
SeismicHandler

K. Stammler

27 April 1992

Contents

1 General Information 1

2 The Command Line 1

3 Translation of Expressions 2

4 Information Entries 3

5 Trace Addressing 7

6 Trace Filtering 8

6.1 FFT Filters . 8
6.2 Recursive Filters . 10
6.3 Tabulated Filters . 11
6.4 Special Filters . 12

7 Scaling of Amplitudes 13

8 Command Procedures 15

8.1 A first example . 15
8.2 Command Parameters . 16
8.3 Variables in SH . 17
8.4 The Command calc . 18
8.5 Loops . 20
8.6 Execution Flags . 22
8.7 Debugging Tools . 23

9 Internal Variables 24

10 Output Attributes 25

11 SH Paths and Input Files 27

12 Travel Times 27

13 Event Locations and Beams 29

14 Notes for UNIX Versions of SH 31

1

1 General Information

SeismicHandler (SH) is a tool for analysing digital seismograms. It can be used for
the analysis of earthquake records as well as for examining seismogram sections in
refraction seismology. The program was developed during the work at my PhD at
the SZGRF in Erlangen. Excluding graphic interfaces it now consists of roughly
40,000 lines of source code, written in ANSI C. The current version was developed
on ATARI ST/TT and has been exported to a MicroVAX and to Sun computers,
so the portability should be guaranteed.

The program uses dynamic storage allocation. The length of the traces SH can
hold in memory is limited only by the RAM size of the computer. The maximum
number of traces in memory is currently limited to 300. Trace editing functions
such as spike removal, baseline correction or polynomial interpolation are available.

Although SH will run on a Tektronix terminal, it can more conveniently be used
on a window system. Currently implemented window graphics interfaces are X–
Window (tested on VAX and SUN), VWS (VAX/VMS window system) and GEM
(ATARI). On a window system you have at least two different windows, one dialog
window for entering commands and a second for graphic output. SH is able to
handle up to seven windows, but you will rarely use more than three. It is, for
example, convenient to open a separate window for particle motion diagrams.

The user interface of SH is a command language designed specifically for pro-
cessing seismic data. Command lines are typed in interactively or may be read from
a file (command procedure). Dialog boxes, pop–up or pull–down menues have not
been implemented due to the incompatibility of different graphics interfaces.

There is a help text available for each SH command. It can be requested inter-
actively by the help command. If you create new commands you can update the
help library just by adding a help text file to the help directory.

2 The Command Line

The command interpreter parses each command line by processing two steps:

1. split up the command line in words using blanks, semicolons and slashes as
terminators. Words are separated either by one or more blanks or by a single
semicolon or by a single semicolon and additional blanks or by a slash which
may be preceded by blanks. Two consecutive semicolons or two semicolons
with only blanks in between denote an empty word.

2. translation of each word. A description of the translation process is given in
section 3.

All words which were separated by a slash (”/”), are identified as qualifiers (see
below). Qualifiers are treated separately and do not count as parameters. Besides
these qualifiers the first word is regarded as the command verb, the others as param-
eters numbered from 1 to N. N ranges from zero to fifteen. Empty words (see above)
result in an empty parameter. Note that the first parameter can be separated from
the verb by a semicolon as well. That means if you want to pass an empty first
parameter and a second parameter par to a command verb verb, you have to type
verb;;par and not verb;par, where par is regarded as the first parameter.

Qualifiers are most often used as switches, using their presence as one state of
the switch, their absence as the other. Such simple qualifiers /SimpleQual consist
of the slash (”/”) and the name of the qualifier. However, on some commands you
may pass valued qualifiers /ValuedQual=value. The value value is appended to
the valued qualifier with a ”=”-character in between. There is a maximum number

2

of 5 qualifiers per command permitted. A complicated example of a command line
is

verb par1;par2 ;; par4/SimpleQual par5 par6 /ValuedQual=val.
The exclamation character ”!” is regarded as the end of the command line. Any
characters following it are ignored and may be used as a comment on the command
line. A command line beginning with the exclamation character is equivalent to an
empty line.

3 Translation of Expressions

As it was mentioned in the previous section, the command parser translates each
word of the given command line if possible. The translation process is applied if the
word starts with one of the following non–alphanumeric characters: " # $ % _ ^ |

The ”|”–characters are used for concatenation of subexpressions, which may be
translated itself before. The construction |<sub1>|<sub2>|<sub3>|, for example,
results in a concatenation of the three subexpressions <sub1>, <sub2> and <sub3>.
There is a maximum of 10 subexpressions which can be concatenated within one
command line.

All others of the previously listed characters require either an indexed or a non–
indexed name to follow. A non–indexed name is just a string of alphanumeric
characters <name>, an indexed name consists besides the name an index string in
paranthesis <name>(<index>). Now follows a list of valid translatable expressions:

"<name> Expression is replaced by the current value of the local or global variable
<name>. See section 8.3 for detailed information about variables in SH. <name>
must be a defined variable name. See command sdef.

#<name> If <name> is a number between 1 and 15 the expression is replaced by the
value of the <name>–th parameter passed to the current command procedure
(see section 8). If <name> equals the string params it is replaced by the
total number of parameters passed to the command procedure. Any other
expression accesses qualifiers of the command line which called the current
procedure. For example, the word #example is replaced by

• the string _EXISTSNOT_ if the qualifier /example was not specified.

• the string _NOVALUE_ if the qualifier /example was specified without
value.

• the value qualvalue if a valued qualifier /example=qualvaluewas spec-
ified.

$<name> This evaluates internal variables. An example is $dsptrcs which returns
the current number of traces on the display. A complete list of all internal
variables is given in section 9.

%<file>(<line>) Returns the <line>–th line of the text file <file>. If the paran-
theses and <line> are omitted the first line of <file> is returned. A value of
0 for <line> returns the total number of lines in <file>. If the file extension
is not specified it is assumed to be .stx which is the default extension for SH
text output files (echo command). Please make sure that the text file doesn’t
contain lines longer than 132 characters. Otherwise the line counting won’t
be correct.

∧<info>(<trace>) Returns the value of the info entry <info> of the <trace>–
th trace on display (counting from bottum up). If the trace number and

3

the parantheses are omitted the first trace is accessed. As an example, the
expression ^delta(3) is replaced by the sample distance of the third trace on
display. For detailed information about info entries see section 4.

<info>(<start>:<end>) Such an expression is translated only if it is found in
place of a trace list parameter. It selects all traces which have an <info>–
value between <start> and <end>. A more detailed explanation is given in
section 5.

In an indexed name both subexpressions (<name> and <index>) itself can be of
the above (non–indexed) type. As an example, the expression %#1("cnt) is replaced
by the line number cnt of a text file, whose name is passed as the first parameter
to the current command procedure.

4 Information Entries

Usually there is a lot of information about a seismogram besides the sample data
itself. Some examples are the length of the trace, the sample distance, the recording
station and component name. All these information values and many more can be
stored in the q–files, the preferred data format of SH. The two most convenient
issues of SH concerning the q–file format are (i) the accessibility for reading and
writing of each of these information values through SH by descriptive names and
(ii) the possibility of defining your own information entries for the q–files (including
their names).

To use the information entries you don’t have to know much about the q–file
format, but you should know a little about how SH accesses them. The most
important thing about information entries in q–files is, that they have a type (called
q–type) and a number (called q–number). For your convenience there is a name
assigned to each information entry (called infoname), which SH can translate
into q–type and q–number to identify the information uniquely. But there is a
problem concerning the execution speed. If SH would read the Q-file header on each
read–access to any of the information entries, this would slow down the program
drastically. A write–access is even worse, because SH would have to rewrite the
whole Q–header file. For this reason SH stores frequently used information entries
for each trace in memory. That means that every infoname does not only point to
a q–type and a q–number, but as well to a type (called sh–type) and an index
(called sh–index) in memory. The sh–index is different from q–number, because
the sh–index controls whether or not the information entry is stored in memory
(see below). So you can change the set of information entries hold in memory by
changing their sh-index numbers without changing the q–numbers. It is necessary
to distinct between q–type and sh–type, because there exist more sh–types than
q–types. That means, some sh–types do not exist on q–file and are converted to
an existing q–type to store it on q–file. For example the sh–type time is stored
as a string q–type.

On a read–access to an information value SH translates the given infoname

to sh–type and sh–index. By the value of sh–index SH can tell whether the
information is hold in memory. If this is the case, SH takes the information found
in memory, it doesn’t touch the information in the q–file. If the information is not
found in memory, SH determines q–type and q–number and reads it from q–file.

Any write–access (command set) to information values changes only values in
memory by default. If the information is not found in memory, SH doesn’t change
anything. Only on explicit request (command set/file) SH changes information
entries on file (and in memory if it is there as well).

4

Some information entries do not exist on q–file but are hold in memory. These
entries are created when the trace is read or generated in any other way. This is
useful, for example, for entries like minimum and maximum amplitude of a trace or
any information concerning the display, like time origin, vertical position, display
attributes, normalization factors and so on.

As already mentioned, the sh–index controls the storage type of the information
entry. There were mentioned three storage types of entries. These are the frequently
used information entries stored in q–file and hold in memory (called auto–load

entries, because they are loaded automatically into memory when a trace is read in),
the rather slow accessible entries stored in q–files only (called file–only entries)
and the temporary information entries, which are hold in memory only (called
mem–only entries). For each sh–type there is a different but fixed number of
entries (called maxmem) which can be hold in memory. This number includes the
mem–only entries which are predefined and cannot (or at least should not) be
changed. Therefore remains a smaller number (called maxauto) of auto–load

entries which are definable by the user. In detail the index structure is like this: all
entries with an sh–index ranging from 0 to maxauto-1 are auto–load entries,
all entries from maxauto to maxmem-1 are mem–only entries, all entries greater
or equal to maxmem are file–only entries. Note that SH supports only sh–index

numbers smaller than a number maxfile. The values of the numbers maxauto,
maxmem and maxfile for each entry type and all currently defined information
entries including their sh–index and q–number can be listed by the SH command
entry list outfile.txt. Then a file outfile.txt is created and typed on the
current output window of SH.

Remember that the sh–index is an SH–internal number and does not appear in
q–files in any way. For the identification of an entry, only the q–number is decisive.
This allows you to change the set of entries which are used as auto–load from one
SH session to another.

Now follows a complete list of all available entry types (all are valid as sh–types
and most of them are valid q–types)

long sh–type and q–type. 32–bit signed integer value.

integer sh–type and q–type. 16–bit signed integer value.

byte sh–type only, its converted to integer type on q–files. 8–bit signed
integer value.

real sh–type and q–type. Real number in floating point or exponential
format.

string sh–type and q–type. Character string containing any printable char-
acter except tilde (”~”).

char sh–type and q–type. Single printable character (no tilde ”~” permit-
ted).

time sh–type only, its converted to string type on q–files. Absolute time
specification, containing date and time.
Example: 23–JUN–1989 23:30:00.000

flag sh–type only, its converted to char type on q–files. Two–valued entry,
possible values are yes and no.

Since you can create your own information entries, there are predefined only the
entries which are internally used by SH. You should not change the sh–index or
the q–number of any of these predefined entries, even if you can. If you do so, you

5

will slow down the program (in the best case) or crash it (the worst case). This is
a complete list of the predefined entries:

length auto–load, sh–type and q–type long, q–number 1. Length of
trace in number of samples.

alloc mem–only, sh–type long. Size of allocated memory for the trace in
units of samples. Usually this is the same as LENGTH.

dspfst mem–only, sh–type long. Index number of first sample inside the
current display window. Controlled by commands STW and DTW.

dspcnt mem–only, sh–type long. Number of samples inside the current
display window. Controlled by commands STW and DTW.

recno mem–only, sh–type integer. If the trace is read from a q–file, this
entry contains the position number of the trace inside the file, otherwise
the entry value is zero.

attrib mem–only, sh–type integer. Number of the display attribute block
for the trace. A display attribute block controls the output attributes
of traces like colour, line width and line style and the output attributes
of text like colour, size, font and text effects. For details about at-
tribute blocks see section 10. The number of available attribute blocks
depends on the implemented graphics package. The default attribute
block is 0.

reduction mem–only, sh–type integer. Reduction factor for trace plotting.
Reduces number of samples on display and increases output speed. If,
for example, the reduction factor is 3, every third point of the trace
is plotted. The default value of the reduction is 1, that means every
point is plotted.

delta auto–load, sh–type and q–type real, q–number 0. Usually this
is the sample distance in seconds.

maxval mem–only, sh–type real. Value of the maximum sample of the
whole trace. Determined automatically when the trace is read and
after every trace manipulation.

minval mem–only, sh–type real. Value of the minimum sample of the
whole trace. Determined automatically when the trace is read and
after every trace manipulation.

norm mem–only, sh–type real. Normalization factor. Determined auto-
matically before each redraw, depending on the selected normalisation
mode (see command norm).

zoom mem–only, sh–type real. Zoom factor entered by user via command
zoom. Default value is 1. The total amplification factor of the trace is
the product of norm and zoom.

t-origin mem–only, sh–type real. Horizontal position of trace. Given in the
same units as delta. Controlled by commands shift and al, beam
and others.

s-origin mem–only, sh–type real. Vertical position of trace. Determined au-
tomatically before each redraw. Computation algorithm can be mod-
ifed with yinfo command.

6

weight mem–only, sh–type real. Weight of trace when used in a sum com-
mand. Default value is 1.

comment auto–load, sh–type and q–type string, q–number 0. Comment
line on trace.

station auto–load, sh–type and q–type string, q–number 1. Station
code of recording station.

file mem–only, sh–type string. Name of input file of trace. If the trace
is generated in SH the string is copied from a parent trace if possible,
otherwise it remains empty.

comp auto–load, sh–type and q–type char, q–number 0. Component
of recording station.

start auto–load, sh–type time, q–type string, q–number 21. Start
date and time of record.

modif mem–only, sh–type flag. If the trace is modified since read in from
q–file, this flag is set to yes, otherwise its no.

fromq mem–only, sh–type flag. If the trace is read from a q–file this flag
is set to yes, otherwise its no.

When you define your own entries, you should make sure that

• the q–number is not used by another already defined entry (this is not
checked by SH !)

• the q–number is not greater or equal to maxfile

• the sh–index is not used by another already defined entry (this is checked)

• the sh–index is not that of a mem–only entry, that means it should not be
inside the range from maxauto to maxmem-1

• the sh–index is not greater or equal to maxfile

Usually additional entries are defined within the startup command file of SH shstrtup.
To get a complete list of the currently defined entries, their sh–index numbers and
their q–numbers, enter the command entry list outfile.txt, which creates a
file outfile.txt and types it on the current output window. To define entries use
the command entry define. See help entry for detailed information about the
entry command.

5 Trace Addressing

Many commands require a list of traces as input parameter. Then you will usually
specify a number of traces of the current display. The traces are addressed by
their position number inside the display window. The positions are counted from
the bottom up to the top, starting at 1. By default, the position numbers are
displayed on the left side of each trace, where the name of the recording station
and the component are given as well. But this trace labelling can be changed
(command trctxt) and so the trace numbering is not necessarily visible. Let’s use
the command del as an example. You may use the following list expressions in place
of any parameter of type trace list (the parameter type is always given in the help
text to each command). The delete command del takes only one parameter which

7

is the list of traces to be deleted. Suppose you want to delete the bottom trace only.
This is done by del 1. After execution the display is redrawn automatically (if the
display redraw is enabled) without the deleted first trace. The bottom trace which
had position number 2 before the delete command, now got the position number
1. It is possible to specify a set of traces by a list of position numbers, separated
by commas. For example, to delete the first, third and fifth trace, the command is
del 1,3,5. A block of consecutive numbers can be specified by the first and last
number of the block, separated by a hyphen. So the command del 1-6 deletes
the first 6 traces on the display. Blocks and lists may be combined which means
del 1-3,7-9,14-16 is a valid command and deletes the traces with the position
numbers 1, 2, 3, 7, 8, 9, 14, 15, 16. Please keep in mind, that any such expression
must not contain blanks, because otherwise the command parser would regard the
expression as more than one parameter and the parameter passing won’t be correct.
To select all traces of the display window, use the expression all, which means del
all deletes all displayed traces.

It is possible to change the order of the traces on display by the display com-
mand. For example, display 3 1 puts trace number 3 to the bottom by changing
it’s position to 1. Also valid is display 7-9 3, which takes the traces at the posi-
tions 7 to 9 and inserts them at positions 3 to 5.

Sometimes it is useful to remove traces from the display and keep them in
memory. Then the traces can be redisplayed later without reading them from
file again (which takes time and you need to remember the filename) or without
computing them again, if the traces are not read from file directly. The command
is hide <list>. <list> may be any trace list parameter as described above. Then
the traces specified in <list> are hidden, they are not displayed any more. They
are redisplayed by the display command. But since the traces are not visible, they
don’t have a position number which is usually needed for addressing. Therefore a
special expression h:all is defined which includes all hidden traces. The command
display h:all 3 displays all hidden traces starting at position number 3. The
second parameter may be omitted. It is then assumed to be 1. With this command
all of the hidden traces are redisplayed. To redisplay only a subset, you need an
expression which is explained in the following.

There exists a possibility to select a subset of all traces in memory which match
a condition given for a specified info entry. A range for this info entry is selected and
all traces which have an info entry within this range are put on the list. The general
syntax of such an expression is <info>(<start>:<end>). <info> is the name of
the info entry. <start> and <end> specify the limits of the value range. As an
example, let’s assume that you want to display only traces which have an epicentral
distance between 30◦ and 50◦. First all traces must be hidden, using hide all.
Then redisplay all traces matching the given condition display distance(30:50).
Traces which don’t have a distance–value at all, are not put on the list as well
as all traces whose distance value is out of the specified range. If the lower bound
<start> is not specified, all traces with a distance smaller than 50◦ are selected
(display distance(:50)). The same holds for the upper bound <end>, display
distance(30:) displays traces with a distance larger than 30◦. The expression
distance(30) selects traces which have a distance value of exactly 30◦. For real–
valued entries this is usually senseless, but for other entry types like string or
char or time it may be useful. So the command display comp(z) displays only
z–components. But notice that SH converts the command line to uppercase letters
by default. This is important for string and character comparisons. You can negate
the selection conditions by putting a ”~”–character after the info entry name. This
means, the expression _distance~(30:50) selects all traces whose distance value
is not in the range between 30◦ and 50◦. Some instructive examples of commands
using list expressions are given below.

8

del 4-6,8,11,15-20

Delete traces number 4, 5, 6, 8, 11, 15, 16, 17, 18, 19, 20.

hide all

Hide all traces.

display h:all

Display all hidden traces starting at position 1.

sum azimuth(0:180)

Sum traces whose azimuth value is between 0 and 180◦.

del _comp~(z)

Delete all traces which are not z–components.

zoom/rel station(bji) 2

Enlarge the amplitude of all traces of station BJI by a factor of 2.

hide magnitude(:5.8)

Hide all traces with a magnitude smaller than 5.8.

6 Trace Filtering

Application of filters is a very important step in analysing seismic traces. It is
performed in almost any case of data processing. For this reason the related com-
mands are explained here in more detail in addition to the interactive help texts.
SH knows three different kind of filters: FFT–filters, recursive filters and tabulated
filters. Besides these SH can perform operations related to filtering, like Hilbert–
transformation, attenuation and computation of minimum delay signals from given
signals or autocorrelations.

6.1 FFT Filters

This is the most common way of trace filtering. A copy of the trace is transformed
into frequency domain using the FFT (Fast Fourier Transformation) algorithm.
If the number of samples is not a power of 2, zeroes are appended to the trace
automatically. In the frequency domain the trace is multiplied by the filter function
which is given as poles and zeroes (In detail, the trace is multiplied with the first
zero, then divided by the first pole, then multiplied with the second zero, then
divided by the second pole and so on until all zeroes and all poles are used). After
this process the trace is transformed back into time domain and displayed on screen
(if the redraw is enabled). SH stores the currently used filter (or a cascade of filters)
in memory. That means, before applying the filter operation you have to read in
an FFT filter file, containing poles and zeroes and a normalization factor. This is
a text file which you can create with any text editor or with utility programs. An
example of such a filter file is given here:

! file WWSSN_SP.FLF

! ============

!

! WWSSN-LP FFT filter (including GRF restitution)

! H(s) = (P(s,h0,w0) / P(s,h1,w1)) * (w2*w2 / P(s,h2,w2))

! where P(s,h,w) := s*s + 2*h*w*s + w*w

! h0 = 0.707, t0 = 2*pi/w0 = 20.0

! h1 = 0.67, t1 = 2*pi/w1 = 1.05

! h2 = 0.55, t2 = 2*pi/w2 = 0.75

!

1357913578

9

1

70.18385353

2

(-0.2221106,-0.2221777)

(-0.2221106,0.2221777)

4

(-4.009271,-4.442279)

(-4.009271,4.442279)

(-4.607669,-6.996659)

(-4.607669,6.996659)

At the beginning of the file may be (better: should be) comment lines. Comment
lines start with an exclamation sign ”!” (no preceding blanks !). The first line
after the comments is a magic number and must be 1357913578. This identifies
the file to be an SH filter file. The next line is another ID number, specifying the
filter type. For FFT filter files this is 1. The next line contains a normalization
constant which is multiplied to the filtered trace. Then follows, again in a separate
line, the number of zeroes of the filter. In the example file two zeroes are given. A
pair of complex conjugated zeroes counts as two zeroes and both of them must be
specified in consecutive, separate lines. The real and imaginary part are separated
by a comma and enclosed in parantheses. Even real numbers must be entered in
this format. The poles are given similarly. First the number of poles, then the
complex poles in separate lines. Please note that blank lines are not permitted at
any place in the file.

The given filter is a simulation filter for a WWSSN–SP seismomemter which
needs a velocity–proportional record of an STS–1 instrument as input. The filter
file WWSSN SP.FLF is read into memory by the command fili f wwssn sp. The
default extension .FLF may be omitted. The filter files are searched in the current
directory and in the filter library (see section 11 about default paths in SH). The f

as second parameter denotes that the file contains an FFT filter. It is possible to
specify more than one filter file on this command. For example, the input fili f

f1 f2 f3 reads in the three FFT files F1.FLF, F2.FLF and F3.FLF. The filters are
applied to the trace one after the other (filter cascade). If the qualifier /compress
is specified, all filters are concatenated to a single filter and zero–valued poles and
zeroes are shortened if possible (non–zero values are not shortened, I’m sorry for
this). Once the filter (cascade) is read in, it remains in memory until another
fili–command replaces it. Each filter process uses the filter(s) read in by the
most recent fili–command. To apply the filter to the first three traces on display,
type in filter f 1-3. Again, the f–parameter denotes an FFT filter process.
After execution of this command, three new traces appear on top of the display
containing the filter output. FFT filters are quite slow if the input traces are very
long (several ten thousands of samples). It is possible to set a time window for
the filter process. If you want to filter only the time window between 50 and 350
seconds (relative to the time axis), enter filter f 1-3 50 350. By default, that
means without parameters 3 and 4, the whole trace is filtered (not only the part
inside the display window).

6.2 Recursive Filters

Recursive filters have the advantage that they are faster on long traces than FFT
filters. The reason is, that output samples are computed as linear combinations of
already existing samples of the input and the output trace. Thus the computation
time grows proportional to the number of samples N , while the FFT filters grow
proportional to N log N . On the other hand, recursive filters have some deficiencies

10

as well. These are mainly:

• Usually it takes more time to determine the recursive filter coefficients than
the poles and zeroes for a given transfer function. Particularly if the poles
and zeroes are given, an FFT filter can be written down immediately, while a
recursive filter needs a considerable amount of brainwork.

• The filter coefficients depend on the sample rate. Such a recursive filter can
be applied only to traces of a fixed sample rate.

• On very long–period filters, where many samples are involved to compute a
new output sample, recursive filters tend to numerical instabilities.

• Output traces of recursive filters usually have high–amplitude numerical noise
at their beginning.

As SH supports both filter types it is up to the user to decide which filter is to be
preferred in his application.

The formula used in the recursive filter operations is this:

rn = a0fn + a1fn−1 + . . . + akfn−k − b1rn−1 − b2rn−2 − . . . − blrn−l

where the ai, i = 0, . . . , k and the bj , j = 1, . . . , l are the filter coefficients. The input
trace is given by the f ’s and the output trace by the r’s. This means, the current
output sample rn is determined by the current input sample fn, k previous input
samples and l previous output samples. The first k output samples access input
samples with indices smaller than zero, which are not known. These are assumed
to be zero. This is the reason for the numerical noise at the beginning of the output
trace.

An SH recursive filter file can contain one or more recursive filters. The whole
filter file is read in by the command fili. An example file WWSSN SP.FLR of a
WWSSN-SP filter is given here:

! file WWSSN_SP.FLR

! ============

!

! WWSSN-SP recursive filter

!

1357913578

3

0.05

1.0

3

1.011167

-1.999877

0.9889559

3

1.224691

-1.954563

0.8207457

@

3

0.05

1.0

3

4.5180295e-2

11

9.0360589e-2

4.5180295e-2

3

1.278993

-1.909639

0.8113681

It again needs as input velocity–proportional records of an STS–1 instrument.
The first lines beginning with ”!” are comment lines and are ignored by SH (but
not by the human reader of the file !). The first line after the comments must be
the magic number 1357913578. The next line contains the ID number of recursive
filters and is 3. This is followed by the sample distance (in sec) of the coefficients.
SH stores this value and permits the user to apply this filter only to traces of this
sample rate. The next line is a normalization number and is usually 1. Then the
number of a–coefficients is specified, which is 3 in the example file. That means,
this number is followed by 3 coefficients, namely a0, a1 and a2. The same holds
for the b–coefficients. The example file gives three b’s, b0, b1 and b2. Please note
that in the filter file a b0 must be specified which does not appear in the above
formula (in fact, this is the coefficient of the rn on the left side of the equation). SH
eliminates b0 after reading the file by dividing all ai, i = 0, . . . , k and bj , j = 1, . . . , l

by b0. After the coefficient b2, the first filter in the example file ends. The next
line contains the separation character ”@”, indicating that another recursive filter
is appended. The second filter starts with the ID number 3 for recursive filters
(there is no more magic number). Then, again, follows the sample distance, the
normalization, the a–coefficients and the b–coefficients. This example file contains
a cascade of two recursive filters. You can use up to 5 filters in one file. The
command fili r wwssn sp reads the whole filter file into memory. The default
extension .FLR may be omitted. Recursive filters of a previous fili–command
are replaced by this cascade (FFT filters are not affected by this command). The
command filter r all applies the filter cascade to all of the traces on display.
The result traces are appended to the top of the display. As for FFT filters you can
specify a time window by optional parameters (number 3 and 4). These denote the
lower and upper bound of the window (in sec) relative to the time axis.

6.3 Tabulated Filters

Sometimes a transfer function may be given as a tabulated function instead of poles
and zeroes or it is desirable to create an acausal filter in the frequency domain. In
such cases you can use the tabulated filters of SH. This is a text file containing
the tabulated values of amplitude and phase transfer functions. These tabulated
values may be non–equidistant. The filter process is performed similar to the FFT
filters. A copy of the input trace in transformed to the frequency domain and
each frequency sample is multiplied by an interpolated value of the tabulated filter.
The amplitude and phase function of the filter are both linearly interpolated. The
filtered trace is transformed back to the time domain and displayed on screen.

A simple example file TRAPEZ.FLT of a tabulated filter is listed below.

! file TRAPEZ.FLT

! ============

!

! simple tabulated filter

!

1357913578

2

12

6

0.0 0.0 0.0

0.02 0.0 0.0

0.03 1.0 0.0

0.3 1.0 0.0

0.5 0.0 0.0

100.0 0.0 0.0

The first lines with a ”!”–character in the first column are comments. The
first line after the comments is the well–known magic number 1357913578. It
is followed by the ID number 2 of tabulated filters. The next line contains the
number of tabulated filter values (here 6). Then follows one line for each point in
the frequency domain. Every line consists of three numbers. First the frequency in
Hz, then the amplitude function and at last the phase function. The example shows
a trapezoidal amplitude function and a zero phase function. The transfer function
is flat (amplitude 1) between 0.03Hz and 0.3Hz. Designing such a filter you should
make sure that the tabulated function covers at least the area in frequency domain
which is used by the input trace, that is from zero to the nyquist frequency. If you
fail to do so the filter command will abort with an error message. The filter file
is read in with the command fili t trapez. The default extension .FLT may be
omitted. The filter operation is done by filter t <list>, where <list> denotes
any trace list. As for the other filters you can specify a time window in optional
parameters number 3 and 4.

6.4 Special Filters

SH knows some other filter operations which are used sometimes. The Hilbert trans-
formation is one of them. It is applied with the command filter h <list>, where
<list> may be any trace list like 4-6 or 2 or all. As for any other filter commands,
the input traces remain unchanged and the new output traces are appended to the
top of the window. You can restrict this operation to a time window if you specify
the lower and upper bound (in sec, relative to the time axis) as parameter numbers
3 and 4, respectively.

Another option is the attenuation of a trace by an attenuation operator

A(ω) = e
−

1

2
ωt∗+i ω

π
ln ω

ωN

where t∗ is the attenuation parameter and ωN is the Nyquist frequency. t∗ is passed
to the command as parameter number 5. If you don’t want to set a time window for
the operation, then you have to enter empty parameters 3 and 4. The command to
attenuate the first three traces on display by a t∗ of 0.5 s is filter a 1-3;;;0.5.

One option related to filter operations remains to be mentioned in this section.
It is the computation of a minimum delay signal. Input is either an arbitrary time
signal or an autocorrelation. If a time signal is given, the command is filter

m <list>;;;<shift>, for an autocorrelation it is filter c <list>;;;<shift>.
<list> is a trace list like 4-6 or all and <shift> is a time shift in s by which the
output trace is shifted to the right. If you specify 0 for the <shift> parameter then
the signal on the output trace starts exactly at the beginning of the trace which is
not very convenient in most cases. Of course, it is possible to enter a time window
in parameters 3 and 4 as in the other filter commands.

13

7 Scaling of Amplitudes

If more than one trace is in the display window of SH one has to consider, how to
relate the individual trace amplitudes. If the records of a 3–component seismome-
ter or traces of a station array are displayed, everyone prefers to have the same
amplification factors for each trace. This makes sure that the true amplitude ratios
are shown. In other cases where several records of the same event from globally
distributed stations are displayed or where filtered and unfiltered waveforms are to
be compared, it is often more convenient to have the scaling in such a way that each
trace is plotted with the same amplitude. Also it may be desirable sometimes to
amplify a subset of the displayed traces in amplitude. SH can manage each of these
problems, there exist quite a few commands to manipulate the trace amplitudes.
This section describes how to use this subset of commands.

It is useful to know a bit about how SH determines the actual display amplitudes.
Each trace has two temporary info entries (mem-only type, see section 4), called
norm and zoom. The display amplitude results as the product of the seismogram
amplitude (this is given by the sample values) and these two real numbers. The
norm entry is determined by SH before each redraw, depending on the current
active normalization mode. The zoom entry is set by the user. Thus exist three
different ways to manipulate the trace amplitudes:

1. Changing the normalization mode using the norm command. This tells SH
how to determine the normalization factor (norm entry) for each trace.

2. Changing the zoom factor (zoom entry) via zoom command.

3. Changing the sample values of the trace (commands trcfct and unit). This
is somewhat problematic if this is done only for reasons of the trace display,
because it really changes your traces. If you sum these traces at a later
time, they may have the wrong weights. If you write the traces to a file,
the amplitude changes are saved as well. Therefore you should prefer the
commands norm and zoom. The entries norm and zoom are temporary and
are not saved in an output file. Also, these entries don’t have any influence
on operations with the traces, they affect the display only.

point 1: The normalization mode is changed by the norm command. This command
accepts only one parameter, which must be one out of a set of five short strings:

af The normalization factor is the same for each trace and is determined as half
of the reciprocal value of the maximum sample (without sign) of all displayed
traces on their total length (not only inside the displayed window) using the
info entries maxval and minval. That means, all traces are normalized to the
maximum value on all traces within their full length.

aw Here the normalization factor also is the same for each trace, but the maximum
value is determined only within the displayed window. The traces are normalized
to the maximum value on all traces within the displayed window. Since the
determination of the maximum value is done before each redraw and since the
info entries maxval and minval cannot be used here, this normalization mode
may slow down the program considerably, if long traces are to be searched.

sf The normalization is determined for each trace separately as half of the re-
ciprocal value of the maximum sample (without sign) on it’s full length (not
only inside the displayed window) using the info entries maxval and minval.
That means, all traces have the same display amplitude, if the zoom–factors
are identical.

14

sw Normalization is again determined separately, but now inside the current display
window, resulting in equal display amplitudes for traces with the same zoom
factor. Since the determination of the maximum value is done before each
redraw and since the info entries maxval and minval cannot be used here, this
normalization mode may slow down the program considerably, if long traces are
to be searched.

c All normalization factors are set to 1. This is useful for applications, where
different plots must have the same amplitude scale. In all other modes the
normalization depends on the sample amplitudes of the traces on display. If
you make plots of two different data sets you cannot compare the amplitudes
between the plots. This problem is solved, if you use the c–mode and if you
always set the same zoom factor and if you have always the same number of
traces on display. But after switching to the c–mode, you have to be aware that
the display amplitudes may look like zero (if the sample amplitudes are very
small) or may be immense (for big sample amplitudes). In any case you have to
find out appropriate zoom factors by yourself.

The modes af and sf sometimes confuse users, if large amplitudes exist outside the
display window. In this case the display amplitudes of some or all traces are very
small. This can be checked either by deleting the time window or by switching to
the modes aw or sw. But keep in mind that the latter modes can slow down the
program if you deal with long traces. The default mode (if not changed in the setup
file) is af.

point 2: The zoom factor is changed via the zoom command. The syntax is
zoom <list> <factor>. Since there is a <list> parameter, it is possible to scale
the traces independently. <factor> is copied to the zoom entry of the specified
traces. It remains there until it is explicitely changed. Since the value is copied to
the entry, a command zoom 1 2 doesn’t change anything, if the first trace is already
zoomed by a factor of 2. But it is possible to enter relative factors as well. This
is done by zoom/rel 1 2, which magnifies the display amplitude of the first trace
by a factor of 2, no matter what the zoom factor currently is. Traces which are
created by SH operations and which are appended to the top of the display, get a
default zoom factor which is usually 1. This means, if all traces on the display have
a zoom factor of 5 and a new trace is created, this appears to be relatively small,
because of the default zoom factor of 1. However, with the command zoom/default

<list> <factor> you can change the default zoom factor (and the zoom factor of
the traces in <list>).

point 3: If all else fails (or seems to be too inconvenient) the samples itself
can be multiplied by a factor. But as it is mentioned above, this might result in
problems in future operations on such traces. You have always to keep in mind that
these traces do not have the original sample values any more. A subset <list> of
traces can be multiplied by a number <r>, using the command trcfct <list> mul

<r>. On the display amplitudes this will have the same effect as zoom/rel <list>

<r>. Therefore this command isn’t really necessary for reasons of display. More
convenient is the unit command. It determines the absolute maximum (without
sign) of a given list of traces and within a given time window. This maximum is set
to 1 and all other samples of the specified traces are normalized with respect to this
absolute maximum (the sign remains untouched). A typical application is, if there
are two or more three–component sets of records on the screen, with large amplitude
differences between the sets. With unit each set can get the maximum sample
amplitude of 1. This way the sets can be compared without loosing information
about the relative amplitudes within a set. The syntax of the unit command is unit
<list> <lo> <hi>. <list> specifies the set of traces to be normalized together.

15

<lo> and <hi> contain the lower and upper bound of the time window in s (relative
to the time axis) where to look for the absolute maximum. If these parameters are
omitted, the full traces are used.

8 Command Procedures

The ability of SH to process command procedures is one of it’s most important
features. Most of SH’s internal commands operate on a rather low level. Therefore
SH is very flexible and can be used for many different and quite special purposes.
On the other hand, more complex operations consist of several basic instructions
and require a considerable amount of keyboard input. For the convenience of the
user it is therefore often necessary to combine these low–level instructions and create
more elaborate commands. Thus the user interface is optimized for the solution of
particular data processing problems.

A command procedure is an editable text file. Each line of this file holds a
single SH command (and/or comments). The commands are processed sequentially
until the return command is found. This terminates the execution of the current
procedure and returns to the parent command level which is either the interactive
level or another command procedure. The end of file also terminates execution but
it creates an error message and returns to the interactive level in any case. The
command procedure is called by the name of the command file without extension
which is assumed to be .SHC.

8.1 A first example

The usage of command procedures will be explained here by developing an example
file which will get more complex step by step. The purpose of this command file is
to perform a 3–dimensional rotation from the recording Z,N,E–coordinate system to
the local ray system of the P–wave, called L,Q,T–system. This rotation needs two
angles, the azimuth and the angle of incidence. For the first example let’s assume
that there exists a q–file named q exm which contains a three component record
with the components Z, N and E at the file positions 1, 2 and 3, respectively. The
azimuth and angle of incidence are known. Let their values be 207.2◦ and 19.5◦,
respectively. The following procedure rotex1 reads in the traces, rotates them and
writes the result to an output q-file, named q out.

! file rotex1.shc

!

! version 1 of the 3-dim rotation procedure

! K. Stammler, 15-Apr-92

del all ! delete possibly existing traces ...

dtw ! ... and time window

read q_exm 1-3 ! read in Z,N,E components

rot 1-3 207.2 19.5 ! rotate, create three new traces

write q_out 4-6 ! write result traces to output q-file

return ! return to parent level

After entering the command rotex1 this procedure is executed if SH can find
the command file. SH looks for the file rotex1.shc in the current directory and in
a common command directory. Of course, the q–file q exm has to be in your current
directory, otherwise you have to specify the directory explicitely.

16

8.2 Command Parameters

In practice the above command procedure is not very useful, because the azimuth
and angle of incidence are given as fixed values in the file. These angles are usually
different for each event. Instead of changing the text each time, it is much more
convenient to pass these values as parameters to the procedure. In the command
procedure the parameter number N is accessed by the expression #N. So the rotation
command rot 1-3 207.2 19.5 of the procedure should be replaced by rot 1-3

#1 #2. Then the procedure works fine as long as the user passes the azimuth as the
first parameter and the angle of incidence as the second. But imagine the case that
the user can’t remember the order of the parameters or doesn’t know the parameters
at all. In particular for more complex procedures with five or ten parameters this
problem would be even worse. Guessing parameters is very tedious and annoying.
Therefore a command is implemented which prompts the user for the parameters if
he wants to. Besides that this command assigns default values to parameters which
are left empty in the calling command line. For this reason the command is called
default. The first parameter of the default–command specifies the number of the
parameter, the second contains the default value. If this is empty, no default value
is assigned. All following parameters are used as a prompt text if the user is to be
prompted for input. If the command procedure is called without any parameters
(not even an empty parameter) all parameters of the procedure are prompted using
the given prompt text of the default–command. If the user specifies at least one
parameter (even if it is empty), no parameter is prompted. Instead, every empty
or not specified parameter gets its default value from the default–command. The
updated version of the rotation procedure now looks like this:

! file rotex2.shc

!

! version 2 of the 3-dim rotation procedure

! K. Stammler, 15-Apr-92

default 1 ;; input q-file ! input file

default 2 ;; azimuth ! no default for azimuth

default 3 0. angle of incidence ! default 0 for incidence

default 4 q_out output q-file ! output file

del all ! delete possibly existing traces ...

dtw ! ... and time window

read #1 1-3 ! read in Z,N,E components

rot 1-3 #2 #3 ! rotate, create three new traces

write #4 4-6 ! write result traces to output q-file

return ! return to parent level

The command line rotex2 q ex 207.2 19.5 q out is now equivalent to the
first version of the procedure rotex1. If you enter rotex2 q ex 207.2, the angle of
incidence defaults to 0 and the output file defaults to q out without any prompting.
The plain command rotex2 without parameters let SH prompt you for all of the
parameters in the specified order, using the prompts given in the default command.
At the third and fourth parameter, additionally to the prompt text, a default value
is offered. You can accept it just by hitting the return key, otherwise you have to
enter another value. You should use the default–command on every parameter in
order to supply the user with information texts about the parameters. If you do so,
the command procedure behaves exactly like an internal command.

17

8.3 Variables in SH

The recent version of the rotation procedure is not really a big improvement for
the user. He still needs to know the rotation angles for each event and has to pass
it to the command procedure. SH can determine these rotation angles with the
command mdir. But variables are needed to store the results of mdir and to pass
them to rot.

The concept of variables in SH is similar to other programming languages. There
exist global and local variables. Local variables are visible only inside the command
procedure where they were defined. The local variables are deleted when the proce-
dure is terminated. Global variables are visible in any command level, that means
in all command procedures and in the interactive level. In order to keep a good
programming style there shouldn’t be defined too many global variables (as in any
other language). Usually the four predefined global variables are sufficient. Their
names are g1, g2, g3 and ret. These variables are needed only to store return
values of command procedures.

All variables must be defined. Any access to an undefined variable results in
an error message. The definition command is sdef (symbol definition). The first
parameter is the name of the variable to be defined. An optional second parameter
specifies its initial value. By default the defined variables are local. For a global
definition the qualifier /global is required. SH variables have no type. That means
in a variable you can store any information, like integers, floating point numbers,
strings and others. SH does not check any type information, so you have to be
aware of what you are doing. In fact, any values are stored as strings and are
converted internally if necessary. To assign a value to a variable, it has to be passed
to a command which returns an output value. In this case a &–character has to be
placed in front of the variable name, to indicate a write access. A read access to
a variable is made by a preceding "–character. The command parser assumes that
any word in the command line beginning with a double quote is a defined variable
and replaces the expression by its current value.

Now follows version 3 of the rotation procedure which let the user select a time
window to determine the rotation angles via mdir–command.

! file rotex3.shc

!

! version 3 of the 3-dim rotation procedure

! K. Stammler, 16-Apr-92

default 1 ;; input q-file ! input file

default 2 q_out output q-file ! output file

sdef azim ! define azimuth variable, no init

sdef inci ! define angle of incidence, no init

del all ! delete possibly existing traces ...

dtw ! ... and time window

read #1 1-3 ! read in Z,N,E components

echo select time window ! message to the user

mdir 1-3 *;;&azim &inci ! determine angles from time window

rot 1-3 "azim "inci ! rotate, create three new traces

write #2 4-6 ! write result traces to output q-file

return ! return to parent level

18

In earlier versions of SH mdir won’t work properly inside a command procedures
if the time window is user–selected (*–parameter). In this case two additional
variables holding begin and end of the time window must be defined. Their values
are assigned using the command time twice (example: time;;&start). The window
bounds must be passed to the command mdir by these variables.

8.4 The Command calc

An important command for assigning values to variables is calc. It performs simple
numerical computations as well as text and time manipulations. The general syntax
is:

calc <type> <outvar> = <operand1> [<op> <operand2>] [<p>]

This fixed structure allows only one operation per command line. Here the same
syntax rules hold as for any other command. That means in particular that the ”=”
character and the operator <op> are treated as ordinary parameters which must
be separated by blanks (or semicolons) from the preceding and following expres-
sions. <type> specifies the type of the operation. This is necessary, because all
variables can have any type and SH needs to know whether there is to compute an
integer addition or a floating point addition or a string concatenation, for example.
<outfile> gives the name of the variable (preceding the & character) where to store
the result of the operation. If only one operand is specified the instruction performs
a plain assignment of the value of <operand1> to <outvar>. <p> is an additional
parameter which is used only in a few special operations.

Valid operators for the type ”i” (integer) are:

+ Adds the two operands.

- Subtracts <operand2> from <operand1>.

* Multiplies the two operands.

div Divides <operand1> by <operand2> without remainder.

mod Remainder of the division <operand1> by <operand2>.

Valid operators for the type ”r” (real) are:

+ Adds the two operands.

- Subtracts <operand2> from <operand1>.

* Multiplies the two operands.

div Divides <operand1> by <operand2>.

abs Removes the sign of <operand1>. No second operand.

arctan2 Computes the arc tangens of <operand1>/<operand2> in degrees. Works
correct even if <operand2> is equal or close to zero.

power Takes <operand1> to the <operand2>–th power.

19

Additionally there exist a number of single argument functions. The argument
is specified by <operand1>, <operand2> must be empty. All trigonometric func-
tions (and their inverse) work with degrees as input (output). A complete list of
the functions is sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh,

exp, log, ln, sqrt.

Valid operators for the type ”s” (string) are:

+ Concatenation of <operand1> and <operand2> with a blank in be-
tween.

parse Extracts the <operand2>–th word from <operand1>. Separation char-
acters are blanks and semicolons. <operand2> must be integer.

extract Extracts <p> characters from the string <operand1> starting at po-
sition <operand2>. The first character of <operand1> has number 1
(not 0). <operand2> and <p> must be integer.

Valid operators for the type ”t” (time) are:

tdiff Computes the difference of two absolute time values <operand1> and
<operand2>. The difference is given in seconds and stored as a floating
point number.

tadd Adds <operand2> seconds to the absolute time value <operand1>.
<operand2> must be a floating point number, negative numbers are
accepted. The result is again an absolute time value.

cnv julian Converts the day number <operand2> of the year <operand1> into day
and month. The two output integers are stored in <outvar> separated
by a blank. Both operands must be integer (in an appropriate range).

make time Converts an absolute time string in numeric format (examples: "30,-
12,85,5,30,20,5" or "85/12/30/5/30/20/5") to the standard for-
mat of absolute time ("30-DEC-1985 5:30:20.005").

Examples:

calc i &cnt = "cnt + 1 ! increments counter cnt

calc r &num = "a * "b ! multiplies two floating points

calc r &num = "x sqrt ! takes square root of x

calc s &str = "str parse 1 ! keeps first word only in str

calc s &str = "x extract 5 3 ! extracts chars 5 to 7 from x

calc t &dif = ^p-onset(3) tdiff ^start(3)

! computes time offset of P onset

! relative to start of trace 3

With this command the rotation procedure can run completely without user
interaction. Supposition is, however, that the P–wave onset is inserted to the q–file
header. There exists a predefined info entry, called p-onset. It should contain the
absolute time of the P onset. The user still has to select the P–wave times for all
his events like in the previous versions of the procedure, but now he has to do it
only once. Moreover, this process is decoupled from the rotation procedure and the
gathered information can be used for other applications as well. The insertion of
the onset time is done by two commands if the event is already on screen. The
command time &g1 let the user select the onset time by graphic cursor and stores

20

the result in the (global) variable g1 which is predefined. Of course, you can use
any other variable as well. The second command is set/file all p-onset "g1,
which inserts the determined time to the headers of all traces on display. For details
see command set. Another info entry used in the command procedure is the start
time of the trace. This is also an absolute time, the name of this (predefined) entry
is start. Now follows the automated version 4 of the rotation procedure. It writes
the L–, Q– and T–components to separate files.

! file rotex4.shc

!

! version 4 of the 3-dim rotation procedure

! K. Stammler, 20-Apr-92

default 1 ;; input q-file ! input file

default 2 q_out output q-file prefix ! output file prefix

default 3 2. window width (sec) ! time window for

! determining angles

sdef azim ! azimuth

sdef inci ! angle of incidence

sdef start ! start of time window (relative time)

sdef end ! end of time window (relative time)

del all ! delete possibly existing traces ...

dtw ! ... and time window

read #1 1-3 ! read in Z,N,E components

calc t &start = ^p-onset(1) tdiff ^start(1)

! determine relative time of P-onset

calc r &end = "start + #3 ! get end of time window

mdir 1-3 "start "end &azim &inci

! determine angles in computed window

rot 1-3 "azim "inci ! rotate, create three new traces

write |#2|_l| 4 ! write L-component to L-file

write |#2|_q| 5 ! write Q-component to Q-file

write |#2|_t| 6 ! write T-component to T-file

return ! return to parent level

8.5 Loops

Version 4 of the rotation procedure is already well developed. It enables the user
to process several 3–component records. But suppose he has 100 events stored on
q–files. He would have to type in 100 similar command lines. Even if he would
write a command procedure calling rotex4 100 times, he would have to insert the
100 file names to the procedure text. It is more convenient to store the 100 file
names in a separate file (this may be created with a directory command redirected
to a file) and process all files in a command loop.

For loop structures SH provides two commands, goto and if. goto has the
syntax

goto <label>

This command requests SH to jump to the specified label <label>. <label> is a
text string with a colon ”:” at the end. SH looks for this label inside the current

21

command procedure. If the qualifier /forward is specified it starts looking at the
current position, otherwise it rewinds the command file before searching. A label is
any text string at the beginning of a command line that ends with a colon. Labels
are ignored in ordinary execution of command procedures. They only serve as jump
addresses. Label lines must not contain any executable commands.

The command if performs the conditional execution of an instruction. It’s
syntax is

if <e1> <cmp> <e2> <cmd> [<label>]

The sequence <e1> <cmd> <e2> is a compare operation between two expressions
<e1> and <e2> with a compare operator <cmp>. If the result of this comparison is
true, the instruction <cmd> is executed. Only two SH instructions are permitted in
place of <cmd>, namely return and goto. return terminates the current command
procedure and goto jumps to a specified label <label>.

The compare operator <cmp> specifies the actual comparison and the type of
the expressions <e1> and <e2>. Valid operators are:

eqi integer comparison, <e1> is equal to <e2>

nei integer comparison, <e1> is not equal to <e2>

lei integer comparison, <e1> is less or equal <e2>

lti integer comparison, <e1> is less than <e2>

gei integer comparison, <e1> is greater or equal <e2>

gti integer comparison, <e1> is greater than <e2>

eqr float comparison, <e1> is equal to <e2>

ner float comparison, <e1> is not equal to <e2>

ler float comparison, <e1> is less or equal <e2>

ltr float comparison, <e1> is less than <e2>

ger float comparison, <e1> is greater or equal <e2>

gtr float comparison, <e1> is greater than <e2>

eqs string comparison, <e1> is equal to <e2>

nes string comparison, <e1> is not equal to <e2>

With this supplement it is possible to write a command procedure to apply
rotex4 to all q–files listed in a list file.

! file rotex5.shc

!

! version 5 of the 3-dim rotation procedure

! K. Stammler, 21-Apr-92

default 1 ;; q-file list ! name of list file

default 2 1 first file ! first file to process

default 3 %#1(0) last file ! last file, default is last line

default 4 q_out output file ! output file prefix

default 5 2. time window ! width of window

22

sdef cnt #2 ! file counter init. to start line

sdef qfile ! name of current q-file

nr ! switch off redraw, incr. speed

loop_start: ! start of loop (only label)

if "cnt gti #3 goto/forward loop_exit:

! exit if counter exceeds last file

calc s &qfile = %#1("cnt) ! get current q-file from list

echo processing file "qfile! message to the user

rotex4 "qfile #4 #5 ! call rotex4

calc i &cnt = "cnt + 1 ! increment counter

goto loop_start: ! repeat loop

loop_exit: ! loop exit

rd ! switch on redraw again

return ! return to parent level

This example file also demonstrates nesting of command procedures, because
this procedure, rotex5, calls another procedure, rotex4. Nesting is permitted up
to a level of nine calls, which is very likely sufficient in all applications. In the
above example the nr command switches off the automatic redraw, which increases
execution speed. But don’t forget to switch it on again (rd).

8.6 Execution Flags

Execution flags control some details in the processing of a command procedure
(some affect the interactive level as well). Examples are the suppression of error
messages, abortion of procedures on errors and tracing through a procedure. Such
features can be switched on and off by the switch command. It’s syntax is switch
<flag> <on/off>. <flag> is the name of the execution flag and <on/off> is either
on or off. A list of all flags is given below:

cmderrstop X–flag. Controls whether the command procedure is aborted on er-
rors. If it is switched on, SH returns to the interactive level after
displaying the error message. Usually this option is switched on. Af-
ter such an error the command procedure should be corrected. Be
careful in switching off this flag, because you may get lot of messages
of subsequent errors. In the worst case you may create an infinite loop
in the command procedure and you will have to abort SH in a very
crude way. Default is on.

sherrstop A–flag (Abort). Controls whether SH is terminated after an error
occurred. This is useful only if SH is executed in batch mode. Default
is off.

verify V–flag. Controls whether a verification of each command is printed
before it is executed. With this option the translation of the command
lines can be checked, since the command is printed after the translation
process. Default is off.

echo E–flag. Controls whether all commands are echoed (without transla-
tion) before execution. Default is off.

step T–flag (Trace). Controls whether SH prompts the user for keyboard
input (<Return>–key) before each command. Useful in combination
with V–flag. Default is off.

23

protocol P–flag. Controls whether the interactive commands of the user are
logged in the protocol file of SH. Default is on.

capcnv C–flag. Controls whether each input character is converted to upper-
case. Default is on.

noerrmsg Q–flag (Quiet). If this switch is on, no error messages (and no warning
bell) is printed. Useful in combination with X–flag if possibly occurring
errors are handled by the command procedure. Default is off.

chatty I–flag (Info). Some commands give an explaining text if this flag is
switched on (like command sum). This info text may be switched off
if the internal structure of the command procedure should be hidden
from the user. Default is on.

By default, the switches are changed only locally within the current command
procedure. The flags are reset when the procedure terminates. To change flags
globally, the qualifier /global must be entered on the switch command. Then the
switches remain in the specified state until they are changed again by a switch/global
command. Besides the switch command there exists another method to change the
flags. When a command procedure is called, valued qualifiers /flags, /flags+ or
/flags- may be applied. The value of the qualifier is a string consisting of one
or more flag characters. The flag characters are given in the above list. /flags

sets all specified flags to on, all others to off. /flags+ sets all specified flags to
on, all others remain unchanged. /flags- set all specified flags to off, all others
remain unchanged. The flags are changed only locally within the called command
procedure, unless the /global qualifier is also specified. With the /global qualifier
the changes affect all child levels of the called procedure.

8.7 Debugging Tools

Most of the execution flags mentioned in the last section are not very important
for most users. But two of them are very useful if a command procedure contains
a mistake which must be detected. With the V–flag all translated commands can
be listed in the dialog window. Usually the last command before the error message
caused the error. In some more complicated cases the whole procedure must be
traced step by step. Additionally to the V–flag, the T–flag lets the user check each
command carefully by prompting for keyboard input (<Return>–key) before each
command. If you want to debug the command procedure bugproc, you have to
enter bugproc/flags+=v. Possibly existing command parameters can be passed as
usual: bugproc/flags+=v p1 p2. This call enables the command verification. If
you want to switch on trace mode as well, the command is bugproc/flags+=vt.
The flags are set only in bugproc, if bugproc calls another command procedure,
this is processed without verifying and trace mode. To make SH tracing all child
levels as well, type in bugproc/flags+=vt/global. If the error is detected, it may
be tedious to continue tracing until the procedure terminates. An input of ”@”
terminates tracing (and the command procedure). Of course, the V– and T–flags
may be set by the switch command as well, but then you have to change the text
of the command procedure.

In general when a command procedured is aborted by an error a status report

file is created in the SH scratch directory. The file name is a concatenation of the
SH Session ID and the string ERR.STX. The Session ID always starts with SH or SH$
or SH , followed by a random number. The random number is necessary to make
each SH session ID unique on a multi–tasking operating system. All scratch files
of SH start with the Session ID string to avoid interference of different SH sessions

24

with each other. The same holds for the status report files. A typical name for a
status file on VMS is SH$2354 ERR.STX. It contains error number, error message
and the calling chain (all levels) of the command procedures including the line
numbers where the error occurred. Also given are the execution flags, all defined
local (named symbols set 0) and global (named symbols set 1) variables and all
parameters and qualifiers passed to the procedure. This information is very helpful
for debugging command procedures.

9 Internal Variables

Internal variables are a bit different from the local and global variables that the user
can define with sdef. They are a fixed set and are defined internally by SH. Also
they do not contain information about traces as the trace info entries do. Internal
variables are read–only for the user. Some of them reflect SH status parameters, like
$dsptrcs or $tottrcs, others contain fixed values, like all the character variables
($blank, $dollar, . . .). All names start with a ”$”–character and are replaced by
the command interpreter by it’s current value. A complete list is:

$dsptrcs Number of traces in the display window.

$tottrcs Total number of traces in memory.

$status Return status of the last executed command. Zero means suc-
cessful completion, any other value is an error number.

$systime Current system date and time string. This is not yet implemented
in all operating systems.

$version Returns current version of SH.

$dsp x Returns the lower bound of the current time window (set by com-
mand stw).

$dsp xmax Returns the upper bound of the current time window (set by
command stw).

$dsp w Returns the width of the current time window (set by command
stw).

$dsp y Returns the lower bound of the current vertical window (y–window,
set by command syw).

$dsp ymax Returns the upper bound of the current vertical window (y–
window, set by command syw).

$dsp h Returns the width of the current vertical window (y–window, set
by command syw).

$titlestyle Returns style block number of the title text lines. For additional
information about attribute blocks, see section 10.

$trcinfostyle Returns style block number of the trace info text

$zerotrcstyle Returns style block number of the line attributes of zero traces

$timeaxisstyle Returns style block number of the line style of the time axis and
the label text

$markstyle Returns style block number of the marker lines

25

$x This is a special variable, pointing to the currently drawn trace
on the display. It is useful only in connection with the command
trctxt.

Additionally there exist character values which return special characters. These
variables may be indexed, like info entries. The index number in parantheses is
interpreted as a repeat counter. For example, the expression $blank(10) returns
a string of ten blanks. You need the $blank variable if you want to pass a string
parameter which contains blanks. If you would specify the blanks in the parameter
directly, SH wouldn’t regard the string as a single parameter and the parameters
would be passed incorrectly. The correct parameter specification of an example
parameter ”text with blanks” is:

|text|$blank|with|$blank|blanks|

Besides $blank other special characters are available. The names are self–explaining,
here follows only a list of their names: $exclamation, $quotes, $dollar, $percent,

$hat, $bar, $slash, $number. You can create any ASCII character with a $hexchar??–
expression. The two question marks stand for the two digits of the character’s ASCII
code (hexadecimal). For example, two consecutive horizontal tabulators are created
by $hexchar09(2).

10 Output Attributes

Every output, text or lines, to the graphics window of SH is controlled by attribute
blocks. An attribute block stores information, how thick a line is drawn, which line
style and which colour is used. Also it determines the text attributes like character
height, font and colour. There are several attribute blocks available, the exact
number depends on the actual graphics interface (at least 10). Most of these blocks
are for free use, but some are reserved for special output items.

To change an entry in an attribute block you have to use the command fct

setstyle <block> <item> <value>. <block> specifies the attribute block num-
ber, <item> the item to be changed and <value> it’s new value. Valid items are:

linewidth Set line width. <value> specifies the line width in pixels.

linestyle Set line style. <value> is an integer number specifying the line style.
Default style is 0 (continuous line). All other styles are dashed or dotted
lines.

color Set line colour. <value> is an expression defining the colour. In X–
Window and VWS there must be specified three real numbers between
0 and 1, separated by commans (no blanks). These numbers are the
red, green and blue fractions of the output colour. Usually, there are
colour files RED.STX, YELLOW.STX GREEN.STX and so on in the globals–
directory of SH.

charsize Set the size of characters. <value> specifies the character height in
units of window height. For example, the labelling of the time axis has
usually the size 0.02.

font Set character font. <value> contains the font number.

wrmode Set writing mode. <value> is either replace or xor. replace is the
default mode.

26

As mentioned above, some attribute blocks are reserved for special use. The
actual numbers of these blocks may be different in each implementation and they
may change in future versions of SH. Therefore are internal variables defined, which
contain the attribute block numbers of various output items. A complete list of these
internal variables can be found in section 9. An example is $markstyle, which is the
style block number of the vertical trace markers (lines) and their labelling (text).
Usually the marker lines are red (on coloured screens). If you want to change the
line width to five pixels, you have to enter fct setstyle $markstyle linewidth

5. All following markers are then thick red lines. Of course, you can change the
colour to blue: fct setstyle $markstyle color %blue. In this command the
colour expression is read from the file BLUE.STX in the globals directory of SH.
Such colour files exist for the most common colours. It is possible to add other
colour files if necessary.

The traces on display do not have fixed attribute blocks. By default, they use
block number 0 for output. All traces have an info entry, called attrib, which
contains the current block number. So each trace can use a different attribute block
if it is necessary and if enough blocks are available. The entry value is changed by
the set command, as any other info entry. To change the colour of the traces 4-6 to
red, you need two commands. First set an attribute block (for example number 1)
to red colour: fct setstyle 1 color %red. Then assign this block to the selected
traces: set 4-6 attrib 1. After the next redraw (command rd), these traces will
be displayed in red colour. At the end of this section some examples are given.

fct setstyle $timeaxisstyle linewidth 3

Change line width of time axis to thicker lines.

fct setstyle $markstyle wrmode xor

Change trace markers to XOR–mode. Now the markers can be removed if they are
drawn a second time at the same position.

fct setstyle 3 color %yellow

Set colour of attribute block number 3 to yellow.

set all attrib 3

Use attribute block 3 for all traces on display.

set 1,4,6 attrib 3

Use attribute block 3 for traces 1, 4 and 6.

set magnitude(7.0:) attrib 3

Use attribute block 3 for all traces with a magnitude larger than 7.0.

11 SH Paths and Input Files

Many operations like filter input or calling a command procedure require input
files. These input files are searched in the current directory and, if they are not
found there, in special default directories. SH knows several separate directories for
help files, for command procedures, filters and others. The actual paths are usually
defined in the startup file of SH. It is very unlikely that they have to be changed
after SH is installed properly, nevertheless it is useful to explain the path commands
here. The command syntax is fct path <name> <dir>. <name> specifies the name
of the directory to be set and <dir> contains the actual path. Examples for <path>
are /home/sh/filter/ in UNIX and disk1:[main.sh.command] in VMS. It follows
a list of valid directory names and a short description of their content.

scratch Directory for scratch output files like hardcopy files, protocol files, error
files and so on. This directory must not be changed within a command
procedure, because otherwise the status flags and local parameters of the

27

parent command level cannot be restored properly. This is due to the
fact, that when a command procedure is called, the status, local variables
and parameters of the parent level are saved to a temporary file in the
scratch directory (.SSV–files). If the scratch directory is changed within
this procedure this file cannot be found any more after the procedure has
terminated.

help Contains all help files about built–in commands and command procedures.
Help files have the extension .HLP. New files can be added to this directory
if new command procedures are to be documented.

command Directory of common command procedures. Procedures in this directory
are available to all users of SH.

globals Default directory for access to input text files, that means if the file
text.stx in an expression %text("cnt) cannot be found in the current
directory, it is searched in this directory.

filter Filter files of any type (FFT, recursive and tabulated) in this directory
are available to every user of SH.

errors Contains the error messages of SH. The corresponding text of an error
number 1820, for example, is found in the file ERR 1800.MSG in line 20.

inputs Directory for input data files like travel time tables (.TTT–files) of various
phases.

12 Travel Times

There is a utility routine implemented in SH to read travel times of various phases
from travel time tables. These travel times may be used to mark the theoretical
arrival times in the seismograms. The travel time tables are assumed to be in the
input directory of SH. This default directory may be changed by the command fct

tt table <path>, where <path> contains the actual directory path of the travel
time tables. Of course, the tables have to be in a special format.

Each seismic phase is stored in a separate file, called .TTT–file. The name of the
file is given by the name of the phase (for example P.TTT for P–phases or PKP.TTT
for PKP–phases). Since many operating systems are not case–sensitive, phases like
pP or PcP need a special convention. All lowercase letters in the phase names are
converted to uppercase with a preceding ”V”–character. That means, the travel
times of the phase PcP are read from a file PVCP.TTT, pP from VPP.TTT and so on.
In extreme cases like Pdiff (PVDVIVFVF.TTT) this is a bit clumsy, but this doesn’t
happen too often. The .TTT–files itself are ASCII files of the following format:

! travel time table for PP-waves

!

! created by Ray Buland’s program TTIMES

TTT

distance bounds

27.0 180.0

depth steps

15 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 ...

27.0 000000 000000 000000 391.70 388.42 385.42 382.77 380.48 ...

28.0 000000 409.94 406.33 402.81 399.53 396.53 393.87 391.57 ...

29.0 426.71 421.05 417.44 413.92 410.64 407.63 404.96 402.65 ...

28

30.0 437.82 432.16 428.55 425.02 421.73 418.72 416.04 413.71 ...

31.0 448.93 443.27 439.65 436.12 432.82 429.79 427.10 424.75 ...

:

:

The first lines beginning with ”!” are ignored by SH. The first line after the
comments contains an identification string TTT (uppercase letters). The next line
after this is ignored and is used for comments. The following line specifies the
distance bounds in which valid travel time information is available in the file. Then
follows again a comment line. The next information is the number N of depth steps
(15 in the example file). Then the depth values (in km) of all N depths must be
specified. After this header information the travel time data are listed. Each line
contains travel times of one epicentral distance. The distance value in degrees is the
first number in the line. It is followed by N travel times in seconds, one for each
depth step defined above. Travel time of illegal combinations of depth and distance
are given as zeroes.

If the travel time for given distance and depth is requested SH opens the file
and reads the header information. If distance or depth are out of range the routine
is aborted and an error message is displayed. Otherwise SH scans all lines until
the distance found is greater than the requested distance (it doesn’t check EOF, so
the distance bounds of the header must be definitely correct). It takes this and the
previous line and interpolates the travel times linearly in distance and depth. The
resulting time is returned. To call the travel time utility, enter the command call

travel <phase> <distance> <depth> <result>. <phase> specifies the seismic
phase. If the name contains lowercase letters, you have to use the ”V”–convention
or you turn off the automatic case conversion (then you have to enter uppercase
commands and keywords). <distance> and <depth> are the distance and depth
of the event in degrees and km, respectively. <result> is the name of the output
variable (with a preceding ”&”–character) where to store the resulting travel time.
Examples:

call travel p 98.0 33.0 &tt

After this call the variable tt contains the resulting travel time of P (tt must be
a defined variable). It may be used in subsequent commands as input. To inspect
the variable use the echo command as for any other expression: echo "tt.

call travel vpp 50.0 0.0 &tt

Computation of pP travel time. An equivalent command sequence is given below.

switch capcnv off

CALL TRAVEL pP 50.0 0.0 &TT

SWITCH CAPCNV ON

Returns also pP travel time in variable tt.

A short command procedure markphase.shc explains how theoretical arrival
times of an arbitrary phase are marked on a seismogram. Supposition is that
the trace is read from a q–file with given informations about origin time (entry
origin), distance (entry distance) and depth (entry depth). If this is not the
case, additional parameters to the command procedure must be defined, supplying
it with the requested information.

! file MARKPHASE.SHC

!

! marks phase on a selected trace

! K. Stammler, 27-Apr-92

!

default 1 1 trace number ! which trace to mark

29

switch capcnv off

DEFAULT 2 P phase name ! case sensitive prompt

SWITCH CAPCNV ON

sdef tt ! output travel time

call travel #2 ^distance(#1) ^depth(#1) &tt

! compute travel time

calc t &tt = ^origin(#1) tadd "tt ! get absolute arrival time

mark/abs/label=#2 #1 "tt ! mark time position

return

Important is that the second parameter is only case–sensitive if the procedure is
called without parameters and all parameters are prompted. A call like markphase

1 PcP won’t work, because first the command parser converts all letters to uppercase
and then passes the parameters to the procedure markphase. In this case you have
to use the ”V”–convention: markphase 1 pvcp.

13 Event Locations and Beams

If data from a station array are available, SH is able to determine azimuth and
slowness of a selected phase. Conversely, it computes beam traces if azimuth and
slowness are given. These operations need to know at which stations the individual
seismograms are recorded and where the stations are located. The first information
is easy to get, because there exists a predefined info entry station specifying the
recording station. The second part, the location of the stations is independend
from individual seismograms and is therefore not available in info entries. SH uses
a special text file which lists station information for many different stations. This
file is accessed if one of the above operations (commands locate and beam) is
performed. If it is not found, the operation is aborted. To tell SH where to find the
location file, use the command fct locfile <file>. <file> specifies the complete
filename including path and extension. An example file statloc.dat shows the
format of such a file.

GRA1 +49.6918877 +11.2217202 1 -21.923 +37.862 Graefenb...

GRB1 +49.3913475 +11.6519526 1 +9.085 +4.308 Graefenb...

GRC1 +48.9961681 +11.5213504 1 -0.775 -39.662 Graefenb...

GRA2 +49.6552079 +11.3594439 1 -11.985 +33.668 Graefenb...

GRA3 +49.7622038 +11.3186951 1 -14.815 +45.618 Graefenb...

GRA4 +49.5654029 +11.4358711 1 -6.575 +23.668 Graefenb...

GRB2 +49.2709252 +11.6699661 1 +10.145 -9.162 Graefenb...

GRB3 +49.3435419 +11.8059826 1 +20.165 -1.112 Graefenb...

GRB4 +49.4689373 +11.5608463 1 +2.445 +12.858 Graefenb...

GRB5 +49.1121310 +11.6767332 1 +10.785 -26.972 Graefenb...

GRC2 +48.8675675 +11.3755426 1 -11.595 -53.902 Graefenb...

GRC3 +48.8901739 +11.5858216 1 +3.805 -51.472 Graefenb...

GRC4 +49.0867465 +11.5262720 1 -0.355 -29.602 Graefenb...

WET +49.14 +12.88 0 0. 0. FRG, Wetzell

BFO +48.3 +8.3 0 0. 0. FRG, Black F...

HAM +53.46 +9.92 0 0. 0. FRG, Hamburg

CLZ +51.8 +10.4 0 0. 0. FRG, Clausthal

BRL +52.2 +13.5 0 0. 0. FRG, Berlin

FUR +48.16 +11.28 0 0. 0. FRG, Fuerst...

30

TNS +50.22 +8.45 0 0. 0. FRG, Taunus

Each line contains one station, starting with the name of the station (usually in
uppercase letters), the latitude and the longitude in degrees. The next number is
an array ID code (integer), followed by two floating point numbers specifying the
relative array positions of the stations in km. All following text in the line may
be used as a comment. Please make sure that no line exceeds the length of 132
characters. By the array ID code the stations can be grouped to arrays. Each
array must have a unique array number (is 1 for the GRF–array in the example
file). Stations which do not belong to an array must get the array code 0. Each
array station must also have relative coordinates (these are the last two numbers
in the line). Stations with an array code of 0 may have zero values for the relative
coordinates. The command locate uses the relative positioning rather than latitude
and longitude if all traces passed are recorded at the same station array (which
means all have the same non–zero array code). This can be prevented by specifying
the /noarray–qualifier on the locate command.

To compute azimuth and slowness of a phase, locate needs it’s travel time
differences at each station. If you just enter locate (or locate/noarray) you
have to pick the phase at each station by graphic cursor (exit the selection by
pressing the ”E”–key). locate uses the plain time differences between the picks,
it does not account for time–shifted traces. So please make sure that all traces
are correctly positioned in time with reference to each other. If all traces have
the same start time, this can be achieved by resetting all time shifts to zero by
the command set all t-origin 0. If the traces have different start times you
need the additional command shift all time al to align the traces in time. The
results of the computation are displayed on screen or are copied to output variables
if specified. The general syntax is locate <list> <azim> <inci> <azim-err>

<inci-err>. The first parameter <list> is not used in this computation mode and
should be empty. All other parameters specify output variables to store results.

The beam command acts inversely and applies time shifts to the traces, deter-
mined from the station locations and from given slowness and azimuth. The calling
syntax is beam <list> <azimuth> <slowness>. <list> specifies which traces are
shifted (typically all) and <azimuth> and <slowness> are the (back–)azimuth in
degrees and slowness in s/deg. beam applies relative shifts, like the shift command.
If you apply beam twice you get twice the time shift at each trace. To align traces
in time before the beam command, apply the commands given above. To obtain a
beam trace you have to sum the beamed traces. A typical command sequence is:

set all t-origin 0

shift all time_al

beam all 330.0 5.4

sum all

It creates the beam trace on top of the display. If this beam process is applied
for many different slownesses at a fixed azimuth (or reversely for a set of azimuths
at a fixed slowness) you get many summation traces which are comparable to a
vespagram. This is what the library routine vespa does. The parameters are
vespa <slo-start> <slo-end> <slo-step> <azimuth> <power>. <slo-start>

and <slo-end> specify the slowness interval, the step size is given by <slo-step>.
For each slowness step one beam trace is computed. The fixed azimuth is given
in <azimuth>. <power> determines the order of the N -th Root Process applied
in the summation. The vespa command uses all traces on display for beaming.
After execution the input traces are hidden, on display are the resulting beam
traces. The info entry comment contains the actual slowness value for each trace.

31

It is convenient to change the trace info text to the comment–entry (command
trctxt ^comment($x)).

14 Notes for UNIX Versions of SH

The SH program was originally developed on ATARI ST/TT computers running
TOS as operating system and GEM as graphics interface. Since most parts of
SH are written machine–independend it was quite easy to export the program to
VAX/VMS (after implementation of a VWS and an X–Window interface). The
implementation on UNIX, however, shows some peculiarities. This is mainly due
to two features of UNIX, namely the occurrence of slashes ”/” in filenames and
case–sensivity. The slashes are used in SH (as in VMS) to indicate command qual-
ifiers (like the hyphen in UNIX). Therefore in calls to the operating system cannot
be used any slashes. This is very annoying if filenames have to be passed. This
problem can be solved by the use of the internal variable $slash (see section 9) in
combination with concatenation expressions (|$slash|home|$slash|sh|$slash|
instead of /home/sh/). This is very clumsy sometimes as you can see in the ex-
ample. Another possibility is to change the qualifier character to a backslash ”\”.
Then you can use slashes without problems, but all existing command procedures
in the library must be changed in this way. I admit that both solutions are not
perfect. Similar problems arise concerning the case–sensitivity of UNIX. By de-
fault, SH converts every input line to uppercase letters before translating it. This
automatic case conversion can be switched off (see section 8.6), but then you have
to enter all command verbs and keywords in uppercase letters. This is also not a
convenient solution of this problem. I’m still thinking about these things and I hope
I can optimize the UNIX interface in the near future.

Please note, that these peculiarities affect only calls to the operating system
(command system). All other commands behave exactly like in other implementa-
tions.

32

