iR L

The

by Roger Wood
and

Wayne Koberstein
HCM Stafll

With this simple simulation of the
machine's inner workings, you can
discover how easy (and fun!) it is
to communicate with computers
in their own language.

the hero has to fight his way out of a com-
puter’s microcireiiits—many people have held
a fascination for the inner workings of this “think-
ing machine.” Are you one of them? Perhaps your
Interest has always been there, but you have not yet
“taken the plunge™ into machine-level mming,
Cr perhaps you know 8 great deal about this subject
already, but would appreciate a very clear and sim-
ple demonstration of how computers *“think," If so,
vou're ready for NanoFProcessor—a program that
emulates the computer at its most fundamental level,
At the heart of a computer, there Is nothing but an
immense set of on and off switches, But how can such
a simple foundation foster such a complex information-
handling aystem? In short, how are all these switches
arganized? A “real” computer. such as the one vou have
at home., 8 such a large system that it would be difficult
tosee the forest for the trees, But, with NanoProcessor,
you have a chance to operate and see 8 much-simplified
maodel of how a computer performs its tasks,

Brain Central

All computers—including the NanoProcessor—have
acentral "brain.” It's called the CPU (Central Process-
ing Unit). This brain recognizes and responds to dif-
ferent sets of numbers as instructions. These instruc-
tons direct the CPU to carry out certain operations—
much as our brains store, handle, and act on Informa-
tion encoded in switch-llke neurons, In a computer, in-
formation travels along parallel paths of wires and
printed circults called "buses.”

As humans, we may think in English, Spanish, orany
ather language—some subtle, some exact. Computers
also “think" In languages—such as BASIC and LOGO,
CPLU's like our own brains, must translate these high-
level languages Into encoded information. In computers,
this Information takes the form of machine language—a
set of codes and numerical values expressed as binary
numbers, Binary means “two,” and implies two
choices: on or off: or, in purely numerical terms, 1 or 0,

Peaple ténd to think in terms of a ten-based number
system because they have ten fingers—but a switch has
only two “fingers.” [For a detalled look al converting
between these number systéms see the sidebar
"Numbers To Bits And Back.”] When you RUN
NanoProcessor you will notice the row of switches at
the bottom of the sereen—your only means of shuttling
information through this simulated computer (See
Phaotos 1. 2, 3], Each switch only has two positions—up
for on [1). or down for off (0], A swileh is therelore the
perfect means for conveying binary Information,

S inee the premiere of the movie Tron—in which

NanoProcessor

Banking on Memory

Every computerhas a memory area, called *'Random
Access Memory'' (RAM), and a Central Processing Unit
(CPU). Memory is the computer's capacity to store in-
formation, and is measured in terms of “byies,” A byte
generally consists of 8 bits of Information=—where a bit
is one binary (on er ell] condition.

A CPU performs all the arithmetic that manipulates
the numerically-encoded data—the ones and zeros—
stored In 8 computer's RAM. This memory s made up
af discrete “locations™ In the machine, each of which
has an “address," It helps to think of each memory loca-
tion as a mailbox that not only has an address attached
to it. but alzo a place to put the mall. This mall 2 the
data stored at that location, Each "mailbox™ has a
limited amount of space that depends on the machine
design, Because each of NanoProcessor's memaory loca-
tlons can only store 4 bits, (one nibhble), we say it is
"nibble-addressable.” By simply requesting a particular
address, the CPU can immediately find what Is con-
tained at that address. This direct addressability of
mmmymﬂ CPL is what gives a computer the power
of ran A0CESS.

The CPUand RAM are connected by three buses; the
address bus (8 parallel wires), the data bus (4 parallel
wires), and the control bus (See Figure 2). The first pro-
vides access to each memory location: the second sim-
ply moves data to and from each location; and the third
carries control signals which control the flow of data be-
tween the CPU and memory, Furthermeore, the CPU is
organized intoasystemn of discrete “registers'’ that serve
as tempaorary stations for storing and shuflling data.

Look at the NanoProcessor front panel. On the
mididle-left side of the screen Is a “rotary switch' with
various letters positioned around it The letlers on the
right-hand side of this switch—A and B—stand for the
A and B registers in the CPUL It I8 between these two
reglsters that the actual “arithmetic™ and logic opera-
tions lake place. The A register is also called the Ac-
cumulator becaise this is where the answers w many
of the commands end up—or accumilate,

T Harme Compuber Magazing 1885 Vahame 5. No. 5 16

)
4
0
e
Q
-
19
o
0
£
W
14
q
S
-
A
0
v

0
4
0
-
Q
2
14
-
0
-
i
14
q
3
-
&
0
0

One of the mast Mportant aspects
of machine I3 programming
(bt sometimes most confusing for the
novice] is converting digital numbers
t Binary and wvice versa. To make this
5 easy as l:ussi:lr.. wie have employed
Mza;ds: | Whenewerwe list 2 binary
number, we precede it with a percent
(%] sign; and 2| Nanofrocessor
displays the decimal equivalentof each
bit above the address and data wir-

NUMBERS TO BITS AND BACK

daws al the front panel [see diagram
bebow), We refer to these decimal
equivalents s the “weight” of the bits.

To quickhy canvert a binary number to Figure 1
a decimal number, simply add up the Dcima Nirary
‘wweighits of the *'1 ™ [on) bits. For exam- o HO000
ple. to canvert %1111 1010, refer to 5 e
the following diagram: 3 te0a11
12664 32 16 B 4 2 | ; Egiﬁ
R e e N & %0110
LT RSN ST [t) e E) : :E}]&é
Then add 128+64 + 32+ 16+ B+ 2 ¥ % 1001
- and you can easily armive at the correct 2 L
decimal equivalent: 250. (Also, see 12 %1100
| & | for converting the numbers %1101
0—15 to binary.| s wan |

On

First, press P oto turm on the Power to your
NanoProcessor. Malke sure the rotary switch (s pulnﬂ(g
to the letter M, for Memory. You move this switch left
[counter-clockwisepwith the < (less than) key, and right
[clockwise] with the > [greater than] ke,

At the top of the screen, you should see an address
box containing a long row of "lights” with numbers
across the top. This is the *location counter'’ shown In-
gide the CPU of Figure 2. It displays the 8-bit address
af the location currently being interragated by the CPLL
Notice the vertical row of buttons at the right side of the
aereen, These buttons represent NanoProcessor's funoe-
tions. Press the B (for Begin] key on your keyboard. This
effectively turns off all the lights in the address box, in-
dicating that you have returned to the first address in
memery: the 0 [zero) location. Now press the Tkey, for
Increment. This moves you to the next address: loca-
ton 1. Ifvou repeatedly press L vou will continue to step
through successive locations.

MNaotlce that, as you step through each location. the
raw of 8lights in the address box changes, These lights
display the address of the “mailbox." To view the con-
tents of this mailbox, ook at the row of 4 lights directly
above the toggle switches, This shows the value stored
at the current location. If you were to move the rotary
switch polnter to A, vou would see the contents of the
A register. To examine the B register, point the switch
to the letter B. Now. move the polnter to the letters H
or L at left, These access the “high nibble’ (the first or
left-most 4 bits) and the “low nibble™ {the last or right-
most 4 bits] in the 8-bit address.

Entering Data

The next step is (o 'fill"" these locations so that the
processor has something to process. With the rotary
switch in the M position. try toggling the switches in
the switch box. Nothing happens? Don't worry: turn
someaf these switches 'up’ and then presa L, for Load.
Now you have something, Any switch that is on has a
corresponding lght glowing just above It

You have just entered your first “data™ into the
NanoProcessar. Mow move the rotary switch to the H

itlon and try the same exercise. This time, when you

press L, lights not only come on in the “contents’ box,
but the same pattern of lights appears in the high (left-
most) nibble of the address box, Moving the rotary
switch to L [for Low nibble] and loading a value affects
the low nibhle (right-most] hall of the 8-bit address in
the same way. Onee you have thus designated a full B-bit
address, move the pointer to the M position again toview
the contents of that same address. By doing this. you
have, in effect. moved to this address locatlon, and can
enter data there,

18 © Home Computer Magarime 1885 Volwme 5 Nb, 5

If you next move the rotary switch pointer to the A
or B posltion and try to enter data, you will not be able
to—because whatever goes In or out of these registers
has to do sowhile the NaroProcessor is running instruc-
tions encaded into memaory. You will also notice a small
Ouiput Hght (labeled “Out”) at the upll:er left of the
sereen, We will explain the use of this in the
NanoAssembler program next issue.

Your next job |5 to enter vour first machine-language
program on the NanoProcessor,

The Machine

A CPU executes commands sequentially, As it runs
a program, it steps through this sequence in much the
same way you "incremented’’ through each memory
Ipcation, However, the program may instruct the CPU
to take other paths—"‘branching” to many different
locations before completing {ts task. You are able to pro-
gram this processor by entering three different kinds
of data: 1) encoded commands: 2) pure numbers: and
3) addresses. As with any program, it is the logic of this
sequence that determines what the processor will do

Figura 2

Simplified Block Diagram
of the NanoProcessor

(A Registor |
B Rnygster | Snalus |
Central Processing Linit
Address Data Cantrol
Bug Bugm “Hus
| Memary

NanoProcessor understands 16 different com-
mands—its “instruction set.” Although initially ex-
pressed in one nibble, some commands require addi-
tlonal memory locations to hold the dala necessary to
execute the command, Figure 3 lists these 16 com-
mands, showing each cormesponding binary code: how
many nibbles in a program the instruction requires: its
*“mnemonic; which [if any] flags in the status register
the instruction affects; and a brief explanation of the
command function. As vou develop more complicated
programs, you will have to understand and use more
of these commands. But, for now, try a very short
routinée—ane that simply adds (wo amall numbers
together.

Figure 3: Instructions Set Sample Program 1 Sample Program 3
Addi Code Winamosic Remark dddr Code Enemani
De. Binary Mibbian Mnemenls Flags® Funciion 0 %000l LDA &% A=ed it pambaes 0 w0001 LDA
= atTocind [T 1 =000
ey, %] 2 ®AI%0 TAD Morws io B 2 w010 TAE
0 %00 | ADD TY Add B cosdents ol I 3 W00 IDRST e pscond numbar 4 %1000 AND
:mmmtun:mun . :ﬁ iy 4 woilg mfm
==TRELLE 1N
I oMol 8 iohe WY poeram ML & ULl IMP& hamp el bo siop i
AnstEastan 7 Ol 7 %inli
3 %00ID 3 i0A addr MT Lood A with numser o LI 1] A W
Iecation specified by me T WODDIl STA 284
3 %Ol 3 STAoddr NHNH Samhe of Aat i %ikin
e) 1 %]
4 BOWO 1 TAR NN Transior eostents ol & fa B Sample Program 2 H fom amp
bl \"ﬂ'ﬂ : E g;r Transior comtends of B3 A Addr Cede Mnemanic Remar I3 WOl STA 54
B Bolote A rghd ons bd o 4 %110
ihiough exiy : RO000 LOA 240 Gel Nl srume :-_: i
T osmmn 1 me TY Holots A lsf ane ba 7 W11 14 LEA
theough o 17 walw
E miEO | AND T lly AN & amd B i AT it oSl sTA s
® miooi 1 em TT Logioally O A end B— oL % %l
Rewalt iny & w0000 ADD 2 w08 ADD
10 %Mo 1 o8 vy Logecally X08 A and & A MﬁH-m 2 W00l STA 24
D memary 2 wie
1l %@ 3 BEacdr NN Branchk o oddr o Zam Sag T Wi
= aai DRI F- ADD
11 %llg 3 EMIaddr NN Hremeh b0 oudelr f Zare fiag 11 S11i0 BEC1® Oaiy ons mibls g g s
I3 %181 3 BCSoddr HH Sranch to oddr i Cory 12 %001 ool M wllL
fag el 13 %pegi # %M ADD
4 KIlW 3 BOCofdr WR [lu;r-;munnl.:tm;mul:m 14 ®ODOOY LOW #L M w011 STA M
sal. e N w10
B OB, 3 RPo MM RS Beoskic 18 Wi MP: Al seme 13 w1
ussenditionally. 17 %0kl 3 %0001 EDK LY
| apm 18 %0000 M R0
‘ags aifected refers to whether or not the instruction 19 %000l LOAM ZormA A4 %5010 BTA IS4
has any effect on the flags in the status regisier. The 30 %00 3 %l
C coliima stands for the Carry flag (did the operation 31 WML BTA 49t high nibble in ﬂ ;HH el
resuliina carry being gemerated), and the 2 séamnds for B %l EIT % as0e
mez-emﬂa&;d.{d the opemtion result [o zerof). A ¥ FERRC i T
dgpears in the columan if the Mag is affected by the in- ORIl AP ump s fo temingde
struetion, An N indicates the flag is not changed by the 3 mi000
Instruction, & %000

Houndabout Addition

Sample Program 1 will add the numbers 7 and 3, and
the answer will end up in the Accumulator. If you
haven't already, turn on the power by pressing P, Now,
press B for Bedin, and conflrm that the motary s polnt-
1r|.§ at M (Memory). Now “key-in™ this program with the
following procedure:

1. Toggle the switches to the on and off positions
carresponding to the bits of the number identified as
Code in the program—up (or on) for 1, and down (or off)
for 0. Notfee that each binary code is preceded by a %
[percent) sign to make it easy to distingufsh binary
numbers from decimal quantities (See “Numbers To
Bits And Back™ for details),

2. Check that the address indicated by the location
counter is the correct one for that Code, and then Press

Photo 1: This shows the
eaptests of the A register

PTOETAM OHVES 0N mitm-
ber (3 ar %0011 of an
addition problem fofo A,

Phato 21 Next, after the

)
4
O
-
Q
-
14
-
U]
£
"
14
g
S
f=
b
0
/)

L for Load. it ol iy
3. Press I for Increment. This will take vou to the the B register, the =acond

next address. anmber (7 or %0111} is
4. Repeat steps 1 through 3, the correct nib- ik

e into each address, and move on to the next set until
you've loaded all the nibbles in the proper order.

5. Onece you have completed loading the program,
press Bagain to return toaddress 0, Then step thro
each memaory location with the I key to be certain the
program is entered properly.

6. Now press B for Begin once more, then B for Bun,
Note that you may Halt the program at any time (by

pressing H) and continue again by pressing R

Let's go over Sample Program 1 step-hy-step to see
exactly what it does when Loaded and Bun. First It uses
the “LoaD Accumulator immediate® instruction (ab-
breviated LDA #) to load the number stored at the ad-
dress immediately following the instruction code {ad-
dress 1) into the Accumulator, This number (in this case
a %0011 or decimal 3) s one of the two to be added.
At address 2 is an instruction to Transfer the number
from the Accumulator into register B [TAB). Address

Phato 3. The A register

naw shaws the fesel (10

ar % 01} after the con-
teiits of A ind B have
been added together.

© Home Computer Magarne 1985 Valwma 5, Moo 5

0
&
0
=
Q
-
14
-
']
4
1
14
q
S
-
L
o)
1)

3 contains another LDA# instrue-

CONTROL CAPSULE

tion to Load a %0111 (7 declmal) CONTROL CAPSULE

from address 4 into register A. The NanoProcessor

instruction at address & actually Kay Functian NanoProcessor
ADDs the number in reglster B to Sat address to zero. Key Fumction

the number in A, and places the Incremant address by 1. OPTION Save fila.
answer in A. Address & contains Run program. SELECT Load fils,

Halt program.

a JuMP instruction [JMP addr).
Load locatlon,

that tells the machine to jump o
the address specified at the next
two memory locations—7 and 8.
All addresses are two nibbles, and
the NanoProcessor follows a pro-
cedure standard to many micro-
processors where the low nibble 1-4
of the address is in the next loca-

B

|

R

H

L

= Move rotary switeh counter:
-

P

E

tion (7T in this case] and the high
nibble in the following one (8. We
call thisa “jumpsell’ because we
specify address 6(%000001 10)as
the place to jump to.

When you Bun this program,
the “busy light” remains on and
both rows of lights flash different
patterns as the CPU steps through
the program. The Nanoprocessor

has been made to Run slowly so
that vou can track each instruction as it is executing.
When the program ““hangs-up” at locatlon 6, presa
{for Halt] to make the busy light go off. Now tum the
rotary switch (o point at A. Here you find the answer
to the addition problem: %1010 or 10 decimal. Keep
the pointer in this position and run the program again,
after pressing Begin, Watch the A register change
values—first 3 [%0011), then 7 (%0111), then
answer, 10 (% 1010]. Photos 1 through 3 show this
SEUENCE,

Moving On

In Sample Program 1, the machine added two num-
bers and got an answer that it could express in one 4-bit
nibble. But, what If this answer had o larger than
one 4-hit nibble—say, a number like 23 (%0001 011177
Fifteen (% 111 1) is the largest number that one nibble
can express. When a processor adds two numbers
together whose answer i= bigger than [ts registers can
hold, the answer “overflows” the register. When this
happens in NanoProcessor, a “carry llag” s set to 1in
a special Status register of the CPUL [This register 18 not
directly accessible tothe user.) The m has tocon-
tain commaneds that recognize the condition of this flag
{either 1 when an overflow has occurred, or 0 when there
is no overflow) and take appropriate action. You can
determine which instructions cause changes in the
carry flag by studying the C column {under “Flags af-
fected "] of Figure 3. I there isa ¥ in the C column, the
instruction will affect the carry flag —le., set itto 1 if
an overflow oceurs. or reset it to 0 if no everflow ocours,

Sample Program 2 adds the numbers 11 (% 1011)and
12 (% 1100) toarrive at 23 (%0001 0111). Not only does
the program have to check the carry flag. but becanse
the answer doesn't fit in one register, it has to place the
answer someplace else. The solution Is to b CET-
tain memory lecations as data areas—two for Input and
two for output. Program 2 fetches the two numbers Lo
be added from memory locations 240 (% 1111 0000} and
241 (%1111 0DO1). These addresses are inpul areas,
This means that before you Run the program, you must
manually Load the numbers to be added at these lo-
cations—place 11 at address 240, and 12 at address 241,

Simitarly, the output area is at locations 248 (%1111
1000} and 248 (%1111 1001). The low nibble of the

18 & Hovha Computer Magazine 1985 Yolume 5, Mo, §

clockwise. CONTROL CAPSULE =
Move rotary switch clochwise,
Toggie Power switch.
End gragram [only when Power 18 NanoProcessor
::}mn panel switch 1=lelt-most 4y ik
bit, 4 = rlght-most bit. iy ot
controL capsute 5] | controL carsute [l
NanoProcessor NanoProcessor
Ky Function Hey Function
CONTROL W Save file, FNE Savefls,
CONTROL Q@ Load fHle. FH T Load Tile.
answer (%0111
in our example | CONTROL CAPSULE Ap
;Iiféut]- appearsat —
, and the high Proca
nibble (%0001}at | oottt aand
The[,:a :isér.a_m FCTH B Save flla.
e Tl e FCTN B Load file,

overflow condi-
tion described above. If the answer does.overflow a nib-
ble, the program places a 1 in the accumulator and
stores it as the answer’s high nibble, If, however, the
answer is less than 15 (and fits into one nibble), the pro-

branches to another address, where it loads a O
into A and stores that instead. This introduces one of
4 "conditional jump commands,” which we will explore
more fully in next ssue's companion ‘‘utility,”
NanoAssembiler.

Program 3 is a “mystery pro " that actually ac-
cesses the “sound chip'” we've built into the
Manancmor.wat:t}::eE issue for an explanation of
how this works., Or perhaps, in the meantime.
you will tiﬂmmm:ll:;ugh by playing with ManoProcessor
tio Hg:rc this one oul yourself. The best way to learn
the details of operating the the NanoProcessor s to use
it and experiment by creating your own machine-

language programs.

Saving and Loading

With NanoProcessor, you can Save and Load the n-
tire 256 memory locations (%0000 0000 through
%1111 1111) to disk (and/or tape on The C-64, Atari,
and TI-98/4A), Use the Save command listed in your
Control Capsule and type in a file name in response (o
the prompt. To Load, use the Load command and type
in the mame of the file vou wish to load.

HCM Glossary terma: CPLU, bus, machine language, binary numbaers,
Randem Access Memory (RAM) byte, address, nibbde, location
counter, acclmilatar, ragister, instruction sat, maamonie, branch,
jurng, conditional jump, status reglster, zero fiag, conmy flag, overflow,
weight (af bits),

HCM
For your key-in listings, see HOM PROGRAM LISTINGS Contents.

