
BY SPARKY STARKS

FOREWORD
At the start, I must tell you that this program did not come into being

as the result of a carefully-planned effort. The truth is that DISKEY began
as the attempt of a desperate programmer to create a few disk utility
routines to recover damaged disk, information. As often happens, the
'Gee whiz, what else can we make it do?' urge surfaced and DISKEY
grew' ... and grew ... and grew!

I am grateful to the following Ateri wizards: Neil Larimer, The Mad
Elf, Den Horn-and especially Scott Adams, Russ Wetmore, and my wife
Terri-not only for their suggestions but also for helping me through the
darkest hours of 'why won't it work?' despair. Without these
collaborators. DISKEY would still be the handful of routines that were its
beginning. It would also be slower and more difficult to use.

DISKEY was never intended to be used es a piracy tool. While it does
contain powerful automatic copy routines which have the capability to
back up almost any material. DISKEY is intended only for legitimate use,
which does NOT extend to giving or selling backups of copyrighted
programs to your fr:iends [or enamies either]. One's ability to copy
someone else's work does not legally or ethically justify theft of that
effort. Many companies producing proprietary software have protected
their copyright with lucrative reward offers for information concerning
even innocent piracy. After considering the damage piracy is inflicting on
the computer industry, my sympathy is with the fink plans, not the
thieves.

In short, the only right that any user has to the use of any software is
the right purchased with that software. If you are using programs that
you did not buy from tha lagitimate source, than you are the thief just
discussed. If not, please do not let DISKEY tempt you into becoming that
thief.

Lastly. because DISKEY was designed to be an aid rather than a
miracle, no claim is made that it will do anything correctly. My best effort
has gone into making DISKEY do everything that I [and others] could ask
for in the way of disk inputJoutput and related functions. I hope that this
program will suit your needs and I thank you for purchasing it.

'eCOPYRIGHT 1982 ADVENTUijE
BOX 343S, LONGWOOD, 'FL 32750

Sparky Starks

Disk Access and Repair Key

Contents

INTRODUCTION. .. 2
SYSTEM REQUIREMENTS 3

SECTION 1 . Atari Disk Parameters
Chapter 1. Bytes, Sectors, and Tracks " 4
Chapter 2. Types of Sectors 5
Chapter 3. Let's Get a Rle .. 8

SECTION 2. DIS KEY Use and Abuse
Chapter 1. DISKEY'S Screen Variables .. 9
Chapter 2. Sector Map, Disk Map 11
Chapter 3. This is What DISKEY Does ... Generally 13
Chapter 4. Read Routines 14
Chapter 5. Zap Routines 15
Chapter 6. Informational Routines 17
Chapter 7. Search Routines 21
Chapter 8. Error Recovery Routines 22
Chapter 9. Copy Routines 27
Chapter 1 O. Repair Routines 29
Chapter 11. Support Routines 30

SECTION 3. The DISKEY Keyboard
Chapter 1. The Simple Keys : 33
Chapter 2. The Control Keys 39
Chapter 3. The Directory Keys 43
Chapter 4. The Rle Keys 45

Appendix A. Bit/Byte Discussion 49
Appendix B. Hex/Decimal Conversion 50
Appendix C. Printer Character Conversion 51
Appendix D. Variable Summary 52
Appendix E. Keyboard Summary 52

Glossary ... 54

1

Introduction

Of the problems encountered in writing software manuals, only one is
insurmountable. How do you meet the needs of new programmers
without boring the old dogs to tears? OISKEY has been designed to
encourage the near-beginner, so some of you had best get out the crying
towels. And because I am one of the old dogs myself, there are no doubt
.concepts that I take for granted, and overlooked as I wrote this manual.
Good luck to one and all.

USING THIS MANUAL

The OISKEY manual consists of three main sections. The first is
background information, and discusses concepts that you mayor may

. not already be familiar with. It addresses the Atari disk format and *Rle
Management System design philosophy, and discusses some commonly
encountered disk problems.

The second section is the start of the operating manual and explains
the things that OISKEY does. Suggestions on how to apply OISKEY to
specific problems are sprinkled throughout this section.

The third section discusses each functional OISKEY control key and
how it is applied. This will serve as your primary reference when using
OISKEY. The Table of Contents includes a brief description of each key
and serves as a pointer to which key to use for a particular task.

Rnally, a glossary is included at the end of the manual to identify both
the technical terms that Atari has sanctioned or coined and my own
'wildcat' terminology.

I suggest that you read the entire manual before plugging in the
OISKEY disk. Any program that can write to a disk has horrible potential
for software demolition. When using OISKEY to modify software, always
modify a BACKUP copy when possible. This is very important! Never try
to modify an original or *vault copy of software unless you are willing to
lose the software. Never, never, never take the write protect off of the
OISKEY disk. I destroyed my OISKEY backup three times during
development by misusing OISKEY itself. Be very careful.

2

SPECIAL SYMBOLS
You may have noticed the symbol '*' which appaars bafore certain

words in this manual. It indicates that the word can be found in the
glossary. If the word is unfamiliar, refer to the glossary for definition
before continuing. The '*' symbol appaars only with the first use of a
word. The '$' symbol is used to indicate a *hexadacimal numbar and the
'%' symbol is used to indicate a *binary numbar. Symbols 01 to 07 will
be used to indicate the *bits of a *byte.

SYSTEM REQUIREMENTS
In order to use OISKEY at all, the following system hardware is

required:
1 Ateri 400 or 800 computer with at least 32K memory
1 BASIC language cartridge [Ateri BASIC]
1 810 disk drive
In addition to the above requiremants, OISKEY will be more friendly

and powerful if the following optional items are added to the system:
1 additional 810 disk drive
1 printer, 80 column
1 additional 16K memory module [48K total]
OISKEY is a BASICI Assembly hybrid designed to provide maximum

power and flexibility for maintenance and repair of disk based software.
The disk on which OISKEY is providad contains several different
programs, all of which are required to provide the complete OISKEY
command menu. 32K of memory is perfectly adequate for most OISKEY
menu options, but systems operating with only one disk drive will require
much fewer disk swaps during copy routines if 48K of memory is available
for transfer storage.

3

Section 1. Atari Disk Peremeters
Chapter 1. Bytes. Sectors. and Tracks

All eight bit micro-computers store their memory in units called
bytes. Each byte equates to a decimal number which is at least 0 and at
most 255 [256 different possibilities]. Each of the storage locations in
which a byte may ba placed is called an address. There are 65536
[256*256] addresses available to the computer because two bytes are
used by the machine to number the addresses. Virtually all information
used by any computer is processed as bytes stored in memory
addresses, so most *peripheral devices [disk drives, for instance] are
designed to operate with addresses and bytes. In the Atari single density
[standard] disk system each byte is stored in a record called a * sector .
Each sector contains 128 bytes of information. Some of this information
is data for the computer and some of it is data for the disk system. The
disk's sectors are actual physical records stored magnetically in
concentric rings on the disk. The rings are called *tracks and there are
40 tracks on a disk. Each track consists of 18 sectors. To recap:

128 bytes per sector
18 sectors per track
40 tracks per disk
This amounts to 128*18*40 or 92160 bytes per disk - more than

the entire possible memory in the computer. In addition, the disk can be
removed and stored without the constant need for electrical
maintenance. What a fine idea!

Actually the 92160 figure is optimistic. It assumes that every byte
of every sector of every track is used for data which is useful to your
computer and that's not true. The Disk Operating System requires large
amounts of the available disk space to keep track of what is where and
how the computer will use it. This record keeping system is the source of
most disk problems.

4

Chapter 2. Typ. of Sectors

The Disk Operating System [usually referred to as the *DOS] is the
area of computer code which is assigned to handle a computer's disk
drives. Actually, Atari has broken their DOS into two parts. They call
these parts the *Disk Handler and the Rle Management System. The
reason for this distinction is that Atari has an *Operating System in the
true sense. It is capable of handling most of the special tasks humans
request. This includes turning keyboard entries into computer readable
bytes, making the monitor screen work, doing all of the sounds and
colors, and handling some part of all other input/output functions. One of
the input/output routines in the Operating System is the disk handler.
From here on, we will call the general part of the Disk Operating system
[the part that the computer owns] the *OS. The part that the disk
system gives to the computer for use [Rle Management System] will be
called *FMS. When we talk about the whole thing we will use the term
DOS.

Normally, the only part of the DOS that is accessibleto the human
using an Atari is FMS. FMS in turn relies on the programs in the OS to do
its job. DISKEY allows the human to check up on the job that FMS is
doing, and fix errors in what FMS has stored on the disk. In addition,
DISKEY allows the user to do things that FMS could do if someone had
thought of them when it. We'll discuss these later.

Right now, lets look at how FMS uses the disk, to help us learn to
intelligently play with the information on the disk ourselves.

There are five basic types of sectors written by FMS. The first
encountered on the disk is the *Boot Sector. On a DOS II disk, the first
three sectors are Boot Sectors. The data in these sectors is written into
the computer the minute DOS is activated. They contain information
about what FMS looks like, what the disk system looks like [number of
drives, etc.], and most importantly, they contain a program to load the
computer resident portion of DOS into the computer. This part of DOS is
called the Disk Rle Management system and is contained in the file
named DOS/SYS. DOS/SYS must be on the disk in drive 1 when the
computer is turned on. It is loaded into memory to support LOAD/SAVE
and other BASIC file functions. The DOS/SYS file is always *file number
zero.

5

The sectors occupied by OOs/SYS are e different kind of sector than
Boot Sectors; they are called *Rle Sectors. Rle sectors contain 128
bytes like any other sector but only 125 contain file data. The last 3
bytes of the sector contain four values that FMS uses to keep tabs on
the file. These values are the Rle Number, (*FN], the number of the next
file sector (*NS] (Atari tracks are equated to sector count, giving sector
1-720 or 0-719 depending, but that's another story], the number of
bytes in the sector (the last sector of a file is usually a partial record -
less than 125 bytes], and a *flag that indicates that the sector is or is
not a partial record.

Byte 125 (sector bytes are numbered a to 127] contains two
things: The first is the FN, contained in 02 to 07. This is used as a check
value and is compared with the FN recorded when the file was found in
the *directory. If the two FN records do not match, FMS knows that
there is a problem. It calls this problem, not surprizingly, RLE #
MISMATCH.

8its DO to 01 of byte 125 contain the *Most Significant Byte
(*MS8] of the *Forward Sector Chain Reference (NS]. This value· is
multiplied by 256 and added to the contents of byte 126 to find NS.
Without this value FMS would not know where to find the next sector of
the file.

Byte 1 27 contains two velues. The first is the number of bytes of
data contained in the sector. This figure does NOT include the three file
control bytes and is stored in DO to 06 of the byte. 07 bit of byte 127 is
e flag. When the flag is on, the sector has LESS than 125 bytes of data.
A normal file sector will have a $70 value in byte 127, indicating that the
sector is a full sector and that it contains 125 data bytes.

The third sector type is the *Volume Table of Contents sector
(*VTOC]. The VTOC is found in sector 360 and is used to show FMS, at

- a glance, which of the usable file sectors are actually in use. Byte a of the
VTOe contains a value which indicates with which DOS edition the disk is r . designed to be used. It will contain a for DOS I and 2 for DOS II. Bytes 1
and 2 are the *LS8 and MS8 of a number that indicates how many file
sectors are available for use when the disk contains no files whatsoever.
Bytes 3 and 4 are again LSBlMS8 and indicate how many free sectors
exist on the disk. The next five bytes are currently unused by FMS. Byte
1 a begins the VTOC bit map. In each VTOC record byte, every bit

6

indicates use of one sector. Bytes are read starting with 07 for the
lowest sector [backwards from all logical order]. A 1 in the bit means
that the sector is free while a 0 indicates a sector in use [backwards
again]. Examination of a blank formatted data disk will show only boot and
* directory sectors in use. The VTOC record extends through byte 99 of
the sector. The remaining bytes in the sector are not currently used.

The fourth sector type is the Directory Sector; sectors 361 to 368
are so used. Each Directory Sector is divided into eight entries of 16
bytes apiece. The eight sectors contain a total of 64 entries and each
entry contains the information used by ODS to find one file. Byte 0 of an
entry is a flag byte. DO of the byte indicates that the file is open [currently
in use]. This indicates that FMS has damaged the directory if 00 is *set
during DISKEY use. This sometimes happens if reboot, system reset, or
break are used while writing a record to disk. Never interrupt a disk write
procedure at peril of damaging the disk's data. 01 of the flag byte is set
to indicate that the file is ODS II format. 03 and 04 are currently unused.
05 is set for locked files. 06 is set to indicate that the file entry is
currently being used by a valid file. 07 is set to indicate that the file in this
position has been deleted and that this space is available for new
directory entries.
Bytes 1 and 2 are LSB/MSB for the total number of file sectors in the file
[*T#]. Bytes 3 and 4 are LSB/MSB for the number of the file sector of
the file. Bytes 5 to 12 are used to store the * ASCII characters of the
filename and bytes 13 to 1 5 store the ASCII filename extension
characters. It is easy to see why the length restrictions on filenames and
extensions exist.

The fifth sector type is the lost sector. At present, only sector 720
is used for this purposelessness. Somehow a disparity exists between
the numbering system used by the computer and that used by the disk
drive. The computer thinks that the disk has sectors 0 to 719 and the
disk drive numbers the sectors from 1 to 720. As a result, you can
legally attempt to read sector zero. FMS won't object, but the drive
won't respond. At the other end of the spectrum, FMS doesn't recognize
the existance of sector 720 and so does not assign it to files. It is there
and OISKEY can access it, but it is not used in normal FMS routines. This
has been used to advantage in some software protection schemes.

7

Chapter 3. Letl • Get a File

To better understand how FMS uses its disk organization system,
let's follow the file delete procedure. I make no guarantee as to the actual
order that the following FMS routine uses, but these are the things that
must be done to delete a file.

Rrst, FMS uses the filename that you have provided to find the file in
the directory. It attempts to find the file among B sectors of B file entries
each. If no match is found, a RLE NOT FOUND error will occur. If a match
is found, FMS will determine that the file is unlocked, not open and not
deleted from the first byte in the directory entry. Then, from bytes 1 to
4, the file sector count and first sector will be recorded and the first byte
of the directory entry will be modified to indicate that the file is OPEN.
Using the Rrst Sector entry, the first sector will be read. The last three
bytes of the sector contain the NS and * F# references. The F#reference
is compared to the file number implied by the position in the directory in
which the filename was found. A mismatch indicates that the sector
chain has been damaged and an error will result. If no error is
encountered, then the sector is freed in the VTOC and the total sector
count is decremented [1 is subtracted]. The NS value is used to read the
next record and the process continues as above, with the reading of the
sector. FMS uses an NS of zero in the last sector in any file. Error
returns will result if a zero NS is discovered before the sector count is
done or if, when the sector count is completed, the NS reference is NOT
zero. These conditions indicate a damaged file because the file does not
agree with the directory.

If no errors have occured, the directory is now updated to indicate
that the file is closed and deleted. Note that the file data has not been
erased. In fact, the directory information concerning the file should still
be intact. The only things that have been changed are the first byte of the
directory entry which has been changed to indicate file deletion and the
VTOC which has been updated to free all of the sectors formerly used by
the file. An accidentally deleted file can be recovered by first modifying the
directory to show the file un-deleted and then by fixing the VTOC to re-
allocate the file sectors used by the file. Note that if any other files on the
disk have been changed since the file deletion, the file sector chain may be
in jeopardy. Because the VTOC freed the file's sectors, they may have

8

since been assigned to other files and rawritten! Disk damage should
always be attended to promptly to avoid complications. .

When a file is saved, the basic procedure used above changas very
little. Instead of following the NS references in existing file sectors to
change the VTOC, the VTOC is read to locate free sectors which are
then written containing references that agree with the progress of the
write process. When a file is loaded, the procedure used for deletion is
followed almost exactly. The difference is that in the case of a file load,
the sectors are read into memory and the VTOC is not modified. Whare
the file goes in memory and the type of file being loaded are determined by
code imbedded in the file data and are questions best left to the research
of the reader. The ATARI [c] Personal Computer System OPERATING
SYSTEM User's Manual can answer any questions concerning file data
format and most other subjects and is available from ATARI.

Section 2. DISKEY U.e and Abu.e

Chapter 1. DISKEY'S Screen Variable.

In order to make any sense of what DISKEY has to say about a disk,
you will need to learn its simple language. In this chapter we will cover
most of the variables displayed by DISKEY and explain how each is used.
The glossary is a good place to look for anything not found here.

The first variable on the screen is *OS. OS means originate Sector
and is used for two things. In manual functions it says from which sector
DISKEY is reading. In automatic functions it indicates the starting sector
for the function. OS is changed by most routines and should be watched
carefully to determine that it is correct before use. OS is changed
directly by the [R] and [l] keys.

The next displayed variable is *DS. DS means Destination Sector
and indicates the WRITE sector for manual functions and the LAST write
sector for automatic functions. DS is set to OS by many routines and
should be watched. DS is set directly by [N].

NS means Next Sector and is used to show the forward sector
chain reference made by the last sector read. This value is the key to
where the file containing it is headed.

9

F# is short for Rle Number. It shows in which file the last read sector
believes itself to be contained. Actually, the F# value is only correct if the
sector is in a valid file chain. Because DOS makes no attempt to erase
sectors which have been excluded from files or are in files that have been
deleted, the F# value may not be valid. In addition, boot, VTOC, and
directory sectors don't use F# or NS and both are meaningless in these
sector types.

RLENAME indicates the name of the file selected by the [F],[F]
sequence of keys. This is the file on which all file oriented functions will
perform.

*00 defines the Originate Drive. In both manual and automatic
functions it points to the disk from which you are reading. 00 is modified
directly by the [0] key.

*00 defines the Destination Drive. It tells you what drive is getting all
WRITE instructions. The [0] key toggles the DO variable between drives
1 and 2.

*VE is the Write Verify indicator. If VE says YES, then all writes are
re-read to insure correctness. This is the normal state under DOS II. If
the VE variable indicates NOI, then no verify is performed. This roughly
doubles the speed of all write operations but may lead to errors if your
drives and disks are in questionable condition. The VE variable is toggled
by the M key.

*XR is a little complicated to describe. Some custom files have been
found to contain data which has been EOR'ed with some value to be
unreadable on the disk. Normally, ASCII data is easily read but a disk EaR
confuses ASCII text and makes reading difficult. The EaR value is a binary
number to which the data is added, ignoring all Carries. The result of the
EaR process is that for each 1 bit in the EaR value, the corresponding bit
in the data is switched from ON to OFF or vice versa. For instance, EaR
value 128 is % 1000 0000 binary. This value, EOR'ed with 100,
[%0110 0100], results in data of 228 or % 1110 0100. The 07 bit is
toggled by the EaR value. Wasn't that fun? Most of you will never use

. any EaR value but zero, but when you need it, you really need it. Some
companies have resorted to using the ROM based character set as an
EaR table, mapping each byte in a sector with the corresponding byte in
the character table. This results in a hodge-podge that is truly formidable
to read. Unfortunately, there is no practical way to include such 'rolling'

10

EDR values in DISKEY because the minute something is included, it will be
avoided in favor of something new by companies trying to protect their
software from visual inspection. Despite their disasterous effect on
visual inspection, EDR values do not affect duplication techniques. At any
rate, good luck with all your EDR's. The XR variable is directly modified
with the [X] key.

The T# variable is used with file commands to indicate the Total
Sectors in the selected file. It is an aid to determining how far into a file a
given sector is and is used with the *S# variable. T# is an implied variable
and is not directly modifiable.

The last screen variable is S#. It indicates the relative sector number
in a file chosen with the File command. S# is the reference for all file
related read and search routines and shows the position in the file when
compared with T #. S# is not selectable by the human but is modified by
DISKEY during many of the file commands.

Chapter 2. Sector Map. Disk Map

The Sector Map and Disk Map are the heart and soul of DISKEY.
These displays show the connected human what is going on inside the disk
under DISKEY scrutiny. Actually, the format of each is self-explanatory,
but just in case ...

When a sector is read from a disk, it is placed in an area in the
computer's memory called a buffer. It is this *memory buffer that
DISKEY represents on the screen as the Sector Map, the contents of
the sector under scrutiny.

The Sector Map is divided vertically into two parts: the Hexadecimal
Display, and the ASCII display. The hex portion shows the hex value of
each of the bytes in the sector and the ASCII part shows the bytes in
ASCII. This duality is convenient when searching for text on the right side
or code on the left. The power extends a little further in that sectors can
be modified in hex or ASCII simply by moving the modify cursor into the
appropriate display field.

11

The two fields are separated by the coarse byte counters. These are
added to the fine byte counters under the Sector Map to find a given byte
in the sector. Sector bytes are numbered 0 to 127. for a grand total of
128. [Why do these machines think that zero is one?J

The Disk Map shows a record of each sector on the disk. and is used
by all multiple sector functions. The meaning of the funny markings varies
with map usage. but a general description of symbols is in order.

A period [.J virtually always means that the sector in question was
not involved in whatever the Disk Map was used for. A plus [+ J usually
means that the sector WAS encountered. In file trace. a plus means that
the sector is part of a continuous chain; the preceding and following
sectors are also in the traced file. A star [*J is used to indicate a starting
sector [sometimes called a * renegade J. Starting sectors are not
referred to by another sector but ARE included in whatever the function
is testing. Inverse characters are used to indicate a forward sector
reference that is non-continous; the condition that exists when a file
chain jumps over sectors such as when the sector block reserved for the
VTOC and directory is encountered. The pound [#J is used to indicate a
sector whose forward reference is to sector number zero. These
sectors usually indicate the end of a file. A slash [/J is used to indicate a
sector that is referred to by a file but by virtue of its file number is
assumed to be OUTSIDE of the file. Slashes are a sure indicator of a
problem.

The Disk Map display has coarse numbers to the left of the display.
To show the whole map. all 40 of the possible screen positions were used
and if your monitor has an over-scan problem. part of each coarse
number may not show on your screen. For the information of those poor
unfortunates. the coarse numbering starts with zero and counts by 36.
so the display procedes: D. 36. 72. 108. 144. 180. 216. 252. 288.
324. 360. 396. 432. 468. 504. 540. 576. 612. 648. 684. The fine
sector numbers at the bottom of the screen are added to the coarse
numbers to obtain the number of any given sector in the display.

Each line of the map shows two disk tracks so a vertical line is used in
the center of the display to separate them.

12

Chapter 3. What: DISKEY Da_ ••• Senerally

Very little of what follows will make sense without a good
understanding of the concepts presented in Section 1 . PLEASE read [and
reread] Section 1 several times before continuing. If after reading
Section 1 you still have difficulty understanding the follOWing chapters, I
suggest you read ATAAI'S excellent Operating System and Hardware
manual before continuing.

This chapter will address OISKEY'S design philosophy. In the course
of the remainder of section 2, I will try to explain generally how the
program is used to 'operate' on disk problems. Most of the actual key-
pushing instruction will be saved for the next section but you should read
all that follows carefully to get a feel for where to look in Section 3 to find
what you need.

There are two ways to divide OISKEY routines: by what type of
sector each is aimed at [file, directory, general], and by what function the
routine performs. I will list the command types, and then discuss OISKEY
more thoroughly in terms of routine function types. Hopefully, this
approach will cover all of the bases with a minimum of confusion.

There are four types of OISKEY keys. The first type consists of keys
you just type. These keys perform simple tasks, like changing which drive
is being used. Simple keys will be written [X). The second type is the
control group. Control keys are used mostly to perform automated
versions of simple keys or to do lengthy or otherwise fancy jobs. I will
notate control keys [eX]. The third type is the directory group [!X]. This
group allows the directory values of a file to be changed by file number and
simplifies what otherwise would be tedious byte interpretation. The
fourth key type is the file group [FX]. This group is the most ambitious and
allows many of the simple functions to be performed selectively on a
previously chosen file.

ROUTINE TYPES

There are eight classifications of OISKEY functions:
1. Read routines
2. Zap routines
3. Informational routines
4. Search routines

13

5. Error discovery routines
6. Copy routines
7. Repair routines
8. Support routines
These categories are not clearcut [some overlap exists] but they

give you some idea of what OISKEY can do. The next chapters will cover
each type of routine in detail, and hopefully help to sort out the menu.

Chapter 4. Read Routines

The read group gives you various ways to view a disk's contents.
Most read routines do not care about filenames or file boundaries. The
OS variable usually defines the drive from which reads are done. The
simplest of the routines is [R].

The [R] routine asks you for a sector number [1-720] and then
reads the sector and displays it on the sector display. Variables OS and
OS are updated to point to the read sector. Remember that the OS
variable is used as the lower limit for automatic functions. [R] may be
used to set the OS variable for such functions, but [L] is more practical.

The only other keys used purely for reading disks are the relative
read keys: they are [+], [-], [F+], and [F-]. [+] reads upward from OS
on drive 00. [-] reads downward. The file routine versions of these keys
read the currently selected file from its first sector to its last. The
internal pointers for [F +] and [F-] are preserved from one file trace to
the next [see [FT]] so relative file reads may be interspersed with other
functions.

All relative read keys will lock on if held until the OS key repeat routine
becomes active. To unlock the keys, simply press any non-read key.
Relative reads are trapped to the meaningful range of the area read,
[1-720 for simple keys, first file sector to last for file keys].

14

Chapter 5. Zap Routine.

Zap routines modify information on a disk as though it resided in
memory. Zaps may be compared to the more familiar debug write codes
of Assembly Language systems. Most zap functions are simple and quick
to use-but beware-ZAP FUNCTIONS DIFFER FROM OTHER ROUTINES
IN THAT THEY MODIFY THE SOURCE DISK. This power is necessary for
disk repair but has destructive potential. However, all zap routines
actually act on an area of memory which has been read from the disk and
they offer the opportunity to 'bail out' before re-writing the information
to the disk. If you suspect you have done something incorrectly, bail out
and start over again.

The simplest zap function is Write. The write [W] routine writes the
contents of the buffer to sector OS, drive DO. NOTICE THAT IF OS
DIFFERS FROM OS OR DO DIFFERS FROM THE INFORMATION
WILL NOT BE RE-WRITTEN TO ITS ORIGIN! Extreme care is required
when writing to the disk. [W] and most other zap routines will allow you to
place whatever you like on the disk without reference to what can be
recognized by DOS later on.

The most general zap function is modify, [M]. The modify routine
allows you to replace any byte in the sector display and memory buffer in
ASCII or hexadecimal code. On exit from the modify routine you are
offered an opportunity to write the buffer to the specified sector on the
specified disk. Because the modify function makes no checks to
determine the suitability of modifications make sure you know what you
are doing. Modify is usually preceded by [R], which gets the target sector
into the buffer and insures that OS is set to OS so the sector goes back
to where it started on the disk.

The zero [Z] routine offers a quick and dirty way to erase a sector of
information. Not actually a zap because no write is offered, this routine
quickly clears the display buffer in preparation to write blank sectors to
the disk. Note that blank sectors differ from *dead sectors which cannot
be read at a later date. Blank sectors still exist but contain the data
normally found on blank formatted disks.

The next two zaps, modify forward chain reference [cF] and modify
sector file number [cN], are so attuned to repair that they might be
better placed in the repair routine chapter. The [cF] and [cN] commands

15

operate on the sector in the display buffer. They allow you the ability to
change the FMS file control parameters of a sector without needing to do
boring calculations in binary adjusted integer math. The routines function
exactly as their names suggest. Both end with the Sure Response
prompt and an offer to write the modified buffer back to the disk.

There is a whole family of file zaps that merely provide functions
already available in *XIO form in an easy to use format. As with all file
routines, file zaps require the former selection of a target file with the
[FF] command. The file zap routines are: [FO], delete file; [FL] , lock file;
[FR], rename file; and [FU], unlock file. Rle zaps [FU] and [FL] write to the
disk without warning but are reversible. Zaps [FO] and [FR] offer the Sure
Prompt before writing the updates to the disk.

The remaining zap routines are the directory [I] functions, all of
which qualify as zaps. Each directory entry of a disk lists the following
parameters for the entry file:

Rlename
Extension
Number of file's first sector
Total number of sectors in file
These attributes are changed by four of the seven directory

commands. They are, respectively, [!N], [!E], [!F], and [!T]. None of
these routines write anything to the disk. They only modify the display
buffer. Changes to the actual disk are made with the directory write [W]
sub-menu command. The human can exit the directory sub-menu by using
a *null file number entry or with the exit [X] sub-menu command. A new
file may be processed with the select file number [!] command. Entry
into the directory submenu always requires that you know the NUMBER
of the file you wish to update. Rle numbers may be seen under the main
menu directory info [1] command. The directory info command is not
available under the directory sub-menu.

OISKEY's zap routines are easy to use, and easy to misuse as well.
Always be sure that you are doing what you intended, and that you
intended correctly!

16

Chapter 6. Informational Routines

While most OISKEY routines are informational in one sense, this
chapter covers routines that are designed expressly to inform. Routines
that qualify as mostly informational but are found elsewhere are: [B], [Q],
[S], [R], [cB], [cQ], [cS] , [Fr], and all of the read routine series.

Of the routines presented in this chapter, the most often used will
probably be directory info [?]. This routine begins with the first directory
sector [361] and displays each on the screen in a format that is easier to
read than the sector itself would be. The information included is each
file's file number [0-63], name, extension, first sector, total sector
count, and information concerning the status of the file. If the file is
locked or deleted, 'L' or '0' will follow the total sector count. If the entry
has never been assigned, 'NOF' will be shown. If the file is DOS I format,
an inverse 1 will be shown to the far right. Similarly, if the file has been
left in an OPEN state, an exclamation point [I] will appear. The
exclamation point is especially useful in that it usually indicates a file that
FMS has damaged. Such files are prospects for immediate trace and
subsequent repair. In addition to the file information, the [?] command
returns the number of the drive queried [00] and the number of free
sectors on the disk. This free sector information is what the VTOC says
is free. Addition of this value to the length of all files totaled should give
the total space on the disk - 707 for DOS II and 709 for DOS I. If the
total is wrong, the VTOC is probably [hopefully] damaged. Otherwise, a
file directory entry is incorrect. If the VTOC is incorrect, the [cV] routine
will fix the problem while the repair of a file directory entry requires
location of the bad file with trace [Fr] and continues with experimentation
from there. As with most automatic information routines, a [P] key entry
will print the screen to a printer if one is available. The [X] key is used to
exit the routine; any other key will continue the function one sector at a
time until the last directory sector is read.

The print screen to printer [P] routine is available not only as a
prompted entry in the directory info routine, but also as a main menu
option, as a prompted option in several OISKEY functions, and as an
interrupt to most automatic routines. To use the [P] interrupt, hold down
the key until the Sure Prompt appears. After the screen is printed, the
interrupted function will continue normal operation.

17

The Disk Map is cleared BEFORE each new use and therefore
contains the information gained by a previous use until needed for
something new. The print Disk Map [cP] command shows the contents
of the Disk Map at any time from the main menu. The [P] command may
be used to send a Disk Map to the printer. Note that the label explaining
Disk Map use is lost as soon as you leave the routine that generated the
map, so you will have to remember how to interpret the Disk Map for
yourself.

If you have a printer connected, you can make use of the file memory
addresses to printer [FA] routine. This routine works with a binary file
that has been selected by the [FF] command and traced with the [FT]
command. It re-traces the file, locates the *Ioad block headers, and
sends them to the printer in decimal and hex form. By using this routine,
you can get a feel for how the code uses memory and what it overlays
when loaded. The [FA] routine assumes that the file is BINARY LOAD
format and will procede as though it were. If an error results, a FILE NOT
PROPERLY ORDERED advice and an error return to the main menu will
result. If the printer is not ready a PRINTER NOT READY advice and
error return will occur.

A simple but very useful routine is the hex to decimal and ASCII [cH]
routine. The routine accepts up to eight hex digits [representing four
ASCII characters, etc.] in pairs of two. RETURN is pressed after the last
digit to obtain the associated ASCII and decimal data. Note that RETURN
is allowed only after even numbered digits and that only valid hex digits
may be entered. The exception to this is [X] which may be pressed at any
time to abort the routine. the [cH] routine returns the ASCII value of the
the first hex digit pair and the decimal equivalent of the entire hex
number.

The counterpart to the [cH] routine is the decimal to hex and ASCII
[cD] command. This routine requests a number between 0 and 65535.
Any entry beyond these bounds or a null entry will get you an ENTRY
ERROR return to the main menu. Barring entry error, the equivalent hex
value will be returned and if the entry value is less than 256, the ASCII
code for the number will also be given.

18

The last of the informational routines will, no doubt, be the most
controversial. Remember, duplication of copyrighted material in any form
and for any reason is unlawful. For that reason I cannot suggest that you
apply the following technique to any software except that which you have
written yourself or for which you have obteined duplication privileges from
the copyright holder. On behalf of those who worked hard to produce this
and all other copyrighted software, I remind you that it is low-down,
mean, and highly unethical to distribute, free or otherwise, any software
unless you are under license to do so from the copyright holder.

This routine was designed to allow you to adjust the speed of your
disk drives, and it requires that you open the drive unit to adjust it. I DO
NOT recommend that you open your drive if it is under warranty. I DO
NOT recommend that you open your drive if you are even a little unsure of
your technical ability. The speed adjustment procedure is simple and
requires only Phillips and stendard screwdrivers but will void your drive
warranty and is potentially hazardous to the drive. DO NOT USE TOOLS
THAT ARE MAGNETIZED. If a tool will pick up an un-attached steple it is
magnetized.

Rrst let's discuss what the RPM test [cR] does, and then how it may
be used. This routine repeatedly reads one sector of the disk on drive 00
and measures the time teken to do so, thereby accurately [+-about.B
RPM, .3 %] measuring the rotational speed of the drive. If the speed is in
error, the drive will not read data written by a properly adjusted drive. In
addition, a drive that is not rotating at the proper speed may be unable to
format disks. ATARI drives seem to have a lot of trouble staying at the
right speed. Worse, ATARI in its infinite wisdom dicteted that the speed
of MPI drives should be 2B5 to 290 RPM, even though they were
designed to be used at 300 RPM. Because of this dictum, the strobe
disc on the drive mechanism is useless under normal [60 hertz] light.

If you peel off the little stickers on the top of an ATARI drive [the ones
that blend in so nicely in each corner], you will find four Phillips head
screws underneath. If you loosen each of these screws, the top of the
drive case will lift right off. As presently constructed, the drive will not
resist this effort-nothing is connected to the lid internally. At the back
left corner of the drive, on the back circuit board, lying down flat, is a
thumb wheel potentiometer with a screwdriver slot in it. Mine looks like a
5/B inch flat white button. Turning this button clockwise slows the drive
down and turning it counter-clockwise speeds it up.

19

To adjust the drive, place a good disk you don't mind hurting in the
driva and type [cR] under the main DISKEY menu. In about ten seconds,
the display will return the drive number tested [OD] and the speed of the
drive. Anything between 285 and 290 should be fine. If the drive is slow
[less than 285J, turn the thumbwheel counter-clockwise a little bit and do
[cR] again. Continue this until the drive speed is within bounds. Fast
drives need clockwise adjustment of the thumbwheel. DO NOT TOUCH
ANYTHING IN THE DRIVE BUT THE THUMBWHEEL, WITH THE
SCREWDRIVER OR ANYTHING ELSE! You must have a good disk in the
drive to do this routine. [I kaep tha Phillips head screws in their little
pockets in drive lid, upside-down. Ud removal is thus easily
accomplished.]

Now for the controversial part. Some [many?] of the larger
software vendors have used damaged sectors on their disks to protect
them from duplication. Most verbatim copy routines will ·crash when
trying to read such sectors. Those that don't crash also don't know
which sectors are bad. DISKEY retains a record of dead sectors during
its copy routines but there is no standard ATARI function to DESTROY
SECTOR. Software vendors generally damage sectors by partially
formatting the disk on a foreign [APPLE, TRS-80] system. Such disk
areas are totally unreadable on an ATARI machine. Now if a drive is
slowed down until it cannot write a given sector, and then slowly sped up
until the sector finally writes to the disk without error, the drive usually
can't read the sector when re-adjusted to standard speed. The data
marks are just too close together at· that faster speed to be
distinguished. The result of this procedure is that the sector is blown
away dead to a normally adjusted ATARI drive. I say usually because I
have a newer drive [fast format] in D1 and an older drive with a PERCOM
data separator in D2 and D2 can't kill sectors enough to fool D1 ... but
D1 can.

20

Chapter 7. Search Routines

The search routines are all automatic functions, reading multiple
sectors in an organized fashion and with a single goal. There are really
only two types of search routine, but one of them is expressed in four
routines to cover all of the possible search contexts involved. ·1'11 take the
loner routine first, since it is the most confusing.

The file sub-menu offers a routine for finding a location in a file on a
disk that would reside in a given place in memory if the file WERE in
memory. For instance, if you say, 'Show me the code that goes in
memory address $02E3.' the machine says BYTE 122, SECTOR 433
and displays the sector. In addition, the routine will allow you to search for
a second place in the file where the same address is again loaded from
the file. The reason for the repeat is that for some reason, some
software is designed to over-write itself when loading. The routine is
called memory equivalent [FM] and requires that the target file be
selected [FF] and traced [FT]. This routine uses common code with the
[FA] command and gives the same response if the file is damaged or is
not a binary load type file. Uke all automatic routines [FM] allows
interrupt by [P] or [X] keys with the [P] key printing the screen to a
printer and the [X] key aborting the routine. The [FM] routine may be very
useful in the future to determine which version of a given program you
have so as to determine how to apply publisher suggested zaps to faulty
code. This procedure is standard practice on many systems and one
assumes that it would be adopted by publishers of software for this
machine if a way of implementing it were available. Here it is.

The next four commands all attempt to find information on the disk
that matches a human supplied key. The first two search from sector OS
to OS on drive 00. The second two search through a file that has been
properly selected and traced. The first and third routines search for a
key supplied as hex digits and the second and fourth search for a string of
ASCII characters. All allow interruption by the [P] and [X] commands.

The query [Q] routine is used to searCh for a block of hex digits on the
disk on drive 00. The machine prompts KEY: and you are expected to to
enter an even number of hex digits up to twenty, followed by RETURN.
The routine may be aborted by pressing [X] during hex entry; otherwise,
only valid hex digits are accepted and RETURN is allowed only after even

21

numbered entries. After key entry, the humam must tell the machine
whether it is to use FMS sectors or not. Most searches will be in FMS
sectors but autoboot files may be non-FMS. The difference is that FMS
sectors reserve the last three bytes of each sector for file handling
information and therefore searches that cross sector boundaries must
disregard these three bytes - they are not data. The search procedes
from sector OS to sector OS and if an exact match of the key is found,
the machine displays the appropriate sector and indicates the number of
the sector byte at which the key was found. The prompt CONTINUE? is
issued to allow further search for the same key. [V] is the appropriate
response if continued search is desired. The [X] and [P] interrupts are
allowed.

The search [S] routine is exactly like the query [Q] routine except
that an ASCII [text] search key is requested.

The file query [FQ] is exactly like the query [Q] routine except that
FMS sectors are assumed and that the search procedes from the first
sector to the last sector of a properly selected and traced file.

The file search [FS] is exactly like the query [Q] routine except as
listed in both the [FQ] and [S] routines, in other words, the [FS] routine
searches a selected file for an ASCII key.

Chapter 8. Error Recovery Routines

Before you get your hopes up, I must warn you that there is no magic
wand for fixing disk problems. Error recovery is usually a painstaking
process of search and fix. DISKEY's error recovery routines are
designed to locate disk problems. After that, it's up to you to make the
adjustments on the disk that put it back on track. Error recovery usually
requires that you write to the bad disk, so another caution is in order.
Don't write unless you know what you are saying! Discussion of error
recovery will start with the simple and proceed to the bizarre.

Perhaps the simplest recovery routine is the locate bad sectors [cl]
function. This routine scans all sectors on drive 00 and prints the Disk
Map to show any that defied an attempt to read. The [X] abort key is
available in the [cl] routine and can be used to test only part of the disk. If
X is used, the resulting Disk Map indicates the last sector read. The

22

locate bad sector routine does not know if the DATA in sectors is good or
bad-only whether or not the actual sectors are damaged. If bad sectors
are encountered, they mean that a file chain is probably broken. To
determine if this is true you can examine the sectors before and after any
dead sector. If the file numbers match and the preceding sector points to
the bad one, you can modify the preceding sector to point to the sector
following the dead one and reduce the file's total sector count [under the
directory menu) to reflect the file length reduction by one sector. This
very rarely works but can be helpful in lost Assembly source and
sometimes BASIC program files. Some of the file [125 bytes) is lost with
this technique but sometimes the file can be pieced back together from
the wreckage.

Another dead sector recovery technique is to do a [cCl verbatim
copy and then repeatedly read the dead sector until [hopefully) a good
read is obtained. Sometimes a sector is marginal and responds only to
determined and repeated attempts to read. If the sector can be read
even once, the resulting buffer can be written to the appropriate sector
of the disk to which the rest of the bad disk was copied. Remember that
we are talking about a bad sector, not bad data. If data can be pried from
the sector, it can be written to the same numbered sector on an
otherwise identical disk and the problem will usually be solved. Dead
sectors are a physical problem. They result from damage to the disk
surface or a dastardly disk write that was not done according to
expected timing parameters. Both circumstances assume that the
sector can be read with patience and persistence. Sometimes a power
supply interruption will result in a sector that is written too slowly to be
read at the normal drive speed. Such a sector can occasionally be read by .
slowing the drive down for a read of that one sector as elsewhere
discussed.

The very simple locate dead sectors routine is only the start of the
procedure available for possible recovery of the information lost when the
sector died. Another routine used to locate information that may have
gone astray is the byte compare (8) routine. Byte compare compares
the data on drive 01 to that on 02 in the range of as to OS. The Disk
Map is used to show which sectors have data that differs. This routine
can be used to differentiate between similar versions of autoboot disk
software and to search for bit errors on a vault copy of software if the
backup is in good shape. Such bit errors can be expected to occur on
disks that have been around for awhile.

23

Before continuing, I would like to offer some suggestions about
preventative maintenence. I keep three copies of all software. The most
used is the working copy which is in the drive as required. The next is the
backup which is reserved for use when disaster destroys the working
copy. The third is my vault copy, kept pristine of all custom modifications
and safe from the environment. All vault and backup copies are kept in a
metal box advertised as a fire vault. The steel is thin but double-walled
and may help keep out magnetic bugs. More importantly, the box is nearly
vapor-proof and keeps greasy kitchen and cigarette smoke off of the
sensitive disks. Similiar boxes are available at department stores and
office supply outlets at very reasonable prices, and are recommended to
any serious programmer. If, despite all your efforts, a disk comes up with
bad data or dead sectors, the triple copy system will prove invaluable
when the need for disk repair or recovery occurs.

The control version of byte compare [cB) is identical to the simple
version but always searches from sector 1 to 720 inclusive. Both
versions allow the [X) and [P) interrupt commands.

The last of the non-repair error recovery routines is the file trace
[FT) function. The trace routine operates on a file selected by the [FF]
sequence. It is a comprehensive function designed to yield the greatest
practical amount of information about any file on a disk without making
any more assumptions than are absolutely necessary. It roughly follows
the process undertaken by FMS when deleting a file except that the
VTOC is not modified. Instead, the Disk Map is used to show the
occurance of the file on the disk. In addition, an internal string is used to
record the order of occurance of the sectors encountered in the file so
that file oriented search and read commands can find the file later
without re-tracing. The routine first issues a Sure Response prompt and
then searches the directory of disk indicated in the filespec for the file.
Trace will always use the first occurance of a filename, even if it points to
a deleted version of the file. If this problem is encountered, use the [M)
function to change the name of any deleted versions after locating them
with the [?) command. The [FA) function does NOT recognize deleted files
because it operates through FMS.

Once the file has been found, the trace routine finds the first file
sector and uses the file header there to determine what type of file has
been found. This is shown on the screen. Assuming that the file is healthy

24

and normal, the trace function will proceed to the end of the file and then
print the Disk Map record of the traced file. The significance of the
various symbols used in the Disk Map by file trace are shown immediately
below and also discussed in the chapter dedicated to Sector Map and
Disk Map.

[.] not involved in file [doesn't have file numbar]
[+] in file, consecutive sectors before and after
[*] file numbered, not referred to [start sector]
[I] referred to, refers to sector 0 [final sector]
[I] referred to but does not bear file number
[inverse] in file, points to non-consecutive sector
If the file was found intact, this will be shown at the top of the map

with the file name and file number. The bottom of this special Disk Map
prompts you to exit or locate renegade sectors. Renegades are sectors
that believe themselves to be dedicated to a file in use but which are not in
the file chain for their file. If a traced file is found to be intact, then any
renegades are probably just free sectors that were once assigned to to a
file with the number of the file just traced.

Sometimes a file is found that is NOT intact. There are three ways
that file trace can find a file that is not intact. The most common results
with recourse to the Disk Map and the advice F# MISMATCH, ABS SEC.
XX. This advice indicates a blasted file and the Disk Map usually holds the
secret to what went wrong. If the Disk Map shows a sector chain of
plusses ending with an inverse plus, and a slash [I] in some out-of-the-way
place on the disk, the forward sector chain reference of the sector [the
inverse plus] which points to that odd-ball spot is probably in error. This is
the point where you'll appreciate having a printer. If you do, use the [P]
interrupt to print the Disk Map and then select [L] for LOCATE
RENEGADE SECTORS. A time-consuming search of the whole disk will
result at the end of which a new Disk Map will be printed showing ALL
sectors on the disk which contain the file number of the traced file. If the
sector immediately following the inverse plussed sector is found to be
contained in the file, you are in luck. This condition exists if the first sector
following the inverse plussed sector has a star [*] in the second Disk Map
[read that again, it does make sense]. If this is the case, modify the
inverse plussed [that currently points to outer space - the
slashed sector] to point to the sector with the star. Now retrace the file
and hope it is intact.

25

If the first Disk Map shows a file of plusses [+] followed immediately
by a slash, then the sector with the slash probably belongs in the file [as is
claimed by the sector that refers to it] but has been mis-numbered.
Again, if you can, send the Disk Map to the printer and then press [L]
LOCATE RENEGADE SECTORS. If that slash sector is mis-numbered, it
should now be followed by a star [*] or, at least, there should be a star
somewhere on the display. Note the sector number of the star sector,
or all starred sectors except the one in the first Disk Map, and examine
the slashed sector. If it points to one of these starred sectors, it
probably belongs to the traced file. Renumber the slashed sector with the
file number of the file under examination and try a re-trace. With luck, the
file is restored.

Remember the three possible errors encountered in non-intact files?
The second and third are ALE TOO LONG, and EARLY EOF. The ALE
TOO LONG advice usually means that the directory entry is incorrect but
that the file itself is O.K. Under the directory sub-menu, record the
existing file length [total sectors] and modify as suggested by the trace
routine. Then retrace and actually use the file for whatever purpose it
was intended. If no new problems occur, the file is fixed. Otherwise a file
update has probably been interrupted somewhere along the line and the
file is extremely screwed up. If the latter is the case the file has probably
been overwritten here and there and is probably worthless. As a last
resort, try restoring the recorded original sector count and pointing the
forward sector chain reference from the last file sector [according to the
directory] to sector zero. This ploy assumes that that sector is damaged
and no longer shows the EOF indicating zero sector reference.

The last trace related error is EARLY EOF. This, is usually the result
of the sector showing the EOF forward reference having been somehow
zeroed. If examination of the sector with the early EOF shows it to be
filled with zero bytes, select the [L] LOCATE RENEGADES procedure. If
the sector following the early EOF sector is a start sector [*], try cutting
out the bad sector by reference around it or try replacing the bad sector
by location of a similar sector on a backup disk. If the sector following the
early EOF sector is a [.] sector then you may be in luck. Look for a likely
start sector[*] among the renegades to continue. If such a prospect is
found, point the sector BEFORE the early EOF sector to the renegade
start sector by forward sector chain reference modification.

26

These procedures are recommended only on the basis of experience.
None is guaranteed to work and there is no reason to assume that
ingenuity will not suggest better solutions to damaged file problems.
These procedures asslime that the damaged disk has not been written to
since the damage or that the writing has been minimal. 8e careful not to
damage good files while working on bad ones. If a disk is found to be bad
and no backup exists, make a [ce) verbatim copy of the damaged disk
before working on it. In this way, if you make matters worse by
experimenting, you can at least recover what you started with from the
backup disk.

Rle tracing examines the FMS sector chain procedure, not the data
in the file. Rles with damaged data require repair that considers the data
and not the file. Such repair is available under DISKEY only through such
routines as modify [M), and requires considerable knowledge and skill to
perform successfully.

Chapter I. Copy Routines

The copy department is one of the weakest areas of FMS. Normal
copy routines always refer to information based on directory information.
If the directory could always be assumed to be correct and intact and if all
information on a disk could be assumed to be written in FMS file format,
everything would be fine, but we all know better. DISKEY's copy routines
do not rely on the directory. They are designed to ignore the special
nature of each type of sector and treat all as equals. As a result it is
possible to copy autoboot disks and disks that have no directory. It is
likewise possible to duplicate disks that have been modified to give normal
FMS copy routines a tough time. DISKEY does not even assume that the
entire disk is copyable. When unreadable sectors are encountered, they
are noted in the Disk Map so that duplicate copies can be modified by
hand so that they conform to the original - even to the extent of dead
sectors. Three copy routines are presented in this chapter. There is a
fourth, the special copy routine, that has been placed with the repair
routines because it is designed to repair files whose directory references
are dead. Such files require the building of new matching directory
entries. Of the three routines in this chapter, two are disk to disk copies.
They are presented first.

27

The copy sectors [C) routine is designed to provide a verbatim copy
within a sector range supplied by the human. The routine copies all
sectors starting with OS and ending with OS from drive 00 to drive DO.
As with all automatic routines. the [X) and [P) interrupts are honored.
Copy functions will destroy the source disk if requested in the wrong
direction. so a write protect tab should be placed on the source disk
before any copy routine is done ... just in case. The Disk Map is used by
the [C) routine to record any dead sectors that are encountered on the
source disk. All source sectors that are found zeroed [except directory.
boot. and VTOC sectors) are ignored during write to save time. so if an
EXACT copy is desired. the destination disk should be blank. formatted.
[Actually. this should be necessary only for the purist. I have never
personally encountered problems with data in sectors that are supposed
to be blank.)

The verbatim copy [cC) is identical to the [C) copy except that 01 is
assumed to be the source drive. 02 is assumed to be the destination
drive. and the copy begins with sector 1 and goes to 720.

The third copy routine is actually a reformatter. It is called tape to
disk [T) and is designed to put autoboot tapes on a more convenient

I format. The routine prompts you to load the tape and reads the first tape
record. From this the number of records on the tape is determined and
you are requested to rewind the tape and run it again. This time the tape
is read and the data is stored in a DISKEY buffer. When the tape is read
or the buffer is full. the information from the tape is written to the disk in
01. If the tape proved to be especially long. longer than the buffer. a
second rewind and read is performed and the disk is written to again. The
tape to disk routine is not universal. Autoboot tapes that have compound
structure cannot be written to disk. If the displayed tape record count is
much less than the number of records you know to be on a tape. you may
assume that the copy will fail. I have run into a few such tapes but these
have been the exception. To make room for the large data buffer. tape to
disk is a separate routine from the main DISKEY program. For this
reason. a wait as the routine is loaded and another as DISKEY is reloaded
are normal. The disks created by the tape to disk routine are autoboot
disks and totally dominate the disk side on which they reside. UNDER NO
CIRCUMSTANCES SHOULD YOU USE ANYTHING BUT A BLANK
FORMA TIED DISK FOR THE TRANSFER OF AUTOBOOT TAPES. Any
information on disks used for this purpose is in jeopardy because the disk

28

boot record is over-written by the information from the tape. In fact, the
record from the tape BECOMES the disk boot record and is treated as
such by the disk.

Chapter 10. Repair Routines

Repair routines are useful because they fix problems for you instead
of telling you how to do it yourself. Actually there is only one fully
automatic repair routine. A second routine is semi-automatic, and two
routines are here mostly by default. These two are the erase routines.

The erase disk [E] routine performs a FORMAT of the disk on drive
00. The format is exactly like a DOS format in all respects. The routine is
Sure Response prompted.

The pseudo-erase disk [cE] routine performs an update of the boot
sectors, the VTOC, and the disk directory without actually re-formatting
the disk. If you have an old drive and are dependant on the
manufacturer's fast format disks or a friend with a fast format drive, you
will appreciate this routine. Pseudo-erase will not change the fast format
status of disks on which it is performed. It will also not fix dead sectors,
because no format is involved. It WILL generate a disk that performs as
though re-formatted in all respects, and is somewhat faster to do than a
real format. Pseudo-erase is Sure Response prompted.

The VTOC repair [cV] routine is a complex function that traces each
file on the target disk and if all are in order, returns a VTOC record that
agrees with the trace process. You can then write this record back to
the disk to assure that all sectors in use are reserved properly and that
all free sectors are available for use. The VTOC repair routine is
suggested when the free and allocated sectors on the disk do not total
707. Note that VTOC repair assumes that the target disk is a DOS II
disk. If the disk was generated by DOS I, sectors 2 and 3 will be reserved
for boot information that does not exist. This will not cause problems
other than that two normally available sectors will be made unavailable. If
the disk has been written with OOS/SYS, the loss of the two sectors will
not occur ... they are reserved for DOS anyway! After VTOC fix of a DOS
I disk, the first byte of sector 360 must be changed from two [indicating
a DOS II disk] to zero [for DOS I].

29

If a file problem occurs during the disk trace, an immediate return
with the appropriate error message occurs. In this event, no offer to
write the new VTOC is tendered. The offending file should be traced with
the [FT] function and the problem should be resolved. After the bad file is
fixed, VTOC repair can be retried. Entry into VTOC repair is Sure
Response prompted and the [X] abort key is available [the [P] interrupt is
not].

The most complicated repair routine is special file copy [cS]. The
special file copy routine is designed to salvage a file on a disk on which

_ directory sectors are dead. On such a disk, normal copies cannot even
begin because FMS fails attempting to read the directory. What the
special copy routine does is copy all file sectors from the disk that have
the file number of the requested file. Then the Disk Map is printed to
show the occurance of the file on the source disk. The special copy
routine does not know what sector to use as the start of the file so the
human is requested to select one of the start [*] sectors as the first
sector of the file. With a little experience, it will become obvious which
sector is the likely start of the file; the first start sector is usually the
correct start. When the start sector selection has been entered,
DISKEY updates the target disk directory, calling the moved file
DISKEY IMOV. All sectors encountered during disk read are considered
by special copy to be within the file so the file should be traced on the
target disk after transfer. If the trace returns a FILE TOO LONG error,
the directory entry for the transfered file should be corrected to agree
with the number of sectors found during the trace.

Chapter 11. Support Routines

The support routine group is defined as such by default. This section
describes the routines that don't fall into any other category. The group
breaks down into three areas: routines that set general parameters,
routines that perform simple, screen related tasks, and routines that call
sub-menus and sub-programs where the real action happens. The
support group will be discussed by area.

The select originate drive 00 [0], select destination drive DO [0],
select new destination sector OS [N], and select function lower limit OS
[L] are all self-explanatory. They are used to set parameters for other

30

routines. The [L] command is distinguished from the [R] routine in that [L]
does not read the sector to which as is set. Generally, as indicates the
last sector read and so is represented in the Sector Map, but after use
of the [L] command this is not the case. For this reason, it is a good idea
to use [L] only directly before the function for which it is set.

The clear screen [A] routine does just that. It is useful when some
advice has managed to hang around and is annoying the human. Please
note that the [A] routine also clears any selected filename.

The toggle write verify M routine turns on or off the DOS II habit of
reading each sector after it is written. If you have drives or disks that are
questionable, the write verify should be set to YES. If you trust your
system and would like to double the speed of all write operations, set the
verify variable VE to NO!.

The upper case only [U] command allows you to convert all lower
case characters going to the printer to upper case. Handy if your printer
crashes on lower case input.

The EaR value command [X] allows you to read and modify the
contents of a disk under a selected bit mask. The mask is useful when
data on the disk has had bits toggled to prevent reading. If you don't
understand binary arithmetic and the logical 'exclusive or' function, leave
the XR variable set to zero. The routine asks for the new EaR value in
DECIMAL.

The print current Disk Map [cP] routine shows clears the Sector
Map and presents the Disk Map. The map will be set to show its last use.
Disk Map is discussed in detail in the trace function section.

The remaining support routines select sub-menus and sub-
programs. The first is the [F] command that selects the file sub-menu.
After the [F] command, you have the file oriented commands [A), [D), [F),
[L], [M], [Q], [R], [5], [T], and [U] to chose from. The file sub-menu is in
the main DISKEY program and so no load wait is required. Rle commands
have a priority. All require file selection [FF] to designate the file affected.
Most also require file trace [FT] to define the use of the selected file. The
file function may be aborted by a null entry for the following file command.

There is one support function in the file sub-menu: select file [FF].
The select file routine allows the human to select the file on which file
routines will be performed. When entering the filename, the *Dspec is

31

optional. If no Dspec is specified, the routine will search both drives for
the filename by attempting to unlock the file. Rles that are located in this
way unlock themselves and should be re-Iocked if necessary. Because the
unlock function is accomplished through XIO, deleted files can't be found
and will return a RLE NOT FOUND error. If the Dspec is correctly
entered with the filename, [0: 01: 02:], the filename will be accepted
without question. This may result in a FILE NOT FOUND error later on in
other routines, but has the advantage of selection of a deleted file for file
trace. This is the only way that a deleted file can be selected for use of
the trace routine.

The select directory sub-menu [!] command does just that. The
directory commands then available are [E), [F], [N], [T], [W], and [X].
These functions are all discussed in the chapter on zap routines.

The last function available in the DISKEY menu is the one drive sub-
program [cO] command. This command loads an abbreviated version of

, DISKEY that supports the [R], [N], [C), [cC], and [cS] routines for one
drive DISKEY users. The byte compare routines are not available due to
the use of the compare buffer space to make more room for sector
storage buffer. The memory buffer is adjusted at one drive routine entry
to the maximum available according to the memory installed in the
system. Return to the main DISKEY program is accomplished by use of
the [X] command. This command does not appear on the one drive sub-
menu option list.

32

Section 3. The DIS KEY Keyboard

Chapter 1. The Simple Keya

This chapter and the three that follow recap the previous section. in
a format designed for reference. Any questions arising from reference
here can best be answered in the more complete descriptions in Section
2. The DISKEY directory.
Kay: A
Function: Clear screen and filename
Type: Support
Sure Prompt: No
Interrupt: No

The A key performs a clear screen and file variable clean-up. The
function results in the selection of NO FILE.
Kay: B
Function: Byte compare. 01 to 02. as to OS
Type: Error recovery
Sure Prompt: Yes
Interrupt: Yes

The B key performs a sector comparison of the disks on drives 1 and
2. The function is normally used to find bit errors on disks for which a valid
backup exists. or for routine validation of vault software by comparison
with backup.
Kay:C
Function: Copy sectors. 00 to DO. as to OS
Type: Copy
Sure Prompt: Yes
Interrupt: Yes

The C key performs a verbatim sector copy within selected
parameters. Read and write errors are shown on the screen and all read
errors are recorded for on the Disk Map for inspection at the end of the
copy function.

33

Kay: D
Function: Toggle DO
Type: Support
Sure Prompt: No
Interrupt: No

The 0 key selects the alternate destination drive. Note that 00 and
DO are forced by some functions and should be monitored.

Kay:E
Function: Erase disk
Type: Repair
Sure Prompt: Yes
Interrupt: No

The E key formats the disk on the 00 drive and then writes sectors
1-4 and 360. Note that no interrupt is provided for in this routine -
formatting is handled by the disk drive internal logic and is interruptable
only with the break key or system reset.
Kay:F
Function: Select file sub-menu
Type: Support
Sure Prompt: No
Interrupt: No

The F key selects the file commands as alternate to main menu keys.
All keys discussed in the Rle Keys chapter require the F key first. Note

that [FF] indicates first select file sub-menu and then select filename.

Kay:L
Function: Set function lower limit
Type: Support
Sure Prompt: No
Interrupt: No

The L key allows you to arbitrarily set OS as desired. This function
DOES NOT perform a disk read and therefore leaves the OS variable at
odds with the Sector Map, a condition which does not normally occur and
should therefore be noted in this exception. No advice is given to indicate
the disparity between OS and the Sector Map so the L function should be
used only directly before the automatic functions it defines.

34

Key: M
Function: Modify
Type: Zap
Sure Prompt: Before exit write offer
Interrupt: No

The M function allows modification of the Sector Map [and the
associated memory buffer] directly from the keyboard in ASCII or hex.
Exit is implemented by movement of the cursor off of the top or bottom
of the Sector Map. The cursor must be BACKED from one Sector Map
field to the other. Forward cursor motion in the Sector Map causes
wrap-around at the field right margin [cursor drops to start of next line].
Upon exit from the M routine, a Sure Response prompt and write option
are offered. The modifications made to the screen are updated on the
disk only with this update write operation.
Key: N
Function: New OS
Type: Support
Sure Prompt: No
Interrupt: No

The N key allows you to arbitrarily set the value of the destination
sector variable. This variable is used to specify the destination of simple
write operations and to specify the last sector affected by automatic
functions.
Key: 0
Function: Toggle origin drive
Type: Support
Sure Prompt: No
Interrupt: No
The 0 key selects the alternate source drive by toggling the 00 variable.
Key:P
Function: Print screen to printer
Type: Informational
Sure Prompt: Yes
Interrupt: X abort only

The P key operates from the main menu to print the screen display
to the printer. All inverse characters are un-inverted before printing.

35

Dummy characters are substituted for all control characters. In addition
to main menu availability, the P control can be used to interrupt any
routine for which interrupts are allowed. If used this way, the P routine
prints the screen and returns to the interrupted function which then
continues. The U command can be used to convert lower case to upper
case if your printer does not like the small letters.
Kay: Q
Function: Query occurance of hex bytes
Type: Search
Sure Prompt: Yes
Interrupt: Yes

The Q routine allows you to search for a string of bytes expressed as
hex numbers. The routine uses the as, OS and 00 variables to define the
search area. Offer to continue search follows successful location of
search key.
Kay: R
Function: Read new as
Type: Read
Sure Prompt: No
Interrupt: No

The R key allows you to read any sector on disk 00 at will. The
routine reads the specified sector, updates the Sector Map, and sets as
and OS to the specified read sector value.
Kay:S
Function: Search for ASCII string
Type: Search
Sure Prompt: Yes
Interrupt: Yes

The S key performs a string search from sector as to sector OS on
drive 00. The routine conforms in all respects to the Q routine except in
that the search key is expressed as an ASCII string.
Kay:T
Function: Tape to disk autoboot transfer
Type: Copy
Sure Prompt: Yes, and disk mount prompt
Interrupt: X abort only

36

The T key loads ·a sub-program that transfers autoboot tape
information to a disk, creating an a'utoboot disk. See Section 2 for a
detailed explanation of this function.
Kay:U
Function: Toggle send upper case only to printer
Type: Support
Sure Prompt: No
Interrupt: No

The U key toggles an enable for conversion of all lower case
characters sent to the printer to the corresponding upper case
characters. The default is no enable [lower case stays lower]. If the one
drive, special copy, or tape to disk sub-programs are used, the
conversion must be re-enabled if used.
Kay: V
Function: Toggle write verify enable
Type: Support
Sure Prompt: No
Interrupt: Yes

The V key toggles variable VE which indicates' whether every disk
write operation is verified immediately by a disk read. The verify
procedure is standard in DOS II and is recommended for dependable data
transfer; however, disabling the write verify adds 50§ to the speed at
which write instructions occur.
Kay:W
Function: Write memory buffer to DO
Type: Zap
Sure Prompt: Yes
Interrupt: No

The W key writes the contents of the memory buffer [as reflected
on the Sector Map] to sector OS of the disk on drive DO. Be careful to
confirm that OS and DO are set as desired before using the W function.
Previous contents of the specified disk sector are over-written.
Kay: X
Function: Select Sector Map EOR value
Type: Support

37

Sure Prompt: No
Interrupt: No

A detailed explanation of this function is given in Section 2. Zero is
the default and standard value for the XR variable selected by the X key.
In addition to the main menu use, the X key is used to abort automatic
functions and in this use returns the OISKEY to the main menu.
Kay:Z
Function: Zero memory buffer
Type: Zap
Sure Prompt: yes
Interrupt: No

The Z key fills the memory buffer with zero bytes. It is used to
provide a clean data field to write to sectors when physically deleting disk
information. Remember that the FMS delete function de-allocates the
space occupied by the affected file but does not actually erase the file's
data.
Kay: +
Function: Read upward
Type: Read
Sure Prompt: No
Interrupt: No

The + key reads upward from sector as on drive 00, updating the
Sector Map to show the contents of each sector as it reads. The
function will auto-repeat if the + key is held down for one second or
more. As a repeating function, + may be cancelled by pressing any key
[except +, of course]. On exit from the routine, OS is updated to the
value of as which contains the number of the last sector read.
Kay: -
Function: Read downward
Type: Read
Sure Prompt: No
Interrupt: No

The - function is identical in all respects to the + function except
that the disk is read downward from the starting as value.

38

Kay:?
Function: Show directory information
Type: Informational
Sure Prompt: No
Interrupt: Yes, specially prompted

This key initiates a routine that reads each directory sector and
displays all information there in friendly form. Rle number, name,
extension, first sector, total sector count, and status are all given.
Deleted, locked, non-existant, left open, and DOS I files are all indicated.
More information of this function is available in section 2.

Chapter 2. The Control Keys

Many of the control keys specify versions of the corresponding
simple keys, differing only in that the function parameters are pre-
determined in the control version. Other control functions are special
routines that are not commonly used or that use letters that have
already been assigned in the simple key menu.
Kay:cB
Function: Byte compare, 01, to 02, sector 1 to sector 720
Type: Error recovery
Sure Prompt: Yes
Interrupt: Yes

The cB key compares all sectors of the disks on drives 1 and 2. The
Disk Map is used following the operation to indicate any sectors on the
two disks that don't match. The cB function is normally used as a
preventative maintenance evaluation. Differences in vault and backup or
working copies of software serve as an indication of a fault in one or the
other. This procedure will discern any variation in disk data without the
need to wait until the data error creates real problems.
Kay:cC
Function: Verbatim copy, 01 to 02, sector 1 to sector 720
Type: Copy
Sure Prompt: Yes
Interrupt: Yes

39

The cC key performs an entire disk verbatim copy from drive 1 to
drive 2. This type of copy differs from a normal FMS disk duplicate in that
every bit of every sector is copied exactly. Any read errors [bad sectors]
that are encountered during the cC procedure are shown on the Disk
Map displayed at the end of the copy routine.
Kay:cD
Function: Decimal to hex conversion
Type: Informational
Sure Prompt: No
Interrupt: No

The cD key allows you to obtain quick conversion of decimal
information to hexadecimal and ASCII. The routine accepts whole number
decimal entries in the range of a to 65535 and returns ASCII value as
well for decimal entries in the range of a to 255.
Kay:cE
Function: Erase disk without new format
Type: Repair
Sure Prompt: Yes
Interrupt: Yes

The cE routine rewrites a disk's boot, VTOC, and directory sectors
to conform to those of a DOS II blank, formatted disk. No format [re-
write of sector 1.0. and timing marks] is performed, so the format type
[fast format or early version] is preserved. Dead sectors will remain
dead.
Kay:cF
Function: Modify sector's forward sector chain reference
Type: Zap
Sure Prompt: At end of routine write option
Interrupt: No

This routine allows the human to modify the DOS file control bytes
that indicate the number of the file's following sector. Reference update
is in hex. After acceptance of new next sector reference, a write
opportunity is presented with the Sure Response prompt. The Sector
Map and memory buffer are modified in any event, but the source disk is
modified only by election of the write option.

40

Kay:cH
Function: Hex to decimal conversion
Type: Informational
Sure Prompt: No
Interrupt: No

This routine accepts hex data in an entry string of up to eight
characters [four digits of hex information). The decimal value of the hex
string and the ASCII character corresponding the the first byte of hex
are returned by the routine.
Kay:eL
Function: Locate dead sectors
Type: Error recovery
Sure Prompt: Yes
Interrupt: X abort only

This routine attempts to read each sector of the disk on drive 00
and then prints the Disk Map to show any sectors that could not be read.
The routine does not care about the data on the disk; it is confirming the
correctness of the sector 1.0. and timing marks. X abort is a valid exit for
this routine and when used, returns the normal disk map with the last
sector read before bail-out indicated on the map.
Kay: eN
Function: Modify the sector file number reference
Type: Zap
Sure Prompt: With write option at exit of routine
Interrupt: No

The cN key allows you to arbitrarily change the DOS file control byte
which specifies the number of the file in which a sector is contained. The
function operates on the Sector Map and associated memory buffer. On
exit from the routine, an opportunity to write the updated information to
the disk. No disk update is performed unless this option is elected.

Kay: eO
Function: One drive sub-program selection
Type: Support
Sure Prompt: Yes, and disk mount prompt
Interrupt: X only, used as normal sub-program return

41

DISKEY supports most of the functions which normally require two
drives for one drive users in a separate program selected by the cO key.
A separate program is used is to reserve the maximum possible buffer
area for disk information transfer thus reducing the number of disk
swaps required. The X key is used internally in the one drive sub-program
in the normal manner. In the sub-program main menu, X is used to enable
return to the main DISKEY program.
Kay:cP
Function: Print current Disk Map to screen
Type: Informational
Sure Prompt: No
Interrupt: Yes

The cP key switches the display from Sector Map to Disk map
information. The Disk Map will contain the information recorded by the
last routine that used it.
Kay:cR
Function: RPM test
Type: Informational
Sure Prompt: Yes
Interrupt: X abort only
This routine returns the rotational speed of drive 00. The drive must
contain a formatted disk for the routine to work properly. Section 2
contains more information on the use of this routine for drive speed
adjustment and intentional destruction of sectors.
Kay:cS
Function: Special copy
Type: Repair
Sure Prompt: Yes
Interrupt: Yes

The special copy routine duplicates all sectors of a selected file
number to an alternate disk and then establishes the transferred info as
file zero on the new disk. The cS routine is useful where a disk's directory
has been damaged and is not recoverable. Considerable judgement and
interaction on the part of the human is required. More information is
presented in section 2.

42

Kay:cV
Function: VTOC repair
Type: Repair
Sure Prompt: Yes
Interrupt: X abort only

The cV key initiates a routine that traces all of the files of the disk on
drive 00 and, if all are intact, creates a VToe record for the disk in the
memory buffer. The routine then offers the option to write the new
VTOC record to the traced disk. This routine is designed for use with
standard DOS I or DOS II disks and should not be used with special
purpose or specially protected disks. In such use, the routine will probably
damage or destroy the VTOC record for the purposes of the special disk.
DOS I disks require that the first byte of sector 360 be set to zero after
the routine is finished, [VOTe fix assumes DOS II].
Kay:cY
Function: Toggle Sure Response prompt enable
Type: Support
Sure Prompt: Oh, come on!
Interrupt: No

The cY key alternately disables and enables the Sure Response
prompt and should be used only with discretion. Disabling of the prompt
results in the need for fewer key entries but also inhibits a valuable safety
feature. Everyone gets impatient with repetitive key entries, but only the
very daring and experienced are qualified to forge ahead with no
reminders of their fallability.

Chapter 3. The Directory Keys

The directory keys all function as entries on the directory sub-menu
which is selected by the ! main menu key. Unlike the file sub-menu, the
directory menu remains active until a return to main menu is specifically
requested. Uke the file sub-menu, the directory menu operates on a
specific file but in the case of directory commands, the file is selected by
file number. Since there is no opportunity to request the number of a
desired file in the directory menu, know the desired file number when you
enter the sub-menu. You may find this number by using the directory info

43

[?] key in the main DISKEY menu. Unlike the sector modifications
associated with file control information, directory information updates
DO NOT automatically offer to re-write the affected sector when exiting
the modification routine. This option must be selected separately by the
directory W command. The W command is effective any time before the
directory sub-menu is exited or a new file number is selected that resides
on a new directory sector.
Kay: !E
Function: Modify directory extension entry
Type: Zap
Sure Prompt: No
Interrupt: No

This routine allows the file extension data of a previously selected
directory entry to be changed in the Sector Map and associated memory
buffer. No change is made on the disk until the W key is used to re-write
the sector on the actual disk record. No check is made by the routine to
determine the suitability of changes.
Kay: !F
Function: Modify first sector data in directory entry
Type: Zap
Sure Prompt: No
Interrupt: No

The! F routine allows the modification of the record indicating a file's
first sector. Update of the disk to agree with the changed Sector Map is
not automatic and must be selected with the !W command if desired.
Kay: IN
Function: Modify filename data in directory entry
Type: Zap
Sure Prompt: No
Interrupt: No

This routine selects a new filename for a previously-selected
directory entry. The filename extension is not changed by this routine but
must be altered separately with the !E command. As with all directory
modifications, disk update requires use of the !W key and is not
automatically offered.

44

Kay: IT
Function: Modify total sector data in directory entry
Type: Zap
Sure Prompt: No
Interrupt: No

This function allows the modification of the sector count for a file
previously selected by file number. The routine makes no checks for
suitability of changes. This function is normally needed after completion of
the special copy routine to correct the normally over-large sector count
established by that routine.
Kay: IW
Function: Write directory sector to disk
Type: Zap
Sure Prompt: Yes
Interrupt: No

This routine is used to update the disk being zapped in response to
changes made by other directory menu operations in the Sector Map.
The routine over-writes the previous sector information on the disk from
which the Sector Map was read.
Kay: IX
Function: Return to main menu
Type: Support
Sure Prompt: No
Interrupt: No

The !X command returns DISKEY to the main menu. The function is
required because directory operations return to the directory menu to
preserve file number selection until all desired modifications have been
made. Therefore, return to main menu is not automatic.

Chapter 4. The File Key.

The file sub-menu is used to specify commands that are oriented to
be compatible with the currently used DOS file structure. By use of its
commands, files can be dealt with separately instead of as absolute
sectors of the disk. The sub-menu supports the expected XIO commands
and, in addition, adds some of DISKEY's search and informational

45

routines for file related use. All file commands with the exception of FF
require the prior selection of a file on which to operate. Many of the
routines also require previous use of the FT routine to define the
boundaries and disk usage of the selected file.
Kay:FA
Function: Send binary load file load addresses to printer
Type: Informational
Sure Prompt: Yes
Interrupt: Yes

The FA routine traces the selected file, and, on the assumption that
it is a binary load file, sends the load block headers to the printer in binary
and hexadecimal notation. The function requires previous filename
selection and file trace. If errors are encountered during the header
trace, the routine is aborted with a RLE NOT PROPERLY ORDERED
error.
Kay:FD
Function: Delete file
Type: Zap
Sure Prompt: Yes
Interrupt: No

The FD command deletes the file specified by previous filename
assignment. The file to be deleted must be unlocked and available to DOS
directory access procedures.
Kay:FF
Function: Select filename
Type: Support
Sure Prompt: No
Interrupt: No

The FF routine selects the file on which further file functions are
performed. There are two ways that a filename may be specified. If the
filename is specified without the use of the Dspec, the routine will search
both disks by attempting to unlock the specified file. This procedure will
result in a RLE NOT FOUND error if the desired file is deleted or not
present on either disk and will result in the selected file being unlocked if
found. Alternately, the Dspec can be specified with the filename entry in
which case no search for the file is made. This elective will allow the

46

selection of deleted or non-existant files without challenge; however, a
RLE NOT FOUND error may occur later if operations are attempted
which require the file to be present and un-deleted. One main advantage
of specification of a deleted file is DISKEY's ability to trace and therefore
sometimes retrieve a previously deleted file.
Kay: FL
Function: Lock file
Type: Zap
Sure Prompt: No
Interrupt: No

This function locks the selected file to normal DOS write and delete
access. Notice that file locking does not normally interfere with DISKEY's
read/write operations and therefore should not give the DISKEY user
undue confidence concerning the security of a locked file.
Kay: FM
Function: Memory address occurance in file
Type: Search
Sure Prompt: Yes
Interrupt: Yes

This powerful file routine traces a previously selected binary load file
comparing the load block headers with a human provided memory
address. If the address is encountered within the file, the byte and sector
of occurance are displayed and you are prompted to quit or continue. The
FM routine is capable of locating successive occurances of a specific
memory address, thus detecting intentional self-overlays within a file. In
addition, specific addresses that indicate where the file executes can be
located by selection of those addresses as search keys, etc.
Kay:FQ
Function: Relative query, find hex key in file
Type: Search
Sure Prompt: Yes
Interrupt: Yes

This routine has been discussed so much that repetition is ridiculous.
The relative query differs from simple query in that it searches the

sectors of a previously selected file in the order of their occurence in the

47

file instead of their occurance on the physical disk record. The routine
assumes FMS sectors and therefore no FMS prompt is issued. This
routine is discussed in detail in Section 2.

Kay:FR
Function: Rename file
Type: Zap
Sure Prompt: yes
Interrupt: No

This function uses XID capability to rename a previously selected file.
Unlike the similar directory function. the FR routine renames the file
INCLUDING extension. The file must be un-deleted and unlocked. An
immediate opportunity to update the disk is ensured after the new
filename is selected.
Kay:FS
Function: Relative search
Type: Search
Sure Prompt: Yes
Interrupt: Yes

This routine is identical to the relative query [FQ] except that search
information is entered as ASCII instead of hex.
Kay:FT
Function: Trace selected file. check for inconsistancies
Type: Error recovery
Sure Prompt: Yes
Interrupt: Yes

This powerful and comprehensive routine serves as the basis for
many of the other file functions. The routine returns information
concerning the type of file. its condition. where it is located on the disk.
etc. In addition. these parameters are stored for use by file oriented
routines at a later time. If unexpected conditions are discovered in the
file. advice is given as to the nature of the problem and extended
examination of the file is offered. Further information on file trace and its
application is given is section 2.
Kay:FU
Function: Unlock file
Type: Zap

48

Sure Prompt: No
Interrupt: No

This command is used to unlock a previously selected file. The file
must be un-deleted and extant to avoid a RLE NOT FOUND error exit.
Key: F+
Function: Read next file consecutive sector
Type: Read
Sure Prompt: No
Interrupt: No

This routine requires previous file selection and trace. It reads
forward in the file as the file would be read by DOS in loading, etc. As with
the simple + command, the file version will lock on if held for a couple of
seconds. Automatic operation after lock will be ended by the pressing of
any key.
Key: F-
Function: Read previous file relative sector
Type: Read
Sure Prompt: No
Interrupt: No

This routine is the downward file oriented relative read and
corresponds to the + command. The routine is automatically prohibited
from exiting the confines of the sectors occupied and will repeat read the
first file sector if left unattended while in automatic operation.

Appendix A

Bit/Byte discussian

If you have an understanding of the binary number system, go on to
whatever is next. If not, pay close attention! Computer memory consists
of a great many on-off switches, called a bits. In the ATARI computer,
these switches are arranged in groups of eight. Each group of eight
switches are collectively called a memory address or a byte. Your
computer is not actually conversant in normal numbers at all. Of the ten
[0 to 9] digits in normal or decimal counting, only two can be described
with an on-off switch. Computers, therefore, use binary arithmetic. They

49

count 0, 1, and then run out of digits and have to carry one. The counting
thus continues: 0, 1 , 10, 11 , 1 DO, 101, 110, 111 , 1000, and so on.
When the computer gets to 11111111 [binary], it runs out of digits in
one memory address or byte. Just as each decimal power [1 , 10, 1 DO,
etc.] represents 10 times the last [10 digits to work with], each binary
power or digit represents 2 times the last. The digits in an eight bit
memory address represent 1, 2, 4, 8, 16, 32, 64, and 128 if
expressed as decimal numbers. If all eight bits are on [1's], we add all of
their decimal equivalents and find that the decimal equivalent of the
largest number representable in one byte is 255. We rarely need to
actually do arithmetic in binary so bits are seldom considered. However,
we do run into the confinement of the eight bit memory address or byte,
so the 0 to 255 byte restriction is best kept in mind. If you are at all
serious about programming, you should be aware that the computer
does not store any decimal numbers. All number storage is done in the
on-off states of binary arithmetic. A bit is an on-off switch and a byte is
eight bits. Your computer stores a byte in each memory address and has
65536 memory addresses it can distinguish. By the way, four bits is
called a nybble and there are two nybbles in a byte. Two bits are called a
nibble. Isn't this an interesting world?

Appendix B

Hex/Decimal Conversion

If you read Appendix A, or if you already knew about binary
arithmetic, you know how incredibly cumbersome it is to use eight digits
to express what decimal can say in three. It would be great if there were
some simple conversion from decimal to binary to facilitate expression of
binary as decimal without the awkward back and forth conversion. There
isn't. But there is another available number system that is more compact
than binary and DOES convert readily. Enter hexadecimal arithmetic. Hex
has 1 6 digits instead of ten which makes it MORE compact than decimal.
Of course, it is almost as alien to decimal as is binary but at least you
won't find yourself counting ones, trying to decipher even small numbers.
Hex is able to express any eight bit binary number in two digits. To
express the extra digits that are not needed in decimal, the letters A to F
are used. Here's a hexadecimal count to 10 [or decimal 16]: 0, 1, 2, 3,

50

4,5,6, 7, 8, 9, A, B, C, D, E, F, 10. To convert a two digit hexadecimal
number to decimal, you merely multiply the value of the high digit times
16 and add the value of the low digit. By this method, hex FF [usually
expressed as $FF] is 15 * 1 6 + 15 or 255. Remembering that 255
[decimal] is the largest number containable in a byte, we feel quite smug
in the inherent genius of the simple fact that 16 squared is equal to 2
raised to the eighth power, and the whole mess comes out even. Each
hex digit in a byte can be called a nybble, giving two nybbles in a byte. Hex
is great for expressing binary - better, in fact, than decimal or binary,
but how about hex to decimal conversion? The truth is that it's not as
tough as binary to decimal conversion but it's still tougher than a trip to
the dentist.
Here's a conversion table:
MSN
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

DECIMAL LSN
16 1
32 2
48 3
64 4
80 5
96 6
112 7
128 8
144 9
160 A
176 B
192 C
208 D
224 E
240 F

DECIMAL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

To convert hex to decimal,
simply add one from column
A and one from column B.

MSN means most significant
nybble and LSN means least
etc.

$C3 then is 192 + 3 or 1 95

Appendix C

Printer Character Conversion

To facilitate use of a number of different printers, the following
printer conversion conventions are employed:

All characters above code 127 have 128 subtracted.
All characters below code 32 print as periods [.].

51

All characters between 124 and 127 print as periods.
Lower case characters are defined by U command.
These conventions disallow inverse and control characters at the

printer. [Most printers just make mistakes with such characters
anyway.J I have one printer that seems to convert all codes above 128 to
line feeds! You should note the characters that your printer makes of
codes 91 to 95. These are the characters just above the upper case
letters. If your printer does not print lower case characters, you may
enable the upper case only option with the U command. U is a toggle
which switches the option on and off.

Appendix D

Variable Summary

The screen variables and input conventions are summarized here.
OS Originate sector, read and auto function first sector
OS Destination sector, write and auto function last sector
NS Next sector, DOS forward sector chain reference
F# Rle number, DOS file number reference in sector
00 Originate drive, drive from which data is read
DO Destination drive, drive to which data is written
VE Write verify status
XR EOR Sector Map print mask
T# Rle oriented total sector reference
S# Rle oriented current sector counter
X Commonly available to abort automatic functions
P Commonly available to print screen to printer
Null Entry Common entry abort procedure

Appendix E

Keyboard Summary

A Clear screen and filename
8 Byte compare, 01 to 02, OS to OS
C Copy sectors, 00 to DO, OS to OS
o Toggle destination drive

52

E Erase disk [format]
F Select file sub-menu
L Set automatic function lower limit [OS]
M Modify Sector Map
N New destination sector
o Toggle originate drive
P Print screen to printer
Q Query [search for hex key, drive 00, sector OS to OS]
R Read new OS, set OS to match
S Search for ASCII key, drive 00, sector OS to OS
T Tape to disk
U Upper case conversion of printer lower case
V Toggle write verify
W Write memory buffer to sector OS, drive DO
X Select EOR Sector Map screen print mask
Z Zero memory buffer
+ Read upward, next sector on disk

Read downward
? Directory information

Select directory sub-menu
cB Byte compare, 01 to 02, whole disk
cC Copy 01 to 02, whole disk
cD Decimal to hex, ASCII conversion
cE Erase disk [without new format]
cF Modify sector forward sector chain reference
cH Hex to decimal, ASCII conversion
cL Locate bad sector on drive 00
cN Modify sector file number reference
cO Select one drive functions sub-program
cP Print current Disk Map
cR RPM test drive 00
cS Special file copy, no directory reference from source
cV VTOC update and repair, drive 00
cY Toggle Sure Response prompt enable
FA Rle binary load address headers to printer
FO Delete file
FF Select filename for all file functions
FL Lock file

53

FM Show memory address load position in file
FQ Relative Query
FR Rename file
FS Relative Search
FT Trace file. return file type and file condition
FU Unlock file
FX Return to main menu
F + Rle relative upward read. next sector
F- Rle relative downward read
dE Select new file extension
dF Select new first sector
dN Select new file name. not including extension
dT Select new total sectors
dW Write sector to disk
dX Return to DISKEY main menu

GLOSSARY

ASCII
American Standard Code for Information Exchange. ASCII is the

code used universally to express text characters as numbers for
transmission between storage and printing devices. For example. in
ASCII code. the letter A is a code 65. ASCII also includes codes to signify
printer control functions such as line feed and carriage return and
supervisory controls [break. etc.). Atari uses an enhanced version of
ASCII which includes 256 codes and makes provisions for the Atari
control characters; this enhancement is called ATASCII. DISKEY makes
no distinction in term usage.
backup

Duplicate. especially for replacement of the original in the event of
the original's destruction.
binary

The internal number system used by micro-computers. The binary
number system has 2 digits as opposed to the 1 0 of normal or decimal
counting. Binary has only the digits 0 and 1 and therefore lends itself well
to the on-off logic of all digital computers. Binary digits are called bits.
Binary numbers herein use the % number type marker to distinguish
them from other number types.

54

bit
One digit of a binary number. One of eight digits of a byte.

Boot Sector
A sector on a data disk that is distinguished by the fact that the

computer automatically loads its information without any more than
internal code and the knowledge that there are disk drives available. Boot
sectors do not conform to the standard sector appearance of file
sectors and, in fact, are not part of any disk file. DOS II system and data
disks begin with 3 boot sectors which are loaded into the computer
automatically on power-up if the disk system is detected.
byte

The contents of one of a computer's storage elements. An eight digit
binary number. Expressed in the decimal number system, a byte must
have a whole number value in the range of 0 to 255. Expressed as
hexadecimal, each byte must fall in the range of 00 to FF.
crash

Fail. !;lomb. Become blasted. To stop working and resist attempts to
re-establish functional status, often with some measure of self-
destruction included as insurance.
DO

DISKEY's variable for Destination Drive. The drive to which data is
written.
dead sector

A sector that is unreadable by the disk drive. Dead sectors return
error messages when read. There are several problems which kill
sectors; the data may have been damaged by magnetic fields, the disk
surface may have-been damaged when touched by almost anything, the
drive itself may have damaged the data. A drive that exhibits radical
speed changes will often destroy sectors. The Mad Elf has an Atari drive
that magnetically destroyed BOTH sides of a disk simultaneously . . . in
three seconds! No readable sectors remained, not one. Sector records
contain information that is not directly readable on an Atari system:
sector timing and 1.0. marks that are written when the disk is formatted.
One bit error in these marks can kill a sector deader than blazes. People

kill sectors too. If the data in a sector is improperly spaced, it may fool
the computer into thinking that data is missing.

55

directory
On a disk, an area reserved to provide the organization for the rest

of the disk. The directory names all of the files on the disk and indicates
the start, length and status of each.
Directory Sector

One of eight sectors [numbers 361 to 368] that are used to
reference the contents of the remainder of the disk es files under the Rle
Management System. Each Directory Sector contains space for eight
files and indicates the files' starting sector, total sector count, filename,
filename extension, and status.
Disk Handler

Atari controls its devices through a general communication system
called CIO. For each device with which CIO can communicate, a routine to
identify and specify the device is needed. These routines are called device
handlers. The disk handler is such a routine. It is special in the sense that
it is not used by CIO directly but rather is controlled by a system called
DOS, part of which must be read from a storage disk.
Disk Operating System

A body of code designed to expedite the transfer of information to
and from a disk drive storage device.

DOS
Disk Operating System.

OS
DISKEY's variable for destination sector. The sector to which data is

written, or, the last sector included in an automatic function.
Dspec

Device specification. In disk files, the drive number reference that
precedes the proper filename in the file description.

F#
DISKEY's variable for file number. The internal reference that DOS

uses to mark each sector within a file. The position of a filename in the
directory. F# has a range of a to 63.
Rle Management System

The disk Rle Management System, or FMS, or DFM, is the part of
Atari's DOS that must be loaded from a disk EACH time is used. The

56

FMS does the DOS functions that are NOT available in a BASIC
environment - file copy. load binary file. etc.
file number

An internal number by which DOS accesses and controls a disk file.
Rles are numbered according to their occurance in the directory.
starting with zero and continuing through the eight directory sectors to
file number 63.
Rle Sector

A disk sector which is in use within a data storage file on the disk. Rle
sectors must conform to a specified data format to be readable by the
FMS. This format specifies the use and contents of the last 3 of the 128
sector bytes.

flag
A counter. usually restricted to two possible values. used as a

reference to determine the answer to a yes-no question. Alternately. one
bit of a byte of information that is read independently of the remainder of
the byte to indicate that something is on or off. in condition A or B. etc.
DISKEY uses flags to decide if the write verify is on or off. if 00 is 01 or
02. if the printer

FMS
Rle Management System

hexadecimal
A number system that has 16 digits instead of 1 D. upper digits

represented by the letters A-F. Hexadecimal is often used to express
binary quantities because of the simplicity of binary to hexadecimal
number system conversion and the compactness of hexidecimal numbers
in comparison to binary. Hexadecimal numbers herein use the $ number
type marker to distinguish them from other number types.
load block header

This is what I call the little numbers that say where binary files are
loaded. Binary files have four byte blocks that are taken as two binary
integer words [LSM/MSB] and indicate the first and last load addresses
of the code which follows the block. A binary file has at least as many such
blocks as it has separate areas it wants to load to in memory. This is why
a binary file can specify information that is actually written in random

57

spots all over the computer's memory. Sometimes a file will announce a
load block header with a pair of meaningless 255 bytes and sometimes
not. Some files use the additional 255's in front of only some of their
headers. In any event, the third through sixth bytes of a binary file are
always the first load block header. [The first two bytes are ALWAYS
255's, to identify the file type as binary load.].
LSB

Least Significant Byte. One of two bytes used together to extend the
number range that the computer can store. See Most Significant Byte
for a more detailed explanation.
memory buffer

A buffer is an area where information is stored because it is being
transfered between devices with different transfer rates. The buffer is
used as an interim place for the information. In the case of Atari disk
drives, information is usually needed a byte at a time but cannot be
retrieved in other than 128 byte blocks. For this reason, a memory area
is reserved into which the 128 byte block is written. The needed byte is
then read from this memory buffer. OISKEY's Sector Map is an
interpretation of the memory buffer that OISKEY uses for disk data
transfer, which is why you must perform a disk write operation after you
modify a sector to make the change permanent.
Most Significant Byte

Usually called MSB for short, one of two or several memory address
which are used together to specify a single number. Size restrictions of a
memory address restrict the contents to the range of 0 to 255, but if a
second byte is used exclusively to tally the carry conditions which occur
when adding to the number in a memory address, the second address
becomes like a second super-digit. Two bytes can thus store 256*256
numbers. These numbers usually have the range of 0 to 65535, but one
bit can be reserved to indicate the sign of the number to give half the
range as positive integers and half as negative integers. This system is
used for a fast computer arithmetic system called integer arithmetic
which Atari BASIC does not support.
MSa

Most Significant Byte.
NS

DISKEY's variable name for next sector; the forward sector chain

58

reference. At the end of every file sector is a code sequence that
specifies the next sector of the file. This is the NS.
null

Non-existent. The list of all the Martians reading over your shoulder
is a null set [hopefully]. If an entry prompt is requested and you supply an
immediate RETURN, the resulting string will have a length of zero and a
value of nothing. Null entry is an acceptable way to abort OISKEY
routines which call for data entry. The exception to this is hex entry which
requires an X entry to abort.
00

OISKEY's variable for Originate Drive - the drive from which data is
read. Also, a dosage beyond the recommended intake level, or the act of
intake of such dosage, or the effect of such dosage. Ex: The disk OD'd on
CocaCola.

Operating System
A body of computer code that controls the operation of the

computer itself, not the jobs that the computer does for you. Keyboard
deciphering, screen control, and timing functions are examples of
operating system operations. The Atari is a rarity amoung
microcomputers because it boasts a real live operating system.
OS

Operating system. Also OISKEY's variable for Originate Sector-
the sector from which disk data is read and the first sector in automatic
operations.
peripheral

At the edge. In computers, attached to the main unit or associated
with it but not contained within. The monitor, keyboard, disk drives, and
tape deck are all peripheral devices. Note that the keyboard is a
peripheral device because of the way that it is seen by the main
computer, not according to its physical location.
renegade

A term I use to indicate a sector that contains data but is not
included in any file chain. A renegade does have an assigned file number
and may be an estranged sector of a damaged file or just an old sector no
longer included in the file to which it originally belonged.

59

S#
DISKEY's variable for current relative sector number. It refers to a

sector by its position in its file. The absolute version of the S# variable is
OS, which usually indicates the absolute [disk's] sector just read.
sector

A physical record on a disk drive, so named because it occupies a
section of a physical ring or track on the disk surface. Each sector on an
ATARI single density disk contains 1 28 bytes of computer-readable
information and is one of 18 sectors on each disk track.
set
On. Yes. Especially as a flag bit that is a one rather than a zero. Enabled
as opposed to disabled. Active, initialized.
T#

Total number. DISKEY's variable for total number of sectors in a file.
track

One of 40 concentric rings, each containing 18 sectors of an Atari
data storage disk. Atari does not actually use the track concept in its
data retrieval scheme, prefering rather to number the sectors 0 to 719
[or 1 to 720, depending], as though they were continous.
VE

The label for the verify flag indicator. YES indicates that a read
operation is automatically done after each write operation to ensure data
accuracy. This is the normal DOS state. The NO! indication states that
no verify of write operations is being performed. This increases disk write
speed by 50%.
vault

A copy of software that is not used except when all other copies are
unusable, and then only for the creation of duplicates. The 'last chance'
replacement, often the original original.
Volume Table of Contents

Usually shortened to VTOC, a sector [number 360] on each data
disk reserved to indicate which of the remaining sectors are free for use
and which are occupied. In the VTOC, each sector on the disk is indicated
as in use if an associated VTOC bit is OFF [or zero]. The Atari VTOC also
stores values indicating which DOS the disk was created with, how many
free sectors the disk started with, and how many remain free for use.

60

"

VTOC
Volume Teble of Contents

XIO
I don't really know what XIO means - maybe extended inputJoutput?

In any event, Atari uses the tarm to indicata those DOS [and other OS]
functions that are possible while in a BASIC environment. The XIO codes
are cryptic but useful. They allow you to lock, unlock, delete, renama and
otherwise re-specify a file without calling DOS.
XR

DISKEY's variable for the EOR Sector Map mask. This mask allows
data to be read with selected bits toggled to compensate some of the
simpler encryption techniques.

81

BY, SPARKY STARKS

