ULTRA
DISASSEMBLER

For the Atari 400 / 800 / 1200

by Ralph Jones

Manual and Program, Copyright © 1983, Adventure International

Published by

Adventure International

A Subsidiary of Scott Adams, Inc.

BOX 3435 « LONGWOOD, FLORIDA 32750 = (305) 862-6917

ULTRA DISASSEMBLER

TABLE OF CONTENTS

T e Rt R e S S Sl S B
BRI ¢ .5 b .15 0555 55550 00068 bk oo s A es s

' Modifying T T bk i R R P e N bt e

ULTRA UTILITY SERIES

COPYRIGHT 1983 ADVENTURE INTERNATIONAL

ULTRA DISASSEMBLER

INTRODUCTION

Adventure International is pleased to introduce the latest in the Ultra
Utility Series - Ultra Disassembler.

Ultra Disassembler is a utility which enables you to analyze existing
machine language programs and modify them to fit your own requirements. Of
course, it does what all disassemblers do — it translates machine language into
assembly language. What makes Ultra Disassembler unique is that it also
formats the output into highly readable pseudo-source code with standard
system labels where appropriate, and writes it to disk in a form suitable for
editing and reassembly with all of the major Atari disassemblers (Atari Macro,
Atari Assembler/Editor, DATASM-85, EASMD, etc.).

To make best use of Ultra Disassembler, you need a working knowledge
of 6502 assembly language and the Atari Operating System. The program is
written on the assumption that after disassembling a program you will
reassemble it with the Atari Macro Assembler (hereafter we'll refer to it by its
program file name AMAC), because the full-symbol reference map this
assembler produces is an invaluable aid in analyzing programs. Along the way,
instructions will be given for adapting it to all the other popular assemblers.

READ THE MANUAL!

Before you try to use the program, please read this manual carefully; then
go to the ‘Getting Started’ section and follow the example in which you will
disassemble and recreate the DUP.SYS file in the DOS.

SYSTEM REQUIREMENTS
The minimum equipment needed to run the Disassembler is:

(1) An Atari 400/800/ 1200 computer with at least 32K RAM

{2) One Atari 810 disk Drive (or other 810-compatible Drive)

(3) A video monitor or TV set (there is no use of color in this program, so
a black-and-white monitor is adequate.)

OPTIONAL EQUIPMENT

The following optional equipment will make Ultra Disassembler even more
useful:

(1) 48K RAM

(2) Additional disk Drives

(3) A printer and its associated interface adapter such as the Atari 825 or
Epson MX-80 with the Atari 850 Interface Module

ULTRA UTILITY SERIES

COPYRIGHT 1983 ADVENTURE INTERNATIONAL

ULTRA DISASSEMBLER

Additional RAM increases execution speed, since the Disassembler uses all the
empty RAM space as an input buffer. Additional drives will allow you to run a
full disassembly with less disk swapping, and enable you to reassemble
programs too large to fit on one disk (if your assembler supports file linking). A
printer will deliver a listing of a disassembly similar to an assembly listing so you
can study the logic flow of a program at your leisure.

Finally, a copy of Adventure International’s DISKEY may prove extremely
useful.

ULTRA UTILITY SERIES

COPYRIGHT ' 1983 ADVENTURE INTERNATIONAL

o

ULTRA DISASSEMBLER

Chapter 1
Getting Started

Here comes some advice you've seen before, just in case any of you
missed it the first time:

MAKE A BACKUP COPY!!!

Format a disk, write DOS 2.0S to it, and then copy file DISKDIS % from the
distribution disk to the new one with DOS Option O. Put the original Ultra
Disassembler disk in a safe place and use the newly created disk as your
working copy. Also format several blank disks for use as pseudo-source code
output disks.

Next, boot up DOS 2.0S (if you haven’t done so already), and use Option
L (Binary Load) to load file DISKDIS* . Ultra Disassembler will start up
automatically and display a message asking how many disk drives you're using
— enter [] or g and press [JI{ILT.

You'll be asked whether the disassembly is to be done from a file, a sector
list or memory. For this example we'll use your DUP.SYS file, so enter [j
(BT Now you'll be asked for an input (object code) file name; enter JIEE [N
(@351 8 AL Now you'll be asked for an ‘output file name’; enter [] (for 1
Drive; [@ for 2 Drives):DUP, but DO NOT add a file name extender (we'll see
why soon), and press [[IIILT]. You will be prompted to insert the input disk (in
this case, any disk with DUP.SYS on it) in Drive 1, and, if you're using two
drives, the output disk (a blank one) in Drive 2. Do whichever is appropriate
and press [IILQ. If you have one drive, you'll be asked repeatedly for the input
or output disk; whenever you get the prompt (along with a console bell to get
your attention), insert the appropriate disk and press [JI{ILII.

You'll hear the usual disk-read beeps from the monitor until the machine
has read the input file. The message 'CREATING LABELS’ will appear
repeatedly on the screen, as the program examines every instruction in the
program and creates an assembly label for each address referenced by an
instruction.

Next, you'll hear some disk-write sounds, and the disassembled code wiill
begin scrolling up the screen. At this point, the program is disassembling
instructions one at a time and writing them to the output disk. When it runs out
of space on the output disk (this happens with object files longer than about
10K; DUP.SYS will only use one disk), you will be asked for a fresh disk.
Remove the present output disk, insert a blank one in its place and press

ULTRA UTILITY SERIES

COPYRIGHT «' 1983 ADVENTURE INTERNATIONAL

ULTRA DISASSEMBLER

Whenever you want to take a close look at the output code, press the
button — the program will freeze until you press §LIj again. The code you see
is identical to what goes to the output disk, except that the screen version has a
memory address at the start of each line, just like an assembly listing.

If you have a printer available, you can also route the screen output to it
with the SIIEL] button. The printer will start when you press {31l and stop
when you press it again.

When the last instruction has appeared on the screen, you'll get the
message '‘DISASSEMBLY COMPLETE'. Reload DOS. (As long as a disk
containing DOS is in Drive 1, you can do this just by pressing SEI [E3].) At
this point, the output disk contains a complete disassembly of DUP.SYS. Let's
see what it looks like.

Run a directory of the output disk. You'll see files named DUP.000
through DUP.003, each of them 132 sectors long except the last one. This is
how DISKDIS keeps the 'source’ files within the size limits of your program
text editor; output files are limited to 4000(hex) bytes long and only four files
are written to each output disk. This leaves enough room on the disk for you to
do a moderate amount of editing on the ‘source’ files before you reassemble
the program. It also explains why you were cautioned not to give an extender
with the output file name: DISKDIS adds its own numerical extender to
identify the file.

Now look at the contents of file DUP.000. If you didn’t select printer
output, there are three ways to do this:

* Load the file into the program text editor you use with your assembler

* Copy it to device P: with DOS Option C if you have a printer

* Copy it to device E: with DOS Option C and watch it go by on the
screen, pressing f] whenever you want to stop and look.

The file will begin with a series of equate instructions assigning addresses to
the names of various Atari system locations, such as:

MEMTOP = $02E5

Each of these instructions defines the address of a system location which is
referenced by an instruction in the program (except for some ‘phony’ locations
which we'll look into later).

Next there will be a list of equate instructions for locations which were
referenced on memory page 0 (notice that these labels begin with a Z instead of
the L used in other nonsystem labels). The need for this zero-page equate list
will be discussed in the section on the ‘Zero-Page Address Problem’.

ULTRA UTILITY SERIES

1-2 COPYRIGHT 1983 ADVENTURE INTERNATIONAL

o~

ULTRA DISASSEMBLER

The next item after the equate instructions is
ORG $1FOC :

This sets the program origin to the start address in the binary file header; you'll
find another one wherever the file skips over a section of memory. (If you aren’t
used to AMAC, ORG is equivalent to * = in most other assemblers.)

Now we come to the actual CPU instructions. Notice that address
references in the instructions are given as labels and that the referenced
instructions themselves are labeled. The labels begin with L1 and run up to
L1023 (except zero-page labels which have a Z instead of an L); if the object
program uses more than 1023 addresses, further instructions will contain
absolute addresses.

Scan through the file and you'll see one of the most powerful features of
Ultra Disassembler: addresses that represent documented Atari Operating
System locations are labeled with their standard system mnemonics, such as

STA DOSVEC

The better your understanding of the OS, the more you'll appreciate this in
analyzing a program. Also notice that each instruction that references a label is
followed by a number set off by a semicolon, indicating it’s to be interpreted as
a comment; this is the absolute address represented by the label, for your
convenience in tracing the program flow.

Next, look at the first four instructions after the ORG instruction:

EOR XMTDON
.BYTE $9B
ADC L1,X
.BYTE $53,$4B

Looks like garbage, doesn't it? Now the machine code that produced this was
45 3A 9B 7D 44 49 53 4B

If we convert this to ATASCII characters we get
E:(EOL)(CLR SCREEN)DISK

which is obviously text information. Here we see one of the fundamental
limitations of all disassemblers: the program does not analyze the logic flow of
the object program, so it has no way of knowing data from instructions. When
it saw 45 3A, it was able to interpret it as an EOR instruction; when it saw 9B, it
assumed it had to be data (since there is no opcode 9B), and generated a
.BYTE instruction. In both cases — and this was the overriding rule in

ULTRA UTILITY SERIES

COPYRIGHT «* 1983 ADVENTURE INTERNATIONAL

13

ULTRA DISASSEMBLER

designing this program — THE OUTPUT INSTRUCTION WILL REASSEMBLE
TO AN EXACT DUPLICATE OF THE ORIGINAL MACHINE CODE. For your
convenience in analyzing the program, you could use your program editor to
alter these instructions to

.BYTE ‘E!",$9B,$7D
.BYTE 'DISK’

and get the same result with more clarity.

This explains why some of the system equate instructions at the beginning
of the disassembly file refer to system locations that aren’t really used: they
result from data being interpreted as instructions. In order to get the file to
reassemble, these equate instructions must be present; otherwise the ‘phony’
instructions would be rejected as containing undefined labels.

Now look at the very end of this file. The last instruction is
LINK Dn:DUP.001

where n is the number of the drive your output disk was in. This will cause the
assembler to move on to the next file when you do a reassembly.

Next, look at the final output file (DUP.003). It consists mostly of another
series of equate statements, this time giving values for numbered labels; this
list began back in file DUP.002, after the last instruction in the program. These
are the ‘external equate statements’: i.e., those addresses that were referenced
from within the program but do not represent system locations or addresses
internal to the program. Again, many of these addresses are ‘phony’ locations,
resulting from data being interpreted as instructions. Note that there are no
zero-page locations in this list; all the zero-page locations were equated at the
beginning of the disassembly, as mentioned earlier.

Now look at the last line in the last output file:
.END $2075

This is the assembly-end instruction. AMAC expects to see a run address in
this instruction, and appends it to the end of the file when it assembles; if it
doesn’t see one, it will assume $0000 and append that. Since the Disassembler
has no reliable way of knowing what the intended run address is, it simply uses
$2075, which is the DOS menu entry point. Thus when a reassembled file is
loaded from DOS the system will return you to the DOS menu. To see what
the ‘real’ run address is, we can look at the last few instructions before the
beginning of the external equate instructions in file DUP.002:

ORG $02E0
ADC ICHIDZ, X

ULTRA UTILITY SERIES

1-4 COPYRIGHT 1983 ADVENTURE INTERNATIONAL

ULTRA DISASSEMBLER

The machine code equivalent of this is simply the two bytes 75 20, beginning at
location $02E0, which is the run address location in the FMS. Thus the
program file already had a run address of $2075 appended, and the reassembly
will have it appearing twice (which doesn't hurt, since only the last one
counts). If the run address was something else (which it will usually be for
programs other than DUP.SYS), the reassembly would have two different run
addresses appended, and the last one would rule; you could get rid of it by
deleting the last 6 bytes of the assembled file, and the program would execute
automatically on loading. If the run address wasn't present in the program, it
would have been up to you to find out what it was and alter the .END
instruction if you wanted the reassembled program to autorun.

Now it's time to reassemble what you've disassembled. If you're using
AMAC, just request an assembly of file DUP.000. For any other assembler,
you'll have to modify the source files according to the instructions in the
section on reassemblies. Use a disk with DOS on it to receive the object file.
Now delete the existing DUP.SYS file and rename the newly assembled object
file to DUP.SYS. Turn the computer off, then on again and watch the DOS
boot up. If you did everything right, the DOS menu will be displayed.

Now you have a DUP.SYS file containing all the same information the

| original had, but it isn't quite identical. Did you notice a hesitation after every 2

or 3 disk-read beeps as it loaded? That's because the assembler writes an
object file as a series of appended binary segments with a new file header every
hundred or so bytes. In order to get a compact, fast-loading file, you'll have to
load the file into memory and save it back to disk. For this special case with the
DUP file, you could cut certain corners, but let’s do it as if this were any old
program file. Look at the assembly listing and see if the assembled code
overlays any of the DUP code (of course it does in this case), and create a
MEM.SAYV file on the disk if it does. Now load the file into memory with DOS
Option L and the ‘no-run’ sub-option (i.e., enter the file name as BUEFISUSIT
so it won't autorun). From the listing we know the file runs from address $1FOC
to $3305, has no init address and runs at $2075. Save it to disk with DOS
Option K as QUERSHEIDGEEIEELENIBUEE Boot up the DOS again and

you should hear the file load without the hesitations.

There are a lot of subtleties to Ultra Disassembler detailed elsewhere in
this manual, but at this point you've basically seen it do its job. Now you can
start to do yours, which is to apply the human intelligence to use this tool in
analyzing, modifying and customizing programs to your own ends. If you're a
beginner at assembly language programming, here’s a good exercise to start
with: modify DUP.SYS to ring the console bell (by ‘displaying’ the bell
character $FD) to prompt you to make a keyboard entry when necessary.

ULTRA UTILITY SERIES

COPYRIGHT ' 1983 ADVENTURE INTERNATIONAL 16

ULTRADISASSEMBLER

CHAPTER 2
Design Philosophy

The ideal disassembler would be one that would exactly reproduce the
source program that was assembled to produce a given machine language
program. In this section we'll discuss the various obstacles that make this goal
impossible to achieve, and the compromises we have to accept in a real-life
disassembler.

Suppose we're using a simple disassembler (like the ones that most
assemblers incorporate in their debugging packages) and we come across the
following sequence of bytes:

46 69 6C 65 6E 61 6D 65 3F
This will disassemble as:

LSR $69
JMP ($6E65)
ADC ($6D,X)
ADC $3F

This may indeed be what the programmer wrote. But the following instruction
will produce the SAME object code:

.BYTE ‘File name?’

You and | know which of these versions is most likely correct, but it's a pretty
tough decision for a 48K Atari to make! The point?

A DISASSSEMBLER HAS NO WAY OF DISTINGUISHING
TEXT STRINGS AND DATA TABLES FROM CPU INSTRUCTIONS.

Now suppose you're analyzing a program by following the logic flow.-If a |
given section of the program is actually a series of CPU instructions
misinterpreted as data, you will eventually get lost in it; but in the reverse
situation, you'll never try to read part of the section as an instruction in the first
place because the program flow simply won't lead you into it. This suggests a
simple rule:

OBJECT CODE SHOULD BE INTERPRETED AS CPU INSTRUCTIONS
WHENEVER POSSIBLE, AND INSERTED IN .BYTE PSEUDOS
OTHERWISE.

Now let's unleash this hypothetical simple disassembler on a longer
sequence of object code, beginning at location $4000:

ULTRA UTILITY SERIES

COPYRIGHT « 1983 ADVENTURE INTERNATIONAL 21

ULTRA DISASSEMBLER

A2 10 A9 7F 9D 44 03 AS 60 9D 45 03 A9 05 85 CF A9 80 9D 48 03 A9 00 9D 49
032056 E4 1003 4C 00 45 C6 CF 30 14 18 BD 44 03 69 80 9D 44 03 BD 45 03 69
00 9D 45 03 4C A9 00

The disassembly will look like this:

4000 A210 LDX #$10
4002 A97F LDA #S7F
4004 9D4403 STA $0344,X
4007 A960 LDA #$60
4009 9D4503 STA $0345,X
400C A905 LDA #$05
400E 85CF STA $CF
4010 A980 LDA #$80
4012 9D4803 STA $0348,X
4015 A900 LDA #$00
4017 9D4903 STA $0349,X
401A 2056E4 JSR $E456
401D 1003 BPL $4022
401F 4C0045 JMP $4500
4022 C6CF DEC $CF
4024 3014 BMI $403A
4026 18 CLC

4027 BD4403 LDA $0344,X
402A ADC #$80
402C 9D4403 STA $0344,X
402F BD4503 LDA $0345,X
4032 6900 ADC #$00
4034 9D4503 STA $0345,X
4037 4C1040 JMP $4010
403A A900 LDA #$00

If we apply some knowledge of the Atari Operating System to this code
segment, we see that it's a repeating call to the CIO utility. It reads 128 bytes
via IOCB 1 into a buffer at location $607F; advances the buffer start pointer by
128 bytes; and repeats the IOCB read for a total of 5 times, then goes to some
other code at $403A,

Notice that this program uses location $CF as the loop counter. Let's say
we decide that this segment doesn't get executed often enough to merit
dedicating a Page 0 address to the counter, so we want to use location $0600.
We can change the address in the instructions at $400E and $4022 and
reassemble the program - but it won't work. We've changed two two-byte

ULTRA UTILITY SERIES

22 COPYRIGHT 1983 ADVENTURE INTERNATIONAL

ULTRA DISASSEMBLER

instructions to three-byte instructions, which moved all the subsequent
instructions up in memory and made a mess of the various branches and
jumps. Which brings us to another rule:

THE DISASSEMBLER SHOULD REPRESENT ALL ADDRESS
REFERENCES AS LABELS, AND ATTACH THE LABELS TO THEIR
RESPECTIVE INSTRUCTIONS.

Ok, so we let the disassembler attach the required labels. Now we have a
piece of ‘source’ code that we can modify and reassemble successfully, but it
doesn’t read as clearly as the original probably did. The programmer’s
comments are forever lost to us, but it would be nice to at least know the
names of all those operating system locations. Why give them arbitrary labels
when we can use the documented system labels? Hence another rule:

THE DISASSEMBLER SHOULD ATTACH STANDARD OS LABELS
TO ALL REFERENCED OS LOCATIONS.

We're just about there, but now we need a master rule to resolve any
ambiguities (something like Asimov’s First Law of Robotics):

THE OUTPUT OF THE DISASSEMBLER, WHEN REASSEMBLED,

SHOULD PRODUCE AN EXACT DUPLICATE OF THE ORIGINAL
OBJECT CODE.

| have attempted to design Ultra Disassembler with these rules in mind. Its
overall logic flow is detailed in the next section.

ULTRA UTILITY SERIES

COPYRIGHT «' 1983 ADVENTURE INTERNATIONAL

2-3

ULTRADISASSEMBLER

CHAPTER 3
Program Logic

Ultra Disassembler accepts object code from any of three sources:

* Binary DOS 2.0S load files
* A specified list of disk sectors (for direct-boot programs)
* A specified section of memory

Regardless of code source, the output assembly language program is
written to a disk file under a user-specified file name. Output file length is
limited to $4000 bytes. The output file is initially opened with an extender of
*.000." When it reaches maximum length, it is closed and a new file is opened
with the extender incremented by 1, and so on, for as many files as necessary.
A maximum of 4 files are written to one disk; at the end of the fourth file, the
user is prompted to insert a fresh disk. Considering DOS files on the disk, this
leaves 98 vacant sectors to allow for some in-place editing. Each file ends with
a link instruction to the next file, except for the last file which ends with an
assembly-end instruction.

Input code is stored in a buffer using most of the space between the top of
the Disassembler and the bottom of display memory (except when the source
is a memory area). If the program is too large for the buffer, it is disassembled
in segments.

Ultra Disassembler operates in two passes. On the first pass, it takes the
following actions:

(1) Examines every identifiable CPU instruction in the program which contains
an address reference. Whenever a documented system location on pages 0, 2,
3, $D0, $D2, or $E4 is encountered it is flagged in a table of system locations.
When any other address is encountered it is stored in a label address table with
a capacity of up to a maximum of 1023 labels.

(2) Outputs a series of equate pseudo-ops for all system locations flagged
during the pass. Offsets are taken into account; e.g., location $0B is
interpreted as DOSVEC + 1 and the equate DOSVEC = $0A is output. The
hardware locations on pages DO and D2 are equated separately for read and
write instructions since they have distinct labels (and effects) when read or
written.

(3) Outputs a series of equate pseudo-ops for all nonsystem locations on page
0 for which labels were stored, to prevent assembly errors associated with
forward references to page 0 locations.

ULTRA UTILITY SERIES

COPYRIGHT = 1983 ADVENTURE INTERNATIONAL

31

ULTRADISASSEMBLER

Next the object code read routine is reinitialized and the second pass does
the following:

(1) It disassembles every byte of the code. Identifiable instructions are output
in assembly language; everything else is output in .BYTE pseudo-ops.
Whenever a program location that is referenced by a previously-generated label
(system or nonsystem) is encountered, the label is attached unless it occurs in
the middle of a CPU instruction. Nonsystem locations are assigned labels
consisting of an L (or Z for zero-page locations) followed by a four-digit
number. Address references in instructions are specified by label until the label
table is full. Subsequent references are given as absolute addresses. Absolute
values of all references are given in appended comments. Every label attached
to an instruction is flagged as an internal reference.

(2) It outputs a series of equate pseudo-ops for all external references (i.e., all
labels which were referenced but were not attached to instructions above). In
practice, most of these are ‘phony’ addresses resulting from data and text
being interpreted as CPU instructions.

The baseline program design assumes that disassemblies will be
reassembled with the Atari Macro Assembler Ver 1.0. With the aid of a utility
supplied with Ultra Disassembler, the user can customize the program for use
with any assembler which conforms to the standard 6502 assembly
mnemonics, including the Atari Assembler/Editor Cartridge, Datasoft's
DATASM-65, and Optimized Systems Software’'s EASMD.

THE ZERO-PAGE PROBLEM

All 6502 assemblers have a subtle problem in interpreting zero-page
addresses defined by forward references. If you haven't run across it, try
assembling the following program:

LABEL1 = $80
LDA LABEL1
LDA LABEL2
LABEL2 = $90

The object code you get is

A5 80
AD 90 00

Holy mackerel! The first instruction came out correctly, but the second
one turned into an absolute-mode instruction with a two-byte address even
though the referenced label was on page 0.

This looks like a bug, but it's really an accommodation to the nature of the
6502. On the first pass, the assembler counted its way through the bytes

ULTRA UTILITY SERIES

32 COPYRIGHT © 1983 ADVENTURE INTERNATIONAL

ULTRA DISASSEMBLER

represented by the instructions. On the ‘LDA LABEL?’ instruction, it consulted
its label table and found that LABEL1 is a page-0 address; therefore it allotted
two bytes for this instruction. On the ‘LDA LABEL2’ instruction, it found that
LABEL2 hadn’t been defined yet, so it flagged this one as ‘waiting to be
defined’, and pressed on to the next instruction. Unfortunately, it had to make
some decision as to how many bytes to count for the instruction, so it took the
conservative course and counted three. On the second pass, it looked in the
label table and found that LABELZ is also a zero-page address, and was stuck
with a problem. If it generated the zero-page instruction ‘A5 90’ it would have
used up two bytes where it left room for three, and every subsequent
instruction would occur one byte early. This would of course invalidate all the
labels that were evaluated by counting bytes. So, the assembler observed the
following rule:

EVERY ADDRESS DEFINED BY A FORWARD REFERENCE
WILL BE INTERPRETED AS A TWO-BYTE ADDRESS IF POSSIBLE

It doesn’t happen for the indirect indexed mode, for example, because this
mode always references a zero-page address. Some assemblers (like
DATASM-65) take a slightly different approach and simply refuse to permit
forward page-0 references.

This presents a problem for the disassembler, because at the end of a
disassembly it outputs a list of equate instructions for addresses that were
referenced from the disassembled program, but did not occur as labels within
it. Any zero-page locations equated in this list would produce absolute-mode
instructions on reassembly and make a mess of all the subsequent labels. Ultra
Disassembler defends against this by equating all the zero-page nonsystem
labels at the BEGINNING of the disassembly, without waiting to see if they
occur within the program. Most of the time, this causes no problems at all
since these locations are usually external references — just as they are
assumed to be. If a program has any code actually assembled on page 0, it will
result in ‘doubly defined label’ errors. With most assemblers, this is a nonfatal
error; if it does bomb the reassembly, it can be eliminated by simply deleting
the offending equate from the zero-page equate instruction list.

There is a related problem that occurs when the object code contains an
absolute-mode instruction which references a zero-page address. Suppose the
Disassembler comes across the bytes AD 80 00. Now AD is the opcode for an
absolute-mode LDA instruction, so this could be disassembled as LDA $0080.
However, an assembler would interpret this as a zero-page instruction and
produce A5 80, and everything that follows it would be one byte away from the
right place. Ultra Disassembler has a special subroutine to prevent this —
wherever it finds an apparent absolute-mode instruction which references a

ULTRA UTILITY SERIES

COPYRIGHT « 1883 ADVENTURE INTERNATIONAL 33

ULTRADISASSEMBLER

page-zero address, it assumes it's part of a data table (which it usually is) and
outputs it as a .BYTE instruction. In a few cases the instruction is legitimate (it
can result from a last-minute brute-force fix to a program, or be part of some
sort of eritical timing loop), but one way or the other, the disassembled code
will reassemble to what you started with.

ULTRA UTILITY SERIES

1.4 COPYRIGHT & 1983 ADVENTURE INTERNATIONAL

ULTRA DISASSEMBLER

CHAPTER 4
Input Options

You can disassemble code from binary DOS files, specified disk sectors or
machine memory. You will be asked which one to use as soon as you've
selected the number of disk drives in use. Use these procedures for each code
source:

(1) File input: You will be asked for an input filespec. Enter the full filespec
INCLUDING THE DRIVE ID. For example:

D:PROGNAME.OBJ
D1:BINFIL
D2:DOTEATER.BIN

The drive ID must of course reflect the drive that will contain the object
program; it can be any drive number the Operating System will support. Ultra
Disassembler will expect the file to conform to the specifications given in the
Atari DOS |l Reference Manual for binary load files, including compound files.

(2) Sector input: You can input a list of disk sectors to disassemble. These
sectors will be read directly from the input disk without regard to file structure,
forward file pointers, etc; this is the option you use to disassemble programs
which boot directly without going through the File Manager. You can specify
any number of sectors up to and including the entire disk.

Upon selecting the sector option, you will be asked to input a sector
number or range. Do one of the following:

{a) To specify a single sector, type the sector number IN HEXADECIMAL
and press "

(b) To specify a range of sectors, type the two sector numbers IN HEX,
separated by a comma, and press [JI{ILT].

Repeat this procedure as many times as necessary until you've input all the
sectors you want disassembled. Then press without any entry to
terminate the input specification. For example, suppose you want to
disassemble sectors $1 through $3, $13 through $20, $30, $35 and $2BB. Input:

I JSIRETURN
AR URN
RETURN
RETURN
BIRETURN

[ra] col tof —]
EImE=

:

ULTRA UTILITY SERIES

COPYRIGHT © 1983 ADVENTURE INTERNATIONAL 41

ULTRA DISASSEMBLER

Next you'll be asked for a start address. Input the address at which the
disassembly is to start, in hex (as usual) and press A Your input
specification is now complete.

(3) Memory input: This feature lets you disassemble any code which is already
present in memory. Since Ultra Disassembler is about 13K long and sits above
the File Manager, this limits you to disassembling ROM cartridges, the
Operating System and any small subroutines you load on Page 6 (which is
otherwise untouched by Ultra Disassembler). The feature was included simply
because it requires only a trivial amount of code over and above the rest of the
program. If you select it, you'll be asked for a start and end address. Input the
addresses IN HEXADECIMAL, separated by a comma, and press [J[lLIJ. For
example, to disassemble a cartridge in the left slot (which you can only do with
a cartridge that allows you access to DOS, such as BASIC or the
Assembler/ Editor), enter

AJOJoJoY JBIFIFIFIRETURN

and your input specification is complete.

ULTRA UTILITY SERIES

4.2 COPYRIGHT = 1983 ADVENTURE INTERNATIONAL

ULTRADISASSEMBLER

CHAPTER 5
Output Options

Ultra Disassembler offers three forms of disassembled output:
* A pseudo-assembly listing to the screen at all times.
* A printer listing identical to the screen output, when selected.

* A pseudo source-code listing, in a format suitable for reassembly,
written to disk when selected.

You can select these options as follows:

(1) Screen output: Occurs at all times. To take a close look at it, press the
button and it will freeze until you press JLI4J again.

(2) Printer output: Turn on your printer, bring it on line and press the [ZIIL
button and the output going to the screen will also go to the printer. Toggle the
printer off and on as often as you like with the gJdi[[button.

If you try to select the printer when you don‘t have one on-line, Ultra
Disassembler will remind you by ringing the console bell and go on its merry
way. If the printer goes off-line while a print output is in progress (by running
out of paper, for example), Ultra Disassembler will stop and wait for you to
rectify the problem. Bring the printer on-line and press JLI4j and the
disassembly will resume.

{3) Disk output: This automatically occurs if you enter an output file name
when asked for it. If you don’t want to write to disk, just press [JA[ILII when
asked for the output file name and you will not be asked for an output disk.

ULTRA UTILITY SERIES

COPYRIGHT « 1883 ADVENTURE INTERNATIONAL 51

(—

ULTRADISASSEMBLER

CHAPTER 6
Reassembling Files

Under certain conditions, a disassembly file will reassemble without any
modifications at all, but keep in mind the following special considerations:

ASSEMBLERS OTHER THAN AMAC: DATASM-65 and EASMD differ from
AMAC in their specifications for the file linking instructions; DATASM uses
‘FILE ‘filespec” instead of 'LINK filespec’, and EASMD uses ".INCLUDE
#filespec’ with no nesting permitted. The Atari Assembler/Editor cannot link
files.

DATASM-65, EASMD and the Atari Assembler/Editor use ‘* =" instead
of ‘ORG’, and do not append a run address contained in the .END statement.

EASMD and the Atari Assembler/Editor Cartridge expect line numbers.

These differences can be accommodated by creating a customizing file
with the utility provided; see the section on ‘Using the Customizer’. The
various flags and buffers which control these items can also be set in the
program file itself with a sector editor; see the section on ‘Altering the
Disassembler’.

LONG PROGRAMS: Disassemblies written to disk are automatically broken
into subfiles for convenience in editing; these files are nominally terminated by
link instructions. It is vital to note that the filespec given in each of these
instructions contains the same disk drive ID as the drive on which the
disassembly files are written. If the disassembly occupies more than one disk,
some of the LINK instructions will need to be altered to reflect the drive that
contains the referenced file at assembly time. If you want to use multiple
source disks with a single drive, you can do so with AMAC only by selecting
the H =0 option (i.e., not writing any object code to disk).

ULTRA UTILITY SERIES

COPYRIGHT = 1983 ADVENTURE INTERNATIONAL

6-1

ULTRADISASSEMBLER

CHAPTER 7
Using The Customizer

All 6502 assemblers use the same mnemonics for actual CPU instructions,
but they tend to vary in their specifications for the various pseudo-operations.
Also, your particular application of Ultra Disassembler may call for changing
some of the options provided in the program. All of these items can be altered
by changing various flags and buffers in the program file itself with a sector
editor, but for most routine uses it's more convenient to use the customizing
program provided on the distribution disk. Here's how to use it:

(1) Boot up DOS 2.0S with the Atari BASIC cartridge in the computer. Insert
the distribution disk in the drive and enter JUIEEEENSuEEIED S § EELL
The Customizer will load into the machine and display a menu. ltems A
through D on the menu allow you to set the text content of the major pseudo-
ops, and items E through H allow you to alter the various Ultra Disassembler
processing options. When you select an option, the screen will display the
default state of the item and ask you for a new entry. Type your entry
BEGINNING AT THE EXISTING CURSOR LOCATION and press [JI[ILI]. Now
the new state of the option will be displayed so you can be sure you got it right.
When you're satisfied, press without any entry and you'll return to the
menu, The items you can alter are:

A. File link pseudo: This is the instruction that tells the assembler to
find another source file on the disk and continue the assembly with
that file. If your assembler requires single quotes around the
filespec, simply end the entry with a single quote and Ultra
Disassembler will supply the closing single quote. One embedded
blank is permitted in the entry. Examples:

LINK produces LINK Dn:filename
.FILE ' produces .FILE '‘Dn:filename’
INCLUDE # produces INCLUDE #Dn:filename

B. Origin pseudo: This sets the assembler's location counter. For
almost all assemblers other than AMAC, set it to * =,

C. Assembly-end pseudo: This marks the logical end of the source
file for the assembler. Assemblers other than AMAC use either
END or .END.

D. Define-byte pseudo: This pseudo enters a list of specified bytes
in the object file without processing. The default is .BYTE, which is
compatible with almost all assemblers; AMAC can also use DB.

ULTRA UTILITY SERIES

COPYRIGHT < 1983 ADVENTURE INTERNATIONAL

741

ULTRA DISASSEMBLER

E. Comment insertion flag: This flag enables or disables the
insertion of comments in the Ultra Disassembler output file to
indicate absolute values of labels appearing in the disassembled
instructions, Disabling the comments will reduce the output disk
file volume by about 30%, which may be critical if you want to
reassemble files with a single disk drive.

F. Qutput file size.

G. Number of files per disk: These options let you define the
maximum length of the output files and the number of files that will
be written to an output disk before a fresh one is requested. If you
alter these values, it is up to you to insure that you don't try to write
too much to one disk; filling a disk will crash Ultra Disassembler
with a fatal |/0 error.

H. Line number flag: This option will cause Ultra Disassembler to
attach line numbers to the output instructions for assemblers that
expect them. Lines will be numbered in increments of 10 beginning
at 00010.

(2) When you've set all the options you want, place your WORKING COPY of
Ultra Disassembler disk in Drive 1 (with no write-protect on it) and select menu
item | (Write Customizing File). A one-sector-long file called DISKDIS.CUS will
be written on the disk. Whenever you load Ultra Disassembler, it will search
Drive 1 for this file. If it's present, Ultra Disassembler will read the customizing
options from it and alter itself IN RAM ONLY. The program file on the disk will
NOT be altered.

If you use more than one assembler, make up one working copy of the
Ultra Disassembler disk (with appropriate customizing file) for each one.
Alternatively, you can make permanently customized versions of the program
file, as described in the next section.

ALTERING ULTRA DISASSEMBLER

If you prefer to make customizing changes in Ultra Disassembler on a
permanent basis, you can do so easily with a sector editor such as Adventure
International’'s DISKEY. Dump the last few sectors of the program file in
ATASCII, and you'll find the various pseudo-ops and option flags set off by
text comments and asterisks. For example, after the entry ‘Link file
pseudo ***‘ you'll find the skeleton of the file-linking instruction followed by
three more asterisks. If you alter any of the pseudo-op buffers, be sure to begin
the text in the same byte as the original, since this will determine the spacing in
the output file. The line number and comment flags are OFF if the byte value is
zero (ATASCII heart) and ON for any other value. The maximum output file

ULTRA UTILITY SERIES

7-2 COPYRIGHT ¢ 1983 ADVENTURE INTERNATIONAL

ULTRADISASSEMBLER

size is given in hex, and the number of files per disk is specified as one more

than the desired value (i.e. a b will cause 4 files to be written).

WARNING: Directly altering a file in this manner offers
plenty of opportunity to get in trouble. You should know
EXACTLY what you're doing, or use the Customizer
instead. In any case, maintain an unaltered backup copy
of the original disk.

ULTRA UTILITY SERIES

COPYRIGHT 1983 ADVENTURE INTERNATIONAL

73

a

ULTRADISASSEMBLER

CHAPTER 8
Modifying Programs

Ultra Disassembler is designed to produce a pseudo-source file which will
reassemble to an exact duplicate of the original object code if it isn't altered
before the reassembly. Unfortunately, altering the code before reassembly can
produce some special problems. For example, consider this fragment of
disassembler output:

0800 LDA #$0F

0802 STA Z0010 ;$90
0804 LDA #$08

0806 . STA Z0020 ;$91
0808 LDY #0

080A LDA (Z0020),Y
080C JSR L0200
080F L0100 .BYTE $FD

This sequence loads the address $080F into a zero-page pointer and then
accesses that address with an LDA (),Y instruction. This loads the accumulator
with the byte at $080F, which is $FD (the console bell character). Now suppose
you alter some previous part of the pseudo-source program so that this
segment begins at $0801 instead of $0800. The label LO100 will now have the
value $0810, but the LDA-immediate instructions will not be altered; now the
zero-page pointer will point to the last byte of the JSR instruction, which is the
high byte of label LO200. If you've made a lot of alterations, you won't have the
foggiest idea what this is, and of course, the reassembled program won’t work.

In this specific case, you could have solved the problem by changing the
LDA-immediate instructions to:

LDA #LOW L0100

LDA #HIGH L0100

This is almost surely what the programmer put in the source code. In fact, you
will probably find that 90% of the reassembly problems you encounter stem
from immediate-mode load instructions. It's a good idea to check out all the
immediate-mode instructions in your disassembled program (you can use the
string-search mode of your program text editor to look for the # character) for
this kind of situation; however the point of this example is to show that Ultra
Disassembler has its limits. If you want to modify a complex program, you'll
have to apply enough understanding of assembly language and the Operatlng
System to cope with the unexpected!

ULTRA UTILITY SERIES

COPYRIGHT © 1983 ADVENTURE INTERNATIONAL 81

ULTRADISASSEMBLER

NOTICE

Ultra Disassembler and all materials included with it are sold on an as-is
basis without warranty as to their performance or suitability for any use or
application. The authors, Scott Adams, Inc., and all other parties involved in
the creation and distribution of Ultra Disassembler shall have no liability to the
licensee or any other person or entity, with respect to, but not limited to any
direct, indirect, incidental or consequential losses or damages. This includes
but is not limited to any interruption of service, loss of business revenue,
anticipatory profits or benefits caused or alleged to be caused by Ultra
Disassembler or its use.

The sole exception is that this product will be exchanged if defective in
manufacture. Except for such replacement, the sale of this material is without
warranty.

Scott Adams, Inc. reserves the right to make changes or improvements in
this product without further notice.

COPYRIGHT

Ultra Disassembler and the instructional materials included with it are the
property of Scott Adams,Inc., and are copyrighted with all rights reserved. This
product may legally be used by the original licensee on a single computer
system.

Except to reproduce the number of backup copies required for the
licensee’s single computer, copying, duplicating, selling, or otherwise
distributing this product is expressly forbidden and in violation of applicable
laws.

ULTRA UTILITY SERIES

82 COPYRIGHT © 1983 ADVENTURE INTERNATIONAL

