Robert Gray
I?ON'T TAKE CHANCES.
DISKO can help you
get ygur data, £ O 7
back on the right track, R B
\'/ Y

Omega Soft






DISKIO
BY
Robert D. Gray

Copyright 1988

Omega Soft
Po Box 139
Harrells, NC 28444

(919) 532-2359

Manual version 1.1
ACKNOWLEDGEMENTS

| would like to thank David young of CDY consulting and
Charles Marslett, the author of MYDOS, for their technical
assistance and support during this project. 1If not for their help
DISKIO would not be a reality.

Thank you,
Robert Gray

WARNING:

This manual and the assoclated program are protected
by International Copyright laws. Duplication by any means, for
other than personal use, is strictly forbidden and a violation of
copyright laws. VIOLATORS WILL BE PROSECUTED!

ATARI Is a regestered trademark of ATARI CORP.

Omega Soft is a trademark of Omega Soft.

MYDOS, OMNIMON, OMNIVIEW, Axlon, and MAC/65 are
trademarks of their respective publishers.

. - A- /




( )
TABLE OF CONTENTS

MAIN SCREEN.......ccooiiiiiieciee i e 2
MAIN SCREEN COMMANDS...........cociiimiiiiiniccic 3
DIRECTORY SCREEN. ..ottt e 8
DIRECTORY SCREEN COMMANDS...............coooeoiin, 8
FILE MAINTENANGE SCREEN.........c.oooii 1
FILE MAINTENANCE COMMAND SUMMARY..................... A
INDEX oottt e 3]
APPENDICES
ATARI DISK STRUCTURE (appendiX 1)...........ccoooveinnnne, 16
ENHANCED DENSITY DISK STRUCTURE (appendix 2).... 17
HIGH CAPACITY DISK STRUCTURE (appendix 3)............. 18

BOOT SECTORS (appendix 4).........cc.coveviviicniin.. 18
DIRECTORY SECTORS (8ppendX 5).......c..ccooovmevvvererrnnn .19
MAP SECTOR(S) (appendiX 6)............cccocccvvecvrcniiiicnccene. 20
BINARY FILE STRUCTURE (appendix 7)...........cccccovenn. 21

BASIC SAVE FILE STRUCTURE (appendix 8).................... 22
MAC/65 SAVE FILE STRUCTURE (appendix 9).... ............ 24
DISKIO USER NOTES ...t 29

g - B - J




4 R
INTRODUCTION

DISKIO is a program which allows the user to dc practically
anything to nearly any kind of disk. It is compatible with
single, double, and enhanced densily drives. Double sided, 8
inch and hard drives as well. It will also use the MYDOS, DOS
2.5, and 8K OMNIMON/OMNIVIEW ramdisk handlers to
access practically anyramdisk available for the 8-bit Atari
computers. Both single and double density disks can be
examined in hexadecimal, character, or internal screen
character mode. The hexadecimal data from a double
density seclor Is all displayed on a single screen instead of
flipping back and forth between the first 128 bytes and the
last 128 bytes of the sector.

Since DISKIO is a binary file it can be copied to the
ramdisk and loaded almost instantly from DOS. f during a
programming project DOS was used to delete the wrong file,
DISKIO could, with as little as three key presses, undelete it
and return the user to productivity in less than thirty seconds.

The experienced programmer, as well as the inexperienced
will appreciate the straight forward “just enter the number”
method for changing link sectors, file numbers, byte counts,
file start sectors, and lengths. Everything that the computer,
instead of the user, can remember |s taken advantage of.
Never again be just a little unsure about which byte does what
in a load vector, DISKIO will always remember these little
things for you

DISKIO has some very powerfu!l and useful file commands.
It is able to fully reconstruct an erased, scrambled, or
destroyed directory recovering most if not all of the lost files.
The trace command Identifies binary file load vectors, as well
as basic save flle parameters. '

Almost all of the standard DOS commands as well as a faw
new ones are available on the directory screen. Two drives
can be made to continuously, without prompting, format new
disk. The quick format command clears a disk in a matter of
seconds Instead of taking the time for the complete format

- - 1 - _/




a2 )

process. Subdirectorios are also supported. Thereis also 8
command to automatically correct the infamous “File Number
Mismatch” error.

The write menu command creales a binary file menuon a
blank disk which will load files very quickly without DOS.
This meniu will be considered public domain.

DISKIO Is a very useful and complete disk access
program it pulls together into one package a lot of utililes that
never seem handy when they are needed.

THE MAIN SCREEN

The main screen displays the data contained in a single ar
double density sector. This data can be seen in aither
hexadecimal, character, or internal screen character mode.
DISKIO Is able to put the entire contents of a double density
sector in hexadecimal on a single screen. This Is the reason
for the alternating stripes of normal and inverse pairs af
numbers.

The sides and top of the sector data field contain decimal
(left) and hexadecimal (right) referance numbers to make
finding a specific byte in the data field a simple maiter.

The number of the sector currently being accessed Is
displayed in decimal and hex inthe upper left corner of the
screen. The three link bytes are also decoded and the link
sector, file number, and byte count are all displayed in decimal
and hex. (NOTE: This Iinformation is meaningless when
viewing a boot sector or sequential sector. See appendix 1)
when accessing 8 disk with more the 1023 sectors the file
number information is omitted. The reason for this Is double
sided disks, etc., use 16 bit file links (see appendx 3). If the
sector or link number exceeds 999 the it will be displayed in
decimal only. The source and destination refer to which drive
will be read from and written to respectively. These can both
be the same drive or different drives from 1 to 8 (8 specifies
Ramdisk). The disk in these drives must both be the same
density. Thedensity is indicated by “S* for single and “D* for

. 2 J




4 ™)
double. The sequence/link mode is displayed In the upper
right corner and is toggled by COTROL-L command. When
in link mode the next sector command (! follows the file
links. Also when In this mode the rotate bytes command
(</>) leaves the three link bytes alone. When using the
search command (S) in link mode, the three link bytes are not
examined in the search since It is unlikely that you will be
saarching for a string that involves link bytes

MAIN SCREEN COMMANDS

E - Exitto DOS this command returns to DOS if verified by a
‘Y. 1fDOS is not in memory use of this command will
send the Atari into funny byte land.

? - Help screen displays a short command summary of all
the main screen commands.

R - Read sector asks for a sector number then reads and
displays the selected sector.

W - Write sector allows the data currently on the screen to be
written to the current sector by pressing “Y". The data
can be saved to a different sector without affecting the
current sector on the disk by simply entering the new
§r35:lor number. The write can be abarted by pressing

P - Print screen prints the data currently on the screen.
Notice the print command does no! waste your paper
or time by prinling the entire screen, only the relevent
dala. No menus or blark lines are printed.

T - Hex/char toggle changes the data field from hexadecimal
to character and vise - versa. |f when toggling to the
character screen the OPTION key Is held down, the
character data will be displayed as internal screen
characters instead of ATASCII. It can then be changed
with no conversions, by using the change “C*
command, and rewritten directly to the disk. Thisis very
useful when looking for strings which you suspect are

N\ - 3 - /




4 N\
poked rather than printed, to the screen.

"D - Directory screen displays the first sector of the roat
directory (sector 361) with the direclory commands.
See |he direclory screen section of this manual.

S - Search for a string up to eight bytes long. In hex mode
enter the numbers to be searched for in hex, withno $
signs, and with a space separating each pair: (xx XX Xxx
...). Inactual ATASCII charactars, not hex numbers.

EX HEX - “00 0102 0304 (0506 07°
char - "2STRINGS"

C - Change bytes in a sector. To move the cursor In this
mode, use the CONTROL - arrow keys. To cause the
CONTROL - arrow keys to print, first press ESCAPE
key. In hex mode do not worry about the rows of
normal and inverse charecters, just keep typing.
DISKIO will handleit. When finished changing a
sector, hold the OPTION key and press "W*. This will
allow the new data to be written to the disk. To abort
the change. hold the OP TION key and press any other
key.

L - Link modify allows changes to the link sector, file
number, and byte count by simply typing the new
number. |f any of these do not need to be changed,
simply enter an “N" at that question. This allows the
Ink bytes to be changed without getting into any math.

(NOTE: When accessing a disk with more than 1023
sectors, file numbers are not used, therefore that
quistion will not be asked.)

CTRL-L - Sea/Link toggle In SEQ mode the «/- kays wil!
read the next or last sector in numerical order. In
LINK mode the « kay will follow the file links. The -
key will read the previous sector in numerical order.

- 4 _




Vs
F -

\
File Maintenance Screen File trace and recovery
commands. See the File Maintenance section of this
manual.

Disk Map reads sector 360, displays the number free
sectors, and the sector map of the disk. Unused
sectors are represented by ones while seclors that have
been allocated for use by a file or system information
are represented by zeros. Notice the map of the
formatted, empty disk.-shows the boot map, and
directory sectors as allocated, or unavallable sectors.
The map command displays only sectors 1 - 719 on
high capacity disks. Holding the OPTION key while
selecting this command will cause the map screer to be
echoed to the printer

Drive Options allows the user to set which drive or
drives will be origin and destination, (read from and
written to). DISKIO will access drive numbers 1-8.
The disk in the origin and destination must always be
the same density. The default density Is single. Always
use the “O" before accessing a8 double density disk,
and again will display as single density, simply because
they are single density (see appendix 1). When the “O*
command Is selected the orgin drive number Is asked
for. 1f 1-7 Is selected the density (singie, double or
enhanced) will be entered. The next question is
weather or not the drive is a hard disk. If it is not a hard

disk, the next selection is single or double density, and
remember the origin and destination must be the same
density.)

Then number of tracks will be selected.
ANSWER: 1 for 35 tracks/side

2 for 40 tracks/side
3 for 77 tracks/side (8 inch drive)
4 for 80 tracks/side

Then the drive read/write head step rate:

8 inch 51/4 inch
Ofor 6ms ams
. 5 - y




\
1 for 12 ms 6 ms
2 for 20 ms 10 ms
3 for 30 ms 15ms

Finally the destinalion drive number will be asked for
and the same set of questions will be repeated

If the selected drive is 8" for either the origin or
destination then it is assumed to be a ramdisk. DISKIO
supports the ramdisk handlers contained in MYDOS, 8K

.OMNIMON, OMNIVIEW, and DOS 2.5. This allows Its

use with a 130XE, AXLON ramdisk, or any of the
available upgrades for the 800 or 800XL. Next is
whether or not the ramdisk has more than 720 sectors.
The 130XE does nol, so respond with a “N°  This
answer will determine If the file links are expected to
contain a file number (see appendix 3). Note Ramdisks
are always considerad single densily and remember the
orgin and destination must be the same density.

Excluding the questions involving ramdisk handlers
(which expects a M, O, or D) the inverse character in
the available selections for each question is default. So
If drive 1 were to be the origin and destination, single
density, single sided, 40 tracks/side, and have a head
step rate of 12 ms, then the "O" command could be
selected and RETURN held down all the way through
the menu.

Fill one sector, or range of sectors with zerg or any
other number. |f the default of zero is desired then
type “Y", any other number (0-255) may be entered in
decimal or hex.

Copy Sectors from origin to destination, even if hey are
the same disk. Thisis a little slow because only one
sector IS copied at a time, but it gets the job done

Print File Sectors in character and hex format. Given
the starting sector of a file, this command automalically
prints each sector to the printer, in character and hex

- 6 - _/




| ™)
format up to and including the EOF sector.

+/- - Next/Previous sector. When in link mode the next (+)
command follows the links {see CNTL- L command).

</> - Rotate Bytes wiihin a sector. When in link mode the
three link bytes are left out of the rotation. This
command Is useful when adding bytes to the beginning
of a sector.

EX. when generating a new file with the File
maintenance “G" command, the new file name will
probably not be in the right pasition in the directory ( file
number mismalch see appendix 1). Read the first
sector of the file and determine the proper file number.
The read the directory sector conataining the new file
name and rotate It to the proper file number position.
(This could also be done with the directory screen
correct file number “C* command) for another example
of the use of this command see appendix 8.

$/#/% -Two Byte Number Base Conversion. First select the
base to convert to, then enter the number to be
converted. Far example to convert decimal 65535 to
binary, type : % then type #65535 RETURN ( NOTE
when converting from binary to decimal or hex you musl
enter 16 binary elements with no spaces (with preceding
Zer0).

EX:$
%0000100000000000 RE TURN
$0800

DIRECTORY SCREEN

There are eight directory sectors, each containing eight
filenames For each filename there Is a starting sector, number

\— -7 - J




2 , )
of sectors (the length of the file), and a status byte. (See
appendix 1-5) Each of these 64 possible liles have a file
number, 0-63. This number is not saved on the disk, but is
delermined by the location in the directory (the first is 0, the
secondis 1, ...). This file number should match the file
number in the link bytes of each sector in the file. When
these numbers do not match a “file number mismatch” error is
generated. (This can be corrected using the Directory
Screen “C* command.) The file number, status byte,
number of sectors, starting sector, and directory screen. Ifa
sector number exceads 999 it will be displayed in decimal
only. All of the directory commands that pretain to a specific
file handle file selection the same way. After selecting the
command, use any key to move the pointers o the desired
grl\]euname, then press RETURN. To abort this command press

]
|

DIRECTORY SCREEN COMMANDS

D - Delete afile from the disk. The file is traced and the
soctors It uses are deallocated, or made available for
use. on the sector map. The number of free sectors
on the disk are changed, to reflect the space left by the
deleted file. Then the status byte, in the directory, Is
changed to an Inverse heart (deleted file status). As far
as DOS is concerned tha file is gone and the space it
occupled is avallable for use. The next file saved to the
alske\«élll possibly overwrite the data that was just
deleted.

U - Undelete a previously deleted flle As seen in the delete
a file explanalion, the delete command does not destroy
any of the file's data, it merely makes the file space
available for use. This Is also true for the DOS delete
command. By reversing the steps mentioned above, a
deleted file may be brought back, or undeleted. This, of
course, may not work if another file has been saved to
the disk since the delete was executed. But it Is still
wgrotréa try. This function ¢an also be used to repalr the
v .

\— - 8 - v




r )

R - Rename like the DOS command, simply renames a file.
Enter the new name in the standard eight letter
fillename, a period, then a three letter extension (if
desired). This rename command does not care what a
fille Is named, lower case, Inverse letters, CONTROL
characters, or whatever may be used DO BE AWARE
thal DOS will not recognize these sirange filenames!
(But the DISKIO binary file menu will. This could be
used to allow files to be run, but not copied from a disk.)

L - Locks a file by changing the status byle to a locked file
status using the appropiale status byte for the given file
type (See Appendx 5).

X - Unlocks a file by changing the status byte to an uniocked
file status using the appropiate status byte for the given
file type (See Appendix §).

F - Formats the deslination origin or both. The disk will be
formatted in the density which the drives are currently
set. To format the origin press ‘O’. To format the
destination press ‘D". If “B* Is pressed,DISKIO asks for
a disk to be Iinserted In the origin drive. When RETURN
Is pressed it Immediately asks for a disk to be Inserted
in the destination drive and begins formatting the origin.
when the origin disk is finished, DISKIO asks for a new
disk in the origin arive, then automatically format's the
destination disk without any prompting. The origin and
destination obviously cannot be in the same drive, and
once again must be In the same density. The number
of disks formatted is displayed after each disk format.
This process continues automatically until the OPTION
key is held down. This Is areal time saver when
formatting a box of disks.

(NOTE: This command will format single and double
density 720 sector disks,and enhanced density disks.
The format commands will not correctly format double
sided disks, 8 inch disks, hard disks, or ramdisks )

\ -9 - _J




o )

\

Quick Format a new disk that has been previously
formatted, but may be full of useless files in the aclual
formatiing process, the drive essentially tells a brand
new disk where and how an Atari computer expects
data to be stored. Once this Is done, it Is not necssary
to repeat the entire procedure. This command does
only what Is necessary to clear the disk, just like a new
formatted disk, and does it in only a few seconds. See
note in Format command explanation.

Correct File Number traces 3 file selected from the
directory and makes the link bytes of the file number
match the location of the directory entry. Remember
the file number is not stored in the directory but is
determined by the filenames location (i.e.the first file is
number 0, the second is number 1, etc.). This
command will repair the DOS 2 “File Number
Mismalch” error (#164). The “C* command will not do
any thing on a double sided ar high capacity disk
because the files on these disks do not use file
numbers.

Access Subdirectory. Select the directory name just
ike a filename,and it will display exactly like the roat
directory. Once in a subdirectory, another may be
accessed the same way. This may continue to an
unlimited number of directories. To return the root
directory “E“xit, then reenter the “D"irectory screen A
subdirectory appears as a filename with ATASCII
*club® ($10), status byte or an ATASCII "0"($30) if
locked. The length should always be 8 sectors, and the
start the start sector Is where the directory starts on
the disk. Subdirectories are identical In structure 10 the
root directory (the one from sector 361 to 368) they just
appear somewhere other than sector 361 on the disk
subdrectories are a way to put more than the maximum
64 flles ona 10 megabyte hard disk. All of the drectory
scraen commands work on subdirectory files just as
they would on the files in the root directory.

- 10 - /




~ | A

+ - Next directory sector, and eight filenames.

- - Prevous directory sector, and eight previous filenames.
Print this sector lo printer.

S - Change the start sector (in the directory) of any file.

EX. If the start sector is damaged, this command will
repair it, but it is useful in other ways. |If for example,
changes to the variable name tablein a basic save file
are to be made without modifying the first sector.
The first sector can be copied to an empty sector and
the changes made. The link will still point to the
second sector of the file. Use this command to make
the new sector the first sector in the file. The original
first sector will remain intact. Essentially this file will
have two different starting sectors.

M - Modify the number of sectors ( in the directory ) of any
file. This command, used with the start sector
command can be used to add any number of sectors to
the start or end of a fila

E - Exits toMain Screen.

FILE MAINTENANCE SCREEN

The majority of the commands on this screen involve
examining and recovering flles |f you are not very
comfortable with Atarl file structure, read appendices 7 and 8.

FILE MAINTENANCE COMMAND SUMMARY

T - Tracea file, attempts to determine the file’'s type and
display it's load vectors. After telling DISKIO the start
sector of the file to be traced, the optionis given to
just trace the file without trying to determine the file
type. This Is done by pressing “Y*, and may be used
when tracing a known text or data file. |f any other key

\ - 11 - /




| N
Is pressed, Itreadsin the file type

Ifit s a basic save file, (see appendix 8) the page zero
tokenized file parameters are displayed, with the 256
byte offset added as it would be on the disk, and the
option to continue or abort the trace Is gliven.

If a binary file, (see appendix 7), Is being traced the
load vectors and the sectors where they occur will be
displayed. In the case of special init and run vectors,
the address of the vector will also be displayed

If the first 2 byles are not $FF $FF then “T‘race
assumes it is a text file and traces with no vectors.

The entire file trace process may be echoed to the
printer with the opticn key.

Boot disk vectors from sector one (see appendix 1).
this may be echoed to the printer with the OPTION key.

Check for bad sectors in anyrange. Any bad sector
found will be displayed along with its error code. This
may be echoed to the printer with the option key. When
the search of the given range Is complete, DISKIO
gives the oplion to lock these sectors out (allocate) in
the disk map and create a new file in the directory
named “BADSECTO.RS". The length of this file will
correspond to the number of bad sectors found on the
disk and the number of free sectors will be
decremented accordingly. This often allows the
remaining area on the disk to be used, provided none of
the boot, map, or directory sectors are bad.

Modify VTOC bit when selected, this command asks
whether the sector is to be allocated (used) or
deallocated (freed)in the sector map (see appendix 6).
At this point a return will abort the command. The
sector number to be changed is entered and DISKIO
handles the rest. This command may be used when
adaing (or removing) a sector to (or from) afile It

- 12 - W,




R -

may also be used to protect a sector from DOS In
wwhich Information such asa serial number or some
piracy pratection scheme could be hidden. If there is
confusion on what this command does, format a blank
disk and print Its map (using the main screen *M"
command). Then allocate or dealiocate a sector and
see what happens to it on the map screen.

Repair Directory attempts to recaver the files from the
disk on which the directory has been scrambled or
damaged. Once this command has been selected, pul
the disk in the origin drive and press RE TURN. DISKIO
will now clear the enlire directory and sector map.
Since sector four Is the first sector after the boot
sectors, DISKIO will assume a file starts there. This
file will be traced and a filename, DISKIORD.GOO -
DISKIORD.G63 will be generated in the directory. [t
will then continue to trace every file or file fragment on
the disk and generate new filenames until the directory
Is full or the entire disk has been checked. The sector
map Is then modfied to reflect these new files

Each file must then be loaded, identified and renamed
Any file that has been deleted will be returned even |f
it has been partially overwriten. These file fragments
can send the repair directory command to strange
places. DISKIO will assign any file with sectors that link
to the boot, map, directory, nonexistent sectors, or
themselves with a file length of 999 sectors, Obviously
a file on a DOS 2 disk cannot have 999 sectors, so any
definitely damaged files found by this command takes
a while to complete its job and creates a bit of file
juggling, but is definitely preferable to losing an entire
disk of important files.

It I1s recommended that you use DOS to copy any
known good files to ancther disk before using this
command. Thiswill save some work when identifying
and renaming the files

If the directory sectars were physically destroyed,
- 13 - _J




G -

W - Write boot, binary file menu creates a boot program on

either from magnetism, wear, or maybe coffee splll,
sectors 1-359 and 169-720 may be copled to another
disk and the directory reconstructed there.

This command Is currently limited to single and
double density 720 sector disk. Subdirectories will
confuse the Issue, S0 any recoverable files in a
subdirectory should be copied to another diskand then
preferably fill the subdirectory sectors with $FF's to
make sure It Is not mistaken as a file

Generate file allows files, possibly missed by the "R”
command, to be recovered. If the first sector of the
file can be found using the sector map as a clus,
DISKIO will create a file named “DISKIORD.G64". The
fille number will not necessarily be right but can be
repaired with the directory screen “C* command.

when adding a saector to the front of a file (see
appendix 8) this command could be useful. Pick any
free sector an the disk as the new start sector and
change its link to the new start sector. Once again,
use the directory screen “C* command to correct the
flle number, or see the example for the Main Screen
</> command.

a formated single or double sided disk which will
display and load up to 12 binary load files without
DOS. Since thereis no waiting for DOS to, the disk
menu will boot in Just @ few seconds The only files that
will come up on the menu are the ones fhat are locked.

Not only does the boot menu come up more quickly
than DOS, due tc the way it handies the file l0ad, it
loads and starts the files more ouickly than DOS “L*
command.

This menu will be considered to be public domain
DISKIO ITSELF IS COPYRIGHTED AND ISNOT IN
THE PUBLIC DOMAIN

- 14 - W,




Not only does the boot menu come up more quickly
than DOS, due to the way It handles the file load, It
loads and starts the files more quickly than DOS “L*"
command.

This menu will be considered to be public domain

DISKIO ITSELF IS COPYRIGHTED AND IS NOTIN
THE PUBLIC DOMAIN.

- 15 - | ,




4 )
ATARI DISK STRUCTURE
: (appendx 1)

The-Atari disk drive, during the formatting process, sets a
blank disk up with 40 tracks (concentric circles) of 18 seclors
aach, or 720 sectors numbered 1-720. If the disk Is formatted
In single density each of these sectors are 128 bytes long.
If double density, sectors 4-720 are 256 bytes long and
sectors 1-3 (the boot sectors) are 128 bytes long (single
density). (Thereason for this is when the computer Is booted
it assumes the disk boot sectors will be single density. The
code in the three boot sectors must inform the computer
that the rest of the disk Is double density.) DOS then clears
the boot and directary sectors and sets up the map or YTOC
sector. Through an oversight, DOS was written o access
720 sectors, 0-719, leaving sector 720 out. Since thedrive
is not designed to access sector zero, there are only 719
sectors avallable to DOS. Subtracting the three boat
sectors, aight directory sectors, and one map sector there are
707 free sectors available for file storage on a standard Atan
DOS formatted disk.

The sectors on a boot disk are read sequentially soal 128
bytes are considered data. The sectors that make up a flie
are ‘linked’ together so DOS can arrange the files on the
disk wherever free sectors are avallable. In other words, the
sactors In a flle may not follow numerical sequence. The st
three bytes of each sector in a file contain the link data, or the
number of the next sector in the file. This linking continues
until a sector Is read that links 10 sector zero, signifying the
EOF (end of file). These three bytes also contain the file
number which must match the number of the filename in the
directory. If a file number In any sector does not match, a
'Flle Number Mismatch’ error occurs. For example, all
sactors in the file numbered zero must have a zero in their file
number bits of the link bytes.

The very last bytein a file sector contains the byte count
of thal sector, or how many bytes in this sector are really
data. This is usually 125 for single density and 253 for doubie
density; each being three shart of a full sector to make

\_ - 16 - _J




- )
allowance for the link bytes.

FILE LINK BYTES
Byte: 125(253) 000000xx First six bits are file #, two lower

bits are the upper two bits of the ten bit
link sector (this is why DOS may only access
1023 sectors.)
126(254) Link sector low byte
127(255) Byte count

ENHANCED DENSITY DISK STRUCTURE
(appendix 2)

Enhanced density disks formatted by DOS 2.5 on a 1050
disk drive have a structure similar to, but slightly extended
beyond the DOS 2 disk. The disk Is single density with 128
bytes per sector,but as opposed to having 40 tracks of 18
sactors each, It has 40 tracks of 28 sectors each. This gives
a possible 1040 sectors per disk. Enhanced density disks do
use the DOS 2 six bit number leaving only ten bits for the file
link Information. A ten bit file link can only access 1023
soctors, so this minus three boot, eight directory, and one
map sector leaves 1011 seclors free for file storage. The
directory Is set up the sameas a DOS 2 directory, except
that files containing any sectors above 719 are given a
special status byte (see appendx §). This Is what generates
the brackets around these files ina DOS 2.5 drectory Isting,
and this is what excludes these flles from a DOS 2 directory
listing. The map In sector 360 Is identical to 8 DOS 2 map
except the sector count reflects the larger storage space. An
extended map Is contained in sector 1024 (one sector above
the file storage area). This map Is offset by 16 bytes from the
map in 360 (byte number 0 In the extended map Is byte
number 16 in the map In sector 360. In other words bit seven
of byte zero In the extended map represents sector #48. Bit
seven of byte $54 will be zero locking out sector 720. Bit
zero of byte $79 represents sector 1023. Bytes $7A and $78
contain @ count of free sectors above 720. This Is initialized
to $012F (#303), which, when added to 720 gives the available

. - 17 - _/




1023 total sectors on an enhanced density disk. The 16
sectors between 1025 and 1040 are unused and could be
used to hide information such as an aiternate directory or copy
protection scheme.

HIGH CAPACITY DISK STRUCTURE
(appendx 3)

Double sided disks, 8 inch disks, hard disks, etc., have
basically the same struclure as a standard DOS 2 disk. There
are really only two significant differences. First the six bit file
number Is completely dropped, leaving 16 bits for file sectar
Inks. This gives 65535 allowable sectors on a disk. The other
difference Is the VTOC or sector map The maximum number
of sectors which could be represented In a8 single, double
density sector are 1967 (including the Inaccessable sector
zero).” Disks containing more sectors than this musl
contain multiple map sectors. The first map sector is always
360 where the first byte (if greater than two) minus twa equak
the number of VTOC or map sectors (see appendix 6). The
second map sector will be 359, the third 358 and so on until
enough map sectors exis! to account for all of the available
sectors on the disk.

HIGH CAPACITY LINK BYTES
Byte. 125(253) Link sector high byte
126(254) Link sector low byte
127(255) Byte count

BOOT SECTORS
(appendx 4)

The boot sectors (1-3) are always single density (128
bytes). Sector 1 is the first sector read when the computer Is
bootedup. The first byte should always be zero. The second
tells how many sectors to load during the boot process.
These sectors will be loaded consecutively starting with sectar
one. Since this is only one byte, the most that can be loaded
in a single stage boot Is 255 seclors. The third and fourth

_ - 18 - _J




4 R
bytes of sector one are the address where the load, beginning
with byte zero of sector one, will start. The fifth and sixth
bytes are the address where the computer will jump after the
first stage load is complete.

If more than 255 sectors are neaded or the disk Is double
density, 8 muiti-stage boot is used. The code loaded in the
first stage is responsible for loading the rest of the data.

BOOT DISK LOAD VECTOR
Byte. O - is always zero
1 - number of sectors to load
2 - load address low byte
3 - load address high byte
4 - start address Iow byte
5 - start address high byte

DIRECTORY SECTORS
(appendix 5)

- The directory sectors (361-368) are each capable of
containing 8 filenames, their starting sectors, length in sectors,
and status byte. This Is also true of double density disks. The
last 128 bytes of a8 double density directory sector are |eft
alone. The status byte tells the condition of the file.

VARIOUS ATARI FILE STATUS BYTES

HE ART(atascli) - empty directory entry

INVERSE HEAR T(atascli) - deleted file

‘D’ - DOS 2 locked file

‘B - DOS 2 unlocked file

‘f - MYDOS locked file (high capacity disk)

‘F - MYDOS unlocked file (high capacity disk)

‘# - DOS 2.5 locked flle which exists above sector 720
(atascii 3 symbol) - DOS 2.5 unlocked file which exists
abowve sector 720

‘0" - ($30) locked subdirectory

(atascii club symbol) - unlocked subdirectory

\_ | - 19 - J




r ™)
STATUS BYTE BIT DESIGNATION

BIT:0 - SET - currently open flle .
1-CLR-DOS1/SET.-D0OS?2
2 - SET - 16 bit file links (high capacity disk)
3- CLR - always
4 - SET - subdrectory
5 - CLR - uniocked / SET - locked
6 - CLR - always
7- SET - deleted file

when a file is deleted by DOS no data is actually erased
The status byte Is set to keep the filename from being seen by
DOS and the disk map Is changed to allow the space
occupied by the file to be overwritien.

DIRECTORY BYTE STRUCTURE
Byte: O - Status byte

1 - File length low byte

2 - Flle length high byte

3 - Flle start seclor low byte

4 - File start sector high byte

5-15 - Fllename

MAP SECTOR(S) (VTOC)
(appendx 6)

The map sector (360) contains the number of free sectors
on the disk In the fourth and fifth bytes. Starting In the
lower four bits of the eleventh byte and continuing through
the one hundredth byte Is the sector map. (On a high
capacity disk this may continue for any number of sectors
(see appendix 3) ) Each bit inthese bytes represents a
sector 0-719, sector zero being bit four of byte eleven and
sector 719 being bit zero of byte $563. BIts set to ones
represents available, or free sectors, and bits set to zeros
represent occupied sectors. This map Is how DOS finds a
blank space on the disk for a new file.

- - 20 - _J




e )

The first byte of the map in sector 360 determines what
type of disk Is being used

0-DOS 1

1-DOS 1

2 -DOS 2 (707 or 708 free sectors)
3 - dsk has more than 1024 sectors
4 - 2 VTOC sectors

5-3VTOC sectors

6-ETC..

For more information on multiple VTOC sectors see appendix
3

BINARY FILE STRUCTURE
(appendix 7)

Most binary files load in several segments. At the
beginning of each segment is a set of bytes called a load
vector. Thereasan the files are broken Into segments,
instead of just loading into the starting address and continuing
until the EOF Is found, Is sa the programmer will be able to put
his code anywhere in memary at any time by simply defining a
new orgin in the source code. In other words, everytime an
origin is encountered in the source code the current load
segment Is terminated and a new load vector is created
representing the location of the new origin.

The first load vector In a file Is six bytes long The first two
bytes of the first vector {and file) must both be a $FF (255)
for the DOS ‘L' command to load the file. The third and
fourth bytes in the vector contan the address where the first
byte of the segment (the start of the program)isto load. The
fifth and sixth bytes are the end address of this segment The
start and end addresses are used to compute the number of
bytes to load in this segment, not including the six vector
bytes Starting with the seventh byte, the file is loaded into
memory until the number of bytes called for in the load vector

- . 21 - _/




Is reached. At this pointif the EOF has not been reache 1
another load vector should be encountered All of the load
vectors except the first are 4 bytes long.  The first two bytes
In these vectors contain a new start address and the next two
bytes contain the new end address. These are also used to
compute the number of bytes in the segment, or number of
bytes to the next segment.

The init and run vectors are two special cases. These
look like $E2, $02, $E3, $02 (init)and $E0, $02, $E1, $02
(run). They mean the next bytes (after the vector) will be
loaded Into locations $2E2 and $2E3 for the init and $2E0
and $2E1 for run. These locations are checked after the
loading of each segment. If $2E2 and $2E3 do not contain
zeros, then this is assumed to be an init address of the file.
DOS then JSR's to this address before continuing the load.
when a RTS Is executed, DOS zeros $2E2 and $2E3 and
the load continues with the next vectar If the EOF has not
been reached. |f $2E0 and $2E1 do not contain zeros, DOS
will continue loading until the EOF is reached, at which time it
will JSSR to that address.

BINARY LOAD VECTOR BYTES
Byte: O - $FF if first vector in file

1- $FF If first vector in file

2 - Start address of segment low byte

3 - Start address high byte

4 - End address of segment low byte

5 - End address high byte

BASIC SAVE FILE STRUCTURE
(appendx 8)

The first 14 bytes of a file created by the BASIC "‘SAVE’
command contain various pointers which are loaded Into zero
page memory starting at location $80. Each of these pointers
Is an offset from byte number 151n the file (the first byte after
the set of pointers). During the save process, Basic moves
these seven two-byte pointers from their zero page locations
to a8 lemporary area to be saved, subtracting the value of the

\_ - 22 - y




4 )
first pointer from itself and each of the other six. The first
pointer, $80 and $81, contains the length of a 256 byle,
multi-purpose buffer. This buffer is not saved and its pointer
always contains @ 256. During the execution of the Save
command, the first pointer is substracted from itself, therefore,
the first two bytes of the file will always be zeros. Two zeros
in the first twa bytes of a file is how BASIC recognizes a
saved file. This also explains why the other six pointers in the
displacement list are actually their real value + 256.

These painters, starting at the second one, represent: the
start of the variable Name Table, the end of the Variable
Name Table, the start of the Variable Value Table, the start
of the Statement Table, the start of the Current Statement
Table, and the Displacement to the end of the file.

The start of the Variable Name Table pointer ($82, $83)
usually contains 256, since the VNT normally starts in the
15th byte (displacement 256-256-0). This table contains all
the variable names in the program with each name's last
character displayed in inverse.

The end of the VNT ($84, $85) points to the last byte in
the VNT from byte #15.

The start of the Variable Value Table is pointed to by ($86,
$87). This table contains the value of each variable at the
time the program was saved

The start of the Statement Table Is pointed to by ($88, $89).
This table contains the line numbers, statement tokens,
offsets Into the VNT to represent variables, and other data
used to make up the program itself.

The start of the Current Statement Table is painted to by
($8A, $8B). This is not used by the save/load process. These
are the bytes used to create a “run only” file, done by adding
this line to the end of your program - “32000 POKE PEEK
(138) + PEEK (139) * 256 + 2,0. SAVE “D:FILENAME>EXT":
NEW", then Inimmediate mode type G.32000

< - 23 - J/

e———




2 )
Displacement to the end of the file is at ($8C, $8D). This
number minus 256 s the length of the program.

This Information can be used to do several things. Yariable
names in the VNT on the disk can be changed as long as you
inverse the last character in each name. Once the variables
are changed in the VNT they are changed automatically
throughout the program. If the VNT is filled with return
characters, the program will still run and list, but the listing will
be very difficult to read Another method is 10 fill the VNT
with @ single Inverse character, for example, and inverse A
This will also make the listing difficult to decipher.

If you are trying to list a file modified In this way you can fill
the VNT with different variable names (inverse A.B,.C...). Ifthe
VNT Is not long enough, or you do not want to use singie
character variable names, It IS possible to lengthen the VNT
on the disk. This Is done by adding a seclor to the front of the
file by changing the start and length in the directory. (NOTE:
The FMS 'G’ command could also be used to generate a new
file with the new starting sector.) Set the link bytes of the
new first sector accordingly, then copy the original first
sactor to the new first sector. In link mode rotate the bytes
in the original first sector to the left until the first byte of the
VNT Isin byte zero (15 times), then subtract that number
(15) from the byte count. Now the new first sector, from
byte 15 to the link byles can be used for variable names.
The only thing left to be done is to change the zero page
pointers In the file to reflect the extra length (all bul the current
statement Pointer which must be lleft alone). The pointers
must be exact or the computer will lock up.

MAC/65 SAVE FILE STRUCTURE
(appendx 9)

Like BASIC, the MAC/65 also tokenizes source files when
the “SAVE"* command is used Tokenizing is @ method af
saving files in a format that is easler for the compuler to
reload, making these files load faster and occupy less space
onthedisk. The first four bytes of a MAC/65 saved file make

g - 24 - .




(

up a header similar to a binary file. The first two should
always be $FE, This Indentifies the file. The first two should
always be $FE, this indentifies the file as MAC/65 source file.
If they are not $FE then the MAC/65 will give a “file type error
#23" when loading the file.  The next two bytes are the length,
in bytes, of the file excluding the header. So this length Is
given by:

# of sectors -1* 125 [ or 253 ] bytes/ sector « byte count of
last sector - 4 bytes for the header

The number of sectors - 1 is the length of the file minus the
last sector (since the last sector is unlikely to be full).
Remember the length bytes will be in the low byte/high byte
order on the disk. The length bytes will cause 8 file to crash
If they are not exactly correct. If these length bytes are
greater than they should be the file will appear to load but will
not list. It will be as though the file was not loaded at all. If
the file appears to load ok, but when listed the Iast line that
comes up has some trash in it (this may or may not be the
actual last line of your file) try deleting the ine. If the length
bytes, are less than the actual number of bytes in the file the
computer will probably lock up. Re-boot, calculate, and fix
the length bytes. The calculations are not as complex as they
look, try them on a known goad file for practice.

The first byte following the four byte header Is the low
byte of the two byte line number of the first line in the file. The
line numbers In the source, for example line 10 would be $0A
$00 in the file. The next byte In each tokenized line is the
length of that ine from the first byte of the line number to the
end of this line (the byte before the next line number). The
rest of this line (up to the next line number) is the actual
source code in tokenized form. Labels, equate names,
strings, and comments show up as recognizable ATAsCII in
the file. These are good clues to look for when trying to
reconstruct a damaged file. Here are two ways to salvage 3
damaged MAC/65 source file. First, if possilbe, always
copy your damaged file to a work disk before attempting to
repalr it If only a few bytes in a source file are damaged the
file will load, but when listed it wiil only list to the point in the
\_ - 25 - _J

S————




4 )
file where the damage Is. During its detokenizing process
(when listing) the MAC/65 atlempts to interpret the bytes it
gets the only way it knows how. |f there are bytes there that
don't belong, the listing will go from seeensible source to a line
number around 20 zillion and will probably end in an error
#22- overflow. Note the last complete line number, convert it
into hex and search the file for it {remember they are in low
byte/high byte order). Looking at this lines length byte, find
the last byte in thatline. The next byte should be the low
byte of the line number of the damaged line. Look for the
next two byte pair that could be a line number, keeping in mind
that if the line numbers were incremented by 10, then the
number of the next hopefully good line will be some multiple
of 10 and greater than the line number before the trashed
ine. Now comes the magical part. Count the number of
bytes between the end of the last good line and the line
number bytes of the first good line after the trash. |f this Isn't
very many (‘many’ is relative to just how bad you don't want
to have to retype this file) then this trashed area can be
replaced with a comment line. A tokenized comment line
takes the following form.

EX: 0010; (note one space between the line number and ;)
and in hex tokenized form: OA 00 05 58 3B
| — ATASCII|

| L TOKEN
L LINELENGTH
LINE NUMBER

These bytes could be put Into the trashed area of the file
(with the line number bytes changed to wherever the line
needs t0 go) and this would replace five bytes of the garbage
with a comment line.  The trick Is to fill the rest of the trashed
area by simply putting more $3Bs at the end of the line then
change the line length to reflect this. For example, if there
were nine bytes of garbage between line 10 and line 30
(obviously line 20) then these bytes would be inserted:

14 00 09 58 3B 38 38 3B 3B

NEW LENGTH
LINE NUMBER

. - 26 - _J




7~ ' )
The file could then be loaded and Ine 20 would list as
0020 .....

whlcr? could then be changed to whatever It was before the
crash.

Do remember the ATARI’s 120 character line length limit
when using this technique. It would be best to break a large
damaed area Into several lines several lines 100 bytes long
then catch the odd number left with a shorter line.

when the damage occupies several sectors it is best to
recover the file using another method. Armed with a few
basic concepts and DISKIO one will be able to recover at least
part of a file whether the damaged sectors are at the
beginning, in the middle, or near the end of the file. Since
there is no reference from one line to another in the
tokenized file several lines (bytes in sectors) may be removed
from anywhere In the file direclly on the disk. The only
thing this requires is changing the link bytes In the file
sactors to redirect DOS around the bad sectors. The file
length bytes in the header will have to be corrected as before
to reflect the lost lines. Obviously there must be no line
fragments In the file or the de-tokenzer will get confused. It is
unlikely that the last good line before the bad sectors will end
exactly in the last byte of its sector. In other words the line
may start near the end of the last good sector and carry over
to thefirst bytes of the first bad seclor. If this bad sector
is removed then so Is the last of the line. This is not as big a
problem as it seems because DOS does pay attention to the
byte count of a sector and loads into memory only as many as
itis told

In the case of a file with sector damage at the end, search
the last good sector for the last line (remember the 3 link
bytes), look for the line number and use the line length byte to
determine whether or not the line carries Into the next sector
(it proably will). Count the number of bytes this line
occupies (again, don’t count the link bytes) and subtract this

4 . 27 - ,




(

number from the seclor byte count (see the “L" command).

This will become the last sector of the file. So changethe link

byte to the zero (See the “L* command). When DOS loads

it only the bytes up to the line fragment will be recognized

bN?w the file byte count must be adjusted as discussed
efore

If the damage Is In the first sectors of the file, the header
will have to be recreated. In this case there will probably be a
line fragment at the beginning of the first good fragment.
Here's the tricky part, the line data in the sector must be
moved towards the firsl of the sector (“</>" command) Be
sure DISKIO is In link made (“CTRL-L* command) when
rotating these bytes. The idea Is 10 move the line number of
the first complete ling, after the fragment, to the first of the
sector then adjust the byte count so DOS will not see the
fragment bytes which are now at the end of the sector.
Replaceing the header can be done two ways. |f thereis room
the first line could be moved to start in the fifth byte of the
sector and the header could then be put in the first four
bytes of the sector. The other way would be to add a sector
to the beginning of the file, and use the “G* command to
create a new directory entry recognizing this new first sectar
(as explained in appendix #8). Change the link bytes of (his
new sector to point to the, now second sector in the file. The
header would be put in this sector and the sector byte count
would be four.

In the case of damaged sectors in the middie of the file,
parts of both of these techniques would be shortened (byte
c?unt)hand It would be made to link to the first good secior
after the
amage (“L* command). The bytes In this sector would then
be rotated (“</>* command) and its byte count charged, to
get rid of any fregment. Remember to correct the file length
bytes. ~

Always back up a file after recovering It before doing
anything else. It would be a shame to work to repair a file only
to have It damaged futher by some software critter before
getting to even look at the fruites of your labor.

\ - 28 - W,




r A

DISKIO USERS NOTES

Any time DISKIO asks for a number, it can be entered in
one of three ways: as 3 decimal number with no ‘# sign, as a
decimal number with a8 ‘# sign, or as a hexadecimal number
preceded by a‘$’ sign. The latter Is helpful if you are already
familiar with, and prefer using, hexadecimal notation or just
wish to become more familiar with it.

Hold the RETURN key down when starting DISKIO to skip
the title screen.

If using the Option Command to set the drive parameters
to single density, single sided (a normal disk), just hold the
RETURN key down all the way through the menu. This will
select the default parameters.

Anywhere a character in a group of selections is In inverse
that will be the default taken if RETURN Is pressed.

. | - 29 -. ‘ .




DISKIO
COMMAND SUMMARY

MAIN SCREEN

E - Exitto DOS

? - Hebp Screen

R - Read sector (entered in Hex or Dec )

W - Write sector

P - Print Screen

T - Hex / char. / Internal char. values (if OPTION Is heid)

toggle :

D - Directory Screen

S - Search for up to 8 bytes if in hex mode or a string of up to
8 characters If in characler mode

C - Change bytes In sector.

L - Link modify allows changes to the link sector, file number

and bylte count.

" CTRL-L - Seq/Link toggle determines whether the *+*
command moves (0 the next linked file sector.

F - Flle maintenance screen.

M - Disk Map of sactors 1-719 (OPTION - print)

O - Drive options selects the origin and dest. drive config

Z - Fill one sector, or range of sectors, with any number from
0-255

K - Copy sectors from origin to destination.

X - Print file sectors origin to destination.

+/- - Next/Previous sector.

</> - Rotate bytes within a sector Excludes link bytes.

$/#/% - Two byte number base conversion. First press the
symbol of the base to be converted. Then enter the
number to be converted, with It's base.

\_ - 30 - J




—
DIRECTORY SCREEN

D - Delete a file from the disk

U - Undelete a deleted file.

R - Remame a file.

L - Lock a file.

X - Unlock a file.

F - Format origin, destination, or both.
Q - Quick formal.

+ - Next directory sector.

- - Prevous directory sector.

P - Print this sector.

S - Change the start sector of a file.
C - Check file number in the file links.
A - Access subdirectory.

E - Exit to main screen.

FILE MAINTENANCE SCREEN

T - Trace file and identify vactors (OPTION = print)

B - Boot disk vaectors (OPTION = print)

C - Check for bad sectors and optionally lock them out.

M - Modify YTOC sectors bit uses or free a sectar in the map.

R - Repair directory by first clearing the directory and map
sactors, and then reconstructing each “possible’ file
according to the map.

G - Generate a new file in the drectory and a map by knowing
it's starting sector.

W - Write boot, binary file menu which loads locked binary

files without DOS. Loads about 20% faster than DOS.
E - Exits to main Screen.




r )

ATTENTION

PROGRAMMERS

If you have written a program for the ATARI ST or
ATARI 8-bit compulers and would like to have it published we
at Omega Soft would like to take @ look at it. We arealways
looking for good quality software to add to our line of ATARI
products. If you would like more information on submitting
programs for review please give us a call and we will help
you in any way we can.

Omega Sofl
Attn. Program Dept.
Po Box 139
Harrells, NC 28444

(919) 532-2359

\_ - 32 - J



-

'INDEX )
Acknowledgments A Link modify 4
Atari disk struclure 16 Lock file 9
Link bytes 17
Boot disk 12 :
Bad sectors 12 Main screen 2,11
Boot menu 14,18 Main screen commands 3
Boot load vector 19 Map sectors - 20
Binary load bytes 22 MAGC/65 save file 24
Binary file structure 21
Basic saveflle 22 Number of sectors 1
Next sector 1
Command summary 30 Number conversion 7
Change byte(s) 4 Next/Previous sector 7,11
Copy sectar 6
Correct file number 10 Print screen J
Print file sectors 6
Directory commands 8 Previous sector 7.1
Directory screen 7.4 Print sector 11
Deletea file 8
Disk map 5 Quick format 10
Drive oplions 5
Directory structure 20 Read sector 3
DISKIO user notes 29 Rename file 9
Rotate bytes 7
Exit to DOS 3 Repair diractory 13
Enhanced Density 18
Search for string 4
File maintenance s Seq/link toggle 4
Format 9 Subdireclory 10
File commands 1" Start sector 1
File status 19 Status byte 20
Generate file 14 Table of contents B
Trace file 1
Help 3 Undelete file 8
Hex/char toggle J Unlock file 9
High capacity dsk 18 VTOC 12
High capacity link 18 Write sector 3
warning A
Introduction 1 Zero sector(s) 6
v,

\_.




.34.







DISKIO

This program allows you to do practically anything to nearly
any kind of disk. It is compatable with single, double, and
enhanced density. Double or singie sided, 8 inch.or hard
drives as well. also supportsramdisk.

DISKIO is for the experienced programer as well as the :

: mexpenenced -.Change link sectors, file numbers, byte
counts, elc. in just seconds.

Reconstruct an erased,r scrambled or destroyed directory
recovering most, if not all of the lost files. Even trace through
files to find out where the problem is.

DISKIO allows you to checK 3 ran'dé of sectors or even an
entire disk for bad sectors and then gives the option to lock cut
all bad sectors. :

All standard DOS commands as well as a few new ones are
available on the directory screen.

If you ever delete the wrong file from your disk now you-can
undelete it. :

Tired of the old "File number mismatch error 164" DISKIO will

correct this error and restore your data. : - omz72

™ Po Box 139

Omega SOﬁ Harrells, NC 28444

— \919) o32- 2359 _""

\'




