows you to manipulate objects.
Objects are the cornerstone of object trees.

An object in GEM is always at least 24 bytes long.
Some objects may reach the maximum of 64 Kbytes, but
most of the time objects are between 24 to 1000 bytes.

The tree structure and the creation of objects are dis­
cussed in more detail in the chapter on resources.

PROCEDURE obLadd(tree%,parent%,child%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,parent%
DPOKE GINTIN+2,child%
GEMSYS 40

RETURN

Obje _add establishes a logical link between the object
(ehild%) and its parent object. It is important that the par­
ent object was already correctly defined (ob_head and
ob _tail are usually -1). The object specifications are never
moved in memory; only the pointers are changed.

PROCEDURE obLdelete(tree%,obj%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,obj%

191

Object Library

192

GEMSYS 41
RETURN

The GF A BASIC Book

This routine removes an object from the tree. Just as
with obje _add only the pointer is changed.

PROCEDURE objc_draw(tree%,start%,depth%,x%,y%,w%,h%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,start%
DPOKE GINTIN+2,depth%
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,Y%
DPOKE GINTIN+8,w%
DPOKE GINTIN+10,h%
GEMSYS 42

RETURN

Obje _draw draws an object on the screen. Besides the
address of the object tree, the index of the starting tree is
given (start%). Then the number of levels of subordinate
objects that are supposed to be drawn (depth%, O=only ob­
ject, l=object and children, 2=object, children and grand­
children,etc.) is given. Next, the position and the size
(XYWH) of the clipping rectangle are given.

PROCEDURE objc_find(tree%,start%,depth%,x%,Y%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,start% D
POKE GINTIN+2,depth%
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,y%
GEMSYS 43

RETURN

There are times when you need to know that an object
on the screen was selected and then pass along that object's
number. With obje _draw you can determine which object
from the object tree at a certain screen address was selected
(x%ly%, MOUSEXIMOUSEy). Like obje draw the object
index start% and levels (depth%) are passed along.

Chapter 5: AES

The GFA BASIC Book

PROCEDURE objc_offset(tree%,obj%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,obj%
GEMSYS 44

RETURN

Obje _offset computes the coordinates of the screen ob­
ject. DPEEK(GINTOUT) contains the X-position and
DPEEK(GINTOUT +2) contains the Y-position.

PROCEDURE objc_ order(tree%,obj%,new%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,obj%
DPOKE GINTIN+2,chr%
GEMSYS 45

RETURN

Here the object is logically moved, that means the
pointer of the obj% is changed to new% just like in
obje _add and obje _delete no data is ever moved.

PROCEDURE objc_edit(tree%,obj%,chr%,pos%,kind%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,obj%
DPOKE GINTIN+2,chr%
DPOKE GINTIN+4,pos%
DPOKE GINTIN+6,kind%
GEMSYS 46

RETURN

This is a subroutine of form do. It lets the user edit the
text in an object tree. The character ehr% is placed at po­
sition pos%. The following editor functions may be per­
formed: Initialize (kind %=1), edit character (kind %=2)
and done (kind%=3). An error is returned in
DPEEK(GINTOUT) and the new character position is
placed in DPEEK(GINTOUT +2).

193

Object Library

194 The GFA BASIC Book

PROCEDURE objc3hange(tree%,obj%,x%,Y%,w%,h%,new%,flg%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,obj%
DPOKE GINTIN+2,O !reserved
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,Y%
DPOKE GINTIN+8,w%
DPOKE GINTIN+ 10,h%
DPOKE G INTIN+ 12,new%
DPOKE GINTIN+14,flg%
GEMSYS 47

RETURN

Objc _change allows you to change the object status and
if flg% =1 the object will be redrawn. You could also re­
ceive the same results with DPOKE
tree%+24*obj%+10,new% or even with objc_draw.

Chapter 5: AES

The GFA BASIC Book

5.5 FORM library (Form handling)

PROCEDURE form_do(tree%,start%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,start%
GEMSYS 50

RETURN

Just like abje draw, this routine is used for handling
forms that were-previously drawn with the abje_draw
command. Parameter start% passes the index of the object
on which the text cursor (vertical line) is to be positioned.
The index of the object that caused the end of the input
(EXIT) is returned with DPEEK(GINTOUT).

Caution: A missing EXIT-object will cause
the computer to lock up.

PROCEDURE form_dial(f%,x%,Y%,w%,h%,yb%,wb%,hb%)
DPOKE GINTIN,f%
DPOKE GINTIN+2,x%
DPOKE GINTIN+4,Y%
DPOKE GINTIN+6,w%
DPOKE GINTIN+8,h%
DPOKE GINTIN+ 10,xb%
DPOKE GINTIN+12,yb%
DPOKE GINTIN+14,wb%

195

FORM Library

196

DPOKE G INTIN+ 16,hb%
GEMSYS 51

RETURN

The GFA BASIC Book

form_dial contains four routines that perform the fol­
lowing functions depending onflg%.

0= Reserve a screen memory area. Unfortunately,
GEM does not contain its own buffers for the
screens so that form _ dial(O ..) only sets aside the
memory for later restoration with the Redraw com­
mand. All of the programs that use forms contain
message #20 (wm redraw) and the screens must be
reconstructed. -

1 = Draws an expanding box that starts at
x%/y%/w%/h% and grows until it reaches
xb%/yb%/wb%/ hb%.

2 = Same as 1 except for shrinking box.
3 = Frees the screen space reserved (Causes Redraw

messages to be sent).

1 and 2 are used for the appearance of a program, 0 and
3 could have been replaced with (S)GET and (S)PUT. This
has the advantage of much greater speed.

PROCEDURE form_alert(def%,txt$) txt$=txt$+CHR$(O)
DPOKE GINTIN,def%
LPOKE ADDRIN,VARPTR(txt$)
GEMSYS 52

RETURN

This is the routine which is similar to the ALERT com­
mand.

@form_alert(1,[2][This is a test][Ok]")

corresponds to:

ALERT 2,"This is a test",l,"Ok",dummy%

Chapter 5: AES

The GFA BASIC Book

The number of the button is returned with
DP EEK(GINTOUT).

PROCEDURE form_error(num%)
DPOKE GINTIN,num%
GEMSYS 53

RETURN

This routine displays a warning message. The routine is
not very useful since it displays the MS-DOS errors found
in IBM compatible computer (-33=data not found) rather
than the TOS errors.

PROCEDURE form_center(tree5o,x.%,Y.%,w.%,h.%)
LPOKE ADDRIN,tree%
GEMSYS 54
·x.%=DPEEK(GINTOUT +2)
·y.%=DPEEK(GINTOUT +4)
·w.%=DPEEK(G INTOUT +6)
·h.%=DPEEK(GINTOUT +8)

RETURN

A dialog box is positioned at % after being loaded to
the screen with the rsrc load command. This routine may
be used to center the box. Only the coordinates of the root
object are changed (Compare RSC).

This routine was written using the long form which re­
turns the full set of parameters. I usually prefer the shorter
form that passes the parameters with
DPEEK(GINTOUT + ...) instead of the pointers. This has
the advantage of speed since the returned values are seldom
used anyway.

You could also use LPOKE X.%,DPEEK(GINTOUT+2)
instead of *x.%=DPEEK(GINTOUT +2). This would exe­
cute faster, but you would then have to make sure that no
false address is ever passed to the routine.

197

FORM Library

198 The GFA BASIC Book

5.6 GRAF library (Graphic and mouse routines)

PROCEDU RE GRAF _RUBBERBOX(x_%,L%,wYo,hYo,w.%,h.%)
DPOKE GINTIN,xYo
DPOKE GINTIN+2,L%
DPOKE GINTIN+4,w_%
DPOKE GINTIN+6,hYo
GEMSYS 70
·w.%=DPEEK(GINTIN)
*h.%=DPEEK(G INTIN+2)

RETURN

This routine draws the famous rubberbox. This routine
should only be called whenever the mouse button is
pressed; the routine terminates as soon as the button is re­
leased. Only the left mouse button performs any useful
function in GEM. The right button may be used in your
programs. The parameters consist of the position (usually
the mouse position) and the size of the box. The new size
of the box is returned after the mouse button is released.

PROCEDURE
graCdragbox(w_%,h_% ,x_%,L%,bx_%,by_%,l:lY,-%,bh_%,x.%,y.%)

DPOKE GINTIN,w%
DPOKE GINTIN+2,L%
DPOKE GINTIN+4,x_%

Chapter 5: AES

The GFA BASIC Book

DPOKE GINTIN+6,L%
DPOKE GINTIN+8,bx_%
DPOKE GINTIN+ 10,by_%
DPOKE GINTIN+ 12,bw_%
DPOKE GINTIN+ 14,bh_%
GEMSYS 71
·x.%=DPEEK(GINTIN)
·y.%=DPEEK(GINTIN+2)

RETURN

This routine allows the user to move a predefined box
within a boundary rectangle. The mouse button works the
same way as it did for graf rubbox. The strange way of
passing parameters (size,posltion,position,size) is important
since this is the usual method that GEM uses. The new po­
sition of the box is returned when the mouse button is re­
leased.

PROCEDURE gratmovebox(w%,h%,x%,Y%,dx%,dy%)
DPOKE GINTIN,w%
DPOKE GINTIN+2,h%
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,Y%
DPOKE GINTIN+8,dx%
DPOKE GINTIN+ 10,dy%
GEMSYS 72

RETURN
PROCEDURE graf-9rowbox(x%,Y%,w%,h%,dx%,dY%,dw%,dh%)

DPOKE GINTIN,x%
DPOKE GINTIN+2,Y%
DPOKE GINTIN+4,w%
DPOKE GINTIN+6,h%
DPOKE GINTIN+8,dx%
DPOKE GINTIN+10,dy%
DPOKE G INTIN+ 12,dw%
DPOKE GINTIN+14,dh%
GEMSYS 73

RETURN

199

GRAF Library

200 The GFA BASIC Book

PROCEDURE gratshrinkbox(x%,y%,w%,h%,dx%,dy%,dw%,dh%)
DPOKE GINTIN,x%
DPOKE GINTIN+2,y%
DPOKE GINTIN+4,w%
DPOKE GINTIN+6,h%
DPOKE GINTIN+8,dx%
DPOKE GINTIN+ 10,dy%
DPOKE GINTIN+12,dw%
DPOKE GINTIN+ 14,dh%
GEMSYS 74

RETURN

These three routines are for the moving of dialog boxes.
Graf_ movebox allows you to move a box from one position
to another without changing its size. With graf_growbox
the box is enlarged and with graf_shrinkbox the box be­
comes smaller.

PROCEDURE gratwatchbox(tree%,obj%,instate%,outstate%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,O
DPOKE GINTIN+2,obj%
DPOKE GINTIN+4,instate%
DPOKE GINTIN+6,outstate%
GEMSYS 75

RETURN

This routine should really belong to the obL xxx rou­
tines. Here the object obj% of a tree is monitored. This
routine is called whenever the mouse button is pressed.
The status of the selected object, whenever the mouse
pointer is inside the box, is put in instate% otherwise the
status is put in outstate%. A one is returned in GINTOUT
if the mouse button was released while inside the box, oth­
erwise a null is returned.

Chapter 5: AES

The GFA BASIC Book

PROCEDURE gratslidebox(tree%,parent%,obj%,flg%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,parent%
DPOKE GINTIN+2,obj%
DPOKE GINTIN+4,flg%
GEMSYS 76

RETURN

This routine should also belong to the obi xxx routines
and it is also activated whenever the mouse button is
pressed. Within the parent object parent% (always a box),
the object ob}% may be moved. F /g% selects whether the
object is moved horizontal (jlag%=O) or vertical
(jlag%=l). This routine returns a 0 whenever the object is
in the far left (top for vertical) or a 1000 whenever the ob­
ject is to the far right (bottom for vertical). The object
contained in the resource tree is not updated and it is up to
the program to match the coordinates of the object tree and
to issue a redraw (obL draw).

PROCEDURE grathandle
DPOKE GINTIN,num%
LPOKE ADDRIN,adr%
GEMSYS 78

RETURN

Graf handle selects the VDI-handle that AES uses for
sharing the graphics commands with VDI. The width and
height of the characters that are used by AES along with the
width and height of the character cell are also determined.

This is the routine used by DEFMOUSE.

graCmouse(n,xxxxx) = = Defmouse n(n=0 .. 7)
graCmouse(255,adr) = = Defmouse A$(adr=Varptr(a$)

201

GRAF Library

202 The GFA BASIC Book

Num %=256 turns the mouse pointer off and num%
=257 turns the mouse pointer on again.

PROCEDURE gratmkstate(x.%,Y.%,but.%,shft.%)
GEMSYS 79
·x.%=DPEEK(GINTOUT +2)
·y.%=DPEEK(GINTOUT +4)
·but.%=DPEEK(GINTOUT+6)
·shft.%=DPEEK(GINTOUT +8)

RETURN

This is the AES mouse input routine. Just like the other
mouse routines, this routine determines the position and
status of the mouse buttons and the status of the keyboard
(bios(11)). Since this routine runs under AES it is impossi­
ble to query the menu line.

Chapter 5: AES

The GFA BASIC Book

5.7 SCRaP Library (Clipboard)

PROCEDURE scrp_read(adr%)
LPOKE ADDRIN,adr%
GEMSYS 80

RETURN
PROCEDURE scrp_write(adr%)
LPOKE ADDRIN,adr%
GEMSYS 81

RETURN

These routines manage the data communication between
GEM programs. Scrp _write copies a string (tenninated
with a null) into an internal GEM buffer that can then be
retrieved with the scrp read routine. The GEM documen­
tation does not mention a limit but using more than 100
characters may cause some sensitive memory to be over­
written.

This routine can also be used to communicate between
different programs like the ones called with the CHAIN
command. It could also be used to pass a filename. The
following routine simplifies the procedure of passing string
while using GFA BASIC.

PROCEDURE scrp_read(str.%)

203

SCRaP Library

204

LOCAL tmp_$
tmp_$=STRING(200,0)

The GFA BASIC Book

LPOKE ADDRIN,VARPTR(tmp_$)
GEMSYS 80
·str.%=LEFT$(tmp_$,INSTR(tmp_$,CHR$(O))-1)

RETURN
PROCEDURE scrp_write(x$)

x$=x$tCHR$(O)
LPOKE ADDRIN,VARPTR(x$)
GEMSYS 81

RETURN

Chapter 5: AES

The GFA BASIC Book

5.8 FileSELector library

This library only contains a single routine, the well
known Pileselect routine.

PROCEDURE fseUnput(padr_%,fadr%)
LPOKE ADDRIN,padr_%
LPOKE ADDRIN+4,fadr5o
GEMSYS 90

RETURN

The parameters contain the address of two strings which
contain the pathname and the filename. Both strings are
filled with null bytes so that they can contain the longest
possible path or filename. After selection the path name
and the filename are changed within those strings. The
usual error message is returned in DPEEK(GINTOUT).
DPEEK(GINTOUT +2) contains a 1 if the Ok box was
pressed and a 0 if the Cancel box was pressed. The result­
ing filename is created by combining the path and file­
name. The pathname is separated from the filename by a
'\".

205

FileSELector Library

206 The GFA BASIC Book

5.9 WINDow library

PROCEDURE wind_create(attr_%,xYo,yYo,w_%,h_%,h.%)
DPOKE GINTIN,attr_%
DPOKE GINTIN+2,xYo
DPOKE GINTIN+4,Y-%
DPOKE GINTIN+6,wYo
DPOKE GINTIN+8,h_%
GEMSYS 100
*h.%=DPEEK(GINTOUT)

RETURN
PROCEDURE wind_open(h%,x%,w%,h%)

DPOKE GINTIN,h%
DPOKE GINTIN+2,x%
DPOKE GINTIN+4,Y%
DPOKE GINTIN+6,w%
DPOKE GINTIN+8,h%
GEMSYS 101

RETURN
PROCEDURE wind_close(h%)

DPOKE GINTIN,h%
GEMSYS 102

RETURN
PROCEDURE wind_delete(h%)

DPOKE GINTIN,h%
GEMSYS 103

RETURN

Chapter 5: AES

The GF A BASIC Book

The wind create creates a GEM window along with its
elements (attributes) and the maximum size of the window.
This routine returns the handle, a number by which the
window will be identified in other routines. Wind-open
displays a window with its initial size. Wind_close closes
the window, it disappears from the screen. Wind_delete
erases the handle of that GEM window.

In GF A BASIC I used an expanded form of the
OPENW command because the GEM routine is very sensi­
tive to erroneous handles. The GF A BASIC CLOSEW
command is much more robust.

PROCEDURE openw(nr%,attr%,x%,Y%,w%,h%)
LOCAL adr%
adr%=windtab+ 12*nr%-12
DPOKE adr%+2,attr%
DPOKE adr%+4,x%
DPOKE adr%+6,Y%
DPOKE adr%+S,w%
DPOKE adr%+ 10,h%
OPENW nr%

RETURN

This routine allows you to use the normal CLOSEW
command to close the window. All of the attributes may be
used and the window may be positioned anywhere you like.

attr% is represented with bits:

binary hex Name The window ...
&xOOOOOOOOOOOl &hOO1 name has a title line
&xoooOOOOOOO1O &hOO2 close has a close box
&xOOOOOOOOO1OO &hOO4 full has a full box
&xOOOOOOOO1OOO &hOOS move has a move box
&xOOOOOOO1OOOO &hOlO info has an information line

207

WINDow Library

208 The GF A BASIC Book

&xOOOOOO1OOOOO &h020 size may be enlarged
&xOOOOO1OOOOOO &h040 uparrow has an up-arrow
&xOOOO1OOOOOOO &hOBO dnarrow has a down-arrow
&xOOO1OOOOOOOO &h100 vslid has a vertical slider
&xOO1OOOOOOOOO &h200 Ifarrow has a left arrow
&x01OOOOOOOOOO &h400 rtarrow has a right arrow
&xlOOOOOOOOOOO &hBOO hslid has a horizontal slider

&xOOOOOO1OOOll &h023 has a title, close box,

and may be enlarged

When using Name and Info you must be careful to issue
the corresponding TITLEW- and INFOW- command before
you call the OPENW routine, otherwise the corresponding
bit will automatically be reset during the OPENW com­
mand. This turns out to be pretty good since GEM always
uses constant strings for the name and infoline. This is
automatically performed with the TITLEWIINFOW com­
mand.

PROCEDURE wind-.Qet%(h%,f%)
DPOKE GINTIN,h%
DPOKE GINTIN+2,f%
GEMSYS 104

RETURN
PROCEDURE wind_set(h%,f%,a1%,a2%,a3%,a4%)

DPOKE GINTIN,h%
DPOKE GINTIN+2,f%
DPOKE GINTIN+4,a1%
DPOKE GINTIN+6,a2%
DPOKE GINTIN+B,a3%
DPOKE GINTlN+ 10,a4%
GEMSYS 105

RETURN

Chapter 5: AES

The GFA BASIC Book

These routines allow the user to retrieve or change in­
formation about a window.

h% is The handle of the window, or null for the desktop
background. j% selects what kind of information is to be
examined or changed. Values for al% to a4% depend on
j%. Returned values can be found starting in GINTOUT +2.

wind_get Name

h%,4 workxywh

h%=O: window

h%,5 cyrrxywh

h%,6 prexywh

h%,7 fullxywh

h%,8 hslide

h%,9 vslide

h%,10 top

h%,11 firstxywh

h%,12 nextxywh

h%,15 hslsize

Returns

xywh
the coordinates of the work window,

size without menu bar.

xywh
the coordinates of the entire window,
h%=O: window size with menu bar.

xywh
the coordinates of the previous window.

xywh
the maximum size of the window.

0-1000
position of the horizontal sliders
O=far left to 1000=far right

0-1000
position of the vertical slider
O=top to 1000=bottom

handle
handle of the top window (active)

xywh
the coordinates of the first
window in the windows rectangle list.

xywh
the coordinates of the next
rectangle in the rectangle list.

0-1000

209

WINDow Library

210

h%,16 vi size

The GF A BASIC Book

relative size of the horizontal slider in
1/1000, -1 = minimum size (a square)

0-1000
re lative size of the vertical sliders

Wind _set also contains numerous possibilities.

wind set Name

h%,1,attr kind Changes attributes
h%,2,L:adr name < = > Titlew
h%,3,L:adr info < = > Infow
h%,5,xywh currxywh Changes window size and/or position
h%,8,hslid hslide Changes position of the horizontal

slider
(0-1000)

h%,9,vslid vslide Changes position of the vertical slider
(0-1000)

h%,10 top Makes window the top (active) window
like the openw command on
an open window

h%,14, ... newdesk
h%,15,x hslsize Changes the relative size of the

horizontal slider
h%,16,x vslsize Changes the relative size of the vertical

slider

PROCEDURE newdesk(tree%,index%)
LPOKE GINTIN,14
LPOKE GINTIN+4,tree%
DPOKE GINTIN+6,index%
GEMSYS 105

RETURN

Chapter 5: AES

The GFA BASIC Book

This routine allows the user to create a new desktop back­
ground in the form of an object tree or with (0,0) the de­
fault background is drawn.

PROCEDURE windJind(x_%,y3o,h.%)
DPOKE GINTIN,x_%
DPOKE GINTIN+2,Y-%
GEMSYS 106
*h.%=DPEEK(G INTOUT)

RETURN

This routine returns the handle of a window that is posi­
tioned at a certain screen position (usually the mouse posi­
tion).

PROCEDURE wind_update(flg%)
DPOKE GINTIN,flg%
GEMSYS 107

RETURN

This routine freezes the rectangle lists of all the win­
dows on the screen. @window_update(l) begins update
mode and other programs including accessories may no
longer modify the screen. @window_update(O) ends the
update. @wind update(3) allows application to take over
full control of the mouse, in other words the GEM func­
tions for menu bars and window attributes are no longer
active. @wind_update(2) returns mouse to GEM. In spite
of @windupdate(3) , the MENU KEY, the ON MENU
BUTTON and the ON MENU IBOX/OBOX are still active.
This allows the user to use the following procedure for
drawing programs:

211

WINDow Library

212

@wind_update(1)
@wind.Jjet(handle%,11)
@wind.Jjet(handle%,12)
IF LPEEK(GINTOUT+6)=0

@wind_update(3)

@wind_update
END IF
@wind_update(O)

The GF A BASIC Book

! freeze rectangle list
! first rectangle
! next rectangle
! only one rectangle?

many commands without being
interrupted by menus or
accessories for as long as
no cancel request is issued like
Obox (window).
Then capture input and enable
messages/mouse.

! and release the rectangle list

It is also possible to execute a drawing program that
uses the full screen; this will naturally contain null for the
window handle and the redrawing is left to GEM. A new
desktop is created with the wind _newdesk routine that
contains a filled white rectangle with maximum size and
the bit pattern of the picture as g image (BITBLK). This
has the advantage that you do not have to concern yourself
with REDRAW. Also study the chapter on resources.

PROCEDURE wind_cal(f%,attr'Yo,x%,Y%,w%,h%)
DPOKE GINTIN,f%
DPOKE GINTIN+2,attr%
DPOKE GINTIN+4,x%
DPOKE GINTIN+6,Y%
DPOKE GINTIN+8,w%
DPOKE GINTIN+ 10,h%
GEMSYS 108

RETURN

This routine calculates the dimensions of the total area
(including borders) from the the inner dimensions (j% =O)
or it calculates the inner (working area) dimension from the

Chapter 5: AES

The GFA BASIC Book

total area of the window (j% =1). This routine is usually
used to calculate the correct window size required to hold
an object (usually the object was created with ReS).

213

WINDow Library

214 The GF A BASIC Book

5.10 ReSouRCe Library (Resources, Object trees)

PROCEDURE rsrc-,oad(nam$)
nam$=nam$+CHR$(O)
LPOKE ADDRIN,VARPTR(nam$)
GEMSYS 110

RETURN

Rsrc _load loads a RSC file. It is important to reserve
enough memory. If the file is not found or the memory was
not sufficient or another error was found, a null will be re­
turned in DPEEK(gintout).

Caution: This function will search the given disk
drive first and then it will search drive A:!

PROCEDURE rsrcJree
GEMSYS 111

RETURN

Rsrc Jree frees the memory that was allocated by the re­
source.

Chapter 5: AES

The GFA BASIC Book

PROCEDURE rsrc-lladdr(type_%,indexYo,adr.%)
DPOKE GINTIN,type_%
DPOKE GINTIN+2,index_%
GEMSYS 112
* ADR.%=LPEEK(ADDROUT)

RETURN

Rsrc _gaddr returns the addresses of objects and object
trees. On the ST, this function seems to only work properly
for tree structures (type _ % =0). From this value you can
easily determine the addresses of the object (object address
equals tree address plus 24 times the object number).

PROCEDURE rsrcJree(index_%,tree.%)
LPOKE GINTIN,index_%
GEMSYS 112
*tree.%=LPEEK(ADDROUT)

RETURN

This routine allows you to determine the addresses of
object trees.

PROCEDURE sheljind(adr%)
LPOKE ADDRIN,adr%
GEMSYS 124

RETURN

This routine is supposed to store the addresses of the
object trees, but unfortunately you have to use the corre­
sponding LPOKE commands--sorry.

215

ReSouRCe Library

216 The GFA BASIC Book

PROCEDURE rsrc_objfix(tree%,index%)
LPOKE ADDRIN,tree%
DPOKE GINTIN,index%
GEMSYS 114

RETURN

This routine converts the coordinates of an object within
the tree from character coordinates to pixel coordinates.
Rsrc _load automatically performs this function for the en­
tire tree structure.

Chapter 5: AES

The GFA BASIC Book

5.11 SHELl Library

This is the routines that the GEM desktop uses to start
programs and also for the construction of the desktop.

PROCEDURE sheUead(nam.%,cmd.%)
LOCAL nam_$,cmd_$
nam_$=SPACE$(200)
cmd_$=SPACE$(200)
LPOKE ADDRIN, VARPTR(nam_$)
LPOKE ADDRIN+4,VARPTR(cmd_$)
GEMSYS 120
*nam .%=LEFT$(nam_$,INSTR(nam_$,CHR$(0))-1)
*cmd.%=LEFT$(cmd_$, INSTR(cmd_$,CHR$(0))-1)

RETURN

This routine allows the program to identify the com­
mand by which it was invoked (this could be the name of a
file or a command line). It can be used to match the corre­
sponding ReS name.

PROCEDURE shel_writr(f1 %,f2%,f3%,nam$,cmd$)
nam$-nam$+CHR$(O)
cmd$=cmd$+CHR$(O)

217

SHELl Library

218 The GF A BASIC Book

LPOKE ADDRIN,VARPTR(nam$)
LPOKE ADDRIN+4,VARPTR(cmd$)
GEMSYS 121

RETURN

This routine makes the CHAIN command possible in the
compiler version of GF A BASIC. Nam$ is the filename of
a program and cmd$ is the command that is passed to that
program. Flags f1 % to f3% selects different codes for the
program:

f1 % =O:Exit GEM (not very useful with the ST)
f1 % =l:Run another program
f2 % =O:Program runs without graphics
f2% =l:Program uses graphics
f3% =O:Program is not a GEM application
f3% =l:Program is a GEM application

The CHAIN command in the compiler sets all flags to 1.
Nam$ contains the passed name and cmd$ is passed to
Basepage+ 128.

PROCEDURE rsrcJree(index_%,lree.%)
LPOKE GINTIN,index_%
GEMSYS 112
*lree.%=LPEEK(ADDROUT)

RETURN

This routine allows the DESKTOP.INF to be read from
the memory and a changed version may then be written
back. If you are familiar with the file format, you could,
for example, change the serial baudrate and then write the
file to the diskette so that the next boot process will auto-

Chapter 5: AES

The GFA BASIC Book

matically set the correct baudrate. You could also change
any other parameter.

PROCEDURE sheljind(adr%)
LPOKE ADDRIN,adr%
GEMSYS 124

RETURN

This routine searches for a file whose name starts at
adr%. If the file was not found on the current disk drive
then drive A: is also searched. If successful, the full file­
name is passed to adr% otherwise DP EEK(gintout)=O.

nam$='B:ABC·.BAS' +STRING$(80,O)
@sheljind(VARPTR(nam$))
IF DPEEK(gintout)

nam$=LEFT$(nam$,1 NSTR(nam$,CHR$(O))-1)
ELSE

nam$="
ENDIF

This routine searches for a BAS file whose name starts
with ABC. It first checks drive B: and then drive A:. If
found, it returns the full filename; wildcards ("?" and "*")
are not changed (like "A:\ABC* BAS").

PROCEDURE shel_envrn(ptr%,env%)
LPOKE ADDRIN,ptr%
LPOKE ADDRIN+4,env%
GEMSYS 125

RETURN

219

SHELl Library

220 The GFA BASIC Book

The exact purpose of this routine is unknown to me. It
is supposed to search the environment for a string at ad­
dress adr% and to store the byte that immediately follows
at address ptr%.

Chapter 5: AES

CHAPTER 6

RSC

221

222 The GF A BASIC Book

You have probably already noticed that many
programs not only consist of a PRG-file but also of a RSC­
file. What is the purpose of this file?

These resource files contain menu bars, dialog boxes
and the like. They contain everything that is possible with
GEM (AES). A perfect example of a resource file is the
GF A BeOM RSC file which contains a box with all of the
possible adjustments.

Many programs exist that do not use a resource file and
are still able to use menu bars and dialog boxes. This has
the advantage that only one file needs to be loaded and the
disadvantage that it is much harder to translate to another
language. It is possible that all of the text is contained in
the resource file, but usually text is found in many places in
the program. It is also usually much harder to create an er­
ror free structure in your program than to load it from the
diskette as a resource. Writing a program to run under dif­
ferent resolutions is also easier with a resource. In theory
you should be able to write the programs in sections that
are language independent, but the resulting compilation
would probably be larger than if the program was newly
compiled with the new language elements.

For the creation of normal resource there exists aRCS
(Resource Construction Set, a construction set for the cre­
ation of RCS files). The development package from Atari

Chapter 6: RSC

The GF A BASIC Book

contains the original construction set from Digital
Research. Since the instructions for the construction set
are rather flimsy let me give you the structure of those re­
sources.

After you start the RSC you will see two windows and
two icons (trash and clipboard) displayed. The top win­
dow contains the symbols for the many different kinds of
object trees. Unknown is for any object tree that is not
identified; this happens when a RSC file is to be edited and
the corresponding DEF-file is missing. Alert is the
Alertbox (unfortunately the symbols that appear here are
not the ones that appear in the final program). Menu is a
menu tree that contains the menu bars. Dialog represents
the dialog box which is the most used form of an object
tree; it allows you to create very complex input forms.
Free is a special form of the dialog box which allows you
more freedom in designing the individual objects.

These symbols are moved with the mouse to the work­
ing window (It requires extensive use of the mouse button
to activate the individual windows). Double-clicking al­
lows you to edit the graphics of the object tree. The corre­
sponding object tree appears in the working window and
the top window changes into a Resource-Partbox from
which many different objects may be selected. You can
then manipulate these objects with the mouse.

The size of the objects can usually be changed by
clicking the right lower corner of the object and then mov­
ing the mouse (mouse pointer changes to a hand). Clicking
in the middle of the object allows you to move the object to
a new location.

The objects may be changed by double-clicking (text,
color, fill pattern, Radio-Buttons, Touchexit, etc.).

By single-clicking the corresponding selection from the
menu bar, the objects or the object trees may be given a
name or the information about the objects (trees) may be

223

Chapter 6: RSC

224 The GFA BASIC Book

retrieved or sorted and the bit pattern of the corresponding
data loaded as ICN-files., or

The type of the object tree may also be changed like
changing a dialog to a free in order to change the size of
the box and then back to dialog in order to position the box
in an orderly fashion .

Tip: If you hold down the shift key while moving
the object, the object is copied instead of moved. It
is also possible to create an Alertbox, change the
type to dialog (by name), and this will put the newly
created icon into your resource. The clipboard also
has many possibilities.

It is important to name all of the objects that are used, or
you could sort the objects so that they are in a certain order.
If the output is created for Pascal (.1) or as a header for C
(.H), the resulting lines may be merged into a GF A BASIC
program and be edited:

Pascal:

C:

DESKRSC = 0;
WINDRSC = 1;

#define DESKRSC 0
#define WINDRSC 1

('TREE')
('TREE')

/*TREE'/
/*TREE'/

GFA BASIC:

DESKRSC% = 0; !TREE
WINDRSC% = 1; !TREE

Now we just need to find out how to use the newly cre­
ated RSC file.

Chapter 6: RSC

The GF A BASIC Book

A resource file is loaded with the rsrc load command
(an AES routine) and can then be manipulated by many
AES routines. Often some DPOKES are required in the
corresponding memory to make it work.

I have tried to limit myself to the structure of the object
tree just as it is loaded by the rsrc _load. The RSC file
contains pointers to offsets and the coordinates are charac­
ter oriented rather than pixel oriented so that it is easier to
change the resource file to the curren·t resolution. Often,
however, it is better to write a different resource file for
each resolution since icons and other things might look
somewhat distorted under a different resolution. The pro­
gram can check for the resolution by using XBIOS(4):

on xbios(4) gosub rscO,rsc1 ,rsc2,rsc2

Procedure rscO
@rsrcJoad("demolo.rsc")

return
Procedure rsc1

@rsrcJoad('demomid.rsc')
return
Procedure rsc1

@rsrcJoad("demohi.rsc")
return

225

Chapter 6: RSC

226 The GF A BASIC Book

6.1 Resource Construction

An object tree consists of objects (really!) that are de­
fined in a structure consisting of 24 bytes. Often they also
contain a data structure like some text or a bit pattern. A
RSC file can contain many object trees. Each object con­
sists of 10 words (DPOKE, DPEEK) or a long word
(LPOKE, LPEEK) that points to some data.

+0 +2 t4 +6 +8 +10 +12 +16 +18 +20 +22

NEXT HEAD TAIL TYPE FLAGS STATE SPEC.L X Y W H

NEXT is the number of the next object on the same level
that belongs to the same parent object, or the number of the
parent object, or the root object (-1, with DPEEK=65535).

HEAD is the number of the first subordinate object if
one exists or again a -1 (65535).

TAIL is the number of the last subordinate object. TAIL
is actually not necessary since you could use HEAD and
NEXT to traverse through the tree. It was added to obtain
greater speed.

TYPE describes the kind of object as listed in the table
below.

Chapter 6: RSC

The GF A BASIC Book

FLAGS describes the attributes of an object such as
whether or not the object may be selected. See table.

STATE describes the status of the object such as whether
the object selected or not, etc. See table.

SP EC is a long word that contains an address or other
data depending on the TYPE of the object. Again see table.

x, Y, Wand H contain the coordinates of an object (X
and Y), the width (W) and the height (H). The coordinates
relate to the full screen with the root object and to the par­
ent object for a subordinate object.

Important: Subordinate objects must always
be fully contained within the parent object. This
requires that the parent object be some kind of a
box object.

Type Nr. Spec.
G_BOX 20 BOXINFO

rectangle

G_TEXT 21 Pointer to TEDINFO
Graphic text

G_BOXTEXT 22 Pointer to TEDINFO
Text contained within a box

G-'MAGE 23 Pointer to BITBLK
bit image graphic

G_PROGDEF 24 Pointer to APPLBLK
machine code or 'C'

G-,BOX 25 BOXINFO
invisible box, marked by a double
framed box

G_BUTTON 26 Pointer to C-String
centered text in a box

227

Resource Construction

228 The GF A BASIC Book

G_BOXCHR 27 BOXINFO
single character in a box

G_STRING 28 Pointer to C-String
text of a menu

G_FTEXT 29 Pointer to TED INFO
Editable graphic text

G_FBOXTEXT 30 Pointer to TEDINFO
Editable graphic text in a box

GJCON 31 Pointer to ICONBLK
icon, differs from GJMAGE by being
visible
on a non white background

G_TITLE 32 Pointer to C-String
menu title

BOXINFO: this long word is in bit fonnat:

&x ccc cccc dddd dddd rrrr zzu qmmm ffff

c =Character code for G BOXCHAR
d =width of the border. -

o =no border
1...127 =border grows inward
255.128 =border grows outward (256-xxxx)

r =color of the border
z =color of the character (c)
q =flag to draw character with (1) or without (0) white

box (Graphmode 1/2)
m =fill pattern (8 possibilities, O=empty ...)
f =color of fill pattern

Chapter 6: RSC

The GFA BASIC Book

Example:

&H41031233
41

03
1

2
3

3

character "A"=CHR$(&41)
border thickness 3 inward
border color 1
character color 2
fill pattern 3, without white around "A"
fill color 3

C-String: The address of a text that ends with a null.

TEDINFO: The address of a table which contains all
sorts of information about a stored text.

Contents of this table (3 long words for the address and
8 words, 28 bytes):

teJltext
teJltmplt
teJlvalid

teJont
te_resvd1
tejust
te3010r
te_resvd2
teJhickness
te_txtlen
te_tmplen

teJltext
teJltmplt
teJlvalid

address of the text
address of the text template
address of the text that contains the validation

characters
character set (5=normal, 3=small)
reserved
justify text, O=left, 1 =right, 2=centered
color of text &x rrrr zzzz qmmm ffff (see above)
reserved
border width (0,1 .. 127, 255 .. 128, see above)
length of teJltext+ 1 (with null byte)
length of teJltmplt+ 1 (with null byte)

pOints to "1234+chr$(0)
pOints to "Price $_._"+chr$(4)
pOints to "9999" +chr$(O)

The output shows: Price $12.34

229

Resource Construction

230 The GFA BASIC Book

The text (te ytext9) replaces the underline characters in
the validation string (tp-ptmplt). While inputting the text
(using form do or obje edit), the characters can be re­
stricted by using te yvalid.

The following are legal:

9 = number
A = uppercase character or space
a = upper and lower case character or space
N = uppercase character, number or space
n = upper and lower case character, number or space
F = TOS-filename and: ? •
P = rOS-filename and \ :
p = rOS-filename and \ : ? •
X = any character

In the current version of TOS all validation characters
other than 9 and X will often cause the computer to crash.

While inputting text into a template like the previous
example, you can enter a "." to jump past that character.
This may be used for any of the template characters that are
not pennitted in the text.

BITBLK: This structure marks G IMAGE, it is a bit
pattern graphic (like GET/PUT) that is always displayed in
transparent mode (PUT ... ,7). This structure is usually only
available with a white background, but it saves about half
of the memory when compared to ICONBLK.

First, comes a long word that contains the address of the
bit pattern; next, the width of the bit pattern in bytes (one
word) and the height; then the X and Y offsets to the pat­
tern (&xl 000 represents an offset of 3); finally we have the
color (0 .. 15).

ICONBLK: This structure is for ICONS (graphic sym­
bols). The difference between BITBLK and lCONBLK is

Chapter 6: RSC

The GFA BASIC Book

that ICONBLK contains two bit patterns. The first pattern
contains the mask which erases all pixels from the screen
for which a bit is set. The second pattern contains the data
necessary to set the correct pixels. This is how the white
frame around an icon is drawn. You can also draw an icon
that contains two colors. The icon could also contain a text
line and a single character like the drive symbols displayed
with the desktop.

This structure is somewhat more complex than the oth­
ers; there are three pointers (long words), followed by
eleven words.

ib-pmask
ib-pdata
ib_char
ib_char
ib_xchar
ib-ychar
ib_xicon
ib-yicon
ib_wicon
ib_hicon
ib_xtext
ib-Ylext
ib_wtext
ib_htext

address of the mask
address of the data
address of the icon text
the single character
x coordinates of the character (always relative)
y coordinates of the character
x coordinates of the icon
y coordinates of the icon
width of the icon in pixels
height of the icons in pixels
x coordinates of the text
y coordinates of the text
width of the text in pixels
height of the text in pixels

APPLBLK: This is an address for machine code or C
routines that are responsible for the drawing of the objects.
An APPLEBLK contains two long words of which the first
points to the executable routine and the second is passed to
the routine.

Run the WINDOWBAS from the enclosed diskette and
try to find which object types are used in this program.

231

Resource Construction

232 The GFA BASIC Book

If you think that you have learned how to use RCS (If
you don't have one then buy one - it is a nightmare to cre­
ate objects without the ReS) then try to follow the structure
of the resource. This book contains three pictures that use
resources (Unfortunately, each resource is stored by itself,
otherwise one could have saved half the file space when
using it more than once).

Can you discover how many objects were saved as Icons
and how many were saved as an Image? The screen resolu­
tion may be discovered by using the RCS Info command.

Chapter 6: RSC

The GF A BASIC Book

6.2 RSCl.BAS

Let us examine a simple RSC-file in more detail.

Figure 13: RSC-file: Dialog Box

I I
I I
I ~ I

This RSC-file contains one dialog box (BOX) that contains
three smaller rectangles (BOX) of which one also contains
three smaller rectangles.

233

RSCl.BAS

234 The GF A BASIC Book

Figure 14: Tree Structure

H T

HI-....
H T

This drawing shows the connection between the tree
structure. Notice that each object contains three arrows
that interconnect the tree.

You can follow the arrows through the tree. To traverse
the whole tree just follow the Head-pointer and when that
pointer is empty just follow the Next-pointer. This is ex­
actly how GEM does it. GEM also needs to know the
maximum level by which the tree should be searched.

The following table shows the RSC-file of the above
example, first how it looks on the diskette and second, how
it looks in memory.

Chapter 6: RSC

The GFA BASIC Book

Figure 15: RSC-file Table

On Disk
0000 0024 9924 9924 9824 8000 0024 0924 0000
ooee 0007 9981 9909 9998 8000 9090 9900 0000
Hext Head Tail Type Flag Stat Spec X Y B H
FFFF 9981 OB96 0014 B888 0010 OB021100 0000 0000 0030 OOOE
0992 FFFF FFFF 9914 9990 0009 09FFII00 0909 9002 OOOF OOOA
0806 9003 8905 9914 9900 0880 80FF1100 8919 8002 888E B9BA
B004 FFFF FFFF 9014 BOOO 0000 00FFI100 0001 0001 OBOe 0002
00B5 FFFF FFFF 9014 0008 8000 B8FFII00 8801 0004 oooe OB02
B002 FFFF FFFF OB14 BBOO 0000 OOFFII00 9001 9907 90ge 9002
0009 FFFF FFFF 0014 0020 0000 00FFI100 0029 0002 OOOE OOOA
00800024

In Memory
9909 0024 BOZ4 0024 0024 0000 0024 0024 0000
0gee 0007 0001 0000 0000 0009 0000 0000 0000
Hext Head Tail Type Flag Stat Spec X Y B H
FFFF 0001 0086 B014 0000 0019 00021100 0000 OOOB BIE8 OOEO
9002 FFFF FFFF 0014 0000 0000 00FFII00 0048 0020 9078 OHAO
0006 0003 0005 0014 0000 0000 00FFII00 00C8 B020 0070 OOAO
0004 FFFF FFFF 0014 0000 OOOB 00FFII00 8008 0010 0060 9028
0005 FFFF FFFF 0014 0000 0000 00FFII00 0008 0040 0060 0020
0002 FFFF FFFF 0014 0000 0000 00FFII00 0008 0070 0060 0020
0000 FFFF FFFF 0014 0020 0000 00FFII00 0148 0020 0078 OOAO
000F4024

The beginning of the file contains 18 16-bit numbers
that function as pointers. Seven objects follow. The root
object can easily be recognized by the FFFF in the NEXT
pointer. The last object has bit #5 set in the Flag -word.

More trees can follow with the corresponding construc­
tion. The end of the file contains a long word that contains
the relative address of the tree at which the file starts. If
there is more than one tree the process is repeated. This
address will be incremented with the base address during
the rsrc_Ioad (HIMEM, here &HF4000).

Looking at the coordinates you can determine that this
tree was loaded with a character width of 8 and a character
height of 16 (high resolution). With FREE-objects the first
byte of the coordinates can also contain a gradual step in­
crease of the symbol. This is the reason why there should
be different RSC-files for each resolution, especially when
they contain Icons or Images. The following hardcopy

235

RSCl.BAS

236 The GFA BASIC Book

shows an object tree during the construction with the RSC
from Digital Research.

Figure 16: object tree construction

Desk file

! BUTTON! STRING EOIT: __ ",,~=='

!BOXTEXT! lQ~ !!.9.l

Objects: 7

Iconb lks: 0

Bitblks: 0

Infor"ation for:
BRUM

lcdinfos: 0

I"ages: 0

Strings: 0

Total bytes for abo~e: 168
1\

Bytcs rc"aining in Horkspacc: 7,n1

c:::=J TEXT rn

This small program draws that tree in the center of the
screen and inverts the object that the mouse pointer is
pointing to.

, RSCTEST.BAS

@RsrcJree
@RsrcJoad("TEST.RSC")

@Rsrc_gaddr(O,O)
T ree%=Lpeek(Addrout)
@Form_center(Tree%)
@Objc_draw(Tree%,O,7,O,O,640,400)
REPEAT

Chapter 6: RSC

The GFA BASIC Book

@ObjcJind(Tree%,O, 7 ,Mousex, Mousey)
0%:: Dpeek(Gintout)
II 0%>0 And 0%<1000

@Objc_change(Tree%,0%,0,0,640,400,1,1)
Repeat

@ObjcJind(Tree%,0,7,Mousex,Mousey)
Until O%<>Dpeek(Gintout)
@Objc_change(Tree%,0%,0,0,640,400,0,1)

Endil
Until Mousek
@RsrcJree

Procedure Objc _ draw(T ree%,Start%,Depth%,X%, Y%,B%,H%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%

Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+ 10,H%
Gemsys 42

Return
Procedure ObjcJind(Tree%,Start%,Depth%,X%,Y%)

Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Gemsys 43

Return
Procedure Objc_change(Tree%,Obj%,X%,Y%,B%,H%,Neu%,Flg%)

Lpoke Addrin,Tree%
Dpoke Gintin,Obj%
Dpoke Gintin+2,0 !reserved
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+ 1 O,H%
Dpoke Gintin+ 12,Neu%
Dpoke Gintin+ 14,Flg%

237

RSC1.BAS

238

Gemsys 47
Return
Procedure Form_do(Tree%,Start%)

Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Gemsys 50

Return

The GFA BASIC Book

Procedure Form_ dial(F%,X%, Y%, B%,H%,Xb%, Yb%, Bb%, Hb%)
Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+ 1 O,Xb%
Dpoke Gintin+ 12,Yb%
Dpoke Gintin+ 14,Bb%
Dpoke Gintin+ 16,Hb%
Gemsys 51

Return
Procedure Form_center(Tree%)

Lpoke Addrin,Tree%
Gemsys 54

Return
Procedure RsrcJoad(Nam$)

Nam$=Nam$+Chr$(O)
Lpoke Addrin,Varptr(Nam$)
Gemsys 110

Return
Procedure RsrcJree

Gemsys 111
Return
Procedure Rsrc-.Qaddr(Type%,lndex%)

Dpoke Gintin,Type%
Dpoke Gintin+2, lndex%
Gemsys 112

Return

Chapter 6: RSC

The GFA BASIC Book 239

A hardcopy of the screen is shown below.

Figure 17: RSCTESTBAS hardcopy

RSCl.BAS

240 The GF A BASIC Book

6.3 Testing the Objects

While it is not as simple to create a full object tree, it
should be relatively easy to create just a single object that
can then be used for testing the different parameters
(STATE).

'BOXRSC

Dim A%(100)
A%=Varptr(A%(O))
Dpoke A%,-1
Dpoke A%+2, -1
Dpoke A%+4,-1
Dpoke A%+6,27
Dpoke A%+8,&H20
Dpoke A%+ 10,0
Lpoke A%+12,&H41031233
Dpoke A%+ 16,0
Dpoke A%+ 18,0
Dpoke A%+20,50
Dpoke A%+22,30
For 1%=0 To 63

Dpoke A%+ 10,1%
Dpoke A%+ 16,10+(1% And 7)*78
Dpoke A%+ 18,10+(1%/8 And 7)*50
@Objc_draw(A%,O,O,O,O,640,400)

!G_BOXCHAR
! lastob

! color change to ,15

! color change to *25

Chapter 6: RSC

The GF A BASIC Book

Next 1%
Procedure Objc_draw(Tree%,Start%,Depth%,X%,Y%,B%,H%)

Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+ 1 O,H%
Gemsys 42

Return

First, a small object is defined in the tiny program above
(BOX CHAR , the letter "A" inside of a filled rectangle).
Then the position and the STATE flags are incremented 64
times, each time showing a different picture on the screen.
The result is shown in the printout below. You can easily
see the result that the STATE attribute has on the object.

Figure 18: Small Object incremented

@~tl at ~~I tt~@l1 mJ t&l:l@1 ~!: I C$.tm1

0.0.0.0.
~ ~ ~.: •... j,: •. :,:«.~, .. '.:;.!.' •• ~.,:*.' ~ IUi1 ~ ~
~ ~ ~ ~ ~ ~ ~ [O.[O.m.o.
fill • • • • • • • r:J.r:J.E!J.E!J.
a lll . III . III . 1II
COgCO.E).ED.

241

Testing the Objects

242 The GFA BASIC Book

Those with color monitors will have to change the two
lines marked in the comment line.

FBOXTEXTFBOXTEXT
, FBOXTEXT

Dim Tree%(100),Ted%(100)
Tree%=Varptr(Tree%(O))
Ted%= Varptr(Ted%(O))
Dpoke Tree%,-1
Dpoke Tree%+2,-1
Dpoke Tree%+4,-1
Dpoke Tree%+6,30
Dpoke Tree%+8,&H20
Dpoke T ree%+ 10,0
Lpoke Tree%+ 12,Ted%
Dpoke Tree%+ 16, 1 0
Dpoke Tree%+18,50
Dpoke Tree%+20,300
Dpoke Tree%+22,130
Ptext$="1234"+Chr$(0)
Ptmplt$="Price _._"+Chr$(O)
Pvalid$="9999"+Chr$(0)
Lpoke T ed%, Varptr(Ptext$)
Lpoke Ted%+4,Varptr(Ptmplt$)
Lpoke Ted%+8,Varptr(Pvalid$)
Dpoke Ted%+ 12,3
Dpoke Ted%+ 16,2
Dpoke Ted%+ 18,&H1111
Dpoke Ted%+22,7
Dpoke Ted%+24,Len(Ptext$)
Dpoke Ted%+26,Len(Ptmplt$)
@Objc_draw(Tree%,O,O,O,O,640,400)
, objc_draw wie oben

! GJBOXTEXT
! lastob

! font 5
! centered

! thickness 7

Chapter 6: RSC

The GFA BASIC Book

Figure 19: Text inside afWed rectangle

:: ::::::::: :. :::::::::: :: :0::: :: :::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::: :::::::::::

}i;i;;i!!i ~rit~~Z'l(jiijlll>

This program writes a formatted graphic text inside of a
filled rectangle.

Both of the above programs indicate that it takes a lot of
effort just to receive some minor results. If you use aRCS
instead to construct the objects, you can do all of the con­
struction graphically by using the mouse. You can then
also change the objects without changing the program as
long as the objects remain in the same order. With longer
programs all of the AES-subroutines necessary for RSC will
appear to occupy less space.

243

Testing the Objects

244 The GFA BASIC Book

6.4 ICONs

So far, so good. RCS is not bad, but where does the data
for the Icons and Images come from? GFA BASIC con­
tains commands that allow you to fomlat the graphic data
used with RCS. These commands are GET and PUT.

There are already many icon editors available that are
written in GFA BASIC. These will allow you to save
screen segments to a diskette. They are usually constructed
like this:

GET xO,yO,x1 ,y1 ,x$
BSAVE "ICON. GET", V ARPTR(x$) ,LEN(x$)

The same could of course be accomplished from within
a program.

The ReS expects the source text for the Icon and Image
data to be in C -compiler format. The conversion, changing
a GF A BASIC screen segment into that source text, is
shown in the program beginning on the next page:

Chapter 6: RSC

The GFA BASIC Book

, - MAKE ICON. BAS -

, GET x,Y,z,t,x$! Read into string
'BSAVE "TEST.GET",VARPTR(x$),LEN(x$) ito Diskette

Open "1",#1 ,"TEST.GET"
A$=lnput$(Lof(#1),#1)
Close #1

B%=Cvi(A$)+ 16 And &HFFFO
H%=Cvi(Mid$(A$,3))+ 1
R%=Cvi(Mid$(A$,5))*2 !Double amount of Bitplanes
Cis
Put O,O,A$
Get 0,0,B%-1 ,H%-1 ,A$

Open "0",#1 ,"TEST.ICN"
Print #1,"/* GFA SHAPE *f"
Print #1 ,"#define SHAP _W";@H$(B%)
Print #1 ,"#define SHAP _H ";@H$(H%)
Print #1 ,"#define DATASIZE ";@H$(B%*H%/16)
Print #1 ,Mint image[DATASIZEj = int mas"
Print #1 ,"{ ";
For 1%=1 To B%*H%/16-1

Print #1 ,@H$(Cvi(Mid$(A$,I%*2+5)));", ";
If 1% Mod 4=0

Print #1
Print#1," ";

Endif
Next 1%
Print #1 ,@H$(Cvi(Mid$(A$,I%*2+5)))
Print #1 ,"};"
Close #1

RETURN

Deffn H$(X%)= "Ox" + Right$("OOO" +Hex$(X%), 4)

245

ICONs

246 The GFA BASIC Book

This program will create a file with the extension of
".ICON " which may then be used with the RCS.
Unfortunately, the size of an icon may not exceed 700
bytes when using RCS. If b%*h%/J6 is larger than about
350, you must be cautious or the RCS will show a mutilated
graphic picture (maybe other RCS programs can do a better
job).

It is also necessary to create a mask for the icon. You
can design your own or you can pass on this task to a pro­
gram. The programmatic solution (never perfect) allows
you to surround an all black pixel with other black pixels.
It is also possible to create white areas within the inner sur­
face of the symbol.

The program also creates two other files besides
ICON.ICN. The file ICONM.ICN contains a mask with the
first format and file ICONW.ICN contains a file with the
second format.

Chapter 6: RSC

The GFA BASIC Book

Figure 20: Icons
Desk f il e Options Global

The above picture shows three images in the top row
consisting of ICON.ICN, ICONM.ICN and ICONW.ICN
(from left to right). The second row contains two icons, the
left contains ICONM.ICN as its mask and the other con­
tains ICONW.ICN.

If you want to use this program often, you could further
develop it by asking for the filename with FILESELECT,
offer choices of masks, etc.

If you already have a GFA BASIC drawing program,
you can expand it by adding an ICON-editor option.

It is also possible to convert a drawing program to an
ICON-editor.

'READICON.BAS

FILESELECT "'*.ICN",'.ICN",fi le$
OPEN "1",#1 ,file$

247

ICONs

248

REPEAT
LINE INPUT #1 ,a$
q%=INSTR(a$,"OX")

UNTILq%
b%=VAL("&"+MID$(a$,q%+2))
LINE INPUT #1 ,a$

The GFA BASIC Book

h%=VAL("&"+M ID$(a$, INSTR(a$,"Ox")+2))
LINE INPUT #1 ,a$
size%=VAL("&"+MID$(a$,INSTR(a$,"Ox)+2))
GET O,O,b%-1 ,h%-1 ,x$
p%=CVI(MID$(x$,5))
x$=LEFT$(x$,6)

FOR i%= 1 TO size%
WHILE INSTR(a$,"Ox")=O

LINE INPUT #1 ,a$
WEND
q%=INSTR(a$,"Ox")
a$=MID$(a$,q%+2)
x$=x$+STRING$(p%,MKI$(VAL("&"+a$)))

NEXT i%
CLOSE #1
PUT O,O,x$
. BSAVE "ICON.GET",VARPTR(x$),LEN(x$)

You will have to imbed this routine in a drawing pro­
gram to make it work properly_

Chapter 6: RSC

The GFA BASIC Book

6.5 Touchexit

Figure 21: Dialog Box with Slider

ICancel

Here is an example of a dialog box (bje _draw and
form_do) for moving an object within a slider bar.

249

Touchexit

250 The GFA BASIC Book

In this program a button consisting of four numbers is
moved within a frame. By using the top and bottom ar­
rows, the slider can be moved in single steps. Even though
the button as well as the arrows were defined as Touchexit,
the control of the resource is passed to the program using
form do. The program checks to see if the slider or one of
the arrows was selected. If OK or Cancel was selected, the
form do will terminate; otherwise, it exits. The subroutine
slide-controls the sliders. This routine uses the GEM-rou­
tine (graLslidebox) to adjust and reposition the slider.

U sing the arrows is very simple. First, the selection of
the object is canceled. Then the slider is moved in the cor­
responding direction until the mouse button is released (it
must of course be between 0 and 1000).

Within the routine that sets and draws the slider, the new
slider position is stored in memory. Then the slider posi­
tion, a number between zero and a thousand, is converted
to the corresponding screen positions. Next the height of
the outer box is multiplied by the slider position and then
divided by 1000. The current value is written to the re­
source button as text so that it is visible to the user. The
object is drawn using the objc _draw routine.

Other programs could scale the slider position from the
start like a number between zero and seven
(current%=s%*711000+0.5). The calculation of the posi­
tion must also be changed.

'SLIDER
@RsrcJree
@RsrcJoad("SLIDER.RSC")

T.tree%=O
O.slider%=2
O.parent%=1
A.up%=3
A.down%=4
B.ok%=5

(* TREE *)
(* OBJECT in TREE #0 *)
(* OBJECT in TREE #0 *)
(* OBJECT in TREE #0 *)
(* OBJECT in TREE #0 *)
(* OBJECT in TREE #0 *)

Chapter 6: RSC

The GFA BASIC Book

B.cancel%=6 ! (* OBJECT in TREE #0 *)

@Rsrc-.Qaddr(O,T.tree%)
T ree%=Lpeek(Addrout)
@Form_center(Tree%)
@Set_slide(500)
,

@Objc_draw(Tree%,0,7,0,0,639,399)
Repeat

@Form_do(Tree%,O)
X%=Dpeek(Gintout)
If X%=O.slider%

@Slide
Else

If X%=A.up%
@Slide_up

Else
If X%=A.down%

@Slide_down
Endif

Endif
Endif

Until X%=B.ok% Or X%=B.cancel%
@RsrcJree

Procedure Slide
@Gratslidebox(Tree%,0.parent%,0.slider%,1)
@Set_slide(Opeek(Gintout))

Return
Procedure Setslide(S%)

Current%=S%

251

Mh%=Dpeek(Tree%+24*0.parent%+22) ! Height parent

Sub Mh%,Dpeek(Tree%+24*0.slider%+22) ! Height Slider

Dpoke Tree%+24 *O.slider%+ 18,S% *Mh%/1 000
S$=Righl$(" "+SIr$(S%).4)
Sa%=Lpeek(T ree%+24 *0 .slider%+ 12)
Lpoke Sa%,Cvl(S$)
@Objc_draw(Tree%,0.parent%,1,0,0,639,399)

Relurn
Procedure Slide_up

Touchexit

252 The GFA BASIC Book

@Objc_change(Tree%,A.up%,0,0,640,400,0,1)
Repeat

@SeUlide(Max(0,Current%-1))
Until (Mousek And 1)=0

Return
Procedure Slide_down

@Objc_change(Tree%,A.down%,0,0,640,400,0,1)
Repeat

@Set_slide(Min(1000,Current%+ 1))
Until (Mousek And 1)=0

Return

Procedure Objc_draw(Tree%,Start%,Depth%,X%,Y%,B%,H%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+ 1 O,H%
Gemsys 42

Return
Procedure Objc_change(Tree%,Obj%,X%,Y%,B%,H%,Neu%,Flg%)

Lpoke Addrin,Tree%
Dpoke Gintin,Obj%
Dpoke Gintin+2,0 Ireserved
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+ 1 O,H%
Dpoke Gintin+ 12,Neu%
Dpoke Gintin+ 14,Flg%
Gemsys 47

Return
Procedure Form_do(Tree%,Start%)

Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Gemsys 50

Return
Procedure Form _ diai(F%,X%, Y%, B%,H%,Xb%, Yb% ,Bb%, Hb%)

Chapter 6: RSC

The GF A BASIC Book

Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+ 1 O,Xb%
Dpoke Gintin+ 12,Yb%
Dpoke Gintin+ 14,Bb%
Dpoke Gintin+ 16,Hb%
Gemsys 51

Return
Procedure Form_center(Tree%)

Lpoke Addrin,Tree%
Gemsys 54

Return
Procedure RsrcJoad(Nam$)

Nam$=Nam$+Chr$(O)
Lpoke Addrin, Varptr(Nam$)
Gemsys 110

Return
Procedure RsrcJree

Gemsys 111
Return
Procedure Rsrc-9addr(Type%,lndex%)

Dpoke Gintin,Type%
Dpoke Gintin+2,lndex%
Gemsys 112

Return
Procedure Gratslidebox(Tree%,Parent%,Obj%,Flg%)

Lpoke Addrin,Tree%
Dpoke Gintin,Parent%

Dpoke Gintin+2,Obj%
Dpoke Gintin+4,Flg%
Gemsys 76

Return

253

Touchexit

254 The GFA BASIC Book

Figure 22: Positioning the Slider

I Cancel

Chapter 6: RSC

The GFA BASIC Book

6.6 Dialog

Now the most extensive example of this chapter: A di­
alog box with text input.

If you have made it this far in AES programming, this
should not be any harder. This resource consists of a dia­
log box with some text fields, some radio buttons
(contained in a box without a frame), and an OK and
CANCEL button. After rsrc load is called, the tree address
is determined. Then form Jfmter is called to get the coor­
dinates of this dialog box. After the initializing of the ob­
jects, the input routine is called. This routine saves the
background with the SGET and the SPUT command (this is
simpler and faster than using form _ dial(O, ...) and
form _ dial(3, ...)).

Next, the routine draws an expanding box and also the
object. After calling form_do the Exit object is deselected.
After cancellation, the input is repeated (a real program
would handle this differently).

255

Dialog

256 The GF A BASIC Book

Figure 23: Dialog Box with Text Input

If OK is selected, the screen is restored by the form_dial
effect and the SPUT command. Then the text fields are
read and the radio buttons are interpreted.

The status (STATE) of an object is easy to read or
change with the DP EEK and DPOKE commands.

To read the text is somewhat harder since the object ad­
dress must be determined and the pointers Spec and Ptext
must be read. By using the combination of BMOVE and
INSTR, we were able to eliminate a loop to check for the
null byte and also additions of strings. The writing of the
text is somewhat awkward; the MIN serves to make sure
that the text field does not interfere with the memory of the
resource.

While constructing this resource, it is important that the
radio buttons are sorted (this greatly simplifies the interro­
gation) and that all editable text objects contain the full

Chapter 6: RSC

The GF A BASIC Book

length (this may be recognized in the DR-ReS in that the
line cursor is positioned at the last character of the last
line).

, DIALOG

Demo%=O
Title%=2
Nam%=3
Street%=4
City%=5
Tel%=6
Ok%=18
Cancel%=19
Null%=8

@Rsrc-,oad("dialog.rsc")
@Rsrc-9tree(Demo%,OTree%)
@Form_center(Tree%)
X%=Dpeek(T ree%+ 16)
Y%=Dpeek(Tree%+ 18)
B%=Dpeek(T ree%+20)
H%=Dpeek(T ree%+22)

(0 TREE 0)
(0 OBJECT in TREE #0 0)
(0 OBJECT in TREE #0 0)
(0 OBJECT in TREE #0 0)
(0 OBJECT in TREE #0 0)
(0 OBJECT in TREE #0 0)
(0 OBJECT in TREE #0 0)
(0 OBJECT in TREE #0 0)
(0 OBJECT in TREE #0 0)

@Sstate(Tree%,Null%,1) ! 0 selected!!!
For 1%=Null%+ 1 To Null%+9 ! 1-9 not
@Sstate(Tree%,I%,O)
Next 1%
@Stext(Tree%,Title%,"Firma")
@Stext(Tree%,Nam%,"GFA Systemtechnik GmbH")
@Stext(Tree%,Street%,"Heerdter Sandberg 30")
@Stext(Tree%,CitY%,"4000 D sseldorf 11 ")
@Stext(Tree%,Tel%,"0211/588011 ")
,

@Input_routine
,

Print "Title: ";Title$
Print "Name: ";Nam$
Print "Street: ";Street$
Print "City : ";City$

257

Dialog

258

Print "Tel. : ";Tel$
Print ·Call# : ";Radio%

Procedure InpuUoutine
SgetTemp$
Do

The GF A BASIC Book

@Form_dial(1,10,10,0,0,X%,Y%,B%,H%)
@Objc_draw(Tree%,0,8,X%,Y%,B%,H%)
@Form_do(Tree%,Title%)
Ex%=Dpeek(Gintout)
@Sstate(Tree%,Ex%,O)
Exit If Ex%=Ok%
Out 2,7

Loop
@Form_dial(2,0,0,0,0,X%,Y%,B%,H%)
SputTemp$
,

@Gtext(Tree%,Title%,*Title$)
@Gtext(Tree%,Nam%,*Nam$)
@Gtext(Tree%,Street%,*Street$)
@Gtext(Tree%,CitY%,*City$)
@Gtext(Tree%,Tel%,*Tel$)
For Radio%=Null% To Null%t9

@Gstate(Tree%,Radio%,*S%)
Exit If S% And 1

Next Radio%
Sub Radio%,Null%

Return

Procedure Objc_draw(Tree%,Start%,Depth%,X%,Y%,B%,H%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintint2,Depth%
Dpoke Gintint4,X%
Dpoke Gintint6,Y%
Dpoke Gintint8,B%
Dpoke Gintint 1 O,H%
Gemsys 42

Chapter 6: RSC

The GF A BASIC Book

Return
Procedure Form_do(Tree%,Start%)

Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Gemsys 50

Return
Procedure Form_dial(F%,X%,Y%,B%,H%,Xb%,Yb%,Bb%,Hb%)

Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+ 1 O,Xb%
Dpoke Gintin+ 12,Yb%
Dpoke Gintin+ 14,Bb%
Dpoke Gintin+ 16,Hb%
Gemsys 51

Return
Procedure Form _ center(T ree%)

Lpoke Addrin,Tree%
Gemsys 54

Return
Procedure RsrcJoad(Nam$)

Nam$=Nam$+Chr$(O)
Lpoke Addrin,Varptr(Nam$)
Gemsys 110

Return
Procedure RsrcJree

Gemsys 111
Return
Procedure Rsrc-9addr(Type%,lndex%)

Dpoke Gintin,Type%
Dpoke Gintin+2,lndex%
Gemsys 112

Return
Procedure Rsrc-9tree(Index_%,T ree .%)

Lpoke Gintin,lndex_%
Gemsys 112
*T ree .%=Lpeek(Addrout)

Return

259

Dialog

260

Procedure Gstate(T 5o,N5o,X.%)
*X.%=Opeek(T 50t24*N50t 10)

Return

Procedure Sstate(T _0/0,N5o,X50)
Opoke T 50t24 *N 50t 10 ,X _ %

Return

Procedure Gtext(T 5o,N5o,X.%)
Local X_$
X_$=Space$(100)

The GF A BASIC Book

T 50=Lpeek(Lpeek(T 50t24*N50t 12))
Bmove T_%,Varptr(X_$),100
*X.%=Left$(X_$,lnstr(X_$,Chr$(0))-1)

Return

Procedure Stext(T _0/0,N5o,X_$)
X_$=X_$tChr$(O)
T _%=Lpeek(T 50t24*N50t 12)
Bmove Varptr(X_$),Lpeek(T _%),Min(Len(X_$),Opeek(T 50t24)-

1)
Return

Chapter 6: RSC

CHAPTER 7

USING WINDOWS

261

262 The GFA BASIC Book

T his chapter consists of a long demo program
called WINDOWDEMO. The source listing is included.
This program contains a lot of information since many
things can be done with windows. You can move them,
enlarge them, shrink them, select them, or you can turn the
sliders on and off. The window can also contain text with
many different attributes (thick,cursive), or it can contain
many different character sets, or a graphic picture in bit
pattern format like in drawing programs, or as vector
graphic, or as object, resource file, or ...

When you run this program you will see a screen with
many different windows. There are four windows all to­
gether that partially overlap each other. One window
shows text, another shows simple line graphic, another
shows a typical object tree and another shows a picture that
could have come from a drawing program. There are also
ten boxes on the left side of the screen that represent the FI
to FlO function keys. The background is the normal desk­
top.

As you play with the mouse you will notice the follow­
ing:

As you click one of the F-boxes, this box is in­
verted. Pressing the function key gives you the
same result.

Chapter 7: Windows

The GFA BASIC Book

The resource window may be moved or closed.

You can enlarge both the text and the graphic win­
dows and you can move the contents around by us­
ing the arrows or sliders.

The window with the line graphics can only be
moved eight steps at a time in the horizontal direc­
tion. The Fullw-fields can also be activated. You
can also call accessories.

The menu bar shows the Atari symbol and the Quit
command which is shown under the File-Menu. If
you move the window (also accessories), the old
contents are restored.

Figure 24: Windows

For the creation o/this program:

After a procedure is called to set the GEM-parameters
(close window, rsrcJree, etc.), a Resource-File is loaded in
reserved memory.

263

Chapter 7: Windows

264 The GF A BASIC Book

This RSC-File contains two object trees, a Deskrsc for
the Function key symbols and a Windrsc for one of the
windows.

The Deskrsc is modified since it is not possible to dis­
playa full screen with Resource. Wind_get(O,4) is called to
set the size of the screen without a menu bar. Afterwards
this tree is installed as the new desktop background (with
wind _set(O,14)).

The default text size and the maximum window size is
then determined. It is not always possible to use Gemsys
77(graf_handle).

Next a menu bar is created by reading the selections
from a data statement and issuing the Menu command.
Chr$(l4)+Chr$(l5) is the Atari symbol. This symbol
could have been created by using Control-N and Control-
0, but it would then be impossible to list the file to the
printer.

A string array (txt$) is then built which will contain the
text data for the window. The position of the text is calcu­
lated using the txtsO% for the row and textzO% for the col­
umn. The window is then opened with the Info line con­
taining "Text Window". The &HFFF selects all possible
markers and the calc slid sets the size and location of the
sliders. -

The same procedure is used for window 2, except no
text field is required. The coordinates grsO% and grzO%
are initialized.

The Resource-Window (3) contains only a title, a move
bar, and a close box (&XIOll). The window size is se­
lected using wind_calc so that the corresponding Resource
fits exactly into that window. This window does not con­
tain any sliders or a size box, making it impossible to select

Chapter 7: Windows

The GF A BASIC Book

those fields. The routines for those attributes are therefore
not part of this program.

The fourth window has all the attributes. This window
contains a graphic that is loaded from the diskette into a
string (X$). This is similar to the text field for window (1).
The screen is then loaded with the INPUT$ command. A
title and an info line are also added.

By using the form dial command the new screen in­
cluding the new background are redrawn. The three win­
dows would be redrawn even without this call.

After the ON-MENU routines are set, the program per­
forms the main loop which can only be interrupted by set­
ting the end! flag. The loop contains only the evnt _multi
call (ON MENU).

The following lines are only used while testing the pro­
gram and should be replaced with the END command on a
finished product.

Entry #1 in the Menu routine shows an alert box and
entry # 14 sets the flag (end!) to indicate the end of the pro­
gram. For easier visibility of the menu bar it is very im­
portant to issue the MENU-OFF command.

The Key-routine selects the SCAN-Code to see if a func­
tion key was pressed, then it selects the corresponding rou­
tine for inverting the F-box.

Within the Button-routine, it is determined if the mouse
was pointing to the background or a window (wind Jind).
If it points to the background then the (objJind) routine is
called to check if the mouse is pointing to a Function box.
If a function box was found, the box is inverted.

The routine desk_change changes the status of the F­
symbols. The address of the object is determined
(rsrc _gaddr does not seem to work) and the new status of

265

Chapter 7: W indows

266 The GFA BASIC Book

the function key displayed (with XOR 1). A real program
would copy this status to a field for further use. The new
inverted symbol is then redrawn by using obL draw.

The Message-routine must be able to react to many dif­
ferent actions. First, a check is made to see if a wm xxx­
message exists. If none exists, this program will ignore the
messages.

The Window-handle is assigned to a variable (hand%).
The window number is also assigned to the corresponding
variable. This somewhat odd looking routine is the most
efficient for the compiler.

Every possible message calls its own routine.

The wm _closed routine is very simple. If you want
more security, you could add an alert box.

The wm _topped routine uses the corresponding GEM
routine to open the window.

The wm _moved routine is not very difficult either since
the wind set routine or the wm redraw routine do most of
the work~ If changes are made to the window, the modwind
routine is called. This routine checks to make sure that
sliders, window size and other functions are within the cur­
rent limits. The WIND TAB is also set to the new position.

The same goes for wm _sized.

The routine wm Julled checks to see if the window is al­
ready full and then changes the window to the previous
size. Variables wj!(), wx%(), wy%(),wb%() and wh%() are
used for that purpose.

The Modwind routine is then called to change the posi­
tion or size of the window with the help of variables x%,
y%, b% and h%. After these parameters are passed to
GEM (with wind_set), the new inner size of the window is

Chapter 7: Windows

The GF A BASIC Book

inquired so that it can be matched with the coordinates
(grsO% etc.) to make sure that the graphic or whatever does
not overflow the window. The new values for WINDTAB
and the size and position of the sliders are also updated
during this routine.

The wm hslid and the wm vslid routines serve to set the
size of the sliders to the overall window (like txtsO%, etc.).
There are different routines for each window. The
calc slid routine adjusts the sliders and do redraw draws
the new screen. -

The same happens for all the arrows that were defined in
the openw command. There can be up to eight arrow
events per window. This arrowx routine calls the corre­
sponding routine (MENU(5)=O to MENU(5)=7). The hori­
zontal scroll size is determined by the size of the window -­
one could have used a constant value of course. After the
rows and columns are adjusted the new slider positions are
set and the Redraw-routine is called. For a faster program
you could test to see if the Redraw routine is even neces­
sary or if part of the picture could be changed by using the
GET/PUT or BITBLT routines. The do redraw routine is
now called upon to draw the top window according to the
wm_hslid, the wm_vslid and the wm_arrow events.

The Redraw-routine is the most difficult. This routine
(wm redraw) controls the drawing of new screens caused
by event function (like sliders). The routine is split into
two parts, wm Jedraw and xredraw, to simplify the slider
and arrow events.

The rectangle for the corresponding window is then cre­
ated. Wind _get(... ,ll) selects the first rectangle in the list
and Wind _get(... ,12) selects all the others. This step is re­
peated until the width (DPEEK(gintout+6)) and the height
(DPEEK)gintout+8)) return a null to indicate the end of the
list.

267

Chapter 7: Windows

268 The GF A BASIC Book

The screen segment for every one of those rectangles
must be redrawn. Variables tb%, th%, tx% or ty% are used
for that purpose. If the width (tb%) and the height (th%) is
greater than zero the corresponding segment is redrawn.

The routine Redraw must now restore this segment. A
clipping rectangle is then defined and the origins are set to
point to the upper left corner. After erasing this segment
by using a white PBOX, a specific routine is called to
recreate the window.

Redrawing the Text Window is very simple. After cal­
culating the number of visible text lines (window height di­
vided by text height plus 2), the column offset is computed
(how much the text must be moved to match the window).
A vertical offset is then computed so that the first line of
the text is visible in the window. Only a few of the lines
are released to the redraw routine, though it would have
been possible to select all lines.

That, however, would have been much slower and could
cause a problem because of the 32000 offset range limit.
Therefore only those lines which will fit in the visible win­
dow are submitted. After every text the vertical position is
incremented by the height of the text. If you use a different
font, this size may have to be adjusted.

The Redraw routine for the window 2 is even simpler.
The origin for the graphic commands are set and the boxes
are drawn.

The Redraw for the Resource window is handled by
GEM. The origin must be changed in the Resource - this is
accomplished with the LPOKE command. The objects are
then drawn on the screen by using obL draw.

For the graphic windows the BITBLT command is used
to simply copy the picture segment into the window.

Chapter 7: Windows

The GFA BASIC Book

It is also possible to pass a different graphic resolution
to the BITBLT (like 1280*1600 dots=256 KByte), to work
on the window in smaller sections and then copy the results
back using BITBLT. It is also possible to use more than
one window for the picture, or to use more than one picture
per window, or create an art clipboard (like the function
key symbols), or create a window in a loop. While drawing
you must use the Button-routine and you must update the
window contents by using wind update(I) and
wind_update(O). The graphic program CQuid also be sup­
plemented with an editor. If the button is pressed on a
window, the graphic picture, or the symbol, is modified.
With graphic it makes sense to make sure that window
boundaries are not exceeded by using the MENU OBOX
command (also see the explanation of wind _update in
chapter 5). Let's continue with the program ...

The calc slide routine determines the inner size of the
window andcalls the routine that calculates the slider posi­
tion and size and passes those parameters to the set_slid
routine.

The set _slid routine changes all four slider positions
(GEM expects an integer between 0 and 1000). Those val­
ues are then rounded.

The procedure reset serves to protect you while the pro­
gram is being tested. The desktop is restored, all memory
that was taken up for the RSC is freed, the menu is deacti­
vated and all of the windows are closed. If the program
was started from the desktop, it will return to the desktop
otherwise it is accomplished automatically with the QUIT
or SYSTEM command.

The procedure openw is an extension of the OPENW
command. With it, the border elements may be defined
and the window may be freely positioned.

The procedure clip fits the rectangle into the window
and sets the comer point for further graphics commands.

269

Chapter 7: Windows

270 The GF A BASIC Book

The rest of the program creates an interface for the cor­
responding GEM-Routines.

The last routine selects the text size. This could have
been handled by GEMSYS 77 (grat_handle), but this rou­
tine does not always seem to work properly. The
grat_ handle routine is called and the handle is used as a pa­
rameter to the corresponding VDI call. That's all.

Final word: The redraw was difficult but not impossible
to solve. Even professional programmers cannot always
perform miracles, but they will use those routines that will
create the right effect.

Unfortunately, GEM does not have internal buffers for
window content (even so this would easily be possible in a
megabyte of memory), but it puts all of the responsibility of
creating orderly windows in the hands of the programmers.
It would have been helpful if it at least gave a message
whenever a segment or an accessory was called.

As a last reminder: It makes sense to put the PBOX
command in the Redraw routine for erasing a screen seg­
ment in procedures redraw! and redraw2. With this the
unnecessary erasing of screen segments is eliminated, be­
cause the BITBLT command or the obj draw call over­
writes the contents of the background anyway.

Using GEM, it is only possible to use programs that always
know the content of that window.

Chapter 7: Windows

The GF A BASIC Book

, WINDOW.BAS

If Xbios(4)<>2
Alert 1 ,"This Demo runs·only in Hi-rez",1 ,"Cancel" ,Dummy%
End

Endif

Dim Wf!(4),Wx%(4),Wy%(4),Wb%(4),Wh%(4)
@Reset
Reserve Xbios(2)-Himem+Fre(0)-16384-S000
@RsrcJoad("wind.rsc")
@Rsrc-9tree(O,·Deskrsc%)
@Rsrc-9tree(1 ,·Windrsc%)
@Wind-get(O,4)
Bmove Gintout+2,Deskrsc%+ 16,8
@Wind_newdesk(Deskrsc%,O)

@GeUextsize
Chrb%=Dpeek(Ptsout)
Chrh%=Dpeek(Ptsout+2)
Chrbb%=Dpeek(Ptsout+4)
Chrbh%=Dpeek(Ptsout+6)
,

@Wind_get(0,4)
Scrx%=Dpeek(Gintout+2)
Scry%=Dpeek(Gintout +4)
Scrb%=Dpeek(Gintout+6)
Scrh%=Dpeek(Gintout +8)
,

, Initialize Menu bar

Dim M$(SO)
For 1%=0 To SO

Read M$(I%)
Exit If M$(I%)="·""

Next 1%
M$(I%)=""
M$(O)=Chr$(14)+Chr$(1S)
Menu M$O
Erase M$O

! get desk size
! set into rsc
! install

! Text width
! text height
! Text box width
! Text box height

! maxim um Window parameter

! The Atari symbol

271

Chapter 7: Windows

272 The GF A BASIC Book

Data Desk, Window Demo, ------------------------ ,1,2,3,4,5,6,
Data File , Load, Save,-------- , Quit,'"

, Initial ize Window 1

Dim Txt$(99)
For 1%=0 To 99

Txt$(I%)="Text Line "tStr$(I%)t" ----------- "tStr$(I%)
Next 1%
TxtzO%=O
TxtsO%=O
Titlew 1 ,"Text Window"
Inlow 1,''''
@Openw(1 ,&HFFF,50, 100,1 50,180)
@Calc_slid(1)
,

, Init window 2

GrsO%=O
GrzO%=O
Titlew 2,"Graphic window"
Inlow 2,""
@Openw(2,&HFFF,110,25,170,190)
@Calc_slid(2)

, Init window 3

Titlew 3,"Resource window"
Inlow 3,""
@Wind_calc(0,3,0,0,Dpeek(Windrsc%t20) ,Dpeek(Windrsc%t22))
@Openw(3,&HB,250,80,Dpeek(Gintoutt 6),Dpeek(Gintoutt8))
,

Dim Smldb%(8),Dmldb%(8),P%(8)
Open "1",#1 ,"WOOF1.PI3"
Seek #1 ,34
X$=lnput$(32000,#1)
Close #1

Chapter 7: Windows

The GFA BASIC Book

Dmfdb%(0)=Xbios(3)
Dmfdb%(1)=640
Dmfdb%(2)=400
Dmfdb%(3)=40
Dmfdb%(5)=1
Smfdb%(1)=640
Smfdb%(2)=400
Smfdb%(3)=40
Smfdb%(5)=1
,

Titlew 4,"Woof"
Infow 4, 'a Degas picture"
@Openw(4,&HFFF,150,150,250,225)

On Menu Message Gosub Message
On Menu Button 2,1,1 Gosub Button
On Menu Gosub Menu
On Menu Key Gosub Key
,

@Form_dial(3,0,0,0,0,0,0,640,400)

Repeat
On Menu

Until End!

, All done QUIT

@Reset
@Wind--get(O, 1 0)
If Dpeek(Gintout+2)

Alert 1 ,"Accessories", 1 ,"Close-Quit" ,X%
IfX%=2

Quit
Endif
Repeat

@Wind--get(0,10)
Until Dpeek(Gintout+2)=0

Endif
Reserve Xbios(2)-Himem+Fre(0)-16384
,

273

! redraw all

Chapter 7: Windows

274 The GFA BASIC Book

Procedure Menu
If Menu(0)=1

Alert 1 ,"This is an example of'Window technics",1,
"GFA'BASIC" ,Oummy%

Endif
If Menu(0)=14

Endif

Let End!= True
@Reset

Menu Off
Return

Procedure Key
A%=Menu(14) Oiv 256-58
If (Menu(14) And 255)=27

@Wind_update(3)
Endif
If (Menu(14) And 255)=13

@Wind_update(2)
Endif
If A%>O And A%<11

@Oesk_change(A%)
Endif

Return

Procedure Button
@Windjind(Menu(10),Menu(11))
If Opeek(Gintout=O)

@Objcjind(Oeskrsc%,0,1,Menu(10),Menu(11))
O%=Opeek(Gintout)

Endif
Return

If 0%>0 And 0%<1000
@Oesk_change(O%)

Endif

Procedure Oesk_change(Nr%)
Adr%=Deskrsc%t24 'Nr%t 10
Ostate%=Opeek(Adr%)
Opoke Adr%,Ostate% Xor 1

! alter status

Chapter 7: Windows

The GF A BASIC Book

@Wind---.Qet(O,11)
B%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)
While B% Or H%

B%,H%)

Wend
Return

@Objc_draw(Deskrsc%,Nr%,7,Dpeek(Gintout+2) ,Dpeek(Gintout+4) ,

@Wind---.Qet(O,12)
B%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)

Procedure Message
II Menu(1»19 And Menu(1)<29 !wm_xxxxx

Hand%=Menu(4)
II Hand%=Dpeek(Windtab) ! this way is best lor compiling

Wind%=1
Else

II Hand%=Dpeek(Windtab+ 12)
Wind%=2

Else
II Hand%=Dpeek(Windtab+24)

Wind%=3
Else

II Hand%=Dpeek(Windtab+36)
Wind%=4

Else
Wind%=O

Endil
Endil

Endil
Endil
On Menu(1)-19 Gosub

Wm_redraw,Wm_topped,Wm_closed,WmJulled,

Wm_arrowed
On Menu(1)-24 Gosub Wm_hslid,Wm_vslid ,Wm_sized,Wm_moved

Else
, Unknown

Endil

275

Chapter 7: Windows

276

Return

Procedure Wm_closed
Closew Wind%

Return

Procedure Wm_topped
OpenwWind%

Return

Procedure Wm_moved
Adr%=Windtab+ 12'Wind%-12
Dpoke Adr%+4,Menu(5)

The GF A BASIC Book

Dpoke Adr%+6,Menu(6)
@Modwind(Wind%,Menu(5),Menu(6),Menu(7),Menu(8))

Return

Procedure Wm_sized
Adr%=Windtab+ 12'Wind%-12
Dpoke Adr%+8,Menu(7)
Dpoke Adr%+ 1 O,Menu(8)
@Modwind(Wind%,Menu(5),Menu(6),Menu(7),Menu(8))
@Calc_sl id(Wind%)
Wf!(Wind%)=False

Return

Procedure Wmjulled
Adr%=Windtab+ 12'Wind%-12
If Wf!(Wind%) !already big

Else

X%=Wx%(Wind%)
Y%=Wy%(Wind%)
B%=Wb%(Wind%)
H%=Wh%(Wind%)
Wf!(Wind%)=False

@Wind-get(Hand%,5)
Wx%(Wind%)=Dpeek(Gintout+2)
Wy%(Wind%)=Dpeek(Gintout +4)
Wb%(Wind%)=Dpeek(Gintout+6)

Chapter 7: Windows

The GFA BASIC Book

Wh%(Wind%)=Dpeek(Gintout+8)
X%=Scrx%
Y%=Scry%
B%=Scrb%
H%=Scrh%
Wf!(Wind%)= True

Endif
Dpoke Adr%+4,X%
Dpoke Adr%+6,Y%
Dpoke Adr%+8,B%
Dpoke Adr<'/o+ 10 ,H%
@Modwind(Wind%,X%,Y%,B%,H%)

Return

, This routine is called to expand or change the position
, of a window. Here it is possible to put the window on
, a Byte boundary, to set a maximum ansd minimum size,
, to hold a complete window on the screen at all times,
, and to match the slide bars according to size.

Procedure Modwind(Wind%,X%,Y%,B%,H%)
On Wind% Gosub Modw1 ,Modw2,Modw3,Modw4
@Wind_set(Hand%,5,X%,Y%,B%,H%)
@Wind-get(Hand%,4)
On Wind% Gosub Mods1 ,Mods2,Mods3,Mods4
@Calc_slid(Wind%)

Return
Procedure Modw1
Return
Procedure Modw2

X%=X%+4 And &HFFF8
Return
Procedure Modw3
Return
Procedure Modw4
Return
Procedure Mods1

!Only in 8 steps movable

T xtsO%=Mi n(T xtsO%,80-Dpeek(Gintout +6)/Chrbb%)
TxlzO%=Min(TxtzO%,100-Dpeek(Gintout+8)/Chrbh%)

Return

277

Chapter 7: Windows

278 The GFA BASIC Book

Procedure Mods2
GrsO%=Min(GrsO%,1280-Dpeek(Gintout+6))
GrzO%=Min(GrzO%,800-Dpeek(Gintout+8))

Return
Procedure Mods3
Return
Procedure Mods4

PaisO%=Min(PaisO%,640-Dpeek(Gintout+6))
PaizO%=Min(PaizO%,400-Dpeek(Gintout+8))

Return

Procedure Wm_hslid
@Wind-get(Wind%,4)
8%=Dpeek(Gintout+6)
On Wind% Gosub Hslid1 ,Hslid2,Hslid3,Hslid4
@Calc_slid(Wind%)
@Do_redraw

Return

Procedure Hslid1
TxtsO%=Menu(5)*(80-8%/Chrbb%)/1000+0.5

Return

Procedure Hslid2
GrsO%=Menu(5)*(1280-8%)/1000+0.5

Return

Procedure Hslid4
PaisO%=Menu(5)*(640-8%)/1000+0.5

Return

Procedure Wm_vslid
@Wind-get(Wind%,4)
H%=Dpeek(Gintout+8)
On Wind% Gosub Vslid1 ,Vslid2,Vslid3,Vslid4
@Calc_slid(Wind%)
@Do_redraw

Return

Procedure Vslid1

Chapter 7: Windows

The GFA BASIC Book

TxtzO%=Menu(5)*(1 00-H%/Chrbh%)/1 000+0.5
Return

Procedure Vslid2
GrzO%=Menu(5)*(800-H%)/1000+0.5

Return

Procedure Vslid4
PaizO%=Menu(5)*(400-H%)/1 000+0.5

Return

Procedure Wm_arrowed
@Wind_get(Wind%,4)
8%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)
On Wind% Gosub Arrow1 ,Arrow2,Arrow3,Arrow4
@Calc_slid(Wind%)
@Do_redraw

Return

Procedure Arrow1
On Menu(5)+ 1 Gosub 1 pu, 1 pd, 11u, 11d, 1 pi, 1 pr, 111, 11r

Return
Procedure 1 pu

T xtzO%= Max(T xtzO%-H%/Chrbh%,O)
Return
Procedure 1 pd

T xtzO%=Min(T xtzO%+H%/Chrbh%, 1 OO-H%/Chrbh%)
Return
Procedure 11u

TxtzO%=Max(TxtzO%-1,0)
Return
Procedure 11d

TxtzO%=Min(TxtzO%+ 1,1 OO-H%/Chrbh%)
Return
Procedure 1 pi

TxtsO%=Max(TxtsO%-8%/Chrbb%,0)
Return
Procedure 1 pr

T xtsO%=Mi n(T xtsO%+ 8%/Chrbb%,80-8%/Chrbb%)

279

!max 100 Lines

Chapter 7: Windows

280

Return
Procedure 111

TxtsO%=Max(TxtsO%-1,O)
Return
Procedure 11r

TxtsO%=Min(TxtsO%+ 1 ,SO-8%/Chrbb%)
Return

Procedure Arrow2

The GF A BASIC Book

On Menu(5)+ 1 Gosub 2pu,2pd,2Iu,2Id,2pl,2pr,211,2Ir
Return
Procedure 2pu

GrzO%=Max(GrzO%-H%,O)
Return
Procedure 2pd

GrzO%=Min(GrzO%+H%,SOO-H%)
Return
Procedure 21u

GrzO%=Max(GrzO%-10,O)
Return
Procedure 21d

GrzO%=Min(GrzO%+ 1 O,SOO-H%)
Return
Procedure 2pl

GrsO%=Max(GrsO%-8%,O)
Return
Procedure 2pr

GrsO%=Min(GrsO%+8%,12S0-8%)
Return
Procedure 211

GrsO%=Max(GrsO%-10,O)
Return
Procedure 21r

GrsO%=Min(GrsO%+ 10, 12S0-8%)
Return

Procedure Arrow4
On Menu(5)+ 1 Gosub 4pu,4pd,4Iu,4ld,4pl,4pr,411,4Ir

Return
Procedure 4pu

Chapter 7: Windows

The GFA BASIC Book

PaizO%=Max(PaizO%-H%,O)
Return
Procedure 4pd

PaizO%=Min(PaizO%+H%,400-H%)
Return
Procedure 41u

PaizO%=Max(PaizO%-1 0,0)
Return
Procedure 41d

PaizO%=Min(PaizO%+ 1 0,400-H%)
Return
Procedure 4pl

PaisO%=Max(PaisO%-B%,O)
Return
Procedure 4pr

PaisO%=Min(PaisO%+B%,640-B%)
Return
Procedure 411

PaisO%=Max(PaisO%-10,0)
Return
Procedure 41r

PaisO%=Min(PaisO%+ 1 0,640-B%)
Return

Procedure Do_redraw
@Wind-llet(Hand%,4)
@Xredraw(Dpeek(Gintout+2),Dpeek(Gintout+4),Dpeek(Gintout+6),

Dpeek(Gintout+8))
Return

Procedure Wm_redraw
@Xredraw(Menu(5),Menu(6),Menu(7),Menu(8))

Return
Procedure Xredraw(M5%,M6%,M7%,M8%)

@Wind_update(1)
@Wind_get(Hand%,11)
While Lpeek(Gintout+6) !width or height <>0

Tb%=Dpeek(Gintout+2)+Dpeek(Gintout+6)
Th%= Dpeek(G intout +4) + Dpeek(Gintout +8)
Tx%=Max(Dpeek(Gintout+2),M5%)

281

Chapter 7: Windows

282

Ty%=Max(Dpeek(Gintout+4),M6%)
Tb%=Min(Tb%,MS%+M7%)-Tx%
Th%=Min(Th%,M6%+M8%)-Ty%
If Tb%>O

The GFA BASIC Book

If Th%>O
@Redraw(Wind%,Tx%,TY%,Tb%,Th%)

Endif
Endif
@Wind-l)et(Hand%,12)

Wend
@Wind_update(O)

Return

Procedure Redraw(Wind%,X%,Y%,B%,H%)
@Wind-l)et(Hand%,4)
@Clip(X%,Y%,B%,H%,Dpeek(Gintout+2),Dpeek(Gintout+4))
Graphmode 0
Oeffill ,0

PBOX -99,-99,999,999 !clear box
, moved, otherwise there will be flickering
On Wind% Gosub Redraw1 ,Redraw2,Redraw3,Redraw4

Return

Procedure Redraw1
Pbox -99,-99,999,999
Deftext 1 ,0,0,Chrh%, 1
Anz%=Dpeek(Gintout+8)/Chrbh%+2
X%=-T xtsO% ' Chrbb%
Y%=Chrh%-Chrbh%
O%=TxIzO%
For 1%=0 To Anz%

Add Y%,Chrbh%
Exit If 0%>99
Text X%,Y%,Txt$(O%)
Inc 0%

Next 1%
Return

Procedure Redraw2
Pbox -99,-99,999,999

!Initial deftext

!split offset

Chapter 7: Windows

The GF A BASIC Book

Defline 1,1,0,0
Dpoke Windtab+64,Dpeek(Windtab+64)-GrsO%
Dpoke Windtab+66,Dpeek(Windtab+66)-GrzO%
For 1%=0 To 1279 Step 16

Box 1%,1%,1279-1%,799-1%
Next 1%

Return

Procedure Redraw3
Lpoke Windrsc%+ 16,Lpeek(Gintout+2)
@Objc_draw(Windrsc%,0,7,X%,Y%,B%,H%)

Return

Procedure Redraw4
P%(0)=PaisO%+X%-Dpeek(Gintout+2)
P%(1)=PaizO%+ Y%-Dpeek(Gintout+4)
P%(2)=P%(0)+B%-1
P%(3)=P%(1)+H%-1
P%(4)=X%
P%(5)=Y%
P%(6)=X%+B%-1
P%(7)= Y%+H%-1
P%(8)=3
Smfdb%(O)= Varptr(X$)
Bitblt Smfdb%O,Dmfdb%O,P%()

Return

Procedure Calc_slid(Wind%)
Hand%=Dpeek(Windtab+ 12*Wind%-12)
@Wind-get(Hand%,4)
B%=Dpeek(Gintout+6)
H%=Dpeek(Gintout+8)
On Wind% Gosub Cslid1 ,Cslid2,Cslid3,Cslid4

Return

283

Chapter 7: Windows

284 The GFA BASIC Book

Procedure Cslid1
Hp= TxtsO%/(80-8%/Chrbb%)
Vp= T xtzO%/(1 OO-H%/Chrbh%)
@Set_slid(Hand%,8%/80/Chrbb%,H%/1 OO/Chrbh% ,H p, Vp)

Return

Procedure Cslid2
@SeCslid(Hand%,8%/1280,H%/800,GrsO%/(1280-8%), GrzO%/(800-H%))

Return

Procedure Cslid3
Return

Procedure Cslid4
@Set_slid(Hand%,8%/640,H%/400,PaisO%/(640-8%),PaizO%/(4OO-H%))

Return

Procedure SeUlid(Hand%,Hs,Vs,Hp,Vp)
@Wind_set(Hand%,15,Hs*1000+0.5,0,0,0)
@Wind_set(Hand%,16,Vs*1000+0.5,0,0,0)
@Wind_set(Hand%,8,Hp*1 000+0.5,0,0,0)
@Wind_set(Hand%,g,Vp*1000+0.5,0,0,0)

Return

Procedure Reset
@Wind_olddesk
Gemsys 111
Menu Kill
For 1%=4 Downto °

Closew 1%
Next 1%

Return

Procedure Openw(Nr%,Attr%,X%,Y%,8%,H%)
Local Adr%
Adr%=Windtab+ 12*Nr%-12
Dpoke Adr%+2,Attr%
Dpoke Adr%+4,X%

Chapter 7: Windows

The GF A BASIC Book

Dpoke Adr%+6,Y%
Dpoke Adr%+8,B%
Dpoke Adr%+ 10,H%
Openw Nr%

Return

Procedure Clip(X%,Y%,B%,H%,XO%,YO%)
Dpoke Ptsin,X%
Dpoke Ptsin+2,Y%
Dpoke Ptsin+4,X%+B%-1
Dpoke Ptsin+6,Y%+H%-1
Dpoke Intin,1
Dpoke Contrl+2,2
Dpoke Contrl+6,1
Vdisys 129
Dpoke Windtab+64,XO%
Dpoke Windtab+66,YO%

Return

, GEMSYS Routines

Procedure Objc_draw(Tree%,Start%,Depth%,X%,Y%,B%,H%)
Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+ 10,H%
Gemsys 42

Return
Procedure ObjcJind(T ree%,Start%,Depth%,X%, Y%)

Lpoke Addrin,Tree%
Dpoke Gintin,Start%
Dpoke Gintin+2,Depth%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Gemsys 43

Return
Procedure Objc_change(T ree%,Obj%,X%, Y%,B%,H%,Neu%,Flg%)

285

Chapter 7: Windows

286

Lpoke Addrin,Tree%
Dpoke Gintin,Obj%
Dpoke Gintin+2,0
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+8,B%
Dpoke Gintin+ 1 O,H%
Dpoke Gintin+ 12,Neu%
Dpoke Gintin+ 14,Flg%
Gemsys 47

Return

The GF A BASIC Book

!reserved

Procedure Form_dial(F%,X%,Y%,B%,H%,Xb%,Yb%,Bb%,Hb%)
Dpoke Gintin,F%
Dpoke Gintin+2,X%
Dpoke Gintin+4,Y%
Dpoke Gintin+6,B%
Dpoke Gintin+8,H%
Dpoke Gintin+10,Xb%
Dpoke Gintin+ 12,Yb%
Dpoke Gintin+ 14,Bb%
Dpoke Gintin+ 16,Hb%
Gemsys 51

Return
Procedure RsrcJoad(Nam$)

Nam$=Nam$+Chr$(O)
Lpoke Addrin, Varptr(Nam$)
Gemsys 110

Return
Procedure RsrcJree

Gemsys 111
Return
Procedure Rsrc--l)addr(Type%,lndex%)

Dpoke Gintin,Type%
Dpoke Gintin+2,lndex%
Gemsys 112

Return
Procedure Rsrc--l)tree(lndex_%,Tree.%)

Lpoke Gintin,lndex_%
Gemsys 112
-Tree .%=Lpeek(Addrout)

Chapter 7: Windows

The GFA BASIC Book

Return
Procedure Wind_get(H%,F%)

Dpoke Gintin,H%
Dpoke Gintin+2,F%
Gemsys 104

Return
Procedure Wind_set(H%,F%,A 1 %,A2%,A3%,A4%)

Dpoke Gintin,H%
Dpoke Gintin+2,F%
Dpoke Gintin+4,A 1 %
Dpoke Gintin+6,A2%
Dpoke Gintin+S,A3%
Dpoke Gintin+l0,A4%
Gemsys 105

Return
Procedure WindJind(X%,Y%)

Dpoke Gintin,X%
Dpoke Gintin+2,Y%
Gemsys 106

Return
Procedure Wind_calc(F%,Attr%,X%,Y%,B%,H%)

Dpoke Gintin,F%
Dpoke Gintin+2,Attr%
Dpoke Gintin+4,X%
Dpoke Gintin+6,Y%
Dpoke Gintin+S,B%
Dpoke Gintin+ 10,H%
Gemsys lOS

Return
Procedure Wind_update(Flg%)

Dpoke Gintin,Flg%
Gemsys 107

Return
Procedure Wind_newdesk(Tree%,Start%)

Lpoke Gintin,14
Lpoke Gintin+4,Tree%
Dpoke Gintin+S,Start%
Gemsys 105

Return
Procedure Wind_olddesk

287

Chapter 7: Windows

288

@Wind_newdesk(O,O)
Return

Procedure GeUextsize
V%=Opeek(Contrl+ 12)
Gemsys 77
Opoke Contrl+ 12,Opeek(Gintout)
Vdisys 38
Opoke Contrl+ 12,V%

Return

Chapter 7: Windows

The GFA BASIC Book

I creates normal text size
! gemsys 77 should do it
! but I have not had much luck
!with it.
lOut: (in ptsout)
I h/h (Symbol) b/h (box)

APPENDICES

289

290 The GFA BASIC Book

APPENDIX A: BIOS

BIOS(O,L:ptr%) getrnpb 144

BIOS(I,d%) bconstat 144

BIOS(2,d%) bconin 144

BIOS(3,d%,c%) bconout 144

BIOS(4,f%,L:buf%,n%,rec%,d %) rwabs 144

BIOS(5,n % ,L:adr% setexec 145

BIOS(6) tick cal 145

BIOS(7,d%) getbpb 145

BIOS(8,d%) bcostat 145

BIOS(9,d%) rnediach -145

BIOS(10) drvrnap 146

BIOS(ll,x%) kbshift 146

Appendix A: BIOS CALLS

The GFA BASIC Book

APPENDIX B: XBIOS

XBIOS(O,t%,L:par%,L:vec%)
. XBIOS(I,n %)
XBIOS(2)
XBIOS(3)
XBIOS(4)
XBIOS(5,L:1 %,L:p%,r%)
XBIOS(6,L:adr%)
XBIOS(7,n%,c%)
XBIOS(8,L:a %,L:O,d%,s%,t%,si %,n%)
XBIOS(9,L:a %,L:O,d%,s%,t%,si %,n %)
XBIOS(10,L:a%,L:O,d%,s%,t%,
XBIOS(ll)
XBIOS(12,n %,L:a %)
XBIOS(13,n %,L:v%)
XBIOS(14,d %)
XBIOS(15,b%,f%,u %,r%,t%,s%)
XBIOS(16,Lu %,L:s%,L:c%)
XBIOS(17)
XBIOS(18,La %,L:O,L:s%,t%,f%)
XBIOS(19,L:a %,L:O,d %,s%,t%,si %,n%)
XBIOS(20)
XBIOS(21,a%,r%)
XBIOS(22,L: dt %)
XBIOS(23)
XBIOS(24)
XBIOS(25,n %,L:a %)

initmous
ssbrk
physbase
logbase
getrez
setscreen
setpallete
setcolor
floprd
flopfnt
flopwr
getdsb
midiws
mfpint
iorec
rsconf
keytbl
random
protobt
flopver
scrdmp
curscon
bsettime
bgettime
bioskeys
ikbdws

147
147
147
147
147
148
148
148
148
148
148
149
149
149
150
151
152
153
153
154
154
154
155
155
155
155

291

Appendix B: XBIOS CALLS

292

XBIOS(26,n %)
XBIOS(27,n%)
XBIOS(28,c%,n%)
XBIOS(29,m %)
XBIOS(30,m %)
XBIOS(31,n%,c%,d%. L:vec%)
XBIOS(32,L:adr%)
XBIOS(33,m%)
XBIOS(34)
XBIOS(35,d %,r%)
XB I OS (36,L: poin ter)
XBIOS(37)
XBIOS(38,L:vec%)
XBIOS(39)

Appendix B: XBIOS CALLS

The GFA BASIC Book

jdisint 155
jenabin 155
giacces 155
offgibit 155
ongibit 156
xbtimer 156
dosound 158
setprt 160
kbdvbas 160
kbrate 163
prtblk 163
vsync 163
superx 163
pntaes 163

The GF A BASIC Book 293

APPENDIX C: GEMDOS

GEMDOS(O) p termold 135
GEMDOS(I) c-conin 135
GEMDOS(2,c%) c-conout 136
GEMDOS(3) c auxin 136
GEMDOS(4,c%) c-auxout 136
GEMDOS(5,c%) c=prnout 136
GEMDOS(6,c%) c rawio 136
GEMDOS(7) c rawcin 136
GEMDOS(8) c necin 136
GEMDOS(9,L:adr%) c conws 137
GEMDOS(10,L:adr%) c conrs 137
GEMDOS(ll) c conis 137
GEMDOS(14,d%) d-setdrv 137
GEMDOS(16) c conos 137
GEMDOS(17) c_prnos 138
GEMDOS(18) c auxis 138
GEMDOS(19) c auxos 138
GEMDOS(25) c=getdrv 138
GEMDOS(26L:adr%) f setdta 138
GEMDOS(42) (getdate 138
GEMDOS(43,d%) t setdate 139
GEMDOS(44) Cgettime 139
GEMDOS(45,t%) t settime 139
GEMDOS(47) (getdta 139
GEMDOS(48) s version 139
GEMDOS(49,L:size%,ret%) p-=" termres 139

Appendix C: GEMDOS

294 The GFA BASIC Book

GEMDOS(54,L:adr%,d%)
GEMDOS(57,L:adr%)
GEMDOS(58,L:adr%)
GEMDOS(59,L:adr%)
GEMDOS(60,L:adr%,attr%)
GEMDOS(61,L:adr%,mode%)
GEMDOS(62,h %)
GEMDOS(63,h %,L:len %,L:adr%)
GEMDOS(64,h %,L:len %,L:adr%)
GEMDOS(65,L:adr%)
GEMDOS(66,L:n %,h %,mode%)
GEMDOS(67,L:adr%,flg%,attr%)
GEMDOS(69,h%)
GEMDOS(70,n%,s%)
GEMDOS(71,L:adr%,d %)
GEMDOS(72,L:size%)
GEMDOS(73,L:adr%)
GEMDOS(74,0,L:adr%,L:size%)
GEMDOS(75,f% ,L:nam %,L:cmd %,L:env%)
GEMDOS(76,ret%)
GEMDOS(78,L:nam%,attr%)
GEMDOS(79)
GEMDOS(86,0,L:old %,L:neu %)
GEMDOS(87,L:tdbur%,h%,flg%)

Appendix C: GEMDOS

d rree
d- create
d- delete
d- setpat
rcreate
r- open
r- close
r- read
r write
r- delete
r- seek
r- attrib
r- dup
rrorce
d- getpath
m malloc
m- rree
m - shrink
p exec
p-term
rsfirst

. r- snext
r- rename
r- datime

139
140
140
140
140
140
140
141
141
141
141
141
142
142
142
142
142
142
143
143
143
143
143
143

The GFA BASIC Book

APPENDIX D: GEMSYS

GEMSYS 10 178
GEMSYS 11 178
GEMSYS 12 178
GEMSYS 13 179
GEMSYS 14 179
GEMSYS 15 179
GEMSYS 19. 179
GEMSYS 20. 181
GEMSYS 21 . 181
GEMSYS 22 182
GEMSYS 23. 182
GEMSYS 24 183
GEMSYS 25 183
GEMSYS 26 186
GEMSYS 30 188
GEMSYS 31 188
GEMSYS 32. 189
GEMSYS 33 189
GEMSYS 34 189
GEMSYS 35 . 190
GEMSYS 40 191
GEMSYS 41 192
GEMSYS 42 192
GEMSYS 43 192
GEMSYS 44 193
GEMSYS 45 193

295

Appendix D: GEMSYS

296 The GF A BASIC Book

GEMSYS 46. 193
GEMSYS 47 194
GEMSYS 50 195
GEMSYS 51 196
G EMSYS 52 . 196
GEMSYS 53 197
GEMSYS 54 . 197
GEMSYS 70 198
GEMSYS 71 . 199
GEMSYS 72 . 199
GEMSYS 73 199
GEMSYS 74 200
GEMSYS 75 200
GEMSYS 76 201
GEMSYS 78 201
GEMSYS 79 202
GEMSYS 80 203
G EMSYS 81 . 203
GEMSYS 80 204
GEMSYS 81 204
GEMSYS 90 205
GEMSYS 100 206
GEMSYS 101 206
GEMSYS 102 206
GEMSYS 103 . 206
GEMSYS 104 . 208
GEMSYS 105 . 208
GEMSYS 105 210
GEMSYS 106 . 211
GEMSYS 107 211
GEMSYS 108 . 212
GEMSYS 110 214
GEMSYS 111 . 214
GEMSYS 112 215
GEMSYS 112 215
GEMSYS 124 215
GEMSYS 114 216
GEMSYS 120 217
GEMSYS 121 218
GEMSYS 112 . 218

Appendix D : GEMSYS

The GFA BASIC Book

GEMSYS 124. 219
GEMSYS 125 . 219

297

Appendix D: GEMSYS

298

INDEX

299

300

Index

10 mn_selected 185
20 wm_redraw 185
21 wm_topped 185
22 wm_closed 185
23 wm_fulled 185
24 wm_arrowed 185
25 wm hslid 186
26 wm_vslid 186
27 wm_sized 186
28 wm_moved 186
29 wm_newtop 186
40 ac_open 186
40 track format 89
41 ac_close 186
80 track format 89
AES 132

turn off 163
AES-routines 174
ALERT command 196
Alertbox 224
Application Environment

Services 132
ARRA YFILL 8, 45
Arrow events 267
Arrowx 267

GFA BASIC Book

Index

Assembly picture switch
116

Bad sectors 91
Basepage 114,190
Basic Input/Output System

133
Baud rate and timer 156
BIOS 133

See Also Appendix A
page 290

BITBL T 28, 36, 42, 45,
127,174,230,267,
269,270

Bjc_draw 249
Blitter chip 3
BLOAD 5,34
BMOVE 256
Boot sector 153
BOX 20
BOXCHAR 241
BOXINFO 228
BOXRSC 240
BPUT/BGET 17
BSAVE 4,34
BSAVE/BLOAD 17

GFA BASIC Book 301

Buffer size 150 JMP 114
Bug in TOS 115,125,142 LPOKE 122
Button-routine 265 MAX 67
C viii MIN 67
C-String 229 OPENW 207
Calc_slide 269 origin 25
Calculations PBOX 3,20

faster algorithms 6 PRBOX 20
floating point processor PUT 28

6 RBOX 20
CHAIN command 203,218 RESERVE 124
Character Conversion SGET 3

program 93 SPUT 3,43
Character sets 121 TEXT 66
Character-Offset-Table Commodore 64 vi

127 Computer lock up 195
CIRCLE 20 Corner points 41
Clipping 268 Data arrays 55

restored 25 Data security 17
turned off 25 Data sort 16

COLOR 22 DATA statements 95, 98
Commands DEFFN 124, 138

ALERT 196 DEFMOUSE 201
ARRAYFILL 8 DEFTEXT 121, 125
BITBL T 28, 45 Desk_change 265
BLOAD 5,34 Deskrsc 264
BOX 20 DESKTOP.INF 218
BSAVE 4,34 Destination rectangle 41
CHAIN 203,218 DIALOG 257
CIRCLE 20 Dialog box 249, 255
Clipping 25 Directory retrieve program
DEFTEXT 121 74
DPOKE 122 DO-LOOP-EXIT 58
EXEC 113 Do_redraw 267
FILL 21 Dosound-routine 169
GET 28,37 DPEEK 174,226,256
GOTO 175 DPOKE 122, 226, 256
Graphmode 30 ELISE program 164
INPUT 35 END command 265
Input-Routine 49 ESC code 171

Index

302 GF A BASIC Book

Ev_mflags% 184 GEMSYS 77 270
Event_xxx 181 See Also Appendix D
Evnt_dclick 186 page 295
EvnCmulti 184 GET 28,37,100,123,244,
EXEC 113 267
EXIT-object 195 Get_chrlink 123
Extended Basic GFA BASIC viii

Input/Output System GOTO command 58, 175
133 GraCdragbox 199

F-box 262, 265 GraCgrowbox 199,200
FBOXTEXT 242 Graf_handle 201, 270
Filecopy 70 GraCmkstate 202
Fileselect routine 205 GraCmovebox 199,200
FILESELECT-box 124 GRAF _RUBBERBOX 198
FILL 3,21 Graf_shrinkbox 199,200
FLAGS 227 GraCslidebox 201
Flicker Free Graphics 42 GraCwatchbox 200
FNT-files 122 Graphic Environment
Font 121,125 Manager 132
FONT DEMO program 128 Graphmode command 30
Font-header 122,126 important modes 33
Fontdemo 121 Inverse Transparent 30
FOR-NEXT 7, 8 Replace 30
Form_alert 196 Transparent 30
Form_center 197,255 Xor 30
Form_dial 196, 256, 265 Graphmode-setting 31
Form_do 193,249,250, Hardcopy 68, 154

255 HEAD 226
Form_error 197 Head index 150
Format 88, 90 Head-pointer 234
FORTH vi Horizontal-Offset-Table
FS.TTP program 86 127
FseUnput 205 1/0 redirection capabilities
GEM viii, 132 134
GEM Disk Operating ICON-editor 247

System 133 ICONBLK 230
GEM-VOl 20 ICONS 246, 230, 232
GEMDOS 122, 133 Image 232

See Also Appendix C INC 7
page 293 INFOW 208

Index

GF A BASIC Book 303

Initialization Program 178 Multiple programs in
INPUT command 35 memory 178
Input-Routine 49 Newdesk 210
Inserting machine code NEXT 226, 235

114 Next-pointer 234
INSTR 256 Normal format 89
Integer array 190 ObLdelete 192
Intel format 183 ObLdraw 266,270
JMP command 114 Objc_add 191
JOYSTlCK.BAS 161 Objc_change 194
Keyclick disabled 169 Objc_draw 192,195
Load_font 122,174 Objc_edit 193
LOC-Pointer 16 Objc_find 192
Long word 150, 230 Objc_offset 193
LPEEK 226 Objc_order 193
LPOKE 122, 226 Object tree 191,224
LST-file 10 Object-Library 191
Magnify function program OFFGIBIT 156

97 ON MENU 183,265
MAKEICON.BAS 245 ONGIBIT 156
Mask 246 Open_work 174
MAX command 67 Openw 207,267
MC68000 viii Optimization 2
Memory Usage 29 Page_Flipping 3
MENU KILL 188 Parent object 227
MENU OBOX 269 PASCAL 11
MENU(0)-MENU(15) 184 PBOX 3, 20, 57, 270
Menu-tnormal 189 PCIRCLE 20
Menu_bar 188 PEEK 161
Menu_icheck 188 PELLIPSE 20
Menu_ienable 189 Plotter-graphic mode 67
Menu_text 189 Plotter··mode 68
Message-routine 266 PRBOX 20
MIN command 67 PRG-file 96, 222
MINIDAT program 17 Primitives 20
Mirror effect 38 PRINT/INPUT 5
Modwind 266 Programs
Moving Bit blocks 42 Assembly picture
MS-DOS 197 switch 116
Multi-tasking 181 baud rate and timer 156

Index

304 GFA BASIC Book

Programs (Cont.) MAKEICON.BAS 245
BOXRSC 240 Menu-tnormal 189
Character Conversion Menu_bar 188

93 Menu_icheck 188
Check Resolution 225 Menu_ienable 189
copy files 70 Menu_text 189
DATA statements 95 mirror effect 38
DIALOG 257 mouse dependant 182
directory retrieve 74 mouse pointer
draw a circle 67 dependant 182
ELISE 164 move a picture segment
evnt_dclick 186 40
exiting GEM 180 Multiple programs in
FBOXTEXT 242 memory 178
Fileselect 205 newdesk 210
FONT DEMO 128 obLdelete 192
form_alert 196 Objc_add 191
form_center 197 Objc_change 194
form_dial 196 Objc_draw 192
form_do 195 objc_edit 193
form error 197 objc_find 192
Format 90 Objc_offset 193
FS.TTP 86 objc_order 193
fseUnput 205 OPENW 207
graCdragbox 199 pass messages 178
graCgrowbox 199 Quicksort 108
GraChandle 201 recursion example 101
graf_mkstate 202 Recursion Modification
graf_movebox 199 106
GRAF _RUBBERBOX reserving memory 115

198 RSCTEST.BAS 236
graCshrinkbox 199 Rsrc free 214
graCslidebox 201 Rsrc_gaddr 215
graCwatchbox 200 Rsrc_load 214
ICON-editor 247 rsrc_objfix 215
inserting machine code rsrc_tree 215,218

114 save and load 100
JOYSTICK.BAS 161 save the old file 71
keyclick disabled 169 Scroll Demo 44
magnify function 97 scrp_read 203

Index

GFA BASIC Book 305

Programs (Cont.) Reserving memory 115
search 83 Resource Construction Set
sheLenvrn 219 49,222
sheUind 215,219 Resource window 263, 264
sheLread 217 RSC 197
sheLwritr 217 RSC-file 175, 222, 233
simultaneous running RSCTEST.BAS 236

179 Rsrc_free 214
SLIDER 250 Rsrc_gaddr 215
software recorder 179 Rsrc_load 197,214,216,
sound 61 255
use of accessories 181 Rsrc_objfix 215
wait loop 183 Rsrc_tree 215,218
wind_cal 212 SCAN-code 72
wind_close 206 Scroll Demo 44
wind_create 206 Scrp _read 203
wind_delete 206 SEARCH program 83
wind_find 211 Serial port 136
wi nd _g et 208 Set_slid 269
wind_open 206 SETCOLOR 22
wind_set 208 Setscreen 42
wind_update 211 SGET 3,255
WINDOW.BAS 231,271 Shel_envrn 219

PTSOUT command 56 SheUind 215,219
PUT 28, 244, 267 Shel_read 217
Quicksort 11,108 Shel_writr 217
QUICKSORT program 15 Simulate Caps-Lock 146
RBOX 20 Slider 269
RCS file 3 Slider bar 249
Receiving data 4 SLIDER program 250
Recursion 101 Sorting 11

solving problems in Sorting data 16
ever decreasing SOUND 61,65,169
steps 101 Source Memory Form

Recursion example 101 Description Block
Relocatable program 96 36
REPEAT UNTIL MOUSEK Source rectangle 41

106 SPEC 227
REPEAT-UNTIL 8 SPUT 3, 43, 255, 256
RESERVE 124 Start% 192

Index

306 GFA BASIC Book

Starting tree 192 Wind_cal 212
STATE 227,241 Wind_calc 264
Subordinate objects 227 Wind_close 206,207
TAIL 226 Wind_create 206,207
Tail index 150 Wind_delete 206,207
Te_color 229 Wind_find 211
Te_font 229 Wind_get 208, 209, 264
Te~ust 229 Wind_open 206
Te-ptext 229 Wind_set 208, 210
Te-ptmplt 229 Wind_update 211
Te-pvalid 229 Window 262
Te_resvd1 229 Window-handle 266
Te_resvd2 229 WINOOW.BAS 231,271
Te_thickness 229 Windtab 266
Te_tmplen 229 Wm arrow 267
Te_txtlen 229 Wm_closed 266
TEOINFO 229 Wm_fulled 266
TEXT-command 66 Wm hslid 267
TITLEW 208 Wm_moved 266
TOS 132 Wm redraw 267
Touchexit 250 Wm sized 266
Tramiel Operating System Wm_topped 266

132 Wm_vslid 267
Tree structure 234 XBIOS 133
Tree% 175, 188 See Also Appendix B
Truncate lines 24 page 291
TYPE 226 Xbios call 43
Unload_font 123 XBIOS(4) routine 40
Unreserve 124 Xredraw 267
VOl-functions 121

bypassing 121
VOl 132
VOl-handle 201
Virtual Device Interface

132
VsCfont 125
VT-52-emulator 171
WAVE 61,65,169
WAVE-period 66
Wind-open 207

Index

GF A BASIC Book 307

308 GFA BASIC Book

Come and join us at the Roundtable,TM
Where the GEnie™ and the Griffin meet!

Does this sound like a fantasy? Well, it may just be a dream come
true! When General Electric's high-tech communications network
meets MIcHTRoN'S programmers and support crew, ST users around
the country will hear more, know more, and save more.

We know that our low prices and superior quality wouldn't mean as
much to you without the proper support and service to back them up.

So we are now available on GEnie, the General Electric Network for
Information Exchange. GEnie is a computer communications system
which lets you use your personal computer, modem, and
communication software to gain access to the latest news, product
information, electronic mail, games, and MIcHTRoN's own
Roundtable! !

The Roundtable Special Interest Groups (SIG) gives you a means of
conveniently obtaining news about our current products, new releases,
and future plans. Messages directly from the authors give you valuable
technical support of our products, and the chance to ask questions
(usually answered within a single business day).

GEnie differs from other computer communication networks in its
incredibly low fees. With GEnie, you don't pay any hidden charges or
minimum fees. You pay only for the time you're actually on-line with
the MIcHTRoN product support Roundtable, and the low first-time
registration fee.

For more information on GEnie, follow this simple procedure for a free
trial run. Then if you like, have ready your VISA, Mastercard or
checking account number and you can set up your personal account
immediately -- right on-line!

1. Set your modem for half duplex (local echo)--300 or 1200 baud.
2. Dial 1-800-638-8369. When connected, type HHH and press

Return.
3. At the U#= prompt, type XJM11957,GENlE and press Return.

And don't forget, MIcHTRoN's Bulletin Board System, The Griffin
BBS, is still going strong (the griffin is the half-lion/half-eagle creature
on our logo). Our system is located at MIcHTRoN headquarters in
Pontiac, Michigan. For a trial run, call (313) 332-5452.

GEnie and Roundtable are Trademarks of General Electric Information Services.

