ﬁ
INSIDE THE ATARI VCS Obco

603 Mission Street
HARDWARE Santa Cruz, CA 95060

The central hardware functions of the VCS are performed by three
LSI NMOS integrated circuits, the MPU ({6587 Micro-Processor
Unit), the PIA (6532 Peripheral Interface Adapter) and the TIA
(Television Interface Adapter). The rest of the VCS components
provide such functions as power regulation, noise filtering for
the I/0 lines, sound signal mixing and RF modulation.

MPU

The MPU comes from the 6502 family of microprocessors. The 6587
differs from the 6502 only in that some signal 1lines are not
available allowing the IC to be placed in a 28 pin  package
instead of the usual 40 pin package. ‘Among the missing pins are
the address lines Al5, Al4 and Al3. This restricts the address
space to 8K bytes and causes all locations with the same lower 13
address bits to be mapped into the same physical location. For
example, an access to locations 1234 (hex) has the same affect as
an access to 3234, 5234, 7234, 9234, B234, D234, or F234.

The MPU is running on a 1.193 MHZ clock giving a processor cycle
time of .8381 microseconds. There are no external interrupts
connected to the MPU, however the TIA is connected to the ready
line of the MPU and can cause the processor to pause for periods
up to 64 microseconds. = Although the external interrupt line 1is
not connected, the program may use the BRK instruction to
generate a soft interrupt.

PIA

The PIA provides three functions: dual 8 bit I/0 ports, 128 bytes
of RAM and a timer. One I/0 port provides 4 lines to each of the
two game controller connectors.: These lines are usually used to
read the 4 switches in the joysticks, however, they can also be
programmed to be outputs. The RAM addresses start at 8¢ (hex)
and go to FF. Due to lack of total address decoding, the RAM
also shows up at 180-1FF providing a place for the system stack.

The timer in the PIA is used to count processor cycles in real
time. A processor cycle is .8381 microseconds. When a number is
written to the timer at one of its write locations (say 294-297
hex) it begins to decrement the 8 bit number. When it gets to
zero it will just keep decrementing from there unless another
number is written. The choice of write address in the block.
determines how. many processor cycles it takes to cause one
decrement. Using the first address (say 294 hex) ' sets the
decrement to happen every processor cycle. The next address will
set for one decrement every 8 processor cycles (6.785
microseconds). The third address (eg. 296 hex) will set for one



decrement every 64 processor cycles (53.64 microseconds), and the
fourth address sets for one decrement every 1024 processor cycles
(858.2 microseconds).

The program may look at the value of the timer at any time by
reading an address (eg., 284 hex). The divide by 64 mode is very
useful in VCS programming because a horizontal scan line takes 76
processor cycles, about 64 microseconds. This means one timer
count will take a little less than one scan line.

The PIA has two eight bit ports. Port A is at memory address 2840
hex and port B 1s at memory address 282 hex. The direction of
the bits in these ports is programable via corresponding data
direction registers. Write zeros in the data direction registers
for inputs and ones in the data direction registers for outputs.
Port A's data direction register is at 281 hex and port B's data
direction register is at 283 hex. Writing 'a @0000001 into
location 281 hex will program the upper 7 bits of port A to be
inputs and the lower bit to be an output.

The PIA also has some interrupt options, but these are not
supported by the 6587 MPU.

TIA

The TIA generates the video and audio signals to interface to the
RF modulator which in turn produces a VHF signal on channel 2 or
3 to send to the TV set. An important part of this job is the
production of the video synchronization pulses. This function is
facilitated by circuits in the TIA, but the timing of the
vertical pulses is controlled by the software in the cartridge.

The address space for the TIA is from @ to 3F (hex). The lower
section (@-2F) contain write only registers that control the
video generator and sound system. The block from 3#% to 3F is
composed of read only registers that return collision informaton
as well as the fire buttons on the sticks and paddle controls.

The cartridge interface connector has 24 pins. These pins
provide the address bus lines AZ through Al2 as well as the data
bus 1lines D#& through D7 together with 5 volt power. Two very
important signals that were NOT included are the processor clock
and the processor read/write lines. The lack of these lines
makes the design of peripherals for the VCS much more difficult
than for most microcomputer devices.

3]



MEMORY MAP

TIA

the 64

#-3F, 4@-7F, 100-13F,
340-37F, 400-43F, 440-
640-67F, 700-73F, 740-
940-97F, AQOG-A3F, A40-
C4A-C7F, D@@-D3F, D4@d-
F40-F7F,

2000-203F, 2040-207F,
22403-227F, 2300-233F,
2500-253F, 2540-257F,
2740-277F, 2800A-283F,
2AA0-2A3F, 2R40-2AT7F,
2C47%-2C7F, 2DO@-2D3F,
2F@0-2F3F, 2F40-2F7F,
4000 -4@3F, 4040-407F,
4247%-427F, 4300-433F,
4500-453F, 4540-457F,
4740-477F, 4800-483F,
4AAF-4A3F, 4R40-4A7F,
4C4p-4C7F, 4D@@-4D3F,
AF@0-4F3F, 4F40-4F7F,
600 -6M3F, 6V40-607F,
6240-627F, 6300-633F,
6500-653F, 6540-657F,
6740-677F, 6800-683F,
6AAG-6A3F, 6R40-6AT7F,
6C40-6C7F, 6D@A-6D3F,
6FP0-6F3F, 6F40-6F7F,
BOAN-8@3F, 8040-807F,
8247-827F, 830@-833F,
8504-853F, 8540-857F,
87403-877F, 880@-883F,
SAA0-8A3F, 8AR40-8A7F,
8C4@-8C7F, 8D@@-8D3F,
8FPA-8F3F, 8F40-8F7F,
AP -AO3F, AR4O-AQTF,
A240-A27F, A3@@0-A33F,
A500-A53F, A540-A57F,
A740-A77F, ABOO-A83F,
AAAD-AA3F, AA40-AATF,
AC40-ACT7F, ADOO-AD3F,
AF@0-AF3F, AF40-AFT7F,

locations

140-17F,
47F,
17F,
A7F,
D7F,

2196-213F,
234¢3-237F,
2600-263F,
2840-287F,
2BO@-2B3F,
2D4@-2D7F,

4100-413F,
4340-437F,
A600-463F,
4840-487F,
4BA@-4B3F,
AD4@-4D7F,

6100-613F,
6340-637F,
6600-663F,
6840-687F,
6BAA-6B3F,
6D4@-6D7F,

8193-813F,
8340-837F,
860A-863F,
8843-887F,
8BAJ-8B3F,
8D4@3-8D7F,

AlG@-Al3F,
A340-A37F,
A6I@-AG3F,
AB40-A87F,
ABOA@-AB3F,
AD4#-AD7F,

200-23F,
503-53F,
80@-83F,
BA@-B3F,
EAO-E3F,

2149-217F,
2430-243F,
2640-267F,
2909-293F,
2B40-2B7F,
2EQ@-2E3F,

4140-417F,
4400-443F,
4640-467F,
490@9-493F,
4B40-4B7F,
AE@@-4E3F,

6140-617F,
6400-643F,
66402-667F,
6900-693F,
6R40-6B7F,
6EQN-6E3F,

8140-817F,
8400-843F,
864@-867F,
89@@-893F,
8B40-8B7F,
B8EJ@-8E3F,

Al40-Al17F,
N4@O~-A43F,
A640-ABTF,
A90(-A93F,
AB4@-ABTF,
AEA@~-AE3F,

internal
appear in

24@-27F,
549-57F,
840-87F,
B4@-B7F,
E49-ETF,

60@-63F,
90@-93F,
C@@-C3F,
F@A-F3F,

2209-223F,
2440-247F,
2700-273F,
2949-297F,
2CQ0-2C3F,
2E43-2E7F,

4200-423F,
4440-447F,
4703-473F,
4940-497F,
4CP0-4C3F,
4E40-4E7F,

62000-623F,
6440-647F,
670@3-673F,
6940-697F,
6CAJ-6C3F,
6E4@0-6E7F,

B208-823F,
8440-847F,
8700-873F,
8943-897F,
8C@P3-8C3F,
8E40-8E7F,

A200-A23F,
A440G-R47F,
A700-A73F,
A94(-A97F,
ACO9-AC3F,
AE4G-AETF,

300-33F,

The TIA is selected for I/0 if Al2 is low and A7 is low, however,
only uses Af through A5 to decode
used by the TIA will
following ranges (addresses in hex):

addresses.

the



The PIA
through
128
the I/0O

of

CAg@-CA3F,
C243-C27F,
C5AA-C53F,
c74a-C77F,
CAAA-CA3F,
CC40-CCTF,
CF@9-CF3F,

EAAA-EG3F,
E249-E27F,
E500-ES53F,
E746-E77F,
EAA0-EA3F,
EC49-ECTF,
EF@@3-EF3F,

ports

ca43-Ca7F,
C3a@-C33F,
C54@-C57F,
C8aA3-C83F,
CA40-CATF,
CD@@-~-CD3F,
CF4@-CF7F,

E040-EQTF,
E30B0-E33F,
E540-E57F,
E887-EB3F,
EA40-EATF,
EDA@-ED3F,
EF4@-EF7F.

Cl@@-Cl3F,
C340-C37F,
Co-Ce63F,
c84@-C87F,
CBAB-CB3F,
CD4@-CD7F,

E100-E13F,
E340-E37F,
EcPA-E63F,
EB84@0-EB7F,
EB@AJ-EB3F,
ED49-EDTF,

following ranges (addresses in hex):

80-FF, 18@4-1FF, 480@-4FF,
D8G-DFF,

2083-20FF, 2180-21FF, 2480-24FF,
298@-29FF, 2C8§-2CFF, 2D8@-2DFF,
4080-40FF, 4180-41FF, 4480G-44FF,
4980-49FF, 4C80-4CFF, 4D80-4DFF,
6(87-60FF, 6180-61FF, 6480-64FF,
6980-69FF, 6C80-6CFF, 6D80-6DFF,
8083-87FF, 8180-81FF, 8480-84FF,
8980-89FF, 8C8(-8CFF, 8D8@-8DFF,
AO80-AGFF, Al8G-AlFF, A480-A4FF,
A98A-A9FF, AC80-ACFF, ADS8O-ADFF,
CABA-CYFF, Cl8A-ClFF, CA480-CA4FF,
C980-C9FF, CC80-CCFF, CD8@-CDFF,
EGB80-EAFF, E18G-E1FF, E480-E4FF,
E980-E9FF, EC80-ECFF, ED8G-EDFF.

Cl40-C17F,
C40@-C43F,
C640-C67F,
C9@@~-CO3F,
CB40-CB7F,
CE®#@-CE3F,

E147-E17F,
E400-E43F,
E640-E67F,
E9A9O-E93F,
EB4G-EB7F,
EEZJ@-EE3F,

is selected if Al2 is low and A7 is high.
A6 are used internally,
bytes of RAM if high.
and timer control.

2580-25FF,

4580-45FF,

6580-65FF,

8580-85FF,

A58@-A5FF,

C58@-C5FF,

E580-ESFF,

C200-C23F,
C440-C47F,
C70@-C73F,
C940-C97F,
CC@a-CC3F,
CE40-CE7F,

E200-E23F,
E440-E47F,
E7@3-E73F,
E94@-E97F,
ECJA-EC3F,
EE40-EE7F,

Here only A#
but A9 is used to select the bank
The other locations are used

The RAM bank will appear in the

580-5FF, 880-8FF, 980-9FF, C8¢-CFF,

2880-28FF,

4880-48FF,

6880-68FF,

8880-88FF,

A880-A8FF,

C88B0-C8FF,

E880-E8FF,



The ports and timer locations will appear in the following ranges

(again, addresses in hexadecimal):
280-2FF, 380-3FF, 680-6FF, 780-7FF, A80-AFF, BS8#-BFF,
E8J-EFF, F8@G-FFF,
228@0-22FF, 2380-23FF, 2680-26FF, 278A-27FF, 2A8@-2AFF,
2B80-2BFF, 2E80-2EFF, 2F80-2FFF,
4287%-42FF, 4380-43FF, 4680-46FF, 4780-47FF, 4A80-4AFF,
4B8A-4BFF, 4E80-4EFF, 4F80-4FFF,
628A-62FF, 6380-63FF, 6680-66FF, 6780-67FF, 6A80-6AFF,
6R8A-6BFF, G6E80U-6EFF, 6F80-6FFF,
8280-82FF, 8380-83FF, 8680-86FF, 8780-87FF, 8AB0-8AFF,
8B82-8BFF, B8ES89-8EFF, 8F8@-8FFF,
A283-A2FF, A38@-A3FF, A680-A6FF, A78@-A7FF, AASG-AAFF,
ABB8J-ABFF, AEB@O-AEFF, AF80-AFFF,
C280-C2FF, C380-C3FF, C680-C6FF, C780-C7FF, CAB@-CAFF,
CB8¥-CBFF, CE80-CEFF, CF80-CFFF,
E280-E2FF, E380-E3FF, E68?-EGFF, E780-E7FF, EAB80-EAFF,
EBB8J-EBFF, EEB8¢-EEFF, EF80-EFFF.

TIA CONTROL REGISTERS
VSYNCH (ADDRESS @)

VSYNCH controls the polarity of the video signal. Writing a 2 to
this 1location inverts the video to produce a vertical synch
pulse. Writing a @ will set it back to normal video operation.
Most programs will only use this function to generate the
vertical synch pulse, but it is possable to use this function for
brief period within lines to produce special effects, however,
because the horizontal synch pulses will be inverted, the screen
may lose horizontal hold if this function is prolonged past one
horizontal scan line.

VRESET (ADDRESS 1)

VRESET turns the video generator on and off. Writing a 2 to this

location turns off the video. Storing a @ will turn it back on
again. This function is usually used during the generation of
the vertical synch pulse to be sure no remaining video signal

Often the video will not be turned back on
and thereby
VRESET may be

gets into the pulse.
right away giving the program a chance to "think"
causing a black space at the top of the TV screen.



used at any time to force the screen to black without disturbing
other control registers in the TIA.

The high order bit of VRESET controls the scan function for the
game paddles. The TIA has two analog input lines each for the
two game control connectors. Sending a code 8@ (hex) to VRESET
will hold these signals low. When the high order bit of VRESET
is then cleared, these 1lines are free to charge up through
varaible resistors in the paddles. Thus the program can '"read"
the wvalue of a paddle by counting how much time it takes for the
line to charge to threshold after the high order bit of VRESET
has been set to zero.

LWAIT (ADDRESS 2)

Whenever the program writes anything to LWAIT the TIA pulls down
the ready 1line on the MPU. This causes the MPU to hold the
address bus and data bus while waiting for the TIA to let it go.
The TIA will then let the MPU go about 5 microseconds before the
start of the horizontal synch pulse. At this time the dot on the
TV screen has just disappeared off the right side of the screen
and is about to start over on the left side.

Nearly all +timing for a VCS program is worked out in terms of
stores to LWAIT. For the TV screen to lock in (NTSC American TV
that 1is), there must be 262 horizontal scan lines between
vertical synch pulses. The TIA keeps generating horizontal synch
whether or not the program is using LWAIT. If the program is not
using LWAIT to synchronize and count scan lines, then it must use
the timer in the PIA or count all processor cycles to know when
to generate the vertical synch pulse.

LWAIT also can change the internal state of the TIA. Sometimes a
program will do some of the lines of a screen on absolute cycle
counting insted of using LWAIT in order to achieve some special
effects.

VID®3 (ADDRESS 3)

We have never seen any game use this location. If a program
writes to this location it causes a tempory change in the timing
of the horizontal synch pulses. This may be of use in programs
.for PAL or SECAM systems. This feature is being studied at this
time and will be further explained in an upcoming application
note.



P1VMODE CMJUZW ‘0

This register controls the video mode for the playerl sprite and

the playerl shot sprite. A sprite is a group of video picture
elements (pixels) that form some pattern on the screen and can be
moved around on a screen without disturbing the pattern or any
background that may be temporarily obscured. The VCS has five
sprites: playerl, player2, shotl, shot2 and shot3. The player
sprites are named such because they were used in the early games
to hold the pictures of the two players of the game. The players
usually shoot at each other, so these one bit sprites are called
"shots." The shots are only one pixel, once enabled they appear
on all successive scan lines until turned off by the software.

The player sprites hold 8 bits. These bits are written by the
software into specific TIA addresses (see P1IMAG below). Once
written the image will be displayed on all following scan lines
until a new image is written. The sprite can be turned off by
setting the image to zero (all clear).

The shot sprites are only one pixel. They therefore do not need
image registers, but they do have enable registers. When a shot
is enabled, it appears on all scan lines until disabled.

P1IVMODE controls the horizontal size of the pixels used to
display the playerl image and shot, as well as the number of

times to repeat the image or shot along the scan lines. A
horizontal scan 1line is made up of 16 High Resolution Dots
(HRD's). Each pixel of a player image may be 1, 2, or 4 HRD's

wide depending on the value of the associated VMODE register.

Bits 5 and 4 of P1VMODE control the horizontal width of the shot
associated with playerl. The shot may be 1, 2, 4, or 8 HRD's
wide.

VMODE CODES

M@ = One player image at 1 HRD/pixel
One shot at 1 HRD/pixel

1l = Two player images separated by one player width
at 1 HRD/pixel
Two shot separated by one player width at
1 HRD/pixel

B2 = Two player images separated by two player
widths at 1 HRD/pixel
Two shot separated by two player widths at
1 HRD/pixel

@3 = Three player images separated by one player
width each at 1 HRD/pixel
Three shot separated by one player width each
at 1 HRD/pixel



P4 = Two player images separated by five player widths
at 1 HRD/pixel
Two shot separated by five player widths at
1 HRD/pixel

=—>@5 = One player image at 2 HRD/pixel
One shot at 1 HRD/pixel

@6 = Three player images separated by two player
widths at 1 HRD/pixel
Three shot separated by two player widths at
1 IIRD/pixel

@7 = One player image at 4 HRD/pixel

1X = Set shot at 2 HRD/pixel

2X = Set shot at 4 HRD/pixel

3X = Set shot at 8 HRD/pixel

P2VMODE (ADDRESS 5)

See P1lVMODE but substitute player2 for player 1 and player2 shot
for playerl shot.

P1COLOR (ADDRESS 6)

The color register associated with the playerl image and shot.
This color may also be used for parts of the object fields if the

proper bits are set in FVMODE. The high order 4 bits of the
color value set the chrominance (color shade) and the lower 4
bits set the luminance (color Dbrightness). Here are some
examples:

Bwad = Black

@8 = Light grey

@F = White

18 = Bright yellow

28 = Orange yellow

38 = Orange

44 = Red

48 = Pink

58 = Light magenta

68 = Violet

78 = Blue Violet

88 = Blue

98 = Blue green

A8 = Blue green

B8 = Green

C8 = Green yellow

D8 = Light yellow

E8 = Yellow

F8 = Orange yellow



P2COLOR (ADDRESS 7)

Same as above but for the player2 image and shot.

OCOLOR (ADDRESS 8)

This is the object field color register. The format is the same
as P1COLOR and P2COLOR. This color is always used by shot3 and
may be used by the objects (see FVMODE).

BCOLOR (ADDRESS 9)

Register 2 holds the color value for the screen background.
Again the format is the same as the player color registers. Tl
any 1image has the same color value as the BCOLOR, it will not
show up on the screen unless it passes in front of (has higher
priority than) another image with a different color value.

FVMODE (ADDRESS @A HEX)

This is the field video mode register. It controls a great
number of things. One of the things it controls is whether the
low resolution graphics are shifted out left to right or right to
left on the second half of the screen. As discussed earlier the
low resolution graphics are displayed from three other registers.
Two of these registers hold eight bits of image and one of the
registers holds 4 bits of image. So the total is twenty bits.
If the low order bit of the FVMODE register is set then the right
half of the screen will contain a copy of the low-res graphics
except for the fact that they will be flipped over creating a
screen which has bilateral symmetry. Here are some codes for the
FVMODE register.

@3 = Low resolution field cbhjects are
controlled by their own color registers,
and there is no flip. The foreground to
background display priority of the
sprites and objects are from highest to
lowest: playerl, player2, the objects
together with shot3 followed by the
background. g

@1 = Flips over the right side of the low
resolution graphics.



@2

23

a4

@5
A6
a7
08
All codes up
1X
2X

3X

No flip over but the playerl color and

priority is associated with the low
resolution object field on the left half
of the screen. player2 color and
priority are associated with the low

resolution object field on the right half
of the screen.

A combination of 1 and 2 above.

Object fields are associated with their
own color except that the foreground to
background display priority is the
objects and shot3, playerl, player?2
followd by the background. Shot3 gets
its color from object color so it is now
displayed in front of the playerl,
player2, shotl and shot2.

Flips right side objects.
No flip. Looks like a cocde 4.
Looks like a code 5.

Looks like code 9.

to 10 hex are repeats of the above.

Causes display of shot3 to be 2 HRDs.
Causes display of shot3 to be 4 HRDs.

Causes display of shot3 to be 8 HRDs.

P1FLIP (ADDRESS @B HEX)

Writing a value of 8 to this location causes a left-right

of the playerl image.

P2FLIP (ADDRESS 0C HEX)

Writing a value of 8 to this location causes a left-right

of the player2 image.

FLDAIM (ADDRESS @D HEX)

This register holds the most
20 bit object field register.

of FLDAIM.

10

significant 4 bits (part A) of
These bits are in the lower 4 bits

£l.ip

flip

the



FLDBIM (ADDRESS @E HEX)
This register holds bits 8 through 15 (part B) of the 20 Dbit
object field register.

FLDCIM (ADDRESS @F HEX)

This register holds bits @ through 7 (part C) of the 20 bit
object field register.

P1HRES (ADDRESS 10 HEX)
Writing to P1HRES causes the absolute horizontal position of the

playerl sprite to be set to a place on the scan line acording to
how many processor cycles occur between the start of the scan

line and the store to P1HRES. 1If the current scan position is to
the 1left of the visible screen, then the sprite is set to the
left edge. If the current scan position is on the visible

screen, then the sprite is set to that position.

P2HRES (ADDRESS 11 HEX)

Write anything to P2HRES to set the absolute horizontal position
of the player2 image as in P1HRES.

S1HRES (ADDRESS 12 HEX)

Write anything to S1HRES to set the absolute horizontal position
of the playerl shot as in P1HRES.

S2HRES (ADDRESS 13 HEX)

Write anything to S2HRES to set the absolute horizontal position
of the player2 shot as in P1lHRES.

S3HRES (ADDRESS 14 HEX)

Write anything to S3HRES to set the absolute horizontal position
of shot3 as in P1lHRES.

11



SND1MD (ADDRESS 15 HEX)

A program sets the sound mode for audio generator 1 by writing a
5 bit code to location SNDIMD. These codes select the waveform
and frequency range of the sound produced by the audio generator.

Waveform type A:
I |_| I 11 _17]

Waveform type B:
I l || 110 I 1| I I

Waveform type C:

| [~ | | [ | |
(type C continued)
. ] | | l

CODE (hex) DESCRIPTION

aa No oscillation

a1 Type A wave that repeats with period equal to
(SND1TN+1)*477.7 microseconds.

a2 Type A wave that repeats with period equal to
(SND1TN+1)*7.404 milliseconds.

@3 Mix of waveforms, nonrandom noise.

a4 Square wave at a frequency of 15.6996/(SND1TN+1)
Khz.

as Same as @4.

36 Square wave at a frequency of 1.0129/(SND1TN+1)
Khz.

a7 Type B wave that repeats with period equal to
(SND1TN+1)*987.2 microseconds.

a8 Another mix of waveforms, nonrandom noise.

A9 Inverted type B wave that repeats with period
equal to (SND1TN+1)*987.2 microseconds.

A Same as @6

B No signal

giC. Square wave at a frequency of 5.2331/(SND1TN+1)
Khz.

@D Same as @C

QE No signal

gF Type C wave that repeats with period equal to

(SND1TN+1)*2,957 microseconds.

12



SND2MD (ADDRESS 16 HEX)

This provides the same function as SNDIMD except for audio
channel 2.

SND1TN (ADDRESS 17 HEX)

The SNDITN register sets the tone or base frequency of the sound

generated by audio channel 1. The range of the frequency is set
by the mode register while the lower 5 bits of SNDITN select a
frequency within that range. Here are some examples for simple

square wave modes:

(frequency in hertz)

CODE (hex) MODE=04 MODE=@C MODE=P6

aa 15,699.6 5,233.2 1,912.9
@1 7,8492.8 2,616.6 506.5
a2 5,233.2 1,744.4 337.6
a3 3,924.9 1,308.3 253.2
a4 3,139.9 1,P46.6 202.6
a5 2,616.6 872.2 168.8
76 2,242.8 747.6 144.7
g7 1,962.5 654.1 126.6
g8 1,744.4 581 .5 112.5
7?9 1,576.9 52343 181.3
oA 1,427.2 475.7 92.1
7B 1,3@8.3 436.1 84.4
gc 1,2087.7 402.5 77 +9
aD 1,121.4 373.8 72.4
OE 1,046.6 346.9 67.5
aFr 981.2 324,121 633
10 923.5 307.8 59.6
11 B72.2 29@.7 56.3
12 826.3 275.4 53.3
13 785.0 261.7 56.7
14 747 .6 249.2 48, 2
15 713.6 2379 46.0
16 682.6 227 .5 44 .0
L/ 654.2 218.9 42.2
18 628.0 2039.3 40.5
19 603.8 201.3 39.0
1a 581.5 193.8 375
1B 56@.7 186.9 36.2
1¢ 541.4 180.5 34.9
1D 523 .3 174.4 33,8
1E . 506.4 168.8 32.7
1F 490.6 163.5 31.7

13



Codes in Terms of Musical Notes:

NOTE FREQ SND1MD SND1TN ERROR
AL 1,7¢0.¢ a4 @8 -@.9%
G5# 1,661.2 OUT OF RANGE

G5 1,568.0 74 a9 +0.1%
F5# 1,480.9 OUT OF RANGE

F5 1 ;3969 04 OA +2.1%
E5 1;318.:5 94 7B -2.8%
D5# 1,244.5 94 ac +2.6%
D5 1, 174.7 OUT OF RANGE

Co5# 1,1@8.7 a4 @D +1.1%
¢k 1,046.5 04 @E 0.0%
BS 987.8 24 OF -B.7%
AS5# 932.3 g4 19 -1.2%
AS 880.9 24 11 -3.9%
G4 # 831.6 24 12 -3.5%
G4 784 .0 04 13 +2.1%
Fa4# 749.9 a4 14 +1.0%
F4 698.5 A4 15 +2.2%
E4 659.3 a4 17 -0.8%
D4# 622.3 24 18 +0.9%
D4 587:3 a4 1A -1.0%
Ca# 554.4 24 1€ -2.3%
c4 523.3 04 1D ?.0%
B4 493.9 a4 1F -2.7%
Ad# 466.2 ac A +2.0%
A4 440.0 gc @B - -7.9%
G3# 415.3 QUT OF RANGE

G3 392.7 agc gc +2.6%
F3# 379.9 ac @D +1.0%
F3 349,2 ac JE -3.1%
E3 329.6 ac aF -0.8%
D3# 3111 ac 10 -1.1%
D3 2937 acC 15 -1.0%
C3# 237 .2 ac 12 -0.6%
C3 261.6 ac 13 7.0%
B3 246.9 @C 14 +1.0%
A3# 233.1 ac 15 +2.1%
A3 220.0 ac 17 -0.9%
G2# 207.7 ac 18 +0.8%
G2 196.0 ac 1A ~-1.1%
F2# 185.0 ac 1B +1.0%
F2 174.6 ac 1D -4.1%
E2 164.8 @ac e -0.8%
D2# 155.6 OUT OF RANGE

D2 146.8 -~ 726 26 -1.4%
C2# 138.6 OUT OF RANGE

C2 132.8 OUT OF RANGE

B2 123.5 @26 a7 +2.5%
A2 116.5 OUT OF RANGE

A2 112.0@ 26 28 +2.3%
Gl# 143.8 26 29 -2.4%

14



Gl 98.00 OUT OF RANGE

F1# 92 .50 @6 @A -0.5%
Fl 87.31 OUT OF RANGE

El 82.41 a6 gB +2.4%
D1# .82 06 ac +3.1%
D1 73.42 @6 @D -1.5%
Cl# 69.30 g6 OE -2.6%
cl 65.41 OUT OF RANGE

Bl 6l1.74 26 @F +2.5%
Al 58.27 26 19 +2.2%
Al 55.90 g6 11 +2.3%
Go# 51.91 @6 13 -2.4%
GO 49,99 26 14 -1.6%

SND2TN (ADDRESS 18 HEX)
This register provides the same function as SNDITN but as applied
to audio channel 2.

SND1AM (ADDRESS 19 HEX)
The SND1AM 1is a four bit register that sets the amplitude or
loudness of the signal produced by the channel 1 audio generator.
A value of @0 produces no sound and a value of @F (hex) is full
volume.

SND2AM (ADDRESS 1A HEX)

Again this is the corresponding amplitude register for audio
channel 2.

P1IMAG (ADDRESS 1B HEX)

P1IMAG holds the 8 bit video image for the playerl sprite.

P2IMAG (ADDRESS 1C HEX)
P2IMAG holds the 8 bit video image for the player2 sprite.
P1SHOT (ADDRESS 1D HEX)

Writing a 2 to location PlSHOT will enable the playerl shot
sprite to be shown on the next scan line and all scan lines
thereafter until a @ is written into bit 1. For the sprite to be
visible it also must be enabled by a @ in bit 1 of S1CONT below.
P1SHOT allows the shot to be turned on and off without changing
its absolute horizontal position.

15



P2SHOT (ADDRESS 1E HEX)

This register is the same as P1SHOT, but works with shot2.

S3SHOT (ADDRESS 1F HEX)

This register is the same as P1SHOT, but works with shot3.

P1HORZ (ADDRESS 2@ HEX)

P1HORZ is the horizontal increment value for the playerl sprite.
Only the upper 4 bits of this register are used. These Dbits
represent a signed 4 bit number. See below for more discussion

of the use of the horizontal increment value.

P2HORZ (ADDRESS 21 HEX)

This is the same as Pl1HORZ, but used for the player2 sprite.
S1HORZ (ADDRESS 22 HEX)

This is the same as P1HORZ, but used for shotl.

S2HORZ (ADDRESS 23 HEX)
This is the same as Pl1HORZ, but used for shot2.

S3HORZ (ADDRESS 24 HEX)
This is the same as P1lHORZ, but used for shot3.

P1DELAY (ADDRESS 25 HEX)

If a
image
seems

written

P2DELAY (ADDRESS 26 HEX)

This
sprite.

VID27 (ADDRESS 27 HEX)

functions as does P1DELAY,

one is written to bit zero of this register it causes
to P1IMAG to be delayed until
to be useful in "stacking" parts of images ahead
they need to appear.

the
This
of when

next 1line.

but with respect to the player?2

The function of this register is currently unknown.

16



S1CONT (ADDRESS 23 HEX)

Writing a 2 to this register turns off shotl. Writing a @ to
this register turns shotl back on again, but the absolute
horizontal position of shotl will be loaded from the absolute
horizontal position of the playerl sprite. This causes shotl to
be reset back to the playerl sprite, and is therefore very useful
in setting up before shooting.

S2CONT (ADDRESS 29 HEX)

This register operates in the same manner as S1CONT only it is
for shot2.

HZSCRL (ADDRESS 2A HEX)

HZSCRL is another strobe register. (what is written to it does
not matter, but rather when is very important) If you write to
it at the beginning of a line, then it takes the value of each of
the sprites horizontal increment values and adds them to each of

the sprites current absolute horizontal position. These
increments may be negitive so motion can be right or left. An
artifact of this proceedure is a tempory shutdown of the video
signal while the process is taking place. This is seen as a

short black line segment at the left edge of the screen.

If you write any value to this register at any time other than at
the ©beginning of the line then all of the sprites move to the
right 5 HRD's. When a sprite reaches the right edge of the
screen it wraps around to the left side of the screen.

NOINC (ADDRESS 2B HEX)
Writing anything to this location sets the horizontal increment
values of all the sprites to zero. This is very usefull when a

program is going to hit HZSCRL but does not want the horizontal
positions of the sprites disturbed.

COLRES (ADDRESS 2C HEX)

Writing any value to this register resets all of the latches for
the collision detection registers.

17



VID2D (ADDRESS 2D HEX)
The function of this register is currently unknown.
VID2E (ADDRESS 2E HEX)
The function of this register is currently unknown.
VID2F (ADDRESS 2F HEX)

The function of this register is currently unknown.

This ends the section of write only registers. Reading any of
the registers from @ to 2F hex will return you the collision
detection register corresponding to the lower 4 bits of the next
set of registers 30 to 3F hex. As an example, reading locations
@2, 12 or 22 will give you the same register as reading 32.

PS1COL (ADDRESS 30 HEX)
This is the shotl collision register. Bit 7 is set if player2

collides with shotl. Bit @ is set if playerl collides with
shotl.

PS2COL (ADDRESS 31 HEX)

This is the shot2 collision register. Bit 7 is set if playerl
collides with shot2. Bit @ is set if player2 collides with
shot2.

P1OCOL (ADDRESS 32 HEX)
This is the player 1 to object field collision register. Bit 7
is set if playerl collides with any of the object fields.
BIt @ is set if playerl collides with shot3.
P20COL (ADDRESS 33 HEX)

Bit 7 is set if player2 collides with any of the object fields.
Bit @ is set if player2 collides with shot3.

$10COL (ADDRESS 34 HEX)

Bit 7 is set if shotl collides with any of the object fields.
Bit @ is set if shotl collides with shot3.

18



S20COL (ADDRESS 35 HEX)

Bit 7 1is set if shot2 collides with any of the object fields.
Bit @ is set if shot2 collides with shot3.

S30COL (ADDRESS 36 HEX)

Bit 7 is set if shot3 collides with any of the object fields.

PPCOL (ADDRESS 37 HEX)

Bit 7 is set if playerl collides with player2.

PDLS5L (ADDRESS 38 HEX)I
Bit 7 is set if pin 5 of the left game connector has gone above 2

volts subsequent to the last time the high order bit of VRESET
has been turned off. (i.e. the paddle line has charged up)

PDL9L (ADDRESS 39 HEX)

This 1is the same as PDL5L, except it looks at the other paddle
comming in on pin 9.

PDL5R (ADDRESS 3A HEX)

This is the same as PDL5L, except that the signal is comming from
pin 5 on the right game controller connector.

PDLO9R (ADDRESS 3B HEX)

This 1is the same as PDL9L, except that the signal is comming from
pin 9 on the right game controller connector.

LFTFR (ADDRESS 3C HEX)

Pressing the fire button on left joy stick causes bit 7 to go
low.

19



RGHFR (ADDRESS 3D HEX)

Pressing the fire button on the right joy stick causes bit 7 to
go low.

VID3E (ADDRESS 3E HEX)

The function of this register is currently unknown.

VID3F (ADDRESS 3F HEX)

The function of this register is currently unknown.

READING SWITCHES AND BUTTONS

The VCS I/0 interface through the PIA allows the software to read
the switches on the console and to communicate with the game
controllers. The connection to the console switches 1is very
straightforward requiring only that the progrmmer set port B of
the PIA to all inputs (i.e. write @ to loc 283 hex). After this
has been done the software can get the switch values by reading
location 282 hex. The following table shows the bit assignment
for the value returned:

B7 B6 B5 B4 B3 B2 Bl BO
fmmm———— e tmmm———— Fmmm———— tom———- tomm———— fmm————— tmm———— +
|1 RIGHT| LEFT |NOT |NOT |COLOR |NOT | | |
| DIF Al DIF A |USED |USED l | USED I | |
Fomm fmm————— fommm———— tmm————— tmm————— tommm———— Fmmm———— tmm————— +
|@ RIGHT| LEFT |NOT | NOT |IB & W |NOT | GAME | GAME |
| DIF B| DIF B |USED |USED I |USED |SELECT |RESET |
o ——— Fommm——— tmmm———— Fmmm———— tommmm——— tommm——— Fomm————— o ——— +

It is interesting to note here that many users of the VCS believe
that the B&W/COLOR and GAME RESET switches are connected to the
system hardware and perform their functions through hardware

modes. This is not the case, but rather these switches are just
inputs to the software and it is up to the programmer to assign
some function to them. Some of the new games are using the

switches for game play inputs that have nothing to do with their
uses printed on the front pannel.

20



The eight lines of PIA port A are split into two groups of four
and are connected to pins of the game controller connectors. The
mapping is as follows:

B7 B6 B5 B4 B3 B2 Bl BO

tmm————— fm—————— Fom————— F-————— tomm————— t—————— te————— tm————— +
| LEFT | LEFT | LEFT | LEFT | RIGHT | RIGHT | RIGHT | RIGHT |
| PIN 4 | PIN 3 | PIN 2 | PIN 1 | PIN 4 | PIN 3 | PIN 2 | PIN 1 |
tomm———— e tm————— tomm————— fmm———— tmm————— tmm————— tmm———— +

These lines can be programmed as either inputs or outputs on a
line-by-1line basis. When used as inputs they "float high", this
means they will read as 1l's if nothing is connected to them (e.g.
if no connectors are pluged in and all lines are set for input,
then a program will read an FF hex when accessing loc 280 hex).

JOY STICKS

The Jjoy stick controllers are actually a set of five switches.
They have one switch each for up, down, left and right as well as
one for the fire button. The direction switches are wired to
port A of the PIA, however the fire button goes into the TIA and
controls a bit in one of the TIA read registers (see above).
When two Joy sticks are connected loc 280 hex returns the left
stick direction in the upper four bits and the right stick
position in the lower four bits. The closing of a switch causes
the line to be connected to the zero volt reference (pin 8 of the
connector) which causes the corresponding bit in port A of the
PIA to Dbecome a zero. The bits are not latched so when the
switch opens again the bit will go back to the one state.

Here are the four bit codes in hex that represent the stick
positions using the face-of-the-clock terminology where TOP on
the stick is at 12:04d.

No Action
12:00
1:34
3:00
4:30
6:00
7:30
9:00

13: 30

(hex) O BE

o

romowouvuwoH"

GAME PADDLES

The game paddles are constructed so that two paddles connect to
one game controller socket. Thus it is possible to make a four
player game that is controled by the paddles. To allow for this
it was necessary to make the fire button on the paddles come in
on a different line than used by the joy sticks so that four
lines could be input at once. To acomplish this the game paddle
fire buttons are connected to the top two bits of the

L]

21



corresponding four bit group of port A. As with the joy sticks
the Dbit will become zero while the game paddle fire button is
held down.

The reading of the knob setting of the paddle comes in on the
analog input 1lines. See the section on VRESET and the PDL
registers of the TIA given above.

KEYBOARD CONTROLERS

The keyboard controllers are sets of twelve buttons that connect
one each to the game controller sockets. Atari also came out with
the Video Touch Pad to be used with Star Raiders. These devices

are electrically the same, but the VTP gives much less wair and

tair on your fingers.

Internally the keyboard controller switches cause connections to
be made between row and column lines. Rows 1, 2, 3 and 4

(starting from the top) are connected to game controller pins 1,
2, 3 and 4. Columns 1, 2 and 3 (left to right) are connected to

pins 5, 9, and 6. Lines 5 and 9 (the analog input lines) also

have 470@ ohm resistors connected to +5 volts at pin 7. Pin 6 is

the joy stick fire button input.

In order for the software to detect which button is pressed it is
necessary to program the row select bits of PIA port A to be
outputs, and then sending a zero to only one row select line at a
time. Each time one of the row select lines goes low it will
cause the three column lines to reflect the states of the three
buttons of the selected row. If pressed the column line will go
to zero. This is reflected directly in the TIA register for the
fire button, and the other two columns (pins 5 and 9) come in on
the high bits of the PDL registers of the TIA.

ABSOLUTE HORIZONTAL POSITIONING

Horizontal control is always the most difficult part of any VCS-
program. This 1is because the machine does not have a register

that you can write in order to set the absolute horizontal
position of a sprite. Furthermore, because the screen must

always be recreated on the fly, you do not have time to do very

much computation. This time shortage is really the worst part of
the problem so let us look as some of its ramifications.

The TIA is running on a clock with frequency of 3.579545 MHZ.
Every cycle of this clock the TIA shifts out one High Resolution
Dot (HRD). The MPU is clocked by a signal that is 1/3 the
frequency of the TIA <clock. This means that for every
instruction cycle the of the MPU the TIA has put up three HRD. A
simple instruction 1like STA P1IMAG takes three MPU cycles and
therefore spans nine HRD.

22



Do to horizontal blanking only 16@ of the 228 HRD/line show up on

the screen. When the program does a store to LWAIT the system
waits until the scan is off the end of the current line and is 69
HRD from the visible left edge of the screen. A scan line takes

76 MPU cycles so therefore starting after a store to LWAIT vyou
have 22.67 cycles until visible and 53.33 cycles across the
screen.

The most common method of setting the absolute horizontal
position of a sprite is as follows:

1. Get to the start of a line.

2. Wait enough MPU cycles to get within 8 HRD of the
desired horizontal position.

3. Store to PlHRES (or the corresponding register for
a different sprite).

4. Store a value into the upper 4 bits of the increment
register to adjust position up to + or - 8 HRD.

5. At the start of the next line store to HZSCRL
which will cause the increment to be added to
the position set by P1HRES.

It 1is typical for a program to use a five cycle loop to do the
timing wait before P1lHRES. This gives 15 HRD/loop so screen
positions will have 15 HRD between stops. Then the four bit fine
increment value can reach all the points inbetween.

For more information and examples see the listings of the screen2
section of the EXPLORER program supplied with the Frobco
software.

END OF DOCUMENT

23



