Lattice Cb

lhe CE a/rr/a/%a/‘ faﬁ Gour Atar ST ﬁm/ﬁa ler

Volume 11

Library Manual
Requires:
v Atari 520ST upwards O gy =
{ 1M+ memory advised)
/ Disk drive

(2 floppies or hard disk advised
v Mouse

Lattice C

The C system for your Atari ST

Volume I
Library Manual

Copyright © HiSoft & Lattice, Inc. 1990, 91
Published by HiSoft

Version 5
First edition March 1990 (ISBN 0 948517 30 1)
Second edition April 1991

ISBN for this volume 0 948517 38 7

ISBN for complete 3 volume set 0 948517 28 X

Set using an Apple Macintosh™ and Laserwriter™ with Microsoft Word™ and
SuperPaint™.

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to Lattice C for the ST and its
associated documentation to copy, by any means whatsoever, any part of Lattice
C for the ST for any reason other than for the purposes of making a security back-
up copy of the object code.

Table of Contents

1 Introduction

2 Header Files

w

- 0 ® N O O A

-t - ot
NO N

18

assert.h Program validation macros

basepage.h Program basepage definitions

conio.h Console 1/O declarations

ctype.h Character classification and conversion
dirent.h File system Independent directory manipulation
dos.h OS Interface functions and definitions
errno.h UNIX error definitions

fentl.h Unbuffered UNIX 1/O

float.h Define computational limits for real numbers
ios1.h Unbuffered I/0 interface file

limits.h Integral numerical limits

locale.h Localisation functions and macros
m68881.h Unary maths co-processor transcendental interface 19
math.h Mathematical definitions and declarations
oserr.h TOS error definitions

setimp.h Declarations for non-local jumps

signal.h Signal handling routines

stdarg.h ANSI variable argument header

stddef.h ANSI standard definitions

stdio.h Standard 1/0 library definitions

stdlib.h Standard utility definitions

string.h String manipulation

time.h Date and Time manipulation functions

3 Library Functions

NRIEBIVIIIRBNS

3

Index

357

Library Table of Contents Lattice C ST

Page i

Page ii Lattice C ST Library Table of Contents

1 Introduction

This volume describes the Lattice C library, consisting of the Lattice portable
library, the ANSI C library and the UNIX functions available to user programs.
Note that this does not include the GEMDOS, BIOS, XBIOS, AES, VDI or
Line-A functions which are documented separately in the volume 3.

The next section of this manual covers the header files supplied for use with
the functions described in this manual. Many of the headers files are as defined
by ANSI, but often contain extensions to provide a more flexible interface.
Some of the header files are additions to ANSI and provide access to facilities
available on the Atari ST in a more consistent manner than by directly calling
the OS. The use of these functions greatly enhances portability to other Lattice
C compilers.

The main section provides detailed descriptions of the library functions often
with examples. All functions are described in the same basic way, with a
synopsis, a description of the function as implemented, the input and output
parameters and any side effects of the call, and finally any cross-references to
other functions which are related or perform similar functions.

The synopses give a brief summary, listing the header file in which the function
is declared, the calling syntax and the types of the parameters.

The calling form is listed as a one line summary, for instance fopen is:

#include <stdio.h>
fp = fopen(name, mode);

so that the function takes two parameters name and mode returning a single
parameter. If the function does not return a value (i.e. ‘returns void’) then this
is indicated by the return value not being assigned.

The types of parameters is then listed; note that the types listed are those used
in the definition, to call them only compatible types are required. Hence
considering fopen, the parameters are:

FILE *fp; /* function return value in
appropriate type */

const char name; /* first parameter */

const char *mode; /* second parameter */

In general then the types of the parameters you pass would have type (char *)
rather than (const char *).

Library Introduction Lattice C 5 Page 1

Considering a more complex function such as gsort, the synopsis for this is:

#include <stdlib.h>

qsort(a,n,size,cmp); Sort a data array

void *a; data array pointer
size_t n; number of elements in array
size_t size; element size in bytes

int —(*cmp)(const void *,const void *);
pointer to comparison function

So that gsort takes four parameters and returns no value. Examining the types
of the parameters, the first has type (void *) whose type is compatible with any
pointer tyI:e (i.e. you may pass any pointer). The second two parameters are of
type size_t, hence in general these would passed values of type int. The size_t
type was introduced by ANSI and is the type returned by the sizeof operator,
(unsigned Ilong) in this implementation. The final parameter is a functional
parameter, which takes two pointers to constant objects.

The final form which appears in the synopses are those functions using the
ANSI ellipsis operator to indicate a function which takes a variable number of
arguments. For instance the printf function synopsis is:

Hinclude <stdio.h>
Length = printf(fmt,argl1,arg2,...);
const char *fmt; format string

Hence printf takes a constant format string and a variable number of
arguments relating to the formatting string. Note that when using variable
argument functions you must ensure that you pass an appropriate type as the
compiler is unable to check the types of your parameters and promote (or
demote) them if necessary.

The fonts used throughout this library manual are:

OCRB Program fragments and synopses.

Avante Garde Library identifiers, parameters, disk files and
keyboard shortcuts. Note that square brackets (i.e.
those used in array accesses) appear as () in this
font, whereas parentheses (i.e. those used in
function calls) appear as (). Beware of the
distinction.

Note that italics are used solely for emphasis.

Page 2 Lattice C 5 Library Introduction

2 Header Files

This section describes the header files supplied with the Lattice C compiler,
listing the header file and any macros, functions and types declared within
them. To gain access to the facilities in these files you must #include them into
your program.

For functions declared in a header file, the prototypes are listed so that you can
see the types which the parameters should take and the value returned. In
general description is not provided on these and you should refer to the main
library section for full details.

Any types declared in a header file are listed together with their use. Note that
many types were added by the ANSI standardisation committee and so may not
be familiar, even to experienced C programmers.

Macros which provide a function like facility are listed in a functional form.
Note that in general you may #undef these macros to obtain a true function
implementation.

For macros which provide constant values these are indicated as ‘const Int’
which will in general be the type assigned to these expressions. Note that it is
important to be aware that these values are expressions and not simple
variables as this can lead to unexpected type assignments (e.g. -32768 is the
long integer value 32768 negated by the unary minus operator, giving a long
integer type to the ‘constant’).

For external variables made available by a header these are marked as
‘extern’, and in general you may redefine this yourself to change the default
initialiser, or alter them at runtime.

In the past many C programmers have neglected to include the required header
files and simply placed a declaration in their own file. This practice is strongly
discouraged, as ANSI changed the types of the parameters of many functions
from the default int, hence your code may not run successfully without in-scope
prototypes.

Header Reference Lattice C 5 Page 3

asse rt . h Program validation macros

Class: ANSI Category: Debugging
SYNOPSIS

void assert(int);

DESCRIPTION

The assert.h header file contains the definition for the assert macro, which is
used to insert diagnostics into a program during debugging, which can then be
removed at final compilation time by defining the symbol NDEBUG, causing all
references to assert to be removed during the pre-processing phase.

Page 4 Lattice C 5 Header Reference

basepage.h

Program basepage definitions

Class: GEMDOS
SYNOPSIS

typedef struct

{
void
void
void
Long
void
Long
void
Long
void
struct
void
char
Long
char

} BASEPAGE;

_base

extern BASEPAGE

DESCRIPTION

Category: Process Environment

_base
*p_lowtpa; bottom of TPA
*p_hitpa; top of TPA + 1
*p_tbase; base of text segment
p_tlen; lLength of text
*p_dbase; base of data segment
p_dlen; Length of data
*p_bbase; base of BSS segment
p_blen; Length of BSS
*p_dta; current DTA pointer
*p_parent; parent's basepage
*p_reserved;
*p_env; environment strings
p_undefl201];
p_cmdlinC128]; command Lline image
*_pbase; program's basepage pointer

The basepage.h header file contains definitions relating to the GEMDOS
basepage structure (usually called Program Segment Prefix (PSP) under MS-

DOS).

The _pbase variable is used to gain access to the current program'’s basepage.

Note that this file is included by dos.h.

Header Reference

Lattice C 5

Page 5

con iO . h Console I/0 declarations

Class: GEMDOS Category: Console and Port I/O
SYNOPSIS

int cget(void);

int cgetc(void);

char *cgets(char *);

int cputc(int);

int cputs(const char *);

int cprintf(const char *, ...);
int cscanf(const char *, ...);
int getch(void);

int getche(void);

int kbhit(void);

int 1diskbhit(void);

int putch(int);

int wungetch(int);

DESCRIPTION

The conlio.h header file contains definitions for console input and output.
These functions read and write characters directly at the GEMDOS level. They
do not work through any layer of the file manager (i.e. buffered or unbuffered
I/0) and so these functions will always return a key immediately one is
requested, or write the character as soon as it is sent.

Note that traditionally these functions have been defined in the Lattice dos.h
header file, and if you require portability to other Lattice compilers you should
include dos.h rather than this file directly (which is included by dos.h anyway).

Page 6 Lattice C 5 Header Reference

ctype.h

Character

classification and conversion

Class: ANSI Category: Character Classification/Conversion
SYNOPSIS
int idisalpha(int); true if ¢ 1is alpha
int disupper(int); true if ¢ 1is upper case
int idislower(int); true if ¢ is Llower case
int idisdigit(int); true if ¢ is a digit (0 to 9)
int isxdigit(int); true if ¢ is a hexadecimal digit
(0 to 9, A to F, a to f)
int isspace(int); true if ¢ is white space
int dispunct(int); true if ¢ dis punctuation
int idisalnum(int); true if ¢ is alpha or digit
int disprint(int); true if ¢ is printable
(including blank)
int disgraph(int); true if ¢ dis graphic (excluding
blank)
int discntrl(int); true if ¢ is control character
int idisascii(int); true if ¢ is ASCII
int discsym(int); true if valid character for ¢
symbols
int discsymf(int); true if valid first character
for C symbols
int _toupper(int); convert Llower case to upper case
int _tolower(int); convert upper case to Llower case
int toascii(int); convert character to ascii
int toupper(int); convert character to upper case
int tolower(int); convert character to Llower case
DESCRIPTION

The ctype.h header file contains macros for classifying (Is...) and for
converting characters (fo...).

The Is... functions return a non-zero value when the character falls into the
category of the function. The f0... functions return the character converted as
required. Note that the Is... functions are normally implemented as macros. If
you wish to force the use of an equivalent function the macro should be
undefined using #undef is....

Note that the functions Isascll, Iscsym, Iscsymf, _toupper, _tolower, and
toascil do not form part of the ANSI C standard.

Header Reference Lattice C 5 Page 7

d i re nt, h File system independent directory manipulation

Class: POSIX Category: Directory Manipulation
SYNOPSIS
struct dirent
{
int d_attr; /* GEMDOS file attribute */
time_t d_time; /* time */
size_t d_size; /* file size */

char d_namelCFMSIZE]; /* directory entry name */
};

typedef ... DIR;

DIR *opendir(const char *);
struct dirent *readdir(DIR *);
void closedir(DIR *);

void seekdir(DIR *,long);
Long telldir(DIR *);

void rewinddir(DIR *);

DESCRIPTION

The dirent.h header file contains functions for manipulating directory entries in
an OS independent manner. A directory is first opened using the openddir
function and entries are then obtained from it using the readdir function.
Seeking may also be performed in a manner similar to the buffered I/O sub-
system using the seekdir, telidir and rewinddir functions.

The readdir command returns a pointer to the structure shown above, the only
element of which you should rely upon being present is the d_name field. The
GEMDOS specific entries are obviously not available under other operating
systems.

Page 8 Lattice C 5 Header Reference

dos.h

OS interface functions and definitions

Class: GEMDOS

Category: DOS Interface

SYNOPSIS
const int SECSIZ; disk sector size
const 1int FNSIZE; maximum file node size
const int FMSIZE; maximum file name size
const int FESIZE; maximum file extension size
extern short _tos; tos version number
extern short _country; 0S country code
extern Llong _MSTEP; 0S memory increment
extern Long volatile _OSERR;
Last 0S error
extern unsigned Llong int _STACK;
default stack size
struct DISKINFO
{
unsigned Llong free; /* number of free clusters */
unsigned Llong cpd; /* clusters per drive */
unsigned Llong bps; /* bytes per sector */
unsigned Llong spc; /* sectors per cluster */
};
struct FILEINFO
char resv[21]; /* reserved */
char attr; /* actual file attribute */
Long time; /* file time and date */
Long size; /* file size in bytes */
char namelFNSIZE]; /* file name */
};
Long _dclose(int);
Long _dcreat(const char *, idint);
Long _dcreatx(const char *, idint);
int _ddup(int);
int _ddup2Cint, int);
int _disatty(int);
Long _dopen(const char *, int);
Long _dread(int,void *, Llong);
Llong _dwrite(int,const void *,long);
Long _dseek(int, Llong, int);
int dfind(struct FILEINFO *, const char *, int);
int dnext(struct FILEINFO *);
int getcd(int, char ¥*);
int getfa(const char *);
int chgfal(const char *, int);
int getdsk(void);
int chgdsk(int);
void chgdta(struct FILEINFO *);
struct FILEINFO *getdta(void);
int getdfs(int,struct DISKINFO *);
Long getft(int);
int chgft(int, Llong);
Long ftpack(const char *);
void ftunpk(long, char *);
Header Reference Lattice C 5 Page 9

int chgclk(unsigned

char

*);
void getclk(unsigned char *);
int getpf(char *,const char *);
int getpfe(char *,const char ¥*);
__stdargs void _stub(void);
__stdargs void _xcovf(void);
int onbreak(int (*)());
int poserr(const char *);
void geta4(void);
void __emit(short);

Long getreg(int);

void putreg(int, Llong);

const int REG_DO; register
const 1int REG_D1; register
const int REG_D2; register
const int REG_D3; register
const int REG_D4; register
const int REG_DS5; register
const int REG_D6; register
const int REG_D7; register
const int REG_AO; register
const int REG_A1; register
const int REG_A2; register
const int REG_A3; register
const 1int REG_A4; register
const int REG_AS; register
const 1int REG_A6; register
const 1int REG_A7; register

DESCRIPTION

for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg
for getreg/putreg

The dos.h header file contains functions for interfacing with GEMDOS, some
of the internal library structures, and OS specific constants.

The major functions supplied by this library are the _d... functions which
provide the libraries’ interface to GEMDOS, resolving many of the anomalies
encountered in manipulating GEMDOS directly.

Assorted file system manipulation functions are also provided together with the
facilities to map GEMDOS return values into the standard library structures,
via functions such as ftunpk, getclk etc.

This header file also Includes the conio.h, basepage.h and osbind.h

headers files for convenience.

Page 10

Lattice C 5

Header Reference

errno.h

UNIX error definitions

Class: ANSI
SYNOPSIS
extern int volatile errno;
extern dint sys_nerr;
extern char *sys_errlist(];
const int E...;
DESCRIPTION

Category: Errors

UNIX error
number of

UNIX error
error names

number
error codes
messages

The erro.h header file contains the ANSI errno variable which gives details of
the last error encountered by the runtime library.

The sys_nerr and sys_errlist items give a count of the errors which may be
produced, and a list of the error messages which the values of errno
correspond to. Several macros (E...) are provided to give meaningful names to
the error numbers produced and these are identical to those produced under

UNIX.

Note that the sys_nerr, sys_errlist variable and the E... macros do not form part
of the ANSI C standard.

Header Reference

Lattice C 5

Page 11

fcntl.h Unbuffered UNIX 1/0

Class: UNIX Category: Low-Level I/O
SYNOPSIS

int open(const char *, idnt, ...);

int opene(const char *, dint, int, char ¥*);
Long read(int, void *, size_t);

Long write(int, const void *, size_t);
int creat(const char *, int);

Long Llseek(int, Llong, int);

Long tellCint);

int close(int);

int diomode(int, int);

int disatty(int);

Long filelength(Cint);

int rename(const char *,const char *);
int remove(const char ¥*);
int unlink(const char *);

const int O_RDONLY; open in read only mode
const int O_WRONLY; open in write only mode

const int O_RDWR; open in read/write mode
const 1int O_APPEND; allow only appends

const int O_CREAT; creat file if absent
const int O_TRUNC; truncate file if present
const int O_EXCL; exclusive create flag
const int O_RAW; open in untranslated mode
const 1int S_IREAD; allow read access

const int S_IWRITE; allow write access

const int S_IEXEC; allow execute access

DESCRIPTION

The fcntl.h header file contains the interface definitions for the unbuffered 1/0O
sub-system. The open, read, write, creat, Iseek, tell, close, iomode, isatty
and filelength functions manipulate a file given a library file handle. Note that
the handles used by these functions are not GEMDOS file handles and you
should use the chkufb function (defined in l0s1.h) for access to the GEMDOS
handle.

Several macros (O_... and S_...) are also defined in this file for use with the
creat and open functions.

Note that this header file and its associated defintions do not form part of the
ANSI C standard.

Page 12 Lattice C 5 Header Reference

float.h

Define computational limits for real numbers

Category: Mathematics

Class: ANSI

SYNOPSIS
const int FLT_GUARD;
const int FLT_NORMALIZE;
const 1int FLT_RADIX;
const int FLT_ROUNDS;
const int DBL_DIG;
const double DBL_EPSILON;
const 1int DBL_MANT_DIG;
const double DBL_MAX;
const int DBL_MAX_10_EXP;
const int DBL_MAX_EXP;
const double DBL_MIN;
const int DBL_MIN_10_EXP;
const int DBL_MIN_EXP;
const int FLT_DIG;
const float FLT_EPSILON;
const int FLT_MANT_DIG;
const float FLT_MAX;
const int FLT_MAX_10_EXP;
const 1int FLT_MAX_EXP;
const float FLT_MIN;
const int FLT_MIN_10_EXP;
const int FLT_MIN_EXP;
const int LDBL_DIG;
const Llong double LDBL_EPSILON;
const int LDBL_MANT_DIG;
const Llong double LDBL_MAX;
const int LDBL_MAX_10_EXP;
const int LDBL_MAX_EXP;
const Long double LDBL_MIN;
const int LDBL_MIN_10_EXP;
const int LDBL_MIN_EXP;
const double HUGE_VAL;

DESCRIPTION

The float.h header file contains macros giving the limits placed on the accuracy

of floating point calculations. A floating point number is defined by:

P
e -k
x=s*b"* E fk"b , ehinSie S
k=1

where S represents the sign, b the base of the exponent, € the exponent, p the
precision of the mantissa (i.e. the number of digits in base b) and f the digits of

the mantissa.

Header Reference

Lattice C 5

Page 13

The prefixes FLT, DBL and LDBL refer respectively to float, double and long
double, and the remaining part of the common expressions signify:

_DIG The number of decimal digits of precision
available int the appropriate type.

_EPSILON The smallest number x such 1.0 + x is not equal
to 1.0.

_MANT_DIG Number of digits in the floating point mantissa
in base FLT_RADIX (i.e. p in the above
expression).

_MIN The smallest absolute number expressible in

the appropriate type.

_MIN_EXP The smallest integer such that the value of
FLT_RADIX raised to its power minus 1 is
greater than or equal to _MIN.

_MIN_10_EXP The smallest integer such that 10 raised to its
power minus 1 is greater than or equal to
_MIN.

_MAX The largest number expressible in the
appropriate type.

_MAX_EXP The largest integer such that the value of

FLT_RADIX raised to its power minus 1 is less
than or equal to _MAX.

_MAX_10_EXP The largest integer such that 10 raised to its
power minus 1 is less than or equal to _MAX.

The remaining definitions are:

FLT_GUARD Determines whether guard digits are used
during multiplication. 0 indicates no, 1
indicates yes.

FLT_NORMALIZE States whether normalisation is required for
floating point quantities. 0 indicates no, 1
indicates yes.

FLT_RADIX The radix of the exponent in the
implementation (i.e. the value of b in the
above expression).

Page 14 Lattice C 5 Header Reference

FLT_ROUNDS Type of rounding performed during
conversion:
-1 Indeterminate.
0 Toward zero (truncation).
1 To nearest.
2 To +ee (i.e. always up).
3 To -e (i.e. always down).

The final definition in float.h is HUGE_VAL, this is normally defined in math.h
but is duplicated here for convenience.

Note that the FLT_GUARD and FLT_NORMALIZE macros do not form part of
the ANSI C standard, also note that ANSI places HUGE_VAL in math.h, not in
float.h.

Header Reference Lattice C 5 Page 15

ios] . h Unbuffered I/0 interface file

Class: Lattice Category: Low-Level 1/0
SYNOPSIS
const 1int NUFBS; default number of UNIX file
blocks

extern int _iomode; default unbuffered mode
extern int _nufbs; number of ubs allocated

struct UFB *chkufb(int);

DESCRIPTION

The 10s1.h header file contains environment definitions for the unbuffered 1/0O
sub-system. The value NUFBS contains the default number of handles which the
libraries make available, this value is normally the same as _nufbs. The
_lomode variable allows the default translation mode to be changed, whilst
chkufb allows translation of library handles to GEMDOS handles.

Note that this header file and its associated defintions do not form part of the
ANSI C standard.

Page 16 Lattice C 5 Header Reference

“ m its: h Integral numerical limits

Class: ANSI Category: Process Environment
SYNOPSIS
const CHAR_BIT; bits per char
const CHAR_MAX; max value for char
const CHAR_MIN; min value for char
const SCHAR_MAX; max value for signed char
const SCHAR_MIN; min value for signed char
const UCHAR_MAX; max value for unsigned char
const SHRT_MAX; max value for short int
const SHRT_MIN; min value for short int
const USHRT_MAX; max value for unsigned short int
const INT_MAX; max value for short int
const INT_MIN; min value for short int
const UINT_MAX; max value for unsigned short int
const LONG_MAX; max value for Llong int
const LONG_MIN; min value for Llong int
const ULONG_MAX; max value for unsigned Llong int

const MB_LEN_MAX; maximum bytes in a multibyte
character

DESCRIPTION

The limlits.h header file contains macros defining the integral numerical limits
of the program environment. Note that the values of CHAR_MAX and
CHAR_K/IIN are dependent on the -cu flag, whilst INT_MAX and INT_MIN are
dependent on the -w compiler flag.

You should be aware that these values are numeric constants and are assigned
types according to the normal assignment rules, and hence do not neccesarily
have the type of the limit they represent.

Header Reference Lattice C 5 Page 17

locale.h

Localisation functions and macros

Class: ANSI

SYNOPSIS
const int
const int
const int
const int
const int
const int
struct
extern
char
struct
typedef .

DESCRIPTION

Category: Localisation

LC_COLLATE; collation information
LC_CTYPE; character handling
LC_MONETARY; monetary information

LCZNUHERIC; numeric information
LC_TIME; time information
LC_ALL; all dinformation

Lconv { ... }; monetary conversion

information

char DECPT; Local decimal point character

*setlocale(int, const char *);

Lconv *localeconv(void);

wchar_t; wide character type

The locale.h header file declares functions and macros used for manipulating
a program’s locale. Note that the ANSI places the type wchar_t in the
stddef.h and stdlib.h headers files, and its declaration here is for convenience.

Note that the lconv structure is documented under the localeconv function in
the main part of this manual, whilst the LC... macros are discussed under

setlocale.

Page 18

Lattice C 5 Header Reference

m68881.h

Unary maths co-processor transcendental interface

Class: Lattice

Category: Mathematics

SYNOPSIS
double acos(double); arc-cosine
double asin(double); arc-sine
double atan(double); arc-tangent
double cos(double); cosine
double <cosh(double); hyperbolic cosine
double exp(double); exponential
double fabs(double); absolute value
double fatanh(double), hyperbolic arc-tangent
double fetoxmi1(double); exponential - 1
double fgetexp(double); get exponent
double fgetman(double); get mantissa
double fintrz(double); integer part, round to zero
double flog2(double); Log base 2
double flognp1(double) Llog (n+1)
double fneg(double); negate
double ftentox(double); 10 to x
double Log(double); Log
double log10(double), Log base 10
double pow2(double); 2 to x
double sin(double); sine
double sinh(double); hyperbolic sine
double sqrt(double); square root
double tan(double); tangent
double tanh(double); hyperbolic tangent
DESCRIPTION

The mé8881.h header file declares functions for the standard transcendental
functions implemented by the M68881 which take a single argument. Note that
the use of these functions requires use of -f8 on Icl, also the code generated
requires a 68020, 68030 or suitable Line-F emulator to run., Specifically it will
not work the Atari I/O mapped M68881 card.

Note that this header file and some its defintions do not form part of the ANSI

C standard.

Header Reference

Lattice C 5

Page 19

math.h

Mathematical definitions and declarations

Class: ANSI Category: Mathematics
SYNOPSIS
const double HUGE_VAL;
double acos(double);
double asin(double);
double atan(double);
double atan2(double, double);
double ceil(double);
double cos(double);
double cosh(double);
double exp(double);
double fabs(double);
double floor(double);
double fmod(double, double);
double frexp(double, int *);
double Ldexp(double, int);
double Log(double);
double Log10(double);
double modf(double, double *);
double pow(double, double);
double sin(double);
double sinh(double);
double sqrt(double);
double tan(double);
struct exception
{
int type; error type
char *name; math function name
double arg1, arg2; function arguments
double retval; proposed return value
};
const 1int DOMAIN; domain error
const int OVERFLOW; overflow
const int PLOSS; partial Lloss of significance
const int RANGE; range error
const 1int SING; singularity
const int TLOSS; total Loss of significance
const int UNDERFLOW; underflow
const int FPECOM; not comparable
const int FPENAN; not a number
const int FPEOVF; overflow
const int FPEUND; underflow
const int FPEZDV; zero divisor
extern int _FPERR; Low-level floating point error
status
const double PI; PI
const double PID2; PI1/2
const double PID4; PI/4
const double I_PI; 1/P1
const double I_PIDZ2; 1/7CP1/2)
Page 20 Lattice C § Header Reference

const double HUGE; Largest representable absolute
double

const double TINY; smallest representable absolute
double

const double LOGHUGE; Ln(HUGE);

const double LOGTINY; Ln(TINY);

double <cot(double);

double drandé48(void);

double erand48(unsigned short *);

double except(int, char *, double, double, double);
char *ecvt(double, int, int *, int *);
char *fcvt(double, int, int *, int *);
char *gcvt(double, int, char *);

Long jrand48(unsigned short *);

void Lcong48(unsigned short *);

Long Llrand48(void);

int matherr(struct exception *);

Long mrand48(void);

Long nrand48(unsigned short *);

double pow2(double);

unsigned short *seed48(unsigned short ¥*);
void srand48(long);

double tanh(double);

DESCRIPTION

The math.h header file declares functions and macros for the mathematical
functions.

Note that some of the defintions in this header do not form part of the ANSI C
standard.

Header Reference LatticeC § Page 21

oselrr. h TOS error definitions

Class: GEMDOS Category: Errors
SYNOPSIS

extern int volatile _OSERR; TOS error number

extern int os_nerr; number of error codes

extern char *os_errlistl]; TOS error messages

const int E...; error names
DESCRIPTION

The oserr.h header file contains the operating system error variable _OSERR,
which gives details of the last OS error encountered by the runtime library.

The os_nerr and os_errlist items give a count of the errors which may be
produced, and a list of the error messages which the values of _OSERR
correspond to. Several macros (E...) are provided to give meaningful names to
the error numbers produced.

Note that this header file and its associated definitions do not form part of the
ANSI C standard.

Page 22 LatticeC 5 Header Reference

Sefji mp. h Declarations for non-local jumps

Class: ANSI Category: Non-Local Jumps/Signal Handling
SYNOPSIS
typedef ... jmp_buf; jump buffer type

int setjmp(jmp_buf);
void Llongjmp(jmp_buf,int);

DESCRIPTION

The setjmp.h header file contains the declarations for non-local jumps. You
should be aware of the potential problems using these functions, discussed
under the main setjmp entry in this manual.

Header Reference Lattice C 5 Page 23

ISig na I 5 h Signal handling routines

Class: ANSI Category: Non-Local Jumps/Signal Handling
SYNOPSIS

const int SIGABRT; abnormal termination, abort()

const int SIGFPE; floating point exception

const int SIGILL; illegal dinstruction

const int SIGINT; interrupt from GEMDOS

const int SIGSEGV; segmentation violation

const int SIGTERM; termination request

void (*SIG_DFL)(int); default action
void (*SIG_IGN)(int); ignore the signal
void (*SIG_ERR)(int); error return

void (*signal(int,void (*)(int)))(int);
int raise(int);

typedef ... sig_atomic_t; signal atomic type

DESCRIPTION

The signai.h header file contains the definitions and declarations for signal
handling. Note that the signals provided are those required by ANSI however
these are not necessarily called at any other time than explicitly via raise.

The type sig_atomic_t is a type which is guaranteed to be accessed atomically
if simultaneous signals occur, however any variable definition must include the
volatile modifier viz:

volatile sig_atomic_t sig_count;

Page 24 LalticeC 5 Header Reference

Sfdd I'g . h ANSI variable argument header

Class: ANSI Category: Variable Argument Handling
SYNOPSIS

typedef ... va_Llist; wvariable List type

void wva_start(va_Llist,typename);
typename *va_arg(va_Llist,typename);
void va_end(va_Llist)

DESCRIPTION

The stdarg.h header file contains routines for manipulating variable numbers
of arguments in an ANSI fashion. Note that the header file varargs.h provides
similar facilities (and under similar names), but follows the UNIX definition.

EXAMPLE

/*
* concatenate a variable number of strings,
* terminated by NULL into a malloced block
* of memory
*/

#include <stdarg.h>
#include <string.h>
#include <stdlib.h>

char *strcatl(const char *s1, ...)
{

va_Llist strings;

size_t Llength;

char *s, *concat;

va_start(strings, s1);

Length=strlen(s1); /* fetch Length of first
string */

while (s=va_arg(strings, char *))

Length+=strlen(s); /* add in remaining string
Lengths */
va_end(strings); /* all done this pass */

if (concat=malloc(length+1)) /* get some RAM */
{

va_start(strings, s1);
strcpy(concat, s1); /* copy first string */
while (s=va_arg(strings, char *))
strcat(concat, s); /* concatenate rest */
va_end(strings);
>
return concat; /* return composite string */

Header Reference Lattice C 5 Page 25

Sfddef. h ANSI standard definitions

Class: ANSI Category: Process Environment
SYNOPSIS
typedef ... size_t; type of sizeof
typedef ... ptrdiff_t; type of pointer difference
typedef ... wchar_t; wide character type

size_t offsetof(type,memb); obtain field offset

void *NULL; NULL pointer constant

DESCRIPTION

The stddef.h header file contains ANSI definitions for the types of compiler
and library quantities.

The offsetof macro may be used for obtaining the byte offset of a field within
an aggregate item.

Page 26 Lattice C 5 Header Reference

stdio.h

Standard I/O library definitions

Class: ANSI

Category: Stream I/O

SYNOPSIS
typedef ... FILE; FILE type
typedef ... fpos_t; file position type
const int FILENAME_MAX; max chars in a filename
const int FOPEN_MAX; max number of open files
const int _IOFBF; fully buffered flag
const 1int _IONBF; non-buffered flag
const 1int _IOLBF; Line-buffered flag
const 1int BUFSIZ; standard buffer size
const int EOF; end-of-file code

const int L_tmpnam; maximum tmpnam filename Llength

const int SEEK_SET; seek from beginning of file
const int SEEK_CUR; seek from current file position
const int SEEK_END; seek from end of file

const 1int TMP_MAX; maximum unique temporary files
FILE *stdin; standard input file pointer
FILE *stdout; standard output file pointer
FILE *stderr; standard error file pointer
FILE *stdaux; standard auxiliary file pointer
FILE *stdprt; standard printer file pointer
int rename(const char *,const char ¥*);

int remove(const char *);

FILE *tmpfile(void);

char *tmpnam(char *s);

int fclose(FILE *);

int fflush(FILE *);

FILE *fopen(const char *, const char *);

FILE *freopen(const char *, const char *, FILE *);
void setbuf(FILE *, char ¥*);

int setvbuf(FILE *, char *, int, size_t);

int fprintf(FILE *, const char *, ...);

int fscanf(FILE *, const char *, ...);

int printf(const char *, ...);

int scanf(const char *, ...);

int sprintf(char *, const char *, ...);

int sscanf(const char *, const char *, ...);

int vfprintf(FILE *, const char *, va_list);

int vprintf(const char *, wva_Llist);

int vsprintf(char *, const char *, va_Llist);

int fgetc(FILE *);

char *fgets(char *, int, FILE *);

int fputc(int, FILE ¥*);

int fputs(const char *, FILE *);

int getc(FILE *);

int getchar(void);

char *gets(char *);

int putc(int, FILE ¥*);

Header Reference Lattice C 5 Page 27

int putchar(int);

int puts(const char *);

int ungetc(int, FILE *);

size_t fread(void *, size_t, size_t, FILE *);
size_t fwrite(const void *, size_t, size_t, FILE *);
int fgetpos(FILE *, fpos_t *);

int fseek(FILE *, Llong int, int);

int fsetpos(FILE *, const fpos_t *);

Long int ftell(FILE *);

void rewind(FILE *);

void clearerr(FILE *);

int feof(FILE *);

int ferror(FILE *);

void perror(const char *);

int fcloseall(void);

FILE *fdopen(int, const char *);
int fgetchar(void);

int fileno(FILE *);

int flushall(void);

void fmode(FILE *, int);

int fputchar(int);

int setnbf(FILE *);

int access(const char *
int chdir(const char ¥)
int chmod(const char *,
char *getcwd(char *, in
int mkdir(const char ¥*)
int rmdir(const char ¥*)
FILE *fopene(const char *, const char *,char
int unlink(const char *);

*);

char *mktemp(char *s);
short fputw(short,FILE *);
Long fputl(long,FILE ¥*);
short fgetw(FILE *);

Long fgetl(FILE *);

extern wunsigned Llong __fmask; default file mask
extern int _fmode; default access mode
extern int _bufsiz; default file buffer size

DESCRIPTION

The stdio.h header file contains definitions, declarations and macros for use by
the ANSI standard input/output library.

The following functions and variables which appear in this header do not form
part of the ANSI C standard: __fmask, _bufsiz, _fmode, access, chdr,
chmod, fcloseall, fdopen, fgetchar, fgetl, fgetw, fileno, flushall, fmode,
fopene, fputchar, fputl, foutw, getcwd, mkdir, mktemp, rmdir, setnbf and
unlink.

Page 28 Lattice C 5 Header Reference

std Ii b . h Standard utility definitions

Class: ANSI Category: General Functions
SYNOPSIS

extern char MB_CUR_MAX;
typedef ... div_t; div() type
typedef ... Lldiv_t; Ldiv() type

void *malloc(size_t);

void *calloc(size_t,size_t);
void *realloc(void *, size_t);
void free(void *);

void *getml(size_t);
int rilsml(void *, size_t);
size_t sizmem(void);
size_t chkml(void);

void *getmem(unsigned);
int rlsmem(void *, wunsigned);

void *alloca(size_t);
extern size_t _stkdelta; stack/data chicken factor

void *sbrk(unsigned);
void *Llsbrk(long);

int chdir(const char *)
int chmod(const char *,
char *getcwd(char *, in
int mkdir(const char *)
int rmdir(const char *)

void qsort(void *, size_t, size_t,
int (*)(const void *, const void *));
void dqgsort(double *,size_t);
void fqsort(float *,size_t);
void Llgsort(long *,size_t);
void sqsort(short *,size_t);
void tgsort(char **,size_t);

void bsearch(const void *, const void *, size_t,
size_t, int (*)(const void *, const void *));

int mblen(const char *,size_t);

size_t mbstowcs(wchar_t *, const char *, size_t);
int mbtowc(wchar_t *, const char *, size_t);
size_t wcstombs(char *, const wchar_t *, size_t);
int wctomb(char *, wchar_t);

Header Reference Lattice C 5 Page 29

void exit(int);
void abort(void);
int atoi(const char *);
double atof(const char *);
Long int atol(const char *);
char *getenv(const char *);
void _exit(int);
void _XCEXIT(int);
char *argopt(int, char *C1, char *, int *, char *);
void *lsearch(const void *, void *, size_t *, size_t,
int (*)(const void *, const void *));
void *Lfind(const void *, const void *,
const size_t *, size_t,
int (*)(const void *, const void *));
int getpid(void);
int getopt(int argc, const char *argv(],
const char *optstring);
extern int optopt,opterr,optind;
extern char *optarg;
int system(const char *);
size_t _hash(const char *);
int abs(int);
Long atol(char *);
char *ecvt(double, int, int *, dint *);
char *fcvt(double, int, int *, int *);
char *gcvt(double, int, char *);
Long getfnl(const char *, char *, size_t, int);
int idabs(int);
Long Llabs(long);
int onexit(int(*)(int));
int putenv(char *);
int rand(void);
int rmvenv(const char *);
void srand(unsigned int);
double strtod(const char *,const char *%*);
Long int strtol(const char *, char **, int);
unsigned Llong int strtoul(const char *,char **,int);
Long int utpack(const char *);
void utunpk(long int, char *);
int atexit(void (*)(void));
div_t div(int, int);
Ldiv_t Ldiv(long int, Llong int);
unsigned Llong _Llrotl(unsigned Llong,int);
unsigned short _rotl(unsigned short,int);
unsigned Long _Llrotr(unsigned Llong,int);
unsigned short _rotr(unsigned short,int);

Page 30

Lattice C 5

Header Reference

int forkl(const char *,...);
int forkle(const char *,...)
int forklp(const char *,...)
int forklpe(const char *,...);
int forkv(const char *,const char *%*);
int forkve(const char *,const char **_const char *¥*);
int forkvp(const char *,const char *%*);
int forkvpe(const char *,const char *¥*,
const char *%*);

~

~n

int wait(void);

const int EXIT_SUCCESS; success exit value
const int EXIT_FAILURE; failure exit value;

const int RAND_MAX; maximum rand() value

DESCRIPTION

The stdlib.h header file contains general utility definitions, declarations and
macros defined by the ANSI standard.

The following functions and variables which appear in this header do not form
part of the ANSI C standard: _exit, _hash, _Irotl, _Irotr, _rotl, _rotr, _stkdeltq,
_XCEXIT, alloca, argopt, chdir, chkml, chmod, dgsort, ecvt, fcvt, forki,
forkle, forklp, forklpe, forkv, forkve, forkv, forkvpe, fqsort, gcvt, getcwd,
getfnl, getmem, getml, getopt, getpid, labs, Ifind, Igsort, Isbrk, Isearch,
mkdir, onexit, optarg, opterr, optind, optopt, putenv, rismem, risml, rndir,
rmvenv, sbrk, sizmnem, sgsort, tqsort, utpack, utunpk and wait.

Header Reference Lattice C 5 Page 31

string.h

String manipulation

Class: ANSI Category: String manipulation
SYNOPSIS
extern char _SLASH; path separator character
char *strcat(char *, const char ¥*);
char *strchr(const char *, idint);
int strcmp(const char *, const char ¥*);
char *strcpy(char *, const char *);
size_t strcspn(const char *, const char *);
size_t strspn(const char *, const char *);
size_t strlen(const char ¥*);
char *strncat(char *, const char *, size_t);
int strncmp(const char *, const char *, size_t);
char *strncpy(char *, const char *, size_t);
char *strpbrk(const char *, const char *);
char *strrchr(const char *, dint);
char *strstr(const char *, const char ¥*);
char *strtok(char *, const char *);
char *strerror(int);
int strcoll(const char *, const char *);
size_t strxfrm(char *, const char *, size_t);
size_t stcarg(const char *, const char *);
size.t stccpy(char *, const char *, size_t);
char *stpcpy(char *, const char *);
char *strdup(const char *);
void strins(char *, const char *);
char *strnset(char *, int, size_t);
char *strrev(char ¥*);
size_t stcis(const char *, const char *);
size_t stcisn(const char *, const char *);
size_t stcpm(const char *, const char *, char *¥*);
size_t stcpmal(const char *, const char *);
char *stpblk(const char *);
char *stpbrk(const char *, const char *);
char *stpchr(const char *, int);
char *stpsym(const char *, char *, size_t);
char *stpchrn(const char *, int);
char *stptok(const char *, char *, size_t,
const char *);
Long strbpl(char **, size_t, const char *);
int stcd_i(const char *, int *);
int stcd_LlL(const char *, Long *);
int stch_i(const char *, dint *);
int stch_L(const char *, Llong ¥*);
int stci_d(const char *, int);
int stci_h(const char *, int);
int stci_o(const char *, int);
int stcl_d(const char *, Llong);
int stcl_h(const char *, LlLong);
int stcl_o(const char *, Long);
int stco_i(const char *, dint *);
int stco_Ll(const char *, Long *);
Page 32 Laltice C 5 Header Reference

int stcgfe(char *, char *);
int stcgfn(char *, char *);
int stcgfp(char *, const char *);

int stcsmal(char *, char *);

int stcu_d(char *, unsigned);

int stcul_d(char *, unsigned Llong);

size_t stclen(const char *);

char *stpdate(char *, dint, char *)

char *stptime(char *, dint, char *)

int strmid(const char *, char *, size_t, size_t);

char *strlwr(char *);

void strmfe(char *, const char *, const char *);

void strmfn(char *, const char *, const char *,
const char *, const char ¥*);

void strmfp(char *, const char *, const char *);

int strnicmp(const char *, const char *, size_t);

int stricmp(const char *, const char *);

char *strset(char *, int);

void strsfn(const char *, char *, char *, char *,
char *);

char *strupr(char *);

int stspfp(char *, int ¥*);

void strsrt(char *[], size_t);

void *memchr(const void *, int, size_t);

int memcmp(const void *, const void *, size_t);
void *memcpy(void *, const void *, size_t);
void *memmove(void *, const void *, size_t);
void *memset(void * int, size_t);

void *memccpy(void , const void *, dint, size_t);
void *memswp(void *, void *, size_t);

void *memrep(void *, void *, size_t, size_t);
void setmem(void *, wunsigned, int);

void movmem(void *, void *, unsigned);

void repmem(void *, void *, unsigned, unsigned);
void swmem(void *, void *, unsigned);

DESCRIPTION

The string.h header file contains the definitions for handling strings and buffers
via the standard library.

*\

This header file contains many functions which do not form part of the ANSI C
standard, the functions which do apg)ear therein are: memchr, memcmp,
memcpy, memmove, memset, strcat, strchr, strcmp, strcoll, strcpy,
strcspn, strerror, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn,
strstr, strtok and strxfrm.

Header Reference Lattice C 5 Page 33

time.h

Date and Time manipulation functions

Class: ANSI Category: Date and Time
SYNOPSIS
typedef ... time_t; type returned by time()
typedef ... clock_t; type returned by clock()
const int CLK_TCK; clock() granularity
const 1int CLOCKS_PER_SEC; clock() granularity
struct tm
{
int tm_sec; /* seconds after the minute */
int tm_min; /* minutes after the hour */
int tm_hour; /* hours since midnight */
int tm_mday; /* day of the month */
int tm_mon; /* months since January */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday */
int tm_yday; /* days since January 1 */
int tm_isdst; /* Daylight Savings Time flag */
};
clock_t clock(void);
double difftime(time_t, time_t);
time_t mktime(struct tm *);
time_t time(time_t *);
char *asctime(const struct tm *);
char *ctime(const time_t *);
struct tm *gmtime(const time_t *);
struct tm *localtime(const time_t *);
size_t strftime(char *, size_t, const char *,
const struct tm *);
void getclk(unsigned char *);
int chgclk(unsigned char *);
void utunpk(long, char *);
Long utpack(const char *);
void _tzset(void);
extern int __daylight; daylight time flag
extern Llong __timezone; seconds from GMT
extern char *__tznamel[2]; time 2zone names
extern char __tzstnl4]; standard time name
extern char __tzdtnl4]; daylight time name
extern char *_TZ; string for user time zone
DESCRIPTION

The time.h header file contains functions and macros for manipulating time in

both internal and external representations.

Note that although ANSI defines this header file the getclk, chgclk, utunpk

and utpack do not appear as part of the standard.

Page 34 Lattice C 5

Header Reference

3 Library Functions

This section gives detailed descriptions of the library functions supplied with
the Lattice C compiler, listing the header file in which the function is declared,
the calling syntax and any parameters which should be supplied to the function.

As mentioned earlier, each entry consists of a synopsis, description and cross-
reference. Also a ‘Class’ and ‘Category’ are listed giving the origin of the
function, e.g. ANSI, Lattice, UNIX etc., and a category showing which family
of functions the function falls into, e.g. Stream I/O, Date and Time.

In the past many C programmers have neglected to include the required header
files and simply placed a declaration in their own file. This practice is strongly
discouraged as ANSI changed the types of the parameters of many functions
from the default int, hence your code may not run successfully without in-scope
prototypes.

Library Reference Lattice C 5 Page 35

a bort Abort the current process

Class: ANSI Category: Process Creation
SYNOPSIS

#include <stdlib.h>

abort();

DESCRIPTION

This function aborts the current process and returns a completion code of 3 to
the Tparent process. Also the message “Abnormal program termination” is sent
to stderr. 1/0O buffers created via fopen are not flushed. Prior to termination
the signal SIGABRT is asserted, as if by the call:

raise(SIGABRT);
RETURNS

The function does not return.

SEE
onexit, exit, _exit, raise

EXAMPLE

#include <stdlib.h>
#include <stdio.h>

void validate(int x,int Lower,int higher)
{
if (x<lLower || x>higher)
{
puts("Internal range check failed");
abort();

}
}

Page 36 Lattice C 5 Library Reference

a bS Absolute value

Class: ANSI Category: Numeric Transformation
SYNOPSIS

#include <stdlib.h>
ax = abs(x);

int x; numeric data type
int ax; absolute value of x

DESCRIPTION

The abs function computes the absolute value of the integer argument.
Compare abs with the fabs function, which computes the absolute value of a
floaf or a double, returning a double result.

Note that this function is normally implemented as the inline function
__builtin_abs.

SEE

fabs, iabs, labs

Library Reference Lattice C 5 Page 37

access Check file accessibility

Class: UNIX Category: Low-Level I/O
SYNOPSIS
#include <stdio.h>
ret = access(name,mode);
int ret; return code
const char *name; file name
. int mode; access mode
DESCRIPTION

This function checks if a file is accessible in the way specified by mode. which
follows the UNIX format:

0 Check if file exists

2 Check if file is writable

4 Check if file is readable

6 Check if file is readable and writable

The other access mode bits recognised by UNIX are not supported under
GEMDOS. Also, since all GEMDOS files are readable, modes 0 and 4 are
identical, as are modes 2 and 6.

RETURNS

A return value of 0 indicates that access is allowed. If access is denied or the
file cannot be found, -1 is returned. Additional error information can then be
found in errno and _OSERR.

SEE
chgfa, getfa, errno, _OSERR

Page 38 Lattice C 5 Library Reference

alloca

Allocate temporary stack space

Class: UNIX
SYNOPSIS
#include <stdlib.h>
s = allocal(n);
void *s; pointer to base
size_t n; number of bytes
DESCRIPTION

Category: Memory Management

of memory

required

The alloca function obtains the specified number of bytes from the program’s
stack space. The value n gives the number of bytes required, and the return
pointer s points to an area of the size requested, or NULL if insufficient stack is

available.

Note that

ou should not attempt to return the space allocated via alloca

using the free call. Any space allocated using this function is automatically
reclaimed on function exit.

RETURNS
The value s is NULL if no more stack is available.
SEE
calloc, free, malloc, realloc
EXAMPLE
#include <stdio.h>
#include <string.h>
FILE *newfile(const char *s)
{
char *p;
p=alloca(strlen(s)+5);
if (!p)
return NULL;
strcpy(p,s);
strcat(p,".tmp");
return fopen(p,"rb");
}
Library Reference Lattice C S Page 39

a rgOpf Get options from argument list

Class: Lattice Category: Argument Processing
SYNOPSIS

Hinclude <stdlib.h>

optd = argopt(argc,argv,opts,argn,optc);

char *optd; option data pointer

int argc; argument count

const char *argv[(]; argument vector

const char *opts; options expecting data

int *argn; next argument number (changed)

char *optc; option character (changed)
DESCRIPTION

This function examines an argument list to find the next option argument,
using conventions similar to those of the UNIX “shell” command processor.
These conventions are:

. An option is an argument that begins with a slash (/) or a dash (i.e. a
minus sign) and appears between the command verb (i.e. argv(0)) and
the first non-option argument. The reason we recognise either a slash or
a dash is that the former is an MS-DOS standard, while the latter has
been used by UNIX for a long time.

J The character immediately following the dash is called the “option
character”, and it may be followed by a character string known as the
“option data”.

. If the option character appears in the Opts string, then the data can be
separated from the character by white space. In effect, this means that
the data might be in the next argv entry if it does not follow the option
character in the current entry.

° A dash or slash followed by a blank or a dash indicates the end of the
options.

Each time argopt is called, it will find the next option in the argument array
and update the integer referenced by argn. On the first call, you should set this
integer to 1, since argv(0) points to the command verb. The argc and argv
items are normally the same as those passed to your main program, and they
are not changed as a result of the argopt calls. The option character is
returned in the byte referenced by OoptC. and the function returns a pointer to
the option data string or to a null byte. If the next entry in argv is not an
option, then the function returns a NUEIL pointer.

Page 40 Lattice C 5 Library Reference

The opfs item provides some flexibility in the way the option data is handled.
If opts points to an empty string, then any option data must immediately
follow the option character. However, if Opts is not empty, then it lists the
option characters that always have data. For those characters, the data can be
preceded by white space on the command line. What this actually means is that
argopt will look at the next entry in argv if the option character is not
followed by a data string. If the next entry does not begin with a dash, then it
is taken as the option data.

RETURNS

If the next argument is not an option, the function returns a NULL pointer.
Otherwise, it returns a pointer to the option data, which will be an empty
string if there was no data. If an option was found, the character is placed into
the byte referenced by optc, and argn is adjusted to index the next entry in
argv.

SEE
getopt, main
EXAMPLE
/ *
* Assume that this program is invoked by the
* following command Lline:
*
> myprog -x -ypdq -z -g moo -g - blah
*
* The output will then be:
* Option: x Data:
* Option: y Data: pdq
* Option: 2z Data:
* Option: g Data: moo
* Option: g Data:
* Argl8]: blah
*
*/

#include <stdio.h>
#include <stdlib.h>

char optsC] = "gx";
int main(int argc,char *argv(]l)
{

char option,*odata;
int next;

for(next = 1;
odata = argopt(argc,argv,opts,&next,&option);)
printf("Option: Z%c, Data: Zs\n",option,odata);

for (; next < argc; next++)
printf("Argl%dl: Zs\n",next,argvlinextl);
return 0;

Library Reference Lattice C § Page 41

GSCiime Generate ASCII time string

Class: ANSI Category: Date and Time
SYNOPSIS

#include <time.h>

s = asctime(t);

char *s; points to time string

const struct tm *t; points to time structure

DESCRIPTION

This function converts a time structure into an ASCII string of exactly 26
characters having the form:

DDD MMM dd hh:mm:ss YYYY\n\O

where DDD is the day of the week, MMM is the month, dd is the day of the
month, hh:mm:ss is the hour:minute:seconds, and YYYY is the year. For instance:

Wed Sep 04 15:13:22 1985\n\0

The time pointer returned by the function refers to a static data area that is
shared by both ctime or asctime. The time structure argument 1 is usually
returned by the gmtime or localtime function.

ctime, gmtime, localtime, setlocale

EXAMPLE

H#include <time.h>
#include <stdio.h>

int main(void)
{

struct tm *tp;
time_t t;

time(&t);

tp = Llocaltime(&t);

printf("Current time 1is ZXZs\n",asctime(tp));
return O0;

Page 42 Lattice C 5 Library Reference

asse rt Assert program validity

Class: ANSI Category: Debugging
SYNOPSIS

#include <assert.h>
assert(exp);

int exp; expression to be tested

DESCRIPTION

The assert macro tests an expression exp for validity (non-zero value). Note
that the assert.h header file must be included in your program in order to
define the macro. If the expression being tested fails (i.e. is zero) then the
program is aborted printing the text of the failing expression, file and line
number on stderr.

Also, assert.h contains two versions of the macro. If the symbol NDEBUG is
defined, then a null version of the macro is used; otherwise the normal code-
generating version applies. This allows you to strip the assertion code from

your program without removing the assert calls. To do this, simply define
NDEBBG in one of your header files or on the compiler command line via the -d
option. In the former case, the header file containing the NDEBUG definition
must be included before assert.h.

EXAMPLE

/* Make sure integer x is positive */
#include <assert.h>

void postest(int x)

{

assert(x >= 0);

Library Reference Lattice C 5 Page 43

leeX it Register function

Class: ANSI Category: Process Creation
SYNOPSIS

#include <stdlib.h>

ret = atexit((*func)())

int ret; 0 if successful

void (*func)(void); function to be registered

DESCRIPTION

The atexIt function registers the function pointed to by func, to be called
without arguments at normal program termination. The atexlt function
provides a program with a convenient way to clean up the environment before
the program exits. It provides a last-in first-out stacking of multiple functions.
The chain of registered functions is maintained in such a way that they are
invoked in the correct sequence upon program exit.

The functions registered lEy atexit are invoked before any files are closed or
memory is freed. The SIGTERM signal is raised before atexIt.

RETURNS

The atexit function returns 0 if the registration succeeds, and non-zero if it fails
to allocate memory for its list.

SEE

exit, onexit

Page 44 Lattice C 5 Library Reference

atof Convert ASCII to float

Class: ANSI Category: Data Conversion/Formatting
SYNOPSIS

#include <stdlib.h>

d = atof(p);

double d; floating point result

const char *p; 1input string pointer
DESCRIPTION

The atof function converts an ASCII input string into a double value. The
string can contain leading white space and a plus or minus sign, followed by a
valid floating point number in normal or scientific notation. If scientific
notation is used, there can be no white space between the number and the
exponent. For example:

123.456e-53

is a valid number in scientific notation.

EXAMPLE

/*
* This program tests the atof function.
*/

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char buff(801;
double d;

for (;;)
{
printf("\nEnter a number: ");
if(gets(buff) == NULL)
exit(0);
if(buffl[01 == '\0")
exit(0);
d = atof(buff);
printf("%Ze\n",d);
}
return 0;

Library Reference Lattice C5 Page 45

C“Ol, atOI Convert ASCII to integer

Class: ANSI Category: Data Conversion/Formatting
SYNOPSIS

Hinclude <stdlib.h>

x = atoi(s); Convert ASCII to integer

y = atol(s); Convert ASCII to Llong integer

int x; integer result

Long int y; Long integer result

const char *s; input string pointer
DESCRIPTION

These functions convert ASCII strings into normal or long integers. The string
must have the form:

[whitespacellsignldigits

where (whitespace) indicates optional leading white space, (sign) indicates an
optional + or - sign character, and digits is a continuous string of digit
characters. Once the digit portion is reached, the conversion continues until a
non-digit character is hit. No check is made for integer overflow.

RETURNS

As noted above.

SEE

atof, stcd_i, stcd_|, strtol, strtoul

Page 46 LatticeC 5 Library Reference

l_ b ase Base of stack

Class: Lattice Category: Process Environment
SYNOPSIS

extern void *_base;
DESCRIPTION

This external pointer is used by the stack check code to locate the base of the
stack. If the stack pointer is in danger of overrunning this then the function
_XCoVf is called.

SEE

_STACK, _xcovf

Library Reference Lattice C 5 Page 47

b I dm em Build a memory pool of specified size

Class: OLD Category: Memory Management
SYNOPSIS

#include <stdlib.h>
blLdmem(n);

int n; number of 1K-byte blocks in pool

DESCRIPTION

The bldmem function builds up to n contiguous 1K-byte blocks of memory for
the pool. If n is 0, the pool is initialised but no memory is allocated.

RETURNS

Returns -1 if memory cannot be allocated.

SEE

getmem, getml, rismem, rIsml, sizmem, sbrk

Page 48 Lattice C 5 Library Reference

bseCiI’Ch Search a data array

Class: ANSI Category: Search and Sort
SYNOPSIS

#include <stdlib.h>

match=bsearch(key,base,num_mem,size,(*cmp)(obj,arr));

void *match; matched element or NULL pointer

const void *key; object to be matched

const void *base; initial element of searched array

size_t num_mem; size of array to be searched

size_t size; size of each element

int (*cmp)(); comparison function

const void *obj; pointer to key

const void *arr; pointer to an array element
DESCRIPTION

The bsearch function searches an array of num_mem objects (the initial
element of which is pointed to by base) for an element that matches the object
pointed to by key. The size of each element of the array is specified by size.

The comparison function pointed to by cmp is called with two arguments that
point to the key object and to an array element, in that order. The function
returns an integer less than, equal to, or greater than zero if the key object is
considered, respectively, to be less than, to match, or to be greater than the
array element. The array consists of all the elements that compare less than the
key object, all the elements that compare equal to the key object, and all the
elements that compare greater than the key object, in that order.

RETURNS
The bsearch function returns a pointer to a matching element of the array, or

a NULL pointer if no match is found. If two elements compare as equal, the
element matched could be either one.

SEE

Ifind, Isearch

Library Reference Lattice C 5 Page 49

’__Bs S BAS - A D ATA BA s Base of merged data sections

Class: Lattice Category: Linker Defined Symbols
SYNOPSIS

Sxtern far TDATABAS
DESCRIPTION

These names refer to the base locations in the __MERGED data section. The
location of _BSSBAS is the first byte of the merged BSS, whilst _DATABAS is
the first byte of the merged data.

SEE
_BSSLEN, _DATALEN

Page 50 Lattice C 5 Library Reference

= B S S I. E N ’ ol D ATA L E N Merged section lengths

Class: Lattice Category: Linker Defined Symbols
SYNOPSIS

Sxtern “far TOATALEWS
DESCRIPTION

These addresses of these names give the length of the respective __MERGED
data section in longwords. Note that if you access these variables from assembly
language you must access them as longs otherwise the assembler may attempt
to relocate them, giving random values as a result.

SEE
_BSSBAS, _DATABAS
EXAMPLE

/*
* Clear out the merged BSS in a program
*

* Normally done automatically
*/

#include <string.h>
int main(void)
{

extern __far _BSSBAS;
extern __far _BSSLEN;

memset(&_BSSBAS,0,(Long)&_BSSLEN/sizeof(long));

return 0;

Library Reference Lattice C 5 Page 51

_ b u fs i Y 4 Buffered I/O buffer size

Class: Lattice Category: Stream 1/O
SYNOPSIS

extern int _bufsiz;
DESCRIPTION

This external integer is used by the buffered I/O system to determine the size of
the buffers for buffered files. This location is also used to determine the size of
a buffer attached to a file with the setbuf function. In this case, _bufslz must be
set to the size of the buffer before setbuf is called.

Note that the buffer is not allocated when the file is opened. Instead, the first
I/O operation causes the buffer to be allocated from the local memory pool if
one has not been previously specified with setbuf. This means that if _bufslz is
changed between the open call and the first I/O operation, the size of the
buffer allocated for the file will be the value of _bufsiz at the time of the I/O
operation, not the value when the file was opened.

SEE
fopen, setbuf, setvbuf

Page 52 Lattice C 5 Library Reference

cabs

Absolute value of a complex number

Class: Lattice
SYNOPSIS

#include <math.h>

r = cabs(x);

double r;

struct complex

double re;
double im;
} *x;

DESCRIPTION

Category: Mathematics

The cabs function calculates the absolute value of a complex number pointed
to by x. cabs(x) returns the value sqrt(x->re * x->re + x->im * x->im). If an
overflow occurrs, matherr is called with an OVERFLOW error and suggested

return value of HUGE_VAL.

Library Reference

Lattice C 5

Page 53

cadd, CSUb Complex sum/difference

Class: Lattice Category: Mathematics

SYNOPSIS

Hinclude <math.h>

cadd(x,y,z);
csub(x,y,z);

z
r4

struct complex <«
double re;
double im;

} H2;

struct complex *x, *y;

DESCRIPTION

The cadd function calculates the complex sum of the complex numbers pointed
to by xand y, and places the result in the complex number pointed to by z. The
pointer Z is returned by the function.

Similarly csub calculates the complex difference of the numbers pointed to by x
and Y, and places the result in the complex number pointed to by z. The pointer
Z is returned by the function.

For instance, the expression:

z = cadd(x,y,z);

produces the following assigments:

zZ->re
z->im

x->re + y->re;
x=>im + y->im;

Whilst the expression:
2z = csub(x,y,z);

produces the following assigments:

z->re = x->re - y->re;
z->im = x->im - y->im;

Page 54 Lattice C & Library Reference

ca "o C Allocate and clear a memory block

Class: ANSI Category: Memory Management
SYNOPSIS

Hinclude <stdlib.h>

b = calloc(nelt,esize);

void *b; block pointer

size_t nelt; number of elements

size_t esize; element size
DESCRIPTION

The calloc function uses malloc to get a block whose size in bytes is given by:

n = nelt * esize;

The block is then cleared to zeroes. Like malloc, calloc returns a NULL pointer
if the block cannot be allocated.

RETURNS

The calloc function call normally returns a pointer to the block. If there is not
enough space for the requested block, or if zero bytes are requested, a NULL
pointer is returned.

SEE

free, getmem, malloc, realloc, rismem, rbrk, sbrk

Library Reference Lattice C 5 Page 55

Cd iV Complex quotient

Class: Lattice Category: Mathematics
SYNOPSIS

#include <math.h>
z = cdivix,y,z);
struct complex <
double re;
double im;

Y *z;

struct complex *x, *y;

DESCRIPTION

The cdlv function calculates the complex quotient of complex numbers pointed
to by x and y, and places the result in the complex number pointed to by z. The
pointer z is returned by the function.

For instance, the expression:
z = cdivix,y,z)
produces the assignments:

z->re = (x=->re * y->re + x=->im * y->im) /
(y->re * y->re + y->im * y->im);

z->im = (x->im * y->re - x->re * y->im) /
(y->re * y->re + y->im * y->im);

Page 56 Lattice C § Library Reference

Ceil, f|OOI‘ Get floating point limits

Class: ANSI Category: Mathematics
SYNOPSIS

#include <math.h>

X
X

ceil(y); Get ceiling of a real number
floor(y); Get floor of a real number

double x,y;

DESCRIPTION

These functions return the integral values that are nearest to the specified real
number. For cell, the return is the next higher integer, while floor returns the
next lower integer.

Note that although these functions return integral values, the results are still
real numbers.

EXAMPLE

#include <math.h>
double r;

r
r

ceil(523.96); /* r contains 524.0 */
floor(523.96); /* r contains 523.0 */

Library Reference Lattice C 5 Page 57

Cgef, cgetc s Cg ets Console input operations

Class: Lattice Category: Console and Port 1/O
SYNOPSIS

#include <dos.h>

c = cget(); get character from console,

no echo

c = cgetc(); get character from console, echo

p = cgets(buffer); get string from console

int c¢; input character

char *buffer; input buffer

char *p; input buffer
DESCRIPTION

These functions get single characters or character strings from the console
keyboard. The cget and cgetc functions are equivalent to getch and
getche, respectively. Also, cgetc and cgets are similar to getchar and
gets, respectively. The console functions use the low-level keyboard routines
directly rather than working through the file manager. This can result in
improved performance in a highly interactive application.

RETURNS
If C is zero, then cget should be called again to obtain the keyboard scan code.

This will happen when the user presses a key that cannot be translated into an
ASCII code; e.g. a function key. The return from cgefs is the buffer pointer.

SEE

cscanf, getch, getche, gets, kbhit

Page 58 Lattice C S Library Reference

C h d i r Change current directory

Class: UNIX Category: Process Environment
SYNOPSIS

#include <stdio.h>
error = chdir(path);

int error; 0 if successful
const char *path; points to new directory path
string

DESCRIPTION

This function changes the current directory to the specified path. Under
GEMDOS, the path may begin with a drive letter and a colon.

RETURNS

If the return value is non-zero, then the operation failed. A GEMDOS error
code will be in _OSERR, and a UNIX error code will be in errno.

SEE
Dsetpath, mkdir, rmdir, getcd, getcwd

Library Reference Lattice C § Page 59

C hg C I k ' Change system clock

Class: Lattice Category: DOS Interface
SYNOPSIS

#include <dos.h>
error = chgclk(clock);

int error;
const unsigned char *clock;

DESCRIPTION

The chgclk function changes the setting of the system clock, using the
following 8-byte array:

Byte Contents

0 Day of week (0 for Sunday)
1 Year - 1980

2 Month (1 to 12)

3 Day (1 to 31)

4 Hour (0 to 23)

5 Minute (0 to 59)

6 Second (0 to 59)

7 Hundredths (0 to 99)

RETURNS

If the array is invalid, chgCIk returns a non-zero value. In that case, the system
clock may be partially changed under GEMDOS, since the date and time are
updated on separate GEMDOS calls, either of which may have failed.

If your machine is equipped with a hardware clock, its state is not necessarily
changed by a call to chgclk.

SEE
Tsetdate, Tsettime, errno, getclk, _OSERR

Page 60 Lattice C 5 Library Reference

ChgdSk, gedek Change or get current disk drive

Class: GEMDOS Category: Disk Functions
SYNOPSIS

#include <dos.h>

bmap = chgdsk(drive);

drive = getdsk();

int drive; drive code

int bmap; bitmap of mounted drives
DESCRIPTION

The chgdsk function changes the current drive code. Drive code 0 corresponds
to drive A, code 1 is drive B and so on.

The getdsk function gets the current drive code, using the same codes as
chgdsk.

RETURNS

The function chgdsk returns a bitmap of mounted drives, bit 0 corresponds to
drive A, bit 1 is drive B and so on.

The function getdsk returns the code of the currently selected drive.

SEE
Dsetdrv, Dgetdrv, getcd

Library Reference Lattice C 5 Page 61

Chgdta, gefdta Set/Get data transfer address (DTA)

Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

chgdta(dta);
dta = getdta();

struct FILEINFO *dta; pointer to new DTA

DESCRIPTION
The chgdta function is used to change the data transfer address used by

GEMDOS in the Fsfirst and Fsnext calls. By comparison the getdta function
returns the current data transfer address.

SEE
Fsetdta, Fgetdtq, Fsfirst, Fsnext, dfind, dnext

Page 62 Lattice C 5 Library Reference

C hgfd Change file attribute

Class: GEMDOS Category: File System Manipulation
SYNOPSIS

#include <dos.h>

error = chgfa(name,fa);

int error; 0 if successful

int fa; file attribute

const char *name; file name
DESCRIPTION

This function sets the attribute byte for the specified file. The attributes in fa
are:

Bit Meaning

0 Read-only flag

1 Hidden file flag

2 System file flag

3 Volume label flag

4 Subdirectory flag

5 Archive flag (set if file has changed)
6 Reserved

7 Reserved

Note that the archive bit is only supported correctly in version 1.4 and above of
the operating system.

RETURNS

If the operation is unsuccessful, the function returns -1 and places error
information in errno and _OSERR.

SEE
Fattrib, chmod, getfa, errno, _OSERR

Library Reference Lattice C 5 Page 63

chgft Set file time

Class: GEMDOS Category: File System Manipulation
SYNOPSIS

#include <dos.h>

error = chgft(fh, ft);

int error; 0 if successful

Long ft; file time

int fh; file handle

DESCRIPTION

This function sets the time and date information associated with the specified
file. This information usually indicates when the file was created or last
updated. It has the following format:

Bits Contents

00-04 Second/2 (0 to 29)

05-10 Minute (0 to 59)

11-15 Hour (0 to 23)

16-20 Day (0 to 31)

21-24 Month (1 to 12)

25-31 Year-1980 (0 to 127)
RETURNS

The chgft function returns 0 if successful or a value of -1 if in error. Additional
error information can be found in errno and _OSERR.

SEE
Fdatime, getft, errno, _OSERR

Page 64 Lattice C 5 Library Reference

C h k ml Check for largest memory block

Class: OLD Category: Memory Management
SYNOPSIS

#include <stdlib.h>
size = chkml();

Long size;

DESCRIPTION

This function returns the size, in bytes, of the largest block that is currently
available without calling upon the operating system to supply additional heap
space.

SEE

getmem, getml, rlsmem, risml, sizmem

Library Reference Lattice C § Page 65

C h kab Check unbuffered file handle

Class: Lattice Category: Low-Level 1/O
SYNOPSIS

H#include <ios1.h>
ufb = chkufb(fh);

struct UFB *ufb; pointer to UNIX file block
int fh; file handle

DESCRIPTION

This function checks if a file handle is currently associated with an unbuffered
file. Normally it is used internally by open, close, read, write, Iseek and tell.

The UFB structure is defined in header file los1.h. For GEMDOS this structure
is two short integers. The first contains the mode flags specified in the call to
the open function. The second contains the file handle. The external name
_ufbs refers to an array of UFB structures, and the external integer _nuflbs
indicates how many structures are in the array. Normally this value is fourty.

RETURNS

If no UFB is currently attached to the file handle, a NULL pointer is returned.

Page 66 LatticeC 5 Library Reference

(¢ h mOd Change file protection mode

Class: UNIX Category: File System Manipulation
SYNOPSIS

#include <stdio.h>

error = chmod(name,mode);

int error; error code

const char *pame; file name

int mode; protection mode
DESCRIPTION

This function changes a file’s protection mode. It is compatible with UNIX,
although GEMDOS provides only a single write-protection bit for each file.
The mode argument should be formed by ORing any combination of the
following symbols which are defined in fcntl.h:

Value Meaning
S_IWRITE Write permission
S_IREAD Read permission

Since all GEMDOS files are readable, only the S_IWRITE symbol actually has
any meaning.

RETURNS

If the operation is successful, the function returns 0. Otherwise it returns -1 and
places error information in errno and _OSERR.

SEE

access, chgfa, errno, _OSERR

EXAMPLE

/*
* This piece of code changes file "xyz\pdq.x"
* so it can be read and written.
*/

#include <fcntl.h>

if(chmod("xyz\pdq.x",S_IWRITE | S_IREAD))
perror("Change mode");

Library Reference Lattice C § Page 67

Cqurerr, Clrerr Clear buffered 1/0O error flag

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>

clearerr(fp);
clrerr(fp);

FILE *fp,;, file pointer

DESCRIPTION

The clearerr and clrerr functions clear the error flag associated with the
specified file that was previously opened via fopen. Once set, the error flag
forces an EOF return any time the file is accessed until the flag is reset.

Note that clearerr is implemented as both a macro and a function. To get the
function instead of the macro, include the following line after the #include
line:

Hundef clearerr

(The function clrerr is provided for compatibility with some older versions of
UNIX.)

SEE

fopen

Page 68 LatticeC 5 Library Reference

CIOCk Determine the processor time used

Class: ANSI Category: Date and Time
SYNOPSIS

#include <time.h>
time = clock();

clock_t time; clock time since start of execution

DESCRIPTION

The clock function determines the processor time used by the process. The
clock is started when the process starts and then clock returns the time elapsed
since then.

RETURNS

To determine the time in seconds, the value returned by the clock function
should be divided by the value of the macro CLK_TCK. If the processor time
used is not available or its value cannot be represented, the function returns the
value ((clock_1)-1). This will never be the case under GEMDOS.

EXAMPLE

/*
* time a function, returning a value 1in seconds
*/
H#include <time.h>
Long time_me(void (*f)(void))
{
clock_t start;
start=clock();

’

return (long)((clock()-start)/CLK_TCK);

Library Reference Lattice C 5 Page 69

CIose Close an unbuffered file

Class: UNIX Category: Low-Level I/O
SYNOPSIS

Hinclude <fcntl.h>

error = close(fh);

int error; non-zero if error

int fh; file handle
DESCRIPTION

This function closes a file that was previously opened via the open function. If
there is any pending output, it is completed and the file directory is updated.

All files are automatically closed when your program terminates, but it is good
programming practice to close a file when you are finished with it. One reason

for doing this is to free up the operating system resources (e.g., control blocks
and buffers) that are allocated for the file while it remains open.

RETURNS

The function returns 0 if it is successful. Otherwise, it returns -1 and places
additional error information into errno and _OSERR.

SEE
ermo, open, _OSERR

EXAMPLE

See the open function.

Page 70 Lattice C 5 Library Reference

cmu I Complex product

Class: Lattice Category: Mathematics
SYNOPSIS

#include <math.h>

z = cmul(x,y,z);

struct complex {
double re;
double im;

Y *z;

struct complex *x, *y;

DESCRIPTION

The cmul function calculates the complex product of complex numbers pointed
to by x and Yy, and place the results in the complex number pointed to by z. The
pointer Z is returned by the function.

For instance, the expression:

z = cmullx,y,z)
produces the following assigment:

(x=->re * y->re) - (x->im * y->im);
(x->re * y->im) + (x->im * y->re);

z->re
z->im

Library Reference Lattice C 5 Page 71

_cou nfry ROM based country identifier

Class: GEMDOS Category: Process Environment
SYNOPSIS

#include <dos.h>

extern enum {} _country; country identifier

DESCRIPTION

These variable gives the country for which the operating system is nationalised.
The currently used values are:

Value Identifier Country

0 USA USA

1 FRG Germany

2 FRA France

3 GBR Great Britain

4 SPA Spain

5 ITA Italy

6 SWE Sweden

7 SWF Switzerland (French)
8 SWG Switzerland (German)
9 TUR Turkey

10 FIN Finland

11 NOR Norway

12 DEN Denmark

13 SAU Saudi Arabia

14 HOL Holland

Page 72 Lattice C 5 Library Reference

Cprinff Formatted print to console

Class: Lattice Category: Formatted I/O
SYNOPSIS

#include <conio.h>

Length = cprintf(fmt,arg1,arg2,...);

int Llength; number of characters generated

const char *fmt; format string

See printf for arg1, arg2, and so on.

DESCRIPTION

The printf group of functions generate a stream of ASCII characters by
analysing the format string and performing various conversion operations on
the remaining arguments. The cprintf form of printf sends the stream to the
console via a low-level operating system interface, thereby eliminating the
buffered 1/O overhead.

See the description of the printf function for a complete discussion of the
arguments and conversion specifications.

RETURNS

This function returns the number of output characters generated.

SEE
fprintf, lprintf, printf, sprintf, vfprintf, vprintf, vsprintf

Library Reference Lattice C 5 Page 73

cp utc y CP uts Console output operations

Class: Lattice Category: Console and Port I/O
SYNOPSIS

#include <dos.h>

c = cputc(c); put character to console

count = cputs(buffer); put string to console

int ¢, input character

int count; output character count

const char *buffer; pointer to dinput string
DESCRIPTION

These functions put single characters or character strings to the console
display. They are similar to putchar and puts except that they call the low-
level video routines instead of working through the File Manager. This can
result in better display performance.

RETURNS

The cputc function returns the character that was used as its argument, while
cputs returns the number of characters sent to the display.

SEE
cprintf, putchar, puts, kbhit

Page 74 LatticeC 5 Library Reference

Cl'edf Create a file

Class: UNIX Category: Low-Level I/O
SYNOPSIS

#include <fcntl.h>

fh = creat(name,prot);

int fh; file handle

const char *name; file name

int prot; protection mode
DESCRIPTION

This function is exactly the same as calling the open function in the following
way:

open(name,O0_WRONLY | O_TRUNC | O_CREAT |
(prot & O_RAW),(prot & ~“O_RAW));

In other words, the file is created if it doesn’t exist and truncated if it does
exist. Then it is opened for writing, and the translation mode is picked up from
the prot argument. The protection mode can be any of the following:

Value Meaning

S_IWRITE Write permission
S_IREAD Read permission

S_IWRITE | S_IREAD Write and read permission

Also you can OR in O_RAW to suppress file translation. For instance, if prot is

O_RAW | S_IREAD

the file will be created as read-only and will be processed in raw (untranslated)
mode. The read-only condition takes effect only if a new file must be created; if
the file already exists, its protection mode is unchanged. Also, you can write to
a newly-created read-only file until you close it for the first time.

RETURNS

If the operation succeeds, a file handle is returned, which is a positive integer.
Otherwise it returns -1 and places error information in errno and _OSERR.

SEE

Fcreate, errmo, _OSERR, chgfa, chmod, close, open

Library Reference Lattice C 5 Page 75

csCca nf Formatted input from console

Class: Lattice Category: Formatted 1/O
SYNOPSIS
Hinclude <stdio.h>
n = cscanf(fmt,arg1,arg2,...);
int n; number of 1input items matched, or
EOF
const char *fmt; format string
void *argx; pointers to 1input data areas
(x=1,2...)
DESCRIPTION

The cscanf function performs formatted input conversions on text obtained
from the system console. The input characters are read and checked against the
format string. The description of the scanf function fully describes the formats
and conversion specifications.

RETURNS

The function returns the number of assignments that were made. For example,
a return value of 3 indicates that conversion results were assigned to argl,
arg?, and arg3.

SEE

fscanf, scanf, sscanf

Page 76 Lattice C 5 Library Reference

C'I'ime Convert time value to string

Class: ANSI Category: Date and Time
SYNOPSIS

Hinclude <time.h>

s = ctime(t);

char *s; points to time string

const time_t *t; points to time value
DESCRIPTION

This function converts a Greenwich Mean Time (GMT) time value to an ASCII
string of exactly 26 characters having the form:

DDD MMM dd hh:mm:ss YYYY\n\O

where DDD is the day of the week, MMM is the month, dd is the day of the
month, hh:mm:ss is the hour:minute:seconds, and YYYY is the year. For instance:

Wed Sep 04 15:13:22 1985\n\0

The time pointer returned by the function refers to a static data area that is
shared by both ctime and asctime.

The time value argument t must point to a long integer that is the number of
seconds since 00:00:00 Greenwich Mean Time, January 1, 1970. Normally this
value is obtained from the time function. Note that ctime converts this value
back into local time by calling _tzset and then subtracting the contents of
timezone.

Note that t is a pointer to a fime_t. A common error is to pass the time_t
value itself instead of the pointer. Observe the use of the ampersand (&)
operator in the following example.

SEE

asctime, gmtime, localtime, time, _tzset, utpack, utunpk

Library Reference Lattice C 5 Page 77

EXAMPLE

H#include <time.h>
#include <stdio.h>

int main(void)
{
time_t t;

time(8&¢t);
printf("Current time 1is Zs\n",ctime(&t));

Page 78 Lattice C 5 Library Reference

_CX F E R R Low-level float error exit

Class: Lattice Category: Errors
SYNOPSIS

Hinclude <math.h>
_CXFERR(code);

int code;

DESCRIPTION

The _CXFERR function is called when an error is detected by one of the low-
level floating point routines, such as arithmetic operations. Higher-level
routines, such as trigonometric functions, use the more sophisticated matherr.

Users can replace this error trap with an application-dependent routine, as
long as they still store the error code in the global integer _FPERR. This is
necessary because some of the maths functions check _FPERR to see if low-level
errors occurred.

The error code passed to _CXFERR indicates the type of floating point anomaly
that occurred, as follows, defined in math.h:

Symbol Value Meaning
FPEUND 1 Underflow
FPEOVF 2 Overflow
FPEZDV 3 Divide by zero
FPENAN 4 Not a number
FPECOM 5 Not comparable

SEE

matherr

Library Reference Lattice C § Page 79

_dC|°se Close a GEMDOS file

Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

error = _dclose(fh);

Long error; 0 for success, -1 for error

int fh; file handle
DESCRIPTION

This function closes a GEMDOS file that was opened via _dcreat, _dcreatx
or _dopen.

RETURNS

If the operation is successful, the function returns 0. Otherwise it returns -1 and
places error information in errno and _OSERR.

SEE

Fclose, errno, _OSERR, _dcreat, _dcreatx, _dopen

Page 80 Lattice C 5§ Library Reference

_dcreat, _dcreatx Create a GEMDOS file

Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

fh = _dcreat(name,fatt); Create or truncate GEMDOS

file

fh = _dcreatx(name,fatt); Create new GEMDOS file

Long fh; file handle (-1 for error)

const char *name; file name

int fatt; file attribute
DESCRIPTION

These functions create and open a GEMDOS file, returning the file handle.
The _dcreat operation will truncate the file if it already exists, or create the
file if it does not exist. Alternatively, _dcreatx will fail if the file already
exists.

RETURNS

If the operation is successful, the function returns a file handle. Otherwise it
returns -1 and places error information in errno and _OSERR.

SEE

Fcreate, errno, _OSERR, _dopen

Library Reference Lattice C 5 Page 81

dfl n d ’ d n ext Find directory entry

Class: GEMDOS Category: DOS Interface
SYNOPSIS
#include <dos.h>
err = dfind(info,name,attr); Find first directory
entry
err = dnext(info); Find next directory
entry
int err; 0 if successful
struct FILEINFO *info; file information area
const char *name; file name or pattern
int attr; file attribute bits
DESCRIPTION

These functions search a directory for entries that match the specified file name
or file name pattern. The dfind function locates the first matching file. Then
successive cale to dnext locate additional matching files. Each dnext call must
be given the file information that was returned on the preceding call to dfind
or dnext.

The name argument must be a null-terminated string specifying the drive,
path, and name of the desired file. The drive and path can be omitted, in which
case the current directory will be searched. You can use the GEMDOS * and ?
characters for pattern matching in the name portion. For example, xy* b will
locate files in the current directory that begin with xy and have b as their
extension.

The attr argument specifies which file types are to be included in the search.
The following bits are used:

Bit Meaning

0 Read-only flag

1 Hidden file flag
2 System file flag
<) Volume label flag
4 Subdirectory flag

Page 82 Lattice C 5 Library Reference

The info argument points to a file information structure as defined in the dos.h
header file. For GEMDOS, this is the same as the GEMDOS DTA structure:

struct FILEINFO
80

char resv[21]1; /* reserved */
char attr; /* actual file attribute */
Long time; /* file time and date */
Long size; /* file size in bytes */
char namelFNSIZE], /* file name */
};
RETURNS

If the operation is successful, a value of 0 is returned. Otherwise, the return
value is -1, and further error information can be found in errno and _OSERR.

SEE
Fsfirst, Fsnext, getfnl, errno, _OSERR
EXAMPLE
/*
* show the files in a given directory
*/

#include <dos.h>
void showdir(const char *s)
{

struct FILEINFO info;

if (!dfind(&info,name,0)
do
{
puts(info.name);
} while (!dnext(&info));

Library Reference Lattice C 5 Page 83

dlfﬂ'im e Compute difference between calendar times

Class: ANSI Category: Date and Time
SYNOPSIS

#include <time.h>

diff = difftime(time1,time0);

double diff; difference between calendar times

(seconds)

time_t time1; one calendar time

time_t timeO; another calendar time
DESCRIPTION

The difftime function computes the difference (in seconds) between two
calendar times: time1 - time0. difffime was introduced as an ANSI function so
that implementations could store an indication of the date/time value in the
most efficient format possible and still provide a method of calculating the
difference between two times.

RETURNS

This function returns the difference expressed in seconds as a double.

Page 84 Lattice C 5 Library Reference

_disatiy Check if a GEMDOS handle is a terminal

Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

ret = _disatty(fh);

int ret; 0 if not a terminal

int fh; file handle

DESCRIPTION

This’ function returns a non-zero value if the specified GEMDOS file handle is
attached to a terminal (TTY) device, i.e. a console, printer or auxiliary device.

RETURNS
The return value is 0 if the file is not a terminal or if an error occurred while

attempting to obtain the file’s characteristics. You can check errno and _OSERR
for detailed error information. If the file is a terminal, a value of 1 is returned.

SEE

isatty, errno, _OSERR

Library Reference Lattice C 5 Page 85

div, Idiv

Divide two signed integers

Class: ANSI Category: Numeric Transformation
SYNOPSIS

#include <stdlib.h>

p = div(numer,denom); Divide two signed integers

q = Lldiv(lnumer,ldenom) Divide two signed Llongs

div_t p; quotient, remainder

Ldiv_t q; Long quotient, remainder

numerator
denominator

int numer;
int denom;

Long Llnumer; Long numerator
Long Lldenom; Long denominator
DESCRIPTION

The dlv and Idlv functions compute the quotient and remainder of the division
of the numerator by the denominator. If the division is inexact, the resulting
quotient is the integer of lesser magnitude that is the nearest to the algebraic
quotient. The result can be represented as:

p.quot * denom + p.rem = numer

The div and Idlv functions provide a set of well-specified semantics for signed
integral division and remainder operations. The semantics were adopted to be
the same as FORTRAN. The following table summarises the semantics of these
functions:

Numerator Denominator Quotient Remainder
7 3 2 1
-7 3 -2 -1
% -3 -2 1
-7 -3 2 -1
RETURNS

The dlv function returns a structure of type div_t, comprising both the quotient
and the remainder, whilst the Idiv function returns a structure of type Idlv_t.
The structures contain the following members:

int quot; /* quotient ¥*/
int rem; /* remainder */

Page 86 Lattice C 5 Library Reference

LdO pen Open a GEMDOS file

Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

fh = _dopen(name,mode);

Long fh; file handle (-1 for error)

const char *name; file name

int mode; access mode
DESCRIPTION

This function opens a GEMDOS file and returns the file handle. The mode
argument must be a mode supported directly by GEMDOS, i.e. O_RDONLY,
O_WRONLY and O_RDWR.

RETURNS

If the operation is successful, the function returns a file handle. Otherwise it
returns -1 and places error information in errno and _OSERR.

SEE

Fopen, errmno, _OSERR, open, _dcreat, _dcreatx, _dclose

Library Reference Lattice C 5 Page 87

d ran d Generate random numbers

Class: UNIX Category: Random Numbers
SYNOPSIS
#include <math.h>
x = drand48(); random double (internal seed)
x = erand48(seed); random double (external seed)
y = Lrand48(); random positive Llong (internal
seed)
y = nrand48(seed); random positive Long (external
seed)
z = mrandé48(); random Llong (internal seed)
2z = jrand48(seed); random Llong (external seed)
srand48(Chseed); set high 32 bits of internal
seed
pseed = seed48(seed); set all 48 bits of dinternal
seed
Lcong48(parm); set Llinear congruence
parameters
double x; random double
Long Yy, random positive Llong
Long z; random Llong
short seed(3]; seed value (high bits in
seed[0])
Long hseed; high 32 bits of seed value
short *pseed; pointer to dinternal seed
short parm(7]; parameters
DESCRIPTION

These functions generate various types of random numbers using the linear
congruential algorithm and 48-bit arithmetic. The normal functions drand48,
Irand48 and mrand48 use an internal 48-bit storage area for the seed value.
Special versions erand48, rand48 and nrand48 are provided for cases where
several seeds are in use at the same time, in which case the user specifies the
seed on each function call.

The drand48 and erand48 functions return double values distributed
uniformly over the interval from 0.0 up to but not including 1.0.

The Irand48 and nrand48 functions return non-negative long integers
uniformly distributed over the interval from 0 to 2**31-1.

The mrand48 and Jrand48 functions return signed long integers uniformly
distributed over the interval from -2**31 to 2**31-1.

Page 88 LatticeC 5 Library Reference

The srand48 and seed48 functions allow initialisation of the internal 48-bit
seed to something other than the default. For srand48 the specified long value
is copied into the high 32 bits of the seed, and the low 16 bits are set to 0x330E.
For seed48 the entire 48 bits are loaded from the specified array, and the
function returns a pointer to the internal seed array.

The Icong48 function allows a much more intricate initialisation of the linear
congruential algorithm. The algorithm is of the form:

XCn+1] = (a * XCnl + c¢) mod m

where m is 2**48 and the default values for a and ¢ are 0xX5DEECE66D and
0xB, respectively. The array passed to Icong48 is structured as follows:

Parameter Value

parm(0) Bits 47-32 of value X(n)
parm(1) Bits 31-16 of value X(n)
parm(2) Bits 15-00 of value X(n)
parm(3) Bits 47-32 of value a
parm(4) Bits 31-16 of value a
parm(5) Bits 15-00 of value a
parm(6) value C

Whenever seed48 is called, a and C are reset to their default values.

RETURNS

As noted above.
SEE

rand, srand

Library Reference Lattice C § Page 89

_d read, _dWI'"e Read and write GEMDOS files

Class: GEMDOS Category: DOS Interface
SYNOPSIS
#include <dos.h>
cnt = _dread(fh,buf,len); Read from a GEMDOS file
cnt = _dwrite(fh,cbuf,len); Write to a GEMDOS file
Long c¢nt; actual bytes read or
written
int fh; file handle
void *buf; data buffer
const void *cbuf; data buffer
size_t Llen; number of bytes to read
or write
DESCRIPTION

These functions read or write a GEMDOS file whose handle was returned by
_dcreat, _dcreatx or _dopen. Under normal circumstances, the value
returned should match the buffer length. If this value is -1 or greater than the
requested lenéth, then some type of error occurred, and you should consult
errno and _OSERR. If the actual length is less than the requested length when
reading, this usually means that the file is exhausted. Similarly, if the actual
length is less than the requested length for a write operation, this usually
means that the device has no more space available. In both of these cases, it is
still a good idea to check errno and _OSERR just in case some malfunction
caused the short count.

RETURNS

If the operation is successful, the function returns the actual number of bytes
transferred. Otherwise it returns -1 and places error information in errno and
_OSERR.

SEE

errno, _OSERR, _dcreat, _dcreatx, _dopen, _dclose, _dseek

Page 90 Lattice C 5 Library Reference

_d see k Re-position a GEMDOS file

Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

apos = _dseek(fh,rpos,mode);

Long apos; actual file position

int fh; file handle

Long rpos; relative file position

int mode; seek mode
DESCRIPTION

This function re-positions a GEMDOS file whose handle was returned by
_dcreat, _dcreatx or _dopen. The seek mode is the same as for Iseek as
follows (defined in stdio.h):

Mode Meaning

SEEK_SET Therpos argument is the number of bytes from the
beginning of the file. This value must be positive.

SEEK_CUR The rpos argument is the number of bytes relative
to the current position. This value can be positive
or negative.

SEEK_END The rpos argument is the number of bytes relative
to the end of the file. This value must be negative
or zero.

Note that for mode SEEK_CUR rpos can be positive or negative, but Qpos is
always the actual (positive) position relative to the beginning of file.

RETURNS

If the operation is successful, the function returns the actual file position, which
is a long integer. Otherwise it returns -1 and places error information in errno
and _OSERR.

SEE

Fseek, errno, _OSERR, _dread, _dwrite

Library Reference Lattice C 5 Page 91

_d du P, _d du P 2 Duplicate a GEMDOS file handle

Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

nfh = _ddup(fh); buplicate a file handle

error = _ddup2(nfh,fh); Assign a file handle

int nfh; new file handle

int fh; old file handle

int error; -1 if error

DESCRIPTION

These functions duplicate a GEMDOS file handle. The new handle is
associated with the same file as the old handle.

They are normally used in the same way as the higher level dup and dup?2
functions for associating a different stdin, stdout, or stderr for a child process.

RETURNS

If the operation is successful, _ddup returns a file handle, while _ddup?2
returns 0. Otherwise a value of -1 is returned, and error information is placed
into errno and _OSERR.

Do not use these functions with files being accessed via open and the other
low-level I/O functions. Use dup and dup?2 instead.

SEE
Fdup, Fforce, dup, dup2, _dopen, _dclose, errno, _OSERR

Page 92 Lattice C 5 Library Reference

d u p ’ d u p2 Duplicate a file handle

Class: UNIX Category: Low-Level I/O
SYNOPSIS

#include <fcntl.h>

nfh = dup(fh); Duplicate a file handle

error = dup2(nfh,fh); Assign a file handle

int nfh; new file handle

int fh; old file handle

int error; -1 if error
DESCRIPTION

These functions duplicate a file handle. The new handle is associated with the
same file as the old handle.

Normally, dup is used when you want to establish a different stdin, stdout, or
stderr for a child process. In order to preserve your current input, output, or
error channel, you would use either dup or dup2 to duplicate file handle 0, 1,
or 2. Then you would use fdopen to re-establish the association between the
new handle and stdin, stdout, or stderr. Finally, you would open a file that
you want to be the child process’ standard input, output, or error channel; use
dup? if necessary to make the proper association with handle 0, 1, or 2.

RETURNS
If the operation is successful, dup returns a file handle, while dup2 returns 0.
Otherwise a value of -1 is returned, and error information is placed into errno
and _OSERR.

Do not use these functions with files being accessed via _dopen and the other
low-level I/0O functions. Use _ddup and _ddup? instead.

SEE
Fdup. Fforce, _ddup, _ddup?2, fdopen, errno, _OSERR

Library Reference Lattice C 5 Page 93

eCVt, fcvt Convert float to string

Class: UNIX Category: Data Conversion/Formatting

SYNOPSIS

#include <math.h>

s = ecvt(v,dig,decx,sign); convert float to string

s = fcvt(v,dec,decx,sign); convert float to string

char *s; string pointer

double v; floating point value

int dig; number of digits

int dec; number of decimal places

int *decx; pointer to decimal index

(returned)

int *sign; pointer to sign indicator

DESCRIPTION

These functions convert a floating point number into an ASCII character string
consisting of digits only and terminated by a null character.

For ecvt, the second argument indicates the total number of digits that should
be generated, while for fcvt it indicates how many digits should be generated
to the right of the decimal place. If the floating point value contains fewer
significant digits, zeroes are appended. If there are too many significant digits,
the low order (right-most) digit is rounded.

The decx argument points to an integer that will receive a value indicating
where the decimal point should be placed in the string. For example, an index
value of 3 indicates that the decimal point should be placed just after the third
character in the string. A value of zero means that the decimal point is just
before the first character. If the index is negative, it indicates the number of
zeroes that are between the decimal point and the first character. For example,
-3 means that there are three zeroes between the decimal point and the
beginning of the string.

The sign argument points to an integer that will be non-zero if v is negative.

EXAMPLE

#include <math.h>
int main(void)
{

int decx,sign;
char *string;

string = ecvt(3.1415926535,10,8decx,8&sign);

Page 94 Lattice C S Library Reference

* string => "3141592654"

* decx => 1

* sign => 0

*/

string = fcvt(3.1415926535,10,8decx,8&sign);
/] *

* string => "31415926535"

* decx => 1

* sign => 0

*/

return O0;

Library Reference Lattice C 5 Page 95

em it Emit 68000 instruction word

Class: Lattice Category: Builtin Functions

SYNOPSIS

#include <dos.h>
_emit (x);

short x; opcode to place in dinstruction stream

DESCRIPTION

The built-in function emit takes a constant 16-bit value corresponding to a
68000 assembly language instruction and inserts it in-line with the code.
However, it does not check whether the 16-bit value is a valid 68000
instruction. It lacks the power and flexibility of an in-line assembler.

Note that this function is implemented as a macro expanding to the function
__builtin_emit hence you must include the header file dos.h.

If one doesn’t know how to use the emit function, it can create serious

problems. While programmers may find this function useful in some situations,
it should not be used without exercising a great deal of care and skill.

SEE
getreg, putreg

Page 96 LatticeC 5 Library Reference

_end, _edata, _etext Last locations in program

Class: UNIX Category: Linker Defined Symbols
SYNOPSIS

extern __far _end;

extern __far _data;

extern __far _etext;
DESCRIPTION

These names refer to the last locations in the program. The address of _etext
is the first location above the executable program text, that of _edata the first
location above the initialised data area and _end the location immediately
after the unitialised data area.

Library Reference Lattice C § Page 97

i E N E E D Maximum environment string space

Class: Lattice Category: Process Environment
SYNOPSIS

extern int _ENEED;
DESCRIPTION

This external variable specifies the maximum number of environment strings
which may be manipulated by the getenv, putenv and rmvenv commands. If it
is smaller than that required for the process when it starts the value is ignored
and the value allocateg 4 times the number of strings available at startup.

Page 98 Lattice C 5 Library Reference

e nVi ron Strings forming user environment

Class: UNIX Category: Process Environment
SYNOPSIS

extern char **environ;
DESCRIPTION

The external variable environ points to an array of strings forming the
“environment”. By convention these strings have the form “NAME=value”.
This array is normally manipulated by the functions getenv, putenv and
rmvenv.

SEE

getenv, putenv, rmvenv, _ENEED

Library Reference Lattice C 5 Page 99

erl‘ no UNIX error number

Class: ANSI Category: Errors
SYNOPSIS
#include <errno.h>
extern int volatile errno; UNIX error number
extern int sys_nerr; number of error codes
extern char *sys_errlist(C]; UNIX error messages
DESCRIPTION

The external integer named errno is initialised to 0 at start-up time. Then if
an error is detected by one of the standard library functions, a non-zero value

is placed there. The standard library never resets errno.

Programmers typically use this information in two ways. In some cases, it is
appropriate to check errno after a sequence of operations and abort if any
error occurred along the way. In other cases, errno is checked periodically,
and if it is non-zero, the appropriate corrective action is taken. Then the
application program resets errno before beginning the next processing phase.

The sys_nerr and sys_errlist items are defined in a C source file named
syserr.c and are used by the perror function to print messages that correspond

to the code found in errno. Note that the sys_ variables do not form part of
the ANSI C standard.

Note that even though error information is normally placed into errno by the
standard library functions, application programs can also use this technique to
indicate problems. However, you should be careful about adding new codes
and messages just above the highest UNIX code currently defined, since new
UNIX codes are added occasionally. Also, we recommend that you add
application-dependent codes by extending the header file errno.h, which
contains symbolic definitions of the code numbers. The currently defined codes
are listed as follows:

Symbol Code Meaning

EOSERR -1 Operating system error
EPERM 01 User is not owner
ENOENT 02 No such file or directory
ESRCH 03 No such process

EINTR 04 Interrupted system call

Page 100 Lattice C 5 Library Reference

BO 05 1/0 error

ENXIO 06 No such device or address
E2BIG 07 Argument list is too long
ENOEXEC 08 Exec format error

EBADF 09 Bad file number

ECHILD 10 No child process

EAGAIN 1 No more processes allowed
ENOMEM 12 No memory available
EACCES 13 Access denied

EFAULT 14 Bad address

ENOTBLK 15 Bulk device required
EBUSY 16 Resource is busy

EEXIST 17 File already exists
EXDEV 18 Cross-device link

ENODEV 19 No such device

ENOTDIR 20 Is not a directory

EISDIR 21 Is a directory

EINVAL 22 Invalid argument

ENFILE 23 No more files (system)
EMFILE 24 No more files (process)
ENOTTY 25 Not a terminal

ETXTBSY 26 Text file is busy

EFBIG 27 File is too large

ENOSPC 28 No space left

ESPIPE 29 Seek issued to pipe
EROFS 30 Read-only file system
EMLINK 31 Too many links

EPIPE 32 Broken pipe

EDOM 33 Math function argument error
ERANGE 34 Math function result is out of range

SEE

perror, strerror, sys_err

Library Reference

Lattice C 5

Page 101

eXit, exit Terminate program execution

Class: ANSI Category: Process Creation
SYNOPSIS

#include <stdlib.h>

exit(code); Terminate with clean-up
_exit(code); Terminate with no clean-up

int code; status code

DESCRIPTION

These functions terminate execution of the current program and return control
to the parent program. Use exit, for a graceful termination, which means that
all pending output buffers are written and all files are explicitly closed. The
_exit function terminates immediately without writing output buffers or closing
files. Generally, this latter form is used only in emergency situations when you
don’t care if some output data is lost.

This function will normally be called after the code in main has been executed,
and any return value from main is then passed to exit. Note that in general the
_exit function is automatically called from the exit function after it has

performed any clean up required.
In either case, the code is a value that gets passed back to the parent. By
convention, a value of zero indicates success. If the parent is another C

program that started this one up via one of the fork functions, then the parent
can obtain the return code via the wait function.

RETURNS

This function does not return.

SEE

Pterm, Pterm0O, onexit, atexit, forkipe, forkvpe, wait

Page 102 Lattice C 5 Library Reference

EXAMPLE

] *
* This example shows how you would abort
* if it 1is not called with a valid input
*

*/
H#include <stdio.h>
#include <stdlib.h>

program
ile name.

--

int main(int argc,char *argv[1]l)
{

FILE *f;

ifCargec > 1)

{

f = fopenCargvC11,"r");
ifClf)
{

fprintf(stderr,"Can't open file Z%s\n",argv[11);
return 1;

}

}

else

{
fprintf(stderr,"No file specified\n");
return 1;

}

/*** Continue, now that file has been verified **¥*/

Library Reference Lattice C 5 Page 103

eXp, et al Exponential functions

Class: ANSI Category: Mathematics
SYNOPSIS

#include <math.h>

r = exp(x); exponential function

r = log(x); natural Llogarithm function
r = Log10(x); base 10 Llogarithm function
r = pow(x,y); power function

r = sqrt(x); square root function

r = pow2(x); compute 2%%x

DESCRIPTION
The exp function raises the natural logarithm base € to the x power, and pow

raises X to the y power. For pow, the X value must be an integer if it is
negative. If it is not integral, matherr is called with a DOMAIN error.

The pow?2 function computes 2X by calling the pow function. The return value r
is the value 2X .

The log and log10 functions take the base € and base 10 logarithm,

respectively. Each of these as well as sqQrt, requires a positive argument. If a
negative argument is supplied, matherr will be called with a DOMAIN error.

SEE

matherr

Page 104 Lattice C 5 Library Reference

fCI bs Absolute value of float/double

Class: ANSI Category: Numeric Transformation
SYNOPSIS

#include <math.h>

ad = fabs(d);

double d;

double ad;
DESCRIPTION

The fabs function computes the absolute value of a float or a double,
returning a double result.

SEE

abs, iabs, labs

Library Reference Lattice C 5 Page 105

fC|Ose, fC|OseC||| Close a buffered file

Class: ANSI Category: Stream 1/O
SYNOPSIS

Hinclude <stdio.h>

ret = fclose(fp); close a buffered file
num = fcloseall(); close all buffered files
int ret; return code
int num; number of files closed
FILE *fp; file pointer for file to be
closed
DESCRIPTION

The fclose function completes the processing of a buffered file (i.e. a file
previously opened via fopen) and releases all related resources. The buffer
associated with the file is released via the free function.

Even though fclose is automatically called for all open files when your
program terminates or calls exit, it is good programming practice to close your
own files explicity. The the last buffer is not written until fclose is called, and
so data may be lost if an output file is not properly closed.

The fcloseall function closes all buffered files and returns the number of files
that were closed. If an error occurs on any file, fcloseall continues to close the
other files and then returns a value of -1.

RETURNS

Both functions return -1 to indicate an error. For success, fclose returns 0, and
fcloseail returns the number of files that were closed. If -1 is returned,
additional error information can be found in errno and _OSERR.

Remember that fcloseall closes the standard files stdin, stdout, and stderr.
This means, for example, that functions such as printf and perror will fail after
you call fcloseall.

SEE
fopen, errno, _OSERR

Page 106 Lattice C 5 Library Reference

fd (o) p en Assign handle to buffered file

Class: UNIX Category: Stream I/O
SYNOPSIS

H#include <stdio.h>

fp = fdopen(fh,mode);

FILE *fp; file pointer

int fh; file handle

const char *mode; access mode
DESCRIPTION

This function assigns a specific file handle to a buffered file. In other words, if
you have used open to obtain a file handle, you can subsequently use buffered
I/0 with that file via fdopen. The mode argument for fdopen has the same
form as for fopen.

RETURNS

If the operation is successful, the function returns a non-NULL file pointer.
Otherwise it returns a NULL pointer and places error information in errno and
_OSERR.

SEE
fopen, errno, _OSERR

Library Reference Lattice C 5 Page 107

fe Of Check for end-of-file

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>
ret = feof(fp);

int ret; non-zero if end-of-file is found
FILE *fp; file pointer

DESCRIPTION

The feof function generates a non-zero value if the specified file is at end-of-
file. Note that the specified file must have been opened previously via fopen or
fdopen.

RETURNS
If an end-of-file is found, a non-zero value is returned.

This function is implemented as a macro, and does not check if fp is a valid file
pointer.

SEE

ferror

Page 108 Lattice C 5 Library Reference

ferror Check for file error

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>

ret = ferror(fp);

int ret; non-zero if file error is found

FILE *fp; file pointer
DESCRIPTION

The ferror function generates a non-zero value if an error has occurred on the
specified file. Note that the file must have been opened previously via fopen or
fdopen.

RETURNS

The return value is 0 if no error has occurred. If a file error has been found, a
non-zero value is returned.

The ferror function is implemented as a macro, and does not check if fp is a
valid file pointer.

SEE

feof

Library Reference Lattice C 5 Page 109

ffIUSh, fIUSha" Flush file output buffer

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

ret = fflush(fp); Flush a file output buffer

num = flushall(); Flush all file output buffers

FILE *fp; file pointer

int ret; return code

int num; number of open files
DESCRIPTION

The fflush macro flushes the output buffer of a file previously opened via fopen
or fdopen. That is, it writes the buffer if the file is opened for output and the
buffer contains any pending data. If an error occurs, the return value is EOF
and the appropriate error code is placed into errno.

The flushall function flushes all file output buffers and returns the number of
files that are open. If an error occurs, the function continues to flush the
remaining files and then returns a value of -1.

RETURNS

As noted above. In the event of a -1 return, error information can be found in
errno and _OSERR.

SEE

fopen, fclose, errno, _OSERR

Page 110 LatticeC 5 Library Reference

fgetc, fgetchar Get a character

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

c
c

fgetc(fp); Get a character from a file
fgetchar(); Get a character from stdin

c, return character or code

n ’
I *fp; file pointer

int
FILE

DESCRIPTION

These functions get a single character from a file that was previously opened
via fopen or fdopen. For fgetchar, the standard input file is read via file
pointer stdin.

RETURNS

Upon success, the next input character is returned. Otherwise, the functions
return EOF, which is defined in stdio.h.

In the event of an EOF return, error information can be found in errno and
_OSERR. Most programmers treat any EOF return as an indication of end-of-
file. However, if you want to distinguish errors from end-of-files, you should
reset €rrNO before calling the function and then analyse its contents when you
receive an EOF return.

SEE

ermo, fopen, getc, getchar, _OSERR

Library Reference Lattice C 5 Page 111

fgeipos Store current value of file position indicator

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

ret = fgetpos (strm,pos);

int ret; 0 if successful

FILE *strm; stream

fpos_t *pos; file position info
DESCRIPTION

The fgetpos function stores the current value of the file position indicator for
the stream pointed to by stream in the object pointed to by pos. The value
stored in pOS contains information usable by the fsetpos function for
repositioning the stream to its position at the time of the call to the fgetpos
function.

RETURNS

If successful, the fgetpos function returns 0; on failure, the fgetpos function
returns non-zero and stores an the error value in errno.

SEE

fsetpos

Page 112 Lattice C 5 Library Reference

lfgefs Get a string from a buffered file

Class: ANSI Category: Stream 1/O
SYNOPSIS

H#include <stdio.h>

p = fgets(buffer,length,fp);

char *p; buffer pointer or NULL

char *buffer; buffer pointer

int Llength; buffer Llength 1in bytes

FILE *fp; file pointer
DESCRIPTION

The fgets function gets a string from the specified file, which must have been
previously opened for in{:)ut via fopen or fdopen. Characters are copied from
the file to the buffer until a newline (‘\n’) has been copied, or the buffer is full,
or the end-of-file is hit. In the newline case, a null byte (‘\0’) is placed into the
buffer after the newline if the buffer has room. In the end-of-file case, a null
byte is placed into the buffer after the last byte that was read. If the end-of-file
is hit before any bytes are read, a NULL pointer is returned.

Note that the returned string will not be null-terminated if length characters
have already been placed into the buffer.

RETURNS

The fgets function returns the buffer argument unless an end-of-file or I/O
error occurs, in which case a NULL pointer is returned.

SEE

ermo, feof, ferror, fgetc, fopen, getc, gets

I._ibrary Reference Lattice C 5 Page 113

EXAMPLE

/

Assume that stdin contains the

Hello, folks!
Goodbye, folks!
(blank Lline or

* % % ¥ ¥ *

EOF)
*/
#include

*p,bl801;
For the next two
gets(b);
Now b contains "Hello, folks!"
= fgets(b,sizeof(b),stdio);
Now b contains "Goodbye,
= gets(b);
* Now p is

<stdio.h>

char
/*
[+] -
/*

Lines, p will

NULL */

folks!\n"

following Llines:

point to b */
*/

*/

Page 114 Lattice C 5

Library Reference

Iigetw : fg etl Get a word/longword from a buffered file

Class: UNIX Category: Stream I/O
SYNOPSIS

#include <stdio.h>

x = fgetw(fp);

y = fgetl(fp);

short x; word value from stream

Long y; Longword value from stream

FILE *fp; file pointer
DESCRIPTION

The fgetw and fgetl functions read words and longwords respectively from the
associated file. If end-of-file is reached, EOF cast to the egxfropriate type is
returned. Note that it may not be possible to distinguish EOF from legitimate
characters and so the value of feof should be checked in these cases.

Note that these functions produce files which are highly non-portable as they
give no indication of the ordering of bytes on the machines architecture.

RETURNS

The functions return a value from the stream or the value EOF if an end-of-file
or I/O error occurs.

SEE

errno, feof, ferror, fgetc, fread, fputw, fputl

Library Reference Lattice C § Page 115

filelength

Find length of an unbuffered file

Class: Microsoft

Category: Low-Level I/O

SYNOPSIS
#include <fcntl.h>
Length = filelength(fh);
Long Length; Length of file in bytes or -1
int fh; unbuffered file handle
DESCRIPTION

The filelength function calculates the size of the file associated with the
unbuffered file handle fh. The file handle should be one which was returned by

an open or creat call.

RETURNS

The filelength function returns the number of bytes in the file, or if an error
occurs returns -1 and sets erno accordingly.

SEE
creat, fileno, open
EXAMPLE
/*
* Find the Length of a buffered file
*/
#include <stdio.h>
#include <fcntl.h>
Long Llen(FILE *fp)
{
fflush(fp),; /* flush any buffered bytes to disk */

return
}

filelength(fileno(fp));

Page 116

Lattice C 5

Library Reference

fi ' eno Get handle for buffered file

Class: UNIX Category: Stream IO
SYNOPSIS

#include <stdio.h>
fh = fileno(fp);

file handle

fh;
*fp, file pointer

int
FILE
DESCRIPTION

This function returns the file handle (i.e. the file number) associated with the
specified file pointer. The file pointer must be one that was returned by fopen,
freopen, or fdopen.

RETURNS

As noted above.

This function is implemented as a macro, and it does not check that fp is a valid
file pointer.

Library Reference Lattice C 5 Page 117

fm as k Set default protection mode for buffered I/O

Class: Lattice Category: Stream 1/O
SYNOPSIS

extern long _fmask;
DESCRIPTION

This external integer is used by the fopen function to determine the protection
mode to use when creating buffered files. The default is the value
S_IWRITE I S_LIREAD, giving both read and write privileges to any file created.

SEE

fopen

Page 118 Lattice C 5 Library Reference

med Compute floating point modulus

Class: ANSI Category: Numeric Transformation
SYNOPSIS

#include <math.h>

x = fmod(y,z);

double x; floating point modulus

double y; dividend

double 2z; divisor
DESCRIPTION

The fmod function computes the floating point remainder of y/z. It returns y if
z is 0. Otherwise, it returns a value that has the same sign as y, is less than z,
and satisfies the relationship:

y = (i * 2) + x
where | is an integer. This is, in effect, what the expression:
X =y % z;

would produce if the % operator were defined for floating point numbers.

SEE

modf

EXAMPLE

#include <math.h>
double r, ff, fi;
r = fmod(5.7,1.5); /* r contains 1.2 */

ff = modf(r,&fi); /* ff contains 0.2 */
/* fi contains 1.0 */

Library Reference Lattice C 5 Page 119

f mo d e Default buffered I/O mode

Class: Lattice Category: Stream 1/O
SYNOPSIS

extern int _fmode;
DESCRIPTION

This external integer is used by the fopen function to determine the translation
mode to use when the programmer does not specify a mode in the fopen call.
For GEMDOS it is set to 0, which specifies translated mode. If the default is to
be binary mode the variable should be set to the value O_RAW defined in
fentlh,

SEE

fopen

Page 120 Lattice C § Library Reference

mede Change mode of buffered file

Class: Lattice Category: Stream I/O
SYNOPSIS

#include <stdio.h>

fmode(fp,mode) ;

FILE *fp; file pointer
int mode; 0 => mode A
1 => mode B
DESCRIPTION

This function is used to change the translation mode of a file that has been
opened via fopen, freopen, or fdopen.

In mode A, carriage returns are deleted on input, and a carriage return is
inserted before each line feed on output. In mode B, all data is transferred with
no changes.

The file pointer is not checked for validity.

SEE

fopen, freopen, fdopen

Library Reference Lattice C 5 Page 121

fO pen Open a buffered file

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

fp = fopen(name, mode);
FILE *fp;, file pointer

const char *name; file name
const char *mode; access mode

DESCRIPTION

This function opens a file for buffered access. The name string can be any valid
file name and may include a device code and directory path. The mode string
indicates how the file is to be processed, as follows:

Mode Create Truncate Read Write Append Translate

re No No Yes No No Default
“w” Yes Yes No Yes No Default
“a” Yes No No No Yes Default
“ret No No Yes Yes No Default
“we” Yes Yes Yes Yes No Default
“a+” Yes No Yes No Yes Default
“ra” No No Yes No No ModeA
“wa” Yes Yes No Yes No ModeA
“aa” Yes No No No Yes ModeA
“ra+” No No Yes Yes No ModeA
“wa+” Yes Yes Yes Yes No ModeA
“aa+” Yes No Yes No Yes ModeA
“rb” No No Yes No No ModeB
“wb” Yes Yes No Yes No ModeB
“ab” Yes No No No Yes ModeB
“rb+” No No Yes Yes No ModeB
“wb+* Yes Yes Yes Yes No ModeB
“ab+” Yes No Yes No Yes ModeB

Page 122 Lattice C 5 Library Reference

The following comments explain the columns in the previous table:

Yes No

Create The file will be created if The function will fail if the
it does not already exist. file does not already exist.

Truncate If the file exists, it will If the file exists, its current
be truncated (i.e. marked contents will not be
as empty). disturbed.

Read The file can be read via The file cannot be read.
functions such as fread
and fgetc. Also, fseek
can be used to position
the file before reading.

Write The file can be written The file cannot be written,
via functions such as butsee Append below.
fwrlte and fputc. Also,
fseek can be used to
positon the file before
writing.

Append The file can be written, Automatic positioning to
but it is automatically the end-of-file is not done
positioned to the current before a write operation.
end-of-file before each Also, writes are not
write operation. This allowed unless Write is
effectively prevents “Yes"”.
existing data from being
changed.

TRANSLATE - Default

The external integer _fmode is used to set mode A or mode B as

follows:

if(_fmode

& 0x8000)

set mode B

else

set mode A

TRANSLATE - Mode A

On a read operation, each carriage return character (‘\r’) is deleted. On
a write operation, each line feed character (‘\n’) is expanded to a
carriage return followed by a line feed.

Library Reference Lattice C 5 Page 123

TRANSLATE - Mode B
The data is unchanged as it is read or written.

If the file is successfully opened, the function returns a rointer to a “buffered
I/0 control block”, which is defined in the header file stdio.h. Normally you
will not need to access any information in the control block directly, but you
should be very careful not to disturb the block accidentally. A common C
programming error is to accidentally mutilate one of these control blocks,
which can cause garbage to be written into a file.

RETURNS

If the operation is successful, the function returns a non-NULL file pointer. A
NULL Eointer is returned if the file cannot be opened. Consult errno and
_OSERR for detailed error information.

When a file is opened for both reading and writing, you should call fseek or
rewind when switching from reading to writing or vice-versa. It is not

necessary to do this when you begin writing after reading up to the end of the
file.

SEE

fclose, fdopen, fgetc, fgets, fputc, fputs, fread, freopen, fwrite

Page 124 LatticeC 5 Library Reference

fope ne Perform fopen with environment search

Class: Lattice Category: Stream I/O
SYNOPSIS

#include <stdio.h>

fp = fopene(name,mode,path);

FILE *fp; file pointer

const char *npame; file name
const char *mode; buffered file access mode
char *path; path return

DESCRIPTION

The fopene function is like fopen except that it performs an extended
directory search for file names that cannot be found in the current directory.
The directory searching algorithm is:

Try the file name as specified. If successful, return the file pointer.
Otherwise, if the name is absolute, indicate an error. An absolute name
begins with a slash (/), a backslash (\), or has a colon () in the second
character. If the name is relative, continue.

Check if the file name has an extension. If so, convert the extension to
upper case and look for an environment variable of that name. If the
variable is found, it should consist of a list of alternate directories
separated by semicolons (;) or commas (,). Append the file name to each
directory name in turn, and retry the open operation. If successful, copy
the directory name to the path argument, if that argument is not NULL,
and then return the file pointer. If unsuccessful, continue.

Find the environment variable named PATH and relpeat the preceding
step with those directory names. If unsuccessful, return an error
indication.

RETURNS

If the operation is successful, the function returns a non-NULL file pointer. A
NULL pointer is returned if the file cannot be opened. Consult errno and
_OSERR for detailed error information.

SEE

fopen, open, opene

Library Reference Lattice C 5 Page 125

EXAMPLE

Assume that the following environment variables have
been set wup:

PATH=c:\bin;c:\dos
C=source

Then if you attempt to open the file named “myprog.c”, the fopene or opene
function willtry the following names, in this order:

myprog.c

source\myprog.c
c:\bin\myprog.c
c:\dos\myprog.c

Page 126 Lattice C 5 Library Reference

fOl‘k Create a child process

Class: Lattice Category: Process Creation

SYNOPSIS

Hinclude <stdlib.h>

error = forkl(prog,arg0,arg1,...,argn,NULL);
error = forkv(prog,argv);

error = forkle(prog,arg0,arg1,...,argn,NULL,envp);
error = forkve(prog,argv,envp);

error = forklp(prog,arg0,arg1,...,argn,NULL);
error = forkvp(prog,argv);

error = forklpe(prog,arg0,argl1,...,argn,NULL,envp);
error = forkvpe(prog,argv,envp);

int error; error code

const char *prog; program name

const char *arg0; argument #0

const char *arg1; argument #1

const char *argn; argument #n

const char *argv[l; argument vector
const char *envp[l; environment pointers

extern int _aecl; Atari extended command Llines
flag

DESCRIPTION

These functions create a “child process” by loading a new program and {Jassing
control to it. When the child process completes, the current program (i.e. the
“parent process”) can obtain its completion code via the wait function.

When a child process is created under GEMDOS, the parent suspends
execution until the child is finished.

You can specify the arguments for the child program in two ways. In the “list
method,” the function call includes a list of argument string pointers
terminated by a NULL pointer. In the “vector method,” the function call includes
a single pointer to an array of argument string pointers, with the array being
terminated by a NULL pointer. Following UNIX conventions, the first argument
(i.e. arg0 or argv(0)) should be the program name and is normally the same as
prog. The arguments are all passed to the child process using the Atari
extended command line format, so that the number of arguments is limited
only by memory. The arguments are also concatenated into a pseudo-command
line, with a blank separating adjacent arguments, so that naive children may
obtain a command line. The maximum size of this line is 127 bytes under
GEMDOS.

Library Reference Lattice C 5 Page 127

Note that the use of extended command lines may be disabled by setting the
external variable _aecl to 0. This defaults to 1, i.e. on.

The forkl, forkle, forkv, and forkve functions look for the program file only in
the current directory. The other functions make an extended search using the
PATH environment variable. The search procedure is:

o Search the current directory. If the program name has no extension, first
search for a file with a .PRG extension, then .TTP, .TOS and .APP. If any
of these searches succeeds, use that file for execution. If all searches fail
and this is the forkl, forkle, forkv, or forkve function, return an error
code. Otherwise proceed to the next step.

. Find the PATH environment variable; if it does not exist, indicate failure.
Otherwise, perform the search as above in each directory listed. If all
searches fail, return an error code.

For the functions that end with an “e”, the envp array specifies a new set of
environment variables that will be passed to the new program. This array is
similar to argv, in that it must contain one or more pointers to strings and
must end with a NULL pointer. Furthermore, the environment strings must each
have the form “name=value”.

RETURNS

If the function call is successful, 0 is returned. If the specified program file
cannot be found, a -1 return is made, and additional error information can be
found in errno and _OSERR. Note that you must call the wait function in order
to obtain the completion code from the child process.

Pexec, exit, wait
EXAMPLE
/*
* This program prints the environment,
* prompts for additional environment strings,
* and then forks a copy of ditself. This
* continues until you run out of memory or
* abort via CTRL C.
*
*/

#Hinclude <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
Hinclude <dos.h>

extern char **environ;

Page 128 Lattice C 5 Library Reference

int main(void)

{

int x;

char *q,bL1001];

in env string (e.g. xx=yy),or
(!

break;

(bCO] != '\O0")

strdup(b);

printf("Out of
break;

memory\n");

if(putenv(q))
{

perror("putenv");
break;

}
else
break;

if(x = forkl("fork","fork",NULL))
printf("\nFORK ERROR %d errno=%d
x,errno,_OSERR);
printf("DONE Z%Zx\n",_OSERR);

void prenv(void)

{
char **p;
printf("\nENVIRONMENT...\n");
for(p = environ; *p; p++)

printf("%Zs\n",*p),;
printf("***pONE***\n\n");

ENTER\n");

_O0SERR=%d\n",

Library Reference

Lattice C 5

Page 129

N F P E R R Floating Point Error Code

Class: Lattice Category: Errors
SYNOPSIS

extern int _FPERR;
DESCRIPTION

This location will contain a non-zero value after any low-level floating point
operation encounters an error. Low-level operations include addition,
subtraction, multiplication, division, comparison, and conversion from one
number representation to another (e.g. float to double).

The error codes and their corresponding symbols from math.h:

Symbol Value Meaning

FPEUND 1 Underflow

FPEOVF 2 Overflow

FPEDVZ 3 Divide by zero
FPENAN 4 Not a valid number
FPECOM 5 Not comparable

When the error occurs, the low-level operation passes the appropriate error
code to _CXFERR, which must store the code in _FPERR. Note that _FPERR is
never reset by any low-level operation.

SEE
_CXFERR

Page 130 LatticeC 5 Library Reference

EXAMPLE

/*
* This example performs uses the

division

* to stimulate floating point errors.
*/

#include <math.h>
Hinclude <stdio.h>

int main(void)
{

double a,b,c;
extern int _FPERR;

while(!feof(stdin))
{

printf("Enter divisor: ");

if(scanf("7%ZLf",8a3) != 1)
break;

printf("Enter dividend: ");

if(scanf("ZLf",&b) != 1)

break;
_FPERR = 0;
c =b / a;
printf("_FPERR = 7d\n ,_FPERR)
printf("Ze / 7Ze = Ze\ ,b,a, c),

}
return 0;

operation

Library Reference Lattice C 5

Page 131

fpr intf Formatted print to a file

Class: ANSI Category: Formatted I/O
SYNOPSIS

#include <stdio.h>

Length = fprintf(fp,fmt,arg1,arg2,...);

int Length; number of characters generated

const char *fmt; format string

FILE *fp; file pointer

See printf for arg1, arg2, and so on.

DESCRIPTION
The printf group of functions generate a stream of ASCII characters by
analysing the format string and performing various conversion operations on

the remaining arguments. The fprintf form of printf sends the output stream to
the file specified by fp.

See the description of the printf function for a complete discussion of the
arguments and conversion specifications.

RETURNS

This function returns the number of output characters generated.

SEE
cprintf, lprintf, printf, sprintf, vfprintf, vprintf, vsprintf

Page 132 Lattice C 5 Library Reference

fputc, priChar Put a character to a file/stdout

Class: ANSI Category: Stream IO
SYNOPSIS

#include <stdio.h>

r
r

fputc(c,fp); Put a character to a buffered file
fputchar(c); Put a character to stdout

int r; EOF or c

int c; Character to be output

FILE *fp; File pointer
DESCRIPTION
These functions put a sirgle character to the specified file previously opened
via fopen, freopen, or fdopen. The standard output file, stdout, is used for
fpoutchar.
RETURNS

The output character is returned if the function is successful. Otherwise, the
return value is EOF, which is defined in stdio.h.

For disk files, an EOF return usually means that the disk is full. However, this
type of return can also occur if the device is write-protected or if a write error
occurs. In any case, additional error information can be found in errno and
_OSERR.

SEE

ermo, fdopen, fopen, freopen, _OSERR, putc, putchar

Library Reference Lattice C 5 Page 133

fPUis Put a string to a file

Class: ANSI Category: Stream I/O
SYNOPSIS

H#include <stdio.h>

error = fputs(s,fp);

int error; non-zero if error

const char *s; string pointer

FILE *fp; file pointer
DESCRIPTION

The fputs function copies string s to a file that was previously opened for
output via fopen, freopen, or fdopen. The string must be terminated by a
null byte, which is not copied.

See puts for an example involving the fputs function.

RETURNS

If an error occurs, the return value is -1; otherwise, it is 0. Additional error
information can be found in errno and _OSERR.

SEE

errno, ferror, fopen, fputc, puts

Page 134 Lattice C 5 Library Reference

fpufW, fpuﬂ Put a word/longword to a buffered file

Class: UNIX Category: Stream IO
SYNOPSIS

#include <stdio.h>

err = fputw(fp,x);

Lerr = fputl(fp,y);

short err; error value

Long Llerr; error value

short x; word to write to stream

Long vy; Longword to write to stream

FILE *fp; file pointer
DESCRIPTION

The fputw and fputl functions write words and longwords respectively to the
associated file. If the value cannot be written (typically because the disk is full),
the value EOF cast to the ?:p‘propriate type is returned. Note that it may not be
possible to distinguish EOF from legitimate characters and so the value of feof
and ferror should be checked in these cases.

Note that these functions produce files that are highly non-portable as they
give no indication of the ordering of bytes on the machines architecture.

RETURNS

The functions return the value written to the stream or the value EOF if an I/O
error occurs.

SEE

errno, feof, ferror, fgetc, fread, fgetw, fgetl

Library Reference Lattice C 5 Page 135

fread Read blocks from a buffered file

Class: ANSI Category: Stream I/O
SYNOPSIS

Hinclude <stdio.h>

a = fread(b,bsize,n, fp);

size_t a; actual number of blocks

void *b; pointer to first block

size_t bsize; size of block in bytes

size_t n; maximum number of blocks

FILE *fp; file pointer

DESCRIPTION

The fread function Eerforms buffered I/O operations to read blocks of data.
Each block contains Dsize bytes and up to N blocks are stored into contiguous
memory locations beginning at location b.

For fread, blocks are read until n have been stored or until the end-of-file is
hit. If the end-of-file is hit in the middle of a block, that partial block will be
stored in the b array, but it will not be included in the function return value. In
other words, the return value indicates the number of complete blocks that
were read.

Note that in this implementation fread is implemented to be as fast as possible,
hence for many applications the speed of fread will be better than the lower
level read.

RETURNS
The fread function returns the number of complete blocks that were processed.

A return value of -1 indicates that an error occurred, and further information
about the error can be found in errno and _OSERR.

SEE

fclose, feof, ferror, fgetc, fopen, fputc, fseek, fwrite

Page 136 Lattice C 5 Library Reference

free

Free a memory block

Class: ANSI
SYNOPSIS

#include <stdlib.h>
free(b);

void *b;

DESCRIPTION

block pointer

Category: Memory Management

The free function releases a block that was previously obtained via calloc,

malloc, or realloc.

SEE

calloc, malloc, realloc, getmem, rlsmem, sbrk

EXAMPLE

Hinclude
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
struct LIST
{

struct
char
};

LIST *next;
textl[2];

int main(int argc,char
{
struct
struct LIST
struct LIST
char b[2561];
int x;

LIST *p;
*q;
List;

for
{

;;)

printf("\nBegin new

*argv[])

group...\n");

for (q = &Llist; ; q = p)
{
printf("Enter a text string: ");
if (!gets(b))
break;
if (bLO] == NULL)
{
if (q == &Llist)
exit(0);
break;
Library Reference Lattice C 6 Page 137

x = sizeof(struct LIST) - 2 +strlen(b) + 1;
p = malloc(x);
if (p == NULL)
{
printf("No more memory\n");
break;
q->next = p;
p->next = NULL;
strcpy(p->text, b);
}
printf("\n\nTEXT LIST...\n");
for (p = Llist.next; p != NULL; p = p->next)
{
printf("%Zs\n", p->text);
free(p);
}
List.next = NULL;

}

return O0;

Page 138 Lattice C 5 Library Reference

freopen Reopen a buffered file

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

fpr = freopen(name, mode, fp);

FILE *fpr; file pointer after re-opening

const char *name; file name

const char *mode; access mode

FILE *fp; current file pointer
DESCRIPTION

This function reopens a buffered file. That is, it attaches a new file to a
previously used file pointer. The previous file is automatically closed before the
file pointer is reused. The name and mode arguments are the same as those for
fopen.

RETURNS

The return file pointer, fpr, is NULL if an error occurred. Upon success, it is not
guaranteed to be the same as fp. Specifically, it is an error to continue using fp
after submitting that pointer to freopen.

SEE

fopen, fdopen

Library Reference Lattice C 5 Page 139

frexp Split fraction and exponent

Class: ANSI Category: Numeric Transformation
SYNOPSIS

Hinclude <math.h>

f = frexp(v,xp);

double f; fraction

double v; value

int *xp; exponent pointer
DESCRIPTION

The frexp function splits the floating point value Vv into its fraction (mantissa)
and exponent parts. The mantissa is returned as a double whose absolute value
is greater than or equal to 0.5 and less than 1.0. The exponent is returned as an
integer whose absolute value is less than 1024.

SEE

fmod, Idexp, matherr, modf

Page 140 Lattice C 5 Library Reference

fSCCI nf Formatted input from a file

Class: ANSI Category: Formatted I/O
SYNOPSIS
#include <stdio.h>
n = fscanf(fp,fmt,arg1,arg2,...);
int n; number of input items matched, or
EOF
FILE *fp; file pointer
const char *fmt; format string
void *argx; pointers to input data areas
(x=1,2...)
DESCRIPTION

The fscanf function performs formatted input conversions on text obtained
from a buffered file. The input characters are read and checked against the
format string. The description of the scanf function fully describes the formats
and conversion specifications.

RETURNS

The function returns the number of assignments that were made. For example,
a return value of 3 indicates that conversion results were assigned to arg1,
arg2, and argd. If an end-of-file is reached before any values are assigned, the
return value is EOF

SEE

cscanf, scanf, sscanf

Library Reference LatticeC 5 Page 141

fseek Set buffered file position

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

error = fseek(fp,rpos,mode);

int error; non-zero if error

FILE *fp; file pointer

Long int rpos; relative file position

int mode; seek mode
DESCRIPTION

The fseek function moves the byte cursor of a buffered file to a new position.
The mode argument must be one of the following:

Mode Meaning

SEEK_SET The rpos argument is the number of bytes from the
beginning of the file. This value must be positive.

SEEK_CUR The rpos argument is the number of bytes relative
to the current position. This value can be positive or
negative.

SEEK_END The rpos argument is the number of bytes relative
to the end of the file. This value must be negative or
zero.

The rewind macro resets the specified file to its first byte by means of a call to
fseek.

RETURNS

A value of -1 is returned if an error occurs, with additional error information in
ermo and _OSERR.

A common programming error is to expect the return value to be equal to the
current file position as with Iseek.

SEE

errno, fgetpos, fopen, fsetpos, ftell, Iseek, _OSERR, rewind, tell

Page 142 Lattice C 5 Library Reference

fsetpos Set file position indicator for stream

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>

ret = fgetpos (strm,pos);

int ret; 0 if successful

FILE *strm; stream

const fpos_t *pos; file position info
DESCRIPTION

The fsetpos function sets the file position indicator for the stream pointed to
by stream according to the value of the object pointed to by pos, which is the
value obtained from an earlier call to the fgetpos function on the same
stream.

A successful call to the fsetpos function clears the end-of-file indicator for the
stream and undoes any effects of the ungetc function on the same stream.
After an fsetpos call, the next operation on an update stream may be either
input or output.

The fgetpos and fsetpos functions allow random access operations on files
which are too large to handle with fseek and ftell.

RETURNS

If successful, the fsetpos function returns 0; on failure, the fsetpos function
returns non-zero and stores an implementation-defined positive value in errno.

SEE
fgetpos

Library Reference Lattice C 5 Page 143

ﬁ'e" Get buffered file position

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

apos = ftell(fp);

FILE *fp; file pointer

Long int apos; absolute file position
DESCRIPTION

The ftell function returns a long value that is the current byte position in the
file, relative to the beginning. In untranslated mode, it is equivalent to the
following Iseek call:

apos = Llseek(fp->_file,0L,1);

In translated mode, ftell accounts for any removed carriage returns, giving a
true offset into the physical file.

RETURNS
The ftell function returns a file position that can be used in a subsequent fseek

call. An error is indicated by a return value of -1L. In this case, errno and
_OSERR contain additional error information.

SEE

errno, fgetpos, fopen, fseek, fsetpos, Iseek, _OSERR, rewind, tell

Page 144 Lattice C 5 Library Reference

ftpack

Pack file time

Class: Lattice

SYNOPSIS

#include <dos.h>

ft = ftpack(x);

Long ft; packed file time

const char *x; unpacked file
DESCRIPTION

Category.

: Date and Time

The ftpack function packs the 32-bit value that GEMDOS uses in file

descriptor blocks. The packed file time format is:

Bits Contents

00-04 Second/2 (0 to 29)
05-10 Minute (0 to 59)
11-15 Hour (0 to 23)

1620 Day (0 to 31)

21-24 Month (1 to 12)
25-31 Year-1980 (0 to 127)

The unpacked file time occupies a 6-byte array as follows:

Byte Contents

0 Year - 1980

1 Month (1 to 12)
2 Day (1 to 31)

3 Hour (0 to 23)

4 Minute (0 to 59)
5 Second (0 to 59)

Library Reference Lattice C 5

Page 145

The getft and chgft functions can be used to get and change the packed time
value for a particular file. Also, stpdate and stptime can be used to convert
the unpacked file time into various ASCII forms. For example,

char bC201, xC61, *p;

p = stpdate(b,2,x);
*p++ = ' ',
p = stptime(p,2,8x[31]);

will convert the unpacked time value from X into an ASCII string such as
07/04/85 11:23:52.

RETURNS

The ftpack function returns the file time according to the packed file format
given previously. No errors are returned, regardless of whether an invalid file
time is supplied.

SEE
chgft, ftunpk, getft, stpdate, stptime

Page 146 LatticeC 5 Library Reference

ftunpk Unpack file time

Class: Lattice Category: Date and Time
SYNOPSIS

#include <dos.h>

ftunpk(ft,x);

Long ft; packed file time
char *x; unpacked file time
DESCRIPTION

The ftunpk function unpacks the 32-bit value that GEMDOS uses to represent
the time stamp on a file. See the description of ftpack for a complete
description of the file time formats, packed and unpacked.

SEE

chgft, fipack, getft, stpdate, stptime

Library Reference Lattice C 5 Page 147

fwriie Write blocks to a buffered file

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>

a = fwrite(b,bsize,n,fp);

size_t a; actual number of blocks

const void *b; pointer to first block

size_t bsize; size of block in bytes

size_t n; maximum number of blocks

FILE *fp; file pointer
DESCRIPTION

The fwrlte function performs buffered I/O operations to write blocks of data.
Each block contains Dslze bytes and up to n blocks are written from contiguous
memory locations beginning at location b.

For fwrlte, blocks are written until N have been sent or until the output device
cannot accept any more. If the output device becomes full in the middle of a
block, a partial block will be written, but it will not be included in the function
return value. In other words, the return value indicates the number of complete
blocks that were written.

Note that in this implementation fwrite is implemented to be as fast as possible,
hence for many applications the speed of fwrlte will be better than the lower
level write.

RETURNS
The fwrite function returns the number of complete blocks that were processed.
A return value of 0 indicates a “no space” condition for fwrite. A return value

of -1 indicates that an error occurred, and further information about the error
can be found in errno and _OSERR.

SEE

fclose, feof, ferror, fgetc, fopen, fputc, fread, fseek

Page 148 Lattice C 5 Library Reference

QCVi Convert float to string

Class: UNIX Category: Data Conversion/Formatting
SYNOPSIS

Hinclude <math.h>

p = gcvt(v,dig,buffer);

char *p; points to buffer

double v; floating point value

int dig; number of significant digits

char *buffer; output buffer
DESCRIPTION

The gcvt function converts the specified floating point value into a null-
terminated string in the output buffer. The string will be in either of two
formats. First, gcvt attempts to produce dig significant digits in the
FORTRAN F format. If that fails, it produces dig significant digits in the
FORTRAN E format. Trailing zeroes will be eliminated if necessary.

Capabilities previously offered thrmfxfgh ecvt, fcvt, and gevt are now available
by means of the ANSI function sprintf.

RETURNS

The function returns a pointer to the start of buffer, which you should ensure is
large enough.

SEE
ecvt, fevt
EXAMPLE

/*
* This example displays 314150
*/

H#include <math.h>

H#include <stdio.h>

int main(void);
{
char sC100131;
return printf("Xs\n",gcvt(-3.1415e5,7,s));

Library Reference Lattice C 5 Page 149

geta4 Establish addressability to the global data area

Class: Lattice Category: Builtin Functions

SYNOPSIS

#include <dos.h>

geta4d ();

DESCRIPTION

The getad function sets up the global data base register so that merged global
data may be accessed. It is identical in function to compiling the subroutine
with the -y option or putting the __saveds keyword on the declaration. It is
provided only so that you do not need to change your code when using other
compilers where you may provide a dummy getad routine. The -y option and
__saveds keyword are preferred over geta4.

Page 150 Lattice C 5 Library Reference

Igefc, gefChGr Get a character

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

c = getc(fp); get a character from a file

¢ = getchar(); get a character from stdin

int c; return character or code

FILE *fp; file pointer
DESCRIPTION

These functions get a single character from a file that was previously opened
via fopen or fdopen. For getchar, the standard input file is read via file
pointer (stdin). Note that getc and getchar are actually implemented as
macros in order to maximise execution speed.

RETURNS

Upon success, the next input character is returned. Otherwise, the functions
return EOF, which is defined in stdio.h.

In the event of an EOF return, error information can be found in errno and
_OSERR. Most programmers treat any EOF return as an indication of end-of-
file. However, if you want to distinguish an error from an end-of-file, you
should reset errno before calling the function and then analyse its contents
when you receive an EOF return.

SEE

fopen, errno, fgetc, fgetchar, fgets, gets, _OSERR

Library Reference Lattice C 5 Page 151

geth Get current directory
Class: GEMDOS Category: DOS Interface
SYNOPSIS

#include <dos.h>

error = getcd(drive,path);

int error; 0 if successful
int drive; drive code
char *path; points to path area

DESCRIPTION

This function gets the current directory path for the specified disk drive. The
drive codes are O for the current drive, 1 for drive A, 2 for drive B, and so on.

Note that the path area must be large enough to contain the expected path
(FMSIZE is a safe value). The returned string will contain the entire path,
including the drive name of the device.

RETURNS

If the operation is successful, the function returns 0. Otherwise it returns -1 and
places error information in errno and _OSERR.

SEE
Dgetpath, getcwd, errno, _OSERR

i’age 152 Lattice C 5 Library Reference

lg etch 3 geic he Get char from console

Class: Lattice Category: Console and Port I/O
SYNOPSIS

#include <dos.h>

c = getch(); get char from console (no echo)

c = getche(); get char from console (echo)

int c; character obtained
DESCRIPTION

The getch and getche functions perform I/O operations with the keyboard
and display attached as the console device. The getch function waits until a
keyboard character is available and then returns it. The character is not
displayed on the screen. To automatically echo each input character, use
getche.

For the Atari ST and equivalent computers (e.g. IBM-PC), a return value of
zero indicates that the keyboard character has no ASCII equivalent. The next
call to getch or getche will then return the keyboard scan code.

Note that if you push back a non-ASCII scan code, the next call to getch or
getche won’t produce the usual zero return that indicates a scan code is
coming.

RETURNS

As noted above.

SEE

cgets, cputs, kbhit, putch, ungetch

Library Reference Lattice C 5 Page 153

lg etc l k Get system clock

Class: Lattice Category: DOS Interface
SYNOPSIS

#include <dos.h>

getclk(clock);

unsigned char *clock;

DESCRIPTION

The getclk function obtains the current setting of the system clock and places it
into an 8-byte array as follows:

Byte Contents
0 Day of week (0 for Sunday)
1 Year - 1980

Month (1 to 12)

Day (1 to 31)

Hour (0 to 23)

Second (0 to 59)

2
3
4
5 Minute (0 to 59)
6
7

Hundredths (0 to 99)

SEE
Tgetdate, Tgettime, chgclk, errmo, _OSERR

Page 154 Lattice C 5 Library Reference

ge'l'CWd Get current working directory

Class: UNIX Category: Process Environment
SYNOPSIS

Hinclude <stdio.h>

p = getcwd(b,size);

char *p; points to path buffer if successful,

else NULL

char *b; points to path buffer

size_t size; size of path buffer
DESCRIPTION

This function obtains the path name for the current working directory. If the
buffer pointer b is not NULL, then the gath string is placed there if it will fit,
and the return pointer p is the same as b. If b is NULL, then malloc is used to
obtain a buffer of size bytes to hold the path string. In this latter case, you
should use the free function to release the buffer when you are finished with it.

RETURNS

If the operation is successful, the function returns a pointer to the buffer.
Otherwise it returns a NULL pointer and places error information in errno and
_OSERR. Also, a NULL pointer is returned if the path string will not fit in the
buffer or if a buffer cannot be allocated. In either of those cases, errno is
unchanged, and _OSERR is reset.

SEE
getcd, errno, _OSERR

Library Reference Lattice C 5 Page 155

[getdfs Get free disk space

Class: GEMDOS Category: Disk Functions
SYNOPSIS

#include <dos.h>

error = getdfs(drive,info);

int error; 0 if successful

int drive; drive code

(0 => current drive)
struct DISKINFO *info; disk information

DESCRIPTION

This function obtains information about the specified disk drive, including the
amount of free space available. If a 0 is passed as the drive number,
information is obtained about the current drive. The DISKINFO structure is
defined in dos.h as follows:

struct DISKINFO
{

unsigned Long free; /* number of free clusters */
unsigned Llong cpd; /* clusters per drive */
unsigned Llong bps; /* bytes per sector */

" unsigned Llong spc; /* sectors per cluster */

4

RETURNS

A return value of 0 indicates success. If the drive code is invalid or no disk is
mounted on that drive, then the return value is -1. Additional information is
provided in errno or _OSERR.

EXAMPLE

/ *
* Compute number of bytes available on current
* drive
*/

#include <dos.h>
struct DISKINFO info;
Long size;

if(getdfs(0,8info) == 0)
e

size = (long)info.fre * jnfo.spc * info.bps;

Page 156 Lattice C 5 Library Reference

g ete nv Get environment variable

Class: ANSI Category: Process Environment
SYNOPSIS

#include <stdlib.h>

var = getenv(name);

char *var; environment variable pointer or

NULL

const char *npame; environment variable name

DESCRIPTION

This function searches the environment strings for one that has the form:
name=var

where name is the function argument. If such a string exists, the function
returns a pointer to the var portion, which is null-terminated. Otherwise, a
NULL pointer is returned.

RETURNS

As described above.

SEE
environ, putenv
EXAMPLE

#include <stdlib.h>
#include <stdio.h>

char *path;

path = getenv("PATH");
if(path == NULL)

fprintf(stderr,"No PATH variable\n");
else
printf("%Zs\n",path);

Library Reference Lattice C 5 Page 157

geffCI Get file attribute

Class: GEMDOS Category: File System Manipulation

SYNOPSIS

#include <dos.h>

fa = getfal(name);

int fa; file attribute or -1
const char *name; file name

DESCRIPTION

This function gets the attribute byte for the specified file. The status is returned
in fa and contains the following information:

Bit Meaning

0 Read-only flag

1 Hidden file flag

System file flag

Volume label flag

Subdirectory flag

Archive flag (set if file has changed)

Reserved

N| || |l x| N

Reserved

Note that the archive bit is only supported correctly in version 1.4 and above of
the operating system.

RETURNS

If the operation is unsuccessful, the function returns -1 and places error
information in errno and _OSERR.

SEE
Fattrib, errmo, _OSERR

Page 158 Lattice C 5 Library Reference

getfnl Get file name list

Class: Lattice Category: File Name Manipulation
SYNOPSIS

#include <stdlib.h>

n = getfnl(fnp,fna,fnasize,attr);

Long n; number of matched files

const char *fnp; file name pattern

char *fna; file name array

size_t fnasize; size of file name array

int attr; file attribute
DESCRIPTION

This function gets all file names that match the specified pattern and attribute,
and it places them into the file name array. Each name is stored as a null-
terminated string, and the file name array is terminated by a null string (i.e., a
string consisting of only a null byte). If the file name pattern includes a path
prefix, that prefix is placed in front of each matching file name.

The function return value is the number of strings stored in the array, not
including the terminating null string.

The file name pattern has the general form:

drive:path\node.ext

The function first strips off the drive and directory path portion and restricts its
search to that area of the file system. The node and ext parts can contain any
valid file name characters, including the * and ? pattern matching characters.
Some examples are:

"a:k, c" Finds all files on drive A that have “.c” as their
extension. A file named “abc.c” would thus be
place in the array as “a:abc.c”.

“\\abc\\def\\q*.x?" Finds all files in the directory \abc\def that begin
with the letter q and have extensions consisting of
the letter x and one other letter. For example, one
such name would be “\\abc\\def\ \queen.x”. Note
that the directory separator is actually a single
backslash (\), but you must code it as a double
backslash within the C string.

Library Reference Lattice C 5 Page 159

XYZHL" Finds all files in the current directory that begin
with “XYZ"” and have no extension. One example
is “XYZ”

Notice that GEMDOS makes no distinction between upper and lower case in
any part of the file name.

The attribute is a set of flag bits as follows:

Bit Meaning (when set)

0 Read-only flag

1 Hidden file flag

2 System file flag

3 Volume label flag

4 Subdirectory flag

5 Archive flag (set if file has changed)
6 Reserved (must be zero)

7 Reserved (must be zero)

If all bits are reset, getfnl will find only normal files. If you want to include any
of the other types, the appropriate flag must be set. For example, set bits 1 and
2 to find all matching normal, hidden, and system files. One special case is
when bit 3 is set to specify a search for the volume label. That search will not
find any file other than the label, regardless of how the other bits are set.

RETURNS
A value of -1 is returned if the file name pattern is invalid or if there is not

enough room in the file name array. In the first case, _OSERR will contain
further error information.

SEE
dfind, dnext, strbpl, strsrt, _OSERR

Page 160 Lattice C 5 Library Reference

EXAMPLE

* This program constructs an array of pointers to
* all normal files 1in the current directory that
* have an extension of ".c". Then the array is

* sorted into ASCII order.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dos.h>

char namesC3000],*pointersC3001];
int count;

count = getfnl("*,c",names,sizeof(names),0);

if(Ccount > 0)

{
if(strbpl(pointers,300,names) != count)
{

fprintf(stderr,”"Too many file names\n");
exit(1);
}

strsrt(pointers,count);
else

if(_OSERR)
poserr("FILES");
else
fprintf(stderr,"Too many files\n");
exit(1);
}

Library Reference Lattice C 5 Page 161

getft Get file time

Class: GEMDOS Category: File System Manipulation
SYNOPSIS

Hinclude <dos.h>

ft = getft(fh);

Long ft; file time or -1 if error;

int fh; file handle

DESCRIPTION

This function gets the time and date information associated with the specified
file. This information usually indicates when the file was created or last
updated. It has the following format:

Bits Contents

00-04 Second/2 (0 to 29)

05-10 Minute (0 to 59)

11-15 Hour (0 to 23)

16-20 Day (0 to 31)

21-24 Month (1 to 12)

25-31 Year-1980 (0 to 127)
RETURNS

If geftft is successful, the file time (a long integer) is returned. Otherwise a
value of -1L is returned. Additional error information can be found in errno
and _OSERR.

SEE
Fdatime, chgft, errno, _OSERR

Page 162 Lattice C 5 Library Reference

getmem, getml

Get a memory block

Class: OLD
SYNOPSIS

#include <stdlib.h>

p = getmem(sbytes);
p = getml(lbytes);
void *p;

unsigned sbytes;
size_t Lbytes;

DESCRIPTION

Category: Memory Management

Get small memory block
Get Llarge memory block

block pointer
number of bytes
number of bytes

These functions allocate a block and return a pointer to the first byte in the
block. If the pool does not currently contain a block of sufficient size, the
memory allocator obtains more space from the operating system. If that step

fails, a NULL pointer is returned.

You will probably want to use the malloc function instead of getmem.

RETURNS

A NULL pointer is returned if the block could not be allocated. Otherwise, a
character pointer is returned, but it can be cast to any other pointer type.

SEE

rlsmem, rlsml, sizmem

Library Reference

Lattice C 5

Page 163

g e t (o) p f Get option letter from argument vector

Class: UNIX Category: Argument Processing
SYNOPSIS

#include <stdlib.h>

c = getopt(argc,argv,optstring);

int c; argument character

int argc; argument count

const char *argv(]l; argument vector

const char *optstring; string containing valid opts

extern char *optarg; pointer to option argument

extern int optind; index of next argument

extern int opterr; error message setting
DESCRIPTION

The getopt function returns the next option letter in argv which matches a
letter in opftstring. optstring contains all the option letters which are to be
recognised, optionally followed by a colon () when an argument is required by
the option. Such an argument may either be concatenated with the option
letter, or be the next argument. The external variable optarg is set to point to
any such argument.

The external variable optind is used to track the next argv index which
getopt will use and is normally initialised to 1 by the first call to getopt.

When all options have been processed (i.e. the first argument which does not
start with a '), or the special delimiter ‘--’ has been encountered the value -1 is
returned and and the ‘-’ argument skipped.

When an unrecognised option is encountered, or an argument option is omitted
where one was expected, an error message is printed on stderr and the value
‘?” returned. The printing of error messages may be disabled by setting the
external variable opterr to 0.

Note that unlike argopt, getopt does not recognise a ‘/” as an option prefix.

RETURNS

The value of the character obtained as an option, ‘?’ for an invalid option or -1
if no more arguments are available.

SEE

argopt, main

Page 164 LatticeC 5 Library Reference

EXAMPLE

/*
* parse the command Llines:
* myprog -x -ypdq -z -g moo blah
*/

#include <stdlib.h>
int main(int argc, char *argv(])
{

int c;
char *file,*status;
int x=0,z=0;

while ((

getopt(argc,argv,"xy:2g:"))!=-1)
switch)
{

c=

(c

case 'x':
X++;
break;

case 'z':
z2++;
break;

case 'y':
status=optarg;
break;

case 'g':
file=optarg;
break;

case '?':
abort();
break;
}

for (; optind<argc; optind++)
process(argvloptindl,x,z,status, file);

return 0;

Library Reference Lattice C 5 Page 165

[gefpf, getpfe Get program file

Class: Lattice Category: Process Creation
SYNOPSIS

#include <dos.h>

error = getpf(file,prog); Get program file

error = getpfe(file,prog); Get program file via

environment

int error; non-zero if error

char *file; file name

const char *prog; program name
DESCRIPTION

These functions find the loadable file that corresponds to the specified program
name. The getpf function proceeds by first searching for the file “prog.PRG”
then “prog.TTP”, “prog.TOS” and “prog.APP”. In each case, the access
function is used to test for the file’s existence. The getpfe functions uses the
environment variable ‘PATH’ to search for the program file, in conjunction
with the getpf function.

RETURNS

A non-zero value is returned if the file cannot be found.

The file argument must refer to an area that can hold the largest possible file
name. The value FMSIZE is defined in dos.h for this purpose.

SEE
open, opene

EXAMPLE

/*
* Find the file for program "myprog"
*

L)

#include <stdio.h>
#include <dos.h>

char x[CFMSIZE];

if(getpf(x,"myprog"))
printf(”"Can't find program\n");

Page 166 Lattice C § Library Reference

g et p i d Get process identifier

Class: UNIX Category: Process Environment
SYNOPSIS

#include <stdlib.h>
pid = getpid();

int pid; process identifier
DESCRIPTION
This function returns a number that uniquely identifies the current process.

RETURNS

A integer uniquely identifying the process. Note that under GEMDOS this
value has little significance unlike under multitasking systems.

Library Reference Lattice C § Page 167

g eire 9 s, PpU tre 9 Manipulate 68000-specific registers

Class: Lattice Category: Builtin Functions
SYNOPSIS
#include <dos.h>
value = getreg(reg); obtain value of a register
putreg(reg,value); set up the a register
int reg; number of register to use
Llong value; value to get/set
DESCRIPTION

The built-in function getreg takes as its parameter a constant integer in the
range of 0 to 15. The number that you pass is the register number for which you
want the current contents. Numbers 0 to 7 correspond to the DO-D7 registers,
while numbers 8 to 15 correspond to the AO-A7 registers. The macros REG_DO
to REG_A7 are provided to give names to these numbers in the dos.h header
file.

The built-in function putreg takes as its parameter the register number as
described above for getreg. The number that you pass is a long integer, which
is placed in the specified register.

Incorrect use of these functions can cause serious problems. These functions are
intended for use with interrupt code. For instance, the getreg function is
useful for obtaining the value of the system registers (e.g. Ad) to be passed to
an interrupt chain. However, the getreg function is not a reliable way of
getting the value of a variable because the code generator may change code
generation style during compile time. While programmers may find these
functions useful in some situations, a great deal of care and skill should be
exercised in their use.

RETURNS

The getreg function returns the current value of the register (a long integer).
The putreg function does not return a value.

Page 168 Lattice C 5 Library Reference

Igets Get a string from stdin

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>

p = gets(buffer);

char *p; buffer pointer or NULL

char *buffer; buffer pointer
DESCRIPTION

The gets function copies characters from the standard input file, stdin, until a
newline is reached. The newline is not copied to the buffer, but a null byte (‘\0’)
is put there in its place.

See the description of the fgets function for an example of the use of both
fgets and gets.

Make sure that your gets buffer can hold the largest line that will be

encountered while reading stdln, because the function does not have any way
to check for a maximum length.

RETURNS

The gets function returns the buffer argument unless an end-of-file or I/O
error occurs, in which case a NULL pointer is returned.

SEE

ermo, feof, ferror, fgetc, fgets, fopen, getc

Library Reference Lattice C 5 Page 169

g mﬁ me Unpack Greenwich Mean Time

Class: ANSI Category: Date and Time
SYNOPSIS

H#include <time.h>

ut = gmtime(t);

struct tm *ut;
const time_t *t;

DESCRIPTION

The gmtime function unpacks a time value from the time_t form into a
structure. Normally the time value represents the number of seconds since
00:00:00, January 1, 1970, Greenwich Mean Time. The time function (described
elsewhere) returns this kind of number. For gmtime, this number is converted
“as is”, without any adjustment for the local time zone.

Note that the gmtime function expects a pointer as the argument. A common
error is to pass the actual time value instead of the pointer.

Also, localtime and gmtime share a static data area for their return values. A
call to either one will destroy the results of the previous call.

SEE

asctime, ctime, localtime, time, _tzset, utpack, utunpk

EXAMPLE

#include <time.h>
#include <stdio.h>

int main(void)
{

struct tm *p;
time_t ¢t;

time(&¢t);
p = gmtime(8&t);
printf("GMT 1is Zs\n",asctime(p));

Page 170 Lattice C 5 Library Reference

= h as h Compute hash value

Class: Lattice Category: String Search
SYNOPSIS

#include <stdlib.h>

x= _hash(s);

size_t x; hash value of string

const char *s; string to obtain hash value for

DESCRIPTION

The _hash function computes a hashing function based on all characters in the
string 5. The function used is extremely fast and gives an excellent distribution
for all strings. It is based on P.]J. Weinberger’s algorithm and can be found in
“Compilers: Principles. Techniques and Tools”, see the Bibliography.

SEE

bsearch, Isearch

EXAMPLE

/*
* maintain a hash table, given an item insert

* it if not found, else return a pointer to it
*/

#include <stdlib.h>
Hdefine HASHMAX 211 /* prime number */
typedef struct hash
¢ struct hash *next;
char *s;
} hash_t;
struct hash_t hashtab[LHASHMAXI];
hash_t *lookup(const char *s)
¢ hash_t *p;

/* find initial element ¥*/
p=8hashtabl_hash(s)ZHASHMAX];

/ *
*walk Llist until we have a match or the Llist is
* empty

*/

while (*p 8&& strcmp((*p)->s,s))
p=8(*p)->next;

Library Reference Lattice C 5 Page 171

/* if not found then insert */
if (!*p)
{
/* get more memory and insert it dinto Llist */
*p=malloc(sizeof(hash_t));
(*p)->next=NULL;
(*p)->next=s;
}
return *p;

Page 172 Lattice C 5 Library Reference

iCI bS Integer absolute value

Class: Lattice Category: Numeric Transformation

SYNOPSIS

#include <stdlib.h>
as = 1dabs(s);

int s; integer value
int as; absolute value of s

DESCRIPTION

The labs function computes the absolute value of an integer. The abs has the
same purpose.

SEE

abs, fabs, labs

Library Reference Lattice C 5 Page 173

__i omo d e Default unbuffered I/O mode

Class: Lattice Category: Low-Level 1/O
SYNOPSIS

extern int _iomode;
DESCRIPTION

This external integer is used by the open function to determine the translation
mode to use when the programmer does not specify a mode in the open call.
For GEMDOS it is set to 0, which specifies translated mode. If the default is to
be binary mode the variable should be set to the value O_RAW defined in

fentl.h.
SEE

open

Page 174 Lattice C 5 Library Reference

i omo d e Change mode of unbuffered file

Class: Lattice Category: Low-Level I/O
SYNOPSIS

#include <fcntl.h>

error = iomode(fh,mode);

int error; error code

int fh; file handle

int mode; 0 => translated mode
1 => raw mode

DESCRIPTION

This function changes the mode of an unbuffered file whose handle was
previously returned by open.

When in translated mode, carriage returns are deleted on input, and a carriage
return is inserted before each line feed on output. In raw mode, all data in the
file is transferred as is.

Note that iomode affects only the software translation that is done by the
library functions.

RETURNS

A non-zero return value indicates that the specified file handle is not valid.
That is, it was not returned by open.

SEE

open

Library Reference Lattice C § Page 175

iS. .e Character tests

Class: ANSI Category: Character Classification/Conversion
SYNOPSIS

#include <ctype.h>

t = disalnum(c); Test if alphanumeric character

t = idsalpha(c); Test if alphabetic character

t = idsascii(c); Test if ASCII character

t = discntrl(c); Test if control character

t = discsym(c); Test if C symbol character

t = idiscsymf(c); Test if C symbol Llead character

t = disdigit(c); Test if decimal digit character

t = idsgraph(c); Test if graphic character

t = idislower(c); Test if Llower case character

t = disprint(c); Test if printable character

t = idispunct(c); Test if punctuation character

t = isspace(c); Test if space character

t = idsupper(c); Test 1if upper case character

t = idisxdigit(c); Test if hex digit character

int t; truth value 0 => false
non-zero => true

int c; character to test

DESCRIPTION

These functions test for various character types. If you include ctype.h as
shown above, then the functions are actually defined as macros and generate
in-line code to test the static array named _ctype. This array contains a bit
mask for each of the 256 possible character values and for the integer value -1.
See the ctype.h for the bit definitions.

If you don’t include ctype.h, these functions will be included from the library,
which can reduce your program size slightly at the expense of execution speed.
If you want to use the function versions but must include ctype.h for some
other reason, use #undef to undefine the appropriate character test macros.

You can use either characters or integers as arguments, but the macros are
defined only over the integer range from -1 to 255. The functions, however, will
correctly handle the entire integer range.

The reason -1 is included as a valid argument is to avoid a nonsense result if
you feed the EOF value to one of the macros or functions. EOF can be returned
by getchar and other I/O functions, and if you pass it to any of the character
test functions, the resulting truth value will be zero.

SEE
ctype

Page 176 Lattice C 5 Library Reference

EXAMPLE

#include <stdio.h>
#include <ctype.h>

int main(void)
{

char bC1003];

int c;
while((c = getchar()) != EOF)
printf("\n%c Z%s alpha.\n",c,
isalpha(c) ? "is" : "is not");
return 0;

Library Reference Lattice C 5 Page 177

isaﬂ'y Check if file is a terminal

Class: UNIX Category: Low-Level I/O
SYNOPSIS

#include <fcntl.h>

ret = 1disatty(fh);

int ret; 0 if not a terminal

int fh; file handle
DESCRIPTION

This function returns a non-zero value if the specified file handle is attached to
a terminal (TTY) device, i.e. console, printer or auxiliary device.

RETURNS

The return value is 0 if the file is not a terminal or if an error occurred while
attempting to obtain the file’s characteristics. You can check errno and _OSERR
for detailed error information. If the file is a terminal, a value of 1 is returned.

SEE
_disatty, errno, _OSERR

Page 178 Lattice C 5 Library Reference

iSkbh “, k bh" Check for keyboard hit

Class: Lattice Category: Console and Port 1/O
SYNOPSIS

#include <dos.h>

hit = diskbhit();
hit = kbhit();
int hit; 0 => no keyboard character ready
non-zero => character can be read
DESCRIPTION

The iskbhit and kbhit functions are part of a group of functions that perform
I/0 operations with the keyboard and display attached as the console device.

The Iskbhit and kbhit functions returns zero if no keyboard character is ready to
be read via getch or getche. A non-zero return indicates that a character can
be read.

They will also report that a character is waiting if one has been pushed onto
the stack with ungetch.

RETURNS

As noted above.

SEE
cgets, cputs, getch, getche, putch, ungetch

Library Reference Lattice C 5 Page 179

labs

Long integer absolute value

Class: ANSI
SYNOPSIS

#include

al = Llabs(l);

Llong int

long int al;

DESCRIPTION

<stdlib.h>

Long

integer
absolute value of

Category: Numeric Transformation

The labs function computes the absolute value of long integers, returning a

long result.

SEE

abs, fabs, iabs

Page 180

Lattice C 5

Library Reference

ldeXp Load exponent

Class: ANSI Category: Numeric Transformation
SYNOPSIS

#include <math.h>

v = Lldexp(f,x);

double v; value

double f; fraction

int x; exponent
DESCRIPTION

The Idexp function adds the integer X to the exponent in f, which is the same as
computing:

v = f * (2 ** x)

Note that if f and x are the results of frexp, then Idexp performs the reverse
operation. Also, if the absolute value of the resulting exponent is greater than
1023, then matherr will be called with an overflow or underflow error
indication.

SEE

fmod, frexp, matherr, modf

Library Reference Lattice C 5 Page 181

I_ i N k e rD B Pointer to static merged data section
Class: Lattice Category: Linker Defined Symbols

SYNOPSIS

extern __far _LinkerDB;

DESCRIPTION

The address of this external variable is used by the startup code to locate the
static copy of the merged data section so that the global base register (A4) may
be set. Note that if a program is to be made resident or may have multiple
copies running then A4 will not point to the same place as _LinkerDB but to a
local copy of the merged data.

Page 182 Lattice C 5 Library Reference

localeconv

Numeric formatting convention inquiry

Class: ANSI
SYNOPSIS

#include <locale.h>

Localeconv();

struct Lconv,; numeric

DESCRIPTION

Category: Localisation

formatting information

The localeconv function sets the components of an object with type struct
Iconv with values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale.

The localeconv function gives a programmer access to information about
how to format numeric quantities. The members of the structure, each with
type char®, are pointers to strings, any of which (except decimal_polnt) can
point to “ “, to indicate that the value is not available in the current locale or is
of zero length. The members with type char are non-negative numbers, any of
which can be CHAR_MAX to indicate that the value is not available in the

current locale. The members include the following:

char

*decimal_point;

The decimal-point character used to
format non-monetary quantities.

char

*thousands_sep;

The character used to separate
groups of digits before the decimal-
point character in formatted non-
monetary quantities.

char

*grouping;

A string whose elements indicate the
size of each group of digits in
formatted non-monetary quantities.

char

*positive_sign;

The string used to indicate a
nonnegative-valued formatted
monetary quantity.

char

*negative_sign;

The string used to indicate a
negative-valued formatted monetary
quantity.

char

“*mon_grouping;

A string whose elements indicate the
size of each group of digits in
formatted monetary quantities.

Library Reference

Lattice C 5

Page 183

char

*int_curr_symbol;

The international currency symbol
applicable to the current locale. The
first three characters contain the
alphabetic international currency
symbol in accordance with those
specified in ISO 4217 Codes for
the Representation of Currency
and Funds. The fourth character
(immediately preceding the null
character) is the character used to
separate the international currency
symbol from the monetary quantity.

char

*currency_symbol;

The local currency symbol used to
format monetary quantities.

char

int_frac_digits;

The number of fractional digits
(those after the decimal point) to be
displayed in an internationally
formatted monetary quantity.

char

frac_digits;

The number of fractional digits
(those after the decimal-point) to be
displayed in a formatted monetary
quantity.

char

p_cs_precedes;

Set to 1 or 0 if the
currency_symbol respectively
precedes or succeeds the value for a
nonnegative formatted monetary
quantity.

char

p_sep_by_space;

Set to 1 or 0 if the
currency_symbol respectively is or
is not separated by a space from
the value for a nonnegative
formatted monetary quantity.

char

n_cs_precedes;

Set to 1 or 0 if the
currency_symbol respectively
precedes or succeeds the value for a
negative formatted monetary
quantity.

char

n_sep_by_space;

Set to 1 or 0 if the
currency_symbol respectively is or
is not separated by a space from
the value for a negative formatted
monetary quantity.

Page 184

Lattice C 5 Library Reference

char *mon_decimal_point; The decimal-point used to
format monetary quantities.

char *mon_thousands_sep; The separator for groups of
digits before the decimal-point
in formatted monetary
quantities.

char n_sep_by_space; Set to 1 or O if the
currency_symbol respectively
is or is not separated by a space
from the value for a negative
formatted monetary quantity.

char p_sign_posn; Set to a value indicating the
positioning of the
posltlve_slgn for a
nonnegative formatted
monetary quantity.

char n_sign_posn; Set to a value indicating the
positioning of the
negatlve_sign for a negative
formatted monetary quantity.

The elements of grouping and mon_groupling are interpreted according to
the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for
the remainder of the digits.

other The integer value is the number of digits that
comprise the current group. The next element is
examined to determine the size of the next group
of digits before the current group.

Library Reference Lattice C 5 Page 185

The value of p_slgn_posn and n_slgn_posn is interpreted according to the
following:

Value Placement of sign string

0 precedes the quantity and currency_symbol.

1 precedes the quantity and currency_symbol.

2 succeeds the quantity and currency_symbol.

3 immediately precedes the currency_symbol.

4 immediately succeeds the currency_symbol.
RETURNS

The localeconv function returns a pointer to the filled-in object. The structure
pointed to by the return value must not be modified by the program, but may be
overwritten by a subsequent call to the localeconv function. In addition, calls
to the setlocale function with categories LC_ALL, LC_MONETARY, or
LC_NUMERIC may overwrite the contents of the structure.

EXAMPLE

The following table illustrates the rules which may well be used by four
countries to format monetary quantities:

Country Positive format Negative format International format
Italy L.1.234 -L.1.234 ITL.1.234

Netherlands | F 1.234,56 F -1.234,56 NLG 1.234,56
Norway kr1.234,56 kr1.234,56- NOK 1.234,56
Switzerland |SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

Page 186 Lattice C 5 Library Reference

For these four countries, the respective values for the monetary

structure returned by localeconv are:

members of the

Italy Netherlands Norway Switzerland
int_curr_symbol “ITL.” |“NLG"” “NOK” “CHF “
currency_symbol “L.” “F” “kr’ “SFrs.”
mon_thousands_sep |““ “r “r “r
mon_grouping “2 L o “
positive_sign IR “r - “Cc”
negative_sign s e - o
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 7| 1
n_sep_by_space 0 1 0 0
p_sign_posn 1 1 1 1
n_sign_posn 1 4 2 2

Library Reference Lattice C 5 Page 187

|Ocq|ﬁme Unpack Greenwich Mean Time to local time

Class: ANSI
SYNOPSIS
#include <time.h>
ut = Llocaltime(t);
struct tm *ut; unpacked time
const time_t *t; packed time
DESCRIPTION

The localtime function unpacks a time value from the time_t form into a
structure. Normally the time value represents the number of seconds since
00:00:00, January 1, 1970, Greenwich Mean Time. The time function (described
elsewhere) returns this kind of number. Using the localtime function, this
number is adjusted for the local time zone.

The localtime function uses the _tzset function to set environmental variables
for its time zone conversions.

Note that the localtime function expects a pointer as the argument. A common
error is to pass the actual time value instead of the pointer.

Also, localtime and gmtime share a static data area for their return values. A
call to either one will destroy the results of the previous call.

SEE

asctime, ctime, gmtime, time, _tzset, utpack, utunpk

Page 188 Lattice C 5 Library Reference

|Og ’ Iog] 0 Logarithmic functions

Class: ANSI Category: Mathematics
SYNOPSIS

#include <math.h>

r = log(x); Natural Llogarithm functions

r = Log10(x); Base 10 Llogarithm functions

double r; result

double x; argument
DESCRIPTION

The log and 10g10 functions take the base € and base 10 logarithm,
respectively. Each of these requires a positive argument. If a negative
argument is supplied, matherr will be called with a DOMAIN error.

SEE

exp. matherr, pow, sart

Library Reference Lattice C 5 Page 189

lpr intf Formatted print to stdprt

Class: Lattice Category: Formatted I/O
SYNOPSIS

H#include <stdio.h>
Length = Lprintf(fmt,arg1,arg2,...);

int Llength; number of characters generated
const char *fmt; format string

DESCRIPTION
The printf group of functions generate a stream of ASCII characters by
analysing the format string and performing various conversion operations on

the remaining arguments. The lprintf form of printf sends output to the stdprt
file, which is usually a line printer.

See the description of the printf function for a complete discussion of the
arguments and conversion specifications.

RETURNS

This function returns the number of output characters generated.

SEE
cprintf, fprintf, printf, sprintf, viprintf, vprintf, vsprintf

Page 190 Lattice C 5 Library Reference

. Irotl L Irotr Rotate long integers

Class: Microsoft Category: Numeric Transformation
SYNOPSIS

#include <stdlib.h>

Left = _Llrotl(value,count);

right = _Llrotr(value,count);

unsigned Long Lleft; Left rotated value

unsigned Llong right; right rotated value

unsigned Llong value; value for rotation

int count; rotation count
DESCRIPTION

The _Irofl and _Irotr functions rotate the long integer value to the left or right
(respectively) by the number of bits specified by the count argument. This
differs from the standard shift operators (<< and >>) in that the bits from the
top of the longword are not lost, but replace the lower bits and vice-versa.

Note that this function is normally implemented using a #pragma Inline.

RETURNS

The value rotated as required.

SEE

_rotl, _rotr

Library Reference LatticeC 5 Page 191

lerk Allocate a large block from linear heap

Class: OLD Category: Memory Block Manipulation
SYNOPSIS

#include <stdlib.h>
p = Lsbrk(lbytes);

void *p; block pointer
size_t Lbytes; number of bytes

DESCRIPTION
The Isbrk function allocates a large block from the linear heap. This heap is
viewed as a contiguous memory region with allocated space at its lower end

and free space above that. A “break pointer” contains the address of the first
free location. The Isbrk function increments or decrements this break pointer.

RETURNS

For Isbrk, an error is indicated by a NULL pointer.

SEE

getmem, malloc, rbrk, sbrk

Page 192 Lattice C 5 Library Reference

Isea rc h ’ Ifi n d Linear search and update

Class: UNIX Category: Search and Sort
SYNOPSIS

#include <stdlib.h>

match = Lsearch(key,base,pnel,size,(*cmp)(obj,arr));
match = Lfind(key,base,pnel,size,(*cmp)(obj,arr));
void *match; matched element. or NULL pointer

const void *key; object to be matched
const void *base; initial element of searched array

size_t *pnel; pointer to number of elements
size_t size; size of each element
int (*cmp)(); comparison function

const void *obj; pointer to key
const void *arr; pointer to an array element

DESCRIPTION

The Isearch function searches an array of *pnel objects (the initial element of
which is pointed to by base) for an element that matches the object pointed to
by key. The size of each element of the array is specified by size.

The comparison function pointed to by cmp is called with two arguments that
point to the key object and to an array element, in that order. The function
returns an integer less than, equal to, or greater than zero if the key object is
considered, respectively, to be less than, to match, or to be greater than the
array element.

If the element cannot be found in the table the integer *pnel is incremented and
the datum added at the end of the array.

The Ifind function searches the array in the same way as Isearch, but the
datum is not added if the search fails.

RETURNS

The Isearch function returns a pointer to a matching element of the array. The
Ifind function will return a NULL pointer if no match is found. If two elements
compare as equal, the element matched will be the first in the array.

SEE

bsearch

Library Reference Lattice C 5 Page 193

|Seek, te" Set or get file position

Class: UNIX Category: Low-Level I/O
SYNOPSIS
#Hinclude <fcntl.h>
apos = Llseek(fh,rpos,mode); set unbuffered file
position
apos = tell(fh); get unbuffered file
position
int fh; file handle
Long rpos; relative file position
int mode; seek mode
Long apos; absolute file position
DESCRIPTION

The Iseek function moves the byte cursor of an unbuffered file to a new
position. The mode argument must be one of the following:

Mode Meaning

SEEK_SET Therpos argument is the number of bytes from the
beginning of the file. This value must be positive.

SEEK_CUR The rpos argument is the number of bytes relative
to the current position. This value can be positive or
negative.

SEEK_END The rpos argument is the number of bytes relative
to the end of the file. This value must be negative
or zero.

If Iseek is asked to move 0 bytes relative to the current position, it simply
returns the current file position. The fell function is then equivalent to:

apos = Llseek(fh,OL,SEEK_CUR);

RETURNS

Both functions return -1L if an error occurs, in which case errno and _OSERR
contain additional error information.

SEE

Fseek, errno, _OSERR, open

Page 194 Lattice C 5 Library Reference

EXAMPLE

/ *

* This program totals the number of bytes used by

* all normal files in the current directory.
*/

#include <fcntl.h> /* for unbuffered I1/0 */
char names[8192]; /* holds file names */
int main(void)

char *p;
int f,n;
long x,y;

if(getfnl("* .*" _names,sizeof(names),0) <= 0)

printf(”"Can't build file name List\n");
exit(1);
>
for(x = 0, n = 0, p = names; *p; p += strlen(p)
{
f = open(p,0_RDONLY);
if(f < 0)
{
printf(”"Can't open \"%Zs\"\n",p);
exit(1);

= Lseek(f,0L,2);
if(y <

~a

printf(”"Seek failure on \"%Zs\"\n",p);
exit(1)

}

X += y;

n++;

close(f);

’

}
printf("%Zd files, %lLd bytes used\n",n,x);

+ 1)

Library Reference Lattice C 5 Page 195

ma i n Your main program

Class: ANSI Category: Process Creation
SYNOPSIS

ret = main(argc,argv,envp);

int ret; program termination code

int argc; argument count

char *argv[(]; argument vector

char *envpl]l; environment vector
DESCRIPTION

This function does not actually exist in the library; you must supply one of these
“main programs” in each of your applications. If you trace through the two
startup modules C.S and _MAIN.C, you will find that C.S passes control to
_MAIN.C, which then calls the function named main. Since we supply the
source code for both of these modules, you are free to change this initialisation
procedure for special applications. The standard version simulates UNIX’s
interface with C programs by setting up two “vectors”, which are simply
arrays of pointers.

The argv array contains pointers to the command line arguments, and argc
indicates how many pointers are in the array. For example, if you invoke
myprog with the following command line:

myprog abc def "ghi jkl"
then argy is set up as follows:

argv[0] => "myprog" with extended command Lines
=> "" for standard GEMDOS

argv[C1] => "abc"

argv[2] => "def"

argvC3] => "ghi jkL"

and argc contains the value 4.

The envp arraz contains pointers to the environment strings, and the array is
terminated with a NULL pointer. Environment strings are normally created via
the putenv function, and each one has the following format:

name=variable

While envp is provided for compatibility with UNIX (and does not exist in
ANSI), you should normally use the getenv function to find environment
names. This is particularly important if you add strings to the environment via
the putenv function, because putenv may re-allocate the enviroment pointer
vector, and so the original envp will no longer be correct.

Page 196 Lattice C 5 Library Reference

There is an external variable named environ which starts out the same as
envp and gets updated whenever putenv moves the vector. In summary;, use
envp only if you do not use putenv within your program.

RETURNS

When main returns to its caller (normally _MAIN.C), the program exits via the
exit function passing the value returned from main to it. Alternatively you may
explicitly call the exit function with a termination code.

Heed the above warnings about the use of envp.

SEE

environ, exit, getenv, putenv, _exit

Library Reference Lattice C 5 Page 197

ma "OC Allocate a memory block

Class: ANSI Category: Memory Management
SYNOPSIS

#include <stdlib.h>

b = malloc(n);

void *b; block pointer

size_t n; number of bytes
DESCRIPTION

The malloc function allocates a block that is N bytes long and is aligned in such
a way that you can cast the block pointer to any pointer type. If the block
cannot be allocated, a NULL pointer is returned.

RETURNS

The malloc function returns a pointer to the block. A NULL pointer is returned
if there is not enough space for the requested block.

If you need space for a string, be sure to use strlen(string)+1 to allow room for
the null.

SEE

cdlloc, realloc, free, getmem, rlsmem, sbrk

Page 198 Lattice C 5 Library Reference

mleherl‘, except Math error handler

Class: UNIX Category: Mathematics
SYNOPSIS

#include <math.h>

a = matherr(x); math error handler

r = except(type,name,argil,arg2,retval);

call maths error handler

int a; action code

struct exception *x; exception vector

double r; actual return value

int type; error type

char *name; maths function name

double arg1; first argument

double arg2; second argument

double retval; proposed return value
DESCRIPTION

The matherr function is called whenever one of the higher-level maths
functions detects an error. The exception vector structure is defined in math.h
and contains information about the error as follows:

struct exception
{

int type; error type

char *name; maths function name
double arg1, arg2; function arguments
double retval; proposed return value
};

The standard library version of matherr translates the error type into a UNIX
error code that is placed into errno. Then the function returns an action code of
0 to indicate that the maths function should simply use the proposed return
value. In other words, the maths function will pass that value back to its caller.

The Lattice compiler package includes the source code to matherr so that you
may change it to do more sophisticated error correction if required. One typical
change is to place a different return value into the exception vector and then
return a non-zero action code. This informs the maths function that the return
value has been changed.

The except function is a Lattice extension to UNIX that simplifies the
interface to matherr by setting up the exception vector and processing the
action code and return value. It is intended to ease the error-handling chore in
user-written maths functions.

Library Reference Lattice C S Page 199

When your maths function encounters an error, it should call except specifying
one of the following error types, which are defined in the math.h header file:

Symbol Code Meaning

DOMAIN 1 Domain error

SING 2 Singularity

OVERFLOW 3 Overflow (number too large)
UNDERFLOW 4 Underflow (number too small)
TLOSS 5 Total loss of significance
PLOSS 6 Partial loss of significance

You can define new type codes if your application requires them, but you should
then change matherr to perform the appropriate mapping into the UNIX error
codes. The default mapping is:

matherr errno
DOMAIN EDOM
SING EDOM
OVERFLOW ERANGE
UNDERFLOW ERANGE
TLOSS ERANGE
PLOSS ERANGE
RETURNS

For matherr, a non-zero return indicates that the proposed return value in the
exception vector has been changed and that the new value should be used. A
zero return indicates that the proposed return value is OK.

For except, the actual return value (a double) is passed back.

SEE
_CXFERR

Lattice C 5 Library Reference

Page 200

max, min Compute maximum and minimum

Class: UNIX Category: Mathematics
SYNOPSIS

#include <math.h>

v = max(a,b); Compute maximum of two values
v = min(a,b); Compute minimum of two values

DESCRIPTION
These functions compute the maximum and minimum of two arithmetic values.

Note that two versions of max and mlIn are available, one from math.h
implemented as a macro (for any type) and one from string.h (for type Int only)
as a builtin function. The statement #Include <string.n> provides a default
setting by which built-in functions are accessed. If you don’t want the built-in
function, you can use an #undef statement.

Library Reference Lattice C 5 Page 201

m ble n Determine number of bytes o f multibyte character

Class: ANSI Category: Wide Characters
SYNOPSIS

#include <stdlib.h>

num = mblen(s,n);

int num; number of bytes

const char *s; array of multibyte characters

size_t n; bytes of array to check
DESCRIPTION

If s is not a NULL pointer, the mblen function determines the number of bytes
comprising the multibyte character pointed to by s. Except that the shift state of
the mbtowc function is not affected, it is equivalent to:

mbtowc((wchar_t *)0, s, n);

RETURNS

If s is a NULL pointer, the mblen function returns a zero value, if multibyte
character encodings do not have state-dependent encodings, otherwise
non-zero to indicate that the encodings are state-dependent. If s is not a NULL
pointer, then mblen either returns 0 (if s points to the null character), or
returns the number of bytes that comprise the multibyte character (if the next n
or fewer bytes form a valid multibyte character), or -1 (if they do not form a
valid multibyte character).

SEE

mbtowc

Page 202 Lattice C 5 Library Reference

m bSi’OWCS Convert sequence o f multibyte characters

Class: ANSI Category: Wide Characters
SYNOPSIS

#include <stdlib.h>

num = mbstowcs(pwcs,s,n);

size_t num; number of array elements modified

wchar_t *pwcs; array to contain codes
const char *s; array containing multibyte characters
size_t n; number of characters to convert

DESCRIPTION

The mbstowcs function converts a sequence of multibyte characters that begins
in the initial shift state from the array pointed to by s into a sequence of
corresponding codes and stores not more than N codes into the array pointed to
by pwcs. No multibyte characters that follow a null character (which is
converted into a code with value zero) will be examined or converted. Each
multibyte character is converted as if by a call to the mbtowc function, except
that the shift state of the mbtowc function is not affected.

No more than n elements will be modified in the array pointed to by pwcs.

RETURNS

If an invalid multibyte character is encountered, the mbstowcs function
returns ((slze_t)-1). Otherwise, the mbstowcs function returns the number of
array elements modified, not including a terminating zero code, if any.

Library Reference Lattice C 5 Page 203)

m btowc Determine number of bytes of multibyte character

Class: ANSI Category: Wide Characters
SYNOPSIS

Hinclude <stdlib.h>

num = mbtowc(pwc,s,n);

int num; number of bytes

wchar_t *pwc; object to store codes
const char *s; array containing multibyte characters
size_t n; number of characters to check

DESCRIPTION

If s is not a NULL pointer, the mbtowc function determines the number of bytes
that comprise the multibyte character pointed to by s. It then determines the
code for the value of type wchar_t that corresponds to that multibyte
character. (The value of the code corresponding to the null character is zero.) If
the multibyte character is valid and pwc is not a NULL pointer, the mbtowc

function stores the code in the object pointed to by pwcC. At most N bytes of the
array pointed to by s will be examined.

RETURNS

If s is a NULL pointer, the mbtowc function returns a non-zero or zero value, if
multibyte character encodings, respectively, do or do not have state-dependent
encodings. If s is not a NULL pointer, the mbtowc function either returns 0 (if s
points to the null character), or returns the number of bytes that comprise the
converted multibyte character (if the next n or fewer bytes form a valid
multibyte character), or returns -1 (if they do not form a valid multibyte
character).

In no case will the value returned be greater than n or the value of the
MB_CUR_MAX macro.

Page 204 Lattice C 5 Library Reference

mem... Memory block operations

Class: ANSI
SYNOPSIS
#include <string.h>
s = memccpy(to,from,c,n); Copy a memory block up to
a character
s memchrCa,c,n); Find a character in a
memory . block
x = memcmp(a,b,n); Compare two memory blocks
s = memmove(to,from,n); Move a memory block
s = memcpy(to,from,n); Copy a memory block
s = memset(to,c,n); Set a memory block to a
value
s = memswp(a,b,n); Swap two memory blocks
s = memrep(a,b,n,n); Replicate values through a
block
movmem(from,to,m); Move a memory block
repmem(to,vt,nv,nt); Replicate values through a
block
setmem(to,m,c); Set a memory block to a
value
swmem(a,b,m); Swap two memory blocks
void *to; destination pointer
const void *from; source pointer
unsigned m; number of bytes
size_t n; number of bytes
int c; character value
void *a,*b; blLock pointers
char *vt; value template
int nv; number of bytes in
template
int nt; number of templates in
blLock
void *s; return pointer
int x; return value
DESCRIPTION

These functions manipulate blocks of memory in various ways.

The memmove and movmem functions are similar, except the former was
introduced with UNIX V, while the latter is a traditional Lattice function. In a
like manner, memset and setmem perform the same operation, except that
the former is UNIX-compatible. Note that memcpy and memset return a
pointer to the destination block, while movmem and setmem have void
returns. Also note that memmove is smart enough to handle overlapping
memory blocks correctly.

Library Reference Lattice C 5 Page 205

The memccpy function is similar to memcpy except that copying stops after
the specified block size has been copied or after the specified character has been
copied. It returns a pointer to the character after C in the from block, or a NULL
pointer if C was not found in the first N characters. Note that, like memcpy,
memccpy does not handle overlapping memory blocks. If you specify
overlapping blocks to this function, the results are unpredictable.

The memchr function returns a pointer to the first occurrence of the specified
character in the block, or a NULL pointer if the character is not found.

The memcmp function performs a character-by-character comparison of two
memory blocks and returns an integral value as follows:

Return Meaning

Negative First block is ‘less-than’ second
Zero First block equals second

Positive First block is ‘greater-than’ second

There is no UNIX equivalent for swmem and repmem. The former merely
swaps two blocks in memory, although it has a major performance advantage
over the typical for-loop approach. The latter replicates a template of values
throughout a block and is very useful when you need to initialise an array of
structures to some non-zero pattern. The memswp and memrep are provided
to give a more ANSI like interface to the swmem and repmem functions.

Note that memcmp, memcpy, and memset have built-in versions which are
functionally equivalent to the standard library versions. A built-in version
generates in-line 68000 instructions without needing to make calls to the
library. The statement #Include <string.h> provides a default setting by which
any built-in functions are accessed. If you don’t want a particular built-in
function, you can use an #undef statement as follows: #undef memcmp.

Note that these functions neither recognise nor produce the null terminator
byte usually found at the end of strings. A popular mistake is to assume that
memcpy, unlike strcpy, automatically places a null byte at the end of the

block. It does not.

When choosing a string function the ANSI mem... functions are preferred over
the older Lattice functions which are provided only for backward compatability.

Unlike previous versions of the Lattice C Compiler, memcpy is not smart

enough to handle overlapping blocks. The ANSI function memmove should be
used instead.

RETURNS

As noted above.

Page 206 Lattice C 5 Library Reference

m kdil’ Make a new directory

Class: UNIX Category: File System Manipulation
SYNOPSIS

#include <stdio.h>

error = mkdir(path);

int error; 0 if successful

const char *path; points to new directory path

string

DESCRIPTION

This function makes a new directory in the specified path. For example, if path
is “c:\\abc\\def\\ghi”, then the new directory is named “ghi” and is in the
path “c:\\abc\\def”. The path may begin with a drive letter and a colon.

RETURNS

If the operation is successful, the function returns 0. Otherwise it returns -1 and
places error information in errno and _OSERR.

SEE

Dcreate, errno, _OSERR

Library Reference Lattice C 5 Page 207

m kte m p Create a unique filename

Class: UNIX Category: Stream I/O
SYNOPSIS

#include <stdio.h>

p = mktemp(template);

char *p; address of template or NULL

char *template; template string
DESCRIPTION

This function creates a unique file name from the template string and returns a
pointer to the name. The template string should be a filename in the directory
required, terminated by six trailing Xs. mktemp replaces the string “XXXXXX"
with a unique code generated from the process id and a unique string.

RETURNS

If the operation is successful, the function returns a pointer to the string. If a
unique filename cannot be generated or if the template does not match the

specification.

SEE

getpid, tmpfile, tmpnam

Page 208 Lattice C 5 Library Reference

m kt i me Convert to calendar time value

Class: ANSI Category: Date and Time
SYNOPSIS

#include <time.h>

cal = mktime(timeptr);

time_t cal; calendar time value

struct tm *timeptr; time value to be converted
DESCRIPTION

The mktime function converts the broken-down time, expressed as local time,
in the structure pointed to by fimeptr into a calendar time value with the same
encoding as that of the values returned by the time function. The original
values of the tmn_wday and tm_yday components of the structure are ignored,
and the original values of the other components are not restricted to the ranges
indicated above. On successful completion, the values of the tm_wday and
tm_yday components of the structure are set appropriately, and the other
components are set to represent the specified calendar time, but with their
values forced to the ranges indicated above; the final value of tm_mday is not
set until trn_mon and tm_year are determined.

RETURNS

The mktime function returns the specified calendar time encoded as a value of
type time_t. If the calendar time cannot be represented, the function returns
the value ((time_1)-1).

Library Reference Lattice C 5 Page 209

EXAMPLE

This simple example is a program to determine what
day of the week is
July 11, 2001.

#include <stdio.h>

#include <time.h>

static const char *const wday[l = {
"Sunday", "Monday", "Tuesday'", "Wednesday",
“Thursday", "Friday", "Saturday'", "Sunday",
“—unknown-"

};

struct tm time_str;

time_str.tm_year = 2001 - 1900;

time_str.tm_mon = 7 1

time_str.tm_mday

time_str.tm_hour

time_str.tm_min

time_str.tm_sec

time_str.tm_isdst = -1;

if (mktime(&time_str) == -1)
time_str.tm_wday = 7;

printf("%Zs\n", wday[time_str.tm_wdayl);

Page 210 Lattice C 5 Library Reference

mOdf Split floating point value

Class: ANSI Category: Numeric Transformation
SYNOPSIS

#include <math.h>

x = modf(y,p);

double x; signed fractional part of y

double Yy, floating point value.

double *p; pointer to integral part of y
DESCRIPTION

The modf function separates the integral and fractional parts of y and returns
them as two doubles. The function return value is the fractional part, and the
integral part is placed in the double pointed to b{ p. Both parts have the same
sign as y. Note that the fractional part is the number that would be obtained by
calling the fmod function in the following way:

x = fmod(y,1.0);

Make sure that the second argument of modf is a pointer to a double. A
common error is to use a pointer to an integer.

SEE

Refer to fmod for an example involving modf.

Library Reference Lattice C 5 Page 211

. M s T E P Memory pool increment size

Class: Lattice Category: Memory Management
SYNOPSIS

extern unsigned Llong _MSTEP;
DESCRIPTION

This external integer is used by the memory allocation functions. It specifies the
minimum amount of memory that will be allocated from the system when
additional memory is required for the local memory pool.

When additional memory is added to the local pool, it will not be contiguous
with the memory already in the pool. If the additional amount is small, it can
lead to severe fragmentation of the local pool. The memory allocation
functions attempt to avoid this by rounding the amount needed up to the next
multiple of the figure in _MSTEP.

Note that when the value in this variable is zero the startup code sizes it in
such a way as to avoid any GEMDOS memory allocation problems, hence in
general you should not adjust the value.

Page 212 Lattice C 5 Library Reference

on b rea k Plant break trap

Class: Lattice Category: Non-Local Jumps/Signal Handling
SYNOPSIS

#include <dos.h>

error = onbreak(func);

int error; error return

int (*func)(void); function to register
DESCRIPTION

This function plants a break trap, which is a user-supplied function that gets
called whenever the user keys Ctrl-C, whenever any console I/O is being
performed. The function can use any operating system services, since it is not
really called as an interrupt routine. Note that under this implementation the
program is always aborted after processing of the function registered via
onbreak.

If func is NULL, then the current break trap, if any, is removed and the default
interrupt handler is restored. With the default handler, Ctrl-C causes a
program abort.

RETURNS

The onbreak function returns 0 if it was successful. The break trap function
should return non-zero to abort for compatability with other systems, although
in this implementation the abort always occurs.

EXAMPLE

/
This program tests the onbreak function. After the
initial message 1is printed, you should get the
“Break received" message if you hit Ctrl-C.

If you hit any other character, the program will

, exit, printing "Successful"

* % % % % ¥ ¥

#include <dos.h>
#include <stdio.h>

int brk(void) /* This is the break function */
{
printf("Break received...\n");

return 1;
}

Library Reference Lattice C S Page 213

int main(void) /* This is the main program ¥*/
{

printf("Setting break trap...\n");
if(onbreak(brk))
printf("Can't set break trap\n");
for (;;)
if(kbhit())
break;
printf("Successful\n");

Page 214 Lattice C 5 Library Reference

OneX"‘ Exit trap

Class: Lattice Category: Non-Local Jumps/Signal Handling
SYNOPSIS

#include <stdlib.h>

success = onexit(func);

int success; non-zero 1if successful

int (*func)(int); pointer to trap function
DESCRIPTION

This function establishes a “trap” that will be called when the program
terminates. The trap function is called just before the program returns to the
operating system. For normal termination via the exit function or via a return
from the main function, all buffers are flushed and files are closed before the
trap is called. If the program is using _exit, the files and buffers may still be
open, depending on what the program does before terminating. In both cases,
user-allocated memory is not yet freed.

This function is similar to the ANSI function atexit, however the exit code is
passed as a parameter to the trap function as its only argument. Then
whatever value the trap function returns is used as the real exit code. Also only
one such trap may exist. Each call to onexit overrides the previous trap. If you
call onexit with a NULL pointer, the current trap is removed.

Remember that the exit trap is called after all files have been closed, unless the
program is terminating via _exit. This means that the keyboard and screen
devices normally associated with file handles 0, 1, and 2 will no longer be
accessible. A common mistake is to issue some type of output message via printf
or cprintf from within the exit trap. In order for this to work, you should
fopen or open the con: device and send the message via fprintf or write.

SEE

atexit, exit, _exit

Library Reference Lattice C 5 Page 215

EXAMPLE

] *
* This program tests the "onexit" function.
*/

#include <stdlib.h>
#include <stdio.h>
int ex(int i) /* This is the exit trap function */
¢ FILE *con;
if((con = fopen("con:","w")) != NULL)

fprintf(con,"Exit trap hit...code %d found\n",i);
return 0;

}
int main(void) /* This tests the exit trap */
{
int (*p)(int);
p = ex;
printf("”Setting exit trap...\n");
if(lonexit(p))
printf(”"Can't set trap...\n");
printf("Exiting with code 2\n");
exit(2);
}

Page 216 Lattice C 5 Library Reference

(o) p en Open an unbuffered file

Class: UNIX Category: Low-Level I/O
SYNOPSIS

#include <fcntl.h>

fh = open(name,mode,prot);

int fh; file handle

const char *name; file name

int mode; access mode

int prot; protection mode (O_CREAT only)
DESCRIPTION

This function opens a file so that it can be accessed via the unbuffered I/O
functions. The name can be any valid file name, and it may include a device
code and a directory path. The access mode is formed by ORing together the
appropriate symbols from the following list:

O_RDONLY Read-only access. No writes are allowed.

O_WRONLY Write-only access. No reads are allowed.

O_RDWR Read-write access. Both reads and writes are allowed.

O_CREAT If the file does not already exist, it is created with the
protection mode specified by prot. The protection
mode specified via the symbols S_IREAD and
S_IWRITE, which are defined in fcntl.h:

Value Meaning

S_IWRITE Write allowed
S_IREAD Read allowed
S_IWRITE | S_IREAD Both allowed
0 Both allowed

If the file already exists the prot argument is ignored.
Also, you can use chgfa or chmod to change the
protection bits after the file has been closed.

O_APPEND This symbol is normally used in conjunction with
O_WRONLY or O_RDWR. It causes the I/O system to
seek to the end of the file before each write operation.
After each write operation, the file is positioned at the
new end-of-file.

Library Reference LatticeC 5 Page 217

O_TRUNC If the file exists, it is truncated to a length of 0. This
flag is normally used with O_CREAT, O_WRONLY or
O_RDWR.

O_NDELAY This symbol is defined for UNIX compatibility and has
no effect under GEMDOS.

O_EXCL This symbol is used only with O_CREAT. If O_EXCL
and O_CREAT are both present and the file already
exists, the open function will fail.

O_RAW The file is read and/or written with no translation.
Without this flag, the external integer named
_lomode is consulted, and if it contains zero, the file
is translated. This means that carriage returns (‘\r’)
are dropped on input and are inserted before line feeds
(‘\n’) on output.

RETURNS

If the operation is successful, the function returns a file handle, which is an
integer equal to or greater than 0. Otherwise it returns -1 and places error
information in errno and _OSERR.

SEE

Fopen, Fcreate, errno, _OSERR, chgfa, chmod, close, creat

Page 218 Lattice C 5 Library Reference

opendir, CIosedir Open/Close a directory stream

Class: POSIX Category: Directory Manipulation
SYNOPSIS

#include <dirent.h>

dir = opendir(name);

closedir(dir);

DIR *dir; directory handle

const char *npame; file name

DESCRIPTION

The opendir family of functions allow system independent processing of
directories. The opendir function opens the directory specified by name and
returns a pointer to an associated directory stream, dir, or NULL if the directory
cannot be opened.

The closedir function closes the stream dir and frees any resources which were
allocated by the opendir function.

RETURNS
The opendir function returns a pointer to an associated directory descriptor,

or the value NULL if the directory was not found or enough memory could not
be allocated to hold the directory structure or buffer.

SEE
readdir, rewinddir, seekdir, telldir, getfnl, dfind, dnext

Library Reference Lattice C 5 Page 219

(o] pe ne Open with environment search

Class: Lattice Category: Low-Level I/O
SYNOPSIS

#include <fcntl.h>

fh = opene(name,mode,prot,path);

int fh; file handle

const char *name; file name

int mode; unbuffered file access mode

int prot; protection mode

char *path; path return
DESCRIPTION

The opene function is like open except that it performs an extended directory
search for file names that cannot be found in the current directory. The
directory searching algorithm is:

Try the file name as specified. If successful, return the file pointer or
handle. Otherwise, if the name is absolute, indicate an error. An absolute
name begins with a slash (/), a backslash (\), or has a colon () in the
second character. If the name is relative, continue.

Check if the file name has an extension. If so, convert the extension to
upper case and look for an environment variable of that name. If the
variable is found, it should consist of a list of alternate directories
separated by semicolons (;) or commas (,). Append the file name to each
directory name in turn, and retry the open operation. If successful, coty
the directory name to the path argument, if that argument is not NULL,
and then return the file pointer or handle. If unsuccessful, continue.

Find the environment variable named PATH and repeat the preceding
step with those directory names. If unsuccessful, return an error
indication.

See the description of the fopene function for an example of opene.

RETURNS

If the operation is successful, the function returns a file handle, which is an
integer equal to or greater than 0. Otherwise it returns -1 and places error
information in errno and _OSERR.

SEE

fopen, fopene, open

Page 220 Lattice C 5 Library Reference

Os E R R GEMDOS Error Information
Class: GEMDOS Category: Errors
SYNOPSIS

#include <dos.h>

extern Long volatile _OSERR; GEMDOS error code

extern int os_nerr; number of error codes
extern <char *os_errlistlC]; GEMDOS error messages
DESCRIPTION

The external integer named _OSERR contains error information returned by
GEMDOS after a system call has failed. In general, the Lattice library resets
_OSERR at the beginning of any function that makes GEMDOS system calls.
Then if a system call fails during that function, the system error code is saved
in _OSERR.

The GEMDOS error number is mapped into an equivalent UNIX error
number, which is placed in errno. If there is no ap[gropriate UNIX number,
errno will contain -1, defined symbolically as EOSERR. The function returns
with a suitable error indication, which is usually -1 for functions that return
integer values or NULL for functions that return pointers.

The os_nerr and os_eirrlist items are defined in a C source file named oserr.c
and are used by the poserr function to print messages that correspond to the
code found in _OSERR.

The following list applies to all current versions of GEMDOS and is what is
provided in oserr.c:

Symbol Code Meaning

ERROR 01 “Fundamental error”
EDRVNR 02 “Drive not ready”

EUNCMD 03 “Unknown command”

E_CRC 04 “Data error”

EBADRQ 05 “Bad request structure length”
E_SEEK 06 “Seek error”

EMEDIA 07 “Unknown media type”
ESECNF 08 “Sector not found”

EPAPER 09 “Printer paper alarm”

Library Reference LatticeC 5 Page 221

EWRITF 10 “Write fault”
EREADF 11 “Read fault”
EWRPRO 13 “Can’t write on protected device”
E_CHNG 14 “Invalid disk change”
EUNDEV 15 “Unknown unit”
EBADSF 16 “Bad sectors on format”
EOTHER 17 “Insert other disk”
EINVFN 32 “Invalid function number”
EFILNF 33 “File not found”
EPTHNF 34 “Path not found”
ENHNDL 35 “Too many files opened”
EACCDN 36 “Access denied”
EIHNDL 37 “Invalid handle”
ENSMEM 39 “Insufficient memory”
EIMBA 40 “Invalid memory block address”
EDRIVE 46 “Invalid drive code”
ENSAME 48 “Not same device”
ENMFIL 49 “No more files”
E_RANGE 64 “Range error”
EINTRN 65 “GEMDOS internal error”
EPLFMT 66 “Invalid program load format”
EGSBF 67 “Memory growth failure”
SEE
poserr

Page 222 Lattice C 5 Library Reference

_pbase

Basepage of program

Class: Lattice

SYNOPSIS
#include <basepage.h>
BASEPAGE *_pbase;
DESCRIPTION

Category: Process Environment

This external pointer points to the basepage of the current process. In general
you should not manipulate the elements of this directly, but instead allow the
operating system to do it for you.

The structure pointed to has the following public elements:

typedef struct
{

void
void
void
Long
void
Long
void
Long
void
struct _base
void
char
Long
char
} BASEPAGE;

_base

*p_Llowtpa;
*p_hitpa;
*p_tbase;
p_tlen;
*p_dbase;
p_dlen;
*p_bbase;
p_blen;
*p_dta;
*p_parent;

*p_reserved;

*p_env;

p_undef[201];
p_cmdlin[1281];

bottom of TPA

top of TPA + 1

base of text segment
Length of text

base of data segment
Length of data

base of BSS segment
Length of BSS
current DTA pointer
parent's basepage

environment strings

command Line image

Note that although further information is available within this structure it is
not public and if you attempt to access it your program may not work with

future versions of the OS.

SEE

Pexec

Library Reference

Lattice C 5

Page 223

perror Print UNIX error message

Class: ANSI Category: Errors
SYNOPSIS

#Hinclude <stdio.h>
perror(s);

const char *s; message prefix

DESCRIPTION

This function checks errno and, if it is non-zero, prints an error message on
stderr. The message consists of the specified prefix, a colon and space, and the
message text from the external array named sys_errllst. This array contains
pointers to the various UNIX error messages. The highest error number is
given by the contents of external integer sys_nerr. The Lattice compiler
package contains the source for these two external items in a file named syserr
so you can change or expand the messages as you desire. See the description of
erno for a list of the current error messages.

SEE

errno, sys_nerr, sys_errlist, poserr

Page 224 Lattice C 5 Library Reference

popeéen, pC|Ose Open a pipe to/from a process

Class: UNIX Category: Process Creation
SYNOPSIS

Hinclude <stdio.h>

fp = popen(cmd,mode);

err = pclose(fp);

int err; error return. value

FILE *fp; file pointer

const char *cmd; command to execute

const char *mode; file access mode
DESCRIPTION

The popen and pclose functions initiate a pipe to the named command, or
close the pipe respectively. The argument cmd is a command passed to system
to which the data is to be sent, or received from. The mode specifies whether
the command is to be used as an input or output filter. If mode is “r” then the
data is collected from the processes standard output, otherwise if the mode is
“w” the data written to fp is sent to the processes standard input.

The pclose function cleans up the buffers used by the popen function and
returns the exit status of the command called.

Note that under UNIX this command causes concurrent execution of the called
process and it's parent, whereas under GEMDOS the called command is
always a executed as the single active process.

RETURNS

The function popen returns a file handle fp associated with the stream if the
command could be successfully completed otherwise the value NULL.

The pclose function returns 0 if the process was successfully closed, otherwise
the value -1 is returned and an appropriate value placed in errno. Note that
pclose may fail if it cannot find the required command and the stream was
opened for write mode.

SEE

errno, system

Library Reference Lattice C 5 Page 225

perr or Print UNIX error message
Class: ANSI Category: Errors
SYNOPSIS

#include <stdio.h>

perror(s);

const char *s; message prefix

DESCRIPTION

This function checks errno and, if it is non-zero, prints an error message on
stderr. The message consists of the specified prefix, a colon and space, and the
message text from the external array named sys_errlist. This array contains
pointers to the various UNIX error messages. The highest error number is
given by the contents of external integer sys_nerr. The Lattice compiler
package contains the source for these two external items in a file named syserr
so you can change or expand the messages as you desire. See the description of
erno for a list of the current error messages.

SEE

ermo, sys_nerr, sys_errlist, poserr

Page 224 LatticeC 5 Library Reference

pOpen ’ pCIOse Open a pipe to/from a process

Class: UNIX Category: Process Creation
SYNOPSIS

Hinclude <stdio.h>

fp = popen(cmd,mode);

err = pclose(fp);

int err; error return value

FILE *fp; file pointer

const char *cmd; command to execute

const char *mode; file access mode
DESCRIPTION

The popen and pclose functions initiate a <g)ipe to the named command, or
close the pipe respectively. The argument cmd is a command passed to system
to which the data is to be sent, or received from. The mode specifies whether
the command is to be used as an input or output filter. If mode is “r then the
data is collected from the processes standard output, otherwise if the mode is
“w” the data written to fp is sent to the processes standard input.

The pclose function cleans up the buffers used by the popen function and
returns the exit status of the command called.

Note that under UNIX this command causes concurrent execution of the called
process and it’s parent, whereas under GEMDOS the called command is
always a executed as the single active process.

RETURNS

The function popen returns a file handle fp associated with the stream if the
command could be successfully completed otherwise the value NULL.

The pclose function returns 0 if the process was successfully closed, otherwise
the value -1 is returned and an appropriate value placed in errno. Note that

pclose may fail if it cannot find the required command and the stream was
opened for write mode.

SEE

ermo, system

Library Reference Lattice C 5 Page 225

EXAMPLE

] *
* collect the output from the dir command
* will fail if 'dir' cannot be found

*/
#include <stdio.h>
void showdir(void)

FILE *fp;
char bufC1001;

open("dir","r");

fp)

while (fgets(buf,sizeof(buf),fp))
(

printf("%s, ",buf);
pclose(fp);

fp=p
f o«

Page 226 Lattice C 5 Library Reference

poserr Print GEMDOS error message

Class: GEMDOS Category: Errors
SYNOPSIS

#include <dos.h>

error = poserr(s);

int error; contents of _OSERR

const char *s; message prefix

DESCRIPTION

This function checks _OSERR and, if it is non-zero, sends an error message to
stderr. The message consists of the specified prefix, a colon and space, and the
message text from the external array named os_errlist. This array contains
pointers to the various error messages. The highest error number is given by
the contents of external integer os_nerr. The Lattice compiler package contains
the source for these two external items in a file named oserr.c so you can
change or expand the messages as you desire.

RETURNS

The function returns the contents of _OSERR so you can test for an error
condition and print a message in one step.

SEE

_OSERR, os_errlist, os_nerr, perror

Library Reference Lattice C 5 Page 227

pr intf Formatted print to stdout

Class: ANSI Category: Formatted 1/O
SYNOPSIS

#include <stdio.h>

Length = printf(fmt,arg1,arg2,...);

const char *fmt; format string
DESCRIPTION

The printf group of functions generate a stream of ASCII characters by
analysing the format string and performing various conversion operations on
the remaining arguments. The printf form sends the output stream to the
buffered file named stdout, which is usually the user’s screen (i.e., the
“console”).

The fmt argument points to a string consisting of ordinary characters and
conversion specifications. The ordinary characters are simply copied to the
output, but each conversion specification is replaced by the results of the
conversion. These results come from operating sequentially upon the
arguments that follow fmt. That is, the first conversion specification operates
upon arg]l, the second operates upon arg2, and so on. In some cases, as
described below, a conversion specification may process more than one
argument.

Each conversion specification must begin with a percent sign (%). If you want
to place a percent sign into the output stream, precede it with another percent
sign in the fmt string. That is, %% will send a single percent sign to the output
stream.

If a percent sign is not followed by another percent, then it introduces a
conversion specification, as follows:

%Z[LflagslCwidthlC.precisionlCsizeltype

where the brackets [...] indicate optional fields, and the fields have the
following definitions:

flags Controls output justification and the printing of signs,
blanks, decimal places, and hexadecimal prefixes.

width Specifies the “field width”, which is the minimum
number of characters to be generated for this format
item.

Page 228 Lattice C 5 Library Reference

precision Specifies the “field precision”, which is the required
precision of numeric conversions or the maximum
number of characters to be copied from a string,
depending on the type field.

size Can be either ‘I’ for “large size” or ‘h’ for small size.
The h comes from UNIX implementations where it
means “half-word”.

type Specifies the type of argument conversion to be done.

If any flag characters are used, they must appear immediately after the percent
and can be any of the following:

Minus (-) This causes the result to be left-adjusted within the
field specified by width or within the default width.

Plus (+) This flag is used in conjunction with the various
numeric conversion types to cause a plus or minus
sign to be placed before the result. If it is absent, the
sign character is generated only for a negative
number.

Blank This flag is similar to the plus, but it causes a
leading blank for a positive number and a minus
sign for a negative number. If both the plus and the
blank flags are present, the plus takes precedence.

Hash (#) This flag causes special formatting. With the ‘0’, ‘',
and ‘X’ types, the sharp flag prefixes any non-zero
output with 0, 0x, or 0X, respectively. The ‘p’ and
‘P’ types are treated like ‘X’ and ‘X’, respectively.
That is, their output is preceded by Ox or OX if the
special formatting flag is present.

With the ‘f’, “€’, and ‘E’ types, the hash flag forces
the result to contain a decimal point. With the ‘g’
and ‘G’ types, the hash flag forces the result to
contain a decimal point and also prevents the
elimination of trailing zeroes.

Library Reference Lattice C 6 Page 229

The width is a non-negative number that specifies the minimum field width. If
fewer characters are generated by the conversion operation, the result is
padded on the left or right (depending on the minus flag described above). A
blank is used as the padding character unless width begins with a zero. In that
case, zero-padding is performed. Note that width specifies the minimum field
width, and it will not cause lengthy output to be truncated. Use the precision
specifier for that purpose.

If you don’t want to specify the field width as a constant in the format string,
you can code it as an asterisk (*), with or without a leading zero. The asterisk
indicates that the width value is an integer in the argument list. See the
examples for more information on this technique.

The meaning of the precision item depends on the field type, as follows:

Typec,n,p. P The precision item is ignored.

Types d, 0, u, X, and X The precision is the minimum number of
digits to appear. If fewer digits are
generated, leading zeroes are supplied.

Typese, E, and f The precision is the number of digits to
appear after the decimal point. If fewer
digits are generated, trailing zeroes are
supplied.

Types gand G The precision is the maximum number of
significant digits.

Types The precision is the maximum number of
characters to be copied from the string.

As with the width item, you can use an asterisk for the precision to indicate
that the value should be picked up from the next argument. ’

Page 230 Lattice C 5 Library Reference

The conversion type can be any of the following:

Cc

The associated argument must be an integer. The single
character in the rightmost byte of the integer is copied to the
output.

The associated argument must be an integer, and the result is
a string of digit characters preceded by a sign. If the plus and
blank flags are absent, the sign is produced only for a
negative integer. If the “large size” modifier is present, the
argument is taken as a long integer.

The associated argument must be a double, and the result has
the form:

-d.ddde-ddd

where d is a single decimal digit, dd is one or more digits,
and ddd is an exponent of exactly three digits. The first
minus sign is omitted if the floating point number is positive,
and the second minus sign is omitted if the exponent is
gositive. The plus and blank flags dictate whether there will

e a sign character emitted if the number is positive. The
“large size” modifier is ignored.

This is exactly the same as type e except that the result has
the form:

-d.dddE-ddd

The associated argument must be a double, and the result has
the form

-dd.dd

where dd indicates one or more decimal digits. The minus
sign is omitted if the number is positive, but a sign character
will still be generated if the plus or blank flag is present. The
number of digits before the decimal point depends on the
magnitude of the number, and the number after the decimal
point depends on the requested precision. If no precision is
specified, the default is six decimal places. If the precision is
specified as 0, or if there are no non-zero digits to the right of
the decimal point, then the decimal point is omitted.

The associated argument must be a double, and the result is
in the ‘e’ or ‘f’ format, depending on which gives the most
compact result. The ‘e’ format is used only when the
exponent is less than -4 or greater than the specified or
default precision. Trailing zeroes are eliminated, and the
decimal point appears only if any non-zero digits follow it.

Library Reference Lattice C 5 Page 231

This is identical to the ‘g’ format, except that the ‘E’ type is
used instead of ‘e’.

The associated argument is taken as a signed integer. The
corresponding argument will be a pointer to an integer. If the
“large size” modifier is present, the argument must be a long
integer.

The associated argument is taken to be a pointer to an
integer. The integer reflects the number of characters written
to the output to this point in the printf call. No argument is
converted.

The associated argument is taken as an unsigned integer, and
it is converted to a string of octal digits. If the “large size”
modifier is present, the argument must be a long integer.

The associated argument is taken as a data pointer, and it is
converted to hexadecimal representation.

This is the same as the ‘P’ format, except that upper case
letters are used as hexadecimal digits.

The associated argument must point to a null-terminated
character string. The string is copied to the output, but the
null byte is not copied.

The associated argument is taken as an unsigned integer, and
it is converted to a string of decimal digits. If the “large size”
modifier is present, the argument must be a long integer.

The associated argument is taken as an unsigned integer, and
it is converted to a string of hexadecimal digits with lower
case letters. If the “large size” modifier is present, the
argument is taken as a long integer.

This is the same as the ‘X’ format, except that upper case
letters are used as hexadecimal digits.

RETURNS

This function returns the number of output characters generated.

SEE

cprintf, fprintf, lprintf, printf, sprintf, viprintf, vprintf, vsprintf

Page 232

Lattice C § Library Reference

EXAMPLE

* This example prints a message indicating
* the function argument is positive or
* In the second "printf", the width
* are 15 and 8, respectively.

whether
negative.
and precision

Hinclude <stdio.h>
void pneg(double value)
{

char *sign;

if(value < 0)

sign = "negative";
else
sign = "not negative";

printf("The number Z%E is Zs.\n",value,sign);

printf("The number Z%Z*.*E 4is Zs.\n",15,8,value,sign);

Library Reference Lattice C 5 Page 233

o) utc s PU tchar Put a character to a buffered file/stdout
Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

putc(c,fp);
putchar(c);

r =

int r; EOF or ¢

int c; Character to be output

FILE *fp; File pointer
DESCRIPTION

The putc function puts a single character to the specified file previously opened
via fopen, freopen, or fdopen. Whereas putchar writes the character to the
standard output file. Note that they are actually implemented as macros in
order to maximise execution speed.

RETURNS

The output character is returned if the function is successful. Otherwise, the
return value is EOF, which is defined in stdlo.h.

For disk files, an EOF return usually means that the disk is full. However, this

type of return can also occur if the device is write-protected or if a write error
occurs. In any case, additional error information can be found in errno and

_OSERR.

SEE
errno, fdopen, fopen, fputc, fputchar, freopen, _OSERR

Page 234 LatticeC 5 Library Reference

p UfC h Put char to console

Class: Lattice Category: Console and Port 1/O
SYNOPSIS
#include <dos.h>
a = putch(c);
int a; character written to the console or EOF
int c¢; character to write
DESCRIPTION

The putch function is one of a group of functions that perform I/O operations
with the keyboard and display attached as the console device.

The putch function simply writes the specified character to the display screen
at the current cursor position. When accessed in this way, the screen behaves
like a “glass TTY”. That is, the carriage return, line feed, and backspace
characters behave as they would on a simple printer. Alas, the form feed
character does not clear the screen.

RETURNS

The function returns the character written to the console if successful, or EOF
if the character could not be written.

SEE

cgets, cputs, getch, getche, kbhit, ungetch

Library Reference Lattice C 5 Page 235

p u fe nv Put string into environment

Class: UNIX Category: Process Environment
SYNOPSIS

Hinclude <stdlib.h>

error = putenv(env);

int error; 0 if successful

char *env; environment string
DESCRIPTION

The putenv function accepts a string that has the form

name=var

and places it into the current environment. If the environment already contains
a string beginning with name= then that string is replaced; otherwise, the new
string is added.

After putenv is called, the original envp argument that was passed to your
main program may no longer be valid. However, the external data item named
environ does get updated when necessary, and is therefore valid at all times.
Also note that the string env is added to the environment, and should not be
subsequently used as a parameter to free.

RETURNS

A non-zero return value from putenv indicates that the environment could not
be expanded in size to accept the new string.

SEE

environ, getenv, rmenv

EXAMPLE

Hinclude <stdlib.h>
#include <stdio.h>

if(putenv("HOCUS=pocus")) /* Add HOCUS */
fprintf(stderr,”"Couldn't add HOCUS\n");

putenv("HOCUS="); /* Remove HOCUS */

rmvenv("HOCUS"); /* Another way to remove it */

Page 236 Lattice C 5 Library Reference

puts Put a string to stdout

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>

error = puts(s);

int error; non-zero if error

const char *s; string pointer
DESCRIPTION

The puts function copies string s to stdout, the standard output file. The
terminating null byte is not copied, but a newline is sent after the string.

RETURNS

If an error occurs, the return value is -1; otherwise, it is 0. Additional error
information can be found in errno and _OSERR.

SEE
errno, ferror, fopen, fputc, fputs
EXAMPLE

The following example writes two lines to the standard output file, stdout. It
demonstrates how the fputs function, which takes a file pointer argument, can
be used to mimic the puts function.

#include <stdio.h>

puts("This 1is the first Line");
fputs("This is " ,stdout);
puts("the second Line");

Library Reference Lattice C 5 Page 237

CISOI’T, et GI Sort a data array
Class: ANSI Category: Search and Sort

SYNOPSIS

#include <stdlib.h>

qsort(a,n,size,cmp); Sort a data array

dgqsort(da,n); Sort an array of doubles
fqsort(fa,n); Sort an array of floats
Lgsort(la,n); Sort an array of Llong integers
sqsort(sa,n); Sort an array of short dintegers
tgqsort(ta,n); Sort an array of text pointers
void *a; data array pointer

double *da; pointer to double array

float *fa; pointer to float array

Long *la; pointer to Llong int array
short *sa; pointer to short int array
char *tall; pointer to text pointer array
size_t n; number of elements in array
size_t size; element size 1in bytes

int (*cmp)(const void *,const void *);

pointer to comparison function

DESCRIPTION

The gsort function sorts the specified data array using the quicksort algorithm.
During its operation, it calls upon the specified comparison routine with
pointers to the two array elements being compared. The comparison routine
should return an integral result as follows:

Return Meaning

Negative First element is below second

Positive First element is above second

Zero Elements are equal)

The dgsort, fgsort, Igsort, sgsort and tgsort functions sort various arrays
which are commonly encountered. They are all straightforward except for
tgsort, which requires some explanation. The ta array consists of pointers to
null-terminated character strings. The tgsort function re-arranges the pointers
so that the strings are in ascending ASCII sequence, using strcmp as the
comparison routine. Note that the sort is based on the contents of the strings
rather than their physical address.

Page 238 Lattice C 5 Library Reference

EXAMPLE

/ *
L]

#include <stdlib.h>
#include <string.h>

int cmp(const void *a,const
{

return strcmp(*(const char

void sort(char *s[],size_t
{

qsort(s,n,sizeof(*s),cmp);

* sort an array of strings using qsort

**)a, *(const

n)

char **)b);

Library Reference Lattice C 5

Page 239

raise Send signal
Class: ANSI Category: Non-Local Jumps/Signal Handling

SYNOPSIS

#include <signal.h>

err=raise(sig);

int err; error status
int sig; signal to assert
DESCRIPTION

The raise function sends the signal slg to the executing program. This is
functionally identical to calling a user-supplied routine that is related to the

signal number.
RETURNS
The raise function returns 0 if successful, non-zero if unsuccessful.

SEE

signal

Page 240 Lattice C 5 Library Reference

ra nd Generate random numbers

Class: ANSI Category: Random Numbers
SYNOPSIS

#include <stdlib.h>

x = rand();

srand(seed);

unsigned int seed; random number seed

int x; random number
DESCRIPTION

The rand function returns pseudo-random numbers in the range from 0 to the
maximum positive integer value. The random number generator can be reset to
a new seed value by calling the srand function. The initial default seed is 1.

See drand48 and its related functions for more sophisticated random number
generation.

RETURNS

As noted above.

SEE
drand48, srand

EXAMPLE

/* This example prints 1000 random numbers.*/
#include <stdio.h>
Hinclude <stdlib.h>
#include <string.h>

int main(int argc,char *argv[l)
{

int i,
unsigned x;

ifCargec > 1)
{

stcd_iCargv[1]1,8x);
printf(”"Seed value 1is Zd\n",x);
srand(x);

printf("Here are 1000 random numbers...\n");
for(i = 0; i < 200; i++)
printf("%5d %5d %5d %5d %5d\n",
rand(),rand(),rand(),rand(),rand());

Library Reference Lattice C 5 Page 241

r ead, Wfite Read or write a unbuffered file

Class: UNIX Category: Low-Level I/O
SYNOPSIS

#include <fcntl.h>

cnt = read(fh,buf,length);

Read from unbuffered file
cnt = write(fh,cbuf,length);

Write to unbuffered file
size_t cnt; actual bytes read or written
int fh; file handle
const void *cbuf; data buffer
void *buf; data buffer
size_t Llength; number of bytes to read or write

DESCRIPTION

These functions read or write an unbuffered file whose handle was returned by
creat or open. Under normal circumstances, the value returned should match
the buffer length. If this value is -1 or greater than the requested length, then
some type of error occurred, and you should consult errno and _OSERR. If the
actual length is less than the requested length when reading, this usually means
that the file is exhausted. Similarly, if the actual length is less than the
requested length for a write operation, this usually means that the device has
no more space available. In both of these cases, it is still a good idea to check
errno and _OSERR just in case some malfunction caused the short count.

Note that these functions are very similar to the functions _dread and
_dwrite. The differences are that unbuffered files will be automatically closed
by exit and _exit, which are usually called for you when the program
terminates, and that all translation occurs at this level.

RETURNS

If the operation is successful, the function returns the actual number of bytes
transferred. Otherwise it returns -1 and places error information in errno and

_OSERR.
SEE

errno, _OSERR, open, _dread, _dwrite

Page 242 Lattice C § Library Reference

readdir Read next directory entry

Class: POSIX Category: Directory Manipulation
SYNOPSIS

Hinclude <dirent.h>

ent = readdir(dir);

struct dirent *ent; pointer to directory entry

DIR *dir; directory handle

DESCRIPTION

The readdir function returns a pointer to the next directory entry, or NULL on
reaching the end of the directory structure.

The pointer returned, ent, is only guaranteed to contain the element d_name,
giving the name of the file. Under GEMDOS this structure contains further
information and is defined as:

struct dirent
{

int d_attr; /* GEMDOS file attribute */
time_t d_time; /* time */
size_t d_size; /* file size */
char d_namel[FMSIZE]; /* directory entry name */
};
RETURNS

The readdir function returns a pointer to the next directory entry, or the value
NULL if all entries have been read.

SEE
closedir, opendir, rewinddir, seekdir, telldir, getfnl, dfind, dnext
EXAMPLE
/ *
* search for a file in a directory
*/

#include <dirent.h>
#include <string.h>

Library Reference Lattice C 5 Page 243

int find_file(const char *s,const char
{

DIR *dir;
struct dirent *dp;

dir=opendir(where);
while (dp=readdir(dir))
if (!strcmp(dp->d_name,s))
{
closedir(dir);
return 1; /* file found */

}
closedir(dir);
return 0; /* file not found */

*where)

Page 244

Lattice C 5

Library Reference

red I I oC Re-allocate a memory block

Class: ANSI Category: Memory Management
SYNOPSIS

#include <stdlib.h>

nb = realloc(b,n);

void *b; block pointer

size_t n; number of bytes

void *nb; new block pointer
DESCRIPTION

This function reallocates a block, changing its size. The original block is copied
to the new one. If the new block is smaller, then the upper part of the original
block is not copied.

RETURNS

If successful, realloc returns a pointer to the new block. A NULL pointer is
returned if there is not enough space for the requested block.

SEE

cdalloc, malloc, free

Library Reference Lattice C 5 Page 245

remove, unlink

Remove a file

Class: ANSI
SYNOPSIS

#include <stdio.h>

error = remove(name);
error = wunlink(name);

int error;
const char *name;

DESCRIPTION

remove a file
remove a file

non-zero if error
file name

These functions remove the specified file from the system. They behave
identically, but unlink is provided for compatibility with some versions of UNIX.
The remove function is preferred because it is now in the ANSI C standard.

The name argument can include a path, but it cannot include wild card
characters. That is, you can remove only one file at a time.

RETURNS

If a non-zero value is returned, some type of error occurred, and additional
information can be found in errno and _OSERR. The most common errors
occur when you try to remove a file that doesn’t exist or that is marked as

read-only.

SEE
errno, _OSERR

Page 246

Lattice C 5

Library Reference

EXAMPLE

* This program removes all files specified in the
* argument List. It does not allow wild card

* characters in the file names.

*/

#include <stdio.h>
int main(int argc,char *argv[l)
{

int i; /* Lloop counter */
int ret = 0; /* exit code */

for(i = 1; i < argc; i++)
if(remove(Cargv[il))
{
perror ("RMV");
ret = 1;
}
return ret;
}

Library Reference Lattice C 5 Page 247

rename Rename a file

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

error = rename(old,new);

int error; 0 for success, -1 for error

const char *old; old file name
const char *new; new file name

DESCRIPTION

This function renames a file, if possible. If the new file name includes a
directory path that is different than that of the old name, the file is
disconnected from the old directory and connected to the new one. For
example, after executing this statement:

rename("\\olddir\\file","\\newdir\\file");

you will no longer find file in the olddir directory.

RETURNS

If the function fails, it returns -1 and [flaces additional error information into
errno and _OSERR. Success is indicated by a return value of 0.

SEE

Frename

Page 248 Lattice C 5 Library Reference

EXAMPLE

/

This is a

that prompts for

* % % ¥ ¥

*/
#include
#include
Hinclude

<stdlib.h>
<stdio.h>
<dos.h>
int mainCint
{

char
char *pold,*pnew;

if(argc < 2)

{

printf{"OLD FILE:

if(gets(old) ==
exit(1);

pold = old;

else
pold = argv(1];

if(arc < 3)

{

printf("NEW FILE:
if(gets(new) ==
return 1;

pnew = new;
else
pnew = argvl(2];

version of

argc,char

/* Get old

the RENAME
the old and new

*argv[1)

OLdCFMSIZE], new[FMSIZE];

file name

u)’.

NULL)

n)'.

NULL)

if(rename(pold,pnew))
{

perror("RENAME");
return 1;

return 0;

command
names.

*/

Library Reference

Lattice C 5

Page 249

reWin d Seek to beginning of buffered file

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>
rewind(fp);

FILE *fp; file pointer

DESCRIPTION

The rewind macro is implemented as an fseek call. The rewind macro resets
the specified file to its first byte and is equivalent to the following fseek call:

fseek(fp,0L,0);

where the second argument indicates relative position (0) and the third
argument represents mode (0 for relative to the beginning of the file).

See the description of fseek for information on its use and return values.

SEE

errno, fopen, fseek, ftell, Iseek, _OSERR, tell

Page 250 LatticeC 5 Library Reference

I‘IS mem ’ rlsm l Release a memory block

Class: OLD Category: Memory Block Manipulation
SYNOPSIS

#include <stdlib.h>

error = rlsmem(p,sbytes);

error = rlsml(p,lLbytes);

int error; non-zero 1if error

void *p; block pointer

unsigned sbytes; number of bytes

size_t Lbytes; number of bytes
DESCRIPTION

These functions release memory blocks that were previously obtained via
getmem or getml.

RETURNS

If the block is not in the current memory pool or overlaps a block that is already
free, a value of -1 is returned. Otherwise, the return value is 0.

Library Reference Lattice C 5 Page 251

mMm d i r Remove a directory

Class: UNIX Category: File System Manipulation
SYNOPSIS

#include <stdio.h>

error = rmdir(path);

int error; 0 if successful
const char *path; points to directory path string

DESCRIPTION
This function removes an existing directory in the specified path. For example,

if path is “c:\\abc\def\\ghi”, then the directory named “ghi” is removed from
the path “c:\\abc\\def”’. The path may begin with a drive letter and a colon.

RETURNS

If the operation is successful, the function returns 0. Otherwise it returns -1 and
places error information in errno and _OSERR.

SEE
Ddelete, errno, _OSERR

Page 252 Lattice C 5 Library Reference

rmvenv Remove environment string

Class: Lattice Category: Process Environment

SYNOPSIS

#include <stdlib.h>
error = rmvenv(envname);

int error; 0 if successful
const char *envname; environment name string

DESCRIPTION

The rmvenv function accepts a string that specifies the name of an environment
variable. If that name exists, then it is removed from the environment. The
envname argument can also be a constructed as:

name=var

and the function will simply ignore everything after the equal sign. See putenv
for an example involving rmvenv.

RETURNS

For rmmvenv, a non-zero return indicates that the specified name is not currently
defined in the environment.

SEE

environ, getenv, putenv

Library Reference Lattice C 5 Page 253

_I’ o t l ’ - ro t r Rotate short integers

Class: Microsoft Category: Numeric Transformation
SYNOPSIS

#include <stdlib.h>

Left = _rotl(value,count);

right = _rotr(value,count);

unsigned short Left; Left rotated value

unsigned short right; right rotated value

unsigned short value; value for rotation

int count; rotation count
DESCRIPTION

The _rotl and _rotr functions rotate the short integer value to the left or right
(respectively) by the number of bits specified by the count argument. This
differs from the standard shift operators (<< and >>) in that the bits from the
top of the word are not lost, but replace the lower bits and vice-versa.

Note that this function is normally implemented using a #pragma inline.

RETURNS

The value rotated as required.

SEE

_lrotl, _Irotr

Page 254 LatticeC 5 Library Reference

Sbrk Allocate a short block from linear heap

Class: OLD Category: Memory Management
SYNOPSIS

#include <stdlib.h>
p = sbrk(sbytes);

void *p; block pointer
unsigned sbytes; number of bytes

DESCRIPTION

The sbrk function allocates a short block from the linear heap. This heap is
viewed as a contiguous memory region with allocated space at its lower end
and free space above that. A “break pointer” contains the address of the first
free location. The sbrk function increments or decrements this break pointer.

RETURNS

If sbrk fails, it returns value -1 cast to a generic pointer (void *). This strange
return is a legacy of UNIX.

SEE

getmem, Isbrk, malloc, rbrk

Library Reference Lattice C 5 Page 255

sCa nf Formatted input from stdin

Class: ANSI Category: Formatted 1/O
SYNOPSIS
#include <stdio.h>
n = scanf(fmt,arg1,arg2,...);
int n; number of dinput ditems matched, or
EOF
const char *fmt; format string
void *argx; pointers to 1input data areas
(x=1,2...)
DESCRIPTION

The scanf function performs formatted input conversions on text obtained
from the standard input file. The input characters are read and checked against
the format string, which may contain any of the following:

White space

Any number of spaces, horizontal tabs, or newline characters will cause input
to be read up to the next character that is not white space.

Ordinary characters

Any character that is not white space and is not the percent sign (%) must
match the next input character. Use a double percent (%%) in the format string
to match a single percent in the input. If there is not an exact match, scanning
stops, and the function returns. ‘

Conversion specification

This is is multi-character sequence that indicates how the next input characters
are to be converted. The form is:

Z*nlt

Page 256 Lattice C 5 Library Reference

where the various fields are defined as follows:

% A percent sign introduces a conversion specifier. If you
want to match a percent sign in the input, indicate this
by a double percent (%%) in the format string.

" The asterisk is optional. If present, it means that the
conversion should be performed, but the result should
not be stored. There should be no value pointer in the
argument list for a suppressed conversion.

n This is an optional decimal number that specifies the
maximum input field width. This is used only with the s
format.

h The letter ‘h’ is optional. If present, it indicates that a

short conversion should be performed.

| The letter 1 is optional. If present, it indicates that a
long conversion should be performed.

t The 1t stands for one of the following format characters:
c,d,e,f,a.i,n,0,s u,x. These are described below.

If the conversion is successful and assignment is not suppressed, the result is
placed into the corresponding argument. The argument list must contain a
pointer to an appropriate data item for each conversion specification that does
not suppress assignment.

The function returns the number of conversion values that were assigned. This
can be less than the number expected if the input characters do not agree with
the format string. If an end-of-input is reached before any values are assigned,
the return value is EOF.

The format characters listed above specify how the input characters are to be
converted. Leading white space is skipped in all cases except the (, C, and n
conversions.

c The corresponding argument must point to a character.
The next input character is moved to that destination.
Note that no white space is skipped.

d The corresponding argument must point to an integer or
to a long integer. The latter applies if the d is preceded
by an |. The input characters must be decimal digits,
optionally preceded by a plus or minus sign.

Library Reference Lattice C 5 Page 257

efg These three types are identical. The corresponding
argument must point to a float or a double. The latter
applies if the type letter is preceded by an ‘I'. The input
characters must consist of the following sequence:

Optional leading white space.
An optional plus (+) or minus (-).
A sequence of decimal digits.

An optional decimal point followed by 0 or more decimal
digits.

An optional exponent, consisting of the letter ‘@’ or ‘E
followed by an optional plus or minus sign followed by 1

or more decimal digits. This general form is shown
below, where [...] indicates an optional part:

[Lspacellsignldigitsl.digits]lCexponent]

| A signed integer is expected. The corresponding
argument must point to a signed integer or a signed
long integer if the ‘I is preceded by an ‘I'. This specifier is
similar to ‘d’ but it will additionally interpret numbers
specified in other than decimal format.

n No input characters are read. The corresponding
argument must point to an integer into which is written
the number of input characters read so far.

o) An octal number is expected, and the corresponding
argument should point to an integer, or to a long integer
if the ‘0’ is preceded by an ‘I'.

p The associated argument is taken as a data pointer, and
it is converted from a hexadecimal representation.

3 A character string is expected, and the corresponding
argument should point to a character array large
enough to hold the string and a terminating null byte.
The input string is terminated by white space or the end-
of-input. Also, if a maximum field width is specified, the
output array size should be at least that width plus 1,
because the reading of input characters will stop at the
field width even if no white space has been hit.

Page 258 Lattice C 5 Library Reference

u An unsigned decimal number is expected, and the
corresponding argument should point to an unsigned
integer, or to an unsigned long integer if the ‘U’ is
preceded by an I".

X A hexadecimal number is expected, and the
corresponding argument should point to an integer, or
to a long integer if the ‘x’ is preceded by an ‘I'. The
hexadecimal number can begin with the characters “0x”
or “0X”, and case is not significant for the hexadecimal
letters.

(A nonempty sequence of characters from the given
“scanset” is expected. The corresponding argument
should point to the initial character of a character array
large enough to hold the sequence and a terminating
null byte. The conversion specifier includes all
subsequent characters (“scanlist”) in the format string,
up to and including the right bracket. Also consider the
following special cases with the caret symbol (A):

If the A character is used as the first one after the left
bracket, the scanset contains all character that do not
appear between the brackets.

If the conversion specifier () or (A) is used, the right
bracket itself is in the scanlist and the next right bracket
character is the matching right one that ends the
specification; otherwise the first right bracket is the one
that ends the specification.

If a - character in the scanlist is not first, second after
the A character, or last in order, the scanlist contains the
range from the characters before and after the -
character, inclusive.

RETURNS

The function returns the number of assignments that were made. For example,
a return value of 3 indicates that conversion results were assigned to argl,
arg?, and arg3.

All of the result arguments (i.e. arg1, arg2, and so on) must be pointers. Also,

you should not supply a pointer for any conversion specification that uses the *
to suppress assignment.

SEE

cscanf, fscanf, sscanf

Library Reference Lattice C 5 Page 259

seekdir, rewinddir, telldir seekon directory entries

Class: POSIX Category: Directory Manipulation
SYNOPSIS

#include <dirent.h>

seekdir(dir,pos); seek to new directory position

pos = telldir(dir); find current directory position

rewinddir(dir); move to start of directory

DIR *dir; directory handle

Long pos; directory position
DESCRIPTION

The seekdlr function sets the position where the next readdIr operation will
occur. The position should be one previously obtained from the telldir function
which returns the current position.

The rewInddir macro, simply resets the directory position to the start of the
directory.

RETURNS

The telldiIr function returns a long value giving the current position of the
associated directory stream.

SEE

closedir, opendir, readdir, getfnl, dfind, dnext

Page 260 LatticeC 5 Library Reference

se 1' ar g v Parse command line arguments

Class: Lattice Category: Process Environment
SYNOPSIS

__regargs char **_setargv(char *line, char **argv);

char *line; null terminated command Lline

char **argv; argument vector to fill in
DESCRIPTION

The _setargv is called during the startup code to parse the command line
arguments. You may replace this if you wish with your own code if you wish to
say perform wild card matching of arguments. Note that this function must be
declared as a register passing function and compiled without stack checks.

Also note that this function will never be called if the command was passed a
pre-parsed command line using the Atari extended command line format.

The parameter line is a null terminated command line which the routine should
parse, storing pointers to the parsed arguments at argv upwards. The final
value of argv after parsing is then returned. The source code to the standard
_setargv module is supplied in the package.

RETURNS

The value you return from this function is a pointer to the first free byte above
the area into which you parsed the arguments.

Library Reference Lattice C 5 Page 261

setbuf Set file buffer

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

setbuf(fp,buff);

FILE *fp; file pointer
char *buff; buffer pointer
DESCRIPTION

The setbuf function sets the buffering mode for a file previously opened via
fopen, freopen, or fdopen. You should call the function immediately after
opening the file. If you fail to follow this rule, the file may become corrupted.

The buffered I/O system automatically allocates a buffer via malloc when you
perform the first read or write operation. Then the data being read or written
is staged through this buffer in order to improve I/O efficiency. If you would
rather use your own buffer instead of having one allocated for you, call setbuf
with a non-NULL buffer pointer. The buffer size must be at least as large as the
value given in the external integer _bufsiz, which defaults to the value of the
symbol BUFSIZ, defined in stdio.h.

You can eliminate buffering and still use the buffered 1/O functions by calling
setnbf or by calling setbuf with a NULL buffer Fointer. When this is done,
physical I/O occurs whenever your program performs buffered read or write
operation, even if only one byte is being transferred. This is very inefficient for
disk files, but often desirable for terminal or communication ports.

The setbuf function must be used only after fopen, freopen, or fdopen and
before any other buffered file operations. Also, a common error is to allocate a
buffer on the stack within a function, attach it to a file, and then return from
the function. This will corrupt the stack.

SEE

fopen, freopen, fdopen, setnbf, setvbuf

Page 262 Lattice C 5 Library Reference

Sefj mp, lon g | mp Set long jump parameters

Class: ANSI Category: Non-Local Jumps/Signal Handling
SYNOPSIS

#include <setjmp.h>

ret = setjmp(save);

Longjmp(save,value);

int ret; return code

int value; return value

jmp_buf save; save area
DESCRIPTION

The setjmp function checkpoints the current stack mark in the save area and
returns a code of 0. A subsequent call to longjmp will then cause control to
return to the next statement after the original setjmp call, with value as the
return code. If value is 0, it is forced to 1 by longjmp.

This mechanism is useful for quickly popping back up through multiple layers of
function calls under exceptional circumstances. Structured programming gurus
lose a lot of sleep over the “pathological connections” that can result from
indiscriminate usage of these functions.

RETURNS

A return code of 0 from setjmp indicates that this is the initial call to save the
stack.

Calling longjmp with an invalid save area is an effective way to disrupt the
system. One common error is to use longjmp after the function calling setjmp
has returned to its caller. This cannot possibly succeed, since the stack frame for
that function no longer exists.

Note that since the Lattice C compiler performs automatic register allocation
the only automatic variables guaranteed to remain valid are those explicitly
declared volatile. Consider the function:

#include <setjmp.h>
jmp_buf j;
int f(void)
{
int x;
x=f10);

if (setjmp(j))
return x;

Library Reference Lattice C 5 Page 263

x=f2();

return f3(x);

If in this function a longjmp occurs in 3 the value of x may or may not be
restored to the value at the setjmp. If this is important the variable x should be

declared:
volatile int x;

so that the value of x after a longjmp will be that which was in force from the
assignment from f2.

Page 264 Lattice C 5 Library Reference

setlocale Set locale control parameters

Class: ANSI Category: Localisation
SYNOPSIS

#include <locale.h>

old = setlocale (category,locale);

char *old; pointer to old Llocale

int category; category to change

const char *locale; new environment
DESCRIPTION

The setlocale function provides the mechanism for controlling locale-specific
features of the library. The category argument allows parts of the library to
be localised as necessary without changing the entire locale-specific
environment. Specifying the locale argument as a string gives an maximum
flexibility in providing a set of locales. For instance, an implementation could
map the argument string into the name of a file containing appropriate
localisation parameters; these files could then be added and modified without
requiring any recompilation of a localisable program.

The setlocale function selects the appropriate portion of the program’s locale
as specified by the category and locale arguments. The setlocale function

may be used to change or query the program'’s entire current locale or portions
thereof. The value LC_ALL for category names the program’s entire locale;
the other values for category name only a portion of the program’s locale.
LC_COLLATE affects the behaviour of the strcoll and strxfrm functions.

LC_CTYPE affects the behaviour of the character-handling functions and the
multibyte functions. LC_MONETARY affects the monetary formatting
information returned by the localeconv function. LC_NUMER?E: affects the
decimal-point character for the formatted input/output functions and the string
conversion functions, as well as the non-monetary formatting information
returned by the localeconv function. LC_TIME affects the behaviour of the
strffime function.

A value of “C” for locale specifies the minimal environment for C translation: a
value of “ “ for locale specifies the native environment.

At program startup, the equivalent of:

set Llocale(LC_ALL, "C");

is executed.

Library Reference Lattice C 5 Page 265

RETURNS

If a pointer to a string is given for locale and the selection can be honoured,
the setlocale function returns a pointer to the string associated with the
specified category for the new locale. If the selection cannot be honoured, the
seflocale function returns a NULL pointer and the program’s locale is not
changed.

A NULL pointer for locale causes the setlocale function to return a pointer to
the string associated with the category for the program’s current locale; the
program’s locale is not changed.

The pointer to string returned by the setlocale function is such that a
subsequent call with that string value and its associated category will restore
that part of the program’s locale. The string pointed to cannot be modified by
the program, but may be overwritten by a subsequent call to the setlocale
function.

SEE

localeconv, strcoll, strftime, strxfrm

Page 266 Lattice C 5 Library Reference

setn bf Set non-buffer mode for a file

Class: UNIX Category: Stream I/O
SYNOPSIS

#include <stdio.h>

error = setnbf(fp);

int error; 0 upon success

FILE *fp; file pointer
DESCRIPTION

The setnbf function sets the unbuffered mode for a file previously opened via
fopen, freopen, or fdopen. You should call the function immediately after
opening the file. If you fail to follow this rule, the file may become corrupted.

By calling this function, the buffering is eliminated, but you may still use the
buffered I/O functions. When this is done, physical I/O occurs whenever your
program performs buffered read or write operation, even if only one byte is
being transferred. This is very inefficient for disk files but often desirable for
terminal or communication ports.

The setnbf functions must be used only after fopen, freopen, or fdopen and
before any other buffered file operations.

SEE

fopen, freopen, fdopen, setbuf, setvbuf

Library Reference LatticeC 5 Page 267

setvbuf Set variable file buffer

Class: ANSI Category: Stream I/O
SYNOPSIS

#include <stdio.h>

error = setvbuf(fp,buff,type,size);

int error; 0 if successful

FILE *fp; file pointer

char *buff; buffer pointer

int type; type of buffering

size_t size; buffer size in bytes
DESCRIPTION

The setvbuf function sets the buffering mode for a file previously opened via
fopen, freopen, or fdopen. You should call the function immediately after
opening the file. If you fail to follow this rule, the file may become corrupted.

The setvbuf function can do everything that the other two functions (setbuf
and setnbf) can do, and it can also set “line buffered” mode and attach a buffer
of non-standard size. The type argument must be one of the following symbols
defined in stdio.h:

Value Meaning
_IOFBF Fully buffered
_IOLBF Line buffered
_IONBF Non-buffered

For _IOFBF and _IOLBF, the specified buffer will be attached to the file unless
buff is NULL, in which case a buffer will be automatically allocated on the first
read or write. For the _IONBF case, the buff and size arguments are ignored.

The line-buffered mode is useful for interactive applications. When in this
mode, the buffer is flushed whenever a newline is sent, the buffer is full, or
input is requested. Note, however, that you must use the fputc and fputchar
functions instead of the putc and putchar macros in order for line buffering to
work correctly. The macros do not check if line-buffered mode is active, and so
they behave as if the file were fully buffered.

Page 268 Lattice C 5 Library Reference

The setvbuf function must be used only after fopen, freopen, or fdopen and
before any other buffered file operations. Also, a common error is to allocate a
buffer on the stack within a function, attach it to a file, and then return from
the function. This will corrupt the stack.

RETURNS

For setvbuf, the error code is non-zero if type or size is invalid.

SEE

fopen, freopen, fdopen, setbuf, setnbf

Library Reference Lattice C 5 Page 269

Sig na I Establish event traps

Class: ANSI Category: Non-Local Jumps/Signal Handling
SYNOPSIS

#include <signal.h>

oldfun = signal(sig,newfun);

int (*oldfun)(); old trap function

int sig; signal number

int (*newfun)(); new trap function
DESCRIPTION

This function establish traps for various events that can occur outside of your
program. The newfun argument specifies the action to be taken when the
signal occurs, as follows:

SIG_IGN Ignore the signal.

SIG_DFL Take the system default action for each signal.

If newfun is not any of the above, then it must be a valid function pointer.
When the signal is detected, the action is reset to either SIG_DFL or SIG_IGN,
depending on the particular signal. Then the trap function is called with an
integer argument specifying which signal was detected (e.g. SIGINT). The trap
function can take whatever action is necessary, including calling signal again
to re-establish itself as the trap function. If the function returns, execution
continues at the point in your program where the signal was detected.

The sig argument specifies which signal is being trapped, using the symbols
defined in signal.h.

RETURNS
The signal function normallg returns the previous value of the trap function,
!

which may be SIG_IGN or SIG_DFL. It may return SIG_ERR to indicate an
attempt to set an illegal signal number.

SEE

raise

Page 270 Lattice C 5 Library Reference

_s LAS H Directory separator character

Class: Lattice Category: Process Environment
SYNOPSIS

extern char _SLASH;
DESCRIPTION

This external character is used by various functions which construct file names.
It specifies the character to be used for separating components of the directory
path. For GEMDOS and MSDOS it is a backslash (\), whilst under UNIX and
AmigaDOS it is a slash (/).

SEE

strmfn, strmfp

Library Reference Lattice C 5 Page 271

sizmem

Get memory pool size

Class: OLD
SYNOPSIS

#include <stdlib.h>
size = sizmem();

lLong size;

DESCRIPTION

Category: Memory Block Manipulation

This function returns the number of unallocated bytes in the current memory
pool. This value is the sum of the sizes of all unallocated blocks, and so it does
not indicate the size of the largest free block.

Also, the value does not indicate the maximum amount of memory that can be
allocated. That is, the allocation functions will automatically expand the pool

when no block of sufficient size is found in the pool.

SEE

getmem, getml, rlsmem, risml, rstmem

Page 272

Lattice C 5

Library Reference

spri ntf Formatted print to storage

Class: ANSI Category: Formatted I/O
SYNOPSIS
#include <stdio.h>
Length = sprintf(s,fmt,arg1,arg2,...);
int Llength; number of characters generated
const char *fmt; format string
char *s; storage pointer

See printf for arg1, arg2, and so on.

DESCRIPTION

The printf group of functions generate a stream of ASCII characters by
analysing the format string and performing various conversion operations on
the remaining arguments. The sprintf form of printf places the output
characters into the storage area whose address is given by s. You must ensure
that this area is large enough to hold the maximum number of characters that
might be generated. Note that sprintf also generates a null byte to terminate
the stored string.

See the description of the printf function for a complete discussion of the
arguments and conversion specifications. An example is also provided.

RETURNS

This function returns the number of output characters generated. For sprintf,
this number does not include the terminating null byte.

SEE
cprintf, fprintf, lprintf, printf, viprintf, vprintf, vsprintf

Library Reference Lattice C 5 Page 273

SSCa nf Formatted input from a string

Class: ANSI Category: Formatted I/O
SYNOPSIS
#include <stdio.h>
n = sscanf(ss,fmt,arg1,arg2,...);
int n; number of input items matched, or
EOF

const char *ss; input string

const char *fmt; format string

void *argx; pointers to 1input data areas
(x=1,2...)

DESCRIPTION

The sscanf function performs formatted input conversions on text obtained
from a string. The input characters are read and checked against the format
string. The description of the scanf function fully describes the formats and
conversion specifications.

RETURNS

The function returns the number of assignments that were made. For example,
a return value of 3 indicates that conversion results were assigned to argl,
arg?, and arg3.

SEE

cscanf, fscanf, scanf

Page 274 Lattice C 5 Library Reference

_STAC K ’ _ST K D E I_TA Stack specification

Class: Lattice Category: Process Environment
SYNOPSIS

extern unsigned Llong _STACK; stack size

extern unsigned Llong _STKDELTA; 'chicken' factor
DESCRIPTION

This external value _STACK is used by the startup code to define the initial
stack space allocated to the process. To increase it from the default 4k, you
should include an initialised variable of the form:

unsigned Llong _STACK=16384;

in your program. The associated variable _STKDELTA sets the minimum
‘distance” which the stack checking code will allow between the top of the data
area and the bottom of the stack before calling _xcovf.

SEE

_base, _xcovf

Library Reference Lattice C 5 Page 275

SfCﬂ' Get status of named file

Class: UNIX Category: Low-Level I/O
SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>

ret = stat(name,statbuf);
int ret; 0 if successful

const char *name; path naming a file
struct stat *statbuf; stores information about file

DESCRIPTION

The stat function returns UNIX-style file status information about the file
specified by name. The buffer returned is defined in sys/stat.h as follows:

struct stat
{

dev_t st_dev; disk drive number

ino_t st_ino; inode number (not used)
unsigned short st_mode; file mode flags

short st_nlink; number of Llinks (always 1)
short st_uid; user id (not wused)

short st_gid; group id (not used)
dev_t st_rdev; same as st_dev

off_t st_size; file size in bytes
time_t st_atime; time of Llast access
time_t st_mtime; time of Llast modification
time_t st_ctime; time of creation

};

Note that the header file sys/types.h must be included prior to sys/stat.h as
this defines the types dev_t, Ino_t, dev_t and off_t.

RETURNS

On success, the staf function returns 0.

Page 276 Lattice C 5 Library Reference

SdeI’g Get an argument

Class: Lattice Category: Argument Processing
SYNOPSIS

#include <string.h>

Length = stcarg(s,b);

size_t Llength; number of bytes in argument

const char *s; text string pointer

const char *b; break string pointer
DESCRIPTION

This function scans the text string until one of the break characters is found or
until the null terminating byte is hit. While scanning, stcarg skips over
substrings that are enclosed in single or double quotes, and the backslash is
recognised as an escape character. In other words, break characters will not be
detected if they are quoted or preceded by a backslash.

RETURNS

The function returns a count of the number of characters in s up to but not
including the break character or null terminator.

SEE
stpbrk,strcspn,strpbrk

EXAMPLE

H#include <stdio.h>
#include <string.h>

int main(void)
{

char alC2561,bL2561;

int x;
for (;;)
{

printf("Enter text string: ");
if(gets(a) == NULL)

return O0;
printf("Enter break string: ");

if(gets(b) == NULL)
return O0;
x = stcarg(a,b);

printf(”"Length: %d, Text: \"Z.*s\"\n\n",x,x,a);

Library Reference Lattice C 5 Page 277

Sth_i, ef GI Convert strings to integer

Class: Lattice Category: Numeric Transformation

SYNOPSIS

Hinclude <string.h>

Length = stcd_i(in,ivalue); decimal string to int

Length = stco_i(in,ivalue); octal string to int

Length = stch_i(in,ivalue); hexadecimal string to
int

Length = stcd_L(in,lvalue); decimal string to Llong
int

length = stco_Ll(in,lvalue); octal string to Llong
int

Length = stch_Ll(in,lvalue); hexadecimal string to
Long

int Llength; input Llength

const char *in; input string pointer

int *ivalue; integer value pointer

Long *Llvalue; Long integer value
pointer

DESCRIPTION

These functions scan an input string and convert the leading characters into
short or long integers. For stcd_I and stcd_|, the input string must begin with
a plus sign ‘+’, minus sign ‘-’, or a decimal digit (‘0" to ‘9’). The octal
conversions stco_i and stco_| process an unsigned string of octal digits (‘0" to
‘7). Finally, the hexadecimal conversions stch_i and stch_| handle unsigned
strings containing digits from ‘0’ to ‘9’ and letters from ‘A’ to ‘F’ or ‘a’ to ‘f.
Scanning of the input string stops when the first invalid character is reached,
At that point, the resulting value is stored into the area addressed by the
second argument.

RETURNS

Each function returns the number of input characters converted. This result will
be 0 if the first character of the input string is not valid for the particular
conversion. In that case, conversion result stored via the second argument will
be 0.

EXAMPLE

#include <stdio.h>
#include <string.h>

Page 278 Lattice C 5 Library Reference

int main(void)
int x;
long j;
char bC801;

for (;;)

printf("\nEnter
i

f(gets(b) ==
reak;

x = stch_L(b,&j);
printf("stch_L:

)}
return 0;

Length

gexadecimal

%Zd,

Zlx\n",x,j);

Library Reference

Lattice C 5

Page 279

stcgfe, S'I'Cgfn, Stcgfp Get file name components

Class: Lattice Category: File Name Manipulation
SYNOPSIS

#include <string.h>

size = stcgfe(ext,name); Get file extension
size = stcgfn(node,name); Get file node

size stcgfp(path,name); Get file path

int size; size of result string

char *ext; extension area pointer

char *node; node area pointer

char *path; path area pointer

const char *npame; file name pointer
DESCRIPTION

These functions isolate the path, node, or extension portion of a file name. The
node is the rightmost portion of the file name that is separated from the rest of
the name by a colon, slash, or backslash. The extension is the final part of the
node that begins with a period, and the path is the leading part of the name up
to the node. For example,

Name Path Node Extension

“myprog.c”’ o “myprog.c” “’

“\abc.dir\def” “\abc.dir\"” "def” w

“\abc.dir\def.ghi” “\abc.dir\"” “def.ghi” “ghi”

“c:yourfile” " "“yourfile” “

“\abc\” "\abc\” “ “
RETURNS

The size value is the same as would be returned by the strlen function. That is,
if size is 0, then the desired portion of the file name could not be found and the
result area contains a null string.

SEE
strsfn

Page 280 LatticeC 5 Library Reference

EXAMPLE

Hinclude <stdio.h>
#include <string.h>
#include <dos.h>

int main(void)
{

char filelFMSIZE],path[FMSIZE];
char node[FMSIZEJ],ext[LFMSIZE];

while(gets(file) != NULL)
{

stcgfe(ext, file);

stcgfn(node,file);

stcgfp(path,file);

printf("PATH: Zs NODE: XZs EXT: Zs",
path,node,ext);

return 0;

Library Reference Lattice C 5 Page 281

StCi_d 3 et CII Convert integers to strings

Class: Lattice Category: Numeric Transformation
SYNOPSIS
#include <string.h>
length = stci_d(out,ivalue); int to decimal
Length = stci_o(out,ivalue); int to octal
length = stci_h(out,ivalue); int to hexadecimal
Llength = stcl_d(out,lvalue); Long int to decimal
Length = stcl_o(out,lvalue); Long int to octal
Length = stcl_h(out,lLvalue); Long int to
hexadecimal
Length = stcu_d(out,uivalue); unsigned int to
decimal;
Length = stcul_d(out,ulvalue); unsigned Llong to
decimal
int Length; output Length
char *out; output buffer pointer
int dvalue; integer value
Long Llvalue; Long integer value
unsigned int wuivalue; unsigned 1integer
value
unsigned Llong ulvalue; unsigned Llong integer
value
DESCRIPTION

These functions convert various integral values into ASCII strings. The output
area must be large enough to accomodate the maximum possible string,
including the terminating null byte that each function appends. The following
table shows the required lengths.

Function Length Function Length
stci_d 7 stcl_o 12
stci_o 7 stcl_h 9
stci_h 5 stcu_d 6
stcl_d 13 stcul_d 12

For stci_d and stcl_d, the first output character will be a minus sign if the
input value is negative. No special leading character is generated if the value is
positive. For all functions, leading zeroes are suppressed, and a single ‘0’
character is generated if the input value is 0.

Page 282 LatticeC 5 Library Reference

RETURNS

The return value is the number of characters actually placed into the output
area, not including the final null byte.

EXAMPLE

Hinclude <stdio.h>.
#include <string.h>

int main(void)
{

int i,x;
char bC133];

for (;;)

{

printf("\nEnter a short integer: ");
scanf("%Zd",&i);

x = stci_d(b,i);
printf("stci_d: Length %d, Result Zs\n",x,b);
x = stci_o(b,i);
printf("stci_o: Length %d, Result 2Zs\n",x,b);
x = stci_h(b,i);

printf("stci_h: Length X%d, Result 2Zs\n",x,b);

i.ibrary Reference Lattice C 5 Page 283

stc p m s Stc p mda Pattern match functions

Class: Lattice Category: String Search
#include <string.h>
size = stcpm(string,pattern,match);

Unanchored pattern match
size = stcpma(string,pattern); Anchored patter match
size_t size; size of matching string
const char *string; string to be scanned
const char *pattern; pattern string
char **match; returns pointer to matching

string

These functions scan a string to find a specified pattern. The pattern is specified
in a simplified form of regular expression notation as shown below:

Pattern Meaning

(4 Match any single character

c* Match 0 or more instances of character ¢
Cc+ Match 1 or more instances of character c
\? Match a question mark (?)

* Match an asterisk (*)

\+ Match a plus sign (+)

Any other character must match exactly. For example,

Pattern Matching

“abc” Only “abc”

“ab*c” “ac” or “abc” or “abbc” and so on

“ab+c” “abc” or “abbc” or “abbbc” and so on

“ab?*c” Any string starting with “ab” and ending with “c”
“ab\ *c” Only “ab*c”

Page 284 Lattice C S5 Library Reference

Notice that the last pattern requires a double backslash in front of the asterisk.
This causes the compiler to place a single backslash in the string so that stfcom
or stfcpma will see the string as “ab*c”.

For stcoma, the match must occur at the beginning of the string, while for
stcpm, the match can occur anywhere in the string. In either case, the function
returns the size of the matching string or zero if there was no match. Also,
stcpm returns a pointer to the beginning of the matching string.

EXAMPLE

#include <stdio.h>
#include <string.h>

int main(void)
{

char sC1001,pC1001,%*r;
int x;

for (;;)
{
printf(”"\nSearch string => ");
if(gets(s) == NULL)
break;
printf("Pattern => ");
if(gets(p) == NULL)
break;
x = stcpma(s,p);
if(x)
printf("stcpma: %d, \"Z%Z.*s\"\n",x,x,s);
else
printf("stcpma: no match\n");
x = stcpm(s,p,8&r);
if(x)
printf("stcpm: %d, \"%Z.*s\"\n",x,x,r);
else
printf(”"stcpm: no match\n");

return 0

Library Reference Lattice C 5 Page 285

st p bl k Skip blanks (white space)

Class: Lattice Category: String Search
SYNOPSIS

#include <string.h>

q = stpblk(p);

char *q; updated string pointer

const char *p; string pointer
DESCRIPTION

This function advances the string pointer past white space characters, that is,
past all the characters for which isspace is true.

RETURNS

The function returns a pointer to the next non-white-space character. Note that
the null terminator byte is not considered to be white space, and so the function
will not go past the end of the string.

SEE
stcis, strspn

EXAMPLE

#include <stdio.h>
#include <string.h>

int main(void)
{

char inputl2561];

for (;;)
{
puts(”"\nEnter a string with Lleading blanks...");
if(gets(input) == NULL)
break;

printf("%Zs\n",stpblk(input));

return 0

Page 286 Lattice C 5 Library Reference

stpdate Convert date array to string

Class: Lattice Category: Date and Time
SYNOPSIS

#include <string.h>

np = stpdate(p,mode,date);

char *np; updated output string pointer

char *p; output string pointer

int mode; conversion mode

const char *date; date array, as follows

datel0] => year - 1980

datef1] => month (1 to 12)
datel[2] => day (1 to 31)

DESCRIPTION

This function converts a 3-byte date array into ASCII or BCD according to the
mode argument:

Mode Date Format

0 yymmdd (BCD, 3 bytes)

1 yymmdd (ASCII, 7 bytes)

mm/dd/yy (ASCII, 9 bytes)
mm-dd-yy (ASCII, 9 bytes)

MMM d, yyyy (ASCII, up to 13 bytes)

Mm...m d, yyyy (ASCII, up to 19 bytes)

dd MMM yy (ASCII, 10 bytes)
dd MMM yyyy (ASCII, 12 bytes)

N|o|jla| sl N

In the above formats, MMM represents a 3-character month abbreviation in
capitals, and Mm...m represents the full month name (e.g. January). The mm,
dd, and yy terms are 2-character month, day, and year, respectively, while d is
the date with the leading zero suppressed. The yyyy term is the 4-character
year obtained by adding 1980 to the first byte of the date array.

For all modes except 0, a null byte is appended to the output string.

Library Reference Lattice C 5 Page 287

RETURNS

The function does not make validity checks on the date array, and so it cannot
fail. It returns a pointer to the first byte past the generated output. For modes
other than 0, this is a pointer to the null terminator.

SEE
stptime, getclk, getft, fftunpk

Page 288 Lattice C 5 Library Reference

Sfpsym Get next symbol from a string

Class: Lattice Category: String Search
SYNOPSIS
#include <string.h>
p = stpsym(s,sym,symlen);
char *p; points to next input character
const char *s; input string
char *sym; output string
size_t symlen; sizeof(sym)
DESCRIPTION

This function extracts the next symbol from the input string. The first character
of the symbol must be alphabetic (upper or lower case), and the remaining
characters must be alphanumeric. Note that the pointer is not advanced past
any initial white space in the input string.

The output string is the null-terminated symbol, and will be an empty string if

no symbol is found. If the symbol is longer than symlen-1, its excess characters
are dropped.

RETURNS

The function returns a pointer to the next character past the symbol.

SEE
stcarg, stpbrk, strcspn, strpbrk

Library Reference Lattice C 5 Page 289

EXAMPLE

#include <stdio.h>
#include <string.h>

int main(void)
{

char al2561,bC101;
char *p;

\"%Zs\"\n",b,p);

Page 290

for (;;)
{
printf("\nEnter text string: ");
if(gets(a) == NULL)
break;
for (;;)
{
p = stpsym(a,b,sizeof(b));
printf("Symbol: \"Zs\" Residual:
if(b[0]1 == '\0"')
break;
>
}
return 0;
Lattice C 5

Library Reference

stp“me Convert time array to string

Class: Lattice Category: Date and Time
SYNOPSIS

#include <string.h>

np = stptime(p,mode,time);

char *np; updated output string pointer

char *p; output string pointer

int mode; conversion mode

const char *time; time array, as follows

timeC0] => hour (0 to 23)
timelL1] => minute (0 to 59)
timelL2] => second (0 to 59)
time[3] => hundredths (0 to 99)

DESCRIPTION

This function converts a 4-byte time array into ASCII or BCD according to the
mode argument:

Mode Time Format

0 hhmmssdd (BCD, 4 bytes)

1 hhmmss (ASCII, 7 bytes)

hh:mm:ss (ASCII, 9 bytes)
hhmmssdd (ASCII, 9 bytes)

hh:mm:ss.dd (ASCII, 12 bytes)

hh:mm (ASCII, 6 bytes)

hr:mm:ss HH (ASCII, 12 bytes)

N| || | WD

hr:mm HH (ASCI]I, 9 bytes)

The hh, mm, ss, and dd terms are simply the 2-digit (BCD or ASCII)
equivalents of the binary values in the time array. The hr term is the 2-digit
hour using the 12-hour form, and the HH term is either AM or PM.

Note that a null terminator is appended to the ASCII output strings.

Library Reference Lattice C S5 Page 291

RETURNS
The function does not make validity checks on the time array, and so it cannot

fail. It returns a pointer to the first byte past the generated output. For modes
other than 0, this is a pointer to the null terminator.

SEE
stpdate, getclk, getft, fftunpk

Page 292 LatticeC 5 Library Reference

stptOk Get next token from a string

Class: Lattice Category: String Search
SYNOPSIS
#include <string.h>
p = stptok(s,tok,toklen,brk);
char *p; points to next character after
token
const char *s; points to input string
char *tok; points to output buffer
size_t toklen; sizeof(tok)
const char *brk; break string
DESCRIPTION

This function breaks out the next token from the input string and moves it to
the token buffer with a null terminator. A token consists of all characters in the
input string § up to but not including the first character that is in the break
string. In other words, brk specifies the characters that cannot be included in a
token.

If the input string begins with a break character, then the token buffer will
contain a null string, and the return pointer p will be the same as s. If no break
character is found after toklen-1 input characters have been moved to the

token buffer, or if the input string terminator (a null byte) is hit, then the scan
stops as if a break character were hit.

RETURNS
The function returns a pointer to the next character in the input string.

Note that the function does not delete white space at the beginning of the input
string.

SEE
stpblk, strtok

Library Reference Lattice C 5 Page 293

Sh‘ b p I Build string pointer list

Class: Lattice Category: String Search
SYNOPSIS
#include <string.h>
n = strbpl(s,max,t);
Long n; number of pointers
char *sC3]; pointer to string pointer List
size_t max; maximum number of pointers
const char *t; text pointer
DESCRIPTION

This function constructs a list of pointers to the strings contained within the
specified text array. Each string must be null-terminated, and the text array
must be terminated by a null string. In other words, array t must end with two
null bytes, one to terminate the final string and another to terminate the array.
The string pointer list § is terminated by a null pointer.

RETURNS

The return value indicates how many string pointers were placed into the array
s, not including the NULL terminator If the number of strings plus the final null
pointer is greater than max, a value of -1 is returned.

SEE
getfnl, strsrt

Page 294 Lattice C 5 Library Reference

SfrCCIf, strncat Concatenate strings

Class: ANSI Category: String Copy
SYNOPSIS
#include <string.h>
p = strcat(to,from);
p = strncat(to,from,n);
char *p; same as destination string pointer
char *to; destination string pointer
const char *from; source string pointer
size_t n; Length count
DESCRIPTION

The strcat function concatenates the source string to the tail end of the
destination string. Compare this function with strncat, which allows you to
specify the maximum number of characters which will be added.

A nullbyte is placed at the end of the destination.

RETURNS

The strcat and strncat functions return a pointer that is the same as the first
argument.

SEE

strcpy, stpcpy. strncpy

Library Reference Lattice C 5 Page 295

EXAMPLE

#include

<stdio.h>

#include <string.h>
int main(void)
{
char al2561,bL2561;
Long n;
for (;;)
{
printf(”"\nEnter string A: ");
if(gets(a) == NULL)
break;
printf("Enter string B: ");
if(gets(b) == NULL)
break;
printf("Enter maximum Length N: ");

}

return

scanf("%ZLd",&n);
printf(”"strcat(A,B):
printf("strncat(A,B, N):

0;

\"%s\"\n",strcat(a,b));
\"%Zs\"\n",strncat(a,b,n));

Page 296

Lattice C 5

Library Reference

strchr, strrchr, stpchr, stpchrn Find character

Class: ANSI Category: String Search
SYNOPSIS

#include <string.h>

p = stpchr(s,c); find character in string

p = stpchrn(s,c); find character not in string

p = strchr(s,c); find character in string

p = strrchr(s,c); find Last character in string

char *p; updated string pointer

const char *s; input string pointer

int c¢; character to be Llocated
DESCRIPTION

The stpchr and strchr functions scan the input string to find the first occurrence
of the character specified by ar%lument C. Similarly, stpchrn scans for the first
occurrence of some character other than . The strrchr function scans the input
string to find the last occurrence of the character specified by argument C.

stpchr is provided for compatibility with other versions of Lattice C, whilst the
strchr function is now part of the ANSI standard.

RETURNS

For strchr, strrchr and stpchr a NULL pointer is returned if the input string is
empty or if the specified character is not found. stpchrn returns a NULL pointer
if the input string is empty or consists entirely of character C.

Library Reference Lattice C 5 Page 297

strcmp, stricmp, strncmp, strnicmp

Compare strings

Class: ANSI Category: String Comparison
SYNOPSIS

#include <string.h>

x = strcmp(a,b); Compare strings

x = stricmp(a,b); Compare strings, case-

insensitive
X
x

strncmp(a,b,n); Compare strings, Llength-Limited
strnicmp(a,b,n); Compare strings, no case, max

size
int x; comparison result
const char *a,*b; strings being compared
size_t n; Length Llimiter
DESCRIPTION

These functions compare two null-terminated strings. The ASCII collating
sequence is used in all cases, but stricmp and strnicmp do not distinguish
between upper and lower case. Note also that stricmp and strnicmp are not
part of the ANSI C standard.

The relative collating sequence of the strings is indicated by the sign of the
return value, as follows:

Return Meaning

Negative First string is below second
Zero Strings are equal

Positive First string is above second

If the strings have different lengths, the shorter one is treated as if it were
extended with zeroes. For strncmp and strnicmp, no more than n characters
are compared.

Note that strcmp has a built-in version which is functionally equivalent to the
standard library version. The statement #include <string.h> provides a default

setting by which built-in functions are accessed. If you don’t want the built-in
function, you can use an #undef statement i.e. #undef strcmp.

RETURNS

As noted above.

Page 298 LatticeC 5 Library Reference

EXAMPLE

#include <stdio.h>
#include <string.h>

void result(const char *name, size_t
{

char *p;

if(r == 0)

= "is equal to";

p
else if(r < 0)

= "is Lless than";

p
else if(r > 0)
= "is greater

p
printf("%s String A Z%s string B\n",name,p);

}

int main(void)
{

than";

char alC2561,bL2561];

Long n;
for (;;)
{

printf("Enter string A: ");
if(gets(a) == NULL)

break;
printf("Enter string B: ");
if(gets(b) == NULL)

break;

printf("Enter maximum

scanf("%d",8&n);

result("”strcmp:
result(”"stricmp:
result(”"strncmp:

}
return 0;

",strcmp(a,b));
",stricmpCa,b));
",strncmp(a,b,n

result(”"strnicmp:",strnicmp(a,b,

compare

n);

Library Reference

Lattice C 5

Page 299

Sfrcoll Locale-specific string comparison

Class: ANSI Category: String Comparison
SYNOPSIS

#include <string.h>

num = strcoll(s1,s2);

int num; integer indicating comparison result

const char *s1; first string to be compared
const char *s2; second string to be compared

DESCRIPTION

The strcoll function compares the string pointed to by s1 with the string
pointed to by s2, with both interpreted as appropriate to the LC_COLLATE
(defined in locale.h) category of the current locale.

The strcoll and strxfrm functions provide locale-specific string sorting. The
former is intended for applications in which the number of comparisons is
small, while the latter is more appropriate when items are to be compared a
number of times; the cost of transformation is then only paid once.

RETURNS
The strcoll function returns an integer greater than, equal to, or less than zero,

as the string pointed to by s1 is greater than, equal to, or less than the string
pointed to by s2 when both are interpreted as appropriate to the current locale.

SEE
strxfrm

Page 300 LatticeC 5 Library Reference

strcpy, strncpy, stccpy, stpCpy copy strings

Class: ANSI Category: String Copy
SYNOPSIS

#include <string.h>

strcpy(to,from);
strncpy(to,from,n);

SvwoUo

ize = stccpy(to,from,n);
p = stpcpy(to,from);
char *np; points to end of destination
string
char *p; same as destination pointer
char *to; destination pointer
const char *from; source pointer
size_t n; maximum source Length
size_t size; number of bytes copied
DESCRIPTION

These functions copy the null-terminated source string to the destination area.
For stpcpy and strcpy, the entire source string is copied, and the resulting
destination is always null-terminated. The strncpy function always writes
exactly n characters to the destination. If the null terminator is hit before n
characters are copied from the source, then the destination is filled with null
bytes. If the source string contains more than N non-null characters, the
destination will not be null-terminated.

The stccpy function is similar to strncpy except that it always produces a null-
terminated string, and it returns the actual number of bytes (size) placed in the
to area, including the null terminator. Note that it may copy less than n bytes.

Note that strcpy has a built-in version which is functionally equivalent to the
standard library version. The statement #Include <string.h> provides a default
setting by which built-in functions are accessed. If you don’t want the built-in
function, you can use an #undef statement i.e. #undef strcpy.

Note that stpcpy and stccpy do not form part of the ANSI C standard, also
note that you should be careful when using strncpy, since it is one of the few
string functions which does not produce a null-terminated string under every
condition.

RETURNS

The strcpy and strncpy functions return a pointer that is the same as the
destination pointer. The Lattice function stpCpy returns a pointer to the end of
the destination string, which is often more useful when you are building a
string up from several pieces.

Library Reference Lattice C 5 Page 301

EXAMPLE
/*
* This example should print: Hello, my name is
*

*/
#include <string.h>

int main(void)
{

char bLC2561,*p;

p = stpcpy(b,"Hello, ");
p = stpcpy(p,"my name is ");
p = stpcpy(p,"John.");
puts(b);
return 0;

}

John.

Page 302 Lattice C & Library Reference

Sfrd u p Duplicate a string

Class: XENIX Category: String Copy
SYNOPSIS

#include <string.h>

p = strdup(s);

char *p; points to duplicate string

const char *s; points to string being duplicated
DESCRIPTION

This function creates a duplicate of the specified string by using malloc and
strcpy to allocate space and copy the string to it.

RETURNS

A NULL pointer is returned if malloc fails. Otherwise, the function returns a
pointer to the duplicate string.

Library Reference Lattice C 5 Page 303

Str error Map error number in errnum to error message

Class: ANSI Category: Errors
SYNOPSIS

#include <string.h>

errmsg = strerror(errnum);

char *errmsg; error message string

int errnum; error number
DESCRIPTION

The strerror function maps the value in errnum to an error message string
pointed to by errmsg.

RETURNS

The strerror function returns a pointer to the string, the contents of which is an
error message. The array pointed to cannot be modified by the program, but
may be overwritten by a subsequent call to the strerror function.

Page 304 Lattice C 5 Library Reference

strﬂ'ime Format using locale control parameters

Class: ANSI Category: Date and Time
SYNOPSIS
Hinclude <time.h>
ret = strftime(s,maxsize,format,timeptr);
size_t ret; 0 if successful
char *s; array to contain characters
size_t maxsize; maximum number of characters

const char *format; specifier to control formatting
const struct tm *timeptr;
time values

DESCRIPTION

The strftime function places characters into the array pointed to by s as
controlled by the string pointed to by format. The format is a multibyte
character sequence, beginning and ending in its initial shift state. The format
string consists of zero or more conversion specifiers and ordinary multibyte
characters. A conversion specifier consists of a % character followed by a
character that determines the behaviour of the conversion specifier. All
ordinary multibyte characters (including the terminating null character) are
copied unchanged into the array. No more than maxsize characters are placed
into the array. Each conversion specifier is replaced by appropriate characters
as described later. The appropriate characters are determined by the LC_TIME
category of the current locale and by the values contained in the structure
pointed to by fimeptr.

The strftime function provides a way of formatting the date and time in the
appropriate locale-specific fashion, using the %cC, %x, and %X format
specifiers. More generally, it allows the programmer to tailor whatever date
and time format is appropriate for a given application. The facility is based on
the UNIX system date command, by which each conversion specifier is replaced
by appropriate characters described in the following list:

Code Replaced by

% a the locale’s abbreviated weekday name

% A the locale’s full weekday name

% b the locale’s abbreviated month name

% B the locale’s full month name

%C the locale’s appropriate date and time representation

Library Reference Lattice C 5 Page 305

%d the day of the month as a decimal number (01-31)

%H the hour (24-hour clock) as a decimal number (00-23)

%I the hour (12-hour clock) as a decimal number (01-12)

%) the day of the year as a decimal number (001-366)

%m the day of the month as a decimal number (01-31)

%M the minute as a decimal number (00-59)

%P the locale’s equivalent of the AM/PM designations
associated with a 12-hour clock

%S the second as a decimal number (00-61)

%U the week number of the year (the first Sunday as the
first day of week 1) as a decimal number (00-53)

%wW the weekday as a decimal number with Sunday as 0
0-6)

%W the week number of the year (the first Monday as the
first day of week 1) as a decimal number (00-53)

Yox the locale’s appropriate date representation

%X the locale’s appropriate time representation

%y the year without century as a decimal number (00-99)

%Y the year with century as a decimal number

%Z the time zone name or abbreviation, or by no
characters if no time zone is determinable

% % two % characters are required to specify a single %

RETURNS

If the total number of resulting characters including the terminating null
character is not more than maxsize, the strftime function returns the number of
characters placed into the array pointed to by s not including the terminating
null character. Otherwise, zero is returned and the contents of the array are

truncated to maxsize characters and will not be null (‘\0’) terminated.

Page 306

LatticeC 5 Library Reference

Sfri ns Insert a string

Class: Lattice Category: String Copy
SYNOPSIS

#include <string.h>

strins(to,from);

char *to; destination string
const char *from; source string
DESCRIPTION

This function inserts the source string (t0) in front of the destination string
(from). Both strings must be null-terminated, and the destination is shifted to
the right (upward in memory) in order to accomodate the source string. The
final result is a single null-terminated string.

SEE
strcat
EXAMPLE
#include <string.h>
char herell] = "Here ";
char now[C30] = "and now";
strins(now,here); /* now => "Here and now" */

Library Reference Lattice C 5 Page 307

Sh‘len, stCIen Measure length of a string
Class: ANSI Category: String Copy
SYNOPSIS

#include <string.h>

Length = strlen(s); Measure Llength of a string

Length = stclen(s); Measure Llength of a string

const char *s;

size_t Llength; number of bytes in s (before NULL)
DESCRIPTION

These functions return the number of bytes in string s before the null terminator
byte. The strlen function is the ANSI equivalent of the Lattice implementation
stclen.

Note that strlen has a built-in version which is functionally equivalent to the
standard library version. The statement #include <string.n> provides a default
setting by which built-in functions are accessed. If you don’t want the built-in
function, you can use an #undef statement as i.e. #undef strlen.

RETURNS
The number of bytes in the string s before the null byte.

Page 308 Laltice C 5 Library Reference

striwr, strupr

Change case of string

Class: XENIX
SYNOPSIS

#include <string.h>

striwr(s);
strupr(s);

DESCRIPTION

convert
convert

return
string

Category: String Conversion

string to Llower case
string to upper case

pointer (same as s)
pointer

These functions convert all alphabetic characters in the specified null-
terminated string to lower or upper case. In each case, the function return
value is the same as the string pointer.

RETURNS

Both functions return the original string pointer.

Library Reference

Lattice C 5

Page 309

Sh'mfe Make file name with extension

Class: Lattice Category: File Name Manipulation

SYNOPSIS

#include <string.h>

strmfe(newname,oldname,ext);

char *newname; new file name

const char *oldname; old file name

const char *ext; extension
DESCRIPTION

This function copies the old file name to the new name, deleting any extension.
Then it appends the specified extension to the new file name, with an
intervening period. For example,

Oldname Ext Newname

"c:myprog.c” "cc” "c:myprog.cc”

"abc" "prg" "abc.prg"

The newname area must be lar%e enough to accept the file name string and
the separator. A safe size is FMSIZE, which is defined in the dos.h header file.

SEE
strmfn, strmfp

Page 310 Lattice C 5 Library Reference

Sh'mfn Make file name from components

Class: Lattice Category: File Name Manipulation

SYNOPSIS

#include <string.h>

strmfn(file,drive,path,node,ext);

char *file; file name pointer

const char *drive; drive code pointer

const char *path; directory path pointer

const char *node; node pointer

const char *ext; extension pointer
DESCRIPTION

This function makes a file name from four possible components. In general, the
name is constructed as follows:

drive:path\node.ext

If the drive pointer is not NULL, that string is moved to the area pointed to by
the file argument. Then a colon is inserted unless one is already there. Next, if
path is not NULL, it is appended to file, and the directory separator specified by
_SLASH is added if necessary. The node string is appended next, unless it is
NULL. Finally, if ext is not NE]LL, a period is appended to file, followed by the
ext string.

RETURNS

None. Make sure that the file pointer refers to an area that is large enough to
hold the result. A safe value is FMSIZE, which is defined in dos.h.

SEE
strmfe, strmfp, _SLASH

Library Reference Lattice C 6 Page 311

strmfp Make file name from path/node

Class: Lattice Category: File Name Manipulation

SYNOPSIS

#include <string.h>

strmfp(name,path,node);

char *name; file name

const char *path; directory path

const char *node; node
DESCRIPTION

This function copies the path string to the file name area, appending the
_SLASH separator if the path string is not empty and does not end with a
slash, backslash, or colon. Then the node string is appended to the file name.
_SLASH is an external character variable that defaults to a backslash (\).

The name area must be large enough to accept the file name string. A safe
value is FMSIZE, which is defined in the dos.h header file.

SEE
strmfe, strmfn, _SLASH

Page 312 Lattice C 5 Library Reference

strmid

Return a substring from a string

Class: Lattice

SYNOPSIS

#include <string.h>
error =
char *dest;
const char *source;
size_t pos;

size_t Llen;
int error;

DESCRIPTION

Category: String Copy

strmid(source,dest,pos,len);

destination pointer

source pointer

starting position of dest in
source

Length of substring

-1 if pos is beyond source,
else 0

The strmid function returns a pointer to a substring of source beginning at
character position pos, and having a length of len. If len is greater than the
length of source offset at pos, then the rest of the string is copied to dest.

The destination string is null-terminated.

RETURNS

If pos is beyond the length of source, then -1 is returned. Otherwise, 0 is

returned.

SEE

stins

Library Reference

Lattice C 5

Page 313

strpbrk,stpbrk

Find break character in string

Class: ANSI Category: String Search
SYNOPSIS

#include <string.h>

p = stpbrk(s,b);

p = strpbrk(s,b);

char *p; points to break character in s

const char *s; string to be scanned

const char *b; break characters
DESCRIPTION

These functions scan string s to find the first occurrence of a character from
break string b. They are completely equivalent, except that strpbrk is the ANSI
name, while stpbrk is the traditional Lattice name.

RETURNS

If no character from b is found in s, a NULL pointer is returned. Otherwise, p is
a pointer to the break first break character.

SEE
strspn, strcspn
EXAMPLE
#include <string.h>
#include <stdio.h>
/*
* Scan for commas,
* tail of the string each
* found.
*/
char *p,sC 1 = "Hello, 1
for(p = s; p =

printf("Z%Zs\n",p);

strbrk(p,",.

the
is

and blanks.
break

Display
character

periods,
time a

must be going.";

");)

Page 314

Lattice C 5 Library Reference

strrev Reverse a character string

Class: XENIX Category: String Copy
SYNOPSIS

#include <string.h>
p = strrev(s);

char *p,*s; string pointer

DESCRIPTION

This function reverses a character string. That is, it “reflects” the string about
its mid-point such that the last character is first and the first is last.

RETURNS

This function returns the same pointer that was passed to it.

EXAMPLE

char *s="Rotavator";
printf("%Zs reversed is ",s);
strrev(s);

printf("%Zs\n",s);

/* will print "Rotavator reversed is rotavatoR" */

Library Reference Lattice C 5 Page 315

Sfl'sei‘, Sfrnsef Set string to value

Class: XENIX Category: String Copy
SYNOPSIS

#include <string.h>

p = strset(s,c);

p = strnset(s,c,n);

char *p; return pointer (same as s)

char *s; string pointer

int c; value

size_t n; maximum string Length
DESCRIPTION

The strset and strnset functions set all bytes of a null-terminated string to the
same value, not including the terminator byte. With the strnset function, you
can specify a maximum length in bytes, given by n.

RETURNS

The original string pointer is returned.

Page 316 Lattice C 5 Library Reference

Sfl’an Split file name
Class: Lattice Category: File Name Manipulation
SYNOPSIS

#include <string.h>

strsfn(file,drive,path,node,ext);

const char *file; file name pointer

char *drive; drive code pointer

char *path; directory path pointer

char *node; node pointer

char *ext; extension pointer
DESCRIPTION

This function splits a file name into four possible components and places them
into the drive, path, node, and ext strings. If any of those arguments are
NULL, then those components are discarded.

In general, a complete file name is constructed as follows:

drive:path\node.ext

When strsfn splits the file name, it leaves the colon attached to the drive code,
but removes trailing punctuation from the other components. Slashes or
backslashes within the path component are preserved. If the file name is of the
form

drive:\node.ext

then the path component is a single backslash.

RETURNS

You must make sure that the drive, path, node. and ext pointer refer to areas
that are large enough to hold the largest string that might be generated. The
following lengths are safe:

Part Size

drive 3 bytes

path FMSIZE in dos.h
node FNSIZE in dos.h
ext FESIZE in dos.h

Library Reference Lattice C § Page 317

This function does not check that these lengths are not exceeded, although it
does copy file string to an internal buffer of size FMSIZE and truncate it if it is
too long. If you want to be absolutely sure that no overflows occur, make each

component area be FMSIZE bytes long.
SEE

strgf, strfe, strmfn

EXAMPLE

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

char aC3]1,bCFMSIZE],cCFNSIZE], dLFESIZE]D;

/] *
* After the next statement,
* are:
*
x g => uw
* b => "abc\\def"
* c => "Qh'i"
* d => un
*/
strsfn("abc\\def\\ghi"”,a,b,c,d);
/*
* After the next statement,
* are:
* a => "pzm
* p => un
* ¢ => "myfile"
* d => "str"
*/

strsfn("b:myfile.str”",a,b,c,d);

component strings

component strings

Page 318 Lattice C 5

Library Reference

strspn, strcspn, stcis, stcisn

Measure character span

Class: ANSI Category: String Search
SYNOPSIS
#include <string.h>
Len = strspn(s,b); Measure span of chars in set
Len = strcspn(s,b); Measure span of chars not in set
Len = stcis(s,b); Measure span of chars in set
Len = stcisn(s,b); Measure span of chars not in set
size_t Llen; span Length in bytes
const char *s; points to string being scanned
const char *b; points to character set string

These functions measure the number of characters at the beginning of input
string s that are either in or not in the character set specified by b. The stcis
and strspn functions are identical and count the number of leading characters
that are in the set. Similarly, stcisn and strcspn are identical and count the
number of leading characters that are not in the set. The stC pair are provided
for compatibility with other versions of Lattice C, while the str functions are
now part of the ANSI standard.

RETURNS

The functions all return the number of bytes that are in or not in the specified
character set. Note that the scan always stops when the null terminator byte is
reached.

EXAMPLE

Hinclude <stdio.h>
#include <string.h>
int main(void)

{

char s102561,s202561;

for(;;) «
printf("\nEnter test string: ");
if(gets(s1) == NULL) exit(0);
printf("Enter span string: ");
if(gets(s2) == NULL) exit(0);

printf("strspn: ZLd\n",(long)strspn(s1,s2));
printf("strcspn: Zld\n" ,(long)strcspn(s1,s2));
printf(”"stcis: Zd\n",stcis(s1,s2));
printf("stcisn: Zd\n",stcisn(s1,s2));

}

return 0;

Library Reference Lattice C 5 Page 319

Strs rt Sort string pointer list

Class: Lattice Category: Search and Sort

SYNOPSIS

#include <string.h>

strsrt(s,n);

char *sC1]; string pointer List
size_t n; number of pointers in Llist
DESCRIPTION

This function performs a simple insertion sort of the string pointers in the
specified list. It is particularly useful in conjunction with the getfnl and strbpl
functions. For large lists, you will usually get better performance using tgsort.

SEE
getfnl, stropl, tgsort
EXAMPLE

* This program constructs an array of pointers to
* all file names in the current directory that have

* a ".c" extension. Then the array 1is sorted by
* ASCII order.
*/

#include <stdlib.h>
#include <string.h>

char namesC3000],*pointersC3001;
void foo(void)

int count;

count = getfnl("* _ c",names,sizeof(names),0);
ifCcount > 0)
{
if(strbpl(pointers,300,names) != count)
break;

strsrt(pointers,count);
}

Page 320 Lattice C 5 Library Reference

51' fol' Locate first occurrence of substring in string

Class: ANSI Category: String Search
SYNOPSIS
#include <string.h>
ptr = strstr(s1,s2);
char *ptr; pointer to substring in string
const char *s1; string to be searched
const char *s2; substring to Llocate
DESCRIPTION

The strsir function locates the first occurrence in the string pointed to by s1 of
the sequence of characters (excluding the terminating null character) in the
string pointed to by s2.

RETURNS

The strstr function returns a pointer to the located string, or a NULL pointer if
the string is not found. If s2 points to a string with zero length, the function
returns s1.

Library Reference Lattice C 5 Page 321

striOd Convert initial string portion to double

Class: ANSI Category: Data Conversion/Formatting
SYNOPSIS

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

double wval; converted value
const char *nptr; string portion to be converted
char **endptr; points to object containing

pointer to final string

DESCRIPTION

The strtod function converts the initial portion of the string pointed to by nptr
to double representation. First, it decomposes the input string into three parts:
an initial, possibly empty, sequence of white-space characters (as specified by
the isspace function), a subject sequence resembling a floating-point constant;
and a final string of one or more unrecognised characters, including the
terminating null character of the input string. Then it attempts to convert the
subject sequence to a floating-point number, and returns the result.

The expected form of the subject sequence is an optional plus or minus sign,
then a nonempty sequence of digits optionally containing a decimal-point
character, then an optional exponent part, but no floating suffix. The subject
sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form.
The subject sequence contains no characters if the input string is empty or
consists entirely of white space, or if the first non-white-space character is
other than a sign, a digit, or a decimal point character.

If the subject sequence has the expected form, the sequence of characters
starting with the first digit or the decimal point character (whichever occurs
first) is interpreted as a floating point constant, except that the decimal point
character is used in place of a period, and that if neither an exponent part nor
a decimal-point character appears, a decimal point is assumed to follow the
last digit in the string. If the subject sequence begins with a minus sign, the
value resulting from the conversion is negated. A pointer to the final string is
stored in the object pointed to by endptr, provided that endptr is not a NULL
pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed; the value of Nnptr is stored in the object pointed to by
endptr, provided that endptr is not a NULL pointer.

Page 322 Lattice C 5 Library Reference

The strtod and strtol functions have been adopted by ANSI (from UNIX System
V) because they offer more control over the conversion process, and because

they are not required to produce unexpected results on overflow during
conversion.

RETURNS

The strtod function returns the converted value, if any. If no conversion could
be performed, zero is returned. If the correct value is outside the range of
representable values, plus or minus HUGE_VAL is returned (according to the
sign of the value), and the value of the macro ERANGE is stored in errno. If the
correct value would cause underflow, zero is returned and the value of the
macro ERANGE is stored in errno. Upon coverting the first part of nptr, the
strtod function returns a pointer to the first character that is not part of the
number. The converted double is returned.

Library Reference Lattice C 5 Page 323

Sfl’fOk Get a token

Class: ANSI Category: String Search
SYNOPSIS

#include <string.h>

t = strtok(s,b);

char *t; token pointer

char *s; input string pointer or NULL

const char *b; break character string pointer
DESCRIPTION

This function treats the input string as a series of one or more tokens separated
by one or more characters from the break string. By making a sequence of calls
to strtok, you can obtain the tokens in left-to-right order. To get the first
(leftmost) token, supply a non-NULL pointer for the s argument. Then to get the
next tokens, call the function repeatedly with a NULL pointer for s, until you get
a NULL return pointer to indicate that there are no more tokens. The break
string can be changed from one call to another.

Each time it is entered, strtok takes the following steps:

o If the input string is NULL, obtain the string pointer that was used on the
preceding call. Otherwise use the new input string pointer.

o Scan forward through the string to the next non-break character. If it is
a null byte, return a value of NULL to indicate that there are no more
tokens.

o Scan forward through the string to the next break character or the null

terminator. In the former case, write a null byte into the string to
terminate the token, and then scan forward until the next non-break is
found. In either case, save the final value of the string pointer for the
next call, and return the token pointer.

Note that the input string gets changed as the scan progresses. Specifically, a
null byte is written at the end of each token.

RETURNS

A NULL pointer is returned when there are no more tokens.

SEE
stptok, strcspn, strspn

Page 324 LatticeC 5 Library Reference

EXAMPLE

] *
*

* This example breaks out words that are separated
* by blanks or commas. The token pointer takes on
* the following values as the program Lloops:

*

* LOOP TOKEN

* 1 “first"

* 2 "second"

* 3 “third"

* 4 “fourth"

* 5 NULL

*/

#include <string.h>
#include <stdio.h>

int main(void)
{

char testl]l = "first, second third, fourth";
char *token;

token = strtok(test,"”, ");
while(token != NULL)
{

printf("%Zs\n",token);
token = strtok(NULL,", ");

return 0;

Library Reference Lattice C 5 Page 325

Si‘rl'OI Convert string to long integer

Class: ANSI Category: Data Conversion/Formatting
SYNOPSIS

Hinclude <stdlib.h>

r = strtol(p,np,base);

Long int r; result

const char *p; 1input string pointer

char **npp; receives new input string pointer

int base; conversion base
DESCRIPTION

This function converts an ASCII input string into a long integer according to
the specified base, which can range from 0 to 36, excluding 1. Valid digit
characters are 0 to 9, a to z, and A to Z. The highest allowable character is
determined by the conversion base. For example, if the base is 17, then the
string can contain digits from 0to9,atog, and A to G.

The function skips leading white space and then checks for a leading plus or

minus sign. In the latter case, the result of the conversion is negated before it is

returned. The conversion stops at the first invalid character, and a pointer to

that character is returned in np if the NP argument is not NULL. Note that if

lt)he entire string is converted, NP will contain a pointer to the null terminator
yte.

If base is 0, the string is analysed to see if it is octal, decimal, or hexadecimal:

Base 16
If the string begins with 0x or 0X, base 16 (hexadecimal) conversion is

performed.

Base 8
Otherwise, if the string begins with 0, base 8 (octal) conversion is

performed.

Base 10
If neither of the above applies, base 10 (decimal) conversion is

performed.

RETURNS

The strtol function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of
representable values, LONG_MAX is returned for overflow, or LONG_MIN for
underflow. The value of the macro ERANGE is stored in errno.

Page 326 Lattice C 5 Library Reference

SEE
atol, sted_|, strtoul
EXAMPLE

/*
* This program tests the strtol
*/

#include <stdio.h>
#include <string.h>
int main(void)

{

char *p,buff(801;
int base;

function.

long x;
for (;;)
{
printf("\nEnter number base (0 to 36):
if(gets(buff) == NULL)
break;
if(buffC01 == '\0")
break;
base = atoi(buff);
if((base < 0) || (base > 36))
continue;
printf("Enter number: ");
if(gets(buff) == NULL)
break;
if(bufff01 == '\0') exit(0);
x = strtol(buff,&p,base);
printf("Decimal result = Zld\n",x);
if(*p = '\0')
printf("Residual = 7Zs\n",p);
)}

return 0;

Library Reference Lattice C 5

Page 327

Sh’i’OUI Convert initial string portion to unsigned long

Class: ANSI Category: Data Conversion/Formatting
SYNOPSIS

#include <stdlib.h>

val = strtoul(nptr,eptr,base);

unsigned Llong int val; converted value

const char *nptr; string portion to be

converted
int base; radix specifier
char **eptr; points to object containing

pointer to final string

DESCRIPTION

The strfoul function converts the initial portion of the string pointed to by nptr
to unsigned long int representation. First, it decomposes the input string into
three parts: an initial, possibly empty, sequence of white-space characters (as
specified by the Isspace function), a subject sequence resembling an unsigned
integer represented in some radix determined by base; and a final string of
one or more unrecognised characters, including the terminating null character
of the input string. Then it attempts to convert the subject sequence to an
unsigned integer, and returns the result.

If the value of base is zero, the expected form of the subject sequence is that of
an integer constant, optionally preceded by a plus or minus sign, but not
including an integer suffix. If the value of base is between 2 and 36, the
expected form of the subject sequence is a sequence of letters and digits
representing an integer with the radix specified by base, optionally preceded
by a plus or minus sign, but not including an integer suffix. The letters from a
(or A) through z (or Z) are ascribed the values 10 to 35; only letters whose
ascribed values are less than that of base are permitted. If the value of base
is 16, the characters Ox or 0X may optionally precede the sequence of letters
and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input
string, starting with the first non-white-space character, that is of the expected
form. The subject sequence contains no characters if the input string is empty or
consists entirely of white space, or if the first non-white-space character is
other than a sign or a permissible letter or digit.

Page 328 Lattice C 5 Library Reference

If the subject sequence has the expected form, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs
first) is interpreted as an integer constant according to the ANSI syntax. If the
subject sequence has the expected form and the value of base is between 2 and
37, it is used as the base for conversion, ascribing to each letter its value as
given above. If the subject sequence begins with a minus sign, the value
resulting from the conversion is negated. A pointer to the final strinﬁ is stored
in the object pointed to by endptr, provided that endpir is not a NULL pointer.

If the subject sequence is empty or does not have the expected form, no
conversion is performed; the value of nptr is stored in the object pointed to
endptr, provided that epfr is not a NULL pointer.

RETURNS
The strtoul function returns the converted value, if any. If no conversion could
be performed, zero is returned. If the correct value is outside the range of

representable values, ULONG_MAX is returned, and the value of the macro
ERANGE is stored in errno.

SEE

atol, stcd_|, strtol

Library Reference Lattice C 5 Page 329

strxfrm Transform string and place into array

Class: ANSI Category: Localisation
SYNOPSIS
#include <string.h>
Len = strxfrm(s1,s2,n);
size_t Llen; Length of transformed string
char *s1; array containing transformed string
const char *s2; pointer to string to be transformed
size_t n; maximum number of characters to
place
DESCRIPTION

The strxfrm function transforms the string pointed to by s2 and places the
resulting string into the array pointed to by sl. The transformation is such that
if the strcmp function is applied to two transformed strings, it returns a value
greater than, equal to, or less than zero, corresponding to the result of the
strcoll function applied to the same two original strings. No more than n
characters are placed into the resulting array pointed to by s1, including the
terminating null character. If n is zero, 1 is permitted to be a NULL pointer. If
copying takes place between objects that overlap, the behaviour is undefined.

The strcoll and strxfrm functions provide for locale-specific string sorting. The
strcoll function is intended for applications in which the number of comparisons
is small, while strxfrm is more appropriate when items are to be compared a
number of times; the cost of transformation is then only paid once.

RETURNS

The strxfrm function returns the length of the transformed string (not including
the terminating null character). If the value returned is n or more, the contents
of the array pointed to by sl will not be null ('\0') terminated.

EXAMPLE

/ *

* The value of the following expression is the size
* of the array needed to hold the transformation of
* the string pointed to by s.

*/

size_t Llen(const char *s)
{
return 1 + strxfrm(NULL, s, 0);

Page 330 LatticeC 5 Library Reference

SfS pfp Parse file path

Class: Lattice Category: File Name Manipulation
SYNOPSIS

#include <string.h>

error = stspfp(path,nx);

int error; -1 for error, 0 for success

char *path; file path string

int nx[161; node index array
DESCRIPTION

This function parses a file path, which is a null-terminated string consisting of
nodes separated by the _SLASH character. Each separator is replaced with a
null byte, and the index to the first character of that node is placed into the
node index array. The last entry in the array is followed by a -1. A leading
separator in the path string is skipped.

RETURNS

A return value of -1 indicates that the path contains more than 15 nodes.

SEE
stcgfe, stcgfn, stcgfp, strsfn, _SLASH

EXAMPLE
/*
* The following parses \ABC\T®E)F <“‘n<c s*“rinags ABC,
* DE, and F. The node index ar-ey «°.. <+hen contain
* 1, 5, 8, and -1.
*/

#include <string.h>
int xx[161;

stspfp("\\ABC\\DE\\F",xx);

Library Reference Lattice C 5 Page 331

stu b Default routine for undefined routines

Class: Lattice Category: Process Environment

SYNOPSIS

_stub) ;

DESCRIPTION

The _stub function is the default routine resolved by CLink for routines not
found in libraries. By default, it will give a prompt indicating that the
unwritten routine had been called. It is intended to allow development and
testing of a program for which some of the routines have not been written
(and, of course, are not expected to be called).

Page 332 Lattice C S5 Library Reference

swab

Byte swap words

Class: UNIX
SYNOPSIS

#include

Category: Data Conversion/Formatting

<stdlib.h>

swab(src,dest, nbytes);

const void *src; area to copy bytes from

void *dest; area to copy bytes to

size_t nbytes; number of bytes to exchange
DESCRIPTION

The swab function copies nbytes from src to dest, exchanging odd and even
bytes as it does so. The value of nbytes should be even, also note that this
function is undefined in the general overlapping block case (cf. memcpy),
however when src==dest the function will perform as expected.

Note that this function is most often used when transferring data from one
architecture to another (e.g. Intel - Motorola), where the order of bytes within

words differs.

SEE

memmove, memcpy

Library Reference

Lattice C 5 Page 333

system Call system command processor

Class: ANSI Category: Process Creation
SYNOPSIS

#include <stdlib.h>

error = system(cmd);

int error; non-zero if error

const char *cmd; command string

extern char *_comspecmagic; “"/c"

extern char *_shellmagic; Y-c"
DESCRIPTION

This function invokes the system command processor and passes the cmd
string to it. The function will attempt to find a command processor by
inspecting the _shell_p system variable, if this is non-NULL it will call through
this vector with cmd as the sole argument.

If no resident shell can be found a command processor specified by SHELL or the
COMSPEC environment variable is searched for, and so you must be sure that
this variable is properly specified in your environment (if one is available).
Under normal circumstances, you will automatically inherit a copy of this
variable if your program starts. If neither of these exist (e.g. the program was
run from the desktop), system will attempt to start a process using the forkl
function.

When using the SHELL or COMSPEC environment variables many command
processors require a command line switch to force them to accept a command
on their command line, systemn makes the variables _shellmagic and
_comspecmagic which have the default values “-C” and “/C” respectively.
You may change these simply by moving the pointer to a new area of your
own. Note that you should not copy into the old area as this has a strictly
limited size.

If the cmd passed to system is NULL, then the return value specifies whether a
command processor is available. Under GEMDOS this value will always be
non-zero indicating that a command processor is available.

RETURNS

If the command processor cannot be invoked, a value of -1 is returned, and
additional error information can be found in errno and _OSERR. Otherwise,
the function returns the value that was passed back by the command processor.

Page 334 Lattice C 5 Library Reference

SEE
erro, forkl, _OSERR
EXAMPLE

/*
* Run all the programs mentioned on the
* Line one after another
*/

Hinclude <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[1l);
{

while (--argc)
system(*++argv);
return O0;
)}

command

Library Reference Lattice C 5

Page 335

ﬁ me Get system time in seconds

Class: ANSI Category: Date and Time
SYNOPSIS

#include <time.h>
timeval = time(timeptr);

time_t timeval; time value
time_t *timeptr; pointer to time value storage

DESCRIPTION

This function returns the current time expressed as the number of seconds since
00:00:00 Greenwich Mean Time, January 1, 1970. If fimeptr is not NULL, the
time value is also stored in that location.

SEE

asctime, ctime, gmtime, localtime, _tzset, utpack, utunpk

EXAMPLE

#include <time.h>
#Hinclude <stdio.h>

int main(void)
{
time_t t;

time(&t);
printf(”"Current time is Zs\n",ctime(&t));

return O0;

Page 336 Lattice C 5 Library Reference

_t imedata Time Zone variables

Class: UNIX Category: Date and Time
SYNOPSIS
extern int __daylight; Daylight savings time flag
extern Llong __timezone; Timezone bias from GMT
extern char *__tznamel2]; Timezone names
extern char __tzstnl4]; Standard time name
extern char __tzdtnl4]; Daylight time name
DESCRIPTION

These variables are initialised by the _tzset function and are used by the
localtime function to adjust from Greenwich Mean Time (GMT) to the local
time.

The __daylight item is non-zero if daylight saving time is currently in effect.
The __timezone value is the number of seconds that must be subtracted from
GMT. The two __tzname pointers point to __tzstn and __tzdtn, respectively.
These strings contain the three-character names for standard time (__tzstn) and
daylight time (__tzdtn).

SEE

localtime, _tzset

Library Reference Lattice C 5 Page 337

fm pfile Create a temporary binary file

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>
strm = tmpfile();
FILE *strm; pointer to file stream
DESCRIPTION
The tmpflle function creates a temporary binary file (mode “wb+") that will

automatically be removed when it is closed or at program termination. If the
program terminates abnormally the file may not be deleted correctly.

RETURNS

The tmpflle function returns a pointer to the stream of the file that it created.
If the file cannot be created, the tmpfile function returns a NULL pointer.

SEE

fopen, mktemp, tmpnam

Page 338 Lattice C 5 Library Reference

im p nam Create temporary file name

Class: ANSI Category: Stream 1/O
SYNOPSIS

#include <stdio.h>

name = tmpnam(buff);

char *name; points to file name

char *buff; buffer for file name or NULL
DESCRIPTION

This function creates a unique file name and returns a pointer to the name.

If buff is not NULL, then the file name is placed in that buffer, and name will
be the same as buff. The buffer must be large enough to hold the file name;
L_tmpnam (defined in stdio.h) is a safe size.

If buff is NULL, then an internal buffer is used, and the function returns a
Fointer to it. Note that this internal buffer is changed on every call to
mpnam, even if buff is not NULL.

In previous releases, the file was created when the unique name was selected.
In accordance with the ANSI standard, this no longer done.

RETURNS

A NULL return indicates that the unique file could not be created.

Library Reference Lattice C 5 Page 339

fO ces Character conversion functions

Class: ANSI Category: Character Classification/Conversion
SYNOPSIS

#include <ctype.h>

cc = toascii(c); convert character to ASCII

cc = tolower(c); convert character to Llower case

cc = toupper(c); convert character to upper case

cc = _tolower(c); convert upper case character to
Lower case

cc = _toupper(c); convert Llower case character to
upper case

int cc; converted character

int c¢; character to convert

DESCRIPTION

These functions convert characters into different forms. The toascll conversion
simply resets all high-order bits, leaving only the lower seven. The tolower
conversion tests if C is an upper case alphabetic character and, if so, converts it
to lower case. Otherwise, CC is the same as C. The toupper conversion is the
reverse of tolower.

The _toupper and _tolower functions perform a similar function to toupper
and tolower, but do not check the case of the character before converting it.
They are provided primarily for compatability with other systems and do not
form part of the ANSI standard.

SEE
_ctype
EXAMPLE

/*
* Echoe input Lines in upper case.
*/

#include <stdio.h>

#include <ctype.h>

int main(void)

{
char b[1001,*p;

while(gets(b) !'= NULL) «(
for(p = b; *p != '\0'; p++)
*p = toupper(*p);
puts(b);

return 0;

Page 340 Lattice C 5 Library Reference

tos Operating system version number

Class: GEMDOS Category: Process Environment
SYNOPSIS

#include <dos.h>

extern short _tos; major and minor O0S version
DESCRIPTION

These variable gives the operating s%:stem version number, in the major/minor
form used in the ROM. The high eight bits give the major version number (1 on
all current releases), whilst the lower eight bits give the minor release number.

The currently used values are:

Major Minor Name
1 0 ROM TOS (1.0)
1 2 Blitter TOS (1.2)
1 4 Rainbow TOS (1.4)
1 6 STE TOS (1.6)
SEE
Sversion
EXAMPLE
/*

* print out 0S version number
*/

#include <dos.h>

#include <stdio.h>

void show_version(void)

{

printf(”"T0S version=%d.%Zd\n",_tos>>8,_tos&0xff);

Library Reference Lattice C 5 Page 341

trig

Trigonometric functions

Class: ANSI Category: Mathematics
Hinclude <math.h>
= cos(x); Cosine function
r = sin(x); Sine function
r = tan(x); Tangent function
r = acos(x); Arccosine function
r = asin(x); Arcsine function
r = atan(x); Arctangent function
r = atan2(x,y); Arctangent of x/y
r = cosh(x); Hyperbolic cosine function
r = sinh(x); Hyperbolic sine function
r = tanh(x); Hyperbolic tangent function
double r; result;
double x,y; arguments

The cos, sin, and tan routines compute the usual circular functions of angles
expressed in radians.

The acos, asln, atan, and atan2 routines compute the inverse circular
functions, returning angular values expressed in radians. Results are
constrained as follows:

Function Return Range Function = Return Range
Qacos Otom atan Iiok
2102
asin n,o atan?2 n,o T
22 gto;

Since the tangent becomes very large for angles close to 3, the atan2 function is

often used to avoid computations with large numbers that might easily
overflow. With atan2, you can express the large tangent value as a quotient of
two more reasonable numbers.

The cosh, sinh, and tanh routines compute the normal hyperbolic functions.

SEE

matherr

Page 342 LatticeC 5 Library Reference

_tzset Set time zone variables

Class: XENIX Category: Date and Time
SYNOPSIS
Hinclude <time.h>
_tzset();
/* These symbols are defined in time.h:
*
* extern int _ daylight;
* extern Llong __timezone;
* extern char *__ _tznamel2];
* extern char __tzstnl4];
* extern char __tzdtnC4];
*/
DESCRIPTION

The _tzset function assigns values to the time zone variables __daylight,
__timezone, and __tzname. These variables are then used by localtime and
other functions to correct from Greenwich Mean Time (GMT) to local time.

The values for these variables are obtained from the environment variable
named TZ having the following form

set TZ=aaabbbccc

where aaa is the 3-letter abbreviation for the local standard time zone (e.g.
CET), and bbb is a number from -23 to +24 indicating the value that is
subtracted from GMT in order to obtain local standard time. Both aaa and
bbb are required, but ccc is the abbreviation for the local daylight savings
time zone (e.g. BST), and it should be present only if daylight savings time is
currently in effect.

When _tzset is called, it first tries to locate TZ in the environment string array
and uses the default string “GMTO0” if TZ isn’t found. Then __timezone is
loaded with the number of seconds that must be subtracted from GMT in order
to get the local time. Next __daylight is loaded with 0 if the ccc portion of TZ
is absent and 1 if cCC is present. Then the aaa and ccc parts are copied to
__tzstn and __tzdtn, respectively, with null terminators. Finally, __tzname(0)
and __tzname(1) are loaded with pointers to __tzstn and __tzdtn
respectively.

SEE

_timedata, localtime

Library Reference Lattice C5 Page 343

ungetc

Push input character back

Class: ANSI
SYNOPSIS

#i

r

int r; return character

int c¢; character to be

FILE *fp; file pointer
DESCRIPTION

nclude <stdio.h>

= ungetc(c, fp);

or

Category: Stream I/O

code

pushed back

This function pushes a character back to the specified buffered input file. The
character need not be the same as the one that was most recently read.
However, before calling ungetc, you must have read at least one character via
fgetc or one of the other buffered input functions. Also, you can only push back
one character; if you call ungetc more than once between input functions, the
results are undefined.

RETURNS

Normally ungetc returns the character that was pushed back. However, if the
end-of-file has been hit or if no characters have been read yet, the value EOF is

returned.
SEE
fgetc, fgets, getc, gets
EXAMPLE
#include <stdio.h>

#i
in
{

nclude <ctype.h>

t main(void)

int c;

fod (;;)

{
printf(”"Loop 1...\n");
while((c = getchar()) !=

if(isalpha(c))
putchar(c);
else
break;
ungetc(c);

printf(”"\n\nDone\n");
return 0;

EOF)

Page 344

Lattice C §

Library Reference

un 9 etc h Unget console keyboard character
Class: Lattice Category: Console and Port I/O
SYNOPSIS

#include <dos.h>

r = ungetch(c);

int c;
int r;

DESCRIPTION

The ungetch function is one of a group of functions that perform I/O
operations with the keyboard and display attached as the console device.

The ungetch function pushes a character onto a stack so that it will be read on
the next call to getch or getche. Also, kbhit will report that a character is

waiting if one has been pushed onto the stack. The stack is only one level deep,
and if you try to push a second character, the function will return -1 and ignore
the request. Otherwise, it returns the character that was pushed. Also, note
that if you push back a non-ASCII scan code, the next call to getch or getche
will not produce the usual zero return to indicate that a scan code is coming.
You can clear the stack by calling ungetch with a character value of 0.

RETURNS

As noted above.

SEE

cgets, cputs, getch, getche, kbhit, putch

Library Reference Lattice C § Page 345

Uﬁme Set file modification time

Class: UNIX Category: Low-Level 1/O
SYNOPSIS

#include <sys/types.h>
#include <time.h>

err = utime(name,time)

int err; error return

const char *npame; name of file to manipulate

struct utimbuf *time; time buffer
DESCRIPTION

The utime function changes the last modified time of the file name. If the
value of time is NULL, then the modification time is set to the current time, if it
is not NULL then it should point to utimbuf structure which has the following
elements:

struct wutimbuf
{

time_t actime; /* access time - ignored */
time_t modtime; /* new last modification time */
;

The modification time that is required should be placed in the modtime
element of the structure.

RETURNS

The function returns 0 on succesfully changing the time of the file, or -1 to
indicate an error, with further information in errno.

SEE

Fdatime, stat, time

Page 346 LatticeC 5 Library Reference

utpaCk, utunpk Pack or unpack UNIX time

Class: Lattice Category: Date and Time
SYNOPSIS

#include <stdlib.h>

ut = wutpack(x); Pack UNIX time

utunpk(ut,x); Unpack UNIX time

Long ut; packed UNIX time

char *x; unpacked UNIX time
DESCRIPTION

These functions pack and unpack the 32-bit value time that is traditionally used
in UNIX systems. This value is the number of seconds since 00:00:00, January 1,
1970. The time function returns the system clock in this form relative to
Greenwich Mean Time.

The unpacked time is a 6-byte array in the following format:

Byte Contents

x(0) year - 1970 (-128 to +127)
x(1) month (1 to 12)

X(2) day (1 to 31)

x(3) hour (0 to 23)

X(4) minute (0 to 59)

x(5) second (0 to 59)

Although this array is similar to the one produced by getclk and used by
stpdate, note that the year is biased relative to 1970 instead of 1980. So, if you
use utunpk followed by stpdate, you must subtract 10 from x(0) before the
stpdate call. Note also that the year is a signed character and can be negative.
A value of -3, for example, is 1967 (i.e. 1970 - 3).

SEE

ctime, getclk, gmtime, localtime, stpdate, time

Library Reference Lattice C 6 Page 347

EXAMPLE

/*
* Get

* No e
*/

#include
#include
Hinclude
mainCint

char

int fh
Long

return

a file time
rror checks.

<time.h>
<dos.h>
<stdlib.h>

argc, char

ttl61;

;

ft,ut;

’

and convert

*argv[(1)

it to UNIX time.

Zs\n",ctime(8ut));

Page 348

LatticeC 5

Library Reference

prfinif Formatted print to file, variable argument list

Class: ANSI Category: Formatted 1/0O
SYNOPSIS

#include <stdarg.h>
H#include <stdio.h>

Length = vfprintf(fp,fmt,arg);

int Llength; number of characters generated

FILE *fp; file pointer

const char *fmt; format string

va_Llist arg; variable argument List
DESCRIPTION

The vfprintf function is equivalent to fprintf, with the variable argument list
replaced by arg, which has been initialised by the va_start macro (and possibly
subsequent va_arg calls). The vfprintf function does not invoke the va_end
macro.

RETURNS

The vfprintf function returns the number of characters transmitted, or a
negative value if an output error occurred.

SEE
printf, vprintf, vsprintf
EXAMPLE

/*
* generalised error handler
*/

#include <stdio.h>
#include <stdarg.h>
void error(const char *s,...)
{
va_List args;
fputs("Error: “,stderr);
s);

va_start(args,
vfprintf(stderr, s, args);

va_end(args);
fputc('\n',stderr);
exit(EXIT_FAILURE);

Library Reference Lattice C 5 Page 349

Vpl’inff Formatted print to stdout, variable argument list

Class: ANSI Category: Formatted I/O
SYNOPSIS

#include <stdarg.h>
#include <stdio.h>

Length = vprintf(fmt,arg);

int Llength; number of characters generated
const char *fmt; format string

va_Llist arg; variable argument Llist

The vprintf function is equivalent to printf, with the variable argument list
replaced by arg, which has been initialised by the va_start macro (and possibly
subsequent va_arg calls). The vprintf function does not invoke the va_end
macro.

RETURNS

The vprintf function returns the number of characters transmitted, or a
negative value if an output error occurred.

SEE
printf, viprintf, vsprintf

Page 350 Lattice C 5 Library Reference

vsprintf

Formatted print to storage, variable argument list

Class: ANSI
SYNOPSIS

Hinclude
#include

Length =

<stdarg.h>
<stdio.h>

vsprintf(s,fmt,arg);

int Length;

char *s;

const char *fmt;

va_Llist

DESCRIPTION

arg,;

number of

storage
format
variable

string

Category: Formatted IO

characters generated

List

The vsprintf function is equivalent to sprintf, with the variable argument list
replaced by arg, which has been initialised by the va_start macro (and possibly
subsequent va_arg calls). The vsprintf function does not invoke the va_end
macro. If copying takes place between objects that overlap, the behaviour is

undefined.

RETURNS

The vsprintf function returns the number of characters written in the array, not
counting the terminating null character.

SEE

printf, viprintf, vprintf

Library Reference

Lattice C 5

Page 351

wdad “' Wait for child process to complete

Class: UNIX Category: Process Creation
SYNOPSIS

#include <stdlib.h>
cc = wait();

int cc; completion code

DESCRIPTION

The walit function is used in conjunction with the fork functions, which create a
“child process” by loading a new program and passing control to it. When the
child process completes, the current program (i.e., the parent process) can
obtain its completion code via the wait function.

When a child process is created under GEMDOS, the parent suspends
execution until the child is finished. The wait function must be called to obtain
the child process’s completion code.

RETURNS

If the specified program file cannot be found using the fork function, a -1 return
is made, and additional error information can be found in errno and _OSERR.
Note that you must call the wait function in order to obtain the completion
code from the child process.

SEE

Pexec, exit, fork

Page 352 ' Lattice C 5 Library Reference

wcstombs Multibyte string conversion

Class: ANSI Category: Wide Characters
SYNOPSIS

#include <stdlib.h>

num = wcstombs(s,pwcs,n);

size_t num; number of bytes modified

char *s; string to be converted

const wchar_t *pwcs; array to store codes

size_t n; maximum number of bytes to be

modified

DESCRIPTION

The wcstombs function converts a sequence of codes that correspond to
multibyte characters from the array pointed to by pwcs into a sequence of
multibyte characters that begins in the initial shift state. It then stores these
multibyte characters into the array pointed to by s, stopping if a multibyte
character would exceed the limit of n total bytes or if a null character is stored.
Each code is converted as if by a call to the wctomb function, except that the
shift state of the wctomb function is not affected.

No more than n bytes will be modified in the array pointed to by s. If copying
takes place between objects that overlap, the behaviour is undefined.

RETURNS

If a code is encountered that does not correspond to a valid multibyte
character, the wcstombs function returns ((size_t)-1). Otherwise the
wcstombs function returns the number of bytes modified, not including a
terminating null character, if any.

SEE

wctomb

Library Reference Lattice C 5 Page 353

wctomb Determine bytes needed to represent multibyte character

Class: ANSI Category: Wide Characters
SYNOPSIS

#include <stdlib.h>

ret = wctomb(s,wchar);

int ret;

char *s; array object in which character is

stored

wchar_t wchar; multibyte character code value

DESCRIPTION

The wctomb function determines the number of bytes needed to represent the
multibyte character corresponding to the code whose value is wchar (including
any change in shift state). It stores the multibyte character representation in the
array object pointed to by s (if s is not a NULL pointer). At most MB_CUR_MAX
characters are stored. If the value of wchar is zero, the wctomb function is
left in the initial shift state.

RETURNS

If s is a NULL pointer, the wctomb function returns a non-zero or zero value, if
multibyte character encodings, respectively, do or do not have state-dependent
encodings. If s is not a NULL pointer, the wctomb function returns -1 if the
value of wchar does not correspond to a valid multibyte character, or returns
the number of bytes that comprise the multibyte character corresponding to the
value of wchar.

In no case will the value returned be greater than the value of the
MB_CUR_MAX macro.

SEE

wcstombs

Page 354 Lattice C § Library Reference

XCO Vf Stack overflow exit
Class: GEMDOS Category: Errors
SYNOPSIS

_xcovf();

DESCRIPTION

This error exit is called whenever a potential stack overflow is detected by the
function prologue. In other words, if the stack does not contain enough space
to handle the needs of a function, _xcovf will be called when that function is
activated. The default version prints a stack overflow message on the screen
and aborts with exit code 3. We supply the source code for this version so you
can change it for your particular application.

Note that any user supplied function must be compiled with stack checks off,
otherwise the function will recursively call itself!

SEE
_base, _STACK, _STKDELTA

Library Reference LatticeC 5 Page 355

Page 356 LatticeC 5 Library Reference

Index

__daylight 34, 337, 343

__emit 10, 96
_ fmask 28

__timezone 34, 337, 343
__tzdtn 34, 337, 343
__tzname 34, 337, 343
__tzstn 34, 337, 343

_base 47
_BSSBAS 50
_BSSLEN 51
_bufsiz 28, 52
_country 9,72
_CXFERR 79
_DATABAS 50
_DATALENS51
_dclose 9, 80
_dcreat 9, 81
_dcreatx 9, 81
_ddup9, 92
_ddup2 9,92
_disatty 9, 85
_dopen 9, 87
_dread 9, 90
_dseek 9, 91
_dwrite 9, 90
_edata 97
_end 97
_ENEED 98
_etext 97
_exit 30
_fmask 118
_fmode 28,120
_FPERR 20, 130
_hash 30, 171
_IOFBF 27
_IOLBF 27
_iomode 16, 174
_IONBF 27
_LinkerDB 182
_Irotl 30, 191
_Irotr 30, 191
_MSTEP 9, 212
nufbs 16

_OSERR 9, 22, 221

_pbase 5,223
_rotl 30, 254

_rotr 30, 254
_setargv 261
_SLASH 32, 271
_STACK 9, 275
_stkdelta 29, 275
_stub 10, 332
_timedata 337
_tolower 7, 340
_tos 9, 341
_toupper 7, 340
_TZ 34

_tzset 34, 343
_XCEXIT 30
_xcovf 10, 355

abort 30, 36
abs 30, 37
access 28, 38
acos 19, 20, 342
alloca 29, 39
argopt 30, 40
asctime 34, 42
asin 19, 20, 342
assert 4, 43
assert.h 4

atan 19, 20, 342
atan2 20, 342
atexit 30, 44
atof 30, 45

atoi 30, 46

atol 30, 46

BASEPAGE 5
basepage.h 5
bldmem 48
bsearch 49
BUFSIZ 27

cabs 53

cadd 54

calloc 29, 55
cdiv 56

ceil 20, 57
cget 6, 58
cgetc 6, 58
cgets 6, 58
CHAR_BIT 17

CHAR_MAX 17
CHAR_MIN 17
chdir 28, 29, 59
chgclk 10, 34, 60
chgdsk 9, 61
chgdta 9, 62
chgfa 9, 63
chgft 9

chgtft 64

chkml 29, 65
chkufb 16, 66
chmod 28, 29, 67
clearerr 28, 68
CLK_TCK 34
clock 34, 69
clock_t 34

close 12, 70
closedir 8, 219
clrerr 68

cmul 71

conio.h 6

cos 19, 20, 342
cosh 19, 20, 342
cot 21

cprintf 6, 73
cputc 6, 74
cputs 6, 74
creat 12, 75
cscanf 6, 76
ctime 34, 77
ctypeh 7

DBL_DIG 13
DBL_EPSILON 13
DBL_MANT_DIG 13
DBL_MAX 13
DBL_MAX_10_EXP 13
DBL_MAX_EXP 13
DBL_MIN 13
DBL_MIN_10_EXP 13
DBL_MIN_EXP 13
DECPT 18

dfind 9, 82

difftime 34, 84

DIR 8

dirent.h 8

DISKINFO 9

div 30, 86

div_t 29

dnext 9, 82

DOMAIN 20
dos.h9
dgsort 29, 238
drand 88
drand48 21
dup 93

dup2 93

ecvt 21, 30, 94
environ 99

EOF 27

erand48 21

errno 11, 100
errno.h 11

except 21, 199

exit 30, 102
EXIT_FAILURE 31
EXIT_SUCCESS 31
exp 19, 20, 104

fabs 19, 20, 105
fatanh 19
fclose 27, 106
fcloseall 28, 106
fcntl.h 12

fcvt 21,30, 94
fdopen 28, 107
feof 28, 108
ferror 28, 109
FESIZE 9
fetoxm1 19
fflush 27, 110
fgetc 27, 111
fgetchar 28, 111
fgetexp 19

fgetl 28, 115
fgetman 19
fgetpos 28, 112
fgets 27, 113
fgetw 28, 115
FILE 27
FILEINFO 9
filelength 12, 116
FILENAME_MAX 27
fileno 28, 117
fintrz 19

float.h 13

flog2 19
flognpl 19
floor 20, 57

Page 358

Lattice C 5

Library Index

FLT_DIG 13
FLT_EPSILON 13
FLT_GUARD 13
FLT_MANT_DIG 13
FLT_MAX 13
FLT_MAX_10_EXP 13
FLT_MAX_EXP 13
FLT_MIN 13
FLT_MIN_10_EXP 13
FLT_MIN_EXP 13
FLT_NORMALIZE 13, 14
FLT_RADIX 13, 14
FLT_ROUNDS 13, 15
flushall 28, 110

fmod 20, 119

fmode 28, 121
FMSIZE 9

fneg 19

FNSIZE 9

fopen 27, 122

fopene 28, 125

fork 127

forkl 31, 127

forkle 31, 127

forklp 31, 127
forklpe 31, 127

forkv 31, 127

forkve 31, 127
forkvp 31, 127
forkvpe 31, 127
FPECOM 20
FPENAN 20
FPEOVF 20
FPEUND 20
FPEZDV 20

fpos_t 27

fprintf 27, 132

fputc 27, 133
fputchar 28, 133
fputl 28, 135

fputs 27, 134

fputw 28, 135

fqsort 29, 238

fread 28, 136

free 29, 137

freopen 27, 139
frexp 20, 140

fscanf 27, 141

fseek 28, 142

fsetpos 28, 143

ftell 28, 144
ftentox 19
ftpack 9, 145
ftunpk 9, 147
fwrite 28, 148

gevt 21, 30, 149
geta4 10, 150
getc 27, 151
getcd 9, 152
getch 6, 153
getchar 27, 151
getche 6, 153
getclk 10, 34, 154
getcwd 28, 29, 155
getdfs 9, 156
getdsk 9, 61
getdta 9, 62
getenv 30, 157
getfa 9, 158
getfnl 30, 159
getft 9, 162
getmem 29, 163
getml 29, 163
getopt 30, 164
getpf 10, 166
getpfe 10, 166
getpid 30, 167
getreg 10, 168
gets 27, 169
gmtime 34, 170

HUGE 21
HUGE_VAL 13, 20

I_PI20
1_PID2 20

iabs 30, 173
INT_MAX 17
INT_MIN 17
iomode 12, 175
iosl.h 16
isalnum 7, 176
isalpha 7, 176
isascii 7, 176
isatty 12, 178
iscntrl 7, 176
iscsym 7, 176
iscsymf 7,176
isdigit 7, 176

Library Index

Lattice C 5 Page 359

isgraph 7, 176

Isbrk 29, 192

iskbhit 6, 179 Isearch 30, 193
islower 7, 176 Iseek 12, 194
isprint 7, 176
ispunct 7, 176 m68881.h 19
isspace 7, 176 main 196
isupper 7, 176 malloc 29, 198
isxdigit 7, 176 math.h 20
matherr 21, 199
jmp_buf 23 max 201
jrand48 21 MB_CUR_MAX 29
MB_LEN_MAX 17
kbhit 6, 179 mblen 29, 202
mbstowcs 29, 203
L_tmpnam 27 mbtowc 29, 204
labs 30, 180 memccpy 33, 205
LC_ALL18 memchr 33, 205
LC_COLLATE 18 memcmp 33, 205
LC_CTYPE 18 memcpy 33, 205
LC_MONETARY 18 memmove 33
LC_NUMERIC 18 memrep 33
LC_TIME 18 memset 33, 205
lcong48 21 memswp 33
LDBL_DIG 13 min 201
LDBL_EPSILON 13 mkdir 28, 29, 207
LDBL_MANT_DIG 13 mktemp 28, 208
LDBL_MAX 13 mktime 34, 209
LDBL_MAX_10_EXP 13 modf 20, 211
LDBL_MAX_EXP 13 movmem 33, 205
LDBL_MIN 13 mrand48 21
LDBL_MIN_10_EXP 13
LDBL_MIN_EXP 13 nrand48 21
ldexp 20, 181 NUFBS 16
1div 30, 86 NULL 26
Idiv_t 29
Ifind 30, 193 O_APPEND 12
limits.h 17 O_CREAT 12
locale.h 18 O_EXCL 12
localeconv 18, 183 O_RAW 12
localtime 34, 188 O_RDONLY 12
log 19, 20, 104, 189 O_RDWR 12
log10 19, 20, 104, 189 O_TRUNC 12
LOGHUGE 21 O_WRONLY 12
LOGTINY 21 offsetof 26
LONG_MAX 17 onbreak 10, 213
LONG_MIN 17 onexit 30, 215
longjmp 23, 263 open 12,217
lprintf 190 opendir 8, 219
Igsort 29, 238 opene 220
Irand48 21 optarg 30
Page 360 Lattice C 5 Library Index

opterr 30

optind 30

optopt 30
os_errlist 22, 221
os_nerr 22, 221
oserr.h 22
OVERFLOW 20

pclose 225
perror 28, 224
PI20

PID2 20

PID4 20
PLOSS 20
popen 225
poserr 10, 227
pow 20, 104
pow2 19, 21, 104
printf 27, 228
ptrdiff_t 26
putc 27, 234
putch 6, 235
putchar 27, 234
putenv 30, 236
putreg 10, 168
puts 28, 237

gsort 29, 238

raise 24, 240

REG_Dé6 10
REG_D7 10
remove 12, 27, 246
rename 12, 27, 248
repmem 33, 205
rewind 28, 250
rewinddir 8, 260
rlsmem 29, 251
rlsml 29, 251
rmdir 28, 29, 252
rmvenv 30, 253

S_IEXEC 12
S_IREAD 12
S_IWRITE 12
sbrk 29, 255
scanf 27, 256
SCHAR_MAX 17
SCHAR_MIN 17
SECSIZ 9
seed48 21
SEEK_CUR 27
SEEK_END 27
SEEK_SET 27
seekdir 8, 260
setbuf 27, 262
setjmp 23, 263
setjmp.h 23
setlocale 18, 265
setmem 33, 205

rand 30, 241 setnbf 28, 267
RAND_MAX 31 setvbuf 27, 268
RANGE 20 SHRT_MAX 17
read 12, 242 SHRT_MIN 17
readdir 8, 243 sig_atomic_t 24
realloc 29, 245 SIG_DFL 24
REG_A010 SIG_ERR 24
REG_A110 SIG_IGN 24
REG_A210 SIGABRT 24
REG_A310 SIGFPE 24
REG_A410 SIGILL 24
REG_A5 10 SIGINT 24
REG_A610 signal 24, 270
REG_A7 10 signal.h 24
REG_DO0 10 SIGSEGV 24
REG_D1 10 SIGTERM 24
REG_D2 10 sin 19, 20, 342
REG_D3 10 SING 20
REG_D4 10 sinh 19, 20, 342
REG_DS5 10 size_t 26
Library Index Lattice C 5 Page 361

sizmem 29, 272

sprintf 27, 273
sqrt 19, 20, 104
sqsort 29, 238
srand 30, 241
srand48 21
sscanf 27,274
stat 276
stcarg 32, 277
stccpy 32, 301
sted_i 32,278
sted_132, 278
stcgfe 33, 280
stcgfn 33, 280
stegfp 33, 280
stch_i 32,278
stch_l1 32, 278
stci_d 32, 282
stci_h 32, 282
stci_o 32, 282
stcis 32, 319
stcisn 32, 319
stcl_d 32,282
stcl_h 32, 282
stcl_o 32, 282
stclen 33, 308
stco_i 32, 278
stco_132, 278
stcpm 32, 284
stcpma 32, 284
stcsma 33
stcu_d 33, 282
stcul_d 33, 282

stptok 32, 293
strbpl 32, 294
strcat 32, 295
strchr 32, 297
stremp 32, 298
strcoll 32, 300
strcpy 32, 301
strespn 32, 319
strdup 32, 303
strerror 32, 304
strftime 34, 305
stricmp 33, 298
string.h 32
strins 32, 307
strlen 32, 308
strlwr 33, 309
strmfe 33, 310
strmfn 33, 311
strmfp 33, 312
strmid 33, 313
strncat 32, 295
strncmp 32, 298
strncpy 32, 301
strnicmp 33, 298
strnset 32, 316
strpbrk 32, 314
strrchr 32, 297
strrev 32, 315
strset 33, 316
strsfn 33, 317
strspn 32, 319
strsrt 33, 320
strstr 32, 321

stdarg.h 25 strtod 30, 322
stdaux 27 strtok 32, 324
stddef.h 26 strtol 30, 326
stderr 27 strtoul 30, 328
stdin 27 struct dirent 8
stdio.h 27 struct exception 20
stdlib.h 29 struct lconv 18
stdout 27 struct tm 34

stdprt 27 strupr 33, 309
stpblk 32, 286 strxfrm 32, 330
stpbrk 32, 314 stspfp 33, 331
stpchr 32,297 swab 333

stpchrn 32, 297 swmem 33, 205
stpcpy 32, 301 sys_errlist 11, 100
stpdate 33, 287 sys_nerr 11, 100
stpsym 32, 289 system 30, 334
stptime 33, 291

Page 362 Lattice C 5 Library Index

tan 19, 20, 342
tanh 19, 21, 342
tell 12, 194
telldir 8, 260
time 34, 336
time.h 34
time_t 34

TINY 21
TLOSS 20
TMP_MAX 27
tmpfile27, 338
tmpnam 27, 339
toascii 7, 340
tolower 7, 340
toupper 7, 340
tgsort 29, 238

UCHAR_MAX 17
UINT_MAX 17
ULONG_MAX 17
UNDERFLOW 20
ungetc 28, 344
ungetch 6, 345
unlink 12, 28, 246
USHRT_MAX 17
utime 346

utpack 30, 34, 347
utunpk 30, 34, 347

va_arg 25
va_end 25
va_list 25
va_start 25
vfprintf 27, 349
vprintf 27, 350
vsprintf 27, 351

wait 31, 352
wchar_t 18, 26
wcstombs 29, 353
wctomb 29, 354
write 12, 242

Library Index Lattice C 5

Page 363

	vol-ii-01_Page_01
	vol-ii-01_Page_02_1L
	vol-ii-01_Page_02_2R
	vol-ii-01_Page_03_1L
	vol-ii-01_Page_03_2R
	vol-ii-01_Page_04_1L
	vol-ii-01_Page_04_2R
	vol-ii-01_Page_05_1L
	vol-ii-01_Page_05_2R
	vol-ii-01_Page_06_1L
	vol-ii-01_Page_06_2R
	vol-ii-01_Page_07_1L
	vol-ii-01_Page_07_2R
	vol-ii-01_Page_08_1L
	vol-ii-01_Page_08_2R
	vol-ii-01_Page_09_1L
	vol-ii-01_Page_09_2R
	vol-ii-01_Page_10_1L
	vol-ii-01_Page_10_2R
	vol-ii-01_Page_11_1L
	vol-ii-01_Page_11_2R
	vol-ii-01_Page_12_1L
	vol-ii-01_Page_12_2R
	vol-ii-01_Page_13_1L
	vol-ii-01_Page_13_2R
	vol-ii-01_Page_14_1L
	vol-ii-01_Page_14_2R
	vol-ii-01_Page_15_1L
	vol-ii-01_Page_15_2R
	vol-ii-01_Page_16_1L
	vol-ii-01_Page_16_2R
	vol-ii-01_Page_17_1L
	vol-ii-01_Page_17_2R
	vol-ii-01_Page_18_1L
	vol-ii-01_Page_18_2R
	vol-ii-01_Page_19_1L
	vol-ii-01_Page_19_2R
	vol-ii-01_Page_20_1L
	vol-ii-01_Page_20_2R
	vol-ii-02_Page_01_1L
	vol-ii-02_Page_01_2R
	vol-ii-02_Page_02_1L
	vol-ii-02_Page_02_2R
	vol-ii-02_Page_03_1L
	vol-ii-02_Page_03_2R
	vol-ii-02_Page_04_1L
	vol-ii-02_Page_04_2R
	vol-ii-02_Page_05_1L
	vol-ii-02_Page_05_2R
	vol-ii-02_Page_06_1L
	vol-ii-02_Page_06_2R
	vol-ii-02_Page_07_1L
	vol-ii-02_Page_07_2R
	vol-ii-02_Page_08_1L
	vol-ii-02_Page_08_2R
	vol-ii-02_Page_09_1L
	vol-ii-02_Page_09_2R
	vol-ii-02_Page_10_1L
	vol-ii-02_Page_10_2R
	vol-ii-02_Page_11_1L
	vol-ii-02_Page_11_2R
	vol-ii-02_Page_12_1L
	vol-ii-02_Page_12_2R
	vol-ii-02_Page_13_1L
	vol-ii-02_Page_13_2R
	vol-ii-02_Page_14_1L
	vol-ii-02_Page_14_2R
	vol-ii-02_Page_15_1L
	vol-ii-02_Page_15_2R
	vol-ii-02_Page_16_1L
	vol-ii-02_Page_16_2R
	vol-ii-02_Page_17_1L
	vol-ii-02_Page_17_2R
	vol-ii-02_Page_18_1L
	vol-ii-02_Page_18_2R
	vol-ii-02_Page_19_1L
	vol-ii-02_Page_19_2R
	vol-ii-03_Page_01_1L
	vol-ii-03_Page_01_2R
	vol-ii-03_Page_02_1L
	vol-ii-03_Page_02_2R
	vol-ii-03_Page_03_1L
	vol-ii-03_Page_03_2R
	vol-ii-03_Page_04_1L
	vol-ii-03_Page_04_2R
	vol-ii-03_Page_05_1L
	vol-ii-03_Page_05_2R
	vol-ii-03_Page_06_1L
	vol-ii-03_Page_06_2R
	vol-ii-03_Page_07_1L
	vol-ii-03_Page_07_2R
	vol-ii-03_Page_08_1L
	vol-ii-03_Page_08_2R
	vol-ii-03_Page_09_1L
	vol-ii-03_Page_09_2R
	vol-ii-03_Page_10_1L
	vol-ii-03_Page_10_2R
	vol-ii-03_Page_11_1L
	vol-ii-03_Page_11_2R
	vol-ii-03_Page_12_1L
	vol-ii-03_Page_12_2R
	vol-ii-03_Page_13_1L
	vol-ii-03_Page_13_2R
	vol-ii-03_Page_14_1L
	vol-ii-03_Page_14_2R
	vol-ii-03_Page_15_1L
	vol-ii-03_Page_15_2R
	vol-ii-03_Page_16_1L
	vol-ii-03_Page_16_2R
	vol-ii-03_Page_17_1L
	vol-ii-03_Page_17_2R
	vol-ii-03_Page_18_1L
	vol-ii-03_Page_18_2R
	vol-ii-03_Page_19_1L
	vol-ii-03_Page_19_2R
	vol-ii-03_Page_20_1L
	vol-ii-03_Page_20_2R
	vol-ii-03_Page_21_1L
	vol-ii-03_Page_21_2R
	vol-ii-03_Page_22_1L
	vol-ii-03_Page_22_2R
	vol-ii-03_Page_23_1L
	vol-ii-03_Page_23_2R
	vol-ii-03_Page_24_1L
	vol-ii-03_Page_24_2R
	vol-ii-04_Page_01_1L
	vol-ii-04_Page_01_2R
	vol-ii-04_Page_02_1L
	vol-ii-04_Page_02_2R
	vol-ii-04_Page_03_1L
	vol-ii-04_Page_03_2R
	vol-ii-04_Page_04_1L
	vol-ii-04_Page_04_2R
	vol-ii-04_Page_05_1L
	vol-ii-04_Page_05_2R
	vol-ii-04_Page_06_1L
	vol-ii-04_Page_06_2R
	vol-ii-04_Page_07_1L
	vol-ii-04_Page_07_2R
	vol-ii-04_Page_08_1L
	vol-ii-04_Page_08_2R
	vol-ii-04_Page_09_1L
	vol-ii-04_Page_09_2R
	vol-ii-04_Page_10_1L
	vol-ii-04_Page_10_2R
	vol-ii-04_Page_11_1L
	vol-ii-04_Page_11_2R
	vol-ii-04_Page_12_1L
	vol-ii-04_Page_12_2R
	vol-ii-04_Page_13_1L
	vol-ii-04_Page_13_2R
	vol-ii-04_Page_14_1L
	vol-ii-04_Page_14_2R
	vol-ii-04_Page_15_1L
	vol-ii-04_Page_15_2R
	vol-ii-04_Page_16_1L
	vol-ii-04_Page_16_2R
	vol-ii-04_Page_17_1L
	vol-ii-04_Page_17_2R
	vol-ii-04_Page_18_1L
	vol-ii-04_Page_18_2R
	vol-ii-04_Page_19_1L
	vol-ii-04_Page_19_2R
	vol-ii-04_Page_20_1L
	vol-ii-04_Page_20_2R
	vol-ii-04_Page_21_1L
	vol-ii-04_Page_21_2R
	vol-ii-04_Page_22_1L
	vol-ii-04_Page_22_2R
	vol-ii-04_Page_23_1L
	vol-ii-04_Page_23_2R
	vol-ii-04_Page_24_1L
	vol-ii-04_Page_24_2R
	vol-ii-05_Page_01_1L
	vol-ii-05_Page_01_2R
	vol-ii-05_Page_02_1L
	vol-ii-05_Page_02_2R
	vol-ii-05_Page_03_1L
	vol-ii-05_Page_03_2R
	vol-ii-05_Page_04_1L
	vol-ii-05_Page_04_2R
	vol-ii-05_Page_05_1L
	vol-ii-05_Page_05_2R
	vol-ii-05_Page_06_1L
	vol-ii-05_Page_06_2R
	vol-ii-05_Page_07_1L
	vol-ii-05_Page_07_2R
	vol-ii-05_Page_08_1L
	vol-ii-05_Page_08_2R
	vol-ii-05_Page_09_1L
	vol-ii-05_Page_09_2R
	vol-ii-05_Page_10_1L
	vol-ii-05_Page_10_2R
	vol-ii-05_Page_11_1L
	vol-ii-05_Page_11_2R
	vol-ii-05_Page_12_1L
	vol-ii-05_Page_12_2R
	vol-ii-05_Page_13_1L
	vol-ii-05_Page_13_2R
	vol-ii-05_Page_14_1L
	vol-ii-05_Page_14_2R
	vol-ii-05_Page_15_1L
	vol-ii-05_Page_15_2R
	vol-ii-05_Page_16_1L
	vol-ii-05_Page_16_2R
	vol-ii-05_Page_17_1L
	vol-ii-05_Page_17_2R
	vol-ii-05_Page_18_1L
	vol-ii-05_Page_18_2R
	vol-ii-05_Page_19_1L
	vol-ii-05_Page_19_2R
	vol-ii-05_Page_20_1L
	vol-ii-05_Page_20_2R
	vol-ii-05_Page_21_1L
	vol-ii-05_Page_21_2R
	vol-ii-05_Page_22_1L
	vol-ii-05_Page_22_2R
	vol-ii-05_Page_23_1L
	vol-ii-05_Page_23_2R
	vol-ii-05_Page_24_1L
	vol-ii-05_Page_24_2R
	vol-ii-05_Page_25_1L
	vol-ii-05_Page_25_2R
	vol-ii-06_Page_01_1L
	vol-ii-06_Page_01_2R
	vol-ii-06_Page_02_1L
	vol-ii-06_Page_02_2R
	vol-ii-06_Page_03_1L
	vol-ii-06_Page_03_2R
	vol-ii-06_Page_04_1L
	vol-ii-06_Page_04_2R
	vol-ii-06_Page_05_1L
	vol-ii-06_Page_05_2R
	vol-ii-06_Page_06_1L
	vol-ii-06_Page_06_2R
	vol-ii-06_Page_07_1L
	vol-ii-06_Page_07_2R
	vol-ii-06_Page_08_1L
	vol-ii-06_Page_08_2R
	vol-ii-06_Page_09_1L
	vol-ii-06_Page_09_2R
	vol-ii-06_Page_10_1L
	vol-ii-06_Page_10_2R
	vol-ii-06_Page_11_1L
	vol-ii-06_Page_11_2R
	vol-ii-06_Page_12_1L
	vol-ii-06_Page_12_2R
	vol-ii-06_Page_13_1L
	vol-ii-06_Page_13_2R
	vol-ii-06_Page_14_1L
	vol-ii-06_Page_14_2R
	vol-ii-06_Page_15_1L
	vol-ii-06_Page_15_2R
	vol-ii-06_Page_16_1L
	vol-ii-06_Page_16_2R
	vol-ii-06_Page_17_1L
	vol-ii-06_Page_17_2R
	vol-ii-06_Page_18_1L
	vol-ii-06_Page_18_2R
	vol-ii-06_Page_19_1L
	vol-ii-06_Page_19_2R
	vol-ii-06_Page_20_1L
	vol-ii-06_Page_20_2R
	vol-ii-06_Page_21_1L
	vol-ii-06_Page_21_2R
	vol-ii-06_Page_22_1L
	vol-ii-06_Page_22_2R
	vol-ii-06_Page_23_1L
	vol-ii-06_Page_23_2R
	vol-ii-06_Page_24_1L
	vol-ii-06_Page_24_2R
	vol-ii-06_Page_25_1L
	vol-ii-06_Page_25_2R
	vol-ii-06_Page_26_1L
	vol-ii-06_Page_26_2R
	vol-ii-06_Page_27_1L
	vol-ii-06_Page_27_2R
	vol-ii-06_Page_28_1L
	vol-ii-06_Page_28_2R
	vol-ii-06_Page_29_1L
	vol-ii-06_Page_29_2R
	vol-ii-06_Page_30_1L
	vol-ii-06_Page_30_2R
	vol-ii-06_Page_31_1L
	vol-ii-06_Page_31_2R
	vol-ii-06_Page_32_1L
	vol-ii-06_Page_32_2R
	vol-ii-06_Page_33_1L
	vol-ii-06_Page_33_2R
	vol-ii-06_Page_34_1L
	vol-ii-06_Page_34_2R
	vol-ii-07_Page_01_1L
	vol-ii-07_Page_01_2R
	vol-ii-07_Page_02_1L
	vol-ii-07_Page_02_2R
	vol-ii-07_Page_03_1L
	vol-ii-07_Page_03_2R
	vol-ii-07_Page_04_1L
	vol-ii-07_Page_04_2R
	vol-ii-07_Page_05_1L
	vol-ii-07_Page_05_2R
	vol-ii-07_Page_06_1L
	vol-ii-07_Page_06_2R
	vol-ii-07_Page_07_1L
	vol-ii-07_Page_07_2R
	vol-ii-07_Page_08_1L
	vol-ii-07_Page_08_2R
	vol-ii-07_Page_09_1L
	vol-ii-07_Page_09_2R
	vol-ii-07_Page_10_1L
	vol-ii-07_Page_10_2R
	vol-ii-07_Page_11_1L
	vol-ii-07_Page_11_2R
	vol-ii-07_Page_12_1L
	vol-ii-07_Page_12_2R
	vol-ii-07_Page_13_1L
	vol-ii-07_Page_13_2R
	vol-ii-07_Page_14_1L
	vol-ii-07_Page_14_2R
	vol-ii-07_Page_15_1L
	vol-ii-07_Page_15_2R
	vol-ii-07_Page_16_1L
	vol-ii-07_Page_16_2R
	vol-ii-07_Page_17_1L
	vol-ii-07_Page_17_2R
	vol-ii-07_Page_18_1L
	vol-ii-07_Page_18_2R
	vol-ii-07_Page_19_1L
	vol-ii-07_Page_19_2R
	vol-ii-07_Page_20_1L
	vol-ii-07_Page_20_2R
	vol-ii-07_Page_21_1L
	vol-ii-07_Page_21_2R
	vol-ii-07_Page_22_1L
	vol-ii-07_Page_22_2R
	vol-ii-07_Page_23_1L
	vol-ii-07_Page_23_2R
	vol-ii-07_Page_24_1L
	vol-ii-07_Page_24_2R
	vol-ii-07_Page_25_1L
	vol-ii-07_Page_25_2R
	vol-ii-07_Page_26_1L
	vol-ii-07_Page_26_2R
	vol-ii-07_Page_27_1L
	vol-ii-07_Page_27_2R
	vol-ii-07_Page_28_1L
	vol-ii-07_Page_28_2R
	vol-ii-07_Page_29_1L
	vol-ii-07_Page_29_2R
	vol-ii-07_Page_30_1L
	vol-ii-07_Page_30_2R
	vol-ii-07_Page_31_1L
	vol-ii-07_Page_31_2R
	vol-ii-07_Page_32_1L
	vol-ii-07_Page_32_2R
	vol-ii-07_Page_33_1L
	vol-ii-07_Page_33_2R
	vol-ii-07_Page_34_1L
	vol-ii-07_Page_34_2R
	vol-ii-07_Page_35_1L
	vol-ii-07_Page_35_2R
	vol-ii-07_Page_36_1L
	vol-ii-07_Page_36_2R
	vol-ii-07_Page_37_1L
	vol-ii-07_Page_37_2R
	vol-ii-07_Page_38_1L
	vol-ii-07_Page_38_2R
	vol-ii-07_Page_39_1L
	vol-ii-07_Page_39_2R
	vol-ii-07_Page_40_1L
	vol-ii-07_Page_40_2R

