
*--,,

	

-4->>->iit,r;''` 	
. 	 . 	__.... .:•e-m-5:--7i,

- • 	e _
'

	

. 	 _

- :•44.34,=e- - -
• * 	'../. -

	

2.1 - 74,.., - -, ,-- 	-- 	,..x.1,--,_ 	, -..-
	 ' 54tr'-gt , - 	e------ 	 . » -• ' 	 ,. "--'-',.':1-: --

	

„.• 	
/ 	 ..--.Z.: '`.1. - 	- 	_

	

. 	
' 	..• 	• 	 ' 	, 	 -

	

.gi•."..., 	.,‘••, 	,.-•
r

-e"-- 4,e -',-- -- -- 	 -

la.-- opete

	

_ 	 , _ , 	 4.-.... * 	 '.•Tal* 	
... 	 . -

,.'
• 's 	 , • _ - - , 11177

, 	 -

	

..' 	
'

	

=2, 	 ,

	

'.4e--, ... y 	---;_e-,-...-e%-..--_-: 	 _ 	..
.

,...,---- „
------;-2-....., 	

..4-N. 	•-:,.-- 	.._ -..-. 	1 ,

	

- 	, 	 „. 	•: • i.,_., 	 , 	.- 	„- 	 ,-„--.-,.....r. 	 ..,. ,
•

	

,.,%.. , estii --,.. 	Iter,.,' 	_J - ,,, ---... , 	 w ' 	 • 	 ..

,
' 	 .

,• --‘,., 	 - k 	...,„.. ,= 	 _ 	 . ,....- 	 .

..,i 	'-- ' 	V.-7.- 	 .' , '- 	 - ' '-'"-".-97.,6,-- . 	 ..,...

	

-, 	r 	
, ,„

Ar41 . 	 , . 	 . 	, 	, , 	, 	,•"-:7- 	 ' 	
' g' ' 	 iii 	 --";•' ' 	e, 	 . 	 ' 	'.. 	..,

	

..4 	- 	 ,_ - 	 'a 	1,

	

, ■ 	e - ' 	• , 	 . 	I 	-4".,-,- - 	• -
... ,_ 	. ,

	

› 	.
,1 7.---,:i

	

"T--- .- -e , : I 	 -

	

-, 	\---- 	 - - 7. 	 - ' . " '" 	 ..,-----"....._-- ,-
	

-- 	 - ' 	-.77' 	 ,1" • ,,_--

	

- 	 : ...;-••-=‘,• 	_,...4•"*"------Y 	 - 	 -- 	 -- 	.,.-- .7-,--,,,24-- -....-rr,--,--'

	

.. 	_

	

--. - ,,.,----,..-. 	s 	V - -.--.- - -1 - *‘--,ere 	 .- 	__ - - -* 	- 	 --- ..:- rAtek-:..-..- .,,---_,--` , 	.._ 	 _
- -

- 	 ----'----

	

- 	- .•

1 	
, 	___. 	. 	..,,._:,,,..e.(,...„..,,.-.:._-__..,... 	 •---.- 	-..<-;--__-....__.,.. 	- 	 - ,...„ - ---- 	 .

	

. 	 2, e----

	

_- 	
.

,,,c.;*-------,---_- --. --- . 	 . 	 1 "41 	' 	F--='re%„ 	- 	e

	

1.- , - .. 	te 	tw- 	•=', 	----.-_,_-_ _ 	- 	-.,,,,-.. 	 -e

	

- 	 - 	I .1

	

,. 	- .
,...

	

7:;' '''
• 7}---- -- --. ATA 	t 	2- ‘. 	----7Ae .>---- 	- 	-t 	

......

	

- 	_ 	 ..., 	 . 	 , . 	
T

/ 	 , 	 ,- 	 ' 	 -:' 	eAt 	';• 	 ..." '• 	 ■ 	 '",--.. ___,,. 	 s
- - -

	

ar 	• rd 	 a I 	,,,,, 	,Illeria'? 	ri _ • 	 . 	oeys Coigazanyet 	- ,' 	_
' 	 ------, - 	•,-. 	-i. 	-,--, 	, 	',7--. - '-- -,-,- 	̀. 	54---_ 	 y 	0--ell

	

.-;.-- 	 -,..... . 	 ,, 	,t-- 	
l'''- 	.1, 	 • 1, \ 	 . 	.--_->".Se,, 	 - 	-, 	 J '

ERROR CODES

ERROR
CODE ERROR CODE MESSAGE

2 Memory Insufficient
3 Value Error
4 Too Many Variables
5 String Length Error
6 Out of Data Error
7 Number greater than 32767
8 Input Statement Error
9 Array or String DIM Error

10 Argument Stack Overflow
11 Floating Point Overflow/

Underflow Error
12 Line Not Found
13 No Matching FOR Statement
14 Line Too Long Error
15 GOSUB or FOR Line Deleted
16 RETURN Error
17 Garbage Error
18 Invalid String Character

Note: The following are INPUT/OUTPUT er-
rors that result during the use of disk drives,
printers, or other accessory devices. Further in-
formation is provided with the auxiliary hard-
ware.

19 LOAD program Too Long
20 Device Number Larger
21 LOAD File Error

128 BREAK Abort
129 IOCB
130 Nonexistent Device
131 IOCB Write Only
132 Invalid Command
133 Device or File not Open
134 BAD IOCB Number
135 IOCB Read Only Error
136 EOF
137 Truncated Record
138 Device Timeout
139 Device NAK
140 Serial Bus
141 Cursor Out of Range

ERROR
CODE ERROR CODE MESSAGE

142 Serial Bus Data Frame Overrun
143 Serial bus data frame checksum error
144 Device done error
145 Read after write compare error
146 Function not implemented
147 Insufficient RAM
160 Drive number error
161 Too many OPEN files
162 Disk full
163 Unrecoverable system data I/O error
164 File number mismatch
165 File name error
166 POINT data length error
167 File locked
168 Command invalid
169 Directory full
170 File not found
171 POINT invalid

For explanation of Error Messages see Appendix B.

BASIC
REFERENCE

MANUAL

)IL
ATARI®

0A Warner Communications Company

Every effort has been made to ensure that this manual accurately documents the operation of the ATARI 400 and the ATARI 800 com-
puter. However, due to the ongoing improvement and update of the computer software, Atari, Inc. cannot guarantee the accuracy of
printed material after the date of publication, nor can Atari accept responsibility for errors or omissions. Revised manuars and update
sheets will be published as needed and may be purehased by writing to:

Atari Software Support Group
P.O. Box 427
Sunnyvale, CA 94086

Printed in USA
	

©1980 ATARI, INC.

CONTENTS

PREFACE

1 GENERAL INFORMATION

vii

Terminology 1
Special Notations Used In This Manual 3
Abbreviations Used In This Manual 4
Operating Modes 5
Special Function Keys 5
Arithmetic Operators 6
Operator Precedence 7
Built-In Functions 7
Graphics 8
Sound and Garnes 8
Wraparound and Keyboard Rollover 8
Error Messages 8

2 COMMANDS

BYE 9
CONT 9
END 9
LET 10
LIST 10
NEW 10
REM 10
RUN 11
STOP 11

3 EDIT FEATURES

Screen Editing 13
Contröl (CTRL) Key 13
Shift Key 13

Double Key Functions 14
Cursor Control Keys 14
Keys Used With CTRL Key 14
Keys Used With Shift Key 14

Special Function Keys 14
Break Key 14
Escape Key 14

4 PROGRAM STATEMENTS

FOR/NEXT/STEP 15
GOSUB/RETURN 16
GOTO 17
IF/THEN 18

Contents lii

ON/GOSUB
ON/GOTO
POP
RESTORE
TRAP

20
20
20
21
22

5 INPUT/OUTPUT COMMANDS

Input/Output Devices 23
CLOAD 24
CSAVE 24
DOS 25
ENTER 25
INPUT 25
LOAD 26
LPRINT 26
NOTE 26
OPEN/CLOSE 26
POINT 28
PRINT 28
PUT/GET 28
READ/DATA 28
SAVE 29
STATUS 29
XIO 30
Chaining Programs 30

6 FUNCTION LIBRARY

Arithmetic Functions 33
ABS 33
CLOG 33
EXP 33
INT 33
LOG 34
RND 34
SGN 34
SQR 34

Trigonometric Functions 34
ATN 34
COS 34
SIN 35
DEG/RAD 35

Special Purpose Functions 35
ADR 35
FRE 35
PEEK 35
POKE 35
USR 36

7 STRINGS
ASC 	 37
CHR$ 	 37

IV COntents

LEN 	 38
STR$ 	 38
VAL 	 38
String Manipulations 	 39

8 ARRAYS AND MATRICES

DIM 	 41
CLR 	 43

9 GRAPHICS MODES AND COMMANDS

GRAPHICS 	 45
Graphics Modes 	 45

Mode 0 	 46
Modes 1 and 2 	 46
Modes 3, 5, and 7 	 47
Modes 4 and 6 	 48
Mode 8 	 47'

COLOR 	 48
DRAWTO 	 48
LOCATE 	 48
PLOT 	 49
POSITION 	 49
PUT/GET 	 49
SETCOLOR 	 50
XIO (Special Fill Application) 	 54
Assigning Colors to Text Modes 	 54
Graphics Control Characters 	 56

10 SOUND AND GAME CONTROLLERS

SOUND 	 57
PADDLE 	 59
PTRIG 	 59
STICK 	 59
STRIG 	 60

11 ADVANCED PROGRAMMING TECHNIQUES

Memory Conservation 	 61
Programming In Machine Language 	 63

APPENDIX A BASIC RESERVED WORDS 	A-1

APPENDIX B ERROR MESSAGES 	 B-1

APPENDIX C ATASCII CHA.RA.CTER SET
WITH DECIM.AL/
HEXADECIMAL LOCATIONS c-i.

APPENDIX D ATARI 400/800
MEMORY MAP 	 D-1

Contents V

APPENDIX E DERIVED FUNCTIONS

APPENDIX F PRINTED VERSIONS OF
CONTROL CHARACTERS F-1

APPENDIX G GLOSSARY 	 G-1

APPENDIX H USER PROGRAMS 	 11-1

APPENDIX I MEMORY LOCATIONS 	I-1

INDEX 	 117

vi Contents

PREFACE

This manual assumes the user has read the Atari BASIC — A Seif-Teaclang
Guide or some other book on BASIC. This manual is not intended to "teach"
BASIC. lt is a reference guide to the commands, statements, functions, and
special applications of Atari® BASIC.

The programs and partial programming examples used in this manual are
photostats oflistings printed on the Atari 820TM Printer. Some of the special Sym-
bols in the Atari character set do not appear the same on the printer; e.g., the
clear screen symbol appears as a " ". The examples in the text were
chosen to illustrate a particular function — not necessarily "good" programming
techniques.

Each of the sections contains groups of commands, functions, or statements
dealing with a particular aspect of Atari BASIC. For instance, Section 9 contains
all the statements pertaining to Atari's unique graphics capabilities. The appen-
dices include quick references to terms, error messages, BASIC keywords,
memory locations, and the ATASCII character set.

As there is no one specified application for the Atari Personal Computer System,
this manual is directed at general applications and the general user. Appendix H
contains programs that illustrate a few of the Atari system's capabilities.

Preface vii

1

GENERAL
INFORMATION

This section explains BASIC terminology, special notations, and abbreviations
used in this manual, and the special keys on the ATARI 4QQTM and ATARI 800T 1
Personal Computer Systems keyboard. lt also points to other sections where
BASIC commands deal with specific applications.

TERMINOLOGY BASIC: Beginner's All-purpose Symbolic Instruction Code.

BASIC Keyword: Any reserved word "legal" in the BASIC language. May be
used in a statement, as a command, or for any other purpose. (See Appendix A
for a list of all "reserved words" or keywords in ATARI BASIC.)

BASIC Statement: Usually begins with a keyword, like LET, PRINT, or
RUN.

Constant: A constant is a value expressed as a number rather than represented
by a variable name. For example, in the statement X = 100, X is a variable and
100 is a constant. (See Variable.)

Command String: Multiple commands (or program statements) placed on the
same numbered line separated by colons.

Expression: An expression is any legal combination of variables, constants,
operators, and functions used together to compute a value. Expressions can be
either arithmetic, logical, or string.

Function: A function is a computation built into the computer so that it can be
called for by the user's program. A function is NOT a statement; it is part of an
expression. lt is really a subroutine used to compute a value which is then
"returned" to the main program when the subroutine returns. COS (Cosine),
RND (random), FRE (unused memory space), and INT (integer) are examples of
functions. In many Cases the value is simply assigned to a variable (stored in a
variable) for later use. In other cases it may be printed out on the screen im-
mediately. See Section 6 for more on functions. Examples of functions as they
might appear in programs are:

113 PRINT RNE()

11.3 Xr--.1E1F1+012(45

(print out the random
number returned)

(add the value re-
returned to 100 and
store the total in
variable X)

General Information 1

Logical Line: A logical line consists of one to three physical lines, and is ter-
minated either by a RETURN or automatically when the maximum logical line
limit is reached. Each numbered line in a BASIC program consists of one logical
line when displayed on the screen. When entering a line which is longer than
one physical line, the cursor will automatically go to the beginning of the next
physical line when the end of the current physical line is reached. If RETURN is
not entered, then both physical lines will be part of the same logical line.

Operator: Operators are used in expressions. Operators include addition (+),
subtraction (-)‚ multiplication (* division (/), exponentiation (A), greater than
(›), less than (<)‚ equal to (= greater than or equal to (> .), less than or equal to
(< =), and not equal to (< >). The logical keywords AND, NOT and OR are also
operators. The + and - operators can also be used as unary operators; e.g., - 3.
Do not put several unary operators in a row; e.g.,--3, as the computer will in-
terpret it incorrectly.

Physical Line: One line of characters as displayed on a television screen.

string: A string is a group of characters enclosed in quotation marks.
"ABRACADABRA" is a string. So are "ATARI MAKES GREAT COMPUTERS"
and "123456789". A string is much like a constant, as it too, may be stored in a
variable. A string variable is different, in that its name must end in the
character $. For example, the string "ATARI 800" may be assigned to a variable
called A$ using (optional) LET like this:

12 LET AS=HATARI 222" 	 (note quotation marks)

OR
12 A$="ATARI 202" 	 (LET is optional; the

quotes are required.)

Quotation marks may not be used within a string. However, the closing quota-
tion can be omitted if it is the last character on a logical line. (See Section 7 -

STRINGS).

Variable: A variable is the name for a numerical or other quantity which may
(or may not) change. Variable names may be up to 120 characters long.
However, a variable name must start with an alphabetic letter, and may contain
only capital letters and numerical digits. lt is advisable not to use a keyword as a
variable name or as the first part of a variable name as it may not be interpreted
correctly. Examples of storing a value in a variable:

LETC127003=1_234
LETUARIABLE112=257.543
LETA=1
LETF5TH-G.5
LETTHISNO = 59.309

Note: LET is optional and may be omitted)

Variable Name Limit: ATARI BASIC limits the user to 128 variable names.To
bypass this problem, use individual elements of an array instead of having
separate variable names. BASIC keeps all references to a variable which has
been deleted from a program, and the name still remains in the variable name
table.

2 Generalbyönnation

If the screen displays an ERROR-4 (Too Many Variables) message, use the follow-
ing procedure to make room for new variable names:

LIST filesPec

NEW

ENTER filesPec

The LIST filespec writes the untokenized version of the program onto a disk or
cassette. NEW clears the program and the table areas. The program is then re-
entered, re-tokenized, and a new variable table is built. (The tokenized version
is Atari BASIC's internal format. The untokenized versions in ATASCH
which is the version displayed on the screen).

Arrays and Array Variables: An array is a list of places where data can be
Med for future use. Each of these places is called an element, and the whole array
or any element is an array variable. For example, define "Array A" as having 6
elements. These elements are referred to by the use of subscripted variables
such as A(2), A(3), A(4), etc. A number can be stored in each element. This
may be accomplished element by element (using the LET statement), or as a part
of a FOR/NEXT loop (see Chapter 8).

Note: Never leave blanks between the element number in parentheses and the
name of the array.

Correct 	 Incorrect

A(23) 	 A 	 (23)
ARRAY(3) 	 ARRAY (3)
X123(38) 	 X123 	(38)

SPECIAL 	Line Format: The format of a line in a BASIC program includes a line number

NOTATIONS 	(abbreviated to lineno) at the beginning of the line, followed by a statement
keyword, followed by the body of the statement and ending with a line ter-

USED IN THIS 	minator command (nETuRN key). In an actual program, the four elements might
MANUAL 	look like this:

STATEMENT

Line Number 	Keyword 	 Body 	Terminator
100 	 PRINT 	A/X * (Z + 4.567) 	RETURN

Several statements can be typed on the same line provided they are separated by
colons (:). See IF/THEN in Section 5, and Section 11.

Capital Letters: In this book, denote keyvvords to be typed by the user in up-
per case form exactly as they are printed in this text. Reverse-video characters
will not work except in the case of the RUN command. Here are a few ex-
amples:

PRINT INPUT LIST END GOTO GOSUB FOR NEXT IF

Lower Case Letters: In this manual, lower case letters are used to denote the
various classes of items which may be used in a program, such as variables
(var), expressions (exp), and the like. The abbreviations used for these classes of
items are shown in Table 1.1.

General Information 3

Items in Brackets: Brackets, II 1, contain optional items which may be used,
but are not required. If the item enclosed in brackets is followed by three dots
[exp,...], it means that any number of expressions may be entered, but none are
required.

Items stacked vertically in braces: Items stacked vertically in braces indicate
that any one of the stacked items may be used, but that only one at a time is per-
missible. In the example below, type either the GOTO or the GOSUB.

wo{ GOTO 12000
GOSUB

Command abbreviations in headings: If a command or statement has an ab-
breviation associated with it, the abbreviation is placed following the full name
of the command in the heading; e.g., LET (L.).

ABBREVIATIONS The following table explains the abbreviations used throughout this manual:

USED IN THIS 	
MANUAL 	 TABLE 1.1 ABBREVIATIONS

avar

svar

mvar

Arithmetic Variable: A location where a numeric value is
stored. Variable names may be from 1 to 120 alphanumeric
characters, but must start with an alphabetic character, and all 	_
alpha characters must be unreversed and upper case.

String Variable: A location where a string of characters may be
stored. The same name rules as avar apply, except that the last
character in the variable name must be a $. String variables may
be subscripted. See Section 7, STRINGS.

Matrix Variable: Also called a Subscripted Variable. An ele-
ment of an array or matrix. The variable name for the array or
matrix as a whole may be any legal variable name such as A, X,
Y, ZIP, or K. The subscripted variable (name for the particular
element) starts with the matrix variable, and then uses a number,
variable, or expression in parentheses immediately following the
array or matrix variable. For example, A(ROW), A(1), A(X + 1).

var Variable: Any variable. May be mvar, avar, or svar.

aop Arithmetic Operator.

lop Logical operator.

aexp Arithmetic Expression: Generally composed of a variable,
function, constant, or two arithmetic expressions separated by an
arithmetic ourator.

lexp Logical Expression: Generally composed of two arithmetic or
string expressions separated by a logical operator. Such an ex-
pression evaluates to either a 1 (logical true) or a 0 (logical false).

For example, the expression 1<2 evaluates to the value 1 (true)
while the expression "LEMON" = "ORANGE" evaluates to a zero
(false) as the two strings are not equal.

4 General Information

sexp 	String Expression: Can consist of a string variable, string literal
(constant), or a function that returns a string value.

exp 	 Any expression, whether sexp or aexp.

lineno 	Line Number: A constant that identifies a particular program
line in a deferred mode BASIC program. Must be any integer
from 0 through 32767. Line numbering determines the order of
program execution.

adata 	ATASCII Data: Any ATASCII character excluding commas and
carriage returns. (See Appendix C.)

filespec 	File Specification: A string expression that refers to a device
such as the keyboard or to a disk file. lt contains information on
the type of I/O device, its number, a colon, an optional file name,
and an optional filename extender. (See OPEN, Section 5.)

Example filespec: "Dl:NATALIE.ED"

OPERATING 	Direct Mode: Uses no line numbers and executes instruction immediately after

MODES 	 RETURN key is pressed.

Deferred Mode: Uses line numbers and delays execution of instruction(s) until
the RUN command is entered.

Execute Mode: Sometimes called Run mode. After RUN command is entered,
each program line is processed and executed.

Memo Pad Mode: A non-programmable mode that allows the user to experi-
ment with the keyboard or to leave messages on the screen. Nothing written
while in Memo Pad mode affects the RAM-resident program.

Reverse (Inverse) Video key, or "ATARI LOGO KEY". Press- SPECIAL
ing this key causes the text to be reversed on the screen (dark FUNCTION 	 text on light background). Press key a second time to return to

KEYS 	 normal text.

CAPS/LOWR 	Lower Case key: Pressing this key shifts the screen characters
from upper case (capitals) to lower case. To restore the characters
to upper case, press the sHIFT key and the CAPS/LOWR key
simultaneously.

1113 	Escape key: Pressing this key causes a command to be entered
into a program for later execution.

Example: To clear the screen, you would enter:

10 PRINT " 	Em3 CLEAR "

and press RETURN .

Escape is also used in conjunction with other keys to print special
graphic control characters. See Appendix F and back cover for
the specific keys and their screen-character representations.

General Information 5

BREAK 	 Break key: Pressing this key during program execution causes
execution to stop. Execution may be resumed by typing CONT
followed by pressing RETURN

SYSTEM RESET 	System Reset key: Similar to BREAK in that pressing this key
stops program execution. Also returns the screen display to
Graphics mode 0, clears the screen, and returns margins and
other variables to their default values.

SET-CLR-TAB 	Tab key: Press SHIFT and the SET-CLR-TAB keys simultaneously to
set a tab. To clear a tab, press the EZ3 and SET•CLR•TAB keys
simultaneously. Used alone, the SET-CLR-TAB advances the cursor to
the next tab position. In Deferred mode, set and clear tabs by
preceding the above with a line number, the command PRINT, a
quotation mark, and press the EZ key.

Examples:
100 PRINT " CE31 SHIFT SET-CLR-TAB "
200 PRINT " 1E3 Ez3 SET•CLR-TAB "

Default tab settings are placed at columns 7, 15, 23, 31, and 39.

INSERT 	 Insert key: Press the SHIFT and INSERT keys simultaneously to
insert a line. To insert a single character, press the GE3 and

INSERT keys simultaneously.

DELETE BACK S 	Delete key: Press the SHIFT and DELETE keys simultaneously
to delete a line. To delete a single character, press EM and

DELETE simultaneously.

DELETE BACK S 	Back Space key: Pressing this key replaces the character to the
left of the cursor with a space and moves cursor back one space.

CLEAR 	 Clear key: Pressing this key while holding down the sHIFT or
EM key blanks the screen and puts the cursor in the upper left
corner.

RETURN 	 Return key: Terminator to indicate and end of a line of BASIC.
Pressing this key causes a numbered line to be interpreted and
added to a BASIC program RAM. An unnumbered line (in Direct
mode) is interpreted and executed immediately. Any variables
are placed in a variable table.

ARITHMETIC 	The Atari Personal Computer System uses five arithmetic operators:

OPERATORS
+ addition (also unary plus; e.g., +5)
- subtraction (also unary minus; e.g., - 5)
* multiplication
/ division
A exponentiation

LOGICAL 	The logical operators consists of two types: unary and binary. The unary

OPERATORS 	Operator is NOT. The binary operators are:

6 General Information

AND Logical AND
OR 	Logical OR

Examples:

10 IF A=12 ANO T=0 THEN PRINT "GOOD"

10 A = (C)1) AND (N<1)

10 A = (C+1) OR (N-1)

10 A = NOT(C+1
The rest of the binary operators are relational.

Both expressions must
be true before GOOD is
printed.

If both expressions
true, A = +1; otherwise
A = 0.

If eit her expression
true, A= +1; otherwise
A=0.

If expression is false,
A= + I; otherwise A =0.

< The first expression is less than the second expression.
> The first expression is greater than the second.
.= The expressions are equal to each other.

< = The first expression is less than or equal to the second.
> = The first expression is greater than or equal to the second.
< > The two expressions are not eclual to each other.

These operators are most frequently used in IF/THEN statements and logical
arithmetic.

OPERATOR 	Operations within the innermost set of parentheses are performed first and pro-

PRECEDENCE 	ceed out to the next level. When sets of parentheses are enclosed in another set,
they are said to be "nested". Operations on the same nesting level are performed
in the following order:

Highest < , > , =,< =, >=,<-> Relatibnal operators used in string expres-
precedence 	 sions. Have same precedence and are per-

formed from left to right.
Unary minus
Exponentiation.
Multiplication and division have the same
precedence level and are performed from left
to right.

+, — 	 Addition and subtraction have the same
precedence level and are performed from left
to right.

< , > , = =, >=,< > Relational operations in numeric expressions
have the same precedence level from left to
right.

NOT 	 Unary Operator
AND 	 Logical AND

Lowest 	OR 	 Logical OR
precedence

General Information 7

BUILT-IN 	The section titled FUNCTION LIBRARY explains the arithmetic and special

FUNCTIONS 	functions incorporated into Atari BASIC.

GRAPHICS 	Atari graphics include 9 graphics modes. The commands have been designed
to allow- maximum flexibility in color choice and pattern variety. Section 9 ex-
plains each command and gives examples of the many ways to use each.

SOUND AND 	The Atari Personal Computer is capable of emitting a large variety of sounds

GAMES 	 including simulated explosions, electronic music, and "raspberries." Section 10
defines the commands for using the SOUND function and for controlling pad-

CONTROLLERS 	die, joystick, and keyboard controllers.

WRAPAROUND The ATARI Personal Computer System has screen wraparound thus allowing

AND KEYBOARD greater flexibility. lt also allows the user to type one key ahead. If the user

ROLLOVER
presses and holds any key, it will begin repeating after 1/2 second.

ERROR 	 If a data entry error is made, the screen display shows the line reprinted preced-

MESSAGES 	ed by the message ERROR- and the offending character is highlighted. After
correcting the character in the original line, delete the line containing the
ERROR- before pressing RETURN . Appendix B contains a list of all the error
messages and their definitions.

8 General Information

2

COMMANDS

Whenever the cursor (0) is displayed on the screen, the computer is ready to ac-
cept input. Type the command (in either Direct or Deferred mode), and press
RETURN . This section describes the commands used to clear computer memory
and other useful control commands..

The commands explained in this section are the following:

BYE NEW
CONT REM
END RUN
LET STOP
LIST

BYE (B.) 	Format: BYE
Example: BYE

The current function of the BYE command is to exit BASIC and put the com-
puter in Memo Pad mode. This allows the user to experiment with the keyboard
or to leave messages on the screen without disturbing any BASIC program in
memory. To return to BASIC, press SYSTEM RESET .

CONT (CON.) 	Format: CONT
Example: CONT

Typing this command followed by a RETURN causes program execution to
resume. If a BREAK , STOP, or END is encountered, the program will stop until
CONT RETURN is entered. Execution resumes at the next sequential line number
following the statement at which the program stopped.

Note: If the statement at which the program is halted has other commands on
the same numbered line which were not executed at the time of the BREAK 5

STOP, or END, they will not be executed. On CONT, execution resumes at the
next numbered line. A loop may be incorrectly executed if the program is
halted before the loop completes execution.

This command has no effect in a Deferred mode program.

END 	 Format: END
Example: 1000 END

This command terminates program execution and is used in Deferred mode. In
Atari BASIC, an END is not required at the end of a program'. When the end of
the program is reached, Atari BASIC automatically closes all flies and turns off
sounds (if any). END may also be used in Direct mode to close flies and turn off
sounds.

Commands 9

LET (LE.) 	 Format: 	1E1'1 var = exp
Example: LET X = 3.142 * 16

LET X = 2

This statement is optional in defining variables. lt can just as easily be left out of
the statement. lt may be used, however, to set a variable name eclual to a value.

LAYF 	 Format: 	LIST [lineno [, lineno]
LIST [filespec [,lineno [,lineno]1]

Examples:

LIST
LIST 10
LIST,10,100

LIST "P.",20,100

LIST "P"
LIST "D.DEMO.LST"

This command causes the computer to display the source version of all lines cur-
rently in memory if the command is entered without line number(s), or to
display a specified line or lines. For example, LIST 10,100 RETURN displays lines
10 through 100 on the screen. If the user has not typed the lines into the com-
puter in numerical order, a LIST will automatically place them in order.

Typing L."P will print the RAM-resident program on the printer.

LIST can be used in Deferred mode as part of an error trapping routine (See
TRAP in Section 4).

The LIST command is also used in recording programs on cassette tape. The sec-
ond format is used and a filespec is entered. (See Section 5 for more details on
peripheral devices.) If the entire program is to be listed on tape, no line numbers
need be specified.

Example: LIST "Cl"
1000 LIST "Cl"

NEW 	 Format: NEW
Example: NEW

This command erases the program stored in RAM. Therefore, before typing
NEW, either SAVE or CSAVE any programs to be recovered and used later.
NEW clears BASIC's internal symbol table so that no arrays (See Section 8) or
strings (See Section 7) are defined. Used in Direct mode.

REM (R. or 	Format: REM text

. SPACE) 	 Example: 10 REM ROUTINE TO CALCULATE X

This command and the text following it are for the user's information only. lt is
ignored by the computer. However, it is included in a LIST along with the other
numbered lines. Any statement on the same numbered line which occurs after a
REM statement will be ignored.

10 Commancls

RUN (RU.) 	Format: RUN Efilesped
Examples: RUN

RUN "D:MENU"

This command causes the computer to begin executing a program. If no filespec
is specified, the current RAM-resident program begins execution. If a filespec is
included, the computer retrieves the specified, tokenized program from the
specified file and executes it.

All variables are set to zero and all open flies and peripherals are closed. All ar-
rays, strings, and matrices are eliminated and all sounds are turned off. Unless
the TRAP command is used, an error message is displayed if any error is
detected during execution and the program halts.

RUN can be used in Deferred mode.

Examples: 19 PRINT "QUER Ale OVER AGAIN. "
29 Rill

Type RUN and press RETURN . To end, press BREAK

To begin program execution at a point other than the first line number, type
GOTO followed by the specific line number, then press RETURN

STOP (STO.) 	Format: STOP
Example: 100 STOP

When the STOP command is executed in a program, BASIC displays the
message STOPPED AT LINE , terminates program execution, and
returns to Direct mode. The STOP command does not close files or turn off
sounds, so the program can be resumed by typing CONT RETURN .

Conunmuts 11

NOTES

12 Notes

3

EDIT
FEATURES

In addition to the special function keys described in Section 1, there are cursor
control keys that allow immediate editing capabilities. These keys are used in
conjunction with the SHIFT or Ez3 keys.

The following key functions are described in this section:

EMD • INSERT EM 1

113131 SHIFT DELETE cm. 2

CTRL 	0 SHIFT INSERT CTRL 	3

1321 o SHIFT DELETE BREAK

Eia o CM SHIFT CAPS/LOWR

EiG3

SCREEN 	 The keyboard and display are logically combined for a mode of Operation

EDITING 	known as screen editing. Each time a change is completed on the screen, the
RETURN key must be pressed. Otherwise, the change is not made to the program

in RAM.

Example: 10 RE.M PRESS F:E.TUR±,- 1„zh,FT ER L I NE 7--.0 I T
Pr, TM7 .PiZTHT •

TU: 1 rm 'T"p17 , cfpErH " 32 PRINT "THIS IS 	 - • •

To delete line 20 from the program, type the line number and press the RETURN

key. Merely deleting the line from the screen display does not delete it from the
program.

The screen and keyboard as 	devices are described in Section 5.

13113 	 Control key. Striking this key in conjunction with
the arrow keys produces the cursor control functions
that allow the user to move the cursor anywhere on
the screen without changing any characters already
on the screen. Other key combinations control the
setting arid clearing of tabs, halting and restarting
program lists, and the graphics control symbols.
Striking a key while holding the Ez3 key will pro-
duce the upper-left symbol on those keys having
three functions.

SHWT 	 Shift key: This key is used in conjunction with the
numeric keys to display the symbols shown on the
upper half of those keys. lt is also used in conjunction

Edit Features 13

with other keys to insert and delete lines, return to a
normal, upper case letter display, and to display the
function symbols above the subtraction, equals, addi-
tion, and multiplication operators as well as the
brackets, []‚ and question mark,?.

DOUBLE-KEY
FUNCTIONS

Cursor Control Keys

12E3 o 	 Moves cursor up one physical line without changing
the program or display.

EID 1D 	 Moves cursor one space to the right without disturb-
ing the program or display.

GED o

	

	 Moves cursor down one physical line without chang-
ing the program or display.

▪ c: 	 Moves cursor one space to the left without disturbing
the program or display.

Like the other keys on the Atari keyboard, holding the cursor control keys for
more than 1/2 second causes the keys to repeat.

Keys Used With En

Ez3 	INSERT Inserts one character space.

Deletes one character or space.

Stops 	temporarily 	and 	restarts 	screen 	display
without "breaking out" of the program.

CTRL 	DELETE

CTRL 	1

EM 2 Rings buzzer.

Can 3 Indicates end-of-file.

Keys Used With 	SHIFT

Inserts one physical line. SHIFT INSERT

Deletes one physical line. SHIFT DELETE

Returns 	screen 	display 	to 	upper-case alphabetic
characters.

SHIFT CAPS/LOWR

Special Function Keys

BREAK Stops program execution or program list, prints a
READY on the screen, and displays cursor.

Ca Allows commands normally used in Direct mode to
be placed in Deferred mode; e.g., In Direct mode,
cnu 	CLEAR 	clears the screen display. To clear the
screen in Deferred mode, type the following after the
program line number. Press 	ESC 	then press 	c-rTit.
and 	CLEAR 	together.

PRINT " ESC 	(E3 	CLEAR "

14 Edit Features

4

PROGRAM
STATEMENTS

This section explains the commands associated with loops, conditional and un-
conditional branches, error traps, and subroutines and their retrieval. lt also ex-
plains the means of accessing data and the optional command used for defining
variables.

The following commands are described in this section:

FOR, TO, STEP/NEXT IF/THEN 	 POP
GOSUB/RETURN 	ON, GOSUB 	 RESTORE
GOTO 	 ON, GOTO 	 TRAP

FOR (F.), TO, 	Format: 	FOR avar = aexpl TO aexp2 [STEP aexp3]

STEP/NEXT (N.) 	 NEXT avar
Examples: FOR X = 1 TO 10

NEXT X
FOR Y = 10 TO 20 STEP 2
NEXT Y
FOR INDEX = Z TO 100 * Z
NEXT INDEX

This command sets up a loop and determines how many times the loop is exe-
cuted. The loop variable (avar) is initialized to the value of aexpl. Each time the
NEXT avar statement is encountered, the loop variable is incremented by the
aexp3 in the STEP statement. The aexp3 can be positive or negative integers,
decimals, or fractional numbers. If there is no STEP aexp3 command, the loop
increments by one. When the loop completes the limit as defined by aexp2, it
stops and the program proceeds to the statement immediately following the
NEXT statement; it may be on the same line or on the next sequential line.

Loops can be nested, one within another. In this case, the innermost loop is com-
pleted before returning to the outer loop. The following example illustrates a
nested loop program.

10 FÜR X=1 TO 3
20 PRINT "OUTER LOOP"
30 Z=0
40 Z=Z+2
50 FÜR Y=1 TO 9 STrP 7
GO PRINT " 	INNER !OOP"
70 NEXT Y
80 NEXT X
% EN°

Figure 4-1. Nested Loop Program

Program Statements 15

In Figure 4-1, the outer loop will complete three passes (X = 1 to 3). However,
before this first loop reaches its NEXT X statement, the program gives control to
the inner loop. Note that the NEXT statement for the inner loop must precede
the NEXT statement for the outer loop. In the example, the inner loop's number
of passes is determined by the STEP statement (STEP Z). In this case, Z has
been defined as 0, then redefined as Z + 2. Using this data, the computer must
complete three passes through the inner loop before returning to the outer loop.
The aexp3 in the step statement could also have been defined as the numerical
value 2.

The program run is illustrated in Figure 4-2.

OUTER LOOP
INNER LOOP
INNER LOOP
IHNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP
INNER LOOP

Figure 4-2. Nested Loop Execution

The return address for the loops are placed in a special group of memory ad-
dresses referred to as a stack. The information is "pushed" on the stack and
when used, the information is "popped" off the stack (see POP.)

GOSUB (GOS.) 	Format: GOSUB lineno

RETURN (RET.) 	 lineno
RETURN

Example: 100 GOSUB 2000
2000 PRINT "SUBROUTINE"
2010 RETURN

A subroutine* is a program or routine used to cornpute a certain value, etc. lt is
generally used when an Operation must be replaced several times within a pro-
gram secluence using the same or different values. This command allows the
user to "call" the subroutinel, if necessary. The last line of the subroutine must
contain a RETURN statement. The RETURN statement goes back to the physical
line following the GOSUB statement.

Like the preceding FOR/NEXT command, the GOSUB/RETURN command
uses a stack for its return address. If the subroutine is not allowed to complete
normally; e.g., a GOTO lineno before a RETURN, the GOSUB address must be
"popped" off the stack (see POP) or it could cause future errors.

* Generally, a subroutine can do anything that can be done in a program. lt is used to save memory
and program-entering time, and to make programs easier to read and debug.

16 Program Statements

To prevent accidental triggering of a subroutine (which normally follows the
main program), place an END statement preceding the subroutine. The follow-
ing program demonstrates the use of subroutines.

10 PRINT ")"
20 REM EXAmPLE LEE OF GOSUE/RETURN
30 •=122
4n GOSUP 120n
50 X=I20
60 GOSUB 1000
70 x=50
30 GOSUE 100n
90 END
lenn
1010 ‘,..Z=x+'.1"
1020 PRINT X,7
1222 RETURN

(Clear screen)

Figure 4-3. GOSUB/RETURN Program Listing

In the above program, the subroutine, beginning at line 1000, is called three
times to compute and print out different values of X and Y. Figure 4-4 illustrates
the results of executing this program.

400 300
480 360
200 150

Figure 4-4. GOSUB/RETURN Program Run

GOTO (G.) 	Format: { GO TO I aexp
GOTO

Examples: 100 GOTO 50
500 GOTO (x+ Y)

The GOTO command is an unconditional branch statement just like the GOSUB
command. They both immediately transfer program control to a target line
number or arbitrary expression. However, using anything other than a con-
stant will make renumbering the program difficult. If the target line number is
non-existent, an error results. Any GOTO statement that branches to a
preceding line may result in an "endless" loop. Statements following a GOTO
statement will not be executed. Note that a conditional branching statement (See
IF/THEN)can be used to break out of a GOTO loop. The following program il-
lustrates two uses of the GOTO command.

Program Statements 17

10 PRINT
20 PRINT :PRINT "ONE"
30 PRINT "TWO"
40 PRINT "THREE"
50 PRINT "FOUR"
60 PRINT "FIIJE"
65 GOTO 100
70 PRINT
80 PRINT
90 PRINT
	_.,..„.18383111

END
100 PRINT "SIX"
110 PRINT "SEUEN"
120 PRINT uEIGHTH
172 PRINT "NINE"
140 PRINT 4 TEN"
150 GOTO 70

Figure 4-5. GOTO Pro gram Listing

Upon execution, the numbers in the above listing will be listed first followed by
the three rows of symbols. The symbols listed on lines 70, 80, and 90 are ignored
temporarily while the program executes the GOTO 100 command. lt proceeds
with the printing of the numbers "SIX" through "TEN", then executes the se-
cond GOTO statement which transfers program control back to line 70. (This is
just an example. This program could be rewritten so that no GOTO statements
were used.) The program, when executed, looks like the following:

ONE
TWO
THREE
FOUR
FIUE

SEUEN .
EIGHT
NINE
TEN

IF/THEN 	Format: IF aex]

Examples: IF X =
IF A$
IF AA
IF X =

Figure 4-6. GOTO Program Run

) THEN { lineno
statement [:statement...]

100 THEN 150
= "ATARI" THEN 200
= 145 and BB = 1 THEN PRINT AA, BB
100 THEN X = 0

18 Program Statements

The IF/THEN statement is a conditional branch statement. This type of branch
occurs only if certain conditions are met. These conditions may be either
arithmetical or logical. If the aexp following the IF statement is true (non-zero),
the program executes the THEN part of the statement. If, however, the aexp is
false (a logical 0), the rest of the statement is ignored and program control passes
to the next numbered line.

In the format, IF aexp THEN lineno, lineno must be a constant, not an expression
and specifies the line number to go to if the expression is true. If several
statements occur after the THEN, separated by colons, then they will be ex-
ecuted if and only if the expression is true. Several IF statements may be nested
on the same line. For example:

122 IF X=5 THEN IF Y=7 THEN R=9:GOT0200

The statements R=9: GOTO 100 will be executed only if X=5 and Y =3. The
statement Y=3 will be executed if X= 5.

The following program demonstrates the IF/THEN statement.

5 .GRAPHICS 0:? :? " 	IF DEMO"
10 ? 	"ENTER A";INPUT A
20 IF,A=1 THEN eREM MULTIPLE STATEMENT
S HERE WILL NEUER BE EXECUTEDM
30 ? :? "A 13 NOT 1. EXECUTION CONTINUE
S

HEFE WHEN THE EXPRESSION IG FALSE."

40 IF•A=1 THEN ? :? "A=1":? "YES, IT IS
REALLY 1..":REM MULTIPLE STATEMENTS HEFE
WILL BE EXECUTED ONLY IF A=1!!
50 ? '? "EXECUTION CONTINUES HEFE IF A<>
1 OR AFTER 'YES, IT IS REALLY 1' IS DISP
LAYED."
AO GOTO 10

Figure 4-7. IF/THEN Program

ENTER A 	 (entered 2)
A IS NOT 1. EXECUT ION CONTINUES HERE WH
EN THE EXPRESSION IS FALSE.
EXECUTION CONTINUES HERE IF A(>1 OR AFTE
R 'YES, IT IS REALLY 1 IS DISPLAYED.
ENTER A 	 (entered 1)

A=1
YES, IT 	REALLY 1.
EXECUTION CONTIMES HERE IF A<>1 OR AFTE
R 'YES, IT IS REALLY 1' IS DISPLAYED.
ENTER A

Figure 4-8. IF/THEN Program Execution.

Program Statements 19

ON/GOSUB/ 	Format: 	ON aexp GOTOI lineno [,lineno...]

RETURN 	 GOSUB
Examples: 100 ON X GOTO 200, 300, 400

ON/GOTO 	 100 ON A GOSUB 1000, 2000
100 ON SQR(X) GOTO 30, 10, 100

Note: GOSUB and GOTO may not be abbreviated.

These two staternents are also conditional branch statements like the IF/THEN
statement. However, these two are more powerful. The aexp must evaluate to a
positive number which is then rounded to the nearest positive integer (whole
number) value up to 255. If the resulting number is 1, then program control
passes to the first lineno in the list following the GOSUB or GOTO. If the
resulting number is 2, program control passes to the second lineno in the list,
and so on. If the resulting number is 0 or is greater than the number of linenos
in the list, the conditions are not met and program control passes to the next
statement which may or may not be located on the same line. With ON/GOSUB,
the selected subroutine is executed and then control passes to the next state-
ment.

The following routine demonstrates the ON/GOTO statement:

10 X=X+1
20 ON X GOTO 100,200,300,400,500
30 IF X>5 THEN PRINT "COMPLETE.".END
40 GOTO 10
50 ENO
109 PRINT uNOW WORKING AT LINE 100".GOTO
10

200 PRINT "NDW WORKING AT LINE 200".GOTO
10

300 PRINT "NOW WORKING AT LINE 300".G0T0
10

400 PRINT uNOW WORKING AT LINE 400".GOTO
10

500 PRINT uNOW WORKING AT LINE 500".GOTO
10

Figure 4-9 ON/GOTO Program Listing

When the program is executed, it looks like the following:

NOW WORKING AT LINE 100
NOW WORKING AT LINE 200
NOW WORKING AT LINE 300
NOW WORKING AT LINE 400
NOW WORKING AT LINE 500
WIPLETE

Figure 4-10 ON/GOTO Program Execution

POP 	 Format: POP
Example: 1000 POP

20 Program Statements

In the description of the FOR/NEXT statement, the stack was defined as a group
of memory addresses reserved for return addresses. 'The top entry in the stack
controls the number of loops to be executed and the RETURN target line for a
GOSUB. If a subroutine is not terminated by a RETURN statement, the top
memory location of the stack is still loaded with some numbers. If another
GOSUB is executed, that top location needs to be cleared. To prepare the stack
for a new GOSUB, use a POP to clear the data from the top location in the stack.

The POP command must be used according to the following rules:

1. lt must be in the execution path of the program.
2. lt must follow the execution of any GOSUB statement that is not brought

back to the main program by a RETURN statement.

The following example demonstrates the use of the POP command with a
GOSUB when the RETURN is not executed:

10 GOSUB 1000
15 REM LINE 20 WILL NOT BE EXECUTED
20 PRINT "NORMAL RETURN PRINTS THIS MESS
AGE "
30 PRINT "ABNORMAL RETURN PRINTS THIR NE
SSAGE."
4n POP
999 ENO
1002 PRINT "NOW 7-XECUTING SUBROUTINE."
1012 GOTO 30
1222 RETURN

Figure 4-11. GOSUB Statement With POP

RESTORE (RES.) Format: RESTORE [aexp]
Example: 100 RESTORE

The Atari Personal Computer System contains an internal "pointer" that
keeps track of the DATA statement item to be read next. Used without the op-
tional aexp, the RESTORE statement resets that pointer to the first DATA item
in the program. Used with the optional aexp, the RESTORE statement sets the
pointer to the first DATA item on the line specifed by the value of the aexp. This
statement permits repetitive use of the same data.

10 FOR N=1
20 RE:43
72 RgSinR
40 RED E
50 M=A+B
GO PRINT "TO-U;i! 	Eh;
70 WNT N
20 ,uND
90 DAT 	72, 5

Figure 4-12. Restore Program Listing

On the first pass through the loop, A will be 30 and B will be 30 so the total line
50 will print SUM TOTAL EQUALS 60, but on the second pass, A will equal 15

PrOgranl Statements 21

and B, because of the RESTORE statement, will still equal 30. Therefore, the
PRINT statement in line 50 will display SUM TOTAL EQUALS 45.

TRAP (T.) 	Format: TRAP aexp
Example: 100 TRAP 120

The TRAP statement is used to direct the program to a specified line number if
an error is detected. Without a TRAP statement, the program stops executing
when an error is encountered and displays an error message on the screen.

The TRAP statement works on any error that may occur after it has been ex-
ecuted, but once an error has been detected and trapped, it is necessary to reset
the trap with another TRAP command. This TRAP command may be placed at
the beginning of the section of code that handles input from the keyboard so
that the TRAP is reset after each error. PEEK(195) will give you an error
message (see Appendix B). 256*PEEK(187)+ PEEK(186) will give you the number
of the line where the error occurred. The TRAP may be cleared by executing a
TRAP statement with an aexp whose value is from 32767 to 65535 (e.g., 40000).

22 PrOgra/72 Statements

5

INPUT/OUTPUT
COMMANDS AND DEVICES

This section describes the input/output devices and how data is moved between
them. The commands explained in this section are those that allow access to the
input/output devices. The input commands are those associated with getting
data into the RAM and the devices geared for accepting input. The output com-
mands are those associated with retrieving data from RAM and the devices
geared for generating output.

The commands described in this section are:

CLOAD INPUT OPEN/CLOSE READ/DATA
CSAVE LOAD POINT SAVE
DOS LPRINT PRINT STATUS
ENTER NOTE PUT/GET XIO

INPUT/OUTPUT
DEVICES 	The hardware configuration of each of the following devices is illustrated in the

individual manuals furnished with each. The Central Input/Output (GI) sub-
system provides the user with a single interface to access all of the System
peripheral devices in a (largely) independent manner. This means there is a
single entry point and a device-independent calling sequence. Each device has a
symbolic device name used to identify it; e.g., K: for the keyboard. Each device
must be opened before access and each must be assigned to an Input/Output Con-
trol Block (IOCB). From then on, the device is referred to by its IOCB number.

ATARI BASIC contains 8 blocks in RAM which identifies to the Operating
System the information it needs to perform an I/O operation. This information
includes the command, buffer length, buffer address, and two auxiliary control
variables. ATARI BASIC sets up the IOCB's, but the user must specify which
IOCB to use. BASIC reserves IOCB 110 for I/O to the Screen Editor, therefore the
user may not request IOCB #0. The GRAPHICS statement (see Section 9) opens
IOCB 116 for input and output to the screen. (This is the graphics window S:).
IOCB 117 is used by BASIC for the LPRINT, CLOAD, and CSAVE commands. The
IOCB number may also be referred to as the device (or file) number. IOCB's 1
through 5 are used in opening the other devices for input/output operations. If
I0C13 117 is in use, it will prevent LPRINT or some of the other BASIC I/O
statements from being performed.

Keyboard: (K:) Input only device. The keyboard allows the user to read the
converted (ATASCII) keyboard data as each key is pressed.

Line Printer: (P:) Output only device. The line printer prints ATASCII
characters, a line at a time. lt recognizes no control characters.

Program Recorder: (C:) Input and Output device. The recorder is a read/write
device which can be used as either, but never as both simultaneously. The
cassette has two tracks for sound and program recording purposes. The audio
track cannot be recorded from the ATARI system, but may be played back
through the television speaker.

COMMCIMIS and Devices 23

Disk Drives: (D1:, D2:, D3:, D4:) Input and Output devices. If 16K of RAM is
installed, the ATARI can use from one to four disk drives. If only one disk drive
is attached, there is no need to add a number after the symbolic device code D.

Screen Editor: (E:) Input and Output device. This device uses the keyboard
and display (see TV Monitor) to simulate a screen editing terminal. Writing to
this device causes data to appear on the display starting at the current cursor
position. Reading from this device activates the screen editing process and
allows the user to enter and edit data. Whenever the RETURN key is pressed, the
entire logical line within which the cursor resides is selected as the current
record to be transferred by CIO to the user program. (See Section 9).

TV Monitor: (S:) Input and Output device. This device allows the user to read
characters from and write characters to the display, using the cursor as the
screen addressing mechanism. Both text and graphics operations are supported.
See Section 9 for a complete description of the graphics modes.

Interface, RS -232: (R:) The RS-232 device enables the ATARI System to inter-
face with RS-232-compatible devices such as printers, terminals, and plotters. lt
contains a parallel port to which the 80-column printer (ATARI 825TM) can be at-
tached.

CLOAD (CLOA.) Format: CLOAD
Examples: CLOAD

100 CLOAD

This command can be used in either Direct or Deferred mode to load a program
from cassette tape into RAM for execution. On entering CLOAD, one bell rings
to indicate that the PLAY button needs to be pressed followed by RETURN

However, do not press PLAY until after the tape has been positioned. Specific in-
structions for CLOADing a program are contained in the ATARI 410 Progranz
Recorder Manual. Steps for loading oversized programs are included in the
paragraphs under CHAINING PROGRAMS at the end of this section.

CSAVE (CS.) 	Format: CSAVE
Examples: CSAVE

100 CSAVE
100 CS.

This command is usually used in Direct mode to save a RAM-resident program
onto cassette tape. CSAVE saves the tokenized version of the program. On enter-
ing CSAVE two bells ring to indicate that the PLAY and RECORD buttons must
be pressed followed by RETURN . Do not, however, press these buttons until the
tape has been positioned. lt is faster to save a program using this command
rather than a SAVE "C" (see SAVE) because short inter-record gaps are used.

Notes: Tapes saved using the two commands, SAVE and CSAVE, are not com-
patible

lt may be necessary to enter an LPRINT (see LPRINT) before using
CSAVE. Otherwise, CSAVE may not work properly.

For specific instructions on how to connect and operate the hardware,
cue the tape, etc., see the ATARI 410 Program Recorder Manual.

24 1/0 Garnnlands and Devices

DOS (DO.) 	Format: DOS
Example: DOS

The DOS command is used to go from BASIC to the Disk Operating System
(DOS). If the Disk Operating System has not been booted into memory, the com-
puter will go into Memo Pad mode and the user must press SYSTEM RESET to return
to Direct mode. If the Disk Operating System has been booted, the DOS Menu is
displayed. To clear the DOS Menu from the screen, press SYSTEM RESET . Control
then passes to BASIC. Control can also be returned to BASIC by selecting B (Run
Cartridge) on the DOS Menu.

The DOS command is usually used in Direct mode; however, it may be used in a
program. For more details on this, see the Atari DOS Manual.

ENTER (E.) 	Format: ENTER filespec
Examples: ENTER "C

ENTER "D:DEMOPR.INS"

This statement causes a cassette tape to play back a program originally recorded
using LIST (see Section 2, LIST). The program is entered in unprocessed (un-
tokenized) form, and is interpreted as the data is received. When the loading is
complete, it may be run in the normal way. The ENTER command may also be
used with the disk drive. Note that both LOAD and CLOAD (see Section 2) clear
the old program from memory before loading the new one. ENTER merges the
old and new programs. This ENTER statement is usually used in Direct mode.

avar I [avar
INPUT (I.) 	Format: 	INPUT [#aexp ; 	 svar 	, svar •••

Examples: 100 INPUT X
100 INPUT N$
100 PRINT "ENTER THE VALUE OF X"
110 INPUT X

This statement requests keyboard data from the user. In execution, the com-
puter displays a ? prompt when the program encounters an INPUT statement. lt
is usually preceded by a PRINT statement that prompts the user as to the type of
information being requested.

String variables are allowed only if they are not subscripted. Matrix variables
are not allowed.

The itaexp is optional and is used to specify the file or device number from
which the data is to be input (see Input/Output Devices). If no traexp is specified,
then input is from the screen editor (E:).

If several strings are to be input from the screen editor, type one string, press
RETURN , type the next string, RETURN , etc. Arithmetic numbers can be typed on
the same line separated by commas.

19 PRINT "ENTER 5 MUMBERS TO BE SUMMET'
20 FÜR N=1 TO 5
30 INPUT X
40 C=C+X
50 NEXT M
60 PRINT "THE SUM OF YOUR NUMBERS IS n; C;
70 EMO

Figure 5-1 Input Program Listing

I/O Conzmands and Devices 25

LOAD (LO.) 	Format: LOAD filespec
Example: LOAD "D1:JANINE.BRY"

This command is similar to CLOAD except the full file name system can be used.
LOAD uses long inter-record gaps on the tape (see CLOAD) and uses the token-
ized version of the program. When using only one disk drive, it is not necessary
to specify a number after the "D" because the default is disk drive #1.

LPRINT (LP.) 	Format: 	LPRINT [exp][; exp..
Example: LPRINT "PROGRAM TO CALCULATE X"

100 LPRINT X;" ";Y;" ";Z

This statement causes the computer to print data on the line printer rather than
on the screen. lt can be used in either Direct or Deferred modes. lt requires no
device specifier and no OPEN or CLOSE statement. (BASIC uses IOCB #7.)

The above program listing illustrates a program that will add 5 numbers
entered by the user. To print a program listing on the line printer, see LIST.

NOTE (NO.) 	Format: NOTE #aexp, avar, avar
Example: 100 NOTE #1, X, Y

This command is used to store the current disk sector number in the first avar
and the current byte number within the sector in the second avar. This is the
current read or write position in the specified file where the next byte to be
read or written is located. This NOTE command is used when writing data to a
disk file (see POINT). The information in the NOTE command is written into a
second file which is then used as an index into the first file.

OPEN (0.) 	Formats: OPEN #aexp,aexpl,aexp2, filespec

CLOSE (CL.) 	 CLOSE gaexp
Examples: 100 OPEN #2,8,0,"D1:ATARI800.BAS"

100 A$ = "D1:ATARI800.BAS"
110 OPEN #2,8,0,A$
150 CLOSE #2

Before a device can be accessed, it must be opened. This "opening" process links
a specific IOCB to the appropriate device handler, initializes any CIO-related con-
trol variables, and passes any device-specific options to the device handler. The
parameters for the OPEN command are defined as follows:

Mandatory character that must be entered by the
user.

aexp 	Reference IOCB or file number to same parameters
for future use (as in CLOSE command). Nurnber
rnay be 1 through 7.

26 1/0 Cornmands und Devices

aexpl 	Code number to determine input or output Opera-
tion.

Code 4 = input Operation
8 = output Operation

12 = input and output Operation
6 = disk directory input Operation

(In this case, the filespec is the search specifica-
tion.)

9 = end-of-file append (output) operation. Append is
also used for a special screen editor input mode.
This mode allows a program to input the next
line from E: without waiting for the user to press
RETURN .

aexp2 	Device-dependent auxiliary code. An 83 in this
parameter indicates sideways printing on a printer
(see appropriate manuals for control codes).

filespec 	Specific file designation. Must be enclosed in quota-
tion marks. The format for the filespec parameter
is shown in Figure 5-2.

"D1 ATARI800.BAS"

Device 	,1%.m.mumiNtimi A %saliN

Code 	
A 	 A

Device 	
Number
(optional)

Required 	
Colon

File name —
(up to 8
characters-
must begin
with alphabet
character)

Period requin
as separator ii
extender is us

Extender
(optional)-
Includes
0-3 characters

Note: Filenames are
not used with
the program
recorder.

Figure 5-2 Filename Breakdown

The CLOSE command simply closes flies that have been previously opened with
an OPEN command. Note in the example that the aexp following the mandatory

character must be the same as the aexp reference number in the OPEN state-
ment.

Commands and Devices 27

POINT (P.) 	Format: 	POINT ilaexp, avar, avar
Example: 100 POINT #2, A,B

This command is used when reading a file into RAM. The first avar specifies the
sector number and the second avar specifies the byte within that sector where
the next byte will be read or written. Essentially, it moves a software-controlled
pointer to the specified location in the file. This gives the user "random" access
to the data stored on a disk file. The POINT and NOTE commands are discussed
in more detail in the DOS Manual.

PRINT (PR or ?) Format: 	PRINT [#aexp]i ; [exp] [,exp...]
Examples: PRINT X, Y, Z, A$

100 PRINT "THE VALUE OF X IS ";X
100 PRINT "COMMAS", "CAUSE", "COLUMN", "SPACING"
100 PRINT #3, A$

A PRINT command can be used in either Direct or Deferred mode. In Direct
mode, this command prints whatever information is contained between the
quotation marks exactly as it appears. In the first example, PRINT X,Y,Z,A$, the
screen will display the current values of X,Y,Z, and A$ as they appear in the
RAM-resident program. In the last example, PRINT #3,A$, the #3 is the file
specifier (may be any number between 1 and 7) that controls to which device
the value of A$ will be printed. (See Input/Output Devices.)

A comma causes tabbing to the next tab location. Several commas in a row cause
several tab jumps. A semicolon causes the next aexp or sexp to be placed im-
mediately after the preceding expression with no spacing. Therefore, in the
second example a space is placed before the ending quotation mark so the value
of X will not be placed immediately after the word "IS". If no comma or
semicolon is used at the end of a PRINT statement, then a RETURN is output and
the next PRINT will start on the following line.

PUT(PU.)/ 	Format: 	PUT #aexp, aexp

GET(GE.) 	 GET gaexp,
Examples: 100 PUT #6, ASC("A")

200 GET #1,X

The PUT and GET are opposites. The PUT commandputputs a single byte from
0-255 to the file specified by #aexp. (# is a mandatory character in both these
commands). The GET command reads one byte from 0-255 (using gaexp to
designate the file, etc. on diskette or else -Where) and then stores the byte in the
variable avar.

READ (REA.)
DATA (D.) 	Formats: READ var [, var...]

DATA adata [, adata...]
Examples: 100 READ A,B,C,D,E

110 DATA 12,13,14,15,16
100 READ A$,B$,C$,D$,E$
110 DATA EMBEE, EVELYN, CARLA, CORINNE, BARBARA

These two commands are always used together and the DATA statement is
always used in Deferred mode'. The DATA statement can be located anywhere

'A Direct mode READ will only read data if a DATA statement was executed in the program.

\—

28 1/0 Cornmands and Devices

in the program, but must contain as many pieces of data as there are defined in
the READ statement. Otherwise, an "out of data" error is displayed on the
screen.

String variables used in READ statements must be dimensioned and cannot be
subscripted. (See STRINGS Section). Neither may array variables may be used in
a READ statement.

The DATA statement holds a number of string data for access by the READ
statement. lt cannot include arithmetical operations, functions, etc. Further-
more, the data type in the DATA statement must match the variable type de-
fined in the corresponding READ statement.

The following program totals a list of numbers in a DATA statement:

19 FÜR N=1 TO 5
20 READ 0
30 M=M+D
40 NEXT N
59 PRINT "SUM TOTAL EOUALS "iM
60 END
70 DATA 30,15,106,17,87

Figure 5-3 Read/Data Program Listing

The progran-1, when executed, will print the statement:

SUM TOTAL EQUALS 255.

SAVE (S.) 	Format: 	SAVE filespec
Example: SAVE "D1:YVONNE.PAT"

The SAVE command is similar to the CSAVE command except that the full file
name System can be used. The device code number is optional when using only
one disk drive. The default is to disk drive #1. SAVE, like LOAD, uses long inter-
record gaps on the cassette (see CSAVE) and the tokenized form of the program.

STATUS (ST.) 	Format: STATUS #aexp,avar
Example: 350 STATUS #1,Z

The STATUS command calls the STATUS routine for the specified device (aexp).
The status of the STATUS command (see ERROR MESSAGES, Appendix B) is
stored in the specified variable (avar). This may be useful for future devices such
as the RS-232 interface.

MO (X.) 	 Format: 	XIO cmdno, #aexp, aexpl, aexp2, filespec
Example: XIO 18,#6,0,0,"S:"

The XIO command is a general input/output statement used for special opera-
tions. One example is its use to fill an area on the screen between plotted points

I/O Commands and Devices 29

and lines vvith a color (see Section 9). The parameters for this command are de-
fined as follows:

cmdno 	Number that stands for the particular command to
be performed.

cmdno OPERATION 	 EXAMPLE

3 OPEN
5 GET RECORD
7 GET CHARA.CTERS
9 PUT RECORD
11 PUT CHARACTERS
12 CLOSE
13 STATUS REQUEST
17 DRAW LINE
18 FILL
32 RENAME
33 DELETE
35 LOCK FILE
36 UNLOCK FILE
37 POINT
38 NOTE
254 FORMAT

Same as BASIC OPEN
These 4 commands are similar to
BASIC INPUT GET, PRINT, and PUT

respectively.
Same as BASIC CLOSE
Same as BASIC STATUS
Same as BASIC DRAWTO
See Section 9
XIO 32,#1,0,0,"D:TEMP.CAROL"
XIO 33,#1,0,0,"D:TEMP.BAS"
XIO 35,#1,0,0,"D:TEMP.BAS"
XIO 36,#1,0,0,"D:TEMP.BAS"
Same as BASIC POINT
Same as BASIC NOTE
XIO 254,#1,0,0,"D2:"

aexp 	Device number (same as in OPEN). Most of the time
it is ignored, but must be preceded by #.

aexpl 	Two auxiliary control bytes. Their usage

aexp2 	depends on the particular device and command. In
most cases, they are unused and are set to 0.

filespec 	String expression that specifies the device. Must be
enclosed in quotation marks. Although some com-
mands, like Fill (Section 9), do not look at the
filespec, it must still be included in the statement.

CHAINING
PROGRAMS

If a program requires more memory than is available, use the following steps to
string programs of less than the maximum memory available into one program.

1. Type in the first part of the program in the normal way.
2. The last line of the first part of the program should contain only the line

number and the command RUN"C:"
3. Cue the tape to the blank section. Write down the program counter number

for later RUN purposes. Press PLAY and RECORD buttons on the deck so that
both remain down.

4. Type SAVE"C:" and press RETURN

5. When the beeping sound occurs, press RETuRN again.
6. When the screen displays "READY", do not move tape. Type NEW RETuRN .
7. Repeat the above instructions for the second part of the program.
8. As the second part of the program is essentially a totally new program, it is

possible to re-use the line numbers used in the first part of the program.
9. If there is a third part of the program, make sure the last line of the second

part is a RUN"C:" command.

30 I/O Commands and Devices

To execute a "chained" program, use the following steps:

1. Cue the tape to the beginning of part 1 of the program.
2. Press PLAY button on the recorder.
3. Type RUN"C:" RETURN

4. When the "beep" sounds, press RETuRN again.

The computer automatically loads the first part of the program, runs it, and
sounds a "beep" to indicate when to hit the space bar or RETURN to trigger the
tape motor for the second LOAD/RUN. The loading takes a few seconds.

Note: A one-part program can be recorded and reloaded in the same way or
CSAVE and CLOAD can be used.

Note: Remember to boot DOS before typing in your program.

MODIFYING A 	The procedure for modifying an existing BASIC program stored on a diskette is

BASIC PROGRAM demonstrated in the following steps:

ON DISK 	 1. Turn off ATARI console and insert BASIC cartridge.
2. Connect disk drive and turn it on - without inserting diskette.
3. Wait for Busy Light to go out and for the drive to stop. Open disk drive door.
4. Insert diskette (with DOS) and close door.
5. Turn on console. DOS should boot in and the screen show READY.
6. To load program from disk, type

LOAD "D:filename.ext
7. Modify program (or type in new program).
8. To save program on disk, type

SAVE "D:filename.ext
9. Always wait for the Busy light to go out before removing diskette.
10. To get a Directory listing, do not remove diskette and type

DOS
Upon RETURN , the DOS Menu will be displayed. Select command letter A,
type it, and press RETURN twice to list the directory on the screen; or type A
followed by pressing RETURN then P: RETURN to list directory on the printer.

11. To return to BASIC, type B RETURN or press SYSTEM RESET

Commands and Devices 31

NOTES

32 Notes

6

FUNCTION
LIBRARY

This section describes the arithmetic, trigonometric, and special purpose func-
tions incorporated into the ATARI BASIC. A function performs a computation
and returns the result (usually a number) for either a print-out or additional
computational use. Included in the trigonometric functions are two statements,
radians (RAD) and degrees (DEG), that are frequently used with trigonometric
functions. Each function described in this section may be used in either Direct
or Deferred mode. Multiple functions are perfectly legal.

The following functions and statements are described in this section:

ABS ATN ADR
CLOG COS FRE
EXP SIN PEEK
INT DEG/RAD POKE
LOG USR
RND
SGN
SQ,R

ARITHMETIC
FUNCTIONS

ABS Format: ABS(aexp)
Example: 100 AB = ABS (-190)

Returns the absolute value of a number without regard to whether it is positive
or negative. The returned value is always positive.

CLOG 	Format: CLOG (aexp)
Example: 100 C = CLOG(83)

Returns the logarithm to the base 10 of the variable or expression in paren-
theses. CLOG(0) should give an error and CLOG(1) should be 0.

EXP 	 Format: EXP (aexp)
Example: 100 PRINT EXP(3)

Returns the value of e (approximately 2.71828283), raised to the power specified
by the expression in parentheses. In the example given above, the number
returned is 20.0855365. In some cases, EXP is accurate only to six significant
digits.

INT 	 Format: 	INT (aexp)
Examples: 100 I = INT(3.445) 	 (3 would be stored in I)

100 X = INT(- 14.66778) 	 (-15 would be stored in X)

Function Library 33

LOG

RND

Returns the greatest integer less than or equal to the value of the expression.
This is true whether the expression evaluates to a positive or negative number.
Thus, in our first example above, I is used to store the number 3. In the second
example, X is used to store the number - 15 (the first whole number that is less
than or equal to — 14.66778). This INT function should not be confused with the
function used on calculators that simply truncates (cuts off) all decimal places.

Format: 	LOG(aexp)
Example: 100 L = LOG(67.89/2.57)

Returns the natural logarithm of the number or expression in parentheses.
LOG(0) should give an error and LOG(1) should be 0.

Format: 	RND(aexp)
Example: 10 A = RND (0)

Returns a hardware -generated random number between 0 and 1, but never
returns 1. The variable or expression in parentheses following RND is a dummy
and has no effect on the numbers returned. However, the dummy variable must
be used. Generally, the RND function is used in combination with other BASIC
statements or functions to return a number for games, decision making, and the
like. Here's a simple routine that returns a random number between 0 and 999.

10 X=RN0()
20 RX= I NT(1X)
39 PRINT RX

is dumm» variable)

SGN
	

Format: SGN(aexp)
Example: 100 X = SGN(-199)

	
(-1 would be returned)

Returns a -1 if aexp evaluates to a negative number; a 0 if aexp evaluates to 0, or a
1 if aexp evaluates to a positive number.

Format: 	SQR(aexp)
Example: 100 PRINT SR(100)

	
(10 would be printed)

Returns the square root of the aexp which must be positive.

TRIGONOMETRIC
FUNCTIONS

ATN 	 Format: ATN(aexp)
Example: 100 X = ATN(65)

Returns the arctangent of the variable or expression in parentheses.

COS 	 Format: 	COS(aexp)
Example: 100 C = COS(X Y + Z)

Note: Presumes X, Y, Z previously defined!

Returns the trigonometric cosine of the expression in parentheses.

34 Function L,ibrary

SIN 	 Format: 	SIN(aexp)
Example: 100 X = SIN(Y)

Note: Presumes Y previously defined.

Returns the trigonometric sine of the expression in parentheses.

DEG/RAD 	Format: DEG
RAD

Example: 100 DEG
100 RAD

These two statements allow the programmer to specify degrees or radians for
trigonometric function computations. The computer defaults to radians unless
DEG is specified. Once the DEG statement has been executed, RAD must be used
to return to radians.

See Appendix E for the additional trigonometric functions that can be derived.

SPECIAL
PURPOSE
FUNCTIONS

ADR 	 Format: ADR(svar)
Example: ADR(A$)

Returns the decimal memory address of the string specified by the expression in
parentheses. Knowing the address enables the programmer to pass the informa-
tion to USR routines, etc. (See USR and Appendix D)

FRE 	 Format: 	FRE(aexp)
Examples: PRINT FRE (0)

100 IF FRE (0) < 1000 THEN PRINT "MEMORY CRITICAL"

This function returns the number of bytes of user RAM left. Its primary use is in
Direct mode with a dummy variable (0) to inform the programmer how much
memory space remains for completion of a program. Of course FRE can also be
used within a BASIC program in Deferred mode.

PEEK 	Format: PEEK(aexp)
Examples: 1000 IF PEEK (4000) = 255 THEN PRINT "255"

100 PRINT "LEFT MARGIN IS"; PEEK (82)

Returns the contents of a specified memory address location (aexp). The address
specified must be an integer or an arithmetic expression that evaluates to an in-
teger between 0 and 65535 and represents the memory address in decimal nota-
tion (not hexadecimal). The number returned will also be a decimal integer with
a range from 0 to 255. This function allows the user to examine either RAM or
ROM locations. In the first example above, the PEEK is used to determine
whether location 4000 (decimal) contains the number 255. In the second exam-
ple, the PEEK function is used to examine the left margin.

POKE 	Format: POKE aexpl, aexp2
Examples: POKE 82, 10

100 POKE 82, 20

Function Library 35

Although this is not a function, it is included in this section because it is closely
associated with the PEEK function. This POKE command inserts data into the
memory location or modifies data already stored there. In the above format,
aexpl is the decimal address of the location to be poked and aexp2 is the data to
be poked. Note that this number is a decimal number between 0 and 255. POKE
cannot be used to alter ROM locations. In gaining familiarity with this command
it is advisable to look at the memory location with a PEEK and write down the
contents of the location. Then, if the POKE doesn't work as anticipated, the
original contents can be poked into the location.

The above Direct mode example changes the left screen margin from its default
position of 2 to a new position of 10. In other words, the new margin will be 8
spaces to the right. To restore the margin to its normal default position, press
SYSTEM RESET •

USR 	 Format: 	USR (aexpl [, aexp2][, aexp3...])
Example: 100 RESULT = USR (ADD1,A*2)

This function returns the results of a machine-language subroutine. The first ex-
pression, aexp1, must be an integer or arithmetic expression that evaluates to an
integer that represents the decimal memory address of the machine language
routine to be performed. The input arguments aexp2, aexp3, etc., are optional.
These should be arithmetic expressions within a decimal range of 0 through
65535. A non-integer value may be used; however, it will be rounded to the
nearest integer.

These values will be converted from BASIC's Binary Coded Decimal (BCD)
floating point number format to a two-byte binary number, then pushed onto
the hardware stack, composed of a group of RAM memory locations under
direct control of the 6502 microprocessor chip. Figure 6-1 illustrates the struc-
ture of the hardware stack.

N (Number of arguments on the stack-may be 0)
X, (High byte of argument X)
X, (Low byte of argument X)
Y7 (High byte of argument Y)
Y, (Low byte of argument Y)
Z1 (High byte of argument Z)
Z2 (Low byte of argument Z)

R i 	(Low byte of return address)
R 2 	(High byte of return address)

Figure 6-1. Hardware Stock Definition

Note: X is the argument following the address of the routine, Y is the
second, Z is the third, etc. There are N pairs of bytes.

See Section 11 for a description of the USR function in machine language pro-
gramming. Appendix D defines the bytes in RAM available for machine
language programming.

36 Function Librcuy

STRINGS

This section describes strings and the functions associated with string handling.
Each string must be dimensioned (see DIM statement, Section 8) and each string
variable must end with a $. A string itself is a group of characters "strung"
together. The individual characters may be letters, numbers, or symbols
(including the Atari special keyboard symbols.) A substring is a part of a longer
string and any substring is accessible in Atari BASIC if the string has been pro-
perly dimensioned (see end of section). The characters in a string are indexed
from 1 to the current string length, which is less than or equal to the dimen-
sioned length of the string.

The string functions described in this section are:
ASC 	 STR$
CHR$ 	 VAL
LEN

ASC 	 Format: ASC(sexp)
Examples: 100A = ASC(A$)

This function returns the ATASCII code number for the first character of the
string expression (sexp). This function can be used in either Direct or Deferred
mode. Figure 7-1 is a short program illustrating the ASC function.

10 D1M A$(3)
20 A$="E"
30 A=A51:(A$)
49 PRINT A

Figure 7-1. ASC Function Program

When executed, this program prints a 69 which is the ATASCII code for the let-
ter "E". Note that when the string itself is used, it must be enclosed in quotation
marks.

CHRS 	 Format: CHR$ (aexp)
Examples: 100 PRINT CHR$ (65)

100 A$ = CHR$ (65)

This character string function returns the character, in string format,
represented by the ATASCII code number(s) in parentheses. Only one character
is returned. In the above examples, the letter A is returned. Using the ASC and
CHR$ functions, the following program prints the upper case and lower case let-
ters of the alphabet.

Strings 37

In FÜR. I=0 TO 25
pp.:INT 	ASC("A" 	CHRS(Pi'7:f2("

I)
NEXT I

Figure 7-2. ASC and CHRS Program Example

Note: There can be only one STR$ and only one CHR$ in a logical comparison.

LEN 	 Format: LEN (sexp)
Example: 100 PRINT LEN(A$)

This function returns the length in bytes of the designated string. This informa-
tion may then be printed or used later in a program. The length of a string
variable is simply the index for the character which is currently at the end of
the string. Strings have a length of 0 until characters have been stored in them.
lt is possible to store into the middle of the string by using subscripting.
However, the beginning of the string will contain garbage unless something
was stored (using STO) there previously.

The following routine illustrates one use of the LEN function:

10 DIM A$(10)
20 AS-= ATARI "
30 RIR I! ..1T LEN(A$)

Figure 7-3. LEN Function Example

The result of running the above program would be 5.

STR$ 	 Format: 	STR$ (aexp)
Example: A$ =STR$(65)

This string from number function returns the string form of the number in
parentheses. The above example would return the actual number 65, but it
would be recognized by the computer as a string.

Note: There can only be one STR$ and only one CHR$ in a logical comparison.
For example, A =STR$(1) > STR$(2) is not valid and will not work correctly.

VAL 	 Format: VAL(sexp)
Example: 100 A = VAL(A$)

This function returns a number of the same value as the number stored as a
string. This is the opposite of a STR$ function. Using this function, the computer
can perform arithmetic operations on strings as shown in the following exam-
ple program:

10 DIM B$(5)
20 24= 11 10000"
30 B=SOROJAL(B$))
40 PRINT "THE SQUARE ROOT OF "Jae," IS "

Figure 7-4. VAL Function Program

38 Strings

Upon execution, the screen displays THE SQUARE ROOT OF B$ IS 100.

lt is not possible to use the VAL function with a string that does not start with a
number, or that cannot be interpreted by the computer as a number. lt can,
however, intrepret floating point numbers; e.g.,VAL ("1E9")would return the
number 1,000,000,000.

STRING 	 Strings can be manipulated in a variety of ways. They can be split, concatenated,

MANIPULATIONS rearranged, and sorted. The following paragraphs describe the different
manipulations.

String Concatenation

Concatenation means putting two or more strings together to form one large
string. Each string to be included in a larger string is called a substring. Each
substring must be dimensioned (see DIM). In Atari BASIC, a substring can con-
tain up to 99 characters (including spaces). After concatenation, the substrings
can be stored in another string variable, printed, or used in later sections of the
=program. Figure 7-5 is a sample program demonstrating string ccincatenation.
In this program, A$, B$, and C$ are concatenated and placed in A$.

10 DIM A$(100),B$(100),C$(100)
20 AS="STRINGS 2, SUESTRINGS ARE DISCUSSE
D "
30 E:$" IN 'ATARI BASIC--A SELF-TEACHING
GUIDE'"
40 C="---CHAPTER 9."
50 E LEN(AS)+ 1 >=B$
60 4(LEW ..J+1)=CS
70 PRINT AS

Figure 7-5. String Concatenation Example

String Splitting

The format of a subscript string variable is as follows:

svarname(aexpl[,aexp2])

The svarname is used to indicate the unsubscripted string variable name (with
$). aexpl indicates the starting location of the substring and aexp2 (if used) in-
dicates the ending location of the substring. If no aexp2 is specified, then the end
of the substring is the current end of the string. The starting location cannot be
greater than the current length of the string. The two example programs in
Figure 7-6 illustrate a split string with no end location indicated and a split
string with an ending location indicated.

10 DIM SS(5) 	 10 DIM SS(20)
20 5$=" PIECE*" 	 20 SS="ATARI 200 BASIC"
33 PRINT SV 2:: 	 30 PRINT SE 7, 9)
40 END • 	 40 END
Result is BCD. 	 Result is 800.
(without ending location) 	 (with ending location)

Figure 7-6. Split String Examples

Strings 39

String Comparisons and Sorts

In string comparisons, the logical operators are used exactly the way they are
with numbers. The second program in Appendix H is a simple example of bub-
ble sort.

In using logical operators, remember that each letter, number, and symbol is
assigned an ATASCII code number. A few general rules apply to these codes:

1. 	ATASCII codes for numbers are sized in order of the numbers' real
values and are always lower than the codes for letters (see Appendix C).

Upper case letters have lower numerical values than the lower case let-
ters. To obtain the ATASCII code for a lower case letter if you know the
upper case value, add 32 to the upper case code.

Note: Atari 13ASIC's rnemory management system moves strings - around in
memory to make room for new statements. This causes the string address to
vary if a program is modified or Direct mode is used.

40 St rings

8

ARRAYS AND
MATRICES

An array is a one-dimensional list of numbers assigned to subscripted variables;
e.g., A(0), A(1), A(2). Subscripts range from 0 to the dimensioned value. Figure
8-1 illustrates a 7-element array.

A(0)
A(1)

A(2)
A(3)
A(4)
A(5)
A(6)

Figure 8-1. Example of an Array

A matrix, in this context, is a two-dimensional table containing rows and col-
umns. Rows run horizontally and columns run vertically. Matrix elements are
stored by BASIC in row-major order. This means that all the elements of the
first row are stored first, followed by all the elements of the second row, etc.
Figure 8-2 illustrates a 7 x 4 matrix.

Columns

M(0,0) M(0,1) M(0,2) M(0,3)
M(1,0) M(1,1) M(1,2) M(1,3)
M(2,0) M(2,1) M(2,2) M(2,3)
M(3,0) M(3,1) M(3,2) M(3,3)
M(4,0) M(4,1) M(4,2) M(4,3)
M(5,0) M(5,1) M(5,2) M(5,3)
M(6,0) M(6,1) M(6,2) M(6,3)

Figure 8-2. Example of a Matrix

This section describes the two commands associated with arrays, matrices, and
strings, and how to load both arrays and matrices. The commands in this sec-
tion are:

DIM
CLR

DIM (DI.) 	Format: Dim svar(aexp) 	1 I ,svar(aexp)
mvar(aexp[,aexp]) I 1 ,mvar(aexp [,aexp •••

ExampIes: DIM A(100)
DIM M(6,3)
DIM B$(20) 	used with STRINGS

Arrays and Matrices 41

A DIM statement is used to reserve a certain number of locations in memory for
a string, array, or matrix. A character in a string takes one byte in memory and
a number in an array takes six bytes. The first example reserves 101 locations
for an array designated A. The second example reserves 7 rows by 4 columns
for a two-dimensional array (matrix) designated M. The third example reserves
20 bytes designated B$. All strings, arrays, and matrices must be dimen-
sioned. lt is a good habit to put all DIM statements at the beginning of the pro-
gram. Notice in Figure 8-1 that although the array is dimensioned as DIM A(6),
there are actually 7 elements in the array because of the 0 element. Although
Figure 8-2 is dimensioned as DIM M(6,3), 28 locations are reserved.

Note: The ATARI Personal Computer does not automatically initialize array or
matrix variables to 0 at the start of program execution. To initialize array or
matrix elements to 0, use the following program steps:

259 °IM A(100)
390 FÜR E=0 TO 100
319 A(E)=0
320 NEXT E

Arrays and matrices are "filled" with data by using FOR/NEXT statements,
READ/DATA statements and INPUT commands. Figure 8-3 illustrates the
"building" of part of an array using the FOR/NEXT loop and Figure 84 builds an
array using the READ/DATA statements.

10 DIM A(100
20 X=10
70 FÜR E=1 TO 90
40 X=X+1
50 A(E)=X
60 NEXT E
70 FÜR P=1 TO 90
0 PRINT E,A(E)
90 NEXT

Figure 8-3. Use of FOR/NEXT to Build An Array

10 °IM A(3)
20 FÜR E=1 TO 3
30 READ X
40 i(E)=X
59 PRINT A(E),
60 NEXT E
70 END
100 DATA 33,45,12

Figure 8-4. Use of READ/DATA to Build An Array

42 Arrays and Matrices

Figure 8-5 shows an example of building a 6 x 3 matrix.

10 EIIM M6,3)
:20 FÜR ROW=0 TO G
30 FÜR COL.1 TO 7
40 WROW,COL)=INT(RNO(0)1000)
50 NEXT COUNEXT ROW
60 FÜR ROW=0 TO 6
70 FÜR COL.1 TO 3
80 PRINT WROW,COL>
90 NEXT COL , PRINT sNEXT ROW

Figure 8-5. Building A Matrix

Note that the words ROW and COLUMN are not BASIC commands, statements,
functions, or keywords. They are simply variable names used here to designate
which loop function is first. The program could just as easily have been written
with X and Y as the variable names.

CLR 	 Format: CLR
Example: 200 CLR

This command clears the memory of all previously dimensioned strings, arrays,
and matrices so the memory and variable names can be used for other purposes.
lt also clears the values stored in undimensioned variables. If a matrix, string, or
array is needed after a CLR command, it must be redimensioned with a DIM
command.

Arrays und Muttiees 43

NOTES

44 Notes

9

GRAPHICS MODES
AND COMMANDS

This section describes the Atari BASIC commands and the different graphics
modes of the ATARI Personal Computer. Using these commands, it is possible to
create graphics for game, graphics, and patterns.

The commands to be described in this section are:

GRAPHICS 	 LOCATE 	 PUT/GET
COLOR 	 PLOT 	 SETCOLOR
DRAWTO 	 POSITION 	 XIO

The PUT/GET and XIO commands explained in this section are special applica-
tions of the same commands described in Section 5.

GRAPHICS (GR.) Format: GRAPHICS aexp
Example: GRAPHICS 2

This command is used to select one of the nine graphics modes. Table 9-1 sum-
marizes the nine modes and the characteristics of each. The GRAPHICS com-
mand automatically opens the screen, S:(the graphics window),as device #6. So
when printing text in the text window, it is not necessary to specify the device
code. The aexp must be positive, rounded to the nearest integer. Graphics mode
0 is a full-screen display while modes 1 through 8 are split screen displays. To
override the split-screen, add the characters + 16 to the mode number (aexp) in
the GRAPHICS command. Adding 32 prevents the graphics command from
clearing the screen.

To return to graphics mode 0 in Direct mode, press 	 or type GR.0
and press RETURN .

TABLE 9.1—TABLE OF MODES AND SCREEN FORMATS

Gr.
Mode

Mode
Type

SCREEN FORMAT

Verl. 	Verl.
Horiz. 	(Col) 	(Col)
(Hours) 	Split 	Full

Screen 	Screen

Number
Of

Colors
RAM

Required
(Bytes)

0 TEXT 40 - 24 2 993
1 TEXT 20 20 24 5 513
2 TEXT 20 10 12 5 261

3 GRAPHICS 40 20 24 4 273
4 GRAPHICS 80 40 48 2 537
5 GRAPHICS 80 40 48 4 1017
6 GRAPHICS 160 80 96 2 2025
7 GRAPHICS 160 80 96 4 3945
8 GRAPHICS 320 160 192 1/2 7900

The following paragraphs describe the nine graphics modes.

Graphic Müdes and Commands 45

GRAPHICS This mode is the 1-color, 2-luminance (brightness) default mode for the ATARI

MODE 0 Personal Computer. lt contains a 24 by 40 character screen matrix. The default
margin settings at 2 and 39 allow 38 characters per line. Margins may be chang-
ed by poking LMARGN and RMARGN (82 and 83). See Appendix I. Some systems
have different margin default settings. The color of the characters is determined
by the background color. Only the luminance of the characters can be different.
This full-screen display has a blue display area bordered in black (unless the
border is specified to be another color). To display characters at a specified loca-
tion, use one of the following two methods.

Method 1.
lineno POSITION aexp1, aexp2 	 Puts cursor at location
lineno PRINT sexp 	 specified by aexpl and aexp2.

Method 2
lineno GR. 0
lineno POKE 752,1
lineno COLOR ASC(sexp)

lineno PLOT aexp1,aexp2

lineno GOTO lineno

Specifies graphics mode.
Suppresses cursor.
Specifies character to be
printed.
Specifies where to print
character.
Start loop to prevent READY
from being printed. (GOTO
same lineno.)

Press BREAK to terminate
loop.

GRAPHICS 0 is also used as a clear screen command either in Direct mode or
Deferred mode. lt terminates any previously selected graphics mode and
returns the screen to the default mode (GRAPHICS 0).

GRAPHICS 	As defined in Table 9-1, these two 5-color modes are Text modes. However, they

MODE S 	are both split-screen (see Figure 9-1) modes. Characters printed in Graphics
mode 1 are twice the width of those printed in Graphics 0, but are the same

1 AND 2 height. Characters printed in Graphics mode 2 are twice the width and height
of those in Graphics mode 0. In the split-screen mode, a PRINT command is used
to display characters in either the text window or the graphics window. To
print characters in the graphics window, specify device #6 after the PRINT com-
mand.

Example: 100 GR. 1
110 PRINT46;"ATARI”

The default colors depend on the type of character input. Table 9-2 defines the
default color and color register used for each type.

Table 9-2. Default Colors for Specific Input Types

Character Type 	 Color Register Default Color

Upper case alphabetical 0 Orange
Lower case alphabetical 1 Light Green
Inverse upper case alphabetical 2 Dark Blue
Inverse lower case alphabetical 3 Red
Numbers 0 Orange
Inverse numbers 2 Dark Blue

Note: See SETCOLOR to change character colors.

46 Graphic Modes and Commands

Unless otherwise specified, all characters are displayed in upper case non-
inverse form. To print lower case letters and graphics characters, use a POKE
756,226. To return to upper case, use POKE 756,224.

In graphics modes 1 and 2, there is no inverse video, but it is possible to get all
the rest of the characters in four different colors (see end of section).

(X=0)
(Y=0)

S:

Graphics Window
(graphies or test)

E:
Text Window

lines)

border (size

depends on

individual

TV's overscan)

Figure 9-1. Split-Screen Display For Graphics Modes 1 and 2

The X and Y coordinates start at 0 (upper left of screen). The maximum values
are the numbers of rows and columns minus 1 (see Table 9-1).

This split-screen configuration can be changed to a full screen display by adding
the characters + 16 to the mode number.

Example: GRAPHICS 1+16

GRAPHICS 	These three 4-color graphics modes are also split-screen displays in their default
state, but may be changed to full screen by adding +16 to the mode number.

MODES 	 Modes 3, 5, and 7 are alike except that modes 5 and 7 use more points (pixels) in
3, 5, AND 7 	plotting, drawing, and positioning the cursor; the points are smaller, thereby

giving a much higher resolution.

GRAPHICS 	These two 2-color graphics modes are split-screen displays and can display in

MODES 	 only two colors while the other modes can display 4 and 5 colors. The advantage
of a two-color mode is that it requires less RAM space (see Table 9-1). Therefore,

4 AND 6 it is used when only two - colors are needed and RAM is getting crowded. These
two modes also have a higher resolution which means smaller points than
Graphics mode 3.

GRAPHICS 	This graphics mode gives the highest resolution of all the other modes. As it
takes a lot of RAM to obtain this kind of resolution, it can only accomodate a

MODE 8 	 maximum of one color and two different luminances.

Graphie Modes and Connnands 47

COLOR (C.) 	Format: COLOR aexp
Examples: 110 COLOR ASC("A")

110 COLOR 3

The value of the expression in the COLOR statement determines the data to be
stored in the display memory for all subsequent PLOT and DRAWTO com-
mands until the next COLOR statement is executed. The value must be positive
and is usually an integer from 0 through 255. Non-integers are rounded to the
nearest integer. The graphics display hardware interprets this data in different
ways in the different graphics modes. In text modes 0 through 2, the number
can be from 0 through 255 (8 bits) and determines the character to be displayed
and its color. (The two most significant bits determine the color. This is why on-
ly 64 different characters are available in these modes instead of the full
256-character set.)

Tables 9-6 and 9-7 at the end of this section illustrate the internal character set
and the character/color assignment. Tahle 9-2 is a simplified table which allows
easy generation of some of the colors. For example, COLOR ASC("A"): PLOT
5,5 will display an orange A character in graphics modes 1 or 2 at location 5,5.

Graphics modes 3 through 8 are not text modes, so the data stored in the display
RAM simply determines the color of each pixel. Two-color or two-luminance
modes require either 0 or 1 (1-bit) and four-color modes require 0, 1, 2, or 3. (The
expression in the COLOR statement may have a value greater than 3, but only
one or two bits will be used.) The actual color which is displayed depends on the
value in the color register which corresponds to the data of 0, 1, 2, or 3 in the
particular graphics mode being used. This may be determined by looking in
Table 9-5, which gives the default colors and the corresponding register
numbers. Colors may be changed by using SETCOLOR.

Note that when BASIC is first powered up, the color data is 0, and when a
GRAPHICS command (without + 32) is executed, all of the pixels are set to 0.
Therefore, nothing seems to happen to PLOT and DRAWTO in GRAPHICS 3
through 7 when no COLOR statement has been executed. Correct by doing a .
COLOR 1 first.

DRAWTO (DR.) Format: DRAWTO aexpl, aexp2
Example: 100 DRAWTO 10, 8

This statement causes a line to be drawn from the last point displayed by a PLOT
(see PLOT) to the location specified by aexpl and aexp2. The first expression
represents the X coordinate and the second represents the Y-coordinate (see
Figure 9-1). The color of the line is the same color as the point displayed by the
PLOT.

LOCATE (LOC.) Format: LOCATE aexpl, aexp2, var
Example: 150 LOCATE 12, 15, X

This command positions the invisible graphics cursor at the specified location in
the graphics window, retrieves the data at that pixel, and stores it in the
specified arithmetic variable. This gives a• number from 0 to 255 for Graphics
modes 0 through 2; 0 or 1 for the 2-color graphics modes; and 0, 1, 2, or 3 for the
4-color modes. The two arithmetic expressions specify the X and Y coordinates
of the point. LOCATE is equivalent to:

POSITION aexp1, aexp2:GET #6,avar

48 Graphic Modes and Commands

Doing a PRINT after a LOCATE or GET from the screen may cause the data in
the pixel which was examined to be modified. This problem is avoided by
repositioning the cursor and putting the data that was read, back into the pixel
before doing the PRINT. The following program illustrates the use of the
LOCATE command.

10 GRAPHICs 7+16
29 coLoR 1
30 GETCOLOP 2,10,8
40 PLOT 10,15
50 DRANTO 15,15
60 LOCATE 12,15 X
70 PRINT X

Figure 9-2. Example Program Using LOCATE

On execution, the program prints the data (1) determined by the COLOR state-
ment which was stored in pixel 12, 15.

PLOT (PL.) 	Format: PLOT aexpl, aexp2
Example: 100 PLOT 5,5

The PLOT command is used in graphics modes 3 through 8 to display a point in
the graphics window. The aexpl specifies the X-coordinate and the aexp2 the
Y-coordinate. The color of the plotted point is determined by the hue and

■ ..__ luminance in the color register from the last COLOR statement executed. To
change this color register, and the color of the plotted point, use SET-
COLOR. Points that can be plotted on the screen are dependent on the graphics
mode being used. The range of points begins of 1 and extends to one less than
the total number of rows (X-coordinate) or columns (Y-coordinate) shown in
Table 9-1.

POSITION (POS.) Format: 	POSITION aexpl, aexp2
Example: 	100 POSITION 8, 12

The POSITION statement is used to place the invisible graphics window cursor
at a specified location on the screen (usually precedes a PRINT statement). This
statement can be used in all modes. Note that the cursor does not actually move
until an I/O command which involves the screen is issued.

PUT/GET Formats: 	PUT #aexp, aexp

PU /GE)
GET #aexp, avar

Examples: 100 PUT #6, ASC("A")
200 GET #1, X

In graphics work, PUT is used to output data to the screen display. This state-
ment works hand-in-hand with the POSITION statement. After a PUT (or GET),
the cursor is moved to the next location on the screen. Doing a PUT to device
causes the one-byte input (second aexp) to be displayedaat the cursor position.
The byte is either an ATASCII code byte for a particular character (modes 0-2) or
the color data (modes 3-8).

GET is used to input the code byte of the character displayed at the cursor
tion, into the specified arithmetic variable. The values used in PUT and GET cor-
respond to the values in the COLOR statement. (PRINT and INPUT may also be
used.)

Graphic Müdes arid Cornmands 49

Note: Doing a PRINT after a LOCATE or GET from the screen may cause the
data in the pixel which was examined to be modified. To avoid this problem,
reposition the cursor and put the data that was read, back into the pixel before
doing the PRINT.

SETCOLOR (SE.) Format: SETCOLOR aexpl, aexp2, aexp3
Example: 100 SETCOLOR 0, 1, 4

This statement is used to choose the particular hue and luminance to be stored
in the specified color register. The parameters of the SETCOLOR statement are
defined below:

aexpl 	= Color register (0-4 depending on graphics mode)
aexp2 	= Color hue number (0-15. See Table 9-3)
aexp3 = Color luminance (must be an even number between 0 and 14; the

higher the number, the brighter the display. 14 is almost pure
white.)

TABLE 9.3—THE ATARI HUE (SETCOLOR COMMAND)
NUMBERS AND COLORS

COLORS

GRAY
LIGHT ORANGE (GOLD)
ORANGE
RED-ORANGE
PINK
PURPLE-BLUE
BLUE
BLUE
LIGHT BLUE
TURQUOISE
GREEN-BLUE
GREEN
YELLOW-GREEN
ORANGE-GREEN
LIGHT ORANGE

SETCOLOR (aexp2) NUMBERS

0
1
2
3
4
6
7
8
9
10
11
12
13
14
15

Note: Colors will vary with type and adjustment of TV or monitor used.

The ATARI display hardware contains five color registers, numbered
from 0 through 4. The Operating System (OS) has five RAM locations (COLOR°
through COLOR4, see Appendix I - Memory Locations) where it keeps track of
the current colors. The SETCOLOR statement is used to change the values in
these RAM locations. (The OS transfers these values to the hardware registers
every television frame.) The SETCOLOR statement requires a value from 0 to 4
to specify a color register. The COLOR statement uses different numbers
because it specifies data which only indirectly corresponds to a color register.
This can be confusing, so careful experimentation and study of the various
tables in this section is advised.

No SETCOLOR commands are needed if the default set of five colors is used.
Although 128 different color-luminance combinations are possible, not more
than five can be displayed at any one time. The purpose of the color registers
and SETCOLOR statement is to specify these five colors.

50 Graphic Modes and Gornmonds

TABLE 9.4—TABLE OF SETCOLOR "DEFAULT" COLORS*

Setcolor Defaults To Luminance Actual Color
(Color Register) Color

0 2 8 ORANGE
1 12 10 GREEN
2 9 4 DARK BLUE
3 4 6 PINK OR RED
4 0 0 BLACK

'DEFAULT" occurs if not SETCOLOR statement is used.

Note: Colors may vary depending upon the television monitor type, condition,
and adjustment.

A program illustrating Graphics mode 3 and the commands explained so far in
this section is shown below:

10 GRAPHICS 3
20 RETCOLOR 0, 2 ,8:C3LOR 1
39 PLOT 	17,1 , DRAWTO 17,12 , DRAWTO 9,12
40 PLOT 19,1 , 0RAWT0 19,12
59 PLOT 20,1:DRAWTO 20,12
60 PLOT 22,1:0RAWTO 22,10:DRAWTO 30,18
70 POKE 752,1
89 PRINT :PRINT " 	ATARI PER2ONAL COMP
UTERS"
90 GOTO 	'

The SETCOLOR and COLOR statements set the color of the points to be plotted
(see Table 9.5). The SETCOLOR command loads color register 0 with hue 2
(orange) and a luminance of 8 ("normal"). The next 4 lines plot the points to be
displayed. Line 90 suppresses the cursor and line 100 prints the string expres-
sion ATARI PERSONAL COMPUTERS in the text window (6 spaces in).

Note that the background color was never set because the default is the desired
color (black).

If the program is executed, it will print the Atari logo in the graphics window
and the string expression in the text window as in Figure 9-3.

Graphie Modes and Connnands 51

Y-AXIS POINTS (ROWS)

aw 	 ■•1 	 •.• GA 	 u

o \
Cle 	n

x

z0.91 	z

2

i-g

eiD

<

t,1

'c--

e

>.

52 Graphic Modes and Comtnands

E-1

W
X

0
U
Q
Z
<

Z o
P

U
(.2
FIZ
Z

e
0
0

110

0
ct

cu

0
—5 0

CU
5
ns z
GJ
o
Cö

z ,
0

-1--■ 	0

C15 bp 	U
;....
C Q 	r...,

0
1 	urza 	im

ez V)

CU
"C

C-■ 0
-0

.4.-i-i-o-4 ■ 4-.0
U U 0 U S.

cz 	cu 	czi 	ccs 	c..,
,-O 4 .4 4 cu
uuu,c.)gcl

Z

Z

0

cl)

(1)
"0
0

PZI

-5
cu

"C
Z
z 0
bi)

U
Cö
e

o o o 	0

UUU 	0
''''' 	'.'" 	• "" 	•'-1

ni 	ns 	c,:, 	cr,
s-. 	;-. 	s-. 	. 	s-.
LDULD 	ic..7

C13 	CCS 	CO 	Ct 	110

-0

.- -

0
'1:5
0

Z1

3
cu

"0
Z
z 0
ho

,- . 0
CCS
e

0 	0
a,

V) 	 Cn
U

•1-. 	
• 	0

•7-■

cr,
;-. 	, 	

ct u
C.7 	i 	1 	Ic..7

e 0
0 ,.
bt

,--
c‘I

..ID
rn
ce

0 .-.

8 3
cU c4-.
E 	',25'
up mj
0 z c.) 	0 ,
os ho

._.

.ä 	CCd
2 e

0 0

V) 	V)
0 U

P. 	-0 cci 	ce 	L. ;-. 	u 	, 	0
I 	S...7 	(...7 	I 	M

ow

co0
ru 	'2,

m -c-d -ätt
0 	ce 	ci) ,_ 	_0

,

m
cu

ce • c --
4,-zi 	tj 	o

	

t 	Cr.; -4-
0 	t +8'
0 —, 	s-■

Tzi M

Ü U
CO

,-, r.,“,"D 	. 	0

IX 	Ci

4 "c2..1 	ci.4 	iK
0 	>,u=. C1J

E• 03 U 'El

cn 	e

cD .-1 c•2 cn 714 0 ,--1 c9 cn e 0 ■-■ c \t on e 0 1-1 CN/ CO 0 0 1-1 r \/ Cr) e

CD 0 ..

e ex 0 :

-ci 	r . 	c/D

ce g >

c 4 z
 -

4z

iii

-0

0 c' 	;‹
0 4 0 0

in' 	i...

1-.1 	r•-■ 	0

Q cz z >

0
;-■

n
0 ° 0

0 os 	>

_ ci)
0

0L) -d
4

4... .—■ 	z
Z 41
cul 	0

4-■ ^,

M

P4 ;4

4 4
M t4 	C-3 E-4 	<

:1 t=1

Z gq
4Z

P4 p_l
0 1:: 4
Z0 M CZ C-) < r_ 	„,4 `I

12P
U...7
722 2

Z 4
g4

W g4
2 tz 4
ZC.D P:1 	C-) < E_, 	<

Z 	P:1

n

F.0
LD
Z 	L..)

< 	<
0 	

PZ1

Z
4.1 4.1
g4 4
c O3 	C....)
,_, 	• <
Z
0 < 	

121

il 2

Graphie Modes and Command.s 53

XIO (X.) 	 Format: 	XIO 18, #aexp, aexpl, aexp2, filespec

SPECIAL FILL 	Example: 100 XIO 18, #6, 0, 0, "S:"

APPLICATION
This special application of the XIO statement fills an area on the screen between
plotted points and lines with a non-zero color value. Dummy variables (0) are
used for aexpl and aexp2.

The following steps illustrate the fill process:

1. PLOT bottom right corner (point 1).
2. DRAWTO upper right corner (point 2). This outlines the right edge of the

area to be filled.
3. DRAWTO upper left corner (point 3).
4. POSITION cursor at lower left corner (point 4).
5. POKE address 765 with the fill color data (1, 2, or 3).
6. This method is used to fill each horizontal line from top to bottom of the spe-

cified area. The fill starts at the left and proceeds across the line to the right
until it reaches a pixel which contains non -zero data (will wraparound if
necessary). This means that fill cannot be used to change an area which has
been filled in with a non-zero value, as the fill will stop. The fill commänd
will go into an infinite loop if a fill with zero (0) data is attempted on a line
which has no non-zero pixels. BREAK or SYSTEM RESET can be used to stop the
fill if this happens.

The following program creates a shape and fills it with a data (color) of 3. Note
that the XIO command draws in the lines of the left and bottom of the figure.

10 GRAPHICS 5÷16
20 COLOR 3
33 PLOT 70, 45
40 DRAWTO 50, 10
50 DRAWTO 30, 10
60 POSITION 113.45
70 POKE 765, 7
80 	0 18, #6, 0, 0. 	"
90 GoTo

Figure 9-4. Example "FILL" Program

Assigning Colors To Characters In Text Modes 1 and 2

This procedure describes the method of assigning colors to the Atari character
set. First, look up the character number in Table 9-6. Then, see Table 9-7 to get
the conversion of that number required to assign a color register to it.

Example: Assign SETCOLOR 0 to lower case "r" in mode 2
whose color is determined by register 0.

1. In Table 9-6, find the column and number for "r" (114-column 4).
2. Using Table 9-7, locate column 4. Conversion is the character'number minus

32 (114 - 32 = 82).

54 Graphic Modes und COM171alldS

ei

Z

Trol u

E ,

' X

c9 OZ

,

e
1-4
1-1

VD

Lo
,-4
,-4

-1-1

up
1-1
1-4

Z

N
.-1
1-1

>

co
1-1
1-1

0-)
x-4
1-1

>1

0
c9
1-1

›-

—I
79
'-'

N

c-9
c9

Co
N

—

7t•
c-9

IC

In
C9

.-i

V

(9
C9

Ah.

N.
N

= u
4*

Lo
0

CZ ,-0

oc)
0

C.)

0
0

7:5

o
o
.-I

(1)

-4
0
.--■

4-1

c9
o
.--4

IV)

CO
0
..-1

,-.

e
0
.--1

•---.

Li-D
0
,--4

••--

Lo
0
,-,

N-
0
-1

co
0
-,

E

o
-1

0.0 0

1-1

o

,-

•-I

ce

E
z
o

IM
U

tt 0
co

.--■
co

r9
co

CO
Co

-:}4
Co

in
Co

(9
Co

t--
(20

Co
Co

0
Co

o
0

8'

,-(
cs)

c-q
0

CO
0

e
0

LO
0

r4
:

10
(9

:

CO
(9

0.3
(9

0
N

1-1
N-

C9
N

-/
N.

lt>
N.

el
(9
N.

3
N
N

113 E
0
N.

N
z
E
z
0

G.7

a
U

et
c•
'Zt4

o
11Z

T-4
li-D

C9
In

co
in

e
In

in
in

(..0
irD

N
in

oC
In

—

0")

--

0
In

—

•,-1

< 1

CO

r4
z
u

tt

e

c9
Cr)

<

co
co

f2:1

"el
CO

z..)

in
CO

(Z1

(0
CO

P4

CO

V.1-■

c0
CO

Cr)
CO

Z

0
e

,....

1-1
e

■-,

C9
e

Cr)
e

4

e
e

>

In
e

Z

cm
ei

0

Z
E

u

:
U

le

o 1-1

N.
,-,

c9

1-1

CO

0
.-1

•sti

0
N

in

1-4
N

c.ID

c•9
N

t---

CO
N

CC

e
N

0

11-3
N

• •

c..0
N

• -

N-
N

V

N
Co

I 	I

0
N

A

0
CO

cs-.

,-■
CO

— u

tt

,..›
cg-i

0 ,--i ("9

4,

CO

•En_

'41

,,f2

LCD

cz

(9

..

N-

_

c0

—

0 0
,.-1

+

,-(
,.-+

-

c-.1
1-4

1

CO
9-1

1,_

trp
1-1

Graphic Modes and Cominands 55

TabIe 9.7—CHARACTER/COLOR ASSIGNMENT

Conversion 1 Conversion 2 Conversion 3 Conversion 4

MODE 0
2

SETCOLOR 2 11+32 # + 32 11-32 NONE

POKE 756,224 POKE 756,226

MODE 1

OR

MODE 2

SETCOLOR 0 -$32 # + 32 11-32 11-32

SETCOLOR 1 NONE #+ 64 11-64 NONE

SETCOLOR 2 # + 160 # + 160 # + 96 11+96

SETCOLOR 3 # + 128 11+ 192 # + 64 # + 128

2. Luminance controlled by SETCOLOR 1, 0, LUM.

3. POKE the Character Base Address (CHBAS) with 226 to specify lower case let-
ters or special graphics characters; e.g.,

POKE 756,226
or

CHBAS = 756
POKE CHBAS, 226

To return to upper case letters, numbers, and punctuation marks, POKE CHBAS
with 224.

4. A PRINTstatement using the converted number (82) assigns the lower case
"r" to SETCOLOR 0 in mode 2 (see Table 9-5).

Graphic Control Characters

These characters are produced when the EZ3 key is pressed with the
alphabetic keys shown on back cover. These characters can be used to draw
design, pictures, etc., in mode 0 and in modes 1 and 2 if CHBAS is changed.

56 Graphic Modes and Conimands

10

SOUNDS AND GAME
CONTROLLERS

This section describes the statement used to generate musical notes and sounds
through the audio System of the television monitor. Up to four different sounds
can be "played" simultaneously creating harmony. This SOUND statement can
also be used to simulate explosions, whistles, and other interesting sound ef-
fects. The other commands described in this section deal with the functions
used to manipulate the keyboard, joystick, and paddle controllers. These func-
tions allow these controllers to be plugged in and used in BASIC programs for
games, etc.

The command and functions covered in this section are:

SOUND 	 PADDLE 	 STICK
PTRIG 	 STRIG

SOUND (SO.) 	Format: 	SOUND aexpl, aexp2, aexp3, aexp4
Example: 100 SOUND 2, 204, 10, 12

The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program en-
counters another SOUND statement with the same aexpl or an END statement.
This command can be used in either Direct or Deferred modes.

The SOUND parameters are described as follows:

aexpl = 	Voice. Can be 0-3, but each voice requires a separate SOUND state-
ment.

aexp2 = Pitch. Can be any number between 0-255. The larger the number,
the lower the pitch. Table 10-1 defines the pitch numbers for the
various musical notes ranging from two octaves above middle C to
one octave below middle C.

aexp3 = 	Distortion. Can be even numbers between 0-14. Used in creating
sound effects. A 10 is used to created a "pure" tone whereas a 12
gives an interesting buzzer sound. A buzzing sound (like engines at
a race track) can be produced using two separate SOUND commands
with the distortion value (aexp3) alternating between 0 and 1. A
value of 1 is used to force output to the speaker using the specified
volume (see aexp4). The rest of the numbers are used for other
special effects, noise generation, and experimental use.

aexp4 = 	Volume control. Can be between 1 and 15. Using a 1 creates a sound
barely audible whereas a 15 is loud. A value of 8 is considered nor-
mal. If more than 1 sound statement is being used, the total volume
should not exceed 32. This will create an unpleasant "clipped" tone.

Sounds and Garne Controllers 57

Using the note values in Table 10-1, the following example demonstrates how to
write a program that will "play" the C scale.

TABLE 10.1. TABLE OF PITCH VALUES FOR THE MUSICAL
NOTES

HIGH C 29
NOTES B 31

A# or Bb 33
A 35
G# or Ab 37
G 40
F# or Gb 42
F 45
E 47
D# or E 50
D 53
C# or Db 57
C 60
B 64
A# or B 68
A 72
G# or Ab 76
G 81
F# or Gb 85
F 91
E 96
D# or El' 102
D 108
C# or Db 114

MIDDLE C C 121
B 128
A# or Bb 136
A 144
G# or Ab 153
G 162
F# Gb 173
F 182

LOW NOTES D 193
D# or El' 204
D 217
C# or Db 230
C 243

10 READ A
20 IF A=25.6 THEN END
30 SOUND 0, A, 12, 12
40 FÜR W=1 TO 400 NEXT W
50 PRINT A
60 GOTO 10
70 9'40
'30 DATA 29, 31, 45, 47, 53.. GO, 72, 81
.91 , 96 , 108, 121
90 DATA 128, 144, le2, 132, 193, 217, 247, 25(::

Figure 10-1. Musical Scale Program

Note that the DATA statement in line 80 ends with a 256, which is outside of the
designated range. The 256 is used as an end-of-data marker.

58 Sound.s and Garne Controllers

GAME 	 Figure 10-2 is an illustration of the three controllers used with the Atari Per

CONTROLLER 	sonal Computers. The controllers cän be attached directly to the Atari Per-
sonal Computer or to external mechanical devices so that outside events can be FUNCTIONS 	fed directly to the computer for processing and control purposes.

Figure 10-2. Garne Controllers

PADDLE 	Format: PADDLE(aexp)
Example: PRINT PADDLE(3)

This function returns the status of a particular numbered controller. The paddle
controllers are numbered 0-7 from left to right. This function can be used with
other functions or commands to "cause" further actions like sound, graphics
controls, etc. For example, the statement IF PADDLE(3) = 14 THEN PRINT
"PADDLE ACTIVE." Note that the PADDLE function returns a number bet-
ween 1 and 228, with the number increasing in size as the knob on the con-
troller is rotated counterclockwise (turned to the left).

PTRIG 	 Format: 	PTRIG(aexp)
Example: 100 IF PTRIG(4)=0 THEN PRINT "MISSILES FIRED!"

The PTRIG function returns a status of 0 if the trigger button of the designated
controller is pressed. Otherwise, it returns a value of 1. The aexp must be a
number between 0 and 7 as it designates the controller.

STICK 	 Format: 	STICK(aexp)
Example: 100 PRINT STICK(3)

This function works exactly the same way as the PADDLE command, but can be
used with the joystick controller. The joystick controllers are numbered from
0-3 from len to right.

Controller 1 = STICK(0)
Controller 2 = STICK(1)
Controller 3 = STICK(2)
Controller 4 = STICK(3)

Figure 10-3 shows the numbers that will be returned when the joystick con-
troller is moved in any direction.

Sounds and Game Controllers 59

14 	-

11 7

13

Figure 10-3. Joystick Controller Movement

STRIG 	 Format: STRIG(aexp)
Example: 100 IF STRIG(3)= 0 THEN PRINT "FIRE TORPEDO"

The STRIG function works the same way as the PTRIG function. lt can be used
with both the joystick and keyboard controllers.

60 Sounds und Garne Controllers

ADVANCED PROGRAMMING
TECHNIQUES

This section includes hints on increasing programming efficiency, conserving
memory, and combining machine language programs with Atari BASIC pro-
grams. This section does not include an instruction set for the 6502 micro-
processor chip nor does it give instructions on programming in machine
language. An additional purchase of the Atari Assembler Editor cartridge* and
a careful study of Atari's Assembler Editor Manual are strongly recommended.

MEMORY
CONSERVATION These hints give ways of conserving memory. Some of these methods make pro-

grams less readable and harder to modify, but there are cases where this is
necessary due to memory limitations.

1. In many small computers, eliminating blank spaces between words and
characters as they are typed into the keyboard will save memory. This is not
true of the ATARI Personal Computer System, which removes extra spaces.
Statements are always displayed the same regardless of how many spaces
were used on program entry. Spaces should be used (just as in typing on a
conventional typewriter) between successive keywords and between
keywords and variable names. Here is an example:

10 IF A = 5 THEN PRINT A

Note the space between IP and A and between THEN and PRINT. In most
cases, a statement will be interpreted correctly by the computer even if all
spaces are left out, but this is not always true. Use conventional spacing.

2. Each new line number represents the beginning of what is called a new
"logical line". Each logical line takes 6 bytes of "overhead", whether it is
used to full capacity or not. Adding an additional BASIC statement by using a
colon (:) to separate each pair of statements on the same line takes only 3
bytes.

*Available late 1980.

Advanced Programming Teclmiques 61

If you need to save memory, avoid programs like this:

19 X=Y+1
29 Y=Y+1
39 2=X+Y
40 PRINT Z
59 GOTO 50

and consolidate lines like this:

19 X=X+1:72.141:Z=X+Y:PRINT Z:GOTO 19

This consolidation saves 12 bytes.

Variables and constants should be "managed" for savings, too. Each time a
constant (4,5,16,3.14159, etc.) is used, it takes 7 bytes. Defining a new
variable requires 8 bytes plus the length of the variable name (in characters).
But each time it is used after being defined, it takes only 1 byte, regardless of
its length. Thus, if a constant (such as 3.14159) is used more than once or
twice in a program, it should be defined as a variable, and the variable name
used throughout the program. For example:

19 PI=3.14159
20 PRINT "AREA OF A CIRCLE IS THE RADIUS
SQUARED TIMES ";PI

Literal strings require 2 bytes overhead and 1 byte for each character
(including all spaces) in the string.

String variables take 9 bytes each plus the length of the variable name
(including spaces) plus the space eaten Up by the DIM statement plus the size
of the string itself (1 byte per character, including spaces) when it is defined.
Obviously, the use of string variables is very costly in terms of RAM.

6. Definition of a new matrix requires 15 bytes plus the length of the matrix
variable name plus the space needed for the DIM statement plus 6 times the
size of the matrix (product of the number of rows and the number of col-
umns). Thus, a 25 row by 4 column matrix would require 15 + approxi-
mately 3 (for variable name) + approximately 10 (for the DIM statement) + 6
times 100 (the matrix size), or about 630 bytes.

62 Advanced Programming Techniques

7. Each character after REM takes one byte of memory. Remarks are helpful to
people trying to understand a program, but sometimes it is necessary to
remove remark statements to save memory.

8. Subroutines can save memory because one subroutine and several short calls
take less memory than duplicating the code several times. On the other
hand, a subroutine that is only called once takes extra bytes for the GOSUB
and RETURN statements.

9. Parentheses take one byte each. Extra parentheses are a good idea in some
cases if they make an expression more understandable to the programmer.
However, removing unnecessary parentheses and relying on Operator
precedence will same a few bytes.

PROGRAMMING Machine language is written entirely in binary code. The ATARI Personal Com

IN MACHINE puter contains a 6502 microprocessor and it is possible to call 6502 machine code
subroutines from BASIC using the USR function. Short routines may then be

LANGUAGE entered into a program by hand assembly (if necessary).

Before it returns to BASIC, the assembly language routine must do a pull ac-
cumulator (PLA) instruction to remove the number (N) of input arguments off
the stack. If this number is not 0, then all of the input arguments must be pop-
ped off the stack also using PLA. (See Figure 6-1).

The subroutine should end by placing the low byte of its result in location 212
(decimal), and then return to BASIC using an RTS (Return from Subroutine) in-
struction. The BASIC interpreter will convert the 2-byte binary number stored
in locations 212 and 213 into an integer between 0 and 65535 in floating-point
förmat to obtain the value returned by the USR function.

The .ADR function rnay be used to pass data that is stored in arrays or strings to a
subroutine in machine language. Use the ADR function to get the address of the
array or string, and then use this address as one of the USR input arguments.

The following program, Hexcode Loader, provides the means of entering hexa-
decimal codes, converting each hexadecimal number to decimal, and storing the
decimal number into an array. The array is then executed as an assembly
language subroutine. (An array is used to allocate space in memory for the
routine.)

Advanced Programming Techniques 63

1. To use this program, first enter it. After entering it, save this program on
disk or cassette for future use.

10 GRAPHICS 0:PRINT "HEXCODE LOADER PROG
RAM:PRINT
20 REM STORES DECIMAL EOUNALENTS IN ARR
AY A, OUTPUTS IN PRINTED 'ETA STATEMENT
S' AT
21 REM LINE NUMBER 1500.
30 REM USER TI-EN PLACES CURSOR ON PRINTE
D OUTPUT LINE, HITS "RETURN«, AND ENTERS

31 REM REST OF BASIC PROGRAM INCLUDING U
SR STATEMENT.
40 °IM A(50) HEU(5 >
50 REM INRUT,DONUERSION,STORAGE OF DATA.

60 N=0:PRINT "ENTER 1 HEX CODE. IF LAST
ONE IS IN, ENTER TONE'.";
70 INPUT HE:e
80 IF HEX$="00NE" THEN N=999:GOTO 130
90 FÜR I=1 TO LEN(HEX$)
100 IF HEXS(I,I)<="9" THEN N=N*16+UAL(HE
e(I,I)):GOTO 120
110 N=N*16+ASC(HEX$(1,I))-ASC("A")+10
120 NEXT I
139 PRINT N:C=C+1
140 A(C)=N
150 IF N<>999 THEN GOTO 60
190 REH PRINT OUT DATA LINE AT 1500
299 GRAPHICS 0:PRINT "1500 DATA";
210 C=0
229 C=C+1
239 IF A(C)=999 THEN PRINT "999" STOP
249 PRINT A(C);","; 	,
252 A(C)=0 	•
260 GOTO 220
31e3 PRINT "PUT CORRECT NUMBER OF HEX ET
ES IN LINE 1000. STOP :REM TRAF LINE
999 REM ** EXECUT ION MODULE **

CLR :BYTES=0
1819 TRAF 300 : °IM EE 1::', E(INT(BYTES/6)+1

1830 FÜR I=1 TO BYTES
1040 READ A:IF A>255 THEN GOTO 1060
1050 POKE ADR(ES)+LA
1060 NEXT I
1070 REM BASIC PART OF USER'S PROGRAM FO
LLOWS

Figure 11-1. Hexcode Loader Input Program

64 Advanced Programming Teelunanes

2. Now add the BASIC language part of your program starting at line 1080 in-
cluding the USR function that calls the machine language subroutine. (See
example below.)

3. Count the total number of hex codes to be entered and enter this number on
line 1000 when requested. If another number is already entered, simply
replace it.

4. Run the program and enter the hexadecimal codes of the machine level
subroutine pressing RETURN after each entry. After the last entry, type
DONE and press RETURN .

Now the DATA line (1500) displays on the screen. lt will not be entered into
the program until the cursor is moved to the DATA li __ne and RETURN is

pressed.

Add a program line 5 GOTO 1000 to bypass the hexcode loader (or delete the
hexcode loader through line 260). Now save the completed program by
using CSAVE or SAVE. lt is important to do this before executing the part of
the program containing the USR call. A mistake in a machine language
routine may cause the system to crash. If the System does hang up, press

SYSTEM RESET . If the system doesn't respond, turn power off and on again,
reload the program, and correct it.

Note: This method only works with relocatable machine language routines.

The follovving tvvo sample programs can each be entered into the Hexcode
Loader program. The first program prints NOTHING IS MOVING while the
machine program changes the colors. The second sample program displays a
BASIC graphics design, then changes colors.

1980 GRAPHICS 1+16
1090 FOR 1=1 TO 6
1190 PRINT #6;"notkins is movins!"
1110 PRINT #6;"NOTHING IS MOUING!"
1120 PRINT #6»inoth1ns is ffiovins!"
1130 PRINT #6;"NOTHING IS MOUING!"
1140 NEXT I
1159 Q=USR(AOR(ES)+1)
1160 FOR I=1 TO 25:NEXT I:GOTO 1150

After entering this program, check that line 1000 reads:

1000 CLR:BYTES = 21

Type RUN RETURN .

Advanced Progrrunnüng Techniques 65

Now enter the hexadecimal codes as shown column by column.

68 2
A2 E8
0 E0

AC 3
C4 90
2 F5

BD 8C
C5 C7
2 2

9D 60
C4 BYTES = 21

When completed, type DONE and press RETURN . Now place the cursor after the
last entry (999) on the DATA line and press RETURN .

Now run the program by typing GOTO 1000 and pressing RETURN , or if line 5
has been added, type RUN RETURN . Press BREAK to stop program and delete line
5.

The second program, which follows, should be entered in place of the
NOTHING IS MOVING program. Be sure to check the BYTES = count in
line 1000. Follow steps 2 through 6.

1080 GRAPHICS 7+16
1090 sm:21_0R 9,9,4
1100 SETCOLOR 1,9,8
1110 SETCOLOR 2,9,4
1120 CR=1
1130 FÜR X=0 TO 159
1140 COLOR INT(CR)
1150 PLOT 80,0
1160 DRAWTO X,95
1170 CR=CR+0.125
1180 IF CR=4 THEN CR=1
1190 NEXT X
1200 X=USR(ADR(E$)+1)
1210 FÜR I=1 TO 15.NEXT I
1220 GOTO 1200

Type RUN RETURN .

Enter the hexadecimal codes for this program column by column.

68 2
A2 E8

0 E0
AC 2
C4 90
2 F5

BD 8C
C5 C6
2 2

9D 60
C4 BYTES = 21

66 Advanced Progrananing Tecludques

When completed, type DONE and press RETURN . Now place the cursor after the
last entry (999) on the DATA line and press RETURN .

Now run the program by typing GOTO 1000 and pressing RETURN , or add line 5
GOTO 1000 and type RUN RETURN . Press Cligto stop program and delete line
5.

Figure 11-2 illustrates an assembler subroutine used to rotate colors which
might prove useful. lt is included here for the information of the user.

Assembler Subroutine to Rotate Colors..

Address 	Object
Code

Line 	Label Mnemonic 	Data
No.

02C4

02C5

02C6

02C7
._..,

6000 	68

6001 	A200

6003 	ACC402

6006 	BDC502

6009 	9DC402

600C 	E8

600D 	E002

600F 	90F5

6011 	8CC602
6014 	60

0100 	 Routine to rotate COLOR data

0110 	 From one register to another.

0120 	 4 colors are rotated. 	.

0130

0140 	 Operating System address

0150 	 COLOR 0 = $02C4

0160 	 COLOR 1 = $02C5

0170 	 COLOR 2 = $02C6

0175 	 COLOR 3 = $02C7

0180

0190 	 *= 	$6000 	Machine program starting address*

0200 	 PLA 	 Pop stack (See Chapter 4)

0210 	 LDX 	#0 	Zero the X register

0220 	 LDY 	COLORO 	Save COLOR 0

0230 	LOOP 	LDA 	COLOR1,X

0240 	 STA 	COLORO,X

0250 	 INX 	 Increment the X register (add one)

0260 	 CPX 	#3 	Compare contents of X register

vvith 2

0270 	 BCC 	LOOP 	Loop if X register contents are

less than 2

0280 	 STY 	COLOR3 	Save COLOR 0 in COLOR 3

0290 	 RTS 	 Return from machine level sub-

routine

Assembler
Prints This

This Portion is Source Information Programmer Enters
Using Atari Assembler Cartridge

Indicates data (source)

* Routine is relocatable

$ Indicates a hexadecimal number

Figure 11-2. Assembler Subroutine To Rotate Colors

Advanced Pryeraniming Teehufanes 67

NOTES

68 Notes

APPENDIX A

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

Note: The period is mandatory after all abbreviated keywords.

RESERVED
WORD: ABBREVIATION:

BRIEF SUMMARY
OF BASIC STATEMENT

ABS Function 	returns absolute 	value 	(unsigned) of the
variable or expression.

ADR Function returns memory address of a string.

AND Logical Operator: Expression is true only if both subex-
pressions joined by AND are true.

ASC String function returns the numeric value of a single
string character.

ATN Function returns the arctangent of a number or expres-
sion in radians or degrees.

BYE B. Exit from BASIC and return to the resident operating
system or console processor.

CLOAD CLOA. Loads data from Program Recorder into RAM.

CHR$ String function returns a single string byte equivalent
to a numeric value between 0 and 255 in ATASCII code.

CLOG Function returns the base 10 logarithm of an expres-
sion.

CLOSE CL. I/O statement used to close a flle at the conclusion of I/O
operations.

CLR The 	opposite 	of 	DIM: 	Undimensions 	all 	strings;
matrices.

COLOR C. Chooses color register to be used in color graphics
work.

COM Same as DIM.

CONT CON. Continue. Caus2s a program to restart execution on the
next line following use of the BREAK key or encounter-
ing a STOP.

COS Function returns the cosine of the variable or expres-
sion (degrees or radians).

CSAVE Outputs data from RAM to the Program Recorder for
tape storage.

Appendix A-1

RESERVED
WORD: ABBREVIATION:

BRIEF SUMMARY
OF BASIC STATEMENT

DATA D. Part of READ/DATA combination. Used to identify the
succeeding items (which must be separated by commas)
as individual data items.

DEG DE. Statement 	DEG 	teils 	computer 	to 	perform
trigonometric functions in degrees instead of radians.
(Default in radians.)

DIM DI. Reserves the specified amount of memory for matrix,
array, or string. All string variables, arrays, matrices
must be dimensioned with a DIM statement.

DOS DO. Reserved word for disk operators. Causes the menu to
be displayed. (See DOS Manual.)

DRAWTO DR. Dravvs a straight line between a plotted point and
specified point.

END Stops program execution; closes files; turns off sounds.
Program may be restarted using CONT. (Note: END
may be used more than once in a program.)

ENTER E. I/O command used to store data or programs in un-
tokenized (source) form.

EXP Function returns e (2.7182818) raised to the specified
power.

FOR F. Used with NEXT to establish FOR/NEXT loops. In-
troduces the range that the loop variable will operate in
during the execution of loop.

FRE Function 	returns 	the 	amount 	of remaining 	user
memory (in bytes).

GET GE. Used mostly with disk operations to input a single byte
of data.

GOSUB GOS. Branch to a subroutine beginning at the specified line
number.

GOTO G. Unconditional branch to a specified line number.

GRAPHICS GR. Specifies which of the eight graphics modes is to be
used. GR.0 may be used to clear screen.

IF Used to cause conditional branching or to execute
another statement on the same line (only if the first ex-
pression is true).

INPUT I. Causes computer to ask for input from keyboard. Ex-
ecution continues only when RETURN key is pressed after
inputting data.

INT Function returns the next lowest whole integer below
the specified value. Rounding is always downward,
even when number is negative.

LEN String function returns the length of the specified str-
ing in bytes or characters (1 byte contains 1 character).

A -2 Appendix

RESERVED
WORD: ABBREVIATION:

BRIEF SUMMARY
OF BASIC STATEMENT

LET LE. Assigns a value to a specific variable name. LET is op-
tional in Atari BASIC, and may be simply omitted.

LIST L. Display or otherwise output the program list.

LOAD LO. Input from disk, etc. into the computer.

LOCATE LOC. Graphics: Stores, in a specified variable, the value that
controls a specified graphics point.

LOG Function returns the natural logarithm of a number.

LPRINT LP. Command to line printer to print the specified message.

NEW Erases all contents of user RAM.

NEXT N. Causes a FOR/NEXT loop to terminate or continue
depending on the particular variables or expressions.
All loops are executed at least once.

NOT A "1" is returned only if the expression is NOT true. If
it is true, a "0" is returned.

NOTE NO. See DOS/FMS Manual...used only in disk operations.

ON Used with GOTO or GOSUB for branching purposes.
Multiple branches to different line numbers are possible
depending on the value of the ON variable or expres-
sion.

OPEN 0. Opens the specified file for input of output operations.

OR Logical operator used between two expressions. If
either one is true, a "1" is evaluated. A "0" results only
if both are false.

PADDLE Function returns position of the paddle game controller.

PEEK Function returns decimal form of contents of specified
memory location (RAM or ROM).

PLOT PL. Causes a single point to be plotted at the X,Y location
specified.

POINT P. Used with disk operations only.

POKE POK. Insert the specified byte into the specified mernory loca-
tion. May be used only with RAM. Don't try to POKE
ROM or you'll get an error.

POP Removes the loop variable from the GOSUB stack. Used
when departure from the loop is made in other than
normal manner.

POSITION POS. Sets the cursor to the specified screen position.

PRINT PR. or ? I/O command causes output from the computer to the
specified output device.

Appendix A -3

RESERVED
WORD:

PTRIG

PUT

RAD

READ

REM

RESTORE

RETURN

RND

RUN

SAVE

SETCOLOR

SGN

SIN

SOUND

SQR

STATUS

STEP

STICK

STRIG

STOP

A-4 Appelldia:

BRIEF SUMMARY
ABBREVIATION: 	 OF BASIC STATEMENT

Function returns status of the trigger button on game
controllers.

PU. 	 Causes output of a single byte of data from the computer
to the specified device.

Specifies that information is in radians rather than
degrees when using the trigonometric functions.
Default is to RAD. (See DEG.)

REA. 	 Read the next items in the DATA list and assign to
specified variables.

R. or . SPACE 	. 	Remarks. This statement does nothing, but comments
may be printed within the program list for future
reference by the programmer. Statements on a line that
starts with REM are not executed.

RES.

RET.

Allows DATA to be read more than once.

RETURN from subroutine to the statement immediate-
ly following the one in which GOSUB appeared.

Function returns a random number between 0 and 1,
but neyer 1.

RU. Execute the program. Sets normal variables to 0, un-
dims arrays and string.

S. I/O statement causes data or program to be recorded on
disk under filespec proyided with SAVE.

SE. Store hue and luminance color data in a particular color
register.

Function returns + 1 if value is positive, 0 if zero, - 1 if
negative.

Function returns trigonometric sine of given value
(DEG or RAD).

SO. Controls register, sound pitch, distortion, and volume of
a tone or note.

Function returns the square root of the specified value.

ST. Calls status routine for specified device.

Used with FOR/NEXT. Determines quality to be
skipped between each pair of loop variable yalues.

Function returns position of stick game controller.

Function returns 1 if stick trigger button not pressed, 0
if pressed.

STO. Causes execution to stop, but does not close files or turn
off sounds.

RESERVED
WORD: ABBREVIATION:

BRIEF SUMMARY
OF BASIC STATEMENT

STR$ Function returns a character string equal to numeric
value given. For example: STR$(65) returns 65 as a
string.

THEN Used 	with 	IF: 	If expression 	is true, 	the THEN
statements are executed. If the expression is false, con-
trol passes to next line.

TO Used with FOR as in "FOR X = 1 TO 10". Separates the
loop range expressions.

TRAP T. Takes control of program in case of an INPUT error
and directs execution to a specified line number.

USR Function 	returns 	results 	of a 	machine-language
subroutine.

VAL Function returns the equivalent numeric value of a
string.

XIO X. General I/O statement used with disk operations (see
DOS/FMS Manual) and in graphics work (Fill).

Appendix A-5

NOTES

Notes

APPENDIX B

ERROR
MESSAGES

ERROR
CODE NO. 	ERROR CODE MESSAGE

2 	 Memory insufficient to store the statement or the new variable name or to DIM a
new string variable.

3 	 Value Error: A value expected to be a positive integer is negative, a value ex-
pected to be within a specific range is not.

4 	 Too Many Variables: A maximum of 128 differed variable names is allowed.
(See Variable Name Limit.)

5 	 String Length Error: Attempted to store beyond the DIMensioned string length.

6 	 Out of Data Error: READ statement requires more data items than supplied by
DATA statement(s).

7 	 Number greater than 32767: Value is not a positive integer or is greater than
32767.

8 	 Input Statement Error: Attempted to INPUT a non-numeric value into a
numeric variable.

9 	 Array or String DIM Error: DIM size is greater than 32767 or an array/martix
reference is out of the range of the dimensioned size, or the array/rnatrix or string
has been already DIMensioned, or a reference has been made to an undimensioned
array or string.

10 	 Argument Stack Overflow: There are too many GOSUBs or too large an expres-
sion.

11 	 Floating Point Overflow/Underflow Error: Attempted to divide by zero or
refer to a number larger than 1 x 10 98 or smaller than 1 x 10 - 99 .

12 	 Line Not Found: A GOSUB, GOTO, or THEN referenced a non-existent line
number.

13 	 No Matching FOR Statement: A NEXT was encountered without a previous
FOR, or nested FOR/NEXT statements do not match properly. (Error is reported at
the NEXT statement, not at FOR).

14 	 Line Too Long Error: The statement is too complex or too long for BASIC to
handle.

15 	 GOSUB or FOR Line Deleted: A NEXT or RETURN statement was encountered
and the corresponding FOR or GOSUB has been deleted since the last RUN.

Appendix 8-1

ERROR
CODE NO. 	ERROR CODE MESSAGE

16 	 RETURN Error: A RETURN was encountered without a matching GOSUB.

17 	 Garbage Error: Execution of "garhage" (bad RAM bits) was attempted. This error
code may indicate a hardware problem, but may also be the result of faulty use of
POKE. Try typing NEW or powering down, then re-enter the program without
any POKE commands.

18 	 Invalid String Character: String does not start with a valid character, or string
in VAL statement is not a numeric string.

Note: 	 The following are INPUT/OUTPUT errors that result during the use of disk
drives, printers, or other accessory devices. Further information is pro-
vided with the auxiliary hardware.

19 	 LOAD program Too Long: Insufficient memory remains to complete LOAD.

20 	 Device Number Larger than 7 or Eclual to 0.

21 	 LOAD File Error: Attempted to LOAD a non-LOAD file.

128 	 BREAK Abort: User hit BREAK key during I/O operation.

129 	 IOCB1 already open.

130 	 Nonexistent Device specified.

131 	 IOCB Write Only. READ command to a write-only device (Printer).

132 	 Invalid Command: The command is invalid for this device.

133 	 Device or File not Open: No OPEN specified for the device.

134 	 Bad IOCB Number: Illegal device number.

135 	 IOCB Read Only Error: WRITE command to a read-only device.

136 	 EOF: End of File read has been reached. (NOTE: This message may occur when
using cassette files.)

137 	 Truncated Record: Attempt to read a record longer than 256 characters.

138 	 Device Timeout. Device doesn't respond.

139 	 Device NAK: Garbage at serial port or bad disk drive.

140 	 Serial bus input framing error.

141 	 Cursor out of range for particular mode.

142 	 Serial bus data frame overrun.

lIOCB refers to Input/Output Control Block. The device number is the same as the IOCB number.

B-2 Appendix

ERROR
CODE NO. ERROR CODE MESSAGE

143 	 Serial bus data frame checksum error.

144 	 Device done error (invalid "done" byte): Attempt to write on a write-protected
diskette.

145 	 Read after write compare error (disk handler) or bad screen mode handler.

146 Function not implemented in handler.

147 Insufficient RAM for operating selected graphics mode.

160 Drive number error.

161 Too many OPEN flies (no sector buffer available).

162 Disk full (no free sectors).

163 Unrecoverable System data I/O error.

164 File number mismatch: Links on disk are messed up.

165 File name error.

166 POINT data length error.

167 File locked.

168 Command invalid (special Operation code).

169 Directory full (64 flies).

170 File not found.

171 POINT invalid.

Appendix B-3

APPENDIX C

ATASCII
CHARACTER SET

C)

-v
,...%..%?

ee)e4> 4.e. (
e 	()

ee

0 a
1 1 0
2 2J

3 3 0

4 4

5 5 C1

66 eia
7 7 la

8 8 ri
9 9 15

10 A Clil

11 B WD
12 C 61

.4j; c›. e
-o'`'' c°

13

14

15

16

17

18

19

20

21

22

23

24

25

.s,

v
fr, 	+

<s5'
i' 	4e3''c' + c° 	A.e.

4, 	v c

D

E IM

F ei
10 123

11 C
12 1:1
13 C1

	

14 	0

	

15 	19

	

16 	0111

	

17 	0

	

18 	12

	

19 	3

%)
,..." 	+ e

,zo e
c

26 1A C
27 1B

28 1C 0

29 1D ei
30 1E

0

31 1F 1:1
32 20 Space

33 21 !

34 22 3 3

35 23 #

36 24 $

37 25 5

38 26 &

Appendix C-1

39 	27 	3 	 55 	37 	7 	71 	47 	G

40 	28 	(56 	38 	8 	72 	48 	H

41 	29) 	57 	39 	9 	73 	49 	I

42 	2A 	* 	58 	3A 	: 	 74 	4A 	J

, 	 75 	4B 	K

44 	2C 	7 	 60 	3C 	< 	76 	4C 	L

45 	2D 	- 	61 	3D 	= 	77 	4D 	M

46 	2E 	• 	62 	3E 	> 	78 	4E 	N

47 	2F 	/ 	63 	3F 	? 	79 	4F 	0

48 	30 	0 	64 	40 	@ 	80 	50 	P

49 	31 	1 	65 	41 	A 	81 	51 	Q

50 	32 	2 	66 	42 	B 	82 	52 	R

51 	33 	3 	67 	43 	C 	83 	53 	S

52 	34 	4 	68 	44 	D 	84 	54 	T

53 	35 	5 	69 	45 	E 	85 	55 	U
---"s-

54 	36 	6 	' 70 	46 	F 	86 	56 	V

0

v

clr‚ 	449÷
e e

("ie 	47(9 	e,...' .04 cp 	ei, 	4- c,

87 57 W

88 58 X

89 59 Y

90 5A Z

91 5B [

92 5C \

93 5D]

94 5E A

95 5F _

96 60 113

97 61 a

98 62 b

99 63 c

100 64 d

101 65 e

102 66 f

ets*4 e9 09
c›

i3".

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C 1

109 6D m

, 	110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

.4% e-
c> ei)

e4 c,°

v
v e 	+ ? 	(e)

e e

c,

119 77 	w

120 78 	x

121 79 	Y

122 7A 	z

123 7B 	10

124 7C 	I

125 7D Illi

126 7E 4
127 7F 111.

128 80

129 81

130 82

131 83

132 84

133 85

134 86

Appendix C-3

0' c°

.%,
,., 	+

c

+4 	c*

135 87

136 88

137 89

138 8A

139 8B

140 8C

141 8D

142 8E

143 8F

144 90

145 91

146 92

147 93

148 94

149 95

150 96

e- -%.
e

(OS'

49 	ce

151 97

152 98

153 99

154 9A

(EOL)
155 9B RETURN

156 9C t

157 9D illr

158 9E

159 9F 9F ih

160 AO

161 Al

162 A2

163 A3

164 A4

165 A5

166 A6

.%.>'" c> 49
44' c°

v
..4■'

4 	,c e e
47 ce 	,,.e

+

167 A7

168 A8

169 A9

170 AA

171 AB

172 AC

173 AD

174 AE

175 AF

176 BO

177 B1

178 B2

179 B3

180 B4

181 B5

182 B6

C-4 Appendix

e)'
.c 	4 ,c,ee ,e , c„....

c

, 	Z9+ 4 4 	c

.4", 4, c,

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BD

190 BE

191 BF

192 CO

193 Cl

194 C2

195 C3

196 C4

197 C5

198 C6

c c 4 	44+ , e e 	4e7

e4 	c,

199 C7

200 C8

201 . 	C9

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 DO

209 D1

210 D2

211 D3

212 D4

213 D5

214 D6

.4j" c-›- ei'
$ c9

,y

	

.., 	6 i, (9 	›,c, e e

	

•j"(9 	e•''
4 4, 	e

215 D7

216 D8

217 D9

218 DA

219 bB

220 DC

221 DD

222 DE

223 DF

224 BO

225 El

226 E2

227 E3

228 E4

229 E5

230 E6

Appendix C-5

,c5)
eff>9

240 	FO

241 	Fl

242 	F2

243 	F3

244 	F4

245 	F5

246 	F6

247 	F7

248 	F8

c› ,e .o c0

	

,...d•'- 	4+

	

er4 	(s.
e;904
°c
 , + c, 	e, e

231 E7

232 E8

233 E9

234 EA

235 EB

236 	EC

237 	ED

238 	EE

239 	EF

v
‘‘, /y

,i4 iY0

	

,0 c 	-e 	ce

	

249 	F9

	

250 	FA

251 	FB

252 	FC

253 	FD

254 	FE

255 	FF

(Bu zzer)

I (Delete
character)

(Insert
character)

n
1
II,.
P

See Appendix H for a user program that performs decimal/hexadecimal conversion.

Notes:

1. ATASCII stands for "ATARI ASCII". Letters and numbers have the same values as those in ASCII, but
some of the special characters are different.

2. Except as shown, characters from 128-255 are reverse colors of 1 to 127.

3. Add 32 to upper case code to get lower case code for same letter.

4. To get ATASCH code, teil computer (direct mode) to PRINT ASC (" 	") Fill blank with letter,
character, or number of code. Must use the quotes!

5. On pages C-1 and C-3, the normal display keycaps are shown as white Sym-
bols on a black background; on pages C-4 and C-6 inverse keycap symbols
are shown as black on a white background.

C-6 Appendix

APPENDIX D

ATARI 400/800
MEMORY MAP

ADDRESS
Decimal Hexadecimal

CONTENTS

65535
57344

FFFF
E000

OPERATING SYSTEM ROM

57343
55296

DFFF
D800

FLOATING POINT ROM

55295
53248

D7FF
D000

HARDWARE REGISTERS

53247
49152

CFFF
C000

NOT USED

49151

40960

BFFF

A000

CARTRIDGE SLOT A
(may be RAM if no A or B cartridge)

40959

32768

9FFF

8000

CARTRIDGE SLOT B
be (may 	RAM if no B cartridge)

RAMTOP (MSB) 4

32767 7FFF
(7FFF if 32K system)
DISPLAY DATA (size varies)

31755 7CIF _
DISPLAY LIST (size varies)

	

(7C1F if 32K system, (GRAPHICS 0) 	t

	

« 	i OS MEMTOP 1

FREE RAM
(size varies)

Ag 	BASIC MEMTOP 1

10880 2A80

BASIC program, buffers, tables, run-time stack.
(2A80 if DOS, may vary) 1 OS MEMLO}

-4--- ,

4 BASIC LOMEM1

10879

9856

2A7F

2680

DISK OPERATING SYSTEM (2A7F-700)
DISK I/O BUFFERS (current DOS)

9855
4864

267F
1300

DISK OPERATING SYSTEM RAM (current DOS)

Appendix D-1

Decimal

ADDRESS

Hexadecimal

CONTENTS

..---,\

4863 12FF
1792 700 FILE MANAGEMENT SYSTEM RAM (current DOS)

1791
1536

6FF
600

REE RAM

F

1535 5FF
1406 5;7E

FLOATING POINT (used by BASIC)

1405 57D
1152 480

BASIC CARTRIDGE

1151 47F 1 OPERATING SYSTEM RAM (47F-200)

1021 3FD
CASSETTE BUFFER

1020 3FC
1000 3E8

ESERVED

R

999 3E7
960 3C0

PRINTER BUFFER

959 3BF
832 340

i IOCB's
,------\

831 33F
512 200

1 MISCELLANEOUS OS VARIABLES

511 1FF
256 100

HARDWARE STACK

255 FF PAGE ZERO
FLOATING POINT (used by BASIC)

212 D4

211 D3
210 D2 BASIC or CARTRIDGE PROGRAM

209 D1
208 DO FREE BASIC RAM

207 CF
FREE BASIC AND ASSEMBLER RAM

203 CB

202 CA
FREE ASSEMBLER RAM

176 BO BASIC

128 80 ASSEMBLER ZERO PAGE 	
ZERO PAGE

127 	 7F
OPERATING SYSTEM RAM

0 	 0

As the addresses for the top of RAM, OS, and BASIC and the ends of OS and BASIC vary according to the
amount of memory, these addresses are indicated by pointers. The pointer addresses for each are defined
in Appendix I.

D-2 Appendix

APPENDIX E

DERIVED
FUNCTIONS

Derived Functions 	 Derived Functions in Terms of Atari Functions

Secant 	 SEC(X)=1/COS(X)

Cosecant 	 CSC(X)=1/SIN(X)

Inverse Sine 	 ARCSIN(X)= ATN(X/SQR(-X*X+ 1))

Inverse Cosine 	 ARCCOS(X) = - ATN(X/SQR(- X*X +1) + CONSTANT

Inverse Secant 	 ARSEC(X)=ATN(SQR(X*X-1))+(SGN(X-1)*CONSTANT

Inverse Cosecant 	 ARCCSC(X)=ATN(1/SQR(X*X-1))+(SGN(X-1)*CONSTANT

Inverse Cotangent ARCCOT(X)= ATN(X)+ CONSTANT

Hyperbolic Sine SINH(X)= (EXP(X)-EXP(-X))12

Hyperbolic Cosine COSH(X)= (EXP(X)+EXP(-X))/2

Hyperbolic Tangent TANH(X)=-EXP(-X)/(EXP(X)+EXP(-X))*2 +1

Hyperbolic Secant SECH(X)=2/(EXP(X)+EXP(-X))

Hyperbolic Cosecant CSCH(X)=2/(EXP(X)-EXP(-X))

Hyperbolic Cotangent COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2 +1

Inverse Hyperbolic Sine ARCSINH(X)=LOG(X+SQR(X*X + 1))

Inverse Hyperbolic Cosine ARCCOSH(X)+LOG(X+ SQR(X*X-1))

Inverse Hyperbolic Tangent ARCTANH(X)=LOG((1 + X)/(1-X))/2

Inverse Hyperbolic Secant ARCSECH(X)=LOG((SQR(-X*X+ 1)+1)/X)

Inverse Hyperbolic Cosecant ARCCSCH(X)= LOG((SGN(X)*SQR(X*X + 1)+1)/X)

Inverse Hyperbolic Cotangent ARCCOTH(X)=LOG((X+1)/(X-1))/2

Notes:

1. If in RAD (default) mode, constant = 1.57079633
If in DEG mode, constant = 90.

2. In this chart, the variable X in parentheses represents the value or expression to be evaluated by the
derived function. Obviously, any variable name is permissible, as long as it represents the number or
expression to be evaluated.

Apperzdix E-1

NOTES

Notes

PRESS 	PRESS

DEUTE

SACK

an SE

AB

PRESS

III

11111
II
ei
Cli OR

1111

III

D
D
113
al
11{11
Cl

PRESS
HOLD

AND
PRESS

13

la

CLEAR

<

CLEAR

<

0 LE E

BAC 	5

iNSERI
>

DEL , BACK S
NSER,

>

1312 	s * ..

GED

GED

1313

GED

133

CID
33

13E3

az
an

133

111111 EDA:

la GED

APPENDIX F

PRINTED VERSIONS
OF CONTROL CHARACTERS

The cursor and screen control characters can be placed In a string in a program or used as a Direct mode
statement by pressing- the CM key before entering the character from the keyboard. This causes the
special symbols which are shown below to be displayed. (Refer to Section 1 - im Key.)

SEE THIS

Appendix F-1

NOTES

Notes

APPENDIX G

GLOSSARY

Alphanumeric: 	 The alphabetic letters A-Z, the numbers 0-9, and some symbols. (No
punctuation marks or graphics symbols).

Array: 	 A list of numerical values stored in a series of memory locations
preceded by a DIM statement. May be referred to by use of an array
variable, and its individual elements are referred to by subscripted
variable names.

ATASCII: 	 Stands für Atari American Standard Code für Information Inter-
change.

BASIC: 	 High level programming language. Acronym für Beginner's All-
purpose Symbolic Intruction Code. BASIC is always written using all
capital letters. Developed by Mssrs. Kemeny and Kurtz at Dartmouth
College in 1963.

Binary: 	 A number System using the base two. Thus the only possible digits
are 0 and 1, which may be used in a computer to represent true and
false, on and off, etc.

Bit: Short for Binary Digit. A bit can be thought of as representing true or
false, whether a circuit is on or off, or any other type of two-
possibility concept. A bit is the smallest unit of data with which a
computer can work.

Branch: Atari BASIC executes a program in order of line numbers. This ex-
ecution sequence can be altered by the programrner, and the pro-
gram can be told to skip over a certain number of lines or return to a
line earlier in the program. This contrived change in execution se-
quence is called "branching".

Bug: A mistake or error usually in the program or "software".

Byte: Usually eight bits (enough to represent the decimal number 255 or
11111111 in binary notation). A byte of data can be used to represent
an ATASCII character or a number in the range of 0 to 255.

Central Processing In microcomputers such as the Atari systems, these are also called
Uni t (CPU): microprocessors or MPU. At one time, the CPU was that portion of

, any computer that controlled the rnemory and peripherals. Now the
CPU or MPU is usually found on a single integrated circuit or "chip"
(in Atari's case a 6502 microprocessor chip).

Code: Instructions written in a language understood by a computer.

Command: An instruction to the computer that is executed immediately. A good
example is the BASIC command RUN. (See Statement.)

Appendix G-1

Computer: 	 Any device that can receive and then follow instructions to
manipulate information. Both the instructions and the information
may be varied from moment to moment. The distinction between a
computer and a programmable calculator lies in the computer's abili-
ty to manipulate text as well as numbers. Most calculators can only
handle numbers.

Concatenation: 	 The process of joining two or more strings together to form one
longer string.

Control Characters: 	 Characters produced by holding down the key labeled • while
simultaneously pressing another key.

CRT: 	 Abbreviation for "cathrode ray tube" (the tube used in a TV set). In
practice, this is often used to describe the television receiver used to
display computer output. Also called a "monitor".

Cursor: 	 A square displayed on the TV monitor that shows where the next
typed character will be displayed.

Data: 	 Information of any kind.

Debug: 	 The process of locating and correcting mistakes and errors in a pro-
gram.

Default: 	 A mode or condition "assumed" by the computer until it is told to do
something else. For example, it will "default" to screen and keyboard
unless told to use other 	devices.

Digital: 	 Information that can be represented by a collection of bits. Virtually
all modern computers, especially microcomputers, use the digital ap-
proach.

Diskette: 	 A small disk. A record/playback medium like tape, but made in the
shape of a flat disk that is placed inside a stiff envelope for protection.
The advantage of the disk over cassette or other tape for memory
storage is that access to any part of the disk is virtually immediate.
The Atari 800 Personal Computer System can control up to 4 diskette
drive peripherals simultaneously. In this manual, disk and diskette
are used interchangeably.

DOS: 	 Abbreviation for "disk operating system". The software or pro-
grams which facilitate use of a disk-drive system. DOS is pronounced
either "dee oh ess" or "doss".

Editing: Making corrections or changes in a program or data.

Execute: To do what a command or program specifies. To RUN a program or
portion thereof.

Expression: A combination of variables, numbers, and operators (like +‚ -, etc.)
that can be evaluated to a single quantity. The quantity may be a
string or a number.

Format: To specify the form in which something is to appear.

Hard Copy: Printed output as opposed to temporary TV monitor display.

G-2 Appendix

Hardware: The physical apparatus and electronics that make up a computer.

Increment: Increase in value (usually) by adding one. Used a lot for counting (as
in counting the number of repetitions through a loop).

Initialize: Set to an initial or starting value. In Atari BASIC, all non-array
variables are initialized to zero when the command RUN is given. Ar-
ray and string elements are not initialized.

Input: Information transfer to the computer. Output is information transfer
away from the computer. In this manual, input and output are
always in relation to the computer.

Interactive: A System that responds cluickly to the user, usually within a second
or two. All personal computer Systems are interactive.

Interface: The electronics used to allow two devices to communicate.

IOCB 	 Input/Output Control Block. A block of data in RAM that tells the
Operating System the information lt needs to know for an I/O Opera-
tion.

I/O: 	 Short for input/output, 	devices include the keyboard, TV
monitor, program recorder, printer, and disk drives.

K: 	 Stands for "kilo" meaning "times 1000". Thus 1 KByte is (approx-
imately) 1000 bytes. (Actually 1024 bytes.) Also, the device type code
for the Keyboard.

Keyword: 	 A word that has meaning as an instruction or command in a com-
puter language, and thus must not be used as a variable name or at
the beginning of a variable name.

Language: 	 A set of conventions specifying how to tell a computer what to do.

Memory: 	 The part of a computer (usually RAM or ROM) that stores data or in-
formation.

Menu: 	 A list of options from which the user may choose.

Microcomputer: 	 A computer based on a microprocessor chip; in Atari's case, the6502.

Monitor: 	 The television receiver used to display computer output.

Null String: 	 A string consisting of no characters whatever.

OS: 	 Abbreviation for Operating System. This is actually a collection of
programs to aid the user in controlling the computer. Pronounced
"oh ess".

Output: 	 See I/O.

Parallel: 	 Two or more things happening simultaneously. A parallel interface,
for example, controls a number of distinct electrical signals at the
same time. Opposite of serial.

Peripheral: 	 An I/O device. See I/O.

Appendix G-3

Pixel: Picture Element. One point on the screen display. Size depends on
graphics mode being used.

Precedence: Rules that determine the priority in which operations are conducted,
especially with regard to the arithmetical/logical operators.

Program: A sequence of instructions that describes a process. A program must
be in the language that the particular computer can understand.

Prompt: A symbol that appears on the monitor screen that indicates the com-
puter is ready to accept keyboard input. In Atari BASIC, this takes the
form of the word "READY". A "?" is also used to prompt a user to
enter (input) information or take other appropriate action.

RAM: Random Access Memory. The main memory in most computers.
RAM is used to store both programs and data.

Random Number May be hardware (as is Atari's) or a program that provides a num-
Generat on ber whose value is difficult to predict. Used primarily for decision-

making in game programs, etc.

Reserved Word: See Keyword.

ROM: Read Only Memory. In this type of solid-state electronic memory, in-
formation is stored by the manufacturer and it cannot be changed by
the user. Programs such as the BASIC interpreter and other car-
tridges used with the Atari systems use ROM. -----\

Save: To copy a program or data into some location other than RAM (for ex-
ample, diskette or tape).

Screen: The TV screen. In Atari BASIC, a particular I/O device codes "S:"

Serial: The opposite of parallel. Things happening only one at a time in se-
quence. Example: A serial interface.

,
Software: As opposed to Hardware. Refers to programs and data.

Special Character: A character that can be displayed by a computer but is neither a let-
ter nor a numeral. The Atari graphics symbols are special characters.
So are punctuation marks, etc.

Statement:
,

An instruction to the computer. See also Command. While all com-
mands may be considered statements, all statements are certainly not
commands. A statement contains a line number (deferred mode), a
keyword, the value to be operated on, and the RETURN command.

String: A sequence of letters, numerals, and other characters. May be stored
in a string variable. The string variable's name must end with a $.

Subroutine: A part of a program that can be executed by a special statement
(GOSUB) in BASIC: This effectively gives a single statement the power
of a whole program. The subroutine is a very powerful construct.

Variable: A variable may be thought of as a box in which a value may be
stored. Such values are typically numbers and strings.

Window: A portion of the TV display devoted to a specific purpose such as for
graphics or text.

G-4 Appendix

APPENDIX H

USER
PROGRAMS

This appendix contains programs and routines that demonstrate the diverse
capabilities of the Atari Personal Computer System. Included in this appendix is
a Decimal/Hexadecimal program for those users who write programs that re-
eire this type of conversion.

CHECKBOOK 	This is one of the "traditional" programs that every beginning computerist

BALANCER 	writes. lt allows entry of outstanding checks and uncredited deposits as well as
cleared checks and credited deposits.

19 DIM A$(32),ISGe(40),MSG1$(30),MSG2$(3
0),MSG3$(30),MSG4$(39),MSG5$(30),MSG6$(3
0.) •
20 OUTSTAND=9 •
39 GRAPHICS 0:? ,? " 	CHECKBOOK BALAN
CER".:?
40 ? "You 4.121 make correctione at an c ti
me b9 enterine a neeative dollar value.
II

50 MSG14".."OLD CHECK -- STILL OUTSTANDING
II

69 MSG2$="OLD DEPOSIT -- NOT CREDITED

70 MSG3$="OLD CHECK -- JUST CLEARED
II

89 MSG4$="OLD DEPOSIT 	JUST CREDITED
II . 	•

90 MSG5$="NEW CHECK UR SERVICE CHARGE)
II

190 MSGES="NEW DEPOSIT (OR INTEREST)

159 TRAF' . 150:? "Enter beeinnine balance
from 9our.• . checkboökni:INPUT YOURBAL
160 TRAF' 160.? "Enter beeinnine balance
frce 9our i.... __n BANKBAL
165 TRAP 40000
170 GOTO 190
189 CLOSE #1:? "PRINTER IS NOT OPERATION

185 ? "PLEASE CHECK CONNECTORS."
190 PERM=0
202 '? "Would 90U like a permanent record
on the printer"J:INPUT AS

219 IF LEN(AS)=0 THEN 200

Appendix H-1

220 IF A$(1,1)="N" THEN 400
230 IF A$(1,1)<>"Y" THEN 200
240 TRAP 180
250 LPRINT :REM TEST PRINTER
260 PERM=1
290 LPRINT "YOUR BEGINNING BALANCE 12 $"
;YOURBAL
290 LPRINT "BANK STATEMENT BEGINNING EL
ANCE IS $";BANKEAL , LPRINT 	•
400 TRAP 400:? :? "ChooP onP of tkP fol
lowire , "
410 • "(1)
415 ? "(2)";MSG2$
420 • 11 (3) 11 ;M3G3$
425 ? "(4) ";MSG4$
43) ? "(5) ";MSG5$
435 ? "(6)
448 ? "(7) DÜNE"
499 ?
500 INPUT 	N<1 OR N>7 THEN 400
505 TRAF' 48000
510 ON N GOSUB 1000,2000,3000,4000,5000,
6090,7000
520 MSG$="NEW CHECKBOOK BALANCE IS
":AMOUNT=YOURBAL:GOSUB 8000
539 MSG$="NEW BANK STATEMENT BALANCE IS
":AMOUNT=BANKBAL:GOSUB 8000
549 MSG$="OUTSTANDING CHECKS-DEPOSITS=
".AMOUNT=OUTSTAND , GOSUB 9000
545 IF PERM THEN LPRINT
559 GOTO 400
1000 REM OLD CHECK -- STILL OUTSTANDING
1010 MSG$=MSG1$, GOSUB 8100
1920 OUTSTAND=OUTSTAND+AMOUNT
1030 RETURN
2000 REM OLD DEPOGIT -- STILL NOT CREDIT
ED
2010 M3G$=MSG2$:GOSUB 9100
2020 OUTSTAND=OUTSTAND-AMOUNT
2030 RETURN
3000 REM OLD CHECK -- JUST CLEARED
3010 MSG$=MSG3$:GOSUB 8100
3020 BANKBAL=BANKBAL-AMOUNT
3930 RETURN
4090 REM OLD DEPOSIT 	JUST CREDITED
4010 MSG$=MSG4$:GOSUB 8100
4020 BANKBAL=BANKBAL+AMOUNT
4030 RETURN
5000 REM NEW CHECK (OR SERUICE CHARGE) -
- JUST CLEARED
5010 MSG$=MSG5$:GOSUB 9100
5920 YOURBAL=YOURBAL-AMOUNT

H-2 Appendix

5030 ? "IS NEW CHECK STILL OUTSTANDING";
:INPUT A$
5040 IF LEN(A$)=0 THEN 5930
5050 IF A$(1,1)<>"N" ThEN 5060
5055 BANKBAL=BANKBAL-AMOUNT
5857 IF PERM THEN LPRINT "CHECK HAS CLEA
RED."
5858 RETURN
5860 IF A$(1,1)<>"Y" TEEN 5030
5970 OUTSTAND=OUTSTANDAMOUNT
5075 IF PERWTHEN LPRINT "CHECK IS STILL

OUTSTANDING."
5980 RETURN
6890 REM NEW DEPOSIT ZOR INTEREST) -- JU
ST CREDITED
6010 MSGS=18G6$:GaSU8 8109
6020 YOURBAL=YOURBAL+AMOUNT
6930 ? "HAS YOUR NEW DEPOSIT BEEN CREDIT
ED"i:INPUT A$
6040 IF LEN(A$)=0 THEN 6030
6050 IF A$(1,1)(>"Y" THEN 6060
6952 BANKBAL=BANKBALAMOUNT
6053 IF PERM THEN LPRINT "DEPOSIT HAS BE
EN CREDITED."
6855 RETURN
6960 IF A$(1,1)<>"N" TI-EN 6030
6870 OUTSTAND=OUTSTANO-AMOUNT
6075 IF PERM THEN LPRINT "DEPOSIT HAS NO
T BEEN CREDITED."
6880 RETURN
7990 REM DONE
7910 ? " BANK'S BALANCE MINUS (OUTSTANDIN
G CHECKS-DEPOSITS) SHOULD NOW EQUAL
YOURCHECKBOOK BALANCE."
7920 DIF=YOURBAL-(BANKBAL-OUTSTAND)
7030 IF DIF<•0 THEN 7040
7035 ? "IS $";BANKBAL;" THE ENDING BALAN
CE ON YOUR BANK STATEMENT"J:INPUT A$
7936 IF LEN(A$)=0 THEN 7035
7037 IF A$(1,1)="Y" THEN ? "CONGRATULATI
ONS: YOUR CHECKBOOK 	BALANCES!":ENO

7938 GOTO 7960
7040 IF MFA THEN ? "YOUR CHECKBOOK TOT
AL IS $";DIF;" OVER YOUR BANK '5 TOTAL. n
:TO 7060
7950 ? " YOUR CI-ECKBOOK TOTAL IS $';-DIFJ
" INDER YOUR BANK'S TOTAL."
7960 ? "WOULD YOU LIKE TO MAKE CORRECTIO
NS?"
7070 ? "REMEMBER, YOU CAN ENTER A NEGATI
VE 	DOLLAR UALUE TO MAKE A CORRECT ION.

Appendix H-3

7080 "ENTER Y OR N";:INPUT A$
7090 IF LEN(A$>=0 THEN Et)
7180 IF A$(1,1)="Y" THEN RETURN
7110 EMD
7999 REM MSG PRINTING ROUTINE
8000 MSG.;" $";AMOUNT
8018 IF PERM=1 THEN LPRINT MSG;" $";AMO
UNT
8020 RETURN
8100 REM MSG PRINT t INPUT ROUTINE
8110 TRAP 8110:1> "ENTER AMOUNT FÜR ";MSG

INPUT AMOUNT
8120 TRIP 40000
8130 IF PERM=1 THEN LPRINT MSGe.;" $";AMO
UNT
8140 RETURN

11-4 Appendix

BUBBLE SORT 	This program uses the string comparison operator "<=" that orders strings ac-
cording to the ATASCII values of the various characters. Since Atari BASIC does
not have arrays of strings, all the strings used in this program are actually
substrings of one large string. A bubble sort, though relatively slow if there are
a lot of items to be stored, is easy to write, fairly short, and simpler to under-
stand than more complex sorts.

10 DIM BEI.)
20 GRAPHICS 9.? .? " 	STR I NG SO
RT".?
39 TRAP. 30.? .? "Enter maximum strin9 le
n9th";INPUT SLEN.SLEN1=SLEN-1
35 IF.SLEN<1 OR INT(SLENX>SLEN THEN ?'"
PLEASE ENTER A POSITIVE INTEGER > 0.".G0
T030
40 TRAF' 40: 7 .? "Enter maximuM number of
entries.".

41 ? "(EntrieS which are skorter Ulan th
e maximum will be padded with blanks.)

42 INPUT BNTRIES
45 IF ENTRIES<2 OR INT(ENTRIESX>ENTRIES
THEN ? "PLEASE ENTER A POSITIVE INTEGER
> 1.".GOTO 40

47 TRAP 40000 	•
50 DIM AESLEN*ENTRIES),TEMPESLEN)
60 1

 :? "Enter.strin9s one at a time."
79 ? "Enter emPt9 trin' w-en done (just
hitRETURN)." 	.

75 ? .? "PLEASE. STAND BY WHILE TU STRIN
GS ARE BEING CLEARED..";
80 FÜR I=1 TO SLEMENTRIES.AVI,I)=" ".N
EXT I
85 • .?
90 I=1 	- •
190 FÜR J=1 TO ENTRIES
119 ? "it";j;" ";.INPUT TEMPS •
120 IF LEN(TEMPS)=0 THEN ENTRIES=j-1.GOT
0 190
130' AVIA+SLEN1)=TEMP$
140 I=I+SLEN
159 NEXT J 	.
199 ? .? .? "PLEASE STAND BY WHILE THE S
TRINGS ARE BEING SORTED...";
200 1740SUB 1000:REM CALL SORT ROUTINE
292 ? .?
205 1=1
210 FÜR K=1 TO ENTRIES
220 ? "*";K;" "X I.
225 I=I+SLEN
230 NEXT K
240 TRAF' 390.? .? "WOULD YOU LIKE A PRIM

Appendix H-5

TED COPYlii:INPUT B$
250 IF B$(1,1)="i" THEN 400
300 ENO
400 I=1:LPRINT :FOR K=1 TO ENTRIES
420 LPRINT "*";K;" "Al$(.1,1+SLEN1)
430 I=I+SLEN:NEXT K:ENO
1000 REM STRING BUBBLE SORT ROUTINE
1010 REM INPUT: A$)SLEN,ENTRIES.
1015 REM TEMP$ MUST HAUE A DIMENSION OF
SLEN.
1020 SLEN1=SLEN-1:MAX=SLENUENTRIES-1)+1

1040 FÜR I=1 TO MAX STEP SLEN
1050 DONE=1
1060 FÜR K=1 TO MAX-I-SLEN1 STEP SLEN
1070 KSLEN1=K+SLEN1:KSLEN=K+SLEN:KSLE4SL
EN1=KSLEN+SLEN1
1080 IF AVK,KSLEN1)<=e(KSLENKSLENSLEN
I) THEN GOTO 1110
1090 DONE=0
1100 TEMPS=WK,KGLEN1):WK,KSLEN1)=AV
KSLEN,KSLENSLEN1) . AEKSLEN,KSLENSLEN1)=T
EMP$
1110 NEXT K
1120 IF DÜNE THEN RETURN
1130 NEXT I
1140 RETURN

11-6 Appendix

TEXT MODES 	This program prints the Atari characters in their default colors for text modes

CHARACTER 	0, 1, and 2. In entering this program, remember that the clear screen symbol
"-.1" is printed as " ".

PRINT

1 DIM A$(1)
5 1 ")".REM CLEAR SCREEN
19 ? "GRAPHICS 9, 1, AND 2 (TEXT MODE

20 ? "DEMONSTRATION."
30 ? "DISPLAYS CHARACTER SETS FÜR LACH M
ODE."
60 WAIT=1000.REM SUBROUTINE LINE NUMBER
70 CHBAS=756.REM CHARACTER BASE ADDRESS
BO UPPER=224.REM DEFAULT FÜR CHBAS
90 LOWER=226.REM LOWER CASE LETTERS & GR
APHICS
95 GOSUB WAIT
100 FÜR L=0 TO 2
112 REM USE E. FÜR GRAPHICS 0
115 IF L=0 THEN OPEN #1,8,0,"E.".GOTO 11
8
116 REM USE 8. FÜR GRAPHICS 1 AND 2
117 OPEN #1,9,0,"S."
118 GRAPHICS L
120 PRINT "GRAPHICS ";L
130 FÜR J=9 TO 7.REM 8 LIMES
140 FÜR 1=0 TO 31:REM 32 CHARSsLINE
150 K=32*J+I
155 REM DON'T DISPLAY "CLEAR SCREEN" OR
"RETURN"
160 IF K=ASC(")") OR K=155 THEN 180
165 IF L=0 THEN PUT #1,ASC(" ").REM ESCA
PE
170 PUT #1,K.REM DISPLAY CHARS
180 NEXT I
190 PRINT - #1;" ".REM EMD OF LINE
200 IF L<>2 OR J<>3 THEN 240
210 REM SCREEN FULL
220 GOSUB WAIT
230 PRINT #1;")".REM CLEAR SCREEN
240 NEXT J
250 GOSUB WAIT
265 PRINT "LOWER CASE AND GRAPHICS"
270 IF L<>0 THEN POKE CHBAS,LOWER.GOSUB
WAIT
275 CLOSE #1
280 NEXT L
300 GRAPHICS 0.END
1000 REM WAIT FÜR "RETURN"
1010 PRINT "HIT RETURN TO CONTINUE";
1020 INPUT AS
1030 RETURN

Appendix H-7

LIGHT SHOW 	This program demonstrates another aspect of Atari graphics. lt uses graphics
mode 7 for high resolution and the PLOT and DRAWTO statements to draw the
lines. In line 20, the title will be more effective if it is entered in inverse video
(use the Atari logo key).

19 FÜR $T=1 TO 8:GRAPHIC5 7
15 POKE 752,1
20 ? :? " • 	Atari's Special Lieht Show
":SETCOLOP 2,0,0
39 SETCOLOR 1,2*ST,8:COLOR 2
40 FÜR DR=0 TO Si STEP ST
59 PLOT 0,0:DRAWTO 100,DR
60 NEXT OR:FOR N=1 TO 800:NEXT N:NEXT ST

70 FÜR N=1 TO 2000:NEXT WWTO 10

11-8 Appendix

UNITED STATES This program involves switching colors to set up the stripes. lt uses graphics

FLAG 	 mode 7 plus 16 so that the display appears as a full-screen. Note the cor-
respondence of the COLOR staternents with the SETCOLOR statements. For fun
and experimentation purposes, add a SOUND statement and use a READ/DATA
combination to add "The Star Spangled Banner" after line 470. (Refer to Section
10.)

10 REM DRAW THE UNITED STATES FLAG
29 REM HIGH RESOLUTION 4-COLOR GRAPHICS,
NO TEXT WINDOW
30 GRAPHICS 7+16
40 REM SETCOLOR 0 CORP.ESFONDS TO COLOR 1

50 SETCOLOR 0,4,4 , RED=1
60 REM SETCOLOR 1 CORRESFONDS TO COLOR 2

79 SETCOLOR 1,0,14:WHITE=2
90 REM SETCOLOR 2 CORRESPONDS TO COLOR 3

90 BLUE=3:REM DEFAULTS TO BLUE
100 REM DRAW 13 RED 2, WHITE STRIPES
119 C=RED
120 FÜR I=0 TO 12
130 COLOR C
140 REM EACH STRIPE HAS SEUERAL HORIZONT
AL LINES
150 FÜR J=0 TO 6
160 PLOT 0,I*7+J
170 DRAWTO 159,I*7+J
190 NEXT J
190 REM SWITCH COLORS
209 C=C+1;IF C>WHITE THEN C=RED
210 NEXT I
300 REM DRAW BLUE RECTANGLE
310 COLOR BLUE
320 FOR 1=0 TO 48
330 PLOT 0,I
340 DRAWTO 79 , 1
350 NEXT I
360 REM DRAW 3 ROWS OF WHITE STARS
370 COLOR WHITE
380 K=0 , REM START WITH ROW OF 6 STARS
390 FÜR 1=0 TO 2
395 Y=4+1:!/5
400 FOR J=0 TO 4:REM 5 STARS IN A ROW
410 X=K+5+J14 GOstJB 1000
420 NEXT J
430 IF K(>0 THEN K=0 . GOTO 470
440 REM ADD GTH STAR EUEP7 OTHEF LINE
450 X=5+514:GO3UB 1000
460 K=7
470 NEXT I
500 REM IF KEY HIT THEN STOP

Appendix H-9

510 IF PEEK(764=255 THEN 510
515 REM OPEN TEXT WINDOW WITHOUT CLEARIN
G SCREEN
520 GRAPHICS 7+32
525 REM CHANCE COLORS BACi'
530 SETCOLOR 0 , 4,4 . SETWLCP 1,0,14
550 STOP
1090 REM DRAW 1 STAR CENTERED AT XJ7
1910 PLOT X-1,Y:DRAWTO X+1,Y
1020 PLOT Y-1 PLOT X,V+1
1930 RETURN

H-10 Appendix

SEAGULL OVER This program combines graphics and sounds. The sounds are not "pure"

OCEAN 	
sounds, but simulate the roar of the ocean and the gull's "tweet". The graphics
symbols used to simulate the gull could not be printed on the line printer. Enter
the following characters in line 20.

20 B1RD$ = " 	"

To get these symbols, use Ein G, Ein F, En R, 	R.

10 DIM 8IRD$(4)
29 BIRD:$=u 	H
30 FLAG=1:ROW=10:COL=10
40 GRAPHICS 1:POKE 756,226:POKE 752,1
50 SETCOLOR 0,0,0:SETCOLOR 1,8,14
69 PRINT #6iu 	the ocean"
78 R=INT(RNO(ü)*11)
80 POSITION 17,17
99 FOR T=0 TO 10
100 SOUND 0,T,8,4
119 FOR A=1 TO 50:NEXT A
120 IF RNO(0)>0.8 THEN FOR 0=10 TO 5 STE
P -1 :SOUND 1,0,10,INT(RND(0)*10):NEXT D:
SOUND 1,9,0,0
130 GOSUB 200
149 NEXT T
150 FÜR T=10 TO 0 STEP -1
160 SOUND 0,T,8,4
170 FÜR A=1 TO 50:NEXT A
175 IF RND(0)>0.8 THEN FÜR 0=10 TO 5 STE
P -1 :SOUND 1,0,10,8:NEXT D:SOUND 1,0,0,0

180 FÜR H=1 TO 10:NEXT H
185 GOSUB 200
190 NEXT T
195 GOTO 70
200 GOSUB 300
219 POSITION COL,ROW
220 PRINT #65BIROEFLAG,FLAG+1)
230 FLAG=FLAG-1-2:IF FLAG=5 THEN FLAG=1
240 RETURN
300 IF RND(0)>0.5 THEN RETURN
310 POSITION COL,ROW
320 PRINT *UI H
330 A=INT(RNNOA3)-1
340 B=INT(RNE1(0)*3)-1
35e ROW=ROW+A
360 IF ROW=0 THEN ROW=1
379 IF ROW=20 THEN ROW=19
380 COL=COLe
390 IF COL=0 THEN 01=1
400 IF COL>18 THEN COL=18
419 RETURN

Appendix 11-11

VIDEO 	 This program requires a Joystick Controller für each playert Each joystick has

GRAFFITTI 	one color associated with it. By maneuvering the joystick, different patterns are
created on the screen. Note the use of the STICK and STRIG commands.

1 GRAPHICS 0
2 ? "VIDEO GRAFFITI"
5 REM XY ARRAYS HOLD COORDINATES
6 REM FÜR UP TO 4 PLAYERS' POSITIONS.
7 REM COLR ARRAY HOLDS COLORS.
10 DIM AS(1)..X(3), Y(3), ULK 3)
128 ? "USE JOYSTICKS TO DRAW PICTURES"
129 ? "PRESS BUTTONS TO CHANGE COLORS"
130 ? "INITIAL COLORS."
131 ? "JOYSTICK 1 IS RED"
132 ? "JOYSTICK 2 IS WHITE"
133 ? "JOYSTICK 3 IS BLUE"
134 ? "JOYSTICK 4 IS BLACK (BACKGROUND)"

135 ? "BLACK LOCATION IS INDICATE0 BY A
BRIEFFLASH OF RED."
136 ? "IN GRAPHICS 8, JOYSTICKS 1 AND 3
ARE WHITE AND 4 IS BLUE."
138 PRINT "HOW MANY PLAYERS (1-4)";
139 INPUT As.IF LEN(e)=0 THEN A$="1"
140 JOYMAX=UAL(A$)-1
145 IF JOYMAX<0 OR JOYMAX>=4 THEN 138
147 PRINT "GRAPHICS 3 (4024), 5 (80X48)

150 PRINT "7 (160X96), OR 8 (320X192)";
152 INPUT AS:1F LEN(A$)=0 THEN A$="3"
153 A=UAL(e)
154 IF A=3 THEN XMAX=40.YMAX=24.GOTO 159

155 IF A=5 THEN)MAX=80:YMAX=48:GOTO 159

156 IF A=7 THEN XMAX=160.YMAX=96.GOTO 15
9
157 IF A=8 THEN XMAX=320.YMAX=192.GOTO 1
59
158 GOTO 147.REM A NOT VALID
159 GRAPHICS 11+16'
160 FÜR 1=0 TO J01 MAX.X(I)=XMAX/2+I.Y(I)
=YMAX/2+I.NEXT IREM START NEAR CENTER 0
F SCREEN
161 IF A<>8 THEN 166
162 FÜR 1=0 TO 2.COLR(I)=1.NEXT I
163 SETCOLOR 1,9,14.REM LT. BLUE
165 GOTO 180
166 FÜR I=0 TO 2.COLR(I)=I+1.NEXT.I
167 SETCOLOR 0,4,6..REM RED
168 SETCOLOR 1,0,14.REM WHITE
180 COLR(3)=0 	 .
295 FÜR J=0 TO 3

H-12 Appendix

300 FÜR 1 20 TO JOYMAX:REM CHECK jOYSTICK
0
305 REM CHECK TRIGGER
310 IF STRIGKI) THEN 321
311 1F A<>8 THEN 320
312 COLR(I)=COLR(I)+1;IF COLR(I)=2 THEN
COLR(I)=0:REM 2-COLOR MODE
313 GOTO . 321
320 COLR(I)=COLR(I)+1:IF COLR(I)>=4 THEN
COLR(I)=0:REM 4-COLOR MODE

321 1F J>0 THEN COLOR COLR(I):GOTO 325
322 IF COLR(.1)=0 THEN COLOR 1:GOTO 325
323 COLOR 0:REM BLINK CURRENT SQUARE ON
AND OFF
325 MT X(I), Y(I)
330 JOYIWSTICK(I):REM RED JOYSTICK
340 1F JOYIN=15 THEN 530:REM NO MOUEMENT

342 COLOR COLR(I).REM MAKE SURE COLOR IS
ON

344 PLOT X(I),Y(I)
350 1F JOYIN>=8 THEN 390
360 X(I)=X(I)+1:REM MOVE RIGHT
365 REM 1F OUT OF RANGE THEN WRAPAROUND
370 1F X(I)>=XMAX THEN X(1)=0
380 GOTO 430
390 IF JOYIN>=12 THEN 430
400 X(I)2X(I)-1:REM MOUE LEFT
410 IF WIXO THEN X(I)=XMAX-1
430 IF JoyiN<>5 ANn JOYIN<>9 ANn JOYIN<>
13 THEN 470 	.
440 Y(I)=Y(I)+1:IF Y(i>>=YMAX THEN Y(1)=
0:REM M31JE DOWN
460 GOTO 500
470 IF JOYIN<>6 ANO JOYIN<>10 ANO JOYIN<
>14 THEN 500
480 *.i7, I .)=-Y(1)-1 IF `.« I >:::0 THEN 'A 1 =YMAX
-1 , REM MOVE UP
500 PLOT X(I),Y(I)
530 NEXT 1
535 NEXT J
540 GOTO 295

Appendix 11-13

KEYBOARD 	This program alters registers on a chip called a PIA. To set these back to the
default values in order to do further I/O, hit SYSTEM RESET or POKE PACTL,60. If CONTROLLER this program is to be loaded from disk, use LOAD, not RUN and wait for the
busy light on the disk drive to go out. Do not execute the program before this
light goes out, otherwise the disk will continue to spin.

1 GRAPHICS 0
5 PRINT :PRINT H 	KEYBOARD CONTROLLER
DEMO"
10 DIM ROW(3), IS(13), SUTTON$(1)
39 GOSUB 6000
49 FÜR CNT=1 TO 4
69 POSITION 2,CNT*245:PRINT "CONTROLLER
";CNT;":";
79 NEXT CNT
89 FÜR CNT=1 TO 4:GOSUB 7999:POSITION 19
,CNT+CNT+5:PRINT BUTTON$J:NEXT CNT
120 GOTO 80
6000 REM ** SET UP FÜR CONTROLLERS **
6010 PORTA=54016:PORTB.54017:PACTL=54018
.PBCTL=54019.
6020 POKE PACTL,48:POKE PORTA,255:POKE P
ACTL,52:POKE PORTA,221
6925 POKE PBCTLAS:POKE PORTS,235 , POKE P
BCTL,52:POKE PORT 221
6930 ROW(0)=238:ROW(1)=221:ROW(2)=187:RO
W(3)=119
6940 1$=" 123456789*0#"
6950 RETURN
7990 REM ** RETURN SUTTON$ WITH CHARACTE
R FOR BUTTON WHICH HAG EEEN PRESSEO ON C
ONTROLLER CNT (1-4). **
7001 REM 	NOTE A 1 WILL BE RETURNED I
F NO CONTROLLER IS CZVECTED. **
7002 REM ** A SPACE WILL SE RETURNFO IF
THE CONTROLLER IS OONNEOTFO EUT NO KEY H
AS BEEN PRESSE°.
7993 PORT=PORTA:IF CNT>2 THEN PORT=PORTS

7995 P=1
7998 PAO=CNT+CNT-2
7910 FÜR J=0 TO 3
7920 POKE PORT,RO(j)
7930 FÜR I=1 TO 10.NEST I
7950 IF PADDLFJPAD+: Y>10 THEN F=j-i-JA-J+2.
GOTO 7090
7060 IF PADDLE(PAC»10 THE P=J+Ji-j4.72.:GO
TO 7090
7070 IF STRIG(CNT-1)=0 T., P=i4.--1-j+4 . J!
TO 7090
7080 NEXT J
7090 BUTTONS=IVP.P)
7095 RETURN

11-14 Appendix

TYPE-A-TUNE 	This program assigns musical note values to the keys on the top row of the
keyboard. Press only one key at a time.

KEY 	 MUSICAL VALUE

MSERT B
EMEll B 17 (or A#)

0 A
9 Ab (or G#)
8 G
7 F# (or G l'.)
6 F
5 E
4 B l' (or D#)
3 D
2 D1) (or C#)
1 C

10 ['IM CHORD(37),TUNE(12)
29 GRAPHICS 0.7 :? 	TYPE--TUNE
PROGRAM"
25 ? :? "PRESS KEYS 1-9,0,<,> TO PRODUCE
NOTES.";
27 ? "RELEASE ONE KEY BEFORE PRESS Ih TH
E 	NEXT."
29 ? "OTHERWISE THERE MAY BE A DELAY. 11
39 FOR X=1 TO 37:READ -A:CHORD<X)=A:NEXT

49 FÜR X=1 TO 12:READ AJUN)=A:NEXT X

50 OPEN #1,4,0,"K"
55 OLDCHR=-1
69 A=PEEK(764) , IF A=255 THEN 60
63 IF A=OLDCHR THEN 100
65 OLDCHR=A
70 FÜR X=1 TO 12 , IF TUNE(.2.14 THEN SOUND
9,CHORD<X),10,9 , GOTn 100
89 NEXT X
100 I=INT(PEEK(53775).'4):IF (I/2)=INT(I/
2) THEN 60
119 POKE 764,255SOUND 0,0,0,0:nLDCHP=-1
:GOTO 60
2g0 DATA 243,230,217,204‘193,182 , 173 , 162
,151144,136,129,121,114,108,102 , 96 , 918
5,91,76,72,68,64,60
210 DATA 57,53,50.47 , 45,42,40,37,35 , 33 , 3
1,29
220 DATA 31,30,26,24,29 , 27,51,53,42 ,50,5
4,55

To play "Mary Had A Little Lamb" press the following keys:

5, 3, 1, 3, 5, 5, 5 3, 3, 3 	5, 8, 8 	5, 3, 1, 3, 5, 5 	5, 5, 3, 3, 5, 3, 1

Appendix H-15

COMPUTER 	This program generates random musical notes to "write" some very interesting
BLUES 	 melodies for the programmed bass.

1 GRAPHICS 0:? .? n 	COMPUTER BLUE
Sn:?
2 PTR=1
3 THNOT=1
5 CHORD=1
6 PRINT 'TASS TEMPO (1=FA2T)nj
7. INPUT TEMPO
8 GRAPHIC.2416:GOSUB '2002
10 DIM BA3E(3,4
20 DIM LOW(7).
25 DIM LINE(16)
26 DIN JAM(3,7)
30 FOR X=1 TO 3
40 FOR'Y=1 TO 4
50 READ A:BASE(X,Y)=A
GO NEXT Y
70 NEXT X
80 FÜR X=1 TO 3:READ A:LOW(X)=A
90 NI---XT X
95 FÜR X=1 TO lfUEAD A.LINEM)=A.NEXT X

96 FÜR X=1 TO 3
97 FÜR Y=1 TO 7
98 READ A:JAM(X,Y)=A:NEXT Y:NEXT X
100 GOSUB 500
110 T=T+1
115 GOSUB 220
120 GOTO 100
200 REM r-- •r-- HIGH STUFE
205 IF R14D(0)<0.25 THEN RETURN
210 IF RND(0)<0.5 THEN 252
220 NT=NT+1
•30 IF NT>7 THEN NT=7
242 GOTO 29
250 NT=NT-1
255 IF NT<1 THEN NT=1
260 SOUND 2 , JAM(CHORD,NT),10,NT*2
280 RETURN
500 REM PROCESS BASE STUFE
510 IF BASS=1 THEN 700
520 BDUR=BDUR+1
530 IF BOUn<>TEMPO THEN 535
531 BASS=1:EC2=0
535 SOUND 0,LOW(CHORfl>,10,4

A 54!.1 •:..___• 	BA:372:: cHop3.. • e RETURN
700 souNo 	 o,o
710 SOuND 1, 0, 0,
720 BOUR=BD:2+1

11-16 Appendix

730 IF BDUR(>1 THEN 200
742 BOUR=0:BA33.9
750 THNOT=THNOT+1
760 IF THNOT<>5 THEN BOO
765 TH40T=1
770 PTR=PTR+1
780 IF PTR=17 THEN PTR=1
790 CHORD=LINE(PTR)
800 RETURN
1000 DATA 162,144,136,144A21,108,192,12
8.. 108,96..91..96
1010 DATA 243,182,162
1020 DATA 1,1,1,1,21,1,1,1,3,2,1,
1
1030 DATA 60,50,47,42,40,33,29
1040 DATA 60, -A,45,42,40,33,2";
1059 DATA 81,68,64,57,53,45,49
2002 PRINT *A:PRINT *A:PRINT *A
2005 PRINT *A;" Computer"
2004 PRINT *A
2010 PRINT *6" 	Blues"
2070 RETURN

Appendix H-17

DECIMAL/

HEXADECIMAL
CDNVERSION

This program can be typed in and used to convert hexadecimal numbers to
decimal numbers and vice versa.

10 DIM A$(9),AD$(1)
PROGRAM 20 GRAPHICS 0:7 :? " 	HEX NUMBER CONU

ERSIONS":?
39 7 :7 "Enter 'D' for DEC to HEX conver
eion.":? "Enter 'H for HEX to DEC conve
rsion.".INPUT A$
40 IF LEN<A$)=0 THEN 30
50 IF A$="H" THEN 300
60 IF e<>"0" THEN 30
98 TRAP 90
100 ? :? "ENTER A DECIMAL NUISER FROM 0
THROUGH 9999999999•"
110 ? "DEC:";:INPUT N
120 IF N<0 OR N>=1E+10 THEN GOTO 100
130 1=9
140 TEMP=N:N=INT(N/16)
150 TEMP=TEMP-N*16
160 IF TEMP(10 THEN WI,I)=STRETEMP>.G
OTO 180
170 W.I,I)=CHRETEMP-10+ASC("A"))
189 IF N<>0 THEN 11-1:GOTO 140
190 ? "HEX: 	"ie(I,9):?
200 GOTO 110
300 TRAP 309
310 ? .? "ENTER A HEX NUMBER FROM 0 THRO
UGH 	FFFFFFFF."
320 ? "HEX:"; :INPUT A$
330 N=9
340 FÜR I=1 TO LEN(A$)
345 ADS=A$(1,1):IF ADE"0" THEN 380
350 IF AVI,IX="9" THEN N=U16+UAL(AD$)
.GOTO 370
355 JF 	D$< "A" THEN 300
357 IF AD$›"F" THEN 300
360 N=N*16+A3C(AD$)-A3C("A")+10
370 NEXT I
380 ? "DEC: 	";N:?
390 GOTO 320
480 END

1148 Appendix

APPENDIX I

MEMORY
LOCATIONS

Note: Many of these locations are of primary interest to expert programmers and are included here as a
convenience. The labels given are used by Atari programmers to make programs more readable.

DECIMAL HEXADECIMAL
LABEL LOCATION LOCATION COMMENTS AND DESCRIPTION

APPMHI 14,15 DE Highest location used by BASIC (LSB, MSB)

RTCLOK 1849,20 12,13,14 TV frame counter (1/60 sec.) (LSB, NSB, MSB)

SOUNDR 65 41 Noisy I/O Flag (0= cluiet)

77 Attract Mode Flag (128 = Attract mode)

LMARGIN, 82,83 52,53 Left, Right Margin (Defaults 2, 39)
RIVIARGIN

ROWCRS 84 54

COLCRS 85,86 55,56

OLDROW 90. 5A

OLDCOL 91,92 5B

93 5C

NEWROW 96 60

NEWCOL 97,98 61,62

RAMTOP 106 6A

LOMEM 128,129 80,81

MEMTOP 144,145 90,91

STOPLN 186,187 BA,BB

ERRSAV 195 C3

PTABW 201 C9

FRO 212,213 D4,D5

Current cursor row (graphics window).

Current cursor column (graphics window).

Previous cursor row (graphics window).

Previous cursor column (graphics window).

Data under cursor (graphics window unless mode
0).

Cursor row to which DRAWTO will go.

Cursor column to which DRAWTO goes.

Actual top of memory (number of pages).

BASIC low memory pointer.

BASIC top of memory pointer.

Line number at which STOP or TRAP occurred
(2-byte binary number).

Error number.

Print tab width (defaults to 10)

Low and high bytes of value to be returned to
BASIC from USR function.

Appendix 1-1

DECIMAL HEXADECIMAL
LABEL 	 LOCATION 	LOCATION

RADFLG 251 FB

LPENH 564 234

LPENV 565 235

TXTROW 656 290

TXTCOL 657,658 291,292

COLORO 708 2C4

COLOR1 709 2C5

COLOR2 710 2C6

COLOR3 711 2C7

COLOR4 712 2C8

MEMTOP 741,742 2E5,2E6

MEMLO 743,744 2E7,2E8

CRSINH 752 2F0

CHACT 755 2F3

CHBAS 756 2F4

ATACHR 763 2FB

CH 764 2FC

FILDAT 765 2FD

DSPFLG 766 2FE

SSFLAG 767 2FF

HATABS 794 31A

IOCB 832 340

1664-1791 680-6FE

CONSOL 53279 DO1F

* Future product.

COMMENTS AND DESCRIPTIONS

RAD/DEG flag (0= radians, 6= degrees).

Light Pen* Horizontal value.

Light Pen* Vertical value.

Cursor row (text window)

Cursor column (text window)

Color Register 0

Color Register 1

Color Register 2

Color Register 3

Color Register 4

OS top of available user memory pointer (LSB,
MSB)

OS low memory pointer

Cursor inhibit (0= cursor on, 1 = cursor off)

Character mode register (4 = vertical reflect; 2 —
normal; 1= blank)

Character base register (defaults to 224) (224 = up-
per case, 226 = lower case characters)

Last ATASCII character.

Last, keyboard key pressed; internal code; (255
clears character).

Fill data for graphics Fill (XI0).

Display Flag (1 = display control character).

Start/Stop flag for paging (0= normal listing) Set by

Eal 1 .

Handler address table (3 bytes/handler)

I/O control blocks (16 bytes/IOCB)

Spare RAM

Console switches (bit 2 = Option; bit 1 = Select; bit
0 = Start. POKE 53279, 0 before reading. 0 =
switch pressed.)

1-2 Appendix

DECIMAL HEXADECIMAL
LABEL LOCATION LOCATION COMMENTS AND DESCRIPTIONS

PORTA 54016 D300 P.IA Port A Controller Jack I/O ports.
PORTB 54017 D301 PIA Port B Initialized to hex 3C.

PACTL 54018 D302 Port A Control Register (on Program Recorder 52
= ON, 60 = OFF).

PB TL 54019 D303 Port B control register.

SKCTL 53775 D2OF Serial Port confrol register. Bit 2=0 (last key still
pressed).

Appendi_r 1-3

NOTES

,----,,\

Notes

INDEX

A Abbreviations, 4-5
Commands in headings, 4

ABS, 33
adata, 5
ADR, 35,63
aexp, 4
aop, 4
Array, 3-4, 41
ASC, 37
ATASCII, 5, 40, C-1 through C-6
ATN, 34
Audio track of cassette, 23
avar, 4

B BASIC, 1
Blanks (see Spaces)
Booting DOS, 25
Braces, 4
Brackets, 4
Branching,

Conditional Statements, 19
Unconditional Statements, 17

Brightness (see Luminance)
Bubble Sort Program, H-5
Buzzer, 14

Deferred Mode, F-1
Direct Mode, 14

BYE, 9

C 	C-Scale Program, 58
Central Input/Output Subsystem, 23
Character

Assigning Color to, 54
ATASCII, C-1 through C-6
Display at specified locations, 46, 47
Set, internal, 55
Sizes in Text modes, 46

Chaining Programs, 30
Checkbook Balancer Program, H-1 through H-4
CHR$, 58
CIO (see Central Input/Output Subsystem) 6
CLEAR key, 6
clear Screen,

Deferred mode, 5, 14, 46
Direct mode, 6, 46

CLOAD, 24
CLOG, 33
CLOSE, 27
CLR, 43
Codes,

Device, 23-24
Colons, 3, 61
COLOR, 48

Color
Assigning, 54
Changing, 50
Default, 46, 51
Registers, 50

COM (see DINO
Computer Blues Program, H-16
cmdno, 30
Comma, 26, 27
Command Strings, 1
Commands

BYE, 9
CONT, 9
END, 9
LET, 10
LIST, 10
NEW, 10
REM, 10
RUN, 11
STOP, 11

Conservation,
Memory, 61

Constant, 2
CONT, 9
Controllers,

Garne, 59
COS, 34
CSAVE, 24
Cursor, 9

Graphics, 49
Inhibit, 46

D Decimal/Hexadecimal Conversion Program, H-18
Default

colors, 46
disk drive, 24, 29
margins in Mode 0, 46
tab settings, 6

Deferred mode, 5
DEG, 35
Devices, 23-24
Delete line, 13
DIM, 41
Direct mode, 5
Disk Drive

Default number, 24, 29
Requirements (see ATARI DOS Manual)

Disk file
Modification of BASIC program, 31

Display, split-screen override, 45, 47
Distortion, 57
DOS, 25
DRAWTO, 48

Index 117

E Editing, screen, 13
Editor, Screen, 24

GOTO, 17
with conditional branching, 17

END, 9
before subroutine, 7

GRAPHICS, 45
Graphics

End of file, 14 Modes, 46-47
Error messages, B-1 through B-3 Statements, 48
Escape key, 5

with Control Graphics Symbols, F-1
COLOR, 48
DRAWTO, 49

EXP, 33
exp, 5

GET, 45
GRAPHICS, 48

Exponentiation symbol, 6 LOCATE, 48
Expression, 1 PLOT, 49

.Arithmetic (see aexp) POSITION, 49
Logical (see lexp) PUT, 49
String (see sexp) SETCOLOR, 50

filename, breakdown, 27
filespec, 5

.),(I0 (Fill), 54
Graphics Control Characters, 56

Usage, 26, 27 H Harmony, 57
Fill (XIO), 54 Hexadecimal
FOR/NEXT, 15
building arrays and matrices, 42

/Decimal Conversion Program, H-18
Hexcode Loader program, 64

• vvith STEP, 15
vvithout STEP, 15 I INPUT, 25

FRE, 35 Input/Output Commands, 23

Function, 1 CLOAD, 24

Arithmetic CLOSE, 27

ABS, 33 CSA VE, 24

• CLOG, 33 DATA, 28

EXP, 33 DOS, 25

INT, 33 ENTER, 25

LOG, 34 GET, 28

RND, 34 INPUT, 25

SGN, 34 LOAD, 26

SQR, 34 LPRINT, 26

Built-in, 7 NOTE, 26

Derived, E-1 OPEN, 26

Library, 33 POINT, 28

Special Purpose, 35 PRINT, 3, 5, 14, 26

ADR, 35 PUT, 28

FRE, 35 READ, 28

PEEK, 35 SAVE, 29

POKE, 35 STATUS, 29

USR, 36 XIO, 29

Trigonometrie, 34 Input/Output Devices

ATN, 34 Disk Drives (D:), 24

COS, 34 Keyboard (K:), 23

DEG, 35 Line Printer (L:), 23

RAD, 35 Program Recorder (C:), 23

SIN, 35 RS-232 Interface (R:), 24
Screen Editor (E:), 24

G Garne controllers TV Monitor (5:), 24

Keyboard, 59 INT, 33

Joystick, 59 Internal pointer for DATA, 21

Paddle, 59 Input/Output Control Block, 23

Video Graffitti program, H-12 through H-13
•Garne controller commands

Inverse Key, 5
Invisible graphics cursor, 48-49

PADDLE, 59 IOCB (see Input/Output Control Block)

PTRIG, 59 -
STICK, 59 jr Joystick Controller, 59
STRIG, 60

GET, 28, 49 K Keyboard (K:), 23
GOSUB/RETURN, 16, 21 Keyboard Controllers, 59

118 Inder

Keyboard Controller Program, H-14
Keys

Special Function
ATARI, 5
BACK SPACE, 6
BREAK, 6

Modes, text, 46
Override split-screen, 47

Multiple commands (see
Command Strings)

mvar, 4

CAPS/LOWR, 5 N NEW, 10

CLEAR, 6
DELETE, 6
ESCAPE, 5

Notations
floating point, 39
in manual, 3

INSERT, 6
RETUR.N, 6 0 ON/GOSUB, 20

SYSTEM RESET, 6 ON/GOTO, 20
TAB, 6 OPEN, 26-28

Editing Operators, 2

CTRL (Control) Key, 13 Arithmetic, 4, 6
SHIFT key, 13 Binary, 6, 7

Cursor Control, 14 Logical, 4, 6
Down arrow, 14 RelatiOnal, 7
Left arrow, 14 Unary, 6
Right arrow, 14 Output devices, 23

Up arrow, 14 Oversized programs (see Chaining Programs)

Keywords
BASIC, A-1 through A-5

P Paddle Controller, 59
Parentheses,

L LEN, 38 Usage, 7, 63

LET, 2, 3, 10 PEEK, 35
Letters Peripheral devices (see Input/Output Devices)

Capital (upper case), 3 Pitch
Lower case, 3, 47

lexp, 4

Definition, 57
Values, 58

Light Show Program, H-8 Pixel, 48
Line Size in modes, 47

Format, 3 PLA, 63
Logical, 2 PLOT, 49
Numbers, 3 POINT, 28
Physical, 2

lineno, 5

POKE, 35
POP, 20-21

LIST, 10 POSITION, 49

LOAD, 26 Precedence, operator, 7

Load program from cassette tape, 24 PRINT, 3, 5, 14, 26
LOCATE, 48 Printer listing, 10

LOG, 34 Program continuation, 11

Loops
Endless, 17

Programs,
Machine language, 67

Nested, 15
lop, 4

User, Appendix H
with Hexcode Loader, 65, 66

LPRINT, 26
before CSAVE, 24

PUT, 49

Luminance, 50 Q Question mark as prompt, 25
Quotation marks, 2

M Mandatory # symbol, 26, 27
Margins R RAD, 35

Changing, 36, 46 RAM (Random Access Memory), 23
Default in mode 0, 46 Random Access to disk file, 28

Matrix, 41-42 READ, 28
Variable, 4 Direct mode, 28

Memory Map, D-1 through D-2 REM, 10
Modes, graphics, 46, 47 RESTORE, 21
Modes, operating RETURN Key, 6

Deferred, 5 Return, Abnormal (see POP)
Direct, 5
Exectite, 5

Rollbver,
Keyboard, 8

Memo Pad, 5, 25 RND, 34

Index 119

RS-232(R:), 24
RTS, 63
RUN, 11

Text Modes Characters Program, H-7
Tokenized version, 3, 24
Tone, clipped, 57
TRAP, 22

S SAVE, 29 Type-A-Tune Program, H-15

Save programs on cassette tape, 24
Screen Display (see TV Monitor) U Untokenized version, 3

Screen Editor (E:), 24 V var, 4
Seagull Over Ocean Program, H-11

Variable, 2
Semicolon, 28 avoiding name limit, 2
SETCOLOR, 50-53
sexp, 5

Video Graffitti Program, H-12
Volume control, 57

SGN, 34 Voice, 57
SIN, 35
SOUND, 57

terminating, 9, 57
W Window

Graphics, 47
Spaces, 61 Text, 47
SQR, 34 Wraparound, 8
Stack, 16

GOSUB, 16 X X-coordinate, 47
Hardware, 36
loop addresses, 16, 21

XIO, 29
XIO (Fill), 54

POP, 20
Statement,

Program, 15
Y Y-coordinate, 47

FOR, 15
GOSUB, 16, 21

Z Zero
as Dummy Variable, 30, 34

GOTO, 17
IF, 18
ON/GOSUB, 20
ON/GOTO, 20
POP, 20
RESTORE, 21 /

RETURN, 16
. STEP, 15

THEN, 18
TO, 15
TRAP, 22

STEP, 15
STOP, 11
String

Comparison, 40
Concatenation, 39
Dimensioning, 37
Functions

ASC, 37
CHR$, 37
LEN, 38
STR$, 38
VAL, 38

Manipulation, 39
Sort, 40
Splitting, 39
Variable, 4

STR$, 38
Subroutine

Definition, 16
GOSUB, 16
Usage, 16

svar, 4

' T Terminology, 1
Text rnodes, 46

120 Index

TABLE OF MODES
AND SCREEN FORMATS

Gr.
Mode

Mode
Type

Horiz.
(Columns)

Verl. (Rows)
Split

Screen

Verl. (Rows)
Full

Screen

ttOf
Colors

RAM
Required

(Bytes)

0 TEXT 40 - 24 2 993

1 TEXT 20 20 24 5 513

2 TEXT 20 10 12 5 261

3 GRAPHICS 40 20 24 4 273

4 GRAPHICS 80 40 48 2 537

5 GRAPHICS 80 40 48 4 1017

6 GRAPHICS 160 80 96 2 2025

7 GRAPHICS 160 80 96 4 3945

8 GRAPHICS 320 160 192 1/2 7900

MODE, SET COLOR, COLOR TABLE

Default
Colors

Mode or
Condition

SETCOLOR
(aexpl)
Color

Register No.
Color
(aexp) DESCRIPTION AND COMMENTS

0 COLOR data
LIGHT BLUE MODE 0 and 1 actually Character luminance (Same color as background)
DARK BLUE ALL TEXT 2 determines Background

WINDOWS 3 character to —
BLACK 4 be plotted Border

ORANGE o COLOR data Character
LIGHT GREEN MODES 1 1 actually determines Character

DARK BLUE and 2 character to be Character
RED 2 3 Plotted Character

BLACK (Text Modes) 4 Background, Border

ORANGE o 1 Graphics point
LIGHT GREEN MODES 3, 5, 1 2 Graphics point

DARK BLUE and 7 2 3 Graphics point
(Four-color 3

BLACK modes) 4 0 Graphics point (background default), Border

ORANGE MODES 4 0 1 Graphics point
and 6 1

(Two-color 2 - —
Modes) • 	3 - —

BLACK 4 0 Graphics point (background default), Border

LIGHT GREEN 0 - —
DARK BLUE 1 1 Graphics point luminance (same color as background)

MODE 8 2 0 Graphics point (background default) -:

(1 Color 3 —
BLACK 2 Luminances) 4 Border

r"--1

C01530 ' EV 1

