Rov Kauwn
Divector of Seectal P\f‘n‘ylt'ts
k"fo&'\ 3 lvxc\
Box 41
Nk Boreans
Sumnyuade ;  CA | ayogl,

EW\PD;O'Qr‘\

Endeod ot algmeds  cnd hedog g

i CO‘I\/\-\OP Fo’TH 4 Swoatthwiort Dick 4 ) “is\l)
ond  QE Mgk | coTdnimy  Hothtl W:\ FoRTH
Mn durenemert & R

— 5  Adtant Wyt Aiais c—'{ WM YNN\.JU‘J\
At Wedr @ 1 Ap o gty (S .

~ EiTTins Yo ol 0 Beuwed Con B LAGe



Thin deviimnd & o 5 Aot Soks
mmended  “AtemiWai, @ %o AW, "

ch&wg/mwm‘%\rmm%w&’%?ﬁ@

Lk Wamdor X

&Q‘S\“K\\ " b’g Q\r\ol\ W E\RS

Sect oy b D s cuments
D TITLE. DB 3
@ F\G, M AN Sy
EXCL, via pa g
©) AKTAeT . EXT .50 e
W TORIOLD M AV Rl =
® 8.\ Sl - Tb
& - .\
N i




N ¥ EDIT

EDITOR
SCR

L

N

LL

UL

DOIT

SRC DEST COPY
FIRST LAST SHOW
n LIST

Line Edit Functions:

n TL
n HL
n DL
n IL
n RL

n SL

n BL
n SCR CL
n $
n %

1:. FLUSH

RECEIVED
NOV 101982

SPECIAL PROJECTS

F1.6 . TorTH COITDE
— (7/8/80 - SRC)

e
Enter editor vocabulary on scregn me
VOCABULARY name - used to get to the Editor words.
VARIABLE containing the current edit screen [f. '
List current screen.
List next screene.
List lower 8 lines for screen editor.
List upper 8 lines for screen editor.
Take the top 16 lines on the TV display and put into
the upper or lower half of the edit SCR. (whichever
was last displayed). Use the colleen cursor and edit
keys to change the screen. Move the cursor to the
DOIT line and hit RETURN.
DO NOT HIT RETURN while editing the LL or UL screens.
copy block SRC to block #DEST.
list all blocks inclusive.

set SCR to n and list the block.

Type line n and save it in PAD.
Hold line n in PAD.

Delete line n - save it in PAD.
Insert PAD after line n.
Replace line n with PAD.

Spread to create blank line n by pushing every thing
down and losing line F.

Blank line n - not saved in PAD.

Move line n of Screen #SCR to PAD.

Put text following $ up to RETURN onto line n.
Insert text following 7 up to RETURN after line n.

RETURNS to FORTH Vocabulary. Writes out changed
blocks. .

Currently 7/8/80 8 Load loads the assembler, Ed Logg’s Colleen I/0 and
Graphics words and this Editor.




1+!

OSET
2%
2/
CHH
HH
CH?

H?

TBL

ALLOC

ARRAY

S?

R?

BDUMP

NS
/

v 4

V4
<

(addpi$)
(ny n-1)
(addr—>)
(n < n)
(2 - n)
b 5 )
L S
(addr )

(addr )

( = n)

(addr ,addr — )

(5 nolfmelty #”,C A RS i - (r/ash) > [gtcaey.

ATARI FIG ADDITIONS Fhan)

(From DECUS)
add one to word at addr
subtract one from TOS

set word at address to 0

milt. TOS by 2 }faster than e
Y T sP¥ces
div. TOS by 2 L AHBNE e g,

type value of LSB of TOS as 2-digit HEX-
type value of TOS in unsigned HEX
type value of byte at addr in HEX

type value of word at addr in unsigned
HEX

return Index for next outer most DO-LOOP

;defines ROM table (like DECUS, CALTECH
IARRAY)

allocate n words in RAM

CREATE named ARRAY, n words long, returns
addr of first element when exe

TYPE contents of param stack, without removing them.
point to TOP of RETURN (control) stack
TYPE contents of return stack (non-destructive)

Display contents of addr to addr (inclusive)
always in increments of 8 bytes.




TERMINAL INPUT-OUTPUT

R

D.

DR

CR
SPACE
SPACES

DUMP
TYPE
COUNT
7TERMINAL
KEY

EMIT
EXPECT
WORD

INPUT-OUTPUT FORMATTING

NUMBER
<#

#

#S

SIGN

#>
HOLD

{h"=")
( n fieldwidth — )
{taik)
( d fieldwidth = )

L =)
(addru - )
(addru =~ )

( addr — addr+1 u)

{.=1]
( —c3
{c~ 3
(addrn = )
(e >4

(addr - d)
£ =)

(d —-d)
(d—-00)
(nd—-4d)
(d — addr u )
(e =9

DISK HANDLING

LIST

LOAD

BLOCK

B/BUF

BLK

SCR

UPDATE

FLUSH
EMPTY-BUFFERS

DEFINING WOR

TOXXX
VARIABLE xxx
CONSTANT xxx

CODE xxx
;CODE

( screen — )

( screen — )

( block — addr )
- n )

(

( — addr)
( — addr)
{..— )
(et )
(=)
DS
(=g
{7}
(n =7

xxx: ( — addr)
= )

xxx:( = n)
(=)

EEedt

<BUILDS ... DOES> does: ( — addr)

VOCABULARIES

CONTEXT
CURRENT

FORTH

EDITOR
ASSEMBLER
DEFINITIONS
VOCABULARY xxx
VLIST

MISCELLANEOUS AND SYSTEM

(

FORGET xxx
ABORT

’ X

HERE

PAD

IN

SP@

ALLOT

addr )
addr )

OB Gl o B e

Nt

BERE
g
g

S~ o~~~ o~ —. — o~

Print number.

Print number, right-justified in field.

Print double-precision number.

Print double-precision number, right-justified in field.
Do a carriage return.

Type one space.

Type n spaces.

Print message (terminated by “).

Dump u words starting at address.

Type string of u characters starting at address.
Change length-byte string to TYPE form.

True if terminal break request present.

Read key, put asclii value on stack.

Type ascii value from stack.

Read n characters (or until carriage return) from input to address.

Read one word from input stream, using given character (usually blank) as delimiter.

Convert string at address to double-precision number.

Start output string.

Convert next digit of double-precision number and add character to output string.
Convert all significant digits of double-precision number to output string.

Insert sign of n into output string.

Terminate output string (ready for TYPE).

Insert ascii character into output string.

List a disk screen.

Load disk screen (compile or execute).

Read disk block to memory address.

System constant giving disk block size in bytes.
System variable containing current block number.
System variable containing current screen number.
Mark last buffer accessed as updated.

Write all updated buffers to disk.

Erase all buffers.

Begin colon definition of xxx.
End colon definition.
Create a variable named xxx with initial value n; returns address when executed.

Create a constant named xxx with value n; returns value when executed.

Begin definition of assembly-language primitive operation named xxx.

Used to create a new defining word, with execution-time “code routine” for this data
type in assembly.

Used to create a new defining word, with execution-time routine for this data type in
higher-level Forth.

Returns address of pointer to context vocabulary (searched first).

Returns address of pointer to current vocabulary (where new definitions are put).
Main Forth vocabulary (execution of FORTH sets CONTEXT vocabulary).

Editor vocabulary; sets CONTEXT.

Assembler vocabulary; sets CONTEXT.

Sets CURRENT vocabulary to CONTEXT.

Create new vocabulary named xxx.

Print names of all words in CONTEXT vocabulary.

Begin comment, terminated by right paren on same line; space after (.

Forget all definitions back to and including xxx.

Error termination of operation.

Find the address of xxx in the dictionary; if used in definition, compile address.
Returns address of next unused byte in the dictionary.

Returns address of scratch area (usually 68 bytes beyond HERE).

System variable containing offset into input buffer; used, e.g., by WORD.
Returns address of top stack item.

Leave a gap of n bytes in the dictionary.

Compile a number into the dictionary.

Forth Interest Group, P.O. Box 1105, San Carlos, CA 94070




ST 4

FORTH HANDY REFERENCE

3

Stack inputs and outputs are shown; top of stack on right. Operand key: n, n1, ... 16-bit signed numbers
—— This card follows usage of the Forth Interest Group d, d1, ... 32-bit signed numbers
(S.F. Bay Area); usage aligned with the Forth 78 u 16-bit unsigned number
International Standard. addr address
For more info:  Forth Interest Group b 8-bit byte
P.O. Box 1105 c 7-bit ascii character value
San Carlos, CA 94070. f boolean flag

STACK MANIPULATION

DuP (n—=nn) Duplicate top of stack.

DROP (n~- ) Throw away top of stack.

SWAP (n1tn2 - n2nt) Reverse top two stack items.

OVER (nt n2 = n1t n2nt) Make copy of second item on top.

ROT (n1 n2 n3 — n2 n3 n1 ) Rotate third item to top.

-DUP (6 —na?) Duplicate only if non-zero.

>R {n~ ) Move top item to “return stack” for temporary storage (use caution).

R> (=) Retrieve item from return stack. .
R ( n) Copy top of return stack onto stack.

NUMBER BASES

DECIMAL o=} Set decimal base.
HEX e N Set hexadecimal base.
BASE ( — addr) System variable containing number base.

ARITHMETIC AND LOGICAL

+ (n1 n2 — sum ) Add.

D+ (d1 d2 — sum) Add double-precision numbers.

- (n1 n2 — diff ) Subtract (n1-n2).

. (n1 n2 — prod ) Multiply.

/ (n1 n2 — quot ) Divide (n1/n2).

MOD i (nt n2 = rem) Modulo (i.e. remainder from division).

/MOD (n1 n2 = rem quot ) Divide, giving remainder and quotient.

*/MOD (n1 n2 n3 — rem quot ) Multiply, then divide (n1*n2/n3), with double-precision intermediate.

*7 (n1 n2 n3 — quot ) Like */MOD, but give quotient only.

MAX (n1 n2 — max ) Maximum.

MIN (n1 n2 - min) Minimum.

ABS ( n — absolute ) Absolute value.

DABS (d — absolute ) Absolute value of double-precision number.

MINUS (n—=-n) Change sign.

DMINUS (d —--d) Change sign of double-precision number.

AND (n1 n2 - and ) Logical AND (bitwise).

OR (n1n2 —or) Logical OR (bitwise).

XOR (nt n2 -~ xor) Logical exclusive OR (bitwise).

COMPARISON

< (ntn2 - 1) True if n1 less than n2.

> (ntn2 —-f) True if n1 greater than n2.

= (ntn2 —-1f) True if top two numbers are equal.

0< {(n—-1) True if top number negative.

= (n—-1t) True if top number zero (i.e., reverses truth value).

MEMORY

@ (addr — n) Replace word address by contents.

! (naddr - ) Store second word at address on top.

ce (addr - b)) Fetch one byte only.

C! (baddr - ) Store one byte only.

? (addr — ) Print contents of address.

+! (naddr - ) Add second number on stack to contents of address on top. ’

CMOVE = srom to i~ ") Move u bytes in memory. §

FILL (addrub — ) Fill u bytes in memory with b, beginning at address. i

ERASE (addru — ) Fill u bytes in memory with zeroes, beginning at address. i

BLANKS (addru - ) Fill u bytes in memory with blanks, beginning at address. 3
{
§

CONTROL STRUCTURES !

DO ... LOOP do: ( end+1 start — ) Set up loop, given index range.

I ( — Index ) Place current index value on stack.

LEAVE S . Terminate loop at next LOOP or +LOOP.

DO ... #HO0P do: ( end+1 start — ) Like DO ... LOOP, but adds stack value (instead of always ‘1’) to index.

+loop: (n — )
IF...(true)...ENDIF . if: (f -~ ) If top of stack true (non-zero), execute. [Note: Forth 78 uses IF ... THEN.]
F... (e ELSE H(t~= ) Same, but if false, execute ELSE clause. [Note: Forth 78 uses IF. . .ELSE...THEN.]
...(false)...ENDIF
BEGIN ... UNTIL .until: (f— ) Loop back to BEGIN until true at UNTIL. [Note: Forth 78 uses BEGIN ... END.]
BEGIN ... WHILE while: ( f — ) Loop while true at WHILE; REPEAT loops unconditionaily to BEGIN.

... REPEAT [Note: Forth 78 uses BEGIN . .. IF ... AGAIN]




h

TER- BOF
Here is the documentation on Fig—Forth 1.4 (Calfee).
The address for “Going Forth" is:
Creative Solutions
14625 Tynewick Terrace
Silver Springs MD. 20906

This stuff doesn’t seem to cover the editor, so I‘m sending
a Xerox of the paper stuff. The editor is pretty simple, Just

whatever you do don’t hit RETURN. Ed Rotberg has an improved
(less lethal}) version. You might try him at 745-1090 (Videa)

201y, My brawm
e
VW’;‘{ unetions when
O ‘/l@ 1- ‘r\ f‘l'!f!\‘g: f":'[ tﬁ,af) & “y’ (J.i: { h{j{:} V\A,:\

god luck, call

{G?U;;F r4ﬂ?ﬂ4£i/ »ff ;)fl?kﬁf?ﬂQE?m,

aArise.




Moore Business

Forms, Inc. s

)

)]

)‘1

)]

3

GRAPHICS and CONTROLLER words

<n> PADDLE 1-1i n=0~7 Reads paddle <n>. Value is O-FF
<nZ PTRIG i=} n=0~7 Reads paddle trigger button <n>

O=pressed, 1=not pressed.

<nZ STICK =1 n=0-3 Reads joystick <n> Lower 4 bits
represent 4 directions. (O=0ON 1=0FF)
D3-right, D2-left, Di-down. DO-up

<ho STRIG i-1 n=0-3 Reads joystick <n> trigger button.
O=pressed, 1=not pressed
<n> GRAPHICS 1-0  Open screen in graphics mode <n> (BASIC
GR. mode #, NOT ANTIC). Add 16 (dec.) to

eliminate split screen. Add 32 (dec.)
to prevent clearing screen

8 COLOR 1-0 Set "color" (pixel data) for subsequent
c. PLOT or DRAWTO.
x> <y> PLOT 2-0 Plot a point at (<x> <y>) on screen.
. (0. 0) is upper left corner. See BASIC
reference manval for limits in particular
= modes. e
x> <y> DRAWTO 2-0 Draw a line from current position to
DR. (Cx2 y>),
<x>» <y> POSITION 2-0 Set current position to (x>, <y>). Does
POS. not plot, used with PUT, GET. T
<n> PUT i-0 Put the value <n> at current position.
: Current <x>» is then incremented.
GET o-1 Get the value of pixel data at current
position. Current <x> is then incremented.
<x> <y> LOCATE 2-1 Same as <x> <y> POS. GET
<n> <c» <1> SE. 3-0 Set color register <n> to color <c>,
SETCOLOR luminance <13
<n> <p> <d> <vd
SOUND 4-0 Set sound channel <n> to pitch <p
s0. "distortion” <d>, and volume <v3.

Consult BASIC reference manual for
further info. In general, storing to
F1AUD, C1AUD, etc. will be easier. b

<€
PLAYER/MISSILE Graphics

<n> PLAYER 1-0 Set up player-missile graphics with <n>»
{n=1 or 2) vertical line resolution.

PBASE constant Returns base address of player/missile
DMA area. This is set by GR., and changes
with different modes.

Lx2> <n> HPOS! 2-0 n=0-7 Set PLAYER/MISSILE <n> horizontal
paosition to <x> MISSILE O = PLAYER 4 etc.

Y™ ™ OTI -~ gm S N A e . R NOTE S AR R



e X2 Ane SlLE! ==
2 Lx> <n>» COLPM! 2-0
e PRIOR  byte
variable
B VDELAY byte
variables
.
e CIO words
A <n> I10CB 1-0
ﬁ
-~
= CIO O-0
;\
ICDND
1CCOM
- ICSTA
ICBAL
~ ICBLL
I1CAX
I2CAX
A ICPTL
~ n> ACIO  1-0
a CI0A o-1
o <2>» €1> <d> OPEN 3-0
o~
CLOBE 0-0
F
~
-
LT

PUT -0 Do a "put character" with char=<n>

n=0-4 Set size of PLAYER <n> ( all MISSILEs
if n=4 ) to <x>. x=1 -2 double size.
=3 -~ quad size.

n=0-3, x=0-254 step 2

Set color of PLAYER/MISSILE <n> to <x2>. Note
that MISSILE <n>» is same color as PLAYER <n>
unless "fifth player enable" is selected.

( see PRIOR in hardware manual )

You should store the desired priority value
here. Consult the hardware manual for details.

You should store the "vertical delay" bits
here. This is only needed if single line
positioning is needed with double line graphics
resolution. Consult the hardware manual.

n=0-~7 Set "current" IOCB to <n> IDCB O is
normally open to E: and should not be
changed. IOCB 1 is used by GRAPHICS commands
and should be restored before using them.

(ed. note.— I know that this should have been
I0CB &6, and that words shouldn’t make such_
assumptions. I didn’t write this stuff, I’‘m
Just documenting what exists. )

Calls CIO. Assumes that " <n> IOCB " has been
done. and that IOCB n is correctly set up.
You should carefully read the 0.5 manual.
The following "constants"” will refer to the
"current" 10DCB:

Device # in HATABS. (byte)

Command (byte)

Status (byte)

Buffer Address (word)

Buffer Length (word)

AUX1 (byte)

AUX2 (byte) (note: these are odd to allow
use with fixed-length—name FORTHs)
"put—-byte" address {(word) (used by BASIC,
shun like plague)

Call CID with acc=n. Normally used with
ICBLL=0

Call CIO and put returned acc on stack.
Normally used with ICBLL=0

Open current IOCB with AUX1=<12, AUX2=<{2>
<d> pointing to dvc:file. ext. <d> should
be just a pointer (no count) and string
should be terminated with non—alphanumeric.

Close the current IOCB. One of the quickest
ways to hang FORTH is to type CLOSE without
previously typing <n> IOCB. This closes

IOCB O, then returns to the outer interpreter
which attempts to read from IOCB O. The
resulting error message also tries to get out
via IOCB O.




Fig 1.4

Where:

c

GET

0-1

Get one character from current IOCB.
character on stack.

Disk Block Numbering

e e e e e
. O 1 TYP
e o
1 11 2
o
TYP = o
i
2
3
DRV = G
i
2
3

Dictionary Entries

e e e +
{ DRV | BLOCK

B o o e +
1 & ¢ 2

o o e Bt
(add 0000 ) -
(" 2000 ) -2
¢ " 4000 ) =)
(" 6000 ) =2
(add 0000 ) -2
(" OBO0 ) -
(. _SE 3 =5
(* 308 ) >

Fig 1.3 and earlier

e e e e e e e e
H cnt H
- = &
H name i
Ay NF & :
] %
e e e +
t LFA H
e e
Ftiink) |
s +
i CFA H
o —
{ ~>code !
e e s o +
i PFA H
;. params
1 |
e e e o e e +

810 typ
815 or
8" sing
8 i "

Drive 1

RN AN

returning

e 5 1/4" single dens.

8" double dens.

le dens. DEC interleave
i non—interleaved

Fig 1.4

e o e o e e e e “+

{ LFA H

. e

T tnk) |

e e e -+

i count H

e

H name H

: NFA :

H H

e e e e e +

i CFA H

g e

| =>code |

o e s s +

i PFaA H

. params

e e s e e e e +




