DATA FILE PROCESSING

Storing data on the ATARI 410TM Program Recorder

and the ATARI 810 M Disk Drive

1) Storing Data on Cassette
2) An Example of Cassette I/O: Cassette Mailing List

3) Storing Data on Disk
4) Example of Disk I/O: Disk Mailing List

5) Random Access

ATARI INC.
CONSUMER PRODUCT SERVICE
Product Support Group
1312 Crossman Avenue
Sunnyvale, CA 9408%

(800) 672-1404 inside CA
(800) 538-8543 outside CA

DEMOPAC #2
Rev. 3 10-33

DISCLAIMER OF WARRANTY ON PROGRAMS CONTAINED HEREIN

All computer programs contained herein are distributed on an "as is" basis by Atari, Inc.
("Atari") without warranty of any kind. Any statements concerning the capabilities or utility
of the computer programs are not to be construed as express or implied warranties.

Atari shall have no liability or responsibility to the user or any other person or entity with
respect to any claim, loss, liability, or damage caused or alleged to be caused directly or
indirectly by the computer programs, contained herein. The entire risk as to the quality and
performance of such programs is with the user.

Every effort has been made to ensure the accuracy of this document. However, because of
ongoing improvements and updating of our computer software and hardware, Atari cannot
guarantee the accuracy of printed material after the date of publication and disclaims any
liability for changes, errors, or omissions.

Correspondence regarding this pack should be forwarded to Manager of Technical Support,
Consumer Product Service, Atari, Incorporated, 1312 Crossman Avenue, Sunnyvale, CA 94036.

DATA FILE PROCESSING
Storing Data on Cassette
WBB 1/32

» A data file is a string of bytes stored on magnetic media independent of any program.

The ATARI 410 Program Recorder stores data on standard audio cassette tapes. The 410
Recorder is called a sequential device because files are distinguished only by their physical
location on the tape. Proper positioning of the tape is crucial to insure dependable operation.
For this reason, the recommended procedure is to store only one file on each side of a tape. -
Record the file immediately after the tape leader. The data is transferred over the serial bus
to the 410 Recorder at the rate of 600 bits/second or 60 characters/second. The storage
capacity of a tape is roughly 1000 characters/minute. Therefore a 60 minute tape would allow
storage of about 30,000 bytes on each side.

All data files on tape consist of three sections. There is a 20 second leader of mark tone,
followed by any number of data blocks consisting of a pre-record write tone (PRWT), 4 control
bytes, 128 data bytes, and a post-record gap (PRG). Finally, there is an end-of-file mark.
Each of these sections is audible through the TV speaker during data transmission. The
procedure for creating a data file on the 410 Recorder from BASIC is to do an OPEN, a series
of outputs (PRINT #N: or PUT #N), and a CLOSE.

The OPEN command establishes a channel from the token file in RAM to the 410 Recorder.
There are eight channels in the system numbered 0-7. The OS uses 0,6,7 at various times so
you should use 1-5. The correct syntax for the write mode is: OPEN #1,8,0 "C:". When this
command is executed, the keyboard buzzes twice to remind you to position the tape and
engage 2 keys (PLAY and RECORD) on the 410 Recorder. You need to acknowledge this
action by pressing any key on the keyboard (RETURN). The OS then writes 20 seconds of mark
tone. It does not automatically shut off the cassette motor. The motor is shut off only after a
data block is written on the tape. This is not a problem if all of the data is written out
immediately after the file is opened. :

The output commands, PRINT #N and PUT #N, transfer data from the token file to the buffer
for the tape. When the buffer fills up with 128 bytes, the OS writes a data block to the tape,
turns off the motor, and clears the buffer. Two types of I/O can be used to write data to a
file, character 1/O or record I/O.

Character 1/O means that you write data one byte at a time with none of the values
interpreted as control characters. The statement PUT #N,X transfers one ASCII byte to the
data file.

Record I/O means that you write data one field at a time with the End of Line (EOL) character
(ASCII 155) used to delimit the end of each field. The EOL character is automatically
generated by the PRINT #N statement. If one field is transferred with each PRINT #N;j
statement, all fields will be properly separated. The syntax of the PRINT statement should
include a semicolon and not a comma. A comma is interpreted as a tab, so 10 blank spaces
would be inserted in front of your data. The following statements transfer 10 fields to a data
file.

DIM NAME$(16)

OPEN #1,8,0,"C:"

FOR I=1 TO5

PRINT "NAME..."; :INPUT NAMES
PRINT "AGE..."; :INPUT AGE
PRINT #1;NAMES

PRINT #1;AGE

NEXT I

CLOSE #1

The CLOSE command writes the current buffer as the last data block and then writes the end
of file mark to the tape.

R
R
R
R
R
R
R

No o

EM A SIMPLE DATA FILE ON CASSETTE
EM FY/JdE 2/82
EM 8RR KKK K XK KK K KKK K K KK K K K K KKK X XK KK
EM create 3 simple file of rames on a3 tape
EM read them back and prinmt them
EM om the screem, or on 3 printer
EM 30K K KKK KK KKK KK K KK KK K XK KKK KK K KK K KR KK K KK K
DIM BLANKS$(128),NAMES(20),ANS$(3)
OPEN #1,8,0,"C:"IREM open 3 file for output on the cassette
FOrR I=0 TO 128:!REM cresate dummy record
PUT #1,32!REM of 128 spaces
NEXT I'REM to stop motor
FRINT *#1:{REM end dummy record with 2 carriage return
FRINMT "NAME"; I1INFUT NAMESIREM user types in data
PRINT #1)!NAME$IREM print the datas into the cassette file
PRINT "MORE DATA (Y/N)";I!INFUT ANS3
IF ANS$(1,1)="Y" THEN GOTO 40
IF ANS$(1,1)="N" THEN GOTO 100
GOTO 640
CLOSE #1:!REM if there is no more data, close the file
STOF
REM KK 3K 5K 3K K 3K K 3K KK 3K KK K K K K KK K KK K KKK K K KK 3K KK K KKK KK K KK KX X X
REM the tape now comtaims 3 list of rnames.
REM to read the names back, rewind the tape,
REM a2nd type CONT to conmtinmue.
REM XXX KK X KK KK K K K K K KKK KKK MK K K K KK K KK KKK KK K K K K K K K KX
OFEN #1,4,0,"CI"IREM open an input file on the cassette
TRAF 300:REM in case of error, Qo close the file
INFUT #1,BLANK$IREM qet the dummyg record and throw it 3way
INFUT #1,NAMESI!REM read a3 name from the tape
FRINT MNAMES$IREM prinmt it om the screen
LFRINT NAMESIREM prinmt it om the printer
REM (delete lime 250 if ygow don’t have a prinmter)
GOTO 230:REM get further rnsmes from file
REM if there are no more names, an end-of-file error occurs
REM and the error-trap qoes and closes the file
CLOSE %1) :

The procedure for reading the data from a tape data file from BASIC is do an OPEN, a series
of inputs (INPUT #N or GET #N), and a CLOSE.

The OPEN command establishes a channel to the 410 Recorder. The correct syntax for the
read mode is: OPEN #1,4,0,"C:". When this command is executed, the keyboard buzzes once to
remind you to position the tape and engage one key (PLAY) on the 410 Recorder.
Acknowledge this action by pressing any key on the keyboard (RETURN). The OS turns on the
cassette motor and reads past the mark tone. It does not shut off the tape motor. The motor
is shut off only after a data block has been read from the tape. This should never be a problem
if you open the tape file only when you are r=ady to read the data from it.

The data should be read from the file in the same fashion that it was written to the file,
record or character [/O. Character I/O reads one byte at a time with none of the values being

interpreted as control codes. The GET #1,X transfers one ASCII byte from the data file to the
variable X.

Record /O reads one field at a time with EOL (ASCII 155) used to delimit the end of each
field. Many fields can be transferred with each INPUT #N statement. The following
statements transfer 10 fields from the data file.

DIM NAMES(16)

OPEN #1,4,0,"C:"

FOR I=z1 TO 5

INPUT #1,NAMES,AGE
PRINT NAMES,AGE
NEXT I

CLOSE #1

There are three ways to read all the data from the file and exit without an error. If you know
how many fields were written, you can simply read the same number of fields, as in the
example above. If the number of fields changes, you can write a field with a special value at
the end of the file and check for this value after each input. If you do not know what is in the
file, you can use the TRAP command. When the end-of-file error 136 occurs, the TRAP
command will send you to your error routine. The routine should check that location 195
(error status) does contain 136, and then CLOSE the file.

Note 1: .
If the PRINT or PUT commands do not immediately follow the OPEN command, the motor
stays on and garbage may be written onto the tape, making it unreadable. A solution to this

problem is to write a dummy record of 128 blanks immediately after opening the file. The
following statements accomplish this.

FOR I=1 TO 127 :PUT#1,32:NEXT I :PRINT #1

When you then OPEN the file to read it, you must immediately read past this dummy record.
An input of any string variable accomplishes this.

DIM AS(1) :INPUT #1,AS

Note 2:

It is possible to transfer more than one field with each PRINT statement. However, you must
write the EOL character after each field.

PRINT #1:NAMES;CHRS(155);AGE

or
DIM CRS(1) :CRS=CHRS(155)
PRINT #1;NAMES;CRS$;AGE

NIRRT A UMM Bt 6L T e

DATA FILE PROCESSING
AN EXAMPLE OF CASSETTE 1/O
WBB/JB 3/82

The following set of programs sets up and maintains a simple mailing list using the 410
Program Recorder. The programs show a method of storing data in data files on the tape. The
first program initializes the file by reserving space for each entry. The second updates the
" information in the file. The third prints out the contents of the file.

The key concepts illustrated are opening a data file with the OPEN statement, and writing to
that file using the PRINT #l; statement. In this simple example, only one variable is written
at a time, so no extra data separators are necessary.

In order to update a cassette file, the complete file is read into memory, and stored in a long
array-string. This process provides a good example of string manipulation, and the long-string

method of keeping string-arrays. When the update is complete, the file is written back out to
tape. '

The following is a procedural list for the three programs which follow:

CASSETTE INIT does only one thing: put blanks on a tape for 100 records. Because it is not
possible to add to a data file on cassette tape once the file has been finished, this program
~gets around that by setting up blank files, which can then be changed to names, addresses, etc.
You will only need to use this program once for every 100 entries.

CASSETTE UPDATE is the main program, which adds, changes or deletes records.

CASSETTE PRINT is used only if you want to print out your records on a printer.

1. Type in CASSETTE INIT and CSAVE it on a tape (from now on the tape the programs are
saved on will be called the "Program Tape"). Type NEW and then type CASSETTE UPDATE
and CSAVE it on the same tape. Decide whether you want CASSETTE PRINT or not. If you
do, type NEW and then type this program in and CSAVE it on the same tape.

2. CLOAD CASSETTE INIT into your computer.

3. Remove the Program tape and insert a blank, rewound tape (which will be called the "Data
Tape") into your recorder. (You may use the other side of the Program Tape, if you wish.)

4. Type RUN and press RETURN (the recorder will beep twice, and then press RETURN again).
5. CASSETTE INIT will create 100 blank records on the Data Tape.
6. CLOAD CASSETTE UPDATE into your computer. Type RUN. The program will say:

PREPARE TAPE FOR READING,
PRESS 'START' TO CONTINUE...

7. Remove the Program Tape and insert the Data Tape. Rewind it to the beginning.
3. Press RETURN after the recorder beeps twice.

9. The program will then say: READING DATA FOR...(a number) over and over until 100
records have been read. The computer is loading the blanks (in the future it will be names,
addresses, etc.) from the tape into its RAM.

10. The program will then say: ITEM (1-100)X0 TO END)...? meaning that you are to type the
number of the first record you want to add, OR type 0 if you want to end the program. The
first time you do this, you should type 1, since that is the first record you want to add.

Lt. The program will then say: NAME? and you type in the first name you want to record.
From here on, simply follow the directions. The next time you want to add some names,

follow the procedures from item #6. If you want to use CASSETTE PRINT, simply type or load
it in if you have saved it, insert the rewound Data Tape, and RUN the program.

1 R
R
- R
4 R
10
20

25

26
30
40
S0
S0
70
80
20
100
1140
120
130
140
150
1560
165
170
180
1990
2079
‘0

s
—le

230
240
250
260
270
280
290
300
310

EM CASSETTE INIT
EM WEEB/JB 3/82
EM rum this program first to reserve file space on the tape
EM 3K KK KKK KK KKK K KK KKK KK KKK KK 3K KKK 3K 3K 3K 3K 3K KK KK KKK S KKK X KX KK K K KX
DIM NAME$(100x%x24),ADDR$(100%24),CITYS(100x146),STATES$(100X%x2),ZIPS(100X5)
DIM FHONE$(100x8) ,EBLANKS$(Z24)
REM =ach field is stored inm 3 long-string variable--
REM there is gpace for 100 records.
BLANKS=" "IREM a3 string of 24 spaces
FOR I=1 TO 100
FRINT "INITIALIZING SFACE FOR...":T
NAMES (IX24-23,1x24)=BLANKS
ADDR$(Ix24-23,IX24)=ELANHKS
CITYS(IX156-13,IX16)=BLANKS
STATES(Ix2-1,Ix2)=BLANKS
ZIF$(IxX5-4,Ix5)=BLANKS
FHONE$(IxX8-7,Ix8)=BLANKS
NEXT I
REM 311 of the records now contain the correct number of blanks ——
REM the blank records rnow qQet saved to tape
PRINT (PRINT "PREFPARE TAFE FOR WRITING,"
PRINT “PRESS ‘START’ TO CONTINUE..."
IF PEEK(S327%)<>6 THEN 183:iREM wait for start key
OFEN #1,8,0,"C!"IREM press play and record on cassette unit
FOR I=1 TO 100
PRINT "WRITING FILE SPACE FOR.,..":T
FRINT #1:)NAME$(IX24-23,Ix24)
FRINT #1:;ADDR$(Ix24-23,Ix24)
FRINT #13CITYS(IX146-13,I%x16)
FRINT #13STATE$(IX2-1,IX2)
FRINT #13ZIFS(IXS-4,Ix5)
FRINT #1;FPHONE$(IxX8-7,Ix8)
NEXT T
CLOSE #*1
REM the file space is rmow reserved orn the tape
FRINT (FRINT "REWIND THE TAFEY
FRINT "xx END OF INITIALIZATION xx"
END

1 REM CTASSETTE UPDATE -

2 REM WEE/JE 3/82

3 REM wse thnis program to enter or change information in the file.

G OREM KK SOKK KKK KKK X KKK K K K KKK KKK K KK K KK KK KK K IS KKK KRS KK KR KK K KKK K KK KK K KK X
10 FRINT CHR${OL29)IREM clear scoreen

oo g

I Tl e sl o S A S R S
€GN Ge U s DS e S
0o Co O o T

SIS

4
< ki
R
Ald
Ll
wid
T
e o
rleded
Lo AL
brasie
Prpaits]

230
244
242
=253
260
270
283
20

~ =
Z95

300

313
323
33
344
350
3£0
373
380
370
4038
%10
42
20
4490
450
450
470

=11y}

FEINT "ENTER OR REFLACE RECORDS"
REM set up lomg-string variables
DIM NAME$(100Xx24) ,ADDRG(100X24) ,CITYS(100%146),STATESCL00X2) ,ZIF4(100X5)
DIM FPHONES(100%8) ,EBLANKS(24) , X% (24
BLANKE=" "IREM string of 24 spaces
REM 508K KK KKK KK 0K K KKK K KKK K KK S OOK KK S K KK 3K K K 3K 3K K 3K KKK K KK 0K K S SIS KKK K K K K K KK
FEM resd in existing file from the tape
FRINT "PREFARE TAFE FOR READING,™
FRINT “"FRESS ‘START’ 7O CONMTINUE..,."
IF FPEEK(S3Z7?r<>4& THEN 100IREM wait for start ke
OFEM #1,4,0,"CI"IREM press pley on cassette unit
FOR I=1 TO 100
FRINT “READIMG DATA FOR...":T
INFUT #1,X3INAMES(IxZ4-23,TK24)=X$
TMPUT #1,.XE1ADDRS(IX24-23,I%24) =X3
INPUT £1,X8iCTITY$(Ix16-15,TK15)=X%
INPUT F1,XEISTATES(IX2-1,Ix2)=X$
INFUT #1,X31ZIF$(Ix5-4,Ix5)=X%

INFUT #1,X$IFPHONES(IX8~7,IX8)=X3%

MEXT I

CLOSE #1I:REM the string-arrags row hold the dats from the saved file
FUEDM SROK XK K K KKK 3K K K KK K K I MK KKK K KKK KWK KKK KK K KKK SO KK 3K 3K K K 3K KK K 30K K K 3K 9 3K KKK
FREM —-— update the file --

REM ashk wuser which record to look at,

REM then call swuiroutinme which displads tihat record

REM asnd replaces it with nmew datas as entered by user.,

FRINT (TRAF 240!REM in case of irput error, keep trying

FRINT "ITEM (1-100)(0 TO ENMND)Y,.."3$INFUT I

TRAF 40000:REM turm off error trap

IF I=0 THEN 2300:(REM if mo #ore records, co write them out

IF I<1 OR I>100 THEN Z230:iREM bad number, try a3e3in

GOSUE 10003REM ca3ll subroutine which displays and updates data

GOTO ZZ0I!REM get next record number _

FIEM SRR SOOK XK K KK K KK K KK KK K 3 K 3K KKK 3K KK KK K K 3K Y K 3K KKK K K K 3K KK KK 30K KK K A KK
REM ~- write the updated file back out to the tape -- A .
FRINT {FRINT "PREFARE TAFE FOR WRITING,"!REM rewind or turn over tape - -
FRIMT Y“FRESS ‘START’ TO CONTINUE..." o : '

IF FPEER{3327%?)<x6 THEN 320:REM wait for start key

OFEN #1,8,0,"Ci"IREM press play and record on czssettas unit
FOR I=1 TO 100

FRINT "WRITING DATA FOR...":T

FRIMT #1;NAMES(IX24~23,Ix24)

FRIMT #1;ADDR$S{(IXZ4-23,Ix24)

FRINT #13CITYB{IX16-15,T%x18)

FRINT #1:STATES{IX2~-1,Ix2)

FRINT #13ZIFP$(IxS5--4,Tx5)

FRINT #1:FHOME$(Ix8-7,Ix3)

HEXT T

CLOSE #1:IREM the wpdated file is now saved on the tape
FRINT IPRINT "REWIND THE TaAFE"

FRINT " %X EMD OF FROGRAM xx
END :
RE M 2 AOK K KK KKK K KKK KKK KKK K IOR KK KKK KOK I K K K KK K K KK KK KO IR KR 30K 0K KKK KOK K

REM the following subroutine displays the desired record,

91 REM asks the wuser whether it should be changed,
?92 REM and performs the chamge if requested.

PRINT (PRINT "RECORD NUMBER...";I

FRINT “NAME" ,NAME$(Ix24-23,I%24)

FRINT "ADDRESS",ADDR$(IxXx24~-23,Ix24)

FRINT “CITY",CITYS(IX146~15,I%14)

FRINT "STATEY,STATES$(Ix2-1,Ix2)

FRINT "ZIP",ZIF$(IX5-4,IXx5)

FRINT "FHONE",FHONE$(IX8-7,Ix8)

FRINT :(FRINT "“DO YOU WISH TO REFLACE (Y/N)..."3$INFUT X$
IF X$<»"Y" THEN RETURN

00
rvid
1020
1030
1040
10580
1060
1070
1080
1085
10990
1091
1092
1093
1094
2000
2005
2010
2015
2020
2025
2038
2039
2040
2045
2050

‘55
Y]
2070
2030
2090
3000
3010
3020

REM
REM
REM
REM
REM
REM

KKK KK K KK KK KK 3K KKK KKK KKK KKK KKK KKK K KKK 3K 3K K K KKK KK 3K K KK 5K KKK 3K 3K KKK KK K KK
the following section calls a8 subroutine which

eets the new data, and blank-fills if necessary,

so that 3ll fields are the proper length.

the inpuwt Tield, with the blamk-fill, is then

put imto the string-array in the correct place.

FRINT "NAME",

GOSUER 3000 :INAME$(IX24-23,Ix24)=X3$
FRINT "ADDRESS",

GOSUE 3000:ADDR$(IX24-23,Ix24)=X$
FPRINT "CITY",

GOSUE 3000:CITY${(IX16-15,1IX14)=X$
FRINT "STATEY,

GOSUE 3000:STATES(IX2-1,Ix2)=X$
FRINT "ZIP",

GOSUB 3000:ZIP$(IxS5-4,Ix3)=X3$
FRINT “"FHONE",

GOSUE 3000:!FHONE$(Ix8-7,Ix8)=X%
RETURN

REM

KKK KKK KKK KK KK KK K KKK KK KKK KK KK R KK KK K KK K KKK K KKK KKK K K KKK KK KK KK SR KK XK KK X

REM here is the subroutine that gets the riew data

REM

and blank-fills if necessary

INFUT X%

IF LEN(X$)<24 THEN X$(LEN(X$)+1)=EBLANK$IREM corncaternate spaces
RETURN

1 REM CASSETTE FRINT

2 REM WEBR/JE 3/82

3 REM this program gets the data file from the tazpe

4 REM and primts it owt on 3 primter

I3 REM xxx
10 FRINT CHR$(123)IREM clear screen

20 PRINT "MAKE SURE YOUR PRINTER IS TURNED ON,"

30 FPRINT " AND PREFARE THE TAFE FOR READING..."

48 FRINT "“PRESS ‘START” TO CONTINUE..."

S0 IF FEEK(S53279)<xé6 THEN SO0!REM wait for start key

FOKE 201,2iREM set comma print zome at 2 spaces
DIM X$(24)!REM only ome variable is wsed

OFEN ¥1,4,0,"CI"IREM press play on cassette unit
OFEN #2,8,0,"FI"IREM open printer for output

REM the following section gets each field from the tape file
REM arnd prints it to the printer file

100 FOR I=1 TO 100:REM read arnd print 100 records
110 FRINT "READING DATA FOR...";I

120 PRINT #2Z3;"READING...";

130 INFPUT #1,X$:FRINT #2:X3$

140 INFUT #1,X$I1FRINT #2:X%

150 INPUT #1,X$IPRINT #2:Xs,

150 INFUT #1,X31FPRINT #2:3X3,

170 INPUT #1,X3iFRINT #2:Xs3,

180 INFUT #1,X$IFPRINT #2;X3

OO N O
oooo

0 O
R s]

120 NEXT I
200 FPRINT "REWIND THE TAFE" X
210 FRINT " -- END OF PROGRAM --"

220 CLOSE #1
230 CLOSE #2
240 END

DATA FILE PROCESSING
Storing Data on Disk
WBB 4/82

The ATARI 810 Disk Drive stores data on 5-1/4" floppy diskettes. A diskette is formatted into
40 concentric tracks, each with 18 sectors giving a total of 720 sectors. Each sector is 128

bytes long (single density). Therefore, the total storage capacity on each diskette is 92,160
bytes. ‘

The 310 Disk Drive uses a boot file to control the power-up initialization procedure. This
usually means that the Disk Operatmg System File Management System (DOS FMS) is loaded
into RAM. The DOS FMS is responsibile for allocating the available sectors on a disk as
needed for file storage. The boot file uses 3 of the 720 sectors.

DOS maintains a directory of the files that have been created on the disk up to the maximum
of 64 files. The f{files are located in the directory by having a unique name and they are
identified by their sequential position in the directory numbered from 0-63. The directory
takes up 3 of the 720 sectors.

DOS maintains a bit map of the sectors that have been allocated for file storage. When DOS
needs to allocate a sector to a file, it uses the lowest numbered free sector as indicated in the

" bit map. This is commonly referred to as random access. The bit map takes | of the 720
sectors.

DOS uses 3 of the 128 bytes in each sector to identify the file it belongs to and the next
sequential sector in the file. Therefore, the file storage space available to the user with DOS
2.0S is 707 sectors x 125 bytes = 88,375 bytes.

OPEN

DOS maintains a pointer for each file opened. The pointer is the location in the file the next
1/O command will access. The OPEN command establishes a channel from the token file in
RAM to the 810 Disk Drive. There are eight channels in the system numbered 0-7. The OS
uses 0,6,7 at various times so you should use 1-5. There are four modes for the OPEN
command.

OPEN #1,4,0,"D:FILENAME" opens a file in READ mode. DOS locates FILENAME in the
directory and positions the pointer at the first byte of the file. INPUT#! or GET #! are the
only legal commands.

OPEN #1,8,0,"D:FILENAME" always opens a new file in WRITE mode. DOS first searches the
directory for FILENAME and, if it exists, deletes it. DOS then creates FILENAME in the
directory, allocates a free sector as the first sector of the file and position the pointer at the
first byte of that sector. PRINT#!1 or PUT#! are the only legal commands.

OPEN #1,9,0,"D:FILENAME" opens a file in APPEND mode. DOS first locates FILENAME in
the directory. It then allocates a free sector appended to the end of the file and positions the
pointer at the first byte of that sector. Mode 9 is write only, so PRINT#1 or PUT#! are the
only legal commands.

OPEN #1,12,0,"D:FILENAME" opens a file in READ/WRITE mode. DOS locates FILENAME in
the directory and positions the pointer at the first byte of the file. PRINT#1, PUT#1,
INPUT#1, and GET#l are all legal commands in this mode. However, the output commands
write over the values that are currently in the file so the user should be careful to replace the
exact number of bytes when updating an existing field. It is not possible to append new data to
a file in this mode. Mode 12 can also be thought of as RANDOM ACCESS mode because it is
the only mode that supports the commands NOTE#! and POINT#1.

CLOSE

The CLOSE command frees the channel from the program to the device. It is always a good
idea in the interest of good programming technique to CLOSE every file that is opened in a
program. However, it is imperative that a file opened in update modes 8 or 9 be closed. If
not, it is probable that the bit map or forward pointers will not be updated correctly. The
results is an error 164, requiring the disk to be reformatted.

PRINT/PUT

The output commands, PRINT#n and PUT#n, transfer data from the token file to the buffer
for the disk file. When the buffer fills up with 125 bytes, DOS writes the buffer to the file,
allocates another free sector and clears the buffer. Two types of I/O can be used to write
data to a file; character I/O or record I/O.

Character I/O means that you write data one byte at a time with none of the values

interpreted as control characters. The statement PUT #n,X transfers one ATASCII byte to the
disk file.

Record I/O means that you write data one field at a time with the End of Line (EOL) character
(ATASCII 155) used to delimit the end of the fields. The EOL character is automatically
generated by the PRINT statement. Therefore, to avoid having to put in your own delimiters,
simply transfer each field on a separate PRINT statement. The PRINT statement should
include a semicolon and not a comma (PRINT #1;A8). A comma is interpreted as a tab, causing
10 blank spaces to be inserted in front of your data. The size of the field should be limited to
less than 119 bytes to avoid using reserved memory space on page 6 of RAM.

INPUT/GET

The input commands, INPUT #1 and GET #1, transfer data from the disk file to the token file.
The data should be read from the file in the same fashion that it was written, character or
record I/0.

Character I/O reads one byte at a time with none of the values being interpreted as control

codes. The statement GET#1,X transfers one ATASCII byte from the disk file to the variable
X.

Record 1/O reads one field at a time with EOL (ATASCII 155) used to delimit the end of each

field (H\;PUT #1,AS). Many fields can be transferred with each INPUT statement (INPUT
#1,A$,B5,0).

There are three ways to read all the data from the file and exit without an error. If you know
how many fields were written, you can simply read that number of fieids. If the number of
fields varies, you can write a special value at the end of the file and check for this value after
each input. If you don't know what's in the file, you should use the TRAP command. When the
end-of-file error 136 occurs, the TRAP will send you to an error routine. The routine should
check that location 195 (error status) does contain a 136, and then CLOSE the file.

NOTE/POINT

NOTEi#L,S,B stores the current sector and byte location of the pointer in the variables S and B.
Conversely, POINT#1,5,B moves the pointer directly to the sector and byte specified in the
variables. These commands are used together in mode 12 to provide the user with random
access to the disk file. In general the procedure is NOTE#|,INPUT#!,POINT#1, and PRINT#1.
This should only be done with fixed length records. If you update a 4-byte field with a 3-byte
field, an extra EOL is added to the file and the number of fields is incorrectly incremented by
1. If you update a 4-byte field with a 5-byte field, the next sequential field in the file is
overwritten. Care should be taken to replace the exact number of bytes when updating an
existing field.

[

DATA FILE PROCESSING
An Example of DISK I/O
WBB/JB 3/82

The following set of programs sets up and maintains a simple mailing list using the 810 Disk
Drive. The programs provide an example of one method of storing data in data files. The first

program sets up the file by adding records. The second updates the information in the file.
The third prints out the contents of the file.

The key concepts illustrated are opening a data file with the OPEN statement, and writing to
that file using the PRINT/#1; statement. In this simple example, only one variable is written at
a time, so no extra data separators are necessary,

- A temporary file is used to keep the updated information. When the update is complete, the

temporary file is renamed, and the old file becomes the temporary file. Some error trapping is
provided.

R
R
R
R
R
R
R

NO (bW

S W
ocooo

w

MmN
oo olo

0
o

io0g0
110
120
130
180
190
195
200
210
220
230
240
250
260
270
280
290
300
305
310
320
330
340
350
360
370
380
390
398
396
400
410
420
423
430
435
440
445
450
460
470
480
485

EM DISKADD
EM WER/JB 4/82
EM —--use this program to create a3 file, or to add rew recordg—--—
EM the program creates a temporaryg file, adds records to it,
EM thern deletes the permanent file and rernames the temporary file
EM so that it becomes the permarnent file.
EM KKK K KKK KKK KK KK KKK KKK KKK 5K KKK K KKK K KK 3K 3K 3K 3K K S KKK X 3K KK 0K 3K 3K 35K 3K K 3K KK X K KK KKK
FRINT CHR$(129)IREM clear screen
FRINT "THIS PROGRAM ADDS RECORDS"
FRINT "FOR NEW CUSTOMERS."S$PRINT
FRINT "INSERT THE PROFPER DISKETTE,™"
PRINT "FRESS ’START’ TO CONTINUE..."
IF FEEK(S3272)<x& THEN 40iREM wait for start key
REM —--get wup varlables arnd filenames—-
DIM ID$(9),NAME$(24),ADDR3(24),CITYS(16),STATES(2),ZIF$(S),FHONES(12)
DIM FILE13(148),FILE2%(186)
FILE13%="D: CUSTOMER DATYIFILEZ2$="D1 CUSTOMER THFR"
REM —-—-open the filest-
CLOSE #1:!CLOSE #2!REM close any currently open files
TRAF 200:0FEN #1,4,0,FILE1$:TRAF 40000!REM check for ‘rno file found’ error
OFEN #2,8,0,FILE23IREM if ro error, open write file
GOTO 3003IREM skip over error routine
REM xxx
REM --—-error routine--—
REM ifT the file is mot omn this disk thern create ore, or replace dishk
FRINT CHR$(253) ;"CUSTOMER FILE NOT ON THIS DISK,":!FRINT !REM sournd buzzerp
FRINT "PRESS ‘START’ TO TRY ANOTHER DISK-
FRINT "FRESS ‘SELECT’ TO CREATE ON THIS DISK-
IF PEEK(S3279)=6 THEN 100:REM if start is pressed, try again
IF FPEEK(S53279)<>9 THEN 230!:REM check for select
CLOSE #1:0PEN #1,8,0,FILE1$:REM if cresating, opern write file
FRINT #1}"ENDOFFILE"!REM write file with ro records
CLOSE #1:GOTO 100:REM row that there is a file, Qo try aqgain
REM 3R K KK K KKK KK K K KK 3K K K K KK KK K K KK KKK K 3K KK K K K KSR KK XK KK K K K S0 KK KK KK K KK
REM ~—~transter existirng records to new file--
INFUT #1,ID$IREM get record number »
IF ID$="ENDOFFILE" THEN 400!REM l3st record, Qo to add-record routire
FRINT #23;ID$IREM tramsfer number to rnew file
FRINT "TRANSFERRING TO TEMF FILE..."3}ID3
INFUT #1,NAMESIFRINT #£2;NAMES
INPUT *1,ADDR$SIFRINT #23ADDRS
INFUT #1,CITYSIPRINT #2;CITYS
INFUT #1,STATE$!FRINT #2;3TATES
INFUT #1,ZIFP$IFRINT #23ZIF$
INFUT #1,FHONESIFRINT #2;FHONES
GOTO 300:REM get next record
REM XK KKK KK KK KKK K KKK K K K KKK KKK K K KX K KK KK 3K 3K KK 3K K KKK 3K KK KK 3K KKK KK KK KKK X
REM -—-add riew records to file——
FRINT CHR$(125);"SFECIFY RECORD TO ADD";CHR$(29):REM (move cursor down)
FRINT "ID NUMEER OR ‘END’..."!INPUT ID$:IF ID$="END" THEN 400
FRINT "NAME..."; INFUT NAMES
FRINT "ADDRESS...";IINFUT ADDRS%
FRINT “"CITY .. "} INFUT CITYS
FRINT “STATE..."; tINPUT STATES$
FRINT “ZIP..."$ INFUT ZIFS
FRINT “FHONE...";!INFUT FHONES$
FRINT (FRINT “FRESS ‘SELECT’ TO ADD RECORD..."
FRINT "PRESS ‘OFPTION’ TO RE-ENTER..."
IF FEEK(S532279)=3 THEN 400!REM optiom is pressed, re-enter record
IF FEER(S3279)<x5 THEN 470:REM chechk for select key
REM 302050 K KK K KKK KK KK K 3K KKK K K KK K KKK KK KKK KKK R K 3K 0K 3K 3K 3K KK 3K 0K 3 K K K KK 3K K K XK KK K

a9y

500
510
520
530
5490
550
560
570
580
590
600
610
620
4630
640
650
660

670

REM ORI OK KK KK KK K KKK KK 3K K K 3K K K 3K K 3K 3K 3K 3K 3K K 3K 3K 0K 3K 3K 3K KKK 3K 3K 3K 5K 3K KKK KKK KKK K K 0K KK K K
REM ——write rniew record to temporary file--—

FRINT #23;ID%

FRINT $2)NAMES

FRINT ¥#2;ADDR%

FRINT #2;CITYS

FRINT #2;STATES

FRINT #2;ZIFs

FRINT #2;FPHONES

GOTO 400:REM Qo get more new records

REM ORI K K KKK K K KK K K KK KKK KK K KK KKK KK KK KK KK K KK KKK K KKK 3K KK KKK K 3K KKK 0K K K K K

REM --closing routine—-

FRINT #2Z;"ENDOFFILE"!REM write end—-of-Tile marker
CLOSE #1:CLOSE #2

FRINT CHR$(125)3"DELETING OLD FILE..."

XI0 33,%1,0,0,FILEi1$:REM delete old file
PRINT (FPRINT "RENAMING NEW FILE,.."

XIO0 32,%#1,0,0,"DICUSTOMER. TMF,CUSTOMER.DAT"
FRINT JFRINT "—-—END OF PROGRAM~--"

END

REM DISK UFDATE

REM WER/JE 3/82

REM ——use this program Lo charge or delete existing records in the file-—
REM resad records from permanent file, update temporary file,

REM thern delete old file amd rermame mew ore to be mew permanent file.

REM KKK XK KKK KK XK K KKK KKK 3K 3K KK K KK K 3K KK KK K KK KK KK K KK 3K KKK KK K K KKK KK KK KK W W 0 e e s e o
FRINT CHR$(12S)IREM clear screer

FRINT "THIS FROGRAM CHANGES OR DELETESY

FRINT "“EXISTING RECORDS IN THE DATA FILE.":FPRINT

FRINT "FRESS ‘START’ TO CONTINUE..."!:FRINT

IF FEEK(S3279)<x6 THEN S0IREM wait for start key

REM set wp variables and file riames

DIM IDS(92),NAME$(24),ADDR$(24),CITY$(16),STATES(2),ZIFP$(5),FHONES(12)
DIM FILE1$(16),FILE2%(146)
FILE14="DI!CUSTOMER.DAT"I!FILE2%="DI{CUSTOMER.,. TMP"

REM -- opern the files --

0 CLOSE #1:CLOSE #2:REM close any Tiles which are open

0 TRAF 200:0FEN #1,4,0,FILE1$:TRAF 400003REM trap file-mot-found error

0 OFEN #2,8,0,FILE2%IREM if mo error, open write file

0 GOTQ 300:REM skip error routirme

0 REM SCKKRKKKOK KKK KK K K K K KK K K KK K K KK K K K 0K 3K 3K 5K 3K 3K KK 3K 3K 3K 3K 3K KK K S K K KKK KK KKK 3K K K 3K K 3K X
0 REM —-— error rouwtine --

0 REM it file is not om this diskette, trg another one

0 FRINT CHR$(253);"CUSTOMER FILE NOT ON THIS DISK,":!FRINT :REM sound buzzer

0 FRINT "FPRESS ‘START’ TO TRY ANODTHER DISK.,."

0 IF PEER{S3279)«<>*6 THEN 220!REM wait for start key

g0 GOTO 1003REM try 3qa3in

0 REM 30X KRR K K KK KK K KK SO K K KK K K K KK KK 3K 5K K 3K 3K K 3K 5K KK S KK 3K 3K 3K K 3K K KK 3K K 3K 3K K 0K
3 REM -— read a record from the old file --

0 INPUT #1,ID$SIREM get record rnumber

5 IF ID$="ENDOFFILE" THEN 600:!REM last record, go to closimg routirne -

0 INFUT #1,NAME$,ADDR$,CITY%,STATE$,ZIF$,FHONE$IREM read rest of record
3 REM —-- digplayg the record --

0 PRINT CHR$(125):;"DATA IN OLD FILE"ICHR$(2%9):REM (move cursor down)

0 FPRINT "“ID",ID%

S PFPRINT "NAME",NAMES$

0 FRINT "ADDRESS",ADDRS%

S PRINT "CITY",CITYS

0 FRINT "STATE",STATES

S PRINT “ZIP",ZIFPS$

0 FRINT "FHONE",FHONES$

0 FRINT (PRINT "PRESS ‘OFTION’ TO MODIFY RECORD-"

3 PRINT "PRESS ‘SELECT’ TO KEEF RECORD AS ISs-"

0 FRINT "“FRESS ‘START’ TO DELETE RECORD-"

0 IF FEEK(S327%)=6 THEN 300:!REM qget another record, domn’t save this orne
1 IF PEEK(S3279)>=5 THEN S00!REM 3dd this record to the rew file

2 IF FPEEK(33279)<>3 THEN 390:!REM check for option key

S OREM ROKXORICK KKK KK KK KK MK KK KK K KK KK 3K K K K K KK K K KK KK KK KK 33K 3K 3K 3K 3K 0K KK 5K 3K S 33K K K KK X KK
7 REM —-- modify data in record ~-

0 FPRINT :FRINT "ENTER NEW DATA FOR RECORD":FPRINT

0 PRINT "ID NUMEBER...";INFUT ID$

8 FRINT "NAME.,."3!INFUT NAMES

0 FRINT "ADDRESS...";!INFUT ADDRS%

0 FRINT "CITY..."3$INFUT CITYS

0 PRINT "STATE...";INPUT STATES

80 FRINT “ZIF..."3tINFUT ZIP%

0 FPRINT “FPHONE...";!INFUT FHONES$

0 FRINT (FPRINT "FRESS ‘SELECT’ 70O ADD RECORD..,."

S PRINT “PRESS ‘OFPTION’ TO RE-ENTER..."

0 IF PEEK(3Z3279)=3 THEN 400!REM re—enter the dats

1 IF PEEH(33279)<>5 THEN 490:REM check for select key

T OREM XK XK KK KK KKK KK KK KKK 2K KK KKK 3K K 3K 3K KKK S K K 3K XK K 3K 33K 3K 3K 3K 3K 3K 3K 5K 3K 3K 33K 3K 5K K 3K K KK 3K

A0 REM XK KKK KK KKK K K K K K KK K K K KK KK K 3K 3K K KK KK KKK 5K KKK 3K 5K S K K 5K K 3K 3K 3K 3K 3K 3K 3K K 3K 3K K KKK K K
6 REM —-- 3dd the mew record to the temporary file —- '

F00 FRINT #2;ID$:

510 FRINT #2INAMES

520 FRINT #2;ADDR%

530 FRINT #23CITYS

540 FPRINT #23STATES

550 FRINT #2:ZIFs$

560 FRINT #23FHONES$

570 GOTO 300:REM Qo read srmnother record from old file

S0 REM KK KKK KKK K K K K K K KK K K KKK KK KK K K 3K 3K K S K 3K 3K K K 3K 3K 3K K K KK 3K 0K 3K K 2K 3K 0K 3K K K 3K 3K K 3K 3K 3K 3K 3K 3K K 3K K

590 REM -- closing rowtine -—-

5395 REM write end-of-Pile marker, close files,

596 REM delete old file and rename new ore to permanent file.

4600 FRINT #2Z;“ENDOFFILE™

610 CLOSE #1:CLOSE %2

620 FRINT CHR$(125);"DELETING OLD FILE..."

630 XIO 33,#%1,0,0,FILE1$IREM delete old file

440 FRINT "RENAMING TEMF TO FERMANENT FILE..."

450 XI0 32,%1,0,0,"DICUSTOMER. TMF,CUSTOMER.DAT"

6460 FRINT (FRINT "—-— END OF FROGRAM —-"

670 END

1

2R
3 R
& R

REM DISK FRINT

EM WBEB/JE 3/82
EM ——~use this program to print out the customer list from the file--
EM 3K KK K K KK KK 5K KK S KKK KKK K 3K K KKK K DK 5K DK KK K K 3K 3K K K 3K K 3K 3K KKK 3K KK K K KK KK KKK KK X
PRINT CHR$(125)!REM clear screen
FRINT "THIS FROGRAM FRINTS ALL RECORDS" —
PRINT "FROM THE DATA FILE ON A FRINTER."!PRINT
FRINT "FRESS ‘START’ TO CONTINUE..."3$FRINT
IF PEEK(S3279)+<xé THEN S0IREM wait for start hey

REM set wup varisbles arnd file names

DIM ID$(?),NAME$(24),ADDRS(24),CITYS$(16),S5TATES(2),ZIF$(5),PHONES(12)
DIM FILE1$(16),FILEZ2%(16)
FILE1$="D!CUSTOMER.DAT" IFILEZS="F3"
REM —-- open the files --

CLOSE #1:!CLOSE #2:REM close amyg files which are open

TRAF 200:0FEN #1,4,0,FILEL1$!TRAF 40000:REM trap file-rot-found errar
TRAF 250:0FEN #2,8,0,FILE2$ITRAF 40000:REM trap printer—-riot— reads error
GOTO 300:REM skip error routine

REM XK KKK K KK K KK KK K K KK K K K K KKK K 5K K KKK KKK 3K 3K KK 3K K KK 3K 0K K 3K KK S HK K SR KKK K 3K K KK K
REM ~— error routine, file rmot fournd --

FRINT CHR$(253);"CUSTOMER FILE NOT ON THIS DISK,":(FRINT !REM sound buzzer
FRINT "PRESS ’START’ TO TRY ANOTHER DISH..."

IF PEEK(53279)+»6 THEN 220:!REM wait for start key

GOTO 100:REM try 39a3in

REM KKK KK KKK KK K K KK KK K KKK K KKK KK KK K 3K 3K K KK K 3K K KK 3K 35K 3K KK KKK 3K K KKK KK 3K K K K K
REM —-—error routine, primter not ready-—-—

FRINT CHR$(233);"FRINTER NOT READY,":!REM sound buzzer

FRINT "PRESS “START’ TO TRY AGAIN..."$iPRINT

IF FEEK(53279)<:6 THEN 270!REM wait for start key

GOTO 100:REM try s3q9a3in

REM 3K KKK KK KKK K KKK KK KK KK KK KKK KKK KK KK KSR KK K KK KKK KK KK KK 3K K 3K 3K K 5K KKK 3K K 3K 5K K KK K K
REM -—- read a record from the disk file -- -
INFUT #1,ID$IREM qet record number

IF ID$="ENDOFFILE'" THEN S00!REM last record, go to closirnq routire
INFUT #1,NAMES$,ADDR$,CITY$,STATES$,ZIFS, FHDNE$ REM read rest of record
REM —~- dlsplas the record --

FRINT CHR$(12S):"DATA IN FILE";CHR${(29):!REM (mave cursor down)

FRINT ”ID”,ID$

S FRINT "NAME",NAMES

FRINT "ADDRESS",ADDR%$

S FRINT "CITY",CITYS$

FRINT "STATE",STATE$

S PRINT "“ZIP",ZIF$

FRINT "FHONE'",FHONES$

FRINT "PRESS ‘SELECT’ TO FRINT RECORD..,."

FRINT "PRESS ‘START’ TO READ NEXT RECORD..."

IF FEEK(53279)= 6 THEN 300:REM get another record

IF FPEEK(33279)<>3 THEN 390!REM check for select key

REM xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxwxxwxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
REM —--= primt out record on primter --

PRINT #2;ID%

FRINT #2;NAMES$

FRINT %£2;ADDRS

FRINT #2:;CITYS$

FRINT #2;STATES

FRINT #ZXZIP$

FRINT #2;FHONES

GOTO 390 REM go wait for ok to read rew record

REM xxx
REM -- closimg routine --

CLOSE *1:CLOSE #2

~—

FRINT CHR$(125):!REM clear screen
FRINT "-- END OF FROGRAM ——"
END

RANDOM ACCESS with DOS 2.0S
wB 10/82

A. CONCEPT

There are two methods of accessing a data file stored on the 810 Disk Drive. Sequential
access is characterized by DIRECT access to the data file, and is accomplished by searching
through a data file from beginning to end, looking for a desired record. Random access is
characterized by INDIRECT access to the data file by way of an index file, looking for a key
which points to the desired record's location in the data file. Simply put, random access is the
ability to read a particular record in a file without having to first read every previous record
in the file.)

B. ADVANTAGES

L. Speed: Because an index file is much smaller than the data file, and usually resides in RAM,
rather than on the storage device, the time to locate a record using random access is a mere
fraction of sequential access time.

C. DISADVANTAGES

. Programming techniques are more difficult.

2. Disk storage space may be required for the index file.

3. Using the DOS COPY command requires that the index file be rebuilt.

D. METHODS

Random access is achieved by creating an INDEX for a data file. An index entry consists of a
key and pointer for each record in the data file. Entries are kept in ascending order of the
key's ATASCII value. The key is some small part of the whole record such as LAST NAME or
ACCOUNT NUMBER. The pointer is the actual storage location on the disk (sector and byte
number) of the record. :

1. Index file created and maintained in the application program:

At the beginning of the program, build the index file by reading each record in the file and
saving the key and pointer in a program variable. The advantage with this method is the
ability to easily define a new key. The disadvantage is the time (up to several minutes)
required to read through the file and create the index.

2. Index file maintained on the disk:

Store the index file as a unique file on the disk which can be read into any program that needs
to randomly access the data file. The advantage is that only an insignificant delay is required
at the beginning of the program to load the index file. The disadvantage is the requirement
for more complicated programming to update the index file whenever the data file is updated.

E. ATARI 8K BASIC

Random access capability is provided in the ATARI 8K BASIC programming language with the
NOTE and POINT commands. The NOTE command identifies the location on the disk (sector
and byte number) where the next I/O operation will occur. The POINT command is used to

position the pointer to a desired location on the disk where the next 1/O operation should
occur,

The following rules should be observed when programming random access applications in
ATARI 8K BASIC. '

1. The data file must be OPEN in mode {2 (OPEN #1,12,0,"D:filename").
2. Additional data cannot be appended to the end of a file opened in mode 12.
3. You can only do random access (POINT) to a sector that is allocated to the file.

F. ATARI MICROSOFT BASIC

Random access capability is provided in the ATARI Microsoft BASIC programming language
with the NOTE and AT commands. The NOTE command in Microsoft is exactly the same as in
- 8K BASIC. The AT (sector, byte) command can be added to either an INPUT or PRINT
command, to cause the I/O operation to occur at a desired location on the disk.

The following rules should be observed when programming random access applications in
ATARI Microsoft BASIC.

I. The data file must be opened in UPDATE mode (OPEN #1,"D:filename" UPDATE).
2. Additional data cannot be appended to the end of a file opened in UPDATE mode.
3. You can only do random access (AT) to a sector that is allocated to the file.

G. EXAMPLE PROGRAMS

The programs on the following pages provide simple examples of random access to a data file
in either Atari 8K BASIC or ATARI Microsoft BASIC. The first two programs are constructed

. as in Method 1. under D. (on the previous page). Each record consists of the first name, last ...
name and phone number. The first two bytes of the file are used to store the number of -

records in the file in lobyte/hibyte format. The second program provides random access
inquiry into the data file. The program variable used for the index file is INDEXS. The key
field is the last name. The program searches sequentially through the index looking for a
match to the desired last name, and then points to the actual data record.

This is not the ultimate random access ‘method, but it does provide substantial speed
improvements over sequential access directly to the data file. The inquiry program could be
improved by sorting INDEXS and using binary search techniques to locate a desired key.

10

7
e

REM RSN Oe L
REM This program adds records to the file D1:TESTDATA.

. REM Each record has the fields FIRST MAME, LAST NAME, FHONE #*

Pyl

-
23

100
110
120
1390
140
200
210
22

noo

223
230
231
300
310
320
330
321
3440
341
342
350
351
”‘1'7

-3
360
400
410
420
430
431
432
440
4350

REM The first 2 bytes in the file contain the # of records in
REM the file in the formast lobgte, hibyte.

REM SETUUF

GRAFHICS 0:FOKE 82,0

DIM FILES$(20), FIEL01$<°0) FIELD°$(30),FIELD3$(1°)
FILE$="D1!TESTDATA"

RECS=0

REM OFEN FIXLILE

TRAF 230

CLOSE #¥1:0PEN #1,4,0,FILE$:ITRAF 40000

GET #1,L0!CET #1,HIIRECS=L0O+HIX254

CLOSE #+1:0FEN #1,9,0,FILES

GOTO 300

CLOSE #1:0FPEN #1,8,0,FILES$

FUT #1,0:FUT ¥#1,03REM 0 RECORDS

REM SDD RECORDS

? CHR#%(125);"FRESS SELECT TO END THE PROGRAM..,."
? "PRESS START TO ADD ANOTHER RECORD..."™

IF FEEK(S3279)=5 THEN 400

IF PEEK(S3279)<x»6 THEN 330

? CHR$(1ZS)I"FIRST NaME..,»"}IINPUT FIELD1%

" LAST NAME..."}IINFUT FIELDZS

" FHONE #...,"; tINFUT FIELD3S$

F13FIELD1LS

F1IFIELDZ2%

? #13FIELD3s%

RECS=RECS+1

Wl e el

GOT0 3090
REM =
CLOSE #1

HI=IMT(RECS/256) {LO=RECS-HIXZS54
OFEN #1,12,0,FILES

FUT 2#1,L0PUT #1,HT

CLOSE #*1

? CHR$(123)3"END OF PROGRAM"
END :

10 REM RO D3 -1 22 ;
20 REM This program creates anm index file in RAM (INDEXS$)
21 REM and 3llows random access to records by last rizme.

100
110
12

130
200
220
230
240
250
300
310
31t
312
328
338
331
332
340
341
358
351
400
410
411
420
421
422
430
500
510
52

521
30
331

=
o922

333
534
- 540
541
42
?00
710
?20
930

REM SETUR

GRAFHICS 0:FOKE 82,0

DIM FILE$(20),FIELD14$(20),FIELD2%(30),FIELD3$(12) -
FILE$="D1:TESTDATA" '
REM OFEIN FIILE

CLOSE #1:0FEN #1,12,0,FILES

GET #1,LO0IGET #1,HI!RECS=LO+HIX256

IF RECS=0 THEN ? "NO RECORDS IN THE FILE!":GOTO 900

? "STANDEY WHILE THE INDEX IS BUILT..."

REM EUITILD INDEX

DIM INDEX$(RECSxX33):!REM 30 FOR LAST NAME + 2 FOR SECTOR + 1 FOR BYTE

DIM FAD$(33):iFADs=" "IREM wsed to blank fill
DIM DUMS(33)REM DUMMY VARIABLE

FOR I=1 TO RECS

MOTE #1,SECTOR,EBYTE

INFUT #1,FIELD1$,FIELDZ%,FIELD3S

HI=INT(SECTOR/254):L0=SECTOR~-HIX254

DUM$=FIELLD2% :DUMS (LEN(DUMS)+1)=FAD$

DUMS (31)=CHRS$(L0O) :DUMS(32)=CHR$(HI) :DUMS (33)=CHRS(EYTE)

INDEXS$ (LEN(INDEX$)+1)=DUNM$

NEXT I

REM IHNDEX SEAaRCH

? CHR3(125) }"ENTER LAST NAME QR ‘END’..."}!INPUT DUMS:IF DUMS="END" THEN 900
DUMSC(LEN(DUMS)+1)=FADSIFIELD2$=DUMS

FOR I=1 TO RECS

IF INDEX$(IX33-32,Ix%33-3)=FIELD2% THEN S00

NEXT I

? "MATCH NOT FOUND!"IFOR I=1 TO 230:!NEXT I:GOTO 400

REM RaNMDOM SCCESS TO RECORD —
FOF "

LO=ASC(IMDEX$(Ix33-2)) IHI=ASC(INDEX$(IX33-1)) IEYTE=ASC(INDEX$(IX33))
SECTOR=LO+HIX256

FOINT #1,SECTOR,EBYTE

INFUT #1,FIELD1%,FIELDZ2%,FIELD3%
? "FIRST MNAME:!"}FIELD1%$

? " LAST NAME!Y}FIELDZ3

?o FHONE #:{"}FIELD3%

? ? "FRESS START WHEN DONE..."
IF PEEK(53279)=6 THEN 400

GOTO 541)

REM =D

CLOSE #1

? CHR$(125)"END OF FPROGRAM."
END

W) 00 0L W)W

R € I A & I QN - TR SO U I D

SR SR @

REM TP s v L o S

REM This program adds records to the file D1ITESTDATA,
REM Each record has the fields FIRST NAME, LAST NAME, FHOME %
REM The first 2 bytes irm the Tile contain the rumber of records
REM the file in the format lobyte/hibyte.

REM SE TR

CRAFHICS 0:IFOKE 8Z,0

RELCS=0

REM - Sl S S S N

ON ERROR 230

CLLOSE #1:0FPEN #1,“DITESTDATA" INFUTI!OM ERROR 0

GET #1,L0:GET #1,HIIRECS=L0O+HIX254

CLOSE #1:0FPEN #1,"DITESTDATA" AFFEND

GDTO 309
- DLOSE F1:0FPEN #1,"DITESTDATAY OURUT
FUT #1,0:FUT #1,0:FKEM 0 RECORDS

REM E D PO DS

FRINT CHR$%(125)"FRESS SELECT TO END THE FROGRAM...™
FRINT “YPRESS START TO ADD ANDOTHER RECORD..."
IF FEEK(33272)=35 THEN 400
IF FEEK(S53279)<=6 THEN 330

FRINT CHR$(123) 3 1INFUT "FIRST NaME...",FIELD1%
IMFUT " LAST MAME...",FIELDZ2$
IMFUT ¢ FHONE #...",FIELD3%
FRINT #1,FIELD1%

FRINT #1,FIELDZ2%

FRINT #1,FIELD3%

RECS=RECS~+1

COTR 300

REM = it >

CLOSE #1

HI=INT(RECS/2586) (LO=RECS~HIX25s

OFEN #1,"DITESTDATA' UFDATE

FUT +1,L03FUT #1,HT

CILOSE #1

FRIMT CHR$(123);"END QF FROGRAM®

EMD

0

.:-_1;1’,«_’1('-«)0@

-t

My 0 e
[SIR VY JE OV I 7% IR 3 N S}

3y
3

P00
?1a
P20
230

FEM s e T2 2 e oS
REM This program crestes am inder file im RAM (INDEX$) zrd 3llows
REM rarndom access to records by last name,

REM SE T LA

GRAFHICS 0:IFOKE 82,

REM 2B FIDE

CLOSE #1!0FPEN #1,"DITESTDATA" UFDATE

GET #1,.03GET #1,HI!RECS=LO+HIX254

IF RECS=0 THEM FRINT "NO RECORDS IN THE FILE'":GOTO 900
FRINT "STANDEY WHILE THE INDEX IS BUILT..."

REM B LTI D T T B e

OFTION BASE 13 DIM INDEX®(RECS,3)IREM KEY/SECTOR/EYTE
FOR I=1 T RECS '
NOTE #1,.SECTOR,EYTE

INFUT #1,FIELDL1$,FIELDZ%,FIELD3%

IMDEX#{(I,1)=FIELDZ2%

INDEXS(I,2)=5TR$(SECTOR?

INDEX$(I,3)=5TRE(BYTE?

NEXT T

REM TkE SE&SMHIOCH

FRINT CHR$(123);

INFUT "EMTER LAST NAME OR ‘END’,..";FIELDZ2%:IF FIELDZ2%="END" THEN 900
FOR I=1 TOQ RECS .

IF INDEXS(L,1)=FIELDZ% THEN 500

NEXT I

FRINT "HATCH NOT FOUND!"IFRINTIFRINT VYFRESS START TO CONTIMUE.,."
WaIT S23279,7,46

GOTO 400

REM FegmP0M ST CESS TO RECDRD
SECTOR=VAL (IMDEX$(I,2)) IBYTE=VAL(INDEX4(I,3))

INFUT #1,AT(SECTOR,BYTE) FIELD1%,FIELD2%,FIELD3%
FRINT "“FIRST NAME:"}FIELDLS$

FRIMT " LLAST MaAMEI"}FIELDZ2S

FRIMT " FHONE #3"FIELDO3%

FRINT (FPRINT “FPRESS START WHEN DONE..."

WATT S3279,7.6

GOTO 400

REM et

CLOSE =#*1 ' _

FRINT CHR%(125)3"END OF FROGRAM."

END

The programs following this page set up random access to data files in which the index "map"
is a separate file from the data file proper (lines 70-80). The relative advantages to this
procedure are described under section D.2. earlier.

The following is a sectional description of the program, which describes the different sections
so that you may easily modify and adapt portions to your own needs.

10 Sets the total number of records.
12 Sets the length of each record.
14-16 Set the length of the name and address. The total length must not
be less than the name + the address.
25 Clears out the strings.
30 An error will occur if the index file has never been entered.
40-50 Open both files to make sure they exist.
60 Re-opens the data file for UPDATE.
70-80 Get the index to the data file.
85 Converts the hi-lo bytes to one number.
90 Stores the numbers in the subscripted variables.
1060-2000 Demonstrative portion of program.
1100 Sets R equal to the record number to use.
1110-1170 Printing to the data file
1140 GOSUB string pad subroutine :
1150-1170 POINT to the correct location and print the name and address.
1200-1220 = Inputs from the data file.
1200-1220 POINT to the correct location and inputs the name and address.
3000-3040 Subroutine for padding string with spaces so that the sector
pointers on the diskette do not get scrambled.
4000-4100 Establish an index file for the data file.
4060 NOTESs the location about to be written to.
4030 PRINTs the name and the address to the data file.
4085 Converts the SECT to hi-lo byte numbers.
4090 Puts the pointers into the index file.
4100 Does next record and re-runs the program when done.

il ol RSN

e b

17 PRINT CHR3(125)

20 TIM S(RCDYS) , C(RCDS) , SPACES(LNGTH) , NAMES(NM) , ADDR3(AD)

23 SPACES = " " | SPACES(LNGTH)= " " ! S5PACE3(2) = SPACES$ { NAMES = SPACES(,NM) ¢
ADDES = 3PACES(1,ADD

20 TRAPRP 3000

35 PRINT CHRS(12ZSHIPOSITION 7,0PRINT "READING INDEX FILE"

30 OFPEN #2,4,0,"TIINDEX.DATY

o0 OPEN #1,4,0,"DNFILE.DATCLOSE #1!TRAP 40000

&0 OPEN #1,12,0,"DIFILE.DATY

70 FOR A=1 TC RCDS

#2,5ECTHIGET #2,5ECTLIGET #2,CHAR

= SECTH + 294 + SECTL

s C{A) = CHARNEXT AICLOSE #2:GOTO 1000
ar gr ratrieve data here

CHR#{1Z5)n

-3 i} 13
30
R

; "JIOYCE PERRY”
ADDRS = "1233 ANY STREET"
FOSUDB 3000
 POINT #1,5(R)LCR)Y
O PRINT #1)NAMES
1 ERINT #1ADDRS
) HIAMES = SPACES | ADDRS = SPACES
3 POTNT #1,5(R)L,CR)
2L INPUT #1,MAMES
220 IMPUT #1,ADDRS
220 PRIMT NAMES
0 FRINT ADDRS . L
0 CLOSE #1ICLOSE #2 : . ' s
3 END
20 REM Subroutine for NAMES & ADDRS
O NMAMESILEN(NAMES) + 1) = SPACES
20 ADDRS(LEN(ADDRS) + 1) = SPACES
4 RETURN
00 TRAP 20000PRIMT CHR$(123)'POSITION 7,2:PRINT "CREATING NEW INDEX FILE"
4510 CLOSE #1ICLOSE #2 :
4070 OPEN #2.3,0,"D/IINDEX.DAT"
4030 OFRM #1,53,0,"DIFILE.DAT"

s
&
X
4]
1B
W

-
AL f 03 v ST
L N S .

[
wl O

4340 FOR a=1 TO RCDS
$0%0 POSITION 5,5 PRINT A
F040 MOTE #1,5ECT,CHAR

NT(SECT - SECTH # 254

ACLOSE #1ICLCSE #2:GOTO 20

10
12
l4-16

25

30

40-50

60

70-80

85

90

1000-2000
1100

1110-1170
1140

1150-1170

1200-1240
1200-1220

3000-3040

4Goo-4100
4060
4080
4085
4090
4100

Sets the total number of records.

Sets the length of each record.

Set the length of the name and address. The total length must not
be less than the name + the address.

Clears out the strings.

An error will occur if the index file has never been entered.
Open both files to make sure they exist.

Re-opens the data file for UPDATE.

Get the index to the data file.

Converts the hi-lo bytes to one number.

Stores the numbers in the subscripted variables.

Demonstrative portion of program.

Sets R equal to the record number to use.

Printing to the data file.

GOSUB string pad subroutine.

Point to the correct location with the AT command and print the
name and address.

Inputing from the data file.

Point to the correct location with the AT command and print the
name and address.

Subroutine for padding string with spaces so that the sector
pointers on the diskette do not get scrambled.

Establish an index file for the data file.

NOTEs the location about to be written to.

PRINTSs the name and the address to the data file.

Converts the SECT to hi-lo byte numbers.

Puts the pointers into the index file

Does next record and re-runs the program when done.

el

cn

Varsi

et da
[uERW)

icrasoft BA

il

h
s

o
il

>wrey
41

i

~u
:

(35 >N

T e e
PWE=IY

:;f\of\I
el

"D

1

L
w

o

w
{
r

GET #

)
+

AT ey 5 e
SoULMOSR: #o)oalll

Zy

WLADA L B

(AN Ged oo

-
FoSad

P leenm hanhele sl

-~
fo
I

31

a

)

in.z"

. v
LA
AL

TPUT

AT CU

-
DAL

radiild

" TNDEX

L
Ty

;"-l?‘*-\I
(LS agn/t

#1,ADDEs

vy
et 1

=

&

+ ey

F

T
£2IRUN

™

Many of you have experienced entering a program which asks you to input data which the
program then manipulates in some way (such as Check Balancer in the Basic Reference
Manual). You then save the program to cassette or diskette, only to find that on reloading the
program, the items previously entered were no longer there. This is because all variables are
cleared when you transfer a program to memory. To save the entered items, or variables, you
must set up special files, called data files, following the procedures illustrated in the following
pages.

Enclosed is a collection of programs which serve as instructions for creating data files on
cassette or diskette. A program which uses data files has the same elements as an office. The
program which decides how to categorize and manipulate the data is like the secretary or
other human agent who sets up various projects. The data files are like the file cabinet in
which the necessary material for these projects is kept.

A word to the wise regarding cassette files: the main difference between cassette and diskette
storage, is that files on diskette may be accessed by name. This means you may keep a large
number of files on a disk and the computer will do the sea searching for a specific file when you
desire to load it. Several differently named disk files may be set up within a program,
accessed, changed and resaved, due to this freedom. Cassette files on the other hand, are
much more limiting, as it is up to you to know where a file is according to your setting of the
mechanical counter. Therefore, they cannot be added to except by the device of setting up
blank files which you can later replace with data.

A second difference between cassette and disk files is the nature of the medium used. A disk
is read by the disk heads floating over the surface searching for the correct sectors. A
cassette tape, on the other hand, moves back and forth mechanically, constantly rubbing
against the heads. This often leads to stretching and marring of the tape, generating the
common "tape loading errors" 138, 140 and 143. Tape is, su'nply stated, not an ideal medium
for data files.

BIBLIOGRAPHY (CASSETTE FILES)

Your Atari Computer, by Lon Poole, published by Osborne/McGraw-Hill. Re Chapter 5.

Antic Magazine, September 1983, "Cardfile For Cassettes," by Vern Mastel.

Microcomputing Magazine, October 1982, "Trouble Free Cassette Use On The Atari," by Marty
Carmichael.

Softside Magazine, September through December 1980, "Developing Data Base (Parts 1-4)," by
Pelczarski and Bouchard.

Compute! Magazine, May 1980, "Atari Tape Data Files,” by Al Baker.

