ATARI PILOT INTERNAL SPECIFICATION

Initial release

(11-NCV-354)

Pre

0

DY)

red by:

T

Harry 3. Etewar
NECTERIC

15¢16 San RBenito }
Lcs Catos, CA G65¢725
(4C8) 395-6478

ATARI PILOT INTERNAL SPECIFICATION

' . TABLE CF CONTENTS
1. Introduction

Interpreter opberation

2.1 Command/statement scanning
2.2 Immediate mode

2.3 Run mode

2.4 Auto-number input mode

2.5 Load mode

2.6 Graphics mode

3. Special considesrations
2.1 Error reporting
3.2 BREAK key monitoring
3.2 Trace mode
3.3 Run-time crror minimization

4. Internal data structures
4.1 Strings
4.1.1 String storage
4,1.2 String vointers
4.1.3 3tring variable name and value pointers
4 String name temporary

Numeric expression stack
.2.3 Numeric result value and address.
Program storage
Use stack
Buffers
4,5.1 Command line input pointer/buffer
4.5.2 Accept pointer/buffer
4.5.3 Text expression evaluetion pointer/buffer
4.6 Gravhics parameters

4.1
) Numbe
4.2.1 Numeric variables
‘Il' 4,2.2
4 -

1= = =N
L] L]
U O

4.6.1 X & Y coordinates

4.€.2 Theta angle

4.¢.3 Pen color

4.6.4 Computational vaeriables
4.7 Sounds
4.8 Command/reserved word tables

. roczdure modules
hl

mory management package
ring handling package
Integer arithmetic package
Graphics vackage

Statement scanning utilities

¢
(a]

..

wmuto ;v g
L
> wo—0

\NC€Z 4 drana L S ALY A LG INANMTY 0 [SR A NE B S "X e WS SN

1. Introduction

This manual describes the implementation details of the Atari
PILCT language interpreter for the Atari Personal Computer
System. The Atari PILOT language is described in a separate
manual entitled 'ATARI PILOT EXTERNAL SPECIFICATION'.

The PILOT interpreter resides in an 8K byte cartridge and uses
all of the available RAM memory for its own static and Aynamic
memeory reguirements. Static memory requirements include:

Interpreter working variables.

Mode control and option flages.

Numeric variable storage.

Numeric expression stack.

Use stack.

Accept, text expression and commend line buffers.

Dynamic memory reguirements include:

Program statement storage.
String variable storage.
Graphics/text screen area.

Th2 interpreter utilizes the Screen Editor &s a source for
command lines, which may be immediate commands, deferred PILCT
statements or line deletions; thus, full line editing is
provided before the interpreter sees the input line.

Thez interpreter utilizes PILCT scurce statements for all
operations; the statements are never tokenized, compiled or
transformed in any wzay, except that line numk rs are converted
to integer form for internal program storage.

- A4 4TIV VT w

/

N s iava PR NPV A AV A AU ANAY e e m e e e e e = o -

2. Interpreter operetion

The interpreter is at all times reading PILCT statements, but
depending upon the operating mode different actions are taken.
The primary operating modes and their behaviors are:

Immediate mode -- PILOT statements are read frem the Screen
Editor and result in either immediate execution, & storage to
the program storage area or a statement deletion.

Run mode -- PILOT stztements are read from the program storage
area and executed.

Auto-number input mode -- PILCT statements are recad from the
Screen Editor, & line number is appended and thes resultant
statement is stored to the program storage area.

Load mode -- PILCT statements are read from a user specified
device, otherwise this mode is idaentical to immediate mocde.
Normally PILOT loads from a file containing only numbered
statements which are then stored to the program stcrage area;
however, un-numbered PILCT statements contained within 2
lozding file will be executed as encountered.

The modes will be discussed in more detail in the paragraphs
that follow.

2.1 Command/statement scanning

PILOT statements are scanned on a strict left to right basis
using z context independent recursive lexical analyzer which
identifies and evaluates all data elements and operators. PILOT
statements undergo a double scan process: first & syntax scan
which rejects all syntactically incorrect statements and then an
execute scan. Even immediate mode commends are double scanned to
minimize the occurrence c¢f unwanted side effects from partially
executed invalid commands. PILCT statements in the program
storage area are syntax checked at the time of entry (immediate
mcde, load mode or Auto-number input mcde) end then are not
syntax checked again during run mode, in order to maximize th-
execution speed.

The same routines are used for both the syntax scan and the
execute scan with a flag indicating whica type of scan is to be
performed.

2.2 Immediate mode

Immediate mode 1is thes default operating mode; when in this mods
the interpreter reads PILOT commands/statements from the Screen
Editor a2nd operates upon them. Input lines consists of zn
optional line number znd an optional PILOT statement with the
following rules governing the interpreters actions:

lin2 & PILCT resultant action
statement

H<
[ui]
147]

YES Store lines in ©vrogram storege area

-3

PRI . - - aow a ALY A AT A A Ak AN AL AN A L NSLY T 4 1L TNUNVT Oy

YES NC Delete line from program storage.
NO YES Execute statement immediately.
NG NO No-operation (ignore).

2.3 Run mode

While in run mode, th2 interpreter executes previously stored
PILOT statements from the program storage area. Run mode is
entered by the immediate mode execution of a Run, Jump, Use or
End command. Run mode is terminated by a run-time error, the
end of program execution, an operator BREAK or system RESET.

2.4 puto-number input mode

While in auto-number input mode, the interpreter accepts un-
numbered PILCT statements from the Screen Editor, appends an
internally generated line number to each statement and stores
the resultant statement to the program storage area. Syntax
errors are reported and the offending statement is not stored.

Auto-number input mode is entered by the immediate mode
execution of an Bduto commend and is terminated by the operator
entry of an empty line.

2.5 Load mode

Load mod=2 is identical to immediate mode, with the exception
that statements are read from a specified device/file rather
than from the Screen Editor. Locad mode is entered by the
exzcution of a Load command a2nd is terminated by an 1/0 error or
an end-of-file condition from the device/file being read.

2.6 Graphics mode

Grapnics mode is & screen mode, rather than an operating mode as
discussed in the preceding paragraphs. The screen is usually in
one of two modes, text mode or graphics mode. The default mode
is text mode in which the screen is organized as 24 lines of 4¢
cnaracters each. The user may select graphics mode by the
execution of the Graphics command, in which case the screen is
reorganized to a grcophics screen with 2 4 line text window at
the bottem.

Th2 current mode and the transitions between modes

are carefully
controlled 2nd monitored by the interpreter bec :

9]
o
&

]

The highest aveilable RAM location changes when going into
and out of graphics mode, thus requiring a2 movement of th=z
string variable list.

Different C.S. int=rfaces and dzatabase véeriables are
utilized for screen 1/0 in the two modss

LN NP AN Y L oalas s R A T R R I I G W S Ry S L SV S) P e w [

3. Special considzrations

The paragraphs that follow discuss some of the specizl
considerations that were made during the design and
implementation of the Atari PILOT interpreter.

3.1 Error reporting

In order to zid the user in thz2 correction of syntax errors, the
interpreter highlights a character, in the offending statement,
that is tine source of the error or is immediately to the right
of a field that is incorrectly specified. The fact that the
highlighting is usually to thes right of the error is a
consequence of tha fact that the lexical analyzer never
backtracks, that data type errors are detected after lexical
scanning and that syntactical ambiguities may lead to the
postponement of error detection.

2,2 BREAK key monitoring

Th=2 BREAK key is suppos=d to provide a graceful termination of
any on-going process; accordingly the pilot interpreter monitors
the BREAK ke2y at the following voints:

Between the scanning of each statement (211 modes).
Periodically during the sxecution of the Pause command.
Periodically Jduring the cxecution of the Tsync command.
Eetween the execution of each Grephics sub-command.

When an operator BREAK is detected, the interpreter stops the
then current activity end returns to immediate mode execution.

2.2 Trace mode

Trace mode is a special mode which may be utiliz=d in
conjunction with run mode to aid in the debugging of PILCT
programs. While in trace mode, the interpreter will write to
the text screen (or window) the PILCT statement zbout to be
executed; this 1s done regardless of whether cr not the
statement condition field evaluates to true or false.

2.3 Run-time error minimization

Some steps have been taken to minimize the possibilites for
producing run-time errors in PILOCT programs; among the itemc
cccounted for are:

All statements are syntax checked before being stored to the
orogram storage area.

AC

cept buffer and text expression buffer results are
truncated on overflow, with no error reported.

The accept buffer and command line input buffer are larger
tnan the largest line wnich may be entered frcm the Screen

-5-

VLl aava L A LAY LA AN A DN AL LWL AUy T DL TN YT Q)

Editor.

The gravhics screen cursor control includes in-bounds/out-
bounds tests and line clipping to eliminate "cursor out of
bounds" errors from the Display Handler.

No explicit OPEN commend is provided, the device/filename
and the data direction being orovided by the READ and WRITE
commands themselves.

The string veriable list is moved when entering graphics
mode so that "insufficient memory" error will not occur
except when there 1s really not enough memory.

The Use stack is cleared on immediate modas execution of Run,
New, Drogram statement insertion, program statement deletion
and run mode execution of Load, so that thes Use stzck is
guaranteed always to be empty or to contain valid return
addresseas.

String variable operations are allowed on null strings and
undefined strings and no explicit declaration of string
length 1s required (or allowed for that matter).

4, Internzl data structures

This section details the internal data structures used by the
PILOT interpreter. A memory map showing ths gross usc of RAM is
provided below:

| 0.S5. | BOEO-06TF
| PILOT | $88C-0UFF

| stack | ©0l100-01FF
| data] C230-Q4FF

| PILCT I
| static | 0593-96FF
fvariables |

system |
booted | £768-2?72? (need not be present)
software |

accept] (one memory page)
buffer

progran
storage

string
storage

PILOT utilizes the entire second half of memory pags zero (d6E8¢-
UOFF) for variables, pointers and tables, znd in 244iticn,
utilizes pages 5 and 6 (€5C00-G4FF) for thzs same. Memory nage)
contairs the 65¢2 hazrdware stack and ic completely rescrved for
that purpose.

PILCT stzarts the program storage area at the pbottem cf the freo
memory r=gicn at powesr-up time. If no disk or cassctte software
wVzs Dooted, that address will be #7049, ctherwise tho address

v - e - - 4 B R AL AR] L S S e A 4 N 41 TN Y Ry

will be at the end of the booted software. PILCT starts the
string stcrage area at ths top of memory just below the display
list/data region reserved by the Screen Editor.

P hmng O XL LOLV i LudNaNIT 4wl BN AL s A d s “ - A v -

4,1 Strings

String variables are dynamically assigned from thes high address
region of the free memory space downward. The variables are
stored in a structure called the string list which is ordered by
the cecllation sequence of the variable names contcined therein.
String names and thesir values are stored using standard ATASCII
encoding, onz character per 8-bit byte.

4.1.1 String storage

String variables (strings) are stored in memory using seguential
storage, with two pointers demarking the beginning znd end of
the storages area. Pointer S2H [02B4] marks the end of the list
and does not change (except when entering or exiting graphics
mode); pointer S2L [68B2] merks the start of the list and
changes every time an item is inserted or deleted.

fmm—————— + B ittt +
| S2L *et-mmmmm——— > Ist item | low memory address.
Fmmmm———— + o ———————————— +
| 2nd item |
o +
| l
| |
B +
| last item I high memory address.
e +
fmmm———— +
| S2H *—4---mm—mee > (lst byte after last item)
pmmm————— +

wWhen the string list is empty, S2L and S2H both nDoint tc the
first unusable byte at the end of memory. Thz valuz of S2H is
cstablished from C.S. variable MEMTOP (G2ES5] at power-up time
and 1s readjusted whenever there is 2 changs in the screen mode
due to 2 Graphics command execution.

7 0
- — = +
| item size | The2 item size is also used as
+- -+ a relative pointer to the next
| ! item in the list.
o —————————— +
! name size | 1 to 254,
o +
| name value !
| f
= 1 to 254 =
] bytes of |
| ATASCII |
tmm e +
| data size | & to 254.
fmr e ——— +
| data valus |
l I
= ¢ to 254 =
| bytes of |
| ATASCII !
ot - +

The first item in the list is the variable with the name lowest
in the collation sequence, with the rest of the list being
ordered accordingly.

4,1.2 String pointers

When scanning and manipulating strings the interpreter utilizes
4-byte pointers which contain a 16-bit base address plus 8-bit
unsigned offsets to the beginning and end of the substring being
dealt with.

7 5}
Form————————————— +
| base | byte ¢
+ - -+
| pointer ! 1
A +
| start offset | 2
i +
lend offset (+1)] 3
e e +

The pointer to a null substring will hzve the start offset equal
to the enad offset.
4.1.3 3tring variable name and value pointers

The lexical anzlyzer returns, as part of its celling seguence, 2
zointer to the name znd =2 pointer to the valus of each named

-1¢-

string variable it encounters. The name pointer is returned in
4-byte pointer variable NP [@UBE] and the value pointer is
returned in 4-byte pointer variable DP [886C2]; see section 4.1,2
for the format of the 4-byte pointer variables.

4.1.4 String name temporary

In order to solve a problem &arising from the use of string
indirection in thz targst for a Compute or Accept command (e.g.
'C:$SABC=SDEF'), 2l1ll target string names are moved to a
dynamically allocated memory region prior to evaluating the text
expression to the right of the '='. This region is 2%7 bytes in
extent and is allocated upward from the top of the program list,
and deallocated at the 2nd of the command execution. If
unsufficient memory is available for the allocation, the
interpreter will produce a run-time error.

-11-

R b T o e T T L b L T RO W e i O S e 44 v v o

4.2 Numbers

All PILCT languagz numeric date is stored internzlly in 16-bit,
two's complement integer form, with the least significant byte
(l1sb) being at the lower address. Numeric overflow may occur as
2 result of some numeric operations and is not considered an
error by the interpreter.

4.2.]1 Numeric variables

The PILOT numeric variables '#A' through '#Z' are stored

sequentially in a statically assigned table which starts at
location 351B.

£A value | address = $151B.

-12-

4,2.2 Numeric expression stack

Numeric expressions are evaluated using an expression stack
which is statically assigned and has room for the partial
results to support twe levels of nested (non-redundant)
parentheses. The stack is shown below prior to final evaluation
of the expression #A + (%#C / 4); notice that the stack contains
the expression operands and operators in the same infix form as
seen 1n the statement of the expression. The stack entry for
each operator is the ROM address of the arithmetic routine which
is to verform the diadic operation; wh=n the opasration hzas been
completed, the three words at the then current top of stack will
have been replaced with the numeric result of the operation.

- ————— +
| #A value | bottom of stack addr = §#93.
b ———— +
| + oper. |
o ————— +
| %C value |
e ——————— +
| / oper. |
R T p— +
! 4 |
B W - + o +
| ESTKP *+=-=====- > | current |
e + = top of =
| stack +2 |
BT e pp—— +
I |
fomm—————— +

The exrression stack pointer ESTKP [6£91]) is z single byte
quantity which contains an index value to the word beyond thne
current top of stack (next available free word). For the case
of an empty stack ESTKP contains @ and is then incremented by 2
for every item added to the stack and decrementec¢ by 2 for cvery
item deleted from the stack.

4.2.2 Numeric result value and address.

The lexical analyzer returns, as part of its czlling seguence,
thz integer value znd the address of each numeric variable or
pointer variable it encounters. The integer vzlue is returned
in variable NUMBER [¢¢B8] and the Giﬁﬂﬁéis returnad in variable
PCINT [A¢26]. For special variables (%x) 2nd numeric constants
the integer valu=z is returned in NUMBER, ond PCINT 1s not

altered.

L 2 T I S a P2 AR i

4.3 Program storagez

Deferred program statements are stored in memory using

sequentizl storage, with two pointers demarking the beginning

and end of the storage area. Pointer S1L [@FAE] marks the start .
of the list and does not change; pointer S1H [@$BG] marks the

end of the list and changes every time an item is inzerted or
deleted.

+
| SIL *=doomemmeeo > 1st item | low memory address.
tommm———— + Fomm e +
| 2nd item |
R T T pe e ——— +
l |
I |
e +
! last item | high memory address.
e +
dmmmm—— - +
| S1H *-4-—-=-ecemmm= > (1Ist byte after last item)
fmmm————— +

When the program list is empty, S€1L and S1H both point to the
first usable byte at the beginning of thz free memory region.
Th= value of S1L is established from C.S. variable MEMLO [(2E7]
at power-up time and is not altered theoreafter.

ach item in the program list has the format shown below:

7)
T +
| item size | The item size 1s 2130 used as
+ - -+ a relative pointer to the next
| | item in the list.
e mm e +
! 2 |
e +
| line number | Contains the binary line
+ - -+ number in msb/lsb order.
| I
B +
| statement cize] 1 to 254.
o, ————— +
| statement |
| | Contains a single PILOT
= 1 to 254 = source statement.
| bytes of {
| ATASCII. |
e +

The first item in the list is the statement with the lowest linc
numbar, with the rest of the list becing ordered accordingly.

Th=2 fact that & program list entry is a special case of 2 string

-14-

4

PR & a A B T T T

list entry is purely intentional.

4,4 Use stack

The return addresses for Use commands are retained in a stack
which is statically assigned and has room for eight entries.
Each stack entry is ths memory address of the statement cfter
the one containing the executed Use command.

e ——— +
! return | bottom of stack addr = (508.
+- addr -+
I 1 !
o +
| return |
+- addr -+
| $2 !
B +

pommmmm - + | current |

| USTKP *+-=wv--=- > +- top of -+

e + | stack +2 |
T Tepepp—— +
| |
| |
S +
| return |
+- addr -+
! #e !
o +

The Use stack pointer USTKP [609f] is a single bytec guantity
which contazins an index volue to thz word beyond the current

top of stack (next available free word). For thz case of an
2mpty Scack USTKF « sntains ¢ and is then incremented by 2 for
every item added to the stack (Use commend) znd decremented by 2
for svery item deleted from the stack (End command).

-15-

L A AY o A S A AN L ladANr [0 SR A D N S LR N RS | - 4 4 TN VYT O

4.5 Buffers

The PILOT incerpreter contains several text buffers, which are
eacn defined znd delimited by a correspoinding 4-byte pointer.
Each of tne buffers is described in the paragraphs that follow. .

4.5.1 Command line input pointer/buffer

The command line input vointer INLN [(0d8%9] is a 4-byte pointer,
as described in section 4.1.2, which points to and AdAelimits the
PILOT command/statement to be executed. When in immediate mode,
INLN points to the buffer COMBUF [8676] which is the target for
¢ logical line of text from the Screen Editor. The exzmple
below shows the state of the command line input pointer/buffer
immediately after the input of 'RUN' from the screen.

INLN = 208¢ COMBUF = G676-Co6F0
fommmmm————— + R +
| base F*e-toemmecw-- > | R |
+- -+ b +
| 2ddress | | U |
e + dmmmmmme e +
Istartx= & | | N |
fommmm e + Fommmmm e o - +
| endx = 4 | | <EOL> |
fommmmm——em e + bmmmm e ———— +
I I
- +
| !
| |
b +
I |
fommmm e +

when PILCT is in run mode, the INLN pointer points to program
statements in the program storage &re2 (instezad of COMBUF). In
that case tnz bzase address points to the beginning of tne
statement allocation and the start index contains 3 value of €
which offsets the overh=ad bytes. See section 4.2 for the
format of the program statement sStorage.

-16-

4,5.2 Accept pointer/buffer

The accept buffer pointer ACLN [A#88] is a2 4-byte pointer,

2s described in section 4.1.2, which points to a3and delimits the
current accept buffer contents. ACLN always vointe to the
dynamically essignasd accept buffer which resid=s in the 256 byte
page at the beginning of thez free memory region. The buffer is
allocated at power-up time and starts at the then current
address contained in 0.S8. variable MEMLO [82E7}. The exzample
below shows the state of the accept buffer pointer/pbuffer
immediately afrer the execution of the PILCT statement
'A:=HELLO'

ACLN = 2988 address assigned at power-up
fmmm——————— + e m +
| base Fedeemeeeo--- > | <blank> !
+ - -+ formm e — +
| ¢ddress | | H |
fommm——————— + tommm— - +
Istartx= 0 | | E |
o ————— + tormm e, ———— +
| endx = 7 | [L]
$mmrm—————— + Fom +
| L |
o ——— +
| o |
o m e —em +
| <blank>]
o +
I |
I I
tmmm—————— +
| !
- —————

NE2 A e tan s R = A A I A X I AR ™ R N AL ANV L LN/ - J.L-I"Jv-kll'.'}

4.5.3 Text expression evaluztion vointer/buffer

The text expression buffer pointer TELN [£888C] is a 4-byte
pointer, as described in section 4.1.2, which points to and
delimits the result of the evaluation of a PILOT text
expression. TELN alwa2ys points to the buffer TEXBUF [AS577].

The example below shows the state of the text expression
evaluation pcinter/buffer immediately after the execution of the
PILCT statements 'C:$NAME=JOE' and 'T:HI, S$SNAME\'.

TELN = #8€8C TEXRUF = 3577-3€75
trmmm——————— + fomr e ——— +
| base Feteoeemw——- > | H |
+- -+ forrmm e +
| address | | I |
- + fommm e ——— - +
|startx= @ | | ' |
S + - +
| endx = 7 | | <blank> |
e ———— + fommm - +
| J !
tommmmm e — +
| 0 |
docem e ——ee +
| E |
fomremmm———— +
! |
! f
Formmemmm——m +
] |
tommmemem e +

Altnough TEXBUF could in theory be dynamically assigned, there
is code within the interpreter which accesses thas buffer by name
rather than using the pointer TELN, thus making dynemic
assignment impossible (without coding changas to the
interpreter).

-1g-

4.6 Graphics parameters

i£6]
()]

The internal graphics routines use seversl different types of
variables to perform the screen graphics computations, most of
which relate to 2ither line clipping or direction calculations.

4,6.1 X & Y coordinates

To minimize thz2 effects of accumulating errors when performing
relative cursor movement (DRAW, GC or FILL), where the cursor
positions are not gesneral integral, the graphics coordinates are
meintained in memory in 2 3-byte format as shown below:

o mm e +
| 1sb l byte 4]
+- -+
] msb | 1
+- -+
| fraction | 2
fommm e +

Each coordinzate contains two bytes of integer and one byte of
fraction, all in two's complement representation. When data is
either plotted to the screen, read from th= scr2en or thea
coordinate values accessed using '%X' and '%Y', the most
significant bit of each fraction is used to round the integer
velues of the coordinates (working velues only, not the
reference valus).

The coordinate reference values are contzined in variables GX
[ZOEC) and GY [OREF]; other working variables also utilize this
format as shown below:

Nzme Function

GX Current cursor x-coordinate.

GY Current cursor y-coordinate.

GXNEW Cursor target position x-coordinate.
GYNEW Cursor target position y-coordinate.

GX1 Line clipping line 2nd point 1, x-coord.
Gyl Line clipoing line ond point 1, y-coord.
GX2 Line clipping line end voint 2, x-coord.
GY2 Line clippring lins =2nd point 2, y-coord.

4,6.2 Thetz angle
The graphics thsta 2zngle is maintained internally in veriable

THETA [(fF2] as an integz2sr value that ranges from # to 358. Th=
graphics varizble '%A' returns this valuec directly.

-19-

N e PR A IR e P EAE S I N Ry T A N S AR I S) 42 TN VT Ly

4.6.3 Pen color

The currently selected ven color is retained in single byte
variable PEN [4553] which may have the following values:

% = ERASE.
1 = RED.

2 = YELLOW.
3 = BLUE.

4 = UP.

4.6.4 Computations variables

The following variables are used during the computation of line
2nd points by the clipping zlgorithm:

DELX [@6CA] Integer delta x (line slope).
DELY [26CC] Integer delta y (line slope).
GACC [2ECE] 4 byte integer accumulator.
GTEMP [6€D2] 4 byte integer temporary.
GTEMP2 [@9D4] 4 byte integer temporary.

-2¢-

4.7 Sounds

The cound parameters for the Sound command sre retained in a
statically allocated table as shown below:

| entry %4 | low memory z2d4dress = #$555.

Each table entry is a 2-byte guantity with one of the two
formats shown below:

7]

ek ek S e e it &

| memory lo | Byte 2
+-+ -+

|61 address hi | 1

et e e e s

or
7 &
T S R
| (unused) | Byte @
L s SRS A S SRS
l1]x xlconstant | 1
R . Lt o e

An =2ntry of 211 zeros is used to flag the current end of the
table unless the table is full. The table is scanned from th=2
nigh memory zddress to the low memory address until the logical
or physical end of table is reached.

The date value a2t the address specified by the table entry, or
th= stored constant, is truncated to a S-bit quantity which is
then used 2s a table index to obtain onc of the 32 values shown
in ths table below. The value obtained from the table is sent
to one of the hardware audio registers to g2onerate the desired
tone.

-21-

LR -~ PR WA LA AN A Rl I TI ai h S N S e e A - LI TN VYT w0

Mumeric Audio Note Freq. Freqg. Error
value register (desired) (actual) (%)
6} 5 rest G, 31969.54 -
1 243 c 133.81 128.99 +¢.14
2 236 C# 138.59 138.326 -0.17
2 217 D 146.83 146.61 -3.15
4 2¢4 D# 1558.56 155.9% +¥.22
5 193 E 164.81 164.74 -@.04
6 182 F 174.61 174.65 +0.02
7 172 F# 185.60 184,74 -#.14
3 162 G 1s6.¢¢ 19€6.0n8 +0.04
a 153 G# 207.65 227.54)
16 144 A 220.0¢ 220,42 +6.19
11 135 A} 233.08 233.29 +3.09
12 128 B 246.94 247.76 +0.23
13 121 C 201.62 261.97 +0.13
14 114 Ct 277.18 277.¢22 +0,27
15 168 D 293.66 293.22 -0.15
16 102 D# 311.12 21¢.37 -0.27
17 9% E 329.63 229.49 -¢.04
18 91 F 349.23 347.49 -¢.52
19 €5 Fi 369.99 371.63 +0.44
20 81 G 392.00 289.76 -0.57
21 76 G# 415,247 415,¢7 -C.26
22 72 A 443,00 437.82 -0t.59
23 68 %4 46€.16 463.2¢ -1.63
24 €4 B 492,88 461,72 -3.44
25 67 C 523.25 £23.64 +0.,17
26 587 C# 554,327 551.04 -0.€0
27 53 b 587.3 591.86 +0.77
23 53¢ D# 622.25 £2€.68 +60.71
29 47 E 659.2¢ 665.84 +1.0¢
39 45 F £98.46 6924.79 -0,532
31 42 F# 739.699 742,27 +g.44

The formule for converting audic register values to frequency
is:

frequency = 62921 / (2 * (audio register valuz + 1))

A\ A caava R T T a——— -

4.8 Command/reserved word tables

211 commend name, numeric aznd relation operator, ond reserved
word recognition is performed using = single segmented table
contain2d in the cartridge ROM (CTAB). The format for that
table is shown below:

PILOT
commands

|
numeric/ |
r2lation |
operators|

|

I
graphics |
sub-comm |

|

I
pen |
colors |

!

Each segment in the table contzins one or morc name entries olus
a segment terminator byte of zero. A single namc entry is shown
Delovi:

7 ¢
ottt t—t =ttt
12 I
+-+ -+
el cxact |
= name 1n =
[91 ASCII [
+-+ -+
21 !
+-d-t ottt —t-+
{1 value |
+-4-d-t-t—F-t-+-+

In zome cases the 7-bit valuz associated with z name is
sufficient, for example th2 grapnics pzn color definitions. In
other cases thz 7-bit valuz is us=2d as 2n index to 3 table of 1&-
bit valuzs (CLCTAR).

1)

L9 I A A I & ARV A L AN TN A Lk e L L AN TL L - 401 TN VT L)
5. Procedure modules

This section provides module descriptions for the major
subsystems that were used to implement the Atari PILCT
interpreter.

5.1 Memory menagement package

This package contains the routines listed below, all having

functions relating to thz management of memory resources:

MALLCC ~-- Memory allocate.

MDEALL -- Memory deallocate.

MOVIA -- Move memory block using increasing addresses.
MOVDA -- Move memory block using decreasing addresses.

This memory management scheme utilizes two separate allocation
regions; one region starting in low address memory and working
upward, and the other region starting in high address memory
and working downward. In PILCT, one region is used for program
storage and the other region for string veriable storage. The
regions are initially defined by four pointers:

S1L
S1H
S2L
S2H

to
to
to
to

Pointer
Pointer
Pointer
Pointer

start (bottom) of region 1
end (top) of region 1.

end (bottom) of region 2
start (top) of region 2.

(lower region).

(upper region).

S1L 2nd 524 define the cxtent of managed memory and are not
altered by the management routines. S1H 2nd €2L are initially
cequal to SIL and S2H (respectively) indicating null ellocations,
and thereafter always point to the next available unused memory

locztion. Allocation of memory is accomplished by creating 2
"nole" in the dssired region (by moving memory if necessary):

and dez2llocation of memory is accomplish2d4 by eliminzting a
"nole" in the region. an =2llocated block of memory always
contains its own size as the first (lcwest address) two bytes of
the block; this is the only memory overh=2ad associated with
management. Note, how=ver, that the block size =21so forms a
relative pointer to the next allocation block which can be
useful to the application if the blocks within 2 region form
saqguential list.

Th=2 user always spaecifies the address a2t which allocation is to
start; this zddress may be insid2 tha region ("between" zlready
allocated blocks) or maey be the next available address juct

ocutside the region. 7The user specifies the address of the block

to deallocate also, the size is assumed to still be in the first
two bytes of the block.
Th= section that follows summarizes the calling sequences of the

current routines:

MALLOC -- Memcory 2allocate routine .
Calling segquence:
'MEMA' contains ths adidress at which the a2llocation is to occur.

~24-

LEV A taana O et e e —— - —

This zddress is either the next aveilable address outside
the region (content of S1H or S2L) or the address of an
already allocated block within the region.

'*MEMB' contains the number of bytes to zllocate, including the
two overhead bytes.

JSR MALLOC
BNE not enough memory to satisfy allocaticn

'MEMA' contains the lowest address in the allocated block.
The first (lowest) two bytes of thes allocated block contain the
number of bytes in the block.

MDEALL -- Memory deallocate routine

Calling seguance:

'MEMA' contzins the address of the block to deallocate. The first
(lowest) two bytes of the block must contain the block size.

JSR MDEALL

*MEMA' contains thes address of the block following (higher address)
the deallocated block after thes deallocate.

MCVDA and MCOVIA are used by MALLCC and MDEALL; they ar
nurpose block move utilities and thzir calling sequences may be
obtzined from the source file.

-25-

R - . R I S I IR N N W Y I R I SRR & . 44 TN YT O

5.2 String handling package

This peckage contains the routines listed below, 211 having
functions relating to the handling of named strings of variable

length. ‘

SFIND -- Find named string in list.

SDELET -- Delete named string from list (if it exists).
SINSRT -- Insert named string into list (by name order).
SMATCH -- Find substring in string, if present.

SCOMP -- Compare two strings for collation.

This package utilizes the memory monagement package describzd in
section 5.1 and deals with two separate lists of named strings,
where cne list is the program list and the other is the string
variable list.

In order to understand the calling sequences, a2 few definitions
must bc given first:

Text data -- any contiguous grouping of on2 or more bytes which
are to be treated as a unit. The word 'JACK', when stored in
memory as shown below, is an example of text data.

D il Tt P
"J'l‘A']'C"'K‘I
Y et et et e S

3tring -- text data to which 2 string length byte has been
appended, as shown below.

St bt R SEPPR AP
l 4 l'Jl‘lA!IlC'IlK!I
R et et TS

Text pointer -- a four byte element consisting of a2 base memory
address and two indices (a2 starting and an ending index). The
text pointer explicitly delimits a (possibly null) group of
bytes starting with the byte at address BASE ADLCRESS + START
INDEX and ending with the byte at a2ddress BASE ADDRESS + END
INDEX - 1. By convention, if the start index equzals thes end
index, the text data is considered to be rull. See also section
4.1.2.

Named string -- a string which can be referenced by a symbolic

name consisting of text data; a naned string is often known 2as 2

string variable. The name and data portions may each be up ¢t

254 bytes in l=ngth. See section 4.1.1 for the storage format

for named strings.

Parameter area -- a portion of page zero memcry which contains

text pointers which have 3ssigned meanings for =ach of the

string operations provided by this package. Thsse parameters ‘

are initially setup by the user and orovids th2 parameter
passing mechanism for a2ll operations.

-26-

\(“)J.f)l-\.k | S Sy W LA W AR L A ANATYL A L
NP (name pointer) -- when used, this delimits 3
string name.

DP (data pointer) -- this delimits string 3data;
associated with the named string specified by

MP (pattern match pointer) -- when used, this
delimits comparison or pattern matching Jdata to be
used in conjunction with DP.

LP (list pointer) =-- points to the string list to be
accessed.

The section that follows summarizes the calling sequences of the
routines:

SFIND -- Find named string in list.
Function: SFIND scans a2 list of named strings, attempting to find
the name delimited by the MNP text pointer. If the named string

is found, DP will point to the string Adata.

Calling sequence:

LP = address of start of list of named strings.

NP = text pointer delimiting a string nams.

J3K SFIND

BNE name null or named string not found

CP = text pointer to string dzatz vortion, if found. Base
address points to string byte count (n), start index
= 1 and end index = n+l1 (assuming non-null data, else
both indices = 1).

SDELET ~-- Delete named string, if found.

Function: Finds the named string, if it exists, removes the named
string from the list and deallocates the memory utilized by
that string.

LP = address of start of string list to access.
NP = text pointer delimiting = string name.
JSR SDELET
BNE name null or named string not found
CINSRT -- Insert named string to list.
Function: D2letes a prior occurrence of the named string, if found,
and then inserts the new named string into the list. The
ztring is olacz2d in the list so that the names are in
standard collation ordeor.

Cza1lling seguence:

-27-

[P VIS AAY LA ANINTILY DN R L LN L NN T LA TINUVT O

LP = address of start of string list to =2ccess.
NP text pointe2r to string name.
CP = text pointer to string data.

J5R SINSRT
BNE no room in memory for insertion
SMATCH -- Find substring in string if present.

Function: excmine string for first occurrence of substring.

Czlling sequence:

DP = t=xt vointer to source text data.
MP = text pointer to match text data.
JSR SMATCH .

BNE match text not in source text

SP = text pointer to first cccurrence of match data in source.

5CUMP -- Compare two string for collation order.
Function: compares two strings to dstermine their collation crder.

Calling sequence:

CP = text pointer to text data.

MP = text pointer to text data.

JSR 5CoMupP

BEC DP text dats = MP text data
BEC3 DP text data >= MP text data
BCC DP text data < MP text data

Note : The comparison is based upon the numcrical encoding of
the characters involved; moreover, when one text data is a sub-
sat of the other text-data, the shorter one is considernad to be
lower (<) in the collation s=squence.

Routines IFIKD, ICCHMP, IMATCH, SEND, ILENG, PSETUP, PMCVE, SMCVI
o 1@ SNXTI are lower level routines used to implement thz ones
described above. Their calling sequences may be found in the
source listing.

-28=-

Ly Eaoam e L 4 v A A L oAdANAY S a A R R T P [

5.2 Integer arithmetic package
Couble Precision Integesr (Signed) Arithmetic Package (DXXXIY)
. This pack=ag= contzins ths routines listed below, all having

functions relating to two-byte signed integer arithmetic
{except as noted):

Function Routina(s)
Addition DADDI, DACDS, DADDA
Subtraction DSUBI, DESUBA
Multiplication DMULI

Division/modulus DDIVI, DMODI

Comparison DsSCMI, DCMPI, DCWCI, DCMPA
Negation CNEGI

Relational tests DECTI, DNETI, CGTTI, DGETI, DLTTI, DLETI
Number to ASCII DECASC

ASCII toc number ASCDEC

Move number DMCVI, DLOADA, DSTOR2

Th2se routines have a commen calling convention and data base.
All data is assumed to be two bytes in length (low byte
followed by nigh byte), and all data is referenced by its
position relative to the symbeol 'DTAB'. The sample program
that follows will hopefully make this clear.

~e

. ; DATA REGICN
*=SB¢ ; CRIGIN CF DATA REGION.
DTAB=* ; START CF DCUBLE PRECISICN DATA.
VA *=*42 ; DECLARE 'VA'.
vB *=%*4+2 ; DECLARE 'V3'.
vC *=*+2 ; DECLARE 'vC'.

PROGRAM REGICN
=$BARD ; CRIGIN OF PROGRAM REGION.

; CCMPUTE VC = (VC + VA) * (VB ** 2) - 2,

LCX +VC-DTAB ; VC = (VC + V) ..
LDY iVA-DTAR

J5R CADDI

LDY #VB-DTAB Poees X (VB ** 2y L.
J3R DMULI

JSR DMULI

LDA 3-2 Poee. = 2.

J3R CADDS

The <double orecision subroutines do
and Y registers; and since the X re
destinstion of ths result, great sa

-2G-

VB A cuana a4 AN 4 A AVLMINYTRA w Dl Akl AN L LY T T L TNV T O

when computing =2xpressions with several terms by not including
the redundant LDXs and LDYs.

The seaction that follows summarizes the calling scguences of the
resident routines. .
Name Function
CADDI CTAB(X) = DTAB(X) + DTAB(Y)
DADDS DTAB(X) = DTAB(X) +/- A
DALDA 'ACC' = 'ACC' + DTAB(Y)
DSOB1 DT2B(X) = DTAB(X) - DTAB(Y)
DSUBA 'ACC' = 'ACC' - DTAR(Y)
EMULI DTAB(X) = DTAB(X) * DTAB(Y)
DDIVI DTAB(X) = DTAR(X) / DTAEB(Y)
DMODI DTAB(X) = ABS(DTAB(X)) MCLC ABS(DTAB(Y))
DNEGI DTAB(X) = - DTAB(X)
DMCVI DTAB(X) = DTAB(Y)
DLOADA '‘ACC' = DTAB(Y)
DSTCRA . DTAB(X) = 'ACC'
DSCMI cs = DTAB(X) : DTAB(Y) (SIGNED)
DCMPI cc = DTAB(X) : CTAB(Y) (UNSIGNED)
DCWCI cc = DTAB(X) : A,Y (UNSIGNED)
DCHMPA cc = 'ACC' : DPTAB(Y) (UNSIGNED)
DEQTI DTAB(X) = 1 IF DTAB(X) = DTAB(Y), ELSE @.
DNETI DTAB(X) = 1 IF DTAB(X) <> DTAB(Y), ELSE ¢@.
DGITI DTAB(X) = 1 IF DTAB(X) > DTAR(Y), ELSE ¢.
DGETI DTAB(X) = 1 IF DTAB(X) >= DTAB(Y), ELSE @,
DLTTI DTAB(X) = 1 IF DTAB(X) < DTAB(Y), ELSE €.
CLETI CTAB(X) = 1 IF DTAB(X) <= DTAB(Y), ELSE €.

Whare: 'ACC' is 2 'DTAB' variable.
‘cc' refers to 652 status register bits 7 & C.
':' is the comparison operator.

5.4 Graphics package

This package contains thz2 routines listed below, 211 having
functions related to generating memory map graphics using the
system Display handler (S5:).

GMOVE -- Plot point or draw/fill line (with screen clipping).
INTEST -- Test x,y point for being insidz the screen limits.
MCD26% -- THETA = THETA modulo 264,

SETCUR -~- Convert coordinate systems and set system cursor.
SINVAL -- Cazlculate SINE(THETA).

TMULT =~-- Triple precision signed multiply.

TADDI -- Triple precision signed 2d4dition.

CMULT =-- Quadruple precision signad multiply.

Qriv -- Quadruple procision signed divide.

CNEGA -- Quadruple precision negate.

Other routines exist in this packag=s, but they 2re oriented
directly to the syntax of PILOT graphics sub-commands;
specifically, there are routines to process tne following
sub-commands:

DRAWTC x,vy
DRAW n
GCTO x,v¥
GO n
FILLTC x,Y
FILL n
TURNTC 2
TURN 2
CLEAR

PEN c

QUIT

The most interesting of the routines is GMOVE which contains a
screen clipping algorithm which =21lows lines to be drewn
anywhere within a 65525 by 65525 graphics zddress spaca,
displaying thz2 line segments which pass thrcugh the 150 by S5
visible screen. The 2algorithm implemented is described in
se2ction S5-1 of PRINCIPLES GF INTERACTIVE COMPUTER GRAPHICS,
Seccnd Edition.

-31-

5.5 3tatement scanning utilities

The statement scanning utilites aid in the scanning of PILCT

statements. 1In general, most of theso routines 2xpect 2 singlea

character in the A register or expect the Y register tc index ‘
into the linc pointed to by INLN. Thes table below lists ths }
primary utilities and summarizes their calling s=guences.

Name Function
CNUMBR Check A = numeric character.
Clear carry if 2 = 'G' - '9°',
CLETTR Check A = alphabetic character.
Clear carry if 2 = 'A' - '7"',
CKECA Check A = end of atom (non-alphaznumeric chzracter).
Set c¢cc non-zero if A = 'A'-'9' or 'A' - 'Z2°',
CHKEQS Check A = eqgual sign.
Set cc zero if A = '=',
CHKESEP Check A = comma or space.
Set cc zero if A = "',' or ' °'.
CHKTRM Check A = statement terminator.
Set ¢c zero if 2 = <EOL> or '['.
SCNECA Scan to end of atom (non-alphanumeric chzaracter).

Y = index for pointer INLN.
SCNLBL Scan to end of lzbel, if present.

Y = index for pointer INLN.
SLB Skip over leading blanks.

Y = index for pointer INLN.
SKPSEP Skip over separators.

Y = index for pointer INLN.
SCNECL Scan to end of line.

Y = index for pointer INLN.

