
BASIC COMPILER AND ASSEMBLER

for the ATARI® 400/800 Computer

Copyright © 1983 by
COMPUTER ALLIANCE

Published gnd Distributed by

iCOMPUTER
JALLIANCE

21115 Devonshire • Chatsworth, Ca. 91311 • Suite 132

* ATARI is a registered trademark of Atari Computer, Inc.

COIM-TEMTS

- 1

. i'i

:,^4KSs

' ̂

1 Overview o-F BASH 1

2 Editor Commands 4

3 Examples 9

4 Basic Statements 24

5 Assembly Language 66

6 Programming in BASM 79

7 Library Functions 82

8 Utility Programs 87

9 Reserved Names 89

10 Error Messages 90

Chapter 1 - Overvi ew o-f BASM P ■ 1

OVERVIEW OE Etrf=»SM

WHAT IS BASM?

This is the BASM Basic Compiler and
Assembler tor the Atari 400/800 computer.

Many programs written in BASIC also
have portions that are written in ASSEMBLY
LANGUAGE, because ot a need tor taster
program execution. BASM is a BASIC that
thinks like an ASSEMBLY LANGUAGE, because it
uses the syntax ot BASIC with ASSEMBLY
LANGUAGE data types and addressing modes.
The BASM BASIC Compiler and Assembler takes
what you program in BASIC and compiles it
into a binary code that talks directly to
the machine. Thus, it is the next step in
the evolution ot the small computer BASIC
language.

BASM has teatures tor both the BASIC

programmer and the programmer who is already
tamiliar with ASSEMBLY LANGUAGE.

BASM provides the BASIC programmer with
a tamiliar language with which you can
produce a program that requires a much
taster speed, such as good graphic
animation. BASM produces programs that run
as much as 130 times taster than Atari

BASIC. Also, it you are a programmer
currently using BASIC and you desire to
learn a machine language, BASM becomes an
excellent means by which you can ease your
way into learning ASSEMBLY LANGUAGE
programmi ng.

NOTE: For the user who is mostly tamiliar
with BASIC, it should be noted here that
BASM is not created to be directly
compatible with Atari BASIC; tor example.

Chapter 1 - Overview of BASN p.2

you cannot expect to run programs that have
been previously written in Atari BASIC
through this compiler. The commands are not
always the same as Atari BASIC, and vice
versa. However, many o-f the commands are
similar, and all are easy to understand.

For the ASSEMBLY LANGUAGE programmer,
BASM retains the efficiency of ASSEMBLY, yet
enables you to cut down the time required
for program development, by as much as two to
three times, because it eliminates the
tedium of calculating the logistics of
ASSEMBLY LANGUAGE syntax. Therefore, it
produces programs that document better and
are easier to understand. BASM itself also

makes a good assembler if you do not wish to
use BASIC.

However, it is certain that once you
have become familiar with the BASM BASIC

Compiler, you will discover that it is a
valuable programming tool that gives you a
lot of control over what you are writing,
and it will serve to optimise your program
development time.

w
m

Chapter 1 - Overview o-f BASM p. 3

HOW TO RUN BASM

To use the BASM BASIC Compiler and
Assembler, the following equipment is needed:

Atari 400 or 800 system with
32K or more of memory

Atari 810 Disk System

Qpti onal:
Atari-compatible printer
Second Atari disk drive

It is recommended that you make a
back-up disk as soon as possible. We have
used quality disks in the production of
BASM, but it is always good to have a backup.

To run BASM, power
disk <the Atari BASIC

be inserted). Type
(return). This will

program. BASM begins

up, using the BASM
cartridge should not
L (return) BASM

load in the BASM

in the EDITOR mode

which is also the command mode.

Chapter 2 - Editor Commands p.4

EDITOR COMMAMDS

The BASli editor commands act like the
editing commcands of Atari BASIC.

Each line has a line number. Line

numbers may range from 1 to 65534 inclusive.
You may insert a line by typing the number
followed by the line which you wish to
insert. To erase a line, you type the line
number without the line following it. Note
that the line numbers in BASM are temporary
and for editing purposes only. They may not
be used as label references in GOTO
statements or GOSUB statements. The actual

lines start in the first column following
the last digit in the line number. The file
name references are the standard ATARI file
names, but if they are on Disk Dl:, you may
omit the prerequisite D: or Dl;.

The following commands are available on the
BASM editor. Unless otherwise noted, the
parameters may follow immediately after the
command, or may be separated by space<s).

COMPILE: The short form of COMPILE is the

letter "C". Follow this command by a
carriage return. This invokes the BASM
compiler to process the source text file
that you created using the editor, to
produce a binary file which is actually
runable. This command first asks you the
SOURCE FILE name. After you type in the
SOURCE FILE name, it asks for the BINARY
FILE name. After you type that in, it asks
for the LIST FILE name. Typing P: in
response to LIST FILE name will send the
listing to the printer. Typing E: will send
the listing to the screen. Typing a FiETURN
by itself will prevent any LIST FILE from
being created. This represents a

' ■■

Chapter 2 - Editor Commands p.5

significant speed improvement in
compilation. Example:

C

SOURCE FILE NAME ~>TEST.SRC

EINAFliY FILE NAME ->TEST

LIST FILE NAME ->P:

DELETE: The short form of DELETE is the

letters "DE". Follow this by two line
numbers, separated by a comma. This will
delete all lines between, and including, the
two line numbers you gave. Example:

DEI00,130

DOS: The short form is "DO". This returns

you to the Atari Disk Operating System, and
exits BASM entirely. Example;

DO

FIND: The short form is "F". Follow this

by a "/", then print the text you wish to
find, followed by another "/". In order to
allow you to find text in which the is
included, you may substitute any character
for the "/" as delimiters for your text.
FIND will then search through your entire
program, find the first occurrence of your
text, stop, and print out that line. You
may then go on to find the next occurrence
of that same text by typing FIND, followed
directly by a RETURN. This process may be
repeated over and over as you wish, until
you come to the end of your program. Also,
FIND will not be confused by any changes you
make to your program during this process.
Examples:

F/DEF PRHEX/

Chapter 2 Editor Commands

F"YES/ND"

FIND /2/

p.6

FREE; The short -form is

you how many free bytes
editor to use. Example:

"FR",

are

This tells

left for the

FR

INSERT: The short form is "I". Follow this

by two numbers, separated by a comma.
Example: 1100,5. In this example, five line
numbers would be inserted in front of line

number 100. This command does not actually
insert blank lines, but renumbers the lines
that follow. This creates a gap in the line
number editing system to allow you to insert
new program lines. If the comma and second
number are omitted, it defaults to inserting
100 lines. Examples:

1100,5
I 100,5
1935

LIST: The short form is "L". The LIST

command, followed by a single line number,
will print that line, and that line only, on
the screen. The LIST command, followed by
two line numbers separated by a comma, will
list those two lines, and all the lines
between them, in order. The LIST command,
followed by a comma and then a line number,
will list all lines from the beginning of
the program up to and including that number.
The LIST command, followed by a line number
and then a comma, will list all the lines to
the end of your program, starting at and
including that number. The LIST command
followed by a return will list the entire
program. The program listing may be stopped

Chapter 2 - Editor Commands p.7

with the BREAK key. Examples:

L

L10

L10,40
L ,40
L 40,
LIST

LOAD: The short form is "LO". Follow this

command by the file name of your source
program. This loads your program into the
text editor buffer for editing. It also
automatically assigns line numbers to your
program by tens, starting with 10. (There
must be at least one space before the file
name.) Examples:

LO TEST.SRC

^ LOAD TEST.1

NEW: The short form is "N". This command

erases your program from the editor buffer.
Example:

NEW

RENUMBER: The short form is "RE". This

command, followed by a RETURN, will renumber
your program by tens, starting at 10. If
the RENUMBER command is followed by a
number, it will renumber your program in
intervals of that number, starting at that
number. Examples:

RE

REN

RENU

RENUMBER

RE 10

REN 100

Chapter 2 - Editor Commands

RE 17

p. 8

RUN: The short -form is "R". Follow this

command by the file name of the binary file
you wish to run. (There must be at least
one space before the file name.) Examples:

R TEST

RUN TEST

SAVE: The short form is "S". This command

saves the contents of the editor buffer to

disk. Note that the line numbers are

discarded at this point. The SAVE command
is followed by the file name of your source
program. (There must be at least one space
before the file name.) Examples;

^ S TEST.SRC
SAVE TEST.SRC

Chapter 3 Examples p.9

E:X<=fcMF>l_E:S

BEGINNING BASM

1. Copy your disk
Copy your entire distribution disk to a
blank floppy, using the 'J', copy entire
disk command. You will need some files on

the disk besides just BASM.

2. Boot off of the disk you have just
created, without the BASIC cartridge.

3. Use the DOS command 'L' to load BASM

(type LCreturnl BASMCreturn3).

4. BASM should now be in the

edit/command mode. It should have

identified itself and printed READY.

MAZE

Type in the following exactly. Be sure
to type the indicated spaces, and don't
insert any extra spaces. Also, don't
confuse 0's with O's.

10CONSOL=$D01F

20RANDOM=*D20A

30 WHILE CDNSOL AND 1 <> 0

40 PUT RANDOM AND 1 + 6

50 ENDWHILE

60 RETURN

You have now entered a short program
into the editor workspace memory. You may
view the contents of the workspace memory by

m}i

Chapter 3 Examples

typing LCreturnl.
program, you must
and compile it.
your program to
MAZE.SRC .

In order to run

first save it to

The following will
disk in a file

p. 10

your

disk,
save

named

SAVE MAZE.SRC

You may now compile your program.
After you type COMPILECreturnl, BASM will
ask you for the name of the source file.
This means the file that you just saved to
disk (what you actually type in). It then
asks you for the binary file name. This is
the final program in machine code that BASM
creates during compilation. Finally, BASM
asks you for the list file name. This is a
documentation file useful in de-bugging.
You may skip the creation of this file by
just typing Creturnl with no file name. The
following will take the program you just
saved to disk, compile it, save the binary
program in a file named MAZE, and produce no
list.

COMPILE

SOURCE FILE NAME

BINARY FILE NAME

LIST FILE NAME

•;>MAZE.SRC

•>MAZE

You may now run your program by typing
the following.

RUN MAZE

You can stop your program and
BASM by pressing the CSTART3 key.

return to

Chapter 3 Examples p. 11

HOW IT WORKS

Load your program back into workspace
memory and display it by typing the
•fol lowing.

LOAD MAZE.SRC

LIST

Lines 10 and 20 allow you to de-fine Atari
hardware control registers as variables.
The *D01F does not put that value into
CONSOLS it locates the variable CONSOL at

that location in "memory." These lines
start right after the line number because
they are actually assembly language and not
BASICS this is the format for standard 6502

assembly.

Line 30 is the start of a WHILE loop. This
is similar to a FOR/NEXT loop, except that
it loops while a condition is true, rather
than counting. In this case, it reads the
Atari CONSOL register, masks off all bits of
it except bit 0, and loops while this bit is
not equal to zero. This bit becomes zero
when the CSTART3 key is pressed.

Line 40 reads the random number register,
masks off all bits except bit 0 and adds 6

It then sends the result to the

This will randomly print left and
diagonatl lines. This line has an
space after the line number. The

does not affect the program at all.

to it.

screen

r i ght
extra

space

but is optional
that this line is

BASM expressions
left to right.

documentation to indicate

inside a loop. Note that
are always evaluated from

Line is the bottom of the WHILE loop.

Chapter 3 Examples p. 12

Line 60 returns you to BASM. Running your
program from BASM is exactly the same as
doing a GOSUB to the very top of your
program. You can also run your program from
Atari DOS by using the L command from DOS,
and the RETURN on line 60 will return you to
DOS.

SEEING THE ASSEMBLY

Now type the following line (your
program should still be in workspace memory).

CODE

This tells BASM to show you the
assembly code produced by your BASM program.
Using the SAVE and COMPILE commands, save
and compile your program, except that when
it asks you for the
E:Creturn3. This will

then send the listing
you will see is your
language intermixed.

list file name, type
clear the screen and

to the screen. What

program with assembly

I
1

 ,

C)^
(

Chapter 3 Examples p.13

A BIGGER PROGRAM

This program is a little larger and a
lot more useful. It allows us to see the

disk directory from BASM. Type in the
following exactly:

10 TRAP .NOTHING

20 PRINT "FILE NAME?"?

30 INPUT LINE«

40 OPEN 1 , 6 , 0 , LINE$
50LOOP FILE 1

60 INPUT LINE$

70 IF STATUS < 128 THEN

80 FILE 0 : PRINT LINE*

90 GOTO LOOP

100 ENDIF

110 CLOSE 1 ". FILE 0

120 RETURN

1305

140NOTHING RETURN

150 DIM LINE*<100)

Save it to disk with the filename

CAT.SRC Compile it using the C command
<BASM editing and control commands have
short forms: C is COMPILE). Give the binary

file the name CAT. Now run the program CAT.
It should ask you FILE NAME? Type *.* and
you should see the entire directory of the
disk.

HOW IT WORKS

Line 10 causes the subroutine "NOTHING"

(line 140) to execute whenever an error is

detected. The period in front of NOTHING

(
(

M
m
W
m

(

Chapter 3 Examples p. 14

tells BASM to give the location of NOTHING
to the TRAP program, rather than the data at
NOTHING. If you don't use this feature,
then any I/O errors will re-boot you back
into Atari DOS, including end of file error.

Line 20 prints the words FILE NAME? on the
screen without a Creturnl. The PRINT

program only works for string constants and
variables? BPRINT is for numeric variables.

Line 30 inputs a line from the
saves it in memory at LINE*.

keyboard and

Line 40 opens the disk
it the file number, 1

directory and gives

Line 50 switches input/output to file number
1. In BASM, you may open a number of files
and switch between them, using the FILE
statement. This process does not either
open or close the files, but replaces the
Atari ttnumber in the INPUT, PRINT, etc.
statements. File 0 is automatically opened
to device E: (screen/keyboard). This line
also defines a location which can be

referred to at other places in the program,
such as at line 90, and replaces the Atari
line number mechanism. BASM line numbers

are for editing purposes only, and are not
even saved on disk.

Line 60 inputs
the disk.

one line of directory from

Line 70 checks for any error conditions <in
this case the end of file). Since nothing
follows the THEN, this is a multiple-line
IF/THEN statement. Lines 80 & 90 are

executed if line 70 is true; otherwise it

skips down to line 110.

Line 80 switches to the screen

out what you just got from
and prints
the disk

Chapter 3 Examples

di rectory.

Line 90 goes back to LOOP to
line of the directory. In BASM
and useful to jump out of
WHILE/ENDWHILE's and FOR/NEXT's.

p. 15

another

it is legal
IF/ENDIF's,

Line 100 is the bottom of the IF statement.

Line 110 closes the disk directory and
switches back to screen/keyboard mode.

Line 120 returns to BASM.

Line 130 is the assembly language equivalent
of the BASIC REM statement.

Line 140 is a

referenced in

"do-nothing"
line 10.

routine that is

Line 150 creates "LINE*". Note that this

line is never actually executed, but it
exists in the program. You could put it
anywhere you want, but if your program tries
to execute it, it will probably "BOMB OUT."

Chapter 3 E}tamples p. 16

FROM ATARI BASIC

The -first program, program A, is in
Atari BASIC. It inputs your name, and prints
it backwards. This is not directly
compatible to BASM, but the program B is in
BASM and performs the same action.

Program A; Atari BASIC

10 DIM NAME$<100)

20 PRINT "YOUR NAME";!

30 INPUT NAME$

40 N=LEN<NAME*>

50 PRINT "BACKWARDS: "!

60 PRINT NAME«<N,N);
70 N=N-1

80 IF NO0 THEN GOTO 60

90 PRINT

Program B: BASM

10 PRINT "YOUR NAME?"!
20 INPUT NAME*

30 LDY #0

40 WHILE NAME,Y <> #EOL
50 I NY

60 ENDWHILE

70 STY N

80 PRINT "BACKWARDS: "!

90 WHILE N <> 0

100 LDY N : DEY : PUT NAME,Y
110 DEC N

120 ENDWHILE

130 PUT #EOL

140 RETURN

150 DIM NAME*<100) , N

Save the BASM program B to disk, using
file name REV.SRC, compile it using binary

Chapter 3 Examples p. 17

•file name REV, and run it using file name
REV.

HOW IT WORKS

Line 10 of the program B is the equivalent
ir» preNgraiffi The program B

includes a question marh, because the BASM
INPUT command <line 20) does not print a
question mark as in Atari BASIC. The
semicolon prevents the cursor from going to
the next line. Only one variable or
constant is allowed in the PRINT statement.

Line 20 of program B INPUTS a line from the
keyboard to memory, starting at NAME#. It
stores whatever you type in, including the
[return] character, and then adds a binary 0
after the [return]. After being loaded into
memory, the data can be treated as a byte
"array"; BASM uses 6502 indexed addressing
modes rather than classical array
processing, to access this kind of data.

Lines 30 through 70 of program B are the
rough equivalent of line 40 of the Atari
BASIC program A.

Line 30 loads 0 into the 6502 Y register.
The y register is used to index into the
NAME# "array" in line 40, and 0 points to
the first byte of that "array."

Line 40 loops if the byte indexed by the V
register is not equal to [return]. The #EOL
represents the end of line or [return]
character. The # means to treat EOL as a

constant number rather than a variable.

This is a convenient way of defining special
characters and values. EOL was defined in

the library system by an E0L=#9B statement.
The "NAME,Y" is the 6502 indexed addressing,
and it means "get one byte from memory yy

(
C
)

o

*
r

Chapter 3 Examples p.18

places beyond the location in memory called
NAME, where yy is the contents of the Y
register." Note that the ♦ of NAME$ is
dropped, because we are now treating NAMEf
as the byte "array" NAME. NAME and NAME$
refer to the same thing but treat it
di fferently.

Line 50 adds 1 to the Y register, which is
used to access the next character in NAME.

Line 60 is the bottom of the WHILE/ENDWHILE
loop, and loops back up to line 40.

Line 70 stores the contents of the Y
register to the variable N. At this point,
Y indexes to the EQL character in NAME.
This is also the length of NAME^ minus the
EOL.

Line 80 prints the label "BACKWARDS: "; and
works the same as line 50 in program A.

Line 90 is another loop, this time checking
to see if the variable N indexes to the
beginning of NAME*. It stops looping when
it is done.

Line 100 loads the index N into the Y

register, subtracts 1 from the Y register,
indexes into NAME, and sends the indexed
byte from NAME* to the screen, using the PUT
statement. It subtracts 1 because BASM

indexes, starting at 0, where as Atari BASIC
indexes, starting at 1. You have to load
the Y register each time in the loop,
because the PUT program alters all the 6502
registers. It is good to assume that any
library commands alter all of the 6502
registers. Chapter 5 of the manual tells
you if a command is library or built-in.

Line 110 subtracts 1 from the index N. You

could have used "LET N = N - 1", but "DEC N"

'

Chapter 3 Examples p.19

executes faster and takes up less memory.

Line 120 is the bottomof
loop started in line 90.

the WHILE/ENDWHILE

Line 130 ouputs an EOL to the screen.

Line 140 returns to BASM or DOS, from
wherever this program was called. BASM
programs should always finish execution with
a RETURN (or STOP); otherwise, they will
continue executing whatever comes
memory (which is not a good idea).

next in

Line 150 creates the variables NAME$ and N.
All variables in BASM must be explicitly
created, either by the DIM statement, or by
assembly language means.

-m

Chapter 3 Examples p.20

SOME GRAPHICS

The previous examples have not shown
the real advantage: SPEED! This program
shows you how to use graphics and how much
faster BASM is than Atari BASIC.

Program C: Atari BASIC

10 GRAPHICS 7+16

20 X=40:Y=40

30 COLOR RND<0)*4

40 X=X+INT(RND<0)*3-1)

50 IF X=160 THEN X=159

60 IF X=-l THEN X=0

70 Y=Y+INT<RND<0)*3--1)

90 IF Y=96 THEN Y=95

90 IF Y=-l THEN Y=0

100 PLOT X,Y
110 IF PEEK(53279)<>16 THEN 30

Program D; BASM

10RANDOM=itD20A

20CONSOL=*D01F

30 eR7

40 LET 40 -> X -> Y

50 WHILE CONSOL AND 1 <> 0

60 COLOR RANDOM AND 3

70 RND 2 , .TMP
80 LET X = X + TMP - 1

90 IF X = 160 THEN LET X = 159

100 IF X = 255 THEN LET X = 0

110 RND 2 , .TMP
120 LET Y = Y + TMP ~ 1

130 IF Y = 96 THEN LET Y = 95

140 IF Y = 255 THEN LET Y = 0

150 PL0T7 X , Y
160 ENDWHILE

170 CLOSE 7

Chapter 3 Examples p.21

180 FILE 0

190 RETURN

200 DIM X , Y , TMP

Enter and save the second program to a
file named SCRIBBLE.SRC. This program uses
the library routines GR?, PL0T7,, and RND,
which might not be included in the library
system. These routines are in a file named
MISC. To checki, load the file named
BASM.LIB into the editor workspace (LOAD
BASM.LIBCreturnl). It should have a line:

.INCL 'MISC . If it doesn't, add .INCL
'MISC on the line following the line:
.INCL 'GR' . You can insert lines in the

same way as you do in Atari BASIC. Save it
back to the file BASM.LIB. This causes the

file MISC to be included in your program
when you compile. You may now compile and
run your program SCRIBBLE.

rs
HOW IT WORKS

Lines 10 and 20 define the locations of

CONSOL and RANDOM.

Line 30 opens the graphics mode 7 with no
text. It uses file number 7 for

INPUT/OUTPUT.

Line 40 sets up the initial location on the
screen. This form of the LET uses the

assign (~>) rather than equal <=) and allows
you to store the same value in two or more
vari ables.

Line 50 loops to line 160 until the CSTART3
key is pressed.

Line 60 selects a random color between 0 and

3. It masks off the lower 2 bits from the

random number generator and gives them to
the COLOR program.

Chapter 3 Examples p.22

Line 70 selects a random number between 0

and 2 and stores it to the variable TMP.

The . in -front of TMP tells BASM to give the
location o-f TMP to the RND program, so that
it will know where to store the results.

Using RND to generate random numbers is
slower than using RAND in line 60, but RND
gives you more control over the range of
numbers.

Line 80 adds the random number 0,1,or2 to
the X location, then subtracts 1. This is
the equivalent of adding -l,0,orl, producing
the symmetrical random motion.

Line 90 checks for collision with the right
side of the screen.

Line 100 checks for collision with the left

side of the screen. Notice that 255 can be

thought of as -1.

Lines 110 to 140 do the same as lines 70 to

100 for the Y direction.

Line 150 plots a dot of the color selected
in line 60 at the new location.

Line 160 is the bottom of the WHILE loop
started in line 50.

Line 170 closes the graphics channel opened
in line 30. Graphics commands always use
channel 7, and channel 7 should be closed
when you are done with graphics. If you use
any other channel, you should use FILE 7
before doing any graphics INPUT/OUTPUT.

Line 180 switches back to the normal I/Q

channel <E:) before returning to BASM.

Line 190 returns to BASM.

Line 200 creates the variables used in this

Chapter 3 Examples p.23

program.

Chapter 4 - Basic Statements p.24

THE I C ST#=iTEMEMTS

Before we get into the actual BASIC
statements, let's define a few terms as they
relate to the EiASM BASIC Compiler.

Variables: In BASM, variable names can be
from one to 30 characters. The first
character must be a capital letter. The
rest of the characters in the variable name
can be any digit or capital letter or the
underline (_). The underline can be used as
a connector between two or more words to
form one variable name.

Forbidden variable names: There are some

words and symbols that should not be used as
variable names. For a complete list of
these, see the chapter on "Reserved Names."

Locations: With similar restrictions to

variables, locations have the same function
in BASM that line numbers have in ATARI
BASIC. A location is created by typing its
name at the beginning of the line (in column
1) and must have at least one space between
it and the statement. that follows. A
location definition may occur alone on a
line. A line without a location definition
must be preceded by at least one space.

Constants: BASM uses several types of
arithmetic constants:

Decimal: A decimal constant is an

unsigned integer number that has a value of
from 0 to 255. Examples: 173, 34, 235.

Hexadecimal: A hexadecimal constant

must start with the $ symbol followed by

m

Chapter 4 - Basic Statements

digits <0 through 9) and/or
^ through F) that evaluate from

Examples: fF0, «F, f4C.

Octal: An octal constant

with the I® symbol followed by
through 7) that evaluate from @!
Examples: @351, @5, @127.

l

p. 25

etters

$0 to

(A

$FF.

must start

digits (0
J to @377.

Binary: A binary constant must start
with the 7. symbol, followed by 1 to 8 digits
consisting of 0's and I's, that evaluate
from 70 to 7.11111111. Examples: 7.110,
7.11001, 7.11110010.

Characters: A character constant is a single
character enclosed by single quotes <').

Operators: Used in
the current value.

an expression to modify

AND

OR

XOR

Unsigned binary addition
Unsigned binary subtraction
Bit-wise logical AND
Bit-wise logical OR
Bit-wise logical XOR <EOR)
Assigns the current value to the
following variable

Expressions: An expression is a sequence of
byte vari ables, byte
operators strung together,
evaluated from the left to

parentheses are used. Also,
expression must be separated
space. Expressions always
value between 0 and 255.

constants, and
Expressions are
the right. No

each part of an
by at least one
evaluate to a

Conditions: The following
as conditions in BASM:

symbols are used

= <equal)

Chapter 4 - Basic Statements p. 26

<> (not equal)
> (greater than)
< (less than)

>= (greater than
<= (less than or

or equal to)
equal to)

Nonexecutable Statements:

A nonexecutable statement must not be in the

program flow,
the program,
related Atari

executed to

inherent

assembly

but must exist somewhere in

This is contrary to the
BASIC statements which must be

function. This is something
in the concept of compilation and
language, and it is not peculiar to

BASM. It is the programmer's responsibility
to make sure that nonexecutable statements

are not executed.

Incorrect sequence in BASM;
^ PRINT "HELLO"

LET Q = Z + 1

DIM Q , Z

In all BASIC statements: Whenever a space
is specified, several spaces may be
inserted. Whenever commas are specified,
the commas themselves must be separated by
space(s), in order to eliminate possible
confusion with certain 6502 addressing modes
that use commas.

BASM I/O statements are similar to

Atari BASIC Input/Output statements. The
largest difference is that the file number
is sejlected by the FILE statement, the OPEN
statement, and the CLOSE statement. From
then on, that I/O channel is used for
Input/Output until otherwise selected.
Also, the predefined byte variable STATUS
contains the status from that operation.

The statements from BR, the BASM
Sraphics Library, are similar to Atari BASIC

Chapter 4 - Basic Statements p.27

graphics statements, except that the I/O
channel 7 must be maintained as selected
during graphics Input/Output operations.
Selecting other channels is not harmful to
graphics statements, but the channel must be
selected back to channel 7 before graphics
Input/Output operations may be executed.

On the following pages are the BASIC
statements. With each statement is

documentation, telling whether or not it is
executable, which library file <if any)
contains it, the format of the statement, a
description of the statement, a few examples
of the statement, and a short but functional
program using that statement.

Chapter 4 - Basic Statements p.28

BIIMF^UT (Executable, 10 library
statement)

Format: BINPUT .variable

Inputs one line (terminated by EOL)
•from the currently selected I/O channel.
Converts this from ATASCII decimal format to

one byte binary. It then places that value
in the specified byte variable. Leading
zeros are not needed. Gives a value of 0

for an empty line.

BINPUT .COUNT

BINPUT .LINE_NO

10 PRINT "HOW MANY 'HELLO'S' DO YOU WANT?"5

20 BINPUT .MAX

30 FOR NDX = 1 TO MAX

40 PRINT "HELLO"

50 NEXT NDX

60 RETURN

70 DIM NDX , MAX

Chapter 4 - Basic Statements p. 29

BF^R: I lN|~r (Executable, 10 library
statement)

Format: BPRINT expression

Converts the byte value -from the
expression to ATASCII decimal and outputs it
to the currently selected I/O channel.
There are no leading 0's or spaces, and it
does not append an EOL.

BPRINT 5

BPRINT CHAR + '0' AND «7F

10 FOR NDX = 1 TO 100

20 BPRINT NDX

30 PRINT ""

40 NEXT NDX

50 RETURN

60 DIM NDX

Chapter 4 - Basic Statements p.30

CL-OSE (Executable, 10 library statement)

Format: CLOSE expression

First selects the I/O channel given in
the expression <0-7), then closes that I/O
channel.

CLOSE 0

CLOSE CURRENT_CHANNEL

10 PRINT "SOURCE FILE?";

20 INPUT SRCit

30 TRAP .NOTHING

40 OPEN 1 , 4 , 0 , SRC$
50 WHILE

60 FILE 1

70 GET .CHR

80 IF STATUS > 127 GOTO DMPDONE

90 FILE 0

100 PUT CHR

110 ENDWHILE

120;

130NOTHING RETURN

140;

150DMPDONE

160 CLOSE 1

170 FILE 0 : RETURN

180 DIM CHR , SRC«<100)

Chapter 4 - Basic Statements p.31

COLOR (Executable, SR library statement)

Format: COLOR expression

This statement selects the color to be

used in graphics statements.

COLOR 0

COLOR LAST_COL

i0RAND=*D20A

20CONSOL=$D01F

30;

40 GRAPHICS 7+16

50 REM LOOP UNTIL START PRESSED

60 WHILE CONSOL AND 1 <> 0

70 COLOR RAND AND 3

80 PLOT 0 , RAND AND $7F , RAND AND «3F
90 ENDWHILE

100 CLOSE 7

110 FILE 0

120 RETURN

y-v

Chapter 4 - Basic Statements p.32

DiftTift (Nonexecutable, built-in)

Format: DATA constant , constant ,
constant ...

The DATA statement is a statement that

allows you to put constant data into the
middle of your program. This is very useful
for creating look-up tables without having
to load them into arrays as in Atari BASIC.
Simply put a location definition in front of
the DATA statement, and you may index into
it. Any normal constants may be used in the
DATA statement, separated by commas. You
may also use string constants in a DATA
statement, surrounded by double quotes.
Note that no string termination character
<^00> is inserted. You get only the
characters between the quotes.

DATA 1 , 5 , 138 , 'x'
HEXTABL DATA "0123456789ABCDEF"

10 GOTO SKIPIT

20 DEF PRHEX HEXDATA

30 LDA HEXDATA

40 LSR A : LSR A : LSR A : LSR A

50 TAY

60 PUT HEXTABLE,Y

70 LET HEXDATA AND $F : TAY

80 PUT HEXTABLE.Y

90 RETURN

100HEXTABLE DATA "0123456789ABCDEF"

110 DIM HEXDATA

120 ENDDEF PRHEX

130SKIPIT

140 FOR NDX = 0 TO *80

150 PRHEX NDX

160 PUT #EOL

170 NEXT NDX

180 RETURN

190 DIM NDX

mmtm aSBrfi

Chapter 4 - Basic Statements p.33

(Nonexecutable, built-in)

Format: DEF statement parameter ,
parameter , parameter ..•

The DEF statement creates a new

statement. The parameters that are defined
for the new statement must have been
dimensioned elsewhere in your program. The
DEF statement differs from BASIC in that it
defines a statement rather than a function.
A statement is used on a line by itself,
rather than in an expression. The ENDDEF
statement is used to end the definition of a
statement. The DEF statement is followed by
at least one space, followed by the name of
the statement you are defining, which is
followed again by at least one space, after
which comes the first parameter, followed by
a comma, second parameter, comma, third
parameter, etc. There is no inherent limit
to the number of parameters. For normal
byte parameters, a BASM expression may be
used for the parameter upon execution (not
in the definition). A statement must be
defined in the program before it can be
used. This refers to program sequence from
"top" to "bottom" rather than the sequence
of execution. When the statement is used
(executed), the name of the statement is
followed by the parameters in the sequence
they appear in the DEF statement. Besides
normal byte variables, there are three
special data types allowed in the parameter
1 i st.

Word parameter - add a 7. to the end of the
parameter name. When the statement is
executed, a word (two bytes) will be
transferred to the parameter variable.

Address parameter - add a . to the front of
the parameter name. This is si mi liar to the

Chapter 4 - Basic Statements p.34

word parameter in that it transfers two
bytes; however, the address parameter will
obtain the the address <location) of the

name given in the execution of the statement.

String parameter - add a $ to the end of the
parameter name. This will transfer an
entire string to the parameter variable. A
string is defined as a sequence of ATASCII
characters up to 254 long, followed by the
null <*00) character.

You may not pass constants for word or
address parameters, but you may pass a
string constant by surrounding a sequence of
characters by double quotes ("). BASM will
automatically append an end of line and a
null to your string constant. The end of
line character may be suppressed by adding a
semicolon after the closing quote. Note
that the semicolon does not replace a comma
in multiple parameter statements.

DIM VAL

DEF PRHEX VAL

LET VAL = VAL + '0'

IF VAL > '9' THEN LET VAL = VAL + 7

PUT VAL

RETURN

ENDDEF PRHEX

■ UK

PRHEX 9

PRHEX ZZZ

DIM PARM17. , PARM2 , . PARM3
DEF XLAC FARM 17. , PARM2 , .PARM3

N • •

ENDDEF XLAC

■ ■ ■

XLAC 10 , VCNT + '0' , .ZCNT
XLAC X7. , Y , .Z

DIM LINE*<100)

DEF PUT LINE LINE*

Chapter 4 - Basic Statements p.35

PRINT "LINE =

PRINT LINE*

RETURN

ENDDEF GET_LINE
« a ■

PUT LINE LINE X*

PUTLINE "GREETINGS"

10 GOTO SKIPIT

20 DEF PRHEX HEXDATA

30 LDA HEXDATA

40 LSR A ; LSR A : LSR A : LSR A
50 TAY

60 PUT HEXTABLEjY
70 LET HEXDATA AND *F : TAY

80 PUT HEXTABLEjY
90 RETURN

100HEXTABLE DATA "0i234567B9ABCDEF"

110 DIM HEXDATA

120 ENDDEF PRHEX

1305

140 DIM WDVAL7. , PROMPT* (100)
150 DEF PRWORD PROMPT* , WDVAL%
160 PRINT PROMPT*

170 PRHEX WDVAL+1

180 PRHEX WDVAL

190 PUT #EOL

200 RETURN

210 ENDDEF PRWORD

2205

230SKIPIT

240CON=*D01F

250 LET 0 -> PNT -> PNT+1

260 WHILE CON AND 1 <> 0

270 PRWORD "THE VALUE OF PNT = "5 , PNT7.
280 LET PNT = PNT + 1

290 LDA PNT+1 ; ADC #0 : STA PNT+1

300 ENDWHILE

310 RETURN

320 DIM PNT%

Chapter 4 - Basic Statements p.36

DIM (Nonexecutable, built-in)

Format; DIM variable , variable , variable

The DIM statement creates a BASM
variable and allocates space for it. The
DIM statement is followed by a variable
name, comma, second variable name, comma,
third variable name, etc. This allocates
one byte for each variable as it creates
that variable. You may allocate more space
per variable by following the variable name
with a constant number enclosed in
parentheses. This allocates that number of
bytes for that variable. Special data type
variables may also be "DIM"ed for use with
"DEF"ed statements only. The format of the
special data type variable is the same as in
the DEF statement. However, the word and
address data types may not utilise the
"(constant)" feature to increase storage.

DIM LINE(100) , CNT
DIM LINE1«(100)

DIM PNT7. , .PNTl , VAL

10 PRINT "WORD TO BE REPEATED?"?

20 INPUT LINE*

30 PRINT "NUMBER OF TIMES TO REPEAT?"?

40 BINPUT .MAX

50 FOR NDX = 1 TO MAX

60 PRINT LINE*

70 NEXT NDX

80 RETURN

90 DIM NDX , MAX LINE*(100)

Chapter 4 - Basic Statements p.37

DF%AUI'TO (Executable, 6R library
statement)

Format: DRAWTG word variable , expression

This draws a line from the last
POSITIONED or PLOTTED point on the screen to
the XjiY location indicated. The first
parameter is the X location and may be
substituted with a 0 , expression if a byte
value is desired. The second parameter is
the Y location.

DRAWTO XYAL"/. , YVAL
DRAWTO 0 , X , Y
DRAWTO 0 , 10 , 40

10CON=$D01F

20RAND=*D20A

30 GRAPHICS 7+16

40 PLOT 0 , 0 , 0
50 WHILE CON AND 1 <> 0

60 COLOR RAND AND 3

70 DRAWTO 0 , RAND AND *7F , RAND AND ♦3F
80 ENDWHILE
90 CLOSE 7
100 FILE 0
110 RETURN

c
)

m

Chapter 4 - Basic Statements p. 38

!=■ I l_E (Executable, 10 library statement)

Format: FILE expression

Selects current I/O channel from the
value given in the expression. The
expression should evaluate from between 0
and 7.

FILE 0

FILE CHANNEL NO - 1

10 PRINT "FILE NAME
20 INPUT SRC«
30 OPEN 1 , 4
40 OPEN 2 , a
50 TRAP .ZIP
60 WHILE
70 FILE 1
80 GET .CHR
90 IF STATUS
100 CLOSE 1
110 FILE 0
120 RETURN
130 ENDIF
140 FILE 2
150 PUT CHR
160 ENDWHILE
170 DIM CHR ,
180 DEF ZIP
190 RETURN
200 ENDDEF ZIP

127

SRC$<

5

SRC$
II p ■ II

THEN
CLOSE 2

100)

r> t-^is.

Chapter 4 - Basic Statements p. 39

!=• ILL (Executable, GR library statement)

Format: FILL word variable , expression ,
word variable , expression

This statement is similar to the Atari
BASIC XIO FILL statement. It draws a line
between two points and -fills everything to
the right o-f that line with the currently
specified color until it meets a
nonbackground color. The first parameter is
the first X position and may be substituted
with a 0 , expression if a byte value is
desired. The second parameter is the Y
value of the first point. The third
parameter is the X position of the second
point, which also may be substituted with a
0 , expression if a byte value is desired.
The fourth parameter is the V value of the
second point.

FILL 0 , 10 , 10 , 0 , 10 , 40
FILL XI'/. , Y1 , X2'/. , y2

10CaN=$D01F

20 GRAPHICS 7+16

30 PLOT 0 , 80 , 10

40 DRAWTO 0 , 80 , 80
50 FILL 0 , 10 , 10 ,0 ,
60 WHILE CON AND 1 <> 0 :

70 CLOSE 7

80 FILE 0

90 RETURN

10 80

ENDWHILE

Chapter 4 - Basic Statements p.40

l='OF^ (ExecutablSp built-in)

Format: FOR variable = expression to
expressi on

The -first expression is evaluated once at
the beginning of the loop. That value is
put into the variable. Each time it loops
it adds one to the variable until it is

greater than the second expression. The
second expression is evaluated each time in
the loop. Note that if the first expression
is greater than the second expression the
loop is never executed. The loop is
terminated by the "NEXT" instruction. The
syntax of the NEXT instruction is the word
NEXT followed by the variable name mentioned
in the FOR statement. The two expressions
in the FOR statement must evaluate from

between 0 and 254. It is legal to exit from
the middle of a FOR/NEXT loop. The FOR/NEXT
statements do not alter the system stack.

FOR NDX = CNT + 12 70 254

FOR NDXi = 1 TO CNT

NEXT NDXI

NEXT NDX

10 GOTO SKIPIT

20 DEF WAIT WAIT_VAL
30 FOR WAIT NDX = 0 TO WAIT VAL

40 FOR WAlf_NDXl = 0 TO 254
50 NEXT WAIT NDXI

60 NEXT WAIT_NDX
70 RETURN

80 DIM WAIT VAL , WAIT NDX , WAIT NDXI
90 ENDDEF WAIT

100SKIPIT

110 FOR NDX = 0 TO 100

120 WAIT NDX

130 BPRINT NDX : PUT #EOL

140 NEXT NDX

150 RETURN

; . ■ ■■

--

Chapter 4 - Basic Statements p.41

160 DIM NDX

Chapter 4 - Basic Statements p. 42

eETT (Executable, 10 library statement)

Format: GET .variable

Inputs one byte -from the currently
selected I/O channel and leaves it in the
specified byte variable.

GET

GET

,TMP

CHAR

10 OPEN 1 , 4 , 0
20 OPEN 2 , 8 , 2
30 LET CHR = 0

40 WHILE CHR <> 'Q'

50 FILE 1

60 GET .CHR

70 FILE 2

80 PUT CHR + 128

90 ENDWHILE

100 CLOSE 1 : CLOSE 2

110 FILE 0

120 RETURN

130 DIM CHR

II N II

"8:"

Chapter 4 - Basic Statements p. 43

C50SLJB (Executable, built-in)

Format: GOSUB location

or

GOSUB statement parameter , parameter ,
parameter ...

The GOSUB in BASM is similar to the
GOSUB in Atc*ri BASIC. The word GOSUB is
followed by a location reference. If you
follow the GOSUB statement with a statement
name, you may pass parameters to that
statement.

GOSUB FIX_LOG
GOSUB PRINT "HELLO"

10 FOR NDX = 0 TO 100

20 GGSUB SHOWIT

30 NEXT NDX

40 RETURN

50SHOWIT

60 PRINT "NDX = ";

70 BPRINT NDX

80 PUT #EOL

90 RETURN

100 DIM NDX

Chapter 4 - Basic Statements p.44

eOTO (Executable, built-in)

Format: GOTO location

The word GOTO is followed by a location
reference, similar to Atari BASIC.

GOTO ERR12

10LOOP PUT 'X'

20 LDA $00IF : IF AND 1 = 0 THEN RETURN

30 GOTO LOOP

Chapter 4 - Basic Statements p.45

OR^F^I—11 CO (Executable, GR library
statement)

Format: GRAPHICS expression

Bets graphics mode selected by
expression. The value of- the expression
acts the same as in the Atari BASIC

statement GRAPHICS. Selects channel 7 -for

I/O to the graphics screen.

GRAPHICS MODE NUMBER + 4

GRAPHICS 8+16

10CON=«D01F

20 GRAPHICS 8+16

30 COLOR 1

40 SETCOLOR 2 , 0 , 0
50 SETCOLOR 1 , 0 , 15
60 FOR NDX = 0 TO 85

70 PLOT 0 , 0 , 0
80 DRAWTO 0 , 159 , NDX + NDX
90 NEXT NDX

100 WHILE CON AND 1 <> 0 ; ENDWHILE

110 CLOSE 7

120 FILE 0

130 RETURN

140 DIM NDX

Chapter 4 - Basic Statements p. 46

IF^* (Executable, built—in)

There are three -formats to the IF

statement.

Format #i: IF expression condition
variable/constant THEN statement.

This will execute the statement or

statements until the end of the line. These

statements themselves may also be IF
statements.

IF B >= X THEN IF C = 0 THEN STOP

IF Q •+■ 1 = Z THEN RETURN

10 PRINT "NUMBER?";
20 BINPUT
30 IF XX >

XX

100 THEN PRINT "> 100"
40 IF XX = 100 THEN PRINT "= 100"
50 IF XX < 100 THEN PRINT "< 100"
60 RETURN
70 DIM XX

Format #2: IF expression condition
variable/constant GOTO location.

This is more efficient than using
IF...THEN GOTO location, because it
generates a direct branch in Assembly
language. However, the location reference
must be within •+• or - about 120 bytes of the
IF statement.

IF CNT 0 GOTO LOG

10CON=«D01F
20 PRINT "TEXT?";
30 INPUT TEXT$
40 LDY #0

Chapter 4 - Basic Statements p.47

50 IF TEXT = 'A' GOTO XA

50 IF TEXT = 'B' GOTO XB

60 IF TEXT = 'C GOTO XC

70 PRINT "HUH?"

90 RETURN

100XA PRINT "PROGA" : RETURN

U0XB PRINT "PROGB" : RETURN

120XC PRINT "PROGC" : RETURN

130 DIM TEXT$(100)

Format #3: IF expression condition
variable/constant THEN <THEN is optional)

This form allows you to put many
statements and lines in the IF statement.

This statement is terminated by the ENDIF
statement. Everything between the IF
statement and the ENDIF statement will be

executed if the condition is true. You may
also place an ELSE between the IF statement
and the ENDIF statement. In this case, if
the condition is true, then the portion
between the IF and the ELSE is executed. If

the condition is not true, then the portion
between the ELSE and the ENDIF is executed.

IF XPNT <> 0 THEN

LET XPNT = CNT + 5

RETURN

ENDIF

IF XPNT = CNT

RETURN

ELSE

LET CNT = 12

ENDIF

10CON=$D01F

20RAND=*D20A

30 WHILE CON AND 1 <> 0

40 IF RAND AND 1 <> 0 THEN

50 PRINT "YES"

Chapter 4 - Basic Statements p. 48

60 ELSE
70 PRINT '

80 ENDIF
90 ENDWHILE

100 RETURN

NO"

:SiSSK

Chapter 4 - Basic Statements p. 49

I IMF^UT" (Executable, 10 library statement)

Format: INPUT .string

Inputs one line (terminated by EOL)
•from the currently selected I/O channel, and
stores it in the speci-fied string variable.
Appends a BASM (NULL) termination character
a'fter the EOL character.

INPUT .LINE

INPUT LINE1$

W INPUT LINE*

20 LDY #0

30 WHILE LINEjY <> #EOL
40 LET LINE.Y = ' '

50 FOR NDX = 1 TO 100

60 PRINT LINE*

70 NEXT NDX

80 RETURN

90 DIM LINE*(100) , NDX

INY ENDWHILE

Chapter 4 - Basic Statements p.50

l_E~r (Executable, built-in)

Format: LET variable = expression

This format will evaluate the expression
and put the results into the variable.
Unlike Atari BASIC, the word LET is not
optional. An alternate form of the LET
instruction is LET followed by an
expression. In this case it will evaluate
the expression without assigning it to a
vari able.

LET CNT = CNT + 1

LET LOC+1 AND $F0 -> DST

10AUDF1=$D200

20AUDC1=*D201

30 LET AUDCl = ♦AF
40 FOR COUNT = 1 TO 100
50 FOR PITCH = 0 TO 254
60 LET AUDFl = PITCH
70 NEXT PITCH
80 NEXT COUNT
90 LET AUDCl = 0
100 RETURN
110 DIM COUNT , PITCH

m

Chapter 4 - Basic Statements p.51

I—OC^TE: (Executable, GR library
statement)

Format: LOCATE word variable

f .byte variable
, expression

This statement obtains the color number

of the specified point on the graphics
screen. The first parameter is the X
position and may be substituted by a 0 j
expression if a byte value is desired. The
second parameter is the Y position, and the
third parameter is the location of the byte
variable you choose to put the color in.

LOCATE 0 , 10
LOCATE X"/. , Y

20 , .VAL
.POINT COLOR

10CON=$D01F

20RAND=^D20A

30 GRAPHICS 6+16

40 LET 0 -> XL ->

50 WHILE CON AND 1

60 LET RAND AND 3

70 LET XL + DIR,Y

80 LET RAND AND 3

90 LET YL + DIR,Y

100 IF XL = fFF Th

110 IF YL = tFF Tl-

120 IF XL = 160 Tl-

130 IF YL = 96 THE

140 LOCATE 0 , XL
150 COLOR COL XOR

160 PLOT 0 , XL

YL

<> 0

: TAY

-> XL

: TAY

~> YL

XL = 0

YL = 0

XL = 159

YL = 95

170 ENDWHILE

180 CLOSE 7 :

190 RETURN

200 DIM XL ,

210DIR .BYTE

1

YL

YL .COL

FILE 0

YL , COL

l,$f=^F,0,0

Chapter 4 - Basic Statements p.52

OF^EM (Executable, 10 library statement)

Format; OPEN expression , expression ,
expression , .string variable / constant

Selects and opens the specified I/G
channel. Similar to Atari BASIC OPEN

statement. The first expression is the I/O
channel (0-7). The second expression
specifies the type of activity that I/O
channel will be doing (input, output,
update, etc.). The third expression is the
I/O channel's auxiliary byte, and in most
cases will be 0. The fourth parameter (the
string) specifies the I/O device and perhaps
file name. Should be an ATASCII string
terminated by EOL.

OPEN 7 , 8 , 0 , "TEST.SRC"
OPEN 3 , 4 , 0 , LINE*
OPEN 4 , 12 , 0 , "E:"

10 PRINT "NEW FILE NAME?"?

20 INPUT LINE*

30 TRAP .DONE

40 PRINT "PRESS BREAK WHEN DONE"

50 OPEN 1 , 8,0, LINE*
60 WHILE

70 FILE 0

80 INPUT LINE*

90 FILE 1

100 PRINT LINE*

110 ENDWHILE

120DONE

130 CLOSE 1 : FILE 0

140 STOP

150 DIM LINE*(100)

Chapter 4 - Basic Statements p. 53

F*l_OTr (Executable, BR library statement)

Format; PLOT word variable , expression

the

the

This statement plots one point on
graphics screen. The first parameter is
X position and may be substituted by a 0 »
expression if a byte value is desired. The
second parameter is the Y position.

PLOT X'/.

PLOT 0 , 20

10CON-!|iD01F

20 GRAPHICS 7+16

30 FOR IMDX =

40 PLOT 0 ,
50 PLOT 0 ,
60 NEXT NDX

70 WHILE CON AND

80 CLOSE 7

90 RETURN

100 DIM NDX

0 T

FIL

O 95

NDX + 63

NDX + 63

NDX

95 - NDX

0 ENDWHILE

E 0

■ ■

- - -----

. -: •

-.-'■v. ;:;

Chapter 4 - Basic Statements p. 54

f^OSITIOlNl

statement)

(Executable, 6R library

Format: POSITION word variable

Bxpressi on

This positions
graphics cursor to
graphics screen. The
X position and may be
expression if a byte

the perhaps invisible
that position on the
first parameter is the
substituted by a 0 j
value is desired. The

second parameter is the Y position,

POSITION X"/. , y
POSITION 0 , 10 + LOG LOCY

10CON-$D0iF

20RAND=$D20A

30 GRAPHICS 2+16

40 WHILE CON AND

50 POSITION 0 ,
60 PUT RAND

70 ENDWHILE

80 CLOSE 7

90 RETURN

FIL

1 <> 0

RAND AND *F RAND AND 7

E 0

-3

■•■■■ • ,

I,. ■, • • ■ ■■
■ ■ ■■■ ■

Chapter 4 - Basic Statements p.55

F^R I |Nl~r (Executable, 10 library statement)

Format: PRINT string variable / constant

Outputs the string to the selected I/O
channel. Does not automatically add an end
o-f line. I-f desired, the end o-f line
character should be included at the end of

the string. See the DBF statement for more
information on strings.

PRINT LINEm

PRINT "Hello"

PRINT "GOOD BYE";

10CON=^D01F

20 PRINT "TEXT?";

30 INPUT LINE*

40 WHILE CON AND 1 <> 0

50 PRINT LINE*

60 ENDWHILE

70 RETURN

80 DIM LINE*(100)

Chapter 4 - Basic Statements p. 56

F^LJT (Executable, 10 library statement)

Format: PUT expression

Outputs 1 byte
selected I/O channel.

to the currently

PUT #EOL

PUT CHAR

10 FOR NDX = 0 TO 25

20 PUT NDX + 'A'

30 PUT ' '

40 IF NDX AND $F = THEN PUT #EOL

50 NEXT NDX

60 PUT #EGL

70 RETURN

80 DIM NDX

\
\

"" -

■■■

Chapter 4 - Basic Statements p.57

F^EIM (Executable, built-in)

Format: REM anything

Causes BASM to skip the entire rest o-f
the line, ignoring the : separator. Does
not affect final code size or speed.

REM This section is to be removed

REM THE ; IS ALLOWED HERE

10 REM THIS IS A DEMONSTRATION
20;

30CON=$D01F : REM CONTROL HARDWARE

40 WHILE CON AND 1 <> 0 : REM LOOP UNTIL

START PRESSED

50 BPRINT CNT : REM PRINT CNT

60 PUT #EOL : REM EOL = RETURN
70 INC CNT ; REM CNT = CNT + 1

80 ENDWHILE

90 RETURN : REM TERMINATE EXECUTION

100 DIM CNT : REM CREATE CNT

n
y

'
)

Chapter 4 - Basic Statements p. 58

RETLIRlNl (Executable, built-in)

Format: RETURN

The RETURN statement in BASM is used in

exactly the same way
return -from the main

program will return to
Atari operating system.

as Atari BASIC. A

sequence o-f your
BASM Editor or the

RETURN

10 FOR NDX = 1 TO 10

20 GOSUB SHOWIT

30 NEXT NDX

40 RETURN

50 DIM NDX

60SHOWIT PRINT "THE VALUE

70 BPRINT NDX

80 PUT #EOL

90 RETURN

II ■
9

n-
fr
 'f

Chapter 4 - Basic Statements p.59

SE!~rCOI_OR (Executable, GR library
statement)

Format: SETCOLOR expression , expression
, expression

The -first parameter selects which color
is to be altered. The second parameter
selects the new hue, and the third parameter
selects the new brightness.

SETCOLDR 1 , 4 , 15
SETCOLOR NDX + 1 , COLR , BRI

i0CQN=$D0iF

20RAND=$D20A

30 WHILE CON AND 1 <> 0

40 SETCOLOR 2 , RAND AND ♦F , RAND AND *F
50 ENDWHILE
60 SETCOLOR 2,8, 2
70 RETURN

Chapter 4 - Basic Statements p.60

SOUND (Executable, GR library statement)

Format: SOUND exprejssion , expression ,
expression , expression

This is similar to the SOUND statement

in Atari BASIC. The first parameter selects
which sound is to be altered; the second

parameter is the pitch; the third parameter
is the distortion; and the fourth parameter
is the volume.

SOUND 1 , NDX , 10 , 14
SOUND NDX +1 , 0 , 0 , 0

10 FOR NDX = 1 TO 100

20 FOR PITCH = 10 TO 200

30 SOUND 0 , PITCH , 10 , 10
40 SOUND 1 , 210 - PITCH , 10 , 10
50 NEXT PITCH

60 NEXT NDX

70 SOUND 0,0,0,0
80 SOUND 1 ,0,0,0
90 RETURN

100 DIM NDX , PITCH

Kit:
t ; tt: /

Chapter 4 - Basic Statements p.61

STOR- (Executable,
statement)

BASM.LIB library

Format: STOP

This statement stops the program and
returns control to BASM or the Atari

operating system, regardless of the
condition o-f the system stack. It BASM.LIB
was obtained -from BASM.HI (de-fault), then
STOP will return program execution to BASM.
If BASM.LIB was obtained -from MASM.LO, then
STOP will return execution to Atari DOS. If

you maintain the stack (proper subroutine
nesting), then the RETURN statement will
return you to either, if executed from the
main sequence.
STOP

10 PRINT "FILE NAME?";

20 TRAP .DONE

30 INPUT LINE*

40 OPEN 1 , 4 , 0 , LINE*
50 WHILE

60 FILE 1

70 FILE 0

80 ENDWHILE

90 DEF DONE

100 CLOSE 1

FILE 0

STOP

ENDDEF DONE

IN

110

120

130

PUT LINE*

PRINT LINE*

140 DIM LINE*(100)

Chapter 4 - Basic Statements p. 62

TR (Executable, TRACE library statement)

Format: TR expression

This statement is the TRACE statement.

When this statement is executed, the program
will switch displays, display the trace
number you specified as the first parameter,
wait for you to press the START key, and
then continue with the execution of the

program after restoring the previous screen.
Note that this statement will not alter your
graphics screen during execution.

TR 1

TR 100

TR NDX + 12

10CON=$D01F

20RAND=$D20A

30 GRAPHICS 7+16

40 WHILE CON AND 2 <> 0

SELECT

REM LOOP UNTIL

50

60

70

80

90

100

110

120

130

140

LET XL RAND AND $7F

LET YL = RAND AND $3F

LOCATE 0 , XL , YL , .TMP
IF TMP <> 0 THEN

TR XL

TR YL

TR TMP

END IF

COLOR RAND AND 3

PLOT 0 , XL , YL
150 ENDWHILE

160 CLOSE 7 : FILE 0 : RETURN

170 DIM XL , YL , TMP

Chapter 4 - Basic Statements p.63

~ri=%AiF^ (Executable, 10 library statement)

Format; TRAP .location

Designates the user error handling
subroutine that is executed when an I/O

error is detected. The location may be a
program location or a user statement with no
parameters. All I/O operations update the
STATUS variable, which is dimensioned in the
10 library and is the status byte from the
I/O device.

TRAP .ERROR

TRAP .DO_.NOTHING

10CON=^D01F

20 TRAP .ERR

30 PRINT "FILE NAME?"*,

40 INPUT LINE*

50 OPEN 1 , 4 , 0 , LINE*
60 TRAP .DONE

70 WHILE

80 FILE 1

90 INPUT LINE*

100 FILE 0

110 PRINT LINE*

120 ENDWHILE

130 DIM LINE*(100)

140DONE

150 CLOSE 1 ; FILE 0 : GOTO WAIT

160ERR

170 CLOSE 1 : FILE 0

180 PRINT "BAD FILE NAME"

190WAIT WHILE CON AND 1 <> 0 ; ENDWHILE

200 STOP

Chapter 4 - Basic Statements p. 64

UIH I (Executable, built-in)

Format: WHILE expression condition
vari able/constant

WHILE is terminated by the ENDWHILE
statement. This creates a WHILE loop. All
statements between the WHILE and the

ENDWHILE are executed as long as the WHILE
condition remains true. H the WHILE

condition is false to begin with, then the
statements between the WHILE and the

ENDWHILE are never executed.

An alternate form of the WHILE

statement is WHILE by itself with no
condition. This produces an infinite loop.
However, it is legal to exit from the middle
of a WHILE loop.

LDY CNT

WHILE LINE,Y <> 0

LET DST,Y = LINE,Y
INY

ENDWHILE

WHILE

IF LINE,Y
INY

ENDWHILE

#EOL THEN RETURN

10 INPUT LINE*

20 LDY #0

30 WHILE LINE,Y <> #EOL
40 INY

50 ENDWHILE

60 LDX #0

70 WHILE TXT,X -> LINE,Y <> 0
80 INX ; INY

90 ENDWHILE

100 PRINT LINE*

110 RETURN

120 DIM LINE*(100)

Chapter 4 -* Basic Statements

130TXT DATA " = TEXT" , EOL , 0

p. 65

^ -I

Chapter 5 - Assembly Language p.66

<=isse:mbi_y l-anoi-JAOe

Assembly Language in BASM is the
standard 6502 format. The Assembly language
format consists of the following:

Optional location definition <also called
label definition) followed by at least one
space followed by the operation code
mnemonics (or op code, for short) which may
be followed by an operand. If it is
followed by an operand, it must be separated
by at least one space. This may be followed
by a comment. You may have more than one
Assembly language statement on a line. Each
statement must be separated by a colon,
similar to the BASIC format. In fact, BASIC
statements and Assembly language statements
may be mixed on the same line, using the
colon. If you desire a location definition,
then the instruction must be the first on

the line, and the location definition must
begin in column 1.

The location definition is similar to that

of BASIC. It essentially allows you to give
a name to that position in memory where this
instruction occurs.

The op code tells BASM what instruction is
to be put at that specific point in the
program.

The operand field tells BASM how to further
redefine that instruction in terms of which
addressing mode, and which particular
location in memory that instruction is
referenci ng.

This may be followed by an optional comment.
BASM ignores comments. Note, however, that

Chapter 5 - Assembly Language p. 67

the comment should not contain the colon
character, because BASM would interpret that
as the beginning of the next instruction.

. ■ . .■■■ ■ • ■ . . ■ ■

; :..Tv .
■ ■ . ■■ • ■ . ■ . . . ■ ■ ■ ■ ■■

-X/v; XXX,.K.^v'- „ r:« .

xX-rXXrXXjX.J. -X- -::
■ ■ ■■ ■ ■ ■

::-''iXJXX ;'X-i;X;''; "X -

Chapter 5 - Assembly Language p.68

ASSEMBLER MNEMONICS

ADC Add Memory to Accumulator
with Carry

AND AND Accumulator with Memory
ASL Shi-ft Lett

BCC Branch it Carry Clear
BCS Branch it Carry Set
BEQ Branch it Equal Zero
BIT Test Memory Against Accumulator
BMI Branch it Minus

BNE Branch it not Equal Zero
BPL Branch it Plus

BRK Break

BVC Branch it V Flag Clear
BVS Branch it V Flag Set
CLC Clear Carry Flag
CLD Clear Decimal Mode Flag
CLI Clear Interrupt Disable Flag
CLV Clear V Flag
CMP Compare Accumulator and Memory
CPX Compare Register X and Memory
CPY Compare Register Y and Memory
DEC Decrement Memory
DEX Decrement Register X
DEY Decrement Register Y
EOR Exclusive-GR Accumulator with

Memory
INC Increment Memory
INX Increment Register X
I NY Increment Register Y
JMP Jump to New Location
JSR Jump to Subroutine
LDA Load Accumulator

LDX Load Register X
LDY Load Register Y
LSR Shitt Right
NOP No Operation
ORA OR Accumulator with Memory
PHA Push Accumulator on Stack

PHP Push Processor Status on Stack

PLA Pull Accumulator -from Stack

Chapter 5 - Assembly Language p. 69

PLP

ROL

ROR

RTI

RTS

SBC

SEC

SED

SEI

STA

STX

STY

TAX

TAY

TSX

TXA

TXS

TYA

Pull Processor Status -from Stack

Rotate Lett

Rotate Right
Return -from Interrupt
Return -from Subroutine

Subtract Memory -from Accumu
lator with Borrow

Set Carry Flag
Set Decimal Mode Flag
Set Interrupt Disable Flag
Store Accumulator

Store Register X
Store Register Y
Transfer Accumulator to

X

Accumulator to

Y

Register SP to
X

Register X to

Regi ster
Transfer

Regi ster
Transfer

Register
Transfer

Accumulator

Transfer Register
Register SP
Transfer Register
Accumulator

X to

Y to

Chapter 5 - Assembly Language p. 70

ADDRESSING MODES

The addressing modes for the
defined in the operand field,
instructions have all or any
modes. An addressing mode is

6502 are

Not all

addressing
essenti al1y

the way a computer tells where in memory to
receive and store information.

Operand expressions are made up of
operators and terms. No spaces may be
inserted between operators and terms.

TERMS

lable

>lable "

<lable -

number -

16-bit value of

order byte

byte

Returns the

the lable

Returns the high
of the lable

Returns the low-order

of the lable

Decimal if starts with 0-9

Hexidecimal if starts with

Octal if starts with @

Binary if starts with "/.
Character if starts with '

Current 16-bit value of

Location counter

OPERATORS

+ - Addition

- - Subtraction

LINE+1

'C'+10-OFFS

$100+EOL

>XXXX

<XXXX

7.11100111

Chapter 5 - Assembly Language p.71

ADDRESSING MODES

Immediate

The immediate addressing
by placing # in -front
expression. The operand
evaluate to a value between

the immediate addressing
specified in the operand is
acted upon. That is to say
add 8 to the accumulator,

mode is legal in a BASIC expression,
legal to give a label re-ference in
immediate mode as long as the

mode is specified
of the operand
expression must
0 and 255. In

mode the data

itself the data

an ADC #8 would

This addressing
It is

the

1 abel

evaluates to a value between 0 and 2!

example, if the label PNT was assigned
equal to 12., then AND #PNT would "and"
the accumulator.

to

12

■or

be
to

EQR #*01
ADC #EOL
AND #8

Memory direct
Direct is specified by

number or a label reference
field. In memory direct
value of the operand tells
to obtain the data to be
addressing mode has two
operand evaluates to between

having ei
in the

addressi ng
where in

acted upon,
forms. I

o

2550 and
the instruction occupies 2 bytes,
operand evaluates to between 256 and
then the instruction occupies 3 bytes,
addressing mode may be used in a
expression, and is, in fact, the
variable reference.

ther a
operand
, the

memory
This

f the

, then
If the
65535,

Thi 5
BASIC

normal

BBC CNT
ORA 5
LSR SAND-H-1

^
■ . /O.

■
.'^ /■■■

.'

■A
.

V^A ir: ■■■-.;■
. i., :;■ ,

:;.■■■
AM, A A;",

/M
a; :'■■;'■•
•

 .
A

-
.

:

:vv:ma
;A,

:::::M-;;
A

t:
v
m

.

:'':AA:*:AMAAMtv^;tt,^^
,.,

.
, ,,,

■ :AMo t:)A,::::t'|;,:; t;'t;: A, ,.:t'• •''A A; A;' .A
::, A

AMiMtAiAAA::::A
.

t||iii||t:tM
v^

ts
.t: ,

-AAAAA

'V
-

Chapter 5 - Assembly Language p.72

Implied addressing
Some instructions have no operand at all

This is called implied addressing.

TAX

I NY

RTS

Accumulator addressing
Some instructions may operate on the 6502

A register. This is specified by using the
letter A as the operand.

LSR A

ASL A

Pre-indexed indirect addressing
Specified by (operand expression,X> The

operand expression must evaluate to between
0 and 255. The value of the operand
expression is added to the current value in
the X register. This points to a two byte
value in the lower 256 memory locations,
which in turn point to the location in
memory where the actual data is located.
Note that this is the least used 6502

addressing mode. This is because it is
probably the least useful. May be used in a
BASIC expression.

ADC (NDX,X)

LDA (5,X)

Post-indexed indirect addressing
Specified by (operand expression),Y The

operand expression must evaluate to between
0 and 255. This is the address of two bytes
which (after the content of the Y register
is added) form a pointer into memory where

rv

Chapter 5 - Assembly Language p.73

the actual data resides. May be used in a
BASIC expression.

LDA (PNT),Y
STA <5),Y

AND (LINE PNT+2),Y

Indexed addressing
Specified by operand expression,X or

operand expression,Y Similar to memory
direct, except that the content of the X or
Y register is added to the address before it
is used. If the operand expression
evaluates to between 0 and 255, then the
instruction is 2 bytes long. If the operand
evaluates to between 256 and 65535, then the
instruction is 3 bytes long. May be used in
a BASIC expression.

LDA VAL_TAB,Y
ADC 5,X
AND $1000,Y

Indirect addressing
Specified by (operand expression) Is used

only by the? JMP operation. The operand
points into memory where a two byte pointer
is contained. This value is copied into the
program counter.

JMP ($E000)

JMP (NEW EXEC)

Relative addressing
Specified by operand expression Is used

only by the branch instructions. The
operand expression must evaluate to a number-
within -126 to -+-129 bytes of the branch
instruction.

BCS LOOP

ittt

Si-i*

?88i^®=

JSfi

Chapter 5 - Assembly Language

BNE ERROR

p. 74

)
:
3
 r)

;
a

Chapter 5 - Assembly Language p.75

ASSEMBLY DIRECTIVES

Directives are instructions to BASM rather

than generating any code. Except for the =
and the *= directives, all directives begin
with . (period).

= Directive

Format: label = operand expression

Creates "label" name and assigns the value
of the operand expression to it. Note this
in this directive, the label is not
optional, and must begin in column 1.

SYBUF = $600

E0L=$9B

SyBUFX= SYBUF+12

*= Directive

Format: »= operand expression

Causes the current program location to be
equal to the operand expression. Any labels
used in the operand expression must already
have been defined. The *= must not begin in
column 1.

*«$8000

*= *+100

.BYTE Directive

Format: .BYTE operand expression,operand
Bxpression,operand expression...

Assigns the values of the operand

Chapter 5 - Assembly Language p.76

SKpressions in memory, in sequence. It
evaluates the operand expressions from left
to right and allocates 1 byte to each. You
must have at least one operand expression,
and no spaces are allowed between operand
expressions. Each operand expression must
evaluate to bewteen 0 and 255. In addition,
a sequence of ATASCII characters may be
included in the operand list, surrounded by
single quotes <').

CNT .BYTE 0

XTAB .BYTE =■ NOT', 34, $FF
.BYTE 'Nega ',39,' ' ,0

■WORD Directive

Format: .WORD operand expression,operand
expression,operand expression...

Assigns the values of the operand
expressions in memory, in sequence. It
evaluates the operand expressions from left
to right and allocates 1 word (two bytes,
low order first) to each. You must have at
least one operand expression, and no spaces
are allowed between operand expressions.
Each operand expression must evaluate to
bewteen 0 and 65535.

CNT .WORD 0
XTAB .WORD 0,1000,$FFFF

.WORD XTAB,100

.END Directive

Format; .END

This directive is included for compatibility
with 6502 assembly code, and has no effect.

,/ ■■ ■ • • ; . ■ ■

vr-v;; -

.„", .,--n\...' r--r">;-■!:-. '■ •

■ ■ ■ :

- F;:": ^ .
■ ■ ■ ■•;• ., ■ ■

. ■ ■ . . ■ ;.. ■ ■■ .

'. "f ■« K: > ;/;: -:;^v

- . . ■. •:: - ..- ■ --,. . ..- . -vv. . : : i: . . .^ ■
;. " -. :■ , n '

Chapter 5 - Assembly Language p.77

.END

.LST Directive

Format: .LST special operand

Controls the BASM list file. Only
operand is allowed in LST directive.

.LST OFF Turns off the program
1isting

.LST ON Turns on the program

1ising

.LST CODE Causes code generated by
BASIC to be listed

.LST NOCODE Causes code generated by
BASIC to not be listed

.LST SOURCE Causes source code to

be listed

.LST NOSOURCE Causes source code to

one

not be listed

The default setting is ON, NOCQDE, SOURCE.

.TITLE Directive

Format: .TITLE 'title text'

Sets the title that appears at the top of
each page in the listing. The title text
must be enclosed by single quotes. The
default title is '' (nothing).

.TITLE 'Test Program'

.EJECT Directive

Format: .EJECT

Chapter 5 - Assembly Language p. 78

Ejects the Using page. Does not send form
feed to printer, but advances by blank lines.

.EJECT

.INCL Directive

Format I INCL 'filename'

Takes the contents of the disk file named

filename and includes it in the program as
source code at the position where the .INCL
occurs. This program segment may itself
contain .INCL statements. This "nesting" of
files may continue up to 5 deep. If the
file is on Dl; then no "device:" is required.

INCL

INCL

' 10'

'D2:SPECIAL'

Chapter 6 - Programming in BASM p.79

F=>FiOeFl<=»MM I iNje BASM

BASM is an OPEN language, in that the
syntax is not defined to restrict you to
"correct" programming methods. It allows
you a great deal of flexibility to do
programming "tricks," and to optimise your
code. However, this also gives you more
responsibility in making sure of program
correctness.

BASM makes no distinction between location

references, variable names or library
commands. Also, in the special data types,
the . 7. f are trimmed: A$ is the same as A

as A7. as .A, as far as names are concerned.
This means that you could GOTO a variable or
use the first byte of a command as data.
This makes it very easy for you to define
Atari operating system subroutines as
commands, among other things.

During command execution, BASM does not
check to make sure that your parameters
match. Parameters are passed on the system
stack and the last byte (or low order half
of a word) in the A register. Word
parameters pass two bytes, high order first.
Address and string parameters pass the
address of the variable as two bytes, high
order first. The copying of a string is
done in the command. It is often useful to

use the assembly "=" directive, in order to
create the parameter variables in page 0,
rather than using "DIM".

BASM expressions always leave the final
result in the 6502 A register. Also, it is
legal to leave out all or part of the
expression and just use the contents of the
A register. Conditions (=,<>,>,etc.) do not
alter the A register.

Chapter 6 - Programming in BASM p. 80

IF CHAR = 'A' 6DT0 ALOC

IF = 'B' GOTO BLOC

IF = 'C-' GOTO CLOC

LET - '0' -> ERR_NUM

The -> assign can be very useful in IF and
WHILE statements. The following will move
an entire string.

LDY #0

WHILE LINEl.Y -> LINE2,Y <> 0
I NY

ENDWHILE

The logical operators
"trimming" your data.

are useful for

AND "/.00001111 will force bits 4-7 to 0

OR 7.00001111 will force bits 0-3 to 1

XOR 7.00001111 will invert bits 0-3

It is important to learn the 6502
modes <see chapter on assembly
These are the 6502 instructions

most important to learn in BASM;

addressing
language).
that are

LDY >!>! Loads the Y register
LDX x>! Loads the X register
STY x>! Stores the Y register to memory
STX >!>! Stores the X register to memory
INY Adds 1 to the Y register
DEY Subtracts 1 from the Y register
INX Adds 1 to the X register
DEX Subtracts 1 from the X register
INC x>! Adds 1 to byte variable
DEC >!>! Subtracts 1 from byte variable

To add two word variables:

LET DST = SRCl + SRC2

LDA SRC1+1 : ADC SRC2+1

Chapter 6 - Programming in BASM p.81

STA DST+1

To subtract two word variables:

LET DST = SRCl - SRC2

LDA SRCl+1 : SBC SRC2+1

STA DST+1

To move a word variable:

LET DST = SRC

LET DST+i = SRC+1

To index into a string variable;
LDY NDX

LET CHAR = LINE,Y

You may use a command before it is defined
with the 60SUB statement.

GOSUB SCRL 4 , 5
DEF SCRL PRMl , PRM2

Chapter 7 - Library Functions p. 82

OASM 1_ I BRAFtY

BASM has a very simple library system.
During compilation, the file BASM.LIB must
exist on disk Dl:. This -file is

automatically included (.INCL) at the
beginning of your program. It is an
ordinary text file and contains some set-up
functions, defines some system variables,
and contains several .INCL's. You may
easily load it into the BASM text work
space, modify it, and store it back to
BASM.LIB . BASM occupies memory from
locations ̂ 1E00 to $5E00, so there are two
versions of BASM.LIB to locate your program
in memory. BASM.HI locates your program at
$5E00 and causes STOP to return to BASM.

BASM.LO locates your program at $1E00 and
causes STOP to return your program to the
Atari DOS. There is also ASSEM.LIB which

can be used if you wish to use BASM as just
an assembler. Just copy the files to
BASM.LIB to use them. BASM is shipped with
BASM.HI copied to BASM.LIB. If you modify
BASM.LIB, make sure that .INCL 'TRACE'
occurs before any other .INCL's. Also,
.INCL 'GR' uses some commands in '10'.

There are more

.INCL'ed in the shipped
may be used by adding
BASM.LIB.

library files, not
BASM.LIB, but these
.INCL statements to

)
)

1
1

Chapter 7 - Library Functions p.83

F=-i_o<=fc-r

The floating point library interfaces
to the Atari operating system floating point
programs. Floating point variables occupy 6
bytes and are referenced by using the
address modifier. FLOAT uses commands
defined in '10'.

FADD .SRCl , .SRC2 , .DST
Adds SRCi to SRC2 and puts the results in

DST

FSUB .SRCl , .SRC2 , .DST
Subtracts SRC2 from SRCl and puts the

results in DST

FMUL .SRCl , .SRC2 , .DST
Multiplies SRCl by SRC2 and puts the

results in DST

FDIV .SRCl , .SRC2 , .DST
Divides SRCl by SRC2 and puts the results

in DST

FSTR .SRC , DSTf
Converts the contents of SRC to a BASM

string and stores the results at DST

FVAL SRC$, .DST
Converts the contents of the BASM string

at SRC to floating point, and stores the
results at DST. <Note that SRC may be a
string constant)

FINPUT .DST

Inputs one line from the currently
selected I/O channel, converts it to
floating point format, and stores the
results at DST

FPRINT .SRC

Converts the contents of SRC to BASM

Chapter 7 - Library Functions p.84

string •format and outputs the results to the
currently selected I/O channel. Does not
append an end of line character

FTOW .SRC , .DST
Converts the contents of SRC from

floating point to word integer, and stores
the results at DST

WTOF .SRC , .DST
Converts the word at. SRC to floating

point format and stores the results at DST

FEXP .SRC , .DST
Takes the exponent (base 10) of SRC and

stores the r6?sults at DST

FLOO .SRC , .DST
Takes the logarithm (base 10) of SRC and

stores the results at DST

V

■

'vt

^BS'.'
*

m

Chapter 7 - Library Functions p. 85

M I SC

MISC adds some high speed graphics
routines and a random number generator.
MISC uses commands defined in 10 and OR.

RND SRC , .DST
Finds a random number <byte) between 0

and SRC (inclusive) and store the results at

DST. A value of 0 for SRC will cause an

infinite loop

GR7

Creates a graphics 7 screen with no split
text and clears the screen. Also, sets up
variables for PL0T7

PL0T7 XLOC , YLOC
Takes the color selected by the COLOR

command and plots it on the graphics screen.
Much faster than going through the operating
system. XLOC and YLOC are byte variables or
expressi ons

Chapter 7 - Library Functions p. 86

EXTFClSl

Whenever we write new library -files or
utility programs, we immediately put them in
the distribution disk. Sometimes it takes a

while to get the documesntation into the
manual, so we are including documentation
files explaining, the added libraries ?<
utilities. These documentation files will

have the extension ".DOC" and may be loaded
into the BASM editor workspace as BASM
source programs, or printed out as text
f i1es.

Chapter 8 - Utility Programs p. 87

UT I I— I T I ES

Three programs are included
to -facilitate program development.

with BASM

FAST - Speeds up the loading of
after program development is
does this by loading your
memory, then saving it back to
block. If you place all of
DIMS at the end of your program,
will not be included in the block

your program

finished. It

program into
disk as one

your variable
then these

and will

not waste disk space. Will normally speed
up the program loading time by about a
factor of two. This program starts at
f5E00, but the source code is included, so
that you may reposition it in memory.

FILES - Tells you how many disk files may be
A opened at once, then lets you change the

number of disk files which may be opened at
once. Re^turns to Atari DOS. Should be run

from DOS. To make the change permanent, use
the Atari write system files function.

MONITOR - A simple machine monitor with
several commands. Starts at $5E00. Numbers

are entered as hexadecimal with no leading
zeros needed. Numbers may be separated by
spaces or commas.

L number number

Lists memory in he>?adecimal from the
first number to the second number,
inclusive. If the second number is absent,
then it lists only one location.

8 number , number , number ...

Substitutes memory locations, using the

"^4

Chapter 8 - Utility Programs p.88

first number as the starting address, the
second number as the first data, the third
number as the second data, etc.

, number , number ...
Continues on where the S command left

off. Care should be taken to use this only
immediately after the S command.

6 number

Executes at the given address in memory.

Q

Quit, return to BASM or DOS.

•■.v.:.-.

Chapter 9 - Reserved Names p. 89

:rve:d names

Reserved names may not be
or location de-finitions.

the reserved names are

or variables defined in

used as variables

Note that some of

actually statements
the system library

files BASM.LIB, 10, GR, or TRACE. You
should also aviod using any name starting
with SY .

A, AND, BINPUT, BPRINT, CLOSE, COLOR, DATA,
DEF, DIM, DRAWTO, ELSE, ENDDEF, ENDIF,
ENDWHILE, EOL, FILE, FILL, FOR, GET, GOSUB,
GOTO, GRAPHICS, IF, INPUT, LET, LOCATE,
OPEN, OR, PLOT, POSITION, PRINT, PUT,
RETURN, SETCOLOR, SOUND, STATUS, STOP, THEN,
TO, TR, TRAP, WHILE, XOR

rv

Chapter 10 - Error Messages p.90

BASM ERROR MESS«=lOES

The -following are the explanations -for
the error messages encountered in the BASM
compi1er:

1 Nesting error o-f compiler—generated
symbols. May be caused in consequence of
other syntax errors.

2 Lack of ending quote in string constant.

5 Illegal condition in IF or WHILE.

6 Improper syntax of IF statement.

7 IF-THEN-ENDIF in a single line IF
statement.

8 Too many ENDIF statements.

9 Syntax error in the FOR statement.

10 Too many NEXT statements.

11 Syntax error in the DIM statement.

12 Syntax error in the DEF statement.

13 Syntax error in the WHILE statement.

14 Too many ENDWHILE statements.

15 Illegal syntax of the operator in an
Assembly language statement.

16 Illegal character in the operand of an
Assembly statement.

17 Bad address range in an Assembly
statement.

Chapter 10 - Error Messages p.91

18 Re-ference to nonexistent label or
I variable. May be caused in consequence of

other syntax errors.

19 Double label or variable definition or

second-pass mismatch. Second-pass mismatch
may be caused by reference to a page 0
variable before it is defined. It may also
be caused by the reference to a defined
statement before it is defined.

20 Too many IF statements without matching
ENDIF statements.

21 Too many FOR statements without matching
NEXT statements.

22 Too many WHILE statements without
matching ENDWHILE stc^tements.

23 Too many DEF statements without matching
f(ENDDEF statements.

24 .INCL syntax error.

25 Lack of end quote in the operand of a
DATA statement.

All disk errors terminate the
compilation. See the disk operator's manual
for an explanation of the disk error
numbers. However, note that error 161 may
occur if too deep of a nesting of the .INCL
command is attempted.

NOTICE

Upon receipt of this coiputer prograi and associated aanual, COMPUTER
ALLIANCE grants you a nonexclusive license to execute the enclosed
coipiler/asseabler/editor prograe naaed BASH and to lake back-up copies of
it for your personal use only; and only on the conditions that any aedia
containing a copy or copies of the BASM prograa are conspicuously aarked
with the saae copyright notice that appear on the original. This BASM
prograa and associated aanual are copyrighted. You are prohibited fros
reproducing, translating, or distributing the BASM prograa or aanual in any
unauthorized tanner.

HoMBver, you ARE AUTHORIZED to sell, reproduce, and transait to other
parties the binary prograa or prograas you aay generate using the BASM
prograa. COMPUTER ALLIANCE does not assuae any rights to your prograas,
though they aay be developed using the BASM prograa.

Copyright 10 19S3 by Coaputer Alliance. All rights reserved. No part of
this publication aay be reproduced, stored in a retrieval systea, or
transaitted, in any fora or by any aeans, electronic, aechanical,
photocopying, recording, or otherwise, without prior written peraission of
Coaputer Alliance.

Atari is a registered tradeaark of Atari, Inc. The use of tradeaarks or
other designations is for reference purposes only.

LIMITED WARRANTY

This software product and the attached instructional aaterials are sold "AS
IS" without warranty as to their perforaance. The entire risk as to the
quality and perforaance of the coaputer software prograa is assuaed by the
user. The user, and not the aanufacturer, distributor or retailer assuaes
the entire cost of all necessary service or repair to the coaputer software
prograa. However, to the original purchaser only, COHPUTER ALLIANCE
warrants that the aediua on which the prograa is recorded will be free froa
defects in aaterials and faulty workaanship under noraal use and service
for a period of ninety days froa the date of purchase. If during this
period a defect in the aediua should occur, the aediua aay be returned to
COMPUTER ALLIANCE or to an authorized COMPUTER ALLIANCE dealer, and
COMPUTER ALLIANCE will replace or repair the aediua at COMPUTER ALLIANCE'S
option without charge to you. Your sole and eKclusive reaedy in the event
of a defect is expressly Halted to replaceaent or repair of the aediua as
provided above. To provide proof that you are the original purchaser,
please coaplete and aail the enclosed Owner Warranty Card to COMPUTER
ALLIANCE. If failure of the aediua, in the judgeaent of COMPUTER ALLIANCE,
resulted froa accident, abuse or aisapplication of the aediua, then
COMPUTER ALLIANCE shall have no responsibility to replace or repair the
aediua under the teras of this warranty. The above warranties for goods
are in lieu of all other expressed warranties and no iaplied warranties and
fitness for a particular purpose or any other warranty obligation on the
part of COMPUTER ALLIANCE shall last longer than ninety days. Soae states
do not allow liaitations on how long an ieplied warranty lasts, so the
above liiitations nay not apply to you. In no event shall COMPUTER
ALLIANCE, or anyone else who has been involved in the creation and
production of this cosputer prograa, be liable for indirect, special, or
consequential daaages, such as, but not Halted to, loss of anticipated
profits or benefits resulting froa the use of this prograa, or arising out
of any breach of this warranty. Soae states do not allow exclusion or
Haitation of incidental or consequential daaages, so the above Haitations
Bay not apply to you. This warranty gives you specific legal rights, and
you aay also have other rights which vary froa state to state. COMPUTER
ALLIANCE reserves the right to aake iaproveaents to this aanual and the
product described herein at any tiae and without notice.

	2025_07_03_11_29_42
	2025_07_03_11_29_43
	2025_07_03_11_29_47
	2025_07_03_11_29_48
	2025_07_03_11_29_53
	2025_07_03_11_29_54
	2025_07_03_11_30_00
	2025_07_03_11_30_01
	2025_07_03_11_30_06
	2025_07_03_11_30_07
	2025_07_03_11_30_12
	2025_07_03_11_30_14
	2025_07_03_11_30_19
	2025_07_03_11_30_20
	2025_07_03_11_30_25
	2025_07_03_11_30_26
	2025_07_03_11_30_31
	2025_07_03_11_30_33
	2025_07_03_11_30_37
	2025_07_03_11_30_39
	2025_07_03_11_30_44
	2025_07_03_11_30_46
	2025_07_03_11_30_50
	2025_07_03_11_30_52
	2025_07_03_11_30_57
	2025_07_03_11_30_58
	2025_07_03_11_31_03
	2025_07_03_11_31_05
	2025_07_03_11_31_09
	2025_07_03_11_31_11
	2025_07_03_11_31_16
	2025_07_03_11_31_17
	2025_07_03_11_31_22
	2025_07_03_11_31_23
	2025_07_03_11_31_28
	2025_07_03_11_31_30
	2025_07_03_11_31_35
	2025_07_03_11_31_36
	2025_07_03_11_31_41
	2025_07_03_11_31_43
	2025_07_03_11_31_47
	2025_07_03_11_31_49
	2025_07_03_11_31_54
	2025_07_03_11_31_55
	2025_07_03_11_32_00
	2025_07_03_11_32_01
	2025_07_03_11_32_06
	2025_07_03_11_32_07
	2025_07_03_11_32_12
	2025_07_03_11_32_14
	2025_07_03_11_32_19
	2025_07_03_11_32_20
	2025_07_03_11_32_25
	2025_07_03_11_32_26
	2025_07_03_11_32_31
	2025_07_03_11_32_33
	2025_07_03_11_32_38
	2025_07_03_11_32_39
	2025_07_03_11_32_45_001
	2025_07_03_11_32_45_002
	2025_07_03_11_32_50
	2025_07_03_11_32_51
	2025_07_03_11_32_56
	2025_07_03_11_32_58
	2025_07_03_11_33_02
	2025_07_03_11_33_04
	2025_07_03_11_33_09
	2025_07_03_11_33_11
	2025_07_03_11_33_15
	2025_07_03_11_33_17
	2025_07_03_11_33_22
	2025_07_03_11_33_23
	2025_07_03_11_33_28
	2025_07_03_11_33_29
	2025_07_03_11_33_34
	2025_07_03_11_33_35
	2025_07_03_11_33_40
	2025_07_03_11_33_42
	2025_07_03_11_33_46
	2025_07_03_11_33_48
	2025_07_03_11_33_53
	2025_07_03_11_33_54
	2025_07_03_11_33_59
	2025_07_03_11_34_01
	2025_07_03_11_34_05
	2025_07_03_11_34_06
	2025_07_03_11_34_11
	2025_07_03_11_34_13
	2025_07_03_11_34_18
	2025_07_03_11_34_19
	2025_07_03_11_34_24
	2025_07_03_11_34_25
	2025_07_03_11_34_30
	2025_07_03_11_34_32
	2025_07_03_11_34_36
	2025_07_03_11_34_38
	2025_07_03_11_34_42
	2025_07_03_11_34_44
	2025_07_03_11_35_10
	2025_07_03_11_35_12
	2025_07_03_11_35_16
	2025_07_03_11_35_18
	2025_07_03_11_35_23
	2025_07_03_11_35_24
	2025_07_03_11_35_29
	2025_07_03_11_35_30
	2025_07_03_11_35_35
	2025_07_03_11_35_37
	2025_07_03_11_35_42
	2025_07_03_11_35_43
	2025_07_03_11_35_48
	2025_07_03_11_35_50
	2025_07_03_11_35_54
	2025_07_03_11_35_56
	2025_07_03_11_36_00
	2025_07_03_11_36_02
	2025_07_03_11_36_07
	2025_07_03_11_36_08
	2025_07_03_11_36_13
	2025_07_03_11_36_15
	2025_07_03_11_36_20
	2025_07_03_11_36_21
	2025_07_03_11_36_26
	2025_07_03_11_36_27
	2025_07_03_11_36_33
	2025_07_03_11_36_35
	2025_07_03_11_36_38
	2025_07_03_11_36_40
	2025_07_03_11_36_45
	2025_07_03_11_36_46
	2025_07_03_11_36_51
	2025_07_03_11_36_52
	2025_07_03_11_36_57
	2025_07_03_11_36_59
	2025_07_03_11_37_04
	2025_07_03_11_37_05
	2025_07_03_11_37_11_001
	2025_07_03_11_37_11_002
	2025_07_03_11_37_16
	2025_07_03_11_37_18
	2025_07_03_11_37_22
	2025_07_03_11_37_24
	2025_07_03_11_37_29
	2025_07_03_11_37_30
	2025_07_03_11_37_35
	2025_07_03_11_37_38
	2025_07_03_11_37_41
	2025_07_03_11_37_43
	2025_07_03_11_37_48
	2025_07_03_11_37_49
	2025_07_03_11_37_54
	2025_07_03_11_37_56
	2025_07_03_11_38_00
	2025_07_03_11_38_01
	2025_07_03_11_38_07
	2025_07_03_11_38_09
	2025_07_03_11_38_13
	2025_07_03_11_38_14
	2025_07_03_11_38_19
	2025_07_03_11_38_21
	2025_07_03_11_38_25
	2025_07_03_11_38_27
	2025_07_03_11_38_32
	2025_07_03_11_38_33
	2025_07_03_11_38_38
	2025_07_03_11_38_39
	2025_07_03_11_38_44
	2025_07_03_11_38_46
	2025_07_03_11_38_50
	2025_07_03_11_38_52
	2025_07_03_11_38_56
	2025_07_03_11_38_58
	2025_07_03_11_39_03
	2025_07_03_11_39_04
	2025_07_03_11_39_09
	2025_07_03_11_39_10
	2025_07_03_11_39_16
	2025_07_03_11_39_17
	2025_07_03_11_39_21
	2025_07_03_11_39_23
	2025_07_03_11_39_28
	2025_07_03_11_39_29
	2025_07_03_11_39_35
	2025_07_03_11_39_36
	2025_07_03_11_39_40
	2025_07_03_11_39_41
	2025_07_03_11_39_46
	2025_07_03_11_39_48
	2025_07_03_11_39_53
	2025_07_03_11_39_54
	2025_07_03_11_39_59
	2025_07_03_11_40_01

