~ Lattice C b5

| the C fom///é/c 0[0/‘ your Atarr ST ga/r(/a ler

Volume III
Atari Library Manual

Requires:
v Atari 520ST upwards E—N
{ 1M+ memory advised) ’ N e
/ Disk drive

(2 floppies or hard disk advised)
v Mouse

Lattice C

The C system for your Atari ST

Volume Il
Atari Library Manual

Copyright © HiSoft 1990, 91
Published by HiSoft

Version 5
First edition March 1990 (ISBN 0 948517 31 X)
Second edition April 1991

ISBN for this volume 0 948517 39 5

ISBN for complete 3 volume set 0 948517 28 X

Set using an Apple Macintosh™ and Laserwriter™ with Microsoft Word™ and
SuperPaint™.

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to Lattice C for the ST and its
associated documentation to copy, by any means whatsoever, any part of Lattice
C for the ST for any reason other than for the purposes of making a security back-
up copy of the object code.

Table of Contents

1 Introduction 1
2 AES Library 3
3 VDI Library 113
4 GEMDOS Library 247
5 BIOS Library 297
6 XBIOS Library 313
7 Line-A Library 359

Index 387

Atari Library Contents Lattice C 5 Page i

1 Introduction

This volume describes the Atari ST specific parts of the Lattice C library,
covering the application environment services (AES), virtual device interface
(VDI), graphics environment manager disk operating system (GEMDOS), basic
input/output system (BIOS), extended basic input/output system (XBIOS) and
Line-A functions. This gamut of functions is known collectively as the operating
system (TOS).

The following sections provides detailed descriptions of the operating system
functions often with examples and lists of known problems. All functions are
described in the same basic way, with a synopsis, a description of the function
as implemented, the input and output parameters and any side effects of the
call, and finally any cross-references to other functions which are related or
perform similar functions.

The synopses give a brief summary, listing the header file in which the function
is declared, the calling syntax and the types of the parameters.

The calling form is listed as a one line summary, for instance form_center is:

#include <aes.h>
res=form_center(tree,x,y,w,h);

so that the function takes five parameters tree, x, y, w and h returning a single
parameter. If the function does not return a value (i.e. ‘returns void’) then this
is indicated by the return value not being assigned.

The type of parameters is then listed; note that the types listed are those used
in the definition, to call them only compatible types are required. Hence
considering form_center, the parameters are:

int res; reserved

OBJECT *tree; object tree to centre

short *x; x co-ordinate of centred form
short *y; y co-ordinate of centred form
short *w; width of centred form

short *h; height of centred form

So that the first parameter is a pointer to an object tree, and the second, third,
fourth and fifth are pointers to variables which are to be filled in with the
required co-ordinates. Note that in general these parameters would be passed
as the address of a suitable variable.

Atari Library Lattice C 5 Page 1

Considering a more complex function such as vex_butv, the synopsis is:

#include <vdi.h>

vex_butv(handle,but_addr,obut_addr);

int handle; workstation handle
int (*but_addr)(state); new vector address
int (**obut_addr)(state); old vector address
short state; mouse button state

So that vex_butv takes three parameters and returns no value. Examining the
types of the parameters, the first has type int. The next parameter is of type
int (*)(short) i.e. a pointer to a function taking a single short parameter
returning an Int. Under older K&R compilers it was necessary to take the
address of a function prior to passing as a parameter, however ANSI compilers
will automatically perform this indirection, hence an explicit (&) is not needed.
The final parameter is the address of a variable to be used to hold the vector
and has type int (**)(short). For this a variable of type int (*)(short) would be
declared and its address passed.

The final form which appears in the synopses are for the Line-A functions
which usually take their parameters in the external Line-A parameter block.
For instance the lineal (plot pixel) function synopsis is:

#include <Llinea.h>

Linea1()

INTINCOJ=colour; colour of pixel to plot
PTSINLCOJ=X, X co-ordinate of pixel

PTSINC1]=Y; Y co-ordinate of pixel

Hence lineal takes no parameters and returns none, however three items in
the Line-A parameter block must be set, INITIN(0), PTSIN(0) and PTSIN(1). These
variables must be initialised prior to the call with the colour of the pixel, the X
co-ordinate and the Y co-ordinate. Note that these Line-A variables exist in a
private OS structure and must be accessed through several indirections hence
various macros are provided.

The fonts used throughout this library manual are:

OCRB Program fragments and synopses.

Avante Garde Library identifiers, parameters, disk files and
keyboard shortcuts. Note that square brackets (i.e.
those used in array accesses) appear as () in this
font, whereas parentheses (i.e. those used in
function calls) appear as (). Beware of the
distinction.

Note that italics are used solely for emphasis.

Page 2 Lattice C 5 Atari Library

2 AES Library

This section describes the GEM AES library supplied with the Lattice C
compiler. To access the facilities of the AES you should #include the file aes.h
into your program.

The AES provides the iconic user interface on the ST, dealing with resource
files, objects, trees, dialog boxes and menus. It does not deal directly with the
lower levels of the OS but communicates via the VDL

The functions all communicate with the OS via several arrays, the most useful
of these to the user is the global array, named _AESglobal. The elements of
this are:

_AESglobal(0) AES version number in major minor form.

_AESglobal(1) Number of concurrent applications the AES
supports (1 in all current versions).

_AESglobal(2) Application identifier for this application (as
returned by appl_init.

_AESglobal(3-4) User global, a longword global available for
use by the user. ‘

_AESglobal(5-6) Pointer to base of resource file loaded as the
result of a rsrc_load call.

_AESglobal(7-14) Reserved.

In general the functions provided are those available directly from the OS and
use the standard ST names, however several functions have been added to give
extra flexibility or functionality. These are: objc_walk, objc_xywh,
rc_constrain, rc_copy, rc_equal, rc_inside, rc_intersect, rc_union,
wind_info, wind_newdesk, wind_redraw and wind_title.

The current versions of the OS return the following AES version numbers:

Major Minor Name
1 20 ROM TOS (1.0), Blitter TOS (1.2)
1 30 Rainbow TOS (1.4), STE TOS (1.6)

It is best to check the AES version number when asking for a particular feature
since an older version of TOS may be patched to include these features.

AES Library Lattice C 5 Page 3

a p p I_e X it Exit application

Class: AES Category: Application Control
SYNOPSIS

#include <aes.h>
error=appl_exit();
int error; return code

DESCRIPTION

This function should be called before a GEM AES application terminates, so
that the AES may notice that it has finished. This does not terminate the
program and should not be called unless appl_init has been called successfully.

Using this call causes AC_CLOSE messages to be sent to all desk accessories;

note that this may include inactive ones, so a desk accessory should be prepared
to ignore redundant AC_CLOSE messages.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
appl_init

Page 4 Lattice C 5 AES Library

a p p I_fi n d Find an application’s identifier

Class: AES Category: Application Control
SYNOPSIS

#include <aes.h>

ap_id=appl_find(name);

int ap_id; application 1identifier
const char *name; name of application to find
DESCRIPTION

This function finds the application identifier of the application called name.
This is the file name of the desk accessory whose identifier is being found. This
must be 8 characters long, padded with spaces if required.

This is usually used in conjunction with appl_write to send a message to a
desk accessory.

RETURNS

The function returns the application identifier that was requested or -1 if the
application could not be found.

SEE

appl_init, appl_write, menu_register
EXAMPLE

#Hinclude <aes.h>
int main(void)
{

int ap_id=appl_init();
int saved_id;

saved_id=appl_find("SAVED! UH)IA

/*
* Now write some code to send the open message
*/

;pﬂl_exit();
return O0;

AES Library Lattice C 5 Page 5

a p p I_i n it Initialise application

Class: AES Category: Application Control
SYNOPSIS

#include <aes.h>
ap_id=appl_init();

int ap_id; application identifier

DESCRIPTION

This function should be called before calling any other GEM AES functions. It
sets up some global areas that are used by the AES and the bindings to the
AES, hence this call must be made for the bindings to function correctly. If this
call has been successfully made, the program should call appl_exit before
terminating.

RETURNS

The application’s global identifier is returned. This integer is needed when
calling the menu_register and appl_read functions.

If the value returned is -1 then the program should terminate without making
any further GEM AES calls (including appl_exit).

SEE
appl_exit, appl_read, menu_register
EXAMPLE

/] *
* print out public information from the global array
*/

#include <aes.h>
#include <stdio.h>
int main(void)

{

appl_init();

printf("version number = 7%d.Z%x\n", _AESgloballC0]1>>8,
_AESgloball0J&Oxff);

printf("Concurrent process count = Z%d\n",
_AESgloballC11);

printf("AES application id = 7%d\n",_AESgloball2]);

appl_exit();
return 0;

Page 6 Lattice C 5 AES Library

app I_ read Read from message pipe

Class: AES Category: Application Control
SYNOPSIS

H#include <aes.h>

error=appl_read(ap_id,length, message);

int error; error return

int ap_id; application identifier

int Llength; number of bytes to read

void *message; address of message to read
DESCRIPTION

This function can be used to read length bytes into the memory pointed to by
message from an application’s message pipe. The application’s identifier is
supplied in the Op_icr parameter; this is usually obtained from the result of the
appl_init call.

Normally there is no need to do this directly as the evnt_mesag and
evnt_multi routines can be used to read the standard AES 16 byte messages,
such as those for menu selection or screen redraw. However, if you wish to
send your own messages (for example between a co-operating desk accessory
and main program), then you will need to use this function.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

evnt_mesag, appl_read, appl_init

AES Library Lattice C 5 Page 7

a p p l_f p I a y Playback recording of user’s actions

Class: AES Category: Application Control
SYNOPSIS

#include <aes.h>

error=appl_tplay(mem, num, scale);

int error; error code
EVNTREC *mem; stored actions to play back
int num; number of user actions to playback
int scale; playback speed
DESCRIPTION

This function ’&)lays back’ a series of events that have (normally) been recorded
using the appl_trecord function. The details of the EVENTREC structure are
described under appl_trecord.

The scale parameter gives the speed from 1 to 10000 determining the speed at

which GEM AES plays back the recording. 100 means play back at normal
speed, 200 at double speed, 50 at half speed etc.

RETURNS

This function always returns 1, indicating that the operation was successful.

SEE

appl_trecord

Page 8 Lattice C 5 AES Library

a p p I_i’ reco rd Record a sequence of user’s actions

Class: AES Category: Application Control
SYNOPSIS

Hinclude <aes.h>

ret=appl_trecord(mem, num);

int ret; number of events recorded

EVNTREC *mem; area to store actions

int num; number of actions to record
DESCRIPTION

This function records a series of user actions which may then be ‘played back’
using the appl_tplay function. The mem parameter will normally be an array
with enough elements to store num events.

The EVNTREC structure is defined as:

typedef struct
{

Long ap_event;
Long ap_value;
} EVNTREC;

The ap_event field indicates the type of the event. The meaning of the
ap_value field depends on which event occurs, as given in the table below:

ap_event type of event meaning of the ap_value field
0 timer event elapsed time in system ticks (1/200s)
1 button event low word: button state (1 if down)

high word: number of clicks

2 mouse event low word: X co-ordinate of mouse
position
high word: Y co-ordinate of mouse
position

3 keyboard event low word: key code of key typed

high word: shift key state

AES Library Lattice C 5 Page 9

RETURNS

The number of events recorded is returned; this will normally be equal to the
number requested.

SEE

appl_tplay, evnt_timer, evnt_keybd, evnt_mouse, evnt_button, evnt_multi

EXAMPLE

#include <aes.h>
#include <stdio.h>

int main(void)
{

static EVNTREC x[C1001;

int di,count;

appl_init();

/* start recording */
count=appl_trecord(x,sizeof(x)/sizeof(EVNTREC));

for (i=0; idi<count; i++)
printf("%Zld->%lx\n",x[il.ap_event,xCil.ap_value);

appl_exit();

Page 10 Lattice C 5 AES Library

a p p I s WIr i t e Write to message pipe
Class: AES Category: Application Control
SYNOPSIS

#include <aes.h>

error=appl_write(ap_id,length,message);

int error; error return

int ap_id; application identifier

int Llength; number of bytes to write

void *message; address of message to write
DESCRIPTION

This function is used to write a message of length bytes from address
message to the application with identifier ap_id.

This may be used to send ‘fake’ redraw or menu events to your own program
by using the ap_id that is returned by appl_init.

It may also be used to send messages between an application and a co-
operating desk accessory. The appl_find function may be used to find the
identifier of another application.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.
SEE

appl_find, appl_init, appl_read

EXAMPLE

/* send a redraw message to a window rectangle */
#include <aes.h>

int send_redraw(int wh, GRECT *p)
{

short msgl81];

msgLOJ=WM_REDRAW;

msgl1]=_AESgloball2]; /* find my apps id */
msgl[21=0; /* Length = 16 + 0 */
msgl31=wh; /* window to redraw */
msglLé4l=p->g_x; /* window rectangle */

msgl5]=p->g_y;
msgl6]=p->g_w;
msgl71=p->g_h;
return appl_write(msgl1],sizeof(msg),msg);

AES Library Lattice C 5 Page 11

evn t_ button Wait for a mouse button state

Class: AES Category: Event Handling
SYNOPSIS

#include <aes.h>

clicks=evnt_button(maxclicks,mask,state,x,y,
button,kstate);

int clicks; the number of clicks that occurred
int maxclicks; maximum number of clicks to wait for
int mask; which buttons to wait for
int state; the button state to wait for
short *x; x-coordinate of the mouse
short *y; y-coordinate of the mouse
short *button; final mouse button state
short *kstate; shift key status
DESCRIPTION

This function waits for a particular mouse button state. Button events may be
used to detect single, or multiple clicks on either of the mouse buttons. To
detect more than one event at once, the evnt_multi function must be used.

The maxclicks parameter gives the maximum number of clicks to wait for. To
wait for both single and double clicks, use 2 for this parameter. The function
will then return 2 if the user double-clicked or 1 if the user single clicked.

The mask parameter gives the mouse buttons that the application is interested
in. This is a bitmap with bit 0 indicating the left mouse button and bit 1 the
right mouse button. Thus if the program is only interested in the state of the
left mouse button, use a mask parameter of 1.

The state parameter is the state that is being waited for; again this is a bitmap
with a bit of 1 indicating that the button is down and a bit of 0 indicating that
the button is up. For the usual case of the left button being down, this
parameter should have a value of 1.

The final position of the mouse, when the function returns, is givenin X and y.
These co-ordinates are given in pixels relative to the top left hand corner of the
screen.

The button parameter gives the final state of the mouse buttons, in a similar
form to that used by the mask parameter.

Page 12 Lattice C 5 AES Library

The kstate parameter gives the final state of the shift keys depressed; again
this is a bitmap with the following meanings:

Name Value Meaning

K_RSHIFT 0x0001 Right shift key depressed.

K_LSHIFT 0x0002 Left shift key depressed.

K_CTRL 0x0004 Ctrl key depressed.

K_ALT 0x0008 Alt key depressed.

In general, it is recommended that only the left button is used.

Note that although this function can be used to wait for a click on the right
hand button (mask=2, state=2) and for both buttons being clicked at once
(mask=3, state=3) and to ensure that both buttons are not pressed (e.g.
mask=3, state=1 waits for the left button only to be pressed); it can not be
used to wait for a click on either the left or right buttons. See the VDI example
forvex_butv to see how to detect a click on either button.

RETURNS

The function returns the number of mouse clicks which occurred.

SEE

evnt_multi

AES Library Lattice C 5 Page 13

evn 'I'_d C I | C k Get/Set the double-click speed of the mouse

Class: AES Category: Event Handling
SYNOPSIS

#include <aes.h>

res=evnt_dclick(new,flag);

int res; new double click speed
int new; the new mouse speed (0-4)
int flag; if 1 set the speed,

if 0 get the speed

DESCRIPTION

This function either reads the current mouse double click speed or sets it to a
new value. The values are the same as used by the Control Panel with 0
corresponding to the slowest and 4 to the fastest. If flag is 0 then the value of
new is ignored. Note that the double click speed should only be altered at the
request of the user and not at the whim of the programmer.

RETURNS

The return value of this function is the new double click speed (i.e. the old
speed if the value was not changed).

Page 14 Lattice C 5 AES Library

evn II'_ k e y b d Wait for keyboard event

Class: AES Class: Event Handling
SYNOPSIS

scancode=evnt_keybd();

int scancode; key pressed
DESCRIPTION

This function waits for a key to be pressed or returns a key that has been
pressed, but not yet returned to the program.

To detect more than one event at once, the evnt_multi function must be used.

RETURNS

The bottom eight bits returned are the ASCII code for the character. The top
eight bits are the scan code for the key. This enables non-ASCII keys such as the
cursor control and function keys to be detected.

Although the high byte is normally the scan code, it is not when Ctrl is held
down when the cursor left, cursor right and Clr/Home keys are pressed, in
which case 0x73, 0x74 and 0x77 respectively are returned. Note that the scan
codes for keys differ on machines which are nationalised for different countries.
You should consult the XBIOS keyboard maps (see Keytbl) to obtain consistent
keycodes across different keyboards.

SEE

evnt_multi, Keytbl

AES Library LatticeC 5 Page 15

evn 1'_ mesa g Wait for a message event

Class: AES Category: Event Handling
SYNOPSIS

#include <aes.h>

ret=evnt_mesag(msg);

int ret; error code
short *msg; message buffer
DESCRIPTION

This function returns the next message event. The msQ parameter is usually an
array of 8 shorts whose elements are as follows:

msg(0) The message type.

msg(1) The application identifier of the application that sent
the message. See appl_init and appl_find.

msg(2) The length of the message not including the pre-defined
16 bytes. If this is greater than zero then this is a user-
defined message and appl_read can be used to read
the remainder of the message.

The remainder of the elements depend on the message type which may be one
of the following:

MN_SELECTED The user has selected a menu item:

msg(3) the object number of the menu title selected
msQg(4) the object number of the menu item selected.

These values are as supplied by the header file created by
WERCS.

WM_FULLED This message is sent to your program when the user
clicks on a window’s full box, indicating that the
application should make the window as large as possible,
or if it is already as large as possible, to return it to its
Wevious size. You should use the WF_FULLXYWH,
F_PREVXYWH and WF_CURRXYYH parameters of
wind_get and wind_set to help you implement this:

msg(3) the handle of the window that is to be fulled.

Page 16 Lattice C 5 AES Library

WM_REDRAW

This message is sent by the AES when an area of the
screen which is wholly or partially covered by one of
your windows needs to be redrawn:

msg(3) the handle of the window to redraw
msg(4) the x co-ordinate of the area to be redrawn
msg(5) the y co-ordinate of the area to be redrawn
msg(6) the width of the area to be redrawn
msg(7) the height of the area to be redrawn

The rectangle given by the AES, will probably contain an
area outside the work area of your window. As a result
you should use the rc_intersect function to find out the
area that you really need to update. See rc_intersect for
an example.

WM_ARROWED

This message is sent to your program when the user
manipulates the scroll parts of a window:

msg(3) the handle of the window
msg(4) the action requested:

WA_UPPAGE page up (i.e. above the vertical scroll
bar)

WA_DNPAGE page down (i.e. below the vertical
scroll bar)

WA_UPLINE line up (ie. the up arrow)

WA _DNLINE line down (i.e. the down arrow)

WA_LFPAGE page left (i.e. to the left of the
horizontal scroll bar)

WA_RTPAGE page right (i.e. to the right of the
horizontal scroll bar)

WA _LFLINE character left (i.e. the left arrow)

WA _RTLINE character right (i.e. the right arrow)
You should use the WF_HSLIDE and WF_VSLIDE

parameters of wind_get and wind_set to help you
implement these.

WM_HSLID

This message is sent when the user drags the slider of
the horizontal scroll bar:

msg(3) the handle of the window
msg(4) the new position of the slider between 0 and
1000. 0 is the far left, 1000 is the far right.

You can use wind_set with a parameter of WF_HSLIDE
to help you implement this.

AES Library

Lattice C 5 Page 17

WM_VSLID

This message is sent when the user drags the slider of
the vertical scroll bar:

msg(3) the handle of the window
msQg(4) the new position of the slider between 0 and
1000. 0 is the top, 1000 is the bottom.

You can use wind_set with a parameter of WF_VSLIDE
to help you implement this.

WM_MOVED

This message is used to tell your program that the user
has requested that the window be moved by dragging on
the window’s title bar:

msg(3) the handle of the window

msg(4) the x co-ordinate of the new window

msg(5) the y co-ordinate of the new window

msg(6) the new window width (will be the same as
the current window width)

msg(7) the new window height (will be the same as
the current window height)

The window co-ordinates given are the full size of the

entire window including the title, scroll bars etc. Thus

glvm the ap&roprlate values to pass to wind_set with
URRXYWH without alteration.

Note that this message and WM_SIZED are usually
handled by common code, since they pass identical
information.

WM_TOPPED

This message is sent to your program when the user
clicks on a window to indicate that the window is to
become the top window. Normally you should call
wind_set with a parameter of WF_TOP to let the AES
move your window to the top:

msg(3) the handle of the window

You will still be sent this message if a window other than
your own has become the top window; if your
application only has one window, check to see if msg(3)
is really your window handle!

WM_CLOSED

This message is sent to your program when the user has
clicked on a window’s close box:

msg(3) the handle of the window to be closed.

Page 18

Lattice C 5 AES Library

WM_SIZED

This message is used to tell your program that the user
has requested a new window size by dragging on the
window’s size box:

msg(3) the handle of the window

msg(4) the x co-ordinate of the new window (will be
the same as the current window x co-
ordinate)

msg(5) the y co-ordinate of the new window (will be
the same as the current window y co-
ordinate)

msg(6) the new window width

msg(7) the new window height

The window co-ordinates given are the full size of the
entire window including the title, scroll bars etc. Thus
glvm the aps\ll'opriate values to pass to wind_set with

URRXYWH without alteration. Note that a redraw
message is only sent by the AES after a wind_set call if
the window size increases in either direction, or if a new
part is uncovered. If you must always redraw as a result
of this call then, rather than simply redrawing you
should send yourself a redraw message which the AES
will merge with any it may have generated itself.

AC_OPEN

This message is used to tell a desk accessory that the user
has clicked on its menu item and so it should open:

msg(3) the desk accessory menu identifier as
returned by the menu_register call.

AC_CLOSE

This message is used to tell a desk accessory that the
current application has been terminated. Note that you
should not close or delete any windows which you had
open, as the Desktop, or other shell, will have done this
for you. If you do attempt to close your windows the
Desktop may hang.

msg(3) the desk accessory menu identifier as
returned by the menu_register call.

RETURNS

The return value of this function is reserved. Currently 1 is always returned.

SEE

evnt_multi, wind_get, wind_set

AES Library

Lattice C S5 Page 19

EXAMPLE

/* skeleton AES message Lloop */
#include <aes.h>

void do_full(int wh)

¢ GRECT c¢,p,f;

/* get current size */
wind_get(wh,WF_CXYWH,&8c.g_x,8c.g_y,8&c.g_w,8c.g_h);
/* get full size */

wind_get(wh, WF_FXYWH,&f.g_x,8f.g_y,8f.g_w,&8f.g_h);
/* if full size == current size */

if (rc_equal(&c,&f))

{

/* then get previous size */
wind_get(wh,WF_PXYWH,&p.g_x,8p.g_y,&p.g_w,&p.g_h);
/* if previous !'= full size */
if (!'rc_equal(&p,&f))
/* then set current size to previous size */
wind_set(wh,WF_CXYWH,p.g_x,P.9_Yy,P-9_w,p.9_h);
/* else do nothing */
3
else
/* else set current size to full size */
wind_set(wh, WF_CXYWH,f.g_x,f.g_y,f.g_w,f.g_h);

/* dispatch events until we fail to recognise one */
int do_mesag(void)

for (;;)
{
short msgl81;

evnt_mesag(msg);
switch ((msgC01)
{
case WM_REDRAW:
wind_redraw(msgC3],(GRECT *)&msgl4],draw);
break;

case WM_TOPPED:
wind_set(msg[3],WF_TOP);
break;

case WM_FULLED:
do_full(msgC31);
break;

case WM_SIZED:
case WM_MOVED:
wind_set(msgl
msgl6],msgl7
break;

3] ,WF_CXYWH,msgl[4],msglC51],
1)

’
’

default:
return msglC0];

Page 20 Lattice C § AES Library

ev nf mouse Wait for the mouse to enter/leave a rectangle

Class: AES Category: Event Handling
SYNOPSIS

#include <aes.h>

res=evnt_mouse(flag,x,y,width,height,mx,my,
button,kstate);

int res; reserved
int flag; enter or Leave flag
int x; x co-ordinate of watched rectangle
int y; y co-ordinate of watched rectangle
int width; width of watched rectangle
int height; height of watched rectangle
short *mx; final x-coordinate of the mouse
short *my; final y-coordinate of the mouse
short *button; final mouse button state
short *kstate; shift key status

DESCRIPTION

This function waits for the mouse to enter/leave a given screen area. This may
be used to give a special mouse form over a particular area of the screen.

The flag parameter should be 1 to wait for the mouse to leave the given
rectangle and 0 to wait for it to enter. The X, y, width and height parameters
specify the rectangle to be watched. This is a standard AES rectangle i.e.
expressed in pixels from the top left of the screen.

The final position of the mouse, when the function returns, is given in mx and
my. These co-ordinates are given in pixels relative to the top left hand corner
of the screen.

The button parameter gives the final state of the mouse buttons, with bit 0 set
if the left button is depressed and bit 1 set if the right button is pressed. The
kstate parameter gives the final state of the shift keys depressed; again this is
a bitmap with the following meanings:

Name Value Meaning

K_RSHIFT 0x0001 Right shift key depressed

K_LSHIFT 0x0002 Left shift key depressed

K_CTRL 0x0004 Cirl key depressed

K_ALT 0x0008 Alt key depressed

AES Library Lattice C 5 Page 21

RETURNS

The return value is reserved; 1 is always returned at present.

SEE

evnt_multi

Page 22 Lattice C 5 AES Library

evnt_multi

Wait for a number of events at once

Class: AES
SYNOPSIS

#Hinclude

<aes.h>

Category: Event Handling

res=evnt_multi(flags,bmaxclicks,bmask,bstate,
m1flag,m1x,m1y,m1w,m1h,
m2flag,m2x,m2y,m2w,m2h,

mes,
Locount, hicount,
x,y,button,kstate,kreturn,breturn);
int res; the events that actually occurred
int flags; which events to wait for
int bmaxclicks; maximum number of clicks to wait
for
int bmask; which buttons to wait for
int bstate; the button state to wait for
int mi1flag; enter/leave flag of first mouse
rectangle
int m1x; x co-ordinate of first watched
rectangle
int m1ly; y co-ordinate of first watched
rectangle
int mlw; width of first watched rectangle
int m1h; height of first watched rectangle
int m2flag; enter/leave flag of second mouse

int m2x;

int m2y;
int m2w;
int m2h;
short *mes;

int Llocount;
int hicount;

short *x;
short *y;

short “*button;
short *kstate;
short *kreturn;
short *breturn;
DESCRIPTION

rectangle

x co-ordinate of second watched
rectangle

y co-ordinate of second watched
rectangle

width of second watched rectangle
height of second watched rectangle
message buffer

lower 16 bits of time in

milliseconds

upper 16 bits of time in
milliseconds
x-coordinate of the mouse

y-coordinate of the
final mouse button
shift key status

scancode of key pressed
number of mouse clicks

mouse
state

This function waits for one or more events to occur. It is almost always the
heart of a GEM program. Fortunately most of the parameters are the same as
for the other event handling functions.

AES Library

Lattice C 5 Page 23

Flags specifies which events the AES should wait for. It is a bitmap with masks
as follows:

MU_KEYBD Wait for a keyboard event; the scancode of the
key pressed will be returned in the parameter
kreturn.

MU_BUTTON Wait for a mouse button event. The bmaxclicks,

bmask and bstate parameters have the same
meaning as for the evnt_button function and
the X, y, button and kstate parameters will be
returned with the appropriate parameters.

MU_M1 Indicates that the m1flag, m1x, m1y, m1w and

m1h parameters will be used as a watched
rectangle as with a corresponding evnt_mouse
call. Again the X, y, button and kstate

parameters will be returned with the appropriate
parameters.

MU_M2 Indicates that the m2flag, m2x, m2y, m2w and
m2h parameters will be used as a second
watched rectangle as with the corresponding
evnt_mouse call. Again the X, y, button and
kstate parameters will be returned with the
appropriate parameters. This gives significantly
more power than is available with evnt_mouse
as two rectangles may be watched at once.

MU_MESAG Wait for message events. If this mask is included
and a message event occurs then the message
will be stored at the address pointed to mes, as
for the evnt_mesag call. Tl}:is mask is almost
always included.

MU_TIMER Wait for a timer event. The hicount and locount
parameters are used as for evnt_timer. This can
be used to implement a flashing cursor, for
example.

RETURNS
evnt_multl returns a mask with the same bit usage as the flags parameter

indicating which events occurred. More than event can be returned at once, so
ensure that your code handles this correctly or your program will ‘miss’ events.

SEE

evnt_keybd, evnt_button, evnt_mouse, evnt_mesag, evnt_timer

Page 24 Lattice C 5 AES Library

evnt_i'imer Wait for time to pass

Class: AES Category: Event Handling
SYNOPSIS

#include <aes.h>

res=evnt_timer(locount,hicount);

int Llocount; Lower 16 bits of time in milliseconds
int hicount; wupper 16 bits of time 1in milliseconds

DESCRIPTION

This function waits for a certain number of milliseconds to pass. The AES may
also re-schedule so as to run a desk accessory, for example. This means that the
time passed is a minimum time which the AES will wait for. Programs that
perform long calculations may wish to call evnt_timer with a value of 0 so
that the user may use desk accessories whilst the calculation is in progress.

To detect more than one event at once, the evnt_multi function must be used.

RETURNS

The return value of this function is reserved. At the moment 1 is always
returned.

SEE

evnt_multi

AES Library Lattice C 5 Page 25

fo rm = a I @ I't Display an alert box and wait for reply

Class: AES Category: Form Handling
SYNOPSIS

#include <aes.h>

res=form_alert(default,alert);

int res; button selected by the user

int default; default exit value

const char *alert; the text of the alert
DESCRIPTION

This function displays an alert on the screen and lets the user interact with it.
The default button is given by the default parameter and is 1 for the first
button, 2 for the second, etc., or 0 if there is no default button. The screen is
restored by the AES so there is no need to redraw the screen. alert has the
form:

CLicon]l]Cmessagellbutton1|button2.....]

icon is the number of the icon to display:

0 No icon

1 ! icon

2 ? icon

3 STOP icon

message is the text to display in the alert box; it should not exceed 200
characters and should contain | (vertical bar) characters to delimit the lines (of
which there may be at most 5), the text of which should not exceed 30
characters per line. buttonl and button2 are the text for the buttons. There
may be up to three buttons; the text for each cannot exceed 10 characters.

Under TOS 1.0, if the width of all the buttons is wider than the text then the
buttons are moved to the right, so that some of the buttons are inaccessible.
This can be avoided by padding one of the lines with spaces if you have a
particularly wide button set. This only works if you also have an icon.

On TOS 1.2 and above there is a different problem, if you have an icon-less
alert and your text is longer than the buttons then the last character of the long
line will impinge on the right-hand border of the alert. This can be avoided by
adding a space on to the longest line in icon-less alerts.

If the text parameter does not conform to the above rules the machine may
crash.

Page 26 Lattice C 5 AES Library

RETURNS

The value returned is the number of the button selected.

SEE
objc_draw, form_dial, form_do
EXAMPLE
] *
* jnitialise memory block for file
*/
#include <aes.h>
#include <stdlib.h>
#include <stdio.h>
#include <Llimits.h>

void *load_file(FILE *fp)
{

void *p;

/* get memory */
p=malloc(filelength(fileno(fp)));
if (!'p)

form_alert(1,"[3]JL0Out of memorylLOK1");
else

fread(p,1,LONG_MAX,fp); /* read whole file
return p;

*/

AES Library LatticeC 5 Page 27

fo rm L, b u 1""0 n Dialog handler mouse primitive

Class: AES Category: Form Handling
SYNOPSIS

#include <aes.h>

res=form_button(tree,obj,clicks,newobj);

int res; exit condition flag

OBJECT *tree; form being handled

int obj; current editable object

int clicks; number of clicks

short *newobj; next object
DESCRIPTION

This function need only be used when writing your own form handler to
replace form_do. It is used to handle the mouse clicks which control the
location of text to be entered and changes in button states.

The value tree contains a pointer to the current object tree being manipulated,
and obj the object currently being edited. The clicks parameter gives the
number of clicks which the application received. form_button processes this
information to produce a value for newob) giving the next object which is to
be edited. Note that the top bit of newob] will be set if an exit object was
doubleclicked.

RETURNS

The function returns the value 0 if an object which had the EXIT or TOUCHEXIT
bits set was selected. Otherwise the value 1 is returned.

SEE
form_do, form_keybd, objc_edit

EXAMPLE

* Implement our own version of form_do
*

* the starting object number must be valid
*/

#include <aes.h>
#Hinclude <osbind.h>

int my_form_do(OBJECT *tree, short next)
{

short edit;
short which, cont;

Page 28 LatticeC 5 AES Library

short idx;
short x, y, kr, br;
short junk;
wind_update(BEG_UPDATE);
edit=0;
cont=1;
while (cont)
{
/* position the cursor on an editing field */
if (next!=0 8&8& edit!=next)
{
edit = next;
next = 0;
/* turn on the text cursor and initialise idx */
objc_edit(tree, edit, 0, &idx, ED_INIT);
)}
/* wait for mouse or key */
which=evnt_multi(MU_KEYBD | MU_BUTTON,
0x02, 0x01, O0xO01,
o, o, 0, 0, O,
o, o, o, 0, O,
NULL,
0o, o0,
&x, 8y, &junk, &junk, &kr, &br);
if (which & MU_KEYBD)
{
/* process the keystroke */
cont=form_keybd(tree, edit, 0, kr, &next, 8&kr);
if (kr)
/* if not special then edit the form */
objc_edit(tree, edit, kr, &idx, ED_CHAR);
}
if (which & MU_BUTTON)
{
/* find the object under the rodent */
next=objc_find(tree, ROOT, MAX_DEPTH, x, y);
if (next==NIL)
{
/* 1If no object then ring the bell */
Bconout(2,'\a"');
next = 0;
else
/* else process the button */
cont=form_button(tree, next, br, &next);
}
/* 1f finished or moving to a new object */
if (!'cont || (next!=0 8&& next != edit))
/* then hide the text cursor */
objc_edit(tree, edit, 0, &idx, ED_END);
wind_update(END_UPDATE);
return next;
)}
AES Library LatticeC 5 Page 29

fo rm - cen te r Centre a dialog box on the screen

Class: AES Category: Form Handling
SYNOPSIS

#include <aes.h>

res=form_center(tree,x,y,w,h);

int res; reserved

OBJECT *tree; object tree to centre

short *x; x co-ordinate of centred form

short *y; y co-ordinate of centred form

short *w; width of centred form

short *h; height of centred form
DESCRIPTION

This function centres the dialog box at address tree on the screen. This
function is normally used before calling objc_draw to display a form. The call
modifies the root object of the form and also returns the centred values in X, y,
w and h ready for use with objc_draw; note that these values include the
width of any border or outline specified by the root object and so may be a
larger rectangle than that given in the object definition.

RETURNS

The function return value is reserved; it is always 1 at present.

SEE
objc_draw, form_do

EXAMPLE

/ *
* generalised form set up routine, find the tree
* and then centre it, returning a pointer to it.
*/

Hinclude <aes.h>
OBJECT *start_form(int form, GRECT *p)
¢ OBJECT *tree;
rsrc_gaddr(R_TREE,RO00T,&tree); /* find a tree */

form_center(tree,&p->g_x,8&p->g_y,&p->g_w,8&p->g_h);
return tree;

Page 30 Lattice C 5 AES Library

fiéﬁrr m _d i a | Dialog control function

Class: AES Category: Form Handling
SYNOPSIS

#include <aes.h>

res=form_dial(flag,x1,y1,w1,h1,x2,y2,w2,h2);

int res; error return

int flag; operation to perform

int x1; x co-ordinate of smaller rectangle

int y1; y co-ordinate of smaller rectangle

int wil; width of smaller rectangle

int h1; height of smaller rectangle

int x2; x co-ordinate of Llarger rectangle

int y2; y co-ordinate of Larger rectangle

int w2; width of Larger rectangle

int h2; height of Llarger rectangle
DESCRIPTION

This function performs a number of operations concerned with dialog boxes
according to the value of flag:

FMD_START Should be called before a series of form_dial
calls, although this does nothing on current
versions of the operating system. This call is
used to reserve the screen area inside the
rectangle given by x2,y2, w2, h2.

FMD_GROW Draws a box eX{)andmg from the rectangle
given by x1, yl w1, h1 to the rectangle given by
x2,y2,wW2,h

FMD_SHRINK Draws a box shrinking from the rectangle given
by x2, y2, w2, h2 to the rectangle given by x1,y1,
wl,hl.

FMD_FINISH Sends messages to re-draw the screen for any
windows inside the rectangle given by x2,y2,
w2, h2. If your application has displayed the
form on top of one its windows, ensure that you
respond to WM_REDRAW messages (see
evnt_mesag), otherwise the dialog box will still
be displayed on the screen.

AES Library Lattice C 5 Page 31

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

objc_draw, form_do
EXAMPLE

/ *

* initialise a form ready for drawing.

* starts by getting a form using start_form
* (from form_center) and then reserves and
* zooms.

*/

Hinclude <aes.h>

OBJECT *init_form(int obj)
{

GRECT p;
OBJECT *tree;

/* get a pointer to the object given by obj

tree=start_form(obj,&p);

/* reserve the screen area */

form_dial(FMD_START,0,0,0,0,
p->g_x,p->9_y,p->g_w,p->g_h);

/* draw a zoom box from the centre outwards

form_dial(FMD_GROW,
p->g_x+p->g_w/2,p->g_y+p->g_h/2,0,0,
p->g_x,p->g_y,p->g_w,p->g_h);

return tree;

*/

*/

Page 32

Lattice C 5

AES Library

fo rm d (o) Let the user fill in a form

Class: AES Category: Form Handling
SYNOPSIS

H#include <aes.h>

res=form_do(tree,startob);

int res exit object index

OBJECT *tree; object tree of the form

int startob; editable object to start with
DESCRIPTION

This function is used to let the user fill in a form or dialog box. The tree
parameter is the address of the form and is normally as found from
rsrc_gaddr. The AES needs to know which editable text item to display the
initial text cursor. This should be passed as the startolb parameter. If there are
no editable text fields, or you wish to start editing at the first editable field then
the value 0 should be used.

The form should be drawn using objc_draw before calling this function.

RETURNS

This function returns the object index of the item that caused the dialog to
finish (e.g. that of an OK button). Your program can then compare this with
the values in the resource header file. Note that the value returned may be
negative indicating that the exit object was double clicked in which case the
bottom 15 bits should be masked off to find the true exit button. Also the exit
object is not automatically de-selected when form_do returns, so you should
do this manually.

SEE
objc_draw, form_center, form_dial

EXAMPLE

#include <aes.h>
void do_form(int obj,int *res)
€

OBJECT *tree;

tree=show_form(obj); /* display a form */
res=form_do(tree,0); / dinteract with form */
/* de-select the exit object */
treel*res80x7fffl.ob_state&="SELECTED;
clean_form(tree); /* release the screen area */

AES Library Lattice C 5 Page 33

fo rm e error Display a GEMDOS error alert

Class: AES Category: Form Handling
SYNOPSIS

#include <aes.h>
res=form_error(num);

int res; button selected by the user
int num; 'PCDOS' error code

DESCRIPTION

This function displays a GEMDOS error message on screen. Unfortunately the
routine does not take a GEMDOS error number, but a ‘PCDOS error code’
and it only produces messages for some error numbers. This number is passed
in the nUM parameter.

The error numbers that form_error recognises are as follows:

2,3,18 This application cannot find the folder or file that
you tried to access.

4 This application does not have room to open another
document. To make room, close any document that
you do not need.

5 An item with this name already exists in the
directory, or this item is set to read-only status.

8,10, 11 There is not enough memory for the application you
just tried to run.

15 The drive you specified does not exist.

See the example below to display an error alert given that a GEMDOS error
has occurred.

RETURNS

Theoretically this function could return a value different from 1, i.e. the exit
button used, but as there is only ever one button displayed this is not possible.

SEE

form_alert

Page 34 Lattice C 5 AES Library

EXAMPLE

display an error message based on the
* GEMDOS error encountered by the

Last
support Llibrary

run—-time

#include <aes.h>
#include <dos.h>

void error(void)
{
graf_mouse (ARROW,
if (_OSERR < 50)
_OSERR -= 31;
form_error(_OSERR);
}

NULL);

AES Library

Lattice C 5 Page 35

fo rm il k @& y b d Dialog handler keyboard primitive

Class: AES Category: Form Handling
SYNOPSIS

#include <aes.h>

res=form_keybd(tree,obj,nextobj,keyin,newobj,outkey);

int res; exit condition flag
OBJECT *tree; form being handled
int obj; current editable object
int nextobj; reserved; use the value 0
int keyin; key whose action is to be performed
short *newobj; next object
short *outkey; modified key
DESCRIPTION

This function need only be used when writing your own form handler to
replace form_do. It is used to handle the keys such as Return, Tab and the
cursor keys.

The tree and obj parameters give an object tree and and the number of the
object currently being edited. The value of keyln is the that obtained from the
AES after an evnt_keybd (or evnt_multl) which form_keybd is to process.

The value returned in newobj is the object which is to be the next editable
object if one of the special keys was used, or the exit object if Return was
pressed and a default object existed. The value in outkey is the modified key

stroke ready for passing to objc_edlt, or zero if the key stroke was processed
by form_keybd (i.e. was one of the special keys).

RETURNS

The value returned is zero if the processing of the key stroke caused an exit
condition to occur, i.e. Return was pressed and a default exit object existed,
otherwise the value returned is 1.

SEE

form_button, objc_edit

EXAMPLE

See form_button for an example of form_keybd.

Page 36 Laltice C 5 AES Library

fsel_eXin put Get a file name using the extended file selector

Class: AES Category: File Selector Handling
SYNOPSIS

Hinclude <aes.h>

res=fsel_exinput(path,file,button,label);

int res; error return
char *path; directory displayed/chosen
char *file; file displayed/chosen
short *button; the exit button the user
selected
const char *label; title to display
DESCRIPTION

This function displays and lets the user interact with the extended GEM file
selector, whilst displaying a message to indicate the action about to be taken
(e.g. Save File).

The parameters of this call are the same as for fsel_input except for the extra
label parameter. This string (which may be up to 30 characters long) is
displayed instead of the [tem Selector message.

The initial folder is specified by the path parameter; this will be updated by the
call to give any new directory selected by the user. Similarly the file parameter
gives the initial value for the file name selected and this will change if the user
selects another file. The path buffer should be FMSIZE characters long and the
file name FNSIZE characters long. Both these constants are defined in the dos.h
header file.

The button parameter is returned as 1 if the user selects OK (or presses
Return) or 0 if the user selects Cancel.

Note that this operating system call was added in AES version 1.30 (Rainbow

TOS). However the binding in Lattice C will also work on earlier versions of
the OS, displaying a box above the standard file selector.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

fsel_input

AES Library Lattice C 5 Page 37

EXAMPLE

/ *

* present a standard file selector

*/

#include <stdio.h>
#include <string.h>
#include <aes.h>
#include <dos.h>

int Lloadfile(void)
{

static char selectlFNSIZE];
static char dirnamelFMSIZE];
short button;

getcd(0,dirname); /* get current directory
strcat(dirname,"* *");
select=0; / start with an emtpy name */
/* call fsel_exinput, always safe in Lattice
fsel_exinput(dirname,select,&button,

“Load A File");

if (button)

/* user selected file */
else

/* user cancelled */

*/

Page 38

Lattice C 5

AES Library

fs @& | | 1] p ui’ Get a file name from the user using the file selector

Class: AES Category: File Selector Handling
SYNOPSIS

#include <aes.h>

res=fsel_input(path,file,button);

int res; error return
char *path; directory displayed/chosen
const char *file; file displayed/chosen
short *button the exit button the user
selected
DESCRIPTION

This function displays and lets the user interact with the standard GEM file
selector.

The initial folder is specified by the path parameter; this will be updated by the
call to give any new directory selected by the user. Similarly the file parameter
gives the initial value for the file name selected and this will change if the user
selects another file. The path buffer should be FMSIZE characters long and the
file name FNSIZE characters long. Both these constants are defined in the dos.h
header file.

The button parameter is returned as 1 if the user selects OK (or presses Return)
or 0 if the user selects Cancel.

In general, we recommend that fsel_exIinput is used rather than this function,
because it has the advantage of informing the user of the action about to be
taken.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

fsel_exinput

AES Library Lattice C 5 Page 39

lgraf_dragbox

Let the user move a box around the screen

Class: AES
SYNOPSIS

#include <aes.h>

Category: Graphics Handling

res=graf_dragbox(w,h,sx,sy,bx,by,bw,bh,lastx,lasty);

int res;

int w;

int h;

int sx;
int sy;
int bx;
int by;
int bw;
int bh;

short *lastx;
short *lasty;

DESCRIPTION

error return

width of box

height of box

initial x position

initial y position

x co-ordinate of bounding rectangle
y co-ordinate of bounding rectangle
width of bounding rectangle

height of bounding rectangle

final x-coordinate of box

final y-coordinate of box

This function lets the user drag a box of a fixed size given by the w and h
parameters. This box starts at (sx, sy) and the user will not be able to drag this
outside the bounding rectangle given by (bx, by, bw, bh).

The final position of the box (i.e. when the user releases the left mouse button)
is returned in the lastx and lasty parameters.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

graf_rubberbox, graf_slidebox

Page 40

Lattice C 5 AES Library

graf_growbox Draw a growing box

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>

res=graf_growbox(x1,y1,w1,h1,x2,y2,w2,h2);

int res; error return

int x1; initial x co-ordinate of box

int y1; initial y co-ordinate of box

int wi1; initial width of box

int h1; initial height of box

int x2; final x co-ordinate of box

int y2; final y co-ordinate of box

int w2; final width of box

int h2; final height of box
DESCRIPTION

This function draws a box growing from a box with top left corner (x1,y1)
with width w1 and height h1 to a box with top left corner (x2, y2) with width
w2 and height h2. Note that the larger rectangle is second.

This call is usually used to provide a visual clue to the user. If the ‘clue’ does
not pass any useful information to the user then the call should not be used.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
graf_shrinkbox

AES Library Lattice C 5 Page 41

graf_handle Find the GEM VDI handle used by the AES

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>
handle=graf_handle(wchar, ,hchar,wbox,hbox);
int handle; VDI handle being used by the AES

short *wchar; width of character cell in pixels
short *hchar; height of character cell in pixels

short *wbox; width of box surrounding a character
short *hbox; height of box surrounding a character
DESCRIPTION

In addition to finding the GEM VDI handle being used by the AES, this function
also returns the size of a character in the system font in pixels. This is the font
that the AES uses when drawing normal text in object trees. The width and
height (in pixels) of a box that surrounds a single character font is also
returned; this is the minimum size of a G_BOXCHAR object.

Normally applications are not interested in this character size information, so
they just pass an unused variable for each of the four parameters. See the
example below.

RETURNS

The function returns the GEM VDI handle being used by the AES. The
application can then open a virtual workstation using the VDI function
v_opnvwk and then make further VDI calls to draw text and graphics on the
screen.

SEE
v_opnvwk
EXAMPLE

#include <aes.h>
int main(void)
{

short junk;
int handle;

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);

Page 42 LatticeC 5 AES Library

g ra f_ m k S t a i' @ Return the current mouse status

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>

res=graf_mkstate(x,y,button,kstate);

int res; reserved: always 1 at present

short *x; mouse x co-ordinate

short *y; mouse y co-ordinate

short *button; mouse button state

short *kstate; keyboard shift state
DESCRIPTION

This function returns the current mouse position in (x, y) together with the
current state of the mouse buttons in the button parameter. This parameter is
a bitmap with bit 0 indicating the left mouse button and bit 1 the right mouse
button. A bit is set if the appropriate mouse button is down. Thus if just the left
button is down then 1 is returned in the button parameter.

The kstate parameter gives the state of the shift keys depressed; this is also a
bitmap with the following meanings:

Name Value Meaning

K_RSHIFT 0x0001 Right shift key depressed

K_LSHIFT 0x0002 Left shift key depressed

K_CTRL 0x0004 Ctrl key depressed

K_ALT 0x0008 Alt key depressed

RETURNS

The function return value is reserved. This is always 1 at present.

AES Library Lattice C 5 Page 43

g ra f_ mouse Change the mouse form

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>

res=graf_mouse(number,formaddr);

int res; error return

int number; mouse form

void *formaddr; pointer to user defined form
DESCRIPTION

This function changes the appearance of the mouse according to the value of
the number parameter:

Name Value Meaning

ARROW 0 Arrow.

TEXT_CRSR 1 Text cursor (vertical bar).

HOURGLASS 2 Busy bee.

POINT_HAND 3 Pointing finger.

FLAT_HAND 4 Extended fingers.

THIN_CROSS 5 Thin cross hair.

THICK_CROSS 6 Thick cross hair.

OUTLN_CROSS 7 Outline cross hair.

USER_DEF 255 User defined mouse form given by
the buffer pointed to by formaddr.
See below.

M_OFF 256 Hide mouse.

M_ON 257 Show mouse.

The structure pointed to by formaddr is the same as the MFORM structure
defined in vdi.h and described under vsc_form.

Page 44 Lattice C 5 AES Library

The AES convention is that non-arrow cursors should only be used inside the
work area of the current window. If your program is using another mouse
form then it should use the mouse event facilities of evnt_multi to change the
mouse form as the mouse enters and leaves the work area of your window.

The M_OFF and M_ON parameters are the most frequently used; so that your
program can hide the mouse whilst writing to the display. These calls nest, so

ensure that for every call on M_OFF, there is a call to M_ON otherwise the
mouse will not reappear when M_ON is used.

Note that for calls other than USER_DEF the formaddr parameter is not
required and the value NULL should be used.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

vsc_form, v_show_c, v_hide_c

AES Library LatticeC 5 Page 45

graf_movebox Draw a moving box

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>

res=graf_movebox(w,h,sx,sy,ex,ey);

int res; error return

int w; width of box

int h; height of box

int sx; initial x position
int sy, initial y position
int ex; final x position
int ey, final y position

DESCRIPTION

This function draws a box of width w and height h moving from position
(sx, sy) to (ex, ey). Naturally this is very fast on the ST.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

graf_growbox, graf_shrinkbox

Page 46 Laltice C 5 AES Library

gl’df_rubberbox Let the user drag a rubber box

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>

res=graf_rubberbox(x,y,minw,minh,lastw,lasth);

int res; error return

int x; x co-ordinate of rectangle
int y; y co-ordinate of rectangle
int minw; minimum width of rectangle
int minh; minimum height of rectangle
short *lastw; final width of box

short *lasth; final height of box

DESCRIPTION

This function lets the user drag a rubber box with top left hand corner starting
at (X, y). The minimum size of the rectangle is passed in the minw and minh
parameters.

The final width and height of the rectangle (i.e. when the user releases the left
mouse button) are returned in the lastw and lasth parameters.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
graf_dragbox

AES Library Lattice C 5 Page 47

lgraf_shrinkbox

Draw a shrinking box

Class: AES
SYNOPSIS

#include

<aes.h>

Category: Graphics Handling

res=graf_shrinkbox(x1,y1,w1,h1,x2,y2,w2,h2);

int res;

int x1;
int y1;
int wi1;
int h1;
int x2;
int y2;
int w2;
int h2;
DESCRIPTION

error return

final x co-ordinate
final y co-ordinate
final width of box
final height of

of box
of box

initial x co-ordinate of box
initial y co-ordinate of box
initial width of box

initial height

box

This function draws a box shrinking from a box with top left corner (x2, y2)
with width w2 and height h2 to a box with top left corner (x1, y1) with width

w1 and height h1.

Note that the larger and initial rectangle is second.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

graf_growbox

Page 48

Lattice C 5

AES Library

g ra f_s | i d @ b OoX Let the user slide a box within its parent

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>

res=graf_slidebox(tree,parent,object,vertical);

int res; position of object relative to parent

OBJECT *tree; object tree

int parent; parent of object to slide

int object; object that is to be move

int vertical; 1 vertical movement, 0 for horizontal
DESCRIPTION

This function will let the user slide a given box (with index object in the form
tree) within its parent (with index parent). If the movement is to be vertical
then 1 should be passed in the vertical parameter, otherwise the value zero,
indicating horizontal movements.

RETURNS

The function returns a value in the range 0 to 1000, giving the position of the
object relative to the parent.

SEE
graf_dragbox, objc_draw
EXAMPLE

/ *
* demonstrate a slider bar using a builtin resource
* Much easier done using WERCS!

*/

#include <aes.h>

OBJECT treell =
{-1,1,4,6_1BOX, DxO 0x0,(void *)0x1181,0,0,1026,13},
{3, 2 2 G BOX 0x40 0x0 (vo1d *)0x111c1,
0 2049 1026 10},
,=-1,6_ BOX 0x40,0x0,(void *)0x11181,
0 0 1026 2048}
=1}, G BOXCHAR O0x40,0x0,(void *)0x1011181,
0 0 1026 2049)
—1 -1, G BOXCHAR 0x60,0x0,(void *>0x2011181,
0 2059 1026 2049}

1,

-

};

AES Library Lattice C 5 Page 49

#define BAR 1
#define SLIDER 2

void do_slider(void)
{

fix_tree(slider); /* fix up co-ords in our tree */

draw_tree(tree) /* render the tree on-screen */

/* give a slider effect */

pos=graf_slidebox(tree,BAR,SLIDER,1);

/* calculate the new object position */

treelSLIDER].ob_y=umul_div(pos,
treel[BAR].ob_height-tree[SLIDER].ob_height,1000);

Page 50

Lattice C § AES Library

g ra f_W a t C h b OoOX Track mouse relative to an object

Class: AES Category: Graphics Handling
SYNOPSIS

#include <aes.h>

res=graf_watchbox(tree,obj,instate,outstate);

int res; 1 if the mouse is in the box,
0 if outside
OBJECT *tree; object tree
int obj; index of object to watch
int 1instate; object state when mouse is inside box
int outstate; object state when mouse is outside box

DESCRIPTION

This function will change the state of the given object as the mouse moves
inside and outside of the box.

The object is specified by free and obj (the object index) as usual and the value
for the obo_state field when inside the box is passed in instate and that for
outside the box in outstate.

This function should only be called when the mouse button is down and inside
the box. graf_watchbox returns when the mouse is released.

RETURNS

The function returns 1 if the mouse is inside the box when the button is released
and 0 if the mouse is outside the box.

SEE

graf_mkstate, graf_slidebox

AES Library Lattice C 5 Page 51

menu b ar Display or de-install the menu bar

Class: AES Category: Menu Handling
SYNOPSIS

#include <aes.h>

res=menu_bar(tree,show);

int res; error return
OBJECT *tree; object tree
int show; 1 means display bar,

0 means de-install

DESCRIPTION

This function informs the AES that it should use the object free as its menu bar
if the show parameter is 1. Object trees that are to be used as menu bars must
conform to strict rules and as a result they are best designed with WERCS and
then loaded from a resource file.

Once the menu has been installed the AES will send your program menu event
messages when the items are selected, which can be detected using
evnt_mesag and evnt_multl.

If you have used this function then you should call menu_bar with show set to
0 before exiting. Note however that this does not actually erase the bar from
the screen.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

rsrc_gaddr, evnt_mesag, evnt_multi

Page 52 Lattice C 5 AES Library

menu _i C h ecC k Display/Erase a menu item check mark
Class: AES Category: Menu Handling
SYNOPSIS

#include <aes.h>

res=menu_icheck(tree,item,check);

int res; error return

OBJECT *tree; object tree

int item; index of item to check
int check; 1 means display mark,

0 means don't

DESCRIPTION

This function can be used to display a check (or tick) mark by a menu item. The
item index is normally obtained from the header file produced by WERCS.

Any check mark by an item can be cleared by calling this function with a check
parameter of 0, or displayed by using a parameter of 1.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

evnt_mesag, evnt_multi

AES Library Lattice C 5 Page 53

menu_ienable Ermble/DRabit it

Class: AES Category: Menu Handling

SYNOPSIS

#Hinclude <aes.h>

res=menu_ienable(tree,item,enable);

int res; error return

OBJECT *tree; object tree

int item; index of ditem to enable/disable

int enable; 1 means enable, 0 means disable
DESCRIPTION

This function can be used to dim (or disable) a menu item if the parameter
enable is zero. The item index is normally obtained from the header file
produced by WERCS.

If a menu item has been disabled and you wish to re-enable it then call this
function with a enable parameter of 1, alternatively to disable an entry set the

enable parameter to 0. Note also that on TOS version 1.2 and above it is also
possible to disable menu titles (rather than just the items) using this call.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

menu_bar, menu_icheck, menu_tnormal

Page 54 Lattice C 5 AES Library

menu_reg ister Register a desk accessory with the AES

Class: AES Category: Menu Handling
SYNOPSIS

#include <aes.h>

item=menu_register(ap_id,text);

int item; error return or item number

int ap_id; application identifier

const char *text; the text to display
DESCRIPTION

This function is used to insert a menu entry for a desk accessory in the Desk
menu. The text for the menu entry is passed as the text parameter and the
application identifier (ap_Id) is as returned from the appl_Inlt call.

RETURNS

The function returns -1 if the entry cannot be added to the Desk menu or the
positive menu item number if it has been added.

SEE

menu_bar, menu_icheck, menu_tnormal

EXAMPLE

See the example supplied on disk (chdiracc.c).

AES Library Lattice C 5 Page 55

menu "e X'I' Change the text of a menu item

Class: AES Category: Menu Handling
SYNOPSIS

#include <aes.h>

res=menu_text(tree,item,text);

int res; error return

OBJECT *tree; object tree

int item; index of item to change

const char *text; the text to display
DESCRIPTION

This function can be used to change the text of a given menu item. The item
index is normally obtained from the header file produced by WERCS.

The new text should not be longer than the original length of the message.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

Page 56 LatticeC 5 AES Library

menu _f norma I Display a menu title in normal/inverse video

Class: AES Category: Menu Handling
SYNOPSIS

#include <aes.h>

res=menu_tnormal(tree,item,normal);

int res; error return

OBJECT *tree; object tree

int ditem; index of item to change
int normal; 1 means normal,

0 means inverse

DESCRIPTION

This function can be used to show a menu item or title in inverse video if the
Earameter normal is zero. The item index is normally obtained from the
eader file produced by WERCS.

Calling this function with a normal parameter of 1, will restore an item to
normal video. This is often used after a menu event has occurred because the
AES will display the menu title in inverse video, so your program can use this
function to return it to normal.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
evnt_mesag, evnt_multi, menu_bar, menu_icheck, menu_ienable

EXAMPLE

/* dispatch menu events */
#include <aes.h>
void do_menu(OBJECT *menu)
{

short msgl81;

evnt_mesag(msg);
if (msg[0J==MN_SELECTED)
{

switch (msglé41])
{

case ...
break;
}
menu_tnormal(menu,msgl31,1);

AES Library Lattice C 5 Page 57

(o] bi C _ a d d Add an object to an object tree

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>

res=objc_add(tree,parent,child);

int res; error return status

OBJECT *tree; tree in which the child is to be added
int parent; the index of the object's parent

int child; the index of the object to be added

DESCRIPTION

This function updates the ob_next, ob_head and ob_tall fields of the
appropriate objects so that the object within the tree is added to the tree
structure with the appropriate parent.

The ob_next, ob_head and ob_tail fields of the object being added should be
initialised to NIL before calling this function. The other fields may be set up as
required.

The object tree structure is described in detail in Volume I

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

objc_delete

Page 58 Lattice C 5 AES Library

(o) bj Cc_C h an g @ Change and possibly display an object’s state

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>

res=objc_change(tree,object,rsvd,x,y,w,h,state,draw);

int res; error return status

OBJECT *tree; object tree

int object; the object to change

int rsvd; reserved for future use

int x; x co-ordinate of the clipping
rectangle

int y; y co-ordinate of the clipping
rectangle

int w; width of the clipping rectangle

int h; height of the clipping rectangle

int state; the new object state

int draw; if 1 then re-draw object
if 0 don't

DESCRIPTION

This function changes the given object’s ob_state field to be state. If the
draw parameter is 1 then the object is re-drawn subject to the clipping
rectangle given by the X, y, w and h parameters. These are screen co-ordinates.
The reserved parameter rsvd must be given the value zero.

The object structure is described in detail in Volume I.

If the draw parameter is 0 then the object is not re-drawn. In this case it is
generally clearer and quicker to manipulate the object tree directly.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

objc_draw

AES Library Lattice C 5 Page 59

(o] b C - d & l @ t (<] Delete a n object from an object tree

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>

res=objc_delete(tree,obj);

int res; error return status

OBJECT *tree; tree containing object to be deleted

int obj; the index of the object
DESCRIPTION

This function updates the ob_next, ob_head and ob_tall fields of the
appropriate objects so that the object 0b] is deleted from the tree structure.

This function will not move other objects in the tree structure. This function is
the converse of objc_add.

The object tree structure is described in detail in Volume I.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
objc_add

Page 60 Lattice C 5 AES Library

(o) bj C_d raw Draw part or all of an object tree

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>

res=objc_draw(tree,startobj,depth,x,y,w,h);

int res; error return

OBJECT *tree; object tree to be drawn

int startobj; index of the first object to draw

int depth; the depth of objects to draw

int x; x co-ordinate of the clipping
rectangle

int y; y co-ordinate of the clipping
rectangle

int w; width of the clipping rectangle

int h; height of the clipping rectangle

DESCRIPTION

This function draws part or all of an object tree (normally a dialog box).

If the object tree is stored in a resource file then rsrc_gaddr is normally used
to find the address of the tree.

The first object to draw is given by the startobj parameter; to draw the whole
tree use the value ROOT.

If the depth parameter is zero then only the startob object will be drawn; if
depth is 1 then this object and its first generation children will be displayed, etc.
To draw all the children use the value MAX_DEPTH.

The X, y, w and h parameters give a cIi}inng rectangle so that onlg part of the
screen may be updated. Note that if your root object has a border or is

outlined, then don’t use its co-ordinates for the clipping rectangle, otherwise
the border or outline may not all be drawn.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

rsrc_gaddr, form_do

AES Library Lattice C 5 Page 61

(o] b] c_e dit Form processing support routine

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>

res=objc_edit(tree,object,ch,curpos,kind);

int res; error return status

OBJECT *tree; object tree

int object; the current object

int ch; key pressed by user

short *curpos; cursor position in raw text

int kind; action to perform
DESCRIPTION

This function is only normally used when writing your own form handler
rather than using the standard form_do. The object must be an editable text
field.

The action performed depends on the value of kind as follows:

ED_START Reserved for future use. Do not call.

ED_INIT Displays the text cursor for this object and returns in
curpos the initial position of the cursor within the
te_ptext field. This will be at the end of the string.

ED_CHAR This is used to validate the input character Ch against
the template, updating the te_ptext field and curpos
as appropriate. CUrpos must be set up correctly
before this call. After such a call curpos will be
updated so that it may be used for another ED_CHAR

call.
ED_END Turns off the text cursor.
RETURNS
The function returns 0 if an error occurred or non-zero otherwise.
SEE

form_keybd, form_button

Page 62 Lattice C 5 AES Library

(o) b j C_fi n d Find which object is ‘under’ a given co-ordinate

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>
res=objc_find(tree,startobj,depth,x,y);

OBJECT *tree; object tree to be searched

int startobj; index of first object to consider

int depth; the depth of objects to search

int x; x co-ordinate of the point to find

int y; y co-ordinate of the point to find
DESCRIPTION

This function searches all or part of a tree to find which object lies ‘under’ a
given co-ordinate. It is often used to find which item the user has selected by
clicking with the mouse.

The first object to consider is given by the startobj parameter; to search the
whole tree use the value ROOT.

If the depth parameter is zero then only the startob object will be considered;
if depth is 1 then this object and its first generation children will be searched
etc. To search to the maximum depth of children use the value MAX_DEPTH.

The x and y parameters give the point to search for in screen co-ordinates.

RETURNS

The function returns the object index of the object that was found or -1 if the
object was not found.

SEE
objc_draw
EXAMPLE

See form_button for an example of objc_find.

AES Library Lattice C 5 Page 63

(o] bj C = (o) f f se t Find object’s screen co-ordinates

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>

error=objc_offset(tree,object,x,y);

int error; error code

OBJECT *tree; object tree

int object; index of object within tree

short *x; x co-ordinate relative to screen

short *y; y co-ordinate relative to screen
DESCRIPTION

This function returns in (X,y) the screen co-ordinates of object from the given
tree. Remember that internally an object’s co-ordinates are represented as
offsets from its parent.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

objc_xywh

Page 64 Lattice C 5 AES Library

(o] bj cC O rd er Move an object within its list of siblings

Class: AES Category: Object Manipulation
SYNOPSIS

#include <aes.h>

res=objc_order(tree,object,action);

OBJECT *tree; object tree containing the
structure
int object; the object to move
int action; where to move the object
DESCRIPTION

This function updates the ob_next, ob_head and ob_tall fields of the
appropriate objects so that the tree is re-ordered relative to its siblings. Thus,
for example, you may change an object from being the second child of its
parent to being the first child.

The possible values for the action parameter are as follows:

-1 make the object the last child

0 make the object the first child

1 make the object the second child
RETURNS
The function returns 0 if an error occurred or non-zero otherwise.
SEE
objc_draw

AES Library Lattice C 5 Page 65

(o) bj C_W a I k Iteratively walk an object tree

Class: Lattice Category: Object Manipulation
SYNOPSIS

#include <aes.h>

objc_walk(tree,first,last,reject,routine);

OBJECT *tree; object tree

int first; starting object

int Llast; final object

int reject; flags to 1ignore

int (*routine)(tree,object); user routine

int object object found
DESCRIPTION

This function can be used to ‘walk’ an object tree (i.e. call a routine for each
object) without writing code that explicitly accesses each of the ob_tail,
ob_head and ob_next fields.

first gives the index in the tree to start walking at. This should be ROOT to
walk the entire tree.

The walk will stop when the index stop is reached without calling the routine
for this object. To search the entire tree use a value of NIL.

reject will normally be HIDETREE to ignore any hidden parts of the tree as the
reject parameter is ‘ANDed’ with the ob_flags field of the next object being
considered and if this is non-zero then this object and any of its children are
ignored. Thus, using a value of 0 for reject will cause the entire tree including
any hidden parts to be scanned. You could also use this parameter to ignore
objects that are radio buttons!

routine gives the function to be called for each object that satisfies the criteria
above. It takes two parameters; the first is the object tree and the second is the
current object number. This function should return 0 if any sub-trees of this
object are to be searched and 1 if any children are to be ignored.

Note that this function is an extension to the standard bindings and so will be
non-portable to other C implementations.

Page 66 LatticeC 5 AES Library

EXAMPLE

/ *

* this example un-hides every element in a tree
*/

#include <aes.h>

/*
* unhides the object cur in the given tree
*/
int unhide(OBJECT *tree,int cur)
{
] *
* clear the appropriate bit of the ob_flags field
*/

treelcurl.ob_flags&="HIDETREE;
return 0; /* means continue */

/ *
*
*

*/
objc_walk(tree,ROOT,NIL,O,unhide);

perform unhide for

the whole tree
Looking at all

starting at ROOT
branches including

hidden ones

AES Library LatticeC 5 Page 67

(o) b i C xyw h Find object’s screen co-ordinates as a rectangle

Class: Lattice Category: Object Manipulation
SYNOPSIS

#include <aes.h>

error=objc_xywh(tree,object,rect);

int error; error code

OBJECT *tree; object tree

int object; index of object within tree

GRECT *rect; a pointer to the co-ordinates
DESCRIPTION

This function returns in (rect.g_x, rect.g_y) the screen co-ordinates of object
from the given tree together with its width and height in rect.g_w and
rect.g_h.

If you are using the GRECT structure rather than individual X, y, width and
height co-ordinates then we recommend that you use this function rather than

objc_offset. Be aware, however, that this is an extension to the standard
bindings.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

objc_offset, rc_equal

Page 68 Lattice C 5 AES Library

rc L on St ra i n Constrain one rectangle within another

Class: Lattice Category: Rectangle Handling
SYNOPSIS

#include <aes.h>

rc_constrain(rect1,rect2);

const GRECT *rect1; one rectangle to use
GRECT *rect2; the target rectangle
DESCRIPTION

This function can be used to ensure that rect2 lies within rect1. The co-
ordinates of rect2 will be updated so that this is the case.

SEE
rc_equal

EXAMPLE

/*
* force a window to remain 1inside the desktop
* after a move request
*/

Hinclude <aes.h>

void do_move(int wh,GRECT *p)

{
GRECT q;
/* find size of desktop window */
wind_get(DESK,WF_CXYWH,&q.9_x,8q.9_Yy,8q.g9_w,&q.g_h);
rc_constrain(&q,p);

/* actually move the window */
wind_set(wh,WF_CXYWH,p->g_x,p->g_y,p->g_w,p->g_h);

AES Library Lattice C 5 Page 69

rc ul co p y Copy one rectangle to another

Class: Lattice Category: Rectangle Handling
SYNOPSIS

#Hinclude <aes.h>

rc_copy(source,dest);

const GRECT *source; the source rectangle
GRECT *dest; the destination rectangle
DESCRIPTION

This function copies the rectangle source to the rectangle dest. This function is
only provided for compatibility with older compilers; a structure assignment is
much clearer.

SEE
rc_equal

EXAMPLE

#include <aes.h>

int main(void)

¢ GRECT r1,r2;
rc_copy(&r1,8r2);

/* is the same as */
r2=r1;

Page 70 Lattice C 5 AES Library

rc_equa | Compare one rectangle with another

Class: Lattice Category: Rectangle Handling
SYNOPSIS

#include <aes.h>
equal=rc_equal(rectl,rect2);
int equal; zero if the rectangles differ

const GRECT *rect1; the first rectangle to compare
const GRECT *rect2; the second rectangle to compare

DESCRIPTION

This function compares whether two rectangles are equal. The GRECT
structure is a generally useful one for manipulating AES rectangles, although it
is not part of the standard GEM bindings. It is defined, in aes.h, as:

typedef struct grect
{

short g_x; x co-ordinate

short g_y; y co-ordinate

short g_w; width of rectangle

short g_h; height of rectangle
} GRECT;

You can use this just like one of your own C structures if you need to access the
individual fields yourself.

RETURNS

This function returns 1 if the two rectangles are equal and 0 otherwise.

EXAMPLE

#Hinclude <aes.h>
int main(void)
¢ GRECT r1,r2;
r1=r2;
if (rc_equal(&r1,8r2))

printf(”“this code would get executed\n");
return 0;

AES Library Lattice C 5 Page 71

rc i ns i d e Test whether a point is within a rectangle

Class: Lattice Category: Rectangle Handling
SYNOPSIS

#include <aes.h>

res=rc_inside(x,y,rect);

int res 0 if point is outside rect

int x; x co-ordinate to test

int y; y co-ordinate to test

const GRECT *rect; rectangle to use
DESCRIPTION

This function tests whether a point (X, y) is within the given rectangle.

RETURNS

This function returns 1 if the point is inside the rectangle and 0 if it is outside.

SEE

rc_equal

Page 72 Laltice C 5 AES Library

Find the intersection of

rc_intersect

two rectangles

Class: Lattice

SYNOPSIS

#include <aes.h>

res=rc_intersect(rectl,rect2);

int res; 1 if idintersection is

const GRECT *recti; the first rectangle

GRECT *rect2; the target rectangle
DESCRIPTION

This function finds the intersection of two rectangles, if any.

rectangle is placed in rect2.rect2 will be modified even
intersection. This can be used when re-drawing windows;
wind_redraw, for example.

Category: Rectangle Handling

non-empty

The resulting
if there is no
it is used by

RETURNS
This function returns 1 if the intersection is non-empty, or 0 if there is no
intersection.
SEE
rc_equal, wind_redraw
EXAMPLE
/ *
* Implement wind_redraw, a window redraw primitive
*/
#include <aes.h>
int wind_redraw (int w_hand,GRECT *area,
int (*redraw)(int,GRECT *))
{
GRECT box;
int ok=1;
graf_mouse(M_OFF, NULL); /* hide the mouse */
/* suppress menu drops */
wind_update(BEG_UPDATE);
/* get the first rectangle on the windows Llist */
wind_get(w_hand, WF_FIRSTXYWH,&box.g_x,8&box.g_y,
8box.g_w,&box.g_h);
AES Library Lattice C 5 Page 73

/* while the box exists */
while (box.g_w && box.g_h)
{
/* find the intersection with the
if (rc_intersect(area,&box))
/* call the users redraw routine
if (!'(ok=redraw(w_hand,&box)))
break;
/* fetch the next r
wind_get(w_hand,WF_
&box.g_w,8box.g_h)

ngle on the

}

/* release the menu suspension */
wind_update(END_UPDATE);

/* and re-plot the mouse */
graf_mouse(M_ON,NULL);

return ok;

redraw

*/

windows

ecta
NEXTXYWH,&8box.g_x,&8box.g_y,
;

area */

List */

Page 74

Laltice C 5

AES Library

rc un i on Find the union of two rectangles

Class: Lattice Category: Rectangle Handling
SYNOPSIS

#include <aes.h>

rc_union(rectl1,rect2);

const GRECT *recti; the first rectangle
GRECT *rect2; the target rectangle
DESCRIPTION

This function finds the union of two rectangles, i.e. the smallest rectangle that
contains both rect1 and rect2. The resulting rectangle is placed in rect2.

SEE

rc_equal

AES Library Lattice C 5 Page 75

rsrc _f ree Free memory used by a resource file

Class: AES Category: Resource File Handling
SYNOPSIS

#include <aes.h>
res=rsrc_free(void);

int res; error return;

DESCRIPTION
This function frees the memory allocated by rsrc_load. If your application

needs its resource file until it terminates then there is no need to call this
function as the memory will be freed on termination.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

rsrc_load

Page 76 Laftice C 5 AES Library

rsrc_gaddr

Get the address of a resource file data item

Class: AES
SYNOPSIS

#include

Category: Resource File Handling

<aes.h>

res=rsrc_gaddr(type,index,addr);

int
int
int
void

DESCRIPTION

res;

type;

index;
*addr;

error
type of
number of
where to

return;

item to
item to
store the

Look for
Look for
address of

the item

This function is used find the address of an item that has been loaded using
rsrc_load. The types of items that can be looked for are as follows:

R_TREE object tree

R_OBJECT individual object

R_TEDINFO TEDINFO field

R_ICONBLK ICONBLK field

R_BITBLK BITBLK field

R_STRING string

R_IMAGEDATA image data

R_OBSPEC ob_spec within the objects
R_TEPTEXT te_ptext within the tedinfos
R_TEPTMPLT te_ptmplt within the tedinfos
R_TEPVALID te_pvalid within the tedinfos
R_IBPMASK ib_pmask within the iconblks
R_IBPDATA ib_pdata within the iconblks
R_IBPTEXT ib_ptext within the iconblks
R_BIPDATA bi_pdata within the bitblks
R_FRSTR pointer to a free string
R_FRIMG pointer to a free image

AES Library

Lattice C § Page 77

The index parameter is the index of this particular sort of item in the file. The
address found by rsrc_gaddr is returned by storing it at the address given by
addr.

Most of the item types are not of much use because WERCS, and all the other
resource construction sets that we know of, only return the indices within files
of trees, free strings and free images. Thus the R_TREE, R_LFRSTR and
R_FRIMG parameters are all useful.

WERCS also provides the object indices for objects within each individual tree.
This is not the same as the value that rsrc_gaddr wants; that is the offset
within the entire resource file. These are actually the same for the first tree in
the file, but there is little point in taking advantage of this as your code won’t
work for subsequent trees.

The usual method to find the address of an object is to find the address of the
tree using rsrc_gaddr(R_TREE, ...) and then treat the returned value as an
array of objects. To find, say, the address of a te_ptext field within such an

object, you follow the object tree data structure. This is described in more detail
in Volume I.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

rsrc_load

Page 78 Lattice C 5 AES Library

Isrc - I oa d Load a resource file

Class: AES Category: Resource File Handling
SYNOPSIS

#include <aes.h>

res=rsrc_Load(fname);

int res; error return;
const char *fname; file name Load
DESCRIPTION

This function is used to load resource files into memory and is passed a
standard string. The resource file will be loaded into GEMDOS free memory
and the co-ordinates within it are updated for the current screen resolution.
The address of the items within the file can then be found using the rsrc_gaddr
function.

Resource files are normally created using WERCS.

RETURNS

The function returns 0 if an error occurred (such as the file doesn’t exist or
there is insufficient memory) or non-zero otherwise.

SEE
rsrc_gaddr, rsrc_free

EXAMPLE

/*
* load myrsc.rsc from disk
*/

#include aes.h>
int get_rsc(void)
{
int ok;
ok=rsrc_Load("MYRSC.RSC");
if (!ok)
form_alert(1,"C3]JCCan't Lload resource filel[OK1I");

return ok;
}

AES Library LatticeC 5 Page 79

ISTrC O b f i X Convert an object to screen co-ordinates

Class: AES Category: Resource File Handling
SYNOPSIS

#include <aes.h>

res=rsrc_obfix(tree,index);

int res; reserved

OBJECT *tree; type of item to Llook for

int index; index of the object to change
DESCRIPTION

This function can be used to convert an object’s co-ordinates from character co-
ordinates (where the low byte specifies the number of characters and the high
byte the pixel offset within this) to screen pixel co-ordinates (as required by
objc_draw). Character co-ordinates (with pixel deltas) are used in resource
files. The rsrc_obfix call is used by rsrc_load and can be used to fix up your
own embedded resources or custom resource files. The tree parameter gives
the tree to use and the object parameter the index of the desired object within
that tree. Note that this function fixes only a single object and not a complete
tree.

Also beware that rsrc_obfix has some special cases, in particular it will
increase/decrease the width of 80 character wide menus for different sized
screens.

RETURNS

The function result is reserved. At present 1 is always returned.

SEE
rsrc_load, objc_draw

EXAMPLE

/*
* routine to fix an entire object tree
*/

#Hinclude <aes.h>

void fix_tree(0OBJECT *tree)
{
/* walk a tree until we find the Llast object */

while (!'(tree->ob_flags&LASTOB))
rsrc_obfix(tree++,0);

Page 80 LatticeC 5 AES Library

ISrc S ad d r Set the address of a resource file data item

Class: AES Category: Resource File Handling
SYNOPSIS

#include <aes.h>

res=rsrc_saddr(type,index,addr);

int res; error return;

int type; type of item to change

int index; number of ditem to change

void *addr; address of the item to store
DESCRIPTION

This function is used to set the address of a free string or image item that has
been loaded using rsrc_load.

The types of items that can be looked for are as follows:

R_FRSTR Pointer to free string.

R_FRIMG Pointer to free image.

The index parameter is the index of this particular sort of item in the file, i.e.
that returned by WERCS.

This function may be used if you wish to move (for instance) a free string
representing an alert to a new location.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

rsrc_load, rsrc_gaddr

AES Library Lattice C 5 Page 81

EXAMPLE

*
/:/ set up a shared alert index
#include <aes.h>
#define ALERT O /* constant from WERCS ¥*/
static buffer[1001];
void setup_alert(const char *s)
¢ sprintf(buffer,"[21C%Zs]LOKI1"

s);
rsrc_saddr(R_FRSTR, ALERT, bLffer);
/ *

* rsrc_gaddr(R_FRSTR, ALERT, ...) will now
* return buffer
*/
}
Page 82 Lattice C 5 AES Library

scrp_read d Find name of the scrap directory

Class: AES Category: Scrap Handling
SYNOPSIS

#include <aes.h>
res=scrp_read(dirname);

int res; error return
char *dirname; current scrap directory name

DESCRIPTION

This function returns the name of the current scrap directory. If your program
wants to read a disk based clipboard that has been set up by another
application then this call can be used to find the directory where the clipboard
file(s) are stored. Unfortunately there is no agreed convention on the format
that this data should take, only that the name is always SCRAP, with the
extension indicating the form of the data. The length of the array specified by
dirname should be at least FMSIZE characters long. FMSIZE is defined in dos.h.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

scrp_write

AES Library Lattice C § Page 83

SCr p_ Wwr ite Change the name of the scrap directory

Class: AES Category: Scrap Handling
SYNOPSIS

#include <aes.h>

res=scrp_write(dirname);

int res; error return
const char *dirname; new scrap directory name
DESCRIPTION

This function changes the name of the current scrap directory. If your program
wants to change the directory where it is storing a disk based clipboard that
can be read by other applications then it should use this call. Unfortunately
there is no agreed convention on the format that this data should take, only
that the name is always SCRAP, with the extension indicating the form of the
data.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

scrp_read

Page 84 Lattice C 5 AES Library

S h e I envrn Search the AES’s environment

Class: AES Category: Shell Handling
SYNOPSIS

#include <aes.h>

res=shel_envrn(value,name);

int res; reserved

char *value; value returned

const char *name; the environment variable
DESCRIPTION

This function can be used to search the AES’s environment space for a
particular environment variable. Initially this just contains PATH=, but
unfortunately there is no way to add variables to this environment. If you are
interested in the AES path then it is simpler to use shel_find to locate files.

The name parameter gives the variable name to search for including the
equals (=) sign. value returns containing a pointer to the byte after the equals
sign.

The getenv, putenv, rmvenv functions, from the main library, can be used to
manipulate the GEMDOS environment.

RETURNS

The return value is reserved; the function returns 1 as present.

SEE

getenv, putenv, rmvenv, shel_find

AES Library Lattice C 5 Page 85

S h e I_f i n d Find a file on the AES’s search path

Class: AES Category: Shell Handling
SYNOPSIS

#include <aes.h>

res=shel_find(name);

int res; error return
char *name; the file name of the command
DESCRIPTION

This function can be used to find a file either in the current directory or on the
AES'’s path. The file to search for is passed in name and the full pathname
needed to access it is returned in the same parameter. As such this should be at
least FMSIZE characters long, which is defined in the header file dos.h.

The AES’s path is not the same as the GEMDOS path; it is the path that is
used by rsrc_load and normally consists of just A:\ on floppy-based systems, or
C:\ on hard disk systems. It may be changed however using the Saved! desk
accessory. If your program requires files additional to a resource file, it should
use shel_find to attempt to find them.

RETURNS

The function returns 0 if the file requested could not be located, or non-zero
otherwise.

SEE

rsrc_load

EXAMPLE

/* find my .INF file */

#include <aes.h>
#include <dos.h>
#include <string.h>

char *get_inf(const char *s)
static char buffer[FMSIZE];

strcpy(buffer,s);
strcat(buffer,".INF");
if (shel_find(buffer))

return buffer;
return NULL;

Page 86 Lattice C § AES Library

S h [E] I_g et Read the AES’s internal shell buffer

Class: AES Category: Shell Handling
SYNOPSIS

#Hinclude <aes.h>

res=shel_get(buff,len);

int res; error return

char *buff; buffer

int Llen; Length to read
DESCRIPTION

This function reads the AES’s internal shell buffer (the RAM version of the
DESKTOP.INF file) into the buffer at the given address; len bytes will be read.
The buffer should be at least 4192 bytes long to accomodate for TOS’s later
than AES version 1.40 (Rainbow TOS).

The corresponding function to write to this buffer is shel_put.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
shel_put

EXAMPLE

See the example supplied on disk (rocp.c).

AES Library Lattice C 5 Page 87

Shel put Write to the AES’s internal shell buffer

Class: AES Category: Shell Handling
SYNOPSIS

#Hinclude <aes.h>

res=shel_put(buff,len);

int res; error return

const char *buff; buffer

int Llen; Length to store
DESCRIPTION

This function writes into the AES’s internal shell buffer (the RAM version of
the DESKTOP.INF file) from the buffer at the given address. len bytes will be
written. The length must not be greater than 1024 bytes for AES versions prior
to 1.40 (Rainbow TOS) or 4192 bytes for later TOS's. If you write a new buffer
to the AES, you must place a single AZ (26 decimal) to indicate the end of the
buffer.

The corresponding function to read this buffer is shel_get.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
shel_get

Page 88 Lattice C 5 AES Library

S h & I red d Find the command that invoked this program

Class: AES Category: Shell Handling
SYNOPSIS

#include <aes.h>

res=shel_read(name,tail);

int res; reserved

char *name; the name of the command

char *tail; the command tail for this command
DESCRIPTION

This function can be used to find out the command that invoked this program
and the program’s command line, if the program was invoked by the desktop.
It does not work if the program was run ‘inside’ another program.

A much better way to find the program’s command line is to use the standard C
argv and argc facilities, as described under the main function in Volume II

RETURNS
The function returns 0 if an error occurred or non-zero otherwise. Note that

the command tail returned has the same format as the GEMDOS Pexec
command tail i.e. the first byte gives the length of the string.

SEE

main

AES Library Lattice C 5 Page 89

S h e l_W r ite Run another application

Class: AES Category: Shell Handling
SYNOPSIS

#include <aes.h>

res=shel_write(ex,gr,over,name,tail);

int res; error return
int ex; normally 1
int gr; 1 for GEM applications,
0 for TOS
int over; 1 to run afterwards
const char *name; the file name of the command
const char *tail; the command tail
DESCRIPTION

This function can be used to run another program when this application has
finished. The ex parameter should be 1 to run another program. In theory this
parameter can be 0 indicating that the Desktop should terminate when control
returns to it, however this does not work on all current versions of the
operating system.

The gr parameter specifies whether the program to be run is a .TOS (or .TTP)
program (use O for this parameter) or a GEM (i.e. .PRG or .APP) program.

The name parameter specifies the complete filename (including extension) of
the program to be run. The tall parameter specifies the command tail to be
used in GEMDOS Pexec format i.e. the first byte gives the length of the
string.

The over parameter should be 1 to run the program when control returns to
the Desktop. Theoretically shel_write can be used to run other programs from
within each other (with over=0), but this does not work due to a bug in all

current versions of the operating system. To run a program inside the current
one, you should use one of the fork family of functions. See Volume II details.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
fork

Page 90 Lattice C 5 AES Library

EXAMPLE

/] *
* setup an application for running by the desktop
*/
#include <aes.h>
void setup_run(const char *cmd, const char *tail)
{
char bufl[1281];
y(buf+1,tail);

strcp
bufC[O0l=strlen(tail);
shel_write(1,1,1,cmd,buf);

AES Library LatticeC 5 Page 91

wind_calc

Work area to full size window co-ordinate mapping

Class: AES
SYNOPSIS

#include <aes.h>

Category: Window Handling

res=wind_calc(request,kind,x1,y1,w1,h1,

int res;
int request;
int kind;
int x1;
int y1;
int wi1;
int h1;
short *x2;
short *y2;
short *w2;
short *h2;

DESCRIPTION

x2,y2,w2,h2);

error return
information to find
window components required
input x co-ordinate
input y co-ordinate
input width

input height

output x co-ordinate
output y co-ordinate
output width

output height

This function returns the work area of a window with given components and
border co-ordinates if the request parameter is WC_WORK or the border area
of a window given the work area if the request parameter is WC_BORDER.

The components are specified using the kind parameter as for wind_create

and are as follows:

NAME Title bar with name.
CLOSE Close box.

FULL Full box.

INFO Information line below title.
SIZE Size box.
UPARROW Up arrow.
DNARROW Down arrow.
VSLIDE Vertical slider.
LFARROW Left arrow.
RTARROW Right arrow.
HSLIDE Horizontal slider.

Page 92

Lattice C 5 AES Library

These are bit masks which should be ‘ORed’ together using | when more than

one component is required.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
wind_create

EXAMPLE

] *
* find the maximum work area of a fully
* window
*/

#include <aes.h>
GRECT *get_max(void)
{

static GRECT p;

wind_get(DESK,WF_CXYWH,&p.g_x,8&p.
wind_calc(WC_WORK,NAME|CLOSE|FULL
UPARROHlDNARROHIVSLIDEIL ARROW
P.9_X,P.-9_Y,P.-9_W,P.0_
&p.g_x,8p.g_y,8&p.g_w, 8p g_h);
return &p,

configured

AES Library Lattice C 5

Page 93

Wind_CIOse Close a window

Class: AES Category: Window Handling
SYNOPSIS

#include <aes.h>

res=wind_close(handle);

int res; error return;
int handle; handle of window
DESCRIPTION

This function closes a window with the given handle. This function must be
passed a window handle returned by wind_create.

Once a window has been closed by this function, it will not be displayed on the

screen; it may be re-opened using wind_open if desired. More usually it is
followed by a call to wind_delete to delete the window.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_create, wind_open, wind_delete

Page 94 Lattice C 5 AES Library

Create a window

wind_create

Class: AES Category: Window Handling

SYNOPSIS

#include <aes.h>

winhandle=wind_create(kind,x,y,w,h);

int winhandle;

handle of new window

int kind; attributes of new

int x; x co-ordinate of full window

int y; y co-ordinate of full window

int w; width of full window

int h; height of full window
DESCRIPTION

This function creates a window and indicates the maximum size for the

window.

The kind parameter gives the components that will be present in the window:

NAME Title bar with name.
CLOSE Close box.

FULL Full box.

MOVE Can be moved.
INFO Information line below title.
SIZE Size box.
UPARROW Up arrow.
DNARROW Down arrow.
VSLIDE Vertical slider.
LFARROW Left arrow.
RTARROW Right arrow.
HSLIDE Horizontal slider.

AES Library

LatticeC 5

Page 95

These are bit masks which should be ‘ORed’ together using | when more than
one component is required.

This call does not actually display the window; to do so call the wind_open
function. The x, Y, w and h parameters are subsequently returned by the
wind_get function with a WF_FXYWH parameter and so should normally be set
up to be the entire usable area of the screen as returned by

wind_get(DESK,WF_CXYWH,8&x,8y,8&w,8&h);

Once you have created a window with wind_create you should ensure that
your program deletes the window using wind_delete before it terminates;
otherwise your window will not be deleted until you return to the Desktop or a
wind_new call is made.

RETURNS

This function returns a window handle for use in identifying the window to
other window handling routines, such as wind_open. If there are no more
windows then a negative number will be returned. The maximum number of
windows that may be open at one time is eight. This is a system wide limitation
and thus your program should not try to open the full eight windows otherwise
there will be none left for desk accessories.

Note that window handles are not the same as VDI workstation handles or
GEMDOS handles.

SEE

wind_open, wind_close, wind_delete, wind_get, wind_new

Page 96 Lattice C 5 AES Library

Wind_deleie Delete a window

Class: AES Category: Window Handling
SYNOPSIS

H#include <aes.h>
res=wind_delete(handle);

int res; error return;
int handle; handle of window

DESCRIPTION

This function deletes a window with the given handle. This function must be
passed a window handle returned by wind_create.

When a window is no longer required it should be closed using wind_close
and then deleted using wind_delete.

RETURNS
The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_create, wind_open, wind_close

AES Library LatticeC 5 Page 97

\"" i 1] d f| 1] d Find window ‘under’ given co-ordinate

Class: AES Category: Window Handling
SYNOPSIS

#include <aes.h>

handle=wind_find(x,y);

int handle; found window handle

int x; x co-ordinate to Look for

int y; y co-ordinate to Llook for
DESCRIPTION

This function returns which window is ‘under’ the given X,y screen co-
ordinates. The parameters are usually a mouse position that has been returned
from another AES call.

RETURNS

The function returns the window handle or 0 if the co-ordinates are over the
desktop (i.e. the value DESK).

SEE

evnt_button, evnt_multi

Page 98 Lattice C 5 AES Library

\"\'/ i n d . 9 e t Find information about a window

Class: AES Category: Window Handling
SYNOPSIS

#include <aes.h>

res=wind_get(handle,request,x,y,w,h);

int res error result

int handle; window handle

int kind; information to find

short *x; depends on request

short *y; depends on request

short *w; depends on request

short *h; depends on request
DESCRIPTION

This function returns information about a window with the given handle
depending on the value of the parameter request. Note that the standard
binding expects all parameters to be passed, but as an extension to the
standard a parameter of NULL may be used causing the relevant argument to
be ignored.

In general the X, y, W and h parameters give the co-ordinates and size of a
rectangle. Exceptions to this are noted in the table below:

Name Action

WF_WORKXYWH The current work area of the window is
WF_WXYWH returned.

WF_CURRXYWH The current position and size of the window
WF_CXYWH including borders.

WF_PREVXYWH The co-ordinates of the previous window size
WF_PXYWH including borders.

WF_FULLXYWH The maximum size of the current window
WF_FXYWH including borders.

WF_HSLIDE X contains the current position of the

horizontal slider between 1 and 1000. 1 is the
left most position.

WF_VSLIDE X contains the current position of the vertical
slider between 1 and 1000. 1 is the top most
position.

AES Library LatticeC S Page 99

WF_TOP X contains the handle of the top (active)
window.

WF_FIRSTXYWH The co-ordinates of the first rectangle in the
window’s rectangle list. Note that this
function is called to find the first rectangle,
subsequent rectangles are found via
WEF_NEXTXYWH. See the function rc_intersect
for an example.

WF_NEXTXYWH The co-ordinates of the next rectangle in the
window’s rectangle list.

) WF_HSLSIZE X contains the size of the horizontal slider
relative to the horizontal scroll bar (1 to 1000).

WEF_VSLSIZE X contains the size of the vertical slider
relative to the vertical scroll bar (1 to 1000).

WF_SCREEN X and y give the address of the internal to the
AES alert buffer and w and h give the length
of this buffer. x and w are the ‘high’ words.
Note that when using the ‘blitter’ (1.2) ROMs
the length is zero and so this value should not
be relied upon.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_create, wind_set

Page 100 Lattice C 5 AES Library

\"" i 1] d i n fo Change the information line of a window

Class: Lattice Category: Window Handling
SYNOPSIS

#include <aes.h>

res=wind_info(handle, info);

int res; error return;

int handle; window handle

const char *info; the new information Lline
DESCRIPTION

This function is a special case of the wind_set call, which is easier to use than
the standard binding but has the disadvantage of being non-portable to other C
implementations.

This function is used to change the information line (beneath the title bar) of a
window. The window to be modified is specified using the window handle
returned by wind_create and the new string is given by the info parameter.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
wind_set

EXAMPLE

#include <aes.h>
1nt ’ handle;

wind_info(handle,"New info Line");
/* New info Lline will now appear on the info Lline */

AES Library LatticeC 5 Page 101

\"") i N d new Re-initialise window data structures

Class: AES Category: Window Handling

SYNOPSIS

#include <aes.h>

res=wind_new();

int res; reserved
int handle; handle of window

DESCRIPTION

This function closes and deletes all windows, flushes all window buffers and
returns to standard mouse usage including the wind_update count.

This is the function that is used by the Desktop to tidy up after an application
quits and so should be used if your application needs to run a possibly badly
behaved program. Unfortunately this call is only available on AES version 1.30

(Rainbow TOS) and above, so that it cannot be used by lazy programmers to
return to a fixed state!

At the same time as calling this function you should also call wind_newdesk
with a first parameter of NULL to reset the Desktop tree.

RETURNS

The function return value is reserved.

SEE

wind_newdesk, wind_set

Page 102 Lattice C § AES Library

wind _new desk Use a new object tree for the Desktop

Class: Lattice Category: Window Handling
SYNOPSIS

#include <aes.h>

res=wind_newdesk(tree,object);

int res; error return;

OBJECT *tree; new object tree to draw

int object; first object in tree to draw
DESCRIPTION

This function is a special case of the wind_set call, which is easier to use than
the standard binding but has the disadvantage of being non-portable to other C
implementations.

This function is used to change the object tree (passed in the parameter tree)
for the Desktop to draw. The first object drawn is object. The WTEST.C
program provides an example of this.

Note that prior to termination you should reinstate the default tree by calling
this function with the tree parameter set to NULL.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE
wind_set

EXAMPLE

#include <aes.h>
6éjéCT *tree;
wind_newdesk(tree,R00T);

/* use our own tree ¥*/

wind_newdesk(NULL,ROOT);
/* use the Desktop's once more */

AES Library LatticeC5 Page 103

wind_open Open a window
Class: AES Category: Window Handling
SYNOPSIS

#include <aes.h>

res=wind_open(handle,x,y,w,h);

int res; error return;

int handle; handle of window

int x; x co-ordinate of window dnitially
int y; y co-ordinate of window dnitially
int w; width of window initially

int h; height of window initially

DESCRIPTION

This function opens a window and displays it at its given initial size and
position. These co-ordinates include the window’s borders. This initial size need
not necessarily be the maximum size as given by wind_create. This function
must be passed a window handle returned by wind_create.

Note that wind_open does not display anything inside the window’s work
area, however it does cause a redraw event to be sent to the application hence

you should wait until receiving this message before drawing the contents of
your window.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_create, wind_close, wind_delete

Page 104 Lattice C 5 AES Library

win d_re draw Window redraw utility routine

Class: Lattice Category: Window Handling
SYNOPSIS

#include <aes.h>

res=wind_redraw(handle, rect, routine);

int res; error return;

int handle; window handle

GRECT *rect; area to re-draw

int (*routine)(handle,p); routine to be called

GRECT *p; sub-rectangle
DESCRIPTION

This function can be used to simplify the handling of window redraw events.
You need only supply a routine to draw a given rectangle within your window.
wind_redraw will take care of the details such as the window’s rectangle list,
removing the mouse, and ensuring that the user can’t pull down menus whilst
the screen is being updated.

This routine re(* ires the window’s handle and a pointer to the rectangle
returned by evnt_mesag or evnt_muilti.

The routine that you supply takes a window handle as its first parameter and
the rectangle, p, to be re-drawn as its second parameter. The function should
normally return 1; if it returns 0 then your routine will not be called for any
subsequent rectangles, so that you can use this if you need to abort re-drawing
for any reason.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_get, evnt_mesag, evnt_multi, rc_intersect

AES Library Lattice C 5 Page 105

wind_set

Set window attributes

Class: AES
SYNOPSIS

#include <aes.h>

Category: Window Handling

res=wind_set(handle,request,x,y,w,h);

int handle;
int request;
short *x;
short *y;
short *w;
short *h;

DESCRIPTION

This function sets a p

binding lists 4 (short

window handle

parameter to set

x co-ordinate of rectangle
y co-ordinate of rectangle
width of rectangle

height of rectangle

articular window attribute. Note that although the
) parameters only as many as are required need be

passed. The actions of the function are defined by the request parameter:

Name

Action

WF_NAME

This sets the name or title of the window.
Note that due to the 16 bit nature of the
binding, the address character pointer passed
must be split into it’s high and low words. The
ADDR macro is provided for this purpose.
Alternatively the non-portable wind_title
function may be used.

WEF_INFO

This sets the information line of the window.
Like WF_NAME the ADDR macro may be used
to perform the word splitting required.
Alternatively the non-portable wind_info
function may be used.

WF_CURRXYWH
WF_CXYWH

Set the current position and size of the
window including borders. All four parameters
are required. Note that if as a result of this
call the window size increases in either
direction, or if a new part is uncovered then a
redraw message will be sent to you by the
AES. If you must always redraw as a result of
this call then, rather than simply redrawing
you should send yourself a redraw message
which the AES will merge with any it may
have generated automatically.

Page 106

Lattice C 5

AES Library

WF_HSLIDE X contains the current position of the
horizontal slider between 1 and 1000. 1 is the
left most position. Note that you should take
into account the length of the slider bar when
adjusting this value.

WF_VSLIDE X contains the current position of the vertical
slider between 1 and 1000. 1 is the top most
position. Note that you should take into
account the length of the slider bar when
adjusting this value.

WF_TOP The window specified by handle is the
window which you want the AES to place on
top (i.e. make the active window).

WF_NEWDESK This is used to change the object tree for the
Desktop to draw. Like WF_NAME the ADDR
macro may be used to perform the word
splitting required. The first object to draw
should be passed as the w parameter.

Alternatively the non-portable wind_newdesk
function may be used. If you use this call, you
should call it again prior to terminating with a
(x, y) parameter of NULL to reinstate the
default Desktop’s tree.

WF_HSLSIZE X contains the size of the horizontal slider (1 to
1000) or -1 for the default square box.

WF_VSLSIZE X contains the size of the vertical slider (1 to
1000) or -1 for the default square box.

RETURNS
The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_get, wind_title,wind_info,wind_newdesk

AES Library Lattice C 5 Page 107

EXAMPLE

Hinclude <aes.h>

wind_set(handle, WF_NAME,ADDR("Window Title"));
/*

* sets the window's title. Note that ADDR should

* be used to ensure that the parameters are passed
* on the stack correctly

*/

wind_set(handle, WF_INFO,ADDR("New info Line");

wind_set(handle, WF_NEWDESK,ADDR(tree),RO00T);

/
changes the Desktop tree to be the object tree
given by tree and draws the entire tree starting
at the root object. See WTEST.C for a complete
example.

/

* % % ¥ ¥ ¥

Page 108 Lattice C 5 AES Library

w i n d _t i t I e Change a window’s title

Class: Lattice Category: Window Handling
SYNOPSIS

#include <aes.h>

res=wind_title(handle, title);

int res; error return

int handle; window handle

const char *title; the new title
DESCRIPTION

This function is a special case of the wind_set call, which is easier to use than
the standard binding but has the disadvantage of being non-portable to other C
implementations.

This function is used to change the window’s title (or name). The window to be
modified is specified using the window handle returned by wind_create and
the new string is given by the title parameter.

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_set

EXAMPLE
#include <aes.h>
int handle;

wind_titleChandle,"My window title");
/* My window title will now appear in the title bar*/

AES Library Lattice C 5 Page 109

W i n d o u p d a 1' e Window control utility

Class: AES Category: Window Handling

SYNOPSIS

#include <aes.h>

res=wind_update(request);

int res; error return
int request; action to perform
DESCRIPTION

This function is used to stop the user using menus, moving windows etc. whilst
the application is outputting to the screen or when the application wants to do
its own tracking of the mouse. These routines should be called strictly in pairs;
note that they do nest, so that so long as the calls match there are no problems.
If you call this function with a parameter END_MCTRL more times than
BEG_MCTRL the machine may hang.

BEG_UPDATE Tells the operating system that the application
is about to update the window and will wait
until menus are not down before doing this.
You should call this routine before writing to a
window with the VDL

END_UPDATE Tells the operating system that the application
has finished updating the window and that the
user may pull down menus once more. Should
be called after you have called the VDI if you
called this routine with BEG_UPDATE.

BEG_MCTRL Tells the operating system that the application
is performing all mouse control itself and the
AES will not let the user pull-down menus or
click on windows. One use of this option is in
desk accessories to prevent clicks ‘falling
through’ to an application window below.

END_MCTRL Tells the operating system that the application
has finished doing its own mouse control and so
the AES will let the user, once more, pull down
menus and click on close boxes etc. This must
always be called if you have called the routine
with BEG_MCTRL beforehand.

Page 110 Lattice C 5 AES Library

RETURNS

The function returns 0 if an error occurred or non-zero otherwise.

SEE

wind_create, wind_open, wind_close

AES Library Lattice C 5 Page 111

Page 112 Lattice C 5 AES Library

3 VDI Library

This section describes the GEM VDI library supplied with the Lattice C
compiler. To access the facilities of the VDI you should #Include the file vdl.n
into your program.

The VDI provides the graphical primitives of the ST, dealing with, amongst
other things, point plotting, line drawing, area filling and text drawing. It also
has a user I/O system and deals with the mouse and keyboard. It is based on an
older graphical kernel standard, GKS.

The VDI is named using to a consistent set of prefixes. All functions start with v
and then optionally one or more characters:

Prefix Function type
V_ Configuration, graphical output.
vex_ Vector handling.
vm_ Metafile specific routines.
va_ Workstation inquiry functions.
vaf_, val_.vam_, vat_ Graphical primitive attributes.
vain_ Inquire input mode.
vap_ Inquire palette attributes.
vr_, vro_, vrt_ Raster operations.
vrq_ Request mode input.
VS_ Workstation configuration functions.
VSC_ Configure mouse form.
vsf_ Set fill area attributes.
vsin_ Set input mode.
vsi_ Set line attributes.
vsm_ Set marker types, sample mode input.
vsp_ Set palette attributes.
vst_ Set text attributes.
VSWI_ Set writing mode.
VDI Library LatticeC 5 Page 113

|!=a | P ha _t ext Output text to printer

Class: VDI Category: Printer Escape Functions

SYNOPSIS

#Hinclude <vdi.h>
v_alpha_text(handle,str);

int handle; workstation handle
const char *str string to output

DESCRIPTION

This function outputs alpha text directly to a printer. It is only available when
passing a printer handle under GDOS.

The string to be printed is passed in the parameter str and is passed directly to
the printer apart from the ‘escape’ codes:

\f This causes a form feed as if by v_form_adv.

"\0220" This two character sequence causes text to be output
in bold.

"\0221" This two character sequence cancels text emboldening.

"\0222" This two character sequence causes text to be
italicised.

"\0223" This two character sequence cancels italic text.

"\0224" This two character sequence causes text to be
underlined.

"\0225" This two character sequence cancels text underlining.

Note that the octal sequence “\022” corresponds to the ASCII code ‘DC2'.
SEE

v_gtext, v_form_adv, vst_effects

Page 114 LatticeC § VDI Library

v_arc, v_p ieslice Output circular segment

Class: VDI Category: GDP Output
SYNOPSIS

H#include <vdi.h>

v_arc(handle,x,y,radius,begang,endang);
v_pieslice(handle,x,y,radius,begang,endang);

int handle; workstation handle

int x; x co-ordinate of centre

int y; y co-ordinate of centre

int radius; radius of circle

int begang; start angle

int endang; end angle
DESCRIPTION

These ‘Generalised Drawing Primitives’ (GDPs) are used to draw a circular arc
or a circular ‘pie slice’, starting at angle begang round to angle endang.
Angles are specified in tenths of a degree as follows:

900

1800 0

2700

The v_arc function draws a circular arc using the line attributes (see vsl_color
etc.) whereas the v_pieslice function draws a filled pie slice based on the fill
area attributes (see vsf_color etc.).

The segment is drawn based on a circle with centre (X, y) and of the given
radius in x-axis co-ordinates.

Devices don’t necessarily support all GDPs. You can check that a particular
GDP is available on a given device, by checking the values returned by
v_opnwk or v_opnvwk. All GDPs are available in the standard ST screen
modes.

The handle parameter is the handle of the workstation to use, as usual.

SEE

v_circle, vsl_color

VDI Library Lattice C 5 Page 115

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2}%};
short work_out[571];
short junk,handle; /* virtual workstation handle */

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);

f (handle)

A~ -

v_clrwk(handle); /* clear screen */
v_arc(handle,100,100,30,0,900);
/* draws a quarter of a circle */
evnt_keybd();
v_clsvwk(Chandle);

}

return appl_exit();

Page 116 Lattice C 5 VDI Library

V_ b ar Filled rectangle output

Class: VDI Category: GDP Output
SYNOPSIS

#include <vdi.h>

v_bar(handle,pxyarray);

int handle; workstation handle
short *pxyarray; co-ordinates of corners
DESCRIPTION

This ‘Generalised Drawing Primitive’ (GDP) is used to fill a rectangle with
corners (pxyarray(0), pxyarray(1)) and (pxyarray(2), pxyarray(3)) using the

current fill area attributes (see vsf_interior etc.). This is exactly equivalent to an
appropriate v_fillarea command.

Note that this function differs from vr_recfl in that the latter ignores any
outline (as set by vsf_perimeter). The handle parameter is the handle of the
workstation to use, as usual.

Devices don’t necessarily support all GDPs. You can check that a particular
GDP is available on a given device, by checking the values returned by
v_opnwk or v_opnvwk. All GDPs are available in the standard ST screen
modes.

SEE

v_fillarea, vsf_interior, vsf_style, vswr_mode, vsf_color, vsf_perimeter,
vsf_udpat

EXAMPLE

#include <vdi.h>
#include <aes.h>
int main(void)
{
short work_in
short rectC4]
appl_init();
handle=graf_handle(&junk,&junk,
v_opnvwk(work_in,&handle,work_o
if C(handle) (

junk;

nC1 1,2},
=1 rk_out[57]1, handle;

v_clrwkChandle); /* clear screen */
v_bar(Chandle,rect); /* draw rectangle */
evnt_keybd(); /* wait for a key */
v_clsvwk(handle);

)}

return appl_exit();

VDI Library LatticeC 5 Page 117

v_bit_ima ge Write image file to printer

Class: VDI Category: Printer Escape Functions
SYNOPSIS

#include <vdi.h>

v_bit_image(handle,file,aspect,x_scale,y_scale,
h_align,v_align,pxyarray);

int handle; workstation handle
const char *file; image file to print

int aspect; 0 = ignore aspect ratio
1 = use file aspect ratio
int x_scale; 0 = fractional scaling on x-axis
1 = dinteger scaling on x-axis
int y_scale; 0 = fractional scaling on y-axis
1 = dinteger scaling on y-axis
int h_align; Horizontal alignment
0 = left
1 = centre
2 = right
int wv_align; Vertical alignment
0 = top
1 = middle
2 = bottom
short *pxyarray; rectangle giving area to print if

fractional scaling is wused

DESCRIPTION

This function prints a GEM .IMG file on a printer device. This can only be used
with a printer handle under GDOS.

If the aspect flag is 1 then the aspect ratio from file will be used, thus giving
the same aspect ratio as on the original device.

If fractional scaling is used then the VDI will output the image in the rectangle
given by (pxyarray(0), pxyarray(1)) and (pxyarray(2), pxyarray(3)). If the

image will not fit exactly than the h_align or v_allgn parameter will give the
position within that rectangle.

SEE

vg_scan, v_opnwk

Page 118 Lattice C 5 VDI Library

V_C e I I a rray Draw an array of cells

Class: VDI Category: Graphics Output
SYNOPSIS

#include <vdi.h>

v_cellarray(handle,pxyarray,rowlen,el_used,num_rows,
wrt_mode,colarray);

int handle; workstation handle

short “*pxyarray; co-ordinate values

int rowlen; Length of rows in colarray

int el_used; elements used in colarray

int num_rows; number of rows in colour array

int wrt_mode; writing operation to perform

short *colarray colour array values
DESCRIPTION

This function is not actually implemented on the ST. It would be used to plot an
array of different coloured cells, placed in a rectangle with top left corner
(pxyarray(0), pxyarray(1)) and bottom right corner (pxyarray(2), pxyarray(3)).
Normally colarray would be defined to be:

short colarraylnum_rows*el_used];
The writing mode is as specified for the vswr_mode function.

SEE

vswr_mode

VDI Library Lattice C 5 Page 119

Vv C i I'C I e Draw a circle
Class: VDI Category: GDP Output

SYNOPSIS

#include <vdi.h>

v_circle(handle,x,y,radius);

int handle; workstation handle

int x; x co-ordinates of centre

int y; y co-ordinate of centre

int radius; radius of circle
DESCRIPTION

This ‘Generalised Drawing Primitive’ (GDP) is used to draw a circle using the
fill area attributes (vsf_color etc.). The circle is drawn with centre (X, y) and of
the given radius in x-axis co-ordinates.

Devices don’t necessarily support all GDPs. You can check that a particular
GDP is available on a given device, by checking the values returned by
v_opnwk or v_opnvwk. All GDPs are available in the standard ST screen
modes.

The handle parameter is the handle of the workstation to use, as usual.

SEE
v_ellipse, vsf_color

EXAMPLE

#include <vdi.h>

#include <aes.h>

int main(void)

{
short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};
short work_out[57],junk,handle;
appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);
if C(handle)
{

v_clrwk(Chandle); /* clear screen */
v_circle(Chandle,100,100,30);

/* draws a filled circle centred at (100,100),

radius 30 pixels in black */
evnt_keybd();
v_clsvwk(Chandle);

return appl_exit();

Page 120 Lattice C 5 VDI Library

V_C|ear_disp_list Clear display list

Class: VDI Category: Printer Escape Functions
SYNOPSIS

#include <vdi.h>
v_clear_disp_List(handle);

int handle; workstation handle

DESCRIPTION

This function clears the printer display list and can only be used with GDOS.
Printer output under GDOS works by storing a list of items to be printed and
then building up a bit map when a page is printed.

This function is similar to calling v_clrwk except that a form feed is not sent to
the printer.

SEE

v_updwk, v_clrwk

VDI Library Lattice C 5 Page 121

vV C I rw k Clear workstation

Class: VDI Category: Workstation Control

SYNOPSIS

#include <vdi.h>

v_clrwk(Chandle);

int handle; workstation to clear

DESCRIPTION

This function is used to clear a physical workstation that has been opened using
v_opnvwk or v_opnwk. The whole of the screen (or page on the printer) will
be set to colour 0.

There is no need to call this function after opening a physical workstation, as
the VDI will do this for you. However, virtual workstations are not cleared
when they are opened, nor should you clear them in general as this call
operates on the whole workstation and not just your virtual workstation.

SEE
v_opnvwk, V_opnwk

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};
short work_out[57];

short handle; /* virtual workstation handle */
short junk;

ppl_init();
andle=graf_handle(&junk,&junk,&junk,&junk);
_opnvwk(work_in,&handle,work_out);

if (handle)

A< TO

v_clrwk(Chandle); /* clear the screen */

v_clsvwk(Chandle);

return appl_exit();

Page 122 Lattice C 5 VDI Library

VvV C IS VW k Close virtual workstation

Class: VDI Category: Workstation Control
SYNOPSIS

#include <vdi.h>
v_clsvwkChandle);

int handle; workstation handle to close

DESCRIPTION

This function is used to close a virtual workstation that has been opened using
v_opnvwk. This should always be called if v_opnvwk has been used.

SEE
v_opnvwk, v_opnwk, v_clswk

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};

short work_outl571];

short handle; /* virtual workstation handle */
short junk;

pl_init();
ndle=graf_handle(&junk,&junk,&junk,&junk);
_opnvwk(work_in,&handle,work_out);

if C(handle)

p
a

A< TO

/* Now the main program */

v_clsvwk(handle);

return appl_exit();

VDI Library Lattice C 5 Page 123

vV_C IS w k Close physical workstation

Class: VDI Category: Workstation Control
SYNOPSIS

#include <vdi.h>

v_clswk(Chandle);

int handle; workstation handle to close

DESCRIPTION

This function is used to close a physical workstation that has been opened using
v_opnwk. This should always be called if v_opnwk has been used, but after
any virtual workstations have been closed using v_clsvwk.

SEE

v_opnwk, v_clswvk, vg_gdos

EXAMPLE

#Hinclude <vdi.h>
#include <stdio.h>

int main(void)
{

short work_inC111={(21,1,1,1,1,1,1,1,1,1,2)};
short work_out[571];
short handle;

if (vg_gdos())
{

/*
* GDOS 1is present; try to open the printer
*/

v_opnwk(work_in,&8handle,work_out);

if C(handle)

{

/* Now write to the printer */
v;cisuk(handle);

else
printf("Could not open printer");

else
printf("Graphics on the printer needs GDOS");

return O0;

Page 124 Lattice C 5 VDI Library

v_contourfill ‘Seed" fill an area

Class: VDI Category: Graphics Output
SYNOPSIS

#include <vdi.h>

v_contourfill(handle,x,y,colour);

int handle; workstation handle

int x; x co-ordinate of start point

int y; y co-ordinate of start point

int colour; colour to search for
DESCRIPTION

This function is used to ‘seed’ fill an area of the screen starting at (x, y).
Normally the fill continues until a pixel of the given colour (or the edge of the
screen or paper) is found. Thus the colour is used as the border of the area to
be filled.

If colour is negative then the fill continues until pixels other than the original
colour in (x, y) is found. Thus this can be used to replace an area of one colour
with another colour. How the area is drawn depends on the fill area attributes
(see vsf_interior etc.).

SEE
vsf_interior, vsf_style, vswr_mode, vsf_color, vsf_perimeter, vsf_udpat

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short ptsC61={(10,20,100,40,20,10012;
{
clrwk(Chandle); /* clear screen */
fillarea(handle,3,pts);

draws a triangle with corners at
(100,40) and (20,100) in black */
vsf_color(handle,GREEN);
v_contourfill(handle,30,50,WHITE); /* fill with

GREEN */

v—
v—
] *

€10,20),

evnt_keybd(); /* wait for a key */
v_clsvwkChandle);

}

return appl_exit();

VDI Library LatticeC 5 Page 125

v_curhome, vs_curaddress rosition cursor

Class: VDI Category: Screen Escape Functions

SYNOPSIS

#include <vdi.h>

v_curhome(Chandle);
vs_curaddress(handle,row,column);

int handle; workstation handle

int row; new row for cursor

int column; new column for cursor
DESCRIPTION

These functions are used to position the the alpha cursor on the screen.
v_curhome causes the alpha cursor to move to the top left corner of the
screen. This is equivalent to sending the ESC H VT52 code to the screen.

vs_curaddress causes the alpha cursor to move to the given row and column
(both starting at 1). This is equivalent to sending the ESC Y VT52 code and the
appropriate co-ordinates to the screen.

SEE

v_curleft, v_curright, v_curup, v_curdown

Page 126 Lattice C 5 VDI Library

V_C u I’| eﬂ' ’ V_C u I'I'I g ht Alpha cursor Left/Right

Class: VDI Category: Screen Escape Functions
SYNOPSIS

#include <vdi.h>

v_curleft(Chandle);
v_curright(Chandle);

int handle; workstation handle

DESCRIPTION

v_curleft causes the alpha cursor to move left one character, or to remain at
the first cursor position if it is already there. This is equivalent to sending the
ESC D VT52 code to the screen.

Alternatively to move the cursor right one character, or to remain at the last

cursor position if it is already there, the v_curright function is used, which is
identical to the ESC C VT52 code.

SEE

v_curdown, v_curup

VDI Library LatticeC S Page 127

VvV CU rfe xt Output cursor addressable text

Class: VDI Category: Screen Escape Functions

SYNOPSIS

#include <vdi.h>

v_curtext(handle,str);

int handle; workstation handle
const char *str; string to output
DESCRIPTION

This function causes the ‘alpha’ text given by str to be written at the current
alpha cursor position. The text will be displayed in reverse video if the v_rvon
function has been called.

SEE

vs_curaddress, v_rvon, v_rvoff

Page 128 Lattice C 5 VDI Library

V_Curup, V_Cvurdown Alpha cursor Up/Down

Class: VDI Category: Screen Escape Functions
SYNOPSIS
Hinclude <vdi.h>
v_curdown(handle); move alpha cursor down
v_curupChandle); move alpha cursor up
int handle; workstation handle

DESCRIPTION

v_curdown causes the alpha cursor to move down one line, or to remain on
the bottom line if it is already there. This is equivalent to sending the ESC B
VT52 code to the screen.

Alternatively to move the cursor up one line, or to remain on the top line if it is

already there, the v_curup function is used, which is identical to the ESC A
VT52 code.

SEE

v_curleft, v_curright

VDI Library Lattice C 5 Page 129

V_d spcur, v_rmcur Show/Hide mouse cursor

Class: VDI Category: Screen Escape Functions
SYNOPSIS

#include <vdi.h>

v_dspcur(handle,x,y);
v_rmcur(handle);

int handle; workstation handle

int x; x co-ordinate of cursor

int y; y co-ordinate of cursor
DESCRIPTION

The v_dspcur function displays the mouse cursor on the screen at the position
(X,). By contrast v_rmcur removes the last mouse cursor displayed.

Normally these functions are not called but the AES graf_mouse routine used
instead. If you are using the VDI to control the mouse then use the v_show_c
and v_hlde_c calls.

SEE

v_hide_c, v_show_c, graf_mouse

Page 130 Lattice C 5 VDI Library

v_eeo | , VvV_eeos Erase to end of alpha line/screen

Class: VDI Category: Screen Escape Functions
SYNOPSIS

#include <vdi.h>
v_eeol(handle);

int handle; workstation handle

DESCRIPTION

The v_eeol function causes the screen line to be cleared from the current
cursor position. It does not change the current cursor position. This is
equivalent to sending the ESC K VT52 code to the screen.

By contrast the v_eeos function causes the screen to be cleared from the

current cursor position. It does not change the current cursor position. It is
equivalent to sending the ESC J VT52 code to the screen.

SEE

vs_curaddress, vqg_curaddress

VDI Library Lattice C 5 Page 131

l_!=e llarc , V_€e 1| P ie Output elliptical segment

Class: VDI Category: GDP Output
SYNOPSIS

#include <vdi.h>

v_ellarcChandle,x,y,xradius,yradius,begang,endang);
v_ellpieChandle,x,y, xradius,yradius,begang,endang);

int handle; workstation handle

int x; x co-ordinates of centre

int y; y co-ordinate of centre

int xradius; x radius of ellipse

int yradius; y radius of ellipse

int begang; start angle

int endang; end angle
DESCRIPTION

These ‘Generalised Drawing Primitives’ (GDPs) are used to draw an elliptical
arc or an elliptical ‘pie slice’, starting at angle begang to angle endang.
Angles are specified in tenths of a degree as follows:

900
1800 0

2700

The v_ellarc function draws an elliptical arc using the line attributes (see
vsl_color etc.) whereas the v_ellple function draws a filled elliptical pie slice
based on the fill area attributes (see vsf_color etc.). To draw circular arcs and
pie slices use v_arc and v_pleslice.

The segment is drawn based on an ellipse with centre (x,y) and of the given
xradius and yradius.

Devices don’t necessarily support all GDPs. You can check that a particular
GDP is available on a given device, by checking the values returned by
v_opnwk or v_opnvwk. All GDPs are available in the standard ST screen
modes.

The handle parameter is the handle of the workstation to use, as usual.

Page 132 Lattice C 5 VDI Library

SEE
v_circle, v_arc, v_pieslice, vsl_color, vsf_color

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
short work_inC111=4{1,1,1,1,1,1,1,1,1,1,2};

short work_outl571];
short junk,handle; /* virtual workstation handle */

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);
if (handle)
{
v_clrwk(Chandle); /* clear screen */
v_ellpie100,100,30,20,0,1800);
/* half an ellipse*/
evnt_keybd();
v_clsvwk(handle);
}
return appl_exit();

VDI Library LatticeC 5 Page 133

v_e I I i p se Draw an ellipse
Class: VDI Category: GDP Output

SYNOPSIS

#include <vdi.h>

v_ellipse(handle,x,y,xradius,yradius);

int handle; workstation handle

int x; x co-ordinates of centre

int y; y co-ordinate of centre

int xradius; x radius of circle

int yradius; y radius of circle
DESCRIPTION

This ‘Generalised Drawing Primitive’ (GDP) is used to draw an ellipse using
the fill area attributes (vsf_color etc.). The ellipse is drawn with centre (X, y)
and of the given xradius and yradius in their native co-ordinates.

Devices don’t necessarily support all GDPs. You can check that a particular
GDP is available on a given device, by checking the values returned by
v_opnwk or v_opnvwk. All GDPs are available in the standard ST screen

modes.

The handle parameter is the handle of the workstation to use, as usual.

SEE

v_circle, vsf_color

EXAMPLE

#include <vdi.h>
#include <aes.h>
int main(void)

{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};

short work_outl57],junk,handle;

appl_init();

handle=graf_handle(&junk,&junk,&junk,&junk);

v_opnvwk(work_in,&8handle,work_out);

if (handle)

{

v_ellipse(handle,100,100,30,30);

/* draws a filled ellipse centred at (10,100),
radius 30,30 pixels in black */

evnt_keybd();

v_clsvwk(handle);

}

return appl_exit();

Page 134 Lattice C 5 VDI Library

V_e nfeI’_CUI’, V_eXit_Cur Enter/Exit alpha mode

Class: VDI Category: Screen Escape Functions
SYNOPSIS

#include <vdi.h>

v_enter_cur(handle);
v_exit_cur(handle);

int handle; workstation handle

DESCRIPTION

v_enter_cur exits graphics mode and enters cursor (or alpha) mode. On the
ST this clears the screen to colour 0, turns off the mouse cursor (as if by
v_rmcur) and turns on the TOS cursor.

Note that when calling v_enter_cur function you should ensure that the user
has released the left mouse button (by watching it via vg_mouse), otherwise
the VDI will fail to notice its release after calling the function and will wait for
it to be ‘released’ on calling v_exit_cur.

The converse function is v_exlIt_cur which exits alpha (or cursor) mode and
enters graphics mode. On the ST this turns off the TOS cursor and turns the
mouse cursor on. Note that it does not cause the screen to be updated. If
running under the AES this would normally be done using the form_dial call
with the parameter FMD_FINISH.

Note that these calls are usually used by a GEM application which wishes to
run a TOS program.

SEE

form_dial

VDI Library Lattice C 5 Page 135

V_fi I I ared Draw a filled area

Class: VDI Category: Graphics Output
SYNOPSIS

#include <vdi.h>

v_fillarea(handle,n,pxyarray);

int handle; workstation handle

int n; number of wvertices

short *pxyarray; co-ordinate values
DESCRIPTION

This function is used to plot a filled area. The vertices of the polygon to fill are
passed in pxyarray with (pxyarray(0), pxyarray(1)) giving the first point,
(pxyarray(2), pxyarray(3)) giving the second point etc.

Note that unlike the Line-A routine it is not necessary to specify the first point
as the end point.

How the area is drawn depends on the fill area attributes (see vsf_Interlor etc.).

The handle parameter is the handle of the workstation to use, as usual.

SEE

vsf_interior, vsf_style, vswr_mode, vsf_color, vsf_perimeter, vsf_udpat

EXAMPLE

#Hinclude <vdi.h>
#include <aes.h>
int main(void)

{
short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};
short work_outl[571];
short handle; /* wvirtual workstation handle */
short junk;
short ptsC61={10,20,100,40,20,100};
appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);
if (handle)
{
v_fillareaChandle,3,pts);
/* draws a triangle with corners at (10,20),
(100,40>) and (20,100) */
v_clsvwk(Chandle);
return appl_exit();
}

Page 136 Lattice C 5 VDI Library

V_fOnt Change default alpha text font

Class: Lattice Category: Atari Escape Functions

SYNOPSIS

#include <vdi.h>

v_font(handle,font);

int handle; screen workstation handle
void *font; pointer to font header
DESCRIPTION

This function changes the default alpha text font (as used written by v_curtext
and printf etc.). The font]parameter must point to a Line-A font header (as
given by the type LA_FONT in linea.h).

This function is most often used to give 8x8 characters (and thus 50 lines) on
monochrome screens. This technique is used by Batcher.

This function is not officially documented but is implemented on all current
versions of the operating system. Note that this means it cannot be guaranteed
to work correctly in all circumstances.

SEE

lineaO, linea8

EXAMPLE

#include <linea.h>
#include <vdi.h>
#include <aes.h>

int main(void)
{

int handle;
short junk;

appl_init();

handle=graf_handle(&junk,&junk,&junk,&junk);

Lineal();

v_font(handle,la_init.li_a1C11);

/* use the 8x8 system font to give 50 Llines on mono
displays */

return appl_exit();

VDI Library LatticeC 5 Page 137

V_ form _a dv Printer form advance

Class: VDI Category: Printer Escape Functions
SYNOPSIS

#include <vdi.h>

v_form_adv(handle);

int handle; workstation handle

DESCRIPTION

This function advances to a new page and can only be used with a printer
handle under GDOS.

You might use this function rather than v_clrwk if you wanted to draw a
second page which included all the graphics on the current page.

SEE

v_updwk, v_clrwk

Page 138 Lattice C 5 VDI Library

V_ g e t 1, p i xXe I Return the pixel value of given point

Class: VDI Category: Raster Functions
SYNOPSIS

#include <vdi.h>

v_get_pixelChandle,x,y,pel,index);

int handle; workstation handle

int x; x co-ordinate of pixel

int y; y co-ordinate of pixel

short *pel; pixel wvalue

short *index corresponding colour index
DESCRIPTION

This function is used to find the pixel value (or colour index) of the point (x, y)
on the device specified by handle.

The function returns the pixel value of the point in pel, and the corresponding
colour index value in index. For the mapping from pixels to colour indices see
vr_trnfm.

Note that this function is normally only available on screen devices and is not
required even then.

SEE

vr_trnfm

VDI Library Lattice C 5 Page 139

V_ g 'l' e Xi Draw graphics text

Class: VDI Category: Graphics Output
SYNOPSIS

#include <vdi.h>

v_gtext(handle,x,y,str);

int handle; workstation handle

int x; x co-ordinate of start

int y; y co-ordinate of start

const char *str; characters to output
DESCRIPTION

This function is used to display text on the screen. The string to write is passed
in str and it is displayed starting at position (x, y).

How the text is drawn depends on the text attributes (see vst_height). You can
determine how big the text that you draw with v_gtext will be, by using the
vgt_extent function. To draw justified text, use the v_justified function.

The handle parameter is the handle of the workstation to use, as usual.

SEE

vst_height, vswr_mode, vst_point, vst_rotation, vst_font, vst_color, vst_effects,
vst_alignment, v_justified

EXAMPLE

Hinclude <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};

short work_out[571];

short handle; /* virtual workstation handle */
short junk;

ppl_init();
andle=graf_handle(&junk,&junk,&junk,&junk);
_opnvwk(work_in,&handle,work_out);

if (handle)

A TO

v_gtext(handle,20,20,"Hello World");
/* writes hello world at 20,20 */

v_clsvwk(Chandle);

return appl_exit();

Page 140 Lattice C 6 VDI Library

V_ h a rd C O p y Copy screen to printer

Class: VDI Category: Screen Escape Functions
SYNOPSIS

Hinclude <vdi.h>
v_hardcopy(handle);

int handle; workstation handle

DESCRIPTION

This function dumps the screen to the printer in the same form as with the
Alt-Help key.

The workstation handle should be a screen workstation handle.

SEE

Prtblk, Scrdmp

VDI Library Lattice C 5 Page 141

\Y/ h i d e C Hide mouse cursor

Class: VDI Category: Input Functions

SYNOPSIS

#include <vdi.h>

v_hide_cC(handle);

int handle; workstation handle

DESCRIPTION

This function can be used to hide the mouse form. If your program is using the
AES, you should use the graf_mouse call instead.

v_hide_c will always hide the mouse. v_show_c can be used to display it once
more.

SEE

graf_mouse, v_show_c

Page 142 Lattice C 5 VDI Library

\"/ _j ustified Draw justified graphics text

Class: VDI Category: Graphics Output
SYNOPSIS

#include <vdi.h>

v_justified(handle,x,y,str,len,word,chr);

int handle; workstation handle

int x; x co-ordinate of start

int y; y co-ordinate of start

const char *str; characters to output

int Llen; width of string in pixels

int word; 1= modify inter-word spacing
0= Lleave inter-word spacing

int chr; 1= modify idinter-char spacing
0= Lleave inter-char spacing

DESCRIPTION

This ‘Generalised Drawing Primitive’ (GDP) function is used to display
justified text on the screen. The string to write is passed in str and is displayed
starting at position (X, y) in a width of len pixels. Devices don’t necessarily
support all GDPs. You can check that a particular GDP is available on a given
device, by checking the values returned by v_opnwk or v_opnvwk. All GDPs
are available in the standard ST screen modes.

If the word parameter is 1 then the VDI may attempt to adjust the inter-word
spacing to fit the string in the given width. If the Chr parameter is 1 then the
VDI may attempt to adjust the inter-character spacing.

How the text is drawn depends on the text attributes (See vst_height etc.).
The handle parameter is the handle of the workstation to use, as usual.

To draw ‘ordinary’ un-justified text, use the v_gtext function.

SEE

vst_height, vswr_mode, vst_point, vst_rotation, vst_font, vst_color, vst_effects,
vst_alignment, v_gtext

VDI Library Lattice C § Page 143

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};
short work_out[571];
short handle; /* virtual workstation handle */

short junk;

ppl_init();
andle=graf_handle(&junk,&junk,&junk,&junk);
_opnvwk(work_in,&8handle,work_out);

if C(handle)

A< TO

v_justified(handle,20,20,"hello ",70,1,1);
/* writes hello world at 20,20 */
evnt_keybd();
v_clsvwk(Chandle);

}

return appl_exit();

Page 144 Lattice C 5 VDI Library

v_me ta _e xtents Set the metafile binding rectangle

Class: VDI Category: Metafile Escape Functions
SYNOPSIS

#include <vdi.h>

v_meta_extents(handle,min_x,min_y,max_x,max_y);

int handle; workstation handle

int min_x; x co-ordinate of top left corner

int min_y; y co-ordinate of top Lleft corner

int max_x; x co-ordinate of bottom right corner
int max_y; y co-ordinate of bottom right corner

DESCRIPTION

This function lets you set the extent rectangle in the metafile header. This
informs other programs of a rectangle in which the metafile graphics will fit. If
this function is not called then zeroes will be written to the appropriate place in
the metafile, indicating an indeterminate size.

The (Min_x, min_y) and (max_x, max_y) co-ordinates give the bounding
rectangle.

SEE

v_opnwk, vm_pagesize, vm_coords

VDI Library LatticeC 5 Page 145

UDI Esecpe /O]
v offset Change console screen offset

Class: Lattice Category: Atari Escape Functions

SYNOPSIS

#include <vdi.h>

v_offset(handle,lines);

int handle; screen workstation handle
int Llines; y co-ordinate in pixels
DESCRIPTION

This function changes the origin of the console screen (as used written by
v_curtext and printf etc.). The lines parameter gives the y co-ordinate of the
top of the new screen.

After calling this function you should clear the screen (via v_clrwk) to re-
initialise the system’s internal variables. If you call this function then the screen
will not normally scroll correctly unless you modify the Line-A variables

correctly.

This function is not officially documented but is implemented on all current
versions of the operating system.

SEE

lineal

/"’I"(’J fereme fers

conlbrl (0) = Oplocle S™
CUMI"‘ (l) < /Vuwt Etb‘ Dr, Faln“’l (,h PT 31N Q"""\'/ (O)

contrl (3) = Lenght ob the vriv Qrrey 1)
Contrl (§) = /cl /ol
((;h""’ (4) = henelle

fnlin (0)= v co-orclincte [prxels

4;1}&[/,'»\}'rr 3 l:rrr/r[Cm Ft:' aLg"rm:n ' L\/':s,

Page 146 Lattice C § VDI Library

Vv = (o) p nvw k Open virtual workstation

Class: VDI Category: Workstation Control
SYNOPSIS

#include <vdi.h>

v_opnvwk(work_in, handle, work_out);

short *work_in; input parameters

short *handle; workstation handle

short “*work_out; output <characteristics
DESCRIPTION

This function is used to open a virtual workstation and can be used regardless
of whether GDOS is loaded. The work_in and work_out parameters are the
same as for v_opnwk, the open physical workstation call.

The handle parameter is different, however. On input, it must point to a
variable giving the physical handle of the device. After the v_opnvwk call, it
will be updated to contain a virtual workstation handle that can be used for
subsequent VDI calls.

You should obtain the physical workstation handle for the screen from the
graf_handle AES call, as shown below.

Use device number 1 for the screen in work_In(0) when not using GDOS. This
function will return 0 in handle if the virtual workstation cannot be opened. If
the call is successful then you must call v_clsvwk before your program
terminates.

If you wish to use GDOS the device number passed in work_in(0) should be
2 + Getrez() (from the XBIOS). This will ensure that the right fonts are
obtained for the current screen mode.

If you wish you can open more than one virtual workstation on the same

device. This enables you to switch between different settings for line or fill
styles without using any VDI calls.

SEE

v_opnwk, v_clswvk, graf_handle

VDI Library Lattice C 5 Page 147

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};
short work_out[571];

short handle; /* wvirtual workstation handle */
short junk;

ppl_init();
andle=graf_handle(&junk,&junk,&junk,&junk);
_opnvwk(work_in,&handle,work_out);

if C(handle)

A TO

/* Now the main program */

v_clsvwk(handle);

return appl_exit();

Page 148 Lattice C 5 VDI Library

\" o (o] p nw k Open physical workstation

Class: VDI Category: Workstation Control
SYNOPSIS

H#include <vdi.h>

v_opnwk(work_in, handle, work_out);

short *work_in; input parameters

short *handle; new workstation handle

short *work_out; output <characteristics
DESCRIPTION

This function is used to open a physical workstation and can only be used with
GDOS present. To check for the presence of GDOS use the vq_gdos function.
The work_In parameter should contain 11 shorts as follows:

work_In(0) Device identification number. This gives the device
driver to load according to the ASSIGN.SYS file.

work_In(1) Line type.

work_In(2) Line colour index.

work_In(3) Marker type.

work_In(4) Marker colour index.

work_In(5) Text face.

work_In(6) Text colour index.

work_In(7) Fill interior style.

work_In(8) Fill style index.

work_In(9) Fill colour index.

work_In(10) NDC to RC transformation flag:

0 = Use NDC (normalised device co-ordinates) i.e.
each page has co-ordinates 0 to 32767
regardless of the physical screen size.

1 = Reserved.

2= Use RC (raster co-ordinates) e.g. physical
screen co-ordinates.

VDI Library Lattice C § Page 149

The values for work(1) to work(9) are the initial values for the line, marker,
text and fill attributes; use 1 for sensible defaults. Note that only RC co-
ordinates are available with the standard ST screen drivers, GDOS is required
to gain access to NDC co-ordinates.

The conventional values for device numbers are as follows:

1-9 Screens

11-20 Plotters

21-30 Printers

31 Metafile i
41-50 Cameras

51-60 Tablets

handle is used in a similar manner to v_opnvwk, but the value on entry is
ignored and the value returned in it is the handle to use when making further
VDI calls for this device; thus by having separate printer and screen handles
you can output to a printer and to the screen at the same time. If the device
cannot be opened then 0 is returned in handle.

If the device was successfully opened then the work_out array (which must
have enough room for 57 shorts) is filled out as follows:

work_out(0) Device width in pixels starting from 0. E.g. on
medium and high resolution screens this is 639.

work_out(1) Device height in pixels starting from 0. E.g. 199
for medium resolution screens and 399 for high
resolution.

work_out(2) Device co-ordinate units flag:

0 = capable of precisely scaled image.
1 = not capable of precisely scaled image.

work_out(3) Width of one pixel in microns.
work_out(4) Height of one pixel in microns.
work_out(5) Number of character heights:

0 = continuous scaling.

work_out(6) Number of line types.

Page 150 Lattice C 5 VDI Library

work_out(7) Number of line widths:
0 = continuous scaling

work_out(8) Number of marker types.

work_out(9) Number of marker sizes:
0 = continuous scaling

work_out(10) Number of faces (fonts) supported.
work_out(11) Number of patterns available.
work_out(12) Number of hatch styles available.
work_out(13) Number of predefined colours (e.g. 2 for
monochrome, 4 for medium resolution).
work_out(14) Number of Generalised Drawing Primitives
(GDPs).

work_out(15) List of the first 10 supported GDPs. The
to number indicates which GDP. -1 indicates the
work_out(24) end of the list. GEM VDI defines 10 GDPs:

1 Bar.

2 Arc.

3 Pie slice.

4 Circle.

5 Ellipse.

6 Elliptical arc.

7 Elliptical pie.

8 Rounded rectangle.

9 Filled rounded rectangle.

10 Justified graphics text.
¥vork_ou'r(25) List of the attribute set used with each GDP:

o g

WOI’k_OUf(34) 0 Polylme.

1 Polymarker.

2 Text.

3 Fill area.

4 None.
work_out(35) Colour capability flag:

0 no.

1 yes.

VDI Library Lattice C 5 Page 151

work_out(36)

Text rotation capability flag:

work_out(37)

work_out(38)

work_out(39)

0 no.
1 yes.
Fill area capability flag:
0 no.
1 yes.
Cell array operation capability flag:
0 no.
1 yes.
Number of available colours in palette:
0 continuous device (>32767 colours).
2 monochrome .

>2 number of colours.

work_out(40)

Number of locator devices:

1 Keyboard only.
2 Keyboard and other input.

work_out(41)

Number of valuator devices:

1 Keyboard only.
2 Other valuator device is available.

work_out(42)

Number of choice devices:

1 function keys on keyboard.
2 if another keypad is available.

work_out(43)

Number of string devices:
1 keyboard.

work_out(44)

Workstation type:
0 output only.
1 input only.
2 input/output.
4 metafile output.

work_out(45)

Minimum character width in pixels.

work_out(46)

Minimum character height in pixels.

work_out(47)

Maximum character width in pixels.

Page 152

Lattice C § VDI Library

work_out(48) Maximum character height in pixels.
work_out(49) Minimum line width.
work_out(50) 0
work_out(51) Maximum line width.
work_out(52) 0
work_out(53) Minimum marker width.
work_out(54) Minimum marker height.
work_out(55) Maximum marker width.
work_out(56) Maximum marker height.

SEE

v_opnvwk, v_clswk, vg_gdos

EXAMPLE

#include <vdi.h>
int main(void)
{

short work_inC111=¢(21,1,1,1,1,1,1,1,1,1,2};
short work_out[571];
short handle;

if (vq_gdos())
{

/ *
* GDOS is present; try to open the printer
*/

v_opnwk(work_in, &handle, work_out);

if C(handle)

{

/* Now write to the printer */

v_clswk(Chandle);

else
printf(”"Could not open printer");

else
printf("Graphics on the printer needs GDOS");
return O0;

VDI Library Lattice C 5 Page 153

lv ou 1’ p u 1' w i n d ow Write part of a page to printer
Class: VDI Category: Printer Escape Functions

SYNOPSIS

#include <vdi.h>

v_output_window(handle,pxyarray);

int handle; workstation handle
short *pxyarray; rectangle giving area to print
DESCRIPTION

This function prints the part of the current page specified by (pxyarray(0),
pxyarray(1)) to (pxyarray(2), pxyarray(3)). This can only be used with a printer
handle under GDOS.

This is similar to v_updwk except that only the specified area is printed.

SEE

v_updwk, v_clrwk

Page 154 Lattice C 5 VDI Library

V_ p I i ne Draw one or more lines (polyline)

Class: VDI Category: Graphics Output
SYNOPSIS

#include <vdi.h>

v_pline(handle,n,pxyarray);

int handle; workstation handle

int n; number of points to plot

short *pxyarray co-ordinate values
DESCRIPTION

This function is used to plot a series of lines between N points. The points are
passed in pxyarray with (pxyarray(0), pxyarray(1)) giving the first point,
(pxyarray(2), pxyarray(3)) giving the second point, etc.

Thus to draw a single line use N=2. This function can also be used to plot a
single point with pxyarray(2)=pxyarray(0) and pxyarray(3)=pxyarray(1).

How the line is drawn depends on the line attributes (see vsl_type etc.).

The handle parameter is the handle of the workstation to use, as usual.

SEE
vsl_type. vswr_mode, vsl_udsty, vsl_width, vsl_color, vsl_ends

EXAMPLE

#include <vdi.h>
Hinclude <aes.h>

int main(void)
{

short work_inC111=€1,1,1,1,1,1,1,1,1,1,2};
short work_out[57];

short handle, junk;

short ptsC41={(10,20,30,40);

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);

if (handle)

{

v_plineChandle,2,pts); /* draws a Line between
(10,20) and (30,40) */
v_clsvwk(Chandle);

return appl_exit();

VDI Library Lattice C 5 Page 155

V_ p ma |'k er Draw one or more markers (polymarkers)

Class: VDI Category: Graphics Output
SYNOPSIS

#include <vdi.h>

v_pmarker(handle,n,pxyarray);

int handle; workstation handle

int n; number of marker to plot

short *pxyarray co-ordinate values
DESCRIPTION

This function is used to plot a series of markers at N points. The points are
passed in pxyarray with (pxyarray(0), pxyarray (1)) giving the first point,
(pxyarray(2), pxyarray(3)) giving the second point etc.

A single marker may be plotted using n=1.

How the markers are drawn depends on the marker attributes (see vsm_type
etc.).

The handle parameter is the handle of the workstation to use, as usual.

SEE

vsm_type, vswr_mode, vsm_height, vsm_color

EXAMPLE

#include <vdi.h>
Hinclude <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};
short work out[57],

short handle, junk;

short ptsCé4]= (10 20,30,40);

pl_init();
ndle=graf_handle(&junk,&junk,8&junk,&junk);
_opnvwk(work_in,&handle,work_out);

if C(handle)

p
a

A< TO

v_pmarker(handle,2,pts); /* draws dot markers
at (10,20) and (30,40) */
v_clsvwk(handle);

return appl_exit();

Page 156 LatlticeC 5 VDI Library

V_I'bOX . V_I'fbox Output rounded rectangles

Class: VDI Category: GDP Output
SYNOPSIS

#include <vdi.h>

v_rbox(handle,pxyarray);
v_rfbox(handle,pxyarray);

int handle; workstation handle
short *pxyarray; co-ordinates of corners
DESCRIPTION

These ‘Generalised Drawing Primitives’ (GDPs) are used to draw rectangles
with rounded corners whether filled or outlined.

The v_rbox function draws an outline of a rounded box using the line
attributes (see vsl_color etc.) whereas the v_rfbox function draws a filled
rounded rectangle using the fill area attributes (see vsf_color etc.). The corners
of the box to draw are specified as (pxyarray(0), pxyarray(1)) and
(pxyarray(2), pxyarray(3)). Unfortunately there is no way to set the size of the
corners.

Devices don’t necessarily support all GDPs. You can check that a particular
GDP is available on a given device, by checking the values returned by
v_opnwk or v_opnvwk. All GDPs are available in the standard ST screen
modes.

The handle parameter is the handle of the workstation to use, as usual.
SEE

v_bar, vr_recfl, vsl_color, vsf_color

VDI Library Lattice C§ Page 157

v_rvon, V_rVOff Reverse video On/Off
Class: VDI Category: Screen Escape Functions
SYNOPSIS

#include <vdi.h>

v_rvoff(handle);
v_rvon(handle);
int handle;

DESCRIPTION

off
on

video
video

turn
turn

reverse
reverse

workstation handle

V_rvon causes alpha text to appear in inverse video, i.e. with black and white
reversed. It is equivalent to sending the ESC p VT52 code to the screen.

V_rvoff causes alpha text to appear in normal video, thus cancelling any call to
v_rvon, and is equivalent to sending the ESC q VT52 code to the screen.

SEE

v_curtext

Page 158

Lattice C 5

VDI Library

\"; _ S h ow — C Display mouse cursor

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>
v_show_c(handle,reset);
int handle; workstation handle

int reset; O=reset count
1=use nested count

DESCRIPTION

This function can be used to display the mouse cursor. If your program is using
the AES, you should use the graf_mouse call instead.

If the reset parameter to v_show_c is 0 then the mouse will be displayed
regardless of the number of times that v_hide_c has been called previously.
Otherwise v_show_c will only display the mouse form if it has been called at
least as many times as v_hide_c.

The ability to reset this count is very tempting for lazy programmers; however
if you use these VDI calls and the critical error handler is called then the mouse
cursor will not appear; if you use graf_mouse then it will always appear.

SEE

graf_mouse, v_hide_c

VDI Library Lattice C 5 Page 159

v_updwk

Update workstation

Class: VDI
SYNOPSIS

#include <vdi.h>
v_updwk(handle);

int handle;

DESCRIPTION

Category: Workstation Control

workstation to wupdate

This function is not needed for screen devices. It is used for printers etc., to
cause output to actually be printed. As such it is only useful when using GDOS.

After calling this function, you should normally call v_cIrwk to skip to the next

page.

The handle parameter should be the handle of the physical or virtual
workstation, as returned by v_opnwk or v_opnvwk.

SEE
v_opnvwk, v_opnwk
EXAMPLE

Hinclude <vdi.h>
int main(void)

short work_inC111=<(21,1,1,1,1,1,1,1,1,1,2};

short work_out[571],

if (vg_gdos())
{

handle;

opnwk(work_in,&8handle,work_out);

v—
if (handle)
{

/* Now write to the

;;Gﬁéuk(handle);
v_clrwk(Chandle);
v_updwk(handle);
v_clswk(handle);

else

printf("Could not

else

printf(“Graphics on

return 0;

printer */

/* output first page */
/* clear next one */

/* output Llast page */
/* close workstation */

open printer");

printer needs GDOS");

Page 160

Lattice C 5

VDI Library

\"/ | = WTr i f e _ me t a Write metafile item

Class: VDI Category: Metafile Escape Functions
SYNOPSIS

#include <vdi.h>

v_write_meta(handle,intin_Len,intin,ptsin_LlLen,ptsin);

int handle; metafile workstation handle

int intin_len; Length of intin array

short *intin; intin array

int ptsin_Llen; length of ptsin array

short *ptsin; ptsin array
DESCRIPTION

This function writes an item to a metafile. To write standard items to a
metafile you can use the standard calls with a metafile workstation handle.

v_write_meta can be used to write user defined opcodes which should have
opcode numbers, passed in Intin(0), greater than 100. This function is passed the
standard GEMVDI intin and ptsin arrays.

The following sub-opcode numbers are pre-defined:

10 Start group.

11 End group.

49 Set no line style.

50 Set attribute shadow on.

51 Set attribute shadow off.

80 Start draw area type primitive.
81 End draw area type primitive.

SEE

vm_pagesize, vm_coords

VDI Library Lattice C 5 Page 161

veX b u fV Add mouse click routine
Class: VDI Category: Vector Handling

SYNOPSIS

Hinclude <vdi.h>

vex_butv(handle,but_addr,obut_addr);

int handle; workstation handle

int (*but_addr)(state); new vector address

int (**obut_addr)(state); old vector address

short state; mouse button state
DESCRIPTION

This function is used to add a routine that is called every time the mouse button
status changes. This can be used to enable the AES to detect either right or left

clicks.

This function is passed the routine to call in but_addr; vex_butv then supplies
the application with the old routine.

The routine that is called should preserve all registers (although current
versions of the operating system do not require any to be saved) and should call
the old routine. It must not call the AES, VDI or GEMDOS and should avoid
calling the BIOS and XBIOS as the operating system is not fully re-entrant.
The routine is passed the current mouse button state (as described under
vg_mouse) and should return the new state. This may be modified by the
routine, as in the example below.

SEE

vg_mouse, evni_button, evnt_multi

EXAMPLE

/] *
* enable right mouse button clicks to be detected
*/

#include <aes.h>
Hinclude <vdi.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

int __regargs (*old)(short);

int handle;
volatile int real_state; /* contains true state */

Page 162 Lattice C 5 VDI Library

__saveds __regargs 1int mouser(short state)

__emit(0x48e7); /* movem.lL d0-d1/a0-a1,-(a?) */
__emit(0xc0c0);

if (state)
{
/* button pressed */
real_state=state;
if (state>1)
state=1; /* always return Lleft */

state=old(stat
__emit(0Ox4cdf)
__emit(0x0303);
return (int)state;

e);
;7 /% movem.U (a7)+,d0-d1/a0-a1 */

int main(void)
{
short junk,kstate;

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
vex_butv(handle,mouser,8o0ld);
do
{
evnt_button(1,1,1,8junk,&junk,&8junk,&8kstate);
printf("%d ",real_state); /* display true state */

}
while (!'kstate);
/* exit by holding down shift/alt/ctl and clicking */

vex_butv(handle,old,&o0ld);
appl_exit();
return 0;

}

VDI Library Lattice C 5 Page 163

vex curv Add mouse rendering routine

Class: VDI Category: Vector Handling
SYNOPSIS

#include <vdi.h>

vex_curv(handle,cur_addr,ocur_addr);

int handle; workstation handle

int (*cur_addr)(x,y); new vector address

int (**ocur_addr)(x,y); old vector address

short x; mouse X position

short y; mouse Y position
DESCRIPTION

This function is used to add a routine that is called every time the mouse cursor
is drawn. This could be used to draw your own cursor. The routine is passed
the x and y positions for the cursor to draw.

The routine that is called should preserve all registers (although current
versions of the operating system do not require any to be saved). It must not
call the AES, VDI or GEMDOS and should avoid calling the BIOS and XBIOS
as the operating system is not fully re-entrant. The routine is passed the
position of the mouse cursor as its two parameters. If the routine does not
draw its own mouse form then the original routine should be called.

SEE

vex_motv, graf_mouse

Page 164 Lattice C 5 VDI Library

vex 1 mo t \"; Add mouse movement routine

Class: VDI Category: Vector Handling
SYNOPSIS

Hinclude <vdi.h>

vex_motv(handle,mot_addr,omot_addr);

int handle; workstation handle
int (*mot_addr)(x,y); new vector address
int (**omot_addr)(x,y); old vector address
short x; mouse X position
short y; mouse Y position

DESCRIPTION

This function is used to add a routine that is called every time the mouse is
moved. This can be used to produce a mouse accelerator like the one below.

This function is passed the routine to call in mot_addr; vex_motv then
supplies the application with the old routine.

The routine that is called should preserve all registers (although current
versions of the operating system do not require any to be saved) and should call
the old routine. It must not call the AES, VDI or GEMDOS and should avoid
calling the BIOS and XBIOS as the operating system is not fully re-entrant.
The routine is passed the current mouse co-ordinates as its two parameters and
should return the new x position in the register DO and the new y position in
D1. These may be modified by the routine, as in the example below.

SEE
vg_mouse, vex_butv

EXAMPLE

/ *
* jincrease the mouse speed by the 'speed' factor
*/

#include <vdi.h>
Hinclude <stdio.h>
#include <stdlib.h>
#include <dos.h>

int __regargs (*old)(short,short);

int handle;

short speed=2;

VDI Library Lattice C 5 Page 165

{

}

static short prev_x=-1,
Long saveal,saveal;

savealO=getreg(REG_AD)
saveal=getreg(REG_A1)

;

;

if (prev_x==-1) /*
prev_x=x;

if (prev_y==-1) /*
prev_y=y;

x+=(x-prev_x)*speed;
prev_x=x;

y+=(y-prev_y)*speed;
prev_y=y;

old(x,y);

putreg(REG_A1,saveal);
putreg(REG_AO,saveal);

putreg(REG_D1,y);
return (int)x;

int main(void)
{

short junk,kstate;

appl_init();

saveds __regargs int mouser(short

prev_y=-1;

x,short

y)

initialise X position */

initialise Y position */

handle=graf_handle(&junk,&junk,&junk,&junk);

vex_motv(handle,mouser,
do

gold);

evnt_button(1,1,1,8junk,&junk,&junk,&kstate);

while (!'kstate);

/* exit by holding down

shift/alt/ctl

and

clicking */

vex_motv(handle,old,&0ld);
appl_exit();
return 0;
}
Page 166 Laltice C 6 VDI Library

ve x_t i myv Add timer tick routine

Class: VDI Category: Vector Handling
SYNOPSIS

Hinclude <vdi.h>

vex_timv(handle,tim_addr,otim_addr,conv);

int handle; workstation handle

int (*tim_addr)(void); new timer address

int (**otim_addr)(void); old timer address

short *conv; milliseconds per tick
DESCRIPTION

This function is used to add a routine that is called every timer tick; currently
this occurs at a rate of 50Hz (i.e. 50 times a second).

This function is passed the routine to call in tim_addr; vex_timv then supplies
the application with the old routine and the number of milliseconds per clock
tick in conv.

The routine that is called should preserve all registers (although current
versions of the operating system do not require any to be saved) and should call
the old routine. It must not call the AES, VDI or GEMDOS and should avoid
calling the BIOS and XBIOS as the operating system is not fully re-entrant.

The example below uses the onbreak function to ensure that the timer vector
is restored before the program terminates. This is essential as otherwise the
timer will continue to run once your program is finished, with disastrous
consequences.

SEE
onbreak

EXAMPLE

/ *
* implement a simple interrupt driven counter
*/

#include <aes.h>
#include <vdi.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

volatile int count;
int (*old)(void);
int handle;

VDI Library Lattice C 5 Page 167

__saveds int timer(void)
{

__emit(0x48e7); /* movem.lL d0-d1/a0-a1,-(a7) */
__emit(0xc0c0);

count++;
__emit(0xé 5 /* movem.l (a7)+,d0-d1/a0-a1 */

c
_—_emit(0x03
return old(

-voa

}
int do_end(void)
{

short junk;

vex_timv(handle,old,&old,&junk);
appl_exit();
return 0;

}

int main(void)
{
short junk;

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
vex_timv(handle,timer,80ld,&junk);
onbreak(do_end);

/* exit via Ctrl-C */
for (;;)

printf("%Zd\n",count);
return 0;

Page 168 Lattice C 5 VDI Library

vm _ (ofo o) rd S Change metafile co-ordinate system

Class: VDI Category: Metafile Escape Functions
SYNOPSIS

Hinclude <vdi.h>
vm_coords(handle,min_x,min_y,max_x,max_y);

int handle; metafile workstation handle

int min_x; x co-ordinate of top left corner

int min_y; co-ordinate of top LlLeft corner

int max_x; co-ordinate of bottom right corner
int max_y; co-ordinate of bottom right corner

DESCRIPTION

This function changes the co-ordinate system used by a metafile. The co-
ordinates given to this function (min_x, min_y) to (Max_x, Max_y) are mapped
to the page size width and height fields in the metafile header, as set by
vm_pagesize.

K x X

Using this function allows arbitrary co-ordinate systems to be used (i.e. not
simply NDC or RC). Naturally this function may only be used with metafiles.

SEE

vm_pagesize, v_opnwk

VDI Library Lattice C 5 Page 169

vm_filename

Change metafile name

Class: VDI
SYNOPSIS

#include <vdi.h>

vm_filename(Chandle,fname);

Category: Metafile Escape Functions

int handle; metafile workstation handle
const char *fname; filename for metafile
DESCRIPTION

This function changes the name of a given metafile handle. The default name is
GEMFILE.GEM. This can only be used with metafile workstation handles under

GDOS and is normall
that the old metafile, é

used immediately after the workstation is opened. Note
EMFILE.GEM is not deleted by this call.

The new file name is passed in the string fname.

SEE

v_opnwk

Page 170 Lattice C 5

VDI Library

vm il p a g es iz e Change metafile page size

Class: VDI Category: Metafile Escape Functions
SYNOPSIS

#include <vdi.h>

vm_pagesize(handle,width,height);

int handle; metafile workstation handle

int width; width of page

int height; height of page
DESCRIPTION

This function changes the width and height fields in the metafile header, and as
such can only be used with metafile handles.

The width and height parameters give the size of the page in tenths of a
millimetre.

SEE

v_opnwk

VDI Library Lattice C 5 Page 171

vqg_cellarray

Inquire cell array definition

Class: VDI
SYNOPSIS

#include <vdi.h>

Category: Inquire Functions

vq_cellarray(handle,pxy,row_Len,num_rows,el_used,
rows_used,status,colarray);

int handle;

short *pxy;

int row_Llen;

int num_rows;
short* el_used;
short *rows_used;
short *status;

short *colarray

DESCRIPTION

workstation handle
co-ordinates of area

Length
number
elements
rows

0
1

colour

of rows 1in colarray
of rows 1in colarray

used in colarray

used in colarray
error

error occurred
index array

This function is not implemented on the ST. If it was, it would be used to

produce a colour array from the given screen area.

SEE

v_cellarray

Page 172

Lattice C 5

VDI Library

vq_chcells

Return alpha screen size

Class: VDI
SYNOPSIS

#include <vdi.h>

Category: Screen Escape Functions

vq_chcells(handle,row,columns);

int handle;

short *row;
short *columns;
DESCRIPTION

workstation handle
number of alpha character rows
number of alpha character columns

This function returns the number of rows and columns on the ‘alpha’, i.e. TOS-
mode screen in the parameters row and column.

SEE

v_exit_cur

VDI Library

Lattice C 5 Page 173

\"/ q co I or Return current palette information

Class: VDI Category: Inquire Functions
SYNOPSIS

#include <vdi.h>

vq_color(handle,col,flag,rgb);

int handle; workstation handle
int col; colour index
int flag O=return colour requested
1=actual colour display on device
short *rgb; values returned
DESCRIPTION

This function can be used to find the palette information for a given colour
index, col, in RGB units.

If flag=0 then this function returns the RGB values that the user requested (via
vs_color). If flag=1 then this function gives the RGB values as displayed in the
device. The values returned are between 0 and 1000 and are as follows:

rgb(0) Red
rgb(1) Green
rgb(2) Blue

If the colour index is out of range for this device then -1 is returned in rgb(0).

SEE

vs_color

Page 174 Lattice C 5 VDI Library

\"/ q _C urd d d ress Return alpha cursor position

Class: VDI Category: Screen Escape Functions
SYNOPSIS

#include <vdi.h>

vg_curaddress(handle,row,column);

int handle; workstation handle

short *row; current cursor row

short *column; current cursor column
DESCRIPTION

This function returns the current alpha cursor position in the parameters
pointed to by row and column.

This facility of the escape functions has no equivalent VT52 code.
SEE

vs_curaddress

VDI Library Lattice C 5 Page 175

\" q Il eXf n d Extended Inquire

Class: VDI Category: Inquire Functions

SYNOPSIS

Hinclude <vdi.h>

vq_extnd(handle,flag,work_out);

int handle; workstation handle
int flag; O=normal; 1= extended inquire
short *work_out; values returned

DESCRIPTION

This function can be used to return the information returned by the v_opnwk
or v_opnvwk calls (if flag=0) or additional values if flag=1. The work_out
array must have room for at least 57 shorts. The values returned when flag=0
are detailed under v_opnwk. The values returned when flag=1 are as follows:

work_out(0) Type of screen:

0 = not screen.

4 = 'normal’ screen with common
graphics and character memory.

Other values are not applicable to the ST.

work_out(1) Number of background colours available.
work_out(2) Text effects supported. See vst_effects.
work_out(3) Scaling of rasters:

0 = scaling not supported.
1 = scaling supported.

work_out(4) Number of planes available.

work_out(5) Lookup table supported
0 = table supported.
1 = table not supported.

work_out(6) Performance factor. Number of 16x16 pixel
raster operations per second.
work_out(7) Contour fill capability:
0 = no.
1=yes.

Page 176 Lattice C & VDI Library

work_out(8)

Character rotation ability:

0 = none.
1 = multiples of 90 degrees only.
2 = any angle.

work_out(?)

Number of writing mode available.

work_out(10)

Highest level of input mode available:

0 = none.
1 = request.
2 = sample.

work_out(11)

Text alignment capability flag:

0 = no.

1 =yes.
work_out(12) Inking capability flag:

0 = no.

1 = yes.

work_out(13)

Rubber-banding capability flag:
0 = no.
1 = rubber-band lines possible.

2 = rubber-band lines and rectangles

possible.

work_out(14)

Maximum vertices for polyline, polymarker or

filled area (-1 = no maximum).

work_out(15)

Maximum index for intin (-1 = no maximum).

work_out(16)

Number of keys on the mouse.

work_out(17)

Styles available for wide lines:

0 =no.
1 = yes.
work_out(18) Writing modes available for wide lines:
0 = no.
1 =yes.
work_out(19-56) Reserved.
SEE
v_opnwk, v_opnvwk
VDI Library Lattice C 5 Page 177

Vv q i) g d (0 1 Determine whether GDOS is loaded

Class: Lattice Category: Atari Escape Functions

SYNOPSIS

#include <vdi.h>
res=vq_gdos();

int res; 0 => GDOS is not Lloaded
'=0 => GDOS is Lloaded

DESCRIPTION

This function indicates whether GDOS is loaded. GDOS is the part of GEM
that was left out of the ST's ROMs; it provides the ability to load fonts from
disk, load printer drivers and use device-independent co-ordinates.

You should always use this function to determine whether GDOS is loaded,
otherwise the system will crash if you use a facility not provided by the ROM
(such as opening a physical workstation).

This function does not have an official name but uses an Atari approved
method for determining the presence of GDOS.

SEE
v_opnwk
EXAMPLE

#include <vdi.h>

int main(void)

{
short work_inC111=(21,1,1,1,1,1,1,1,1,1,2};
short work_out[57];
short handle;

if (vq_gdos())
{

] *
* GDOS 1is present; try to open the printer
*/
v_opnwk(work_in, &handle, work_out);
}
else

printf("Graphics on the printer needs GDOS");
return O0;

Page 178 Lattice C 5 VDI Library

vqQq ke Y_S Sample keyboard shift key status

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

vq_key_s(handle,status);

int handle; workstation handle
short *status; shift key status
DESCRIPTION

This function can be used to find the current status of the shift, Ctrl and Alt
keys. The current shift status is returned as a bit map in the status parameter.If
a given bit is set it means that that button is down. The bits are as follows:

Bit Meaning

0 Right shift key depressed.
1 Left shift key depressed.
2 Citrl key depressed.

3 Alt key depressed.

SEE
evnt_button, Kbshift

VDI Library LatticeC 5 Page 179

vqg_mouse Sample mouse position and state

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

vq_mouse(handle,status,x,y);

int handle; workstation handle

short *status; button status

short *x; x co-ordinate of mouse

short *y; y co-ordinate of mouse
DESCRIPTION

This function can be used to find the current position of the mouse and whether
the mouse buttons are up or down. The current mouse position is returned in

x,y).

The status parameter is a bit map giving which mouse buttons are depressed.
If a given bit is set it means that that button is down. Bit 0 is the left mouse

button, bit 1 is the right.
SEE

evnt_button

Page 180 Lattice C 5 VDI Library

\" q scadn Return printer scan heights

Class: VDI Category: Printer Escape Functions
SYNOPSIS

#include <vdi.h>

vq_scan(handle,grh,passes,alh,div);

int handle; workstation handle

short *grh; pixels per graphics scan

short *passes; graphics head passes per page

short *alh; pixels per alpha scan

short *div; division factor for alh & grh
DESCRIPTION

This function obtains information about the printer given by handle. It is only
available when passing a printer handle under GDOS.

The number of graphics passes required per page is returned in the parameter
passes.

The number of pixels per graphics scan is given by grh/div and the number of
passes per alpha scan is given by alh/div. Note that the division factor is
returned so that devices may plot fractions of pixels on a pass.

SEE

v_opnwk, v_opnvwk

VDI Library Lattice C 5 Page 181

vqg _'|' abstatus Availability of tablet

Class: VDI Category: Screen Escape Functions
SYNOPSIS

#include <vdi.h>

status=vq_tabstatus(handle);

int status; 0 = no tablet
1 = tablet available
int handle; workstation handle
DESCRIPTION

This function returns whether a graphics tablet is available or not. On the ST
this function returns 0 indicating that a tablet is not available.

RETURNS

This function returns 1 if a graphics tablet is available, 0 if not.

Page 182 LatticeC 5 VDI Library

VvV q f_ a 'H' r i b u t es Return current fill area attributes

Class: VDI Category: Inquire Functions

SYNOPSIS

#include <vdi.h>

vqf_attributes(handle,attr);

int handle; workstation handle
short *attr; values returned
DESCRIPTION

This function returns the current fill area attributes used by the v_fillarea call
amongst others. The attr array should be large enough to accept 5 shorts (not 4
as sometimes specified in some old documentation). The attr array is filled in as

follows:
attr(0) Fill area interior style (see vsf_interior).
attr(1) Fill area colour (see vsf_color).
attr(2) Fill area style index (see vsf_style).
attr(3) Writing mode (see vswr_mode).
attr(4) Fill area perimeter status (see vsf_perimeter).
SEE

vsf_interior, vsf_color, vsf_style, vsf_perimeter, vswr_mode

VDI Library Lattice C §

Page 183

\V) q i n MO d e Return input mode for given device

Class: VDI Category: Inquire Functions
SYNOPSIS

#include <vdi.h>

vqin_mode(handle,dev,mode);

int handle; workstation handle
int dev; device number
short *mode; 1 = request mode
2 = sample mode
DESCRIPTION

This function returns the current mode (input or sample) for the given VDI
device. If you are using the AES at all for input, do not call the VDI input
functions as the AES will become confused.

The dev parameter should be one of:

1 Locator
2 Valuator
3 Choice
4 String
SEE
vsin_mode

Page 184 Lattice C 5 VDI Library

\" q I_ a 11 r i b u 1’ es Return current line attributes

Class: VDI Category: Inquire Functions

SYNOPSIS

#include <vdi.h>

vql_attributes(handle,attr);

int handle; workstation handle
short “*attr; values returned
DESCRIPTION

This function returns the current line attributes used by the v_pline call
amongst others. The attr array should be large enough to accept 6 shorts (not 4
as sometimes specified in some old documentation. The attr array is filled in as

follows:
attr(0) Line type (see vsl_type).
attr(1) Line colour (see vsl_color).
attr(2) Writing mode (see vswr_mode).
attr(3) End style for the start of lines (see vsl_ends).
attr(4) End style for the end of lines (see vsl_ends).
attr(5) Current line width (see vsl_wldth).

SEE

vsl_type, vsl_color, vswr_mode, vsl_ends, vsl_width, v_pline

VDI Library LatticeC §

Page 185

\" q m e a 1'1' r i b u t es Return current marker attributes

Class: VDI Category: Inquire Functions

SYNOPSIS

Hinclude <vdi.h>

vaqm_attributes(handle,attr);

int handle; workstation handle
short “*attr; values returned
DESCRIPTION

This function returns the current marker attributes used by the v_pmarker call
amongst others. The attr array should be large enough to accept 5 shorts (not 4
as sometimes specified in some old documentation). The attr array is filled in as
follows:

attr(0) Marker type (see vsm_type).

attr(1) Marker colour (see vsm_color).

attr(2) Writing mode (see vswr_mode).

attr(3) Current polymarker width (see vsm_height).
attr(4) Current polymarker height (see vsm_height).

SEE

vsm_height, vsm_type, vsm_color, vswr_mode

Page 186 Lattice C § VDI Library

\'J q p__ﬁ I ms Inquire palette film types

Class: VDI Category: Palette Escape Functions
SYNOPSIS

#include <vdi.h>

vqp_films(Chandle,str);

int handle; workstation handle
char *str; names of film types
DESCRIPTION

This function would return a string containing the film types available.
However, the palette escapes are not implemented on the ST.

VDI Library Lattice C 5 Page 187

vqp_state

Inquire palette driver state

Class: VDI
SYNOPSIS

#include <vdi.h>

Category: Palette Escape Functions

vgp_state(handle,port,num,lightness,interlace,

int handle;
short *port;
short *npum;
short *lightness;
short *interlace;

short *planes;
short *indices;

DESCRIPTION

planes,indices);

workstation handle
communication ports

file number

aperture control -3 to +3
O=non-interlaced
1=interlaced

number of planes

pointer to colour idindices

This function would return information concerning the palette driver. However
the palette escapes are not implemented on the ST.

Page 188

Lattice C 5

VDI Library

\Ae 'I'_ attributes Return current graphics text attributes

Class: VDI Category: Inquire Functions
SYNOPSIS

#include <vdi.h>

vqt_attributes(handle,attr);

int handle; workstation handle
short *attr; values returned
DESCRIPTION

This function returns the current graphics attributes used by the v_gtext call
amongst others. The attr array should be large enough to accept 10 shorts. The
attr array is filled in as follows:

attr(0) Current text face (see vst_font).

attr(1) Text colour (see vst_color).

attr(2) Text rotation (see vst_rotation).

attr(3) Current horizontal alignment (see vst_alignment).
attr(4) Current vertical alignment (see vst_alignment).
attr(5) Writing mode (see vswr_mode).

attr(6) Current character width (see vst_height, vst_point).
attr(7) Current character height (see vst_height, vst_point).
attr(8) Current cell width (see vst_height, vst_point).
attr(9) Current cell height (see vst_height, vst_point).

SEE

vst_color, vst_height, vst_point, vst_font, vswr_mode, vst_alignment,
vst_rotation

VDI Library Lattice C 5 Page 189

\V) qf @ X'I'e n 'I’ Return the size of a piece of graphics text

Class: VDI Category: Inquire Functions

SYNOPSIS

#include <vdi.h>

vqt_extent(handle,str,pts);

int handle; workstation handle
const char*str string whose size is to be found
short *pts; values returned

DESCRIPTION

This function returns the screen area needed to display a string of graphics text
using the current text attributes. This gives how much screen area will be used
if v_gtext is used to display that string. The diagram below shows how the
points that mark the boundary of the string are numbered:

4 3

Hello John

1 2

The pfts array, which should be large enough to hold 8 shorts will be returned
as follows:

pts(0) x co-ordinate of point 1.
pts(1) y co-ordinate of point 1.
pts(2) x co-ordinate of point 2.
pts(3) y co-ordinate of point 2.
pts(4) x co-ordinate of point 3.
pts(5) y co-ordinate of point 3.
pts(6) x co-ordinate of point 4.
pts(7) y co-ordinate of point 4.

SEE

v_gtext, vat_width

Page 190 Lattice C 5 VDI Library

\V) q 'I'_f on 1' i 1] fo Return size information for the current font

Class: VDI Category: Inquire Functions
SYNOPSIS

#include <vdi.h>

vqt_fontinfo(handle,min,max,dist, width,effects);

int handle; workstation handle
short *min; first character number in font
short *max; Last character number in font
short *dist; distances
short *width; maximum character width
short *effects; effects

DESCRIPTION

This function returns information about the current font. The min and max
parameters return the first and last characters in the font respectively. The
width parameter gives the maximum cell width, not including any special
effects. The dist parameter should point to an array of at least 5 shorts that
will be filled in to give information on the distances between the base line and
the following lines:

dist(0) Very bottom of the cell descenders.
dist(1) Bottom of characters with descenders.
dist(2) The top of normal lower case letters.

dist(3) The top of upper case letters.
dist(4) The top of the cell.

The effects array should point to at least 3 shorts that will be filled in to give
information on the effects, as set by vst_effects:

effects(0) Additional x direction pixels for current text effects.

effects(1) The number of pixels that the left hand of the
character cell is slanted at the baseline.

effects(2) The number of pixels that the top right is slanted
relative to the base line.

SEE

vgt_extent

VDI Library Lattice C 5 Page 191

\"/ q 1'_ name Return font name and index

Class: VDI Category: Inquire Functions
SYNOPSIS

#include <vdi.h>

index=vqt_name(handle,num,name);

int dindex; the font index

int handle; workstation handle

int num; font number

char *npame; font name
DESCRIPTION

This function requires GDOS for operation and returns the name of a font and
its font index. The function that changes the current font, vst_font, requires a
font index which should be obtained using vgt_name.

The font numbers that are passed in the num parameter start at 1 and are
followed by 2, 3, etc until the number of loaded fonts. The number of loaded
fonts is returned by the vst_load_fonts call. Font number 1 is the system font.

The name parameter must point to a buffer of at least 32 characters long
which will be filled in to give the font name.

RETURNS

This function returns the font index.

SEE

vat_extent

Page 192 Laltice C 5 VDI Library

\" q t_ w i d t h Return the width of an individual character

Class: VDI Category: Inquire Functions
SYNOPSIS

#include <vdi.h>

status=vqt_width(handle,ch,cellw,left, right);

int status; ch or -1 if. error

int handle; workstation handle

int ch; character whose width is to be found

short *cellw; cell width returned

short *left; white space to the Lleft

short *right; white space to the right
DESCRIPTION

This function returns the width of a character together with the white space on
either side of it.

The character is passed as the Ch parameter and the width of its character cell

is returned in cellw. The white space to the left of the character is returned in
left and that to the right of the character is returned in right.

RETURNS

This function returns the character passed in ch or -1 if an error occurred.

SEE

vqat_extent

VDI Library Lattice C 5 Page 193

vr_recC f I Draw filled rectangle
Class: VDI Category: Graphics Output

SYNOPSIS

#include <vdi.h>

vr_recfl(handle,pxyarray);

int handle; workstation handle
short “*pxyarray; co-ordinates of corners
DESCRIPTION

This function is used to fill a rectangle with corners (pxyarray(0), pxyarray(1))
and (pxyarray(2), pxyarray(3)) using the current fill area attributes (see
vsf_interior etc.). However an outline (as set by vsf_perimeter) is never drawn
with this function. To draw the same rectangle with an outline, use the v_bar

function.

The handle parameter is the handle of the workstation to use, as usual.

SEE

v_fillarea, vsf_interior, vsf_style, vswr_mode, vsf_color, vsf_perimeter,
vsf_udpat

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111=(1,1,1,1,1,1,1,1,1,1,2};
short work_out[571];

short handle,junk;

short rectC41={(10,20,100,1002;

appl_init();
handle=graf_handle(&junk,&junk,&junk,8&junk);
v_opnvwk(work_in,&handle,work_out);
if (handle)
{
v_clrwkChandle); /* clear screen */
vr_recfl(handle,rect);
/* draws a rectangle with corners at (10,20),
and (100,100) in black */
evnt_keybd(); /* wait for a key */
}

return appl_exit();

Page 194 LatticeC § VDI Library

\VA ¢ 1' rn f m Transform raster to/from standard format

Class: VDI Category: Raster Functions
SYNOPSIS

#include <vdi.h>

vr_trnfm(handle,src,dest);

int handle; workstation handle

MFDB *src; source memory form definition block

MFDB *dest; destination memory form definition
block

DESCRIPTION

This function is used to transform an MFDB from standard to device specific
form or vice versa. The structure of MFDBs is discussed under vro_cpyfm.

The mapping from colour indices to pixel values on sixteen colour devices such
as the ST’s low resolution screen are as follows:

0000 0 White 1000 9 Dark grey
0001 2 Red 1001 10 Light red

0010 3 Green 1010 11 Light green
0011 6 Yellow 1011 14 Light yellow
0100 4 Blue 1100 12 Light blue
0101 7 Magenta 1101 15 Light magenta
0110 5 Cyan 1110 13 Light cyan
0111 8 Light grey 1111 1 Black

The mapping from colour indices to pixel values on four colour devices such as
the ST’s medium resolution screen are as follows:

00 0 White
01 2 Red
10 3 Green
11 1 Black

VDI Library Lattice C 5 Page 195

The standard form consists of contiguous identically sized planes. The words
within the planes have the most significant bit as the leftmost bit on the device.
The planes start from the top and work down.

Note that this function may be used to perform in-place transformations,
however it is extremely slow for large forms.

SEE

vrt_cpyfm

Page 196 Lattice C 5 VDI Library

vro_cpyfm Copy raster

Class: VDI Category: Raster Functions
SYNOPSIS

#include <vdi.h>
vro_cpyfm(handle,wr_mode,pxyarray,src,dest);

int handle; workstation handle

int wr_mode; Logic operation to perform

short “*pxyarray; co-ordinates of source and
destination rectangles

MFDB *src; source memory form definition
block
MFDB *dest; destination memory form definition
block
DESCRIPTION

This function is used to perform a ‘blit’ from one area of the screen to another,
or to/from a user memory buffer.

The src and dest parameters indicate the source and destination forms to use.
They are both pointers to Memory Form Definition Blocks or MFDBs. This
structure is declared in vdi.h as follows:

typedef struct fdbstr
{

void *fd_addr; pointer to form

short fd_w; width of form

short fd_h; height of form

short fd_wdwidth; word width of form

short fd_stand; standard/device specific flag
short fd_nplanes; number of planes in form
short fd_r1; reserved

short fd_r2; reserved

short fd_r3; reserved

} MFDB;

The fd_addr field gives the address of the memory area to use or should be
NULL if a physical device (such as the screen) is to be used.

The remaining parameters are only used when a memory area is being used; if
you pass NULL in the fd_addr field then they will be filled in for you by the
VDL

VDI Library Lattice C 5 Page 197

The rest of the elements are as follows:

fd_w Width of form in pixels.
fd_h Height of form in pixels.
fd_wdwidth Form width in words.
fd_stand 0 device specific format.

1 device independent format.
fd_nplanes Number of bit planes.
fd_r1, fd_r2, fd_r3 Reserved.

The wr_mode parameter of vio_cpyfm function gives the logical operation to

perform and should be one of:

Mode Meaning

ALL_WHITE 0

S_AND_D source AND destination
S_AND_NOTD source AND (NOT destination)
S_ONLY Replace source
NOTS_AND_D (NOT source) AND destination
D_ONLY destination

S_XOR_D source XOR destination
S_OR_D source OR destination
NOT_SORD NOT (source OR destination)
NOT_SXORD NOT (source XOR destination)
NOT_D NOT destination
S_OR_NOTD source OR (NOT destination)
NOT_S NOT source

NOTS_OR_D (NOT source) OR destination
NOT_SANDD NOT (source AND destination)
ALL_BLACK 1

Page 198

Lattice C 5

VDI Library

The pxyarray parameter is a pointer to 8 shorts with the following meanings:

pxyarray(0) x co-ordinate of top left corner of source rectangle

pxyarray(1) y co-ordinate of top left corner of source rectangle

pxyarray(2) x co-ordinate of bottom right corner of source
rectangle

pxyarray(3) y co-ordinate of bottom right corner of source
rectangle

pxyarray(4) x co-ordinate of top left corner of destination
rectangle

pxyarray(5) y co-ordinate of top left corner of destination
rectangle

pxyarray(6) x co-ordinate of bottom right corner of destination
rectangle

pxyarray(7) y co-ordinate of bottom right corner of destination
rectangle

The function then performs a blit from the first pxyarray rectangle located over
the source MFDB to the second pxyarray in the destination MFDB.

SEE

vri_cpyfm, linea?, lineae

VDI Library Lattice C 5 Page 199

\" rq _c h (o) i ce Choice input in request mode
Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

vrq_choice(handle,x,xout);

int handle; workstation handle

int x; initial value of choice

short *xout; final value of choice
DESCRIPTION

This function is used to wait for input from the ‘choice’ device. This is not
implemented on the ST. Choice numbers vary from 1 to an implementation
defined number. If you are using the AES at all for input, do not use the VDI
input functions as the AES will become confused.

Before calling this function, you should call vsin_mode as follows:
vsin_mode(handle,3,1);

SEE

vsm_choice, vsin_mode

Page 200 LatticeC 5 VDI Library

\"/ rq oy I oCcda 'I' or Locator input in request mode

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

vrq_Locator(handle,x,y,xout,yout, term);

int handle; workstation handle
int x; initial x co-ordinate of Llocator
int y; initial y co-ordinate of Llocator
short “*xout; final x co-ordinate of Llocator
short *yout; final y co-ordinate of Llocator
short *term; terminator

DESCRIPTION

This function is used to wait for input from the ‘locator’ device. On the ST this
means mouse movement, keyboard and mouse button input. If you are using
the AES at all for input, do not use the VDI input functions as the AES will
become confused.

Before calling this function, you should call vsin_mode as follows:

vsin_mode(handle,1,1);

The X and y parameters give the position on screen where the mouse pointer
will be displayed. The input terminates when the user either presses a key on
the keyboard, in which case term will contain the ASCII value of the key
pressed or a mouse button (in which case 32 for the left button and 33 for the
right button) will be stored in term. In both cases the xout and yout parameters
will contain the position of the mouse when the input terminated.

Note that this function does not indicate whether a mouse button or a keyboard
key was pressed.

SEE

vsm_locator, vsin_mode

VDI Library LatticeC 5 Page 201

EXAMPLE

] *
* watch mouse using vrq_Llocator
*/

Hinclude <aes.h>
#include <vdi.h>
#include <stdio.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};

short work_out[571];

short handle; /* wvirtual workstation handle */
short junk;

short x,y;

short term;

ppl_init();
andle=graf_handle(&junk,&junk,&junk,&junk);
_opnvwk(work_in,&handle,work_out);

if (handle>=0)

A TO

v_clrwk(Chandle);
vsin_mode(handle,1,1); /* Llocator,request */
x=50;

y=100;

vrq_Llocator(handle,x,y,&x,8y , 8term);
vrq_Llocator(handle,x,y,&x,8y,8&term);

printf("Mouse position: (%d,%d) key pressed: ¥%d\n"
,X,y,term);

evnt_keybd();

v_clsvwk(handle);

return appl_exit();

Page 202 Lattice C 5 VDI Library

vIQ_ strin g String input in request mode

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

vrq_string(handle,max_Llen,echo,echo_xy,str);

int handle; workstation handle
int max_Llen; maximum number of 1dinput characters
int echo; 0= no echo
1= echo
short *echo_xy; co-ordinates for echoed characters
char *str; string input
DESCRIPTION

This function is used to wait for input from the ‘string’ device. On the ST this
means keyboard input. If you are using the AES at all for input, do not use the
VDI input functions as the AES will become confused.

Before calling this function, you should call vsin_mode as follows:

vsin_mode(handle,4,1);

This function causes up to max_len characters to be input from the keyboard.
The input will terminate if Return is pressed. The characters input are
terminated by a null character. Thus str should be at least max_len+1
characters long.

The echo parameter is not implemented on the ST. If it was implemented and
a value of 1 was passed the characters typed would be echoed at position
(echo_xy(0), echo_xy(1)) on the device. It is however necessary to pass
echo_xy as a ‘real’ pointer, otherwise bombs will result.

SEE

vsm_string, vsin_mode

VDI Library Lattice C § Page 203

EXAMPLE

#include <stdio.h>
#include <aes.h>
#include <vdi.h>
int main(void)

{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};

short work_outl571];

short handle' /* virtual workstation handle */
short junk;

short pt[2] {100,100);

char strl(7];

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);

if (handle>=0)

{

v_clrwkChandle);
vsin_modeChandle, 1)
1

0 /* string,request */
vrq_ str1ng(handle 5

pt,str);

\\.

printf("String entered was: Z%s\n",str);
evnt_keybd();
v_clsvwk(Chandle);

}

return appl_exit();

Page 204 Lattice C 5 VDI Library

vrI q _V a I uad t or Valuator input in request mode

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

vrq_valuator(handle,x,xout,term);

int handle; workstation handle

int x; initial value of valuator

short *xout; final value of valuator

short *term; terminator
DESCRIPTION

This function is used to wait for input from the ‘valuator’ device. This is not

implemented on the ST. Valuator numbers vary from 1 to 100. If you are using

the AES at all for input, do not use the VDI input functions as the AES will

become confused.

Before calling this function, you should call vsin_mode as follows:
vsin_mode(handle,2,1);

SEE

vsm_valuator, vsin_mode

VDI Library Lattice C 5 Page 205

vrt_cpyfm

Copy raster from monochrome to colour

Class: VDI
SYNOPSIS

#Hinclude <vdi.h>

Category: Raster Functions

vrt_cpyfm(handle,wr_mode,pxyarray,src,dest,cols);

int handle;
int wr_mode;
short *pxyarray;
MFDB *src;
MFDB *dest;

short *cols;

DESCRIPTION

workstation handle
Logic operation to perform
co-ordinates of source and

destination rectangles

source memory form definition
block

destination memory form definition
block

colour indices for the 1s and Os
in the data

This function is used to ‘blit a monochrome image to a colour screen or device.
This is similar to vro_cpyfm but the source MFDB must be that for a
monochrome area; this function is not needed on monochrome devices.

The additional cols parameter points to two short values. cols(0) gives the
colour index for the 1s in the source area and cols(1) gives that for the Os.

SEE

vro_cpyfm

Page 206

Lattice C 5 VDI Library

Vs__c I i p Set VDI clipping rectangle

Class: VDI Category: Workstation Control
SYNOPSIS

#include <vdi.h>

vs_clip(handle,flag,pxyarray);

int handle; workstation handle
int flag; 0 switch off clipping
1 enable clipping
short *pxyarray; clipping rectangle
DESCRIPTION

This function is used to enable or disable ‘clipping’ by all the GEM VDI
functions. When clipping is enabled (flag=1) the VDI will not draw outside the
given rectangle pxyarray. pxyarray is set up as follows:

pxyarray(0) x co-ordinate of one corner
pxyarray(1) y co-ordinate of one corner
pxyarray(2) x co-ordinate of diagonally opposite corner
pxyarray(3) y co-ordinate of diagonally opposite corner

When disabling clipping (flag==0) pxyarray may be NULL.

Note that this function requires a VDI rectangle; the second corner is given not
the width and height as for AES rectangles.

By default clipping is disabled when a workstation is opened.
SEE

v_opnvwk, v_opnwk

VDI Library Lattice C 5 Page 207

\"/ S_ CcoO I or Set the colour palette

Class: VDI Category: Graphics Attributes
SYNOPSIS

#include <vdi.h>

new_mode=vs_color(handle,colour,rgb);

int handle; workstation handle

int colour; colour to change

short *rgb; new rgb values (0-1000)
DESCRIPTION

This function is used to change the colour palette. The rgb parameter is
normally an array of 3 values as follows:

rgb(0) Red value (between 0-1000)
rgb(1) Green value (between 0-1000)
rgb(2) Blue value (between 0-1000)

The RGB values are passed as values between 0 and 1000 rather than those
required by the ST hardware. The VDI will map these to the nearest actual
value. The values set can be determined using vq_color.

SEE
vg_extnd, vg_color

EXAMPLE

#include <vdi.h>

/* assumes that handle is a valid VDI workstation */

short rgbC31={0,0,10001};
vs_color(handle,O0,rgb); /* set colour 0O to be blue */

Page 208 LatticeC 5 VDI Library

VS) p a I e t t e Set IBM screen palette

Class: VDI Category: IBM Escape Functions
SYNOPSIS

#include <vdi.h>

new=vs_palette(handle,pal);

int new; new palette setting
int handle; workstation handle
int pal; 0 red, green, brown

1 = cyan, magenta, white

DESCRIPTION

This function is only used on IBM compatibles with CGA screens. It selects
which palette to use, as above.

RETURNS

This function returns the palette selected.

SEE

vs_color

VDI Library Lattice C 5 Page 209

VSC_ f orm Redefine the mouse cursor

Class: VDI Category: Input Functions

SYNOPSIS

#include <vdi.h>

vsc_form(handle,newform);

int handle; workstation handle
MFORM *newform; new mouse form
DESCRIPTION

This function is used to change the appearance of the mouse form on the
screen. If you are using the AES, then you should use the AES graf_mouse
function rather than this function.

The newform parameter is a pointer to a mouse form structure. This is
defined, in vdi.h, as:

typedef struct mfstr

short mf_xhot; x co-ordinate of hot spot
short mf_yhot; y co-ordinate of hot spot
short mf_nplanes; reserved should be 1
short mf_fg; mask colour index normally O
short mf_bg; data colour index normally 1
short mf_mask[161]; bits of mask
short mf_datal161; bits of data

} MFORM;

mf_mask(0) gives the bit mask for the top line (16 bits) of the mouse form,
mf_mask(1) that for the second line, etc.

Note that the mf_nplanes parameter gives the number of planes in the form
and must always be 1 for the mouse cursor.

SEE

graf_mouse, lineab

Page 210 Lattice C 5 VDI Library

Set the fill area colour

vsf_color

Class: VDI
SYNOPSIS

#include <vdi.h>

Category: Fill Area Attributes

new_col=vsf_color(handle,colour);

int new_col; new fill area colour set
int handle; workstation handle
int colour; new fill area colour to use

DESCRIPTION

This function changes the colour that areas are filled with using the v_fillarea
function and other functions that use the fill area attributes. The number of
colours that can be selected depends on the screen resolution in use, and is
returned by the v_opnvwk call. To change the colour palette use the vs_color
function.

The colours are shown in the table below. By default the control panel, if
present, will change these to be the colours shown:

WHITE White LWHITE Grey
BLACK Black LBLACK Dark grey
RED Red LRED Light blue
GREEN Green LGREEN Blue green
BLUE Blue LBLUE Light purple
CYAN Dark blue LCYAN Dark purple
YELLOW Brown LYELLOW Dark yellow
MAGENTA Dark green LMAGENTA Light yellow

An L in a colour name indicates ‘light’. LWHITE is really light grey and LBLACK
is dark grey.

RETURNS

This function returns the text colour actually set. This will be 1 if you attempt
to set a colour index that is too high for the current device.

VDI Library Lattice C 5 Page 211

SEE
vs_color

EXAMPLE

Hinclude <vdi.h>
#include <aes.h>

int main(void)

short work_inC111=€(1,1,1,1,1,1,1,1,1,1,2};

short work_outC571];

short handle; /* virtual workstation handle */
short junk;

short ptsC(61={(10,20,100,40,20,1001%;

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);

if (handle)

{

vsf_color(handle,GREEN) ;

vsf_interior(handle,FIS_USER);

vsf_styleChandle,1); /* Atari Logo */

v_fillareaChandle,3,pts);

/* draws a green triangle with corners at
(10,20), (100,40) and (20,100) */

v_clsvwk(Chandle);

return appl_exit();

Page 212 Lattice C 5 VDI Library

vsf_interior, vsf_style Set the fill style

Class: VDI Category: Fill Area Attributes
SYNOPSIS

#include <vdi.h>

new_interior=vsf_interior(handle,interior);
new_index=vsf_style(handle,index);

int new_interior; the new interior style set
int new_index; the new style index set
int handle; workstation handle

int dnterior; interior style

int idindex; style index

DESCRIPTION

These functions change how the areas that are filled using v_fillarea and other
functions that use the fill area attributes, are displayed.

The table below shows the effect of using different style indices. The first
number is the index parameter as passed to vsf_style, the second is the interior
parameter for vsf_inferior:

8,2

16,2

53 63 7,3 8,3

FINFIN

Fi\/I

TR TN

9,3 18,3 11,3 12,3 1,4

VDI Library Lattice C 5 Page 213

You must first set the style using vsf_interior and then the index using
vsf_style. Valid values for the interior parameter are as follows:

FIS_HOLLOW Hollow interior, set to colour 0.

FIS_SOLID Solid interior, with colour as set by vsf_color.

FIS_PATTERN Patterns, as noted above.

FIS_HATCH Hatches, as noted above.

FIS_USER User-defined style as set with vsf_udpat. This
is an Atari logo by default.

RETURNS

The vsf_interior function returns the style set and vsf_style returns the new
index set.

SEE

vsf_udpat, vsf_perimeter, v_fillarea

Page 214 Lattice C 5 VDI Library

VSf_p erimeter Set the fill area perimeter visibility

Class: VDI Category: Fill Area Attributes
SYNOPSIS

Hinclude <vdi.h>

new_flag=vsf_perimeter(handle,flag);

int new_flag; new perimeter visibility flag
int handle; workstation handle
int flag; 0 don't draw perimeter

1 show perimeter

DESCRIPTION

This function changes whether a border (or perimeter) is drawn the areas are
filled with using the v_fillarea function and other functions that use the fill
area attributes.

If flag is 1 then subsequent area fill calls will surround the area with a solid
line in the current fill area colour. One function is an exception to this rule; the
vr_recfl function never draws a border.

If flag is 0 then such borders are nct drawn.

RETURNS

This function returns the new value of the perimeter visibility flag.

SEE

vsf_color, vgf_attributes, v_fillarea

VDI Library Lattice C S Page 215

A f__ u d p df Set the user defined fill pattern

Class: VDI Category: Fill Area Attributes

SYNOPSIS

#include <vdi.h>

vsf_udpat(handle,pattern,planes);

int handle; workstation handle

short “*pattern; bit map to use

int planes; number of planes supplied
DESCRIPTION

This function changes the user defined fill pattern set using:

vsf_interior(handle,FIS_USER);

The planes parameter specifies the number of planes in this fill pattern. When
using a monochrome device planes should be 1. Any planes that are not
supplied will be zeroed when filling takes place.

The fill pattern is passed as 16 shorts for each plane, with the first short giving
the top line of the pattern (the most significant bit being the leftmost pixel), and
the last short giving the bottom line.

Note that only replace mode is valid when using a multi-plane fill pattern (see
vswr_mode).

SEE

vsf_interior, vswr_mode

Page 216 Lattice C 5 VDI Library

vsin_mode Set input mode

Class: VDI Category: Input Functions
SYNOPSIS

Hinclude <vdi.h>

new_mode=vsin_mode(handle,dev_type,mode);

int new_mode; new mode selected
int handle; workstation handle
int dev_type; input device
int mode; input mode
1 = request
2 = sample
DESCRIPTION

This function is used to set whether sample or request mode is to be used on a
VDI input device. If you are using the AES at all for input, do not call these
VDI functions as the AES will become confused.

The dev_type parameter should be one of

1 locator

2 valuator
3 choice

4 string

If the mode parameter is 1 then the device is set to request mode; if it is 2 it is
set to sample mode.

RETURNS
This function returns the new mode set.
SEE

vrg_locator, vsm_locator, vrq_valuator, vsm_valuator, vrg_choice,
vsm_choice, vrg_string, vsrn_string

VDI Library Lattice C 5 Page 217

Set the line colour

vsl_color
Class: VDI
SYNOPSIS

#include

Category: Line Attributes

<vdi.h>

new_col=vsl_color(handle,colour);

int new_col; new Line colour set
int handle; workstation handle
int colour; new colour of Lline to use

DESCRIPTION

This function changes the colour of lines (as drawn with v_pline) and other
routines that use the line attributes. The number of colours that can be selected
depends on the screen resolution in use, and is returned by the v_opnvwk call.
To change the colour palette use the vs_color function.

The line colours are shown in the table below. By default the control panel, if
present, will change these to be the colours shown.

WHITE White LWHITE Grey
BLACK Black LBLACK Dark grey
RED Red LRED Light blue
GREEN Green LGREEN Blue green
BLUE Blue LBLUE Light purple
CYAN Dark blue LCYAN Dark purple
YELLOW Brown LYELLOW Dark yellow
MAGENTA Dark green LMAGENTA Light yellow

An L in a colour name indicates ‘light’. LWHITE is really light grey and LBLACK
is dark grey.

RETURNS

This function returns the line colour actually set. This will be 1 if you attempt to
set a colour index that is too high for the current device.

Lattice C 5 VDI Library

Page 218

SEE
vs_color

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2}%};

short work_outl571];

short handle; /* virtual workstation handle */
short junk;

short ptsC41={10,20,30,40};

appl_init();
handle=graf_handle(&junk,&8junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);

if (handle)

{

vsl_colorChandle,RED),; /* red */
v_plineChandle,2,pts); /* draws a Lline between
(10,20) and (30,40) */
evnt_keybd();
v_clsvwk(Chandle);
}
return appl_exit();

VDI Library Lattice C 5 Page 219

vsl_ends

Set the line end style

Class: VDI
SYNOPSIS

#include <vdi.h>

new_col=vsl_ends(handle,

int handle;
int begin;
int end;

DESCRIPTION

Category: Line Attributes

begin,end);

workstation handle
starting style
ending style

This function changes how the beginning and ends of lines (as drawn with
v_pline) and other graphics that use the line attributes. begin gives the style
to use at the start of a line, whilst end gives the style for the end. The different

styles are as follows:

SQUARE .
ARROWED ———
ROUND —

SEE

vsl_type, vsl_color

EXAMPLE

#include <vdi.h>
#include <aes.h>
int main(void)

{

short work_inC111={(1,1

short work_out[C5713];
short junk,handle; /*

A0 20

virtual workstation handle */

short ptsC41={10,20,30,401};

appl_init();

handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);

if (handle)
{

vsl_ends(handle, ARROWED ,ARROWED) ;
v_plineChandle,2,pts);

evnt_keybd();
v_clsvwk(Chandle);
}
return appl_exit();

Page 220 Lattice C § VDI Library

VSI_type, VS'_UdSi’y Set the line type

Class: VDI Category: Line Attributes
SYNOPSIS

#include <vdi.h>

new_type=vsl_type(handle, type);
vsl_udsty(handle,pattern);

int new_type; type of Lline set

int handle; workstation handle

int type; new Lline type

int pattern; used defined pattern
DESCRIPTION

These functions are used to change how lines (as drawn with v_pline) and
other graphics that use the line attributes are drawn. The different line types
are as follows:

SOLID ——————— Solid

LDASHED ——— Long dash

DOTTED — e Dot

DASHDOT S Dash dot

DASH S Dash

DASHDOTDOT = = = Dash dash dot

USERLINE User defined line as
set by vsl_udsty.

The pattern parameter to vsl_udsty specifies the 16 bit user defined value to
use. This is repeated along the line as for the standard patterns. SOLID is
equivalent to a user-defined pattern of OxFFFF. The user defined pattern is
only used if USERLINE is set using vsl_type.

RETURNS

The vsl_type function returns the line type set.
SEE

vqg_extnd

VDI Library Lattice C 5 Page 221

VS |_W i d t h Set the line width

Class: VDI Category: Line Attributes
SYNOPSIS

#include <vdi.h>

new_size=vsl_width(handle,size);

int new_size; width of Lline set

int handle; workstation handle

int size; new size of Line to use
DESCRIPTION

This function changes the width of lines (as drawn with v_pline) and other
graphics that use the line attributes. size, which gives the new line width,
should be odd, otherwise the VDI will round the value down to the next odd
value. Note that when using thickened lines the VDI may be unable to render
line effects; vg_extnd can be used to determine whether this is possible.

RETURNS

This function returns the line width actually set.

SEE
vqg_extnd

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111=4{(1,1,1,1,1,1,1,1,1,1,2};

short work_outC571];

short junk,handle; /* virtual workstation handle */

short ptsC41={(10,20,30,4012;

appl_init();

handle=graf_handle(&junk,&junk,&junk,&junk);

v_opnvwk(work_in,&handle,work_out);

if (handle)

{

vsl_width(handle,3); /* 3 pixels wide */

v_pline(Chandle,2,pts); /* draws a3 line between
(10,20) and (30,40) */

evnt_keybd();

v_clsvwk(Chandle);

}

return appl_exit();

Page 222 Lattice C 5 VDI Library

vsm _C h (o) i ce Choice input in sample mode

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

status=vsm_choice(handle,xout);

int status; choice status returned

int handle; workstation handle

short *xout; current value of choice
DESCRIPTION

This function is used to sample input from the ‘choice’ device. This is not

implemented on the ST. Choice numbers vary from 1 to an implementation

defined number. If you are using the AES at all for input, do not use the VDI

input functions as the AES will become confused.

Before calling this function, you should call vsin_mode as follows:
vsin_mode(handle,3,2);

RETURNS

This function returns 1 if a choice input was made, otherwise returns 0.

SEE

vrg_choice, vsin_mode

VDI Library Lattice C 5 Page 223

Set the marker colour

vsm_color
Class: VDI
SYNOPSIS

Hinclude <vdi.h>

Category: Marker Attributes

new_col=vsm_color(handle,colour);

int new_col; new marker colour set
int handle; workstation handle
int colour; new colour of marker to use

DESCRIPTION

This function changes the colour of markers as drawn with the v_pmarker
function. The number of colours that can be selected depends on the screen
resolution in use, and is returned by the v_opnvwk call. To change the colour
palette use the vs_color function.

The colours are shown in the table below. By default the control panel, if
present, will change these to be the colours shown below:

WHITE O White LWHITE Grey
BLACK £ Black LBLACK Dark grey
RED | Red LRED Light blue
GREEN U | Green LGREEN Blue green
BLUE 4 Blue LBLUE Light purple
CYAN Dark blue LCYAN Dark purple
YELLOW 5 | Brown LYELLOW Dark yellow
MAGENTA Dark green LMAGENTA Light yellow

An L in a colour name indicates ‘light’. LWHITE is really light grey and LBLACK
is dark grey.

RETURNS

This function returns the marker colour actually set. This will be 1 if you
attempt to set a colour index that is too high for the current device.

Lattice C § VDI Library

Page 224

SEE

vs_color, vsm_type, vsm_height, vgm_attributes, v_pmarker

EXAMPLE

#include <vdi.h>
#include <aes.h>

int
{

main(void)

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};

short work_outC571;

short handle; /* virtual workstation handle */
short junk;

short ptsC41=(10,20,30,40};

A To

pl_init();
ndle=graf_handle(&junk,&junk,&junk,&junk);
opnvwk(work_in,&handle,work_out);

if (handle)

vsm_type(handle,7); /* diamond */
vsm_height(handle,5); /* height 5 */
vsm_color(Chandle,RED);
v_pmarker(handle,2,pts); /* draws markers at

(10,20) and (30,40) */
evnt_keybd();
v_clsvwk(handle);
}
return appl_exit();
}
VDI Library Lattice C 5 Page 225

vsm - h e i g h 1' Set the marker height

Class: VDI Category: Marker Attributes
SYNOPSIS

Hinclude <vdi.h>

new_size=vsm_height(handle,size);

int new_size; height of markers set

int handle; workstation handle

int size; new size of marker to use
DESCRIPTION

This function changes the height (and thus width) of markers drawn with
v_pmarker) to size pixels.

Note that the marker height has no effect on the ‘dot’ marker which is always
exactly one pixel.

RETURNS

This function returns the marker height actually set.

SEE

vsm_color, vgm_attributes, vsm_type, v_pmarker

EXAMPLE

#include <vdi.h>
#include <aes.h>
int main(void)

{

short work_inC113={(1,1,1,1,1,1,1,1,1,1,2};

short work_out[571];

short Jjunk,handle; /* wvirtual workstation handle */
short ptsC41={(10,20,30,40)};

pl_init();
ndle=graf_handle(&junk,&junk,&junk,&junk);
opnvwk(work_in,&handle,work_out);

p
a

< To

it (handle)

i
{
vsm_typeChandle,7); /* diamond */
vsm_height(handle,5); /* height 5 */
v_pmarker(handle,2,pts); /* draws markers at

(10,20) and (30,40) */
evnt_keybd();
v_clsvwk(handle);
}
return appl_exit();

Page 226 Lattice C 5 VDI Library

vsm _ I ocdad t or Locator input in sample mode

Class: VDI Category: Input Functions
SYNOPSIS

#Hinclude <vdi.h>

status=vsm_Llocator(handle,x,y,xout,yout,term);

int status; status found
int handle; workstation handle
int x; initial x co-ordinate of Llocator
int y; initial y co-ordinate of Llocator
short *xout; final x co-ordinate of Llocator
short *yout; final y co-ordinate of Llocator
short *term; terminator

DESCRIPTION

This function is used to sample input from the ‘locator’ device. On the ST this
means mouse movement, keyboard and mouse button input. If you are using
the AES at all for input, do not use the VDI input functions as the AES will
become confused.

Before calling this function, you should call vsin_mode as follows:

vsin_mode(handle,1,2);

The X and y parameters give the position on screen where the mouse pointer
will be displayed. If the user presses a key on the keyboard, term will contain
the ASCII value of the key pressed. If the user clicks on a mouse button 32 will
be returned in term for the left button and 33 for the right button. In any case
the xout and yout parameters will contain the position of the mouse.

RETURNS

This function returns the following:

0 No change

1 Mouse has moved

2 Key (on keyboard or mouse) pressed
3 Both key press and movement.

Note that this function does not indicate whether a mouse button or a keyboard
key was pressed.

VDI Library Lattice C 6 Page 227

SEE

vrg_locator, vsin_mode

EXAMPLE

Hinclude <aes.h>
#include <vdi.h>
#include <stdio.h>

int main(void)

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2}%};

short work_outl571];

short handle; /* virtual

short junk;
short x,y;
short term;
short status;

ppl_init();
a

<To

if (handle>=0)

~

v_clrwk(handle)
vsin_mode(handl
x=50; y=100;

do

;
e’

while (status!=2)

printf("Mouse position:

,X,y,term);
evnt_keybd();
v_clsvwk(Chandle);

return appl_exit();

p
ndle=graf_handle(&8junk,&junk,&junk,&junk);
opnvwk(work_in,8handle,work_out);

1,2);

’

workstation

(%d,%d)

LA/

Locator,sample */

status=vsm_Llocator(handle,x,y,8&x,8y,8term);

Key pressed:%c\n"

Page 228

Lattice C 5

VDI Library

vsm _St ri n g String input in sample mode

Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

status=vsm_string(handle,max_Len,echo,echo_xy,str);

int status; O0=no characters available
n=characters input

int handle; workstation handle

int max_len; maximum number of input characters

int echo; 0= no echo
1= echo

short *echo_xy; co-ordinates for echoed characters

char *str; string input

DESCRIPTION

This function is used to sample input from the ‘string’ device. On the ST this
means keyboard input. If you are using the AES at all for input, do not use the
VDI input functions as the AES will become confused.

Before calling this function, you should call vsin_mode as follows:

vsin_mode(handle,4,2);

This function causes up to max_len characters to be input from the keyboard.
The input will terminate if Return is pressed. The characters input are
terminated by a 0 character. Thus str should be at least max_len+1 characters
long.

If the echo parameter is not implemented on the ST. If it was implemented
and a value of 1 was passed the characters typed would be echoed at position
(echo_xy(0), echoxy(1)) on the device. It is however necessary to pass
echo_xy as a ‘real’ pointer, otherwise bombs will result.

RETURNS

This function returns the number of characters input. This will be zero if there
were none available.

SEE

vrg_string, vsin_mode

VDI Library Lattice C 5 Page 229

EXAMPLE

#include <stdio.h>
#include <aes.h>
#include <vdi.h>

int main(void)
{

short work_inC113=€1,1,1,1,1,1,1,1,1,1,2};

short work_out[571];
short handle; /* virtual workstation handle */

short junk;
short ptL21={100,1001%;

char strl71];

appl_init();
handle=graf_handle(&junk,&junk,&junk,&junk);
v_opnvwk(work_in,&handle,work_out);

if (handle)

{

v_clrwkChandle);
vsin_mode(handle,4,2); /* string,sample */
while (!'vsm_string(handle,1,1,pt,str))

’

printf("String entered was: Zs\n",str);

evnt_keybd();
v_clsvwk(Chandle);

return appl_exit();

Page 230 Lattice C 5 VDI Library

vsm _ty pe Set the marker type

Class: VDI Category: Marker Attributes
SYNOPSIS

#include <vdi.h>

new_type=vsm_type(handle,type);

int new_type; type of marker set

int handle; workstation handle

int type; new marker type
DESCRIPTION

This function is used to change how markers (as drawn with v_pmarker) are
drawn. The different marker types are as follows:

1 : Dot

2 - Plus

3 >k Asterisk

4] Square

5 < Diagonal cross

6 < Diamond

Ve Device dependent
RETURNS
The function returns the marker type set.
SEE

vsm_color, vsm_height, v_pmarker

VDI Library Lattice C 5 Page 231

vsm _V a I uad t or Valuator input in sample mode
Class: VDI Category: Input Functions
SYNOPSIS

#include <vdi.h>

vsm_valuator(handle,x,xout,term,status);

int handle; workstation handle

int x; initial value of valuator

short *xout; final value of valuator

short *term; terminator

short *status; status found
DESCRIPTION

This function is used to sample input from the ‘valuator’ device. This is not
implemented on the ST. Valuator numbers vary from 1 to 100. If you are using
the AES at all for input, do not use the VDI input functions as the AES will
become confused.

Before calling this function, you should call vsin_mode as follows:

vsin_mode(handle,2,2);

The status return values are as follows

0 Nothing happened
1 Valuator changed
2 Key press occurred

SEE

vrg_valuator, vsin_mode

Page 232 LatticeC 5 VDI Library

VS p_ messd g [E] Suppress palette messages

Class: VDI Category: Palette Escape Functions
SYNOPSIS

#include <vdi.h>
vsp_message(handle);

int handle; workstation handle

DESCRIPTION

This function would suppress the screen messages produced by palette driver.
However the palette escapes are not implemented on the ST.

VDI Library Lattice C § Page 233

VS p_s ave Save palette driver state

Class: VDI Category: Palette Escape Functions
SYNOPSIS

#include <vdi.h>
vsp_save(handle);

int handle; workstation handle

DESCRIPTION

This function would save the current state of the palette driver. However the
palette escapes are not implemented on the ST.

Page 234 Lattice C 5 VDI Library

AV p _ S t a t @ Set palette driver state

Class: VDI Category: Palette Escape Functions

SYNOPSIS

#include <vdi.h>

vsp_state(handle,port,num,lightness,interlace,
planes,indices);

int handle; workstation handle

int port; communication ports

int num; file number

int Lightness; aperture control -3 to +3

int idinterlace; O=non-interlaced
1=interlaced

int planes; number of planes

short *indices; pointer to colour indices

DESCRIPTION

This function would set the state of the palette driver. However the palette
escapes are not implemented on the ST.

VDI Library Lattice C 5 Page 235

Vst__a I i g nmen 1' Set the base line for graphics text

Class: VDI Category: Text Attributes
SYNOPSIS

#include <vdi.h>

vst_aligment(handle,hin,vin,hout,vout);

int handle; workstation handle

int hin; horizontal alignment

int vin; vertical alignment

short *hout; horizontal alignment set

short *vout vertical alignment set
DESCRIPTION

This function changes where co-ordinates passed to the v_justified and
v_gtext functions refer to. The hin parameter specifies the horizontal
alignment and should be one of:

0 Left justified (default).
1 Centre justified.
2 Right justified.

The vin parameter specifies the vertical alignment and should be one of:

0 Base line (default). The bottom of characters without
descenders.

1 Half line. The top of lower case letters such as a and e.

2 Ascent line. The top of upper case letters such as A and E.

3 Bottom. The very bottom of the character cell.

4 Descent. The bottom of characters with descenders such
asgandy.

5 Top. The very top of the character cell.

This function returns the values actually set in the hout and vout parameters.

SEE

v_gtext, v_justified

Page 236 LatticeC 5 VDI Library

Set the graphics text colour

vst_color

Class: VDI
SYNOPSIS

#include <vdi.h>

Category: Marker Attributes

new_col=vst_color(handle,colour);

int new_col; new text colour set
int handle; workstation handle
int colour; new colour of text to use

DESCRIPTION

This function changes the colour that text is drawn in using the v_justified and
v_gtext functions. The number of colours that can be selected depends on the
screen resolution in use, and is returned by the v_opnvwk call. To change the
colour palette use the vs_color function.

The colours are shown in the table below. By default the control panel, if
present, will change these to be the colours shown:

WHITE White LWHITE Grey
BLACK Black LBLACK Dark grey
RED Red LRED Light blue
GREEN Green LGREEN Blue green
BLUE Blue LBLUE Light purple
CYAN Dark blue LCYAN Dark purple
YELLOW Brown LYELLOW Dark yellow
MAGENTA Dark green LMAGENTA Light yellow

An L in a colour name indicates ‘light’. LWHITE is really light grey and LBLACK
is dark grey.

RETURNS

This function returns the text colour actually set. This will be 1 if you attempt
to set a colour index that is too high for the current device.

VDI Library Lattice C 5 Page 237

SEE

vs_color, v_gtext, vat_attributes, v_justified

EXAMPLE

#include <vdi.h>
#include <aes.h>

int main(void)
{

short work_inC111={(1,1,1,1,1,1,1,1,1,1,2};
short work_out[571];
short handle; /* wvirtual workstation handle */

short junk;

pl_init();
ndle=graf_handle(&junk,&junk,&junk,&junk);
_opnvwk(work_in,&handle,work_out);

if (handle)

2]
a

<To

o~ -

vst_colorChandle,RED);
v_justified(handle,20,20,"Hello World",100,1,1);
/* writes hello world at 20,20 in red*/

v_clsvwk(Chandle);

return appl_exit();

Page 238 Lattice C 5 VDI Library

VS 'I'_ e f f ecC t S Set the graphics text effects

Class: VDI Category: Text Attributes

SYNOPSIS

#include <vdi.h>

new_effects=vst_effects(handle,effects);

int new_effects; text effects set

int handle; workstation handle

int effects; text effects to use
DESCRIPTION

This function changes the appearance of the text that is drawn using the
v_justified and v_gtext functions. The effects parameter is a bitmap, with
mask components as follows:

Bit Meaning
THICKENED Thicken
SHADED ‘Lighten’
SKEWED Skew
UNDERLINED Underline
OUTLINE Outline
SHADOW Shadowed

More than one effect may be set at once, but this can often look very
unpleasant!

RETURNS

This function returns the text effects set.

SEE

v_gtext, v_justified, linea8

VDI Library Lattice C 5 Page 239

vst _f ont Select particular GDOS font

Class: VDI Category: Text Attributes
SYNOPSIS

#include <vdi.h>

set_font=vst_font(handle,font);

int set_font; font actually set

int handle; workstation handle

int font; font index requested
DESCRIPTION

This function should only be used when GDOS is loaded and changes the font
that text is drawn in by the v_gtext and v_justified functions. You can find
valid numbers for the font indices using the vqQt_name function.

RETURNS

This function returns the font actually set.

SEE

vgt_name, vqg_gdos

Page 240 Lattice C 5 VDI Library

VSt_heig hf, VSf_pOinf Set the text height

Class: VDI Category: Text Attributes
SYNOPSIS

Hinclude <vdi.h>

vst_height(handle,h,charw,charh,cellw,cellh);
set=vst_point(handle,p,charw,charh,cellw,cellh);

int set; the character height set

int handle; workstation handle

int h; character height (pixels)

int p; character height (points)

short *charh; character height selected (pixels)

short *charw; character width selected (pixels)

short *cellh; cell height selected (pixels)

short *cellw; cell width selected (pixels)
DESCRIPTION

This function changes the height (and thus width) of graphics text as drawn
with v_gtext and v_justified).

The vst_height function is passed the height to select in pixels, whereas the
vst_point function is passed the height in points (1/72th of an inch). If the
function cannot use the given height then the next smallest is used. The

character size selected is returned in charw and charh. cellw and cellh give
the cell size in pixels.

Note that the vst_point function is preferred to vst_height as it uses a device
portable measurement.

RETURNS

The function vst_point returns the height actually set in points.

SEE

vqg_extnd

VDI Library LatticeC 5 Page 241

vst_load_fonts Load GDOS fonts

Class: VDI Category: Workstation Control
SYNOPSIS

#include <vdi.h>

add=vst_Lload_fonts(handle,select);

int add; additional fonts Loaded
int handle; workstation handle
int select; reserved: use 0

DESCRIPTION

This function is used to load GDOS fonts from disk; it is not required to load
system fonts. The fonts are loaded into GEMDOS free memory, and thus you
should check the value returned by this function to see how many fonts have
been loaded. You can use this call more than once on the same workstation; the
VDI will return 0 on subsequent calls.

The handle parameter should be the handle of the physical or virtual
workstation, as returned by v_opnwk or v_opnvwk.

RETURNS

This function returns the number of additional fonts loaded.

SEE

v_opnvwk, v_opnwk, vg_gdos, vst_unload_fonts, vst_font, vgt_name

EXAMPLE

#include <vdi.h>
int main(void)
{
short work_inC111={(21,1,1,1,1,1,1,1,1,1,2};
short work_out(571];
short handle;
int fonts_Lloaded;

if (vg_gdos())
{

v_opnwk(work_in,&8handle,work_out);
if (handle)

{ /* Now LlLoad printer fonts*/
fonts_Lloaded=vst_Lload_fonts(handle,0);
Q;é[;uk(handle); /* close workstation */

}

¥
}

Page 242 Lattice C 5 VDI Library

VSf_rOfCIin n Select rotated text

Class: VDI Category: Text Attributes
SYNOPSIS

Hinclude <vdi.h>

set_angle=vst_rotation(handle,angle);

int set_angle; rotation angle actually set
int handle; workstation handle
int angle; requested angle (0-3600)

DESCRIPTION

This function changes the angle at which graphics text is drawn by v_gtext
and v_justified. Angles are specified in tenths of a degree, as follows:

900

1800 0

2700

If the device does support the angle requested, then the nearest possible value
is selected and returned by the function.

The standard ST screen drivers only support values of 0, 900, 1800 and 2700.
Do not pass a value greater than 3150, as a bus error may result.

RETURNS
This function returns the rotation angle actually set.

SEE

vqg_extnd

VDI Library Lattice C 5 Page 243

vst_unload_fonts Un-load GDOS fonts

Class: VDI Category: Workstation Control

SYNOPSIS

#include <vdi.h>

vst_unload_fonts(handle,select);

int handle; workstation handle
int select; reserved; use 0

DESCRIPTION

This function is used to free the space used by GDOS fonts that have been
loaded from disk using vst_load_fonts.

The memory will only be freed when all the workstations using these fonts
have either been closed or have called vst_unload_fonts. Thus there is no
necessity to call this function, but it potentially gives an application more
GEMDOS memory after the call.

The handle parameter should be the handle of the physical or virtual
workstation, as returned by v_opnwk or v_opnvwk.

SEE

v_opnvwk, v_opnwk, vg_gdos, vst_load_fonts

EXAMPLE

#Hinclude <vdi.h>
int main(void)
{

short work_inC111=(21,1,1,1,1,1,1,1,1,1,2};
short work_out[571];

short handle;

int fonts_Lloaded;

if (vq_gdos())
{

v_opnwk(work_in, &handle,work_out);
if C(handle)
{

/* Now Load printer fonts*/
fonts_Lloaded=vst_Lload_fonts(handle,0);
vst_unload_fonts(handle,0);

/* now we may have more free memory */
v_clswk(handle); /* close workstation */

}
}
}

Page 244 Lattice C 5 VDI Library

VSW r_ mo d e Set graphics drawing mode

Class: VDI Category: Graphics Attributes
SYNOPSIS

#include <vdi.h>

new_mode=vswr_mode(handle,mode);

int new_mode; new writing mode

int handle; workstation handle

int mode; mode to set
DESCRIPTION

This function is used to set the writing mode for all the graphics output
functions. The possible values of mode are as follows:

MD_REPLACE Replace mode ignores any existing data; the new
/ data replaces the old pixel value.

MD_TRANS Transparent mode only affects pixels where the
7 | pixel is already set.

MD_XOR ~ | Exclusive OR mode changes the value of a pixel.

MD_ERASE Reverse transparent mode only affects pixels
Y | where the source pixel is not set.

RETURNS

This function returns the new writing mode that has been set.

SEE

v_opnvwk, v_opnwk

VDI Library Lattice C 5 Page 245

Page 246 Lattice C 5 VDI Library

4 GEMDOS Library

This section describes the GEMDOS library supplied with the Lattice C
compiler. To access the facilities of GEMDOS you should #include the file
osbind.h into your program.

GEMDOS provides all the disk management, memory allocation and process
management facilities traditionally available in an operating system.
GEMDOS uses a consistent set of prefixes for its naming, these are:

Prefix Function

Direct console, printer and auxiliary input/output.

Directory and disk management.

File management and manipulation.

Memory management.

Process creation and termination.

System inquiry and manipulation.

“|lolo|z[™lo|l0

Time and date functions.

All functions in the GEMDOS library are available either through the original
Atari macro based definitions or through the inline code capability of the
Lattice C compiler. Using this facility will greatly reduce the overheads
compared with the old ‘stub’ based method.

Note that many of the functions listed in this section are known to have several
bugs, where possible these have been documented as fully as possible under the
‘Caveats’ section.

In this section one function has been added to the standard GEMDOS
selection, _mediach, which can be used to force the system to recognise a
media change.

Many of the functions in GEMDOS have analogues in the main C library;
using those functions can ‘hide’ many of the peculiarities and inconsistencies of
GEMDOS. It will also make porting to Lattice C systems under other
architectures simpler.

GEMDOS Library Lattice C 5 Page 247

Ca u Xi 1] $ (ORY Read a character from GEMDOS handle 2

Class: GEMDOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>
x=Cauxin();

short x; character obtained from standard aux

DESCRIPTION

The Cauxin function reads a character from GEMDOS handle 2 and returns it
in the low byte of x. Note that the standard run time startup routine redirects
this handle from the serial port (Qux:) to the console device in order to provide
a standard error facility.

SEE

Cconin, Cconrs, Crawio, Crawcin, Cnecin, Cconis, Bconin

CAVEATS

This function, when directed to Qux:, can cause flow control on the RS232 port
to break down and hence should be avoided. Also there is no way to indicate
end-of-file when the handle has been redirected and the system may simply
hang on reaching it.

Since this handle is used as the standard error handle by the standard C
library, its use as a serial communication method is not recommended and the
BIOS function Bconin should be used instead.

Page 248 Lattice C 5 GEMDOS Library

Cauxis Bl Check status of GEMDOS handle 2

Class: GEMDOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>
x=Cauxis();

short x; status of standard auxiliary idinput

DESCRIPTION 4
This function checks the status of standard auxiliary input (GEMDOS handle

2) and returns the value -1 if at least one character is available. If no characters
are available, Cauxis returns the value 0.

RETURNS

Cauxis returns -1 if at least one character is available, otherwise 0.

SEE

Cauxin, Bconin, Bconstat

CAVEATS

This handle is used as the standard error handle by the standard C library and

hence its use as a serial communication method is not recommended and the
BIOS function Bconstat should be used instead.

GEMDOS Library Lattice C § Page 249

Ca uxos NYAS Check output status of GEMDOS handle 2

Class: GEMDOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>
x=Cauxos();

short x; status of standard auxiliary output

DESCRIPTION

This function checks the status of the GEMDOS handle 2 and returns the value
-1 if there is room for at least one character. If no characters may be sent,
Cauxos returns the value 0.

RETURNS

The value -1 is returned if the stream attached to handle 2 is ready to receive a
character, otherwise the value zero is returned.

SEE

Cauxout, Bconout, Bcostat

CAVEATS

This handle is used as the standard error handle by the standard C library and
hence its use as a serial communication method is not recommended and the
BIOS function Bcostat should be used instead.

Page 250 Lattice C & GEMDOS Library

C auxo ut SoY Write a character to GEMDOS handle 2

Class: GEMDOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>
Cauxout(x);

short x; character to be sent to standard aux

DESCRIPTION

The Cauxout function writes a character to GEMDOS handle 2. Note that the
standard run time startup routine redirects this handle from the serial port
(aux:) to the console device in order to provide a standard error facility.

SEE

Cconout, Cconin, Cconrs, Crawio, Cconis, Bconout

CAVEATS

This function, when directed to Qux:, can cause flow control on the RS232 port
to break down and hence should be avoided, also there is no way to check for
characters successfully sent. Since this handle is used as the standard error
handle by the standard C library, its use as a serial communication method is
not recommended and the BIOS function Bconout should be used instead.

GEMDOS Library LatticeC 5 Page 251

CCO 1] i 1] Jo/ Read a character from GEMDOS handle 0

Class: GEMDOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>
x=Cconin();

Llong x; character obtained from standard in

DESCRIPTION

The Cconin function reads and echoes (to the standard input) a character from
GEMDOS handle 0. Normally this will be attached to the keyboard, when the
value returned in X gives the following information:

bits 31-24 bits 23-16 bits 15-8 bits 7-0
Shift key status Keyboard scan 0 ASCII value of
code character

The non-ASCII keys (e.g. the function and cursor keys) return 0 for the ASCII
value, so that the scan code is used to decipher them. The shift key status gives
the state of the keyboard modifiers (Shift, Ctrl, Alt etc.) and are as described
under the BIOS function Kbshift. Note that the shift key status is only returned
if bit 3 in the system variable conterm (the character at 0x484) is set. This

defaults to off.

If the standard input stream has been redirected then only the low byte of X is
valid and contains the character obtained from the stream without echoing.

This call checks for the special system keys (AC etc.) and so the process may be
terminated as a result of this call.

RETURNS

As noted above.

SEE

Cconout, Cconis, Cconos, Cconrs, Cnecin, Crawio, Crawcin, Bconin

CAVEATS

There is no way to indicate end-of-file when the handle has been redirected and
the system may simply hang on reaching it.

Page 252 Lattice C § GEMDOS Library

C con i S JolI5 Check status of standard input

1
!

v

Class: GEMDOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>
x=Cconis();

short x; status of standard dinput

DESCRIPTION
This function checks the status of standard input (GEMDOS handle 0) and

returns the value -1 if at least one character is available. If no characters are
available, Cconis returns the value 0.

RETURNS

Cconis returns -1 if at least one character is available, otherwise 0.

SEE

Cconin, Bconin, Bconstat

GEMDOS Library LatticeC 5 Page 253

C conos b/0 Check status of standard output

Class: GEMDOS Category: Console and Port 1/0
SYNOPSIS

#include <osbind.h>

x=Cconos();

short x; status of standard output

DESCRIPTION

This function checks the status of standard output (GEMDOS handle 1) and
returns the value -1 if there is room for at least one character. If no characters
may be sent, Cconos returns the value 0.

RETURNS

If the stream is directed to the console device (Con:) then the call will always
return -1. If however GEMDOS handle 1 has been redirected then this may not
be the case and it may return 0 indicating that the output should cease.

SEE

Cconout, Bconout, Bcostat

Page 254 Lattice C 5 GEMDOS Library

C conou 1' Joc Write a character to GEMDOS handle 1

Class: GEMDOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>
Cconout(x);

short x; character to write to standard out

DESCRIPTION

The Cconout function writes the character X to the the stream attached to
GEMDOS handle 1. Normally this will be attached to the screen, so that the
character is printed on screen. Note that no line feed translation is performed
on X and so to move to a new line both carriage return (‘\r’) and line feed (‘\n’)
characters must be sent.

The high byte of x is reserved and must be zero for future compatibility.

This call checks for the special system keys (AC etc.) and so the process may be
terminated as a result of this call.

SEE
Cconin, Crawio, Crawcin, Cconws, Bconout
CAVEATS

On version 1.0 and 1.2 of the operating system this call attempts to read a
character from the standard output stream whilst attempting to process the
special system keys. If handle 1 is directed to a write-only device (e.g. prn:) then
the system will hang indefinitely.

GEMDOS Library Lattice C 5 Page 255

I_C conrs $ o Read a string from standard input

Class: GEMDOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>
Cconrs(buf);

char *buf; buffer to read characters into

DESCRIPTION

The Cconrs function reads a string from the standard input stream echoing it
to the standard output stream. buf(0) contains the maximum number of
characters that will be read.

On return buf(1) contains the number of characters actually read with the
string starting at buf(2). Note that the string is not null terminated.

Cconrs always reads characters until the buffer is full or until it encounters a
AJ or M (i.e. the Return key) which is discarded.

If the standard input stream is directed to the console this call reads an edited
string from the console. The following key sequences are interpreted and acted
upon:

AC Cancel input line and terminate program
AH Backspace and delete last character

DEL Backspace and delete last character

N End input, do not place AJ in buffer

M End input, do not place AM in buffer

AR Echo input line and continue entry

AU Echo input line and restart entry

AX Cancel input line and restart entry

When the standard input stream has been re-directed to a file the call will
return with buf(1) set to zero when end-of-file is reached.

Page 256 Lattice C 5 GEMDOS Library

RETURNS

The call returns with the number of characters obtained in buf(1) and a string
starting at buf(2).

SEE

Cconout, Cconis, Cconos, Bconin, Bconout

CAVEATS

On version 1.0 and 1.2 of the operating system this call echoes the characters
read from the standard input stream to the standard output even when it has
been re-directed to a file.

GEMDOS Library Lattice C 5 Page 257

Cconws Jog Wrrite string to standard output

Class: GEMDOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>
Cconws(x);

const char *str; ASCIIZ string to write to
standard out

DESCRIPTION

The Cconws function writes the ASCIIZ string str to the standard output
stream calling Cconout for each character in the string, not including the
terminating zero. Note that no line feed translation is performed on any of the
characters and so to move to the start of a new line both carriage return (‘\r’)
and line feed (‘\n’) characters must be sent.

This call checks for the special system keys (AC etc.) and so the process may be
terminated as a result of this call.

SEE

Crawio, Cconout, Bconout

CAVEATS

On version 1.0 and 1.2 of the operating system this call attempts to read a
character from the standard output stream whilst attempting to process the
special system keys. If handle 1 is directed to a write-only device (e.g. prn:) then
the system will hang indefinitely.

Page 258 Lattice C 5 GEMDOS Library

Chnecin bOE Cooked input from standard in

Class: GEMDOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>
x=Cnecin();

Long x character obtained from standard in

DESCRIPTION

The Cnecin function reads the first character from the standard input stream,
without echoing it, however unlike Crawcin it does check for the special control
keys. Normally this stream will be attached to the keyboard, when the value
returned in X gives the following information:

bits 31-24 bits 23-16 bits 15-8 bits 7-0
Shift key status Keyboard scan 0 ASCII value of
code character

The non-ASCII keys (e.g. the function and cursor keys) return 0 for the ASCII
value, so that the scan code is used to decipher them. The shift key status gives
the state of the keyboard modifiers (Shift, Ctrl, Alt etc.) and are as described
under the BIOS function Kbshift. Note that the shift key status is only returned
if bit 3 in the system variable conterm is set. This defaults to off.

SEE
Crawio, Cconin, Crawcin, Cconrs, Cconis, Bconin
CAVEATS

There is no way to indicate end-of-file when the handle has been redirected and
the system may simply hang on reaching it.

GEMDOS Library Lattice C 5 Page 259

C p ros $ // Check status of standard printer output

Class: GEMDOS Category: Console and Port I1/O
SYNOPSIS

#include <osbind.h>
x=Cprnos();
short x; status of standard printer output

DESCRIPTION

This function checks the status of the standard printer output (GEMDOS
handle 3) and returns the value -1 if there is room for at least one character. If
no characters may be sent, Cprnos returns the value 0.

RETURNS

The value -1 is returned if the stream attached to handle 3 (normally prn:) is
ready to receive a character, otherwise the value zero is returned.

SEE

Cconout, Bconout, Bcostat

Page 260 Lattice C 5 GEMDOS Library

C p rno ut Bo < Write a character to GEMDOS handle 3

Class: GEMDOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>

status = Cprnout(x);

short status; status of printer

short x; character to be sent to standard prn
DESCRIPTION

The Cprnout function writes a character to GEMDOS handle 3. Normally this
will be attached to the printer, so that the character is printed. Note that no
line feed translation is performed on this character and so to move to a new
line it may be necessary to send both carriage return (‘\r’) and line feed (‘\n’)
characters. Also note that no translation whatsoever is performed so that tab
characters, for instance, are not expanded prior to sending to the device.

The high byte of X is reserved and must be zero for future compatibility.

RETURNS

The value 0 is returned if the call fails to write a character to the printer (e.g.
not-ready), or non-zero if successful. Note that some older documentation
incorrectly describes this function as ‘returning void’.

SEE

Cconout, Bconout

GEMDOS Library Lattice C 5 Page 261

C rawcin S0F Raw input from standard in

Class: GEMDOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>
x=Crawcin();

long x; character obtained from standard in

DESCRIPTION

The Crawcin function reads the first character from the standard input stream,
but unlike Cconin it never echoes the character and does not check for the
special control keys. Normally this stream will be attached to the keyboard,
when the value returned in x gives the following information:

bits 31-24 bits 23-16 bits 15-8 bits 7-0
Shift key status Keyboard scan 0 ASCII value of
code character

The non-ASCII keys (e.g. the function and cursor keys) return 0 for the ASCII
value, so that the scan code is used to decipher them. The shift key status gives
the state of the keyboard modifiers (Shift, Ctrl, Alt etc.) and are as described
under the BIOS function Kbshift. Note that the shift key status is only returned
if bit 3 in the system variable conterm is set. This defaults to off.

Note that when reading from the console via this handle the special system
keys (AC etc.) are not checked.

The SEE

Crawio, Cconin, Cnecin, Cconrs, Cconis, Bconin

CAVEATS

There is no way to indicate end-of-file when the handle has been redirected and
the system may simply hang on reaching it, also if you mix both Cconout and
Crawcin calls, the system may become confused about the state of the special
system keys.

Page 262 Lattice C 5 GEMDOS Library

Raw I/O to standard In/Out

Crawio Joé

Class: GEMDOS
SYNOPSIS

#include <osbind.h>

Category: Console and Port 1/O

y=Crawio(x);

Long vy; character obtained when x!=0x00ff
short x; character to be processed
DESCRIPTION

The Crawio function checks the value of x, if it is 0x00ff then a character is
read from GEMDOS handle 0 (without echoing) if one is available. Normally
this will be attached to the keyboard, when the value returned in y gives the
following information:

bits 31-24 bits 23-16 bits 15-8 bits 7-0
Shift key status Keyboard scan 0 ASCII value of
code character

The non-ASCII keys (e.g. the function and cursor keys) return 0 for the ASCII
value, so that the scan code is used to decipher them. The shift key status gives
the state of the keyboard modifiers (Shift, Ctrl, Alt etc)) and are as described
under the BIOS function Kbshift. Note that the shift key status is only returned
if bit 3 in the system variable conterm is set. This defaults to off.

If no character is available then the value returned by Crawio is 0.
If x is not equal to 0x00ff, then the character is sent to GEMDOS handle 1,
normally the screen device, when the return value y has no meaning. Note that

when using this call the special system keys (AC etc.) are not checked so that it
is, for example, impossible to pause the output using AS.

The high byte of x is reserved and must be zero for future compatibility.
SEE
Cconout, Cconin, Cconrs, Cconis, Bconout, Bconin

CAVEATS

It is not possible to read zeroes, or write 0x00ffs via this function due to its
definition. Also if you mix both Cconout and Crawio calls, the system may
become confused about the state of the special system keys.

GEMDOS Library Lattice C 5 Page 263

$39 $27
Dc reate, Ddelete Create/Delete GEMDOS folder

Class: GEMDOS Category: Directory Functions
SYNOPSIS

#include <osbind.h>

err = Dcreate(path); create new directory
err = Ddelete(path); delete old directory

Long err; error value
const char *path; directory to create/delete

DESCRIPTION

The Dcreate function makes a new directory along the specified path. For
example, if path is “c:\\abc\\def\\ghi”, then a new directory named “ghi” is
created in the path “c:\\abc\\def”. The path may begin with a drive letter and
a colon.

By contrast the Ddelete function removes an existing directory. Note that the
directory must be empty otherwise the function will fail.

RETURNS

If the operation could not be performed a negative error code is returned,
otherwise zero.

SEE

mkdir, rmdir

CAVEATS

Under 1.0 and 1.2 of TOS using Ddelete on a directory just created fails, a
second Ddelete will successfully delete the directory. Also on these versions of
TOS Dcreate does not always detect errors during directory construction and
may partially build directories before failing.

Page 264 Lattice C 5 GEMDOS Library

D f ree P 3,6 Get free disk space

Class: GEMDOS Category: Disk Functions
SYNOPSIS

#include <osbind.h>

error = Dfree(info,drive);

Long error; 0 if successful

Llong *info; disk information

short drive; drive code

(0 => current drive)

DESCRIPTION

This function obtains allocation information from the specified disk drive. If a 0
is passed as drive, information is obtained about the current drive, otherwise
drive should 1 for drive A, 2 for drive B, etc.

The pointer info should point to a buffer of 4 longwords, the DISKINFO
structure in dos.h is suitable for this purpose and has the definition:

struct DISKINFO
{

unsigned Long free; /* number of free clusters */
unsigned Llong cpd; /* clusters per drive */
unsigned Llong bps; /* bytes per sector */
unsigned Llong spc; /* sectors per cluster */

’

RETURNS

A return value of 0 indicates success, otherwise a negative error code is
returned.

CAVEATS

Under 1.0 and 1.2 of TOS this function is very slow on a hard disk and so
should not be called routinely.

GEMDOS Library Lattice C 5 Page 265

ngei‘dl’V, DsefdrV 319 . BoE Get/Set default drive

Class: GEMDOS Category: Disk Functions
SYNOPSIS

#include <osbind.h>

bmap = Dsetdrv(drive); set current drive

drive = Dgetdrv(); get current drive

Long bmap; bitmap of mounted drives

short drive; drive number to get/set
DESCRIPTION

The Dsetdrv function changes the current drive code. Drive code 0 corresponds
to drive A, code 1 is drive B and so on.

The Dgetdrv function returns the current drive code, using the same codes as
Dsetdrv.

RETURNS

The function Dsetdrv returns a bitmap of mounted drives, bit 0 corresponds to
drive A, bit 1 is drive B and so on. Note that although it returns a long
GEMDOS currently only supports 16 devices, so the top 16 bits should be
ignored.

The function Dgetdrv returns the code of the currently selected drive.

SEE
chgdsk, getdsk, Dgetpath, Dsetpath

Page 266 LatticeC 5 GEMDOS Library

Dg eprIfh 5 Dsefpdfh £47 $ 3§ Get/Set current directory

Class: GEMDOS Category: Directory Functions
SYNOPSIS

#include <osbind.h>

error = Dgetpath(buf,drive);

error = Dsetpath(path);

Long error; 0 if successful

short drive; drive code

(0 => current drive)

char *buf; buffer to place path in

const char *path; path to change to
DESCRIPTION

The Dgetpath function obtains the current path on the specified drive. Drive
code 0 corresponds to the current drive, 1 to drive A, 2 is drive B and so on. The
path is filled in in the buffer supplied in buf. Note that Dgetpath and Dgetdrv
use different codes for the drives.

The Dsetpath function sets the current path to path. If the path string begins
with a drive letter and a colon (:) then the directory for the specified drive is
set.

RETURNS

A return value of 0 indicates success, otherwise a negative error code is
returned.

SEE
chdir, getcd, getcwd
CAVEATS

Under all versions of TOS the Dsetpath function can become confused
(causing logical drive assignments to be mixed up) if a drive letter and colon (;)
are used in the path string, as such it is recommended that this feature be
avoided.

GEMDOS Library LatticeC 5 Page 267

F a tt r i b P43 Get/Set file attributes

Class: GEMDOS Category: File Manipulation
SYNOPSIS
#include <osbind.h>
fa = Fattrib(fname,flag,attr);
Long fa; file attributes
const char *fname; name of file to manipulate
short flag; get/set flag

0 => get attributes
1 => set attributes
short attr; attributes when setting

DESCRIPTION

This function gets or sets the attribute byte for the specified file. The attributes
(either returned in fa or set by attr) contain the following information:

Bit Meaning

0 Read-only flag

1 Hidden file flag

2 System file flag

3 Volume label flag

4 Subdirectory flag

5 Archive flag (set if file has changed)
6 Reserved

7 Reserved

The archive flag is set whenever a file is created (or re-created) or when it has
been written to using Fwrite (only on TOS 1.4 and above).

RETURNS

Fattrib returns the old attributes if successful or a negative error code if the
operation could not be performed (e.g. the file does not exist).

Page 268 LatticeC 5 GEMDOS Library

SEE
chgfa, getfa

CAVEATS

The archive bit is only supported correctly in version 1.4 and above of the
operating system.

Under 1.0 and 1.2 of TOS it is possible to use this function to perform illegal
changes, e.g. removing the directory bit on a directory.

GEMDOS Library Lattice C 5 Page 269

Fclose 33t Close GEMDOS file

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>
error = Fclose(handle);

Long error; error status
short handle; file handle to close

DESCRIPTION

This function closes the file associated with the specified handle.

RETURNS

Fclose returns zero if the file was successfully closed, otherwise a negative
error code.

SEE
Fcreate, Fopen, close

CAVEATS

Under 1.0 and 1.2 of TOS calling this function with an error value (e.g. as
returned from Fopen) will usually result in a system crash. Also closing a
standard handle (0-5) will leave the appropriate handle in an undefined state.
On 1.4 and above the handle will revert to its default BIOS definition if closed.

Page 270 Lattice C 5 GEMDOS Library

FC I’edfe $3C Create or truncate a file

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

handle = Fcreate(name,attr);

Long handle; file handle

const char *name; name for file

short attr; attributes required
DESCRIPTION

This Fcreate function creates a new file (or truncates an old one) given by
name. The attributes, attr, are made up of:

Bit Meaning

0 Read-only flag

1 Hidden file flag

2 System file flag

3 Volume label flag

5 Archive flag (set if file has changed)

RETURNS

Fcreate returns a positive file handle if the file was successfully created,
otherwise a longword negative error code. Note that word negative codes
(0x0000ffff etc.) are used to signify devices such as con..

SEE

Fopen, Fclose, creat

CAVEATS

Under TOS 1.0 creating a read-only file returns a read-only file handle. Also
under 1.0 and 1.2 it is possible to create more than one volume name per root
directory.

It may be useful under TOS 1.0 and 1.2 to set the archive bit as this is permitted
on these versions. Under TOS 1.4 and above it is always set.

GEMDOS Library Lattice C § Page 271

Fdatime g§s# Get/Set file time stamp

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

error = Fdatime(timeptr,fh,flag);

Long error; error value

short *timeptr; time/date buffer

short fh; handle of file

short flag; get/set flag

0 => get timestamp
1 => set timestamp

DESCRIPTION

The Fdatime function gets or sets the timestamp of a file with handle fh. The
timeptr buffer points to two words, the first of which gives the packed time,
whilst the second holds the packed date. If flag is 0 the current timestamp is
placed in the buffer, otherwise the timestamp is modified to that in the buffer.

The packed time longword may be represented by the bit fielded structure:

struct timdat

unsigned hour:5;

unsigned minute:6;

unsigned second:5;

unsigned year:7;

unsigned month:4;

unsigned day:5;

}

Note that the time is stored in increments of two seconds and so the value
obtained should be doubled to give a true number of seconds. Also note that the

year is stored as an offset from 1980.

RETURNS

Fdatime returns zero if the file time was successfully interrogated/updated,
otherwise a negative error code.

SEE
chgft, gefft, ftunpk, fipack

Page 272 Lattice C 5 GEMDOS Library

CAVEATS

Under 1.0 and 1.2 of TOS the return value of this function is not reliable and
may indicate errors where none existed and as such it is probably best ignored.

Also beware that some older documentation incorrectly swaps the first two
parameters to this call.

GEMDOS Library LatticeC S Page 273

Fdelete gy Delete file

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

error = Fdelete(name);

Long error; error value
const char *name; name of file to delete

DESCRIPTION

The Fdelete function deletes the named file. Note that only files may be
deleted by this function, for directories you should use Ddelete.

RETURNS

The function returns zero if the file was successfully deleted, or a negative
error number if the file could not be removed (e.g. was read-only).

SEE
Ddelete, remove, unlink

CAVEATS

If you attempt to delete a file that you have open, the file is closed and then
deleted, however the handle is not released and hence will never be returned to
GEMDOS. If you continue to use this handle there may be disastrous
consequences.

Page 274 Lattice C § GEMDOS Library

Fd u p $L) S’ Duplicate standard file handle

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

nh = Fdup(oh);

Long nh; new non-standard handle

short oh; standard handle (0-5)

DESCRIPTION

The Fdup function duplicates a standard file handle, (i.e. those numbered 0-5)
and returns a non-standard handle (i.e. >6) which refers to the same device or
file.

This function is most often used prior to calling the Fforce function so that the
redirection may be ‘undone’.

Note that when you have finished with this handle it should be released as
normal via the Fclose function.

RETURNS

The function returns a new handle referring to the same device of file if
successful, or a negative error number if an error occurred (e.g. no more
handles left).

SEE
Fforce, dup
CAVEATS

Because this function always allocates a new handle, it is possible that when
the process redirection depth becomes large the system may run out of handles,
hence in general processes should consider communicating via intermediate
files rather than redirected input and output.

GEMDOS Library Lattice C § Page 275

Fforce 13‘—[6 Redirect standard file handle

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

error = Fforce(stdh,nstdh);

Long error; error value

short stdh; standard handle (0-5)

short nstdh; non-standard handle (>6 or <0)
DESCRIPTION

The Fforce function forces the standard handle stdh to refer to the same file or
device as the non-standard handle nstdh.

This function is generally used to force a child process to obtain its input from a
file, or to send its output to a file.

RETURNS

The function returns a negative error number if an error occurred (e.g. invalid
handle), or 0 if no error occurred.

SEE
Fdup. dup2
EXAMPLE

/*
* collect a command's output to a file
*/
#include <osbind.h>
#include <stddef.h>
Long collect(const char *command,const char *file)

Long fh;
Long ostdout,err;

fh=Fcreate(file,0);

if (fh<0)

return fh;
ostdout=Fdup(1); /* remember current stdout */
Fforce(1,fh); /* redirect stdout */

err=Pexec(0,command,"" ,NULL);
Fforce(1,ostdout); /* get old stdout back */
Fclose(ostdout); /* release handle */

/* don't close fh as the child did that */
return err;

Page 276 Lattice C S GEMDOS Library

JLF 314

Fg etdta, Fsetdta Get/Set data transfer address (DTA)

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

Fsetdta(dta);
dta = Fgetdta();

void *dta; pointer to DTA

DESCRIPTION

The Fsetdta function is used to change the data transfer address used by
GEMDOS in the Fsfirst and Fsnext calls. By comparison the Fgetdta function
returns the current data transfer address.

Note that the default DTA overlays some important system structures and the

command line image in the base page, as such you should always move the
DTA prior to using Fsfirst and Fsnext.

SEE
Fsfirst, Fsnext, chgdta, getdta

GEMDOS Library Lattice C 5 Page 277

Fopen 33D Open a GEMDOS file

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

handle = Fopen(name,mode);

Long handle; file handle

const char *name; name of file

short mode; required file mode
DESCRIPTION

The Fopen function opens an existing file in the mode specified. The legal
values for mode are:

0 (O_RDONLY) Read-only access. No writes are allowed.

1 (O_WRONLY) Write-only access. No reads are allowed.

2 (O_RDWR) Read-write access. Both reads and writes are
allowed.

Note that the names for the modes are the same as used by open. These
values are found in the fcntl.h header file.

Note that in addition to files existing on a mounted drive, the special device

names CON:, QuX: and prn: are recognised, giving access to the console,
auxiliary and printer ports respectively.

RETURNS
Fopen returns a positive file handle if the file was successfully opened,

otherwise a longword negative error code. Note that word negative codes
(0x0000ffff etc.) are used to signify devices such as con..

SEE

Fcreat, Fclose, open

Page 278 Lattice C 5 GEMDOS Library

Fread I3F Read from an open file

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

Len = Fread(handle,count,buf);

Long Llen; Length read from file

short handle; file handle

Long count; lLength to read

void *buf; buffer to read into
DESCRIPTION

The Fread function reads from a file given by handle. count characters are
read from the file into a buffer pointed to by buf. The process stops when either
count characters have been read, or end of file has been reached.

If the handle specified points to a device (con: etc.) then the input is line
buffered and Fread returns when a line has been read from the device.

Note that this call is recommended as it is the sole output method which is
consistent across all versions of TOS when used with redirection.

RETURNS

Fread returns the number of characters successfully read, or a negative error
code if a serious error occurred.

SEE

Fcreat, Fclose, open

CAVEATS

When reading from the keyboard you must provide some way to indicate end-
of-file (e.g A\Z) also lines read from a device may be CR or LF terminated, but

usually not CRLF terminated as is the TOS default.

Under 1.0 and 1.2 of TOS attempting to use Fread with count equal to zero
will hang the system.

GEMDOS Library LatticeC 5 Page 279

F rename $§é Rename an existing file or folder

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

error = Frename(zero,old,new);

Long error; error status

short zero; must be zero

const char *old; old name

const char *new; new name
DESCRIPTION

Frename renames the file old to the name new. Note that these files do not
have to be in the same directory, but must be on the same physical device.

Under TOS 1.4 and above the Frename function may also be applied to a
directory, however these may not be moved about the tree structure.

The parameter zero must be passed as the value 0.

RETURNS

Frename returns zero if the operation was completed successfully, or a
negative error code if a problem occurred.

SEE
rename

CAVEATS

Under 1.0 and 1.2 of TOS it is not possible to rename folders, but beware of
older documentation which incorrectly states that files may not be renamed up
and down the directory structure.

If you attempt to rename a file you have open the file is neither closed nor is its
handle released. If you continue to use this handle there may be disastrous
consequences.

Page 280 Lattice C § GEMDOS Library

Fseek 4T Seek to a new file position

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

apos = Fseek(rpos,handle,mode);

Long apos; current file position

Long rpos; new offset

short handle; file handle to seek on

short mode; seek mode
DESCRIPTION

The Fseek function repositions the file pointer of the file associated with
handle. The seek mode is the same as for Iseek as follows (defined in stdio.h):

Mode Meaning

0 (SEEK_SET) The rpos argument is the number of bytes from the
beginning of the file. This value must be positive.

1 (SEEK_CUR) The rpos argument is the number of bytes relative
to the current position. This value can be positive
or negative.

2 (SEEK_END) The rpos argument is the number of bytes relative
to the end of the file. This value must be negative
or zero.

Note that for mode SEEK_CUR rpos can be positive or negative, but apos is
always the actual (positive) position relative to the beginning of file.

RETURNS

If the operation is successful, the function returns the actual positive file
position, which is a long integer. Otherwise a negative error code is returned.

SEE

_dseek, Iseek

GEMDOS Library Lattice C 5 Page 281

FSfiI’ Sf, aneXf LZA/E’\ LQF Find directory entry

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

err = Fsfirst(name,attr); Find first directory entry

err = Fsnext(); Find next directory entry

Long err; 0 if successful

const char *name; file name or pattern

short attr; file attribute bits
DESCRIPTION

These functions search a directory for entries that match the specified file name
or file name pattern. The Fsfirst function locates the first matching file. Then
successive calls to Fsnext locate additional matching files.

The name argument must be a null-terminated string specifying the drive,
path, and name of the desired file. The drive and path can be omitted, in which
case the current directory will be searched. You can use the GEMDOS * and ?
characters for pattern matching in the name portion. For example, xy*.b will
locate files in the current directory that begin with xy and have b as their
extension.

The attr argument specifies which file types are to be included in the search.
The following bits are used:

Bit Meaning

0 Read-only flag

1 Hidden file flag
2 System file flag
3 Volume label flag
4 Subdirectory flag

Page 282 Lattice C 5 GEMDOS Library

The information found is placed into the current DTA buffer. This is equivalent
to the FILEINFO structure from dos.h defined as:

struct FILEINFO

{
char resv[21]; /*
char attr; /*
Long time; /*
Long size; /*
char namelFNSIZE]; /*

¥

RETURNS

reserved */
actual file
file time and date
file size in bytes
file name ¥*/

attribute */
*/

*/

The Fsfirst function returns zero i f successful, or a negative error code (e.g. if no
files matching were found). Fsnext returns 0 when successful, ENMFIL (-49)
when no more files are available, or some other negative error code if an error

occurred.
SEE
dfind, dnext, Fgetdta
EXAMPLE
/] *
* show the files in a given directory
*/
#include <dos.h>
#include <osbind.h>
void showdir(const char *name)
{
struct FILEINFO info;
Fsetdta(&info);
if (!Fsfirst(name,0))
do
{
puts(info.name);
} while (!'Fsnext());
}
GEMDOS Library Lattice C 5 Page 283

|F write o Write to an open file

Class: GEMDOS Category: File Manipulation
SYNOPSIS

#include <osbind.h>

Len = Fwrite(handle,count,buf);

Long Llen; Length written to file

short handle; file handle

Long count; lLength to write

const void *buf; buffer to write from
DESCRIPTION

This Fwrlte function writes to a file given by handle. count characters are
written to the file from a buffer pointed to by buf. The process stops when
either count characters have been written, or an error is encountered.

Note that this call is recommended as it is the sole output method which is
consistent across all versions of TOS when used with redirection.

RETURNS
Fwrlte returns the number of characters successfully written, or a negative

error code if a serious error occurred. Note that if disk full occurs this is
indicated by len not equal to count; an error is not explicitly returned.

SEE
Fcreat, Fclose, Fread

CAVEATS

Under 1.0 and 1.2 of TOS attempting to use Fwrlte with count equal to zero
will hang the system.

Page 284 Lattice C 5 GEMDOS Library

M a “OC 34g Allocate a block of memory from the GEMDOS pool

Class: GEMDOS Category: Memory Allocation
SYNOPSIS

#include <osbind.h>

base = Malloc(amount);

void *base; base of block allocated

Long amount; amount of memory requested

DESCRIPTION

The Malloc function is used to obtain blocks of memory from the GEMDOS
free memory pool. The amount of memory required is passed in amount, and
the base of the block allocated is returned in base. If no memory is available a
NULL pointer is returned.

To determine the size of the largest free block in the system, the value -1 may
be used for amount, when the pointer returned should be cast to a long value
giving the size of the block. Note that it is the size of the largest free block that
is returned, and not the total free memory in the OS pool.

RETURNS

Malloc returns the base of the memory block to use or NULL if insufficient
memory was available. If amount is equal to -1 then the size of the largest
block is returned.

SEE

Mfree, Mshrink, malloc

CAVEATS

Under 1.0 and 1.2 of TOS there is a limit of 20 active blocks of Malloc’ed
memory per process. Exceeding this limit may cause GEMDOS to fail in a
disastrous manner. Note that this limit includes any blocks required by other
parts of the operating system, in particular virtual workstations and file
selectors require GEMDOS memory and so you should consider limiting your
own allocations to, say, 16 blocks.

Under TOS 1.4 and above the limit on blocks is less problematic (and the
system will halt safely if the situation were to occur), however there are still
limits and so you should always use an internal memory manager such as the C
library malloc.

GEMDOS Library LatticeC 5 Page 285

me d iach Force media change on a logical device
Class: Lattice Category: Device I/O
SYNOPSIS

#include <osbind.h>

status=_mediach(dev);

int error; error status
int dev; device to force media change on
DESCRIPTION

The _mediach function is used to force a media change on a device. It is
normally used prior to calling the BIOS function Getbpb to ensure that
GEMDOS cache consistency is maintained.

The parameter dev gives the number of the logical device to force the change
on, 0 means drive A, 1 drive B, etc.

Note that this function should always be called prior to Getbpb otherwise
GEMDOS data loss is almost inevitable.

RETURNS
_mediach normally returns 0 to indicate no error. It returns 1 to indicate an

error situation, if this occurs you should immediately stop any disk I/O since
GEMDOS has almost certainly suffered an internal failure.

SEE
Getbpb, Mediach

Page 286 Lattice C 5 GEMDOS Library

M f ree :lLlCi Release a block of memory to the GEMDOS pool

Class: GEMDOS Category: Memory Allocation
SYNOPSIS

#include <osbind.h>
error = Mfree(base);

Long error; error return
void *base; base of block allocated

DESCRIPTION

The Mfree function is used to return blocks of memory allocated via Malloc to
the GEMDOS free memory pool. The base of the block to return is passed in
base.

RETURNS

Mfree returns 0 if the block was successfully freed, or a negative error code if a
problem occurred (e.g. freeing a block which was not allocated).

SEE

Malloc, Mshrink, free

GEMDOS Library Lattice C S Page 287

M S h ri n k JYb Shrink size of allocated block

Class: GEMDOS Category: Memory Allocation
SYNOPSIS

#include <osbind.h>

error = Mshrink(base,size);

Long error; error return

void *base; base of block allocated

lLong size; new size of block
DESCRIPTION

The Mshrink function is used to reduce the size of an allocated block of
GEMDOS memory. base points to a block of allocated memory and size gives
the new size that is requested for it.

Note that this function is most often used to reduce the size of a programs TPA .
when first started, so that memory is available for subsequent MalloCs.

RETURNS

Mshrink returns 0 if the size of the block was successfully changed, or a negative
error code if a problem occurred (e.g. attempting to enlarge a block).

SEE

Malloc, Mfree, realloc

CAVEATS

Although the interface to this function suggests it may be used to enlarge a

block this does not work under all current versions of the OS, returning the
error code EGSBF, ‘SetBlock Failure due to Growth restrictions’.

Page 288 LatticeC 5 GEMDOS Library

Pexec Jan Create/ Execute process

Class: GEMDOS Category: Process Creation
#include <osbind.h>
error = Pexec(mode,path,tail,env);
Long error; error return
short mode; Pexec mode
const char *path; path of program to execute
const char *tail; command Line
const char *env; pointer to environment

DESCRIPTION

Pexec provides facilities for a program to create basepages, load programs
and execute them.

path is a pointer a string giving the filename of the program to execute. If
path does not specify a drive the current drive is used, similarly if no
pathname is specified the current path is used. Note that any filename
extension must be explicitly specified.

tail is a pointer to a length prefixed string, i.e. tQil(0) contains the length of the
string starting at tqil(1), the total length of the string (including the length byte)
may not exceed 126 bytes. Note that when copying this string GEMDOS copies
126 bytes or up to a NULL character, which ever is first.

env contains a pointer to the environment to be passed to the child process. If
this pointer is NULL then the child inherits a copy of the parents environment.
GEMDOS obtains a block of memory using Malloc into which it copies the
child processes environment.

The mode parameter determines what function the command performs. The
following mode values are allowed:

Value Meaning

0 Create a basepage, load program into the basepage,
execute program returning program’s termination code
when the program completes.

3 Create a basepage and load program into it. The value
returned is the address of the base page created.

GEMDOS Library Lattice C & Page 289

4 Execute program already loaded. For this mode path
and env are unused (pass NULL for these). tail holds the
address of the program to execute. The value returned is
the program termination code. Note that the TPA and
environment are not freed after running the program.

5 Create a basepage. For this mode path is unused (pass
NULL for this), tail and env have there normal
meanings. The value returned is the address of the base
page created.

6 Execute program already loaded. For this mode path
and env are unused, and tail holds the address of the
program to execute. The value returned is the program
termination code. Unlike mode 4, the TPA and
environment are freed after executing the child process.
Note the warning below about this mode.

Note that the basepage structure is described in the C library manual and also
in the basepage.h header file.

RETURNS

Pexec returns values dependent on the mode argument. For all modes a
longword negative value is an error indication, positive values are as indicated
above. Note that when Pexec returns an exit code from a program it has
executed the top 16 bits are zero, you may also find it useful to note that if a
program is aborted via Ctrl-C then the return code is Oxffe0.

SEE

PtermO, Pterm, Ptermres, Mshrink

CAVEATS
Pexec mode 6 is only available on GEMDOS version 0.21 (TOS 1.4) and above.

Page 290 Lattice C S GEMDOS Library

Pterm, PtermQ suc _ 300 Terminate a process

Class: GEMDOS Category: Process Creation
SYNOPSIS

#include <osbind.h>

Pterm(ret);
PtermOC();

short ret; error code to return to parent

DESCRIPTION

These functions immediately terminate the current process. For Pterm, a return
status is passed in ret, whilst PtermO0 always gives a zero exit status to the
parent (note that PtermO is exactly equivalent to Pterm(0)). Prior to
terminating, GEMDOS makes a call through extended vector 0x102
(etv_term) so that a program may perform last minute clean up.

Any files still open which were opened by the process are closed, in addition all
standard files (handles 0 to 5) are closed, note that this includes standard files

inherited from the parent process. Any memory not released by the process is
returned to the OS memory pool.

RETURNS

The function does not (normally) return.

SEE

Pexec, Ptermres, Setexc, onbreak

GEMDOS Library LatticeC 5 Page 291

I_Pte rmres $3) Terminate and stay resident (TSR)
Class: GEMDOS Category: Process Creation
SYNOPSIS

#include <osbind.h>

Ptermres(keep,ret);

Long keep; Length of process to keep
short ret; error code to return to parent

DESCRIPTION

Ptermres is similar to Pterm, but rather than releasing the memory allocated
by the process into the OS pool, it is retained by the process.

Ptermres retains keep bytes of the process (from the start of the base page) in
memory. Note that this is exactly equivalent to using Mshrink on the basepage.
Any additional memory which has been obtained by Malloc is also retained.

The process is then terminated as if by Pterm(ret).

Programs which terminate using this method are usually known as TSRs and
are usually used to patch the operating system in some manner or other.

RETURNS

The function does not (normally) return.

SEE

Pexec, Pterm, Setexc, onbreak

CAVEATS

Because Ptermres implicitly calls Pterm, any open files are closed and so lost
to the process.

This call actually removes the processes memory from the allocation table of
GEMDOS, but does not place it into the free table, thus any memory so
retained is permanently lost, i.e. a subsequent Pterm or Mfree call will not
return it to GEMDOS.

Page 292 Lattice C § GEMDOS Library

s u p er $ o Get/Set/Inquire supervisor mode

Class: GEMDOS Category: System Manipulation
SYNOPSIS

#include <osbind.h>

oldssp = Super(stack);

void *oldssp; old system stack pointer

void *stack; system stack request value
DESCRIPTION

The Super function allows you to alter the state of the processor. If stack is
NULL then the processor is placed into supervisor mode and the old supervisor
stack returned in oldssp. Note that the supervisor stack is then pointed at the
user stack.

Otherwise if stack is non-NULL, this is taken to be an old supervisor stack
value which is reloaded into the supervisor stack pointer and the processor
placed back into user mode.

To allow interrogation of the processor state, the special value of stack==1,
causes the value returned in oldssp to be 0 if the processor is in user mode, or -
1 if in supervisor mode. Beware of some older documentation which states that
stack should be -1 to interrogate the processor mode. Using this value will
result in a system crash.

RETURNS

As noted above.

SEE

Supexec
CAVEATS

Whilst in supervisor mode the AES may not be called. It always assumes that it
has been called from user mode and saves registers on the user stack.

Also beware that entry to supervisor mode and exit from it must occur in the
same function. You may not call a routine to enter supervisor mode and then
call a second routine to leave it. Failure to enter and leave supervisor mode
within the same stack frame will cause the stack pointer to become randomly
corrupted.

GEMDOS Library LatticeC 5 Page 293

SverSion 830 Get GEMDOS version number

Class: GEMDOS Category: System Manipulation
SYNOPSIS

#include <osbind.h>

version = Sversion();

unsigned short version; GEMDOS wversion number
DESCRIPTION

Sversion returns the version number of GEMDOS. Note that this is not the
same as the TOS or AES version numbers. The value returned in version is
byte swapped, so that the low byte gives the major version number, whilst the
high byte gives the minor version number. The currently used values are:

Major Minor Name

0 19 ROM TOS (1.0), Blitter TOS (1.2)

0 21 Rainbow TOS (1.4), STE TOS (1.6)

RETURNS

As noted above.

SEE
_tos, appl_init

EXAMPLE

] *
* print the GEMDOS version number
*/

#include <osbind.h>
H#include <stdio.h>
int main(void)
{
unsigned short ver=Sversion();

printf("GEMDOS version=%d.%Zd\n",ver&80xff,ver>>8);

return 0;
}

Page 294 Lattice C 5 GEMDOS Library

Tgetdate, Tsetdate 374 .3283Get/set GEMDOS date

Class: GEMDOS Category: Date and Time
SYNOPSIS

#include <osbind.h>

date = Tgetdate();

error = Tsetdate(date);

Long error; error status

unsigned short date; packed date
DESCRIPTION

Tgetdate returns the current date in GEMDOS format. This is packed as
follows:

Bits Contents

0-4 Day (0 to 31)

5-8 Month (1 to 12)
9-15 Year-1980 (0 to 127)

The associated function Tsetdate sets the current date to the packed date
which is its parameter.

RETURNS

Tgetdate returns the current packed time, whilst Tsetdate returns 0 for valid
dates or an error code for obviously invalid dates.

SEE
Tgettime, Tsettime, Gettime, Settime, ftunpk, ftpack, time
CAVEATS

Under TOS 1.0 Tsetdate does not inform the BIOS of the date change, hence
it does not change the IKBD clock or any battery-backed clock.

GEMDOS Library Lattice C 5 Page 295

Tgettime, Tsettime sc. g2p Get/set GEMDOS time

Class: GEMDOS Category: Date and Time
SYNOPSIS

#include <osbind.h>

time = Tgettime();

error = Tsettime(time);

Long error; error status

unsigned short time; packed time
DESCRIPTION

Tgettime returns the current time in GEMDOS format. This is packed as
follows:

Bits Contents

00-04 Second/2 (0 to 29)
05-10 Minute (0 to 59)
11-15 Hour (0 to 23)

The associated function Tsettime sets the current time to the packed time
which is its parameter.

RETURNS

Tgettime returns the current packed time, whilst Tsettime returns 0 for valid
times or an error code for obviously invalid times.

SEE
Tgetdate, Tsetdate, Gettime, Settime, ftunpk, fipack, time
CAVEATS

Under TOS 1.0 Tsettime does not inform the BIOS of the time change, hence it
does not change the IKBD clock or any battery-backed clock.

Page 296 Latfice C 5 GEMDOS Library

5 BIOS Library

This section describes the BIOS library supplied with the Lattice C compiler. To
access the facilities of the BIOS you should #include the file osbind.h into
your program.

The BIOS provides the low level console and disk manipulation functions for
GEMDOS. In general you should have no need to call this level of the OS as it
provides facilities which are not always compatible with GEMDOS. Note that
the exception to this is when using the serial port, for which the BIOS should
always be used due to problems in GEMDOS.

Like GEMDOS the BIOS uses a consistent set of prefixes for its naming, these
are:

Prefix Function

Bcon Direct access to character device input/output.
Drv Disk management.

Get System parameter block inquiry.

Kb Low level keyboard driver information.

Med Media inquiry functions.

LR Device logical sector access.

S System inquiry and manipulation.

T Time and date functions.

All functions in the BIOS library are available either through the original Atari
macro based definitions or through the inline code capability of the Lattice C
compiler. Using this facility will greatly reduce the overheads compared with
the old ‘stub’ based method.

BIOS Library Lattice C 5 Page 297

B con i n Read a character from a device

Class: BIOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>

x=Bconin(dev);

Long x; character obtained
short dev; device to get character from
DESCRIPTION

The Bconin function reads (without echoing) a character from the specified
device. The legal values are:

Value Meaning

0 Parallel printer port

1 Auxiliary device (the R5232 port)
2 Console device

3 MIDI port

For the console (device 2) Bconin returns the scancode in the low byte of the
upper word, and the ASCII character in the low byte of the low word. This
gives the format:

bits 31-24 bits 23-16 bits 15-8 bits 7-0
Shift key status Keyboard scan 0 ASCII value of
code character

Note that the shift key status is only returned if bit 3 in the system variable
conterm (the character at 0x484) is set. This defaults to off.

The non-ASCII keys (e.g. the function and cursor keys) return 0 for the ASCII
value, so that the scan code is used to decipher them. The shift key status gives
the state of the keyboard modifiers (Shift, Ctrl, Alt etc.) and are as described
under the BIOS function Kbshift.

RETURNS Petonzray - ot /"'hni I 50417,‘:"/‘

As noted above.

Page 298 Lattice C 5 BIOS Library

SEE
Bconstat, Cconin, Cauxin

CAVEATS

The conterm variable is a system global so either all processes or no processes

get the shift key state.
EXAMPLE

/] *
* display key-presses as they occur
*/

#include <osbind.h>
int oconterm;

int conset(void)

{

oconterm=*(char *)0x484;
*(char *)0x484|=1<<3;
}

int conunset(void)
{

*(char *)0x484=oconterm;
}

int main(void)
{
const char *unshift;

unshift=*Keytbl(-1,-1,-1);
Supexec(conset); /* set the shift key bit
for (;;)
44
Long x;

x=Bconin(2); /* get key code */

/* shift-shift-ctrl-alt ends */

if ((x80x0f000000)==0x0f000000)
break;

printf("ASCII <code=%ld;Scan code=7%Ll
x&0xff, (x>>16)80xff, (x>>24)80xff);

/* Look up key LlLegend in keyboard table */

printf("Key Legend="'%c'\n",unshiftl[(x>

}

*/

Zld;shift=%Ld\n",
f

>16)80xff1);

Supexec(conunset); /* reset shift key bit */

return 0;

BIOS Library Lattice C 5

Page 299

B cono U'I' Write a character to a device

Class: BIOS Category: Console and Port 1/O
SYNOPSIS

#include <osbind.h>

error=Bconout(dev,c);

Long error; error status
short dev; device to send character to
short c; character to send to device

DESCRIPTION

The Bconout function writes the character C to the specified device. The legal
device values (dev) are:

Value Meaning

0 Parallel printer port

1 Auxiliary device (the RS232 port)
2 Console device

3 MIDI port

4 Keyboard port (IKBD)

5 Raw screen device

RETURNS

For output to the printer, R5232, MIDI and IKBD devices, the function returns
0 to indicate failure or non-zero on success.

SEE

Bcostat, Cconout, Cauxout, Cprnout

Page 300 LatticeC 5 BIOS Library

B cons t di‘ Return device input status

Class: BIOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>

status=Bconstat(dev);

Long status; input status
short dev; device to interrogate
DESCRIPTION

Bconstat obtains the input status of a character device. The parameter dev
gives the device for which you want to know the status. The legal values are:

Value Meaning
0 Parallel printer port
1 Auxiliary device (the RS232 port)
2 Console device
3 MIDI port
RETURNS

The value returned in status is 0 if no characters are available, or -1 if at least
one character is available.

SEE

Bconin, Cconis, Cauxis

BIOS Library Lattice C § Page 301

B CcCOS i' al' Check character device output status

Class: BIOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>

status=Bcostat(dev);

lLong status; output status
short dev; device to check status of
DESCRIPTION

The Bcostat function checks the output status of the specified device. The legal
device values (dev) are:

Value Meaning

0 Parallel printer port

1 Auxiliary device (the RS232 port)
2 Console device

3 MIDI port

4 Keyboard port (IKBD)

5 Raw screen device

RETURNS

The function returns 0 to indicate that the device is not ready to receive, or
non-zero to indicate that a character may be sent without waiting.

SEE

Bconout, Cconos, Cauxos, Cprnos

Page 302 Lattice C 5 BIOS Library

D rvma p Return bitmap of mounted drives
Class: BIOS Category: Device I/O
SYNOPSIS

#include <osbind.h>

bmap=Drvmap();

unsigned Llong bmap; bitmap of mounted drives

DESCRIPTION

The Drvmap function returns a bit map of drives mounted (i.e. available) on
the system. Each bit represents a single drive which exists if set. Bit 0
corresponds to drive A, bit 1 to drive B etc.

Note that on a system with only a single floppy both bits 0 and 1 will be set,
and ‘virtual-disking’ will be used to provide both devices.

RETURNS

The bitmap of mounted drives. Note that it is up to device drivers to update the
system global _drvbits if they are to be recognised by the system.

SEE
Dsetdrv
EXAMPLE

/ *
* List the mounted drives
*/

#include <osbind.h>
#include <stdio.h>

int main(void)
{

unsigned Long bmap;

int i;

bmap=Drvmap(); /* fetch the bitmap */

for (i=0; i<32; i++) /* scan over the bits */
if (bmap&1<<i) /* check a bit */

printf("Drive Zc: 1is mounted\n",i+'A');
return O0;

BIOS Library LatticeC 5 Page 303

G e t b p b Get BIOS parameter block for a device

Class: BIOS Category: Device I/O
SYNOPSIS

#include <osbind.h>

bpb=Getbpb(dev);

volatile void *bpb; pointer to device BPB
short dev; device to obtain BPB for
DESCRIPTION

Getbpb returns a pointer to the BIOS parameter block for the requested
device dev. bpb points to structure of the form:

typedef struct
{

short recsiz; bytes per sector

short clsiz; sectors per cluster

short clsizb; bytes per cluster

short rdlen; Length in sectors of root directory
short fsiz; sectors per FAT

short fatrec; record number of start of second FAT
short datrec; record number of start of data

short numcl; clusters per disk
short bflags; bit 0== - 16 bit FAT, else 12 bit
} BPB;

Note that calling this function causes the driver to update the media-changed
flag to ‘not changed’ for the device. If the device has changed and GEMDOS
has not noticed then data may be damaged on the device. The function
_mediach should be used to force GEMDOS to recognise a media change
prior to calling this function.

RETURNS

The function returns a pointer to the BIOS parameter block for the device
requested or NULL if the BPB could not be obtained (e.g. trying to get the BPB
of an unknown device).

SEE

_mediach

CAVEATS

If a media change is not forced via _mediach prior to calling this function,

data loss is almost certain to occur as GEMDOS’s data caches may become
invalid.

Page 304 Lattice C 5 BIOS Library

G e t m p b Size machine memory

Class: BIOS Category: Memory Allocation
SYNOPSIS

#include <osbind.h>
Getmpb(mpb) ;

void *mpb; pointer to prototype mpb

DESCRIPTION

Getmpb is used during the GEMDOS startup sequence to size the GEMDOS
free memory. mpb points to a memory parameter block structure which is
filled in by the call. An MPB has the form:

typedef struct md
{

struct md *m_Llink; next MD

void *m_start; start of block
Long m_Llength; bytes in block
BASEPAGE *m_own; owner's basepage
} MD;

typedef struct mpb
{

MD *mp_mfl; free List
MD *mp_mal; allocated Llist
MD *mp_rover; roving ptr

} MPB;

Note that this function is called very early on in the GEMDOS startup
sequence and is not useful subsequently, there are no occasions when its use is
legal or desirable by a users program.

SEE

Malloc

BIOS Library Lattice C 5 Page 305

Kbshift Find state of keyboard ‘shift’ keys

Class: BIOS Category: Console and Port I/O
SYNOPSIS

#include <osbind.h>

state=Kbshift(mode);

lLong state; old keyboard state
short mode; new state for keyboard
DESCRIPTION

The Kbshift function returns allows the user to read or change the state of the
keyboard ‘shift’ keys. The parameter dev gives the new state into which the
keys are to be placed. The bits and their meanings are:

Bit Meaning (when set)
0 Right shift key down
1 Left shift key down

2 Ctrl key down

3 Alt key down

4 Caps-lock engaged

5 Clr/Home key down
6 Insert key down

If dev is set to -1 then the keyboard state is not changed and the the current
state is returned.

Note that bits 5 and 6 are not the left and right mouse buttons as inferred by
some documentation; they are, however, the keyboard equivalents.

RETURNS

Kbshift returns the old state of the keyboard shift bits.

Page 306 LatticeC 5 BIOS Library

EXAMPLE

] *
* Force Caps—-Lock on
*/

#include <osbind.h>
H#include <stdio.h>

int main(void)
{

Long state;
char buf[801];

state=Kbshift(1<<4); /* caps on, save old state */

while (!'feof(stdin)) /* wait for a ctrl-2 */
gets(buf); /* type something to test */

Kbshift(state); /* restore old state */

return 0;

BIOS Library Lattice C 5 Page 307

M e d i ac h Return media change status

Class: BIOS Category: Device I/O
SYNOPSIS

#include <osbind.h>

status=Mediach(dev);

Long error; changed status
short dev; device to obtain status of

DESCRIPTION

The Mediach function returns the ‘media-change’ status of the device specified
by dev. This function is used by GEMDOS to detect media changes on
removable media (e.g. floppy disks).

Note that if the BIOS detects a definite media-change, before GEMDOS has
cleared it (via Getbpb), then it will issue a media changed error (E_CHNG).

RETURNS
The function returns a value of 0, 1 or 2 in status representing the situations:

Value Meaning

0 Media definitely has not changed
1 Media might have changed
2 Media definitely has changed

SEE
Getbpb, _mediach

Page 308 Lattice C 5 BIOS Library

R wdad b S, Lrw a bs Read/Write logical sectors on a device
Class: BIOS Category: Device 1/0
SYNOPSIS

#include <osbind.h>

error=Rwabs(mode,buf,count,recno,dev);
error=Lrwabs(mode,buf,count,dev,lrec);

Long error; error status

short mode; r/w mode to use

void *buf; pointer to buffer

short count; number of sectors to transfer

short recno; Logical sector to start at

short dev; device to use

Long Llrec; Long logical sector to start at
DESCRIPTION

The Rwabs and Lrwabs functions are used to read and write sectors to and
from a ‘block’ device. The mode parameter has bits which specify the way the
operation will occur. Note that all devices do not support all bits. The bits
currently used are:

Bit Meaning

0 Write/ Read i.e. write when bit is set.

1 If set then do not affect the media change status, or check it.

2 Disable retry when set.

3 If set do not translate logical sectors to physical sectors (i.e.
recno gives a physical rather than a logical sector number).

The operation is performed into a buffer pointed to by buf, which must be large
enough for the operation. In logical mode it must be at least count * the
logical sector size, whilst in physical mode it must be count * 512. Note that
buf need not be word aligned but for reasons of efficiency it should in general
be aligned in that way.

The count parameter specifies how many sectors will be transferred, and dev
specifies which device the transfer is to occur on.

recno gives the first sector (logical or physical) to read/write from. If this
parameter is larger than 32767 then the long Rwabs form Lrwalbs should be
used, where IreC has the same meaning as recno.

BIOS Library Lattice C 5 Page 309

RETURNS
The functions return 0 on success or a negative error code on failure. Note that

as a result of processing this function the critical error handler (etv_critic) may
be called.

SEE
Floprd, Flopwr
CAVEATS

Bits 2 and 3 in the mode parameter are rarely supported. Also the long Rwabs
form, Lrwabs, was only introduced with Atari’s AHDI 3.0.

Page 310 Lattice C 5 BIOS Library

Se‘l‘exc Set exception vector

Class: BIOS Category: Vector Handling

SYNOPSIS

#include <osbind.h>

old=Setexc(num,vec);

void (*old); () old vector entry

short num; vector number to change

void (*vec)(); new exception handler
DESCRIPTION

The Setexc function is used to modify a system exception vector. num gives

the number of the vector to modify. The following values are
allowed:

currently

Value Vector

0-0xff Standard 68000 exception vectors.
0x100 System timer vector (etv_timer).
0x101 Critical error handler (etv_critic).
0x102 Process terminate handler (etv_term).
0x103-0x107 Reserved.

The new vector is given in vec. If it has the value (void *)-1 then the current

vector is not changed and the value simply returned.

RETURNS

The functions returns the old value of the exception handler. Note that you

must remove all exception handlers prior to your process terminating.

BIOS Library Lattice C 5

Page 311

Tic k ca I Get system timer ‘tick’ interval

Class: BIOS Category: Date and Time
SYNOPSIS

#include <osbind.h>
tick=Tickcal();

Long tick; system tick interval

DESCRIPTION
Tickcal returns the system timer calibration value in milliseconds. This is the

value passed to etv_timer as a parameter. For current systems it has the value
50.

RETURNS

As noted above.

Page 312 Lattice C 5 BIOS Library

6 XBIOS Library

This section describes the XBIOS library supplied with the Lattice C compiler.
To access the facilities of the XBIOS you should #include the file osbind.h
into your program.

The XBIOS provides the very lowest level of access in the operating system to
the hardware. In general there are very few occasions when calling it is
justified from a user program, and to do so, usefully, low level documentation
on the hardware is required.

Unlike other parts of the OS the XBIOS has little naming consistency in its
functions.

All functions in the XBIOS library are available either through the original
Atari macro based definitions or through the inline code capability of the
Lattice C compiler. Using this facility will greatly reduce the overheads
compared with the old ‘stub’ based method.

XBIOS Library Lattice C 5 Page 313

BlOSkeys Reset keyboard translation tables

Class: XBIOS Category: Keyboard Configuration
SYNOPSIS

#include <osbind.h>

Bioskeys();

DESCRIPTION

Bloskeys is used to restore the default power-up setting of the keyboard
translation tables. This will normally only be required if they have been
changed via Keytbl.

SEE
Keytbl

Page 314 Lattice C 5 XBIOS Library

I_B I " mo d e Get/Set blitter configuration

Class: XBIOS Category: Graphics Configuration
SYNOPSIS

#include <osbind.h>

old=Blitmode(mode);

short old; old blitter configuration
short mode; new blitter mode
DESCRIPTION

Blitmode is used to detect the presence and alter the configuration of a
hardware blitter. Currently only a single bit in mode is allocated, with bit 0
being set to enable the hardware blitter, or 0 to disable. Alternatively the value
-1 may be used to obtain the current blitter status.

The old configuration is returned in old and has two bits of use:

Bit Meaning when set
0 Perform blits in hardware
1 Hardware blitter is available
RETURNS
As noted above.
EXAMPLE
/] *
* detect the presence of a blitter and enable it
*/

#include <osbind.h>
#include <stdio.h>

int main(void)

{
short old=Blitmode(-1);
if (oldg&2)
{

Blitmode(old|1);
printf("Blitter enabled\n");

else
printf("Sorry no blitter\n");
return 0;

XBIOS Library Lattice C 5 Page 315

CUI‘SCOHf Configure VT52 cursor

Class: XBIOS Category: Graphics Configuration
SYNOPSIS

#include <osbind.h>

old=Cursconf(function,rate);

short old; old cursor flash rate

short function; cursor parameter to change

short rate; new flash rate
DESCRIPTION

Cursconf is used to configure the VT52 cursor. function should have a value
giving the parameter you wish to change:

Value Meaning

0 Hide cursor.

1 Show cursor.

2 Enable blinking.

3 Disable blinking.

4 Set blink rate to rate.

5 Return current blink rate.

The blink rate (for mode 4 and 5) is specified in half-frame rates, i.e. 70Hz for
mono, 50/60Hz for colour.

RETURNS

For modes 0-4 the return value has no meaning. In mode 5 the current cursor
blink rate is returned.

CAVEATS

There is no way of obtaining the current blink or hide status of the cursor.

Page 316 Lattice C 5 XBIOS Library

|D oS oun d Initialise sound Damon

Class: XBIOS Category: Sound Functions
SYNOPSIS

#include <osbind.h>
Dosound(cmd);

const char *cmd; pointer to command stream

DESCRIPTION

Dosound is used to start a new sound sequence through the sound demon.
cmd should point to a byte stream consisting of commands for the deemon
consisting (in general) of one byte opcode and one byte operand pairs.

Commands 0-15 select a register, the following byte is then loaded into that
register.

Command 0x80 stores the next byte into a temporary register for use by
command 0x81.

Command 0x81 takes three parameters. The first is a register to load with the
value in the temporary register, the second a signed value to add to the
temporary register and the third the final value of the temporary register. The
value of the temporary register is then stored into the register mentioned and
modified by the increment until the termination condition is reached.

The final command is 0x82 (in fact any value >0x82) which has an argument

which specifies the number of ticks (50Hz) until the next command should be
executed, or the special value 0 to terminate processing.

SEE
Giaccess
CAVEATS

This is an interrupt driven routine so you should not use an automatic array to
hold the demon commands.

XBIOS Library Lattice C 5 Page 317

F I e pfmt Format a track on a floppy disk
Class: XBIOS Category: Floppy Disk 1/O
SYNOPSIS

#include <osbind.h>

err=Flopfmt(buf,skew,dev,spt,track,side,
intlv,magic,virgin);

short err; error status

void *buf; pointer to word aligned buffer

short *skew; pointer to skew table

short dev; device to read from

short spt; sector to read

short track; track to read from

short side; side to read from

short idintlv; sector interleave factor

Long magic; 0x87654321

short virgin; uninitialised sector value
DESCRIPTION

Flopfmt is used to format a track on a floppy disk. buf is used to build up an
exact image of the track and should point to a buffer of 8Kbytes. The track
formatted is frack on drive dev, with spt sectors per track on side side.

magic must be the value 0x87654321; this is used to ensure that formats are
less likely to occur by accident. virgin is a value which is placed in the new
sectors. Typically this value is Oxe5e5; note that it may not be a value which has
the high nybble of either byte set (e.g. 0xf0f0 is illegal) as these would be
interpreted as commands to the FDC.

The intlv parameter gives the interleave which is to be used when creating the
sectors, typically this will be 1 giving consecutively sectors. If it has the special
value -1 then the parameter skew is used and should point to an array of spt
shorts giving the required layout of sectors (e.g. 1,6,2,7,3,8,4,9,5 for spt==9).

Flopfmt returns in buf a word list of sectors which failed during the verify
phase. Note that these are not necessarily in numerical order and are 0
terminated. If no sectors failed then *(short *)buf==0;

Calling this function causes the device to enter a ‘media definitely changed’
state which will be indicated at the next Rwabs or Mediach call.

RETURNS

Flopfmt returns 0 if the track was successfully formatted, or a negative error
code if an error occurred.

Page 318 Lattice C 5 XBIOS Library

SEE

Floprd, Flopwr, Flopver, Floprate, Rwabs
CAVEATS

The skew parameter is only supported on TOS 1.2 and above. It is ignored on

TOS 1.0.

EXAMPLE

/*

* Format a single-sided floppy with
*/

#include <osbind.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

static char buf[81921];
int trk;

n-sector

skewing

short skewll1=(2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9};

int n=2;
for (trk=0; trk<80; trk++)
{

printf("\rFormatting track %02d",
if (Flopfmt(buf,&skewl8-(trk*n%Z9)

printf("\nError on track 7%02d\n"

/* zero the buf
memset (buf,0,9*

A
-
[N ha)
~

/* dinitialise FA
Flopwr(buf,OL,O0,
Flopwr(buf,OL,O0,
/* build a boot sector */

Protobt(buf,0x01000000L,2,0);

/* and write it ou
Flopwr(buf,OL,0,1,

XBIOS Library Lattice C 5

Page 319

F I (o] p ra t e Set floppy disk step rate

Class: XBIOS Category: Floppy Disk 1/O
SYNOPSIS

#include <osbind.h>

old=Floprate(dev,rate);

short old; old step rate

short dev; device to change rate for

short rate; new step rate
DESCRIPTION

Floprate is used to change the track-to-track stepping rate of the floppy disk
controller for each drive. The device to change the rate of is passed in dev, and
the new rate in rate. rate has the values:

Value Seek rate
0 6ms

1 12ms

2 2ms

3 3ms

Note that to simply inquire the seek rate the value -1 may be used for rate.

RETURNS

The old seek rate for the specified drive is returned in old.

CAVEATS

This function is only available on TOS 1.4 and above, for earlier versions the
system variable seekrate should be used instead, but, unlike Floprate, does
not allow different seek rates on each of the drives.

Page 320 LatticeC 5 XBIOS Library

F I (o) p rd Read sectors from a floppy disk

Class: XBIOS Category: Floppy Disk I1/O
SYNOPSIS

#include <osbind.h>

err=Floprd(buf, junk,dev,sect,track,side,cnt);

short err; error status

void *buf; pointer to word aligned buffer

Long junk; unused Llongword

short dev; device to read from

short sect; first sector to read

short track; track to read from

short side; side to read from

short c¢nt; number of sectors to read
DESCRIPTION

Floprd is used to read one or more sectors from a floppy disk. cnt sectors are
read from device dev (0 or 1 indicating drive A or B), starting at sector sect on
track frack, side side into a buffer at buf. junk is not currently used and should
have the value OL for future compatibility.

Note that this function will only read consecutive physical sectors within a
track and the Rwabs function should be used to obtain logical sectors.

RETURNS

Floprd returns 0 if the required number of sectors were successfully read, or a
negative error code if an error occurred.

SEE

Flopwr, Flopfmt, Flopver, Floprate, Rwabs

XBIOS Library Lattice C 5 Page 321

F I (o] pV er Verify sectors on a floppy disk

Class: XBIOS Category: Floppy Disk 1/0
SYNOPSIS

#include <osbind.h>

err=Flopver(buf,junk,dev,sect,track,side,cnt);

short err; error status

void *buf; pointer to 1K word aligned buffer

Long junk; unused Longword

short dev; device to verify on

short sect; first sector to verify

short track; track to verify

short side; side to verify

short cnt; number of sectors to verify
DESCRIPTION

Flopver is used to verify one or more sectors on a floppy disk. cnt sectors are
verified on device dev (0 or 1 indicating drive A or B), starting at sector sect
on track track, side side using the 1K buffer buf. junk is not currently used and
should have the value OL for future compatibility.

Flopver returns in buf a word list of sectors which failed. Note that these are
not necessarily in numerical order and are 0 terminated. If no sectors failed
then *(short *)buf==0;

RETURNS

Flopver returns 0 if all sectors were verified successfully, or a negative error
code if an error occurred.

SEE
Flopwr, Flopfmt, Floprd, Floprate, Rwabs

Page 322 Lattice C 5 XBIOS Library

F | (o] p wr Wrrite sectors to a floppy disk

Class: XBIOS Category: Floppy Disk 1/O
SYNOPSIS

#include <osbind.h>

err=Flopwr(buf, junk,dev,sect,track,side,cnt);

short err; error status

void *buf; pointer to word aligned buffer

Long junk; unused Llongword

short dev; device to write to

short sect; first sector to write

short track; track to write to

short side; side to write to

short cnt; number of sectors to write
DESCRIPTION

Flopwr is used to write one or more sectors to a floppy disk. cnt sectors are
written to device dev (0 or 1 indicating drive A or B), starting at sector sect on
track track, side side from a buffer at buf.

Note that this function will only write consecutive physical sectors and the
function Rwabs should be used to write logical sectors.

If this function is used to write to track 0, sector 1 then the device will enter a
‘media might have changed’ state which will be indicated at the next Rwabs or
Mediach call.

RETURNS

Flopwr returns 0 if the requested sectors were successfully written, or a
negative error code if an error occurred.

SEE
Floprd, Flopfmt, Flopver, Floprate, Rwabs

XBIOS Library Lattice C 5 Page 323

G [E] t rez Find current screen mode

Class: XBIOS Category: Graphics Configuration
SYNOPSIS

#include <osbind.h>
res=Getrez();

short res; current screen mode

DESCRIPTION

Getrez returns a coded value for the current screen mode. The values currently
returned in res are:

Value Screen mode
0 Low resolution (320x200x4)
1 Medium resolution (640x200x2)
2 High resolution (640x400x1)
RETURNS
As noted above.
SEE
v_opnwk, Setscreen
CAVEATS

You should not use this function except as indicated under v_opnvwk. If you do
rely on this function your application will, in general, not work on large screen
monitors or on the extended screen modes of the Atari TT.

If your application needs to know the size of the screen, the number of
bitplanes, or other mode specific information it should interrogate the AES,
VDI or Line-A for the information rather than relying on hard-coded constants
based on the result of this call.

Page 324 Lattice C 5 XBIOS Library

Gettime, Settime Get/Set IKBD time

Class: XBIOS
SYNOPSIS

#Hinclude

Category: Date and Time

<osbind.h>

time=Gettime();
Settime(time);

long

DESCRIPTION

IKBD time value

Gettime and Settime are used to manipulate the setting of the IKBD clock.
The time is packed in the same way as GEMDOS viz:

Bits Contents

0-4 Second/2 (0 to 29)
5-10 Minute (0 to 59)
11-15 Hour (0 to 23)

16-20 Day (0 to 31)

21-24 Month (1 to 12)
25-31 Year-1980 (0 to 127)

For Settime the single parameter gives the packed time to which the IKBD

clock is to be set.

RETURNS

Gettime returns the packed IKBD time.

XBIOS Library

Lattice C5 Page 325

Giaccess Read/Write sound chip registers

Class: XBIOS Category: Sound Functions

SYNOPSIS

#include <osbind.h>

val=Giaccess(data,reg);

short wval; value of register

short data; data to write into

short reg; register to get/set
DESCRIPTION

register

The Glaccess function is used access the ST sound chip. The register to
consider is passed in reg and the new data value to be loaded passed in data.
If reg has bit 7 clear (ie. ANDed with 0x7f) then the setting of the register is
not changed and the current value returned. The legal values for reg are:

0 Channel A frequency

1

2 Channel B frequency

3

4 Channel C frequency

5

6 Noise period

7 Enable flags

10 Channel A amplitude

11 Channel B amplitude

12 Channel C amplitude

13 Envelope period

14

15 Envelope shape
RETURNS

The function returns the new value of the register in val.

Page 326 Lattice C 5

XBIOS Library

I k bd WS Write string to keyboard processor

Class: XBIOS Category: IKBD I/O
SYNOPSIS

#include <osbind.h>

Ikbdws(count,buf);

short count; number of bytes to write-1
const char *buf; pointer to characters to write
DESCRIPTION

The Ikbdws function is used to write a string to the IKBD. count-1 characters
are written from a buffer at buf.

SEE

lorec, Initmous

XBIOS Library Lattice C 5 Page 327

I 1] "’m ous Set mouse mode and packet handler

Class: XBIOS Category: IKBD I/O
SYNOPSIS

#include <osbind.h>

Initmous(mode,param,hand);

short mode; new mouse mode

void *param; mouse mode parameter block

void (*hand)(void); mouse packet handler
DESCRIPTION

Initrnous is used to change the way the mouse movements are interpreted by
the system. The mouse is capable of operating in several modes, the value of
mode sets which one is to be used:

Value Meaning
0 Disable mouse.
1 Enable relative mouse mode, i.e. report the position

changes to the packet handler.

2 Enable absolute mouse mode, i.e. always report an
absolute mouse position to the packet handler.

4 Enable mouse keycode mode, i.e. never send motion
packets, but pretend that a cursor key was pressed.

If the mouse is being Flaced into relative or keycode mode, param should point
to a structure of the form:

struct param
{

char topmode;
char buttons;
char xparam;
char yparam;
};
The topmode element can have two values; 0 indicates that Y=0 occurs at the
bottom of the screen; 1 indicates that Y=0 occurs at the top of the screen.

buttons allows the button reporting state to be changed. If bit 2 is set then the
mouse buttons act like normal keys, otherwise they are reported as packets to
the handler. Bits 0 and 1 (when set) cause the absolute mouse position to be
reported on pressing and/or on releasing a mouse button respectively.

Page 328 Lattice C 5 XBIOS Library

Xxparam and yparam change the way the X and Y position information is
reported. They have different meanings for each of the three mouse modes:

Mode Meaning

Relative Mouse threshold, the number of mouse ‘clicks’
between relative position reports.

Absolute Mouse scaling factor, the number of ‘clicks’ to give
a single step in the absolute position.

Keycode Mouse delta factor, the number of ‘clicks’ before
reporting a left/right/up/down cursor motion.

In mouse absolute mode the param structure is extended so that it has the
form:

struct param
{

char topmode;
char buttons;
char xparam;
char yparam;
short xmax;
short ymax;
short xinitial;
short yinitial;
};

xmax and ymax specify the maximum X and Y positions that the mouse may be

allowed to move to, whilst xInltlal and yInital give the position at which the
mouse should be placed.

hand points to a mouse packet handler which will be called when mouse
packets become available. Note that in keycode mode you need not supply a
handler.

SEE
lkbdws, Kbdvbase
CAVEATS

If ?rou are using the AES or VDI then changing the mode of the mouse from the
relative mode required for their operation will stop them from functioning
correctly.

XBIOS Library Lattice C 5 Page 329

lorec

Find serial device I/O structure

Class: XBIOS
SYNOPSIS

#include

base=lorec(dev);

void *base;

short

dev;

DESCRIPTION

lorec is used to obtain the base of the system data structure for one of the
serial devices. The parameter dev gives the device:

<osbind.h>

base of
serial

Category: MFP Configuration

1/0 record
device

Value Device

0 RS-232

1 Keyboard
2 MIDI

The structure returned has the form:

struct
{

char

short

short

short

short

short
};

iorec

*jbuf;
ibufsiz;
ibufhd;
ibuftl;
ibuflow;
ibufhi;

pointer to

buffer

size of buffer

head index
tail dindex
Low-water

high-water

mark
mark

If the structure requested was the for the RS-232 port then a second structure
follows the first giving the RS-232 output buffer structure.

SEE

Midiws, Bconout, Bcostat, Bconin, Bconstat, Rsconf

Page 330

Lattice C 5

XBIOS Library

Jenabint, Jdisint Enable/Disable 68901 interrupt

Class: XBIOS Category: MFP Configuration
SYNOPSIS

#include <osbind.h>

Jdisint(intno); disable MFP idinterrupt
Jenabint(intno); enable MFP interrupt

short intno; interrupt to manipulate

DESCRIPTION
The Jenabint and Jdisint functions enable and disable respectively interrupt
intNo on the 68901. This function is most often with Mfpint to enable or disable

interrupts after changing the handler. The values for INfnO are as described
under Mfpint.

SEE
Mfpint

XBIOS Library Lattice C 5 Page 331

K b d VvV b ase Obtain system IKBD/MIDI dispatch handler
Class: XBIOS Category: IKBD/MIDI I/O

SYNOPSIS

#include <osbind.h>

base=Kbdvbase();

void (*volatile *base)(void); pointer to structure

DESCRIPTION

The Kbdvbase function obtains a pointer to the system structure used for
dispatching MFP ACIA interrupts, so that you may patch into these if you wish.
The Kbdvbase structure has the form:

struct kbdvecs

9 MIDI-input

5 keyboard error
MIDI error

IKBD status packet
mouse packet

void (*midivec)(void)
void (*vkbderr)(void);
void (*vmiderr)(void);
void (*statvec)(void);
void (*mousevec)(void);
d)
7
)
)

4
void (*clockvec)(voi b clock packet
void (*joyvec)(void) joystick packet
void (*midisys)(void); system MIDI vector
void (*ikbdsys)(void); system IKBD vector
char ikbdstate; IKBD packet state

};

These vectors are used by the system for the following purposes:

midivec MIDI input, by default a character is available in DO,
which is then buffered into an lorec structure.

vkbderr Keyboard and MIDI overrun handler.

vmiderr

statvec IKBD status, mouse, clock and joystick packet

mousevec handlers. These routines are passed a pointer to the

clockvec received packet in AQ.

Joyvec

midlisys Low-level MIDI and IKBD packet handlers. These

ikbdsys routines are called initially and parse the status of
the MFP before calling the appropriate sub-function.

If you replace any of the handlers you should either call the old handler or
return via an RTS instruction.

Page 332 LatticeC 5 XBIOS Library

RETURNS

Asnoted above.

SEE
Mfpint

XBIOS Library LatticeC 5 Page 333

Kbrate Get/Set the keyboard repeat rate and delay

Class: XBIOS Category: Keyboard Configuration
SYNOPSIS

#include <osbind.h>

old=Kbrate(delay,rate);

short old; packed old delay and repeat rate
short delay; initial delay before repeat starts
short rate; new repeat rate

DESCRIPTION

Korate is used to change the keyboard repeat rate and the initial delay before
repeating starts. delay gives the time (in 50Hz system ticks) before the key
starts repeating, whilst rate gives the rate at which the key is to repeat. If a
parameter is -1 then the current value is not changed.

RETURNS

A packed word is returned giving the old key repeat and delay rates. The initial
delay is in the high byte of Old, whilst the repeat rate is in the low byte.

Page 334 Lattice C S XBIOS Library

K e yt b I Change keyboard translation tables
Class: XBIOS Category: Keyboard Configuration
SYNOPSIS

#include <osbind.h>

ktab=Keytbl(normal,shift,caps);

char **ktab; keyboard translation vector

const char *normal; un-shifted translation table

const char *shift; shifted translation table

const char *caps; CAPS-lLock translation table
DESCRIPTION

Keytbl is used to change the mapping from keyboard scan codes to key-presses.
Note that all keyboards return identical scan-codes for keys in the same place,
but it is these translation tables, which give the ASCII value for the legend
marked on a key, that are used to internationalise a keyboard.

The normail, shift and caps pointers should point a arrays of 128 characters
which map scan-codes into ASCII codes when the appropriate key is depressed.
If a scan-code does not have an ASCII representation the value returned is 0.

If you do not wish to change one of the translation tables the value (char *)-1
should be passed.

RETURNS

Keytbl returns in ktab a pointer to the structure in which all three tables are
held:

struct keytab
{

char *unshift; /* normal table */
char *shift; /* shifted table */
char *capslock; /* CAPS-lLock table */
};

SEE

Bioskeys

XBIOS Library Lattice C § Page 335

Log bd se Find base of current drawing area

Class: XBIOS Category: Graphics Configuration
SYNOPSIS

#include <osbind.h>

base=Logbase();

void *base; base of Llogical screen

DESCRIPTION

Logbase returns a pointer to the base of the logical screen (i.e. the one onto
which any drawing by the GEM VDI is done).

Do not confuse the physical and logical screens. The physical screen is that

displayed, whilst the logical screen is the one onto which drawing occurs.
Normally these will be the same but this is not required.

RETURNS

The function returns the base of the logical screen.

SEE

Physbase, Setscreen

Page 336 Lattice C 5 XBIOS Library

M f p i ni' Set MFP interrupt handler

Class: XBIOS Category: MFP Configuration
SYNOPSIS

#include <osbind.h>
Mfpint(num,hand);

short num; interrupt number to change
void (*hand)(void) new interrupt handler

DESCRIPTION

Mfpint is used to change one of the multi-function peripheral adaptor (MFP)
vectors. The vector to change is given by num, which has values:

Vector Function

0 Parallel port

1 RS-232 Data Carrier Detect

2 RS-232 Clear-To-Send

3 BitBIt complete

4 RS-232 baud rate generator (Timer D)
5 200Hz System clock (Timer C)

6 Keyboard/MIDI

7 Floppy and Hard disk

8 Horizontal Blank (Timer B)

9 RS-232 transmit error

10 RS-232 transmit buffer empty

11 RS-232 receive error

12 RS-232 receive buffer full

13 DMA sound (Timer A)

14 RS-232 ring indicator

15 Mono monitor detect/DMA sound complete

XBIOS Library Lattice C 5 Page 337

The new interrupt handler is passed in hand. Note that installing a handler
does not enable an interrupt this must be done separately via Jenabint.

SEE

Setexc, Jenabint, Jdisint

CAVEATS

The old MFP interrupt handler is discarded and so cannot subsequently be
restored.

Note that the DMA sound option is only implemented on the Atari STE.

Page 338 Lattice C 5 XBIOS Library

M id iws Write string to MIDI port

Class: XBIOS Category: MIDI 1/O

SYNOPSIS

#include <osbind.h>

Midiws(count,buf);

short count; number of bytes to write-1
const char *buf; pointer to characters to write
DESCRIPTION

The MIdlws function is used to write a string to the MIDI port. count-1
characters are written from a buffer at buf.

SEE

lorec

XBIOS Library Lattice C 5 Page 339

O ng | blt, Offg | b" Atomically set/reset port A bit

Class: XBIOS Category: Miscellaneous Functions

SYNOPSIS

#include <osbind.h>

Ongibit(onmask);
offgibit(offmask);

short onmask; mask of bits to set
short offmask; mask of bits to clear
DESCRIPTION

Ongibit and Offgibit are used to atomically set and reset bits on the sound chip
port A. This atomic access is essential as the BIOS often modifies these bits
under interrupt control. For Ongibit, onmask contains a 1 in every bit position
which is to be set and a 0 in every position which is to be unchanged. By
comparison the Offgibit offmask contains a 1 in every bit position which is to
be unchanged and a 0 in every position which is to be reset.

The bits in these masks are used for the following purposes:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unused General | Centronics | RS-232 RS-232 Floppy 1 | Floppy 0 Floppy
Purpose Strobe DTR RTS Select Select Side
Output Select

SEE
Rsconf, Floprd, Flopwr

Page 340 Lattice C 5 XBIOS Library

P h ys b a S e Find base of current screen display

Class: XBIOS Category: Graphics Configuration
SYNOPSIS

#include <osbind.h>
base=Physbase();

void *base; base of physical screen

DESCRIPTION

Physbase returns a pointer to the base of the physical screen (i.e. the one
actually displayed).

Do not confuse the physical and logical screens. The physical screen is that

displayed, whilst the logical screen is the one onto which drawing occurs.
Normally these will be the same but this is not required.

RETURNS

The function returns the base of the physical screen.

SEE

Logbase, Setscreen

XBIOS Library Lattice C 5 Page 341

Pir Otd bt Build prototype boot sector

Class: XBIOS Category: Miscellaneous Functions
SYNOPSIS

#include <osbind.h>

Protobt(buf,serial, type,exec);

void *buf; 512 byte prototype buffer

Long serial; serial number

short type; disk type

short exec; executable status of boot sector
DESCRIPTION

The Protobt function is used to build a boot sector for freshly formatted
floppies. buf should point to a 512 byte buffer into which the sector will be built.
This should contain any boot sector code you require.

serial gives the serial number to use for the disk. Note that the BIOS uses the
serial number to distinguish floppies so if you give disks identical serial
numbers they may become damaged. If serial has the value -1 then the current
serial number in the boot sector is unchanged, otherwise if it has a value
20x01000000 then a random serial number is computed and used.

type specifies the disk type to construct it may have the values:

0 40 tracks, single sided (180K)
1 40 tracks, double sided (360K)
2 80 tracks, single sided (360K)
3 80 tracks, double sided (720K)
-1 Do not change type information

exec specifies whether the resulting sector is to executable. If exec is 0 the
sector is made non-executable, 1 it is made executable and -1 the
executable/non-executable status is preserved.

SEE

Flopfmt

Page 342 Lattice C 5 XBIOS Library

I_P I’f b I k Print bitmap

Class: XBIOS Category: Printer Functions
SYNOPSIS

#include <osbind.h>

status=Prtblk(blk);

short status error status
void *blk; pointer to prtarg structure
DESCRIPTION

Prtblk is the general ST bitmap print utility. bIk should point to a structure of
the form:

struct oprtarg
{

char *blkptr; block pointer
unsigned short offset; bit offset
unsigned short width; width

unsigned short height; height

unsigned short Left; Left Leader
unsigned short right; right trailer
unsigned short srcres; source resolution
unsigned short dstres; destination resolution
unsigned short *colpal; colour palette
unsigned short type; printer type
unsigned short port; printer port
char *masks; halftone masks
};

The blkptr member points to the base of a bitmap to print, or to a string in text
mode. offset gives the offset of the first bit to printed from the base of blkptr.
height gives the height of the bitmap in pixels, or is 0 to indicate that this is a
text mode usage. width gives the bitmap pixel width or a count of the number
of characters to print in text mode. left and right specify the number of pixels
to be skipped at the left and right hand edges when moving between lines.

type may have 1 of 4 values indicating the type of printer. The current values
are:

0 Monochrome Atari printer

1 Colour Atari printer

2 Monochrome Daisy-wheel

3 Monochrome Epson Compatible

XBIOS Library Lattice C 5 Page 343

srcres gives the source resolution using the same values as Getrez. dstres

gives the

printer resolution and is 0 for draft mode and 1 for final mode.

colpal points to a list of the colour palette settings. port gives the port to use,
0 for parallel, 1 for serial. masks points to a set of half-tone masks to use when
mapping colours onto printer colours, or NULL to use the default masks.

Note that the system global _prt_cnt should be set to 1 prior to calling this
function to ensure that the user cannot hit Alt-Help.

RETURNS

Prtblk returns zero if the printing was completed successfully or a negative
error code.

/*
Hi
Hi
Hi
en
in
{

}

in
{

Emulate the Scrdmp() command */
nclude <osbind.h>
nclude <stdlib.h>
nclude <Llinea.h>

um {MONO_ATARI, COLOUR_ATARI, DAISY, EPSON};
t Llock(void)

*(short *)Oxé4ee=1; /* Llock out Alt-Help */

t main(void)
static struct
{

char *blkptr;
unsigned short offset,width,height, left,right;
unsigned short srcres,dstres,*colpal,type,port;
char *masks;

} prt;

short palettel16],conf;

register int i;

conf=Setprt(-1);
prt.blkptr=Physbase(); /* dump physical screen */
if (conf&1)
abort(); /* can't do daisywheels */
else if (confg&4)
prt.type=EPSON;
else if (conf&2)
prt.type=COLOUR_ATARI;
else
prt.type=MONO_ATARI;
for (i=16; i--;)
palettelil=Setcolor(i,-1);

prt.colpal=palette; /* get palette */
prt.port=(conf&16)>>4; /* port */
prt.srcres=Getrez(); /* screen resolution */
prt.dstres=(conf&8)>>3; /* printer resolution */
Linea0(); /* dinit Line-A for _MAX */
prt.width=V_X_MAX; /* find screen width */
prt.height=V_Y_MAX; /* and height */
Supexec(lock); /* enable Alt-Help */
return Prtblk(&prt); /* and dump */
}
Page 344 Lattice C 5 XBIOS Library

P un 1' aes Discard AES

Class: XBIOS Category: Miscellaneous Functions
SYNOPSIS

#include <osbind.h>

Puntaes();

DESCRIPTION

Puntaes is used to throw away the AES and any memory it occupies. Note that
this function will only work for RAM-loaded TOS.

XBIOS Library Lattice C 5 Page 345

R an d om Obtain random number

Class: XBIOS Category: Miscellaneous Functions

SYNOPSIS

#include <osbind.h>

rand=Random();

Long rand; system random value

DESCRIPTION

Rand is the system random number generator and is normally used when
obtaining serial numbers for freshly formatted floppies.

RETURNS

Random returns a 24 bit random number. Note that the algorithm used gives
an exact 50% distribution for bit 0 and so this function should be used with care.

SEE
Protobt

Page 346 Lattice C 5 XBIOS Library

R sCon f Configure RS-232 communications port

Class: XBIOS Category: MFP Configuration
SYNOPSIS

#include <osbind.h>

save=Rsconf(speed,flow,ucr,rsr,tsr,scr);

unsigned Llong old; old 68901 configuration

short speed; new RS-232 speed request

short flow; flow control mode

short wucr; USART control register

short rsr; receive status register

short tsr; transmit status register

short scr; synchronous character register
DESCRIPTION

Rsconf is used to configure the RS-232 communications interface. The speed
parameter gives the requested speed:

Value Baud Rate Value Baud Rate
0 19200 8 600

1 9600 9 300

2 4800 10 200

3 3600 11 150

4 2400 12 134

5 2000 13 110

6 1800 14 75

7 1200 15 50

flow allows the flow control method to be adjusted. The values are:

Value Method

0 No flow control (default)

1 XON/XOFF (AS/ Q)

2 RTS/CTS

3 XON/XOFF and RTS/CTS

XBIOS Library Lattice C § Page 347

ucr sets the USART control register, the low byte only is used:

Bit 7 Bits 6-5 Bits 4-3 Bit 2 Bit 1 Bit 0

CLK/16 |00-8 bits per word | 00-No Start/Stop | Parity Useodd |Unused
01-7 bits per word | 01-1 Start,1 Stop parity
jj1e 1 | 10-6 bits per word [10-1 Start, 1;Stop
11-5 bits perword | 174 Start, 2 Stop

rsr sets the receiver status register, the low byte only is used:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Buffer full| Overrun Parity Frame Break Match Sync strip | Receiver
error error error detect busy enable

tsr sets the transmit status register, the low byte only is used:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Buffer Underrun Parity Frame Break Match | Sync strip | Receiver
empty error error error detect busy enable

sCr sets the synchronous character register, the low byte only is used and gives
the character that will be searched for when an underrun error occurs in
synchronous mode.

If any of the parameters has the value -1 then it is ignored and the current
setting is unchanged.

RETURNS

Rsconf returns the old 68901 settings in a long word with the old ucr, rsr, tsr
and scr packed from high to low in that order.

SEE

Bconout, Bcostat, Bconin, Bconstat, loctl

Page 348 Lattice C 5 XBIOS Library

S C I'd m p Copy screen to printer

Class: XBIOS Category: Printer Functions
SYNOPSIS

#include <osbind.h>

Scrdmp () ;

DESCRIPTION

This function dumps the screen to the printer in the same form as with the Alt-
Help key.

SEE
Priblk, v_hardcopy

XBIOS Library Lattice C 5 Page 349

SefCO|OI’ Set display palette
Class: XBIOS Category: Graphics Configuration

SYNOPSIS

#include <osbind.h>

old=Setcolor(num,new);
short old; old BCD colour value

short num; Logical colour number to modify
short new; new BCD colour wvalue

DESCRIPTION

Setcolor is used to change the mapping from logical to physical colours.
Colour values are stored in a BCD manner with the least-significant bit
replacing the most-significant bit. A physical colour is packed in the following

manner:
bits 15-12 bits 11-8 (Red) bits 7-4 (Green) bits 3-0 (Blue)
Unused ROJR3I|R2|R1|[GO|G3|G2|G1|BO|B3|B2]|BI

RO represents the least-significant bit of the red component of the colour, R3
the most-significant. Similarly, GO-G3 give the green component and B0-B3
the blue component.

Note that the peculiar packing method is to ensure backward compatibility
from the Atari STE to the Atari ST, hence bits R0, G0 and BO are not used on

the ST.

The logical colour to change is passed in NnuM, and the new packed colour in
new. If new has the value -1 then the colour is not changed.

RETURNS

Setcolor returns the old BCD value for the logical colour.

SEE
Setpalette

Page 350 Lattice C 5 XBIOS Library

S eprI Ie'”e Set display palette

Class: XBIOS Category: Graphics Configuration
SYNOPSIS

H#include <osbind.h>
Setpalette(palette);

short *palette; pointer to screen palette

DESCRIPTION

Setpalette is used to reset the screen palette. For the current screen modes
palette should point to an array of 16 words giving the BCD representations
of the required screen colours.

Note that the palette assignment does not occur until the next vertical blank so
a call to this routine should be followed by one to Vsync to ensure that the
memory used by palette cannot be re-allocated before the new palette is
installed.

SEE
Setcolor

CAVEATS

This function was spelt Setpallete (sic) in the original Atari bindings; both
versions are included in the osbind.h file.

XBIOS Library Lattice C 5 Page 351

s et p ft Set/Get printer configuration

Class: XBIOS Category: Printer Functions
SYNOPSIS

Hinclude <osbind.h>

old=Setprt(new);

short old; old configuration word
short new; new configuration word
DESCRIPTION

Setprt is used to get or set the printer configuration. The configuration is
changed to the value of new, currently 6 bits are defined in this:

Bit Number Meaning when clear Meaning when set
0 Dot matrix Daisy wheel

1 Monochrome Colour

2 Atari mode “Epson” compatible
3 Preview mode Final mode

4 Parallel port RS-232 port

5 Continuous Single sheet

Other bits should be preserved for future compatibility. In order to read the
current status the value -1 may be used for new, in which case the
configuration is not changed and the current configuration returned.

RETURNS

Setprt returns the old printer configuration word.
SEE

Scrdmp, Priblk

CAVEATS

Beware of some older documentation which lists bit 1 as being set for mono
and clear for colour, the bit should be clear for mono and set for colour.

Page 352 LatticeC 5 XBIOS Library

S ets creen Set screen parameters

Class: XBIOS Category: Graphics Configuration
SYNOPSIS

#include <osbind.h>

Setscreen(log,phys,mode);

void *phys; pointer to new physical screen base
void *log; pointer to new Llogical screen base
short mode; new screen mode request

DESCRIPTION

The Setscreen call is used to change the current screen mode, physical screen
base and/or logical screen base. If any of the parameters is negative (e.g. -1)
then that parameter is unchanged as a result of this call.

phys specifies a new physical screen base. This takes effect immediately (not at
the next vertical blank as mentioned in older documentation), and as such you
should be aware that screen ‘flicker’ may result. Note that on the Atari ST this
must be on a 256 byte boundary. On the Atari STE this limitation has been
relaxed and phys need only be word aligned.

log specifies a new logical screen base. It is onto this screen that all drawing is
done. Note that it is recommended that after changing the logical screen base
the (logical) screen be cleared to ensure that all pointers used internally by the
VDI are correctly initialised.

mode specifies a new screen resolution. This parameter has the same values
as those returned by Getrez. When mode is positive (i.e. the resolution is

changed) the screen is automatically cleared and the internal state of the VT52
emulator reset.

SEE
Getrez

CAVEATS

This function does not inform the AES of a resolution change and so cannot be
used once the AES has been initialised, unless you no longer require its services.

XBIOS Library Lattice C 5 Page 353

S S b I’k Reserve system memory

Class: XBIOS Category: Memory Allocation
SYNOPSIS

#include <osbind.h>
base=Ssbrk(len);

void *base; base of memory allocated
short Llen; amount of memory required

DESCRIPTION

Ssbrk was provided on the very first STs to provide a way of reserving system
memory before the OS was loaded from disk. It is no longer implemented or
required.

Page 354 Lattice C 5 XBIOS Library

Su pexecC Execute function in supervisor mode

Class: XBIOS Category: Miscellaneous Functions
SYNOPSIS

#include <osbind.h>
val=Supexec(func);

Long func(); function to call

DESCRIPTION

Supexec is used to call the named function in supervisor mode. The function
should be careful if it wishes to call the BIOS or XBIOS since these are only
re-entrant to three levels.

The value returned from the func is passed back as the return value from
Supexec.

RETURNS

As noted above.

XBIOS Library Lattice C 5 Page 355

Vsync Wait for vertical sync to occur

Class: XBIOS Category: Miscellaneous Functions
SYNOPSIS

#include <osbind.h>

Vsync();

DESCRIPTION

Vsync is used to wait for a vertical blank to occur. It is often used to prevent
‘flicker’” when drawing graphics or to ensure that vertical blank driven objects
are complete before being re-used (e.g. Setpalette).

Page 356 LatticeC 5 XBIOS Library

Xbtimer

Configure MFP timer

Class: XBIOS
SYNOPSIS

#include

<osbind.h>

Xbtimer(timer,ctrl,data,hand);

short timer; number of
short ctrli; value
register
short data; value for
void (*hand)(void); pointer to

DESCRIPTION

timer to
to place

timer
interrupt

Category: MFP Configuration

change
in control
data register
handler

Xbtimer allows the 68901 timers to be setup. The timer to change is passed in
timer and has a value 0-3 indicating timer A, B, C or D. control is placed in the
control register of the timer. data is placed in the data register of the timer.
The interrupt handler for the timer is pointed to hand. The allocation of the

timers is:

Timer Usage

A DMA sound counter

B HBlank counter

C 200Hz System timer

D RS-232 baud rate generator
SEE
Mfpint

XBIOS Library

Lattice C 5

Page 357

Page 358 Lattice C 5 XBIOS Library

/ Line-A Library

This section describes the Line-A library supplied with the Lattice C compiler.
To access the facilities of the Line-A you should #include the file linea.h into
your program.

The Line-A emulator provides the graphics primitives which are used by the
VDI. The Line-A interface is in general inconsistent, difficult to use and
completely non-portable. The name Line-A comes from the special 68000
instructions used to access the routines, which have the top nybble set to ‘A’.

Before any of the Line-A routines may be used the linea0 function must be
called to initialise the structures used by the bindings. All access to the Line-A
routines is through a parameter block in which the input variables are placed,
prior to executing the function, with a second data block made available for
configuration and interrogation of the screen device layout.

The sixteen functions available in the Line-A are:

lineal Initialise Line-A data structure
lineal Plot single pixel

linea2 Get pixel value

linead Draw arbitrary line

linea4 Draw horizontal line

linead Render a filled rectangle
lineaé Render a line of a filled polygon
linea7 Perform a BITBLIiT

linea8 Render bit-mapped character on screen
linea9 Show mouse cursor

lineaa Hide mouse cursor

lineab Transform mouse cursor

lineac Remove user sprite

linead Render user sprite

lineae Copy raster form

lineaf Flood fill area

Line-A Library Lattice C 5 Page 359

lin ed 0 Initialise Line-A data structure

Class: Line-A Category: Initialisation

SYNOPSIS

#include <linea.h>
data=Llineal();
struct Lla_data *data; pointer to Line-A structure

extern LINEA_INFO Lla_info;

DESCRIPTION

lineaO is used to initialise the structure used when interrogating the Line-A
data structures and calling the Line-A routines. It fills in the external structure
la_info, containing the items:

typedef struct Linea_info
{

Long Li_dO0; Linea data structure
struct Lla_data Li_a0; linea data structure
struct Lla_font *F _al; system font vector
Long (*l.'i_aZ)() Linea function vector

} LINEA_INFO;

li_dO and li_a0 both point to the middle of the Line-A structures. Positive
offsets from them are input parameters to Line-A commands, whilst negative
offsets give the configuration and status information. The positive offset
structure is:

typedef struct La_data
{

short Ld_vplanes; number of bit planes
short Lld_vwrap; number of bytes/video Lline
short *ld_contrl; pointer to CONTRL array
short *ld_intin; pointer to INTIN array
short *ld_ptsin; pointer to PTSIN array
short *ld_intout; pointer to INTOUT array
short *ld_ptsout; pointer to PTSOUT array
short Lld_colbit[4]; colour bit-planelil value
short Lld_Llstlin; draw Llast pixel flag
short Ld_Llnmask; lLine-style mask

short Lld_wmode; writing mode

short Ld_x1; X1 coordinate

short Ld_y1; Y1 coordinate

short Ld_x2; X2 coordinate

short Ld_y2; Y2 <coordinate

short *ld_patptr; fill pattern pointer
short Ld_patmsk; fill pattern mask

short Lld_mfill; multi-plane fill flag
short Ld_clip; clipping flag

short Lld_xmincl; minimum X clipping value
short Lld_ymincl; minimum Y clipping value
short Lld_xmaxcl; maximum X clipping value

Page 360 Lattice C 5 Line-A Library

short Ld_ymaxcl; maximum Y clipping value
short Ld_xdda; accumulator for textblt dda
short Lld_ddainc; fixed point scale factor
short Ld_scaldir; scale direction flag
short Ld_mono; current font 1is monospaced
short Lld_srcx; X coord of character in font
short Lld_srcy; Y coord of character in font
short Lld_dstx; X coord of character on screen
short Ld_dsty; Y coord of character on screen
short Lld_delx; width of character
short Ld_dely; height of character
void *ld_fbase; pointer to start of font form
short Ld_fwidth; width of font form
short Lld_style; textblt special effects flags
short Ld_Llitemsk; Lightening mask
short Lld_skewmsk; skewing mask
short Lld_weight; thickening factor
short Lld_roff; skew offset above baseline
short Ld_LlLoff; skew offset below baseline
short Ld_scale; scaling flag
short Lld_chup; character rotation angle
short Ld_textfg; text foreground colour
void *ld_scrtchp; word-aligned effects buffer
short Lld_scrpt2; offset to scaling buffer
short Ld_textbg; text background colour
short Ld_copytran; copy raster form type flag
int (*lLd_seedabort)(void);
seedfill abort detect
} LA_DATA;
The negative offset structure is:
typedef struct Lla_ext
{
Long Lld_resvdi1;
struct La_font *ld_cur_font;
pointer to current font
header
short Lld_resvd2[231];
short Ld_m_pos_hx; mouse x hot spot
short Ld_m_pos_hy; mouse y hot spot
short Lld_m_planes; writing mode for mouse
short Lld_m_cdb_bg; mouse background colour
short Lld_m_cdb_fg; mouse foreground colour
short Ld_ mask _form[321]; mouse mask and form
short l.d_'lnq_tabEloSJ; vq_extnd idinformation
short Lld_dev_tabl[45]; v_opnwk information
short Lld_gcurx; current mouse x position
short Ld_gcury; current mouse x position
short Lld_m_hid_ct; mouse hide count
short Lld_mouse_bt; mouse button status
short Ld_req_coll[31C161; internal vq_color Llookup
short Ld_siz_tabl[15]; current text, Line and
marker sizes
short Lld_resvd3;
short Ld_resvdé4;
short *ld_cur_work; current vwork attributes
struct La_font *lLd_def_font;
default font header
struct Lla_font *Ld_font_ringl4];
vdi font ring
short Lld_font_count; nqmber of fonts in font
ring
Line-A Library Lattice C 5 Page 361

short Ld_resvd5C451];

unsigned char Lld_cur_ms_stat;
mouse status

char Lld_resvd6;

short Lld_v_hid_cnt; cursor hide count

short Lld_cur_x; mouse x position

short Lld_cur_y; mouse Yy position

char LUld_cur_flag; mouse draw status

char Ld_mouse_flag; mouse processing enabled

Long Lld_resvd7;

short Lld_v_sav_xy[2]; saved cursor xy position

short Lld_save_Llen; height of saved form

short *ld_save_addr; screen address of saved
form

short Lld_save_stat; save status

Long Lld_save_areal41[16]); form save area

void (*ld_user_tim)(); user timer vector

void (*ld_next_tim)(); next timer vector

void (*lLd_user_but)(); user button vector

void (*ld_user_cur)(); user cursor vector

void (*ld_user_mot)(); user motion vector

short Ld_cel_ht; cell height

short Ld_cel_mx; max x cells

oshort Lld_cel_my; max y cells

short Ld_cel_wr; displacement to next
vertical cell

short Ld_col_bg; background colour index

short Lld_col_fg; foreground colour index

void *ld_cur_ad; cursor address

short Ld_cur_off; offset to first cell

short Lld_cur_xy[21; cursor xy position

char Ld_cur_cnt; cursor flash period

char Lld_cur_tim; cursor flash countdown

void *lLd_fnt_ad; address of font data

short Lld_fnt_nd; Last ade in font

short Lld_fnt_st; first ade in font

short Lld_fnt_wr; font form width

short Ld_x_max; horizontal pixel
resolution

void *lLd_off_ad; pointer to font offset
table

short Ld_status; cursor status

short Ld_y_max; vertical pixel resolution

short Lld_bytes_Llin; width of destination form

} LA_EXT;

Note that this structure may be accessed using ((LA_EXT ")la_info.li_a0-1)->Id..

The remaining structure members in linea_info are; li_al which points to a
NULL terminated array of system fonts, currently three fonts are available. li_a2
points to an array of the 16 Line-A entry points so that you may remove the
Line-A handler overhead and call them directly. If you do this be aware that
some of the functions must be run in supervisor mode and that the registers
they destroy is completely undefined.

To simplify access to these variables macros are provided to perform all the
indirections. These macros are named on a variant of the structure names, so
that to gain access to, for instance, Id_y_max you may simply use V_Y_MAX,
or to access one of the positive structures, e.g. |[d_patptr, simply PATPTR.

Page 362 Lattice C 6 Line-A Library

You should be aware that the CONTRL, INTIN, PTSIN, INTOUT and PTSOUT are
inherited from the last user, hence if a process has terminated these arrays may
point to non-allocated memory. If you need to use these arrays you should
ensure that you have either allocated a VDI virtual workstation, or have placed
pointers to your own private arrays in these elements.

The system fonts use the same format as GDOS fonts, a structure of the form:

typedef struct La_font

{

short font_id; face identifier
short font_size; font size 1in points
char font_namel321]; face name

short font_LlLow_ade; Lowest ASCII wvalue
short font_hi_ade; highest ASCII wvalue
short font_top_dst; top Lline distance
short font_ascent_dst; ascent Line distance
short font_half_dst; half Line distance
short font_descent_dst; descent Line distance
short font_bottom_dist; bottom Line distance
short font_fatest; widest char in font
short font_fat_cell; widest char cell in font
short font_Lleft_off; Left offset

short font_right_off; right offset

short font_thickening; pixels to widen chars
short font_underline; underline pixel width
short font_Llightening; Lightening mask
short font_skewing; skewing mask

short font_flags; flags

short *font_horiz_off; pointer to HOT

short *font_char_off; pointer to COT

void *font_data; pointer to font form
short font_width; font width

short font_height; font height

struct La_font *font_next; pointer to next font

} LA_FONT;

Most fields in the LA_FONT structure are self-explanatory with reference to
v_gtext, the other fields are:

font_thickening

Number of pixels to increase each horizontal
pixel run by to achieve a bold font.

font_underline

Number of pixels in the underline effect.

font_lightening

Mask used when removing pixels to create a
‘disabled’ character. This normally has the
value 0x5555, indicating that alternate pixels
should be dropped.

font_skewing

Mask used when creating skewed characters.
This mask is considered rotated vertically, and
then for each row that has the skew mask set
the pixel row is shifted right by one pixel . The
usual value is 0x5555, giving a skew of 26.6°.

Line-A Library

Lattice C 5 Page 363

font_flags This consists of a bitmap giving flags for this
font:

Bit Meaning (When set)

0 Font is default system font

1 Horizontal offset table present
2 Font is in Motorola format

3 Font is monospaced

Note that all fonts which are in memory will be
in Motorola format.

font_horiz_off Pointer to horizontal offset table (HOT). This is
an array of short integers with the most
significant (signed) byte giving the left offset
(i.e. added prior to printing) and the least
significant (signed) byte giving the right offset
(i.e. added after to printing). This can be useful
for kerning or accented use.

Note that the VDI output functions do not
support horizontal offset tables correctly, and
the Line-A routines are the only way to use
them successfully.

font_char_off Pointer to character offset table (COT). This is
an array of shorts giving the ‘X’ co-ordinate of
each character in the font within the form.

Note that the first element is for the first
character in the set and not 0, hence you must
subtract font_low_ade before indexing into
this array.

SEE

v_opnwk, v_opnvwk

Page 364 Lattice C 5 Line-A Library

I i neda] Plot single pixel

Class: Line-A Category: Pixel Manipulation
SYNOPSIS

#include <linea.h>
Linea1();

putpixel(x,y,colour);

INTINCO]=colour; colour of pixel to plot

PTSINCO]=X; X co-ordinate of pixel

PTSINC11=Y; Y co-ordinate of pixel
DESCRIPTION

lineal plots single ixels on screen. INTIN(O) holds the colour to give the pixel,
PTSIN(0) and PTSIN(1) hold the required X and Y co-ordinates.

The putplxel macro is provided in linea.h to simplify the use of this function
and takes parameters X, y and colour.

SEE
v_pmarker, v_pline, linea2, linead, linead
CAVEATS

This function pays no regard to any clipping rectangle installed in the Line-A
input array.

Line-A Library LatticeC 5 Page 365

l |n ed 2 Get pixel value

Class: Line-A Category: Pixel Manipulation
SYNOPSIS

#include <linea.h>
colour=Llinea2();

colour=getpixel(x,y);

short colour; colour of pixel

PTSINLCOX=X; X co-ordinate of pixel

PTSINC11=Y; Y co-ordinate of pixel
DESCRIPTION

lInea? obtains the colour value of a single pixels on screen. PTSIN(0) and
PTSIN(1) hold the required X and Y co-ordinates, and the current value of the
pixel is returned in colour.

The getplxel macro is provided in linea.h to simplify the use of this function
and takes parameters (X, y) returning colour.

SEE
v_get_pixel, lineal
CAVEATS

This function pays no regard to any clipping rectangle installed in the Line-A
input array.

Page 366 LatticeC 5 Line-A Library

I i n e a 3 Draw arbitrary line

Class: Line-A Category: Line Drawing
SYNOPSIS

#include <linea.h>

Linea3();

X1=x1; starting X co-ordinate
Y1=y1; starting Y co-ordinate
X2=x2; ending X co-ordinate
Y2=y2; ending Y co-ordinate
coLBITO=colour; value for bit plane 0
coLBIT1=colour>>1; value for bit plane 1
coLBIT2=colour>>2; value for bit plane 2
cCoLBIT3=colour>>3; value for bit plane 3
LNMASK=style; Line pattern mask.
WMODE=mode; writing mode.
LSTLIN=Llast; draw Llast pixel flag
DESCRIPTION

linea3 draws a line between points (X1,Y1) and (X2,Y2). The colour to use is

split into bits and provided in the COLBIT elements. LNMASK gives the bit
attern to use when drawing the line, whilst the drawing mode is given by

WMODE. The values for WMODE (which are the VDIMD_... modes -1) are:

0 Replace mode; the new data replaces the old.

1 Transparent mode only affects pixels where the pixel is
already set.

2 Exclusive OR mode.

3 Reverse transparent mode only affects pixels where the

source pixel is not set.

LSTLIN is used when drawing lines in XOR mode and normally is -1 indicating
that the last point in the line is to be omitted, or if 0 the point is plotted.

SEE
lineal, linead, v_pline, vswr_mode

CAVEATS

This function pays no regard to any clipping rectangle installed in the Line-A
input array.

Line-A Library Lattice C 5 Page 367

|ined4 Draw horizontal line

Class: Line-A Category: Line Drawing
SYNOPSIS
#include <linea.h>
Linea4 ();
X1=x1; starting X co-ordinate
X2=x2; ending X co-ordinate
Yl=y; Y co-ordinate
cCoLBITO=colour; value for bit plane 0
COLBIT1=colour>>1; value for bit plane 1
coLBIT2=colour>>2; value for bit plane 2
cCoLBIT3=colour>>3; value for bit plane 3
WMODE=mode; writing mode
PATPTR=pattern; pointer to fill pattern
PATMSK=index; pattern count
MFILL=flag; multi plane fill flag
DESCRIPTION

linead draws a horizontal line between points (X1,Y1) and (X2,Y1). The colour
to use is split into bits and provided in the COLBIT elements. PATPTR points to
an array of PATMSK+1 line patterns. The pattern chosen for a particular line
segment is then a function of Y1 and PATMASK. If MFILL is zero then the
writing mode WMODE is used as described under linea3.

When MFILL is non-zero the value of WMODE is ignored and the planes are
simply filled with the bits in COLBITs.

SEE

v_pline, lineal, lineag, lineab5

CAVEATS

This function pays no regard to any clipping rectangle installed in the Line-A
input array.

Page 368 LatticeC 5 Line-A Library

lineab

Render a filled rectangle

Class: Line-A

SYNOPSIS

#include <linea.h>

Linea5();

X1=x1;
Y1=y1;
X2=x2;
Y2=y2;
coLBITO=colour;

coLBIT1=colour>>1;
coLBIT2=colour>>2;
coLBIT3=colour>>3;
WMODE=mode;
PATPTR=pattern;
PATMSK=index;
MFILL=flag;
CLIP=state;
XMINCL=x1clip;
YMINCL=y1clip;
XMAXCL=x2clip;
YMAXCL=y2clip;

DESCRIPTION

Category: Area Filling

Left X co-ordinate
top Y co-ordinate
right X co-ordinate
bottom Y co-ordinate
value for bit plane
value for bit plane
value for bit plane
value for bit plane
writing mode

pointer to fill pattern
pattern count

multi plane fill flag
clipping flag

Left edge X clipping
top edge Y clipping
right edge X clipping
bottom edge Y clipping

WN =0

lineab draws a filled rectangle with upper left corner (X1,Y1) and lower right

corner (X2,Y1).

The COLBIT, PATPTR, PATMSK, MFILL and WMODE parameters are as
described under linead4. Note that the PATPTR value is identical to that of
linead which is used as the primitive for this function.

An optional clipping rectangle may be specified with this function; it has top left
corner (XMINCL, YMINCL) and bottom right corner (XMAXCL, YMAXCL). To
enable clipping CLIP should be set to 1, or disabled by setting CLIP to 0.

SEE

lineal, linead, v_bar, v_recfl

Line-A Library

Page 369

li n eCIé Render a line of a filled polygon

Class: Line-A Category: Line Drawing

SYNOPSIS
#include <linea.h>
Linea6();
PTSINCI=...; array of vertices
CONTRLC11=n; number of wvertices
Y1=y1; lLine to draw
coLBITO=colour; value for bit plane O
CoLBIT1=colour>>1; value for bit plane 1
CoOLBIT2=colour>>2; value for bit plane 2
coLBIT3=colour>>3; value for bit plane 3
WMODE=mode; writing mode
PATPTR=pattern; pointer to fill pattern
PATMSK=1index; pattern count
MFILL=flag; multi plane fill flag
CLIP=state; clipping flag
XMINCL=x1clip; Left edge X clipping
YMINCL=y1clip; top edge Y clipping
XMAXCL=x2clip; right edge X clipping
YMAXCL=y2clip; bottom edge Y clipping

DESCRIPTION

lineaé draws one line of a filled polygon. The polygon is specified as an array
of vertices in PTSIN, with the number of vertices in CONTRL(1). Note that the
first vertex must be repeated as the last vertex, but this extra vertex is not
included in the vertex count. The line drawn as a result of this function is Y1.

The COLBIT, PATPTR, PATMSK, MFILL and WMODE parameters are as
described under linea4. Note that the PATPTR value is identical to that of
linead which is used as the primitive for this function.

An optional clipping rectangle may be specified with this function; it has top left
corner (XMINCL, YMINCL) and bottom right corner (XMAXCL, YMAXCL). To
enable clipping CLIP should be set to 1, or disabled by setting CLIP to 0.

SEE
lineal, linea4, v_filarea
CAVEATS

This function only performs the fill line selection correctly when the fill pattern
height is an exact power of 2. Also you must ensure that the PTSIN array is
large enough for your requirements, otherwise the system may crash
mysteriously.

Page 370 Lattice C 5 Line-A Library

EXAMPLE

/*
*
*
*

draw a
pattern

#Hinclude

simple polygon filled with a

<linea.h>

single plane

int main(void)
{
short ptsCl1={160,100,0,50,319,199,319,50,160,1001%;
short contrll2];
short patternll=
{
0x0940, /* 0000100101000000 */
0x0940, /* 0000100101000000 */
0x0f40, /* 0000111101000000 */
0x0940, /* 0000100101000000 */
0x0940, /* 0000100101000000 */
0x0000, /* 0000000000000000 */
Ox64dc, /* 0110010011011100 */
0x8a88, /* 1000101010001000 */
Oxcac8, /* 1100101011001000 */
0x2a88, /* 0010101010001000 */
Oxa488, /* 1100010010001000 */
0x0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */
0x0000, /* 0000000000000000 */
};
register int i,
Linea0(); /* dinitialise */
PTSIN=pts; /* setup ptsin */
CONTRL=contrl; /* and contrl */
contrll1]=sizeof(pts)/(sizeof(short)*2)-1;
coLBITO=1; /* use all bit planes */
coLBIT1=1;
COLBIT2=1;
COLBIT3=1;
WMODE=0; /* replace mode */
PATPTR=pattern; /* set up pattern pointer */
PATMSK=sizeof(pattern)/sizeof(short)-1;
MFILL=0; /* no multi-plane fill */
cLIP=0; /* no clipping */
Y1=0; /* step over all Lines used */
for (i=0; i<200; i++)
{
Linea6(); /* render one Lline */
Y1++; /* move to next Lline */
}
return 0;
}
Line-A Library LatticeC 5 Page 371

linea7 Perform a BITBLIiT
Class: Line-A Category: BITBLIT Functions

SYNOPSIS

#include <linea.h>

Linea7(blit);
LA_BLIT *blit; pointer to blit structure
DESCRIPTION

liInea? is the system BITBLIiT primitive (bit block transfer), and is unusual in
that it does not use the input array. The function is passed a pointer to an
LA_BLIT structure, which has the form:

typedef struct Lla_blk
{

short bl_xmin; minimum x

short bLl_ymin; minimum vy

short *bl_form; word aligned memory form
short bl_nxwd; offset to next word in Lline
short bl_nxln; offset to next Lline in plane
short bl_nxpl; offset to next plane

} LA_BLK;

typedef struct Lla_blit
{

short bb_b_wd; width of block in pixels
short bb_b_ht; height of block in pixels
short bb_plane_ct; number of planes
short bb_fg_col; foreground colour
short bb_bg_col; background <colour
char bb_op_tabl4]; fg/bg Logic table

struct Lla_blk bb_s; source info block
struct Lla_blk bb_d; destination info block

short *bb_p_addr; pattern buffer address
short bb_p_nxln; offset to next pattern Lline
short bb_p_nxpl; offset to next pattern plane
short bb_p_mask; pattern 1index mask

char bb_fill[24]; work space

} LA_BLIT;

The function performs a blit from a source to a destination form. The source
form has a top left corner (bb_s.bl_xmin, bb_s.bl_ymin) with width and
height bb_bb_wd and bb_b_ht respectively. bb_plane_ct bit planes are then
transferred to the destination form with top left corner (bb_d.bl_xmin,
bb_d.bl_ymin). Note that the algorithm employed deals successfully with
overlapping forms.

Page 372 Lattice C 5 Line-A Library

The remaining parameters of the source and destination form definitions
(bb_s.bl_... and bbb_d.bl_...) are the pointer to the base of the form bl_form,
bl_nxwd, the offset to the next word in the same plane (i.e. skipping the
interleaved planes), bI_nxIn a count of the number of bytes in one line of the
form and finally bl_nxpl, the offset to the next plane from the start of one
plane, thus allowing blitting from a linear form in memory to the interleaved
plane structure of the ST display.

As the planes are transferred by the blit operation, a logical operation is
performed on the bits. The operations are a generalisation of those performed
for the VDI vro_cpyfm routine. The logic table consist of 4 bytes, indexed by
considering the value of the bits in foreground and background colours,
bb_fg_col and bb_bg_col. The logic operation used for a particular bit
plane is obtained by considering bb_op_tab(bb_fg_col* 2 + bb_bg_col).
The logical operations are identical to those discussed under vro_cpyfm
(S_AND_D etc.).

The final variant available with linea? allows a pattern to be ANDed into the
source prior to being combined with the destination. To enable the pattern
integration, bb_p_addr should point to an array of patterns, similar to those
used for linead. Note that if you do not require the pattern facility you should
set b_p_addr to NULL. p_nxIn and p_nxpl are used identically to bl_nxIn and
bl_nxpl, discussed above for forms, but apply instead to the pattern ‘form’.
Note that p_nxIn must be an exact power of two. p_mask is used with p_nxIn
to mask the appropriate gart of the source. If p_nxlen has a value of 1<<n (i.e.
an exact power of two), then the value for p_mask is (p_nxIn/2-1)<<n.

The remaining 24 bytes of the LA_BLIT structure, bb_fill, are used internally by
the blit algorithm.

SEE
lineae, vro_cpyfm, vrt_cpyfm
CAVEATS

This call makes almost no checks as to the validity of what is being attempted,
so great care should be taken when using it as it is very easy to disrupt the
machine without due care.

This function pays no regard to any clipping rectangle installed in the Line-A
input array.

Line-A Library Lattice C 5 Page 373

EXAMPLE

/ *
* blit the
* right
*/

top

<linea.h>
<vdi.h>

Hinclude
#include

#include <string.h>

#include <osbind.h>

#include <stddef.h>

int main(void)

£
LA_BLIT blt;
Lineal0();
blt.bb_b_wd=V_X_MAX/2-1;
blt.bb_b_ht=V_Y_MAX/2-1;
bLt.bb_ptane_ct=VPLANES;
blLt.bb_fg_col=1
blt.bb_bg col=1;
memset(bl
blLt.bb_s.b
blt.bb_s.bl_form=blt.bb_d.bl
blLt.bb_s.bl_nxwd=blt.bb_d.bl_nxwd=
blt.bb_s.bl_nxln=blt.bb_
blt.bb_s.bl_nxpl=blt.bb_
blLt.bb_p_addr=NULL;
blLt.bb_s.b
blt.bb_d.bl_xmin=V_X_MAX/
blt.bb_d.bl_ymin=V_Y_MAX/
Linea7(8&blt);
return 0;

Left of the

L d.bl_
d
l_xmin=blt.bb_s.bl_ymin=0;
L
L

screen to the bottom

/* blit half screen */
of planes */

colours */

/* number
/* maintain

l xm1n bLt bb Sve bL _ymin=0;

form=Logbase();
1<<VPLANES;

d.bt_nan=VURAP;

nxpl=2;
/* no pattern */

/* blLit it */

Page 374

Lattice C 5

Line-A Library

linea8

Render bit-mapped character on screen

Class: Line-A
SYNOPSIS

#include <linea.h>

Linea8();

FBASE=font;
FWIDTH=width;
SRCX=ch;

SRCY=0;

DELX=w,
DELY=h;
DSTX=x;

DSTY=y;

TEXTFG=fgcol;
TEXTBG=bgcol;
STYLE=effect;
LITEMASK=Lmask;
SKEWMASK=smask;
WEIGHT=thick;
ROFF=roff;
LOFF=Lloff;
SCALE=enable;
XDDA=0x8000;
DDAINC=factor;
SCALDIR=dir;
CHUP=angle;
MONO=monoflag;
SCRTCHP=buffer;
SCRPT2=0ffset;
WMODE=mode;
CLIP=state;
XMINCL=x1clip;
YMINCL=y1clip;
XMAXCL=x2clip;
YMAXCL=y2clip;

DESCRIPTION

Category: BITBLIiT Functions

form
form
character in

base of font
width of font
X co-ordinate of
font form

Y co-ordinate of
font form
width of
height of
X co-ordinate
on screen

Y co-ordinate
on screen
foreground
background
text effect
Lightening mask
skewing mask
thickening width
skewing offset above
skewing offset below
enable scaling
scaling wvariable
scaling factor
scaling direction
rotation angle
mono-spaced flag
work buffer
scaling offset
writing mode
clipping flag.
Left edge X clipping
top edge Y clipping
right edge X clipping
bottom edge Y clipping.

character in

character
character
to plot character

to plot character

colour
colour

baseline
baseline

into buffer

linea8 is used for rendering bit-mapped fonts on screen. A character from the
font at pixel offset (SRCX, SRCY) with width and height DELX and DELY is

transferred to the destination (DSTX, DSTY). TEXTFG and TEXTBG give the

foreground and background colours which should be used when rendering.

Line-A Library

Lattice C 5

Page 375

To enable font scaling SCALE is made non-zero, and the direction of scaling put
in SCALDIR; 0 for down, otherwise up. When using scaling the fixed point
variable XDDA should be initialised to 0.5 (0x8000 in the representation used),
and the DDA scaling factor set up. If the final size required is final and the
actual font size is actual then for scaling up DDAINC should be set to Ox100 *
(final - actual)/actudl, else for scaling down 0x100 * final/actual.

The effects applied to the font may be set via the STYLE bitmap:

Bit Effect

0 Thicken

1 ‘Lighten’

2 Skew

3 Underline (in-operative)
4 Outline

To rotate the text CHUP may be set to the number of degrees required times 10,
in the same way as vst_rotation. MONO should be set to 1 for mono-spaced
fonts or non-zero for proportional fonts. SCRTCHP should be set to a word
aligned scratchpad area in which text special effects are rendered. The size of
this buffer should be twice the size of the largest character which may result.
SCRPT2 gives an offset into the SCRTCHP buffer which is used when scaling
fonts. Like the SCRTCHP buffer it should have space for twice the largest
character which may result.

When rendering the text into the destination form the writing mode WMODE is
used as described under linea3, however this is extended from the normal set
of four modes and any of the BITBLiT modes may be used (S_AND_D etc.), by
adding 4 to the normal value.

The remaining variables which must be set are normally copied directly from
the font header.

An optional clipping rectangle may be specified with this function, it has top left

corner (XMINCL, YMINCL) and bottom right corner (XMAXCL, YMAXCL). To
enable clipping CLIP should be set to 1, or disabled by setting CLIP to 0.

SEE

linea?, v_gtext, v_justified, vst_rotation

Page 376 Lattice C 5 Line-A Library

EXAMPLE

/ *
* write out text in all styles, not rotated or
* scaled
*/
#include <linea.h>
int main(void)
{
register dint i;

Linea0();
for (i=0;
{

i<0x20; i++)

register const char *s="Hello World";
register char c;

/* set up initial screen X co-ordinate */
DSTX=0;
if (i>=0x10)
DSTX=V_X_MAX/2;
while (c=*s++)
{

short x[5001;

TEXTFG=1; /* colours */
TEXTBG=0;
STYLE=i; /* and style */

/* compute source position and height */
c-=V_DEF_FONT->font_Low_ade;
SRCX=V_DEF_FONT->font_char_offlc];
SRCY=0;
DELX=V_DEF_FONT->font_char_offlLc+1]1-SRCX;
DELY=V_DEF_FONT->font_height;
FBASE=V_DEF_FONT->font_data;
FWIDTH=V_DEF_FONT->font_width;

/* copy masks and effects */
LITEMSK=V_DEF_FONT->font_Lightening;
SKEWMSK=V_DEF_FONT->font_skewing;
WEIGHT=V_DEF_FONT->font_thickening;

/* offsets for skewed text */

if (STYLE & 1<<2) /* skewed */

{
ROFF=V_DEF_FONT->font_right_off;
LOFF=V_DEF_FONT->font_Left_off;

}

else
ROFF=LOFF=0;

SCALE=0;

XDDA=0x8000; /* dinitialise anyway */

DDAINC=256;

SCALDIR=0;

CHUP=0;

MONO=0;

SCRTCHP=x;

SCRPT2=sizeof(x)/2;

CLIP=0;
DSTY=(i80xf)*V_DEF_FONT->font_height;

/* no need to redo DSTX as Linea8 does it */
Linea8();

Line-A Library Lattice C 5 Page 377

I i ned 9 Show mouse cursor

Class: Line-A Category: Sprite Manipulation
SYNOPSIS

#include <linea.h>
Linea9();
INTINCO)=force; zero to force mouse to show

showmouse(force);

DESCRIPTION

linea? is identical to the VDI call v_show_cC and is used to decrease the mouse
hide depth. It takes a single parameter in INTIN(O), which if zero forces the
mouse hide depth counter to be reset and the mouse displayed regardless; if it
is non-zero then the hide depth is reduced by one and the mouse displayed if
the hide depth becomes zero.

The showmouse macro is provided to simplify the interface and takes a single
parameter force, as described above.

SEE

lineaa, v_show_c, v_dspcur, graf_mouse

Page 378 Lattice C 5 Line-A Library

I i nhneadad Hide mouse cursor

Class: Line-A Category: Sprite Manipulation
SYNOPSIS

#include <linea.h>

Lineaa();

hidemouse();

DESCRIPTION

lineaa (and the equivalent name hidemouse) is identical to the VDI call
v_hide_c and is used to increase the mouse hide depth. When the hide depth is
non-zero the mouse cursor is not displayed.

SEE

linea9, v_hide_c, v_rmcur, graf_mouse

Line-A Library Lattice C 5 Page 379

I i n e a b Transform mouse cursor

Class: Line-A Category: Sprite Manipulation
SYNOPSIS

#include <linea.h>

Lineab();

DESCRIPTION

lineab is identical is used to change the form of the mouse cursor, in an
identical manner to vsc_form. A pointer to an LA_SPRITE structure is placed in
INTIN(O-1) giving the new form:
Eypedef struct Lla_sprite
short LUs_xhot; X hot spot offset

short Ls_yhot; Y hot spot offset

short Ls_form; 1 for VvDI, -1 for XOR
short Ls_bgcol; background colour index
short Ls_fgcol; foreground colour dindex

short \Lls_imagel[32]; interleaved <image
} LA_SPRITE;

The image is stored in image/mask interleaved form. The first word in the
Is_image array gives the mask, the second the data, the third the mask, etc.
The Is_form value gives the way the mouse is rendered on screen. For both
VDI and XOR modes, most combinations are identical:

Foreground Background Colour plotted
0 0 Destination
0 1 Background
1 0 Foreground (VDI mode)
Inverse destination (XOR mode)
1 1 Foreground

To save the old mouse form before changing it the old form should be copied
from V_MASK_FORM (note that the full LA_SPRITE structure for the mouse
cursor starts at V_M_POS_HX). Also when changing the mouse form you
should disable drawing of the mouse by setting V_MOUSE_FLAG to 0 and
restore it afterwards. This ensures that ‘droppings’ do not occur.

SEE

linead, vsc_form, graf_mouse

Page 380 Lattice C 5 Line-A Library

I i n e a C Remove user sprite

Class: Line-A Category: Sprite Manipulation
SYNOPSIS

#include <linea.h>
Lineac(save);

void *save; pointer to sprite save area

DESCRIPTION

lineac is used to remove a sprite previously drawn using linead. A pointer to
the sprite save area is passed and the screen restored from this.

SEE

linead, linea9, lineaa

Line-A Library Lattice C 5 Page 381

I i nead d Render user sprite

Class: Line-A Category: Sprite Manipulation
SYNOPSIS

#include <linea.h>

lLinead(x,y,sprite,save);

int x; x position for sprite

int y; y position for sprite

LA_SPRITE *sprite; pointer to sprite definition

void *save; pointer to sprite save area
DESCRIPTION

linead is used to render a user defined sprite. The position to plot the sprite at
is passed in x and y, and the sprite definition in sprite. sprite is a pointer to an
LA_SPRITE structure, discussed previously under lineab.

The save area is used to keep a copy of the screen area corrupted by the sprite.
It shares the first 5 fields of the LA_SPRITE structure, but must have room for

the image from all screen bitplanes. Hence it should have a size of
10+VPLANES*64 bytes.

SEE

lineac, lineab

Page 382 Lattice C 5 Line-A Library

lineae

Copy raster form

Class: Line-A

SYNOPSIS

#include <linea.h>
lLineae();

INTINCOJ=wr_mode;
CONTRLL7-81=src;

CONTRLL9-101=dest;

INTINC1]=0one_col;
INTIN[2]=zer_col;
PTSINCOI=LLx1;
PTSINC11=LLly1;
PTSINLC2]1=urx1;
PTSINLC31=ury1;
PTSINLC4]=LLx2;
PTSINLS5]=LLly2;
PTSINL6]1=urx2;
PTSINC7]1=ury2;
COPYTRAN=mode;

CLIP=state;

XMINCL=x1clip;
YMINCL=y1clip;
XMAXCL=x2clip;
YMAXCL=y2clip;

DESCRIPTION

Category: BITBLIT Functions

Logic operation to perform

source memory form definition
block

destination memory form
definition block

colour index for 1s in the data
colour index for 0Os in the data
Lower-Left X of first rectangle
Lower-Left Y of first rectangle
upper-right X of first rectangle
upper-right Y of first rectangle
Lower-Left X of second rectangle
Lower-Left Y of second rectangle
upper-right X of second rectangle
upper-right Y of second rectangle
opaque/transparent mode

clipping flag.

edge X clipping
edge Y clipping

right edge X clipping
bottom edge Y clipping.

lineae is the VDI raster copy primitive and performs the equivalent of both
vrt_cpyfm and vro_cpyfm. Referring to the description of vrt_cpyfm and
vro_cpyfm, the parameters discussed there are placed in the arrays as noted
above. To perform a vro_cpyfm, COPYTRAN should be set to 0, or 1 to

perform a vrt_cpyfm.

When COPYTRAN is 1, one_col and zer_col should be provided to give the
colours for ones and zeroes respectively, as discussed under vrt_cpyfm.

An optional clipping rectangle may be specified with this function; it has top left
corner (XMINCL, YMINCL) and bottom right corner (XMAXCL, YMAXCL). To
enable clipping CLIP should be set to 1, or disabled by setting CLIP to 0.

SEE

linea?, vro_cpyfm, vrt_cpyfm

Line-A Library

Lattice C 5

Page 383

lineaf Flood fill area

Class: Line-A Category: Area Filling
SYNOPSIS

#include <linea.h>

Lineaf();

INTINCOJ=colour; colour to search for
PTSINLCO]l=x; x co-ordinate of start point
PTSINC11=y; y co-ordinate of start point
WMODE=mode; writing mode
PATPTR=pattern; pointer to fill pattern
PATMSK=index; pattern count
MFILL=flag; multi plane fill flag
CLIP=state; clipping flag.
XMINCL=x1clip; Left edge X clipping
YMINCL=y1clip; top edge Y clipping
XMAXCL=x2clip; right edge X clipping
YMAXCL=y2clip; bottom edge Y clipping
SEEDABORT=fn; abort fill pointer
DESCRIPTION

lineaf is used to flood fill an area (often called seed fill), in an identical manner
to v_contourfill. The x and y parameters of v_countourfill are passed in
PTSIN(0) and PTSIN(0), whilst the boundary colour is passed in INTIN(O).

The PATPTR, PATMSK, MFILL and WMODE parameters are as described under
linea4. Note that the COLBIT values are not passed to this function, instead
the current workstation fill colour attribute is used, hence this function must
always be used with an open workstation.

A cli’g‘ping rectangle must be specified with this function, it has top left corner
(XMINCL, YMINCL) and bottom right corner (XMAXCL, YMAXCL). Note that the
clipping flag CLIP is ignored, clipping is always performed.

SEEDABORT is a function called after plotting every line, and is used to abort
the fill. If the function called returns O the flood fill continues, otherwise it is
aborted.

SEE

linead, v_countourfill

Page 384 LatticeC 5 Line-A Library

CAVEATS

This function does not evaluate the COLBIT values for its drawing colour and
the colour used is that of the current workstation, hence a workstation must be
lpened by the application. The function is still however of great use as it
lows an abort function to be specified so that a user may abort an incorrect or
‘leaking’ fill.

EXAMPLE

/*
* draw a circle on screen and then seed-fill it

#include <linea.h>
#include <vdi.h>
#include <aes.h>

short __saveds sab(void)
{

return V_MOUSE_BT; /* stop when a button pressed */

int main(void)
{

short v_handle,junk;
short patternCl={

0x0940, /* 0000100101000000 */
0x0f40, /* 0000111101000000 */
0x0940, /* 0000100101000000 */
Oxé64dc, /* 0110010011011100 */
0x8a88, /* 1000101010001000 */
Oxcac8, /* 1100101011001000 */
0x2a88, /* 0010101010001000 */
Oxa488, /* 1100010010001000 */
};

appl_init();
v_handle=graf_handle(&junk,&junk,&junk,&junk);
Lineal0();

hidemouse();

vs_clip(v_handle,0,NULL);
vswr_mode(v_handle, MD_REPLACE);

vsf_color(v_handle,BLACK);
vsf_interior(v_handle,FIS_HOLLOW);
vsf_perimeter(v_handle,1);
v_circle(v_handle,V_X_MAX/2,V_Y_MAX/2,V_Y_MAX/2);

PTSINLOI=V_X MAX/Z

PTSINC11=V_Y_MAX/2:
INTINLCO1=-1;
XMINCL=YMINCL=0;

XMAXCL=V_X_MAX;

YMAXCL=V_Y_MAX;

SEEDABORT=sab

HMODE=MD_REPLACE;

PATPTR=pattern;
PATMSK=sizeof(pattern)/sizeof(short)-1;
MFILL=0;

Lineaf();

showmouse(1);

return appl_exit();

Line-A Library LatticeC 5 Page 385

Page 386 Lattice C 5 Line-A Library

Index

AC_CLOSE 19
AC_OPEN 19
ADDR 106, 107
aes.h 3
_AESglobal 3
alert 26
appl_exit 4
appl_find 5
appl_init 6
appl_read 7
appl_tplay 8
appl_trecord 9
appl_write 11

Bconin 298
Bconout 300
Bconstat 301
Bcostat 302
BEG_MCTRL 110
BEG_UPDATE 110
Bioskeys 314
BITBLIT 372
Blitmode 315
border 61

Cauxin 248
Cauxis 249
Cauxos 250
Cauxout 251
Cconin 252
Cconis 253
Cconos 254
Cconout 255
Cconrs 256
Cconws 258
chdiracc.c 55
check mark 53
CLOSE 92, 95
Cnecin 259
command line 89
Cprnos 260
Cprnout 261
Crawcin 262
Crawio 263
Cursconf 316

Dcreate 264
Ddelete 264

desk accessory 5,7, 11, 19, 25, 55

Dfree 265
Dgetdrv 266
Dgetpath 267
dialog 30

disable 54
DNARROW 92, 95
Dosound 317
double click 14
double clicked 33
Drvmap 303
Dsetdrv 266
Dsetpath 267

ED_CHAR 62
ED_END 62
ED_INIT 62
ED_START 62
END_MCTRL 110
END_UPDATE 110
environment 85
error number 34
etv_critic 310
etv_term 291
EVENTREC 8
evnt_button 12
evnt_mesag 16
evnt_mouse 21
EVNTREC 9

Fattrib 268
Fclose 270
Fcreate 271
Fdatime 272
Fdelete 274

Fdup 275

Fforce 276
Fgetdta 277
Flopfmt 318
Floprd 321
Flopver 322
Flopwr 323
FMD_FINISH 31
FMD_GROW 31
FMD_SHRINK 31

Atari Library Index

Lattice C 5

Page 387

FMD_START 31
font 42

Fopen 278

fork 90
form_button 28

GRECT 71

HIDETREE 66
HSLIDE 92, 95

form_center 30 Ikbdws 327

form_do 62 INFO 92, 95

form_keybd 36 Initmous 328

Fread 279 internal shell 88

Frename 280 inverse video 57

Fseek 281 Torec 330

fsel_exinput 37

fsel_input 39 Jdisint 331

Fsetdta 277 Jenabint 331

Fsfirst 282

Fsnext 282 Kbdvbase 332

FULL 92, 95 Kbrate 334

function keys 15 Kbshift 252, 259, 262, 263, 298, 306

Fwrite 284 key stroke 36

Keytbl 335

G_BOXCHAR 42

GDOS LA_DATA 361
v_alpha_text 114 LA_EXT 362
v_bit_image 118 LA_FONT 363
v_clear_disp_list 121 LA_SPRITE 380
v_form_adv 138 LFARROW 92, 95
v_opnwk 149 linea.h 359
v_output_window 154 linea0 360
v_updwk 160 lineal 365
vq_scan 181 linea2 366
vqt_name 192 linea3 367
vst_font 240 linea4 368
vst_load_fonts 242 linea5 369
vst_unload_fonts 244 linea6 370

GDP linea7 372
v_arc 115 linea8 375
v_bar 117 linea9 378
v_circle 120 LINEA_INFO 360
v_ellarc 132 lineaa 379
v_ellipse 134 lineab 380
v_ellslice 132 lineac 381
v_justified 143 linead 382
v_pieslice 115 lineae 383
v_rbox 157 lineaf 384
v_rfbox 157 Logbase 336

Getbpb 304 Lrwabs 309

Getmpb 305

Getrez 324

Gettime 325

Giaccess 326

Page 388 Lattice C 5 Atari Library Index

Malloc 285

_mediach 286

Mediach 308

menu_register 19

Metafile
v_meta_extents 145
vm_coords 169
vm_filename 170
vm_pagesize 171

MFORM 44

Mfpint 337

Mfree 287

Midiws 339

MN_SELECTED 16

mouse
ARROW 44
FLAT_HAND 44
HOURGLASS 44
M_OFF 44
M_ON 44
OUTLN_CROSS 44
POINT_HAND 44
TEXT_CRSR 44
THICK_CROSS 44
THIN_CROSS 44
USER_DEF 44

MOVE 95

Mshrink 288

MU_BUTTON 24

MU_KEYBD 24

MU_MI1 24

MU_M2 24

MU_MESAG 24

MU_TIMER 24

NAME 92, 95

objc_draw 30, 33, 80
objc_offset 64
objc_walk 66
objc_xywh 68
Offgibit 340

Ongibit 340

osbind.h 247, 297, 313
outlined 61

PCDOS 34
Pexec 289
Physbase 341
Protobt 342

Prtblk 343

Pterm 291
Pterm0 291
Ptermres 292
Puntaes 320, 345

Rainbow TOS 37, 102
Random 346
rc_constrain 69
rc_copy 70

rc_equal 71

rc_inside 72
rc_intersect 73
rc_union 75

resource file 52, 61, 76, 79

Rsconf 347

rsrc_free 76
rsrc_gaddr 33, 61, 77
rsrc_load 76, 79
rsrc_obfix 80
rsrc_saddr 81
RTARROW 92, 95
Rwabs 309

Saved! 86
scan code 15
scrap 83, 84
Scrdmp 349
scrp_read 83
scrp_write 84
Setcolor 350
Setexc 311
Setpallete 351
Setprt 352
Setscreen 353
Settime 325
shel_envrn 85
shel_find 86
shel_get 87
shel_put 88
shel_read 89
shel_write 90
shell buffer 87
siblings 65
SIZE 92, 95
Ssbrk 354
Super 293
Supexec 355
Sversion 294

AtariLibrary Index

Lattice C5

Page 389

Tgetdate 295
Tgettime 296

tick 53

Tickcal 312
Tsetdate 295
Tsettime 296
UPARROW 92, 95

v_alpha_text 114
v_arc 115

v_bar 117, 369
v_bit_image 118
v_cellarray 119
v_circle 120
v_clear_disp_list 121
v_clrwk 122
v_clsvwk 123
v_clswk 124
v_contourfill 125
v_curdown 129
v_curhome 126
v_curleft 127
v_curright 127
v_curtext 128
v_curup 129
v_dspcur 130
v_eeol 131
v_ellarc 132
v_ellipse 134
v_ellslice 132
v_enter_cur 135
v_exit_cur 135
v_fillarea 136, 370
v_font 137
v_form_adv 138
v_get_pixel 139
v_gtext 140
v_hardcopy 141
v_hide _c 45,142, 379
v_justified 143
v_meta_extents 145
v_offset 146
v_opnvwk 42, 147
v_opnwk 149
v_output_window 154
v_pieslice 115
v_pline 155, 367
v_pmarker 156
v_rbox 157
v_recfl 369

v_rfbox 157
v_rmcur 130
v_rvoff 158
v_rvon 158
v_show_c 45, 159, 378
v_updwk 160
v_write_meta 161
vdi.h 113

vex_butv 162
vex_curv 164
vex_motv 165
vex_timv 167
vm_coords 169
vm_filename 170
vm_pagesize 171
vq_cellarray 172
vq_chcells 173
vq_color 174
vq_curaddress 175
vq_extnd 176
vq_gdos 178
vq_key_s 179
vq_mouse 180
vq_scan 181
vq_tabstatus 182
vqf_attributes 183
vgin_mode 184
vql_attributes 185
vqm_attributes 186
vqp_films 187
vqp_state 188
vqt_attributes 189
vqt_extent 190
vqt_fontinfo 191
vqt_name 192
vqt_width 193
vr_recfl 194
vr_trnfm 195
vro_cpyfm 197, 373, 383
vrq_choice 200
vrq_locator 201
vrq_string 203
vrq_valuator 205
vrt_cpyfm 206, 383
vs_clip 207
vs_color 208
vs_curaddress 126
vs_palette 209
vsc_form 44, 210, 380
vsf_color 211

Page 390

Lattice C 5

Atari Library Index

vsf_interior 213
vsf_perimeter 215
vsf_style 213
vsf_udpat 216
vsin_mode 217
vsl_color 218
vsl_ends 220
vsl_type 221
vsl_udsty 221
vsl_width 222
VSLIDE 92, 95
vsm_choice 223
vsm_color 224
vsm_height 226
vsm_locator 227
vsm_string 229
vsm_type 231
vsm_valuator 232
vsp_message 233
vsp_state 234, 235
vst_alignment 236
vst_color 237
vst_effects 239
vst_font 240
vst_height 241
vst_load_fonts 242
vst_point 241
vst_rotation 243
vst_unload_fonts 244
vswr_mode 245
Vsync 356

WA _DNLINE 17
WA_DNPAGE 17
WA _LFLINE 17
WA_LFPAGE 17
WA_RTLINE 17
WA_RTPAGE 17
WA_UPLINE 17
WA_UPPAGE 17
WC_BORDER 92
WC_WORK 92

WF_CURRXYWH 99, 106

WF_CXYWH 99, 106

WEF_FIRSTXYWH 100

WF_FULLXYWH 99
WF_FXYWH 99
WF_HSLIDE 99, 107

WF_HSLSIZE 100, 107

WF_INFO 106

WF_NAME 106
WF_NEWDESK 107
WF_NEXTXYWH 100
WEF_PREVXYWH 99
WF_PXYWH 99
WF_SCREEN 100
WEF_TOP 100, 107
WEF_VSLIDE 99, 107
WEF_VSLSIZE 100, 107
WF_WORKXYWH 99
WF_WXYWH 99
wind_calc 92
wind_close 94, 110
wind_create 95
wind_delete 94, 97
wind_find 98
wind_get 99
wind_info 101, 109
wind_new 102
wind_newdesk 102, 103
wind_open 104
wind_redraw 105
wind_set 106
WM_ARROWED 17
WM_CLOSED 18
WM_FULLED 16
WM_HSLID 17
WM_MOVED 18
WM_REDRAW 17
WM_SIZED 19
WM_TOPPED 18
WM_VSLID 18

Xbtimer 357

Atari Library Index

Lattice C 5

Page 391

	vol-iii-01_Page_01
	vol-iii-01_Page_02_1L
	vol-iii-01_Page_02_2R
	vol-iii-01_Page_03_1L
	vol-iii-01_Page_03_2R
	vol-iii-01_Page_04_1L
	vol-iii-01_Page_04_2R
	vol-iii-01_Page_05_1L
	vol-iii-01_Page_05_2R
	vol-iii-01_Page_06_1L
	vol-iii-01_Page_06_2R
	vol-iii-01_Page_07_1L
	vol-iii-01_Page_07_2R
	vol-iii-01_Page_08_1L
	vol-iii-01_Page_08_2R
	vol-iii-01_Page_09_1L
	vol-iii-01_Page_09_2R
	vol-iii-01_Page_10_1L
	vol-iii-01_Page_10_2R
	vol-iii-01_Page_11_1L
	vol-iii-01_Page_11_2R
	vol-iii-01_Page_12_1L
	vol-iii-01_Page_12_2R
	vol-iii-01_Page_13_1L
	vol-iii-01_Page_13_2R
	vol-iii-01_Page_14_1L
	vol-iii-01_Page_14_2R
	vol-iii-01_Page_15_1L
	vol-iii-01_Page_15_2R
	vol-iii-01_Page_16_1L
	vol-iii-01_Page_16_2R
	vol-iii-01_Page_17_1L
	vol-iii-01_Page_17_2R
	vol-iii-01_Page_18_1L
	vol-iii-01_Page_18_2R
	vol-iii-01_Page_19_1L
	vol-iii-01_Page_19_2R
	vol-iii-01_Page_20_1L
	vol-iii-01_Page_20_2R
	vol-iii-01_Page_21_1L
	vol-iii-01_Page_21_2R
	vol-iii-01_Page_22_1L
	vol-iii-01_Page_22_2R
	vol-iii-01_Page_23_1L
	vol-iii-01_Page_23_2R
	vol-iii-01_Page_24_1L
	vol-iii-01_Page_24_2R
	vol-iii-01_Page_25_1L
	vol-iii-01_Page_25_2R
	vol-iii-02_Page_01_1L
	vol-iii-02_Page_01_2R
	vol-iii-02_Page_02_1L
	vol-iii-02_Page_02_2R
	vol-iii-02_Page_03_1L
	vol-iii-02_Page_03_2R
	vol-iii-02_Page_04_1L
	vol-iii-02_Page_04_2R
	vol-iii-02_Page_05_1L
	vol-iii-02_Page_05_2R
	vol-iii-02_Page_06_1L
	vol-iii-02_Page_06_2R
	vol-iii-02_Page_07_1L
	vol-iii-02_Page_07_2R
	vol-iii-02_Page_08_1L
	vol-iii-02_Page_08_2R
	vol-iii-02_Page_09_1L
	vol-iii-02_Page_09_2R
	vol-iii-02_Page_10_1L
	vol-iii-02_Page_10_2R
	vol-iii-02_Page_11_1L
	vol-iii-02_Page_11_2R
	vol-iii-02_Page_12_1L
	vol-iii-02_Page_12_2R
	vol-iii-02_Page_13_1L
	vol-iii-02_Page_13_2R
	vol-iii-02_Page_14_1L
	vol-iii-02_Page_14_2R
	vol-iii-02_Page_15_1L
	vol-iii-02_Page_15_2R
	vol-iii-02_Page_16_1L
	vol-iii-02_Page_16_2R
	vol-iii-02_Page_17_1L
	vol-iii-02_Page_17_2R
	vol-iii-02_Page_18_1L
	vol-iii-02_Page_18_2R
	vol-iii-02_Page_19_1L
	vol-iii-02_Page_19_2R
	vol-iii-02_Page_20_1L
	vol-iii-02_Page_20_2R
	vol-iii-02_Page_21_1L
	vol-iii-02_Page_21_2R
	vol-iii-02_Page_22_1L
	vol-iii-02_Page_22_2R
	vol-iii-02_Page_23_1L
	vol-iii-02_Page_23_2R
	vol-iii-02_Page_24_1L
	vol-iii-02_Page_24_2R
	vol-iii-02_Page_25_1L
	vol-iii-02_Page_25_2R
	vol-iii-03_Page_01_1L
	vol-iii-03_Page_01_2R
	vol-iii-03_Page_02_1L
	vol-iii-03_Page_02_2R
	vol-iii-03_Page_03_1L
	vol-iii-03_Page_03_2R
	vol-iii-03_Page_04_1L
	vol-iii-03_Page_04_2R
	vol-iii-03_Page_05_1L
	vol-iii-03_Page_05_2R
	vol-iii-03_Page_06_1L
	vol-iii-03_Page_06_2R
	vol-iii-03_Page_07_1L
	vol-iii-03_Page_07_2R
	vol-iii-03_Page_08_1L
	vol-iii-03_Page_08_2R
	vol-iii-03_Page_09_1L
	vol-iii-03_Page_09_2R
	vol-iii-03_Page_10_1L
	vol-iii-03_Page_10_2R
	vol-iii-03_Page_11_1L
	vol-iii-03_Page_11_2R
	vol-iii-03_Page_12_1L
	vol-iii-03_Page_12_2R
	vol-iii-03_Page_13_1L
	vol-iii-03_Page_13_2R
	vol-iii-03_Page_14_1L
	vol-iii-03_Page_14_2R
	vol-iii-03_Page_15_1L
	vol-iii-03_Page_15_2R
	vol-iii-03_Page_16_1L
	vol-iii-03_Page_16_2R
	vol-iii-03_Page_17_1L
	vol-iii-03_Page_17_2R
	vol-iii-03_Page_18_1L
	vol-iii-03_Page_18_2R
	vol-iii-03_Page_19_1L
	vol-iii-03_Page_19_2R
	vol-iii-03_Page_20_1L
	vol-iii-03_Page_20_2R
	vol-iii-03_Page_21_1L
	vol-iii-03_Page_21_2R
	vol-iii-03_Page_22_1L
	vol-iii-03_Page_22_2R
	vol-iii-03_Page_23_1L
	vol-iii-03_Page_23_2R
	vol-iii-03_Page_24_1L
	vol-iii-03_Page_24_2R
	vol-iii-03_Page_25_1L
	vol-iii-03_Page_25_2R
	vol-iii-03_Page_26_1L
	vol-iii-03_Page_26_2R
	vol-iii-03_Page_27_1L
	vol-iii-03_Page_27_2R
	vol-iii-03_Page_28_1L
	vol-iii-03_Page_28_2R
	vol-iii-03_Page_29_1L
	vol-iii-03_Page_29_2R
	vol-iii-03_Page_30_1L
	vol-iii-03_Page_30_2R
	vol-iii-03_Page_31_1L
	vol-iii-03_Page_31_2R
	vol-iii-04_Page_01_1L
	vol-iii-04_Page_01_2R
	vol-iii-04_Page_02_1L
	vol-iii-04_Page_02_2R
	vol-iii-04_Page_03_1L
	vol-iii-04_Page_03_2R
	vol-iii-04_Page_04_1L
	vol-iii-04_Page_04_2R
	vol-iii-04_Page_05_1L
	vol-iii-04_Page_05_2R
	vol-iii-04_Page_06_1L
	vol-iii-04_Page_06_2R
	vol-iii-04_Page_07_1L
	vol-iii-04_Page_07_2R
	vol-iii-04_Page_08_1L
	vol-iii-04_Page_08_2R
	vol-iii-04_Page_09_1L
	vol-iii-04_Page_09_2R
	vol-iii-04_Page_10_1L
	vol-iii-04_Page_10_2R
	vol-iii-04_Page_11_1L
	vol-iii-04_Page_11_2R
	vol-iii-04_Page_12_1L
	vol-iii-04_Page_12_2R
	vol-iii-04_Page_13_1L
	vol-iii-04_Page_13_2R
	vol-iii-04_Page_14_1L
	vol-iii-04_Page_14_2R
	vol-iii-04_Page_15_1L
	vol-iii-04_Page_15_2R
	vol-iii-04_Page_16_1L
	vol-iii-04_Page_16_2R
	vol-iii-04_Page_17_1L
	vol-iii-04_Page_17_2R
	vol-iii-04_Page_18_1L
	vol-iii-04_Page_18_2R
	vol-iii-04_Page_19_1L
	vol-iii-04_Page_19_2R
	vol-iii-04_Page_20_1L
	vol-iii-04_Page_20_2R
	vol-iii-04_Page_21_1L
	vol-iii-04_Page_21_2R
	vol-iii-04_Page_22_1L
	vol-iii-04_Page_22_2R
	vol-iii-04_Page_23_1L
	vol-iii-04_Page_23_2R
	vol-iii-04_Page_24_1L
	vol-iii-04_Page_24_2R
	vol-iii-04_Page_25_1L
	vol-iii-04_Page_25_2R
	vol-iii-04_Page_26_1L
	vol-iii-04_Page_26_2R
	vol-iii-04_Page_27_1L
	vol-iii-04_Page_27_2R
	vol-iii-04_Page_28_1L
	vol-iii-04_Page_28_2R
	vol-iii-05_Page_01_1L
	vol-iii-05_Page_01_2R
	vol-iii-05_Page_02_1L
	vol-iii-05_Page_02_2R
	vol-iii-05_Page_03_1L
	vol-iii-05_Page_03_2R
	vol-iii-05_Page_04_1L
	vol-iii-05_Page_04_2R
	vol-iii-05_Page_05_1L
	vol-iii-05_Page_05_2R
	vol-iii-05_Page_06_1L
	vol-iii-05_Page_06_2R
	vol-iii-05_Page_07_1L
	vol-iii-05_Page_07_2R
	vol-iii-05_Page_08_1L
	vol-iii-05_Page_08_2R
	vol-iii-05_Page_09_1L
	vol-iii-05_Page_09_2R
	vol-iii-05_Page_10_1L
	vol-iii-05_Page_10_2R
	vol-iii-05_Page_11_1L
	vol-iii-05_Page_11_2R
	vol-iii-05_Page_12_1L
	vol-iii-05_Page_12_2R
	vol-iii-05_Page_13_1L
	vol-iii-05_Page_13_2R
	vol-iii-05_Page_14_1L
	vol-iii-05_Page_14_2R
	vol-iii-05_Page_15_1L
	vol-iii-05_Page_15_2R
	vol-iii-05_Page_16_1L
	vol-iii-05_Page_16_2R
	vol-iii-05_Page_17_1L
	vol-iii-05_Page_17_2R
	vol-iii-05_Page_18_1L
	vol-iii-05_Page_18_2R
	vol-iii-05_Page_19_1L
	vol-iii-05_Page_19_2R
	vol-iii-05_Page_20_1L
	vol-iii-05_Page_20_2R
	vol-iii-05_Page_21_1L
	vol-iii-05_Page_21_2R
	vol-iii-05_Page_22_1L
	vol-iii-05_Page_22_2R
	vol-iii-05_Page_23_1L
	vol-iii-05_Page_23_2R
	vol-iii-05_Page_24_1L
	vol-iii-05_Page_24_2R
	vol-iii-05_Page_25_1L
	vol-iii-05_Page_25_2R
	vol-iii-05_Page_26_1L
	vol-iii-05_Page_26_2R
	vol-iii-05_Page_27_1L
	vol-iii-05_Page_27_2R
	vol-iii-05_Page_28_1L
	vol-iii-05_Page_28_2R
	vol-iii-05_Page_29_1L
	vol-iii-05_Page_29_2R
	vol-iii-05_Page_30_1L
	vol-iii-05_Page_30_2R
	vol-iii-05_Page_31_1L
	vol-iii-05_Page_31_2R
	vol-iii-05_Page_32_1L
	vol-iii-05_Page_32_2R
	vol-iii-05_Page_33_1L
	vol-iii-05_Page_33_2R
	vol-iii-05_Page_34_1L
	vol-iii-05_Page_34_2R
	vol-iii-06_Page_01_1L
	vol-iii-06_Page_01_2R
	vol-iii-06_Page_02_1L
	vol-iii-06_Page_02_2R
	vol-iii-06_Page_03_1L
	vol-iii-06_Page_03_2R
	vol-iii-06_Page_04_1L
	vol-iii-06_Page_04_2R
	vol-iii-06_Page_05_1L
	vol-iii-06_Page_05_2R
	vol-iii-06_Page_06_1L
	vol-iii-06_Page_06_2R
	vol-iii-06_Page_07_1L
	vol-iii-06_Page_07_2R
	vol-iii-06_Page_08_1L
	vol-iii-06_Page_08_2R
	vol-iii-06_Page_09_1L
	vol-iii-06_Page_09_2R
	vol-iii-06_Page_10_1L
	vol-iii-06_Page_10_2R
	vol-iii-06_Page_11_1L
	vol-iii-06_Page_11_2R
	vol-iii-06_Page_12_1L
	vol-iii-06_Page_12_2R
	vol-iii-06_Page_13_1L
	vol-iii-06_Page_13_2R
	vol-iii-06_Page_14_1L
	vol-iii-06_Page_14_2R
	vol-iii-06_Page_15_1L
	vol-iii-06_Page_15_2R
	vol-iii-06_Page_16_1L
	vol-iii-06_Page_16_2R
	vol-iii-06_Page_17_1L
	vol-iii-06_Page_17_2R
	vol-iii-06_Page_18_1L
	vol-iii-06_Page_18_2R
	vol-iii-06_Page_19_1L
	vol-iii-06_Page_19_2R
	vol-iii-06_Page_20_1L
	vol-iii-06_Page_20_2R
	vol-iii-06_Page_21_1L
	vol-iii-06_Page_21_2R
	vol-iii-06_Page_22_1L
	vol-iii-06_Page_22_2R
	vol-iii-06_Page_23_1L
	vol-iii-06_Page_23_2R
	vol-iii-07_Page_01_1L
	vol-iii-07_Page_01_2R
	vol-iii-07_Page_02_1L
	vol-iii-07_Page_02_2R
	vol-iii-07_Page_03_1L
	vol-iii-07_Page_03_2R
	vol-iii-07_Page_04_1L
	vol-iii-07_Page_04_2R
	vol-iii-07_Page_05_1L
	vol-iii-07_Page_05_2R
	vol-iii-07_Page_06_1L
	vol-iii-07_Page_06_2R
	vol-iii-07_Page_07_1L
	vol-iii-07_Page_07_2R
	vol-iii-07_Page_08_1L
	vol-iii-07_Page_08_2R
	vol-iii-07_Page_09_1L
	vol-iii-07_Page_09_2R
	vol-iii-07_Page_10_1L
	vol-iii-07_Page_10_2R
	vol-iii-07_Page_11_1L
	vol-iii-07_Page_11_2R
	vol-iii-07_Page_12_1L
	vol-iii-07_Page_12_2R
	vol-iii-07_Page_13_1L
	vol-iii-07_Page_13_2R
	vol-iii-07_Page_14_1L
	vol-iii-07_Page_14_2R
	vol-iii-07_Page_15_1L
	vol-iii-07_Page_15_2R
	vol-iii-07_Page_16_1L
	vol-iii-07_Page_16_2R
	vol-iii-07_Page_17_1L
	vol-iii-07_Page_17_2R
	vol-iii-07_Page_18_1L
	vol-iii-07_Page_18_2R
	vol-iii-07_Page_19_1L
	vol-iii-07_Page_19_2R
	vol-iii-07_Page_20_1L
	vol-iii-07_Page_20_2R
	vol-iii-07_Page_21_1L
	vol-iii-07_Page_21_2R
	vol-iii-07_Page_22_1L
	vol-iii-07_Page_22_2R
	vol-iii-07_Page_23_1L
	vol-iii-07_Page_23_2R
	vol-iii-07_Page_24_1L
	vol-iii-07_Page_24_2R
	vol-iii-07_Page_25_1L
	vol-iii-07_Page_25_2R
	vol-iii-07_Page_26_1L
	vol-iii-07_Page_26_2R
	vol-iii-07_Page_27_1L
	vol-iii-07_Page_27_2R
	vol-iii-07_Page_28_1L
	vol-iii-07_Page_28_2R
	vol-iii-07_Page_29_1L
	vol-iii-07_Page_29_2R
	vol-iii-07_Page_30_1L
	vol-iii-07_Page_30_2R
	vol-iii-07_Page_31_1L
	vol-iii-07_Page_31_2R
	vol-iii-07_Page_32_1L
	vol-iii-07_Page_32_2R
	vol-iii-07_Page_33_1L
	vol-iii-07_Page_33_2R

