%,

Q. A7AR PROGRAM EXCHANGE

John H. Palevich

DEEP BLUE SECRETS

" Adapt the DEEP BLUE C COMPILER
to fit your own needs

- User-Written Software for ATARI Home Computers

&

Diskette: 48K (APX-20179)

DEEPF BIL.UE SECRETS

by

John Howard Palevich

Program and Manual Contents © 1982 John Howard Palevich

Copyright notice. On receipt of this computer program and associated documentation
(the software), the author grants you a nonexclusive license to execute the enclosed
software, This software is copyrighted. You are prohibited from reproducing,
translating, or distributing this software in any unauthorized manner.,

Distributed By @

The ATARI Program Exchange
P.0. Box 3705
Santa Clara, CA 95055

To request an APX Product Catalog, write to the address above. or call toli-free:

800/538-1862 (outside California)
800/672-1850 (within California)

.Or call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari. Inc.

ATARI®

ATARI 400™ Home Computer
ATARI 800™ Home Computer
ATAR! 410™ Program Recorder
ATARI 810™ Disk Drive

ATARI 820™ 40-Column Printer
ATARI 822™ Thermai Printer
ATAR} 825™ 80-Column Printer
ATARI 830™ Acoustic Modem
ATAR! 850™ Interface Moduie

Printed in U.S.A.

Table of Contenmnts

INTRODUCTION —— 1
Overview == 1
Required accessories —— 1
Contacting the author — 1
THE DEEP BLUE C SYSTEM CODE DISKETTE -- 2
The compiler files -~ 2
The linker files —— 2
The interpreter files —— Z
THE COMPILER — 3
Compiler specifications -~ 3
Language limitations -~ 5
Compiler limitations — 5
Stack frame —— S
COMPFILED C CODE FORMAT — &
THE ABSTRACT C MACHINE -~ 10
THE LINKER -- 15
THE INTERFRETER - 17
RECOMPILING THE SOURCE CODE -- 18
Recompiling the compiler — 1§

Recompiling the linker -- 18
Reassembling the interpreter — 18

DEEP BLUE C REFERENCE MANUAL - 19

Iist of Figures

Figure 3-1! Deep Blue C stack frame =7

Figure &-1! C program mermory usage -- 1é

QOVERVIEW

INMNTRCODUCTION

DEEP BLUE C is an adaptation of Ron Cain‘s Small C~compiler for the
ATARI Home Computer. DEEP BLUE C consists of three programsi the
compiler, the linker, and the interpreter. The compiler is a modification
of the original Small C compiler, published in "A Small C Compiler for
the 2030’s," Ron Cain, Dr. Dobb’s Journal, #45 (May 1930), pp. S-1%9,
The linker and the interpreter are original works required to implement
the C language on the 4502 microprocessor. With DEEP BLUE SECRETS,
which is the source code for the DEEP BLUE C language and this manual,
you can maintain, modify, and extend the language to fit your needs.

REQUIRED ACCESSORIES

43K RAM
ATART £10 Disk Drive
DEEF BLUE C COMFILER (APX-20166)

ATARI Program-Text Editortm and ATARI Macro Assembler (CXE121)

CONTACTING THE AUTHOR '

Users wishing tn contact the author about DEEP BLUE SECRETS may
write to him at.

6200 Swords Way
Bethesda, MD 20817

Deep Blue Secrets 1

THE DEEP EBEL.UE C S YSTEM CODE ‘
IDDISHEETTE
The Deep Blue C system consists of three programs:

1. & compiler that converts C source text (#.C) into compiled C cude
(#,CCC)

2+ A linker that combines several compiled C code (#,CCC) files into a
singie executable object file (¥.COM)

2+ An interpreter that executes the object file (#.COM)

THE COMPILER FILES
CCx.C The source code for the compiler
CC.LNK The limk file for the compiler

THE LINKER FILES
CLINKX,.C The source code for the linker

CLINKG.H The global include file for the linker

CLINK.LNK The limk file for the linker

THE INTERFRETER FILES CoDTTorITIToT o

DECx.MAC ATARI Macro Assembler source text for
the inmterpreter

MEDITMAC.ECF FROGRAM.TEXT/EDITOR x.MAC
customization file

Deep Blue Secrets Z

THE COMPILER

Much of this chapter was taken from the public domain documentation
file for Ron Cain’s Small C compiler.

COMPILER SPECIFICATIONS
As of this writing, the compiler supports the following features!
Data type declarations can be:
#"char" (8 bits)
#"int" (14 bits)

#by placing an "#" before the variable name, a pointer can be
formed to the respective type of data element

Arrays:
#single dimension {vector) arrays can be of type "char” or "int"
Expressions!
#unary operators:!
+y= ¥y Syt y——, L8~ (tilde)
binary operators?
Fy= g3y %yt 8T =y 12y (K2 0= {00 0p =880 1 7 comma
primaries:
arraysiexpression]
function(argl,arg2,..,argn)
constant
decmal number (69)
octal number (0177)
hexadedmal number {(0xff)
#+ quoted string ("sample string™
primed string (‘a’ or ‘Z’ or ‘ab’)

local variable {or pointer)

Deep Blue Secrets 3

global (static) variable (or pointer)

Program control!
if,else,while,break,continue,return,for,dosyswitch,case,default
¢ (null statement)
$(statement; statement} ... statementi%$)

Pointers!

local and static pointers can contain the address of "char" or
"int" data elements

Compiler commands;

¥ define name string {preprocessor will replace name by string
throughout text)

include filename (allows program to include other files
within this compilation)

Miscellaneous!

Expression evaluation maintains the same hierarchy as
standard C.

Function calls are defined as any primary followed by an open
parenthesis, so legal forms include? :

#variable();

*arraylexpressionI();
#constant(); —
#function()(;

Pointer arithmetic takes into account the data type of the
destination (e.g., pointer++ will increment by two if pointer
was declared "int#painter").

Pointer compares generated unsigned compares (since
addresses are not signed numbers).

Generated code is "pure" (i.e., the code may be placed in Read
Only Memory). Code, literals, and variables are hkept in
separate sections of memory.

The generated code is re—entrant. Every time a function is
called; its local variables refer to a new stack frame. By way
of example, the compiler uses recursive descent for most of
its parsing, which relies heavily on re-entrant (recursive)
functions.

Deep Blue Secrets 4

STACK FRAME

LANGUAGE LIMITATIONS

Parts of the € language that are not supported are!

Structures

Multidimensional arrays

Floating point, long integer, or unsigned data types
Function calls returning anything but "int"

The unary "sizeof"

The binary type casting

The declaration spedcifiers "auto", "static", and "register"”

The use of arguments within a "#define" command

COMPILER LIMITATIONS

Some limitations with the compiler are!

Since it is a single-pass compiler, undefined names are not detected
and are assumed to be function names not yet defined. If this
assumption is incorrect, the undefined reference will not appear until
the compiled program is linked.

No optimizing is done. The code produced is sound and capable of .
re-entrancy, but no attempt is made to optimize either for code size
or speed,

Constants are not evaluated by the compiler, That is, the line of
code

X = 1+2

would generate code to add “1" and "2" at run time. The results are
correct, but unnecessary code is the penalty.

Local variables and function arguments are kept on a 146-bit software
stack that starts at the end of the global variable space and grows

and should be kept in mind when attempting to transfer compiler
extensions from small-c to Deep Blue C.

Function arguments are pushed onto the stack as they are encountered

Deep Blue Secrets S

hetween parentheses (note this is oppositzs that of standard C, which

s routines esxpressly retrieving arcuments from the stack rather
than declaring *hnm by name mu:% beware)» By the definition of the
languags, parameter passing is "call by value"s Results are raturned in
the P register,

Local variables allocate as much st k space as is needed, and are then

assigned tha current value of the stack pointer {(after the allocation) as
their address.

It is worth pointing out local declarations aliccate only as much stack
space as is required, including an odd number of bytes, whereas function
arguments always conist of two bytes apieces In the svent the argument

was type "char" (2 bits), the most significant byte of the Z-byte vaive is .
0.

The Deep Bfue C stack discipline is fairly simple, Here is an example
that shows almost every aspect of the stacki

Assume we are executing the following program:

sl Yk

Crar &if

it s

char o313

it dDEDE
FOR 01 E3%9) 3

%3
Fla,nd
it s,
4 {
reburnrg
&<

Here is the state of the abstract C machine stack just before the return

statement in f0) is executed. (Bv symmetry, it is also the state of the
stack iust afier f0 is calledy)

-

SFTEFF |

$fife |

Figure 3-1; Deep Blue C Stack Frame

———————————————————————————— +
I
———————————————————————————— +
I
|
———————————————————————————— +
high return address |
———————————————————————————— +
Tow return address | <-- Stack Pointer
---------------------------- -+
$12 |
———————————————————————————— +
$34 |
———————————————————————————— -+
$00 |
———————————————————————————— -+
$65 |
———————————————————————————— +
high byte d[1] |
............................ +
low byte d[1] |
———————————————————————————— -+
high byte d[0] |
............................ +
low byte d[0] |
____________________________ +
cf2] I
———————————————————————————— <+
cf1] |
---------------------------- -+
cfo] !
............................ +
high byte of b |
---------------------------- -+
low byte of b |
———————————————————————————— +
a |
---------------------------- L
end of code & global vars. |
---------------------------- -

" Deep Blue Secrets 7

COMPILED C CODE FORIMAT

The original small-c compiler produced asembly language source code.
This approach, while easy to implement and maintain, was discarded
because of the limited storage capacity of the ATARI 210 Disk Drive,
Large C programs, such as the compiler itself, would have produced
intermediate text files far larger than could be stored on an ATARI 810
Disk Drive.

So, to decrease the intermediate file size; a compiled c code format was
invented. This format is nothing more than a preprocessed assembly
language for the abstract C machine. #.CCC files are organized as a
series of records, most of which have assembly-language counterparts.

$00-%7F
C machine opcodes. Equivalent of "db $xx<{returnz."
%30

LUSE - use of label. Followed by a word containing the label number.
If the label number is less than 10000, then the label is a code label;
otherwise; it is a variable label.

$81

LDEF - definition of label. Followed by a word containing the label -
number, If the label number is less than 10000, then the label is a.
code label} otherwise, it is a variable label. oo

$82

BCON -~ byte constant, Followed by a byte. This is equivalent to a
"db %xx", and is used to ensure that the byte constant is not
interpreted as a multibyte pseudo-op.

$33

WCON - word constant. Followed by a word. This is equivalent to a
"dw $xx", and is used to ensure that a word constant is not
interpreted as a multibyte pseudo-op.

$84
RDAT - random data. Followed by a word specifying an additional
number of bytes that are part of the instruction. BCON and WCON
could have been simulated by RDAT $0001 and RDAT $0002,
respectively,

$35

Deep Blue Secrets &

.

LADR - literal address. Followed by a word specifying an offset into
the string literal table. (The string literal table base address is
always code 1label 1)

Sh

DSPC - define space. Followed by a word specifying how many bytes
to reserve.

$37

LEXT - label external, Followed by a word specifying the variable
number of a C text string containing the variable name.

$32

o

LGLB - label global, Followed by a word specifying the variable
number and a C text string containing the variable name.

Deep Blue Secrets %

THE ABSTEREACT C MACHTIINE

The linker produces code for an imaginary microprocessor called the
abstract C machine, This imaginary processor is simulated by the
interpreter, which executes &30Z machine-language subroutines to
implement the abstract operations.

The C machine is a hybrid register/stack machine, The machine has one
register, called P, a program counter, called PC, and a stack pointer,
called SP, The stack grows up from the end of the user’s code, and tests
are performed to ensure that it does not overwrite the ATARI screen
RAM, which grows downward, depending on graphics mode.

The abstract C machine recognizes less than fifty instructions} most are
either one or three bytes long. Here is a list, in numerical order; of the
opcodes:

$00

Assembly Language Escape. Followed by an address of a 6502
assembly language routine to call,

$01

Load P with byte absolute. Followed by address of byte.
$02

Load P with word absolute. Followed by address of word.
$03

Load P with address of local variable. Followed by offset. from™
current stack pointer. - :

$04

Store P into byte absolute. Followed by address of byte.
$0S

Store P into word absolute. Followed by aidress of word.
$06

Store P into byte at address on top of stack. Pop stack.
$07

Store P into word at address on top of stack. Pop stack.

$08

Deep Blue Secrets 10

Load P with byte at address in P,
$09
Load P with word at address in P
$0a
Reserved.
$0b
Load P with constant, Following word is constant.
$0c
Push P onto stack.
$0d

Test and jump if not zero - load PC with following address if and only
if P does not contain zero.

$0e
Swap P and top of stack.
$0f

Call immediate. Followed by address of function to call, then a byte
containing 2 + the number of arguments * Z, This value is subtracted -
from the stack pointer to remove the arguments and the return

address. The value can also be used to determine the number of ‘

arguments passed to a function. See the source for printf(), in
PRINTF.C for an example. -

l

%10

Return - returns from a function call, adjusting the stack pointer as
needed.

$11

Call top of stack - pops the address off the top of the stack and calls
it.

12
Jump - loads PC with the following address.
$12

Test and jump if zero, Loads PC with the following address if and

Deen Blue Secrets 11

only if P is zero.

$14

Adjust stack pointer, Adds the following word to SP. Used to abtain
local variable storage.

$15

Double P+ P{{=2}
$16

Add P and top of stack. P={(#SP--)}+P}
$17

Subtract P from top of stack. P=(#*5P--)-PF}
$18

Multiply P by top of stack. P=(#5P--)*P;
$19

Divide top of stack by P. P=(#5P--)/F}

$1la

Remainder top of stack by P, P=(5P--)%P}
$1b

Or P and top of stack. P=(*5P--)|F; j
$1c

X or P and top of stack. P=(#SP--)$P}
$1d

And P and top of stack. P=(#5P--)&P}
$le

Shift top of stack right P times. P=(#5P--)>>F;
$1f

Shift top of stack left P times. P=(#5P--}<{P}
$20

Two’s complement P, P=-P}

Deep Blue Secrets 12

$21
One’s complement P, P=%$-F;
$22
Increment P, P=P+1}
$23
Decrement P, P=P-1}
$24
Test if top of stack equals P, P=(#SP--)==PF}
$25
Test if top of stack does not equal P, P=(#8P--)!=P}
$2¢4
Test if top of stack is less than P P=(#S5P--)F}
$27
Test if top of stack is less than or equal to P. P={(#5—){=F;}

$28

Test if top of stack is greater than P. P=(#S5P-->F} T

$29

Test if top of stack is greater than or equal to Py P=(#SP--)>=F;
$2a

Unsigned test if top of stack is less than P, P=(#SP—XP}
$2b

Unsigned test if top of stack is less than or equal to
P=(#SP--)}=F}

$2c
Unsigned test if top of stack is greater than P. P=(#SP--)>F;

$2d

P,

Unsigned test if top of stack is greater than or equal to P

P=(#§P--)>=F;

Deep Blue Secrets 13

$Ze

Compare P to constant and jump if equal. Followed by word
containing constant, and address to jump to. This is a five-byte
instruction used to speed up the switch statement.

Deep Blue Secrets 14

THE LLINKER

The linker asks you for the name of a link file (+,.LNK). This link file
contains the names of all the files that make up the program you want to
links There are two kinds of files names in the link file!

1, #,CCC - compiled C code files. These files contain preprocessed
abstract C machine assembly language, which the linker must
assemble into abstract € machine code. They also contain references
to external symbols that have to be resolved during the link phase.

Z, #,0BT - 6502 machine code files. One of these files, DBC.OBJ,
contains the code for the abstract C machine interpreter. The rest of
the #,0BJ files, if any, contain code used to implement assembly
language subroutines.

The linker creates an executable object file (#.COM) in two passes.
During the first pass, all #,0BJ files are ignored, and the #.CCC files
are read to determine the value of all internal labels. After the first
pass is completed, the linker resolves all external references in a link -
phase. If there are no errors in either the first pass or the link phase,
the linker begins the second pass.

During the second pass, all #,0BJ files are copied as is directly to the
#,COM file. The DBC.OBJT file has a standard DOS-II run address, so it
should be the last file named in the #,.LNK file. Other #,0BJ files are
welcome to use the DOS-II init address so long as control is eventually
returned to DOS I to contnue the loading process.

During the second pass, all #.CCC files are rereads This time, all -

abstract C machine opcodes are passed through to the output file, and
all label-use (and literal-label-use) pseudo—-ops have the correct value -
filled in.

The various #.CCC files are processed almost independently of each
other. This means that global and string literal space is allocated for
each #.CCC file at the end of that file’s code segment. For instance, if
the link file read!

DiALFHA.CCC
DIEETA.CCC
D:DEC.OEJ

then the memory map would look like this:

Deep Blue Secrets 15

Figure 6-1: C program memory usage

B +
top of ram] screen display |
MEMTOP+1 |
e e EE L L STl S ikt +
MEMTOP] free space |
SP+2 | |
e L ittt +
SP+1 | Abstract C Machine Stack |
SPORG | !
T e L L L L +
| Globals for beta |
B bttt e +
| String literals for beta |
ot — e — - ———— +
| C Machine code for beta |
B et R L +
| Globals for alpha |
e e L LT +
| String literals for alpha |
Frmcr e e e e e —————— +
| C Machine code for alpha |
R e L L L L L +
BEGTOK+8 | high byte of SPORG |
BEGTOK+7 | Tow byte of SPORG |
e it +
BEGTOK+6 - high byte of main |
BEGTOK+5 | Tow byte of main }
D e L LR L LD DL Ll g +
BEGTOK+4 | 0 I
BEGTOK+3 | C Machine code rev. # (1) |
BEGTOK+2 | c 'c’ |
BEGTOK+1 | b’ |
BEGTOK ($4000) | 'd’ |
tomre e e e e e e m - ———— + e
$3fff | C Machine Interpreter |
$3000 | *
tocr e e e e ——————— +
$2fff | ATARI DOS, 0S, stc. |
$0000 | |
e e L +

Deep Blue Secrets 16

THE ITNMTERPFPRETER

The interpreter is a fairly small program, called DBC.OBJ, that is
loaded with every C program. This interpreter contains the 4502
machine code needed to perform the functions specified for the abstract
C machine opcodes. In addition, DBC.OBJ also contains 650Z machine
code that implements the I/0 functions and other basic functions
defined in the standard 1/0 library AIQ.C.

If you are making extensive modifications to Deep Blue C, you might
find it helpful to change the equate in the file DBC.MAC from!

debug 0 sz if debugeing

to
debug = 1 sz 1if debugging

When debug is set nonzero, the resulting DBC.OBJ file will contain
several useful debugging features., Aside from doing more checking, you
will be asked, at run time, if you’d like to see a trace of the abstract C
machine’s execution. The format of this trace is?

FHWWRKW pXXXX sYYYY JZZZZ <opr=NN

WWWW Value of the program counter
XXXX Valuwe of the F register

YYYY Vaslue of the top of stack
ZZZ7Z Vzlue of the stack pointer

L Op Four—character mremonic (from the opcode
table in DEC.MAC)
NN Value of the opcode byte

Deep Blue Secrets 17

RECOMPILINMG THE SOURCE CODE ‘

All three of these programs can be recompiled on 48K, using one ATARI
diskette, but in the case of the compiler, you’ll have to transfer the
#,CCC files to another diskette before you have enough room to link
them.

RECOMPFILING THE COMPILER
Compile CCO.C to CC%,C and CCV.C. Link these modules together using
the file CC.LNX,

RECOMPILING THE LINKER
Compile CLINK.C, CLINK2.C, and CLINKD.C. Link these modules
together using the file CLINK.LNX.

REASSEMBLING THE INTERFRETER
Load the ATARI Macro Assembler and give the command line?

D:DEC . MAC

Deep Blue Secrets 18

DEEP BLLUOUE C REFERENCE MATNUAL

This chapter should be read in conjunction with Appendix A of The C Programming
Language, by Brian W. Kernighan and Dennis M. Ritchie, 1978, Bell Telephone
Laboratories, Inc, (published by Prentice Hall, Inc.). It is an attempt to formally
define the Deep Blue C Language as a subset of the C language defined in that
appendix, Sections of Appendix A will be referred to in square brackets. The first
section, the "Introduction", is [1], and the last, the "Preprocessor", is [18,35].

[1-2.1] No change

2.2 . 1dentifiers (Names) No special restriction on external identifiers, all names are 8 characters,
2 cases.

[2.3] Keywords: The following identificrs are reserved for usc as keywords and may not be used
otherwisc: int, char, extern, rcturn, break, continue, if, clse, for, do, while, switch, case,
dcfault, asm. ‘

'The following identifiers arc not currently implemented, but arc uscd by other C compilers: float, double,
struct, union, long, short, unsigned, auto, register, typedef, static, goto, sizeof, entry,

fortran.
[2.4] No change
[24.1-24.2] Integer constants: No long integer constants.
[2.4.3] o Character const;nu‘.: *xx" defines a 16 bit constant with the first charactc} as the most

_ signifigant byte. The backslash escapes have been modificd as follows: \f -- clear screen, \g
s ring bell, \h -~ backspacc, \n -- newline, \r -- delete line, \t -- tab, \\ -- backslash, \' ==
single quote, \" - double quote. .

[2.4.4] Floating constants: Not impicmented

[2.5]) Strings: You can’t continue strings across newlines. Don't include heart (control-comma)
in a string because that character is used as an cnd-of-string marker.

[2.6] Hardware characteristics: For the ATARI 400/7800: ATASCII, char -- 8 bits (unsigned), int
-- 16 bits, pointers -- 16 bits.

[3] Syntax notation: Where implemented, it’s the same.

{4} What's in é name: same, where impiemented.

[5-6] No change.

[6.1] Characters are unsigned.

[6.2-6.3] Floating: Not implemiented. S S-

Deep Blue Secrets 19

[6.4]
[6.5).
[6.6]
(7,7.1]
[7.2]

[7.3-7.15}

8.8.1]
8.2]

[8.3]

[8.4]
[8.5-8.9]
[9.1-9.6]

[9-7]

[9.8-9.10]
[9.11-9.12)
[9.13]

[10-10.2)

[11-112]

[12-12.1]

[122]

[123-124]

Pointers and integers: no change.

Unsigned:not implemented. ' .
Arithmetic conversions: char converted to int, no other types arc implemcnted.

Primary cxpression: Same where implemented.

Unary operators: Implemented: *.&,-,1,$- (tildc),+ +,--. Not implemented: casts, sizcof._

Multiplicative, additive. shift, relational, cquality, bitwise, logical, conditional, assignment,
and comina operators: No change.

Storage class specifiers: only cxplicit sc-specifier is extern.
Type specifier: only char and int.

Declarators: Very few fonns arc allowed: char c, int i, char *c, int *i, char cf], int c[J, char
c[10], int c[10].

Mcaning of declarators: All functions return integers, only one dimensional arrays.

Structurcs, unions, initialization, type names, and typedef: not implemented.

Expression, block, conditional, while, do, and for statements: no change.

Switch statement: must have default clause. must have a break statement at the end of the
block statement. T

Break, continue, and return statements: no change.
Goto and labeled statements: not implemented.
Null statement: No change. -

External definitions: O.K., but functiors can only be of type int. Pointers can be returned
as integers - this is tacky, but works.

Scope rules: As implemented -- no static keyword.

Compiler control lines, token replacement: only the simple form of the #define directive
is supported. #undefis not supported.

File inclusion: file name is normalized with a ".H" extension. <filename> is identical to
“filename”. #includes may not be nested.

Conditional compilation énd line cbﬁtrbl? not implemented.

" Deep Blue Secrets 20

{13-14.4] Implicit declarations to explicit pointer conversions: as implemented.
[15) Constant expressions: Not implemented.

[16] Portability considerations: chars arc unsigned, "ab’ has "a’ as the high byte, 'b’ as the low
byte, and is stored in RAM as <low> <highd.

[17] Anachronisms: old forms are not supported.

[18-18.5] Syntax summuary: as implemented.

Deep Blue Secrets 21

Limited Warranty on Media and Hardware Accessories. We, Atari, Inc., guarantee to you, the original
retail purchaser, that the medium on which the APX program is recorded and any hardware
accessories sold by APX are free from defects for thirty days from the date of purchase. Any applicable
implied warranties, including warranties of merchantability and fitness for a particular purpose, are
aiso limited to thirty days from the date of purchase. Some states don't allow limitations on a warranty's
period, so this limitation might not apply to you. If you discover such a defect within the thirty-day
period, call APX for a Return Authorization Number, and then return the product along with proof of
purchase date to APX. We will repair or replace the product at our option.

You void this warranty if the APX product: (1) has been misused or shows signs of excessive wear,;
(2) has been damaged by use with non-ATARI Home Computer products; or (3) has been serviced or
modified by anyone other than an Authorized ATARI Computer Service Center. Incidental and conse-
quential damages are not covered by this warranty or by any implied warranty. Some states don't allow
exclusion of incidental or consequential damages, so this exclusion might not apply to you.

Disclaimer of Warranty and Liability on Computer Programs. Most APX programs have been written
by people not employed by Atari, Inc. The programs we select for APX offer something of value that we
want to make avaiiable to ATARI Home Computer owners. To offer these programs to the widest
number of people economically, we don’t put APX products through rigorous testing. Therefore, APX
products are sold “as is,” and we do not guarantee them in any way. In particular, we make no warranty,
express or implied, including warranties of merchantability and fitness for a particular purpose. We are
not liable for any losses or damages of any kind that result from use of an APX product.

For the complete list of current
APX programs, ask your ATARI retailer
for the APX Product Catalog

ATARI"
PROGRAM
EXCHANGE

P.O. Box 3705
Senta Clara, CA 95058

Review Form

We're interested in your experiences with APX programs instructions are meeting your needs. You are our best
. and documentation, both favorable and unfavorabie. source for suggesting improvements! Please heip us by
Many of our authors are eager to improve their programs taking a moment to fill in this review sheet. Fold the sheet
if they know what you want. And. of course, we want to in thirds and seal it so that the address on the bottom of

know about any bugs that slipped by us, so that the the back becomes the envelope front. Thank you for
author can fix them. We aiso want to know whether our heiping us!

1. Name and APX number of program.

2. If you have problems using the program, please describe them here.

3. What do you especially like about this program?

-

4. What do you think the program's weaknesses are?

5. How can the catalog description be more accurate or comprenhensive?

6. Onascaleof1to 10. 1 being “poor” and 10 being “excellent”. please rate the following aspects of this program:

' —_ Easytouse
— User-griented (e.g.. menus. prompts. clear language)
Enjoyable
Self-instructive
Useful (non-game programs)
imaginative graphics and sound

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions wouid improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “exceilent”, how wouid you rate the user
instructions and why?

11. Other comments about the program or user instructions:

From

STAMF

ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 950585

{seal herej

Y

-

