AN INTERGALACTIC
EDUCATIONAL
EXPERIENCE

GAMES CREATOR
FOR THE

NATARI

1P MZ2S

Software, Inc. Limited

(c) Copyright 1987 TDI Corporation
(c) Copyright 1987 TDI Software, Inc.
(c) Copyright 1987 M2S8, Ltd.

All rights reserved.

NOTE: Any reference in this manual to TDI will apply to
TDI Corporation, M25, Ltd., and TDI Software, Inc.

Reproduction or use of editorial or pictorial content in
any manner without the express permission of the copyright
holder is prohibited.

While every precaution has been taken in the preparation
of this manual, no responsibility is assumed for errors or
omissions nor is any liability assumed for loss or damage
resulting from the use of the information it contains.
Atari ST is a trademark of Atari Corp.

Published by:

TDI Software, Inc. M2s, Ltd.

P.O. Box 550279 Box 393

Dallas, Texas 75335-0279 Bristol BS99 7WU
U.s.A. U.X.

CONDITIONS OF USE

TDI programs contain material in which TDI retains
proprietary rights. TDI wants these programs to be fully
usable by you for the purpose for which they are supplied.
No infringement of TDI’s rights will occur provided that
the following conditions are observed with respect to each
program:

1. The programs are used only on a single machine at any
one time.

2. The program is copied into machine-readable or printed
form only for backup or modification purposes only in
support of a single machine.

3. The copyright notice is reproduced and included in any
copy or modifications made of the program and in any
portion merged into other programs.

4. If this program package is transferred to another
party, all copies and modifications made of the
program must be transferred or destroyed. You do not
retain any right with respect to the transferred
package. The other party must agrze to ocbserve all
the TDI conditions of use.

Any other act involving reproduction of or use of, or
other dealing in the programs is prohibited.

No statements contained in this package shall affect the
statutory rights of consumers.

TDI is committed to providing quality products and has
established the following warranty for TDI products:

For a period of 90 days from the date of license of the
software to the retail customer, TDI warrants to the
customer that the materials of the disk on which the
licensed program is recorded and the User Manual (the
"Product") are not defective and that the licensed program
(the "Program") is properly recorded on the disk. TDI
also warrants for such 90-day period that the Program
operates substantially as described in the User Manual and
that the User Manual contains all the information which
TDI and its software suppliers deem necessary for the use
of the licensed program. THIS WARRANTY DOES NOT APPLY TO
DEFECTS DUE, DIRECTLY OR INDIRECTLY, TO MISUSE, ABUSE,
NEGLIGENCE, ACCIDENT, REPAIRS OR ALTERATIONS OUTSIDE OF
TDI’S FACILITY.

TDI LIMITS ALL IMPLIED WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF MERCHANTABILITY, PERFORMANCE, AND
FITNESS FOR A PARTICULAR PURPOSE, TO A PERIOD OF 90 DAYS
FROM THE DATE OF THE LICENSE OF THE SOFTWARE TO THE RETAIL
CUSTOMER, AS ESTABLISHED BY THE CUSTOMER’S PAID INVOICE.
SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN
IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATION MAY NOT
APPLY TO YOU.

Limitations of Remedies:

TDI SHALL 1IN NO EVENT BE LIABLE FOR INCIDENTAL,
CONTINGENT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM
USE OF THE PRODUCT OR PROGRAM, EVEN IF TDI ©OR AN
AUTHORIZED TDI DEALER HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. TDI’s entire liability and the
customer’s exclusive remedy shall be the replacement of
any Product or Program not meeting TDI’s "Limited
Warranty" and which is returned to TDI or an authorized
TDI dealer with a copy of the customer’s paid invoice,
within the 90-day Limited Warranty period. You agree that
TDI‘s 1liability arising out of contract, negligence,
strict 1liability in tort or warranty shall not exceed any
amounts paid by you for the particular Product or Program
licensed to you. SOME STATES DO NOT ALLOW THE EXCLUSION
OR LIMITATION OF IMPLIED WARRANTY DAMAGES, SO THE ABOVE
LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

The Limited Warranty is implemented solely through the TDI
Product Replacement Program. This Linited Warranty gives
you specific legal rights, and you may alsc have others
which may vary from state to state.

CONTENTS

3.4.2 Delete Block 7
3.4.3 Read Block from Disk 7
Introduction and Startup Guide.........iecieveanens 1 3.4.4 Write Block to Disk %
1.1 System Description........cccviviininieiiaianans 1 3:4.5 Print Block 8
g W B The Compiler 1 3.4.6 Start of Block 8
1.1.2 The Editor 1 3.5 BITe COMMANAS. « wowmmams oees R R R R
12 Hardware Requirements.........ccscencsnnsrse- 1 3.5.1 List File to Printer g
1.3 Backing up Modula-2/8Tarlight................ 2 3.5.2 Save File and Continue 8
1.4 Starting Modula-2/8Tarlight.................. = 3.5.3 Save to Named File 8
1.5 Contents of the Distribution Diskette........ 2 ; .
3554 Save and Edit New File 8
_ . B s s o s s 3 3.5.5 Save File and Exit 8
The Modula-2/STarlight Envirconment.... 3.5.6 Abandon File 8
THe BPATEOT v e s S0 S S8 e 0 B8 Fsd SR A 4 3.6 Summary of Editor CommandsS........eeceeeeeenn.
3l Starting OFF..ivevsasanssncievaasissssasmniass 4 3651 Insert and Delete Commands]
3.2 CHYBSOY CONErol. i sssinsn s seineineisinsssinas 4 3.6.2 Block Commands 9
3.2.1 Cursor Left 4 g 1 File Commands 9
3.2.2 Cursor Right 4 3.6.4 Other Commands 10
w23 Cursor Up 4
g.g.g gursor onz é 4. The Compiler...... A DR R § a i
.l ursor Q)
3.2.6 Line Left 5 4.1 Glossary............ S SRR SR i SEEREE
g:i:; ggig Eigit 55 5. The Implemented Language........ R S R
3.2.9 Line Right 5 Bk Standard TypeS......u0... A A e ee e ..
3.2.10 Scroll Up 5 5.2 S8tandard FUnctionS:.sisesewsvans o R e
3.2.11 Scroll Down 5 5.3 Standard ProceduresS............ v R eERReE S A
2.2.12 Page Up 5 5.4 The SYSTEM Module......oeeennann R i "
3.2.13 Page Down 5 S5 Differences and Restrictions............ e
3.2.14 Top of File 5 LS | Assignment Compatibility 16
3.2.15 End of File 5 5. Bl 2 Procedures 16
3.3 Deleting and Undeleting............covuuuenns = 5.5.3 Function Procedures 17
3.3.1 Delete Line 6 5.5.4 Data Size 17
3.3.2 Delete Line Left 6 ;
3.3.3 Delete Word Left 6 5.5.5 Code Size 17
3.3.4 Delete Word Right 6 5.5.6 Index Types in Array
3.3.5 Delete Line Right 6 Declarations 17
3.3.6 Delete Character Right 6 5.5.7 Standard Functions, Procedures, and
337 Delete Character Left 6 Types 17
3.3.8 Delete Word 6 5.5.8 Subranges 17
3.3.9 Insert Line 6 5.5.9 Opaque Types 17
3.3.10 Undelete 6 5.5.10 Enumeration Types 17
3.3.]];1C Tab i 7 5 5.5.11 BSets 17
3.4 E{i?l Oﬁgii giééi-éééiﬁ."é """"""""""" 5.5.12 Procedures Declared in Definition

Modules 17

6. Modula-2 Tutorial............. T e — s W
- i - 6l The Elements of Modula-2 Programs.
6.1.1 Identifiers 18

[w e - I o))]
R

LB =@

P T
WO R

agood
.
=
.o
W w W
PR

AR OGO
o o
N e Rl

™+ .

e e
fE
Ul W N

Declarations
Constant Declarations 31
Variable Declarations 33
Simple Data Types Revisited....... PP —— 34
Data
The
The
The
Data
The
Operators and Expressions....... somms b Mk AR 39
Arithmetic Operators 39

The
The
The
The
The

Numeric Constants 18
String Constants 19
Operators and Delimiters 20
Reserved Words 20
rations....
Constant Declarations 20
Type Declaratieons 21
variable Declarations 21
Simple Data Types 22
INTEGER Data Type 22
REAL Data Type 23
CARDINAL Data Type 23
CHAR Data Type 23
BOOLEAN Data Type 23

User Defined Scalar

Types 23

Subrange Types 23

The POINTER Data Type 24

red Data Types 25

The ARRAY Data Type 25
The RECORD Data Type 25
The SET Data Type 26

Assignment Statement 27

The IF Statement 27

CASE Statement 28
REPEAT Statement 28
WHILE Statement 29
FOR Statement 29

The WITH Statement 30

Types 34

INTEGER Type 35
CARDINAL Type 35
REAL Type 36
Types 38

CHAR Type 38

The + Operator 40
The - Operator 40
The * Operator 41

e o B

Scope and Visibility...

Differences between Revision 2 and 3.....
Subrange Change......
Case Statement Change
Field List Change

ernal Data FormatsS......... .
Character Representation
Boolean Representation
Cardinal Representation.
Integer Representation
Long Cardinal Representation

6.7.1.4 The / Operator 41

6.7.1.5 The DIV Operator 41
6.7.1.6 The MOD Operator 41
Relational Operators 42

Set Operators 43

6.7.3.1 The Set Union Operator 43
6.7.3.2 The Set Difference

Operator 43

6.7.3.3 The Set Intersection
Operator 44

6.7.3.4 The Symmetric Set
Difference Operator 44

6.7.3.5 The Set Membership
Operator 45

Logical Operators 45

6.7.4.1 The AND Operator 46

6.7.4.2 The OR Operator 46

6.7.4.3 The NOT Operator 47

The NOT Operator and Relations 47

De Morgan’s Law 48

Relational Operators With Boolean

Operands 48

Relational Operators with Set

Operands 49

6.7.8.1 The Set Equality
Operator 49

6.7.8.2 The Set Inequality
Operator 50

6.7.8.3 The Improper Set Inclusion
Operators 50

6.7.8.4 The Proper Set Inclusion
Operators 50

Local Identifiers 51

- iv -

10.

8.6 Long Integer Representation..................
8.7 User Defined Scalar TYPES..iesestsssssnsnanss
8.8 Subrange Representation........ R R FR
8.9 Pointer Representation..........ocuvveuvennn s
8.10 Real Representation.....eeeeereerenreecannnss
8.11 Long Real Representation......cecivicenananss
8.12 Set Representation............. S 3G sR RSN
8.13 Array Representation...........evvevuenn R
The Syntax of Modula-2...¢:eeesnenecssnscsnasnnnnos
Modula-2 Compiler Error Codes and Restrictions.....
10.1 SyntaX Errors.....==s«sss seeaws TR R R
10.2 UndefineRiceecivicvmeuinie i oides SR SR
10.3 Class and Type Errors....c.ceseces e e e
10.4 Mismatch between Parameter Lists in
Definition and in Implementation Modules.....
10.5 Implementation Restrictions of Compiler......
10.6 Multiple Definition......ceccevininnnannann.
10.7 Class and Type Incompatibilities.............
10.8 Name Collision............ R R SRR
10.9 Implementation Restrictions of System..... i

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

10.

11.

12.

13.

14.

15.

16.

179

18.

19.

20.

LIST OF FIGURES

Modula-2 Standard Types..

Modula-2 Standard Functions....... i

Modula-2 Standard Procedures.

Definition of the SYSTEM Module.........o...
Modula-2 Reserved Words....... o iR AR SR
Basic INTEGER Operators............ SR

ODD and ABS Operator Examples

Basic CARDINAL OQOperators...

FLOAT Operator Examples...

The IFLOAT Procedure...

Real Operators..

TRUNC ExamplesS......sscas i

The ITRUNC Procedure..... eases

The ROUND Procedure........

ROUND BrampIes v v vy vss e s ien e seiim
Sinple EXpressions.....-veses R R R
IN Operator EXalPleS...cessssensss ssevsnss o
Summary of Logical Operators.......c...ccc...
The NOT Operator Used with Relations........

Relational Operators with Boolean
3187 B ¢ &> P,

13

14

14

16

35

35

35

36

36

36

37

37

38

38

39

45

46

47

49

1. Introduction and Startup Guide

This manual describes the implementation of the Modula-2
development system Modula-2/STarlight. It is neither a
reference manual nor a course about programming in Modula-2.

Modula-2/STarlight has been developed Jjointly by Modula-2
Software Ltd. in the United Kingdom, and TDI Software, Inc.
in the United States. The goal was to produce a development
environment that was easy to work within, and a compiler
that was efficient.

1.1 System Description

The system contains an editor and a compiler. These are
loaded once from disk and remain in memory throughout a
development session (which gives fast program switching.)

1.1.1 The Compiler

- Single-pass Modula-2 compiler
- Full Modula-2 language supported, as described in
Revision 3 of Wirth’s book

- Fast: typically compiles at a speed of 7000 lines per
minute

- CGenerates native MC68000 code
- Object code is relocatable; no linking is necessary

1.1.2 The Editor
- Displays compiler detected errors
- Compile directly from edit buffer

- Familiar WordStar(TM) commands

1.2 Hardware Reguirements

The Modula-2/STarlight system requires at least a 520ST with
TOS in ROM and a 350K single sided disk drive. For serious
program development, a 1040ST and one or two double-sided
disk drives is recommended; a 1040ST and 20MB hard disk will
provide the most powerful and responsive system.

1.3 Backing up Modula-2/STarlight

It is wvital that you back-up the Modula-2/STarlight system.
If you have not read your "Atari 520ST Owner’s Manual" do so
now. Pay particular attention to Chapter 4 page 41 about
making backup disks and Chapter 5 page 44 about formatting
disks. After you are totally familiar with making backup
copies of disks, follow those steps to backup the Modula-
2/8Tarlight system. Put the Modula-2/5Tarlight master disk
in a safe place where it won’t get damaged. The copy you
have made of the disk will be your working copy.

1.4 Starting Modula-2/STarlight

Take the following steps to enter the Modula-2/STarlight
system:

1. Turn on the power to the Atari 87, disk drive (if vou
have an external drive), and monitor.

2. Place your working copy of the Modula-2/STarlight disk
into the disk drive.

3. Double click on the disk icon marked "A".
4. Locate the "STARLITE.PRG" icon in the window.
5. Double-click on the "STARLITE.PRG" icon.

The disk drive will whirr for a few seconds, and then you
will be placed in the Modula-2/STarlight system.

1.5 Contents of the Distribution Diskette

The Modula-2/STarlight system is distributed on a single
sided diskette with accompanying manual. The diskette
contains:

STARLITE.PRG The Modula-2/STarlight system.

2. The Modula-2/STarlight Environment

The Modula-2/STarlight system consists of an editor and a
compiler. These are totally integrated within one
environment and are not separate programs.

The following chapters give detailed instruction on the
various components of the system; here, we present the
overall structure of the system.

When the system is started, you are presented with a blank
desktop with the menu bar across the top of the screen. To
start work upon a program, select the Open item from the
File menu (for details, see the Editor chapter.) Once the
module has been loaded, you can compile it by pressing the
F1 key, or by selecting the Compile option from the Modula
menu. After the compiler has finished, you will be put back
into the editor. If there were compilation errors, the
cursor will be at the first one showing you the error
message above the program text. You can then correct the
errors and recompile the module. When the module compiles
without error, you are ready to test the program. Simply
type F2 and the program will be loaded and run. The program
is 1loaded alongside the Modula-2/STarlight system (which is
always resident.) If the program terminates abnormally you
will be presented with a dialeog prompting you to continue,
abort, or debug the program. If the program terminates

normally (i.e., no execution errors) you will be placed back
in the editor.

3. The Editor

The Modula-2/STarlight editor is a full screen text editor
which provides a wide range of commands for entering and
deleting text, moving text, finding and replacing particular
text strings, and storing text in files. The STarlight
Editor can be operated using the mouse and menu interface,
or entirely from the keyboard. The keyboard commands are
WordStar (TM) compatible; the editor also makes use of some
of the special purpose keys on the ST keyboard.

3.1 Starting Off

The editor is the primary means of entering the Modula-2
program to be compiled. To start editing, select the "Open"
item from the File menu. You will be presented with a file
selector box.

3.2 Cursor Control

All cursor movement commands wrap onto the next or previous
line. For example, typing cursor right when the cursor is
already at the right of a line causes the cursor to be moved
to the beginning of the next line. If your intention was
actually to insert a space at the end of the line, you
should use the space bar instead.

3.2.1 cCursor Left Move the cursor one character to the
left. If the cursor is already at the beginning of a line,
typing cursor left will cause the cursor to wrap to the end
of the previous line.

3.2.2 Cursor Right Move the cursor one character to the
right. Tf the cursor is already at the end of a line,
typing cursor right will cause the cursor to wrap to the
beginning of the next line.

3.2.3 Cursor Up Move the cursor up one line. If the
cursor is at the top of the screen, the screen scrolls down
one line.

3.2.4 Cursor Down Move the cursor down one line. If the
cursor is at the bottom of the screen, the screen scrolls up
one line.

3.2.5 Cursor Home Move the cursor to the top-left corner
of the screen.

3.2.6 Line Left Move the cursor to the left of the line.
3.2.7 Word Left Move the cursor left one word. The cursor
will cross the end of the line if it needs to. A word is
defined as any sequence of characters up to the first space.

3.2.8 Word Right Move the cursor right one word. The
cursor will cross the end of the line if it needs to.

3.2.9 Line Right Move the cursor to the right of the line.

3.2.}0 Sc;oll Up Scroll the screen up. The cursor remains
on its 1line wuntil the cursor reaches the bottom of the
screen.

3.2.11 Scroll Down Scroll the screen down. The cursor

remains on its line until the cursor reaches the top of the
screen.

3.2.12 Page Up The cursor is moved back one page; it has
no effect at the top of the file.

3.2.13 Page Down The cursor is moved forward one page; it
has no effect at the bottom of the file.

3.2.14 Top of File The cursor is moved to the start of the

f%le, i.e., the first character of text, and that page is
displayed.
3.2.15 _End of File The cursor is moved to the end of the
file, 1.e., the last character of text, and that page is
displayed.

3.3 Deleting and Undeleting

Text can be deleted by character, word, line, or block. All
tgxt deleted by successive deletions in the same direction
(i.e., left, right, or down) is saved internally and can be
restored by the Undo key. This means that accidental
deletions can be restored immediately. The deleted text

remaips saved (even after being undeleted) wuntil a new
deletion is made.

3.3.1 Delete Line Delete the line the cursor is on. All

lines below the cursor are moved up one line, and the cursor
is moved to the left of the screen.

3.3.2 Delete Line Left Delete all characters from the
cursor position to the left of the screen. The cursor is
moved to the left of the screen.

3.3.3 Delete Word Left Delete the word to the left of the
cursor. The cursor will delete across the end of the line
if it needs to.

3.3.4 Delete Word Right Delete the word to the right of
the cursor. The cursor will delete across the end of the
line if it needs to.

3.3.5 Delete Line Right Delete all characters from the
cursor position to the right of the screen. The cursor is
not moved.

3.3.6 Delete Character Right The character under the
cursor 1is deleted; the text to the right of the cursor is
moved back one space. Deleting at the end of a line will
cause the 1line below the cursor to be appended to the line
the cursor is on.

3.3.7 Delete Character lLeft The character to the left of
the cursor is deleted; the text to the right of the cursor,
and the cursor itself is moved back one space. Deleting at
the start of a line will cause the line the cursor is on to
be appended to line above the cursor.

3.3.8 Delete Word The word the cursor 1is sitting on is
deleted. The cursor does not have to be at the start or end
of a word for the word to be deleted.

3.3.9 Insert Line A blank line is inserted at the cursor
line; the line the cursor is on is moved down one line, and
the cursor is moved to the left of the blank line.

3.3.10 Undelete The Undo button places back into the text
(at the cursor position) the latest deletions put into the
internal delete buffer. The deleted text remains saved even
after being undeleted until a new deletion is made.

3.3.11 Tab Pressing the Tab key inserts a number of spaces

starting at the current cursor position. Spaces are
inserted up to the beginning of the next word on the
previous line. If the preceding line is not full screen

width, tab positions are defined by default at every eighth
character position in the blank part of the line. This
method of tabbing provides a simple means of entering
aligned columns of information on successive lines by
tabbing at the start of each new 1line. It is also a
convenient way to enter indented Modula-2 programs.

3.4 Block Commands

Block commands allow you to quickly and easily copy and move

text around the edit buffer. The bleck commands werk
between two positions: the mark position and the cursor
position. For all Dblock commands other than Mark Block

Begin, the mark must be set either before or after the
cursor for the command to work. If the mark is not set, the
block commands will simply ignore the request after issuing
a warning.

3.4.1 Mark Block Begin This marks the start of the block
at the cursor position. If the mark was already set at some
location, it is simply moved to the cursor position. The
mark remains set until an insertion or deletion takes place,
after which it becomes unset.

3.4.2 Delete Block This deletes the block between the mark
and the cursor position. It places the deleted text into an
internal buffer so that it can be recovered. This allows
you to copy and move large chunks of text around the edit
buffer without resorting to continual delete-line and
undelete operations.

3.4.3 Read Block from Disk This command prompts for a
filename with the standard file selector box. Once a file
has been selected, clicking on the 0K button will read that
file into the edit buffer at the cursor position. Clicking

on the CANCEL button will abort the command with no action.

3.4.4 Write Block to Disk This writes the block of text
between the marked position and the cursor position onto a
named file. A file selector box is presented as with the
Read Block from Disk command; type the name of the file and
click OK to write the block, CANCEL to abort the write. The

block of text is not deleted from the edit buffer.

3.4.5 Print Block The block of text between the marked
position and the cursor position is printed on the printer.
This command takes account of the current settings of the
Install Printer’ desk accessory, so the text may be
diverted both to parallel and serial printers. A form-feed

ie sent at the end of the text.

3.4.6 Start of Block This moves the cursor to the marked
position if it has been set. If it is unset, this command
does nothing.

3.5 File Commands

3.5.1 List File to Printer As Print Block, but the whole
of the edit buffer is printed on the printer, ignoring any
marked block.

3.5.2 Save File and Continue The edit buffer is written to
disk, and the editor is reentered for you teo continue
editing.

3.5.3 Save to Named File As Write Block, but the whole
edit buffer is written to disk, ignoring any marked block.

3.5.4 Save and Edit New File Writes the edit buffer to
disk, and then prompts for a new file to edit.

3.5.5 Save File and Exit Writes the edit buffer to disk,
and then closes the edit window.

3.5.6 Abandon File The changes you have made to the file
since it was last loaded or saved will be abandoned. Before
abandoning the changes, a dialog is presented asking whether
you really wish to abandon the modifications. Clicking OK
will throw away the modifications you have made and close
the edit window; clicking CANCEL will put you back into the
editor.

3.6 Summary of Editor Commands

Cursor Up
Cursor Down
Cursor Left
Cursor Right
Cursor Home
Line Left
Word Left
Word Right
Line Right
Scroll Up
Scroll Down
Page Up
Page Down
Top of File
End of File

3.6.1 Insert and Delete Commands

Insert Line

Delete Line

Delete Line Left
Delete Word Left
Delete Word Right
Delete Line Right
Delete Character Right
Delete Character Left
Delete Word

Tab

Undelete

3.6.2 Block Commands

Mark Block Begin
Delete Block

Read Block from Disk
Write Block to Disk
Print Block

Start of Block

3.6.3 File Commands

*E
~X
~5
2D

~Q=-D
~A
i
~Q-8
W
~Z
*R
~C
~Q-R
~Q-C

~N
~Y

~K-B
~R=Y
~K-R
~“K-W
~ K_P
“Q-B

Cursor Up
Cursor Down
Cursor Left
Cursor Right
Home

F1

F2

F3

F4

- on keypad
+ on keypad
* on keypad
Enter on keypad

shift F1
Shift F2
shift F3
shift F4
Delete
Back Space

Tab
Undo

10

List File to Printer ~K-L
Save File and Continue ~K-8
Save to Named File ~K-N
Save and Edit New File ~K-D
Save File and Exit ~K=-X
Abandon File ~K-Q

3.6.4 Cther Commands

Repeat Last Find/Replace ~L

Find ~Q-F

Replace ~Q-A

Find Next Error ~Q-X

Find Previous Error ~Q-E

Toggle Word Case A=

Toggle Word Capitalisation ~T-C

Toggle Auto-Indent ~Q-TI

Compile Fl
Compile and Run F2

Note that ~L repeats the last find, or the last replace, or
the last find error. A find error is done automatically by
the editor when the compiler detects an error, so "L may be
used right away in those cases (until a normal find or
replace operation has been carried out).

4. The Compiler

11

This chapter describes the use of the Modula-2 compiler.
The Modula-2 language was designed by Prof. Niklaus Wirth at
the Swiss Federal Institute of Technology (ETH) in Zurich.
This language compiler conforms to the specification laid
down in the document "Report on the Programming Language
Modula-2" in the book "Programming in Modula-2", 3rd Revised
Edition. The syntax of the language can be found in Section

10.

4.1 Glossary

Compilation Unit

Definition Module

Program Module

Source

Symbol File

Reference File

Object File

Unit accepted by compiler for
compilation, i.e., definition module or
program module.

Part of a separate module specifying the
exported objects.

Implementation part of a separate module
(called an implementation module) or
main module.

Input to the compiler, i.e., a
compilation unit in the edit buffer.

Compiler output file with symbol table
information. The information is
generated during compilation of a
definition module; it is read when the
corresponding implementation module is
compiled, or when it is imported into
another compilation unit.

Compiler ocutput file with symbol table
information. The information is
generated during compilation of a
program module.

Compiler output file with generated
native MC68000 code in Modula-
2/8Tarlight loader format; it 1is read
when it is loaded for execution, or when
a program that imports it is loaded.

12

5. The Implemented Language

Modula-2 is an evolving language and has gone through some
agreed revisions. A Dbrief description of the implemented
language follows.

5.1 Standard Types

For a complete description of the storage layout and data
formats, please see Section 9. The standard types are
summarised in Figure 1.

INTEGER The value range of the type INTEGER is -32768 to

32767 represented in 16-bit two’s complement
format. The compiler does not allow the direct
definition of -32768, so it must be computed

indirectly by -32767-1.

CARDINAL The wvalue range of the type CARDINAL is 0 to 65535
represented in 16-bit unsigned format.

REAL Values of type real are represented in four bytes
in IEEE format. The value range is -1.7014E38 to
+1.7014E38.

CHAR Values of type char are represented in one byte in
ASCII format.

BITSET The type BITSET is defined as SET OF [0..15] (2
bytes). Consider that sets are represented from
the low order bits to the high order bits, i.e.,
{0) corresponds to the ordinal value 1.

LONGINT The value range of the type LONGINT is -2147483648
to 2147483647 represented in 32-bit two’s
complement format. The compiler does not allow
the direct definition of -2147483648 so it must be
computed indirectly by -2147483647-1.

LONGCARD The value range of the type CARDINAL 1is 0 to
4294967295 represented in 32-bit unsigned format.

LONGREAL At present this type is not supported.

Figure 1. Modula-2 Standard Types

13
5.2 Standard Functions
Standard functions are predefined (i.e., need not be
imported). Some are generic procedures that cannot be

explicitly declared, i.e., they apply to several classes of
operand type or have several possible parameter list forms.
Standard functions are summarised in Figure 2:

ABS (x) Return the absolute value of x, i.e., if x <
0.0 returns =-x, otherwise returns x. x is of
type INTEGER or LONGINT; result type =
argument type.

CAP (ch) If ch is a lower case letter, the
corresponding uppercase letter; otherwise the
same letter. ch is of type CHAR.

CHR (x) The character with ASCII code x. ¥ 1is of
type INTEGER or CARDINAL.

FLOAT (x) x of type INTEGER or LONGINT represented as a
value of type REAL. x must be >= 0.

FLOATD (x) ¥ of type INTEGER or LONGINT represented as a
value of type LONGREAL. X must be >= 0.

MAX (T) T is any scalar type (including real).
Result is the type’s maximum value.

MIN(T) T 1is any scalar type (including real).
Result is the type’s minimum value.

ODD (x) TRUE if x is odd, otherwise FALSE. x of type
INTEGER, LONGINT, CARDINAL, or LONGCARD.

ORD(x) Ordinal number (of type INTEGER) of x in the
set of wvalues defined by type T of x. T is
any enumeration type, CHAR, INTEGER, or
CARDINAL.

SIZE(x) Number of bytes (INTEGER) the variable

occupies in memory.

SIZE(T) Number of bytes (INTEGER) the type occupies
in memory.

14 Mo

TRUNC (x) Real number x (of type REAL or LONGREAL)
truncated to its integer part (of type
INTEGER). ¥ must be >= 0.0.

TRUNCD (x) Real number x (of type REAL or LONGREAL)
truncated to 1its integer part (of type
LONGINT). X must be >= 0.0.

Figure 2. Modula-2 Standard Functions

5.3 Standard Procedures

Standard procedures are predefined (i.e., need not be
impeorted) . Some are generic procedures that cannot be
explicitly declared, i.e., they apply to several classes of
operand type or have several possible parameter list forms.
Standard procedures are summarised in Figure 3:

DEC (x) X = % - 1. X must be a scalar.

DEC(, n) X = ¥ - n. X must be a scalar, n must be of
type INTEGER, LONGINT, CARDINAL, or LONGCARD.

EXCL(s, 1) s := s - {1i}.

HALT Terminates program execution, which can be
used as a programmed breakpoint in Modula-
2/8Tarlight.

INC(x) x = x + 1. x must be a scalar.

INC(x, n) X = ¥ + n. X must be a scalar, n must be of

type INTEGER, LONGINT, CARDINAL, or LONGCARD.
INCL(s, 1) s 1= s + {i}
Figure 3. Modula-2 Standard Procedures

5.4 The SYSTEM Module

Explicitly system-dependent features are imported from the
module SYSTEM. Although this module cannot be standard for
all implementations of Modula-2, it +typically exports the
type ADDRESS which is compatible with all pointer types.
The generic function VAL{T, x) is effectively a replacement

DEFINITION MODULE SYSTEM;

TYPE ADDRESS = POINTER TO BYTE;
(*# compatible with LONGCARD and
all pointer types *)

BYTE; (* smallest addressable unit,
uninterpreted; TSIZE(BYTE) = 1.
ARRAY OF BYTE is compatible
with everything. *)

WORD; (* two uninterpreted consecutive
bytes beginning at an even address,
assignment compatible with
all types of size 2. *)

(* subsequently T denotes any
simple type <= 4 bytes *)

PROCEDURE ADR(VAR x: AnyType): ADDRESS;
(* return storage address of variable x *)

PROCEDURE CODE(x: WORD) ;
(* place x directly into instruction stream *)

PROCEDURE REGISTER(reg: INTEGER): LONGINT;
(* return MCG68000 register contents;
reg must be a constant.
reg: 0..7 = DO-D7; 8..15 = AQ-AT7 *)

PROCEDURE SETREG{reg: INTEGER; val: T);
(* set register to value; req as REGISTER *)

PROCEDURE TSIZE(AnyType): INTEGER;
(* return number of bytes required
for storage of AnyType *)

PROCEDURE LONG(hi, lo: INTEGER): LONGINT:
(* construct LONGINT from two INTEGERSs;
hi is the high 16 bits,
lo the low 16 bits *)

PROCEDURE LONG(x: T): LONGINT;
(* coerce x to a LONGINT *)

FPROCEDURE SHORT (x: LONGINT): INTEGER;
{* truncate x to 16 bits, no checks *)

16

PROCEDURE SHIFT(x: T; n: INTEGER): T;
(* x shifted by n bits;
n > 0, x shifted left,
n < 0, x shifted right #*)

PROCEDURE VAL(AnyTypeO; x: AnyTypel): AnyTypeQ;
(* x is converted toc have type AnyTypeO *)

END SYSTEM.
Figure 4. Definition of the SYSTEM Module
for type-transfer functions T(x). Its value is ¥y
interpreted as type T. No code 1is generated for this
pseudo-procedure. Its explicit import is to make the use of
machine-dependent type transfers explicit and more easily
locatable.

5.5 Differences and Restrictions

The implementation of Modula-2 on the Atari 8T has sone
differences and restrictions from the original multi-pass
compilers:

5.5.1 Assignment Compatibility The following types are
assignment compatible with each other (overflow is checked):

INTEGER, CARDINAL, LONGINT, and LONGCARD
REAL and LONGREAL

5.5.2 Procedures No forward references are permitted,
except in definitions of pointer +types and in forward
procedure declarations. Procedures referenced before
declaration must be declared before by a forward
declaration. The format is:

PROCEDURE P(parameter list); FORWARD;
or
PROCEDURE P(parameter list): result type; FORWARD;
The corresponding procedure must have the full header

repeated and must 1lie at the same nesting level as the
forward declaration.

17

5.5.3 Function Procedures The result type of a function
procedure must be 1, 2, 4, or 8 bytes. This includes all
simple types.

r

5.5.4 Data Size The maximum total global data size must be
less than 32KBytes per compilation unit. There is no limit
on total data size over all modules.

5.5.5 Code Size The maximum code size must be 1less than
24000 bytes per compilation unit. The total code size over
all modules has no limit.

5.5.6 Index Types in Array Declarations The index type
must be a subrange type.

5.5.7 standard Functions, Procedures, and Types The
procedures NEW, DISPOSE, TRANSFER, IOTRANSFER, NEWPROCESS,
and the type PROCESS are not implemented (although defined
as standard objects in earlier reports on the language.) The
procecdiare SIZE is a standard procedure and is identical to
the function TSIZE in the module SYSTEM. To implement NEW,
simply replace NEW(p) by Storage.Allocate(p, SIZE(T)), where
p is declared as POINTER TO T. Similarly, DISPOSE(p) should
be replaced by Storage.Deallocate(p, SIZE(T)).

5.5.8 Subranges The bounds of a subrange must be less than
2*%15 1in absolute value, and the difference MAX (Subrange) -
MIN (Subrange) must be less than 2*%15.

5.5.9 Opagque Types If a type T is declared in a definition
module to be opaque, 1t cannot (in the corresponding
implementation module) be declared as equal to another,
named type.

5.5.10 Enumeration Types An enumeration may have at most
256 elements.

5.5.11 BSets A set may have at most 16 elements.

5.5.12 Procedures Declared in Definition Modules If a
procedure (heading) is declared in a definition module, its
body must be declared in the corresponding implementation
module proper; it cannot be declared in an inner, local
module.

18

6. Modula-2 Tutorial

This chapter describes each major feature of the Modula-2
language with simple examples.

6.1 The Elements of Modula-2 Programs

Modula~2 programs consist of a sequence of symbols, each of

which have a specific meaning.

6.1.1 Identifiers Identifiers are programmer defined names
that may be asscciated with constants, data types,
procedures, modules, and variables. An identifier gt@rts
with a letter followed by any number of letters Qr.dlglts.
Unlike other languages all characters in an identifier are
significant; upper and lower case are considered to be
distinct. Modula also provides a range Of predeclared
identifiers for standard procedures and functions.

Some examples of valid identifiers are:
Modula2
aVeryLongIdentifier

notfound

some examples of invalid identifiers are:

2BorNot2B - cannot start with a number
The time - underlines not permitted
todays date - spaces not allowed

6.1.2 Numeric Constants Numeric constants can be divided
into twe distinct groups, those that represent whole numbers
and those that may have a fractional part. In Modula these
are classified as integers and reals. These groups may be
further subdivided to produce different ranges of numbers,
although not all compilers support them.

Numeric constants are represented by a sequence of digits
with no intervening spaces. Scome examples of constants are:

1986 102 453 74
By using a suffix you can express constants in bases other

than decimal. The suffix "B" denotes an octal constant, and
the suffix "H" denotes a hexadecimal constant. For example,

19

22B07b 6F2EH OFFDZH 3FH

Letters and the suffix must always be entered in uppercase;
lowercase will give compilation errors.

To prevent ambiguity, however, hexadecimal numbers that
start with a letter, for example FFD2H, must be preceded by
a leading zero. This ensures that the constant is taken as
a number and not an identifier. So, the hexadecimal
constant FFD2 would be written as OFFD2H.

The suffix "D" denotes a decimal long constant , i.e., a
constant that 1s compatible with LONGINTs, LONGCARDs, and
ADDRESSs. A hexadecimal constant greater than the 0FFFFH
will also be interpreted as a long constant.

Real constants contain a decimal point (period), an opticnal
fractional part, and an optional scale factor. The scale
factor is specified by the letter E (in uppercase) follcwed
by an integer which may be preceded by a sign. Examples of
real constants are:

0.0003 0.4 7.08+3 3.14E-4 0.003E-6

The E is short for "times ten to the power of". So, for

example, the following reals all represent the number
1024.0:

0.1024E4 1024.0 102400.E-2 10.24E+2

Note that commas, apostrophes or spaces cannot appear in a
numeric constant; also the scale factor for a real constant
must be constant, so 1.4En is not allowed.

6.1.3 String Constants String constants are sequences of
characters surrounded by guctes or apostrophes. This allows
quotes or apostrophes (but not both) to be contained within
the string. Examples of string constants are:

"Modula-2"
‘Pascal-type string’

"What’s up?"
rr

Note that the last example contains no characters and is
given a special name, the null string.

20

String constants that contain a single character have a
special property: they may be considered to be a character
constant as well as a string constant.

6.1.4 Operators and Delimiters These are either special
characters or reserved words. Reserved words must not (and
cannot) be used as identifiers; they are written in upper
case.

6.1.5 Reserved Words The reserved words for Modula are:

AND ELSIF LOOP REPEAT
ARRAY END MOD RETURN
BEGIN EXIT MODULE SET

BY EXPORT NOT THEN
CASE FOR OF TO
CONST FROM OR TYPE
DEFINITION IF POINTER UNTIL
DIV IMPLEMENTATION PROCEDURE VAR

DO IMPORT QUALIFIED WHILE
ELSE IN RECORD WITH

Figure 5. Modula-2 Reserved Words

In addition the reserved word FORWARD is added to the above
list for the single-pass compiler; it is not needed (and is
not available) in multi-pass compilers.

6.2 Declarations

All identifiers in a Modula program must be declared. Data
types, variables, and symbolic constant declarations are
introduced by the reserved words TYPE, VAR, and CONST,
respectively.

6.2.1 Constant Declarations Constant declarations, as
their name implies, associate a constant with an identifier.
An identifier declared this way is named a symbolic
constant. This symbolic constant may then be used in the
program in place of the constant itself. So, wherever a

constant is legal, so is a symbolic constant.

CONST
RowsOnVDU = 24;
ColsOnvVDU = 80;

21

This defines the symbolic constants RowsOnVDU and ColsOnVDU

to be 24 and 80. Symbolic constants are not limited to
integers; they can be integers, strings, sets, or
characters:
CONST
FourStars = "*%&x";

Pi = 3.1415926;
Primes = {1,2,3,5,7,11,13};
CR = 15C;

In fact, any constant expression will do the following:

CONST
CneHundred = 50 + 25 + 25;
CharsDisplayableOnVDU = RowsOnVDU * ColsOnVDU;

The last declaration shows how previously defined constants
can be used to define more constants.

Functions returning constant values known at compile-time
can be used in constant declarations. So, for example, the
following is legal:

CONST
MAXINT = MAX(INTEGER)

6.2.2 Type Declarations Type declarations are introduced
by the reserved word TYPE. This facility allows you to
define your own data types to augment the standard types
supplied by Modula.

6.2.3 Variable Declarations Variable declarations are
introduced by the reserved word VAR. All variables must be
declared. Declaring a variable associates it with a data
type and storage address. For example,

VAR
CursorX: INTEGER;
ChebyshevCoeff: REAL;

The variable CursorX is only able +to hold an integer;
ChebyshevCoeff 1is only able to hold a real. If you try to
assign a real number, say, to CursorX, the compiler will
detect it and report an error.

b jor] Modula~2/51

You can declare several variables of the same type at the
same time as follows:

VAR
CursorX, Cursor¥Y: INTEGER;

6.3 Data Types

Modula supplies a wide range of data types that allow you to
structure your data in the most appropriate way. Data types
may be divided into two groups, namely simple and
structured. Simple data types represent a single value,
whilst structured data types represent a collection of
values.

The simple data types are sometimes referred to as scalar
types. Scalar types are:

INTEGER, LONGINT
CARDINAIL, LONGCARD

CHAR

BOOLEAN

User-defined scalar types
Subrange types.

The REAL and LONGREAL types are omitted from the above list,
although they are simple types. Real values are not handled
in the same way as scalars, so, for example, you cannot
define a subrange of real values.

6.3.1 Simple Data Types Simple data +types represent a
single value. Modula provides several numeric types:
integers and cardinals represent whole numbers, and reals
represent numbers with fractional parts. In addition to
these there are types to store characters, results of
comparisons, and user defined types.

This section will describe some of the available data types;
the more specialised types will be left for later.

6.3.1.1 The INTEGER Data Type Integer values are signed,
whole numbers. The exact range of values offered depends on
the implementation and the underlying hardware.

23

6.3.1.2 The REAL Data Type Real numbers are signed
quantities that represent a number that may contain a
fraction. Again, the range and accuracy offered depends on
the implementation.

6.3.1.3 The CARDINAL Data Type A cardinal is an unsigned
integer. Therefore, the minimum value a cardinal can hold
is zero; the largest is defined by the implementation, but
it is never less than the maximum integer value.

6.3.1.4 The CHAR Data Type This type represents a
character of the hosts character set. Most computer systems
use the ASCII (American Standard Code for Information
Interchange) or IS0 (International Standards Organisation)
code; others, notably IBM, use EBCDIC (Extended Binary Coded
Decimal Interchange Code).

6.3.1.5 The BOOLEAN Data Type Boolean values are either
TRUE or FALSE, denoting logical truth or logical falsehood,
respectively. Such values are the result of comparisocons and
are mainly used to alter the flow of control in a program.

6.3.1.6 User Defined Scalar Types Modula allows you to
define a new unstructured data type that consists of an
ordered list of values. These types are scalars, but may

also be called enumerated types. For example,

TYPE
ComputerType = (Crayl, CrayXMP, Cyber205, Lilith,
PDP11) ;
VAR

Computer: ComputerType;

The variable Computer may only take one of the possible
values enumerated in ComputerType. Thus, to set the
variable Computer to the value Lilith we write:

Computer := Lilith;

Trying to set it to anything that isn’t listed in
ComputerType raises an error.

6.3.1.7 BSubrange Types Subrange types are allowed to take
values from a selected range of another type. For example,
we could classify supercomputers as follows:

24

TYPE
SuperComputerType = [Crayl..Cyber205];

VAR
SuperComputer: SuperComputerType;

This defines SuperComputerType to be a subrange of
ComputerType. The wvalues that SuperComputer may take are
Crayl, CrayXMP, and Cyber205. If you try to assign Lilith,
say, to SuperComputer the compiler will report an error.

Note that you cannot define a subrange of the REAL or
LONGREAL type, so the following is illegal:

TYPE
WaterTemperature = [0.0..100.0];

6.3.1.8 The POINTER Data Type The pointer type is used for
accessing variables that are created at runtime. The
variable that a pointer points to (or references) is called
a dynamic variable. The dynamic variable is not declared as
With all other variables; instead a pointer to the wvariable
is declared. During program execution the pointer is used
to create the dynamic variable. For example,

VAR
p: POINTER TO INTEGER;

Here, p 1is declared to be a pointer to an integer.
Therefore, the dynamic variable is of type integer and p
points to it. As yet the dynamic variable has not been
created; this is done by

Storage.Allocate(p, SIZE(p"))
This creates a new dynamic variable in a piece of unused
memory. This wvariable can then be accessed by using the
dereferencing operator ~.

p~ := 3; (* assign 3 to the dynamic integer #*)

Pointers and dynamic variables are used mainly when the size
of a data structure cannot be determined at compile time.

25

6.3.2 Structured Data Types Structured data types
represent a collection of values. There are no predefined
structured data types; you must define them yourself using
the constructs described below.

6.3.2.1 The ARRAY Data Type An array is a collection of
values, all of the same type. Each value in the array is
called an array element. The number of elements in an array
is fixed, i.e., it cannot change at run time.

There are two parts to an array declaration, the index type
and the element type. The index type defines the number of
elements in the array and how they will be accessed. The
element type defines the type of all the elements of the
array. For example, consider:

VAR AnArray: ARRAY [1..7] OF INTEGER;

The ARRAY keyword introduces the array declaration. After
this comes the index type, in this case the subrange 1 to 7.
The reserved word OF separates the index +type from the
element type, the element type being INTEGER.

The elements in the above array are accessed as follows:
AnArray([1l] AnArray[(2] ... AnArray([7]

The index type is not just restricted to subrange types, it
can be any scalar type. So, for example, we could say:

VAR
ComputerPrices: ARRAY ComputerType OF REAL

BEGIN
ComputerPrices[CrayXMP] := 4.E6;

6.3.2.2 The RECORD Data Type The record type usually
groups together related pieces of Iinformation about an
object. Unlike the array type, elements of a record
variable do not have to be of the same type. Instead of
using an index to identify the piece of data, record
variables use identifiers. The declaration

26

VAR
City: RECORD
latitude, longitude: REAL;
altitude: REAL;
population: CARDINAL
END

creates a record variable called City which contains four
elements. The elements of the record are accessed by using
"dot" notations:

City.latitude
City.longitude
City.altitude
City.population

As you can see, there are three real values in the record
and one cardinal. The order of record elements does not
matter, but it is good practice to place related items,
{such as latitude and longitude) together.

6.3.2.3 The SET Data Type A set is a collection of values,
all of which are called elements or members. A member is
either present in a set, or it is not; no member may be
present twice. A set declaration is introduced by the words
SET OF, then the base type is given. The base type defines
what members the set will have. For example,

TYPE
LetterSet = SET OF [“AY.."Z"];

CONST
Vowels = LetterSet{’aA’,’E’,’'I’,’07,'U"};
Conscnants = LetterSet{’A’..’Z'} - Vowels;

This defines LetterSet to have as its members the letters A
to 2. The first statement after BEGIN defines the variable
Vowels to be the set of letters that represent vowels. The
second statement defines the set of consonants; this is
defined to be the set of all letters (LetterSet{’A’..’27'})
with the set of vowels removed (so leaving just consonants.)
Set operators will be described later.

27

6.4 Statements

Modula-2 statements constitute the executable part of a
program; they do all the work. Executable statements are
introduced by the word BEGIN and are terminated by END, and
a semicolon is used to separate them. Modula provides
several types of statements, such as the following:

Assignment: Procedures, functions and assignments
allow you to assign values to variables.
Looping: These provide a means to execute a series

of statements more than once. There are

the simple while and repeat 1loops, the

general loop which allows multiple exit

points, and the for loop which counts the

number of times the loop is executed.
Conditionals: These allow you to alter the flow of
control in a program according to
conditions (tests). There is the IF
statement for simple conditions and the
CASE statement which allows an efficient
multi-way branch.

6.4.1 The Assignment Statement The assignment statement

gives a value to a variable; the old content of the variable
is lost. Consider

r := sqri(x*x + y*y);

The value of r is overwritten with the square root of x
squared plus y squared (this calculates the radius of a
circle, centre the origin). x, y and r are real variables.

6.4.1.1 The IF Statement The IF statement specifies that a
sequence of statements are executed only if a condition is
true. This condition is given by a Boolean (logical)
expression. For example,

IF b*b = 4.0%a*c THEN
WriteString("perfect roots")
END

The WriteString is executed if and only if b squared is
equal to 4*a*c. The word END terminates the IF statement.

28

A second sequence of statements may be executed if the
condition fails; these alternative statements are separated
from the true statements by the word ELSE. For example,

IF b*b = 4.0%a*c THEN
WriteString("perfect roots")
ELSE
WriteString("non-perfect roots")
END

Multiple conditions may also be tested for by the ELSIF
clause:

IF b#*b = 4.0%*a*c THEN
WriteString("perfect roots")
ELSIF b*b < 4.0%*a*c THEN
WriteString("complex roots")
ELSE
WriteString("real roots")
END

6.4.2 The CASE Statement The case statement can be seen as
a multi-way branch. Given one value, one of a selection of
For example, we could say:

statements will be executed.

VAR age: CARDINAL;
CASE age OF

0..17: category := juvenile
18..25: category := youngman
30..64: category := man

ELSE category := pensioner
END

Note that the case statement is started by the reserved word
CASE; then the selector for the multi-way branch is given

which is terminated by the , and, finally, the reserved word
OF.

6.4.3 The REPEAT Statement One of the characteristics of a
programmable computer is its ability to execute a series of
commands over and over again. This repetition is called a
loop. Modula provides several types of loops, the repeat
statement being one of then. Consider the following
example:

29

REPEAT
X 1= x * 2
UNTIL X > ¥

The statements between the REPEAT and UNTIL are executed at
least once. The condition, x > y, is then tested; if the
test fails, the loop is restarted from the REPEAT; if the
test succeeds, the loop finishes and control passes to the
statements following UNTIL.

6.4.4 The WHILE Statement The WHILE statement is similar
to the repeat statement; the differences are that the
condition is tested at the start of the 1loop (not at the
end) and the 1loop 1is executed if the test succeeds. For
example,

WHILE x < y DO
X 1= x % 2
END

As the condition is tested at the start of the 1loop the
statements within the loop may not be executed at all
(unlike the REPEAT loop which is executed at least once).

6.4.5 The FOR Statement The FOR statement indicates that a
statement sequence is to be repeatedly executed while
assigning a progression of values to a variable. This is
simpler than it sounds; for example, the following fragment
will write the numbers one to ten on separate lines:

FOR i := 1 TO 10 DO
WriteCard (i, 0);
Writeln;

END

The numbers one and ten are the initial and £final values,
respectively. The FOR statement is more flexible than this;
it can count up or down by any step. Note that the
statements within the loop may not be executed at all if the
initial value is greater than the final value.

For example, this won’t write anything:

30

FOR i := 10 TO 1 DO
WriteCard(i,0);
WriteLn;

END

To count down from 10 to 1, you should use the BY keyword:

FOR 1 := 10 TO 1 BY -1 DO
WriteCard(i,0);
WritelLn;

END

The number after the BY keyword has to be a constant. You
cannot use a variable. You can use BY to count up (or down)
in any step. For example,

FOR i := 10 TO 1 BY -2 DO
WriteCard(i,0):
WritelLn:;

END

The FOR loop is not limited to counting up or down by
INTEGERs and CARDINALs; it can count through characters and
user-defined enumerations. For example,

VAR ch: CHAR;

usr: (ud, ul, u2, u3, u4, us);:
FOR ch := ‘A’ TO *Z' DO ...
FOR usr := u0 TO ub BY 2 DO ...

Note that the wvalues taken by the ’‘usr’ variable in the last
example will be u0, u2, and u4, and that BY is followed by
an INTEGER constant.

6.4.5.1 The WITH Statement The WITH statement provides a
shorthand for referring to the fields of record variables.
So,

town.latitude = 29.3;
town.longitude := 13.4;
town.altitude = 401.7;
town.population := 1000;

could be rewritten using WITH as

31

WITH town DO

latitude 1= 29.3;

longitude := 13.4;

altitude t= 401.7;

populaticon := 1000;
END

NOTE: Using the WITH statement will normally produce more
efficient and compact code on this implementation.

6.5 Declarations

Every identifier that is used in a Modula-2 program must be
declared. Declarations are used to inform the compiler of
the variables you will be wusing, what wvalues symbolic
constants have, and to give names to data types.

Section 2 briefly described variable, constant, and type
declarations. This section covers declarations in more
detail.

6.5.1 Constant Declarations Modula provides a way to
associate a constant value with an identifier. The constant
value is determined only once during compilation. The word
CONST introduces a list of constant declarations. Each
declaration has the following form:

identifier = constant;

For example,

CONST
Title = "Modula-2/STarlight";
Version = 220;
e = 2.7182818;
Primes = {1,2,3,5,7,11,13};

This example shows that string, integer, and real constants
may be associated with an identifier. Declaring an
identifier to stand for a constant has several advantages:

32

- It provides better program documentation.
- It avoids "magic numbers" in a program.
- If used correctly it helps program maintenance.

- It helps the compiler to reduce code size and execution
time.

These points can be illustrated by the following program
fragment:

FROM InOut IMPORT WriteString;
FROM RealInOut IMPORT WriteReal;

CONST
radiusl = 10.0;
radius2z = 50.0;
areal = 3.1415926 * radiusl * radiusl;

area2 = 3.1415926 * radius2 * radius2;

BEGIN
WriteString("area 1
WriteString("area 2

END

"); WriteReal (areal,0);
"); WriteReal (area2,0);

o

This could be rewritten with a 1little more thought. The
number 3.1415926 1is the constant pi, the ratic of the
circumference of a circle to its diameter. We could define
a symbolic constant, say pi, to be this number. This helps
a person who has never met the constant pi before to look up
the definition of "pi" in a textbook. The same person if
presented with 3.1415926, would have some trouble to
discover what this magic number stands for.

We can now write the declarations this way:

CONST
radiusl = 10.0;
radius2 = 50.0;

pi = 3.1415926
areal pi * radiusl * radiusl;
area? pl * radius2 * radius2;

Defining a symbolic constant separates the constants wvalue

33

with its uses. For example, consider

CONST
RowsOnVDU = 24;
ColsOnVDU = 80;

CharsOnvVDU = RowsOnVDU * ColsOnVDU;

This clearly defines that CharsOnVDU is related to the two
constants RowsOnVDU and ColsOnvDU. If CharsOnvDU were
declared as

CharsOnVDU = 24 * 80;
then the relationship is not as clear.

Say we now wish to rewrite our program so it runs on a 132
column VDU. Using the first set of constants we simply
change ColsOnVDU to be the constant 132; the compiler takes
care of updating the CharsOnvDU constant. Using the second
definition of CharsOnVDU we must change the number 80 in the
declarations of ColsOnVDU and CharsConVDU. If we forget to
change one, then it’s likely that the program won’t work.

Constant declarations are
restrictions:

subject to the following

- They must contain constants only.
- Any symbolic constants used to define a new symbolic
constant must be declared before the new declaration.

The following example illustrates these points:

VAR
zZz: INTEGER;
CONST
y = z+1; - illegal, z is not a constant

circ = 10.0 * pi; = illegal, pi is not yet declared
pi = 3.1415926; - this is ok

6.5.2 Variable Declarations A variable is a place that can
hold an item of data. All variables must be declared before
they are used. Declaring a variable associates it with a
specific data type and memory address. For example, the
following declares three variables, two of type cardinal and

34

one of type integer:

VAR
i, j: CARDINAL;
x: INTEGER;

The order of declaration is not important; the above could
equally well have been written as follows:

VAR
x: INTEGER
i, j: CARDINAL;
oY even
VAR

j: CARDINAL;
x: INTEGER
i: CARDINAL;

There are some things to note about variable declarations:
- Each declaration is terminated by a semicolon; this
separates it from the other declarations that follow.
- Two or more variables of the same type can be declared by

simply separating the variable names by commas.

6.6 Simple Data Types Revisited

Every item of data in a Modula-2 program has an attribute
associated with it called its type. The type determines the
operations that can be performed (and how to interpret) the
data.

Modula has built-in types for representing integer, real,
boolean and character values. 1In addition it provides the
ability for you to define your own types, and to build more
complex data types.

Section 2 outlined the simple data types. This section
covers the simple data types in more detail.

6.6.1 Numeric Data Types Modula provides three basic
numeric types: integer, cardinal, and real. For bigger
numbers and greater precision, long versions of these types

35

are available.

6.6.1.1 The INTEGER Type Integer values are signed, whole
numbers. The range of integer values that are representable
is -32768 to 32767.

Operator Description

+ addition
- subtraction, unary minus
* multiplication

DIV division

MOD modulo

Figure 6. Basic INTEGER Operators

These operators are described fully in the next section.
Note that integer division is denoted by the DIV operator
and not the usual mathematical / operator (which is reserved
for real numbers).

Modula provides two built-in functions, ODD and ABS, which
operate on integers. The ODD function tests to see if its
argument is odd; the ABS function takes the absolute value
of its argument.

ODD(3) = TRUE ABS (3) = 3
oDD(74) = FALSE ABS(74) = 74
ODD(0) = FALSE ABS (0) = 0
ODD(-149) = TRUE ABS(-149) = 149
Figure 7. ODD and ABS Operator Examples
6.6.1.2 The CARDINAL Type Like integers, cardinals

represent whole numbers, but only positive values and zero.
The range offered by cardinals is 0 to 65535.

+ addition

- subtraction

* multiplication
DIV division

MOD modulo

Figure 8. Basic CARDINAL Operators

36

The ODD function can be applied to cardinals and its results
are the same as for integers.

Note that monadic minus is not available to negate a
cardinal and the ABS function cannot be used with a cardinal
argument; this is because cardinals can never be negative.

A positive integer number can be converted into a real
number using the FLOAT function, defined as

PROCEDURE FLOAT(x: INTEGER): REAL

FLOAT (0) = 0.0

FLOAT (43) = 43.0

FLOAT(65535) = 65535.0

Figure 9. FLOAT Operator Examples

There is no predefined function to convert a negative
integer to a real. To perform the conversion a function
procedure like this can be used:

PROCEDURE IFLOAT (x: INTEGER): REAL;
BEGIN
IF x < 0 THEN RETURN ~FLOAT (-X)
ELSE RETURN FLOAT (x)
END
END IFLOAT

Figure 10. The IFLOAT Procedure
6.6.1.3 The REAL Type Real numbers represent signed

numbers that can have a fractional part. The operators that
are applicable to reals are:

+ addition

= subtraction, unary minus
% multiplication

/ division

Figure 11. Real Operators

Note that / is used to denote real division; DIV denotes
integer or cardinal division. The MOD operator is not
defined for real numbers in Modula.

37

The function ABS will return the absolute wvalue of its
argument as for integers.

To convert a positive real number into a cardinal the TRUNC
function is used. It is defined as:

PROCEDURE TRUNC(x: REAL): INTEGER

It tgkes a real number, truncates it, and returns the
cardinal representation. It can only truncate positive
numbers; giving it a negative argument will produce a run-
time error.

TRUNC(0.0) = 0

TRUNC(3.5) = 3

TRUNC(3.0) = 3

TRUNC(100.9) = 100

TRUNC(-3.5) = error, cannot truncate negative arguments

TRUNC(1.E20) error, 1E20 is too large for cardinal range

Figure 12. TRUNC Examples

There is no way to convert a negative real into an integer.

go perform the conversion a function procedure like this can
e used:

PROCEDURE ITRUNC(x: REAL): INTEGER;
VAR 1: INTEGER;
neg: BOOLEAN;

BEGIN
neg := x < 0.0;
i := TRUNC(ABS(x));

IF x < 0.0 THEN RETURN -i
ELSE RETURN 1
END
END ITRUNC
Figure 13. The ITRUNC Procedure

NQTE: The module MathLib0 contains a function ‘entier’ which
will convert a real into an integer.

Using ITRUNC, any real number X in the range -32768.0 <= x <
+32768.0 will be successfully converted into an integer.
Apything outside this range will produce a run-time error
(if arithmetic <checking 1is on), or an invalid result (if

38

checking is off).
Rounding of a real number can be accomplished as follows:

PROCEDURE ROUND(x: REAL): CARDINAL;
BEGIN

RETURN TRUNC(x + 0.5)
END ROUND

Figure 14. The ROUND Procedure
ROUND (0.0)

ROUND(3.5)
ROUND(3.49)

(I |

]
4
3
Figure 15. ROUND Examples

Similarly, using ITRUNC, reals may be rounded and returned
as integers.

6.6.2 Ordinal Data Types

6.6.2.1 The CHAR Type A character value is any character
from the IS0 7-bit character set. Associated with each
character is an internal code which is found by using the
ORD function:

ORD (IIA")
ORD(rmur)

65
34

The CHR function is the inverse of the ORD function; it
takes an internal code and returns a character:

CHR(65)
CHR(34)

lIAII
rnr - guote mark character

The CHR function can be wused to construct character
constants that cannot be represented in the source program.
These characters are called control characters as they are
used to control output devices such as terminals. For
example, a carriage return character, with internal code 13,
can be constructed as follows:

CHR(13)

The 7-bit code is normally extended to an 8-bit code on most

39

computer systems. This allows the so-called international
character set which includes accented letters and
mathematical symbols.

6.7 Operators and Expressions

In its simplest form an expression can be a constant, a
variable, or a function call.

nrVertices - a constant
ModuleName[thisModule] - an array variable
GetWord () - a function call
list~.next - a dynamic variable

Figure 16. Simple Expressions

These elements can be combined with operators to form more
complex expressions.

An operator normally takes two operands to yield a result;
this type is called a dyadic operator or a binary operator.

For example,

age > 65
Factorial(n) + Factorial (n+1)
x — 10.3E4

There are operators that take only one operand; this type is
called monadic operators or unary operators. Modula defines
three unary operators, unary +, -, and NOT.

NOT ok
-pressure
+7

The following sections describe all operators available in
Modula.

6.7.1 Arithmetic Operators The arithmetic operators, used
with integer, cardinal and real types (including their long
counterparts) are:

40

addition, unary plus (identity)
subtraction, unary minus (negation)
multiplication

real division

DIV integer division

MOD remainder of integer division

N+

Some things to note about operators are:

- Both operands of binary operators must have the same base
type: mixed mode arithmetic is not allowed.

- The result of an operator has the same type as its
operands.

- The result of arithmetic operators must lie in the range
of values representable in the argument’s base type. If
it lies outside this range a range error is raised.

6.7.1.1 The + Operator The + operator is used for addition
of integers, cardinals, and reals (including their long
counterparts). The sum has the same type as its operands.
For example,

Real¥ + 3.0
Length + 100 + y.length

The + operator can be used with a single argument as a sign
indicator. The use of + produces a result that is identical
to its operand. For example,

+7

+Velocity
6.7.1.2 The - Operator The - operator is used for
subtraction of integers, cardinals, and reals (including
their long counterparts). The difference has the same type

as its operands. For example,

B - 4 - factor
Z - 1.003E-2

The = operator can be used with a single argument as a sign
inversion operator (negation). For example, assume x = +3,
then -x = -3 and -(-x) = +3. When used in this context the
operand must be of type integer, real, longinteger, or
longreal.

41

6.7.1.3 The * Operator The * operator is used for
multiplication of integers, cardinals, and reals (including
their long counterparts). For example,

3 % 4 = 12
(-3) * 4 = =12

3 % (-4) = -12
(=3) * (-4) = 12

6.7.1.4 The / Operator The / operator is used for division
of reals and longreals; for integer division the DIV
operator is used. The guotient has the same type as its
operands. For example,

D.75
=05 1D
-0.75

0.75

coooQo

(-4.0)
(-4.0)
Division by zero is an error: it will be trapped at compile
and run time.

6.7.1.5 The DIV Operator The DIV operator 1s used for
division of integers and cardinals (including their long
counterparts). The integer quotient has the same type as
its operands. The quotient is truncated towards zero. For

example,
7 DIV 3 = 2
(-7) DIV 3 = =2
7 DIV (-3) = =2
(-7) DIV (-3) = 2

Division by zero is an error: it will be trapped at compile
and run time.

6.7.1.6 The MOD Operator The MOD operator is used for
finding the remainder after division of integers and
cardinals (including their long counterparts). The result
has the same type as its operands. For example,

7 MOD 3 = 1
(-7) MOD 3 = 2
7 MOD (-3) = =2
(-7) MOD (-3) = =2

42

A second argument of zero is an error (as we cannot divide
by zero): it will be trapped at compile and run time.

NOTE: The modulo operator is defined by Wirth for positive
arguments only. You may find that another implementation
gives different values for negative arguments. Tc be safe,
always give MOD positive arguments.

6.7.2 Relational Operators Relational operators are used
to compare two operands for a certain condition. The two
operands can be of scalar or real type; relational operators
with set operands are described in Section 7.7.8.

The relational operators are:

> greater than

= greater than or equal to

= equal to

< less than

<= less than or equal to

<>, # less than or greater than, i.e., unegual

NOTE: The operands of relational
same base type.

operators must have the

The result of a relational operator is a boolean value, true #

or false. A true wvalue means that the condition is met;
false means that the condition isn’t met.

The results of relational operators are most useful with the
flow of control statements covered in Section 7.4.

Some examples of relational expressions are:

3 < 4 TRUE
3 =4 FALSE
3 >= 4 FALSE
3:5 <> T.21 TRUE
The relational operators can be applied to user defined

scalars:

VAR x: (red, green, blue);
IF x > red THEN ...

43

The statements after THEN will be executed if the value of x
is green or blue.

6.7.3 3

operators.

Modula manipulates sets with the set
These operators, used with all set types, are:

set union

set difference

set intersection

symmetric set difference
N set membership

H> % | +

I'he +, -, *, and / operators take two sets, both of which
have the same tvpe; the result is a set that has the same
lype as the operands.

The IN operator takes a scalar value and a set as arguments;
it returns a boolean that indicates whether the scalar is a
member of the set.

t.7.3.1 The Set Union Operator The + operator denotes set
union. Given x + y the result is the set that contains all
nembers of x and all members of y.

{1,3,5} + (5,7} = {1,3,5,7}
{1,3,5) + {1,3,5} = ({1,3,5)
{1,3) + {5]) = {1,3,5}
{1,3,5}) + (3} = {1,3,5)}
(1,3,5) + () = {1,3,5)

Some notes on set union:

-~ The operater is commutative, i.e., xty = y+x
- {} is the additive identity, i.e., x + {} = {} + x = x
- X + X =X

6.7.3.2 The Set Difference Operator The - operator denotes
set difference. Givenn x - Yy the result is the set that
containg all members of x that are not members of y.

44

{1,3,5} - (5,7} B {1,3}
{1,3,5} - {1,3,5} = {}
{1,3} = {5} = {1,3}
{1,3,5}) = {3} = {1,3,5}
{1,3,5) = {} = {1,3,5)

Some notes on set difference:

- The operator is not commutative, generally x-y <> y-x. h

-x - () =x

{3 o =
-x-x=()
6.7.3.3 The Set Intersection Operator The * operator

denotes set intersection. Given x * y the result is the set
that ceontains all members of x that are also members of y.

{1,3,5) * {5,7) = (5)

{1,3,5) * (1,3,5) = (1,3,5)}

(1,3} * {5} = {}

{1,3,5) * {3) = (3} |
{1,3,5} * {) = 4)

Some notes on set intersection:

- The operator is commutative, i.e., x*y = y*x

- xR} = (}*x = ()

- X*X = X
6.7.3.4 The Symmetric Set Difference Operator The
operator denotes symmetric set difference. Given x / y the

result is the set that contains all members of x and all
members of y, but not members of both.

{1.3,5) / {5,7} = {1,3,7}
{1,3,5} / {1,3,5} = {)
{1,3} / {5} = ({1,3,5}
{1,3,5} / (3} = {1,3}
{1,3,5) / () = {1,3,5}

tiome notes on symmetric set difference:

- The operator is commutative, i.e., x/y = y/x
- x/{r = {})/x = x
- = L)

The / operator can be defined in terms of set union and set
intersection as:
x/y = (x+y) - (x*y)

t.7.3.5 The Set Membership Operator The IN operator is
used to test whether a particular value is a member of a
set. The base type of the set must be compatible with the
scalar value. A boolean value is returned: true indicates
that the value is contained (is a member) of the set, false
indicates that it is not.

TYPE
SmallSet = SET OF [3..7];

CONST
set = SmallSet{5,7};

3 IN set = FALSE
5 IN set = TRUE
0 IN set = FALSE
10 IN set = FALSE
Figure 17. IN Operator Examples

NOTE: Values outside the base range of the set will not
produce a run-time error; instead, they return FALSE.

6.7.4 Logical Operators The logical operators take boolean
operands and return boolean results. These operators can be
used to combine the results of relational operators to form

IR

46 Modula-2/STarlight User Manual
L

The Implemented Language

more complex conditions.

The logical operatores are:

NOT, -~ legical negation
AND, & logical conjunction
OR logical disjunction

Note that the ampersand "&" is a synonym for
tilde "~" is a synonym for NOT. The

results of the
operators are summarised in Figure 18.

X Y X AND y x OR y NOT x
FALSE FALSE FALSE FALSE TRUE
FALSE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
TRUE TRUE TRUE TRUE FALSE

Figure 18. Summary of Logical Operators
6.7.4.1

only if both cperands are true.

The AND Operator

The exact definition of AND is slightly different

from the
above table, although the results are identical:

P AND g = IF p THEN g ELSE FALSE

This implies that if p is FALSE, g does not need to be
will not be) evaluated.
short-circuit operator.

(and
This type of operator is called a

This is most wuseful when the

result of the right-hand
argument would be undefined.

Consider the following:
IF (x <> 0) AND (300/x > 2) THEN ...

If both operands are evaluated when x is 0, a divide by zero
exception will occur. However, using short-circuit

evaluation the second operand is not evaluated if x is 0 as
the whole expression is known to be false.

6.7.4.2 The OR Operator The result of OR is true if either
of its operands (or both) are true.

AND, and the

The result of AND is true if and

a-2/STarlight User Manual 47
lemented Language

e OR operator is a short-circuit like

llowever, the definition of OR is:

operator AND.

p OR q = IF p THEN TRUE ELSE g

true the
whole of

i1 the first operand is
cvaluated as the
i rue.

second operand 1is not
the expression is known to be

t.7.4.3 The NOT Operator The NOT operator takes one
operand; 1f the operand is true the result is false, and
vice versa.

Hote that if x = FALSE, NOT x = TRUE, and NOT (NOT x) =
I'ALSE, i.e., NOT (NOT x) = X.
llere is an example of using the logical and relational

operators together. We can test the variable x being in the
range 1 to 10 by using:

(1 <= x) AND (x <= 10)

1o test for x being outside the range 1 to 10 we can
logically negate the above test using Nor, i.e., x outside
the range 1 to 10 is the same as NOT (x in the range 1 to
10). This can be written as:

NOT ((1 <= x) AND (x <= 10))
will

This is not the most elegant way to write the ?est: we
nimplify the above expression in the next section.

.7.5 The NOT Operator and Relations The NOT
redundant when used with a relational argument. For
cxample, NOT (x=1) is the same as x<>1. The relatlions and

their images under NOT are summarised in Figure 19.

operator is

== —

48

relation NOT relation

X =Y X <>y or y <> x
3%y X <=y Oor y > X
X <Y X >y or ¥y <= X
X <=y BN P ¥ LR

X >y X<y or y>zx

X <>y X=yY ©Oor y=%Xx

Figure 19. The NOT Operator Used with Relations

6.7.6 De Morgan’s Law A useful rule that relates AND, OR,
and NOT is De Morgan’s Law which states the equivalences:

(NOT p) AND (NOT q)
(NOT p) OR (NOT q)

NOT (p OR q)
NOT (p AND q)

Using the above two tables we can simplify the expression

NOT ((1 <= x) AND (x <= 10))

By using De Morgan’s Law we can rewrite the expression as:
NOT (1 <= x) OR NOT (x <= 10)

And by wusing the table of relations under NOT this
simplifies to:

(x < 1) OR (10 < x)

6.7.7 Relational Operators With Boolean Operands Modula
provides the operators AND, OR, and NOT for manipulating
boolean expressions; there are no operators for implication
and equivalence. Remember that the boolean type can be
defined as

TYPE BOOLEAN = (FALSE, TRUE)

Therefore, FALSE < TRUE. This relationship can be used to
simulate the missing operators; the results are summarised
in Figure 20.

X 4 x=Y X<>Yy X<Y x>y X<=Y Xx=y
I'ALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
I'ALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
Figure 20. Relational Operators with Boolean Operands

These can be interpreted as:

p <=q implication (p implies q)

q>=y implication {q implies p)

X =y eguivalence (p is equivalent to qg)
X <>y not equivalent (exclusive OR)

Although the following is legal:
IF Error <> FALSE THEN ...

it is better (and clearer) to write it as
IF NOT Error THEN ...

The following table gives a guideline for alternative
nxpressions:

p = TRUE
p = FALSE NOT p
p <> TRUE NOT p
p <> FALSE P
.7.8 Relational Operators with Set Operands The

relational operators can take set operands. The results are
defined as:

X =y ¥ 1s the same set as y

X <>y X is not the same set as y

X <=y X is included in (a subset of) vy,
or y includes x

X >=y y is included in (a subset of) x,

or X includes y

t.7.8.1 The Set Equality Operator The = operator is
defined as the set equality operator; it returns true if and
only if the sets x and y contain exactly the same members:

50

{1,3,5} = {1,3,5) TRUE
{1,3,5} = (1,3,5,7) FALSE
{1,3} = {1,3,5) FALSE

6.7.8.2 The Set Inequality Operator The <> is the set]
inequality operator; it returns true if the set x contains|
one or more members that are not members of y (and vicel
versa):

{1:3:8) <= {0.4.5) FALSE
{1,3,5) <5 (1,3,5,7) TRUE
{1,3} <> {1;3;5) TRUE
6.7.8.3 The Improper Set Inclusion Operators The <=4

operator is the improper set inclusion operator. Given x <=|
y, the result is true if every member of x is also a membe
cf y. Note that y may contain members that are not in x.

{1!3f5} <:

{1,3,5} TRUE
{1;9.5} == [1,3;5,7% TRUE
{1,3,5} <= (1,3} FALSE, 5 not a member of {1,3,5]

The >= operator denotes improper set inclusion as well, but]
¥ >= y means "y is included in (a subset of) x".

{1,3,5} >= {1,3,5} TRUE
{1,3,5}) »= {1,3,;5,7} FALSE, 7 not a member of {1,3,5)
{1,3,5) >= (1,3} TRUE

The empty set is contained in all sets, i.e.,

{}) <= x 1is always true
x >= {} is always true

6.7.8.4 The Proper Set Inclusion Operators The proper set]
inclusion operators < and > are not available in Modula.|
The main difference between proper and improper set!
inclusion is the case when the two sets being compared are
the same. In this situation, improper set inclusion gives
true, and proper set inclusion gives the value false. When
the two sets differ, proper and improper set inclusion givel
the same results.

51

Case where sets are the same:

{1,3,5} < £1,3,5) FALSE
{1,3,5}) <= (1,3,5} TRUE
{1:3:B) = {1,3;:5} FALSE
{1,3,5} >= {1,3,5) TRUE

(1,3,5) < {1,3,5,7} TRUE
{(1,3,5} <= {1,3,5,7) TRUE
{1:3.8) & {1,8,5.7) FALSE
{1,3,5} >= {1,3,5,7) FALSE

Definition: A is a proper subset of B if and only 1if all
members of A are contained in B and B differs from A.

The proper set inclusion operators can be simulated by:

X <y as (x <> y) AND (x <= Yy)
X >y as (x <> y) AND (x >= y)

6.8 Scope and Visibility

Modula-2, like many other modern programming languages, is a
block-structured language. Block structure has proved to be
useful for organising programs; it allows identifiers to be
declared within a procedure body, and for those identifiers
to be invisible outside the procedure.

Modula=-2 allows you to define the scope and visibility of
identifiers. Scope 1s the lifetime of the identifier, and
visibility is where the identifier can be used. The
following sections describe the ways in which identifiers
can be controlled.

6.8.1 Local Identifiers The simplest way we can control
the scope and visibility of an identifier is by a local
declaration. This type of declaration can be used in
modules and procedures, but we will only consider procedures
here. An example of a local declaration is:

52

PROCEDURE Foolish;
VAR i: INTEGER;
BEGIN
i =7
END Foolish

The declaration of i lies within the procedure, and is said
to be a local variable of procedure Fooclish.

We can now define the visibility of 1. This variable is
visible only between the BEGIN and END; outside this range
any reference to i will be flagged as an error.

When Foolish is called, the variable is created:; when the
END (or RETURN) is encountered, the variable is destroyed.
This defines the scope of i. All Foolish does is to create
a variable, assign 7 to it, and then destroy it.

Note that you cannot declare two identifiers with the same
name in the same scope, so, for example, the following is
invalid:

PROCEDURE Error;
CONST
v = 200;
VAR
v: INTEGER;

As it happens, the scope and visibility of a local
declaration extend over the same region, i.e., from BEGIN to
END. 1In a later section we will see how to exercise more
control of visibility and scope of identifiers.

Using the definition of scope above, we can declare a
variable that lives throughout the whole of a program.

53

MODULE M;

VAR i: INTEGER; (* a global variable %)

PROCEDURE Aj;)

VAR j: INTEGER; (* a local variable *)
BEGIN

j =i
END A;

BEGIN
X 1= 33
A

END M.

The variable i is said to be global as it can be accessed at
anytime and anywhere within the module M; it never loses its

value.

54 Modula-2/5

- Mai

Langusa

7. Differences between Revision 2 and 3

This section describes the differences between the different
revisions of the "Report on The Programming Language
Modula-2". These reports are published in the book
"Programming in Modula-2", second and third corrected
edition, by Professor Niklaus Wirth.

The language changes are summarised in "Revisions and
amendments to Modula-2, N. Wirth 1.2.84/14.5.84".1

7.1 Subrange Change

(Rev. 2, p. 145, Rev. 3, p. 148)

The syntax of the subrange type is changed from

SubrangeType =
"[" ConstExpression ".." ConstExpression "]".
to
SubrangeType =
[ident] "[" ConstExpression ".." ConstExpression "]".

The optional identifier allows the specification of the base
type of the subrange, e.g., INTEGER [0..79].

7.2 Case Statement Change

(Rev. 2, p. 153, Rev. 3, p. 157)

The syntax of the case statement and variant
declaration are changed from

reccrd

case = CaseLabellList ":" StatementSequence.
variant = CaseLabellist ":" FieldListSequence.

1. This paper can be found in Modula-2 News, issue 0, Octo-
ber 1984.

55

case = [CaselabelList ":" StatementSequence].
variant = [CaseLabelList ":" FieldListSequence].

The inclusion of the empty case and empty variant allow the

insertion of superfluous bars, similar to the empty
ntatement allowing the insertion of superfluous semicolons,

CASE file.state OF
permanent: Close(file,reply)
tentative: Remove(file,reply) |
ELSE
END

/.3 Field List Change

(Rev. 2, p. 147, Rev. 3, p. 149)

The syntax of the variant record type declaration with
missing tag field is changed from

FieldList ... "CASE" [ident ":"] gualident "OF"

FieldList = ... "CASE" [ident] ":" qualidenty "OF"
This means that declarations like

CASE BOOLEAN OF ...
must be rewritten as

CASE : BOOLEAN OF ...

The fact that the colon is always present makes it evident
which part, if any, was omitted.

56

8. Internal Data Formats

This section describes the way that data is represented for
each data type. This information is specific to the
Modula-2 compiler provided, and should not be taken as a
guide for all implementations.

For the 68000 processor, a byte is eight bits, a word is 16
bits, and a longword 1is 32 bits. Quadwords are 64 bits
wide, but are not directly supported by the 68000; the
quadword is only used for representing longreal values and
is handled by special code sequences.

8.1 Character Representation

A character requires one byte of storage; the interpretation
of the bits is character set dependent. The range offered
by the character type is 0cC..377C inclusive, i.e.,
CHR(0) ..CHR(255) . Note that if a 7-bit code is used, then
the effective range is 0C..177C, the eighth bit is ignored.

8.2 Boolean Representation

Boolean values require one byte of storage. The wvalue one
represents TRUE, and zero represents FALSE.

8.3 cCardinal Representation

Cardinal values are represented as an unsigned 16-bit binary
number and require two bytes of storage. The range offered
by cardinals is 0 to 65535 inclusive.

byte |0
bit

57

#.4 Integer Representation

Integer values are represented as a two’s compliment 16-bit
hinary number and require two bytes of_storage. The range
offered by integers is -32768 to +32767 inclusive.

byte

0 1 \
bit

76543210 |76543210
o fmm————— +
sbbbbbbb bbbbbbbb\

A

#.5 Long Cardinal Representation

Ccardinal values are represented as an unsigned 16-bit binary
number and require two bytes of storage. The range offered
by cardinals is 0 to 4294967295 inclusive.

byte |0 1 2 3
bit |76543210|76543210
Fommm e | m fmm—————— o ————— +
bhbbbbbbb bbbbbbbblbbbbbbbb bbbbbbbb
~ P
+|=————— e ————— e ————— fmm————— +
msb 1sb

8.6 Long Integer Representation

Integer values are represented as a two’s compliment 32-bit
binary number and require two bytes of storage. bThe range
offered by integers is -2147483647 to +2147483647 inclusive.

58

byte |0 1 2 3
bit |76543210(76543210

Fmmm e | e Fmmm————— o —————— +

‘sbbbbbbb bbbbbbbb‘bbbbbbbb‘bbbbbbbb
Eaat A

+| | -=—==--= o ————— Fem—————— Fmm———— +
msh 1sb
sign bit

8.7 User Defined Scalar Types

Depending on the number of items in the type, user defined
scalars will occupy either one or two bytes. If the number
of enumerated items for the type is 256 or less, one byte of
storage will be used; two bytes of storage will be used if
there are over 256 items. The first enumerated item is
allocated the value zero, and subsequent items are allocated
ascending values.

8.8 BSubrange Representation

Subrange types occupy the same number of bytes as their base
type. For example, the subrange [0..9] will occupy two
bytes as it has a cardinal base type (even though it could
be represented in one byte).

8.9 Pointer Representation

Pointers are represented as physical 68000 addresses. They
require four bytes of storage. The 68000 has a 24-bit
address bus and uses only the low three bytes of the
address; the high order byte is ignored. The 68020 has a
32-bit address bus and uses all 32 bits for the address. TIf
code is to be compatible between 68000 and 68020 processors
do not use the high order byte to store extra information.

8.10 Real Representation

Real numbers conform to that recommended by the IEEE-CS
Floating Pecint Arithmetic working group. A real number is
represented as a 32-bit vector and requires four bytes of

ntorage. Real numbers are always normalised.

byte |0 1 2 3
bit |76543210|76543210
Fmmm————— e ————— tmm————— fom e +
seeeeceee | emmmmmmn mmmmmmmmkmmmmmmmm
S A i
+| | ~————— Fof | e e i ‘+
mantissa msb mantissa lsb
exponent 1sb
exponent msb
mantissa sign
bit: 31 = gign of mantissa, 0 = +ve, 1 = -ve
30-23 = exponent, excess 127
22-00 = mantissa, binary point assumed between

bits 23 and 21.

The number zero is represented by an exponent of zeroc, the
mantissa and mantissa sign bit are ignored. HNote that the
number =0 may arise with an exponent of zero and a mantissa
sign bit of one. This case is explicitly checked for by the
real math subroutines. Real operations are always rounded.
overflow is always detected and results in a run—time‘error:
underflow produces zerc and computation continues with no
error.

The range of numbers that can be represented is
approximately:

38 =39
1.7 % 10 to 5.8 % 10

The precision around unity is

~23 -7
1 +/= 2 i.e., 1 4/- 1.2 * 10

giving seven significant digits.

60 Modula-2/ST

8.11 Long Real Representation

Longreal numbers conform to that recommended by the IEEE-CS
Floating Point Arithmetic working group. A longreal number
is represented as a 64-bit vector and requires four bytes of
storage. Longreal numbers are always normalised.

byte |0 1 2 3 4 5 6 7
bit |76543210|76543210
e s aa it S e &
|seeeeeee eeeemmmm mmmm|mmmm|mmmm‘mmmmlmmmm|mmmm
A AA ~
+| | ==————— d=—| | === s Attt B e e
mantissa msb mantissa 1sb
exponent lsb
exponent msb
mantissa sign
bit: 63 = sign of mantissa, 0 = +ve, 1 = -ve
62-52 = exponent, excess 1023
51-00 = mantissa, binary point

assumed between bits 52 and 51.

The number zero is represented by an exponent of =zero, the
mantissa and mantissa sign bit are ignored. Note that the
number -0 may arise with an exponent of zero and a mantissa
sign bit of one. This case is explicitly checked for by the
longreal math subroutines. Real operations are always
rounded. Overflow is always detected and results in a run-
time error; underflow produces zero and computation
continues with no error.

The range of numbers that can be
approximately:

represented is

307 -308
8.9 * 10 to 1.1 * 10

The precision around unity is

-52
1 g 2 .., 1 #/= 2,2 #

giving sixteen significant digits.

nual 61

.12 Set Representation

sets are represented in one word as:

byte |0
bit

element 15 element O

#.13 Array Representation

According to the storage size of the element, arrays can be
represented in two formats. If each elemgnt occupies one
byte of storage, successive byte addresses will be used to
hold the elements. So, for example, arrays of charactgrs
will use adjacent memory locations. All other arrays will
be stored consecutively and word aligned.

) - 63
9. The Syntax of Modula-2 45 FieldListSequence =
46 FieldList {";" FieldList}.
1 ident = 47 FieldList =
2 letter | (letter | digit}. 48 [IdentList ":" type |
3 number = 49 WCASE" [ident] ":" qualident "OF"
4 integer | real. 50 variant {("|" variant}
5 integer = 51 ["ELSE" FieldListSequence] "END"].
6 digit {digit) | 52 variant =
7 octalDigit {octalDigit) ("B" | "c") | 53 [CaselabellList ":" FieldListSequence].
8 digit (hexDigit} "H". 54 CaseLabellist =
9 real = 55 CaseLabels {"," Caselabels}.
10 digit {digit} "." {digit)} [ScaleFactor]. 56 Caselabels =
11 ScaleFactor = 57 ConstExpression [".." ConstExpression].
12 BEN [ngw | owom) qigit {digit). 58 SetType =
13 hexDigit = 59 N"SETH" "OF" SimpleType.
14 digit | nan] ngpn | e I wpw | ngpn | ngn 60 Pointer‘l‘ype i
15 digit = 61 "POINTER" "TO" type.
16 octalDigit | rgn | - L 62 ProcedureType =
17 octalDigit = 63 "PROCEDURE" [FormalTypeList].
18 won 1 nyn I non [namn l ngn i ne] negw i Lk R LI 64 FormalTypeList i
19 string = 65 "(" [[VAR] FormalType
20 fnr {charactery) "¢ | nrw fcharacter}) "/n, 66 {"," [VAR] FormalType}]
21 qualident = 67 wym o [":m gualident].
22 ident {("." ident}. 68 VariableDeclaration =
23 ConstDeclaration = 69 IdentList ":" type.
24 ident "=" ConstExpression. 70 designator =
25 ConstExpression = 71 qualident {u.u ident | n[u EXpLiSt IU]!I | "Afl}-
26 expression. 72 ExpList =
27 TypeDeclaration = T3 expression {"," expression}.
28 ident "=" type. 74 expression = .
29 type = 75 SimpleExpression [relation SimpleExpression].
30 SimpleType | ArrayType | RecordType | SetType | 76 relation =
31 PointerType | ProcedureType. 77 (L[] I ngn 1 Nen '| Nt I nen] ns—n | Mewn | WIN",
32 SimpleType = 78 SimpleExpression =
33 qualident | enumeration | SubrangeType. 79 ["+" | "-"] term {AddOperator term}.
34 enumeration = 80 AddOperator =
35 !I(l! IderltList u)u' 81 nn | n_n l n"OR",
36 IdentlList = 82 term =
37 ident ("," ident}. 83 factor {MulOperator factor}.
38 SubrangeType = 84 MulOperator =
39 [qualidentj "[" ConstExpression "..% 85 Mgw | mymo | wpTy" | YMOD"™ | "AND".
40 ConstExpression "]". 86 factor =
41 ArrayType = 87 number | string | set |
42 "ARRAY" SimpleType ("," SimpleType) "OF" type. 88 designator [ActualParameters]
43 RecordType = 89 " (" expression ")" | "NOT" factor.
44 "RECORD" FieldListSequence "END". 90 set =

64

91

93
94
95
96

a8
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

[qualident] "{" [element ("," element}] "}".
element =
expression [".." expression].
ActualParameters =
"(" [ExpList] ")",
statement =
[assignment | ProcedureCall |
IfStatement | CaseStatement
WhileStatement | RepeatStatement |
LoopStatement | ForStatement |
WithStatement | "EXIT" |
"RETURN" [expression]].
assignment =
designator "=" expression.
ProcedureCall =
designator [ActualParameters].
StatementSequence =

statement (";" statement}.
IfStatement =
"IF" expression "THEN" StatementSequence
{"ELSIF" expression "THEN" StatementSequence)
["ELSE" StatementSequence] "END".
CaseStatement =
"CASE" expression "OF" case {"|" case)
["ELSE" StatementSequence] "“END".
case =
[CaselabelList ":" StatementSequence].
WhileStatement =

"WHILE" expression "DO" StatementSequence "END",
RepeatStatement =

"REPEAT" StatementSequence "UNTIL" expression.
ForStatement =

"FOR" ident ":=" expression "TO" expression

["BY" ConstExpression] "DO"

StatementSequence "END".
LoopStatement =

"LOOP" StatementSequence "END".
WithStatement =

"WITH" designator "DO" StatementSequence "END".
ProcedureDeclaration =

ProcedureHeading ";" block ident.
ProcedureHeading =

"PROCEDURE" ident [FormalParameters].
block =

{declaration} ["BEGIN" StatementSequence] "END".

declaration =

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
168
170
171

"CONST" {ConstDeclaration ";"}

"TYPE" (TypeDeclaration ";"}
"YAR" (VariableDeclaration ";"} |
ProcedureDeclaration ";" |
ModuleDeclaration ";".
FormalParameters = _
" (" [FPSection {";" FPSectionj]
mym u:nm cgualident].

FPSection =

["VAR"] IdentList ":" FormalType.

FormalType =

["ARRAY" "OF"] gualident.
ModuleDeclaration =
"MODULE" ident ([priority] ":"

{import} (export} block ident.

priority =

"[" ConstExpression "]}".

export =

"EXPORT" ["QUALIFIED"] IdentList ";".

import =

["FROM" ident] "IMPORT" IdentList ";

DefinitionModule =

"DEFINITION"

{import}
definition =

"CONST" {ConstDeclaration ";")

"TYPE" {1dent [il:II type} II;II}
"YAR" (VariableDeclaration ";"} |
ProcedureHeading ";".

ProgramModule

"MODULE" ident [priority] ":"
{import} block ident ".".

CompilationUn

it =

DefinitionModule |

["IMPLEMENTATION"]

"MODULE" ident ";
{definition} "END" ident ".

l

ProgramModule.

66

10.

101

10
11
12
13

15
16

18
19
20
21
22

24
25

27
28
29
30

32
33

34

36
37
38
39
40
41
42
44

Modula-2 Compiler Error Codes and Restrictions

Syntax Errors

identifier expected
comma expected
semicolon expected
colon expected

e omy

) right parenthesis expected
] right bracket expected

} right brace expected

= equal sign expected

:= assignment expected

END expected

(left parenthesis expected

OF expected

TO expected

DO expected

UNTIL expected

THEN expected

MODULE expected

illegal digit or number too large

IMPORT expected

factor starts with illegal symbol

%gentifier, (, or [expected

identifiexr, ARRAY, RECORD, SE

e X ; . T, POINTER, PROCEDURE, (,
Type followed by illegal symbol

statement starts with illegal symbol
declaration followed by illegal symbol
statement part is not allowed in definition module
export list not allowed in program module

EXIT not inside a LOOP statement

illegal character in number

number too large

comment without closing #*)

expression must contain constant operands only
control character within string

10.2

50

10.3

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10.4

66
67

68
69
70
i
72

73

74
75
76
77
78

79
80
81
82

67

Undefined
jdentifier not declared or not visible

Class and Type Errors

object should be a constant

object should be a type

object should be a variable

object should be a procedure

object should be a module

type should be a subrange

type should be a record

type should be an array

type should be a set

illegal base type of set
incompatible type of label or of subrange bound
multiply defined case (label)

low bound > high bound

more actual than formal parameters
fewer actual than formal parameters

Mismatch between Parameter Lists in Definition and in
Implementation Modules

more parameters in implementation than in definition
parameters with equal types in implementation have
different types in definition

mismatch between VAR specifications

mismatch between type specifications

more parameters in definition than in implementation
mismatch between result type specifications

function in definition, pure procedure in
implementation
procedure in definition has parameters, but not in
implementation

code procedure cannot be declared in definition medule
illegal type of control variable in FOR statement
procedure call of a function

identifiers in heading and at end do not match
redefinition of a type that is declared in definition
part

imported module not found

unsatisfied export list entry

illegal type of procedure result

illegal base type of subrange

68

a3

85
86
88
89

10.5

20

91
92
93

95
96

98
99

10.6

100

10.7

101
102
103
104
105
106
107
108
109

110
111
112
113
114
115

116

illegal type of case expression

writing of symbol file failed

keys of imported symbol files do not match
error in format of symbol file

symbol file not successfully opened

procedure declared in definition module, but not in
implementation

Implementation Restrictions of Compiler

in {a..b}, if a is a constant, b must also be a

constant

code procedure can have at most 8 bytes of code
too many cases

Foo many exit statements

index type of array must be a subrange

subrange bound must be less than 2715

too many global modules

too many procedures in definition module

too many structure elements in definition module
too many variables or record too large

Multiple Definition

multiple definition within the same scope

Class and Type Incompatibilities

illegal
illegal
illegal
illegal
illegal
illegal use of
illegal use of module

gonstant index out of range

indexed variable is not an array, or the index has
wrong type

record selector is not a field
dereferenced variable is not a
operand type incompatible with
operand type incompatible with
x IN y: type(x) # basetype(y)
type of x cannot be the basetype of a
a set
fa..blz

of
of
of
of
of

use
use
use
use
use

type
procedure
constant
type
procedure
expression

the

identifier
pointer

sign inversion
NOT

set, or y is not

type of either a or b is not equal to the base

117
118
119
120
121
122
123
124
125
126
E27
128
129

130

131
1.32
133
134
135

136
137

139
140
141
142
144
145
146
147

10.8
150
10.9
200
201
202

203
204

69

type of the set
incompatible operand types
operand type incompatible
operand type incompatible
operand type incompatible
operand type incompatible
operand type incompatible
operand type incompatible
operand type incompatible
operand type incompatible with OR

operand type incompatible with relation

procedure must have level 0

result type of P does not match that of T
mismatch of a parameter of P with the formal type
of T

procedure has fewer parameters
list

procedure has more parameters than the formal type list
assignment of a negative integer to a cardinal variable
incompatible assignment

assignment to non-variable

with *
with /
with DIV
with MOD
with AND
with +
with -

list

than the formal type

type of expression in IF, WHILE, UNTIL clause must be
BOOLEAN

call of an object which is not a procedure

type of VAR parameter is not identical to that of

actual parameter

type of RETURN expression differs from procedure type
illegal type of CASE expression

step in FOR clause cannot be 0

illegal type of control variable

incorrect type of parameter of standard procedure
this parameter should be a type identifier

string is too long

incorrect priority specification

Name Collision
exported identifier collides with declared identifier

Implementation Restrictions of System

(not yet implemented)

integer toc small for sign inversion
set element outside word range
overflow in multiplication

overflow in division

70

205
206
207
208
209
210
211
212

213
214
215
216

222
223
224
225
226
230
231
232
234
235
236
237
238
239
240
241
244

division by zero, or modulus with negative value
overflow in addition

overflow in subtraction

cardinal value assigned to integer variable too large
set size too large

array size too large

address too large (compiler error?)

character array component cannot correspond to VAR
parameter

illegal store operation (compiler error?)

set elements must be constants

expression too complex (stack overflow)

double precision multiply and divide are not
implemented

output file not opened (directory full?)

output incomplete (disk full?)

too many external references

too many strings

program too long

expression not loadable (implementation restriction)
expression not addressable (implementation restriction)
expression not allowed (implementation restriction)
register reservation error

illegal selector for constant index / field

too many nested WITH (> 4)

illegal operand (implementation restriction)

illegal size of operand (implementation restriction)
type should be LONGREAL

parameter should be dynamic array parameter

illegal type for floating point operation
implementation restriction for floating point
comparison

