‘

ATARI® PROGRAI\/I EXCHANGE

i
v
PN

Cassette: 16K (APX-10026) Diskette: 24K (APX-20026)

Harry Stewart

EXTENDED WSFN

An educational graphics language
for beginning programmers

— User-Written Software for ATARI Home Computers

Harry Stewart

EXTENDED WSFN

An educational graphics language
for beginning programmers

Cassette: 16K (APX-10026) Diskette: 24K (APX-20026)

EXTERNDED MRMSFMN
by

Harry Stewart

Froaram and Manual Contents © 1982 ATARI, Irnc.

Copyright notice. On receipt of this computer program and associated documentation (the
software), ATARI, Inc, grants you a nonexclusive license to execute the enclosed software.
This software is copyrighted. You are prohibited from reproducing, translating, or
distributing this software in any unauthorized manner.

Distributed By

The ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

To request an APX Product Catalog, write to the address above. or call toil-free:

800/538-1862 (outside California)
800/672-1850 (within California)

.Or call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, inc.

ATARI®

ATARI| 400™ Home Computer

ATARI! 800™ Home Computer

ATARI! 410™ Program Recorder

ATARI 810™ Disk DOrive

ATARI 820™ 4Q-Column Printer .
ATARI 822™ Thermal Printer .

ATARI| 825™ 80-Column Printer

ATARI! 830™ Acoustic Modem

ATARI| 850™ Interface Moduie

Printed in U.S.A.

IMFORTANT!

DUFLICATE
THIS
DISKETTE
EEFORE
USING
THIS
FPROGRAM !

This APX diskette is unnotched to protect the software against
accidental erasure. However, this protection also prevents a program
from storing information on the diskette. The program you’ve
purchased involves storing information, Therefore, before you can use
the program, you must duplicate the contents of the diskette onto a

notched diskette that doesn’t have a write-protect tab covering the
notch.

To duplicate the diskette, call the Disk Operating System (DOS) menu
and select option J, Duplicate Disk. You can use this option with a
single disk drive by manually swapping source (the APX diskette) and
destination (a notched diskette) until the duplication process is
complete, You can also use this option with multiple disk drive
systems by inserting source and destination diskettes in two separate
drives and letting the duplication process proceed automatically.
(Note. This option copies sector by sector. Therefore, when the
duplication is complete, any files previously stored on the

destination diskette will have been destroyed.)

PREFACE

WSFN (TURTLE) was originally planned for release in cartridge form. This version is either on
diskette or cassette, Therefore, please substitute the word applying to the version you have
whenever you read the word "cartridge" in these instructions.

Two documents accompany TURTLE. ATARI WSFN (TURTLE) is a tutorials EXTENDED WSFN (TURTLE)
is a reference manual.

REQUIRED ACCESSORIES
16K RAM for cassette version
24K RAM for diskette version

ATARI 410 Program Recorder for cassette
ATARI 810 Disk Drive for diskette

GETTING STARTED.
If vou have the cassette version of TURTLE!
1, Have your computer turned OFF,
2, Insert the TURTLE cassette in the program recorder, press REWIND, and then press FLAY,
3+ Turn on your computer while holding down the START key.

4. When you hear the beep, release the START key and press the RETURN key. TURTLE will
load into RAM and you’ll see the TURTLE display screen.

If you have the diskette version of TURTLE!

1. Turn on your disk drive, insert the TURTLE diskette, and power up your computer.
2, When the READY prompt displays, type DOS to call up the menu.

3. Enter menu selection L (Binary Load).

4, To the LOAD FROM WHAT FILE? prompt, enter TURTLE and press the RETURN key. TURTLE
will load into RAM and you’ll see the TURTLE display screen.

TABLE OF CONTENTS

1. Turtle overview

e
NPHPWwMNE

Turtle's domain
Drawing

Control of turtle
Keyboard control.
User defined commands

Command forms

2.1

[ASEAS N S N AN N
L] L] L] . .
O LW

.
—

WWWLWWLWWWWwwwww
. L] . . L] [] . .
WO~V BWRN

1

4,
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.1

Single letter
Testing commands
Iteration
Nesting
Command/value
Definition

. Specifié commands

Turtle position & orientation
Turtle "senses"

Turtle manifestations

Turtle world

Turtle arithmetic

Iteration

Nesting commands & clauses

User defined commands & variables
Random test

.10 Mode control & options
.11 No-ops

. Examples

Set ACC
Set ACC
Set ACC
Set ACC
Set ACC

9
23
ACC *2
ACC *7
ACC /7

Set pen color to 1 without altering ACC

Find upper right corner of screen
Recurse by number in ACC
Sierpinski Curve

Hilbert Curve

0 Trinary tree structure

TABLE OF CONTENTS (cont.)

4. Examples (continued)

4,11 Spirals

4,12 Super spirals

4.13 Diagonal plaid

4.14 Random pattern #1

4.15 Random pattern #2

4,16 Random pattern #3

4,17 Koch Curve

4.18 Hilbert Cruve (written in Pascal)
APPENDICES

Appendix A - List of commands

Appendix B - Error status codes

Appendix D - Pen selects (by screen mode)

Appendix E - Color register values

Appendix F - Joystick trigger tests

Appendix G - ROM resident user commands

Appendix H - Audio select options

1. TURTLE OVERVIEW

The turtle package provides the user with the ability to generate
screen graphics using a few simpie keyboard commands. The drawing
element is called a turtle, which may move around the screen leaving
"tracks" (or not, at the usér's discretion). His motion and direction
are controlled with five commands, each of which is a single keystroke:

H - Place turtle on home position (center of screeﬁ).

N - Point turtle north (up).
R - Rotate turtle 45° clockwise.
L - Rotate turtle 45o counterclockwise.

n

- Move turtle forward one unit.
These commands are sufficient to draw pictures of any degree of com-
plexity, when coupled with other commands and capabilities. Beyond
. thg command set provided by the turtle package, the user may define
‘additional commands which are conglomerations of other system or user
commands. Nested and/or recursive command structures may be defined

which behave very much like programs in more procedure-oriented lang-

uages.

1.1 TURTLE'S DOMAIN

The turtle's domain consists of two regions: (1) the visible region and
(2) the invisible region. The domain is fixed in size as a 65536 by

65536 "sphere" with the visible region being variable in size, depending
on the current display mode and resolution. The turtle may be confined

to the visible region or not, at the user's discretion.

THE TURTLE

TURTLE'S DOMAIN

/FNORTH

N
32768
Units
Vs s, HOME
st
WEST ﬁ50§291Qn |
22768 Invisible
Units Region
v
<3768 units 32768 units >
SOUTH

EAST

Note that the domain is "spherical". in that the East & West

edges are joined as are the North & South edges.

PAGE 2

1.2

THE TURTLE PAGE 3

The turtle is always defined by his position and orientation. From
his position, he may move to any of 8 adjacent "cells" based upon his

orientation, as shown below.

7

b

In addition to moving to an adjacent cell, the turtle may also "sense"

whether a cell is in the visible region or not, and detect the presence

of a "track" in an adjacent cell.

CRAWING
The turtle draws by leaving "tracks" with a magic marker which is con-
trolled with three commands. -
U--which stands for pen up; this allows the turtle to move without
leaving tracks.
P--is the pen select command; this selects one of three colors for
the pen, or erase (which removes tracks that the turtle crosses).
D--which stands for pen down; this causes the turtle to leave

tracks of the current pen color.

1.3

THE TURTLE PAGE 4

The turtle can also detect tracks that are already in his region with the

"S" (sense) command.

CONTROL OF THE TURTLE

The turtle is controlled by keyboard commands, which are executed as

they are entered. Command execution may be deferred, however, by using
the nesting capability provided by the () and € J matched sets. Thus, if
(CHNR999F) is entered, none of the commands within the parens will be exe-
cuted until the matching right paren is entered--at which time the string
of commands will be executed at full speed. The cémmand string above does

the following:

C - Clear the screen

H - Home the turtle)
N - Face him North |

R - Rotate him to the right (now facing NE)

999F - Move forward 999 times (each time 1leaving a track, if
the pen is down).
This example illustrates another feature, that of repetition (or iteration);
a number preceding a command indicates that the command is to be executed
as many times as indicated by the number. This feature also applies to the
nesting brackets; thus, the example below includes nested iterations:
4(2R 4(10F2R))
W
Draws a square
I

N\
Draws 4 squares with a common corner:

1.4 KEYPOARD COMTROL

The keyboard is monitored at all times, even while a command is being executed; if a key
is pressed, the current command is tempararily suspended, the newly entered command is
executed, and then the prior command is resumed. This command interruption may actually

be accomplished to any number of levels (commands interrupting commands interrupting

commands, etc.).

The BREAK key stops all command activity and puts the turtle into an idle state.
CTRL-<key> and lower-case {key> are equivalent.

USER DEFINED COMMAMNDS

The user may define unused keys to be "macro”" commands——conglomerates of intrinsic and/or
user defined commands. These commands may recurse, if desired, and may alsg, in turn,

define other commands or redefine themselves,

n

THE TURTLE PAGE 6

2. COMMAND FORMS

Turtle commands fall into one of six forms, as will be described in

the paragraphs that follow.

2.1 SINGLE LETTER

LcommandY ::= <name)

Many commands are of this form, where a single key stroke
(the name) is the command. Examples are: H (Home), C (Clear),

F (Forward).

2.2 TESTING COMMANDS

Lcommand) ::= name> <then) <else)

There are four commands of this form, where a test is made and
either the (thend clause or the (elsed> clause is executed, (but
not both. Examples are: T (Test Acc.), E (Edge test) and ? (Ran-

dom test).

2.3 ITERATION

Lcommand) ::= value) claused

There are three commands of this form, where a numeric value is
used to iterate a following clause. Examples are: A (Iterate by

ACC), #v (Iterate by variable), and n (Iterate by number).

THE TURTLE PAGE 7

2.4 NESTING

Lcommangd> ::= <nesting bracke§<c1ause>..(cTauseXmatching bracket)

There are two nesting bracket sets: (...) and [:J .

2.5 COMMAND/VALUE

&omand> ::= <pamed (value)

2.6 DEFINITION

named [<o aused

d ::
{command} B (el

THE TURTLE PAGE 8

3.

SPECIFIC COMMANDS

3.1

3.2

Home Turtle - H

TURTLE POSITION & ORIENTATION

Puts turtle to the center of the screen and leaves his "track"

if the pen is down; does not alter turtle orijentation.

Point Turtle North - N

Faces the turtle towards the top of the screen without altering

his position.

Turtle Forward - F

Moves the turtle forward one unit and leaves his "track" if the
pen is down; does not alter turtle orientation unless the screen

edge is hit in reflect mode.

Rotate Turtle Right - | R

Rotates the turtle clockwise 450. - -

Rotate Turtle Left - L

Rotates the turtle counterclockwise 450.

TURTLE "SENSES"

Sense Color Value - | S

Reads the color of the square in front of the turtle and puts it
into the turtle accumulator (ACC). Background is read as zero,
turtle tracks are read just as they were written, and squares

beyond the screen edge are read as zero.

THE TURTLE PAGE 9

3.2 TURTLE “SENSES" (continued)

- Joystick/Trigger Sense - | $<Lselectdond HFE

Tests the selected joystick position, joystick trigger and
executes either the <on> clause or <off> clause, based
upon the result of the test. See Appendix F for a list of

the select codes for the various sensible items.

Joystick position and triggers are continuously sensed;

there is no edge detection or reset logic.

- Pot Controller Read - %~<§e1ec€>

Reads the selected pot controller and puts its value in the
accumulator; the controller range is from @ (full counter-
clockwise) to 228 (full clockwise). The selectd values

range from @ to 7 corresponding to the 8 pot controllers.

- Orijentation Sense - :

Sets the accumulator to one of the values shown below, based

on the current orientation:

o - N
1 - NE

7 @ 1
2 - \T/
3 - SE o< >
PR

3

5 - SW h
6 - W

7 - NW

THE TURTLE PAGE 10

3.2

3.3

TURTLE "SENSES" (continued)

- Edge Test - | E <true> <falsé>

Tests to see if the square in front of the turtle is at or beyond

the screen edge; if so, the < true)> clause is executed; otherwise,

the {falsed clause is executed.

TURTLE MANIFESTATIONS

- Beep - B

Generates an audible tone using the television sound system.

-PenlU -] U

Allows the turtle to move without leaving tracks; this command

is countermanded by the "D" command described below.

- Pen Down - | D

Lowers the pen, which means that the turtle will leave tracks

(or erase), depending upon the current pen color selected.

- Audio Control - |CTRL-A J<letter>

Allows sounds to be generated as manifestations of internal

registers of the turtle program, as shown in Appendix H.

- Wait - W

Causes the turtle to wait for the next 30 HZ clock tick before
resuming execution of turtle commands. See also 3.10 for a

description of the speed control command.

THE TURTLE

3.3

3.4

PAGE 11

TURTLE MANIFESTATIONS (continued)

- Pen Select -

P

The value of the turtle accumulator modulo 128 is used as

the color select for turtle tracks, until changed. Zero is

background (erase) and is not the same as issuing a "PEN UP"

command.

- Turtle Representation - |CTRL-T <number>

Selects or de-selects a turtle overlay that nondestructively

shows turtle position and orientation at all times.

<number) =
<{numberd =
<number>
<numbe> =

TURTLE WORLD

- Ciear Screen

2,

de-selects the overlay;
selects an arrow overlay;
selects a turtle overlay;

selects a point overlay.

C

Clears all turtle tracks from the screen without altering the

turtle position or orientation.

- Edge Rule Select

CTRL-E <number)

Selects one of four rules to follow when the turtle encounters

the edge of the

number =
number =
number =

number =

screen.

@, turtle stops;

1, turtle wraps to opposing edge;

2, turtle bounces (reflects) off edge;

3, turtle goes off edge but does not Teave

tracks until he gets back in screen boundary.

2.4 TURTLE WORLD (continued)

If the turtle isn’t in the screen boundaries when an edge rule is selected, he’ll be put
to the home position.

- Display Mode Select - | CTRL-D {number> |

Preselects one of the eight display modes available (see Appendix C for descriptions of

each mode), The mode change takes place with the next operating mode select (CTRL-M, see
3.10)

- Color Register Values - | & {select> I
Allows the hardware color register selected to be updated with the value in the turtle

accumulator. See Appendix D for the utilization of the color registers for each screen

mode and see Appendix E for color register values to use to get the desired colors and
luminescence.

2,5 TURTLE ARITHMETIC
- Increment Turtle Accumulator -
Adds one to the four-digit ACC} won't increment it past all nines,
- Decrement Turtle Accumulator - [=]
Subtracts one from the four-digit ACC; will not decrement it past zero.
- TestAACC for = Zerp - [T<true><{falser | |

Tests to see if the ACC is greatef than zerb: if so, the <true> clause is executed;
otherwise, the {false> clause is executed,

- Set ACC toZero - [@]

Sets the ACC to zero.

- Eet ACC to Number - | <constant> (3 |

Sets the ACC to the value of the constant,

- Set ACC to Variable - | #<variable> @ |

Sets the ACC to the value of the variable,

THE TURTLE PAGE 13

3.6 [ITERATION

- Iterate by Constant - |{constant) (clause)

[terates the <c'lause> by the number indicated in the constant.
If the constant is zero, the claused is not executed at all.
If <:constanﬂ> exceeds four digits in length, the last four

digits are used.

- Iterate by Variable - |# <variab1é>'<c1ausé>

Same as above, except current value of the indicated variable

is used instead of a constant.

- Iterate by Turtle Accumulator -| A claused

Same as for CONSTANT, except current value of the ACC is used
instead of a constant. The {clause) may'modify the ACC without

changing the iteration count.

- Stop Iteration - !

When executed, makes the current iteration the last iteration
(set the iteration count to zero) within the current iteration

level. This command will not affect outer level iteration counts.

= Increment Iteratijon Count - A

When executed, increments the current .iteration count. Has

no effect if not executed within an iteration.

3.7 NESTING COMMANDS & CLAUSES
- Basic Nest - (<clause) ... {clause))
Any number (including zero) of <(c1ause§> may be nested together
creating a single new clause, using matched parentheses. Parens

may exist within other parens to any level desired.

THE TURTLE PAGE 14

3.7

3.8

NESTING COMMANDS & CLAUSES (Continued)

- Accumulator Save/Restore Nest - C...]

Behaves the same as above except that the turtle accumulator

is saved and restored by the [and] commands.

USER DEFIMNED COMMANDS & VARIABLES
- Define User Command -| = <named {clause>
= *¢name »claused -

Creates a definition in memory whereby the < clause> may be

invoked merely be using the <name); the optional * allows
¢name>to be the same as one of the turtle intrinsic commands.

If the (clause > consists of a blank character (NOP), the (name>

will be removed from the user command directory.

- Invoke User Command -| <name)

*L name>

Once defined, a user command may be used exactly as an intrinsic

command is used; however, if <name) is the same as an intrinsic
command, the * must be used, as intrinsic commands have a higher

priority in the name search.

- Get User Command Definitions - | CTRL-G "< name) "

This command clears the current set of user commands and reads in
a new set from the indicated device. The device name is in the

standard format, e.g., "C:", "D:HILBERT", etc.

- Put User Command Definitions - | CTRL-P " name) "

This command writes the current set of user commands to the indi-
cated device. The device name is in the standard format, e.g.,

“C:", "P:", "D:HILBERT", etc.

THE TURTLE PAGE 15

2.8 USER DEFINED COMMANDS & VARIABLES

- Load ROM Resident Command Definitions - | CTRL-L {character)

This command clears the current set of user commands and reads
a new set from ROM. The character following the command indi-
cates which of several sets to load. See Appendix G for a list

of command sets and their content.

- Run ROM Resident Command - | CTRL-R {character)>

This command performs all of the functions of the LOAD command
described above, and in addition, executes one of the commands

loaded. See Appendix G for more information.

- Clear User Variables -] CTRL-C

Removes all user variables from memory.

- Define User Variable - |= # ¢name)

Creates a definition in memory whereby the current value of the
turtle accumulator is assigned to the indicated <<name:> . Any
character may be used as a <fname§>. See section 3.6 for the

use of variables.

2.2 RANMDCM TEST

- Random Test - | ' <then:<else: |

Randaomly executes either the <then> or the {else> clause, using a hardware random bit
generator,

2.10 MODE COMTROL & OPTIONS
- Reset - [CTRL-T]
Restores WSFN environment to the same as after an initial start.
- Edge Rule -
CTRL-E 0 = Stop at edge;
CTRL-E 1 = Wrap at edge;
CTRL-E 2 = Reflect at edge}
CTRL-E 2 = Disappear at edge.*
- Speed Control - [CTRL-E <number> |
CTRL-S 0 = Run full speed;#
CTRL-5 1 = Single step (press CTRL-4 to step);
CTRL-S 2-7 = Run with delays!
2 = 20 commands/sec,
3 = 15 commands/sec.
Ta

=~1 command/sec.

* power-up default

-1&-

THE TURTLE PAGE 17

3.70 MODE CONTROL & OPTIONS (continued)

- Operating Mode -| CTRL-M < number
CTRL-M ® = Draw mode (full screen graphics) ;
CTRL-M 1 = Debug mode (full screen text);
CTRL-M 2 = $lit screen with internal registers;
CTRL-M 3 = Normal mode (Split screen with input echo only).

DRAW MODE: In draw mode, the entire screen is dedicated to
turtle graphics. Commands are executed as they are entered
and the user is typing "blind" (the commands are executed,

but there is no echoing of the command name to the screen).

DEBUG MODE: In debug mode, the entire screen is dedicated to
text data. Commands to be executed must be entered using the
RETURN KEY and line editing may be performed upon input com-
mand lines. The screen shows the internal workings of the -
turtle and also shows all user defined variables and command

definitions.

SPLIT-DEBUG MODE: In split-debug mode, the upper portion of

the screen is dedicated to turtle graphics and the lower por-
tion contains four text lines. The first two text lines show
the turtle registers as in debug mode and the other two text

lines are for command entry.

*

power-up default

*

THE TURTLE PAGE 18

NORMAL MODE: Normal mode is similar to split-debug except
that the text portion of the screen is used solely for com-
mand entry. When one cqmplete command has been entered, the
cursor will move to the beginning of the next line (this may
cause the text to scroll); when the command has finished the
execution, the cursor will move to the beginning of the next

line.

DRAW MODE SCREEN (MODE 9):

Graphics data

J

Turtle accepts inputs as typed without echoing them to the

screen; na line editing is allowed.

THE TURTLE PAGE 19

DEBUG MODE SCREEN (MODE 1)

ACC=0pPPP@ NUMBER=00P® LEVEL=0000 |l c ;
(1) {Frfrer EEROR= Execution data
(2) = }User input line
_(CHNA-44F) Previous command line
ASOPPl X=PPez Z=P0@> User defined variables
G=4F
[=4(10FZR)
Z=A-
~ >User defined commands
(1) AcCC = Turtle accumulator value
NUMBER = Iteration counter value
LEVEL = User defined command "call" level
CHAR = Current (or last) executed command
ERROR = Command error code (see Appendix B)

(2) Turtie accepts inputs when "> " is present; " >" disappears
while a command is executing. Input lines must be termin-

ated by the RETURN key; line editing is allowed.

THE TURTLE PAGE 20

SPLIT-DEBUG MODE SCREEN (MODE 2)

\r Graphics data

(1) [LACC=0pP@@ NUMBER=0PP@ LEVEL=0000 Execution data
CHAR=F ERROR=

(2) > _ User input line

(1) See prior page for explanation.
(2) Turtle accepts inputs when "D" is present; "> disappears
while a command is executing. Commands are executed as

input and no line editing is allowed.

THE TURTLE PAGE 21

3.11

NORMAL MODE SCREEN (MODE 3)

;r Graphics data

User input area

(1) Commands are scanned as input and no line editing is
allowed. The cursor moves to the beginning of the
line below the input line (or the input line srolls"
upward) when a command is accepted and does the same

again when command execution is complete.

- Display Mode - |CTRL-D <&number)>

CTRL-D 9 - 7 = Map to 0.S. display modes
1-8, where higher numbers
represent increasingly
higher resolution display.
The system defaults to CTRL-D 6 (Display Mode 7).
This command acts as a pre-select; the mode change actually

occurs at the next CTRL-M command.

NO-0PS
Blank, underscore, and all unassigned keys are treated as no-

operation codes.

THE TURTLE PAGE 22

4. EXAMPLES

4.1 Set Acc = 9
2

4.1 Set Acc = 23

A-23+

4.2 Set Acc = Acc * 2

A+

4.3 Set Acc = Acc * 7

A(6+)

4.4 Set Acc = Acc / 7 4

=IT(7-1+)
(+Z-)

4.5 Set pen color to 1 without altering Acc

CA-+0]

4.6 Find upper right corner of screen

=XE_(FX)
(UNX2RX D)

4.7 Recurse by number in Acc

THE TURTLE PAGE 23

4.8 Sierpinski Curve

=IT(-12FI3LG3LI2FI+)2R
=G4F
=Y (HNU44F2R44FRC[A-+PJ4(2F1))

After these are defined, one sets the accumulator to the
desired order and types "Y" to draw the curve. Again, "G"
can be redefined to a smaller number of "F"s to draw the
higher order "Y"s. For "DGOF," the accumulator can be

set to 5.

The‘Sierpinski curve is closed and consists of four iden-
tical sides arranged in different directions and connected
by a short line "2F." The sides are defined (recursively
again) in the macro "I" and the closed curve itself is de-

fined in the last part of the macro "Y," namely: "4(2FI)."

N

A]

Siecpinski curve of (A) order 1, and (8) order 3.

THE TURTLE PAGE 24

4.9 Hilbert Curve

=7T(-VG2LZ2RGZG2LV+)2L

=VT(-Z2RGVG2LVZRGZ+)2R

=G4F
=J(HNU44F2R44FC2RDZ)

After these are defined, one sets the accumulator to the
desired order and types "J" to draw the curve. "G" can
be redefined to a smaller number of "F"s to draw higher

order curves.

Hiloeet curve of (A) ecder 1, snd (B) ocder .

THE TURTLE

4.10 Trinary Tree Structure

T(++Z-AF2R3(G2R)AFA+) (+4R))
(2-7+)_
CHNA-4%99 (4 (G2R)A+))

G(-
T
J(

Type "J" to Start drawing; press the BREAK key to stop.

4.17 Spirals

I(T(--2(2LAF)Z))
V(++2(2RAF))
=J (#1Y4RU2FD4RZ]

ll ll

To run: Set accumulator = @, (Type "A-").
Set #I to spiral iteration count.
(Type "(n+=#1]" -- try n=13 first)
Type "Q".

PAGE 25

THE TURTLE PAGE 26

4.1

Spirals (continued)

n
~

#1

4.12 Super Spiral

4.13

Q (2RIT(LIT(LIT(LIT(LITZ_)_))_)_)
(UFA-2LSTR(SR)RTFD4R)
(B2LY)--initiate backtrack
(2RJT (LJT(LJT(LJT(LJTSB_)_)__)_)_)
(ST (FY)I) -

woannnu
Co < N +—

To run: Put obstacles on screen.

Type (HN9999Q)

The command will produce a clockwise spiral figure which
avoids all obstacles‘in its path. It is basically an edge
follower with a backtrack algorithm which is invoked when

there are no forward moves possible.

Diagnonal Plaid

(NR99I9(10F+P)]

THE TURTLE PAGE 27

4.14 Random Pattern #1

(100(87R2F10F))

4.15 Random Pattern #2

9997RF

4.16 Random Pattern #3

100(872R_107F_)

4.17 A Koch Curve

=ZT(-764L3(2RGZG)3(GZG2L)4RGZ+)_
=G2F
=J4(6ZG2R)

After those are defined, one sets the accumulator to the desired
order and types "J" to draw the curve. "G" can be redefined to

a smaller number of "F"s to draw higher order curves.
0 }‘
A = 2 (part of)

— L

>
1]

THE TURTLE

Hilbert Curve (written in Pascal)

PROGRAM HILBERT;
VAR SIZE,DELTA,N:INTEGER;
ORDER: INTEGER'
PROCEDURE HIL(I: INTEGER),
VAR A,B:INTEGER;
PROCEDURE HIL1;
BEGIN
TURN(A); HIL(-B); TURN(A);
END (®*HIL1%); .
PROCEDURE HILZ2;
BEGIN
MOVE(SIZE);
HIL(B);
TURN(=A); MOVE(SIZE); TURN(-A);
. HIL(B);
MOVE(SIZE);
END (*HIL2%);
BEGIN (*HIL®)
IF I=0 THEN TURN(180)

ELSE
BEGIN
IF I>0 THEN
BEGIN
A:=90; B:=I-1;
END
ELSE
BEGIN
A:=-90; B:=I+1;
END;
HIL1; HIL2; HIL1;
END;

END (®HIL®);
BEGIN (®*MAIN PROGRAM®);
WRITE('SIZE:');

READLN(SIZE); (‘ENTER SIZE FOR YOUR SCREEN®)

WRITE('ORDER:'); READLN(ORDER);
PENCOLOR(NONE);

N:=ORDER-1;

DELTA:=SIZE;

WHILE N>0 DO

BEGIN (*COMPUTE STARTING (X,Y) POSITION *)

DELTA:=DELTA*2;
N:=N-1; .
END;
MOVETO(-DELTA,-DELTA);
PENCOLOR(WHITE);
HIL(ORDER);
END.

PAGE 28

APPENDIX A - LIST OF COMMANDS

“rnumber @ Set ACC to rumber

! Command | Command | Command Semantics |Fara-|
|Character| Syntax | laraph|
e et e |
| | | i
! 1) | A<commands |Tterate command by value of ACC |
| | | |
| 3 |B |Beep |
| | | | .
| c iCc IClear screen |
D 1D	FPen down	
E lE<then>telsel	Tests for turtle a3t screen edqe	
]		
F	F [Turtle forward ome unit	
l H	H [Turtle to home position	
]	
L L	Rotate turtle left 45 deqgrees	
N N	Foint turtle north	
]		
P P IValue inm ACC is pen color select		
		-]
] R IR	[Rotate turtle right 45 degrees]	
])]	
S 18 IColor select in fromt of turtle to ACC		
I]		
T	Tothen»<elsel	Test ACC for rion—-zero
U iU [Fern up		
W W [Wait for mext 30 HZ CLOCK TICK		
]		
<blanmk>	<blank>	No-op
] ‘	
!	t	Stop imnermost iteration
*	¥<variabler<command:>	Iterate command by value of variable
]		
%+	$<select>“then 7 elser	Test selected joystick position
]
%	Zvselect	Read selected pot controller to ACC
] ;	
&	& select: IValue in ACC qoes to selected	
	lcolor reqister	
((“command.s..)	Binds command as a unit
l		
@ 1@	Set ACC to zero	
	l	

Fivarizblak@ Set ACC to varizsble value

T S e e oemm ceem coan e 600 Some SSee Cain e Sees Sem Sa0% Coas Soet e e Ceu Sewe Seae Sese oS Sewe Seme Sows Geas Seee Som Geee Seme Seee S S4eS Sewe Seee e Sees S Sews Seme eSS Sae Seme Sewe Seas Ss See Seu% Seme SESS Gee Sag Seve Seee Sees CEES Sem SeaS e Gee Se Se%S Sewe W Sem Sem Seme FHSN S Sas deem Swee Sewe Sove Seme dmse

e
-
tr
]
t3
o}
-
>
]
t-‘
-
wm
3
O
o)]
(@]
a
2
4
>
[an]
t3
[47]
8
3
o4
5
C
M
°

459 S o e e o e e Gt G S e i3 SRS Geem SSe e e CHee Soem Samm Team e e Ceem Seee e Gues G Sem CHep S eee Ges Same Cese Sewm Gere Gaem Seme Seoe Geee ves Saee Seve Sese Gmis Gee Sous Sa06 Seee S GHS Sere Seve Sece e Same Seee Sees Sems Gess Sese Sewe Seee S Sem Seve Smee e Seme Sove Sove e em S cuse semm mese

! Command | Commanrd | Command Semantics ‘FPara—|
‘Character! Suntau | lgraphl|
] 1
T e e coom e come e rme caae e 00 e 2ame o e 2o im0 e Gane comt cace e e e e e Saem Seee S Sewe Geme Seee S Sewt SaeS S Seen Seae ot S Seme Semw Soea e Save Smve e Feve Seme Soce b Soms $a0e S0 Samn Saan S Seee See0 Sowe Feve Sove Se0w Sove Seme Sons S0 Somm Seee Soen S oot Soee o e e coem oo]
M ’ iSernse orientation to ACC
|
+ + {ACC = ACC + 1
|
- - |ACC = ACC - 1
!
Lnumber> | Ynumber><command: |Iterates <command> by value of <number:>
|
= =4namerLcommands |Defines user command
| .
= ¥ <namer IDefines wuser variable = ACC value
|
? ?othernselsel |Randon test
|
C Cocommand=e.,...] |Same a3s () esicept ACC saved & restored
|
- - |No-op
|
A A

| Increment current iteration count
]

! |
| |
! |
' !
’ |
x |
| |
| :
| z
| |
! |
’ |
! :
, l
| |
| |
| |
1 |
! !
' !
| 1
! | N |
| l
l |
' |
! |
‘ =
! |
| !
| !
! |
| !
| l
| |
| |
| l
| 1
| |
| |
| |
| |
| |
’ !

- —— — — — — — —— o —
— - o — o — — — — — — — T— — — —— o — — — —— — — o — —

CTRL-A |<option> lAudio select
CTRL-C |IClear (remove) all user variables
CTRL-D |“model :Select display mode
CTRL-E |<rulel :Select edge rule

1
CTRL-GC |"“devicex" ;Get wser defimitions from device
CTRL-L |<namel iLDad user defimitions from ROM
CTRL-¥ |<model lSelect operating mode
CTRL-P |"<device:" | :Put user definmitions to device
CTRL-R l<namel §Load and run user command from ROM
CTRL-E |<option> :Connand execution speed select
CTRL-T |<option> :Select turtle representation
CTRL-Z §Reset

T o 70 0m 50m0 0 5100 (00 7m0 10 00 SRS e S S fan s e = Saae e e a6 s Same e Seee Geee e aee e @up Seme s Seee Seus Sea6 Geum TS Sewe S e e e Same Gem Saaw Cewe SIS SSHO S SHS SHES Ge Seeb GHE Sewe SeeS SHe SSRGS SO Seee Gee 0% SHes S Seee s seve eee Sewe wevs Some Seme

THE TURTLE

APPENDIX B - ERROR STATUS CODES

Operator Abort (BREAK key)

Device name error

User command definition area full
Systems I/0 error

Load/Run argument undefinéd

Nesting error (unmatched right bracket)
Overlength command line input
Incomplate (partial) line input
Reserved name for user command

Stack overflow

Undefined user variable name used

PAGE 31

THE TURTLE PAGE 32

APPENDIX D - PEN SELECTS (BY SCREEN MODE)

Mode Pen Range Color Registers Used
0 0 -127
1 0-127
2 0-3 0 = background
1 = PFO
2 = PF1
3 = PF2
3 0-1 0 = background
= PFO
4 0 -3 0 = background
1 =PFO
2 = PF1
3 = PF2
5 0-1 0 = background
1 = PFO
6 0-3 0 = background
1 = PFO
2 = PF1
3 = PF2
7 0-1 0 = PF2
1 PFl (luminescence only)
&0 = PFO
&l = PF1
&2 = PF2
&3 = PF3
(&4 = background -- someday)

THE TURTLE

Range

16
32
48
64
80
96
112
128
144

160

176
192
208
224
240

- 15

- 31

- 47

- 63

- 79

- 95
- 111
- 127
- 143
- 159
- 175
- 191
- 207
- 223
- 239
- 255

APPENDIX E - COLOR REGISTER VALUES

Mid-Bright

8
24
40
56
72
88

104

120

136

152

168

184

200 -

216

232

248

PAGE 33

THE TURTLE PAGE 34
APPENDIX F - JOYSTICK TRIGGER TESTS

Select Direction* Select Direction

Code Trigger Device Code Trigger Device
A F JOYSTICK O U T POT
B R JOYSTICK 0 v T POT
C B JOYSTICK O W T POT
D L JOYSTICK O X T POT
E F JOYSTICK 1 Y T JOYSTICK
F R JOYSTICK 1 JA T JOYSTICK
G B JOYSTICK 1 (T JOYSTICK
H L - JOYSTICK 1 \ T JOYSTICK
I F JOYSTICK 2‘ F = Forward
J R JOYSTICK 2 R = Right
K B JOYSTICK 2 B = Backward
L L JOYSTICK 2 L = Left

T = Trigger

M F JOYSTICK 3
N R JOYSTICK 3
0 B JOYSTICK 3 @)
P L JOYSTICK 3 L @ R
Q T POT O
R T POT 1
S T POT 2
T T POT 3

APPENDIX G - ROM RESIDENT USER COMMANDS
(See page 15)

| Load/Run | Content | Runs | Reference |
| Name |] | |
e e e e e o e e e e e e s o e e S e S0 e o e e e . o S S e e S e e S S e e et S S o o e e o o e e |
| 1 | Y = SIERFINSKI CURVE] Y | See 4.8, 4.9 |
l | J = HILBERT CURVE | | |
| e £ e S S e £ 2 e e e e e e e e 2 e o e e e e e o e e e |
| 2 | Y = TRINARY TREE | Y | See 4,10, 4.11 |
| | J = SIMPLE SFIRAL | | |
| e 2 2 e e |
| 3] K = SUFER SFIRAL] K | See 4.12 |
e e e e e e e e e e e e e e e e e e e B e e e e e e e e e e e e e e e e e 2 e e e e e e e e e |
| 4 | Y = DRAW (CARTESIAN)] Y | |
| | J = DRAW (FOLAR) |] |
| e e e e e e e e e e e e e et e e e e e e o o e |
I 5 | Y = WALL EBANGER | Y | ' |
| | J = BREAKOUT |] |
| e S e e e e e e e e e e e ot e e e e e e 2 e e e e e e e 2 e e e |
] 6 | J = HOLLYWOOD SQUARES | J oo |
| e e e e e e e e e e e e e e o e e et B e e e e e e e e e e o e o e e 2 e e e e e e e o e o e et e e e e |
| 7 | Y = KOCH CURVE | Y | See 4.17 |
e |
| 8 | Y = THE ZAFFER LY K |
S SR | FROM]
| 4] Y = DRAW | Y |]
e | "ATARI |
| A | Y = FOSIES | Y | |
e] WSFN" i
| E | J = SUPERTURTLE | Jood |
e | MANUAL |
| Cc | COLORFOWER | | |
| e |
] D] Y = MAGIC CARFET | Y | |

WSFN/TURTLE BUILT IN PROGRAMS

You can access several programs (user commands) built into the Atari WSFN/TURTLE
cartridge by using the CTRL-L or the CTRL-R commands. These programs are itemized in

Appendix G of the language/system specification, The paragraphs that follow elaborate
on the information in Appendix G,

1. The column labeled "Load/Run Name" contains the one character name of the program
group that’s loaded by CTRL-L or CTRL-R. See page 15 of the specification for the
semantics of CTRL-L and CTRL-R.

2, The column labeled "Content" specifies the command name(s) and description(s) of the
top level command(s) in each group. Note that, in general, each group contains many

low-level user command definitions, and one or two top-level commands,

3+ The column labeled "Runs" indicates which of the loaded commands are executed when you
invoke the CTRL-L command. For example, CTRL-R 1 is the same as CTRL-L 1 Y.

4, The column labeled "Reference" points out supporting narrative information, when it’s
available,

The remaining paragraphs give more information about the built-in programs themselves.
Note also that you can examine the content of the groups by loading them in the debug
mode (CTRL-M 2) or by putting the loaded definitions to the printer (CTRL-P "P!"),
SIERPINSKI CURVE -- no additional information required

HILBERT CURVE -- no additional information required

TRINARY TREE -- no additional informaton required

SIMPLE SPIRAL -- no additional information required

SUPER SPIRAL -- first draw a complex, nen-closed figure on the screen using DRAW
(CARTESIAN), and then invoke SUPER SPIRAL.

DRAW (CARTESIAN) — joystick O is used to produce line drawings; the stick controls the
cursor motion and the trigger controls pen up/down.

DRAW (POLAR) —- similar to DRAW (CARTESIAN) but uses spaceship type control} it‘s very
difficult to use.

WALL BANGER -- first draw a complex, closed, maze-like figure on the screen using DRAW
(CARTESIAN), and then invoke WALL BANGER.

HOLLYWOOD SQUARES -- no additional information required

KOCH CURVE -- no additional information required.

THE ZAPPER through COLORPOWER —— see "ATARI WSFN, an introduction.e.",

Note that you can invoke the audio select command (CTRL-A) while another command is

executing, without affecting the operation of that command. The same holds true for the
turtle representation selection (CTRL-T).

Note also that you can store additional demonstration programs and load them from a mass

storage peripheral such as cassette or diskette using the get (CTRL-G) and put (CTRL-P)
commands,

-3¢~

THE TURTLE PAGE 37

APPENDIX H - AUDIO SELECT OPTIONS

=
]

audio off
A - f hori it

LSB of horizontal pos1t1on'} relative to upper left corner
B - LSB of vertical position

C - MSB of software stack pointer

Pot controller @

o
]

E - Pot controller 1

-n
[}

value in CHAR (current command)
G - (internal)- TEMP

H - (internal)- TEMP + 1

I - (internal)- COUNT

J - hardware stack pointer

K - MSB of horizontal position?} relative to screen center
L - MSB of vertical position

M - LSB of software stack pointer

N - (internal) - INPT +2

0 - LSB of turtle accumulator

ATARI
~ WSFN

(TURTLE)

i

ATAR! WSFN INTRODUCTORY MANUAL
Prepared byf Gregory Yob

PREFACE (General remarks that are unlikely to appear in the final
version of this manual.)

1) ATAR! WSFN is subject to changes which may require changes
to this manual- for example, the representation of the
turtle might change.

2) It is assumed that the user is familiar with the ATARI
keyboard, and knows how to manipulate the SHIFT and CTRL
keys.

3) Entry of keys will be as typed with these exceptions:

c

Letter means CTRL-Letter

Letter ° means SHIFT-Letter
For example, MC2TC1HCN is equivalent to:

CTRL-M 2 CTRL-T 1 H C N

WHAT'S WSFN 77717

Have you ever tried to build a house out of toothpicks? Or
to bail out a battleship with a teaspoon? That's the situation
that the first computer hobbyists were faced with......

Back in the '"old days'' of personal computers, you would buy
some kits through the mail, and with a soldering iron, a lot of
patience, and even more luck, you would end up with your very own
personal computer! However, that was only half the story - for
a computer without a program is like a car out of gas = or your
ATAR! 400 (or ATAR! 800) without any cartridges. You could turn
your computer on = and it would sit there and do nothing.........

Deep inside every computer is the electronic equivalent of a
blackboard, and written on the blackboard is a series of instructions
for the computer to follow. You might imagine an ordinary blackboard
with a gridwork of 1/2 inch squares on it - if you filled some squares
with chalk, and erased others, you can draw letters - and then
words and sentences. Of course it takes hundreds of little squares
to write a3 short sentence......

When a computer Is turned on, it looks at its memory (that's
the blackboard), and the pattern of ones and zerces (white or black
squares) contains the instructions that tell it to do something. Sfnce
it is easier and cheaper to build computers that recognize “"binary
patterns'' that to make computers that understand English sentences,
the computer's memory will look very strange to you and me.

Now, back in the ''old days'', the people with big computers had
already solved this problem - patterns of ones and zeroes were made
which let humans use typewriters and English-like sentences to tell
the computer what to do. (This is called programming.) But!! The
poor fellow with his personal computer didn't have these computer
languages - and his personal computer's memory was very small. In
fact, the memory was too small to hold the languages that big
computers were used to.

Computer hobbyists soon got tired of flipping switches
thousands of times to make their programs = sO "tiny' languages
were invented. A tiny language couldn't do as much as the
languages on big comuters, but you can still do a lot more in

a tiny language, and do it a lot faster, than making up the
ones and zeroces by hand.

In 1977, Lichen Wang, who had already made a Tiny BASIC,
decided to make a tiny language for controlling robots with his
computer. When he shared it with his friends, they started to
call it different things - since Lichen hadn't given the language
a name. When Lichen was asked what to call the language, he
said: '"If everything has to have an acronym, | would rat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>