BASIC/ XA

SYSTEMS/TELECOMMUNICATIONS
Development tools for ATARI BASIC
programmers

;‘iiIl HIILITY PACKAGE UERSIOH 1.9
OPYRIGHT 19382 THOMAS HEKTOH

f: s

i,

CONSUMER-WRITTEN PROGRAMS FOR®

APX

. TR

® HOME COMPUTERS AARPogombchonge

Printed in USA.

BASIC /XA
by

Thomas D. Newton

Program and manual contents © 1982 Thomas D. Newton

Copyright notice. On receipt of this computer program and associated docu-
mentation (the software), the author grants you a nonexclusive license to exe-
cute the enclosed software. This software is copyrighted. You are prohibited

from reproducing, translating, or distributing this software in any unauthor-
ized manner.

Distributed By

The ATARI Program Exchange
P.O. Box 3705
Santa Clara, CA 95055

To request an APX Product Catalog, write to the address above, or call toll-free:

800/538-1862 (outside California)
800/672-1850 (within California)

Or call our Sales number, 408/727-5603

Trademarks of Atari

ATARI is a registered trademark of
Atari, Inc. The following are
trademarks of Atari, Inc: 400, 410,
800, 810, 820, 822, 825, 830, 850,
1200XL.

Limited Warranty on Media and Hardware Accessories. Atari, Inc. ("Atari") warrants to the original consumer purchaser that
the media on which APX Computer Programs are recorded and any hardware accessories sold by APX shall be free from
defects in material or workmanship for a period of thirty (30) days from the date of purchase. |f you discover such a defect
within the 30-day period, call APX for a return authorization number, and then return the product to APX along with proof of
purchase date. We will repair or replace the product at our option. If you ship an APX product for in-warranty service, we
suggest you package it securely with the problem indicated in writing and insure it for value, as Atari assumes no liability for
loss or damage incurred during shipment.

This warranty shall notapply if the APX product has been damaged by accident, unreasonable use, use with any non-ATARI
products, unauthorized service, or by other causes unrelated to defective materials or workmanship.

Any applicable implied warranties, including warranties of merchantability and fitness for a particular purpose, are also
limited to thirty (30) days from the date of purchase. Consequential or incidental damages resulting from a breach of any
applicable express or implied warranties are hereby excluded.

The provisions of the foregoing warranty are valid in the U.S. only. This warranty gives you specific legal rights and you may
also have other rights which vary from state to state. Some states do not allow limitations on how long an implied warranty
lasts, and/or do not allow the exclusion of incidental or consequential damages, so the above limitations and exclusions may
not apply to you.

Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been written by people not
employed by Atari. The programs we select for APX offer something of value that we want to make available to ATARI Home
Computer owners. In order to economically offer these programs to the widest number of people. APX Computer Programs
are notrigorously tested by Atariand aresold on an “asis" basis without warranty of any kind. Any statements concerning the
capabilities or utility of APX Computer Programs are not to be construed as express or implied warranties.

Atarishall have no liability or responsibility to the original consumer purchaser or any other person or entity with respect to
any claim, loss, liability, or damage caused or alleged to be caused directly or indirectly by APX Computer Programs. This
disclaimerincludes, butis not limited to, any interruption of services, loss of business or anticipatory profits, and/or incidental
or consequential damages resulting from the purchase, use, or operation of APX Computer Programs.

Some states do not allow the limitation or exclusion of implied warranties or of incidental or consequential damages, so the
above limitations or exclusions concerning APX Computer Programs may not apply to you.

Contents

Introduction 1
OVeIVIEW . . . 1
Required accessories.oo i 1
Optional accessSoriesttt 1
Related publications 2
Contactingtheauthor............. 2

Gettingstarted 3
Loading BASIC/XA into computermemory. 3
Thefirstdisplayscreen. 3

USiNg BASIC/XA . . . o 4
BASIC/XA’sdisplayscreen., 4
Commandst 4
Importantnotes. 5
Command A: ListVariables. 5
CommandB: VariableValues 6
Command C:ChangeName., 8
CommandD:CrossReference 11
CommandE:DeletelLines 14
Command F: Renumber e 15
Command G: Check Program. e e 18
Command H: New OutputFile 20
Command|l: ReturntoBASIC. 22
CommandJ:GotoDOSMenu............. 22

Customizingthe program. 24
Using Cross Reference with a 40-columnprinter. 24
Relocating the program for an alteredDOS 26

Transferring the cassette versiontodiskette 28
Introduction. 28
Transferring BASIC/XAo 28

Advanced technical information. 31
Combining BASIC/XA with other AUTORUN.SYS programs 31
The PREPARE.BASprogram.................couiiuinn.. 34
The ATARI 850 Interface Module Handler. 36
Subroutinesin BASIC/XA 37

TITLE .. 37
INIT . 37
NEWDOS 37
MENU. ... 38
PRINT . .. 38
OQUTCHR 38
LISTV . 38
DUMP . . 38
VALUE ... 39
VALSUB 39
PINT . 39
PELT . 39
CHANGE 39
GETVAR . . 40
FINDVAR i, 40
DELETE2 40
INSERT. ... 40
DELETE 40
LINES 4
XREF ... 4
XREFSUB. 4
TOKEN . .. 42
DELLIN. 42
GETTWO ... 42
RENUM 43
RENSUB 43
GETNEW 43
CHECK. ... 43
CHSUB. 44
BASIC. . .. 44
DOS .., 44
RESTORE. 44

Introduction

Overview

EXTENDED ATARI BASIC (BASIC/XA) helps you write programs in ATARI BA-
SIC. It can tell you what variables you have used in your program, their values
and dimensions, and which lines use them. BASIC/XA also lets you change
variable names, delete a range of lines from your program, renumber your
program, and check your program for bad GOTO statements and syntax er-
rors.

This automatically loading program is written in machine language and uses
about 4000 bytes of memory. A BASIC program included with both versions
lets you relocate the diskette version for your system and provides cassette
owners with a way to transfer BASIC/XA to diskette.

To use BASIC/XA, just type DOS when the READY prompt displays. The
screen will clear and display your choices, in the style of the DOS menu. Dis-
playing the real DOS menu is one of BASIC/XA’s menu choices.

Required accessories

ATARI BASIC Language Cartridge

e Cassette version
16K RAM
ATARI 410 Program Recorder

¢ Diskette version
24K RAM
ATARI 810 Disk Drive

Optional accessories

ATARI printer or equivalent printer

Introduction 1

Related publications
1. ATARI BASIC Reference Manual
The following publications aren’t needed for using BASIC/XA, but ad-
vanced assembly language programmers who want to study the listings

in the Advanced technical information section should have these materi-
als.

2. ATARI Operating System User’s Manual and Hardware Manual
(C016555)

3. Winner, Lane, “The Atari Tutorial, Part 6: ATARI BASIC,” BYTE, Febru-

ary 1982, pp. 91-118. This material also appears in De Re ATARI (APX-
90008)-

4. ATARI Disk Operating System Il Reference Manual (CO16347)

Contacting the author
Users wishing to contact the author about BASIC/XA may write to him at:

P.O. Box 513
Wrightsville Beach, NC 28480

2 Introduction

Getting started

Loading BASIC /XA computer

memory

1.

Insert the ATARI BASIC Language Cartridge in the cartridge slot of your
computer.

If you have the cassette version of BASIC/XA:

a.

b.

Have your computer turned OFF.

Insert the BASIC/XA cassette into the program recorder’s cassette
holder and press REWIND on the recorder until the tape rewinds
completely. Then press PLAY to prepare the program recorder for
loading the program.

. Turn on the computer while holding down the START key, and then

turn on your TV set.

. When you hear a beep, release the START key and press the RE-

TURN key. The program will load into computer memory and start au-
tomatically.

If you have the diskette version of BASIC/XA:

. Have your computer turned OFF.
. Turn on your disk drive.

. When the BUSY light goes out, open the disk drive door and insert the

BASIC/XA diskette with the label in the lower right-hand corner near-
est to you. (Use disk drive one if you have more than one drive.)

. Turn on your computer and your TV set. The program will load into

computer memory and start automatically.

The first display screen

After BASIC/XA loads into computer memory, you’ll see:

*** EXTENDED ATARI BASIC
*** Version 1.1
*** Copyright 1982 Thomas Newton

READY

Getting started 3

Using BASIC/XA

BASIC/XA’s display screen

To use BASIC/XA, load your program into computer memory. Then type DOS
and press the RETURN key to display this menu:

EXTENDED ATARI BASIC VERSION 1.1
COPYRIGHT 1982 THOMAS NEWTON

A.LIST VARIABLES F. RENUMBER

B. VARIABLE VALUES G. CHECK PROGRAM
C. CHANGE NAME H. NEW OUTPUT FILE
D. CROSS REFERENCE I. RETURN TO BASIC
E. DELETE LINES J. GO TO DOS MENTU

SELECT ITEM OR RETURN FOR MENU

To select a command, type its letter and press RETURN. Press RETURN
again to redisplay the menu.

The description of each command is divided into the following sections:

1.

2.

Function — describes what the command does.

Using it — shows the questions you must answer when you use the
command. Your responses are underlined. If you're in BASIC's
READY mode, you should type DOS to display the BASIC/XA menu.

. Error messages — explains the error messages that display if you

make a mistake or if the computer can’t print to your NEW OUTPUT
FILE.

. Warning messages — explains the warning messages you may see

when you use the RENUMBER and CHECK PROGRAM commands.
These messages tell you about expressions used as line numbers
and errors in your program.

. Example — demonstrates the use of the command with a small BA-

SIC program.

. Notes — lists additional information about the command that you

should know.

4 Using BASIC/XA

Important notes

If your program uses IOCB #5 (OPEN #5, PRINT #5, and so on), you should
CLOSE it before typing DOS to display the BASIC/XA menu.

If you have the diskette version of BASIC/XA, you must have a MEM.SAV file
on the diskette in disk drive one when you go to the DOS menu with BASIC/
XA’s J command. While in DOS, you must not give permission for DOS to use
the program area. The same diskette must be in drive one when you return to
BASIC as when you went to the DOS menu.

If you want to use the DUPLICATE DISK command, turn the computer off and
turn it back on using a diskette that doesn’t contain BASIC/XA. You can now
allow DOS to use the program area (if the diskette does not have a MEM.SAV
file, DOS will use it automatically). You may also want to follow this procedure
when using the COPY FILE and DUPLICATE FILE commands, since allowing
DOS to use all of memory results in far less diskette swapping.

Command A: LIST VARIABLES

Function

This command lists the variable names you’ve used in your program. It also
tells you how many variable names are in the table. If you’ve used command
H, NEW OUTPUT FILE, the table prints to the file you selected (e.g., to the
printer).

Using it

SELECT ITEM OR RETURN FOR MENU
A

Error messages

INPUT/OUTPUT ERROR — the computer could not print to your file OR you
pressed the BREAK key. If you were sending output to a file, the program
closes the file, and the rest of the table prints on the TV screen.

Using BASIC/XA 5

Example

Suppose you enter the following program (your typing is underlined):

READY
NEW

READY

10 DIM C$(10),A(20)
ROFORX=1TO 10
30 AX)=X*X*X
40 NEXTX

Now you want to see all the variable names used in the program:
DOS

(screen clears and the BASIC/XA menu appears)

SELECT ITEM OR RETURN FOR MENU
A

VARIABLE NAME TABLE
C$
A(X

3 VARIABLES USED

SELECT ITEM OR RETURN FOR MENU
I

READY

Notice that the name of array A ended with a ("’ character. The name of an
array or matrix always ends with a “(”’, and the name of a string, like C$, al-
ways ends with a dollar sign.

Variable names appear in the table in the order you used them in the program.
Command B: VARIABLE VALUES

Function

This command lists the variables used in your program. It also prints the value
of simple variables (such as X) and the dimensions of arrays, matrices, and
strings. If you’ve used command H, NEW OUTPUT FILE, the table prints to
the file you selected.

Using it
SELECT ITEM OR RETURN FOR MENU
B

6 Using BASIC/XA

Error messages

INPUT/OUTPUT ERROR — the computer couldn’t print to your file OR you
pressed the BREAK key. If you were sending output to a file, the program
closes the file, and the rest of the table prints on the TV screen.

Example

Suppose you enter the following program (your typing is underlined):

READY
NEW

READY
10 DIM C$(10),X(5)
20FORB=1TO5
30 X(B)=B*B

40 NEXT B

Now you want to list the value of B and the dimensions of C$ and X(.

DOS
(screen clears and the BASIC/XA menu appears)

SELECT ITEM OR RETURN FOR MENTU
B

VARIABLE VALUES
C$(...)

X(...)

B=0

3 VARIABLES USED

The computer typed the (...) by C$ and X to let you know that these variables
haven’t been dimensioned. It also told you that B is zero. Now let’'s RUN the
program and try it again.

SELECT ITEM OR RETURN FOR MENU
I

READY
RUN

READY
DOS

(screen clears and the BASIC/XA menu appears)

Using BASIC/XA 7

SELECT ITEM OR RETURN FOR MENU
B

VARIABLE VALUES

C$(10)
X(85)
B=6

3 VARIABLES USED

This time, the computer told you the dimensions of C$ and X(. It also told you
that B is equal to 6.

SELECT ITEM OR RETURN FOR MENTU
I

READY
PRINT B:REM make sureitis 6
6

READY

Notes
VARIABLE VALUES is most useful when you’re debugging a program. You
can press the break key to stop a running program, go to BASIC, and CON-
Tinue running the program.
Although the computer prints the DIMension of strings, it doesn’t print their

length. If X$ has been dimensioned, the BASIC command PRINT LEN(X$) will
print the length of X$.

Command C: CHANGE NAME

Function

This command lets you change the name of any variable in your program. You
can make long variable names short, or change short names such as F into
more descriptive names like FOOD.

8 Using BASIC/XA

Using it

SELECT ITEM OR RETURN FOR MENU
C

CHANGE NAME — OLD VARIABLE NAME? the name the variable has
now

NEW NAME (MUST BE SAME TYPE)? the name you want to change it to

To return to the SELECT ITEM prompt without changing any names, press
RETURN or break in response to either question.

Remember to end the name of an array with the “(” character; for example,
array X is named X(. The name of a string variable ends with a dollar sign (ex-
amnple: C$3).

Error messages

LINE TOO LONG — you entered a name that is more than one screen line (38
characters) long. CHANGE NAME can only handle names that are 38 charac-
ters long or less.

NOT USED IN PROGRAM — a variable name you entered is not used in the
program, so it is impossible to change it.

BAD VARIABLE NAME — a variable name must start with a letter and consist
of letters and numbers. The name of an array ends with a ‘(" character, and
the name of a string ends with a dollar sign. You also get this message if you
type spaces before the variable name.

TYPES DO NOT MATCH — you can only change a simple variable to a simple
variable, an array to an array, or a string to a string.

NAME ALREADY EXISTS — you cannot change a variable name to a name
already used in the program. This prevents you from having two variables with
the same name. You will also get this message if you try to change a variable
name to itself. It is possible to have a variable named A, an array A, and a
string A$, since their respective names are A, A(, and A$ — all different.

NOT ENOUGH MEMORY — there isn’t enough memory to change the varia-
ble name. This happens when the new name is too long or when you have less
than 20 bytes of free memory.

Any error message returns you to the SELECT ITEM OR RETURN FOR
MENU prompt without changing the variable name.

Using BASIC/XA 9

Example

Suppose you enter the following program (your typing is underlined):

READY
NEW

READY

10 DIM A(10),D$(5)
R0FORC=1TO 10
30B=C*C:PRINTC,B
40 NEXTC

Now you want to change the name of array A, string D$, and variable C:

DOS
(screen clears and the BASIC/XA menu appears)

SELECT ITEM OR RETURN FOR MENU

c

CHANGE NAME — OLD VARIABLE NAME?
AC

NEW NAME (MUST BE SAME TYPE)?
ARRAY(

SELECT ITEM OR RETURN FOR MENU

C

CHANGE NAME — OLD VARIABLE NAME?
D$.

NEW NAME (MUST BE SAME TYPE)?
STAT$

SELECT ITEM OR RETURN FOR MENU

c

CHANGE NAME — OLD VARIABLE NAME?
c

NEW NAME (MUST BE SAME TYPE)?

B

NAME ALREADY EXISTS

Since variable name B is already used, the computer doesn’t permit the
change. Instead, it prints an error message.

SELECT ITEM OR RETURN FOR MENU
C

CHANGE NAME — OLD VARIABLE NAME?
C

10 Using BASIC/XA

NEW NAME (MUST BE SAME TYPE)?
COUNT

SELECT ITEM OR RETURN FOR MENU
I

READY
LIST

10 DIM ARRAY(10),STAT$(5)

R0 FOR COUNT =1 TO 10

30 B=COUNT*COUNT:PRINT COUNT,B
40 NEXT COUNT

READY

Notes

Although you can use variable names like INPUT, PRINT, and so on, avoid
doing so, because BASIC may not let you edit your program. If you make this
mistake, use CHANGE NAME to change the variable name to one that BASIC
likes, such as X or INP.

If you use long lines in your program and you make your variable names too
long, you won'’t be able to edit some of the lines in your program because
they’ll be more than three screen lines long. To edit these lines, you’'ll have to
shorten the names.

Command D: CROSS
REFERENCE

Function

This command lists the variable names used in your program and the lines
that use them. It also tells you how many variable names have been used. If
you’ve used command H, NEW OUTPUT FILE, the table prints to the file you
selected.

Using it

SELECT ITEM OR RETURN FOR MENU
D

Error messages

INPUT/OUTPUT ERROR — the computer could not print to your file OR you
pressed the BREAK key. If you were sending output to a file, the program
closes the file, and the rest of the table prints on the TV screen.

Using BASIC/XA 11

Example

Suppose you enter the following program (your typing is underlined):

READY
NEW

READY
10FORC=1TO 10
20B=C*C:PRINTC,B
30 NEXT C

PRINT A

0

READY

Now you want to list the variables in the program and the lines that use them:

DOS
(screen clears and the BASIC/XA menu appears)

SELECT ITEM OR RETURN FOR MENU
D

VARIABLE CROSS REFERENCE TABLE

C 1 02 03 0
B R0

A

3 VARIABLES USED

SELECT ITEM OR RETURN FOR MENU
I

READY

Note that variable A is not used in the program, since there are no line num-
bers following its name. However, it is taking up space and pushing the pro-
gram closer to ATARI BASIC'’s limit of 128 variable names.

Notes

Onthe screen, the cross reference table has four columns per line. When you
use command H, NEW OUTPUT FILE, to send the table to the printer or a file,
the table has ten columns per line (for an 80-column printer). To adjust BASIC/
XA for a 40-column printer, see Customizing the program.

To remove unused variable names from your program, follow this procedure:

1. Load the program into memory.

12 Using BASIC/XA

a.

If you have a cassette recorder:

Type LIST “C:” and press RETURN. When you hear two beeps, place
a blank tape in the recorder. Then press the PLAY and RECORD but-
tons on the recorder, and press the RETURN key on the computer
console. The computer will list the program to the cassette.

. Type NEW and press RETURN to remove the tokenized version of the

program and the variable names from memory.

. Rewind the cassette and press PLAY on the recorder to prepare it for

loading the program. Then type ENTER “C:” and press RETURN.
When you hear a beep, press RETURN again. The computer will get
your program from the cassette. When the READY prompt appears,
press STOP on the recorder.

If you have a disk drive:

a.

Place a diskette with plenty of free space in drive one. Then type LIST
“D:TEMP” and press RETURN. The computer will list the program to
diskette.

. Type NEW and press RETURN to remove the tokenized version of the

program and the variable names from memory.

. Type ENTER “D:TEMP”’ and press RETURN. The computer will get

your program from the diskette.

. To remove the “D:TEMP” file from the diskette, type XI0 33,#1,0,0,

“D:TEMP” and press RETURN.

4. Save your program to cassette or diskette. The unused variable names
will now be gone.

Normally, BASIC stores your program in a ‘‘tokenized” form, meaning that
commands like PRINT are stored as a single number. Variable names are
stored in a table and referred to by a number. For example, the command
PRINT X is translated into two numbers, the number for PRINT and the posi-
tion of X in the variable name table. If you stop using a variable name, BASIC
still keeps it in the table. When you LIST the program to tape or diskette and
then ENTER it, BASIC translates the program into numbers all over again.
Since unused variable names do not show up in the listing, they are removed
from the variable name table.

Using BASIC/XA 13

Command E: DELETE LINES

Function

This command lets you delete a range of lines from your program.
Using it

SELECT ITEM OR RETURN FOR MENTU
E

DELETE — START, END LINES?
starting line, ending line

To return to the SELECT ITEM prompt, press RETURN or BREAK instead of
entering the starting and ending lines.

Error messages

BAD NUMBER — you didn’t type two numbers separated by a comma.

LINE TOO LONG — your response was longer than one line on the screen.
NUMBER OUT OF RANGE — one of the numbers you typed was negative or
greater than 32767. BASIC uses line numbers from 0 to 32767.

SECOND LINE = MUST BE LARGER — the first line number must be smaller
than or equal to the second one.

When the program prints any error message, you return to the SELECT ITEM
or RETURN FOR MENU prompt without deleting any lines.

Example

Suppose you enter the following program (your typing is underlined):

READY
NEW

READY

10 REM THIS LINE WILL REMAIN

20 REM THESE LINES WILL BE DELETED
22 REM

27 REM

30 REM THIS LINE WILL REMAIN

Now you want to delete lines 20 through 27:

DOS
(screen clears and the BASIC/XA menu appears)

SELECT ITEM OR RETURN FOR MENTU
E

DELETE — START, END LINES?
20,27

14 Using BASIC/XA

Notes

SELECT ITEM OR RETURN FOR MENU
I

READY
LIST

10 REM THIS LINE WILL REMAIN
30 REM THIS LINE WILL REMAIN

READY

If you have many lines to delete, DELETE LINES may take several minutes.
DO NOT press SYSTEM RESET or you will lose your program and lock up the
computer. Just wait for the program to finish and return to the SELECT ITEM
OR RETURN FOR MENU prompt.

For example, typing “400,32767" in response to the DELETE prompt will de-
lete from line 400 to the end of the program.

If you delete a large section of the program, you might remove several varia-
ble names from the program. However, the names will still be stored by BA-
SIC. Use the CROSS REFERENCE command to see how many unused
variable names are in the table. You can remove unused names by following
the steps listed in the notes for the CROSS REFERENCE command.

Command F: RENUMBER

Function

This command lets you renumber your program. You choose the new starting
line number and the spacing between lines.

Using it

SELECT ITEM OR RETURN FOR MENU
F

RENUMBER — NEW STARTING LINE, SPACING?
new starting line number, spacing between line numbers

If you press RETURN without entering numbers, RENUMBER uses 10 for the
new starting line number and 10 for the spacing between lines.

To return to the SELECT ITEM prompt without renumbering, press the break
key when you see the RENUMBER prompt.

Using BASIC/XA 15

Error messages

These messages appear if you answer the RENUMBER prompt incorrectly.
You return to the SELECT ITEM prompt without renumbering the program.

LINE TOO LONG — your answer was longer than one screen line.
BAD NUMBER — you didn’t type two numbers separated by a comma.

NUMBER OUT OF RANGE — one of the numbers you typed was negative or
greater than 32767. BASIC uses line numbers from 0 to 32767.

SPACING CAN’T BE ZERO — you cannot have zero spacing between lines,
since all lines would have the same line number.

CAN'T RENUMBER — renumbering would result in a line number within
SPACING of 32767. For example, if the SPACING was 10, you would get
CAN’T RENUMBER if renumbering would resultin a line number greater than
32757. Try renumbering the program again with a smaller SPACING.

Warning messages

These messages appear during renumbering. They tell you to check lines in
your program.

EXPRESSION FOUND IN LINE xxx — an expression or a negative number
follows a GOTO, GO TO, GOSUB, TRAP, RESTORE, LIST, IF/THEN, ON/
GOTO, or ON/GOSUB statement in line xxx. You must update the expression;
ifitwas in a LIST, ON/GOTO, or ON/GOSUB statement, you must update line
numbers following it in the statement.

LINE #yyy, FOUND IN LINE xxx, DOES NOT EXIST — a line number in a
GOTO, GOSUB, etc., statement does not correspond to any line of the pro-
gram (for example, GOTO 100 when there is no line 100). The line number is
left unchanged.

BAD LINE NUMBER IN LINE xxx — the line number in a GOTO, GOSUB, etc.,
statement is greater than 32767 (greater than 65535 for TRAP). When you
RUN the program, this line will cause an ERROR - 7. The line number is left
unchanged.

16 Using BASIC/XA

Example

Suppose you enter the following program (your typing is underlined):

READY
NEW

READY

10 INPUT A

20 ON A GOSUB 100,200,300
21 PRINT ‘‘TEST PROGRAM”’
22 TRAP 40000

23 GOTO 23

100 REM SUB1

110 RETURN

300 REM SUB3

305 RETURN

Now you want to renumber the program to make room for some statements
betweeen lines 21 and 22:

DOS
(screen clears and the BASIC/XA menu appears)

SELECT ITEM OR RETURN FOR MENTU
F

RENUMBER — NEW STARTING LINE, SPACING?
(you press the RETURN key)

LINE #200, FOUND IN LINE 20,
DOES NOT EXIST

SELECT ITEM OR RETURN FOR MENU
I

READY
LIST

10 INPUT A

R0 ON A GOSUB 60,200,80
30 PRINT “‘TEST PROGRAM"’
40 TRAP 40000

50 GOTO 50

60 REM SUB1

70 RETURN

80 REM SUB3

90 RETURN

READY

Since TRAP with a number between 32768 and 65535 cancels previous
TRAPs, RENUMBER left the TRAP 40000 alone. In line 20, although the 200

caused an error, the other line numbers were adjusted for the renumbered
program.

Using BASIC/XA 17

Notes

Do not press SYSTEM RESET or break while RENUMBER is renumbering the
program. Most renumbering jobs take only a few seconds.

If you use the LIST command in your program (e.g., 10 LIST), you will get a
false EXPRESSION FOUND message if the LIST is to a device, and the line
numbers following the device name will NOT be changed. For example, 10
LIST “P:,100,200 will cause an EXPRESSION FOUND message, and the
LIST command will not be updated to reflect the new line numbers.

Command G: CHECK PROGRAM

Function

This command lets you check your program for line numbers that don’t exist,
bad line numbers, INPUT statements without variables, and lines with syntax
error. It also tells you about expressions used as line numbers.

Using it

SELECT ITEM OR RETURN FOR MENTU
G

Warning messages

INPUT/OUTPUT ERROR — you pressed the BREAK key. If you were sending
output to a file, the file is closed and the output of LIST VARIABLES, VARIA-
BLE VALUES, and CROSS REFERENCE will be sent to the TV screen.

EXPRESSION FOUND IN LINE xxx — an expression or a negative number
follows a GOTO, GO TO, GOSUB, TRAP, RESTORE, LIST, IF/THEN, ON/
GOTO, or ON/GOSUB statement in line xxx. Line numbers following the ex-
pression in the same statement are not checked. This is not really an error, but
you will get this message again when you renumber the program.

LINE #yyy, FOUND IN LINE xxx, DOES NOT EXIST — a line number in a
GOTO, GOSUB, etc., statement does not correspond to any line in the pro-
gram (for example, GOTO 100 when there is no line 100). This line will cause
an ERROR - 12 when the program is RUN and reaches the line.

BAD LINE NUMBER IN LINE xxx — the line number in a GOTO, GOSUB, etc.,

statement is greater than 32767 (greater than 65535 for TRAP). When you
RUN the program, this line will cause an ERROR - 7.

18 Using BASIC/XA

INPUT BY ITSELF IN LINE xxx — the INPUT statement in line xxx is not fol-
lowed by a variable name. When you RUN the program, this line will lock the
computer up, losing your program. Although BASIC checks for syntax errors,
this is the one syntax error it doesn’t catch until it’s too late.

SYNTAX ERROR IN LINE xxx — when you entered the line, BASIC told you it
contained a syntax error and you didn’t fix the line. When you RUN the pro-
gram, this line will cause an ERROR - 17.

Example

Suppose you enter the following program (your typing is underlined):

READY
NEW

READY

10 PRINT ‘‘YOUR NUMBER”’
20 INPUT

30 IF A = 3 THEN 20

40TF A = 4 THEN 100

50 TRAP 100000

Now you want to check the program for the errors listed above:
DOS
(screen clears and the BASIC/XA menu appears)

SELECT ITEM OR RETURN FOR MENU
G

LINE #100, FOUND IN LINE 40,
DOES NOT EXIST BAD LINE NUMBER IN LINE 50

INPUT BY ITSELF IN LINE 20

SELECT ITEM OR RETURN FOR MENU
I

READY

CHECK PROGRAM caught three errors: the branch to line 100 in line 40, the
TRAP 100000 in line 50, and the INPUT in line 20. If you had RUN this pro-
gram immediately, the computer would have locked up. Now let’s fix the er-
rors and try it again:

20 INPUT A

40 TF A = 4 THEN PRINT ‘‘OK”
50 TRAP 40000

Dos.

(screen clears and the BASIC/XA menu appears)

Using BASIC/XA 19

SELECT ITEM OR RETURN FOR MENU
G

SELECT ITEM OR RETURN FOR MENU
I

READY

This time, CHECK PROGRAM did not find any errors.

Notes

CHECK PROGRAM is most useful for catching bad GOTO and GOSUB state-
ments. Often, you don’t find these mistakes until you’ve RUN a program sev-
eral times. CHECK PROGRAM catches all these mistakes at once.

CHECK PROGRAM cannot find logical errors in your program, such as set-
ting A to 5 when it should be 6.

Command H: NEW OUPUT FILE

Function

This command lets you send the LIST VARIABLES, VARIABLE VALUES, and
CROSS REFERENCE tables to the printer, a cassette file, or a diskette file.
Having a printed copy of these tables is very useful.

Using it

SELECT ITEM OR RETURN FOR MENU
H

NEW OUTPUT FILE (RETURN FOR SCREEN)?
filename

The filename may be any of the following:

P: Sends tables to the printer

C: Sends tables to the cassette
recorder. When you hear two
beeps, place a blank
tape in the recorder,
press PLAY and RECORD,
and press RETURN.

D:filename.ext Sends tables to a disk file.
Anything that was in the
file before will be lost.

20 Using BASIC/XA

Rn: Sends tables to serial port #n of
the ATARI 850 Interface.
You may have to condition
the port with XIO statements
before selecting it for printing.

E: or RETURN Sends tables to the screen

If you were already sending output to a file, the program closes the previous
file before opening the new file.

Error messages

INPUT/OUTPUT ERROR — you pressed the BREAK key while the computer
was trying to open the file.

LINE TOO LONG — the filename you gave was more than one screen line too
long.

CAN’T OPEN FILE — when the computer tried to open the file, an error hap-
pened. The most common errors are:

1. Device timeout — you selected the printer and a printer was not con-
nected or it was not turned on. You also may have left your drive off when
you tried to send output to a diskette file.

2. Locked file — you selected a diskette file and it was locked.

3. Diskette write-protected — the write-protect notch on the diskette is cov-
ered or the diskette does not have a write-protect notch.

4. Bad filename — you forgot the D: for a diskette filename or the filename
was bad.

Example

SELECT ITEM OR RETURN FOR MENU
H

NEW OUTPUT FILE (RETURN FOR SCREEN)?
P:

SELECT ITEM OR RETURN FOR MENU
B

SELECT ITEM OR RETURN FOR MENU
D

Both the VARIABLE VALUES table and the CROSS REFERENCE table will be
sent to the printer.

Using BASIC/XA 21

Notes

If there is an error when the computer tries to print to the file, you will see the
INPUT/OUTPUT ERROR message on the screen. The program automatically
closes the file and sends the rest of the listing to the screen.

When you select command I, RETURN TO BASIC, or command J, GO TO
DOS MENU, the program closes the file. If you select command H again, the
program closes the file before opening the new one.

If you have any file open, don’t press SYSTEM RESET, because you may lose
the file. Once you return to BASIC, go to the DOS menu, or select NEW OUT-

PUT FILE and send output to the screen, the program closes the file, making it
safe to press SYSTEM RESET.

Command I: RETURN TO BASIC

Function

This command lets you return to ATARI BASIC from BASIC/XA.

Using it

SELECT ITEM OR RETURN FOR MENU
I

READY

Notes

If you were sending output to a file, the file will be closed.

Command J: GO TO DOS MENU

Function

This command lets you go to the DOS menu from BASIC/XA.

Using it

SELECT ITEM OR RETURN FOR MENU
J

(DOS menu appears on the screen)

22 Using BASIC/XA

=/

Notes

The diskette must have a MEM.SAV file. While you are in DOS, you must not
give DOS permission to use the program area. When you return to BASIC
(DOS option B or SYSTEM RESET), you must have the same diskette in drive

one as when you went to the DOS menu. See IMPORTANT NOTES for more
information.

If you were sending output to a file, the file will be closed.

Customizing the program 23

Customizing the program

Using CROSS REFERENCE with a
40-column printer

The CROSS REFERENCE command normally prints ten numbers to a printer
line. This is fine for 80-column printers, but messy for 40-column ones. To ad-
just CROSS REFERENCE for a 40-column printer:

1.

If you have the cassette version of BASIC/XA (Warning: Do not use this
POKE unless you have loaded BASIC/XA. If you haven’t, you could lock
up the computer.):

a. Type POKE 5681,4 if you have a 40-column printer.

b. To reset CROSS REFERENCE for 80 columns, type POKE 5681,10.
If you have the diskette version of BASIC/XA (Warning: Do not use this
POKE unless you have loaded BASIC/XA. If you haven’t, you could lock
up the computer.):

a. Type POKE 11321,4 if you have a 40-column printer.

b. To reset CROSS REFERENCE for 80 columns, type POKE 11321,10.

Each time you load BASIC/XA, you must do the POKE if you want 40-column
output.

If you have the diskette version of BASIC/XA, these steps modify the program
for your printer:

1.

Prepare a diskette that contains the DOS.SYS, DUP.SYS, and MEM.SAV
files. The diskette should not have an AUTORUN.SYS file (it will be re-
placed). It should have at least 36 free sectors (DOS prints the number of
free sectors at the end of the directory).

If you have 24K of RAM, turn your computer off and turn it back on using
a diskette that does not have a copy of BASIC/XA. If you have an ATARI
850 Interface Module, leave it off. These steps are necessary because
CUSTOM.BAS uses all 24K of memory.

Insert the BASIC/XA diskette into drive one. Type RUN “D:CUSTOM-
.BAS” and press RETURN. The program loads into memory and dis-
plays:

24 Customizing the program

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

This program lets you relocate EXTENDED ATARI
BASIC for your system.

Please hold on while I get ready...

Do you want to relocate the program
(type Y or N)?

Type N and press RETURN.

4. The computer asks:

Do you have an 80-column printer
(type Y or N)?

If you have a 40-column printer, type N and press RETURN. If you have
an 80-column printer, type Y and press RETURN.

5. The computer asks:

Do you want the program to check for
an ATARI 850 Interface included with
EXTENDED ATARI BASIC

(Type Y or N)
?

Type Y and press RETURN.

6. The screen clears and displays:

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

Program loads at: 7420
Program ends at: 11491
Columns per line: 4 (10 for an 80 column printer)

Place a system diskette (one that has

a copy of DOS) in drive one and press
RETURN to write the AUTORUN.SYS file.
Press any other key to quit without
writing the AUTORUN.SYS file.

7. Insert the diskette that you prepared in step 1 into drive one and press
RETURN. The computer saves a copy of BASIC/XA on the diskette.

8. The computer types:

Your disk now contains a copy of
EXTENDED ATARI BASIC. To use the
program, place the disk in drive one
when you turn your system on.

READY

Customizing the program 25

Relocating the program for an
altered DOS

If you change the number of drive buffers or file buffers that DOS uses (de-
scribed in the DOS Il Reference Manual), you must relocate BASIC/XA to work
with your version of DOS. To make a copy of BASIC/XA for your system:

1.

Prepare a diskette that has the DOS.SYS, and MEM.SAV files. This disk-
ette contains your version of DOS. It should not have an AUTORUN.SYS
file. It should have at least 36 free sectors (DOS prints the number of free
sectors at the end of the directory).

Turn your computer off. Turn it back on using the diskette you prepared in
step 1. If you have an ATARI 850 Interface Module, leave it off. Type
PRINT PEEK(743) + 256 *PEEK(744) , press RETURN, and write down
the number on the screen.

Turn your computer off. Turn it back on using the DOS |l Master Diskette.
If you have an ATARI 850 Interface Module, leave it off.

Insert the BASIC/XA diskette into drive one. Type RUN “D:CUSTOM-
.BAS” and press RETURN. The program loads into memory and dis-
plays:

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

This program lets you relocate EXTENDED ATARI
BASIC for your system.

Please hold on while I get ready...

Do you want to relocate the program
(type Y or N)?

Type Y and press RETURN. The computer asks:

Where should the program start
(give address in decimal)?

Type the number you wrote down in step 2 and press RETURN. The computer
types:

6.

Hold on while I relocate the program
After the computer finishes, it asks:

Do you have an 80-column printer
(type Y or N)?

Answer Y or N and press RETURN.

26 Customizing the program

7. The computer asks:

Do you want the program to check for
an ATARI 850 Interface included with
EXTENDED ATARI BASIC

(Type Y or N)

9

Type Y and press RETURN.

8. The screen clears and displays:

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

Program loads at: xxxxx
Program ends at : yyyyy
Columns per line: zz

Place a system diskette (one that has

a copy of DOS) in drive one and press
RETURN to write the AUTORUN.SYS file.
Press any other key to quit without
writing the AUTORUN.SYS file.

9. Insert the diskette that you prepared in step 1 into drive one and press
RETURN. The computer saves a copy of BAS/C/XA on the diskette.

10. After the computer saves the program, it types:

Your disk now contains a copy of
EXTENDED ATARI BASIC. To use the
program, place the disk in drive one
when you turn your system on.

Customizing the program 27

Transferring the cassette
version to diskette

Introduction

Although you can’t use the first program on the BASIC/XA cassette with a
diskette, BASIC/XA includes a second program for use with diskettes.

Transferring BASIC /XA

To transfer BASIC/XA to diskette, you need DOS Il and at least 24K of RAM.

1. Prepare a diskette.

a. Insert the ATARI BASIC Language Cartridge in the cartridge slot.

b.

C.

Insert the DOS Il Master Diskette in disk drive one.

Turn on your computer. Note. If you have an ATARI 850 Interface
Module, leave it off.

. When you see the READY prompt, type DOS and press RETURN.

. When the screen displays the DOS menu, place a new (blank) disk-
ette in drive one and type these underlined responses:

SELECT ITEM OR RETURN FOR MENU
I

WHICH DRIVE TO FORMAT?
1

TYPE ‘‘Y’’ TO FORMAT DISK 1
Y

The disk drive whirs and clicks for a little while.

SELECT ITEM OR RETURN FOR MENU
H

WHICH DRIVE TO WRITE DOS FILES TO?
1

TYPE “‘Y’’ TO WRITE DOS FILES TO DRIVE 1°?
Y

28 Transferring the cassette version to diskette

WRITING NEW DOS FILES

SELECT ITEM OR RETURN FOR MENU
N

TYPE ‘Y’ TO CREATE MEM.SAV
Y

You have now prepared the diskette.

SELECT ITEM OR RETURN FOR MENU
B

READY

2. Remove the diskette from drive one. Turn the computer and disk drive(s)
off. Leave the disk drive(s) turned off and load the program normally.
Then turn the computer off. The tape is now positioned to load the sec-
ond program. :

3. Turn the disk drive(s) back on and insert your prepared diskette (from
step 1) into drive one. Turn on the computer, again leaving the interface
module off (if you have one).

4. Press PLAY on the recorder. Type CLOAD and press RETURN. When
you hear a bell, press RETURN again. The computer loads the program
into memory and types READY when through.

5. Type SAVE “D:CUSTOM.BAS” and press RETURN to save the program
on diskette. To create the AUTORUN.SYS file that loads BASIC/XA:

a. Type RUN. The program displays:

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

This program lets you relocate EXTENDED ATARI
BASIC for your system.

Please hold on while I get ready...

Do you want to relocate the program
(type Y or N)?

Type N and press RETURN.

Transferring the cassette version to diskette 29

b. The computer asks:

Do you have an 80-column printer
(type Y or N)?

If you have a 40-column printer, type N and press RETURN. If you have
an 80-column printer, type Y and press RETURN. If you don’t have a
printer, it doesn’t matter which way you respond.

c. The computer asks:

Do you want the program to check for
an ATARI 850 Interface included with
EXTENDED ATARI BASIC

(Type Yor N)
?

Type Y and press RETURN.

d. The screen clears and displays:

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

Program loads at: 7420
Program ends at : 11491
Columns per line: 4 (10 for an 80-column printer)

Place a system diskette (one that has

a copy of DOS) in drive one and press
RETURN to write the AUTORUN.SYS file.
Press any other key to quit without
writing the AUTORUN.SYS file.

e. Press RETURN. The computer saves a copy of BASIC/XA on the disk-
ette. Then it types:

Your disk now contains a copy of
EXTENDED ATARI BASIC. To use the
program, place the disk in drive one
when you turn your system on.

Your diskette is the same as the diskette version of BASIC/XA. Follow the in-
structions for the diskette version of the program.

30 Transferring the cassette version to diskette

Advanced technical information

Combining BASIC /XA with other
AUTORUN.SYS programs

Since BASIC/XA is relocatable, you can combine it with many other
AUTORUN.SYS programs. However, there are some restrictions:

1.

The other program must not be copy-protected. You will need to make a
copy of the other diskette when you combine the programs.

The other program must fit entirely on page six or entirely above DOS.
If the other program contains the code to check for the ATARI 850 Inter-

face Module, you should remove it. The PREPARE.BAS program de-
scribed below can do this job for you.

To combine the programs:

1.

Make a copy of the other program diskette and remove the ATARI 850
Interface Module code using the PREPARE.BAS program. Turn your
computer off. Insert the ATARI BASIC Language Cartridge in the car-
tridge slot of your computer, place the diskette into disk drive one, and
turn the computer on. Type PRINT PEEK(743) + 256 *PEEK(744) and
write down the number on the screen.

Turn the computer off. Place a diskette without an AUTORUN.SYS file in

drive one and turn the computer back on. This frees memory for CUS-
TOM.BAS.

Place the diskette you used in step 1 into drive one. Type XIO 32,#
1,0,0,D;AUTORUN.SYS,PROG2” to rename the other program.

Place the BASIC/XA diskette in drive one and type RUN “D:CUSTOM-
.BAS”. The program loads and displays:

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

This program lets you relocate EXTENDED ATARI
BASIC for your system.

Please hold on while I get ready...

Do you want to relocate the program
(type Y or N)?

Advanced technical information 31

5. TypeY and press RETURN. The computer asks:

Where should the program start
(give address in decimal)?

Type the number you wrote down in step 1 and press RETURN. The computer
types:

Hold on while I relocate the program

6. After the computer finishes, it asks:

Do you have an 80-column printer
(type Y or N)?

Answer Y or N and press RETURN.

7. The computer asks:

Do you want the program to check for
an ATARI 850 Interface included with
EXTENDED ATARI BASIC

(TypeYorN)
?

Type Y and press RETURN.

8. The screen clears and displays:

EXTENDED ATARI BASIC VERSION 1.1
Copyright 1982 Thomas Newton

Program loads at: Xxxxx

Program ends at: yyyyy

Columns per line: 10 (4 for a 40-column
printer)

Place a system diskette (one that has

a copy of DOS) in drive one and press
RETURN to write the AUTORUN.SYS file.
Press any other key to quit without
writing the AUTORUN.SYS file.

9. Place the diskette you used in step 3 in drive one and press RETURN.
The computer saves a copy of BASIC/XA on the diskette.

10. The computer types:

Your disk now contains a copy of
EXTENDED ATARI BASIC. To use the
program, place the disks in drive one
when you turn your system on.

32 Advanced technical information

1.

Type DOS to go to the DOS menu. When the SELECT ITEM OR RE-
TURN FOR MENU prompt appears:

a. If the other program fits entirely on page six:

SELECT ITEM OR RETURN FOR MENU
C

COPY — FROM, TO?
PROGR,AUTORUN.SYS/A

SELECT ITEM OR RETURN FOR MENU
D

DELETE FILESPEC
PROGR

TYPE ‘Y’ TO DELETE...
D:PROGR
Y

. If the other program loads above DOS:

SELECT ITEM OR RETURN FOR MENU
C

COPY — FROM, TO?
AUTORUN.SYS,PROGR/A

SELECT ITEM OR RETURN FOR MENU
D

DELETE FILESPEC

AUTORUN.SYS

TYPE Y’ TO DELETE...
D:AUTORUN.SYS

Y

SELECT ITEM OR RETURN FOR MENU
E

RENAME, GIVE OLD NAME, NEW
PROGR,AUTORUN.SYS

Advanced technical information 33

The PREPARE.BAS program

This program will remove the code that checks for the ATARI 850 interface
from any AUTORUN.SYS file. If you have the diskette version of BASIC/XA,
this program is saved on the program diskette as PREPARE.BAS.

1OOREM %k %k %k >k %k %k %k k %k k Xk % %k k %k % %k %k *k % % % % *k %k % %k % Xk
110 REM ** EXTENDED ATARI BASIC **
120 REM * * Version 1.1 **
130 REM *x *x

140 REM *x Program: PREPARE.BAS *x
150 REM ** Thomas Newton, 7/1982 *x

160REM % % %k %k %k 3k ok Xk K K Xk Xk Xk Xk k k % %k k % %k k %k % k k * * %

170 REM

180 REM

190 DIM A$(1)

200 GRAPHICS O:PRINT ‘“‘EXTENDED ATARI BASIC VERSION 1.1’
210 PRINT “‘Copyright 1982 Thomas Newton’’

220 PRINT:PRINT ‘‘This program remove the code that’’

230 PRINT ‘‘checks for the ATARI 850 from any”’

240 PRINT ‘““AUTORUN.SYS file.”

250 PRINT:PRINT ‘‘Insert your diskette in drive one’’

260 PRINT ‘‘and press any key to remove the ATARI’’

270 PRINT ‘850 code.”’

280 POKE 764,255

290 IF PEEK(764)=255 THEN 290

300 POKE 764,255

310 PRINT:PRINT ‘‘Working...””:PRINT

320 REM

330 REM Rename AUTORUN.SYS file

340 XIO 36,#1,0,0,D:AUTORUN.SYS”:REM unlock file if locked
350 XIO 32,#1,0,0,D:AUTORUN.SYS,AUTORUN.TMP”’

360 REM

370 REM Copy program tc AUTORUN.SYS,

380 REM except for ATARI 850 program

390 OPEN #1,4,0,“D:AUTORUN.TMP”’

400 OPEN #2,8,0,“D:AUTORUN.SYS”’

410 TRAP 640:REM End-of-file trap

420 GET#1,X:PUT #2,X:GET #1,X:PUT #2,X:REM Copy header bytes to file
430 REM

440 REM Block copy loop

450 GET#1,X:GET #1,Y:START=256*Y +X

460 IF START =65535 THEN 450

470 GET#1,A:GET#1,B:ADEND =256*B+ A

480 REM

490 REM Check for ATARI 850 INIT addr

500 IF START{ > 738 OR ADEND < »>739 THEN 540

510 GET #1,C:GET #1,D:IF (256*D + C) = 14336 THEN 440: REM Skip 850

INIT address

34 Advanced technical information

520

530
540
550
560

570
580
590
600
610
620
630
640
650
660

670

680

PUT #2,X:PUT #2,Y:PUT #2,A:PUT #2,B,C:PUT #2,D: GOTO 440:REM
Regular INIT — copy all bytes to output

REM

REM Check START and ADEND

FLAG = 1:IF START = 14336 AND ADEND = 14411 THEN FLAG=0

IF FLAG THEN PUT #2,X:PUT #2,Y:PUT #2,A:PUT #2,B: REM write
block addr

REM

REM Loop for all bytes

FOR ADDR = START TO ADEND

GET #1,BYTE:IF FLAG THEN PUT #2,BYTE

NEXT ADDR

GOTO 440

REM

REM Error trap — EOF

X =PEEK(195):REM get error number

CLOSE #1:CLOSE #2:XI1I0 33,#1,0,0, D:AUTORUN.TMP”’: REM Close
files and delete old program

IF X< > 136 THEN PRINT ‘‘Disk ERROR ‘“;X;’’ in line’’; PEEK-
(186) + 256 *PEEK(187)

IF X =136 THEN PRINT ‘‘Through.”

Advanced technical information 35

The ATARI 850 Interface handler

After the computer loads DOS and/or an autoloading program, it checks for
the presence of an ATARI 850 Interface Module. If it finds one, it loads the de-
vice driver over the serial bus. The device driver uses parts of page six while
loading and relocates itself at LOMEM. It uses about 2K of memory.

On a cassette-based ATARI Computer, the Operating System checks for the
850 when you turn the computer on. An autoboot cassette file will load before
the interface handler.

The sequence changes for a disk-based ATARI Computer. The computer
loads DOS, but due to a bug in the Operating System does not check for the
interface. To fix this bug, the AUTORUN.SYS file on the Master Diskette con-
tains a program to check for the interface module. Here is a disassmebly (la-
bels come from the Operating System User’s Manual)

3800 LDA #$50 ;Device and unit numbers
3802 STA DDEVIC ; forR1:

3805 LDA #$01

3807 STA DUNIT

380a LDA #$3F ;Unknown command (probably an
380c STA DCOMND ; INIT or UPLOAD command)
380F LDA #$40 ;Will read a data frame from
3811 STA DSTATS ; thedevice

3814 LDA #805

3816 STA DTIMLO ;Timeout = 5/60th of a second
3819 STA DBUFHI ;Load address = $0500
38lc LDA #$00

38le STA DBUFLO

3821 STA DBYTHI

3824 STA DAUX1 ;Auxillary bytes set to zero
3827 STA DAUX?2

382a LDA #$0c ;Transfer 12 bytes

382c¢c STA DBYTLO

382F JSR SIOV ;Call Serial Bus handler
3832 BPL GO ;Return if error (which
3834 RTS ; Inmeans no response)

3835 GO LDX #$0B ;Else copy these bytes

3837 LOOP LDA $0500,X ; asthe new serial

383a STA $0300,X ; buscommands

383d DEX

383e BPL LOOP

3840 JSR SIOV ;Load driver

3843 BMI RET ;Return on error

3845 JSR $0506 ;Init RS-232 code

3848 JMP (DOSINTI) ;Restart DOS

384b RET RTS

36 Advanced technical information

The program loads near the top of memory in a 16K ATARI Computer (DOS
requires at least 16K of memory). It is relocatable — if you move the program
up in memory, you don’t need to change any instructions.

When the ATARI 850 Interface Module is present, the device handler takes
about 2K of memory.

-Advanced technical information 37

Subroutines in BASIC/XA

Below is a description of each subroutine in BASIC/XA, its interface with the
rest of the program, and its purpose.

Name: TITLE
Entry conditions: program justloaded
Exit conditions: part of page six used, then set to zero:
cassette: locations $0689 to $06FF
diskette: locations $0600 to $0669
After BASIC/XA loads into memory, it does not use any part
of page six. By using page six during loading, I-added the
title message with no loss of user memory. Because of the
nature of the autoload process, it is impossible to tell that
page six was altered, since the program sets it back to zero.
Purpose: TITLE prints the title message and copyright:

*** EXTENDED ATARI BASIC
*** Version 1.1
*** Copyright 1982 Thomas Newton

Name: INIT
Entry conditions: program justloaded or SYSTEM RESET pressed
Exit conditions: MEMLO = address of first byte after program
DOSINI = address of INIT’s SYSTEM RESET routine
DOSVEC = address of NEWDOS (when user types DOS, BA-
SIC jumps through DOSVEC to BASIC/XA)
For program just loaded:
OLDINI = old contents of DOSINI
OLDDOS = old contents of DOSVEC
SYSTEM RESET while in BASIC/XA:
all registers restored
Screen Editor address/buffer length restored contents of
PTR and PTRR restored
Purpose: INIT links the program with the Operating System and DOS.

Name: NEWDOS

Entry conditions: user typed DOS while in BASIC

Exit conditions: jumps to MENTU code after
* saving registers, Screen Editor address/buffer length,
and the contents of PTR and PTR2
* setting the INUSE flag to $FF (program in use)
* setting NUMIOCB to $FF (print numbers to file)
* setting the output file as the screen and the cross refer-
ence command for 40 columns
* setting the screen margins to (2,39) and clearing the
screen with a GRAPHICS O
While you are in the BASIC/XA menu, the program uses
zero-page locations $CB through $CE as pointers. When you
return to BASIC or go to the DOS menu, their contents are
restored.

38 Advanced technical information

Name: MENU

Entry conditions: NEWDOS has just finished

Exit conditions: BASIC and DOS actually exit from the menu by popping the
return address from the stack and calling the RESTORE
subroutine to restore registers and pointers.

Calls: PRINT, INPUT,LISTV, VALUE, CHANGE, XREF, DELLIN,
RENUM, CHECK, OUTPUT, BASIC, and DOS Except for
PRINT and INPUT, MENTU calls these routines by copying
their addresses from a table and modifying a JSR at the end
of the MENT loop.

Purpose: MENTU displays the BASIC/XA menu, gets the user’s choice, and calls

the appropriate subroutine.

Name: PRINT

Entry conditions: Accumulator holds message #
All registers must be preserved IOCB is $00 (screen) or $50
(file); all printing directed to the ‘‘file’’ goes to channel #
IOCB.
Tables PRADDR and PRLEN hold the addresses and lengths
of all messages.
Table PRIOCB holds one byte for each message:
$00 means always to send the message to the screen.
$FF means to send the message to file #I0CB.

Exit conditions: All registers are preserved Input/output errors are han-
dled internally. When an error (including BREAK) occurs,
PRINT closes file #5, resets IOCB and XMAX for the screen,
prints “I/0 ERROR’’, and reprints the message.

Purpose: PRINT prints every message used by BASIC/XA (except for the title

message when you load the program).

Name: OUTCHR

Entry conditions: Accumulator holds character

Exit conditions: All registers are preserved

Purpose: OUTCHR prints a single character to file #I0CB. It uses PRINT to do the
actual work.

Name: LISTV

Called by: MENTU

Entry conditions: none

Exit conditions: none

Calls: PRINT, DUMP

Purpose: LISTV is selection A on the BASIC/XA menu. It sets DUMPPTR to point
to a RTS (do-nothing subroutine), then calls DUMP to list the variable names.

Name: DUMP

Called by: LIST, VALUE, and XREF

Entry conditions: DUMPPTR must be set to the address of a subroutine

Action: For each variable name, DUMP prints the variable name
calls subroutine (DUMPPTR) with PTR pointing to start of
variable name VNUM = variable number (O to 127) register
Y holdinglength of name all registers can be altered printsa
carriage return After printing the names, DUMP prints the
number of variable names in the table.

Exit conditions: All registers destroyed
PTR altered

Advanced technical information 39

Name: VALUE

Called by: MENU

Entry conditions: none

Action: Prints heading
Changes DUMPPTR to point to VALSUB
Calls DUMP to print the variable value table

Exit conditions: none

Purpose: VALUE is selection B on the BASIC/XA menu.

It prints the variable value table.

Name: VALSUB
Called by: DUMP (through DUMPPTR)
Entry conditions: PTR is off-limits VNUM holds number (0-127)
Action: VALSUB checks the variable value table entry for variable
) VNUM, then prints its value or dimension(s).
Exit conditions: All registers destroyed
PTRR altered
Purpose: VALSUB prints the variable values after the variable names.

Name: PINT
Entry conditions: FRO and FRO + 1 hold a 16-bit integer in low,high form
Exit conditions: All registers destroyed

MNUM holds length of ASCII representation
Purpose: PINT prints the integer in FRO to the output file (NUMIOCB = $FF,
which is most of the time), or the screen (NUMIOCB = $00).

Name: PFLT
Entry conditions: FRO holds a floating-point number
Exit conditions: All registers destroyed
MNUM holds length of ASCII representation
Purpose: PFLT prints the number in FRO to the output file (NUMIOCB = §FF,
which is most of the time), or the screen (NUMIOCB = $00).

Name: CHANGE

Called by: MENU

Entry conditions: none
Exit conditions: none

Calls:
1) GETVAR
Entry: none

Entry: none Return: BUF hold variable name with bit 7 of last character
set.

Y register holds length of variable name.
A register holds last character (with bit 7 set).
Carry set if error, clear if no error. GETVAR prints its own
error messages.
Purpose: GETVAR gets a variable name for CHANGE and puts it in the format
used by the variable name table.

2) FINDVAR

Entry: BUF holds variable name to be found

Y register holds length of variable name

Return: Carry set if name not found.

If name found (carry clear), PTR points to the start of the
name in BASIC’s variable name table.

40 Advanced technical information

3) DELETER

Entry: PTR points to start of name to delete

LEND holds length of variable name

Return: Variable name deleted and BASIC’s pointers ad-
justed. PTRR is altered.

4) INSERT

Entry: PTR = where to insert new variable name

BUF holds variable name with bit 7 of last character set.
LENI is the length of the new variable name.

Return: Variable name inserted into BASIC’s variable name
table PTRR is altered.

Purpose: CHANGE is selection C on the BASIC/XA menu. It lets the user change
variable names.

Name: GETVAR

Called by: CHANGE

Entry/exit: described above

Purpose: GETVAR gets a variable name from the user and puts it in the correct
format for BASIC’s variable name table.

Name: FINDVAR

Called by: CHANGE

Entry/exit: described under CHANGE

Purpose: FINDVAR finds the name in BUF in BASIC’s variable name table.
CHANGE uses FINDVAR twice — to find the old name in the table, and to make
sure the new name is unused.

Name: DELETE2

Called by: CHANGE

Entry/exit: described under CHANGE

Purpose: DELETER deletes a variable name from BASIC’s variable name table.
CHANGE uses DELETER to remove the old variable name before inserting the
new one.

Name: INSERT

Called by: CHANGE

Entry/exit: described under CHANGE

Purpose: INSERT puts the new variable name in BASIC’s variable name table.

Name: DELETE
Called by: DELETER, DELLIN
Entry conditions: PTR points to start of delete area
LEND holds number of bytes to delete
Exit conditions: PTR unchanged; PTRR altered
All registers destroyed
BASIC pointers common to both variable names and pro-
gram lines adjusted for deletion
Purpose: DELETE remove program lines and variable names from the program.

Advanced technical information 41

Name: LINES
Called by: DUMP, RENUM, CHECK
Entry conditions: LINPTR = address of subroutine to call for each stmt.
Exit conditions: PTRR is altered by LINES
PTR may be altered by subroutine (LINPTR)
All registers destroyed
Calls: XREFSUB, RENSUB, and CHSUB (through LINPTR)
Conditions: LINENO = current line number (low byte, high byte)
LINELEN = length of current line (one byte)
INDEX = offset to statement length byte from start of current line
CMDBYT and register Y = offset to statement command byte from
start of current line.
LIMIT = offset to next statement length byte (LIMIT = LINRLRN if
current statement is the last statement in the line)
PTRR points to the start of the current line.
None of these variables may be altered.
The subroutine does not need to preserve any registers.
Purpose: LINES loops through all the statements in the program.
By breaking a line into statements, LINES simplifies the jobs of
XREFSUB, RENSUB, and CHSUB.

Name: XREF

Called by: MENTU

Entry conditions: none

Exit conditions: none

Calls: DUMP, PRINT

Action: XREF prints the heading ‘“VARIABLE CROSS REFERENCE TABLE”’
It changes DUMPPTR to LINES and LINPTR to XREFSUB
XREF then calls DUMP:
For each variable name, DUMP prints the name and calls
LINES:
XREFSUB checks to see if variable VNUM is used in the cur-
rent statement and prints the line number if so. After print-
ing the names, DUMP prints the number of variable names
in the table.

Purpose: XREF is selection D on the BASIC/XA menu. It prints a cross-

reference listing of variable names and line numbers.

Name: XREFSUB

Called by: LINES (through LINPTR)

Entry conditions: seecalling conditionsfor DUMP and LINES, also OLDVAR =
last variable for which XREFSUB printed a cross reference.
OLDVAR isnormally O to 127, but XREF sets it to 255 so that
the first cross-reference starts a new line.
OLDLIN = lastline number printed
XCNT = number of references printed on current line
XMAX = maximum number of cross-references per line.
When XCNT = XMAX, XREFSUB starts a new line before
printing a cross-reference.

Calls: TOKEN, PRINT, PINT

Exit conditions: All registers destroyed
OLDVAR, OLDLIN, and XCNT updated when XREFSUB
prints a line number

42 Advanced technical information

Action: XREFSUB checks the current statement for variable #
VNUM
If the variable is in the statement:
If VNUM is not equal to OLDVAR or LINENO is not equal to
OLDLIN:
Start new printing line if VNUM and OLDVAR are different.
Start new printing line if XCNT = XMAX.
Print LINENO plus enough spaces to pad the field to seven
characters
Let XCNT = XCNT + 1
Let OLDVAR = VNUM and OLDLIN = LINENO
Purpose: XREFSUB prints the line numbers in the cross-reference table. The
width of the table is set by XMAX; XREFSUB will print up to XMAX references
per line, for a width of 7*XMAZX + 6 characters (XMAX =4 for the screen, and
XMAX =4 or 10 for printouts).

Name: TOKEN
Called by: XREFSUB, RENSUB
Entry conditions: seecalling conditions for LINES, also Y register holds offset
to current token from the start of the line
Exit conditions: OLDY = contents of Y register on entry
Y register points to next token (if any) or the same one (if
none)
A register holds symbol (if any left) — for a numeric con-
stant or string constant, the A register holds the first byte.
Carry set if there were no tokens left in the statement on en-
try
All registers destroyed
Purpose: TOKEN gets the next token in the current statement. Since XREFSUB
and RENSUB need to get the next token in the current statement, I put the code
in a subroutine. This also made it easier to handle statements such as IF A=B
THEN PRINT A, where BASIC treats theline as two statements — IF A =BTHEN
and PRINT A — but does not put an end-of-statement byte between them.

Name: DELLIN

Called by: MENU

Entry conditions: none

Exit conditions: none

Calls: GETTWO, DELETE, PRINT

Purpose: DELLIN is selection E on the BASIC/XA menu. It deletes a range of
lines from the program.

Name: GETTWO
Called by: DELLIN, RENUM
Entry conditions: none
Exit conditions: Carry set if error (error messages handled internally)
If no error, carry clear and NUM1/NUMR hold numbers in
the range of O to 32767.
All registers destroyed
Purpose: GETTWO gets two numbers from the user and checks to make sure
that they are in the range of O to 32767.

Advanced technical information 43

Name: RENUM

Called by: MENU

Entry conditions: none
Exit conditions: none

Calls: PRINT, LINES, GETTWO

Purpose: RENUM is selection F on the BASIC/XA menu. It renumbers a BASIC

program the following way:

Calls PRINT and GETTWO for starting line number and increment. If the user
just presses RETURN, RENUM uses 10 for both numbers.
Checks to see if renumbering is possible by setting a tempo-
rary variable to NUM1 and adding NUMR for each line of the
program. If the sum exceeds 32767, RENUM prints the
CAN'T RENUMBER message.

*** JF RENUMBERING IS POSSIBLE * **

Changes LINPTR to RENSUB and calls LINES. LINES calls
RENSUB for each statement, and RENSUB changes the line
reference in that statement. To save memory, RENSUB uses
the line numbers at the beginning of each line (which have
not been changed yet) to calculate new line numbers.
Changes the line numbers at the start of each line.

Name: RENSUB

Called by: LINES (through LINPTR)

Entry conditions: see calling conditions for LINES

Exit conditions: All registers destroyed; PTR altered

Calls: GETNEW, PRINT, PINT

Action: If RFLAG is zero, RENSUB updates GOTO, GOSUB, etc., references in the
current statement and checks them for errors. If RFLAG is 255, RE-
NSUB just checks the statement, but does not update it.
The combination of LINES and RENSUB checks every statement in the
program.

Purpose: RENSUB updates GOTO, GOSUB, etc., references for RENUMBER. It

also checks GOTO, GOSUB, etc., references for CHECK PROGRAM.

Name: GETNEW

Called by: RENSUB

Entry conditions:

PTRR off-limits

FLIN holds line

number to find

Exit conditions: PTR altered
If line FLIN exists, FRO = new line number after renum-
bering
Carry set if line FLIN does not exist

Name: CHECK

Called by: MENU

Entry conditions: none

Exit conditions: none

Calls: LINES

Action: CHECK sets LINPTR to RENSUB, sets RFLAG to 255, and calls LINES to
check all GOTO, GOSUB, etc., references.
Then CHECK sets LINPTR to CHSUB and calls LINES to check for syn-
tax errors and INPUT statements without variable names. .

Purpose: CHECK is selection G on the BASIC/XA menu. It checks the program

for common errors.

44 Advanced technical information

D

Name: CHSUB

Called by: LINES (through LINPTR)

Entry conditions:

see calling condi-

tions for LINES

Exit conditions: All registers destroyed

Purpose: CHSUB checks the current statement for syntax errors.

Name: OUTPUT

Called by: MENU

Entry conditions: none

Exit conditions: none

Calls: INPUT, Operating System

Action: OUTPUT closes file #5 and sends output to the screen. Then it prompts
the user for a filename. OUTPUT attempts to open the file. If successful,
it sets IOCB to $50 (file number * 16, as required by the Operating Sys-
tem).
There are two bugs in the cassette handler: (1) sometimes incorrect
tones are written on the tape leader, and (2) the motor does not stop af-
ter an OPEN for writing. OUTPUT contains code to defeat these bugs
(however, you will still encounter them in your programming).

Purpose: OUTPUT is selection H on the BASIC/XA menu. It sends output from

LIST VARIABLES, VARIABLE VALUES, and CROSS REFERENCE to the screen,

printer, or tape/diskette file.

Name: BASIC

Called by: MENU

Action: The subroutine pulls the return address off the stack, calls RESTORE,
and does a RTS to return to BASIC.

Purpose: Returns to BASIC from the menu.

Name: DOS

Called by: MENTU

Action: The subroutine pulls the return address off the stack, calls RESTORE,
and does a JMP (OLDDOS) to go to the DOS menu.

Purpose: Goes to the DOS menu from the BASIC/XA menu.

Name: RESTORE
Called by: BASIC, DOS, INIT
Entry conditions: none
Exit conditions: File #5 closed
Screen Editor buffer and length restored
Contents of PTR and PTRR restored
All registers restored to original values
Purpose: RESTORE restores the state of the ATARI Computer before returning
to DOS, the Operating System, or BASIC.

Name: INPUT

Called by: many subroutines

Entry conditions: A register = maximum number of characters (incl. RE-
TURN)

Exit conditions: BMI on error; Y register holds status/error code

Purpose: INPUT gets a line of input from the user and masks lower case and

inverse video.

Advanced technical information 45

|
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|

""t’.ﬁ—————_—_——‘_"‘_“———‘—""‘__‘j

P.O. Box 3705
Santa Clara, CA 95055

APX

ATARI Program Exchange

We're interested in your experiences with
APX programs and documentation, both fa-
vorable and unfavorable. Many of our authors
are eager to improve their programs if they
know what you want. And, of course, we want
to know about any bugs that slipped by us, so
that the author can fix them. We also want to

1. Name and APX number of program.

Review Form

know whether our instructions are meeting
your needs. You are our best source for
suggesting improvements! Please help us by
taking a moment to fill in this review sheet.
Fold the sheet in thirds and seal it so that the
address on the bottom of the back becomes
the envelope front. Thank you for helping us!

2. If you have problems using the program, please describe them here.

3. What do you especially like about this program?

4. What do you think the program’s weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

6. On a scale of 1 to 10, 1 being “poor” and 10 being “excellent”, please rate the follow-

ing aspects of this program:

Easy to use

Enjoyable
Self-instructive
Use (non-game programs)

User-oriented (e.g., menus, prompts, clear language)

Imaginative graphics and sound

7. Describe any technical errors you found in the user instructions (please give
page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “excellent”, how
would you rate the user instructions and why?

11. Other comments about the program or user instructions:

From

STAMP

Apy ATARI Program Exchange
P.O. Box 3705

@

\ Santa Clara, CA 95055

[seal here]

BASIC/XA
by Thomas Newton

e Speed up coding and debugging

your BASIC programs

e Select all utilities from a menu

e List or change variables, renumber
or delete lines, check for syntax

errors

Here's a package of development
tools ATARI BASIC programers
will find invaluable; they're easy
to use and fast. Interfacing between
your program and the DOS menu,
BASIC/XA lets you list all pro-
gram variables, their values, and
dimensions, and which lines use
them; change variable names;
delete a range of lines; renumber
the program; and check for bad
GOTO statements and syntax

errors. Another option lets you
print, or store on diskette or cas-
sette, the variable list, variable
values, and the cross-reference

table.

Touse BASIC/XA with a program,
you first load BASIC/XA into
memory. Both the development
tools and all the normal DOS
options are then available. Next
you load in the program you want
to work on. To use a tool, you type
DOS, which causesthe BASIC/XA
menu to display. From this menu,
you can select a tool, return to
ATARI BASIC, or go on to the
ATARIDOS menu. With BASIC/XA
you have easy access to all DOS
functions, along with a collection
of handy, easy-to-use program-

ming aids.

Only eighteen years old, Thomas
Newton has already begun the
first year of a doctoral program
in computer science. He hasn't
decided whether he'll turn to
industry or teaching when he
earns his Ph.D. In the meantime,
he chose an ATARI Home Com-
puter for his own use because of

About the author

Thomas Newton

its excellent graphics features
and technical manuals. An article
about ATARI BASIC by Lane
Winner, in Byte magazine, helped
him to write the BASIC/XA
program. Tom's home is Wrights-
ville, North Carolina, but he's
pursuing graduate studies in
Pittsburgh.

Cassette: version 1 Diskette: version 1

Edition B

Requires: ‘_“
ATARI BASIC

Language
Cartridge

Cassette
(APX-10177)
ATARI 410™
Program
Recorder
16K RAM

Diskette
(APX-20177)
ATARI 810™
Disk Drive
24K RAM

Optional:
ATARI printer
or equivalent
printer

