—

The

by Roger Wood
HCM Stafl

This companion to NanoProcessor
shows you how an assembler can
provide easy access to machine
language—by translating simple
nstructions into the computer's
native tongue,

In the last issue (HCA Vol 5, No. 5), we presented
MNanoProcessor, a program that introduced the con-
cepts of machine-language programming. This pro-
gram demanstrated huwami:roprncesmrwnrﬁs dl
its mast fundamental evel. Although entering and
rumning simple programs an the ManoProcessor can
be fun, longer and more complicated machine-
language routines are anather story. Even with short
programs, you prabably discovered what a time-
EEHSLI'I"HF-"IQ and errar-prane process (tcan be to enter
machine language one bit at a time,

with machine language, early computer users
created programs called “assemblers.” An
assembler 13 a human-to-machine translator. It operates
from a “dictionary”™ of mnemonics (a combination of
letters that humans can understand), translating these
mnemonics into the numbers of machine code. Using
assemblers, vou can write a program with the more easi-
ly remembered mnemonics, and et the computer create
the actual machine language (the ones and zeros].
Thus, we present the NanoAssembler; a program that
will teach you how 1o use assemblers. With the
NanoAssembler, you will be able to write long. com-
plicated programs for the NanoProcessar much more
easily than you would using machine language.

Source Code To Object Codes

You may find that many people refer to “assembly-
language programs’’ and “'machine-language pro-
grams' interchangeably. as though they were the same
thing, Actually, an assembly-language program s a text
file=known as a “source file” —that the computer can-
not execute directly. [t is simply a series of text llnes
comprising mnemonics. numbers, and labels. Before
the computer can run such a program, the source file
miust be “assembled” or translated into a machine-
language file—also known as an “object file.”

Taleealook at Sample Program 1, which you can load
and run on the NanoProcessor, You may recognize this
program, as it is identical to Sample Program 1 in the
last isspe. The two left-most columns. entitled Addrand
Code. contain the machine language. [object code).
which makes up the program. You can enter this ob-
jectcode bit by bit, or you can enter the more easily read
and (with some training) understood assembly language
{source code], coniained in the Line, Label, Mnemonie.
and Remark columns. The Remark colummn is like a REM
statement in BASIC. [t makes the program much easier
to read and understand,

T o alleviate the difficulties involved in working

NanoAssembler

Our NaroAssembler package cansists of two BASIC
programs: the ManoEditor and the NanoAssembler, The
NanoEditor is a simple text editor that lets yvou enter
your program as source code and save it to disk {or alter-
natively tape on the Atarl, Commoedore, and TI com-
puters]. NanoAssembler can then read and translate
that file into a corresponding file of ohject code, which
vou can save to disk or tape. You can then load the ob-
ject code into the NanoProcessor and run it.

Creating A Program

We will use Sample Program 1 to demonstrate how
the NaneEditor and the NanoAssembler work, To start,
Load and BUN The NanoEditor. You begin with this
Men: 1y EDIT

2) FILES
3) PRINT
4) EXIT

Chaoose the Edit option. which allows you to create
and modify files. The Editor now displays the command
prompt: CMD. You may enter one of 5 single-letter
commands:

Command Function
A Add = line of text
E Edit a ling of text
o Delete & llne of taxt
1 Insart a line of text
L List

To begin creating a new file—in this case Sample Pro-
gram l—press A In response, the Editor displays line
001, with a flashing cursor waiting for your input. For
each line of source code, the Editor provides a line
number ranging from 001 to 200, When you enter the
Add-a-line mode, the program always displays the cur-
sar an anew line of source code—one line past the last
line in memory. You can automatically advance to the
next line by pressing [BNTER] or [RETURN]. T'o exit the Add-
a-line mode, presa the [ESCAPE] key (see your computer's
Control Capsule if vour machine does not have an
Escape key].

© Morme Compuler Magarine §985 Volfume §, No. & 25

0
4
0
-
O
"
id
-
)
Z
i
14
<
3
e
L
0
0

')
4
°
-
Q
=
14
-
)
-
w
14
g
3
o
L
0
)

Now enter the contents of the Label, Mnemonic, and
Remark eolumns. Because our Editor is in BASIC. your
text input will be slower than with a full-blown word
processor. The Label column is empty in line 001 af our
sample progeam, so presa the proper key or key com-
bination (see your Control Capsule) to tab into the
Mnemonic fleld. (Wewill explain labels below.) Now type
In the [irst instruction: LDAY 3. You mustenter the text
exactly as it appears in the listing, or the NanoAssembler
program will not interpret the code properiy. Make sure
there is no space berween the & and the #, Yoo must,
however, place a space between the # and the 3.

This spacing 1s critical because the Mnemonic field
actually consists of two sub-flelds: and the space acts
as a separator for these sub-felds, The left sub-fleld 1s
the “op-code,” or instruction field, which defines the
artual instruction. In line 001, the op-code is LDAS, The
right field contains the “operand.” The operand is either
a two-nibble address or a single-nibble quantity to be
loaded or stored in a reglster or memaory location. It
deflnes the number that the op-code is (o operate on,
In line 001, the number 3 [%0011) |s the operand.

After you have entered the first instriction. you may
tabinto the Remark field. On a program as short as this
one, however, you may choose to save time by omit-
ting the remarks. Continue entering lines 002, 003, and
004 in a similar fashion.

Once you've entered part or all of the program into
memary using the Add command, you can use the other
editing commands. Each of these commands promplis
you for a particular lne number. E lets vou Edit an
already-existing line in memory. D allows you to Delele
a line, and [lets you Insert a line. The L command lets
wou List up to 10 lines of a program to inspect what is
in memary. If the program extends more than 10 lines
beyond the beginning line number that youspecify. you
have the option to either continue listing more lines or
quit and return to the command line.

Labels As Labor Savers

[line D05 [HERE JMP HERE). you encountler an impor-
tant assembly-language tool—the “label.” In the
NanoAssembler. we define a label as a group of up (o
6 alpha-numeric characters, beginning with a letber—
in our example, the word HERE. Assembler programs use
labels in place of numeric quantitles, In this case, HERE
represents a

the address to be JublPed
0. One major advantage of labels is @ g=Tr BN 6 %
that vou do not have 1o know the ac-

assemble the source file into object code, the op-code
iy regilre A8 many 85 three addresses (see Figure 1
for the number of nibbles each instruction requires).
Thus. a source file’s line numbers and the actual ad-
dresses of the ohject code almost always differ. When
the Assembier prints out its listing, the addresses and
codes are located on the line just below the source code,
representing the order of events during assembily,

By inspecting the two left-hand colimns of Sample
Program 1. ¥ou can see that the address to be JuMPed
to is 6. You know this only because we have already
assembled (oF Iranslated) the source code on the right
into the object code on the left. Il we hadn't provided
the machine code, however, vou would have to assem-
hie all of the instructions to discover what address yvou
wanted to JubdP to. The use of labels saves you from this
tedious task and is one of the primary advantages of
assemblers.

When you finish entering line 005 and press [RETURR|
or | . a prampt tells you to enter line 6. This pro-

has no line 006, so presa the [ESCAPE| key for your

machine [see your Control Capsale), and the program
returns you to the command line. Now you can use the
List command to see if vou have entered evervihing cor-
rectly. If you find any errors. you can Bdit the line or
lines that they ocour in. If you change a line, then decide
that you don't want those changes, you can press the
|[ESCAPE] key Instead of |RETURN| or [ENTER] to revert back
to the original version ol the line. This optlon Is also
available If you select Insert, but change your mind
before finally entering the line.

From Editor To Assembler

After you are sure that you've correctly entered the
program, save it to disk [or tape on Atari, C:64, or T1).
Tosave your file, select option (2] Files. Then select the
appropriate menu options, and enter the fle name. If
vour operating system does not normally support ex-
tensions to file names (all but Atari and 18M), the name
must be at least two characters shoreer than a normal
legal file name. The program will automatically append
a .5 (5 on the TI), for Source, so that you can use the
same name for both source and abject files without any
confuslon., If vou have a printer, you may also wish to
get a hardeopy of your proj . This s helpful when
vou are tracking down errors during assembly. To use

tual numeric addresses used in a pro-
. Instead, the assembler uses the NanoEditor NanoEditor
abels toassign the correct address to HEY FUMCTION HEY FUNCTION
a particular instruction for you. Esc Ewapa eag Ercapn
Before continuing, let’s clear up an E”:::d:ﬂ 2 Ed:EI.EIh'I'Edt R
area that sometimes confuses a begiw CONTROL D Ernse line SHIFT DELETE Ernse ling
ner ar assembly language: the dif- TAD Tab. TAR Tab
ferenes between line numbers of a - Cursar left CONTROL — Cursor lnft
source file and addresses of an ohject - Cursor right CONTROL = Cursor right
file, Each line in a source file contains R it e b KSRy
ode. But when you
conTROL cAPsULE | ip]
NanoEditor MNanoEdtior
KEY FUNCTION KEY FLNCTION
Fi Escapa FTCN B Escapa
Edil Mota: Edit Moda:
DEL Backspnce BACHEPACE Beschapaca FCTH 1 Oalatn
F3a Erasa lina DELETE Db character FCTH 3 Emse ling
F5 Tah TAH Tab FCTH 7 Tak.
CRER — Curser et - Cusor laft FCTH 5 Cursse bafy
CRSR = Cursce righ —_ Crrmor right FOTN D Cursar right
RETURN Entes b EMTER Enter line ENTER Ervtar llne

28 € Homp Compldsr Magering 1985

the Print option, just select it from the main menu (3§,
After you save (and print) the source file, select the Exit
option frem the main menu., The program gives you a
chance mchm%;:u}'m.u' mind before ending, so youdon’t
need toworry about losing the program in memory due
to an ermoneous keypress.

Mow it is time o load and BUN the Nanodssembler,
The program prompis you o load@our source file for
assembly. As program translates vour souree code
Into machine code, It lists the source file, the addresses,
and object code to either the screen or a printer (if you
have onel.

Passing Through

The actual assembly of the program occurs in two
steps, of 'passes. " Thus, the NanoAssemibler (s a ' two-
pass’™” assembler. The first pass does most of the work,
determining the correct machine-language instructions
and the Instruction addresses, However, sorting out
labels requires a second pass because. until it identifies
all address labels, the program may not know the ex-
act address of each instruction.

Try assembling Sample Program 1. If you have
entered it cormectly, the Nanodssembler should output
the assembled version. as shown in Figure 1, to the
sereenor printer, [Fyou have made an error in entering
the program into the NanoEditor, the NanoAssembler
informs yvou of the line number in the source code that
contalns the error, and states the type of error, For ex-
ample, if in line 1 you enter LDA #3 instead of LDAY 3,
when you try to assemble the program the computer
displays the error: ILLEGAL USE OF LABEL IN LINE 1. Here,
the computer interprets the code as a LoaD A gddrin-
struction (object code=2), instead of a LoaD A im-
mediate instruction (object code = 1). Then, when the
computer evaluates the “label” #3. it finds that the label
is 1]J:E'E|.l because it does not tIEEtTI. with a letter.

Figure 1: Instruction Set

Daée. Bisady Hibbe Messosii Flags® Fonotion
artpesed

After displaying the program, NanoAsscmbler
prompts vou tosave the object file, The saved file Is iden-
tieal in format to the ones vou loaded and saved with
the NanoProcessor last (ssue; that is, the file contains
the contents of all addresses from O through 255, To
see that vour program works properly, logd and RUN the
NanoProcessor, You can then load and min the pro
you've just created according to the instructions detail-
ed in Val. 5, No. 5.

For a short program such as Sample Program 1, this
Process ma{::cm a bit time consuming, For longer and
more complex programs. however, the ease of writing
and debugging provided by an assembler more than
miakes up lor the added steps,

Assembler Directives

Figure 1 displays the 16 instructions that we detail-
ed In the NanoProcessor. You may specify any of these
instructions when writing an assembly-language pro-
gram with the NanoEdiior. The NanoAssem An turm,
converts these instructions [nto their machine codes.
There are three additional commands. known as
assembler directlves. that the Assembler understands:

Dirsctive Purpase

ORG Start object coda hare
LN Define a nibhls

jit= 1} Dafine & labal

The oB& command directs the NanoAssembler to
assemble the program at a specified address between
0 and 255, For an example of this instructlon; see line
1 of Sample Fﬂi%_ram 2. This prngnim is a slightly
modified verslon of Sample Program 2 that we presenied
in last {ssue’s NanoProcessor. It performs a two nibble
addition of numbers located at addresses 240 and 241,
placing the answer in addresses 248 and 248, The ORG
statement makes the starting address % 1010,

The DN instruction allows you toinclude a particular
value at any address, Just specify the address using the
ORS directive, and then define the value to be placed
at that address with the DN directive. Lines 22 throu
24 of Sample Program 2 define the two nibbles that the
program adds,

per
oty oz
0 w0000 1 - ADD TY Addihe conans cd B Iagmes o
e cominni of A CegimeT—aosull in
A
e e el ihe MY Lopd A wih k -BH
ilrustan

LOK sy T Logd A with sumbar ai [ooomon
el

by
STAaddr NN Siom the conbesis of A of locaiion
.. Epecibed by addn
Transies content of A o 3
Tracsies cantect of Bio A
Ty mobgis A sight ane Dil iRveugh
(SRR
Roadin A le one bl taough
%1000

%1041
%1010

%101l

¥¥ Llogescly AMND A and B—Resal in
A

Logscolly OF A and B—Rosult in A
Logecally TOR A and B—Reult in
A

H Ea om o cok o k=
o

Teomch 1o eddr U e 1og 1 i

5 % B B i

Fligure 2
Docimal Binary Hueadeeimsi
4] %00 :ﬂ
1 w0001 1
2 %0010 52
] %0011 ¥3
4 %0100 54
El %010 5B
] %O110 5B
T %0111 £
8 % 1000 Hid
[] w0 5
10 w1010 ;‘ﬂ
11 51011 E
13 %1100 &C
13 w1101 50
14 %1110 $E
18 w1111 §F

13 wlo BHT Tanmeh 1o eoor i e g s Gl
bl

13 w01 BCS crcldr zamch jo ader ¥ Camy Sag i sl

§d ®RI1L1D BEC oddr Teonch o addr d Camy Sag i not
81

W %l J JHF sradr Teansh 16 &t =)

Azszamibler Daestives

nig g [A Uke o ipeciy o pameulor addness
40, ., SpeCifY sarang addmss of
programy

8 B [} EQU g BEquets label with vahi
Ahe Talus b the :nf.l.lal =]
#dinmant 1a the i in Heon lait

e Ria I BH nia Dading b ns b vOROE

10 The righi of the [N siotemment o
ihm labs ot o lof

*Flags affected refers to whether or not the instroction has
any effect on the Mags in the status regiister. The C column
atamds for the Camy nn&iﬂm the operation resull in a carry
belng generated ?), and £ stands for the Zero Tag (did (he
el tion resielt in @ fero?). A Y appears in the column if the

iz pffected by the instrection. An N indicates the Mag (s
nol changed by the instrociion.

Sample Program 1

Addr Gedn Line Labal Masmenle Resat
i LEAE 3 (Gt Nrwi nombsar
L] 0004
1 WOoLE
noa TaR ihawe b3 8
2 ®0100
ooa Loas T (L SEEad rRTEEr
a fu000d
L] WOLLE
i1 ADD iFigLiie Al
8 0000
008 HERE I9P RERE [lump sed o3 #0@
] wiiid
T WOLIQ
B Rl

& Hovne Computer Magazine 1985 Volame 5, Mo & a7

0
r4
)
b=
Q
-]
14
-
1)
4
w
i4
!
3
=
e
0
)

)
4
s
-
8
)
14
.
)
4
L
14
4
S
e
Ha
Q
U

The ol caommand lets you identfy any address with
a particular label. Lines 2 through 6 of Sample Program
2 use thisdirective. These statements make Sample Pro-
gram 2 more readable by assigning descriptive labels
to the 5 data addresses: NIBI and NIB2 for the two
numbers to be added; LONIB and HINIB for the low ane
high nibbles of the answer; and OUT for the OUT light,
(See last issue’s NanoProcessor for a complete explana-
tion of how Program 2 uses these 4 locations.)

The ather change to Pro 2 in this issue is in the
use of the OUT light located at the upper-left of the
NanoFrocessor screen. When you assemble Sample Pro-
gram 2 and run it, you will find that the OUT?IghL Is
off when the program begins, but it turns on when the
program Is complete. Thua. u do not need to know
what adedress the pro end on, nstead, the OUT
light siginals that the pmg‘ram Is finished.

Sample 3 accesses the NanoProcessor's
“aound chlp Any time you store 8 number at either
Ioeation 254 or 255, the NanoProcessor responds with
atone. With 16 differentvalues possible at each of these
locations, you can make a total of 32 different tones.
Sampl I:Fm%amﬂ playsa C scale,

We hope that you have found these Nano programs
instructive and enjoyable. With what you have learned.
Yo mmuld be able to create vour own “machlne-
lam, "' routines. Feel free to let us know in 'Letters
o1 e ditor” of any programs you creale, s0 we may
share them with our readers:

HCM Glossnry Tarms: assembler, lobol, cbject code, op-code, operand,
PBSS; Bource code,

Far your typo-in listings, ses HCM PROGRAM LISTING CONTENTS.
HCM

Three Number Systems Supported

Machine lapousge on the NavoProcesior can be
entared anly in binary, The NanoAssembler, however,
understands decimal and hexadecimal in addition to
banary, Last issue we explained how to convert between
decimal and binary—this [ssus we - miroduce: you (o
hexadecimal,

Aswe explained inthe previows issue, decimal is a base
10 system, It uses tan diges (O through %) to represent
numbers. Similarty, binary is a base 2 system and wses two
digits (0 and 1). Hexadecimal is a base | & number system
ard wies | 6 different digits=—0 throwgh 9 plus the [etbers
Athrowgh F.Mﬁw:lmamnvﬂmﬁmm.;ﬁ.nm
conversion chart thows, we can express the number 11
decimal a3 either the binary number %1010 or the hex-
adecimal number SE. [Mote that the % symbol denotes
a binary number, and the & symbol a hexadecimal

mumiEr.)

T convert 4 twe-digit hexadacimal number [say SC8)
to decimal you simply find the decimal equivalent of the
left-most dlg‘lr, fie, BC = | 2|, mnd multiply it by 1&. Then
simgly add the decimal equivalent of tree right-mast diglt
[I2a16+B=200) Hexadecimal [s a particularty useful

systemin assembly language becauss it can express any
rﬂbbl!asasfngl! BrACTEr of any Bye a5 b cHARSIErs.

Sample Program 2
e Coda Uine LLabsal Masmenic Basiark
(o] oRb 10
o ME EQU §F
ooy mMRg EQU §F1
O LoNIn EQU §FE
ool | WD EQU SFR
d Ut EqQu 3P0
.7 LS O +Tern GUT lighs o
i0 SO
(1] Ll
ol STA OUT
12 o Leel B
i3 L bl
L] LA R
== (A= L H Lt Fest namae
18
16 %Booo
iT Waifd
(=3 1] Tas (Merei 18 B
i8 El=tien]
=14 LO& NIRT [Gat sacgrd rurmher
18 Roono
a0 Ll]
21 R11md
(=FF] ADRDR (Figurs gur
22 Bl
QI3 STALOKME lLaw iu
33 wWooil i
24 5 1000
28 LHERE
(=3 L8 BLC N one niabs e
an S0
T WOOLD
28 So0L0
L3 1] LBEs g
28 Ll
an L1t
(=} IMPSTE AR donw
i sun
a2 S010G
aa 1=l
QI7T WD LB O Zere A
a4 et
i Rl
QN ETH STAHMNE High b3 mamarny
a8 L=l b
ar S a0
s L b
(=1L] LOLE o4 Sl DUT Iighe
| ool
a0 L Tar]
[==1i] 5TA QUT
41 precthl
42 S1100
43 LR
oIl HERE Jp HERE damg sl ta and
aa eriit)
an %1100
A0 SO010
[=G Ry
(=== O &
g4 =R

Sample Program 3

Aedr Cads Lirm Labsl Mramoml: Revark
Bh1 EbukD fou 284
Doz Lhaw 2
Q %0001
L] %Ol
ooz TAB
2 %0100
oos AND
3 S 100h
Dos LU
4 0110
oG ETH BOUND
L] Wwohi1
] Wii1a
T Wiiil
ooT AZD
L] WD
ool ST FOUND
|] 11
1] 1110
11 i111
noR L=
13 %0000
o180 £Ta SOUND
13 w0011
14 %1119
1% %1111
o1l D& 0
& W00hi
i 0119
D1z ET& SOUND
18 w0011
e il
%1111
o1% AT
41 %0005
o014 ET4 BOUKD
11 %011
3 %1119
4 wWiiia
018 aceh
TH i
e ET4 BOUKD
Ju w0011
1 %1l
| wilii
air ADD
Eed L]
18 &TA BOUND
3 woo1
b1l ®1119
b= Wii11
oig [HELE]
a3
34 113
aa ETA BIURD
u 1101
M %1110
n Ni111
21 HERE NP HERE
an 1111
W w0110
40 Whd16

28 & Home Computer Wagarine 1985 Vahwme 5, Mo &

