HEX-A-BUG

~ SYSTEMS/TELECOMMUNICATIONS

A hexadecimal-based, screen-oriented

debugging tool for the ATARI Compu'rer

CONSUMER WRITTEN PROGRAMS FOR

- (M E L O MPEUTERS ABAR Pocrom Exchon’gemww

Printed in US.A.

HEX-A-BUG
by

David Kano

Program and manual contents © 1982 David Kano

Copyright notice. On receipt of this computer program and associated docu-
mentation (the software), the author grants you a nonexclusive license to exe-
cute the enclosed software. This software is copyrighted. You are prohibited
from reproducing, translating, or distributing this software in any unauthor-
ized manner.

Distributed By

The ATARI Program Exchange
P.O. Box 3705
Santa Clara, CA 95055
To request an APX Product Catalog, write to the address above, or call toll-free;

800/538-1862 (outside California)
800/672-1850 (within California)

Or call our Sales number, 408/727-5603

Trademarks of Atari

ATARI is a registered trademark of
Atari, Inc. The following are
trademarks of Atari, Inc: 400, 410,
800, 810, 820, 822, 825, 830, 850,
1200XL.

Limited Warranty on Media and Hardware Accessories. Atari. Inc. (“Atari") warrants to the original consumer purchaser that
the media on which APX Computer Programs are recorded and any hardware accessories sold by APX shall be free from
defects in material or workmanship for a period of thirty (30) days from the date of purchase. If you discover such a defect
within the 30-day period, call APX for a return authorization number, and then return the product to APX along with proof of
purchase date. We will repair or replace the product at our option. If you ship an APX product for in-warranty service, we
suggest you package it securely with the problem indicated in writing and insure it for value, as Atari assumes no liability for
loss or damage incurred during shipment.

This warranty shall notapply if the APX product has been damaged by accident, unreasonable use, use with any non-ATARI
products, unauthorized service, or by other causes unrelated to defective materials or workmanship.

Any applicable implied warranties, including warranties of merchantability and fitness for a particular purpose, are also
limited to thirty (30) days from the date of purchase. Consequential or incidental damages resulting from a breach of any
applicable express or implied warranties are hereby excluded.

The provisions of the foregoing warranty are valid in the U.S. only. This warranty gives you specific legal rights and you may
also have other rights which vary from state to state. Some states do not allow limitations on how long an implied warranty
lasts, and/ordo not allow the exclusion of incidental or consequential damages, so the above limitations and exclusions may
not apply to you.

Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been written by people not
employed by Atari. The programs we select for APX offer something of value that we want to make available to ATARI Home
Computer owners. In order to economically offer these programs to the widest number of people. APX Computer Programs
are notrigorously tested by Atariand are sold on an “as is" basis without warranty of any kind. Any statements concerningthe
capabilities or utility of APX Computer Programs are not to be construed as express or implied warranties.

Atarishall have no liability or responsibility to the original consumer purchaser or any other person or entity with respect to
any claim, loss, liability, or damage caused or alleged to be caused directly or indirectly by APX Computer Programs. This
disclaimerincludes, butis not limited to, any interruption of services, loss of business or anticipatory profits, and/or incidental
or consequential damages resulting from the purchase, use, or operation of APX Computer Programs.

Some states do not allow the limitation or exclusion of implied warranties or of incidental or consequential damages, so the
above limitations or exclusions concerning APX Computer Programs may not apply to you.

Contents

Introduction

.. 1
OVEIVIBW . .ot 1
Required accessoriesot 2
Optionalaccessoriest 2
Contactingtheauthor 2
Dedication e 2

Gettingstarted 3
Loading Hex-A-Bug into computermemory 3
Usingthismanual 3

USINGHEX-A-BUG oot 4
Introduction e 4
Hex-A-Bug’sdisplayscreen 4
Moving aroundthedisplay. 6
INPULAreast 6
Memory strips.o 7

Displaying values in hexadecimal or ASCll form. 7
Viewingmemory 7
Scrolling to other memory locations 8

Modifyingmemory. 8

Directionswitch 8
Stack strip 9
Code Strip. . oo 9

Disassemblingcode. i, 10

Scrollinginthecodewindow 10
Registerstrip 11
Breakpointstrip 11

Messageline 12

Cursorcontrol 12
Generalsyntax.coouuiin 13
Commandargument 13
DOS .. 13
CONT 14
S 14
SKP 15
Scrollingstripcommands 15
SEandSEF 15
CRandCRF. i, 16
CLandCLF 17
SMOOTH 17
Brrormessages. 18
Theoryofoperation............. 20
Glossaryof computerterms 24

Introduction

Overview

When speed, memory usage, and maximum use of the ATARI Computer’s
hardware capabilities are importantin a program, using assembly language is
worth the extra effort. But the speed and low-level, non-interpretive nature of
assembly language programs makes finding bugs in these programs more
difficult than debugging programs in higher level languages like BASIC. Hex-
A-Bug can make assembly language programming on the ATARI Computer an
attractive alternative to programming in high level languages.

You load this easy-to-learn and easy-to-use tool into memory along with your
assembly language program, and you then use breakpoints to switch control
from your program to Hex-A-Bug. Being able to determine the intermediate
results of your program by studying memory locations and register values can
be invaluable for locating errors. Your program’s screen display remains in-
tact and you can easily toggle between it and the Hex-A-Bug display.

This screen-oriented program uses very few commands. The main screen
area consists of “‘strips” across the screen, each strip being one functional
area. You move a flashing cursor from one functional area to another. In this
way, you can directly change the contents of any register, breakpoint, address
of a memory strip, or memory location. Horiztonal fine scrolling forwards and
backwards from any location gives you quick and easy access to all informa-
tion. In addition, you use simple commands to do such things as go to DOS,
single step through your program, search for a string of values, and continue
execution of your program. Users of the ATARI Program-Text Editor (which is
part of the ATARI MACRO Assembler and is also available separately through
APX) will find Hex-A-Bug particularly easy to use, since cursor movement,
function keys, and main, error, and command windows are used for similar
functions by these programs. The interaction is much like editing a piece of
text, except you are directing Hex-A-Bug to do something specific with each
edit. With Hex-A-Bug, you concentrate on your bugs, not on your debugging
tool.

Introduction 1

Required accessories
e 48K RAM

e ATARI 810 Disk Drive

Optional accessories

* ATARIMACRO Assembler or ATARI Assembler Editor Cartridge

Contacting the author
Users wishing to contact the author about Hex-A-Bug may write to him at:

RFD 4 Lincoln Rd.
Lincoln, MA 01773

Dedication

Hex-A-Bug is dedicated to my parents, Cyrus and Dorothy Kano, who
bought me my first home computer.

2 Introduction

Getting started

Loading Hex-A-Bug into
computer memory

1.

2.

Remove any program cartridge from the cartridge slot of your computer.
Have your computer turned OFF.

Turn on your disk drive.

When the BUSY light goes out, open the disk drive door and insert the
Hex-A-Bug diskette with the label in the lower right-hand corner nearest to

you. Close the door.

Turn on your computer and your TV set. The program will load into com-
puter memory and start automatically.

" Using this manual

This manual is intended for assembly language programmers with some
knowledge of the internals of the 6502 microprocessor. Load Hex-A-Bug and
experiment with its features as you read through the manual. Leave for last
the section on theory of operation, but don’t omit reading this section. Begin-
ning assembly language programmers will find the glossary of terms at the
end of this manual helpful.

Getting started 3

Using Hex-A-Bug

Introduction

Before you’re ready to use Hex-A-Bug, you need to write your assembly lan-
guage program or subroutine. The first instruction in your program should be
a BRK instruction (a $00 byte). Whenever your program executes a BRK in-
struction, Hex-A-Bug will be reentered. You need only program in this one BRK
instruction, since you can use Hex-A-Bug to set up to seven additional break-
points.

Next, you load Hex-A-Bug into memory as described earlier. After loading Hex-
A-Bug, use the DOS command to go to the Disk Operating System’s menu.
Then use the L (Load binary file) command to load your program. After your
program loads into memory and runs, the BRK instruction will execute, and
Hex-A-Bug will be reentered. You can set any additional breakpoints you need
and use the CONT, SKP, or SS commands to restart your program.

If you're testing a subroutine, you may need to change the program counter
(PC) to the start of the subroutine, and set up any data that it uses before con-
tinuing. In this way, you can test a subroutine that will be called from BASIC. If
you’re working on a large program, you can assemble new subroutines sepa-
rately, and debug them before including them in your main program. This
modular programming technique saves time in two ways: (1) reassembly for
each test/fix cycle takes less time, and (2) proven subroutines may be used in
many programs.

If your new program stops running correctly, you may need to try again, set-
ting more breakpoints in the suspected routines until you find the bugs. Sim-
ple errors can often be “patched’ right from Hex-A-Bug so that you can
continue the debugging process. The more bugs you find in each session, the
fewer test/fix cycles you’ll need to finish your program.

Hex-A-Bug’s display screen

Hex-A-Bug is “screen oriented”. The main display consists of “strips” across
the screen. Each strip is one functional area, containing two or more lines.
Below this area are the message and command lines. Your current location on
the display screen is indicated by a flashing marker (cursor).

4 Using Hex-A-Bug

The display screen looks like this:

Message line

Change PC to CONT or use DOS ecmd.

| Labelline
| Data line
| (INVERSE)

STRIP NAME SAMPLE SCREEN DISPLAY NOTES
Register strip ! PC A XY S NV BDTI Z C! (INVERSE)
! 3304 0F1000FB O O O O O O O! Fields
Breakpoint strip ! BREAKPOINTS ! (INVERSE)
! 1 2 3 4 5 6 7 | (INVERSE)
! 3304 0000 0000 OOOO 0000 0000 0000 ! Fields
Stack strip ! STACK | (INVERSE)
! F?7F8FO9FAFBFC FDFEFF 00 01 02 03 |
! AAABEEFF1FS5F 23 31 1BC1 11 12 22 | Fields
Code strip ! Address: 33041 CODE | (INVERSE)
! 00 01 02 03 04 05 06 07 08 09 OA OB OC !
! 11 22 33 44 55 66 77 88 99 01 02 03 04 ! Fields
Memory strip I Address: XXXX1 MEMORY | (INVERSE)
I |
! !
Memory strip ! Address: XXXX1 MEMORY | (INVERSE)
! Hex-A-Bug !
! Copyright 1982 David Kano |
Memory strip ! Address: XXXX1 MEMORY ! Header line
I I
| I
| |
| I

Command line

DOS COMMANDS: CONT SS SKP SE /00/

Figure 1l Hex-A-Bug’s Display

Each line of the screen that will accept input has two or more “fields,” or
display/input areas containing values. For example, the register strip has a
field for each register and the breakpoint strip has a field for each breakpoint.
Above each field is a label indicating the kind of field, or the memory address
that field is displaying.

Using Hex-A-Bug 5

Current location in the display area. On color televisions or monitors, one of
the strips is enclosed in a red border. On black and white screens, this border
is wider than the lines above and below the other strips. This boxed area is the
“current strip”. Your cursor is in this strip when it’s in the main screen area.
Press the OPTION key to toggle between the command line (which is where
the cursor displays when you first enter Hex-A-Bug) and the strips. Press the
control-arrow keys, explained below, to move from one strip to another.

Moving around the display

You can move your cursor quickly from place to place on the screen with a few
simple keystrokes. Hex-A-Bug’s cursor moves only to locations (fields) ac-
cepting input. After moving to a location, the next character you type replaces
the one currently under your cursor. If you press a key that has no meaning, an
error message displays in the message line and your cursor doesn’t move.

Hex-A-Bug uses the following keys to move around the strips. To use “control”
keys, which are indicated by “CTRL/”, hold the CTRL key while pressing the
other key indicated. The basic combinations are as follows:

CTRL/up arrow = moves up one input line
CTRL/down arrow = moves down one input line
CTRL/right arrow = moves right within a line '
CTRL/left arrow = moves left within a line
TAB = moves to the next field in the line
DELETE/BACK S —» move to the previous character
in the strip (and set valueto
zero, except in a data line)

Press and hold any of these keys for repeated movement. The cursor wraps
when you press a CTRL/arrow key with the cursor on the last line or character
in a particular direction (except that the right and left arrow keys, TAB, and
DELETE/BACK S keys scroll in data lines instead of wrapping). Once you
master the use of these cursor control keys, you need to learn only a few com-
mands to start using Hex-A-Bug.

Input areas

The stack, code, and memory strips contain only one input field in their data
lines. To change a value in the data lines, move within the strip until the value
you want to modify is under the cursor.

6 Using Hex-A-Bug

Memory strips

Use the memory strips to view and modify memory. The display has three
general-purpose memory strips. The stack and code strips are special-
purpose memory strips. The differences between them are described later.

Each memory strip is made up of three lines. Figure 2 below shows a sample
memory strip.

(1) Address: 40041 MEMORY
(R) 0001 02 0304 0506 07 08 09 0A OB OC
(3) 0001 34 AF AABBCCDD EE FF 11 22 33

Figure 2 Sample Memory Strip

Line (1), the header line, has two fields. Upon loading Hex-A-Bug, the first field
contains “XXXX”. You replace these X’s with an address in hexadecimal form
for the strip, such as 4004. The second field is the ““direction switch”, indica-
ting the direction in which the cursor moves. The switch is setto 1 in the sam-
ple. You’ll learn about its use later.

Line (2), the label line, contains as a field label the two least significant hex-
adecimal characters of the address. (The two most significant digits are in the
address field of line (1).) Line (3), the data line, displays the data in the memory
locations labeled in line 2. The data field directly beneath the address in the
header displays the value in that address; for example, the label field directly
beneath the address 4004 is 04 and the value is AA. The other fields display
the values in the next four lower and eight higher addresses.

When the Hex-A-Bug screen first appears, the label and data lines in the sec-
ond memory strip display the name of the program, author, and the copyright.
This information disappears the first time you use each of this strip.

Displaying values in hexadecimal or
ASCII form

The address header and field labels always display in hexadecimal form.
However, you can view and modify the memory values in either hexadecimal
or in ASCII form. Press CTRL/C to switch from hex to ASCIl and vice versa in
the current strip.

Viewing memory

To view an area of memory, enter its address into the header of one of the
memory strips. When you move your cursor out of the header, the strip dis-
plays the contents of that address.

Using Hex-A-Bug 7

Scrolling to other memory locations

By horizontally scrolling the strip, you can view higher or lower memory loca-
tions. To start scrolling, move your cursor into the data line and press and hold
the CTRL/right arrow or CTRL/left arrow keys. If you hold down the key for
about three seconds, the scrolling speed doubles. When you stop scrolling,
your cursor is positioned in the same location on the screen, but a new mem-
ory location displays in that position, as indicated in the label line.

Each memory strip is a window into the whole address space of your ATARI
Computer. The section on commands you use in the command line describes
how to step through tables and search for data strings using memory strips.

Modifying memory

Once you use a strip to view an area of memory, you can modify the contents
of that memory by moving the value you want to change under the cursor, and
typing in the new value. Hex-A-Bug checks to be sure you’re not trying to mod-
ify ROM (Read Only Memory). If you are, it displays the message SORRY, AD-
DRESS IS IN ROM and waits for your next action. It won’t let you modify ROM
values.

Direction switch

We normally type from left to right. When modifying memory in the data line,
this would change memory from low to high addresses. This order isn’t always
convenient, however. Push down stacks, for example, fill from high to low
memory. All 16-bit addresses used by the 6502 microprocessor are stored low
order byte first and then high. So that you can change memory in either direc-
tion easily, Hex-A-Bug has a direction switch. This is the function of the second
field in each header line. If you type a ““0” in this field, your cursor moves left
one field after you change a data value. If you type any other hexadecimal
value (i.e., 1-F) in the direction field, your cursor moves right one location
when you change a data value. The direction value also affects the TAB key,
which moves your cursor to the next logical field, not always the one to the
right.

The easiest way to get used to this feature is to try it. Have a memory strip
point into an unused memory area and modify some locations. Change direc-
tions and see how the TAB and the DELETE/BACK S keys act each way.
Change to ASCIl mode (by pressing CTRL/C) and see how easy it is to modify
and read character data with Hex-A-Bug’s smooth scrolling feature. This fea-
ture makes Hex-A-Bug a powerful tool for changing and building tables, modi-
fying code, and experimenting with different data when testing your programs
or subroutines.

Because of the ease with which you can modify memory, be careful when
moving your cursor from strip to strip.

8 Using Hex-A-Bug

Stack strip

The stack strip is a special-purpose memory strip used to view and modify the
contents of your program’s stack. When your program hits a breakpoint, Hex-
A-Bug moves the data in the stack to a page of memory in Hex-A-Bug. The
stack strip is for viewing and modifying this saved stack data. On reentry to
your program, the saved data is moved back to the real stack. Saving the
stack has a few advantages.

The size of the stack in the 6502 microprocessor is an inherent disadvantage.
Other microprocessors have stacks that can use the entire memory of the
computer. The 6502’s S register is only 8 bits wide, so the stack is only 256
bytes (one page) long. If your program causes a stack overflow (by pushing
more than 256 bytes onto the stack) it will overwrite the data that was first
pushed to the stack. After the stack is saved, Hex-A-Bug resets the S register
to the start ($FF) for its own use. Thus, even if your program uses the entire
stack, Hex-A-Bug will not cause a stack overflow.

Saving the stack also allows you to add items to the stack without disturbing
Hex-A-Bug'’s stack entries. This is useful for testing subroutines that expect
data to be passed on the stack. For example, subroutines called from BASIC
(with the USR function) get both optional arguments and the number of argu-
ments on the stack. When data is pushed (added) to the stack, the stack regis-
ter is decreased. This adds the data from high to lower memory locations. The
stack strip has its direction switch set to 0, so you can easily “push” data onto
your program’s stack in the correct direction. To do this, add the items starting
at the byte pointed to by the S register. The stack strip is automatically initial-
ized to this point on entry to Hex-A-Bug, or whenever you change the S register
using the register strip. After entering the data, the byte that the stack strip is
pointing to (the one your cursor ended up in) is the new stack register value.
Be sure to enter this value in the S field in the register strip to complete the
process.

The stack strip works like the 6502’s stack in that it wraps from the end of the
stack save area ($00) to its start ($§FF). In other words, the page of memory the
stack strip displays is always the same, and the label line refers to the byte
number in that page. This is why the stack strip doesn’t have an address field
in its header.

Code strip

The code strip is another special-purpose memory strip used to view and mod-
ify your program’s code. When a breakpoint is hit, Hex-A-Bug sets up the code
strip to display the memory at that breakpoint. It works as if you typed the new
value of the PC into the code strip’s address field after each breakpoint.

Using Hex-A-Bug 9

Disassembling code

The code strip can display data in hex or ASCII, just like the other strips, but it
can also disassemble code. By pressing CTRL/W you can open a ‘““‘code win-
dow” to display eleven lines of instructions at a time. This window uses all the
lines of the screen from the code strip’s header to the message line. This dis-
play mode is for viewing instructions only; you can’t position the cursor in the
code window to change values.

Each line in the code window has four fields. An example is the following:
FFOF RQ0600E JSR $0E60
Figure 3 Sample Code Window Line

From left to right these fields are:
(1) The address of the instruction
(2) The machine code at that address
(8) Theinstruction’s assembly language mnemonic
(4) Theinstruction’s operand

If the instruction is a branch, an additional field displays the address that the w
program branches to if the condition is true. For example:

FFCO9 DOR0 BNE $20 A$FFEB

Figure4 Sample Code Window Line
with a Branch Instruction

If the data at the address is not a valid instruction, ??? displays in the mne-
monic field.

Scrolling in the code window

To open the code window, position your cursor either in one of the strips above
the code strip, or in the code strip’s header line, or in the command line, but
notin the code strip’s data line. Press CTRL/W to open or close the code win-
dow. Once you open the window, you can scroll it up by pressing CTRL/N (for
“Next”). After you’ve scrolled the window up, use CTRL/P (for “Previous’) to
scroll it down. Since it’s impossible to disassemble backwards in memory,
CTRL/P scrolls the window down only until it reaches its original address.

The address of the code strip is used as an implied argument to the SKP com-
mand. The SKP command is described in the next section.

10 Using Hex-A-Bug '

Register strip

The register strip displays your program’s values of the 6502 microproces-
sor’s internal registers. Each of the P (processor status) register’s bits dis-
plays individually for your convenience. To change any register, move the
cursor to the field for that register and type in the new value. Note that any
non-zero value entered in a P register bit causes that bit to be set to a logic 1
state. To start or restart execution of your program at a new location, change
the PC (program counter). If you’re restarting the program from the beginning,
you may want to reset the S (stack) register to the start ($FF).

If you change the address in the PC register, Hex-A-Bug does two things after
you move your cursor out of the register strip:

(1) It checks to see if the data at the new address is a valid 6502 in-
struction. If it isn’t, the message DATA AT ADDRESS NOT IN-
STRUCTION displays and your cursor is positioned at the start of
the PC field so you can fix it. Hex-A-Bug can'’t tell if the data at the
location is actually an operand when it happens to be an instruc-
tion, too, which means it can’t prevent you from setting the PCto a
data address if the contents of that address could also represent a
valid 6502 instruction.

(2) The code strip (or window) is set to view the new address.

If you change the S register and then move your cursor out of the register strip,
Hex-A-Bug sets the stack strip to view the part of the stack save area indicated
by the register.

Note that pressing the START key to execute a command invokes the above
“implied” commands just as if you moved your cursor out of the register strip.
For example, you might change the PC and press START to execute a CONT
command in the command line without moving your cursor out of the register
strip.

Breakpoint strip

The breakpoint strip has seven fields, one for each breakpoint. Entering an
address into one of the fields causes execution to switch from your program to
Hex-A-Bug at that point. When you enter a new breakpoint, four things happen
automatically:

(1) Ifthe addressis 0000, then the breakpoint is cleared. Note that this
means you can’t set a breakpoint on the first byte in page zero.

(2) Thelocation is checked to be sure that it holds a valid 6502 instruc-
tion (the same as described for the PC in the register strip). If it
doesn’t, the error message DATA AT ADDRESS NOT INSTRUC-

TION displays. Using Hex-A-Bug 11

(3) Acheckis made to be sure that the location is in RAM (read/write
memory). If it isn’t, the error message SORRY, ADDRESS IS IN
ROM displays. Because Hex-A-Bug temporarily replaces the in-
struction with a BRK instruction, all breakpoints must be in RAM.

(4) If the address passes the above tests, the instruction at the ad-
dress is saved so that it can be restored to its original value.

If the address fails one of the tests in actions 2 and 3, then an error message
displays, a beep sounds, and the cursor is positioned at the start of the offend-
ing address so that you can fix it.

If you want to “patch” your code by changing an instruction, first clear any
breakpoint at that instruction by typing 0000 in its breakpoint field. After you
change the instruction, you may reset the breakpoint if you wish. This will en-
sure that Hex-A-Bug restores the correct instruction to the location.

For more detailed information on the breakpoint system used, see the section
on theory of operation.

Message line

Hex-A-Bug uses this line to display messages. Most error messages display
for several seconds. However, some messages stay in the message line until
another message replaces it or until you clear the message line by pressing
the SHIFT/CLEAR keys.

Command line

Cursor control

Press the OPTION key to move your cursor to the command line. To return to
the current strip in the main screen, press OPTION again.

The cursor acts somewhat differently in the command line. In the main screen
area, the character you type replaces the one under your cursor. In the com-
mand line, Hex-A-Bug inserts a new character at the cursor. The character is
put at the location of your cursor as before, but the characters under and to the
right of your cursor move right one character to make room for the new one.
The CTRL/left arrow and CTRL/right arrow keys work as before (without wrap-
ping), but the CTRL/up arrow and CTRL/down arrow keys move your cursor to
the start of the command line. DELETE BACK S deletes the character to the
left of the cursor. CTRL/DELETE BACK S deletes the character under the cur-
sor. SHIFT/DELETE BACK S clears the entire command line and places your
cursor at its start.

12 Using Hex-A-Bug

General syntax

All the commands executed from the command line have a common syntax.
The command and its arguments must use uppercase letters. In fact, in only
one case might you want to use a lowercase letter in Hex-A-Bug: when modify-
ing memory in ASCIl mode.

On entry to Hex-A-Bug, the operating system (OS) variable SHFLOK (at
$02BE, which controls the selection of CAPS/LOWR lock) is saved and set to
CAPS lock. On exit, the original value of SHFLOK is restored. All commands
must start in the far left column of the command line and have a space after
the command.

Command argument

Ifacommand has an argument, the argument must start one position after the
required space. Because Hex-A-Bug ignores the rest of the command line af-
ter the completed argument (if any), you can leave other commands, argu-
ments, or characters you want in the command line for future use or
reference. Here is an example of the DOS command with A as its argument:

DOS A <all other characters are ignored)>

Press the START key to execute a command. You can invoke the first com-
mand in the command line by pressing START regardless of where your cur-
sor is located.

Descriptions of the Hex-A-Bug’s
commands follow.

DOS —go to the Disk Operating
System’s menu

The DOS command works like the DOS command in BASIC. It causes Hex-A-
Bug to turn control over to the Disk Operating System so that you can use the
DOS utilities. For example, you would use the DOS menu option L (Load bi-
nary file) to load an assembly language program to test it with Hex-A-Bug. If
you want to return to Hex-A-Bug from DOS, use DOS menu option M (Run at
address). The address for Hex-A-Bug is $BEFO. This is different from the entry
point placed in the BRK instruction vector. See “Theory of operation’ for more
details.

Using Hex-A-Bug 13

The DOS command has one optional argument. If you type an A (for Abort)
after the required space, Hex-A-Bug releases the memory it uses (by changing
RAMTOP and RAMSIZ) before going to DOS.

Note. The DOS command uses the operating system vector DOSVEC
($000A). If your program changes this vector, the DOS command won’t work
properly. After you debug your program, you can add the code to “steal”
DOSVEC so that your program will reexecute when you press the SYSTEM
RESET key.

CONT — continue execution of
your program

This is the main command for returning to your program from Hex-A-Bug. It
does the following:

(1) Itrestores the values of the CPU’s registers.
(2) Itrestores the stack from the save area.

(3) It restores the OS locations that Hex-A-Bug uses. This includes
switching the screen back to your program’s display.

(4) It starts execution at the location indicated by the PC register.
(5) It sets all seven breakpoints.

All the commands that return to your program do the first four steps. CONT
has two optional arguments. Option Z (i.e., CONT Z) omits setting the break-
points (step 5). This option is convenient when you want to continue running
your program without any breakpoints. It saves you from typing 0000 into all
the breakpoint fields.

Option A (Abort), like the Z option, doesn’t set any breakpoints, but it also re-
leases the memory used by Hex-A-Bug like the A argument to the DOS com-
mand.

SS —single step through your program

The SS command does the first three steps of the CONT command, and then
it executes the single instruction at the PC’s address. SS determines the ad-
dress of the instruction after the current one and sets a temporary breakpoint
at that location. Note that this means you can’t single step through ROM.
However, Atari’s excellent documentation on the use of the OS routines in
ROM should keep you from wanting to single step through ROM. The SKP
command (described next) is a convenient way to skip over a call to a ROM
routine and stop at the next instruction to check the result.

14 Using Hex-A-Bug

"'\

SKP —set a temporary breakpoint at the
code strip’s address

The SKP command does the same thing as the CONT command, plus it sets a
temporary breakpoint at the location of the code strip’s address. The disas-
sembling code window makes it easy to find the location desired.

This command is convenient in a number of cases. You can use SKP to skip
over a loop when you’re single stepping, thus saving the time of single step-
ping dozens of times through a loop that you know works. It’s also useful when
single stepping through a high level routine that calls many proven subrou-
tines. In this case you don’t need to single step through each routine in turn,
but you may want to check the results of each routine. Using the code window,
you can scroll past the calls you want to skip and execute SKP.

Scrolling strip commands

Use the following commands in conjunction with one of the memory strips (in-
cluding the stack and code strips). These commands use the current strip (the
strip bordered in red). If you execute one of these commands when the current
strip is not a memory strip, the error message SCROLLING STRIP ONLY dis-
plays. If the current strip hasn’t been set to a location, the error message
STRIP NOT IN USE displays.

Each of the following commands changes the memory location a strip is view-
ing. Each has a complementary command that displays the new location im-
mediately instead of scrolling to it. You can invoke these ‘““fast” versions of the
commands by adding the letter F to the desired command. You can’t use the
fast versions in the stack strip, but you rarely need to scroll this strip more than
afew bytes at a time.

To stop the scrolling versions of these commands, press the BREAK key. A
description of each command follows.

SE and SEF —search for data strings

Use the SE command to search for a string of bytes starting at the address of
the current strip. SE works in either direction. The general syntax is:

SE [delimiter](hex #][space](hex #][space]...[delimiter][optional]

Using Hex-A-Bug 15
\

The comments in brackets [] describe one character or number. The first
character inthe argumentis a delimiter. You can use any character for a delim-
iter, as long as you use the same character to end the data string. Following
the first delimiter is the first byte of the data to search for. Data bytes less than
$10 must have a leading zero. One space is required between each byte. You
can search for any length string that will fit in the command line. The com-
pleted stringis as it will appear in the data line of the strip (assuming the strip is
in hexadecimal mode). The preset search direction is from low to higher mem-
ory. You can search in the other direction by appending a { after the second
delimiter. For example,

SE /01 23 45 67 89 AB/{

This example searches for the string “01 23 45 67 89 AB”, from high memory
to low memory.

The fast version of this command searches all of memory within four or five
seconds and uses the same syntax. If the string isn’t found, the message
SEARCH FAILED displays.

CR and CRF —scroll to higher memory
in steps

Use the CR command, which stands for “‘Cursor Right”, to scroll the current
strip to higher memory locations. The two-character (8-bit) hexadecimal num-
ber of locations to scroll is the one argument to this command. A leading O is
not needed for hex values less than $10. The general syntax is:

CR [hex #]
For example,

CR1B

This command is useful for stepping through tables. Use the length of each
entry in the table as the argument to CR to look at each entry in turn. The fast
version of this command is useful for looking at a location that is accessed
using indexed addressing. Open a window to the base address, and use CRF
with the offset value to display the desired location immediately.

With its powerful set of indexed addressing modes, the 6502 lends itself to a
programming style using.lots of tables of data. This is especially true with pro-
grams that run in real time and require lots of decisions and calculations.
When a time-consuming calculation can be replaced by a table lookup, the
speed and overall performance of the program increase. Hex-A-Bug is espe-
cially good for testing this kind of program. The memory strips are great for
experimenting with new values in tables and rerunning the program to see the
result. You can then enter the best values into your source code during your
next editing session.

16 Using Hex-A-Bug

CL and CLF —scroll to lower memory
in steps

The CL command, which stands for “Cursor Left”, is the same as CR, except
that the scrolling direction of the strip is from high to lower memory locations.

SMOOTH — turn on and off smooth
scrolling

Use the SMOOTH command to turn on or off the smooth scrolling feature in
the memory strips. Hex-A-Bug starts out with it on. To turn it off, use the com-
mand with no argument. To turn it back on, use the command with a 1 as the
argument. The SMOOTH command doesn’t change the location viewed by a
strip, and you can use it regardless of the current strip’s function. Examples
are as follows:

SMOQOTH (turns off smooth scrolling)
SMOOTH 1 (turns on smooth scrolling)
A message in the message line indicates the state of the feature (ON or OFF).

The hardware register used to control smooth horizontal scrolling (HSCROL)
is a “write only register”. In other words, even though you store values to this
location, just like any other memory location, itisn’t really a memory location.
If you view this location, the value $FF always displays. This makes it impos-
sible for Hex-A-Bug to save and restore your program’s value for this register.

To demonstrate this, view the location HSCROL (at $D404) using Hex-A-Bug.
The last value stored in HSCROL when the current strip isn’t scrolling is $00,
but $FF displays. Now try to change the location to $OF. The error message
SORRY, ADDRESS IS IN ROM displays to warn you you’re trying to change
ROM, and the strip scrolls sixteen color clocks (four whole characters) to the
right. Hex-A-Bug assumes that a location that doesn’t change after a store is in
ROM, but you actually did write a $0F into the hardware register, changing the
display accordingly.

If your program uses smooth scrolling, you may want to turn off the SMOOTH
feature in Hex-A-Bug so that the value your program last stored into HSCROL
isn’t disturbed. You can still use the memory strips, but they may be a little off
center. The display will be impossible to read while scrolling at the faster
speed, so you can use this feature to show your friends the value of the ATARI
Computer’s smooth horizontal scrolling.

Using Hex-A-Bug 17

Error messages

Change PC to CONT or use
DOS cmd.

This is a reminder that the address in the PC was set to 0000 when you en-
tered Hex-A-Bug using the entry point $BEFO0. Therefore, you must change it
to the start of your code to start debugging, or you can use the DOS command
to exit to the DOS menu.

CIO ERROR NUMBER ###
The displayed error was returned after a call to the Central Input Output rou-
tine (in the Operating System). Hex-A-Bug uses the CIO to set keyboard char-
acters by opening the K: device.
The IOCB (Input Output Control Block) number 7 may have been in use. Look
up the error number (displayed in decimal form) in your DOS (or other) manual

to determine the problem.

A CIO error is usually fatal (that is, it locks up your computer). Be sure your
programisn’t using IOCB #7, and that it isn’t disturbing the control block itself.

DATA AT ADDRESS NOT
INSTRUCTION

You’re trying to change the PC to, or set a breakpoint on, a location that
doesn’t hold a valid 6502 instruction. Check the address and try again.

DELIMITER ERROR

The syntax used in an SE or SEF command was wrong. Use the same delimit-
ing character to end the string as you used at the beginning of the string.

NO FAST COMMANDS IN STACK

You’re trying to use the fast version of a scrolling strip command in the stack
strip. Use the smooth scrolling version of the command instead.

18 Error messages

NO SUCH COMMAND

You’re trying to execute a command not included in Hex-A-Bug. Remember
that all commands require a space between the command and any argu-
ments. Check the quick reference sheet for a list of commands.

PLEASE ENTER HEX NUMBER: 0 - F

You typed a character that isn’t within the required range of 0 - F. Your cursor
didn’t move; type a valid hexadecimal digit.

SCROLLING STRIP ONLY

You’re trying to use a scrolling strip command in a nonscrolling strip. Move to
a scrolling strip.

SEARCH FAILED

The SEF command returns this message when the data string you were
searching for wasn’t found in memory.

SORRY, ADDRESS IS IN ROM

You're trying to change the value of a memory location or set a breakpoint in
ROM (read only memory), which is impossible. When you’re using the SS
command, this message appears if the next instruction is a call or jumptoa
routine in ROM, since SS sets a temporary breakpoint on the next instruction
after the current one. Use the SKP command to stop execution on return from
the call to the subroutine in ROM.

STRIP NOT IN USE

You're trying to use a scrolling strip command in a strip that isn’t displaying
memory yet. First type the address into the header field to view the desired
memory.

Error messages 19

Theory of operation

Hex-A-Bug loads into memory automatically using the AUTORUN.SYS feature
of Atari DOS. It occupies the top 12K of memory, ($9000-$C000) moving the
OS pointers RAMSIZ and RAMTOP down to reserve this space. Any program
that can be run on an ATARI Computer with 32K of RAM can be debugged with
Hex-A-Bug on an ATARI Computer with 48K of RAM. If you have any programs
that use the same trick to reserve memory, you can move RAMSIZ and RAM-
TOP down to make room for them from Hex-A-Bug, and then load them from
DOS. Of course, they will have to be set to start below Hex-A-Bug. There is
also some memory not used by Hex-A-Bug between $B8D1 and $BEEF that is
reserved for future enhancements. Lots of application programs assume that
RAMTOP and RAMSIZ are at a 4K boundary so Hex-A-Bug was set to start on
one, leaving some room to spare.

You can run any programs that adhere to the Operating System rules regard-
ing memory usage while Hex-A-Bug is in memory, including the ATARI
MACRO Assembler and Program-Text Editor. This feature saves the time to
reboot and load Hex-A-Bug during the debug-edit-fix cycle. The main disad-
vantage is that the editor will have less space for holding text. If you’re work-
ing on a small program, this limitation may not affect you. If your new program
accesses the disk, it's a good idea to move your new .OBJ file onto a “TEST”
disk that doesn’t have any valuable source files on it, just in case your pro-
gram trashes the disk.

Once Hex-A-Bug is in memory, you can reenter it in two ways. You can use
DOS menu option M (Run at address), using $BEFO as the address. Or, you
can run any code that has a BRK instruction ($00) in it.
Let’s look at the differences between these two options. When your program
hits a breakpoint, Hex-A-Bug does a number of things before it gives you con-
trol of its cursor:

(1) Itsavesall of the 6502’s internal registers

(2) Itsavesthe stack (page 1)

(3) Itrestores the.original instructions at all breakpoints

(4) Itsaves all of the OS variables it uses

(5) Itreplaces the OS vertical blank routine with its own routine

(6) Itrefreshesits display so that all the values are updated

20 Theory of operation

When you enter Hex-A-Bug using the “jump location” $BEF0:

(1). Allthe registers are cleared to $00 (except the S register, which is
reset to $FF)

(2) It saves the stack

(3) Itsavesall of the OS variables it uses

(4) Itreplaces the OS vertical blank routine with its own routine
() The DOS command is placed in the command field

(6) A message in the message line reminds you that you must change
the PC to continue (unless you want to run code at location $0000)

(7) Itrefreshesits display

Note that step 3 in the breakpoint entry is not done in the JUMP entry. This is
important if you want to debug two different programs (or different versions of
the same program) that load in the same memory, one after the other. If you
aren’t careful, Hex-A-Bug will restore the instructions from the first program
into the second when it hits a breakpoint. The safest procedure in this case is
to clear all breakpoints to $0000 before starting to debug the second program.

All of RAM is initialized to $00 on cold start, so running at any unused location
will result in entering Hex-A-Bug. The easiest way to use Hex-A-Bug is to in-
clude a BRK instruction as the first instruction in your new programs, as de-
scribed in the introduction to ““Using Hex-A-Bug”.

When your program hits a breakpoint, Hex-A-Bug saves any OS variables that
Hex-A-Bug uses so that it can restore them when you return control to your
program, or when you press the SELECT key to see your program’s display.
Here is a list of the variables and the locations in Hex-A-Bug they’re saved in:

Theory of operation 21

TABLE 1

OS Variables used by Hex-A-Bug

Variable Saved Actual Description
name addr. addr. of use

ATACHR $95F0 $02FB Character save used by 0OS
keyboard routine

BRKKEY $9O5F2 $0o011 BREAK key flag.

CH $95F6 $02FC Character save byte used by
keyboard interrupt routine.

INVFLG $95F1 $02B6 Inverse flag; used by key-
board routine to show state
of inverse lock (ATARI key)

IOCBAS $95E3 $0020 Base of zero page IOCB. 12
bytes at this address are
saved

SHFLOK $95F3 $02BE Controls CAPS/LOWR lock
function

VBREAK $95DF $0206 Break vector, this is saved
when Hex-A-Bug is loaded,
and restored when the abort
option is used with the DOS
or CONT commands

VDSLST $95DC $0200 Display list interrupt RAM
vector

VVBLKI $95E1 $0222 Vertical blank RAM vector

To change any of the above locations with Hex-A-Bug, change the saved loca-

tion, not the actual location.

Note that the system Vertical Blank routine is replaced by Hex-A-Bug’s own
routine. This means that the system software timers won’t be incremented
while in Hex-A-Bug. This is important when you’re using the VBLANK routine
to keep track of real time events you want to debug. The hardware timers will

continue to tick,

22 Theory of operation

however.

Hex-A-Bug moves all players and missiles off the screen by setting their hori-
zontal positions to 0. These hardware registers are write only registers, like
the previously described HSCROL register. When using these registers, a
good programming practice is to use ‘“shadows” of them. Shadows are mem-
ory locations that keep track of the value last stored in a hardware register.
Shadows should be used by the vertical blank interrupt routine to set the value
in the register itself. Then, since Hex-A-Bug uses a custom vertical blank rou-
tine, the players will remain off the screen while in Hex-A-Bug. As soon as you
return to your program, or press the SELECT key, your program’s VVBLKI
(vertical blank RAM vector) will be restored, and the players will become visi-
ble again. You needn’t write a custom vertical blank interupt routine; you can
use the deferred vertical blank vector to run your VBLANK code after the OS
routine. For more information, see the Technical Users Notes, available from
Atari.

Another read-only register used by Hex-A-Bug is NMIEN, nonmaskable inter-
rupt enable. Since Hex-A-Bug uses display list interrupts, they are enabled by
setting bit 7 of this register. Therefore, display list interrupts will be enabled
upon exiting Hex-A-Bug.

Every time you enter Hex-A-Bug, IOCB 7 is open to K: for its use to get key-
board input. When you leave Hex-A-Bug (that is, when you restart your pro-
gram), the IOCB is closed. Your program must not use this control block.

Breakpoints are set (replaced with a BRK) only when you restart your pro-
gram. This allows you to view the code being executed instead of seeing BRK
instructions on all your breakpoint locations. The instructions are restored
every time a breakpoint is hit.

Hex-A-Bug uses locations $80-$9A in page 0; therefore, your program can’t

use these memory locations. The first half of zero page $00 to $80 are used by
the OS. The locations from $9A to $FF are available to your program.

Theory of operation 23

Glossary of computer terms

6502: The microprocessor used as the ATARI Computer’s central processing
unit (CPU).

A: A register, or Accumulator. The CPU register used for most arithmetic in-
structions.

Abort: To stop execution of a program before its intended end.

Address: An identification describing a specific memory location. In the 6502,
an address consists of four hexadecimal characters (16 bits).

Argument: A variable to which either a logical or a numerical value may be
assigned.

ASCII: Acronym for American Standard Code for Information Interchange. A
code for the representation of alphanumeric data, i.e., characters, adopted to
facilitate the interchange of data among various types of data processing and
data communications equipment.

Assemble: To translate assembly language into its corresponding machine
code.

Assembly language: The low level programming language unique to each
computer that lets a programmer use mnemonics instead of numeric instruc-
tions. The language closest to the machine language codes the computer can
execute directly.

Base address: A specified address combined with a relative address to form
the absolute address of a storage location.

Bit: A binary digit; the smallest unit of computer storage, and the basis of all
digital computing. One bit can store a value of 1 or 0.

Branch instruction: A program instruction providing a means for choosing be-
tween alternative paths, based on the state of a P register bit. The program
branches to a different location if the required condition is true; otherwise, ex-
ecution continues with the next instruction.

Breakpoint: A point in a program where execution of the CPU is interrupted
and control passed to the monitor or to a debugging utility.

Bug: A mistake in a program preventing the program from working as
planned.

Byte: Eight adjacent binary digits operated on by the computer as a unit.

Code: Numbers in memory that can be executed by the computer. Machine
code.

24 Glossary of computer terms

Color clock: The standard unit of horizontal distance on the television screen.
A horizontal scan line has 228 color clocks, but only 160 are displayed in a
normal width playfield.

CPU: Acronym for Central Processing Unit. The main logic circuit in a com-
puter that interprets and executes machine code instructions.

Cursor: A symbol on the display screen indicating where the next character
typed in will appear.

Debugger: A program designed to help find and correct errors (or bugs)in pro-
grams.

Delimiter: A character used to separate variables in a list or one string of char-
acters from another.

Disassemble: To translate machine code to its corresponding assembly lan-
guage instructions.

Display list: ANTIC’s “program” defined by the user or provided automatically
(through a GRAPHICS command) in BASIC. The display list specifies where
the screen data may be found, what display modes to use to interpret screen
data, and what special display options (if any) may be implemented. (ANTIC is
the ATARI Computer’s separate, programmable microprocessor dedicated to
the television display.)

Hex: Abbreviation for hexadecimal.

Hexadecimal: A numeral system with base 16. Digits greater than 9 are repre-
sented by letters. The letters A-F stand for the decimal numbers 10-15 and
hexadecimal 10 equals decimal 16. Hexadecimal numbers are usually pre-
fixed with a $ in text (e.g., $10).

Hex-A-Bug: A debugging utility designed to work on the ATARI Computer.

High level language: A computer language more nearly like English and ori-
ented toward the problem to be solved or the procedures to be used. The
higher the language, the less it resembles the machine code executed di-
rectly by the CPU.

Horizontal fine scrolling: The process of sliding the screen window to the left
or right over display memory in color clock or scan line increments to display
more information than could be seen with a static screen.

Indexed Addressing: A system that modifies an address by the content in an
“index register” prior to or during execution of a computer instruction to com-
pute the final address of the desired data.

K:Two to the tenth power (1024) when referring to storage capacity. For exam-
ple, 12K represents 12,288.

Loop: A series of instructions that are executed repetitively until specific con-
ditions are met.

Glossary of computerterms 25

A

Mnemonic: A word or name for a machine language instruction that is easy to
remember and identify. Assembly language is made up of these words or in-
structions.

Modular programming: The technique of designing a program as a number of
logically self-contained units.

Offset: The difference between the value or condition desired and that actu-
ally attained.

Operand: The symbols or data following a program instruction indicating what
registers, memory locations, or data values are to be used in executing the
instruction.

OS: Acronym for Operating System. The program providing basic routines
many programs can use to perform common tasks. The ATARI Computer’s
OSisin ROM.

P: Processor Status register. The 6502 register used to store the internal
“flags” or individual bits indicating special conditions in the CPU. The 6502
flags are: N-sign, V-overflow, B-break, D-decimal, l-interrupt, Z-zero, and C-
carry.

Page: A portion of memory starting and ending on even, 256-byte boundaries.
For example, locations $0000 to $00FF are all in “page 0”, since the most
significant byte (the first two characters) of the address of all these locations is
$00.

Patch: Computer slang for a temporary fix of a bug. A section of coding in-
serted into a program to correct a mistake.

PC: Program Counter. The register the CPU uses to keep track of the address
of the instructions it is executing.

Pop: To retrieve data from the top of a program push down stack; the stack
pointer is incremented to address the last word pushed on the stack and the
contents of this location are moved to one of the accumulators or to another
register.

Push: To put data into the top location of a program stack; the stack pointer is
decremented to point to the next location, which becomes the top of the stack.

Push down stack: A set of memory locations or registers in a computer that
implements a push down list (a list written from the bottom up, with each new
entry placed on top and with the item on top the one processed first).

RAM: Acronym for Random Access Memory. The main memory chip used
with the 6502 that can be written to as well as read, but whose contents are
lost when the power is shut off.

Real time: A term describing online computer processing where the speed of
the program is an integral part of the program’s design and the output of proc-
essed data affects or controls the outcome of an ongoing activity. Arcade style
games are one example.

26 Glossary of computer terms

Register: A high-speed device in the CPU or other circuit used to store data or
intermittent results temporarily during processing.

ROM: Acronym for Read Only Memory. Non-erasable, permanently pro-
grammed memory used to store programs and data. ROM cannot be written
to.

S: Sregister or Stack register. The CPU register pointing to a memory location
where the next stack data will be stored. The stack is a “firstin, last out” (FILO)
memory area used to store data temporarily. The CPU uses it to keep track of
return addresses during subroutine calls.

Shadowing: A process in which values are moved between hardware loca-
tions and RAM locations, thereby allowing the program to monitor the con-
tents of write-only hardware registers or check the input from read-only
hardware registers.

Single step: To operate a computer by executing each computer instruction or
part of an instruction in response to a manual operation.

Subroutine: A routine nested within another routine, within which initial exe-
cution never begins.

Syntax: The formal grammatical and structural rules of any assembly or
higher level programming language.

Table: A collection of data often stored in consecutive storage locations or
written as an array of rows and columns in which an intersection of a labeled
row and column locates a specific piece of information. Data in tables is usu-
ally accessed using indexed addressing.

Toggle: To alternate between two states.
Variable: A quantity that can assume any of a given set of values.

Vector: A data structure permitting the location of any item by the use of a sin-
gle index or subscript; often used to store an address of another memory loca-
tion where a program or subroutine starts.

Vertical blank: The period during which the electron beam (as it draws the
screen image) returns from the bottom of the screen to the top. This period is
about 1400 microseconds.

Word: A group of bits, characters, or bytes considered an entity and capable
of being stored in one storage location. In the 6502, a word is 2 bytes, or 16
bits.

Wrap: In Hex-A-Bug, to move the cursor positioned at the end of a row or
column of the screen display to the initial position of the same row or column,
depending on the direction of cursor movement.

X: Xregister. A 6502 register. One of two “index registers”.
Y: Y register. A 6502 register. One of two ‘“‘index registers”.

Glossary of computer terms 27

Quick reference sheet

Function keys

Key Function

OPTION Moves cursor from command line to current strip or vice
versa

SELECT Toggles between program screen and Hex-A-Bug
screen

START Executes first command in command line

CTRL/ Moves cursor up

CTRL/ Moves cursor down

CTRL/ Moves cursor left

CTRL/ Moves cursor right

TAB Moves cursor to next field

CTRL/C Toggles conversion in data lines between ASCII and
hex

CTRL/W Opens and closes disassembly window in code strip

CTRL/N Scrolls disassembly window to next instruction

CTRL/P Scrolls disassembly window to previous instruction
Commands

Name: CONT (Continue program)

Syntax: CONT (or) CONT Z (or) CONT A

Use: Continue execution of your program starting at the ad-
dress indicated by the PC field. Sets all break points.

Name: DOS (Go to Disk Operating System)

Syntax: DOS (or) DOS A

Use: Jump through DOSVEC to go to the DOS menu. A
aborts Hex-A-Bug.

Name: SS (Single Step)

Syntax: SS (no meaningful arguments)

Use: Execute the single instruction at the address in the PC
field. and reenter Hex-A-Bug.

Name: SKP (Skip to address of code strip)

Syntax: SKP (no meaningful arguments)

Use: Same as CONT, but sets a temporary breakpoint at the
Address of the code strip.

Name: SE and SEF (Search)

Syntax: SE /## ## ## ##/

Use: Searches for the string of values using the current
scrolling data line. The BREAK key aborts the search.

Name: CR and CRF (Cursor right)

Syntax: CR ## (where ## is a hex value)

Use: Scrolls the current memory strip ## locations higher in

28 AQuick reference sheet

memory.

Name:

Syntax:

Name:

Syntax:

Use:

CL and CLF (Cursor left)

CL ## (where ## is a hex value) Use:

Scrolls the current memory strip ## locations lower in
memory.

SMOOTH

SMOOTH (off) or SMOOTH 1 (on)

Turns on or off smooth scrolling feature in memory
strips.

Quick reference sheet 29

P.O. Box 3705
Santa Clara, CA 95055

APX

ATARI Program Exchange

We're interested in your experiences with
APX programs and documentation, both fa-
vorable and unfavorable. Many of our authors
are eager to improve their programs if they
know what you want. And, of course, we want
to know about any bugs that slipped by us, so
that the author can fix them. We also want to

1. Name and APX number of program.

Review Form

know whether our instructions are meeting
your needs. You are our best source for
suggesting improvements! Please help us by
taking a moment to fill in this review sheet.
Fold the sheet in thirds and seal it so that the
address on the bottom of the back becomes
the envelope front. Thank you for helping us!

2. If you have problems using the program, please describe them here.

3. What do you especially like about this program?

4. What do you think the program’s weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

6. On a scale of 1 to 10, 1 being “poor” and 10 being “excellent”, please rate the follow-

ing aspects of this program:

Easy to use

Enjoyable
Self-instructive

Use (non-game programs)
Imaginative graphics and sound

User-oriented (e.g., menus, prompts, clear language)

7. Describe any technical errors you found in the user instructions (please give Q
page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “excellent”, how
would you rate the user instructions and why?

11. Other comments about the program or user instructions:

From

STAMP

Ap‘/ ATARI Program Exchange
P.O. Box 3705

o

\ Santa Clara, CA 95055

[seal here]

HEX-A-BUG
by David Kano

Set breakpoints in your assembly
language programs to track down
bugs

Study memory locations and regis-
ter values at intermediate stages to
locate errors

Switch back and forth easily
between your program and Hex-A -
Bug

New programsrarely work as plan-
ned on the first run. Butfinding the
errorsisdifficult at speeds at which
the computer usually runs. Hex-A-
Bug is an easy-to-use tool for stop-
ping your program so you can find
and correct the bugs. You load
Hex-A-Bug and your program into
memory, and you use breakpoints
to switch control from your pro-
gram to Hex-A-Bug. Being able to
determine theintermediate results

of your program by studying
memory locations and register
values can beinvaluable forlocat-
ing errors. Your program'’s screen
display remains intact, and you
can easily toggle between it and
the Hex-A-Bug display.

This screen-oriented program uses
very few commands. The main
screen area consists of ‘'strips’”
across the screen, each strip being
one functional area. You move a
flashing cursor from one functional
area to another. In this way, you
can change the contents of any
register, breakpoint, address of a
memory strip, or memory location.
Horizontal fine scrolling forwards
and backwards from any location
gives you quick and easy access to
all information. In addition, you
use simple commands to go to
DOS, single step through your
program, search for a string of
values, and continue executing
your program.

About the author

DAVID KANO

When thesurf'sup, David Kano's
thoughts turn from his computer
to his other hobby. The author of
HEX-A-BUG is an ardent wind-
surfer who has competed on the
world championship level, trav-
eling as far as Italy and Mexico.
In inclement weather, David

writes home computer programs,
striving to make them easy for
hobbyists to use. Before starting
to free-lance from his home in
Lincoln, Massachusetts, David
was a programmer at a company
that produces systems for the
publishing industry.

Diskette: version 1
Edition B

Requires:
Diskette
(APX-20199)
ATARI 810™
Disk Drive
48K RAM

Optional:
ATARIMACRO
Assembler
ATARI
Assembler
Editor
Cartridge

