3-D Designer's Tool
 For the Atari ST

MasterCAD

YOUR RIGHTS AND OURS: This copy of MASTER CAD is licensed to you. You may make copies for your own use or for archival storage. You may also sell your copy without notifying us. However, we retain copyright and other property rights in the program code and documentation. We ask that MASTER CAD be used either by a single user on one or more computers or on a single computer by one or more users. If you expect several users of MASTER CAD on several computers, contact us for quantity discounts and site-licensing agreements. Also if you intend to rent this program, or place this program on a BBS, contact us for the appropiate license and fee.

We think this user policy is fair to both you and us; please abide by it. We will not tolerate use or distribution of all or part of MASTER CAD or its documentation by any other means.

LIMITED WARRANTY: In return for your understanding of our legal rights, we guarantee MASTER CAD will reliably perform as detailed in this documentation, subject to limitations here described, for a period of thirty days. If MASTER $C A D$ fails to perform as specified, we will either correct the flaw(s) within 15 working days of notification or let you return MASTER CAD to the retailer for a full refund of your purchase price. If your retailer does not cooperate, return MASTER CAD to us. While we can't offer you more cash than we received for the program, we can give you this choice: 1) you may have a cash refund of the wholesale price, or 2) you may have a merchandise credit for the retail price, which you may apply toward buying any of our other software. Naturally, we insist that any copy returned for refund include proof of the date and price of purchase, the original program disk, all packaging and documentation, and be in salable condition.

If the disk on which MASTER CAD is distributed becomes defective within the warranty period, return it to us for a free replacement. After the warranty period, we will replace any defective program disk for $\$ 5.00$.

We cannot be responsible for any damage to your equipment, reputation, profitmaking ability or mental or physical condition caused by the use (or misuse) of our program.
We cannot guarantee that this program will work with hardware or software not generally available when this program was released, or with special or custom modifications of hardware or software, or with versions of accompanying or required hardware or software other than those specified in the documentation.
Under no circumstances will we be liable for an amount greater than your purchase price.
Please note: Some states do not allow limitations on how long an implied or express warranty lasts, or the exclusion or limitation of incidental or consequential damages, so some of the above limitations or exclusions may not apply to you.

> UPGRADES AND REVISIONS: If you return you information card, we will notify you if upgrades to MASTER CAD become available. For minor upgrades and fixes, return the original disks to us with $\$ 5.00$. For major revisions, the upgrade fee is typically $15-20 \%$ of the original suggested retail price.

FEEDBACK: Customer comments are VERY important to us. We think that the use, warranty and upgrade policies outlined above are among the fairest around. Please let us know how you feel about them.

Many of the program and documentation modifications we make result from customer suggestions. Please tell us how you feel about MASTER CAD - your ideas could make the next version better for all of us.

COPYRIGHT NOTICE: The MASTER CAD program code and its documentation are Copyright © 1987 I.N.D.I.

Master CAD

3-D CAD Designers Tool

For The Atari ST Series

User Guide

Developed by I.N.D.I.
Caracas 1071, Venezuela

Published By МichTron, Inc.
 576 South Telegraph
 Pontiac, Michigan 48053

T (313) 334-5700
BBS: (313) 332-5452

MasterCAD

Master CAD

User Guide

Published by MichTron, Inc.
576 South Telegraph
Pontiac, Michigan 48053
区: (313) 334-5700
BBS: (313) 332-5452
© 1987 Industria Nacional De Informatica (I.N.D.I.)
All Rights Are Reserved. No Portion Of This Documentation May Be Reproduced In Any Form Without The Express Permission Of The Owner Of Copyright.

ISBN 0-923213-93-7

MasterCAD

TABLE OF CONTENTS

Design And Development ix
Hardware Requirements xi
Computer xi
Printers xi
Plotters xi
INTRODUCTION 1
CHAPTER 1: Getting Started 5
Master CAD Drafting Board 9
Menu 9
Workscreen 9
Grid 9
Monitor 9
Monitor Display 10
CHAPTER 2: Tutorial 13
Procedures:
Opening Menus 15
Cube 18
General View 24
Cylinder 35
Polyline 50
Hexagonal Prism 57
Spin 69
Ring 73
Partial Spin 78
Move Objects 89
Flip Elements 94
Copy 101
Rotate Elements 109
Proportion 114
Copy n Objects 121
Copy Rotate n Objects 133
Mode 144
CHAPTER 3: Theory 147
Concepts 148

MasterCAD

Projection 148
Parallel Projection 150
Oblique Projection 151
Perspective 151
Applications 151
Features 152
Coordinate System 152
Viewpoint 152
View Angles 153
Picture Plane 153
Horizon Plane 153
Ground Plane 155
Vanishing Plane 155
Ground Line 155
Horizon Line 155
Central Fugue Point 156
Distance Points 156
Limit Planes 156
Objects 157
Elements 157
Points 157
Special Properties 158
CHAPTER 4: Commands 161 DESIGN SECTION:
2-D Main Menu: 164
FILE 164
Open 166
Append 166
Import 167
Save 168
Save As 168
Draft 168
Save Screen 169
DEGAS format 169
Master CAD Printfile 169
Quit 170
CONTROL 171
Zoom 171
Grid 173
Grid ONIOFF 173
Snap ONIOFF 173
Set Grid 174
Units 175

MasterCAD

Origin 176
Reverse 177
Screen Center 177
Spin Step 178
Ruler ON/OFF 179
Input 180
Color 180
VIEW 181
Planes 182
Normal 183
Plan Angled 183
Front Angled 185
Side Angled 187
TOOLS 190
Line 190
Rectangle 191
Regular Polygon 191
Polylines 192
Clockwise Arc 193
Counterclockwise Arc 193
Text 194
DIM 194
MODE 196
Planes 196
Cut 197
Low Contain 198
High Contain 199
High + Low Contain 200
Cut + Low Contain 201
Cut + High Contain 202
SPIN 203
360 Spin 203
Direction of Spin 204
SELECT 206
Points 206
Elements 208
Objects 210
PROCESS 212
Group 212
Move 213
H-Flip and V-Flip 213
Copy 214
Rotate 216
Copy Rotate 218
Copy n 219

MasterCAD

Copy Rotate n 221
Export 223
Delete 224
Show Area 225
Texture 225
3-D 228
3-D Main Menu 228
FILE 228
VIEWPOINT 229
Horizontal 229
Vertical 230
Combined 231
Autoview 231
Lens 231
Normal 231
Wide Angle 231
Narrow Angle 231
VIEWMODE 234
Filled Planes 234
PROJECTION 239
Perspective 239
Parallel 239
2-D 240
OUTPUT SECTION 241
Select Printfile 242
Begin Printing 243
Begin Plotting 243
MC Desktop 243
Plotter 244
Page Size 245
Pen Speed 245
Scale 246
Installing Your Plotter 248
Plotting Multiple Pages 250
CHAPTER 5: Reference Charts 251
Appendices 259
Bibliography 260
Installing on a Hard Disk 261
Index 263

Master CAD Development

DESIGN AND DEVELOPMENT

Main Programming and Concepts User Interface and Concepts
Output Program
Plotting Accessory
Languages Used

Jaime Jerez
Hernan Pisani
Luis F. Alvarez
Rafael Santana
Personal Pascal ${ }^{\text {TM }}$ V 1.14
TDI Modula-2/ST ${ }^{\text {TM }}$

MANUAL

Design and Layout Cover Design English Version
Spanish Revision
Thomas L. Logan
Paul Deckard
Thomas MacFarlane
Dr. Sebastian Alvarez

REVISION

Pilot Users

Guillermo Frontado
Pablo Raba N.
x ?

HARDWARE REQUIREMENTS

COMPUTERS

An Atari ST with 1 MEG of RAM (Color or Monochrome Monitor) is required to use Master CAD. A second disk drive is recommended.

PRINTERS

EPSON FX80 COMPATIBLES
You can install any G-DOS compatible driver on the Master CAD disk.

PLOTTERS

HEWLETT PACKARD ${ }^{\text {™ }}$ Color Pro, 7550, 7580

EPSON is a trademark of EPSON CORPORATION. HEWLETT PACKARD is a trademark of HEWLETT PACKARD COMPANY.

Welcome to Master CAD, the CAD system for the Atari ST. Master CAD uses a simple but revolutionary concept in graphic design which allows the user to project a design made in two dimensions into 3-D. Master CAD also offers you the ability to generate spun objects from two dimensions and project them into 3-D, revolving around the same axis. But Master CAD is more than just a design tool; it is also a system for 3-D design analysis. The program includes a complete set of "Tools", which, combined with the ease of use, makes designing a simple and enjoyable task.

With your Atari ST and Master CAD you can:
$>$ Produce objects in 2-D and 3-D using pull-down menus, dialog boxes and the mouse, using very few commands from the keyboard.
$>$ Move, copy, rotate and flip any object, horizontally or vertically; change their proportions and textures; and export or import them to and from other object-files.
$>$ Observe the objects from yarious viewpoints and viewangles, external or internal, transparent or solid.

Chapter 1: Introduction

$>$ Observe the objects in orthogonal, perspective,
axonometric, and oblique projections from any angle.

To use Master CAD you will need to know how to use the Atari ST, the mouse, and the GEM interface. If you are not familiar with these, refer to your $S T$ manual. Fluency in the use of the GEM interface will allow you to use Master $C A D$ with greater ease and satisfaction.

We hope you enjoy Master CAD!

Note: Before proceeding please read the README file on the Master CAD disk. It contains updated information that was not available at the time this manual went to press.

Master CAD

Chapter 1

Getting

 Started

 Started}

Master CAD

To begin, turn on your computer and wait for the GEM Desktop to appear. Start Master CAD, by using the mouse to move the cursor arrow over the DESIGN.PRG icon. Click the left mouse button once. Notice that the DESIGN.PRG icon turns black to indicate that it has been selected.

Fig. 2 Click on DESIGN.PRG

Desk File View Options

Move the cursor to the File drop down menu and position the arrow over the word Open and click the left mouse button.

Chapter 1: Getting Started

Fig. 3 Select Open in the FILE menu

If you are already familiar with the Atari $S T$ and the GEM Desktop, you are probably aware of a shortcut: Move the arrow cursor over the DESIGN.PRG icon and rapidly click the left button twice. Master CAD's DESIGN program will then load and run.

MasterCAD

Fig. 4 Required files in Master CAD

Chapter 1: Getting Started

The Master CAD

Drafting Board

MENU:This is also referred to as the Menu Bar. It is found at thetop of the screen, and contains all the menus available tothe user at a given moment. When working on theworkscreen board the menu bar will disappear. Run thecursor to the top of the screen and it will return.
WORKSCREEN:
The available drawing space.

The available drawing space.
GRID:
top or the screen, and contains all the menus avallable to
WORKSCREEN:

An overlay of reference points to help in design.

MONITOR:

A display of information at the bottom of the screen that indicates where you are in the program and what is happening.

Fig. 5

The Monitor Displays:

VIEW: Indicates the orthogonal view you are working on.

TOOL: Shows the tool you are working with.
X: The absolute X coordinate measured from the origin. Also lets you know the radius of a circle or the X (horizontal) radius of an ellipse.

Chapter 1: Getting Started

Z: The absolute Z coordinate measured from the origin. Also lets you know the radius of a circle or the vertical radius of an ellipse.

DX: The relative X coordinate measured from the first user-defined point. Also lets you know the radius of a circle or the X horizontal radius of an ellipse.

DY: The relative Y coordinate measured from the first user-defined point. Also lets you know the radius of a circle or Y vertical radius of an ellipse.

DZ: The relative Z coordinate measured from the first user-defined point. Also lets you know the radius of a circle or the vertical radius of an ellipse.

UP: Shows the height of the upper limit plane. If the plane is inclined, indicates the vertical variable height of the cursor position.

DOWN: Shows you the height of the bottom limit plane.

G

E
T
T

FRONT: This is the reference Y coordinate of the front limit plane.

BACK: This is the reference Y coordinate of the back limit plane.

Master CAD

LEFT: This is the reference X coordinate of the front limit plane.

RIGHT: This is the reference X coordinate of the front limit plane.
\#: Indicates that you are working in Cut Planes mode.
/: Indicates that you are drawing over the Contain Plane.

DIST: Shows you the distance between the first userdefined point and the cursor position.

ANGLE: Shows you the angle between the line you are drawing and the horizontal.

FREE: Percentage of remaining free memory.
ZOOM: Indicates the current zoom value.
MT: Shows that you are working in Metric units of measure.

IN: Shows that you are working in English (inch) units of measure.

Chapter 2

Tutorial

MasterCAD

In this section of the manual, you will be introduced to the exciting world of Computer Aided Design (CAD). You will be given a guided tour of the different modules of Master CAD using a structured tutorial: we will present a series of procedures which can be used independently or as building blocks to form a chain of instructions for more complex procedures.

To begin your tutorial, you should be in the main workscreen of the DESIGN program (refer to page 6 of this manual).

Chapter 2：Tutorial

Procedure：Opening Menus

Move the mouse and follow the cursor＇s movement on the workscreen．Now move the cursor to the upper part of the screen toward the Menu Bar．When the cursor touches the top of the screen the Menu Bar will appear and the nearest menu will drop down and display its contents．Position the cursor over the View menu．It will drop down and show the choices available to you．This procedure is quite simple and will be called opening the View menu（or whatever menu this tutorial indicates）．

Fig． 6 Select Left in the VIEW Menu

Master CAD

Notice in the Monitor, at the lower part of the screen, that Master CAD is telling you that you are in the Left view mode.

Fig. 7 Left is now recorded in the Monitor as the View Mode
$\left.\begin{array}{ll}\text { Desk File Control } & \text { TVex Planes Tools Mode Select Process 3-0 } \\ \hline & \text { Plan } \\ \text { Front } \\ \text { Back } \\ \text { Left } \\ \text { Right }\end{array}\right]$

VIEW:Left ${ }^{\text {Y: }} 5$	DY: 0.00	RIGHT: 0.08	DI	FREE:189\%
T00L:Line Z: 14.90		8	A	

MasterCAD has two menu bars. To access the second bar, open the 3-D menu and watch how the menu titles change on the menu bar.

Fig. 8 2D Menu Bar
Desk File Control View Planes Tools Mode Select Process 3-D A

Fig. 9 3D Menu Bar

MasterCAD

Procedure: Cube

Open the File menu and select the New option. If the Attention window appears, select Continue (Warning: This will delete anything currently in the WORKSCREEN.

Fig. 10 Select New from the File Menu

	X, 10.20	DX: 0.88	UP	O	0.08	
TOOL	Y: 6.05	DY: 8.80	\# DOWN	8.80	E: 0.88	Z00M:108

Sub-Procedure: Normal Planes/Plan

Check the monitor window to make sure you are working in the Plan view. Open the Planes menu and select the Normal option. The Menu Bar will change to read SET CUT PLANES. Notice in the monitor that you are in the Front view. Move the cursor towards the bottom of the screen and watch the broken horizontal line that follows it to indicate the tracing of the plane. You now control a horizontal plane on the screen, which you may raise or lower by moving the mouse.

Chapter 2: Tutorial

Fig. 11 Select Normal From the Planes Menu

Fig. 12 Set Cut Planes...

MasterCAD

Move the plane until the coordinate Z is equal to zero ($\mathrm{Z}: 0.00$) and click the left mouse button to confirm this operation. You have now defined a horizontal plane with the elevation $\mathrm{Z}=0$.

Fig. 13 Set the first plane at Z:0.00

Move the second plane to ($\mathrm{Z}: 4.00$) and click the mouse button to confirm. The Planes Mode Selection box will appear. Click the mouse on $O K$.

Chapter 2: Tutorial

Fig. 14 Set the second projection plane at Z:4.00

Fig. 15 Select CUT from the Planes Mode Selection Box

Master CAD

Once the planes are defined, Master CAD shows you the Planes Mode window. Press $O K$ to use the Cut Mode. You now have two projection planes, with $\mathrm{Z}=0$ as the base and $\mathrm{Z}=4$ as the top. All drawing will be projected between these planes.

You have now completed the sub-procedure. We will continue to build the cube.

Open the Tools menu and select the Rectangle option.

Fig. 16 Select Rectangle from the Tools Menu
Desk file Control View Planes Tools Mode Select Process 3-D

Regular Polygon (circtiz)
Polyline
Polygon
Clockwise Arc
Counterclockwise Arc
Text

		DX: 0.08		UP	8.85	DI	9.88	FREE:188\%	
TOOL	$Y:-5,15$	DY: 8.88	\#	DOWN	4.88	ANGLE:	8.88	ZOOM:188	

Place the cursor in the center of the screen and click the mouse button to draw. Move it a short distance and notice how the rectangle is drawn on the screen.

To make a $4 \mathrm{~m} \times 4 \mathrm{~m}$ rectangle, move the cursor until the monitor indicates DX:4.00 and DY:4.00, and click the mouse button to confirm. You have now defined a 4 m x $4 \mathrm{~m} \times 4 \mathrm{~m}$ cube, delineated from a base plane of $Z=0$ and with a top plane of $Z=4$.

Chapter 2: Tutorial

Fig. 17 Notice the DX \& DY reading in the Monitor

Master CAD

Procedure: General View

Open the View menu and select the Plan view. You will see the plan of the object developing on the screen (See Fig. 18).

Fig. 18

Open the View menu, select the Front view and observe (Fig. 19).

Chapter 2: Tutorial

Fig. 19
Desk File Control Dien Planes Tools Mode Select Process 3-D

Plan
Front
Back
Left
Right

		DX: 0.08		FRONT:	80		0.00		
T00	z: 15.80	DZ: 8.88		BACK	8. 80	ANGLE:	8.88	Z00M:100	

Open the View menu, select the Left view and observe (Fig. 20).

MasterCAD

Fig. 20
Desk File Control Wien Planes Tools Mode Select Process 3-D

Back
Left
Right

VIEH:Left	$Y: 5.15$	DY:	0.00	\# RIGHT:	0.00	DIST,	0.00	FREE:99\%
TOOL:Rect.	$Z: 16.90$	DZ:	0.00	\# LEFT	0.00	ANGLE:	0.00	ZOOM:100

Open the 3-D menu and observe the object in perspective (Fig. 21).

Chapter 2: Tutorial

Fig. 21
Desk FILE UIEWPOINT VIEWMODE PROJECTION 2-0

Open the Viewpoint menu, select Horizontal, and notice how the menu bar disappears and the following message appears: SET HORIZONTAL VIEW POINT (Fig. 22).

Fig. 22
Desk FILE UIEXPOINT UIENMODE PROJECTION 2-D Horizontal
Vertical
Combined
Rutoview
Lens

Chapter 2: Tutorial

Fig. 23 Set the Horizontal
ViewPoint...

Place the crosshair center near the bottom and to the left of the object and somewhat away from it, and click the mouse button to fix the point of view. You have now set the observer's plan position. Move the mouse and notice how the indicator rotates according to the fixed position. Also notice the message SET HORIZONTAL VIEW ANGLE.

Master CAD

Fig. 24 ...And the Horizontal View Angle

Fig. 25 And Observe the new view Desk file viehpoint viehmode projection 2 -0

Now move the cursor inside the object to indicate the view direction, click the mouse button to set it and notice the perspective of the object developed on the workscreen.

Chapter 2: Tutorial

Fig. 26 Set the Vertical
View Point (the Elevation)

Open the Viewpoint menu again and select the Vertical option. An elevation of the object will appear as well as a broken horizontal line which indicates the height of the observer's viewpoint.

Master CAD

Fig. 27 And the Vertical View Angle

Fix the desired height, click the mouse button to set it, then aim the indicator at the object, click the button again to complete the operation, and you will be able to observe the object in perspective!

Open Viewmode, select Filled Planes and the object will change from transparent to solid on the workscreen.

Chapter 2: Tutorial

Fig. 28 In the View Mode select Filled Planes

Desk FILE UIEWPOINT UIEWNIDE PROJECTION 2-D
Filled Planes

Fig. 29 And the planes take on a solid look

MasterCAD

This ends the exercise. You may save this sample if you wish by selecting Save As from the FILE menu and naming the Object.

Fig. 30 Select Save As and enter a name
Desk File Control View Planes Tools Mode Select Process 3-D

If you plan to continue after saving your work, select New from the File menu.

Chapter 2：Tutorial

Procedure：Cylinder

Unless you are using this procedure as part of another process，open the File menu and select the New option．If the Attention window appears，select Continue（Warning： This will erase anything currently on the Work Screen）．

Sub Procedure：Normal Planes／Front

Open the View menu and select Front（Fig．31）． Observe in the monitor that you are working in Front view．

Fig． 31 Select Front

MasterCAD

Chapter 2: Tutorial

Fig. 33 Setting a Plane
set cut planes

Move it until the Y coordinate reads $\mathrm{Y}: 1.00$ and click the mouse button to set the position for this plane. You have now defined a vertical plane with the position $\mathrm{Y}=1$.

MasterCAD

Fig. 34 Set planes at Y:1.00 and Y:5.00

Move the second plane to Y:5.00 and click the mouse button to define its position. The Planes Mode Selection box will appear, click the mouse on $O K$.

Once the planes are defined, Master CAD again shows you the Planes Mode window. Press $O K$ to use the Cut Mode. You now have a plane at $\mathrm{Y}=5$ and a second plane at $\mathrm{Y}=1$.

Chapter 2: Tutorial

This completes the Sub Procedure. Now we will build the cylinder.

MasterCAD

Open the Tools menu and select Regular Polygon (Fig. 36).

Fig. 36 Select Regular Polygon

Place the cursor in the middle of the screen and click the mouse button once to set the center of the circle. If there is another preset object on the screen, set the circle center reasonably apart from the other figure, so that they do not collide.

Chapter 2: Tutorial

Move the mouse and observe the circle forming around the center point. Choose the form and size that you wish and click the left mouse button to define the object.

Fig. 37 Drawing the Oval

MasterCAD

Fig. 38 From Plan View...

Fig. 39 Select Front...
Desk File Control Vien Planes Tools Mode Select Process 3-0

Chapter 2：Tutorial

Fig． 40 ．．．or Left．．．

Fig． 41 To view as you wish

MasterCAD

Fig. 42 Set the Horizontal View Point and Angle

| SET HORIZONTAL UIEH POINT | |
| :--- | :--- | :--- | :--- |

Fig. 43 Observe the results

Fig. 44 Set a new Vertical View Point...

Fig. 45 And View Angle

MasterCAD

Fig. 46 ...and experiment!!

Fig. 47 Practise using different elevations...

46 Chapter 2 - Tutorial

Chapter 2：Tutorial

Fig． 48 ．．．And View Points

Fig． 49 ．．．Use Reverse Screen from the Control Menu．．．

トカーあ○トGッ

Master CAD

Fig. 50 ...And/or Fill Planes from the ViewMode Menu...

Fig. 51 ...You can even place yourself inside the cylinder!!

This ends the exercise. You may save this sample if you wish (you will be using it later in the tutorial), then continue to the next exercise. If you plan to go on after saving your work, select New from the File menu.

Procedure: Polyline

Unless you are using this procedure as part of another process, open the File menu and select the New option. If the Attention window appears select Continue (Warning: This will erase anything currently on the Work Screen).

Sub-Procedure: Normal Planes/Left

Open the View menu and select Left (Fig. 52). Note in the monitor that you are working in Left view. Open the Planes menu and select Normal (Fig. 53). Note in the monitor that you are in the Plan view. Move the cursor to one side and observe the broken vertical line that appears on the workscreen that indicates the tracing of the plane.

Chapter 2: Tutorial

Fig. 52 Select Left...

Fig. 53 Then Normal...

VIEW:Left	$Y: 3,35$	DY:	0,00	\# RIGHT:	0,00	DIST,	0,00	FREE: 100%	M
TOOL:Line	$Z:$	13.15	DZ:	8,00	\# LEFT:	0,00	ANGLE:	0,00	ZOOM:100

MasterCAD

You now control a vertical plane which you may move as you like.

Move it until the X coordinate reads $\mathrm{X}: 0.00$ and click the left mouse button to set the position of this plane.

Fig. 54 Move to X:0.00 and click to set

You have defined a vertical plane with the position $X=0$.

Move the second plane to the right, to X:5.00, and click the left mouse button to define the plane's position.

Chapter 2: Tutorial

Fig. 55 Define the second
plane at X:5.00

Master CAD

Once the planes are defined，Master CAD shows you the Planes Mode window．Press $O K$ to use the Cut Mode．You have now a first plane at $\mathrm{X}=5$ and a second plane at $\mathrm{X}=0$ ．

Fig． 56 Select OK in the Cut Mode Dialog Box

You have now completed the sub－procedure．We will continue to build the polyline object．

Chapter 2: Tutorial

Open the Tools menu and select Polyline (Fig. 57).

Fig. 57

VI	Y:-4.15	DY: 0.80	\# RIGHT: 5.80	DIST, : 0.80	
TOOL:Line	z: 6,75	DZ: 0.08	\# LEFT : 0.05	ANGLE: 0.00	Z00M:100

Place the cursor at some point on the left side of the screen and click the mouse button to begin drawing. You will notice the line forming according to its point of origin and the position of the cursor. Now move the cursor a little above and to the right of the point of origin. Click the mouse button to confirm. Move the mouse and observe the new line being drawn from the end point of the first line. Repeat the procedure as you wish. To free the cursor and complete the polyline, click the right mouse button. The line will detach from the cursor.

Fig. 58

Execute the GENERAL VIEW procedure (refer to page 24).

This ends the exercise. You may save this sample if you wish, then continue on to the next exercise. If you plan to continue after saving your work, select New from the File menu.

Chapter 2: Tutorial

Procedure : Hexagonal Prism

Unless you are using this procedure as part of another process, open the File menu and select the New option. If the Attention window appears, select Continue (Warning: This will erase anything currently on the Work Screen).

Sub-Procedure: Front-Angled Planes/Plan

Open the View menu and select Plan. You will see in the monitor that you are working in Plan view (Fig. 59).

Fig. 59 Select Plan from the View menu

Open the Planes menu and select the Front Angled option (Fig. 60). Observe in the monitor that you are working in Front view.

Fig. 60

Move the cursor towards the bottom of the screen and observe the broken horizontal line that appears on the screen which indicates the tracing of the plane.

Chapter 2: Tutorial

You now control a horizontal plane that you can raise or lower as you wish. Move it until the Z coordinate reads $\mathrm{Z}: 0.00$ and click the mouse button to set the first position point of this plane.

Fig. 61 Set Cut Plane at X:6.00, Z:0.00

Master CAD

Move the mouse and notice that the broken line rotates around the fixed point. This means that you can define the angle of this plane relative to the horizontal.

Define a horizontal plane using the cursor and set it by clicking the mouse button, set X:6.00, Z:0.00 (Fig. 62).

Fig. 62

Chapter 2: Tutorial

Set the cursor in position X:8.00/Z:3.00 and click the mouse button to set the first point of the second plane; then move it to X:3.00/Z:6.00 and click again to complete the operation. You have defined a horizontal plane that passes through the assigned coordinates.

Fig. 63

Once the planes are defined, Master CAD shows you the Planes Mode window. Press $O K$ to use the Cut Mode (Fig. 64). You now have a first plane at $\mathrm{Z}=0$ and a second plane of variable height.

Fig. 64

Chapter 2: Tutorial

Open the Control menu and select SPIN STEP (Fig. 65). Observe the dialog box (Fig. 66) that permits you to choose a regular polygon, from a triangle to a 99 -sided polygon.

Fig. 65

Choose the Hexagon option and press $O K$ to confirm. Open the Tools menu and select Regular Polygon (Fig. 67). Place the cursor in the middle of the screen and click the mouse button to fix the center of the polygon.

Fig. 66

Chapter 2: Tutorial

If there is already another preset object on the screen, set the center of the polygon to one side so that the objects do not collide. Move the mouse and notice the polygon forming around the center point.

Fig. 68 Using the cursor, draw the Polygon outline

Choose the form and size you wish for the polygon, and click the mouse button to set it. Notice that instead of a circle, a hexagonal polygon has appeared (Fig. 69).

Fig. 69
Desk File Control View Planes Tools Mode Select Process 3-D

Execute the procedure GENERAL VIEW...

Fig. 70 View from the Front...

Chapter 2: Tutorial

Fig. 71 ...The Left

Fig. 72 Now use Filled Planes in 3-D...

MasterCAD

Fig. 73 ...adjust the Vertical and Horizontal View angles

Fig. 74 View from anywhere - even inside...

Chapter 2: Tutorial

Procedure : Spin

Unless you are using this procedure as part of another process, open the File menu and select the New option. If the Attention window appears, select Continue (Warning: This will erase anything currently on the Work Screen).

Open the Mode menu and select the SPIN option (Fig. 76). Observe in the dialog box (Fig. 77) that the option 360 SPIN has been selected. Select $O K$ to confirm the option.

Fig. 75

Fig. 76

Notice that the message SET REVOLUTION CENTER BY CURSOR appears in the upper menu bar and the monitor shows that you are working in Plan view.

Place the spin center as close to the center of the screen as possible and click the mouse button to set it (if there is already another preset object on the screen, set the center point slightly to one side so that the objects do not collide). Set a second point with the mouse and notice the effect.

Chapter 2: Tutorial

Fig. 77 Set Revolution Center
SET REUOLUTIOA CENTER BY CURSOR

Fig. 78 Draw A Diagonal

MasterCAD

Fig. 79 Click the mouse to initiate the Spin

Now observe the vertical spin axis, represented by a broken line, and the VIEW reading in the monitor that indicates that you are in the Front view.

Chapter 2: Tutorial

Procedure : Ring

Execute the procedure SPIN (See Above).
Open the Tools menu and select the Polyline option (Fig. 81).

Fig. 80

Place the cursor to the right of the axis and click the mouse button to start a line.

MasterCAD

Move the mouse and define any line to the right side of the axis. Define two more lines in the same way and then press the space bar (or the right mouse button), to complete the operation.

Fig. 81 Define a Broken Line and click the right mouse button

Observe how a spun figure is generated starting from the original lines (Fig. 82)

Chapter 2: Tutorial

Fig. 82 An object is formed around the selected Center of Rotation

Again Execute the GENERAL VIEW procedure...

MasterCAD

Fig. 83 ...to observe the object...

Fig. 84 ..from different elevations...

Chapter 2: Tutorial

Fig. 85 ...and places
(inside looking up)

Fig. 86 (inside looking down)
Desk file viehpoint vieumode projection 2-0

MasterCAD

Procedure : Partial Spin

Unless you are using this procedure as part of another process, open the File menu and select the New option. If the Attention window appears, select Continue (Warning: This will erase anything currently on the Work Screen).

Open the Mode menu and select SPIN (Fig. 88).

Fig. 87
Desk File Control View Planes Tools Mode Select Process 3-D

Chapter 2: Tutorial

Observe in the dialog box that the 360 SPIN option has been selected (Fig. 89). Now select the CLOCKWISE SPIN option and click $O K$ to confirm.

Fig. 88

MasterCAD

Observe the message SET REVOLUTION CENTER BY CURSOR on the upper menu bar and that the View indicator in the monitor indicates that you are in Plan view (Fig. 90).

Fig. 89

Chapter 2: Tutorial

Place the center of spin as close to the center of the screen as possible and click the mouse button to set it (if there is already another preset object on the screen, set the center point slightly to one side so that the objects do not collide), set at X:0.00, Y:0.00.

Fig. 90
set revolution center by cursor

	X: 0.00	DX: 0.80	$\#$ UP	3.00	DIST, : 0.08	8\%
TOOL	Y: 8.80	DY: 8.88	\# DOWN	8.80	ANGLE: 0,80	Z00M:108

MasterCAD

Observe the rotation indicator that pivots around the center of spin and the message SET INITIAL ANGULAR POSITION.

Fig. 91
SET INITIAL RHGULAR POSItION

Chapter 2: Tutorial

Move the indicator to the right until the Angle readout is at 0.00 in the monitor degrees and click the mouse button to set the initial position of spin. Observe the message $S E T$ FINAL ANGULAR POSITION.

Fig. 92

When the Angular Selection dialog box pops up, press Escape. The angle indicator will present a blank. Type in 90.00 degrees (one quarter turn) and click the mouse button on $O K$ to set the final position of spin.

Observe now the vertical spin axis, represented by a broken line and the View display indicating that you are in Front view.

Open the Tools menu and select Clockwise Arc (Fig. 94). Place the cursor on the right side of the axis and click the mouse button to set the point of origin of the arc.

MasterCAD

Fig. 93
Desk File Control View Planes Tanls Mode Select Process 3-D

Chapter 2: Tutorial

Move the cursor to the right and observe the circle that pivots around the preset point (Fig. 94).

Fig. 94

MasterCAD

Place the second point of the circle so that it is entirely on the right side of the screen and set it by clicking the mouse button. Press escape, the angle indicator will blank, type 90.00 degrees (one quarter turn) and click the mouse button on $O K$ to set the final position of spin.

Fig. 95 Set at 90° for a quarter spin
set final amgular position

Chapter 2: Tutorial

Move the mouse and observe the line that remains attached to the end of the arc and the Tool readout that indicates Polyline. Define any line (if you wish) and then press the spacebar to complete the operation (Fig. 97).

Fig. 96

MasterCAD

You will see the spun object being generated on the screen.

Fig. 97 The final spun object

Execute the GENERAL VIEW procedure (See Fig. 98).

Fig. 98

Chapter 2: Tutorial

Procedure : Move Objects

Execute or open the Cylinder exercise if you saved it, or create a new one using the procedure on page 35 . But do not execute GENERAL VIEW.

Open the Select menu and choose Objects. You will see the message SELECT OBJECTS AND PRESS RIGHT BUTTON TO CONTINUE.

Fig. 99

Place the cursor over one of the edges of the object and click the left mouse button to select it. Click the right mouse button to return to the drafting board.

MasterCAD

Fig. 100 Select the Cylinder

Chapter 2: Tutorial

Open the Process menu, select Move and observe the message SELECT INITIAL BASEPOINT POSITION (Fig. 101).

Fig. 101

MasterCAD

Now place the cursor over one of the corners of the object to mark it as a point of reference, click the mouse button to set it and observe the message SET FINAL BASEPOINT POSITION.

Fig. 102 Select the
Initial Basepoint position

Now move the cursor to any position on the screen and click the mouse button to set it. Notice how the object moves to the new position.

Chapter 2: Tutorial

Fig. 103 Set the Final Basepoint position...

Fig. 104 ... and click to move

Procedure : Flip Elements

Open the HEXAGONAL PRISM created earlier or execute the procedure on page 57, but without executing GENERAL VIEW.

Open the Select menu and choose POINTS (Fig. 105). Observe the message SELECT POINTS AND PRESSTHE RIGHT MOUSE BUTTON TO CONTINUE.

Fig. 105

| Desk File Control View Planes Tools Mode |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Place the cursor over the upper left-hand corner of the hexagon and click the left mouse to select it. Now trace the outline box completely around the object. Click the right mouse button to confirm.

Chapter 2: Tutorial

Fig. 106 Place cursor and click left mouse button...
select puirhts and press right button to cohtinue

VIEW:Front	$X:-12.30$	DX:	8.80	\# FRONT:	0.00	DIST,	9,12	FREE:99\%	M
TOOL:CirC.	$Z: 16,60$	DZ:	2.40	$\#$ BACK	0.00	ANGLE:	15,26	ZOOM:280	T

Fig. 107 Move down and right to form a selection box...
select points and press right button to continue

Open the Process menu and select H-Flip (Horizontal Flip) (Fig. 108). Observe the axis on the screen. Move it until it touches the extreme right point of the hexagon and click the mouse button to define it.

Fig. 108

	X: 3.40	DX: 0.00		FRONT	8.08	DIS	8.80		
TOOL:	z: 0.00	DZ: 0.00	\#	PACK	0.00	ANGLE:	8.00	00M:200	

Fig. 109 Move the axis to the
Hexagon and click

	DX: 0.08		FRONT: 0.80	DIST, : 0.00	FREE:99\%	
TOOL:Circ, $2: 16.38$	DZ: 0,08	\#	BACK : 0.88	ANGLE: 0.00	Z00M:200	

MasterCAD

Observe the new position and orientation of the element (Fig. 110).

Fig. 110

Open the Process menu again and select V-FLIP (Vertical Flip) (Fig. 111), and observe the axis on the screen (Fig. 112). Move it until it touches the extreme top point of the hexagon and click the mouse button to define it (Fig. 113).

Chapter 2: Tutorial

Fig. 111

Fig. 112

SET FLIPPIHg AXIS

Fig. 113

Execute the GENERAL VIEW procedure if you wish.

Procedure : Copy

Open the CYLINDER.OBJ created earlier, or execute the procedure described on page 35. Do not execute GENERAL VIEW.

Open the Select menu and choose Points (Fig. 114). Observe the message SELECT POINTS AND PRESS RIGHT BUTTON TO CONTINUE.

To select the points to copy, it is necessary to define a rectangular area that will contain them. To do this, place the cursor at some point on the upper left-hand part of the screen, above the circle, and click the mouse button to initialize the area.

Move the mouse to the right, and notice the rectangle drawn with broken lines that appears attached to the preset point and to the cursor. Define a rectangular area that

MasterCAD

contains the entire circle and click the mouse button to select it. Observe the selection indicators that are now part of the circle. (If for some reason some point is not indicated, repeat the previous procedure until all points are selected.)

Fig. 115

Press the right mouse button to complete the process of selection. Open the Process menu and select Copy (Fig. 116). Observe the message SET INITIAL BASEPOINT POSITION. Place the cursor in the center of the circle and click the mouse button to mark it as a point of reference.

Chapter 2：Tutorial

Fig． 116 Select Copy

Fig． 117 Set the Initial Basepoint

Master.CAD

Observe the message SET FINAL BASEPOINT POSITION. Move the cursor to any point outside the circle and click the mouse button to define it as the center of the new circle.

Fig. 118 Set Final Basepoint and click...

Chapter 2: Tutorial

Fig. 119 Copy of object appears at set point

GENERAL VIEW may be executed at this point if desired (See Figures 120-125).

MasterCAD

Fig. 120

Fig. 121

Chapter 2：Tutorial

Fig． 122

Fig． 123

MasterCAD

Fig. 124

Fig. 125

Chapter 2: Tutorial

Procedure : Rotate Elements

Open the CUBE.OBJ created earlier or execute the CUBE procedure without executing GENERAL VIEW.

Open the Select menu and choose Points (Fig. 126). Observe the message SELECT POINTS AND PRESS RIGHT BUTTON TO CONTINUE.

Fig. 126

To select the points to rotate, it is necessary to define a rectangular area that will contain them. To do this, place the cursor at some point on the upper left-hand part of the screen, above the cube, and click the mouse button to initialize the area.

Move the mouse to the right, and notice the rectangle drawn with broken lines that appears attached to the preset point and to the cursor. Define a rectangular area that

MasterCAD

contains the entire cube and click the mouse button to select it. Observe the selection indicators that are now part of the cube (if for some reason some point is not indicated, repeat the previous procedure until all points are selected).

Fig. 127 Use the rectangle to select the cube

Press the right mouse button to finalize the process of selection.

Open the Process menu, select Rotate (Fig. 128), and observe the message SET SPIN CENTER (Fig. 129). Place the cursor over one of the sides of the chosen element and click the mouse button to set the center of rotation.

Chapter 2: Tutorial

Fig. 128

Fig. 129

MasterCAD

The Angle Selection dialog box will appear. Press escape to clear the three 0's from the degree indicator and insert 30, with clockwise selected. Press the $O K$ button.

Fig. 130 Set Angle at 30

The object (cube) has now rotated 30° to the right of its original position.

Chapter 2: Tutorial

Fig. 131

MasterCAD

Procedure : Proportion

Execute the CYLINDER procedure from page 35, or open the one executed previously. Do not execute GENERAL VIEW.

Open the Select menu and choose OBJECTS (Fig. 132). Observe the message SELECT OBJECTS AND PRESS RIGHT BUTTON TO CONTINUE.

Fig. 132
Desk File Control View Planes Tools Mode Select Process 3-0

Chapter 2: Tutorial

Place the cursor over any point on the perimeter of the polygon and click the mouse button to select it. Observe the message SELECT OBJECTS AND PRESS RIGHT BUTTONTO CONTINUE. Move the cursor to the side of the cylinder and press the right mouse button to select (Fig. 133).

Fig. 133

Open the Process menu and select Proportion. Observe the message SET PROPORTION CENTER.

MasterCAD

Fig. 134 Select Proportion from the PROCESS Menu

Desk File Control View Planes Tools Mode Select Process 3-D

Fig. 135 Place the cursor at the Center...

Chapter 2: Tutorial

Place the cursor in the center of the polygon and click the mouse button to define it. Notice the message SET INITIAL PROPORTION.

Fig. 136 ... and set the INITIAL PROPORTION

Move the cursor and observe the rectangle drawn with broken lines that grows from the fixed point.

Master CAD

Define a rectangle that contains the selected figure and click the mouse button to confirm. Observe the message SET FINAL PROPORTION.

Fig. 137 Click the left mouse button after enclosing the object

Chapter 2: Tutorial

Move the cursor again and observe the broken-line rectangle that represents the new proportion (Fig. 138).

Fig. 138

Now define a rectangle larger than the first and click the mouse button to confirm (Fig. 139).

Fig. 139

Chapter 2: Tutorial

Procedure : Copy n Objects

Open the CUBE.OBJ or execute the CUBE procedure found on page 18.

Open the Select menu and choose Objects (Fig. 140). Observe the message SELECT OBJECTS AND PRESS RIGHT BUTTON TO CONTINUE.

Fig. 140

MasterCAD

Fig. 141 Click the edge of the cube to select

Place the cursor on one of the edges of the object and clicl the mouse button to select it. Click the right mouse butte to continue.

Chapter 2：Tutorial

Open the Process menu，select Copy n（Fig．142）and observe the message SET INITIAL BASEPOINT POSITION（Fig．143）．

Fig． 142
Desk File Control View Planes Tools Mode Select Process 3－0

Fig． 143

MasterCAD

Now place the cursor on the lower left corner of the object to take it as a point of reference, click the mouse to fix it and observe the message SET FINAL BASEPOINT POSITION.

Fig. 144 Set the final Basepoint position

Place the cursor on the upper right corner of the object to mark it as a destination point of reference, click the mouse button to set it and you will see the dialog box Copy n COMMAND.

Chapter 2: Tutorial

Press the <ESC $>$ key and choose the number of copies that you wish (for the purposes of this tutorial, we recommend between three and eight copies).

Fig. 145 Enter Number of Copies (6)

MasterCAD

Now select the $D W$ option to define the relative perpendicular position between the base and its immediate copy. Observe the message SET INITIAL BASE POINT and that the broken line that indicates the height of the cursor.

Fig. 146 Set the Initial Basepoint

Chapter 2: Tutorial

Move the indicator until it touches the base of the object and click the mouse button to define the initial relative height. Observe the message SET FINAL BASE POINT.

Fig. 147 Set the Final Basepoint

Now place the indicator so that it touches the upper part of the object and click the mouse button to confirm.

The same dialog box will appear again permitting you to change the data if you wish. Select $O K$ in this case to complete the operation.

Fig. 148 Select OK

Fig. 149...And Observe
the stacked cubes

Chapter 2: Tutorial

Use the procedure GENERAL VIEW from page 24 to look at your new creation, then save it if you wish (Warning: Make sure you save the new drawing under a different name as you will probably have numerous occasions for calling up the CUBE.OBJ file - beginning with the next procedure).

E: 1En
Desk File Control Dien Planes Tools Mode Select Process 3-D


```
MasterCAD
```

Fig. 151

Fig. 152

Chapter 2: Tutorial

Fig. 153

Fig. 154

MasterCAD

Fig. 155

Fig. 156

Chapter 2: Tutorial

Procedure : Copy Rotate n Objects

Open the CUBE.OBJ again or execute the procedure CUBE without executing GENERAL VIEW.

Open the Select menu and choose Objects (Fig. 157). Observe the message SELECT OBJECTS AND PRESS RIGHT BUTTON TO CONTINUE.

Fig. 157

Master CAD

Place the cursor over one of the edges of the object and click the mouse button to select it (Fig. 158). Click the right button to continue.

Fig. 158

Chapter 2: Tutorial

Open the Process menu, select CRotate n(Fig. 159) and observe the message SET SPIN CENTER.

Fig. 159

Now place the cursor over the lower left corner of the object to mark it as a point of reference, click the mouse button to setit. MasterCAD shows you the angle selection window. Press the Graphic Mode button to continue and observe the message SET INITIAL ANGULAR POSITION.

MasterCAD

Fig. 160 Set the Spin Center...

Fig. 161 ... Then select Graphic Mode
SEt intial amgular position

Chapter 2: Tutorial

Move the rotation indicator so that it touches the base of the object (ANGLE $=0$) and click the mouse button to set it. Observe the message SET FINAL ANGULAR POSITION.

Fig. 162 Set the Initial Angle at 0.00 degrees (see the reading in the Monitor)

Master CAD

Move the rotation indicator 45 degrees (ANGLE $=45$) and click the mouse button to set it. Carefully observe the dialog box COPY ROTATION n.

Fig. 163 Set the final angle at 45°

Chapter 2: Tutorial

Press the $<\mathrm{ESC}>$ key and choose the number of copies that you wish (for the purposes of this tutorial we recommend that you choose between four and eight copies).

Fig. 164 Set number at 4 and click DW

Now select the $D W$ option to define the relative height between the base object and its immediate copy. Observe the message SET INITIAL BASE POINT and the broken line that indicates the height of the cursor.

MasterCAD

Fig. 165 Set the Initial Basepoint
SET INITIAL BASEPOINT

Move the indicator until it touches the base of the object and click the mouse button to define the relative initial height. Observe the message SET FINAL BASE POINT.

Now place the indicator touching the upper part of the object and click the mouse button to confirm. Observe again the dialog box that permits you to change the data if you so wish. In this case, select $O K$ to complete the operation.

Chapter 2: Tutorial

Fig. 166 Set the Final Basepoint...

Fig. 167 ...And Click OK

MasterCAD

Execute the GENERAL VIEW procedure to see the results.

Fig. 168

Desk File ControlVien Planes Tools Mode Select Process 3-D Plan Front Back Left Right

Chapter 2: Tutorial

Fig. 170

MasterCAD

Procedure : Mode

Open the Mode menu and select the PLANES option (Fig. 171). Carefully observe the window PLANES MODE SELECTION.

Fig. 171

Up to this point, you have been working in the Cut mode and have observed that the objects created are open at the sides. This is because the projection mode can be presented in several different ways. Taking CUBE as an example, you will notice that it appears to be a solid, open at the top and bottom (Cut mode); or that it appears with a solid base with no top ($C u t+L o-$ Contain); or that it appears as a completely solid object (Cut + Lo-Contain + Hi-Contain $)$.

Chapter 2: Tutorial

Fig. 172 The Planes selection Box with all options selected

MasterCAD

Now select Hi-Contain and observe that the Cut option remains selected. This is because the mode functions are cumulative; that is, they can be combined. You can now repeat this lesson utilizing the following modes:

```
CUT + HI-CONTAIN
CUT + LO-CONTAIN
HI-CONTAIN + LO-CONTAIN
CUT + HI-CONTAIN + LO-CONTAIN
```

Observe the difference in the objects when presented as solids.

REMEMBER:

Lo-Contain and Hi -Contain are present when you are working on Plan view.

Front-Contain and Back-Contain are present when you are working on Front or Back views.

Left-Contain and Right-Contain are present when you are working on Left or Right views.

Chapter 3

Theory

MasterCAD

CONCEPTS

Throughout this manual we use several terms like projection, limitplanes, perspective, projection lines, points, lines, rectangles, objects, elements, etc.

This section will clear up their meanings (as much as possible), explain how to identify them, and, above all, show their interrelationships in the graphic environment we will call workspace.

Even if you are familiar with the terminology we will use from now on, it is always a good idea to go through it once more, further developing the bond between you and the program.

If you aren't familiar with this subject, read on carefully. These next few pages will introduce you to the fascinating world of graphic expression.

PROJECTION

Projection is the graphic representation of an object on a plane where all the points belonging to the object are projected.

Professor F. Izquierdo Asensi, in his book Descriptive Geometry (11th edition, Chapter 1) defines Projection in the following terms:

The projection of a point [A] in space (See Fig. 173) upon a plane [\&], from a fixed point [O], outside the plane, is the intersection [A^{\prime}] of the projection line [OA] (de-

Chapter 3: Theory

fined by [O] and the given point [A]) with the plane [\&]. The fixed point [O] is called the Projection Center and the plane [\&], is called the Projection Plane.

From the above we can deduce that all points located on [\&] it will merge with its projection, as we can see in [C]. This projection is called Central Conic Projection or Perspective.

Fig. 173

If the projection center is an "improper" point (meaning that it is located in infinity), the projection lines will be a parallel projection.

This brings us to the cylindrical or parallel projection. The cylindrical projection can be orthogonal or oblique, de-

Master CAD

pending on whether the common direction of the projection lines is perpendicular or oblique to the projection plane.

In the first case we have an ORTHOGONAL PROJECTION.

Fig. 174

ORTHOGONAL PROJECTION

PARALLEL PROJECTION

The projection lines are parallel and perpendicular to the projection plane, that we will now call the picture plane.

This type of projection is used to draw plane views, front and side sections, facades in architecture and engineering, and to project partial views of every type.

Chapter 3: Theory

OBLIQUE PROJECTION

The projection lines are parallel and inclined to the projection plane.

This type of projection is used to draw technical and mechanical objects and is mainly used in engineering design. It is very useful because you can measure the object in 3-D.

PERSPECTIVE

Throughout this manual, when we refer to perspective, we are referring to a projection system called conical linear perspective. A practical derivative of the central projection, itself included in the conic system.

We shall then define perspective as a projection system by which an object in space is represented as it would appear in real life, with a three-dimensional appearance. It will be projected on a flat surface called the picture plane (see figure 175).

The effect of this projection can be compared to that of a photograph taken from any given point.

Applications

A perspective is used by an architect as an important component of the Architect-Design-Aspect-Customer relationship, since it affords a faithful rendition of the shape a building will have when it is finished. The technique is also useful in the fine arts, and in the production of advertising copy.

MasterCAD

FEATURES

The outstanding difference between perspective and parallel projection is that the projection lines converge towards a common point called the viewpoint.

To achieve an adequate representation of the object, the projection system must use a series of reference elements that facilitate the building of images and their location in the workspace.

The elements that make up the perspective workspace are the following:

The Master CAD Coordinate System

This is a cartesian coordinate system made up by the three axes, X, Y and Z , that intersect at a common origin, located at the center of the screen in the plane X-Y (plan view) and in the lower center of the screen in the $\mathrm{X}-\mathrm{Z}$ and $\mathrm{Y}-\mathrm{Z}$ planes (front, back and lateral views).

The Viewpoint

This is the point in space from which the represented object is observed. The coordinate that establishes the position will be identified as XV, YV and ZV .

Chapter 3: Theory

The View Angles

These are the vertical and horizontal angles that defines the observer's line of sight.

The Picture Plane

This is the vertical surface upon which the object's image is projected. In this case, your computer's screen will behave as the picture plane.

The Horizon Plane

This is the horizontal plane that contains the viewpoint. The intersection between this plane and the picture plane is the horizon line.

MasterCAD

$\mathrm{H}-\&=$ Horizontal view angle $\quad \mathrm{V}-\&=$ Vertical view angle

Chapter 3: Theory

The Ground Plane

This is a horizontal plane (floor), parallel to the horizon plane. Generally, this is the plane that contains all object bases and is the default Master CAD lower plane. It can be defined within the workspace as the set of points with a common Z coordinate equal to zero. The intersection of the ground and picture planes is the ground line.

The Vanishing Plane

This is the vertical plane that contains the viewpoint. It separates the spaces in front of and in back of the observer. For all practical projection effects, and thus for this program, you will be able to see only the space ahead of you; that is, all points that are in front of you and in the direction you have chosen in the Viewpoint menu.

The Ground Line

As we said before, this is the intersection of the horizon and picture planes. If the screen is taken as the ground plane, the ground line can be seen in plan as being in the picture plane's position.

The Horizon Line

This is the intersection of the horizon and picture planes. It is separated from the ground line by a distance ZV , corresponding to the height of the viewpoint. If we take the screen as the picture plane (see Figure 175, page 154),

MasterCAD

we can see the ground line GL, the horizon line HL, the height of the viewpoint ZV , the fugue point FP , the distance points DP, and the distance DV, measured as the distance between the viewpoint and the picture plane.

The Central Fugue Point

This is the projection PC of the viewpoint on the picture plane. All lines parallel to the Y axis will converge to this point.

The Distance Points

These are located to the right and left of PC and at distance DV. All lines 45 degrees from the Y axis converge to these points.

The Limit Planes

These are user-defined planes that limit the projection of a given object in space. For example, if we have defined a horizontal plane with an elevation of three meters and a second horizontal plane at an elevation of seven meters and we draw (with Master CAD of course!) the plan of a circle, we will have an object with a height of four meters, elevated three meters above ground. These planes may be horizontal, vertical or angled as you wish.

If you are working in a plan view, you may then define horizontal or inclined limit planes that will determine the upper and lower limits of the object or objects you wish to project.

If you are working in a front or back view, you may then define horizontal or inclined limit planes that will determine the front and back limits of the object.

If you are working in a left or right view, you may then define horizontal or inclined limit planes that will determine the left and right limits of the object.

The limit plane is also used to draw graphics contained in them. In this case, a rectangle drawn on an inclined plane could represent, for example, the roof of a house; a cylinder drawn on a plane could be a disc in space, etc.

The Objects

These are sets of lines that make up any figure, and can be edited as a unit. They can be created in two different ways:
$>$ from figures included in the Tools menu,
$>$ combining several of the above using Group Process.

The Elements

These are straight lines or planes that make up objects. The former may be separated from the latter using the Process commands.

The Points

These are singular points that make up elements and can be selected and processed using the Process commands.

MasterCAD

SPECIAL PROPERTIES OF

THE PERSPECTIVE

PROJECTION

The following are properties that define the Master CAD Perspective Projection and should be taken into account when using the program.
$>\quad$ A system of horizontal straight lines that converge at a single point is called the Fugue Point of the system.
$>\quad$ The horizon lines contain all the Fugue Points.
$>\quad$ The vertical lines (Z lines), being parallel to the picture plane, do not appear to converge (if the view angle is horizontal), and hence will be see as vertical in perspective.
$>$ If the vertical view angle is inclined, then the vertical lines will converge to a single point, called the Fugue Point of the Vertical System.
$>\quad$ The lines contained in the picture plane will be actual size, since they will be their own perspective.
$>\quad$ In the same sense, if a line is located behind the picture plane, its perspective will be shorter than the line itself.

Chapter 3: Theory

Some Tips

It is important to select an adequate viewpoint, since its location will determine the results of your perspective. A badly selected viewpoint can lead to unsatisfying results.

The location of the viewpoint depends on what part of the object you want to feature. It is a good idea to displace the object with respect to the viewpoint to avoid views that are too symmetrical.

When positioning an object with respect to the picture plane, it is preferable to place it in such a way that its side faces different angles within the same planes so that symmetrical views are avoided.

It is common to use angles of 30 or 60 degrees.
The height of the viewpoint above the ground plane is usually taken as five feet, nine inches (1.8 m), that is, the height of the average person.

However, if the object to be viewed is small, use a height that is more convenient to you.

Chapter 4

Commands

MasterCAD

Master CAD is a sophisticated Computer Aided Design system, conceived to let you and your Atari ST create complete and exact 2-D and 3-D graphics without having to waste endless hours building data matrices or fighting with mysterious and primitive user interfaces.

With Master CAD you will always know what you are doing because you will observe everything with your own eyes!

If there are any details of Master CAD that you cannot find in the manual, do not worry; Master CAD will provide on screen help at any time.

Master CAD is made up of two main programs designed to let you work in two work sections: the DESIGN SECTION and the OUTPUT SECTION.

The first is conceived to let you design and see your creation on the screen in an informal draft print; the second lets you obtain quality hard copy of your work on printers or plotters.

It is important to understand the capability of the drafting board. The Atari ST has three different screen resolutions: 640×400 monochrome, 640×200 RGB color, and 320x200 RGB color (Master CAD does not run in the lowresolution, 320×200 mode).

Chapter 5: Commands

Master CAD uses the screen as a "window" into a larger workspace. The Master CAD workspace is a cartesian space with more than 4,000 kilometers in each positive or negative axis direction (that's about 2,500 miles!).

As you progress within Master CAD, you will create very sophisticated graphics more quickly each time. We strongly recommend that you save your work often to avoid disaster should your dog decides to munch unexpectedly on your power cord!

MasterCAD

DESIGN SECTION

2-D MAIN MENU

FILE

Menu to select file-handling operations.

File
Hew
Open
Append
Import
Save
Save as
Draft Print
Save Screen
Quit

NEW

The NEW command allows you to reset all parameters and default conditions. It also allows you to create a new workfile from scratch.

Chapter 5: Commands

If you select the New file option and there is any workfile present in memory, you will see the following dialog box (w8).

Fig. 177

WARNIME!
This Operation Hill REMOUE
YOUR CURREMT WORK FROM MEMORY
COMTIMUE CAHCEL

You must decide what to do with the current file in memory.

If you CONTINUE the operation, you will lose all this information, so please be very careful when using this command.

If you decide to SAVE your work, Master CAD will go directly to the SAVE dialog box. The SAVE command will be discussed later.

If you CANCEL the operation the system will return to the drafting board, as if nothing had happened.

MasterCAD

OPEN

This command opens a previously saved [.OBJ] workfile. It resets all work parameters and default conditions and erases any information contained in memory.

If you select this option while you still have a workfile in memory, you will see the same dialog box that you saw with the NEW command, so please be careful using this command.

Any file you open has to have been saved by Master CAD. After selecting the OPEN option, you will see a list of files which have the file extender [.OBJ]. You can open a file by typing the filename or by double clicking on the filename from the file directory.

APPEND

This command opens a previously saved [.OBJ] workfile and attachs it to the current file in memory. It doesn't reset the current parameters.

This option lets you merge two files together to create one larger file. When you append the second file to the first file, you want to make sure the combined size of both files doesn't exceed the memory limitation of your computer.

Check the amount of memory available and the size of the two files before beginning this operation, as Master CAD will only accept into the computer's memory that portion of the file that fits. The remainder will not load.

If you wish to Append a file, it has to have been saved using

Chapter 5: Commands

Master CAD. After selecting the Append option, you will see a list of files which have the file extender [.OBJ].

You can append a file by typing the filename or by double clicking on the filename from the file directory.

Once the append operation is completed the appended file will appear selected, so you can place it wherever you want using the Move command of the Process menu.

IMPORT

This is a command to import objects from another file.
The objects being exported from the source file are saved in a buffer file named CONTAINER.OBJ that you can open if you want. If you wish to import the contents of the buffer file, it is necessary that the objects in that file were stored using Master CAD.

Check first for the amount of available memory before using this command; Master CAD will accept only that part of the new file that fits in available memory.

To import the buffer file, open the File menu and select Import.

Once the import operation is completed, the contents of the buffer file will appear selected so you can place it where you want by using the Move command of the Process menu.

NOTE: If you attempt to import an empty Buffer file (before using the Export command) you will get a TOS error.

MasterCAD

SAVE

This command saves to disk the object created as a FILENAME.OBJ.

If the file has been previously saved with a user-defined filename, this command will preserve that filename.

SAVE AS

Command to save to disk the file created with a userdefined filename.

When this option is selected, you will see the normal Item Selector with a list of files having the filename extender .OBJ.

If you are saving a file for the first time, you will have to enter a new filename. Be sure that the filename has the .OBJ extender; otherwise, the file will not be displayed the next time you select Open. When satisfied with the filename, select $O K$ and the file will be saved.

DRAFT

This command sends a screen dump to the printer.

This option prints the picture in the current screen on your printer. You must have installed your printer driver properly (see the INSTALL PRINTER accessory on the desk menu).

If you press ALT+HELP during a draft print operation, the

Chapter 5: Commands

printout will be canceled and the system will return to the workscreen. Please wait for the cursor and the monitor to appear before continuing to work.

SAVE SCREEN

This command saves the screen contents to different formats for quality print or plotting purposes. You can select two formats for saving the screen:

DEGAS format: The picture files saved with this format can be used by DEGAS" and other DEGAS compatible programs. The .i.DEGAS"; file is uncompressed and saved with the .PI3 extender for monochrome and .PI2 for RGB color.

MASTER CAD PRINTFILE: This is a special Master $\boldsymbol{C A D}$ file used by the OUTPUT section. If you want to print or plot your work, you need to save it in this format. These files are saved with a .PRF extender.

You have to define the zoom value in your printfile. This value defines the exact scale for plotting purposes. Depending on your printer, the ZOOM 1:89 may be printed in $1: 100$ scale; therefore, it is important to know the aspect ratio between the program and your printer. This must be tested and defined by the user.

When either of these options are selected, you will see the normal Item Selector with a list of files having the corresponding filename extender. If you are saving a new file for the first time, you will have to enter a new filename. When you are satisfied with the filename selected, select $O K$ and that file will be saved.

QUIT

Command to quit the DESIGN section and return to the Desktop.

Chapter 5: Commands

CONTROL

Menu to define the work conditions and parameters.
Fig. 178

Control
Zoom
Grid
Units
Origin
Reverse Screen
Screen Center
Spin Step
Rulers on/off
Keyboard Input
Cayw.

ZOOM

Command to modify the zoom. The range is from $1: 1$ to 1:1000.

We have named this command Zoom instead of Scale because we cannot guarantee the exact scale, given the endless list of printers on the market! You can be sure that the current zoom will give accurate plots on plotters supported by Master CAD. In the case of printers, you can adjust the zoom until you obtain the desired scale on your printouts.

MasterCAD

To modify the zoom, open the Control menu and select the Zoom option. You will see a dialog box having different common zoom choices. Select the option you want and press OK to confirm.

If you want to define the zoom by input, press the Zoom option to activate it, enter the desired zoom number (from 1 to 1000), then press $O K$ to confirm. If you enter a number greater than 1000, Master CAD will ignore it.

Fig. 179 ZOOM Select Box

Once the selection is made, you will see the objects on the screen in a new size (if the zoom selected is larger than before), or the new smaller screen that you can place by cursor movement (if you selected a smaller zoom than before).

Chapter 5: Commands

You will see the message SET THE SCREEN CENTER BY CURSOR. Press the left mouse button to define the center.

Fig. 180 Set Screen
SET HEL SCREEH CEHTER

GRID

A grid of dots can be displayed on the screen for your reference. You will have three ways of using the grid:

GRID ON/OFF: Toggles the grid on and off.
SNAP ON/OFF: Toggles the snap function. The snap to grid function causes a user-defined point to be automatically aligned to the nearest grid point. This allows for greater accuracy in your graphics work. Once selected, the snap function is activated by pressing the SHIFT key while drawing.

MasterCAD

SET GRID: Sets the size of the grid. Select SET GRID from the dialog box, and you will see the message SET GRID and a square at the lower left corner of the screen.

Fig. 181 Grid Dialog Box

Move the cursor inside and to the lower left corner of this square. You can modify the grid display through cursor movement. You can also observe the grid size readings DX and DY or DZ to help you obtain greater accuracy. Once the grid has been defined, press the mouse button to verify your choice. The system will return automatically to the drafting board.

Chapter 5: Commands

Fig. 182 Size Box

SET GRID

UNITS

This command lets your select the units of measurement you will use for objects displayed on the screen.

MasterCAD

Fig. 183 Unit Selection

You have the following options: meters, centimeters, millimeters and inches. Select the option you prefer and $O K$ to confirm your choice.

ORIGIN

Command to set a user-defined coordinate origin point. To define the new origin open the Control menu and select Origin. You will see the message SET NEW ORIGIN. Place the cursor where you wish the new origin to be and click the mouse button to confirm it.

Chapter 5: Commands

Fig. 184
SET MEH ORIGIH

REVERSE

This command reverses the screen and its contents from white to black and vice versa (i.e., reverse video). Open the Control menu and select Reverse Screen. The screen will change instantly.

SCREEN CENTER

This command lets you move the window (screen) over the entire workspace. Open the Control menu and select Screen Center. You will see the message SET NEW SCREEN CENTER.

MasterCAD

Move the cursor, and you will see a rectangle drawn with broken lines that represents the boundaries of the new screen. Place the screen center (the cursor) where you want and click the mouse button to define it.

SPIN STEP

Command to select the regular polygon step number. This means the number of sides of a regular polygon. This value is used by the Regular Polygon tool and by the Spin object generation mode.

Open the Control menu and select Spin Step. You will see a dialog box that lets you select any of the more common regular polygons. Select the option you want and press OK to confirm.

You will observe that the default value for a circle is 18 sides, but you can modify this as you wish.

Chapter 5: Commands

Fig. 185 Spin Step Dialog Box

If you want to define the Spin Step by input, select Number to activate it. Enter the desired spin step number (from 3 to 99) and press OK to confirm. If you enter a number greater than 99, Master CAD will ignore it.

RULER ON/OFF

This command toggles the graphic rulers. When the ruler is on, you can visually align figures by the markings on the ruler. You will also be able to adjust the spacing on the ruler by setting the grid (see SET GRID page 173). The ruler spacing will automatically match the grid spacing.

INPUT

This command selects the input mode. Open the control menu and select the input option, observe the dialog box indicating that you may choose between the graphic mode (default) and the keyboard mode. In the keyboard mode coordinates are entered directly from the keyboard.

COLOR

This command selects the color to be used.

Chapter 5: Commands

VIEW

Menu that selects the orthogonal view you will work with.
Fig. 186 View Menu

Master CAD

PLANES

Menu to determine the type of projection planes you will work with.

Fig. 187

Planes
Normal
Front Angled Side Angled

Chapter 5: Commands

NORMAL

Command to define projection planes that are parallel to the view plane that you are working with.

For example, when you define normal planes while working on the Plan view, these planes will be horizontal and obviously parallel to the floor.

If you define it while working on Front view, these planes will be vertical and parallel to the front projection plane.

To do this, open the Planes menu and select Normal. You will see the message SET CUT PLANES and a broken line that indicates the plane's level.

Move it until you are satisfied with the position of the plane, and then click the mouse button to confirm it. Repeat to position a second plane.

Note that if you are in Plan view, you are always going to define the normal planes in Front view because in Plan view you need only to set the height of the projection planes.

If you are working in Front, Back, Left or Right views you are always going to define the normal planes in the Plan view. That is because these planes will always be vertical.

PLAN ANGLED

Command to define projection planes that are vertical and inclined in respect to the view plane you are working with.

MasterCAD

You can only define Plan Angled planes if you are working in Front, Back, Left or Right views.

To place them, open the Planes menu and select Plan Angled. You will see the message SET CUT PLANES and a broken line indicating the plane's position. Observe that you are in Plan view.

The Plan Angled planes have to be defined by setting two points of the line that represents the plan on the screen. These points also determine the angle between the cut plane and the view projection plane.

Repeat this operation for the second plane and Master $C A D$ will automatically return to the view you are working on.

Fig. 188

Chapter 5: Commands

FRONT ANGLED

Command to define projection planes that are inclined in respect to the horizontal plane.

You can only define Front Angled planes if you are working in Plan, Left or Right views.

To place them, open the Planes menu and select Front Angled. You will see the message SET CUT PLANES and a broken line indicating the plane's position. Observe that you are in Front view.

The Front Angled planes have to be defined by setting two points of the line that represents the plan on the screen. These points also determine the angle between the cut plane and the view projection plane.

Repeat this operation for the second plane and Master $C A D$ will automatically return to the view you are working on.

MasterCAD

You can define Front Angled planes and use them from the Right view.

Chapter 5: Commands

Front Angled planes seen from Right view.

Fig. 190

SIDE ANGLED

Command to define projection planes that are inclined in respect to the horizontal plane.

You can only define Side Angled planes if you are working in Plan, Front or Back views.

To place them, open the Planes menu and select Side Angled. You will see the message SET CUT PLANES and a broken line indicating the plane's position. Observe that you are in Left view.

The Side Angled planes have to be defined by setting two points of the line that represents the plan on the screen. These points also determine the angle between the cut plane and the view projection plane.

Master CAD

Repeat this operation for the second plane and Master $C A D$ will automatically return to the view you are working on.

Fig. 191

You can define Side Angled planes and use them from Front view.

Chapter 5: Commands

Side Angled planes seen from Front view.

Fig. 192

SIDE ANGLED planes seen from FRONT view

MasterCAD

TOOLS

This Menu selects the graphic tool for use in drafting.
Fig. 193 Tools Menu

Tools
Line
Rectangle
Regular Polygon(circle)
Polyline
Polygon
Clockwise Arc
Counterclockwise Arc
Text
Dim

LINE

Command to define a straight line in any direction.
To draw a line, open the Tools menu and select the Line option. Position the cursor where you want the line to begin, and click the mouse button to confirm.

Move the mouse and note that you are drawing a line from the point you selected. If you decide to change the original point, press the right mouse button and start over.

To continue, place the cursor at the end point of the line and click the left mouse button to complete the line.

Chapter 5: Commands

RECTANGLE

Command to draw rectangles.

Open the Tools menu and select Rectangle. Position the cursor where you want one corner of the box to be drawn. Now click the mouse button and move the mouse. Note that the rectangle gets larger. If you need to change the position of the first corner, click the right mouse button and start over.

Position the cursor where you want the opposite corner of the rectangle to be and click the left mouse button to complete the operation.

REGULAR POLYGON

Command to draw circles, ovals and regular polygons.

To draw a regular polygon open the Tools menu and select Regular Polygon. Position the cursor where you want the circle center to be and click the mouse button to set it. Then move the cursor and note an ellipse developing on the screen.

If you decide to change the center, press the right mouse button and start over.

Observe the readings DX, DY and DZ indicating the radiuses of the ellipse. When both radiuses are equal, press the left mouse button to complete the circle.

MasterCAD

To draw an oval polygon, position the cursor where you want the center to be and click the left mouse button to set it. Move the cursor and note the oval developing on the screen.

Observe the readings DX, DY and DZ indicating the radius of the oval. When you are satisfied, press the left mouse button to complete the oval.

If you wish to draw a regular polygon or change the number of sides of the polygon, open the Control menu and select Spin Step.

Select the regular polygon option you want or select Number and enter the desired number. Press $O K$ when ready to confirm.

POLYLINES

Command to draw continuous lines.

Polylines work exactly like regular lines but, unlike regular lines, continue drawing from the last point you pressed the left mouse button.

To finish the polyline, press the right mouse button.

POLYGON

Command to draw irregular shapes.
POLYGON works the same way as Polylines, with the exception that when you press the right mouse button, the last point drawn will be connected with the starting point.

Chapter 5: Commands

CLOCKWISE ARC and

COUNTERCLOCKWISE ARC

Commands to draw clockwise and counterclockwise arcs.

Open the Tools menu and select Clockwise Arc. Position the cursor where you want to define the first point of the arc, then move the cursor and note that you can set the center of the arc through movement of the cursor. Position the center where you wish and press the left mouse button to confirm.

See the dialog box with the angle selecting options. You can enter the desired angle value and press $O K$ to confirm or select the Graphic Mode and click on to continue.

In the second case, observe the radial indicator rotating around the center and the arc attached to the first point.. Set the second point as desired and press the left mouse button to complete the operation. Note that you are now in the polyline tool mode.

If you want to continue with arcs or any other poly tool, open the Tools menu and select the new tool. Note that the first point of the new tool will be attached to the last point of the previous tool. If you want to stop, just press the right mouse button.

TEXT

Command to write three-dimensional text.
Master CAD text is made up of straight lines and works like any other Master CAD object. It can be printed, even plotted.

Open the Tools menu and select Text. Note that the monitor disappears, and the message ENTER TEXT LINE AND PRESS RETURN is displayed. Enter your text, press return and you will see the message SET BASE POINT.

Set the lower right corner of your text by moving the cursor and click the mouse button to confirm.

DIM

This command creates dimensioning references of the objects. Once you have selected DIM from the Tools menu, select the DIM type and parameters from the dialog box and press $O K$ to confirm. The system will return to the work-table and will give a set of instructions according to the type of DIM tool selected.

Chapter 5: Commands

Fig. 194 DIM Parameters Selection

MasterCAD

MODE

Menu for selecting the drawing system:

Fig. 195 Mode Menu

PLANES

Menu to select the projection mode. The projection mode will define which polygons will be solid, and which transparent.

You can see the result of the operations made with the following commands when you use the Filled Planes viewmode of the 3-D section.

When you have defined your projection planes or limit planes you can use them in three different ways, alone or combined.

Chapter 5: Commands

CUT: When you use the cut mode, the lines or polygons that you draw in 2-D will be projected between the two limit planes and only the planes projected from these lines or polygons will be solid.

Fig. 196

MasterCAD

LOW CONTAIN: When you use this mode, the lines and polygons drawn in 2-D will be projected only in the farthest defined planes.

If you make a polyline while working in low contain mode, it will function exactly like a polygon. If you wish to create isolated lines contained in any limit plane, use the Line tool.

Fig. 197

LOW-CONTAIN MODE

Chapter 5: Commands

HIGH CONTAIN: When you use this mode, the lines and polygons drawn in 2-D will be projected only in the nearest limit planes you have defined.

If you make a polyline while working in high contain mode, it will function exactly like a polygon. If you wish to create isolated lines contained in any limit plane, use the Line tool.

Fig. 198

MasterCAD

HIGH CONTAIN + LOW CONTAIN: When you use this mode, the lines and polygons drawn in 2-D will be PROJECTED IN BOTH LIMIT PLANES YOU HAVE DEFINED, BUT THERE WILL NOT BE ANY PLANES PROJECTED BETWEEN THEM.

If you make a polyline while working in this mode, it will function exactly like a polygon. If you wish to create isolated lines contained in any limit plane, use the Line tool.

Chapter 5: Commands

CUT+LOW CONTAIN: When you use this mode, the lines or polygons that you draw in 2-D will be projected between the two limit planes and will be projected in the farthest limit planes you have defined.

If you make a polyline while working in this mode, it will function exactly like a polygon. If you wish to create isolated lines contained in any limit plane, use the Line tool.

Fig. 200

MasterCAD

CUT+HIGH CONTAIN: When you use this mode, the lines or polygons drawn in 2-D will be projected between the two limit planes and will be projected on the nearest limit plane you have defined.

If you make a polyline while working in this mode, it will function exactly like a polygon. If you wish to create isolated lines contained in any limit plane, use the Line tool.

Fig. 201

CUT + HI CONTAIN MODE

Chapter 5: Commands

SPIN

Command to generate spun objects around a user-defined axis.

Open the Mode menu and select Spin.

Fig. 202 Spin Dialog Box

You have three spin types to choose from:
360 SPIN: Command generates a spun object 360 degrees around a user-defined axis.

Select 360 Spin and then $O K$ to confirm. You will see the message SET SPIN CENTER WITH CURSOR.

Position the cursor where you want the center to be, and click the mouse button to set it. Observe the vertical axis on the screen and the change in the VIEW reading. For example, if you set the spin center in Plan you will see the axis in Front.

MasterCAD

You can now use any of the Master $C A D$ graphic tools to make spun objects. For example, open the Tools menu and select Rectangle. Place the cursor where you wish to define the first corner of a rectangle and click the mouse button to confirm.

Now place the second corner and click the mouse again. You will see the message CREATING SPUN OBJECT and the spun object developing on the screen. Open the View menu and select the view you chose to define the spin center. You will see a circular shape.

If you want to change the number of sides of the spun object, open the Control menu, selectSpin Step, enter the number of sides you wish, and select $O K$ to confirm.

You can also set the spin center in any view. If you want to change it just open Mode, select the spin type and place the spin center where you wish.

By definition, a spun object (for select purposes) is created by the action of one tool around the spin center. For example, if you have drawn a line and a rectangle while creating spun objects, you will have two of them.

CLOCKWISE or COUNTERCLOCKWISE SPIN:

Command to generate a spun object of n degrees around a user-defined axis.

Select Clockwise Spin, for example, and then $O K$ to confirm. You will see the message SET SPIN CENTER BY CURSOR. Position the cursor where you want the center

Chapter 5: Commands

to be, and click the mouse button to set it. Note the rotating indicator around the spin center and the message SET INITIAL ANGULAR POSITION. Set the indicator where you want and click the mouse to confirm.

See the dialog box indicating the options for defining the arc's angle opening by numeric input or Graphic Mode. For the first option, simply enter the grade number and click on $O K$ to confirm. In the second case, select the Graphic Mode and press OK to continue. Note again the rotational indicator stemming from the center point. Now you will see a new message, SET THE FINAL ANGULAR POSITION. Follow it using the cursor, and click the mouse button to complete the setting.

In both cases observe the vertical axis on the screen and the change in the View reading. You have defined a partial spin structure and now you can use any of the tools as you would in 360 Spin mode.

Fig. 203 Examples of Spun Objects

SELECT

Fig. 204 SELECT Menu

Select
Points
Elements
Objects
All
Deselect Points
Deselect Elements
Deselect Objects
Deselect All
Reselect by Element

Menu to choose the Select or Deselect criteria you will work with.

There are three types of "items" in the Master CAD system: points, elements and objects.

POINTS

These are singular points that make up elements and objects.

To select points, open the Select menu and then Points. You will see the message SELECT POINT AND PRESS RIGHT MOUSE BUTTON TO CONTINUE, and a cross-

Chapter 5: Commands

type cursor on the screen.

Now you must define a rectangle that contains the points you want to select. Set the cursor where you want one corner of the rectangle to be and click the mouse button to confirm.

Move the cursor and note the broken-lined rectangle on the screen. Position the cursor to locate the opposite corner of the rectangle, and click the mouse button to complete the selection of the points contained in the rectangle.

Note: Triangular shapes indicate the selected points.
You can repeat the selection process as many times as you wish. When satisfied, press the right mouse button to return to the drafting board.

To deselect points, open the Select menu and then Deselect Points. You will see the message SELECT POINT AND PRESS THE RIGHT MOUSE BUTTON TO CONTINUE, and a cross-type cursor on the screen.

The deselection process works exactly the same way as the selection operation.

MasterCAD

Fig. 205

ELEMENTS

These are straight lines or planes that make up objects.
To select, open the Select menu and then Elements. You will see the message SELECT ELEMENTS AND PRESS THE RIGHT BUTTON TO CONTINUE.

Position the cursor over the elements you want to select and click the mouse button to confirm.

Note the triangular shapes that indicate the selected elements.

You can repeat the selection as many times as you wish. When satisfied, press the right mouse button to return to the drafting board.

Chapter 5: Commands

To deselect elements, open the Select menu and then Deselect Elements. You will see the message SELECT ELEMENTS AND PRESS THE RIGHT MOUSE BUTTON TO CONTINUE, and a cross-type cursor on the screen.

The deselection process works exactly the same way as the selection process.

Fig. 206

You can separate one element from one object, but if you select this object the element will always be part of it.

REMEMBER: Only selected items may be processed.

OBJECTS

These are sets of lines that make up any figure. They can be selected and processed as a unit. Objects can be created from figures included in the Tools menu, or by combining several of the above using the group process feature.

To select, open the Select menu and then Objects. You will see the message SELECT OBJECTS AND PRESS THE RIGHT MOUSE BUTTON TO CONTINUE.

Position the cursor over any side of the object(s) you wish to select and click the mouse button to confirm.

Note the triangular shapes that indicate the selected objects.

You can repeat the selection process as many times as you wish. When satisfied, press the right mouse button to return to the drafting board.

To deselect objects, open the Select menu and then choose Deselect Objects. You will see the message SELECT OBJECTS AND PRESS THE RIGHT MOUSE BUTTONTO CONTINUE, and a cross-type cursor on the screen.

The deselection process works exactly the same way as the selection process.

You can combine different selection criteria as well. For example, you can select an object, then deselect any points from it, then select an element from another object, etc.

Chapter 5: Commands

Fig. 207

MasterCAD

PROCESS

Menu to choose the process to use on selected items.

Fig. 208

Process
Group
Move
H-Flip
U-Flip
Copy
Rotate
Copy Rotate
Proportion
Copy n
C Rotate \quad
Export
Delete
Show Area
Texture
Calar

Chapter 5: Commands

MOVE

Command to move the selected items from one userdefined position to another.

Select the items you wish to move, then open the Process menu and select Move. You will see the message SET INITIAL BASEPOINT POSITION and a cross-type cursor.

Place the cursor where you wish to define the basepoint, or first point of reference. Click the mouse button to confirm.

You will now see the message SET FINAL BASEPOINT POSITION. Move the cursor to where you want the new point of reference to be, and click the mouse button.

You will see that all selected points have moved in the direction marked by the two reference points, also in proportion to the distance between the first point and the second.

H-FLIP and V-FLIP

The Commands to flip the selected items horizontally or vertically on a user-defined axis.

You can flip the items horizontally from right to left or vice versa, depending on the flip axis position. You can either flip the items vertically from top to bottom or vice versa.

Select the items you wish to flip. To be sure that you have selected them, open the Select menu, select Deselect All,

MasterCAD

then carefully select only those items you wish affected by the flip process.

Once the items have been selected, open the Process menu and (for example) select the H-Flip option. You will see the message SET THE FLIP AXIS and a broken vertical line representing the axis.

Position the cursor where you want the axis to be and click the mouse button to complete the operation and return to the drafting board. Note the changed position of the item selected.

Fig. 209

COPY

Command to copy the selected items from one userdefined position to another.

Select the items you wish to copy, then open the Process menu and select Copy. You will see the message SET INITIAL BASEPOINT POSITION and the cross-type

Chapter 5: Commands

cursor.

Place the cursor over the point where you wish the basepoint to be, and click the mouse button to confirm. You will now see the message SET FINAL BASEPOINT POSITION.

Place the cursor where you want the copied position to be, relative to the first point of reference, and click the mouse button to complete the operation.

You will see that all selected points have been copied to the location marked by the second reference point, in proportion to the distance between the first point and the second.

> Note: For the purposes of this process, all copied elements will constitute an integrated object. As before, only selected elements will be copied.

The new object will appear selected after the copying process is terminated.

MasterCAD

Fig. 210

ROTATE

Command to rotate the selected items in respect to a userdefined axis.

The rotation is made from one user-defined angular position to another.

Select the item to be rotated, open the Process menu and select ROTATE. You will see the message SET SPIN CENTER and the cross-type cursor.

Position the cursor where you want to define the rotation center and click the mouse to confirm.

See the dialog box indicating the options for defining the rotation angle by numeric input or graphic mode. For the first option, simply enter the desired angle value and click on $O K$ to confirm. In the second case, select Graphic Mode and click on $O K$ to confirm.

Chapter 5: Commands

Move the mouse, and note the indicator rotating around the fixed point and the message SET INITIAL ANGULAR POSITION. Position the indicator to set it and click the mouse to confirm. Now you will see the message SET FINAL ANGULAR POSITION and the indicator will appear once again.

Now set the new angular position and click the mouse button to complete the rotation.

To be rotated, an object must have all of its points selected.

Fig. 211

MasterCAD

COPY ROTATE

Command to simultaneously copy and rotate an item or items in respect to a user-defined axis.

Copy rotation is done from one user-defined angular position to another.

Select the item first, then open the Process menu and select Rotate. You will see the message SET ROTATION CENTER and the cross-type cursor.

Position the cursor where you want the rotation center to be, and click the mouse to confirm. Move the mouse, and note the indicator rotating around the fixed point and the message SET INITIAL ANGULAR POSITION.

Position the indicator to set the degree of rotation and click the mouse to confirm. You will now see the message SET FINAL ANGULAR POSITION, and the indicator will appear again.

Now place the indicator in the new angular position and click the mouse to complete the copy rotation.

To be copy rotated, an element must have all points selected.

Chapter 5: Commands

Fig. 212

COPY n

Command to copy the selected items n times. Each copy is made from one user-defined position to another.

Select the items to be copied, open the Process menu and select Copy n.

You will see the message SET INITIAL BASEPOINT POSITION and the cross-type cursor.

Place the cursor over the point you wish to define as the basepoint and click the mouse button to confirm.

You will see the message SET FINAL BASEPOINT POSITION. Place the cursor where you wish to define the final basepoint. Click the mouse button to complete the operation.

MasterCAD

You will see a dialog box that lets you select how many copies you want, and, optionally, the relative perpendicular distance between each copy.

Select $D W$ and notice that you are working on a view perpendicular to the view you were working on before. Now you will see the message SET INITIAL BASEPOINT and a level indicator that lets you establish the first reference level.

Move it to where you want and click the mouse button. The message SET FINAL BASEPOINT will appear, as well as the indicator to set the second reference level.

Move it to the desired position and click the mouse button to confirm. You will then return to a dialog box where you can start over again if you wish.

You will see that all selected points have been copied to the location marked by the second reference point, in proportion to the distance between the first point and the second.

Note: For the purposes of this process, all copied elements will constitute an integrated object. As before, only selected elements will be copied. The new object will appear selected after the copying process is terminated.

Chapter 5: Commands

Fig. 213

COPY ROTATE n

Command copies and rotates $n t$ times the selected items in respect to a user-defined axis.

Each item affected by this process is copied and rotated from one user-defined angular position to another. The relative angular difference from each copy to the next is the same as that of the original to the first copy.

Select the item, open the Process menu and select Rotate. You will see the message SET ROTATION CEN$T E R$ and the cross-type cursor.

MasterCAD

Position the cursor where you want the rotation center to be and click the mouse button to confirm. Move the mouse, note the indicator rotating around the fixed point, and the message SET INITIAL ANGULAR POSITION.

Position the indicator where you wish and click the mouse button to set it. Now you will see the message SET FINAL ANGULAR POSITION and the indicator will appear again.

Move the indicator to the new angular position and click the mouse to confirm. You will see a dialog box that lets you select how many copies you want and, optionally, the relative perpendicular distance between each copy.

Select DW and notice that you are working on a view perpendicular to the view you were working on before. Now you will see the message SET INITIAL BASEPOINT and a level indicator that lets you establish the first reference level. Move it to where you want and click the mouse button.

The message SET FINAL BASEPOINT will appear, as well as the indicator to set the second reference level. Move it to the desired position and click the mouse button to confirm. You will then return to a dialog box where you can start over again if you wish.

If you are satisfied with the results, select $O K$ and you will see the copy rotated and the objects developing on the screen.

To be copy rotated, an element must have all its points selected.

EXPORT

Command to export the selected items to another file.
For example, you may have a need to import elements or items in a certain order to be able to process them properly.

Open the File menu and open your "library" file. Select any object, open the Process menu and select Export.

Now open the file you want to work with by opening the File menu and selecting the Import option. Notice the objects imported from the "library" file on the center of the screen. Observe that they are selected: this is to let you move and position them wherever you want.

Fig. 215

You can always check on the exported items by opening the CONTAINER.OBJ file.

DELETE

Command to delete the selected items.

Select the items you want to delete. Open the Process menu and select the Delete option. You will see a dialog box warning you about what you are about to do. Select $O K$ to delete the items. You can also Cancel if you wish, and nothing will happen.

Be careful when using this command!

Chapter 5: Commands

SHOW AREA

Command to show the area of a defined polygon. A defined polygon simply means that the polygon has been defined; that is to say, it exists.

For the purposes of Master CAD, a polygon exists if you can see it in Filled Planes. There are two ways to be sure that a polygon is measurable:

Previous control: Drawing the polygon in Contain mode.

Checking: Seeing that the polygon has texture in Filled Planes mode.

To show the area of a defined polygon, select all its points, open the Process menu and select Show Area.

You will see the message PRESS LEFT BUTTON TO CONTINUE, RIGHT BUTTON TO EXIT. You will also see the area of the polygon in the monitor.

Press the right mouse button to return to the drafting board.

TEXTURE

Command selects the texture of a defined polygon for Filled Planes purposes.

To select the texture of a defined polygon, select all their points, open the Process menu and select Texture. You will see a dialog box with many texture options. Select the texture you want and the system will return automatically to the drafting board.

MasterCAD

Fig. 216 Fill Pattern Select Box

If you want to check the texture changes, open the 3-D menu, select an appropriate viewpoint from which to see the polygon, and open the Filled Planes viewmode.

Chapter 5: Commands

Let's continue to:

Fig. 217

MasterCAD

3-D MAIN MENU

FILE

Menu to select file operating system activities.

Fig. 218

Functions are the same here as in the 2-D FILE Menu. Refer to page 163.

Chapter 5: Commands

VIEWPOINT

Menu to select the conditions and parameters of the viewpoint.

Fig. 219

HORIZONTAL

Command to define the observer's position and its horizontal viewing angle.

Create any object in the 2-D section. Open the 3-D menu and note how the menu bar changes.

Open the Viewpoint menu and select Horizontal. Notice that you are now working in Plan view. You will see the message SET HORIZONTAL VIEWPOINT and the crosstype cursor.

MasterCAD

Position the cursor where you want and click the mouse to define the horizontal viewpoint. Move the mouse and you will see the rotating line that indicates the viewing direction, or view angle. You will see the message SET HORIZONTAL VIEW ANGLE.

Define the view direction you want to use and click the mouse to confirm. You will see the new perspective developing on the screen.

VERTICAL

Command to define the observer's elevation and vertical viewing angle.

Create any object in the 2-D section. Open the 3-D menu and note how the menu bar changes.

Open the Viewpoint menu and select Vertical. Notice that you are now working in Front view. You will see the message SET VERTICAL VIEWPOINT and the level-type cursor.

Position the cursor where you want and click the mouse to define the vertical viewpoint (the height of the viewpoint). Move the mouse and you will see the rotating line that indicates the viewing direction, or view angle. You will see the message SET VERTICAL VIEW ANGLE.

Define the view direction you want to use and click the mouse to confirm. You will see the new perspective developing on the screen.

Chapter 5: Commands

COMBINED

Command to combine the Horizontal and Vertical viewpoint functions.

When you use this command the program will ask you to set the horizontal viewpoint first, then the vertical viewpoint. It will then develop the new perspective or parallel projection on the screen.

AUTOVIEW

Command that allows you to obtain an autocentered view of the object you are working on.

Open the Viewpoint menu and select Autoview. You will observe the perspective of the object developing on the screen. Naturally, you will have to create the object in 2D before using this command.

LENS

Command modifies the viewangle width.
The Master CAD camera has three lenses you can choose from by opening the Viewpoint menu and selecting Lens. You will see a dialog box with the following lens options:

NORMAL: This is the default lens and is equivalent to a 55 mm lens.

WIDE ANGLE: Equivalent to a 28 mm lens.
NARROW ANGLE: Equivalent to a 75 mm lens.

MasterCAD

Fig. 220 Select Narrow Angle...

Fig. 221 ...to tighten the view

232 Chapter 4 -Commands

Chapter 5: Commands

Fig. 222 or Wide Angle...

C

Fig. 223 ...to expand it!

MasterCAD

VIEWMODE

Menu activates the solid presentation of the objects.

Fig. 224

UIENTODE

Filled Planes

FILLED PLANES

Once you have created an object and have seen it in 3-D wire frame mode, you can see it as a solid by opening the ViewMode menu and selecting Filled Planes.

Chapter 5: Commands

Fig. 225 Select Filled Planes
Desk FILE UIEWPOINT DIEWTIDDE PROJECTION 2-D

Fig. 226 Patterns fill the Object Planes

MasterCAD

Master CAD has its own texture criteria for a given polygon. If you do not like the texture selected by the system, you can change it by using the TEXTURE process in the 2-D section.

Fig. 227 To change fill textures

Chapter 5: Commands

Fig 228 Select the object, then Texture

Desk File Control Vien Planes Tools Mode Select Process 3-0

Fig 229 Select the desired texture

UIEW:Plan	$X:-3.55$	DX: 0.00	$\#$ UP	3.00	DIST,	0.00	FREE:94\%	M	
TOOL:Rect.	$Y: 4.00$	DY:	0.00	$\#$ DOWN	0.00	ANGLE:	0.00	Z00M:100	T

Fig 230 And observe the results (Textures can also be changed for individual Object parts)

Chapter 5: Commands

PROJECTION

Menu to define the projection in which the object will be represented.

PERSPECTIVE

The object is represented as it would appear in 3-D real life. The effect is like a photograph taken from a given viewpoint. This is the default mode. If you are in Parallel mode, open the Projection menu and select Perspective. You will see the objects developing on the screen.

PARALLEL

The object is represented in 3-D or 2-D depending on userdefined viewing angle. All parallel lines in real life will be represented parallel in this mode.

For example, if you want to obtain an oblique (45-degree) projection of an object, open the Projection menu and select Parallel.

You will probably see a 2-D representation of the object.
Now go to the Viewpoint menu and select Combined.
Trace in your mind an imaginary 45-degree line that passes through the center of the object, position the viewpoint on any point on this line and click the mouse button to confirm. Now set the view direction indicator for 45 degrees (using the Angle display in the monitor to help you). Click the mouse to confirm. Repeat the operation with the Vertical viewpoint. You will see an oblique projection of the object developing on the screen.

Master CAD

This projection also lets you obtain 2-D views of the object from any point you want. For example, if you want to see the shape of a building you have created, place the horizontal viewpoint facing the side the building and the horizontal view angle perpendicular to that side. Repeat the criteria with the vertical viewpoint and activate the Filled Planes command.

You will see the shape of the object developing on the screen.

2-D

Toggle to return to the 2-D main menu.

Chapter 5: Commands

OUTPUT SECTION

The OUTPUT SECTION is designed to let you obtain quality hardcopies of your work on printers and plotters.

You can access this section from the GEM Desktop (if you menu and select the Quit option, Master CAD will bring you to the Desktop).

From here select OUTPUT.PRG. The following dialog box will appear:

MasterCAD

Fig 231

SELECT PRINTFILE

Command to select the Master CAD PRINTFILES that exist on disk.

These are special Master CAD files that you saved with the Save Screen command from the DESIGN SECTION. If you want to print or plot your work, you have to have saved it in this format. These files are saved with a .PRF extender.

To select a Printfile place the cursor over the SELECT PRINTFILE icon and click the left mouse button once. You will see a list of files which have the file extender [.PRF]. You can load a file by typing the filename or by double clicking on the filename from the file directory.

Observe the name of the current Printfile selected on the upper part of the screen.

Chapter 5: Commands

BEGIN PRINTING

Command prints the selected Printfile.

Check that your printer is properly connected to your computer.

Check that paper is correctly installed in your printer.
Place the cursor over the BEGIN PRINTING icon and click the left mouse button to start the printout.

MasterCAD is mainly compatible with the EPSONFX 80 or compatible printers. Master CAD is connected to the G-DOS operative system so theoretically it is compatible with any driver prepared for this Operative System.

BEGIN PLOTTING

Command to plot the Printfile selected.
Check that your plotter is properly connected to your computer.

Check that paper is correctly installed in your plotter.
Place the cursor over the BEGIN PRINTING icon and click the left mouse button to start the printout.

Master CAD is compatible with the Hewlett Packardmand compatible plotters. This plotter in combination with Master CAD produces high quality black and white graphics in one size of drawing media: ANSI A (8 1/2 x 11 in .). Other plotter drivers with more drawing sizes will be released soon.

MasterCAD

MC DESKTOP

Command returns you to the GEM Desktop.

PLOTTER

This command selects the plotter driver to be used. Place the cursor over the PLOTTER icon and click the left mouse button. Observe the Select Plotter Window showing the different kind of plotters you can use. Click the mouse over the desired PLOTTER Icon.

Fig. 232 Select Plotter Type

Chapter 5: Commands

PAGE SIZE

This command selects the size of the paper to be used with the plotter. Place the cursor over the PAGE SIZE icon and click the left mouse button. Observe the Select Size Window showing the different size possibilities. Click the mouse on the desired size icon. If the selected size is not compatible with the previously selected Plotter, an Alert Box will tell you.

Fig. 233 Select Size Window

PEN SPEED

This command selects the speed of the pen used by the plotter. Place the cursor over the PEN SPEED icon and click with left mouse button. Notice the Speed Input Window asking for the desired speed. Type it in using the keyboard. If a PEN SPEED is selected that is not supported by the selected plotter, a warning dialog box will inform you.

MasterCAD

Fig. 234 Speed Input Window

SCALE

This command selects the scale at which the PRINTFILE will be printed or plotted.

Place the cursor over the SCALE icon and click the left mouse button. Observe the Select Scale window showing the different possible scales. Click the left mouse button over the desired size icon, or type the input option and press $O K$ to confirm.

Chapter 5: Commands

Fig. 235 Select Scale window

MasterCAD

INSTALLING YOUR PLOTTER

This section is designed to give you some examples on how to install your plotter device properly.

Make sure that you have connected your plotter with your computer using a "Null Modem" cable. (7-7, 2-3, 3-2 cable connection).

HEWLETT PACKARD ${ }^{\text {n }}$ COLOR PROn

FIG. 236

Dip Switches	1	0
B1		
B2		\times
B2	\times	
B3		\times
B4	\times	
S1		\times
S2		\times

HEWLETT PACKARDim 7550A GRAPHIC PLOTTER

Chapter 5: Commands

Displays:
FIG. 237

BYPASS

HANDSHAKE
HANDSHAKE MODE
Xon/Xoff DIRECT
DUPLEX
DUPLEX \quad FULL

BAUD

BAUD RATE 9600

MONITOR

HEWLETT PACKARDim 7550A GRAPHIC PLOTTER

MasterCAD

FIG. 238

INTERFASE MODE	RS232-C	
PARITY	ON	-
DUPE	OFF	
DULEX	HALF	-
	HARDWIRE	-
	MODEM	
DTR	BYPASS	-

HP-IB PORT
COMPUTER/MODEM
TERMINAL
BAUD RATE : 9600 BAUD

EXPAND	- NORMAL
EMULATE	- NORMAL
STANDALONE	- EAVESDROP
MONITOR MODE	- NORMAL
LOCAL	- NORMAL

NOTE : Use the functions that appear in bold style.

NOTE : All this switches are located on the back of your plotter.

PLOTTING MULTIPLE PAGES

As you know, Master CAD PRINTFILES can be saved in any scale you desire. In some cases this will cause multiple page plotting. If you are plotting a multiple page PRINTFILE, follow the screen instructions to determine when to insert the next page.

Chapter 5

Reference

Charts

MasterCAD

Chapter 6: Reference Charts

Menu used to observe and modify an object's perspective.
FILE VIEWPOINT VIEWMODE PROJECTION 2-D

HORIZONTAL: Command to define through cursor movement, the observors position and his horizontal viewing angle.

VERTICAL: Command to define through cursor movement, the observors position and his vertical viewing angle.

COMBINED: Command that combines the function of horizontal and vertical commands.

AUTOVIEW: Command that allows an auto-centered view of an object.

LENS: Commands to modify the viewangle width.

Menu to define the type of projection that will be used.
PERSPECTIVE: The object in the space is represented as it would appear in 3-D real life. The effect is like a photograph taken from a given viewpoint.

PARALLEL: The object is represented in 3-D or 2-D depending on the viewing angle defined by the user. All the parallel lines in real life will be parallel in this mode.

Command to return to two-dimensional drawing.

MasterCAD

Chapter 6: Reference Charts

Command to group the selected items as a single unique object.
and to move the selected items from a relative user defined position to a new position also defined through cursor movement by the user.

Command to flip the selected items horizontally, with respect to a user defined axis.

Command to flip the selected items vertically, with respect to a user defined axis.

Command to copy the selected items from a relative user defined position to a new position also defined through cursor movement by the user.

Command to rotate the selected items with respect to a user defined axis. The rotation is made from the user selected angular position to a new angular position also determeined by the user.

Command to copy-rotate the selected items with respect to a user defined axis. The copy-rotation is made from the user selected angular position to a new angular position also determined by the user.

Master CAD

Chapter 6：Reference Charts

Command to modify the working zoom．The range is 1 to 1000 ．

Command to set the working grid parameters．
GRID ON／OFF SNAP TO GRID SET GRID

Command to select the measurement units．
INCHES METERS CENTIMETERS MILLIMETERS

Command to indicate a user defined coordinate origin point．It works through cursor movement．

Command to reverse the screen from white to black and vicev－ ersa．

Command to select the circular polygon step number，in other

Command to switch on and off the graphic rulers．

MasterCAD

Chapter 6

Appendices

MasterCAD

APPENDIX A

Bibliography

THIRD YEAR PHYSICS
Dr. Jose Baldor
DESCRIPTIVE GEOMETRY
F. Izquierdo Asensi.

FUNDAMENTALS OF ENGINEERING DRAFTING Warren J. Luzader

MATHEMATICAL ELEMENTS FOR COMPUTER GRAPHICS
Lois Graff, Larry Joel Goldstein
COMPUTER DICTIONARY HANDBOOK
Third Edition. Charles J. Sippl and Roger J. Sippl
TECHNICAL DRAFTING MANUAL Dr. Rafael Marquez

MICROCOMPUTER GRAPHICS
Roy E. Myers
PERSONAL PASCAL
Optimized System Software
PERSPECTIVE a new system for designers. Jay Doblin

APPENDIX B

Installing Master CAD on a Hard Drive

To Install the Master CAD system on a hard drive simply copy the disk contents into a folder in the Cpartition. You can do this by inserting the MasterCAD disk into drive A: then dragging the Disk Icon into the specified Hard disk Partition. You can also drag the files individually (See your Atari Manual for information on copying Disks and files).

Master CAD can be installed in a folder, but the files COLOR.RSC and MONO.RSC must remain in the root directory of the partition.

Make sure GDOS is properly installed in the AUTO folder of the Hard Drive. Also, as the program uses GDOS for its output program, the AUTO folder and all files that have a .SYS extension must be copied into the root directory of Drive C.

Index

Index

2-D Menu 241
3-D Menu 26, 248
360 degree spin 69, 203
7550A GRAPHIC PLOTTER 248

A

Absolute X coordinate 10
Absolute Y coordinate 10
Absolute Z coordinate 11
ALT+HELP 168
printout canceled 168
ANGLE 12
Angle Selection 83, 112
Append 166
APPLICATIONS 151
ASSIGN.SYS 261
Attention window 18
Autocentered view 231

B

BACK 11
BEGIN PRINTING 243
BIBLIOGRAPHY 260
Bottom limit plane 11
Buffer file 167

C

Cartesian coordinate system 152
Cartesian space 162
Center of rotation 110
Central Conic Projection 149
Central Fugue Point defined 156
Central projection 151
CLOCKWISE 204
CLOCKWISE ARC 193
Clockwise Spin 204
Color 180

Color PRO 248
Combined 239
Computer Aided Design 14, 162
CONCEPTS 148
Conic Projection 149
Conic system 151
Conical linear perspective 151
Contain Plane 12
CONTAINER.OBJ 166, 224
CONTROL Menu 63, 171
Zoom 171
Grid 173
Units 175
Origin 176
Reverse Screen 177
Screen Center 177
Spin Step 63, 177 by input 179
Color 180
Input 180
Ruler 179
Coordinate System 152
COPY 101, 102
Copy n 122, 124, 219
COPY n OBJECTS 121
COPY ROTATE n OBJECTS 133
Copy rotation 218
COPY ROTATION n 138
COUNTERCLOCKWISE 204
COUNTERCLOCKWISE ARC 193
Crosshair 28
CUBE.OBJ 109, 121
CUT + HI-CONTAIN 146
CUT + HI-CONTAIN + LOCONTAIN 146

MasterCAD

CUT + LO-CONTAIN 146
Cut Mode 54, 197
defined 197
Cut Planes 12
CYLINDER 35
CYLINDER.OBJ 101

D

Delete 224
Deselect Points 207
DESIGN program 7
DESIGN SECTION 162
DESIGN.PRG 6
DIM 194
DIST 12
Distance 12
Distance Points
defined 156
DOWN 11
Drafting Board Monitor 12
DW option 126, 139, 220, 222
DX 11
DY 11
DZ 11

E

Elements 148, 208
defined 157
Elevation 31
ENTER TEXT LINE 194
EPSON FX 80243
Export 223

F

FEATURES 152
FILE menu 34, 56, 164, 228
New 164
Open 166
Append 166
Import 167

FILE menu (Cont.)
Save 168
Save As 168
Draft Print 168
Save Screen 169
D.E.G.A.S. format 169

Master CAD Printfile 169
Quit 170
Fill Pattern 226
Filled Planes 32, 225, 234, 240
Flip Elements 94, 213
FREE 12
FRONT 11
Front Angled option 58
Front Angled Planes
defining 185
Front limit plane 11, 12
Front view 18, 24, 35, 58, 183, 188
Front-Angled Planes/Plan
Sub-Procedure 57
Fugue Point 158

G

G-DOS operative system 243
GDOS 261
GEM Desktop 241, 244
GENERAL VIEW 24, 41
Graphic Mode 135, 180, 193
Graphic ruler 180
GRID 9, 173
Ground line 155
defined 155
Ground Plane 155
defined 155
Group 212

Index

H

H-Flip 96, 214
Hard Drive
installation 261
Hexagon option 63
Hexagonal polygon 65
HEXAGONAL PRISM 57, 94
HI-CONTAIN + LO-CONTAIN 146
High contain mode defined 199
Horizon 155
Horizon Line
defined 155
Horizon Plane
defined 153
Horizontal Flip 96
Horizontal viewpoint 230, 231

I

Import 167
Input mode 180
Installing a Plotter 248

K

Keyboard mode 180

L

LEFT 11, 50
Left view mode 16, 25, 50
Lens 231
Limit planes 148
defined 156
Line 148, 190
Line of sight 153
LOW CONTAIN 198

M

Menu Bar 9, 15, 18
appears 15
MODE menu $69,78,144,196$
Planes 196
Spin 69, 79, 203
Move 213
Moving the screen window 177
MT 12
N
NEW 164
Normal 36, 50, 183
Normal Planes/Front
Sub Procedure 35
Normal Planes/Left
Sub-Procedure 50
0
OBJECTS 114, 121, 133, 148, 157, 209
defined 157
Oblique 150, 239
OBLIQUE PROJECTION
defined 151
Observer's elevation 230
Observer's plan position 29
Open 166
OPENING MENUS 15
Origin 176
ORTHOGONAL PROJECTION
defined 150
Orthogonal view 10, 181
OUTPUT SECTION 162, 241
Select Printfile 242
Begin Plotting 243
Begin Printing 243

MasterCAD

OUTPUT SECTION (cont)
MC Desktop 244
Plotter 244
Page Size 245
Pen Speed 245
Scale 246
OUTPUT.PRG 241

P

Page Size 245
Parallel mode 239
Parallel projection 150, 152
defined 148
Partial Spin 78
Pen Speed 245
Perspective 26, 148, 152, 158, 239
defined 151
Perspective Projection 158
Picture plane 150, 151, 155
Plan 24
Plan Angled 184
Plan view $18,36,57,70,80$, 146, 156
Plane views 150
PLANES menu 18, 19, 36, 50, 58, 183, 196
Normal 19, 183
Plan Angled 183
Front Angled 58, 185
Side Angled 187
Planes Mode 21, 22, 38, 62, 144
Planes Mode window 38, 54
PLANES option 144
Plotter 244
Plotting Multiple Pages 251
POINTS 94, 101, 109, 148, 206
defined 157

Polygon 117, 192
fixing the center 63
form and size 65
POLYLINE 50, 55, 73, 87, 192
PRF extender 242
Printfile 242, 243, 250
PROCESS Menu 98, 102, $110,115,135,212$
Group 212
flip 213
horizontally 213
vertically 213
Move 213
Copy 214
Rotate 110, 216
Copy Rotate 218
Proportion 114, 115
Copy n 122, 219
Copy Rotate $n 221$
Export 223
Delete 224
Show Area 225
Texture 225
Process commands 157
Projection 148, 239
defined 148
PERSPECTIVE 239
Projection lines 148
Projection plane 151
Projection planes 183
PROPORTION 114, 115

R

Rectangle 191
Rectangle option 22
Rectangles 148
Reference X coordinate 11, 12
Reference \mathbf{Y} coordinate 11

Index

Regular Polygon 40, 63, 191
Relative X coordinate 11
Relative Y coordinate 11
Relative Z coordinate 11
Remaining free memory 12
Reverse Screen 178
RIGHT 12
Right view 186
RING 73
Rotate 110, 216
ROTATE ELEMENTS 109
Rotate n 135
Rotation indicator 137

S

Save As 34
Save Screen command 242
Scale 246
Screen Center 177
SELECT Menu 89, 94, 101, 109, 114, 121, 133, 206, 210
Points 94, 206
Elements 208
Objects 210
SELECT OBJECTS 89, 114, 115, 121, 133
Select Plotter 244
SELECT POINTS 94
SELECT PRINTFILE 242
Select Scale 246, 247
Select Size 245
Selecting a viewpoint 159
SET BASE POINT 194
SET CUT PLANES 18, 183, 184, 187
SET FINAL ANGULAR POSITION 83, 137, 218, 222

SET FINAL BASEPOINT POSITION 92, 104, 124, 127, 140, 213, 215, 219, 220, 222
SET FINAL PROPORTION 118
SET GRID 174
SET HORIZONTAL VIEW ANGLE 29, 230
SET HORIZONTAL VIEWPOINT 27, 229
SET INITIAL ANGULAR POSITION 82, 135, 205, 218, 222
SET INITIAL BASEPOINT POSITION 102, 122, 126, 139, 213, 214, 219, 220, 222
SET INITIAL PROPORTION 117
SET NEW ORIGIN 176
SET NEW SCREEN CENTER 177
SET PROPORTION CENTER 115
SET REVOLUTION CENTER BY CURSOR 70, 71, 80
SET ROTATION CENTER 218, 221
SET SPIN CENTER WITH CURSOR 110, 135, 216, 203
SET THE FINAL ANGULAR POSITION 205
SET THE FLIP AXIS 214
SET THE SCREEN CENTER BY CURSOR 173

MasterCAD

SET VERTICAL VIEW ANGLE 230
SET VERTICAL VIEWPOINT 230
Show area 225
Side Angled planes 187
setting 187
SPIN 69,
Spin center 70
SPIN STEP 63, 178
Spun figure 74

T

TEXT 194
Texture 225
Three dimensional 227
TOOL 10
TOOLS Menu 22, 40, 55, 63, 73, 83, 190
Clockwise Arc 83, 193
Counterclockwise Arc 193
Line 190
Rectangle 191
Regular Polygon 191
Polygon 192
Polyines 192
text 194
Dim 194
Two menu bars 16

U

Unit Selection 176
Units 175
Upper limit plane 11

V

V-FLIP 98, 213
Vanishing Plane 155
contains the viewpoint 155
defined 155
vertical plane 155
Vertical Flip 98
Vertical spin axis 83
Vertical viewpoint 230, 231
VIEW 10, 15, 24, 181
View Angles 153
defined 153
View direction 230
View indicator 80
View menu 35, 50, 57, 181
Plan 57
View plane 183
View projection plane 187
VIEWMODE 32, 234
FILLED PLANES 234
VIEWPOINT Menu 27, 31, 152, 155, 229
Autoview 231
Horizontal 27, 229
Vertical 31, 230
Combined 231
Lens 231
Normal 231
Narrow Angle 231
Wide Angle 231

W

Window
moving 177
Workscreen 9, 18, 31
drawing space 9
Workspace 148
size 162

X
X coordinate 10, 11
Y coordinate 10,11
Z Z coordinate 11 ZOOM 12, 171

Master CAD

Notes

Notes

Come and join us at the Roundtable, ${ }^{T M}$ Where the GEnie and the Griffin meet!

Does this sound like a fantasy? Well, it may just be a dream come true! When General Electric's high-tech communications network meets MichTron's programmers and support crew, ST users around the country will hear more, know more, and save more.

We know that our low prices and superior quality wouldn't mean as much to you without the proper support and service to back them up.
So we are now available on GEnie, the General Electric Network for Information Exchange. GEnie is a computer communications system which lets you use your personal computer, modem, and communication software to gain access to the latest news, product information, electronic mail, games, and MichTron's own Roundtable (See the special MicroDeal Section for game information)!!
The Roundtable Special Interest Groups (SIG) gives you a means of conveniently obtaining news about our current products, new releases, and future plans. Messages directly from the authors give you valuable technical support of our products, and the chance to ask questions (usually answered within a single business day).
GEnie differs from other computer communication networks in its incredibly low fees. With GEnie, you don't pay any hidden charges or minimum fees. You pay only for the time you're actually on-line with the MichTron product support Roundtable, and the low firsttime registration fee.
For more information on GEnie, follow this simple procedure for a free trial run. Then if you like, have ready your VISA, Mastercard or checking account number and you can set up your personal account immediately - right on-line!

1. Set your modem for half duplex (local echo) - 300 or 1200 baud.
2. Dial 1-800-638-8369. When connected, type HHH and press Return.
3. At the U\#= prompt, type XJM11957,GENIE and press Return.

And don't forget, MichTron's Bulletin Board System, The Griffin BBS, is still going strong (the griffin is the half-lion/half-eagle creature on our logo). Our system is located at MichTron headquarters in Pontiac, Michigan. For a trial run, call (313) 332-5452.

GEnie and Roundtable are Trademarks of General Electric Information

