®

HANDY REFERENCE CARD

valFORTH 1.1

Stack inputs and outputs are shown; top of stack on right.
This card follows usage of the Forth Interest Group

Control Structures

00...L00P do: { end+l start --) Set up loop, given index range.
(

1 -~ index) Place current index value on stack.
{S.F. Bay Area); usage aligned with the Forth 78 T (-- index) Used to retrieve index after a >R.
International Standard. J (-- index) Place index of outer DG-LOOP on stack.
for more info: Forth Interest Group LEAVE (==) Terminate loop at next LOOP, +LOOP, or /LOOP.
P.0. Box 1105 2EXIT (-- LEAVE if ?TERMINAL is true (i.e. pressed).

)
San Carios, CA 94070. 00... +LOOP do: (end+l start --)

Toop: { n ==
(end+l start --)

Like DO...LOOP, but adds stack value (instead of
+ always '1') to index.
00... /LOOP do:

Like DO... +LOOP, but adds unsigned value to
— /loop: (u ==) index.
Joerand Key: n,nl,... 16-bit signed numbers IF...(true) if: (f --) If top of stack true (non-zero), execute. {Note:

d,dl,... 32-bit signed numbers ...ENDIF Forth 78 uses [F...THEN.)

u 16-bit unsigned number IF...(true)

addr address .. ELSE if: (f ==} Same, but if false, execute ELSE clause. {Note:

b 8-bit byte ...(false) Forth 78 uses IF...ELSE...THEN.)

c 7-bit ascii character value ...ENDIF

f boolean flag BEGIN. .. until: (f --) Loop back to BEGIN until true at UNTIL. (Note:

fp flogtmg point number UNTIL forth 78 uses BEGIN...END.)

5 string BEGIN. .. while: (f --) Loop while true at WHILE;REPEAT Toops uncondition-
WHILE ally to BEGIN. ({Note: Forth 78 uses BEGIN...IF
.. .REPEAT ...AGAIN.)

Stack Manipulation

2P (n--nn) Dupiicate top of stack. N -
OROP (noe) Throw away top of stack. Terminal lnp"n OUtDUt
SWAP (nln2--n2nl) Reverse top two stack items. . (n--) Print number
OVER { nl n2-- nln2nt) Make copy of second item on top. -R (n fieldwidth --) Print number, right-justified in field.
R0T (nin2n3-- n2n3nl) Rotate third item to top. i (d-- Print double-precision number
<ROT (ntn2n3--n3nln2) Rotate top item to third. 0.R (d fieldwidth Print double-precision number, right-justified in
-0uP {n--n?) Duplicate only if non-zero. field
>R {n--) Move top item to "return stack” for temporary R (- Do a (.:arriage return.
storage (use caution). SPACE (--) Type one space.
R> {--n) Retrieve item from return stack. SPACES {(n -} Type n spaces.
] {(~=n) Copy top of return stack onto stack. M (--) Print message (terminated by “).
DUMP (addr u -~) Dump u words starting at address.
) TYPE (addr u --) Type string of u characters starting at address.

Number Bases COUNT { addr -- addr+l u) Change iength-byte string to TYPE form.

. . 2TERMINAL { -- f) True if terminal break request present.
BE‘;‘ML - i g:E g:i;rg:::i;;?eéase KEY (-- ¢ ; Read key, put ascii value on stack.

e v ta EMIT (c -- Type ascii value from stack.
3ASE - addr) System variable containing number base. EXPECT (addr n --) Read n characters (or until carriage return) from
input to address.

o . . WORD {(c-=1) Read one word from input stream, using given

Arithmetic and Logical

¥

nl n2 -- sum)

Add.

character (usually blank) as delimiter.

(
o+ (dl d2 -- sum) Add double-precision numbers. - .
- { nl n2 -- diff) Suntvjacc (ni~-n2). |ﬂDUt oumt Formatmg
N { nln2-- prod { Muitiply. NUMBER (addr -- d) Convert string at address to double-precision number.
/ (nln2-~ quot) Divide (nl/n2). o P (=—-) Start output string.
'\1,00 { nln2-- rem) Modulo (i.e. remainder from d1v1§1on). 2 (d--d) Convert next digit of double-precision number and
/40D (nl n2 -- rem guot) Divide, giving re_ma_mder and quotient. add character to output string.
*/MOD (nl n2 n3 -- rem quot) Multiply, then divide (nl*n2/n3), with double- S (d--00) Convert ail significant digits of double-precision
precision intermediate. number to output string.
A nl nZ n3 -- quot) Like */MOD, but give quotient only. SIGN (nd--d) Insert sign of n into output string.
:‘?: "H :g - I;?: ; m::m #> d -- addr u) Terminate output string (ready for TYPE).
- . H - ii i ing.
ARS n - absolute) Absolute value. OLD (¢ Insert ascii character into output string
DABS d -- absolute) Absolute value of double-precision number.
MINUS (n-- -n) Change sign.
DMINUS d-- -d) Change sign of double-precision number. Disk Handling
AND nl n2 -- and } Logical AND (bitwise). LIsT { screen --) List a disk screen.
9R nl nZ -- or N Logical OR %bIFwtsgé.(b't ise) LOAD { screen --) Load disk screen (compile or execute).
XOR nl n2 -- xor | %._og'lcglf éxclusive 1(vy!se : BLOCK (biock -- addr) Read disk block to memory address.
NoT n--f) rueh1 %og)number zero (1.e. reverses B/BUF { -- n) System constant giving disk block size in bytes.
truth value). 8LK { -- addr) System variable containing current block number.
. SCR (-- addr) System variable containing current screen number.
Comparison UPDATE (--) Mark last buffer accessed as updated.
.) F - i isk.
< (Al n2-- f} True if nl less than n2. Ehg%- E = ; :’;;;: :H gﬁgigig buffers to dis
> {nln2--f) True if nl greater than n2. BUFFERS ‘
<= (0ln2-- f) True if nl less than or equal to n2.
>= (nin2--f) True if nl greater than or equal to n2.
= (nln2-- f) True if top two numbers are equal. N
< {nln2-- f) True if nl does not equal n2. Deﬁmng wo'ds
0 (n-- f True if top number negative. XXX . : initi
0> - £ True if top number positive. ; E o ; E§g1zo§g:\°geg?:::‘ié;?’1 of xxx.
o= {n--f : True if top number zero (i.e. reverses VARIABLE xxx (n ==) Create a variable named xxx with initial value n;
ax {n--f Eruth_value. 1 xxx: { -- addr) returns address when executed.
. True if n does not equal zero. CONSTANT xxx (n ==) Create a constant named xxx with value n; returns
xxx: (== n) value when executed.
Memory CODE xxx (-) Begin definition of assembly-Tanguage primitive
; ‘ PR operative named xxx.
8 5 addr ")\ Replace word address by contents. ;CODE { --) Used to create a new defining word, with execution-
! {naddr - Store second word at address on top- time “code routine" for this data type in assembly.
ca ((;dg;d;'f) Ei;‘f‘g g:: gyg: g:}y. <BUILDS... does: (-- addr) Used to create a new defintng word, with execution-
5 { addr -- J ! Print contexts of ic'idress. DOES> time routine for this data type in higher-level Forth.
2 { addr --) Print byte at address. LABEL xxx (-- adar) Creates a header xxx which when executed returns its
y? { agdr --) Print unsigned contents of address. .
+ (n addr =~} Add-second number on stack to contents of address
on top.
CMOVE { from to u --) Move u bytes in memory from head to head.
<CMOVE { from to u ==} Move u bytes in memory from tail to tail.
FILL { addrubd --) Fi1l u bytes in memory with b, beginning at
address.
ERASE { addr u ==} Fill u bytes in memory with zeroes, beginning at
address.
BLANKS { addr u -- Fill u pytes in memory with blanks, beginning at

s T

_ address.

"Sottware and Documentation
©Copyright 1982
Vaipar Inteinational

’ EE

HANDY REFERENCE CARD

valFORTH 1.1 valFORTH Memory Map

Vqcabularies STANDARD DISPLAY
CONTEXT . (-- addr) Returns address of pointer to context vocabulary MEMORY AREA
. (searched first).
CURRENT { -- addr) Returns address of pointer to current vocabulary
(where new definitions are put). .
FORTH {--) Main Forth vocabulary (execution of FORTH sets
CONTEXT vocabulary).
EDITOR (-~) Editor vocabulary; sets CONTEXT.
ASSEMBLER E -- ‘(Assembler vocabulary; sets CONTEXT.
DEFINITIONS -) Sets CURRENT vocabulary to CONTEXT.
VOCABULARY { --) Create new vocabulary named xxx. [GENERAL BUFFER F PAD
XXX
VLIST {-- Print names of all words in CONTEXT vocabulary. WORD BUFFER } $0080 BYTES
DP —=
Miscellaneous and System DICTIONARY
{ - Begin comment, terminated by right paren on same LIMIT —=f
line; space after (.
FORGET xxx { == Forget all definitions back to and including xxx. DISK BUFFERS | USE
ABORT T Error termination of operation. 2112 BYTES DECIMAL
' xX% { -- addr)} find the address of xxx in the dictionary; if used (RELOCATABLE) l=— PREV
in definition, compile address. FIRST
HERE (-- addr } Returns address of next unused byte in the (TASK}
dictionary. KERNEL
PAD { -- addr } Returns address of scratch area [(usually 128 bytes $0700 0 +ORIGIN
beyond HERE}. } $0600 BOOT CODE
N { -- addr) System variable containing offset into input buffer.
Used, e.g., by WORD.
5P@ { -- adn)ir) Returns address of top stack item. $O5FF
ALLOT {(n-- Leave a gap of n bytes in the dictionary.
s {n--) Compile a number into the dictionary. I ATARI FLOATING POINT J
$057E
I USER AREA }
$0480 up
$01FF ——=m—RO
RETURN STACK __..-==""
AP —e= e IN
—wee==="""" TERMINAL BUFFER
$0100 = TiB
$00FF
ATARI FLOATING POINT J
$00D4
Z PAGE UP NIPW
SP IS X REGISTER
RP IS STACK POINTER
OF CPU
SO
STACK $00BC-$0080
SP —=|

Aari is a trademmark of Atari. inc.. a division of Warmer Communications.

Software and Documentation
- - ©Copyright 1982
. Valpar International

SETCOLOR {

™

POS. (

POSIT {

PLOT {

DRAWTO {

STYPE

r
o
IS

T
=1
@
A

v
o
']
©

SCD>

>BSCD

3SCh>

COLOR (
CLRBYT (

GREY --
GOLD -
QRNG --
RDORNG -~

SOUND

50.
FILTER! !

AUDCTL (

ASND {
(SND4 {

Text Outpuf and Disk Préparation -

HANDY REFERENCE CARD

valFORTH 1.1

Graphics and Color

nl nZ n3 --

nl n2 n3 -~)

no--

addr count -- }

xy-=-b}

cl --c2)

addrl addr2 count --)

addrl-addr2 count --)

Color register nl (0...3 and 4 for background)
is set to hue n2 (0 to 15) and luminance 03
(0-14, even).

Alias for SETCOLOR.

Identical to GR. in BASIC. Adding 16 will
suppress split display. Adding 32 will suppress
display preclear. In addition, this GR. will
not disturb player/missiles.

Same as BASIC POSITION or POS. Positions the
invisible cursor if in a split display mode,
and the text cursor if in 0 GR

Positions and updates the cursor, similar to
PLOT, but without changing display data.

Same as BASIC PLOT. PLOTs point of color in
register specified by last COLOR command, at

point x y.
Same as BASIC DRAWTO. DOraws tine from Tast
PLOT' ted, DRAWTO'ed or POSIT'ed point to x

using color in register specified by last COLOR
command.

Alias ‘or DRAWTO.

Fills area between last PLOT'ted, DRAWTO'ed or
POSIT'ed point to last position set by POS N
using the color in reg1ster b.

Used in the form G" ccccc”. Sends text cccc to
text area in non-0 Grauhics mode, starting at
current cursor position, in color of register
specified by last COLOR command prior to cccc
being output.

Starting at addr, output count characters to
text area in non-0 Graphics mode, starting at
current cursor pesition, in color of register
specified by last COLOR command.

Positions the cursor at x y and fetches the
data from display at that position. Like
BASIC LOCATE and LOC. .

Run-time code compiled in by G".

Leaves the x and y coordinates of the cursor
on the stack.

Outputs the data b to the current cursor
position.

Fetches the data b from the current cursor
position.

Converts cl from ATASCII to its display screen
code, c2. Example: ASCIIT A >SCD 88 @ C!

will put an "A" into the upper left corner of
the display.

Converts ¢l from display screen code to ATASCII
c2. See >SCD:

Moves count bytes from addri to addr2,
translating from ATASCII to display screen
code on the way.

Moves count bytes from addrl to addr2,
transiating from display screen code to
ATASCII on the way.

b --) Saves the value b in the variable CLRBYT.
-- addr) Variable that holds data from last COLOR
command.
0 PINK - 4 BLUE - 8 GREEN -- 12
1 LVNDR - 5 *LTBLUE -- 9 YLWGRN -- 13
2 BLPRPL -- 6 TURQ -- 10 ORNGRN -- 14
3 PRPIBL -~ 7 GRNBL -~ 11 LTORNG -- 15
{CONSTANTs) -~
chan freq dist vol --) Sets up the sound channel “chan' as indicated.
Chanpel: 0-3
Frequence: 0-255, 0 is highest pitch.

chan freq dist vol --)
n--)

-- addr)

n-~)

-)

flag --)

{ flag --)

{ ==)
.Gy

-- n {executing)
. ¢, == {compiling))
start count -~)
scr ==

FORMAT

start cnt --)

Distortion: 0-14, evens only.
Volume 0-15.
Suggested mnemonic:
Alias of SOUND.
Stores n in the audio control register and into
the vaiFORTH shadow register, AUDCTL. Use
AUDCTL when doing bit manipulation, then do
FILTER!.-

A variable cnntammg the last value sent to the
audio control reg1ster by FILTER!.

Silences channel n.

Silences all channels.

CatFish Don't VYote

e

[flag is true, enables handler that sends
tadt to text screen. If false, disables the
dler. (See PFLAG in main glossary.)
: 9 is true, enables handler thot sends
text to printer.. If false, disabies the
handier, (See PFLAG in main glossary!
Makes a raucous noise- from the keyboard.
r‘onverts next character ia input stream to
ATASCIT code. 7 executing, Teaves on stack.
If cemniling, comniles as | il
Causes 2 form feed on smart printars if thea
printer hardler has been gnabled hy ON-
May need adjustment for dumb or nenstar
orinters.
From start, 1i3¢3 count screens.
By, CONSGLE button at the end of a
Lists scraen <cr to the printer,
former orinter handier status.
From start, lists cnt screens to printer three
to a page, then restores former printer-nandler
status.. May be azborted by CONSOLE butten at
the end .of a screen.
With prompts, will format a disk in drive of
your cpoice.

gl

May be aborted
resn,
“hen restoces

Debugging Utilities

DECOMP
coump

#DUMP

(FREE)
FREE

H.
STACK
.S

U.s

B?

CFALIT

Floating
FCONSTANT

FVARIABLE

FDUP
FDROP
FOVER
FLOATING

FP
Fe

Fl

Fx
F/
FLOAT

LOG
L0G10
EXP
EXP10

FLITERAL

xxx {

XXX
{ addr n -~}

{ addr

{ == n)

{ ¥

==

xxx

xxx {

-- cfa {executing))
- {compiling)}
Point

xxx (fp ==}

-~ fp)

xxx (fp --)
xxx: { addr --)

{ fpl -- fpl fpl)

(fp --)

(fp2 fpl -- fp2 fpl fp2)

xxx { -- fp}

xxx { -- fp)

(addr -- fp)

{ fp addr --)

(fp--)

{ addr --)

(fp2 fpl -- fp3)

(fp2 fpl -- fp3)

(fp2 fpl -- p3)

(fp2 fpl -- fp3)

(n--fp)

{ fp (non-neg, less
than 32767.5) -- n)

(fpl -- fp2)

{ fpl -- fp2)

{ fpl -- fp2)

(fpl -- fp2)

(fp -- flag)

(fp2 fpl -- flag)

{ fp2 fpl -- flag)

(fp2 fpl -- flag)

(fp --)

Operating System

OPEN

RS232

{ adde n0 nl n2 ~- n3 }

n-s)
ol n == £2)

n - b2)

b1
{ addr nl n2 -- n3)

{ addr nl n2 -- n3)
-b)
bl b2 b3

h3 b4 b5 96
- 59)

Ooes a decompilation of the word xxx if it can
be found in the active vocabularies.
A-character dump from addr for at least n
characters., {Will always do a multiple of 16.)
A numerical dump in the current base for at
liast)n characters. (Will always do a multiple
of 8.

Leaves number of bytes between bottom of display
Tist and PAD.

Does (FREE) and then prints the stack and
"bytes".

Prints n in HEX, leaves BASE unchanged.

If flag is true, turns on visible stack.

If flag is false, turns off visible stack.

Does @ signed, nondestructive stack printout,
TOS at right. Also sets visible stack to do
signed printout.

Does unsigned, nondestructive stack printout,
T0S at right. Also sets visible stack to do
unsigned printout.

Prints the current base, in decimai.
BASE undisturbed.

Gets the cfa (code field address) of xxx. If
executing, leaves it on the stack; if compiling,
compiles it as a literal.

Leaves

The character string is assigned the constant
value fp. When xxx is executed, fp will be
put on the stack.

The character string xxx is assigned the
initial value fp. When xxx is executed, the
addr (two bytes) of the value of xxx will be
put on the stack.

Copies the fp number at top-of-stack.

Discards the fp number at top-of-stack.)
Copies the fp number at 2nd-on-stack to
top-of-stack.

Attempts to convert the following string, xxx,
to a fp number.

Alias for FLOATING.

Fetches the fp number whose address is at
top-of-stack.

Stores fp into addr. Remember that the
operation will take six bytes in memory.

Type out the fp number at top-of-stack.
Ignores the current value in BASE and uses
base 10.

Fetches a fp number from addr and types it out.
Replaces the two top~of-stack fp items, fp2 and
fpl, with their fp sum, fp3.

Replaces the two top-of-stack fp items fo2 and
fpl, with their difference, fp3=fp2-fpl.
Replaces the two top-of-stack fp items fp2 and
fpl, with their product, fp3.

Replaces the two top-of-stack fp items fp2 and
fpl, with their quotient, fp3=fp2/fpl.
Replaces number at top-of-stack with its fp
equivalent.

Replaces fp number at top-of-stack, constrained
as indicated, with its integer equivalent.
Replaces fpl with its base e logarithm, fp2.
Not defined for fpl negative.

Reptaces fpl with its base 10 decimal logarithm,
fp2. Not defined for fpl negative.

Replaces fpl with fp2, which equals e to the
power fpl.

Repiaces fpl with fp2. which equals 10 to the
power fpl.

If fp is equal to floating-point 0, a true
flag is left. Otherwise, a false flag is left.
If fp2 is equal to fpl, a true flag is left.
Otherwise, a false flag is left.

If fp2 is greater than fpl, a true flag is
left. Otherwise, a false flag is left.

If fp2 is less than fpl, a true flag is left.
Otherwise, a false flag is Tleft.

If compiling, then compile the fp stack value
as a fp Jiteral.

This word opens the device whose name is at
addr. The device is opened on channel nQ with
AUX1 and AUX2 as nl and n2 respectivel,. Tae
device status byte is returned as n3.

Closas channel n.

Outputs byte bl on channel 1.
byte o2.

Gets bvte bl from channel n, returns status
byte b2.

Inputs record ‘rom channel n2 up to length ni.
Returns status hyte n3.

Outputs nl characters starting at addr through
channed nZ. Returns status byte n3.

Returns suatus byte b from channel n.

From channel nl gets device status bytes bl and
b2, and normal status bHyte b3.
ents tha Operating System
nd.

retyrns status

“Special"

AUXL through AUXG are bl through b6
vely, command byte is &7, channel number
Returns status hyte b9.

i 850 drivzrs into tne dictionary

Seftware and Documentation
©Copyright 1982
Vaipar International

HANDY REFERENCE CARD

valFORTH 1.1

valFORTH 6502 Assembler

ASSE!BLER { ——= Calls up the assembler vocabulary for subsequent
assembly language programming.
CODE xxx { === Enters the new word “xxx" into the dictionary

as machine language word and calls up the
assembler vocabulary for subsequent assembly
language programming.
' { e) Terminates an assembly language definition by
performing a security check and setting the
CONTEXT vocabulary to the same as the CURRENT

vocabulary.
END-CODE { ---) A commonly used synonym for the word C: above.
The word C; is recommended over END-CODE.
SUBROUTINE xxx { =-=--) Enters the new word "xxx" into the dictionary

as machine lanquage subroutine and calls up
the assembier vocabulary for subsequent assembly
language programming.

;CODE [T When the assembler is Joaded, puts the system
into the assembler vocabulary for subseguent
assembly language programming. See main
glossary for further explanation.

Control Structures

1F, (flag --- addr 2) 8egins a machine language control structure
based on the 6502 status flag on top of the
stack. teaves an address and a security check
value for the ELSE, or ENDIF, clauses below.
"#lag" can be EQ , NE , CC , C5 , VC , VS,

- MI, or PL . Command forms:
...flag..IF,..if-true. .ENDIF,. .all...
...flag..IF,..if-true..

ELSE,..if-false..ENDIF,..all...

CLSE, (addr 2 --- addr 3) Used in an IF, clause to aliow for execution
of code only if IF, clause is false. If the IF,
clause is true, this code is bypassed.

ENDIF, { addr 2/3 -=- Used to terminate an IF, control structure
clause. Additionally, ENDIF, resolves ail
forward references. See IF, above for command
form.

BEGIN, (~-- addr 1 j Begins machine language control structures of

the following forms:

...BEGIN,...AGAIN,...

...BEGIN,...flag. .UNTIL, ..
...BEGIN,...flag..WHILE,..while-true. .REPEAT,...
where "flag" is one of the 6502 statuses: EQ ,
NE, CC,CS, ¥C , VS, MI, and PL .

UNTIL, { addr 1 flag --- Used to terminate a post-testing BEGIN, clause
thus allowing for conditional tooping of a
program segment while "flag" is false.

WHILE, i addr 1 flag --- addr 4) Used to begin a ore-testing BEGIN, clause thus
allowing for conditional looping of a program
segment while "flag" is true.

REPEAT, { addr 4 --- ; Jsed to terminate a pre~testing BEGIN,..WHILE,
clause. Additionally, REPEAT, resolves all
forward addresses of the current WHILE, clause.

AGAIN, { addr 1 --- } Used to terminate an unconditional BEGIN,
clause. Execution cannot exit this loop unless
a JMP, instruction is used.

Parameter Passing (These routines must be jumped to.)

NEXT (--- addr) Transfers control to the next FORTH word to be
executed. The parameter stack is left unchanged.
PUSH (--- addr } Pushes a 16 bit value to the parameter stack

whose low byte is found on the 6502 return
stack and whose high byte is found in the
accumutator.

PUSHOA { --- addr) Pushes a 16 bit value to the parameter stack
whose low byte is found in the accumulator and
whose high byte is zero.

PUT { --- addr) Replaces the value currently on top of the
parameter stack with the 16 bit value whose
Tow byte is found on the 6502 stack and whose
high byte is in the accumulator.

PUTDA { --- addr) Replaces the value currently on top of the
parameter stack with the 16 bit value whose
low byte is in the accumulator and whose high
byte is set to zero.

B INARY {o--- addr Orops the top value of the parameter stack
and then performs a PUT operation described
above.

POP ana { === addr) POP drops one value from the parameter stack.
POPTWO O0PTWO drops two values from the parameter
stack.

SETUP { --- addr ! Moves one to four values to the N scratch area

in the zero page and drops all values moved
from the parameter stack.

N { --- addr Points to a nine-byte scratch area in the zero
page beginning at N-1 and going to N+7.

Opcodes { various --- various) ADC, AND, ASL, BIT, BRK, CLC, CLD, CLI,
CLV, CMP, CPX, CPY, DEC, DEX, DEY, EOR,
INC, INX, INY, JSR, JMP, LDA, LDX, LDY,
LSR, NOP, ORA, PHA, ©OHP, PLA, PLP, ROL,
ROR, RTI, RTS, S$BC, SEC, SED, SEI, STA,
STX, TAX, TAY, TSX, TXA, TXS, TYA,
Aliases
NXT, = NEXT IMp_ POP2, = POPTWO JMP,
PSH, = PUSH JMP, L, = XSAVE LDX,
PUT, = PUT JMP, S, = XSAVE S7X,
PSHA, = PUSHOA JMP, THEN, = ENDIF,
PUTA, = PUTOA JMP, END. = UNTIL,
POP, = POP IMP,

Software and Documentation
© Copyright 1982
Valpar International

HANDY REFERENCE CARD
valFORTH
SOFTWARE SYSTEM
GENERAL UTILITIES

Strings
UMOVE { addrl addr2 n --)
"ooect {-- }
{ -- addr)
SCONSTANT xxx (§ --
xxx: (-5
SYARIABLE xxx (n -- ¥
xxx: (--=$)
s. (s--1
31 (S addr --)
3+ {(s1 82 -- $3)
LEFTS {31 n -- 32
RIGHTS {51 n -- 321
MIDS (St n u -- S2)
LEN (S --len)
AsC (§--c)
SCOMPARE (S1 s2 -- flag)
3= (S1 2 -- flag)
S< (s1 52 -- flag)
5> (S1 32 -- flag)
SAVES (s1 -- S22}
INSTR (81 82 -- n)
CHRS (c == $)
0STRS {d -- S
STRS (n -- 3)
STRINGS {n S1 -- 32
=INS (n--5%)
INS {-- 35)
S-T8 (81 -- 52
SACHG (81 -- s2)

Array Word Glossary

ARRAY xxx { A ==)
xxx:{ m -- addr)
CARRAY xx { no-- }
xxx:(m -- addr }

TABLE - xxX (== i .
Coaxxs(Tm - aadr
CTABLE xxx (=~ H

xxx:{ m -- addr)

YECTOR xxx (r0 ... oN count ..)}
xxx: { m -- addr

CYECTOR xxx {b0 ... oH count --
xxx: m -- addr)

Double Number Extensions

YMOVE is a “universai" memory move. It takes OVARIABLE

the block of memory n bytes long at addrl and

copies it to memory location addr2. UMOVE

correctly uses either CMOVE nr <CMOVE.

{at compile time) DCONSTANT

{at run time)

1f compiling, the sequence ccc (delimited by

the trailing ") is compiled into the dictionary D-

as a string: D0=
flent ciclel..iict

{at compile time) D=

{at execution time)

Takes the string on top of the stack and 00<

compiles it into the dictionary with the name

xxx. When xxx is later executed, the address <

of the string is pushed onto the stack.

Reserves space for a string of length n. D>

When xxx is later executed, the address of the

string is pushed onto the stack. DMIN

Takes the string on top of the stack and sends DMAX

it to the current output device. O>R

Takes the string at second on stack and stores

it at the address on top of stack. OR>

Takes $2 and concatenates it with $1, leaving

53 at PAD. D,

Returns the leftmost "n" characters of $1 as

s2. . DU«

Returns the rightmost “n" characters of $1 as

s2.

Returns $2 of length u starting with the nth M+

character of S$1.

Returns the length of the specified string.
Returns the ASCII value of the first character
of the specified string.

Compares S1 with $2 and returns a status flag.
Compares two strings on top of the stack.
Compares two strings on top of the stack.
Compares two strings on top of the stack. GC.
As most string operations leave resultant
strings at PAD, the word SAVES is used to

GCINIT

temporarily move strings to PAD+512. 6c.R
Searches $1 for first occurrence of $2.

Returns the character position in S1 if a GCO.R
match is found: otherwise, zero is returned.

Takes the character “c" and makes it into a

string of length one and stores it at PAD. GCEMIT
Takes the double number d¢ and converts it to

its ASCIT representation as S at PAD.

Takes the singie length number n and converts GCLEN
it to its ASCII representation as $ at PAD.

Creates S2 as n copies of the first character

of S1. GCR
#IN$ has three similar but different functions.

If n is positive, it accepts a string of n or GCLS
fewer characters from the terminai. If n is

zero, it accepts up to 255 characters from the GCSPACE
terminal. If n is negative, it returns only

after accepting -n characters from the terminal. GCSPACES
The resultant string is stored at PAD.

Accepts a string of up to 255 characters from GCTYPE

the terminal.
Removes trailing blanks from S1 Teaving new $2. GC" cce"
Exchanges the contents of S1 with S2.

GCBKS
o GCPOS
(compiling)
(executing)
When compiling, creates an array named xxx GCS.
with n 16-bit elements numbered 0 thru n-1.
Initial values are undefined. When executing,
takes an argument, m, off the stack and leaves SUPER
the address of element m of the array.
{compiling)
{executing)
When compiling, creates a c-array named xxx suB
with n 8-bit elements numbered-O thru n-1.
Initial values are undefined. When executing,
takes an avyument, m, off the stack and leaves
tea address ot element m of the c-array. YMI
(compiling;
{executing)
When compiling, creates a table named xxx but VML #
not allot space. Elements are compiled in OSTRIKE
actly with , {comma). executing, takes
ane avgument, m off the stach and, assuming
15-pit 2iements, leaves tne aduress of element GCBAS
wof table.
ng)
ompiling, creates a c-table named xxx GCLFT
but 2ces not a'lot space. Elements are compiled
in directly with €, (c-comma). When executing, GCRGT

takes one argument, m off the stack and, assuming
8-bit elements, leaves the address of element m
of the c-table.

{compiling)

xxx { d -=

xxx:{ -- addr)
xxx ((d --)
xxx: (--d)
(dl d2 -- d3)
(d -- flag)

{

dl d2 -- flag)
¢ -- flag)
dl d2 -- flag)

d1 42 -- flag)
dl1d2 -- 43)
dl d2 -- d3)
d--)
—-d)
a--)

udl ua2 -- flag)

dln -- d2)

High Resolution Text Output

-

no--)

-- addr)
ON or OFF --)

-- addr)

-~ addr)

-~ addr)

At compile time, creates a double number
variabie xxx with the initial value d. At
run time, xxx leaves the address of its value
on the stack.

At compile time, creates a double number
constant xxx with the initial value d. At
run time, xxx leaves the value d on the stack.
Leaves d1-d2=d3.

If d is equal to 0. leaves true flag;
otherwise, leaves false flag.

1f dl equals d2, leaves true flag; otherwise,
Teaves false flag.

If d is negative, leaves true flag; otherwise,
leaves false flag.

If d1 is less than d2, leaves true flag; other-
wise, leaves false flag.

If dl is greater than d2, leaves true flag;
otherwise, leaves false flag.

Leaves the minimum of d1 and d2.

Leaves the maximum of dl and d2.

Sends the double number at top of stack to the
return stack.

Pulls the double number at top of the return
stack to the stack.

Compiles the double number at top of stack
into the dictionary.

If the unsigned double number udl is less
than the unsigned double number ud2, leaves a
true flag; otherwise, leaves a false flag.
Converts n to a double number and then sums
with dl.

Initializes the graphic character output
routines. This must be executed prior to using
any other hi-res output words.

Displays the single Tength number n at the
current hi-res cursor location.

Displays the singie length number nl right-
Justified in a field n2 graphic characters
wide. See .R .

Displays the double length number d right-
justified in a field n graphic characters
wide. See D.R .

Displays the text character ¢ at the current
hi-res cursor location. Three special
characters are interpreted by GCEMIT.

Scans the first n characters at addr and
returns the number of characters that wili
actually be displayed on screen.

Repositions the hi-res cursor to the beginning
of the next hi-res text line. See CR .
Clears the hi-res dispiay and repositions the
cursor in the upper lefthawd corner.

Sends a space to the graphic character output

routine. See SPACE .
Sends n spaces to the graphic character output
routine. See SPACES .

Sends the first n characters at addr to the
graphic character output routine. See TYPE
Sends the character string ccc (delimited by ")
to the graphic character output routine.

Moves the hi-res cursor back one character
position for overstriking or underlining.
Positions the hi-res cursor to the coordinates
specified. Note that the upper lefthand corner
is 0,0.

Sends the string found at addr and preceded by
a count byte to the graphic character ocutput
routine. See S. .

Forces the graphic character output routine
into the superscript mode (or out of the sub-
script mode). See VMI below. May be performed
within a string by the a4 character.

Forces the graphic character output routine
into’ the subscript mode (or out of the super-
script mode). See VMI below. May be performed
within a string by the v character.

The VMI command sets the number of eighths of
characters to scroll up or down when either a
SUPER or SUB command is issued.

A variable set by VML,

[f the OSTRIKE option is ON, characters are
printed over top of the previous characters
giving the impression of overstriking.

A variable which contains the sddress of the

character set displayed by GCEMIT. To change
character sets, simply store the address of
your new character set into s variable.

A variable which holds the coivin position of
the left margin,
A variable which holds the column position of
the right margin.

{exex)
Ting, creates a vector named xxx

with ccunt 15-oit elements numbered 0-N.

n0 is

the initial value of =iement 0, nN is the
initial value of =lement N, and so on. uhen
executing, takes one argument, m, off the stack
and leaves the address of element m on the stack.

(compiiing)
(executing)
When compiling, creates a c-vector named xxx

with count 8-bit elements numbered 0-N. b0 is

the initial value of element 0, bN is the

initial value of ejement N, and so on. When

executing, takes an argument. m, off the stack

and leaves the address of elgment m on the stack.
2N

Software and Dgcurmentation
©Copyrinht 1582
Valpar international

valFORTH. L
SOFTWARE SYSTEM
GENERAL UTILITIES

Case Structures

SEL Structure

Format: format:
CASE: wordname 1 wordname
wordQ0 e
wordl SEL
. nl -> wordQ
wordN 3 n2 -> wordl
Structure AN > wordN
I (NOSEL wordnone |}
Format: SELEND
wordname
COND_Structure
CASE
word0 Format:
wordl
B wordname
wordN .
 NOCASE wordnone COND
CASEND conditiond << wordsO >>
S conditionl << wordsl >>

conditionN << wordsn >>
(NOCOND wordsnone)
CONDEND

Miscellaneous Utilities

XR/W ¢ #secs adar blk flag -- } "Extended read-write." The same as R/W except
that XR/W accepts a sector count for multinle
sector reads and writes. Starting at address
addr ana block blk, read {flag true) or write
(flag false) #secs sectors from or to disk.

LOADS { start count --) Loads count screens starting from screen #
start.

THRY { start finish -- Converts two range numbers to a start-count

start count } format.

SEC (== Provides an n second delay. Uses a tuned
do-100p.

MSEC G e) Provides an n millisecond delay. (approx)
Yses a tuned do-ioop.

Hesb fnio--n2) Moves the high byte of nlto the low byte and
zero's the high byte, creating n2. Machine
code.

L~>H {1l -- n2 Moves the low byte of nl to the high byte and
zero's the low byte, creating n2. Machine code.

H/L [nl -- al{hi} al(1o} I Solit top of stack into two stack items:

New top of stack is low byte of old top of
stack. New second on stack is old top of
stack with low byte zeroed.

21T =TT I Creates a number n that nhas only its bth bit
set. The bits are numbered Q-15.

2817 b .- f teaves a true flag if the bth bit of n is set.

. Otherwise leaves a false flag.

TBIT fnlb--n2) Toggles the bth bit of nl, making n2.

SBIT {nlb--n2) Sets the bth bit of nl, making n2.

RBIT {nlb.-=-n2} Resets the bth bit of nl, making n2.

STICK { n -- horz vert ; Reads the nth stick (0-3) and resolves the
setting into horizontal and vertical parts,
with values from -1 to +1. -1 -1 means up

) and to the left.

PADDLE {al -- n2) Reads the nith paddle {0-7) and returns its

| value n2. Machine code.

16TIME { -~ n Returns a 16 bit timer reading from the system
clock at locations 19 and 20, decimal.

8RND f—=b 1 - Leaves cne random byte from the internal
hardware. Machine code.

16RND { -=n] Leaves one random word from the internal

hardware. Machine code with 20 cycle extra
. delay for rerandomization.

ul == u2) . Randomly choose an unsigned number u2 which

is less than ul.

CSHUFL { addr n -- 1 Randomly rearrange n bytes in memory, start-

ing at address addr.

addr n -~ Randomly rearrange n words in memory, start-

ing at address addr.

JUMP { addr n -- ; Starting at addr, dump at least n bytes (even
muitiple of 8) as ASCII and hex. May be
exited early by pressing a CONSOLE button.

{ addr count o -- Starting at address addr, for count bytes,
perform bit-wise exclusive OR with byte b at
each address.

i addr count b -- Starting at address addr, for count bytes,
perform bit-wise AND with byte b at each

. address.

B80R i addr count b - | Starting at address addr. for count bytes,

perform bit-wise OR with byte b at each address.

STRIG ‘n flag | Reads the duttom of joystick n (0-3).

PTRIG {a-- flag Reads the button of paddle n (0-7).

CHOOSE

SHUFL

3X0R

w
=
2
=]

Software and Documentation
©Copyright 1982
Valpar International

