
Volume I
User Manual

•

High Quality Software

Lattice C
The C system for your Atari ST

Volume I
User Manual

Copyright© HiSoft & Lattice, Inc. 1990, 91
Published by HiSoft

Version 5
First edition March 1990 (ISBN 0 948517 29 8)
Second edition Apri11991

ISBN for this volume 0 948517 37 9

ISBN for complete 3 volume set 0 948517 28 X

Set using an Apple Macintoshn.t and Laserwrttern.t with Microsoft Wordn.t and
SuperPaintn.t.

All Rights Reserved Worldwide. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and recording,
without the written permission of the copyright holder. Such written permission
must also be obtained before any part of this publication is stored in a retrieval
system of any nature.

It is an infringement of the copyright pertaining to Lattice C for the ST and its
associated documentation to copy, by any means whatsoever, any part of Lattice
C for the ST for any reason other than for the purposes of making a security back­
up copy of the object code.

Table of Contents
I ntroduction

Making a Backup

Technical Support

What is Lattice C 5?

Editing C Source Code

Compiling and Unklng C Source Code

Debugging the Program

Improving the Program

Bells and Whistles

A Lattice C 5 Tutorial

Lesson 1 - Your First Program

Lesson 2 - We all make mistakes

Lesson 3 - Optionally yours

Summary of Lesson 3

H ints and Tips

EdC
Introduction

The Editor

Entering text and Moving about

Cursor keys

Tab key

Backspace key

Delete key

Searching and Replacing Text

Deleting text

Disk Operations

Contents

Save As ...

Save

Loading Text

Lattice C 5

1
1

2

2

2

3

3

3

4

4

12

17

21

22

25
25

25

26

27

27

28

28

29

30

3 1

31

31

31

Page I

Inserting Text

Delete File

Change Directory

Quitting EdC

Block Commands

Marking a block

Saving a block

Copying a block

Deleting a block

Copy block to block buffer

Pasting a block

Printing a block

Compiling & Running Programs

Syntax Check

Compile

Jump to Error

Link

Compile & Link

Run

Run wHh GEM

Run Other ...

Run with Shell

Options

Compiler Options

Use Global Optlmlser

Llnker Symbols

Unk with Floating Point

Unk with GEM

Arrange Windows ...

Cycle Windows

Fonts .. .

ASCII Table .. .

Preferences .. .

Tools Menu

Running Tools

Environment

Save tool into

Page 11 LaHice C 5

32

32

32

33

34

34

34

34

35

35

35

35

36

36

36

36

37

37

37

37

38

38

39

39

40

40

40

40

40

41

41

42

43

45

47

47

48

Contents

Miscellaneous Commands

About EdC

Help Screen

Switching Windows

Windows 8c Desk Accessories

The Editor Windows

LC

Desk Accessories

Automatic Double-Clicking

Savedl Desk Accessory Users

The Compiler Driver

Return Codes

The Compiler Phases

Environment Variables

SeHing the variables

PATH - Executable path

INCLUDE • Include path

LIB - Library path

QUAD - Quad path

LC_OPT - Default options

Pre-processor Symbols

Compiler Options

Pre-compiled Header Files

Language Extensions

ANSI Extensions

Storage Classes

Calling Conventions

Built- in Functions

ln line Calls

Compiler Operational Errors

Syntax errors and warn ings

I nternal Errors

Contents LaHice C 5

48

48

48

48

49

49

49

49

50

51
51

5 1

52

56

56

56

56

57

57

57

58

59

74

74

75

77

78
80

82

84

92

110

Page lii

Clink 1 1 3
A simple CLink command line 1 1 3

Concepts 1 1 3

A LVs 113

Near DATA/BSS 114

Directives 1 1 4

Input directives 114

Output directives 115

Map files 1 1 7

Compiler Options and CLink 1 1 9

The - b 1 option 119

The -r1 option 119

The -d options 120

Reserved symbols 1 20

Standard libraries 1 2 1

CLink Messages 1 22

CLink Warnings/messages 122

CLink Errors 123

Batcher 1 29
Available memory - AVAIL 1 29

Change Directory - CD 1 29

Change Disk 1 30

Clear Screen - CLS 1 30

Set Screen Colours - COLOUR 1 30

Copy Files - COPY 1 3 1

Enable file overwrite warnings - COPYWARN 1 32

Delete Files - DEL 1 32

Disk Change - DC 1 33

Directory List - D IR 1 33

Set auto-diskchange mode - DISKCHANGE 1 34

Pagelv LaHice C S Contents

Echo commands - ECHO 1 34

Erase Files - ERA 1 34

Exit Batcher - EXIT 1 34

Format floppy disk - FORMAT 1 35

Free disk space - FREE 1 35

Make Directory - MKDIR 1 35

Control Mouse VIsibility - MOUSE 1 35

Pause for keypress - PAUSE 1 36

Remark - REM 1 36

Rename - REN 1 36

Remove Directory - RMDIR 1 36

Set screensave mode - SCREENSAVE 1 37

Set Environment Variable - SET 1 37

Set font size - SMALL 1 37

Type File - TYPE 1 37

Perform virtual disking - VIRTUALDISK 1 38

Which file would run - WH ICH 1 38

line Editing 1 38

Batch file 1 39

Redirection 1 40

WERCS 141
What i s a Resource File? 1 4 1

What Is a Tree ? 142

What Is an Object? 143

Header Flies 145

Quick Tour 1 45

Running WERCS 145

Creating a New Resource File 145

Contents LaHice C 5 Page v

Using WERCS

General

Introduction to Creating and Editing Trees

Changing Objects

File Menu

Flags Menu

Fill Menu

Border Menu

Text Menu

Clipboard

Mise Menu

Tree Level Editing

Keyboard Shortcut Summary

MonST2C
Introduction

Preparing to use MonST2C

Invoking MonST2C

From the Desktop

From the Editor

From Batcher

MonST2C Dialog and Alert Boxes

In itial Display

Front Panel Display

Simple Window Handling

Command Input

MonST2C Overview

MonST2C Reference

Page vi

Numeric Expressions

Window Types

Window Commands

Screen Switching

Breaking Into Programs

Breakpoints

History

LaHice C 5

1 47

147

147

148

156

158

160

160

161

161

162

166

172

1 75
1 75

1 76

1 77

177

177

177

1 78

1 78

1 79

180

1 80

1 8 1

1 82

182

185

187

189

190

191

193

Contents

Quitting MonST2C

loading & Saving

Executing Programs

Searching Memory

Miscellaneous

Command Summary

Debugging Stratagem

Exceptions

Memory layout

Using MonST2C with other languages

Using MonST2C with multi-module programs

For Devpac MonST2 Users

ASM
Basic Concepts

Source Formal

Addressing modes

Using the Assembler

Assembler Directives

Conditional Assembly

Macro Defin ition

Interfacing C with Assembly Language

Control Sections

Function Entry Rules

Function Exit Rules

Calling Assembly from C

Calling C from Assembly

Asm Error Messages

Internal Errors

Contents LaHice c 5

194

194

195

197

198

202

204

205

207

208

209

209

21 1
2 1 1

2 1 1

2 1 4

2 1 6

2 1 8

223

224

225

226

23 1

234

235

237

239

247

Page vli

The Lattice C 5 Tools
Reset Proof RAM Disk - hramdsk

Header file compressor - !compact

Object Module Disassembler - omd

Object Module Librarian - oml

Symbol Strip Util ity - strip

Resource Name Converter - wconvert

Image Converter - wimage

Appendix A - Implementation
Translat ion

Environment

Identifiers

Characters

Integers

Floating Point

Arrays and Pointers

Registers

Structs, Un ions, Enums, and Bit-fields

Qual if iers

Declarators

Statements

Preprocessing Directives

Appendix B - Resource Details
Objects

Flag Types

Flag States

Object, Flags and States Summary

Page vlll LaHice C 5

249
249

251

252

253

258

259

260

263
263

263

264

264

265

266

268

268

268

270

270

270

270

273
273

277

279

280

Contents

Programming with Resources

Tree Structure

Hints & Tips on Resources

Common Mistakes and how to avoid them

WERCS Language Details

Assembly Language

BASIC

c
FORTRAN

Modula-2

Pascal

The WTEST

Compiling WTEST

WTEST structure

HRD file format

LNG file format

Appendix C - Converting
Lattice 3.04

H iSoft C

Appendix D - GST Support
LlnkST, The GST format linker

Introduction

Compiling code In GST format

Invokin g UnkST

UnkST Running

GSTiib, The GST format l ibrarian

lc2gst, The Object File Convertor

Appendix E - Options Summary

Contents LaHice C 5

282

282

291

292
294

294

294

295

295

296

297

297

297

298

30 1

302

305
305

3 1 1

313
3 1 3

313

314

314

316
322

325

327

Pagelx

Appendix F - Start-Up 331
Introduction 33 1

The stubs 331

Standard - suffix none 331

Desk Accessory - suffix 'ace' 33 1

Auto-detecting - suffix 'aut' 332

Resident - suffix 'res' 333

User supplied stubs 334

Naming conventions 334

Re-assembling c.s 335

Appendix G - ST ASCI I Table 337

Appendix H - VT52 Screen Codes 339

Appendix I - Bibliography 34 1
C Progmmm�g �1

68000 343

Algorithms & Data Structures 344

ST Specific 345

Appendix J - Technical Support 347
Upgrades 347

Suggestions 348

Index 349

Page x LaHice C 5 Contents

Introduction
Welcome to Lattice C Version 5, one of the most powerful and flexible
programming environments available for the Atari ST /TT range of computers.
This new version of Lattice C is based on proven Amiga and PC compilers,
coupled with a complete suite of programming tools and libraries, resulting in
a C development system that is unparalleled in the speed and the quality of
its object code, while being a joy to use for the beginner and the professional
a l ike .

The documentation for Lattice C 5 is divided, like Gaul, into three parts: this
volume gives an overview of the whole system and details the working of the
compiler, linker, assembler and all the associated tools while the other two
volumes document the many library functions available, both generic (Unix,
ANSI and Lattice) and Atari ST specific (GEM, AES, VDI etc.) . There is a
wealth of information here and you should not expect to assimilate it all in
one reading - you are encouraged to work through the rest of this chapter and
then to use Lattice C 5 in anger, dipping into the various manuals for
reference, as and when the occasion arises.

Before we proceed to using Lattice C 5 for the first time there are a couple of
important things that you must know about . . .

!Making a Backup
You have several ways of making a backup of the Lattice C 5 disks . You can
use the disk copying function of the Desktop to duplicate the disk, or you can
use one of the many disk copiers available.

However you do it, please make a backup and then store the master disks in a
safe place, away from moisture, extreme heat or cold, magnetic fields
(televisions, telephones etc. give off radiation harmful to disks), strong light,
coffee and, above all, children and dogs! If you damage your master disks we
will charge you a handling fee for re-copying them.

!Techn ical Support
We are striving continually to make this product better, so we are very
receptive to suggestions about how Lattice C 5 could be made more useful to
you. If enough people ask for the same types of features, the likelihood is
high that such features will be implemented in a future release of the
package.

Introduction LaHice C 5 Page 1

To take advantage of the support we offer, even if only to receive details of
the newest major revision of the program, you must have sent us your
registration card. You will then be sent any new information about Lattice C.

You must also quote your serial number for technical support, you may find it
useful to make a note of it here:

I Serial No.

See Appendix J for more details of Technical Support. Please ensure that you
have read this section carefully before contacting us for technical support as it
also describes some of the common problems and how to solve them.

!What is Lattice C 5?
So that you can get the most out of these manuals and the software, here is
an overview of the complete Lattice C 5 system.

Lattice C 5 is a C development system comprising a host of tools and utilities
allowing you to create, compile, link and run programs on the Atari ST. It
conforms closely to the new ANSI standard for the C language and includes
many extensions that give you a great deal of flexibility in the C
environment. The package also contains the most extensive set of library
functions (both generic and ST-specific) available on the Atari ST computer.

Editing C Source Code

You can create and edit C programs using any editor of your choice, as long as
the editor can save the source code as plain ASCII characters. We provide,
and recommend, an editor, called EdC, which is GEM-based, easy-to-use and is
a complete, visually-oriented shell.

We also supply a derivative of EdC, called LC . PRG, which integrates the
editor and the first phase of the Lattice C 5 compiler, giving a fast edit­
compile-edit cycle. This is usable on machines with at least 1Mb of memory.

Compil ing and Linking C Source Code

In order to turn your C source code into an executable program, you need to
compile and link it. If you are not using the integrated system (LC . PRG), you
will need to use the compiler driver (LC .TIP) either from the Desktop or from
a command line shell (CLI) - we supply a MS-DOS style shell which is
known as Batcher.

Page 2 Lattice C 5 I ntroduction

The Lattice C 5 compiler operates in two phases, the first phase (LC l)
performs pre-processing and parsing of your C code into a n intermediate
format known as a quad (.Q) file. The second phase (LC2) takes this quad file
and produces 680x0 object code in a file (.0 extension), ready for linking.

The linker, CLink, creates a runnable, machine code program by combining one
or more object files produced by LC2 with the relevant supplied libraries.

The integrated system lets you, with a single key-press, invoke the first
phase of the compiler (which is built in), LC2 and then the linker, producing
an executable program, ready to run from the editor.

From a shell, the LC driver (LC .TTP) provides one command line to control
and invoke LC l , LC2 and the linker.

Debugging the Program

We supply a low-level debugger (MONST2C . PRG) that will help the more
experienced of you to investigate the operation (or not!) of your program. The
debugger has some higher-level features, normally only found in source level
debuggers, allowing access to your source code on a line number basis. We hope
to produce a full source level debugger at a later stage.

I mproving the Program

We supply a number of powerful tools allowing you to create good-looking,
fast and compact programs with a minimum of effort.

W E R C S is a resource editor giving full access to GEM, making it easy to
incorporate menus, dialog boxes and icons. It is compatible with earlier
resource editors and also lets you include graphics from art packages.

The assembler, ASM, is a full 680x0 macro assembler, tailored to the Lattice
C 5 environment, letting you exploit the 680x0 family of processors to the full.

To achieve maximum performance without resorting to assembly language,
Lattice C 5 incorporates a global optimiser, GO. GO gives you the option of
increasing the performance of your program with no programming effort,
although it can take some time to complete its task!

Bells and Wh istles

Lattice C 5 also comes with a plethora of minor tools, whose usefulness wi l l
depend on your own needs and experience. These include such things as a reset­
proof RAM disk, a librarian, an object module disassembler etc. which are all
fully documented in The Lattice C 5 Tools chapter.

I ntroduction LaHice C 5 Page 3

lA Lattice C 5 Tutorial
Lesson 1 - Your Fi rst Program

We are now going to guide you through your first experience with Lattice C 5
(at least, we hope it's your first experience - you haven' t been too impatient,
have you?). First of all, you must install Lattice C 5 for your system. The
method of doing this depends on your system (how much memory you have
and whether you have a hard disk or not) - we have documented the
installation process in a separate document (the Installation Guide to
Lattice C 5) since there are great number of different possible configurations
and the installation may change as we upgrade the package.

Lattice C 5 will run on 512K machines but you would be well advised (as you
will soon see) to upgrade your machine to at least 1Mb of memory so that you
can take full advantage of the package's features. We will take you through
a simple program on both 512K and larger computers to show you the
different working environments.

520ST /STE Owners

First of all, find the E D C . PRG program (wherever you have put it on
installation) and, from the GEM desktop, double-click on the EDC.PRG icon to
run the program. The following screen will appear:

Page 4

ltsk file llodt fdlt lotloos Proor• Tools
I I l ttlto C 5 frM fll5aft
lint: 1 Col: 1 HM:n!IB

0

•
6

($:JE:·����:;:���*�:��' :::*��:(�������-��:::��������:���'�*(:. ;�: 0 I

The EDC Editor Opening Screen

LaHice C 5 Introduction

Now type the following program using the keyboard in the normal way and
pressing Return at the end of each line:

#include <stdio . h>
#include <conio.h>

int main (void)
{

}

printf (' Hello World \ n ") ;
getch () ;
return o;

Your screen should now look like this:

Desk File llack fdit lptlons ProtrM Tools
1 I R•\HLD.
Lino: 2 Col: I Hon:2,.75
•tndude <stdlo.b>
llntlllde <cania.b>

lot notolvoldl {
Dr1ntfC11Mello Warld\nH);
tetcbU:
retura I; �

0

0
����#�:%�:::���:;:�;:::�:-��::::�'�' ·l'llt��:�:::���W¥.#.'f��� .. 0 I

The Hello World Program

Before we compile this complicated program we must save it to disk because,
on a 512K machine, we have to quit the editor to compile/ link etc.

The best place to save your source files is the Lattice C 5 working disk or your
hard disk if you have one. So press Alt-S or click on Save As ... from the File
menu and the file selector will appear.

The appearance of the file selector will depend on which one you have
installed in your system. If your operating system is TOS 1 .4 or greater, you
have, automatically, an extended file selector with drive buttons such as
that shown in the screen shot on the next page.

However, if you have an earlier version of the system ROMs, you will see,
unless you have installed a new one, a much more primitive file selector,
without drive buttons. You can replace this system file selector, if you wish,
with the extended HiSoft File Selector (HFSEL) by placing HFSEL in your
AUTO folder - see the Installation Guide to Lattice C 5 for details.

Introduction LaHice C 5 Page S

When the file selector appears, type in H E LLO .C and click on the relevant
drive button so that the box looks like this:

ltsk flit llock Edit lotloos Proor• Tools
I
l •• , tto
llodudt <stdlo.ll>
lhdudt <culo.ll>

lit lliiiVoidl
(

prlotfl"ltlh
aetcUll

• retur• I;

0

I 11 Meounl71
fll£ S£L£CTIIl

::�:��
Stltttlu: llfl.ll

I
I IUTIL_,_
11111-_,_
I L.._,_
I LIL-,_

llfllD , c._
--·-
--·-
--·-
--·-

·El-
0

•

Slvt I flit

I
c:x::J
QW[J

The File Selector

I

0

' •
o I

Quit the editor using Alt-Q or by selecting Quit from the File menu - you should
now be back on the GEM desktop. Double-click on LC .TTP to run the compiler
driver - a box will appear, type in:

- ih - L hello

so that the box looks like:

The LC. TTP Command Line for HELLO. C

The -lh means 'find the include files in a directory called h' and the -L means
'link after compilation' .

Page 6 Lattice C 5 Introduction

Now press Return to start the compilation and link. Assuming this proceeds
correctly you should see the following messages on the screen:

L1ttlte Atlrl C Ca��pller Copyright tl 1"8 HISoft & L1ttlte, Int.
All rights reserved - Version 5.U.88
CDIIplllng hello.t
Nodule size P•8888881A D=8888888E 0=88888888
Totll files: 1, Ca��plled OK: 1
Linking hello
Clink Copyright ll 1"8 HISoft & llttlte, Int.
All Rights Reserved - Version 1.11

Cllll(Ca��plete - HlxliiUII tode size = '4" ($8BBBU4Bl bytes

The Compilation and Link of HELLO.C

If you do not achieve a successful compile & link, check that you have
installed the system correctly and that all the various tools and libraries are
where we recommend.

After this you will have a file called H E LLO.TTP on your working disk -
double-click on this, type Return when the box appears and you should see
Hello World appear at the top of the screen, hit a key and the GEM desktop
will re-appear.

Congratulations - you have created, compiled, linked and executed your first
Lattice C 5 program!

1 040ST/STE, Mega, TT Owners

First of all, find the L C . P R G program (wherever you have put it on
installation) and, from the GEM desktop, double-click on the LC.PRG icon to
run the program. The following screen will appear:

Introduction

losk File llo<k fdlt Dotloos ProorM Tools
I I llttlu C 5 frM H Soft
Lino: I Col: 1 ""''2"88

K

6
���::��*:;.�:;���=���=��<::t'='*�':!:1�;i����l*�����:�:�-::::JE:�t€!��:::�:::.:$!�.::":�{�:::$��;:�: 0 I

The LC Editor Opening Screen

LaHice C 5 Page 7

Now type the following program using the keyboard in the normal way and
pressing Return at the end of each line:

#include <stdio . h>

int main (void)
{

}
printf (" Hello World \ n") ;
return o ;

Your screen should now look like this:

Duk f i l e llocll Edit Dotlons ProarM Tools
1 I 1'\Hfl D

llntlude <stdla.ll>

lot ftllllvDidl
{

,riatf ("Hel l o World\n'');
n:tura 11

The Hello World Program

0

Before we compile this complicated program we really ought to save it to
disk, in case anything goes wrong The best place to save your source files is
the Lattice C 5 working disk or your hard disk if you have one. So press Alt-S
or click on Save As . . . from the File menu and the file selector will appear.

The appearance of the file selector will depend on which one you have
installed in your system. If your operating system is TOS 1 .4 or greater, you
have, automatically, an extended file selector with drive buttons such as
that shown in the screen shot on the next page.

However, if you have an earlier version of the system ROMs, you will see,
unless you have installed a new one, a much more primitive file selector,
without drive buttons. You can replace this system file selector, if you wish,
with the extended HiSoft File Selector (HFSEL) by placing HFSEL in your
AUTO folder - see the Installation Guide to Lattice C 5 for details.

Page S Lattice C 5 Introduction

When the file selector appears, type in HELLO.C and click on the relevant
drive button so that the box looks like this:

Desk flh llodl
•
Uno: 7 Col:
•tatlude <stdla. b>

lnt oolnlvoldl
�

prhatf(11Htllo
return a;)

•

Edit lptlons PraarM Tools
I 1:\HELLO,

ne�:mn
FILE SELEtTIR

Dlrottoru:
1:\1,•

Solottloo: HfLLD
0

I IUTL._,_
I IIIL_,_
I H.,__,_
I LIL-. M!iiii1MM

--·-
--·-
--·-
--·-

·d.-
0

6

SIVo 1 file

I
c:::E:I
o:ill!D

The File Selector

•

0

�

6
::.:::w::�::;:;�x-�=:::::�.::=� • I

To compile and link your program type Alt-U or select Compile & Link from
the Program menu as shown below:

Desk file llodl Edit lptlons lmm Tools
I I Sunt11 Chodl
Lino: 7 Col : 2 M .. l2,85 CDM)h .
llntludo <stdlo.h>

lnt oololvoldl
�

Link
Run
Run Mltb &£11

IY
lt

priatf C11Hella Warld\all);
return a; J1110 to Error IJ

.. Run Other .. , 10
Run Mlth Shell <>ICO

0

•
0

';i(;:l�#l:'#�:;:-*:;:��=tSf:�(�tf:��(jt��<�����:,��l(::WJ:�-����;:��-Wft':����-=- <l����t • I

The Program menu before Compile & Link

The compilation and link will now proceed immediately and, assuming it is
successful, you will then be asked to press a key to return to the editor. If
anything goes wrong, check that you have typed in the program correctly and
that you have copied the EDCTOOLS.INF file as described in the Installation
Guide to Lattice C 5 - otherwise the environment may not be set up.

I ntroduction LaHice C 5 Page 9

A correct compilation and link will generate messages something like this:

Llttlu ltlrl C C111pller c-.urlg�t I 1'11 MISeft & Lettlu, lnt.
Ill rltbts ruerved - Uerslen 5,14.11
"adult IIZI P•lll81111 I•IIIIIIIE U=llllllll
Totll flies: 1, CDIIPIId OK: 1
Lhkllt Hill
Cll* Copyright I l'H MISeft & Llttlte, lat.
Ill Rights Reserved - Uerslan 1 . 11

cu• C111111lete - Hul111111 ude size = uu CSIIII1'411 •utes

flul 1utput file size • UU ISIIIIUZel •utes

The Compilation and Link of HELLO. C

After this you will have a file called H ELLO.TIP on your working disk - to
run the program first ensure that Run with GEM on the Program menu is not
selected and then type Alt-X or click on Run on the Program menu, then type
Return when the box appears and you should see Hello World appear at the
top of the screen, hit a key and you will be returned to the editor.

,.lotf l"lello Morld\o"l;
retura IJ

Running your First Program

Congratulations - you have created, compiled, linked and executed your first
Lattice C 5 program!

Page 10 LaHice C 5 Introduction

Summary of Lesson 1

So, what have we learned so far?

+ 520ST /STE users cannot use a fully integrated system because there is
not enough memory to support this - you must create/ edit your program
using EDC . PRG, exit and compile&: link using LC .TTP, typing in the
necessary command line.

+ Important note for TOS 1.0 u sers: this early version of the ST ROMs
upper cases the command line typed in to . TTP programs. This can
cause problems since the LC .TTP command line is case sensitive (because
there are so many options). To get around this we have added an extra
option, - ?, that prompts for a further command line to be input, thus
bypassing the ROM command line and allowing mixed upper and lower
case to be used. Use - ? if you have TOS 1.0 and need to use command
line options that are case sensitive.

+ 1040ST /STE and Mega users can take advantage of the integrated
LC . PRG, creating, editing, compiling, linking and running their
programs all from within the editor.

Introduction LaHlce C 5 Page 1 1

Lesson 2 - We al l make mistakes

In this lesson we are not going to differentiate between 512K and 1Mb+ users
and we shall simply tell you to compile, link and run your program - please
refer to Lesson 1 if you are unsure how to do this.

Run EDC.PRG (512K users) or LC.PRG (1Mb+ users), insert your working disk
and type Alt-L or select Load from the File menu

le sit file I lock
•
llfttl I toll

�

0

Edit IIDtiOftS ProgrM Tools
I · t 5 fr• HISoft

fiLE SELECTIIR
Directory I
11\1,•

Stltttllll 1---·-
0

I EIIW'LES,_
I fSEI,_,_
I HEaDERS..,_
I LESSONS..,_
I llltDISIL._
I NERCS,._,_

--·-
--·-
--·-

0

0

Lood 1 file

I
c::I:J
[ffiill]

The Load File Command

M

0

0
:::<'..:.::<N����w.��� 0 I

Single-click on the Lessons directory to open it and then double-click on
PROG2.C to load the program into the editor.

Page 1 2

Deslt file llock Edit lptlo•s ProgrM Tools
I I t•\LESSDNS\I'RD6t,
llftel J Coli I NMIIU58
llntlude <�ts .b> /1 get the AES prototypes ••d deflnltlo•s 1/ o
lloclude <vd l . b> / I got the UDI prototypes 1nd dofloltloos 1/
11 v.opn"'* laput array 1/
short •orLlaiUl:{J, J,J,J,J,l,J, 1,1,1, l};
/I v.opn"'* output array 1/
short Mart...aut[57J;

lnt Rllnlvoldl {
short .. ndlo;
short Ju'*;

/1 tlrtUII MOrltStltloa �lAdle 1/
/I unused varl1ble I/

IPPI.InitO l /1 &tart IES 11
hndle=grlf.blndle !&Junk ,&Junk,IJunk,&junkl;
v_apnvwkbllarLln,bendle,MarLoutJ;
v.cl,..lhlndlel ;

/1 flnd U:S llaDdle 1/ ·:=.·

/1 open MDr&StltiOA 1/ ?��:
/1 clur MOrltStltiOn 1/ .). :t

0
vsf.loterlorlblndle; fJS..USERll /1 select fill type user·doflned I/ 6

$:=�::�:=:1{1::::·=�-:::�*'*�=*::.o�:::t · ��w�����$,�1:!(?.!1::::��!!���-SE���*{�*��, o 1

The PROG2. C Program

LaHice C 5 Introduction

Now compile this program as you did in Lesson 1 but making sure that you
select Unk with GEM on the Options menu (1 Mb+ users) or, if you are a 512K
owner, use the -Lg option on the compiler command line (instead of just -L).
(TOS 1 .0 users will have to use the option - ? and then type in the command
line as described above).

test fl h 11Kk ldlt limJil!llll PraarM l11ls
• u:• �.:t.rP:,;'l:i�;, .. "

,. v_apnM laput arnv •
shart t�CrL.l•UUa{1,1,1,
I* W-IDAM IUttut •riM
Wrt MOrk..tut lS7J;
tnt "'Ja(vol4)
{

ISIII llllle ...
-;;:;;;;:;�;;:-:--------�,

/1 tlrtull NGritSUtloa IIIIA.It I/ /1 INIIIs•d urhblt t/
IPPI-lfattiJ I /I start IfS I/
band 1 e=gra f _hladle CIJ..,. ,I J•rt ,&J 11'*, lJ•'*J J
v_ogaM. lMark..ln,lllan•le.Nirk-luU 1
¥-tlMlbadltJ;
uf.hatrrhr(baadlt,;fiS..ISDJ; /I select fill t11Je aHr-tltflatd I/ •

x•·•<:'-•.::-o••••·••w<>= �•x � 0 1

Interactively Compiling with GEM

512K Users - Compiling with GEM

What happened? You should have seen a report something like this:

Lottlte Atarl C C111pller Copyright fJ U,. M I Soft & Littlu, lnt,
All rights rosorued - Vorslan 5,84,88

v_opn""" INark...ln, handlo,Nark...autl;
Narltstatlon *I ..

I* apon

A:\LESSOHS\PR062,c 17 llarnlng 11: arg�nont tupo Jocorrect
usf-lnterlar(hondlo;flS....USEIU; I* solect fill tupe user-defined *I

A

A:\LESSONS\PROGZ.t 20 Error 16: lnualld fuottiDl arg..,eot
vsf-lnterlar(handle; 4 11 I* sohct fill tupe user-defined *I

A:\LESSONS\PROGZ.t Z8 Error 57: se��l-uiDa expected
Press anu kou

The first compilation of PROG2. C

Introduction LaHice C 5 Page 1 3

The compiler has generated 1 warning and 2 errors.

Now get back to the editor with the PROG2.C program loaded. To achieve
this, 1Mb+ users simply hit a key whilst 512K owners must run EOC.PRG and
load PROG2.C. Now, how do we correct these errors? Well, again 1Mb+ users
have all the luck - the cursor will already be positioned on the line in which
the first error/warning occurred and the description of the problem will be in
the top of the window. 512K users should note down the line numbers of the
errors/warnings and then use the Goto . .. command on the Edit menu (or press
Alt-G) to position the cursor in the first rogue line.

lnll nlo IID<k Ult i1-�"�·-�·-�I H�I�s!�!���� I I 11 5 I Ill
lt• • 7 �
,. •-aoa"'* •t11ut .. , .. 11
lbert MDr'k..IUt l57J J
IPt IWIIR(vold)
(

/1 •lrtlll MOrkltltlol IIIM!lt IJ
/1 IIWSd tlt'labll 1/

IULiaUU: /I Jtltt IfS I/ hlldll"ltl'-boodloiJJ ... ,IJo ... IJ"'*,IJo .. IJ /1 filM IES lloodlo I/
¥-ao•M(Qrk...lt,hl•t•,IIOI"LatJ; 11 ••n ��e�rtst1tlu 11
V .. d"* U•ll.ll); /1 Cl lit NII'UtltiDI 1/

vlf .. lttttlerCbtQdle;ULISiliJ /I selttt fill tutt tsar-Mflatlll/
11 .,. .. a drdt 11 sue• 1/

"-tlrtltCIIIII.lt,Mirtr...IUtllln,MII'Litti1J/2,Mtf'tl.tut (U/1);

t-tl sMttuadltJ I
ttlwt 1&111-llltUJ

/I dUI llll'kltltiM 1/
/I sllut• ... IU 1/

Interactively Getting to the Error

t
$
0

+I

lest flit IIKk fdlt I tiNS PtearM 11111
I I 5 \PII 6.

: ol:
lladtdl <us.�
•tadtdl <¥41.11)

11 111 tbl an ,.ottt11JII tnd de flat tl••• 11
/I 11t tU UDI lltttttUIIII IIMI dlfltltltll 11

Getting to the Error for 512K Users

Looking at the first erroneous line (v_opnvwk(work_ln. handle. work_out);)
i t looks legal, but the compiler has given an argument type Incorrect
warning. This means that the type of one of the arguments in a function call
was not what the compiler expected it to be. In fact, the problem here is that
the second parameter in the v _opnvwk function has been declared in the
header file as a pointer to a short and, as such, the address of hand le
(&handle) should be passed.

Page 14 LaHice C 5 Introduction

So position the cursor on the h of handle and type an ampersand character,
&.

Now go to the next error by pressing Alt-J or Alt-G (depending on your memory
- in more ways than one!), this is in the line:

vsf_inte rior (handle ; FI S_USER) ; / * select f ill - type * /

and the error is Invalid function argument. Well, i t shouldn't take you too
long to spot that the semi-colon between handle and FIS_USER should be a
comma. Position the cursor over the F of F I S_U S E R and hit Backspace
followed by a comma - , .

Now compile the program again, remembering to save it first. It should now
compile and link successfully, to PROG2.PRG, and you can try running it.

lea file llodl E41t lotions 'roar• Joals
I I a:\ f SONS\PRO& C
Line: 21 Co I 2S "eo:2U57
/1 •-••- outaut orrou I/
sbart Nark..outiS7J;

lot oololvoldl {
sbort •••die;
short l"'*l

11 •lrtuol station U.dle 11
11 unused vorloblt 1/

apol.lnlt ()I /1 start US I/
blodle•graf.•�ndle I&Junlt,&Junlt,&Ju•,&J"'*I 1
,_opaUNk (Mort._ I• ,lhlftdle,Nort._out);
•.tlrM<tbondlel 1

/1 fiN US .udle 1/
/I open MOt'llstltlon I/
/1 tleor •ortstotloo 1/

vsf.loterlorlblndle,fiS..ISfiU 1 /1 selett fill tpe user·ufloed •1
11 driN 1 tlrtle 11 sttlll I/

•-<lrtle lbondle,Nork...tutliii!,Nark..out !1112,Nark..oot !11121;

l.tls ... (blodloll
rotuto appl.nltUJ

11 dose Nltllstatlu 11
/1 sa..t- us 1/

0

0
6

••

The Corrected Program

The program draws a filled circle like this:

The PROG2.PRG program running

Introduction LaHice C 5 Page 1 5

Summary of Lesson 2

+ Again, 520ST /STE users cannot use a fully integrated system because
there is not enough memory to support this - you must note down any
errors/warnings and use the Goto line . . . (Ait-G) feature of the editor.

+ 1Mb+ users have an fully-integrated system where the compiler tells
the editor about errors and you can use the Jump to Error (Ait-J)
command on the Program menu to find all the errors/warnings.

+ A sidenote - the warning about argument type Incorrect would not
have been given by older, non-ANSI, compilers. Lattice C 5 knows
about function prototyping and is able to check the types of function
arguments.

If you are wide awake you may have noticed that the compiler reported two
errors (look back at the output on page 13) and that we only corrected one of
them to obtain a successful compilation. This is because the second error was
caused by the first error; the compiler became confused as to the meaning of
the program and thought that a semi-colon was overdue. This is an example
of a spurious error caused by a previous problem - always be on the look out
for this type of error.

Page 1 6 LaHice C 5 Introduction

Lesson 3 - Optional ly yours

In this lesson we are not going to differentiate between 512K and 1Mb+ users
and we shall simply tell you to compile, link and run your program - please
refer to Lesson 1 if you are unsure how to do this.

Run EDC . PRG (512K users) or LC.PRG (1Mb+ users), insert your working disk
and type Alt-L or select Load from the File menu

Single-click on the Lessons directory to open it and then double-click on
WTEST. C to load it into the editor.

Desk File llock [dlt lotions Proar• Tools
I ' I 1: l Q \11 ST . C
Lino : I Col : I """: 2&518
/I
I Ntest . c - the NERCS test progrM far l1ttice C 5
I
I Copyright ltl 1"8 HISoft
.,

llncludo <std l o . h>
l include <stdli b . h>
llnclude <str lng . h>
linclude <us . h>
lintlude 1'Nrsc . b11
11 globll var l obles 1/
OBJECT *"•nu..otr :
shart ureenx, nreeny, scree,.., streenh;
lnt radio;
lnt deskfhg,flal sbod=l;
lnt chctked;
eh or ed I t l281 :

0

0
/�,.. .�::·:::::·:·�:�·�=:��=��:;:�w�:�:::;::::::·�:::.-:: .:-: o •

The WTEST. C Program

This program is an extended example of using the GEM system and uses
structures created with the WERCS resource editor - see the chapter WERCS ,
The Resource Editor for more details.

Our concern here is to show you how to compile it using some useful compiler
options; these are used to let you modify the way the compiler behaves when
compiling your program.

I ntroduction Lattice C 5 Page 1 7

To see most of the compiler options available to you, select Complier
Options . . . on the Options menu or type Controi-0, from within the editor.
The following list will appear:

Desk file llodt Edit lptloos Progr• Tools
M er O t on

1 1111 Require fua•tloo JrltiiiiPOS
c:UJ PrKess 051 II'IJrOJbS loot IA!II.,..otodl

c:il] 5uppross llllltlpll lodudos of • .,. file

: c:fiiJ Ill• - ke.,.ords
•
•
•

r:::TIJ Align extera1ls ,, langword boundaries

IIIDN RUltJple tbiriUtr tDAStiAtS

Streagtbea aggregate type tMPirisons

c:u:J [Dablo all style Jreproussor
� 111110 register ke.,.ords
- Create onl u ono •opu of ldentlul strings

The Compiler Options list

0
:if

0

As you can see, from scrolling down the list using the slider on the right hand
side, there are a great many such options giving you enormous flexibility in
your compila tion. The options tha t are enabled by default are shown
highlighted in black.

The options we are going to use in this program are:

-est this is a multiple option, the -c is a prefix which can be followed by
certain other letters to give particular options.
-cs create only one copy of identical strings - this keeps the program

smaller by only keeping one copy of any identical constant
strings.

-et require function prototypes - function prototypes were introduced
into the C language by the recent ANSI standard and are used
to tell the compiler exactly how a function should be called,
thus making it easier for you. Lattice C 5 checks for a function
prototype and, if this option is used, will warn you if a
prototype is absent.

Thus -est says create only one copy of identical strings and require function
prototypes; you can add other -c options onto this list.

Page 1 8 LaHice C 5 Introduction

-v disable stack checking code - this option tells the compiler not to
generate any inline code in your program that will check that there is
sufficient stack space during your program's execution. You would
normally only use this option when you had a completely finished
program that had been fully tested and that you wished to be of a
minimum size and to run at maximum speed.

-Log this is a multiple option, the -L is a prefix which can be followed by
certain other letters to give particular options for the linker.
-La add symbols to the created program, for debugging purposes - this

adds all your global variable and function names to your
program so that a debugger can pick them up and make it easier
for you to debug your program.

-Lg link with GEM - this ensures that the linker searches the GEM
libraries when resolving references on your program.

Note that both these options are available from the Options menu
when compiling interactively, from the editor. When using LC.TIP you
would use them on the command line, instead.

So, if you are running interactively, type Control-0 and select -cs, -et & - v
and then go up to the Options menu and ensure that it looks like:

I ntroduction

tesk file llod< fdlt llilllD!Iill ProgrM Tools
1 . " t011pl ler Options, . , •o I
line: 1 tal : 1 KM: Use & lobll Optlolser
/I --·····················---1-------.:;olo : •test . c • the NfRCS te I u::e� ��r�:!:tlng Point
• Copur l ght ltl U,. 11 S 1/ ·;;;;;;;·jjj;;;;���---·;.;

llntlude <std lo .h>
•include <std l lb .h>
•Inc lude <strlng .h>
llnclude <•es . h>
lintlude 1'Mrst .h ..

/1 g lobll ••rl•bles 11
OBJECT .. enu...ptr ;

Cut le Nlnd"'s •u
fonts . . . •&

ASCII Tlble • • •

·;;;;;;;;�;;��--------
-�r

sbort streenx , screeny, streefl4, sc.reenb;
lnt radio:
lot deskfl•a,flnlsbed•l;
lnt c.hetked;
chor edlt l%81 ;

:·;:.

6
,,.,.,., . ; ,,,,,, ,,,,,i;·'''"" · · · • ,.;e;.;·,;;.,"''' .,.,,,,,.,..,,,,;;;;.;;·;;(;}'?'· 0 I

The Editor's Options menu

LaHice C 5 Page 1 9

Otherwise, if you have less than 1Mb of memory, quit the editor, invoke
LC .TIP as in Lesson 1 and type the following command line:

512K Users - The Command Line for WTEST. C

Compile and link the program as usual - you will create WTEST. PRG.

1Mb+ users can do this, and run the result, simply using Alt-X.

5 1 2 K owners will use LC . TTP as described and then double-click on
WTEST. PRG from the desktop.

Either way, the running program looks like:

WfEST.PRG running

Page 20 LaHice C 5 Introduction

Summary of Lesson 3

+ The Lattice C 5 system is extremely flexible and allows the user great
freedom of choice.

+ There are many compiler and linker options that affect how these
tools will treat your program. These options a lso often affect your
program's size and speed of execution; it is wise to use them carefully
and only when you need them.

+ It is very easy to create GEM programs with Lattice C 5; once you have
experimented a little you might like to read through the W E RC S
chapter later i n this manual which contains much invaluable
information regarding GEM. Volume Ill (the Atari Library manual) is
worth dipping into for further information on the various aspects of
GEM.

That completes our brief but, we hope, useful introduction to using the Lattice
C 5 system. We now encourage you to get on and use the package, referring to
this and the other volumes as and when you need to although you might like
to glance at the final section in this chapter before you do.

Introduction LaHice C 5 Page 21

!H ints and Tips
Here is some advice on getting the best out of your Lattice C 5 system and
your Atari ST.
+ Always read the error messages very carefully - they invariably

provide much information about the source of the problem. Do not
expect the error message to necessarily occur in the line that is
actually at fault, the compiler may often report an error one line too
late. Also, the error pointer (A) often points after the error, not at it.

+ If you are totally lost as to why your program is not working, use the
manuals in the first instance - look up the library function definition
and check that you are using it correctly and including the right
header files. The manuals are full of useful and relevant information,
please use them for reference as often as possible.

+ It is best if you do not ignore warnings generated by the compiler - it
spots many semantic mistakes and gives you guidance, through the
warnings, as to errors you may be making in your usage of types.
In particular, the argument type Incorrect warning means that you
are passing an expression to a function that is not consistent with what
the function expects - do not just cast the argument (force its type) to get
yourself out of trouble, either change the definition of the function you
are calling or change the type of the variable to be appropriate to
that expected by the function. See Lesson 2 above.

+ If (when!) your program crashes don' t be afraid to use the debugger - it
is worth getting used to single-stepping and setting breakpoints, not
only will you gain understanding of how your program is running but
you will also speed up the discovery of obscure runtime errors. See the
chapter on MonST2C for more detail.

+ If possible, use a RAM disk for the intermediate (quad) files generated
by the compiler since this has a massive effect on the speed of
compilation. Do this by setting the QUAD environment variable - see
the chapter on LC, the Compiler.

+ If the linker reports undefined symbols and they are not your program's
fault, make sure that the first file loaded by the linker is c . o (or the
equivalent file required by the library that you are using) i.e. put it
first in the linker's command. If you are using more than one library
then lc.l lb (or the equivalent) should be searched last.

+ If you wish to create a linker control (with) file then don't get put off
by the many options, get the LC . TTP driver to build it for you by using
the -L option, see the LC, the Compiler chapter.

Page 22 LaHice C 5 I ntroduction

•

•

•

•

•

•

•

•

•

All the advanced features of the Lattice linker (CLink) naturally
require that you use Lattice format objects rather than GST format
objects. It is always worth changing any existing assembly language
code to be able to be assembled by asm so that you may use CLink.

If you have code that does not use prototypes, perhaps because you
haven't used an ANSI compiler before, you can use the -pr option of
the compiler to generate a prototype file for your functions,
automatically.

You can turn stack checking on and off for each individual module in a
multi-module program. This can be particularly useful if one module of
a program is highly recursive.

If your program has several large static arrays, the best code will be
produced if you use the default (small, -b 1) data model i.e. don' t use
the -bO option. Instead, declare the large arrays as far, explicitly.

Unlike most 68000 C compilers, Lattice C 5 lets you produce extremely
large programs that use the small, fast branch instructions of the 68000
instruction set. Thanks to the advanced alv (automatic link vector)
facility of the linker these branches are extended when required. The
-rO option overrides this feature making all branches long, for GST
compatibility - unless you have a very good reason to do otherwise, do
not use the -rO option; we have never used -rO, even though LC.PRG is
nearly 200K long and is compiled with itself.

To generate small, fast programs, assuming that you are using
prototypes, use the -rr option which will cause up to four parameters to
be passed in registers rather than on the stack which is slower and
requires more code. Note that this option may not be used if you are
not using prototypes.

Using 1 6 bit integers as the default (via the -w flag) will give better
code than using the default 32 bit integers. However we recommend
strongly that you use prototypes with this option, since otherwise it is
easy to end up with the wrong number of bytes being placed on the
stack when calling a function, often with disastrous results!

As always, the more memory you have, the easier and the faster will
be your development. Memory prices are reasonably low at the time of
writing and we would advise you to make sure you have at least one
megabyte of memory in your machine as soon as possible!

You will also find that the purchase of a hard d isk drive will
revolutionise your attitude to program development, as long as you
organise it well and keep regular backups!

Right, now it's up to you!

Introduction LaHice C 5 Page 23

Page 24 LaHice C 5 Introduction

EdC
The Screen Editor

!Introduction
This chapter details the use o f the editor, E d C , and how to invoke other
parts of the system from it; it does not detail those tools themselves. EdC is
an enhanced version of the editor supplied with HISoft DevpocST and HISoft
BASIC . In many ways EdC is more than an editor, it is a visually-orientated
shell that will let you run almost the whole Lattice C system from within it
using a single keystroke or menu click. Having said that you will need either
a hard disk or two double-sided floppies to take full advantage of this.

EdC comes in two versions, one that includes the compiler (LC . PRG) and the
other that does not (EDC . PRG). They are both used in the same way, but the
version with the compiler has extra commands, and uses more memory of
course. In the rest of this section E d C refers to those facilities that are
available from both EdC and LC; whilst LC refers to those features that are
only available from LC . PRG.

To run EdC, double-click on the EDC. PRG icon from the Desktop or type EDC
from Botcher. LC . PRG is loaded in the same way.

When the editor has loaded, a menu bar will appear and an empty window
will open, ready for you to enter your programs.

!The Editor
The editor section of E d C is a screen editor which allows you to enter and
edit text and save and load from disk, as you would expect. It also lets you
print some or all of your text, search and replace text patterns and
manipulate blocks of text. It is GEM-based, which means it uses all the user­
friendly features of GEM programs that you have become familiar with such
as windows, menus and mice. However, if you're a die-hard, used to the
hostile world of computers before the advent of WIMPs, you'll be pleased to
know you can use most of the commands from the keyboard without having to
touch the mouse.

The Screen Editor LaHice C 5 Page 25

The editor is RAM-based, which means that the file you are editing stays in
memory for the whole time, so you don't have to wait while your disk grinds
away loading different sections of the file as you edit. If you have enough
memory you can edit a file of over 300k (though make sure your disk is large
enough to cope with saving it if you do!). As all editing operations, including
operations like searching, are RAM-based they act very quickly.

When you have typed in your program you must be able to save it to disk, so
the editor has a comprehensive range of save and load options, allowing you
to save all or part of the text and to load other files into the middle of the
current one, for example. It will also let you edit up to four files at once, so
that you can check the contents of a header file whilst writing your program.

Features may be accessed in one or more of the following ways:

• Using a single key, such as a Function or cursor key;

• Clicking on a menu item, such as Save;

• Using a menu shortcut, by pressing the Alternate key (subsequently
referred to as Alt) in conjunction with another, such as Alt-F for Find;

• Using the Control key (subsequently referred to as Ctrl) in conjunction
with another, such as Ctri-A for cursor word left;

• Clicking on the screen, such as in a scroll bar.

The menu shortcuts have been chosen to be easy and obvious to remember,
while the Ctrl commands are based on those used in WordStar, and many
other compatible editors since.

!Entering text and Moving about
Having loaded EdC, you will be presented with an empty window with a
status line at the top and a flashing black block, which is the cursor, in the
top left-hand corner.

The status line contains information about the cursor position in the form of
line and column offsets as well as the number of bytes of memory which are
free to store your text. Initially this is displayed as 29980, as the default text
size is 30000 bytes.

You may change this default if you wish, together with various other
options, by selecting Preferences, described later. The 'missing' 20 bytes are
used by the editor for internal information. The rest of the status line area is
used for error messages, which will usually be accompanied by a 'ping' noise
to alert you. Any message that is printed will be removed subsequently when
you press a key.

Page 26 LaHice C 5 The Screen Editor

Cursor keys

To move the cursor around the text to correct errors or to enter new characters,
you use the cursor keys, labelled .-- -+ i and J.. If you move the cursor fast the
right-hand end of the line this won' t add anything to your text, but i you try
to type some text at that roint the editor will automatically add the text to
the real end of the line. I you type in long lines the window display will
scroll sideways if necessary.

If you cursor up at the top of a window the display will either scroll down if
there is a previous line, or print the message Top of file in the s ta tus line.
Similarly if you cursor down off the bottom of the window the display will
either scroll up if there is a following line, or print the message End of file.

You can move the cursor on a character basis by clicking on the arrow boxes at
the end of the horizontal and vertical scroll bars.

For those of you used to WordStar style editors, the keys Ctri-S, Ctri-D, Ctrl-E
and Ctri-X work in the same way as the cursor keys.

To move immediately to the start of the current line, press Ctrl .--, and to move
to the end of the current line press Ctrl -+.

To move the cursor a word to the left, press Shift +- and to move a word to the
right press Shift -+ . You cannot move past the end of a line with Shift -+ . A
word is defined as anything surrounded by a space, a tab or a start or end of
line. The keys Ctri-A and Ctri-F also move the cursor left and right on a word
basis.

To move the cursor a page up, you can click on the upper grey part of the
vertical scroll bar, or press Ctri-R or Shift i. To move the cursor a page down,
you can click on the lower grey part of the scroll bar, or press Ctri-C or Shift J..

If you want to move the cursor to a specific position on the screen you may
move the mouse pointer to the required place and click (there is no WordStar
equivalent for this feature!) .

Tab key

Pressing the Tab key inserts a special character (ASCII code 9) into your
text, which on the screen looks like a number of spaces, but is rather
different. Pressing Tab aligns the cursor onto the 'next multiple of 4 column',
so if you press it at the start of a line (column 1) the cursor moves to the next
multiple of 4, + 1, which is column 5.

The Screen Editor LaHice C 5 Page 27

When you delete a tab the line closes up as if a number of spaces had been
removed. The advantage of tabs is that they take up only 1 byte of memory,
and only one byte on disk, but can show on screen as many more, allowing you
to tabulate your program neatly, without increasing its size unduly. You can
change the tab size before or after loading EdC using the Preferences
command described shortly.

Backspace key

Pressing the Backspace key removes the character to the left of the cursor.
If you backspace at the very beginning of a line it will remove the invisible
carriage return and join the line to the end of the previous line. Backspacing
when the cursor is past the end of the line will delete the last character on
the line, unless the line is empty in which case it will re-position the cursor
at the left of the screen.

Delete key

The Delete key removes the character under the cursor and has no effect if
the cursor is past the end of the current line.

The commands on the Edit menu may also be used to move the cursor about
your text:

6oto Top
6oto Bottol'l

t+lT
t+lB

6oto • • • ro6

F i nd t+JF

F i nd Next t+lN
F i nd Prev i ous t+lP

Rep l ace roR

Reo l ace A l l

Go to top of file

Goto l ine

To move the cursor to a specific line in the
text, click on Goto . . . from the Edit menu, or
press A l t - G . A dialog box will a ppear,
allowing you to enter the required line number.
Press Return or click on the OK button to go to
the line or click on C a n c e I to abort the
operation. After clicking on OK the cursor will
move to the specified line, re-displaying if
necessary, or give the error End of file if the
line doesn't exist.

Another fast way of moving around the file is
by dragging the slider on the vertical scroll
bar, which works in the usual GEM fashion.

To move to the top of the text, click on Goto Top from the Edit menu, or press
Alt-T. The screen will be re-drawn if necessary starting from line 1 .

Poge 28 LoHice C 5 The Screen Editor

Go to end of fi le

To move the cursor to the start of the very last line of the text, click on Goto
Bottom, or press Alt-B.

!Searching and Replacing Text
To find a particular section of text click on Find from the Search menu, or
press Alt-F . A dialog box will appear,

f i nd :

Rep l ace : --·---------­
Cas i n g : lmEQIJil l test ! =TEST I
I Cancel I I Prev i ous l l Hext

This allows you to enter the find and replace strings. In the example above
long has been entered as the find string and lnt as the replace string.

If you click on Cancel , no action will be taken; if you click Next (or press
Return) the search will start forwards, while clicking on Previous will start
the search backwards. If you do not wish to replace, leave the replace string
empty.

If the search is successful, the screen will be re-drawn at that point with the
cursor positioned at the start of the string. If the string could not be found, the
message Not found will appear in the status area and the cursor will remain
unmoved.

Whether test is treated as the same as TEST or Test etc. depends on which
Casing button is selected. In the example above the search would not stop if
LONG was found; if test== Test was selected then the search would find
LONG.

To find the next occurrence of the string click on Find Next from the Edit menu,
or press Alt-N . The search starts at the position just past the cursor.

To search for the previous occurrence of the string click on Find Previous from
the Search menu, or press Alt-P. The search starts at the position just before
the cursor.

The Screen Editor LaHice C 5 Page 29

Having found an occurrence of the required text, it can be replaced with the
replace string by clicking on Replace from the Edit menu, or by pressing
Alt-R. Having replaced it, the editor will then search for the next occurrence.

If you wish to replace every occurrence of the find string with the replace
string from the cursor position onwards, click on Replace All from the Edit
menu. During the global replace the Esc key can be used to abort when the
status area will show how many replacements were made. There is
deliberately no keyboard equivalent for Replace All to prevent it being
chosen accidentally.

To search and replace Tab characters press Ctrl-1 when typing in the dialog
box. Other control characters may be searched for in a similar manner except
for the CR (Ctri-M) and LF (Ctri-J) characters.

I Deleting text

Delete line

The current line can be deleted from the text by pressing Ctri-Y.

Delete to end of line

The text from the cursor position to the end of the current line can be deleted
by pressing Ctri-Q. (This is equivalent to the WordStar sequence Ctri-Q V).

UnDelete Line

When a line is deleted using either of the above commands it is preserved in
an internal buffer, and can be re-inserted into the text by pressing Ctri-U, or
the Undo key. This can be done as many times as required, particularly useful
for repeating similar lines or swapping over individual lines.

Delete all text

To clear out the current text, click on Clear from the File menu. If you have
made any changes to the text that have not been saved onto disk, a
confirmation is required and an alert box will appear. Click on OK to delete
the text, or on Cancel to abort the operation. If you wish to save the text
before clearing the buffer, click on the Save button.

Page30 LaHice C 5 The Screen Editor

!Disk Operations
I H r:.

C l ear
load . . . rel
load Another . . • Al
Insert F i l e rei

- -

Save �JS
Save As . . . res
De l ete F i l e

Change D i rectory
- -

Qu i t reo

Save As . . .
To save the text you are editing, click on
Save As . . . from the Fi le menu, or press
Alt-S. The GEM File Selector will appear,
allowing you to select a suitable d isk and
filename. Clicking OK or pressing Return
will then save the file onto the d isk. If an
error occurs a dialog will appear showing a
TOS error number, the exact meaning of
which can be found under _O S E R R in
Volume 1 1 - Ubrary manual.

If you click on Cancel the text will not be
saved.

Normally if a file exists with the same name it will be deleted and replaced
with the new version, but if Backups are selected from the Preferences
options then any existing file will be renamed with the extension . BAK
(deleting any existing . BAK file) before the new version is saved.

Save

If you have already done a Save As (or a Load), EdC will remember the
name of the file and display it in the title bar of the window. If you want to
save it without having to bother with the file selector, you can click on Save
on the Fi le menu, or press Shlft-Ait-S, and it will use the old name and save it
as above. If you try to Save without having previously specified a filename
you will be presented with the File Selector, as in Save As.

Loading Text

To load in a new text file, click on Load from the File menu, or press Alt-L. If
you have made any changes that have not been saved, a confirmation will be
required. The GEM file selector will appear, allowing you to specify the disk
and filename. Assuming you do not Cancel, the editor will a ttempt to load
the file. If it will fit, the file is loaded into memory and the window is re­
drawn. If it will not fit an alert box will appear warning you, and you should
use Preferences to make the edit buffer size larger, then try to load it
again.

The Screen Editor LaHice C 5 Page 3 1

If the file can't be found then a dialog box will appear, asking you if you
wish to create that file. You may do so, or alternatively modify the filename
and try again.

If you wish to continue editing the current file and would like to edit another
file then use Load Another . . . or press Ctri-L. This will open the file in the
next unused window.

When loading EdC from Batcher, or any other CLI, you may include up to
four filenames. The corresponding files will then be loaded automatically. If
a file cannot be found you will be asked if you wish to create it or may
change the filename if you wish.

Inserting Text

If you want to read a file from disk and insert it at the current position in
your text click on Insert File from the Fi le menu, or pressAit- 1 . The GEM file
selector will appear and assuming that you do not cancel, the file will be
read from the disk and inserted, memory permitting.

Delete File

If you want to delete a file on disk (if for instance you have run out of disk
whilst trying to save), click on Delete F i le . The GEM file selector will
appear, allowing you to select a suitable disk and filename. Clicking OK or
pressing Return will then delete the file from the disk. If an error occurs a
dialog will appear showing a TOS error number, the exact meaning of which
can be found under _OSERR in Volume 11 - Library manual. If you click on
Cancel the file will not be deleted.

Change Directory

This option allows you to move the current directory; this can be useful when
running programs which expect all of their files to be in the same place as
the program itself. After clicking on Change Directory the GEM file selector
will appear, allowing you to select a suitable disk and folder name. Clicking
OK or pressing Return will then change the directory. If you click on Cancel
the directory will not be changed.

Page 32 Lattice C 5 The Screen Editor

!Quitting EdC
To leave EdC, click on Quit from the File menu, or press Alt-Q. I f changes have
been made to the text which have not been saved to disk, an alert box will
appear asking for confirmation, like this:

Save Chanpes

I li!I!Jll I Leave I f : \LC\SIEVE , C

i! II!I!Jll I leave I f: \LC\TDIP , C

I o As Above o I I Save A l l

Bltkups m []ill
Leave A l l Cance l

This example shows that two files have changed. Clicking on Save All, A s
Above or pressing Return will exit the editor saving the changes. Clicking
on Cancel will return to the editor. Leave all will ignore all the changes
you have made. ·

If you wish to save some files but not others click on the appropriate Leave
buttons. For example if you clicked on the Leave button by F: \ LC\ TEMP.C in
the above example and then pressed Return, only the F : \ LC \ SIEVE .C file
would be saved.

You can also enable and disable backups from this dialog box. This is useful if
you normally use backups, but decide that you don' t require a backup of a one
line change.

The Screen Editor LaHice C 5 Page 33

!Block Commands
I ill'iTil :t1

B l otk Start fl
B l otk End f2 ---------------------
Save B l otk f3
Copy B l otk f4
D e l ete B l otk OFS
Re"enber B l o tk Of4
Paste B l otk FS

P r i n t B l ock row

A block is a marked section of text which
may be copied to another section, deleted,
printed or saved onto disk. The function
keys are used to control blocks.

Marking a block

The start of a block is marked by moving
the cursor to the required place and
selecting Block Start or pressing key F 1 .
The end of a block is marked by moving
the cursor and selecting Block End or
pressing key F 2 . The start and end of a
block do not have to be marked in a
specific order - if it is more convenient you
may mark the end of the block first.

A marked block is highlighted by showing the text in reverse. While you are
editing a line that is within a block this highlighting will not be shown but
will be re-displayed when you leave that line or choose a command.

Saving a block

Once a block has been marked, i t can be saved by clicking on Save Block from
the Block menu or by pressing key F3 . If no block is marked, the message
What blocks! will appear. If the start of the block is textually after its end
the message Inval id block! will appear. Both errors abort the command .
Assuming a valid block has been marked, the GEM file selector will appear,
allowing you to select a suitable disk and filename. If you save the block
with a name that already exists the old version will be overwritten - no
backups are made with this command.

Copying a block

A marked block may be copied, memory permitting, to another part of the
text by moving the cursor to where you want the block copied and clicking on
Copy Block or by pressing key F4. If you try to copy a block into a part of
itself, the message Invalid block! will appear and the copy will be aborted.

Page 34 LaHice C 5 The Screen Editor

Deleting a block

A marked block may be deleted from the text by clicking on Delete Block or
by pressing Shlft-F5. The shift key is deliberately required to prevent it being
used accidentally. A deleted block is remembered, memory permitting, in the
block buffer, for later use.

Copy block to block buffer

The current marked block may be copied to theblock buffer, memory
permitting, using Remember Block or by pressing Shlft-F4. This can be very
useful for moving blocks of text between different files by loading the first,
marking a block, copying it to the block buffer then switching to another
window or loading the other file and pasting the block buffer into it.

Pasting a block

A block in the block buffer may be pasted at the current cursor position by
clicking on Paste Block or by pressing F5.

The block buffer will be lost if the edit buffer size is
changed.

Printing a block

A marked block may be sent to the printer by clicking on Print Block or by
pressing Alt -W. An alert box will appear confirming the operation and
clicking on OK will print the block. The printer port used will depend on the
port chosen with the Install Printer desk accessory, or will default to the
parallel port. Tab characters are sent to the printer as a suitable number of
spaces, so the net result will normally look better than if you print the file
from the Desktop.

Block markers remain during all editing commands, moving where necessary,
and are only reset by the commands Clear, Delete block, and Load.

The Screen Editor

If you try to print when no block is marked at all then the
whole file will be printed.

Lattice C 5 Page 35

!Compi l ing & Running Programs
The commands o f this menu can only b e used from LC.PRG with the exception
of Run Other and Run with Shell.

Syntax Check roy
CoMp i l e roe
CoMp i l e & L i nk mU
L i nk mu
Run rox

..J Run w i th 6EI1 �lK
JUMP to Error mJ

Run Other roo
Run w i th She l l �lO

Compile

Syntax Check

The Syntax Check i tem on this menu,
checks the syntax of the source text that is
currently being edited without producing
any output file. Be sure to set up the
INCLUDE environment variable so that the
compiler can find the header files tha t
you have # I n c l u d e d . Because this
command does not need to load the
compiler or your program from disk, it lets
you check your program quickly.

The Compi le command is only available if you have loaded the second
phase of the compiler LC2 .TTP along with LC . PRG. Naturally this requires
more memory than just loading the first phase of the compiler. This can be
modified using the Preferences command.

Compile will produce a .0 file that can be linked.lf you haven't saved your
program source code yet the file will be based on the name NONAME.

If you haven't loaded LC2 .TTP the Compi le command will be replaced by
Thorough Check. This command only runs the first phase of the compiler but
it will produce a . Q file that can be passed to LC2 . TTP and is able to spot
some errors that the Syntax Check command cannot.

Jump to Error

During a syntax check or compilation any warnings or errors that occur are
remembered, and can be recalled from the editor. Clicking on Jump to Error
from the Program menu, or pressing Alt-J will move the cursor to the next line
in your program which has an error, and display the message in the status
line of the window.

Page 36 LaHice C 5 The Screen Editor

You can step to the next error by pressing Alt-J again, and so on, letting you
correct errors quickly and easily. If there are no further errors when you select
this option the message no more errors will appear, or if there are no errors
at all the message What errors! will appear. Note that if there is more than
one error on a line then only the first error is shown.

Li n k

If you are editing a file that is included by the current
program, the version of the included file that is on disk
will be used, so be sure to save any include file
modifications to disk.

If the compilation is successful you can then use the Link command to link your
program. The linker will be run with a suitable command line. Obviously this
requires the entire compiler as well as the editor and linker to be memory at
once.

Compile & Link

You can combine the Compi le and L ink steps using the .Complle & Link
command.

Run

If you have successfully compiled and linked a program you can then ru n it
using the Run command . If your program crashes badly you may never return
to the editor so, if in doubt, save your source code before using this, or the Run
Other commands.

When issuing a Run command from the editor the machine may seem to 'hang
up' and not run the program. This occurs if the mouse is in the menu bar area
of the screen and can be corrected by moving the mouse. Similarly when a
program has finished running, the machine may not return to the editor.
Again, moving the mouse will cure the problem. This is due to a feature of
GEM beyond our control.

Run with GEM

Normally, when the Run command i s used, the screen i s initialised t o the
usual GEM type, with a blank menu bar and patterned desktop. However if
running a TOS program this can be changed to a blank screen with flashing
cursor, by clicking on Run with GEM, or by pressing Alt-K. A check-mark next
to the menu item means GEM mode, no check mark means TOS mode. The
current setting of this option is remembered if you Save Preferences.

The Screen Editor LaHice C 5 Page 37

Running a TOS program in GEM mode will look messy but
will work, whereas running a GEM program in TOS mode
can crash the machine.

Run Other . . .

This command is available from both versions of EdC. It lets you run other
programs from within the editor, then return to it when they finish.

When you click on Run Other . . . from the Program menu you will first be
warned if you have not saved your source code, then the GEM File Selector
will appear, from which you should select the program you wish to run. If it
is a .TOS or .TIP program you will be prompted for a command line, and then
the screen will be initialised suitably.

This is the command to use for 'one-off' running of a program within the
editor. If you are likely to want to run the same program a number of times,
then use the facilities of the Tools menu. If you would prefer to specify the
program to run via a command line, rather than using the File Selector then
use the Run with Shell command described below.

If you include the character sequence % . (i .e. per cent followed by full stop)
in the command line this will be replaced by the full name of the file that
you are currently editing. To pass the name without its extension, use %? .
Thus a command line of:

%? . o

would pass the name of the object file corresponding to the file being edited.

If you need a true % to be passed type %%.

Screen initialisation depends on the filename extension,
not the current Run with GEM option setting.

Run with Shell

This command i s available from both versions o f EdC. It lets you run other
programs from within the editor, then return to it when they finish. The
keyboard shortcut for this command is Shift-Alt-O.

It differs from Run Other in that the you enter the file to run as a command
line. If the editor finds tha t the _shell_p vector has been set up then this
will be called to execute the command. This works well with the Craft shell
as the shell can be used to run batch files and expand file wildcards etc.

Page 38 LaHice C 5 The Screen Editor

If the _shel l_p vector has not been set up then the editor will look for the
file to run using the PATH environment variable.

The same expansion of the current filename as used by Run Other can be used
by this command. If you wish to use the same command more than once you
will probably save time by using the Tools menu.

!Opt ions
•• ·•••• , Progral'l Too l s

Col'lp i l er Opt i ons . . . AO
Use 6 l ob a l Opt il'l i ser

L i nker Sy111bo l s
L i nk w i th F l o at i ng Po i nt
L i nk w i th 6EM

Arrange W i ndows , , , AW
Cyc l e W i ndows AU
Fonts . . . A6

ASCII T ab l e . . ,

Preferences • • •

Compiler Options

This command displays a large
dialog box complete with scroll bar,
like that shown below. It enables you
to set all the compiler options that
will be used when using the Syntax
Check and Compile commands. To
view further options click on the grey
area to either side of the scroll bar to
move a screenfull at a time or the
arrows to move one line at a time.

0 COfto t l er Dotl ons

III!DI A l l DH RU l t t p l e tharatter constants

� Strengthen aggregate type taftpar t sons

� Enabl e old style preprocessor

� A l l DM reg i ster keywords

1111!1 Create on l y one copy of I dentical str i ngs

� Enabl e warn ings for tags used w i thout def i n i t i on

III!DI Forte a l l thar declarati ons as uns i gned thar

� Shut off warn ing for return wi thout a return va lue

� Treat all g l obal dec l arat i ons es externa l s

� D i sab l e debugg ing

The Screen Editor Lattice C 5 Page 39

Use Global Optimiser

If this option is checked (ticked) then the global optimiser will
automatically be run when using the Compile command. This requires a lot of
memory so that it is normally only possible to invoke it interactively on a
system with more than one megabyte of memory.

Linker Symbols

If this option is selected (shown by a check mark) then the L ink command
will generate symbols in the executable file, ready for use by the MonST2C
debugger.

Link with Floating Point

You should select this option if you are using the linker interactively and
your program uses floating point as it causes your program to be linked with
the floating point maths library.

Link with GEM

You should select this option i f you are using the Link command and your
program uses GEM as it causes your program to be linked with the GEM
library.

Arrange Windows . . .

This command is used to change how multiple windows are displayed on the
screen. It can be selected either by clicking on Arrange Windows. . . from the
Options menu, or by pressing Ctri-G; just click on the appropriate icon and the
windows will be re-arranged for you.

Arrange ll i ndows

I Cancel I

Clicking on the Cancel button will leave the windows arranged as they were
before the Arrange Windows command was invoked.

Page 40 Lattice C 5 The Screen Editor

Cycle Windows

This command is used to cycle between the active windows; i.e. if two
windows are open it will swap between them at each usage. If three are open
it will select first 1, then 2, then 3 and then 1 again.

Fonts . . .

The Fonts command is used to select different GEM or TOS fonts, it can be
selected either by clicking on Fonts . . . from the Options menu, or by pressing
Ctri-W. It displays a dialog box like this:

Font Se l ec t i on

TOS Font llllil!lillll 8x16 I Show I
6EH Font l:t.J;;FJI I Sl'la l l I I T i ny

OK Canc e l

The G E M Font i s the font that will b e used by the editor to display text. In
monochrome there are three fonts available as above. Changing to Small will
double the number of line displayed on the screen to 40. With the T iny font
the characters are only 6 pixels by 6 pixels wide but this does mean tha t
there are over 1 00 characters per line and 54 lines !

In medium resolution, there are only two fonts; Normal and Small . Smal l is 6
by 6 pixels and thus the characters are difficult to read but this does give an
extra 7 lines of text and over 1 00 characters per line.

TOS font is used by non-GEM programs such as the compiler. If you click on
the Show button then a sample piece of text is printed using the TOS font so
tha t you can decide whether or not the selected font is legible on your
monitor. On standard monochrome monitors using 8x8 will give 50 lines
instead of 25; in medium resolution using 8x16 gives only 1 2 lines.

The Screen Editor Laffice c 5 Page 41

ASCI I Table . . .

This command displays a dialog box like that below, showing all the ASCII
characters:

I ASCII Character Set I
I � � o o m 1 &l .J ���� I J' � ���� Jl 1\
C 1 2 3 'C S 6 '1 8 9 a \ � o:� � '*

! " � $ X & I () * + ' - I I
0 1 2 3 4 5 6 7 8 ' : ; < = > ?
e A B C D E f 6 H I J K L M N 0
P 0 R S T U U W X Y Z [\ l A _

' a b c d e f g h i j k 1 � n o
p q r s t u v H x y z { I } N A
c u e a a a a t e e e r i 1 � A
t e I o o o u u Y ti U c £ ¥ P f
a i 6 u n R § g L r , � � i « �
a o B s e I R fi o ' t q � � �

ij U x 1 a 1 n 1 r n u • J) n J
D D D ! � 1 � n 1 1 D � , § A �
= � r T I o � r 9 e n s � � e n = + > < r J + ::: o • . .- n 2 � -- - - - . �

�-------- I Insert I I Canc e l I
You may click on individual characters and they will be shown in the line at
the bottom of the box. Pressing Return or clicking on the Insert button will
then add the characters to the text that you are editing at the current cursor
position.

Note that the characters that would confuse the editor are 'greyed out' and
may not be selected . Remember when using characters other than the
standard 7 bit ASCII ones that these symbols are not the same on other
computers.

Page 42 Lattice C 5 The Screen Editor

Preferences . . .

Selecting Preferences . . . from the Options menu will produce a dialog box
like this:

Ta b s

Edi tor Preferentes

Tab sett i ng : 4�
Text Buffer : 60000_
Nul'ler i t pad I Nul'lbers I MijiiiMM
Batkups � No

Auto i ndent � No

Cursor •1m• Sti l l

Sl'lart 0 • s � No

End of 1 i ne I Stop I M!Ift.M
Load LC2 ? � � No

Cante l Save OK

By default, the tab setting is 4 , but this may be changed to any value from 2
to 1 6.

Text Buffer

By default the text buffer size is 30000 bytes, but this can be changed from
4000 to 999000 bytes. This determines the largest file size that can be loaded
and edited. This amount of memory is allocated for each window in use. You
can see how much free memory you have by pressing the Help key. Changing
the editor workspace size will cause any text you are currently editing to be
lost, so a confirmation is required if it has not all been saved.

The Screen Editor Lattice C 5 Page 43

Numeric pad

The Numeric pad option allows the use of the numeric keypad in an IBM­
PC-like way allowing single key presses for cursor functions, and defaults to
Cursor pad mode. The keypad works as shown in the diagram below:

This feature can be disabled, if desired, by clicking on the Numbers button.

Backups

By default the editor does not make backups of programs when you save
them, but this can be turned on by clicking on the Yes button.

Auto indenting

It can be particularly useful when editing programs to indent subsequent lines
from the left, so the editor supports an auto-indent mode. When active, an
indent is added to the start of each new line created when you press Return.
The contents of the indent of the new line is taken from the white space (i.e.
tabs and/or spaces) at the start of the previous line.

C u rsor

B y default the EdC cursor flashes but this can b e disabled i f required.

Smart Os

This facility lets you check that your parentheses match. When you press)
the cursor will quickly move to any matching (character and then back to the
current position, thus you can ensure that rou have closed the correct number
of brackets in a complex expression. I you find this cursor movement
distracting then disable it.

Page 44 LaHice C 5 The Screen Editor

End of line

By default (Stop), when you press cursor left at the beginning of a line or
cursor right at the end of line, the cursor does not move. Changing this item to
Wrap causes the cursor to move to the previous line if you press cursor left at
the beginning, and to the next line if you press cursor right at the end.

The best way to find out which you prefer is to try using each setting.

Load LC2

This option determines whether LC . PRG will load the second phase of the
compiler when it loads. The new value of this option will only have an effect
if you save the preferences and re-execute LC . PRG.

Saving Preferences

If you click on the Cancel button any changes you make will be ignored. If
you click on the OK button the changes specified will remain in force until
you quit the editor. If you would like the configuration made permanent then
click on the Save button, which will create the file EDC. INF on your disk.
Next time you run EDC. PRG or LC . PRG the configuration will be read from
that file.

!Tools Menu

WERCS [+l l
L i nk w i th M2
D i sasse"b l e M3
L i brar i an M�
Debug MS
Asse"b l e M6
Str i p Sy"bo l s M�
Batther MB
Too l � M9
Env i ron"ent ME
Save too l i nfo

The Screen Editor

The Tools menu lets you run programs of
your choice from within the editor using a
single keystroke or click of the mouse. To
take full advantage of this facility you
will need at least one megabyte of RAM and
either a hard disk or two double-sided
floppies.

The configuration can be saved in a
EDCTOOLS.INF file, ensuring that the same
facilities can be used again, the next time
that you run the editor.

The EDCTOOLS . I N F file that we supply is
set up to run many of the tools supplied
with Lattice C.

LaHice C 5 Page 45

Before you can use this facility you will need to configure each tool so that
the editor can find the appropriate file. To configure a tool, hold down the
Ctr l key and select the appropriate menu item or press Ctrl Alt and the
appropriate key on the numeric keypad. This will produce a dialog box like
this :

I Tool Confi gurat i on I
Too l nunber : 1 Henu entry : NERCS-______ ___

Type I llilD [ill] 1iJE11 I Use She l l I
Cfld l ine I I Hone 1 1 PrDflpt l lli!lD

X? ______________ ________________________________ _

Path t : \ l t\b i�erts . prgy_. ____________ ___ l fSel . . l
I On Return I libo!ii•uil!l l A l l non-zero I Do It I

Pause I 11l1l11 []!!]
I Save F i l e s ! []!] llD I Ask . . , I Cantel 11 11(

If you just want to use the default settings, you need only change the Path
item so that the file can be found; either amend this item or click on FSel and
use the file selector to select the appropriate file. Once you have made the
required changes you should press Return (or click on O K) to make your
changes permanent; alterna tively pressing Cancel will ignore any changes
you have made. The other options in this box are:

Menu entry

The name typed in this field gives the name of the tool as placed on the
Tools menu. Hence in the above example the name WERCS appears on the
menu.

Type

The button selected here changes how the program is run, either as a GEM
program or as a TOS program; note that the same warnings about GEM/TOS
mode made under Run with GEM apply here also.

Disk/Use Shell

These buttons control which of the two run commands is actually used: Run
Other or Run with Shell . If Disk is selected then the Path specified must be a
complete path, otherwise simply a name will do for the Use Shell option.

Page 46 LaHice C 5 The Screen Editor

Cmd line

These options configure the way the command line is obtained for a program
which is about to be run. If None is selected then a program will be run as a
plain GEM or TOS program with no command line. If Prompt has been
selected you will be prompted for a command line in the same way as occurs
when using Run Other.

Finally Thls.J. allows the command line on the line below to be used. This
command line is specified in the same way as that used by Run with Shell and
may have the same meta-characters in it.

On Return

This option a llows you to specify which errors E d C will bring to your
attention when returning. If Errors only is selected then you will only be
alerted to negative return codes from programs, i.e. those normally indicating
GEMDOS errors. All non-zero will also force positive program error returns to
be flagged.

Pause

This option controls whether the editor pauses after running the tool.
Typically you will select Yes when running a TOS program and No when
running a GEM program.

Save Files

These options change which files will be saved before running the tool. If you
select No then no files will be saved, selecting Yes (the default) will save all
files (not just the current window), whilst Ask . . . will prompt you using the
Save/Leave dialog described under Quitting EdC.

Running Tools

To run a configured tool is simple, just select the appropriate menu item er
press Alt and the appropriate key on the numeric keypad and the program will
be run using the settings described above.

Environ ment

The environment option allows the environment variables used by the tools
which are run to be altered. Only the variables which are needed are shown:

The Screen Editor LaHice C 5 Page 47

Env i ro�ent Var i ab l es
R l 1 t l \ lt5\b i n , c : \traf --------------PATH=

INCLUDE=
LIB=
DUAD=
LC-DPT=

c : \ l t5\ --------------------
c : \ l t5\ l i b --------------------
�� -j87e -q32767w32767�::::::::::::::

I Cante I I I OK I

The settings displayed may then be altered to reflect any changes you may
wish to make. The environment variables used by the compiler are discussed
in the section LC, The Complier.

Save tool into

This command saves the current tool settings, environment variables and
compiler options. It will create the file EDCTOOLS. INF on your disk. Next
time you run EDC. PRG or LC . PRG the configuration will be read from that
f i le .

!Miscel laneous Commands
About EdC

I t you click on About EdC . . . from the Desk menu, a dialog box will appear
giving various details about EdC include the free memory left to the system.
Pressing Return or clicking on OK will return you to the editor.

Help Screen

The key equivalents for the commands not found in menus can be seen by
pressing the H e l p key, or Alt-H . A dialog box will appear showing the
WordStar and function keys, as well as the free memory left for the system.

Switching Windows

EdC has support for up to four windows, which can be selected by pressing
Alt- 1 to Alt-4 (on the top row of numbers, not on the numeric pad). To load into
a new window you should normally use the Load Another . . . command (Ctri-L)
described earlier. You can also switch windows by clicking on the appropriate
window with the mouse.

Page 48 Lattice C 5 The Screen Editor

To cut and paste between windows is just as simple as copying blocks in a
single window, i.e. mark the block and then use Remember Block command,
switch windows (as described above) and then Paste Block.

!Windows & Desk Accessories
The Editor Windows

The windows used by the editor work like all other GEM windows, so you can
move them around by using the move bar on the top of it, you can change
their size by dragging on the size box, or make them full size (and back
again) by clicking on the full box. Clicking on the close box will close the
current window. If you close the last window EdC will ask you if you want to
quit or have a new untitled window.

Desk Accessories

If your ST system has any desk accessories, you will find them in the Desk
menu. If they use their own window, as Control Panel does, you will find
that you can control which window is at the front by clicking on the one you
require. For example, if you have selected the Control Panel it will appear
in the middle of the screen, on top of the editor window. You can then move it
around and if you wish it to lie 'behind' the editor window, you can do it by
clicking on the editor window, which brings it to the front, then re-sizing it so
you can see some part of the control panel's window behind it. When you
want to bring that to the front just click on it and the editor window will go
behind. The editor's cursor only flashes and the menus only work when an
editor window is at the front.

Automatic Double-Clicking

You may configure EdC (or LC) t o b e loaded automatically whenever a source
file is double-clicked from the Desktop, using the Install Application option.

To do this, go to the Desktop, and click once on EDC. PRG (or LC. PRG) to
highlight it. Next click on Instal l Application from the Options menu and a
dialog box will appear. You should set the Document Type to be C , and
leave the GEM radio button selected. Finally click on the OK button.

To test the installa tion, double-click on a file with the chosen extension
(which on old, 1 .0, ROM machines must be on the same disk and in the same
folder as EdC) and the Desktop will load EdC, which will in turn load the
file of your choice ready for editing.

The Screen Editor Laffice C 5 Page 49

To make the configuration permanent, you have to use the
Save Desktop option.

Saved! Desk Accessory Users

If you use the PATH feature of the Saved ! desk accessory then the restriction
of having your data files in the same folder and drive as EdC described
above is not relevant. The editor looks for the EDC. INF configuration file
firstly in the current directory (which is the folder where you double-clicked
on the data file), then using the system path. Saving the editor preferences
will put the . I N F file in the same place it was loaded from, or if it was not
found then it will be put in the current directory.

You may invoke Saved! from within the editor at any time by pressing Shlft­
C i r . This will only work if the desk accessory is called SAV E D ! . ACC or
SAVED.ACC on your boot disk.

Page 50 LaHice C 5 The Screen Editor

LC
The Compi ler

The Lattice C Compiler can be run either using the integrated compiler
described in the section EdC, The Screen EdHor, or from the command line.
This first section below describes running from a command line interpreter
(such as Bateher or Craft). The subsequent two sections are relevant to users of
both the integrated and CLI environment, describing the environment
variables and compiler options.

!The Compiler Driver
Command line operation of the Lattice C Compiler is invoked via the le . ttp
command. The le program separates the options list into those for pass 1 and
those for pass 2. Options to the compiler are specified as a list of minus (-)
prefixed letters placed before the file names; any options after the first file
name will be ignored.

LC 1 (pass 1) and LC2 (pass 2) are then executed for each of the C source files
specified by the files list, with the optional, third, global optimisation
phase between pass 1 and pass 2. The file name list can consist of one or more
file names and/ or file patterns, separated by white space. For example:

le * \ myd i r \ myprog \ myd i r \ abc?

will compile all C source files in the current directory, plus the source file
named \ mydlr\ myprog.e plus all C source programs in the \ mydlr directory
which have four-character names beginning with a b e . Note that the I e
command automatically supplies the .C extension on all source file names.

The le command will also automatically invoke the librarian and linker if
required.

Return Codes

The le command returns the following completion codes:

0 All compilations were successful. That is, at least one source program
was compiled, and there were no fatal errors.

One or more fatal compilation errors were reported.

2 No source files were found.

The Complier LaHice C 5 Page 5 1

The Compiler Phases

The compiler is normally split into two phases (with an optional third,
global optimisation, phase) . These two phases are known as le 1 and le2; note
that they are not normally called explicitly, but instead via the compiler
driver le.ttp or the integrated environment le.prg.

The Parser and Pre-processor

The le 1 and le 1 b commands invoke the first compiler pass, which reads a
source file and translates it into an intermediate form known as a quad file.

le 1 b invokes the big compiler for cross referencing and prototyping purposes.
this will be automatically invoked if the -g option or the prototyping
options are used on the le command. Note that the compiler included in the
integra ted compiler, LC . PRG, is a big compiler hence all prototyping and
listing options may be used within it.

Unlike the le command, you can only specify one source file to le 1 , and it
should be written without the .C extension. For example, if the file argument
is myprog , this pass will translate m yp ro g . e into the quad file named
myprog.q.

The options can consist of the following items, which are described above:

- b Base register relative data addressing.

- c Compiler compatibility settings.

- d Debugging mode or preprocessor symbol definition.

- e Extended character set processing.

- f Floating point format selection.

- g Listing generation options. This is only valid with le 1 b.

- h Precompiled header file inclusion.

- i Directory paths for local include files.

- j Error I warning message control.

- I Longword alignment of data items.

Page 52 LaHice C 5 The Compiler

- n Retain only eight characters in symbol names.

- o Specify destination for . Q file. Note that this is
specified as -q on le.

- p Preprocessor options. This is only valid with the l e 1 b
command.

- q Compilation error abort control.

- r Subroutine call control.

- u Undefine preprocessor symbols.

- w Generate code to use short integers.

- x Treat all global declarations as externals.

The code generator

le2 reads a quad file and translates it into an object file. The options can
consist of the following items, which are described above:

- m Select target architecture.

- o Specify destination for .0 file.

- s Specify segment name.

- v Disable stack checking.

- y Unconditionally load the base register.

The global optimiser

The global optimiser, GO, analyses a quad file, performs several types of
optimisations, and produces another quad file. This type of transformation
makes the use of the optimiser completely optional since its input file is the
same format as its output file. In many cases, optimised code is more difficult
to debug than non-optimised code so frequently the optimiser is only used
after the main program has been tested and is mostly working.

The Compiler LaHice C 5 Page 53

Since the optimiser works on quads, the La ttice machine independent
intermediate form, it has no knowledge of the target processor or its
instructions. The code generator contains all of this knowledge and makes
very full usage of the 680x0 instruction set. The code generator tries not to
generate extra instructions in the first place but it does have a peep-hole
optimiser to catch the few places where this is not possible. The following
optimisations are performed:

Register assignment

Commonly used auto, formal, and temporary variables are assigned to
registers for all or part of their lifetime, according to usage.

Dead store elimination

Stores of values which are never fetched again are eliminated.

Dead code elimination

Code whose value is not used is eliminated.

Global common sub-expression merging

Recalculation of values that have been previously computed is eliminated.
GO performs this with function scope.

Hoisting of Invariants out of loops

Calculations performed inside a loop whose value is the same on each
iteration of the loop are moved outside the loop.

Induction variable transformations

Loops containing multiplications, usually associated with indexing, have the
operations reduced in strength to addition.

Copy propagation

Definitions of the form leftvar = rlghtvar are eliminated when all uses of
l eftvar have this definition as the single reaching definition, and the
variable r lghtvar will not change before each use. This optimisation
primarily exists to support other optimisations.

Constant propagation and folding

References to variables whose only definition is a constant are replaced by
the constant. Often the definition is eliminated if all references are replaced.
GO performs constant folding to propagate the new constants further.

Page 54 Lattice C 5 The Complier

Auto variable elimination and re-mapping

Unused auto variables are eliminated, and storage offsets are reassigned.
Often the variable is unused because of previous optimisations.

Very busy expression hoisting

Code size is reduced by moving an expression computed along all paths from a
point in the code to a common location. For instance, in

if (a ())
f (i + j) ;

else
g (i + j) ;

the expression I+J will be computed in only one place.

Various reductions in strength

G O will perform associative re-ordering of additive operations involving
constants, to reduce the operation count.

Various arithmetic operations involving constants are reduced in strength.

Conditional and logical expressions whose result is unused are converted into
corresponding lfU code. For instance, putchar(_) from <std l o . h> is
implemented with a conditional expression. If the result (the original
character or an error indication) is not used, GO converts it into if-else code,
eliminating a load into a register.

Various control flow transformations

GO will perform various transformations to eliminate unreachable code or
useless control structures.

Reordering to reduce value lifetimes

Expressions with a single use are moved adjacent to the operation that uses
them. This helps reduce temporary lifetimes, and supports optimisations that
move code around. For example, in

p [i) = f (_) i

the computation of the address &p r l l can be moved after the call.

fhe Compiler LaHice C 5 Page 55

!Environment Variables
The compiler uses the environment variable feature o f GEMOOS t o locate the
various programs and files. Such assignments allow these programs a nd files
to be located in any directory on any disk.

Setting the variables

Environment variables may be set in one of a number of ways. If running from
within the integrated environment, they are normally manipulated using the
Environment command described in the section EdC, The Screen Editor; if
running from Batcher (or another shell, e.g. Craft) they are set as described
therein.

An additional compiler option is available for users who are running from the
Desktop (or from a shell which does not support environment variables), -E,
which is followed by an environment variable and value, e.g.

- EPATH,.c : \ bin

The environment variables recognised and used by the compiler are:

PATH Executable path

This variable defines where the driver will look when trying to locate the
different programs which it needs to invoke (i.e. LC l , LC2, GO etc.) . It should
consist of a list of semi-colon (;) or comma (,) separated items, for instance:

PATH,.c : \ lc5 ; c : \ bin

would search the directory c : \ lc5 first followed by c : \ b ln . Note that the
current directory is always searched first.

I NCLU DE I nclude path

The INCLUDE variable is similar to the PATH variable except that it is used
to locate the include files used by your program, so that:

INCLUDE,.c : \ lc5 \ h ; c : \myhdrs

would search the directory c :\ lc5\ h first followed by c: \ myhdrs.

Page 56 LaHice C 5 The Compiler

L I B Libra ry path

The LIB environment variable instructs the linker where the library files may
be found, so that:

INCLUDE=c : \ lc5 \ lib ; c : \ mylibs

would search the directory c:\ lc5\ l lb first followed by c : \ myllbs.

Note that just because a library file is in the library directory does not mean
that the file will be linked in, you must tell the compiler this using the -L+
option.

QUAD Quad path

The QUAD environment variable specifies the default intermediate (QUAD)
file name used by the compiler. If the filename has a trailing backslash (\)
then the compiler assumes that this is the name of a directory such that it
may form a filename by concatenating the source file name to it .

If you have a RAM disk installed you can greatly increase compiler
performance if you use this as the quad temporary directory. If your RAM
disk was drive M then you would use the assignment:

QUAD=m : \

Alternatively if you wished to place this files on your hard disk in a folder
called quads, this can be done as:

QUAD=g : \quads \

LC_O PT Default options

This variable gives the default compiler options. When the le driver starts i t
reads this variable and inserts the options at the start of the command line,
so that you can include your favourite options automatically. For example if
you always want continuous compilation and any number of errors or warnings
you might set LC_OPT to:

LC_OPT= - C - q -

The Compiler LaHice C 5 Page 57

!Pre-processor Symbols
During pre-processing, the compiler defines several symbols prior t o (and
during) compilation so that you may investigate the translation environment.
The following symbols are defined at the start of all compilations:

Name Value Meaning

DATE 'date' Da te on which compilation was - -
started

FILE ' n a m e · Name o f main file which i s being
compiled

UNE n Current
translated

line which is being

REVISION 6 Current minor version number.

STDC 0 ANSI operation mode

TIME ' time· Time a t which
started

compilation was

VERSION 5 Current major version number.

ATAR I 1 Host Machine

LATIIC E 1 Compiler Name

LATIICE_50 1 Compiler Version

LATTICE_56 1 Current compiler release

M6800) 1 Processor type

The following symbols may also be defined depending on the current compiler
options:

Name Option

_AN SI -ea

_BASEREL -b 1

_DEBUG -dl ..<iS

Page 58 LaHice C 5 The Complier

LPTR without -w

_M88l -f8

_MDOUBL -fd

_MLATIICE -fl

M MIXED -tm -

_MSINGLE -fs

PLAIN CHAR_ UNSIGNED -eu

PCREL -r l -

REGARGS -rr -

_SHORTINT -w

SPTR -w

_UNSIGNEDCHAR -eu

Note that any of the non _ prefixed symbols may be undefined via -uXX.

!Compi ler Options
The compiler options below all apply to the command line driver, le.ttp;
options which are not available in the integrated environment are noted. The
list to le.ttp can contain any combination of the following, separated by
blanks:

-B This option causes the le command to always use the le l b compiler
rather than le l . This is useful if you have enough ram to run the big
compiler but wish to economise on disk space. This option is ignored by
the integrated compiler.

-b This option causes the compiler to change the form of addressing used
to locate statics, externals and strings. By default, -b l is used to imply
that all such items are addressed as a 16 bit offset from address
register A4. The disadvantage of this is that it only allows 64K bytes
of data to be addressed. You can override this option by using the -bO
option which implies full 32 bit addressing for accessing all items.

The Complier LaHice C 5 Page 59

Note that this option does not limit the amount of data that may be
allocated at run time using malloe.

This option is passed to le 1 where it actually causes the compiler to
change the default storage class of statics to f a r or near as
appropriate. If you have a program which has a large amount of
data, you can readily use the -b 1 default by putting the far keyword
on any large objects to move them out of this common merged data
section.

-C This option causes the le command to continue with the next source file
when a fatal compilation error is rerorted while multiple source files
are being compiled. Normally, a fata error causes the process to pause
with the following message displayed on your screen:

Compiler return code xx .
Press Y to abort , any other key to cont inue .

The compiler error messages are also displayed immediately above
this prompt. If you respond with a Y (yes), le will abort, otherwise it
will proceed to the next source file. This option is ignored by the
integrated compiler.

-c The compiler defaults to compatibility with previous releases with
many ANSI C language features, but the -e compatibility option can be
used to activate some important features as well as compatibility
with other compilers. The -e must be immediately followed by one or
more letters from the following list, in any order. We recommend that
you use the options -eusf for the best code generation and error
reporting.

Note that all -e options are toggle options, i .e. specifying any such
option twice will disable it.

+ Compatibility mode for the Lattice C++ product. This will
suppress warnings associated with structure passing and other
potential problems areas tha t will have a lrea dy been
diagnosed by the C++ front end.

a Enables full ANSI compatibility mode with full diagnostics to
check for portability problems. Some features of the compiler
are disabled when this option is specified, such as precompiled
header files and suppressing multiple includes of the same file
in order to achieve compliance. It also disables register (-er)
and extra (-ek) keywords, also the warning messages 1 22 -

"Missing ellipsis", 132 - "Extra tokens after valid preprocessor
directive" and 1 35 - "Assignment to shorter data type (precision
may be lost)" are enabled.

Poge 60 Lattice C 5 The Compiler

c Allows comments to be nested.

d Allows $ character to be used in identifiers.

e Suppresses the printing of the error source line in conjunction
with any warnings or errors.

f Forces the compiler to check for the presence of function
prototypes and to complain when one isn't present at a function
call or function definition.

Suppresses multiple # I n c l u d e s of the same file. If a second
I n c l u d e of the same file is encountered, the directive is
simply ignored. Note that case is important although no
distinction is made for angle brackets or quotes. This option is
implied when precompiled header files are used or created.

k Enables the presence of the near and far keywords even when
the -ea option has been specified.

This forces alignment of all external da ta to longword
boundaries. Note that this option is far more useful than the
apparently similar option -1, which forces alignment of all
objects (including structure members) resulting in structures
which are potentially incompatible with TOS.

m Allows use of multiple character constants (e.g. 'ab').

0 Provides a compatibility mode to use the pre-ANSI style
preprocessor found in previous releases of the compiler. The
most important aspect of this occurs in substitution of symbols
within quoted strings.

q strengthen the aggregate equivalence type checker. When
disabled (the default), this option allows two aggregates with
common initial subsequences over the length of one of the
aggregates to type check equivalent.

Enables the register keywords _dO to _a7, even when the -ea
option has been specified.

S Causes the compiler to generate a single copy of all identical
string constants into the code section of the program. Note that
when this option is specified, modification of any string
constants at runtime will produce unpredictable results.

The Complier Lattice C 5 Page 61

t Enables warning messages for structure and union tags that are
used without being defined. For example:

st ruct XYZ *p ;

would not normally produce a warning message if structure tag
XYZ was not defined.

u Forces all char declarations to be treated as unsigned char.

w Shuts off warning messages generated for return statements
which do not specify a return value within an lnt function. For
conformance with the ANSI standard, all such functions should
be declared as void instead of lnt.

X Causes all global data declarations to be treated as externals.
This is identical to specifying the -x option.

-d This option has two uses. When used by itself or immediately
followed by a numeric digit, i t activates the debugging mode.
Currently, the following debugging options are supported:

-dO Disables all debugging information.

-dl Enables output o f the line number/offset table.

-d Same as -d 1 .

-d2 Outputs full debugging information for only those symbols and
structures referenced by the program.

-d3 Outputs full debugging information for only those symbols and
structures referenced by the program. Additionally it will cause
the code generator to flush all registers at line boundaries.

-d4 Outputs full debugging information for all symbols and
structures declared in the program even if there is no reference
to them.

-d5 Outputs full debugging information for all symbols and
structures declared in the program even if there is no reference
to them. Additionally it will cause the code generator to flush
all registers at line boundaries.

Page 62

When any of the debugging options is specified, the
preprocessor symbol DEBUG will be defined so any debugging
statements in the source file will be compiled.

LaHice C 5 The Compiler

The -d option can also be used to define preprocessor symbols in the
following ways.

-dsymbol
Causes symbol to be defined as if your source file had the
statement:

#define symbol

-dsymbol=value
Causes symbol to be defined as if your source file had the
statement:

#def ine symbol value

-e This option causes the compiler to recognise the extended character set
used in Asian-language applications.

-Esymbol=volue
Causes symbo l to be defined in the environment with the given
v a l u e . This can be used to set up environment variables for the
compiler outside of the integrated environment or shell (e.g. to set the
PATH variable). This option is ignored by the integrated compiler.

-f This option controls the format to be used for all floating point
operations. Currently two basic styles of floating point are supported:

-f8 lnline Motorola 68881 generated instructions using the eo­
processor interface. Code compiled with this option will not
operate unless a 68881 is installed which conforms to this
interface. Note that the linker will also demand the 68881
specific library routines; these are only available (at present)
as part of Lattice C/TT.

-fa Auto-detecting 1/0 based 68881 emulation routines will be used
when this option is specified. The library will check for the
presence of an 1/0 based 68881 (such as Atari's SFP004) and
perform floating point arithmetic on chip.

-fi 1/0 based 68881 maths routines will be used when this option is
specified. The library assumes the presence of an 1/0 based
68881 (such as Atari's SFP004) and performs floating point
arithmetic on chip.

The Complier LaHice C 5 Page 63

-fl Standard Lattice IEEE routines linked into the program to
perform software emulation of all floating point opera tions.
This code will work on all machines but will not take
advantage of a 68881 if present. This option is the default for
compatibility with previous versions of the compiler.

In addition to the floating point s tyles, the compiler allows some
control over the precision attribu ted to the f l o a t and double
declarations used within the user code. If you specify both a floating
point style and a precision, it must be done on the same -f option such
as in -flm or -f8s.

-fs Causes the compiler to trea t al l declara tions as single
precision.

-fd Causes the compiler to treat all declarations as double
precision.

-frn Causes the compiler to treat f loat as single precision and
double as double precision. This option is the default for all
formats.

-f Will reset to the default of Lattice IEEE mixed mode.

-g This option causes the big version of le 1 to generate a cross reference
and listing file. l e will automatically invoke this version of the
compiler if the option is specified. The -g option is followed by one or
more of the following option letters in any order:

C Outputs a cross reference of all compiler-provided include files
found by searching the directories specified by the INCLUDE
environment variable. By default these symbols are not printed.

d Includes all #define symbols in the cross reference listing.

e Causes the source listing to display all excluded lines as
controlled by #If or #lfdef . Normally these lines are not
displayed .

h Includes the contents of all include files found in the default
include directory as they were included by the source program.
Normally, only the #Include directive causing the compiler to
read the file is displayed.

Page 64

Includes the contents of all user-provided include files in the
expanded listing.

laHlce C 5 The Complier

m Displays both the original source line and the line after macro
expansion in the listing. This is useful for tracking down
problems related to preprocessor replacement of symbols.

n Toggles the narrow mode of the listing. By default, the listing
will be formatted for a 1 08 column line with most lines not
exceeding 80 characters. When enabled, this option allows for
listing lines up to 132 characters.

s Toggles listing of the input source code.

X Toggles generation of a cross reference of the symbols
encountered in the source file.

-H This option specifies that the compiler is to preload the symbol table
from a precompiled header file. It is immediately followed by the
name of the precompiled header file as in:

- Hinclude \ all . sym - Hall . sym

There is no limit to the number of precompiled header files that may
be read in.

-1 This option specifies a directory that the compiler should search
when it is attempting to find an include file. For example, if you
specify the option as -lo : \ heoders -lb: \ locol and then place the line:

#include " def s . h "

in your source program, the compiler first tries to find the header file
named d efs . h in the current directory. If it is not there, then the
compiler searches for o : \ heoders\ defs.h and b: \ locol\ defs .h in this
order. Finally, if these attempts fail, the compiler will a ttempt to
open the file from the places specified in the INCLUDE environment
variable.

Note that you can use up to 16 -1 options.

-j This option allows control over the error messages reported by the
compiler. It is immediately followed by a number and then an optional
letter:

-jn Causes the compiler to suppress printing of warning number n.

-jne Causes the compiler to treat any occurrences of warning n as an
error instead.

-jni Causes the compiler to suppress printing of warning number n.

The Compiler LaHice C 5 Page 65

-jnw Enables printing of warning n . By default, several ANSI
oriented messages are disabled.

Several messages may be affected with the same -j option such as
-j22130e 1 32w which disables warning message 22, turns 30 into an error
and enables 132 as a warning.

-L When this option is present, le invokes the linker if all compilations
are successful. The first source file name is used as the name of the
executable and map files produced by the linker. Any other files that
were compiled are supplied to the linker as secondary object files. The
Lattice C startup routine is included as the first object module, with an
appropriate standard library file (lc. l lb) searched last.

Additional Lattice libraries and linker options may be specified by
immediately following the -L option with one or more of the following
letters:

a This invokes the XAD DSYM option of the linker. It causes
HiSoft extended debugging information for all routines to be
output in the executable file.

b This invokes the BATCH option of the linker. It forces batch
mode linking.

f This invokes the MAP option of the linker. It causes a map file
to be generated with the . MAP file extension.

g This letter specifies that the GEM AES and VDI library lcg. l lb
is to be searched before the standard run-time support library.
When this option is specified the default extension for the
output file becomes . PRG rather than .TIP.

h This letter directs the linker to output the hunk portion of the
map. This is the default map if no other map options are
specified .

This letter directs the linker to include library information in
the map file.

m This letter specifies that the Lattice IEEE maths library
lcm. l lb is to be searched before the standard run-time support
library.

n This invokes the NODEBUG option of the linker. It causes all
debugging information to be stripped from the final executable.

Page 66 LaHice C 5 The Complier

q This invokes the Q U I ET option of the linker. It causes no
messages to be output by the linker if a link is successful.

s This letter directs the linker to produce a symbol listing in the
map file.

v This invokes the VERBOSE option of the linker. It causes the
linker to display statistical messages as it is processing the
object files and libraries.

x This directs the linker to include cross reference information in
the map file.

For example, -Lm will search lcm . l l b before lc . l lb, and -Lvg will
search lcg . l lb and lc . l lb, and display messages regarding the current
linker status. Note that the standard libraries are always searched
last .

If you want to search other libraries, you must list those libraries
after the option letters, and use plus signs as separators. For example,
-L+myfuncs . l lb searches myfuncs . l lb before the standard Lattice
l ibrary, while -Lm+myfuncs. l lb+ \ george \ myfuncs. l lb searches the
libraries mytuncs. l lb. \ george\ mytuncs. l lb. lcm. llb and lc . l lb. Note
that the special libraries are searched before the Lattice libraries.

The -L option creates a file in the current directory named xxx . lnk,
where xxx is the name of the first source file to be compiled (i.e., the
same name that is used for the executable and map files). This . LNK
file serves a s input t o the linker, and i t i s not deleted at the end of
the procedure. This allows you to easily re-link if, during your testing,
you find a need to change and re-compile only one module. To do this,
simply execute CLink in the following way:

clink WITH xxx . lnk

where xxx. lnk i s the name of the . LNK file previously produced by the
le command.

-1 This option causes all objects except characters, short integers, and
structures that contain only characters and short integers to be aligned
on longword boundaries (i .e. addresses exactly divisible by 4).
Structures will be longword aligned if they contain any members that
must be aligned. This option can be used on full 32 bit machines (e.g.
the Atari TT) to increase performance by reducing the need for half­
word memory accesses.

The Compiler LaHice C 5 Page 67

-M When this option is present, le will compile only those source files
with dates more recent than the corresponding object files. Note that
the dates of included files are not checked. In other words, if you
change a header file without changing the source file that includes it,
the source file will not automatically re-compile because it still pre­
dates its object file.

For larger projects where there is a more intense dependency upon
structures in common data files being changed, we recommend using a
make utility to manage recompilation of the affected source files
automatically. This option is ignored by the integrated compiler.

-m This option allows control of the type of code generated. The -m must
be immediately followed by one or more letters from the following list
in any order:

0 Causes the compiler to generate code which will run on a
Motorola 68000. Decisions on code optimisation will be based on
the timings for this processor.

Causes the compiler to generate code which will run on a
Motorola 68010. Decisions on code optimisation will be based on
the timings for this processor. In general, code for this will run
on a 68000 although the 68010 has instructions not found on the
68000.

2 Causes the compiler to generate code optimised for the 68020
processor. This code will not run on a 68010 or 68000 although it
will run on a 68030.

3 Causes the compiler to generate code optimised for the 68030
processor. This code will not run on a 68010 or 68000 although it
will work on a 68020.

a Causes the compiler to generate code to run on any Motorola
680x0 family processor. Code is optimised for the 68020/68030,
degrading performance on a 68000.

c Disables the deferred stack cleanup optimisation which leaves
parameters on the stack, after a call, to be reused and cleaned
up by a subsequent subroutine call or function epilogue.

r Disables the automatic registerisation -of variables. By default,
the compiler will attempt to pick likely candidates for register
variables.

S Causes the compiler to choose optimisations which result in a
reduction of space instead of time.

Page 68 LaHice C 5 The Complier

t Causes the compiler to choose optimisations which result in a
performance increase at the cost of code space. This is the
default .

-n This option causes the compiler to retain only 8 characters for all
identifiers. The default maximum identifier length is 31 characters. In
either case, anything beyond the maximum length is ignored. Note
that this option is the reverse of that in the version 3 release of the
Lattice C .

·0 This option invokes the global optimiser. This option is ignored by the
integrated compiler.

· O This option should be followed by the drive, directory, or complete
file name for the object file that is produced by pass 2. Several
examples are:

-oa: \
Places the object file in the root directory on drive a : .

- o \ obj \
Places the object file into directory \ obj\ on the current drive.
The name of the file is the same as the source file name, with
a .0 extension instead of .C.

-ospecial .o
Places the object file into the current directory with the name
special. c.

-p This option is used when using the compiler in a preprocessor mode to
produce a file used by subsequent compiler invocations. When this
option is used, the compiler will not create a quad file. However, the
file specified as the -0 option will be used as the target name for the
created file. There are several uses for the -p option:

·p By itself, -p , causes the compiler to write the results of
preprocessing the input source file into the output file. If no
output file is specified, a file extension of . p will be used to
create the file.

-ph Causes the compiler to generate a precompiled header file
containing a dump of all symbols encountered in the given source
file. This file may then be used for the -H option on subsequent
compiler invocations to reduce compilation time.

The Compiler Lattice C 5 Page 69

·pr Causes the compiler to generate a prototype file containing
prototypes for all functions defined in the source file. The -pr
may be immediately followed by one or more of the following
option letters in any order:

e

p

s

Eliminates prototypes for all static functions. Only those
functions available externally will have prototypes
generated for them.

Causes the compiler to generate prototypes with
_PROTO for portability to other compilers.

Generates prototypes for all static functions. Only those
functions defined with the static function will be output.

Note that -pres will not generate any prototypes.

-q This option has two uses. If the -q is immediately followed by a
letter, it specifies where the quad file is to be generated. Otherwise it
is used to control how many errors/warnings will be allowed before
quitting a compilation.

This option should be followed by the drive, directory, or complete
file name for the quad file, which is the intermediate file generated
by pass 1 and read by pass 2. Several examples are:

-qm:\
Places the quad file in the root directory of drive m: .

-q \ quad\
Places the quad file into directory \quod\ on the current drive.
The name of the file is the same as the source file name, with
a .Q extension instead of .C.

Note that the quad file is automatically deleted by pass 2.

To control the maximum number of errors/warnings, the -q should be
immediately followed by a number then either an e or w . For
example:

-q3w
Quit after 3 warnings or errors.

-q2e
Quit after 2 errors.

-q l Ow l e
Quit after 1 0 warnings or any errors.

Page 70 LaHice C 5 The Compiler

-q
Quit after any errors or warnings.

-q-
Never quit on any errors or warnings.

Note that when the compiler quits due to too many errors/warnings, it
will not generate a quad file.

- r This option is used to control how the compiler i s to generate
subroutine calls and entries. The -r option may be followed by one or
more of the following characters in any order:

0 Defaults all subroutine calls to far which means that the
compiler will use an absolute 32-bit relocated address to locate
the target function. Note that any functions explicitly declared
near will use the more efficient 16-bit relative offset.

The compiler default, causes all subroutine calls to be defaulted
to near which means that the compiler will use a 1 6-bit PC
relative address to locate the target function. In order for this
to work, the target subroutine must be within +I -32K of the
generated instruction. If it is not within range, the linker will
generate an ALV to allow the call to be bridged to the final
target. Any functions explicitly declared far will use the larger
32-bit address.

r Causes the compiler to use registerised parameters for all
subroutine calls and entry points. The first two integral and two
pointer items will be loaded into d0-d1/a0-a1 for the call. Any
function without a prototype or explicitly declared _stdargs
will use the normal stack conventions.

s The compiler default, causes the compiler to use standard stack
parameters for all subroutine calls. Those functions explicitly
declared __ r e g a r g s will use registerised parameter
conventions.

b Defaults the compiler to use registerised parameters for all
subroutine calls, yet still generate a prologue that handles both
styles of parameter passing.

The Complier LaHice C 5 Page 7 1

-R When this option is specified, the object modules produced by the
compiler are automatically inserted into a library file, replacing
modules of the same names. The option must be followed by the name
of the library, as in

- Rmylib . lib

which places the object modules into the myl lb . l lb library file. The ·R
can be followed by any valid file name, including drive code and path.
A . l lb extension is not automatically supplied. This option is ignored
by the integrated compiler.

- s This causes the compiler t o use the default names o f text for the
program section, data for the data section, and udata for the bss or
uninitialised data section.

-sc=codename
Causes the compiler to use the name c o d e n a m e for the
program, or code, section without affecting the names of the
other sections.

-sd=dataname
Causes the compiler to use the name dataname for the data
section without affecting the names of the other sections.

-sb=bssname
Causes the compiler to use the name bssname for the bss, or
uninitialised data, section without affecting the names of the
other sections.

-t This option is used to change the initial startup code linked when
using the -L option. The -t option should be followed by one of the
following characters:

a

d

Page 72

This option forces the use of the desk accessory startup code
when linking. It also has the effect of changing the default
extension on the final output file to .ACC.

This option forces the use of the automatic program type
detection code. The external variable _XMODE can be used to
determine the current mode.

This option forces the use of the resident program startup code.
The use of this startup type is rather specialised and is
discussed in the linker section.

laHice C 5 The Complier

=file This allows the specification of an alternate startup code. The
file argument should consist of a complete pathname specifying
the location of the required startup code.

Note that more information of the various startup stubs is provided in
Appendix F - The Lattice C Start-Up.

-u This option by itself undefines all preprocessor symbols which are
normally pre-defined by the compiler. The -u option may be followed
by a name causing that name to be undefined:

-uNAME
Causes NAME to removed from the predefined pre-processor
word set.

-v Disable the generation of stack checking code at the beginning of each
function.

-w This option causes the compiler to treat all integers as 1 6-bit short
values. It is intended to provide compatibility with other compilers
although it does provide an increase in performance of the generated
code. When using this option, we strongly recommend use of prototypes
to catch parameter mismatch errors as not all parameters will be
promoted to 4 bytes, as is the default.

-x Cause all global data declarations to be treated as externals. This can
be useful if you define data in a header file that is included by
multiple source files. The -X option can be used with all the files
except one, in this case, to cause the data items to be defined in one
module and referenced as externals in the others.

-y This option causes each function entry sequence to load address
register A4 with the value of the linker defined symbol _LinkerDB.
This symbol is the data section base address, biased as necessary. This
option must be used if the -b l option is used with interrupt code. Note
that, in general, only the functions that can be used as entry points to
the interrupt handler need to use this feature, since register A4 will be
propagated by subsequent function calls. - y is superseded by the
__ saveds option keyword that may be used with a function. Any
function having this keyword will automatically load up the base
register upon entry.

-z Cause the compiler to generate GST format linkable code. It is
intended to provide compatibility with other languages, and is not
recommended due to the poor performance of linkers using this format,
their inability to generate ALVs for out of range branches and the lack
of general support for base-relative addressing via A4.

The Compiler LaHice c 5 Page 73

IPre-compiled Header Fi les
Pre-compiled header files provide a method for speeding up compilation of
programs which have large numbers of static include files (i.e. do not interact
dynamically). Say, all modules of your program have the following
statements:

#include <stdio . h>
#include <stdlib . h>
#include <string . h>
#include <aes . h>
#include <vdi . h>
#include "myst ruct . h "
#include "globals . h "
#include "depend . h "

These header files may be pre-compiled by building a 'dummy' file which
simply includes the above files. This file is then compiled using the - p h
option i n addition to your normal compiler options; note that this will
produce a 'quad' file in the normal location, hence typically the object file is
explicitly specified via -q, e.g.

le - ph - qinclude . sym include . c

On subsequent compilations of the main file the pre-compiled file is pre­
loaded using the -H option:

le - Hinclude . sym myf ile . c

Note that there is no need to remove the Inc ludes from the file being
compiled as the use of pre-compiled headers implies the -cl option.

!Language Extensions
Lattice C 5 adds several new keywords to the C language, some of these are
specified by the ANSI C standard, whilst others are extensions added to
support easier or better access to special facilities of the compiler.

The extensions to the ANSI standard are preceded by a double underscore,
such as __ near, as is required by the standard. If the -ea flag has not been
specified then the compiler also accepts the extended keywords in the more
natural form without the double underscore prefix.

Page 74 LaHice C 5 The Compiler

ANSI Extensions

const

The const type is used to declare an initialised data item that will never
change. For example

char const name [] = " 1 2345abc " ;

declares a constant string. This modifier is also often used in a function
prototype where a pointer is passed. Using this modifier can help the code
generator since it may be able to extend the lifetime of an obJect over a
function call.

en urn

The enum type is used to declare an integral item that can only have certain
named values, each of which is treated as an integral constant. The actual
values assigned to the identifiers normally begin at zero and are incremented
by one for each successive identifier. An explicit value can be forced by using
an equals sign, then subsequent identifiers are assigned the new value plus
one, etc.

For example, this statement defines an enum type:

enum colou r { red , blue , green=4 , puce , lavender} ;

and this defines some objects of that type:

enum colour x , • px ;

In this example, the symbols associated with the enumerated type colour are
given the following values:

Value Name

0 red

1 blue

4 green

5 puce

6 lavender

The Complier Lattice C 5 Page 75

Each enumeration is a separate type with its own set of named values. The
properties of an anum type are identical to those of the lnt type.

signed

The s igned keyword is treated exactly like the uns igned keyword and
ensures that a particular variable will be treated as signed. In practice this
is only useful with character types when using the the -cu option to force
characters to be treated as unsigned.

void

The void type indicates the empty type, and can be used in several ways;
when used as a function return value or as a cast, it indicates that the value
is to be discarded, e.g.

void j ohn (int x) ;

(void) printf ("Hello World \ n ") i

void may also be used to indicate a function which takes no parameters:

void f n (void) i

Note that this is not equivalent to the declaration void fn() which indicates
nothing about the parameters, in particular it does not mean that no
parameters are used.

The final usage introduced by ANSI was the generic pointer, void • . This is
used in a similar way to the way older code used char • as a generic pointer,
so that a generalised pointer may be manipulated without knowing what i t
points to. Because void is the empty type de-referencing void • is illegal, i.e.

void *P i

if (*p)

will generate error 29, invalid pointer operation.

Page 76 LaHice C 5 The Compiler

volati le

The volati le keyword describes a data object that can be changed by means
outside the control of the declaring program. Examples of such objects are
memory-mapped 1/0 registers and shared memory. When manipulating a
volat i l e object, the compiler reads or writes the object whenever it is
referenced. In other words, the compiler suppresses any optimisations that
would keep volatile objects in registers.

Storage Classes

Several keywords are provided to indicate the storage class of an object.
With previous versions of the compiler, the only way to change the storage
class was to use the -b option. This option is still available, but the
recommended method is to let the compiler default to near addressing, -bl ,
and then use the keywords where necessary. Unlike M5-00S based compilers,
these keywords do not affect the size of an object, but instead indicate the
storage class. In that vein, you must place the keyword as close to the data
item as possible:

int near x ; / * addressed a4 relative * /
long f a r y ; / * addressed with 32 bit absolute * /

Note that you can only use the storage keyword immediately before the
target object.

far

The far type indicates that the object must be accessed with a full 32-bit
address rather than via a 16 bit base-relative pointer.

huge

The huge keyword is identical to far when using Lattice C on the ST. It is
included for compatibility with other environments which use Intel processors
instead of the Motorola 68000 family.

The Complier LaHice C 5 Page 77

near

The compiler uses the near access method for objects declared using the near
keyword. For example,

int near x , near y , near z ;

declares three near integers. These are placed into the data section in such a
way that they can be accessed via 16-bit offsets from the data section pointer
in register A4. The -b 1 option on the le command causes all data declarations
without a specific access method to be treated as near . This is the default
setting for the -b option. In other words, the compiler normally generates
near objects in order to reduce program size and improve performance.

Note that because of storage class model used, declaration of pointers using
near and far is slightly unusual; consider the definitions:

int *near x ; / * define near pointe r to obj ect * /
int near • x ; / * define pointe r t o near obj ect * /

because of the storage class model, the first definition causes the pointer to be
in the near data section, whilst the latter definition has no effect on the code
generated since it indicates a pointer to near data (which is is not relevant to
the 680x0 code model).

Notice that pointers to near objects are always 32 bits wide. The only time
that the 1 6-bit access occurs is when the offset can be embedded within an
instruction. For most near objects this is frequently the case, and so the size
and performance improvements can be substantial. However, if you normally
address an object via a pointer, you will gain little by declaring that object as
near.

Cal l ing Conventions

The Lattice C 5 compiler also provides a number of keywords that may be
applied to functions to permit special calling conventions. The _regargs.
_stdargs and _ _ asm keywords indicate tha t the compiler is to use an
altered calling convention. ·

The default is to use _stdargs for all functions. However, if you use the -rr
option of the compiler then it will use the _regargs convention in which
the first two data items and first two pointer items are passed in dJ/dl and
aO/ a l , respectively. The keywords allow you to override the default. For
example:

long __ regargs foo (int i) { . . . }
void __ stdargs bar (void) ;

Page 78 LaHice C 5 The Complier

Note that the keywords __ asm, _stdargs, and __ regargs are mutually
exclusive. Full details on using these keywords is given in the section ASM,
The Assembler.
_as m

The _asm keyword allows you to specify, exactly, in which register each
parameter is to be passed. It can be used for both function definitions and
function declarations:

int __ asm mymax (register __ dO int , register __ d1 int) ;
int __ asm myfun (i , p)

register __ do int i ;
register __ a 1 char * p ;

_interrupt

The _Interrupt keyword is applied to a function to indicate that this function
may be called from an interrupt routine. Although, at the time of writing, it
does not affect the code generated for the function, it is provided for potential
variations in code necessary to support interrupts.

_regargs

This keyword defines a subroutine that is to be called with register
parameters. Note that full function prototyping m u st be used so that the
compiler can decide which parameters are of which type.

__ saveds

I f a function may b e called from code which has not set up the global base
register (A4) then it is necessary to load it at the start of the function. This is
possible using the -y option. However this applies to all functions in a
module; to cause it to be loaded for a single function, you can use the keyword
_saveds as in:

int __ saveds myentry (void)
{
}

Note that _saveds only has meaning when applied to the actual definition
of the function. External functions with the _saveds keyword simply ignore
the keyword.

The Compiler LaHice C 5 Page 79

_stdargs

This keyword defines a subroutine that i s t o b e called with standard stack
parameters.

!Bui lt- in Functions
The Lattice C 5 compiler provides several standard library functions which
are built-in to the compiler and as such generate high quality 680x0 machine
code exploiting register contents in a way which would not otherwise be
possible. Since the compiler 'knows' the semantics of these functions it may
pre-compute constant expressions, like str len('He l lo Worl d ') ; also i f a
function result is not used, it may be discarded before it is computed.

The built-in functions recognised by the compiler are all prefaced with
bulltln and then followed by their standard library name. The header files
use #defines to ensure that the built-in function is used instead of the library
version, for example:

int strle n (const char *) ;
int __ built in_st rlen (const char *) ;

#define st rlen (a) __ built in_st rlen (a)

Such a mechanism ensures that it is possible to suppress the use of a built-in
function and force the library definition to be used. This can be useful if you
wish to have, for instance, the mem family of functions check their input
parameters against the bounds of your heap, i.e. to catch dangling or random
pointers.

To force the use of the library version you should include the normal header
files and then explicitly #undef the function, e.g.

#undef strlen

The library functions recognised by the compiler as built-ins are:

int abs (int) ;
int max (int , int) ;
int memcmp (const void • , const void • , size_t) ;
void • memcpy (void • , const void • , size_t) ;
void •memset (void * , int , size_t) ;
int min (int , int) ;
int st rcmp (const char • , const char *) ;
char •strcpy (char • , const char *) ;
s ize_t st rlen (const char *) ;

Page 80 Lattice C 5 The Compiler

In addition to these, the prlntf function, in its _bulltln_prlntf form, is
recognised. When such a call occurs the formatting string is analysed
according to the normal library rules to see if it contains:

• No substitutions, so that a call to _writes may be made,

• Only % d , % p , %s and % x conversions, when a substitution is made
for _tlnyprlntf.

Otherwise a call to the standard library prlntf routine is made.

The compiler also makes available several built-in functions which increase
the functionality of the language:

void _emit (short) ;
void _bu iltin_fpc (int , double) ;
void geta4 (void) ;
long get reg (int) ;
void put reg (int , long) ;

Again these are normally prefixed by _bulltln_, with the following suffices
being acted upon:

_emit This function inserts its short word argument into
the instruction stream at the current point. This can
be used to insert unusual instructions into the
program, for instance:

_emit (Ox27c) ; / * and #$dfff , sr * /
_emit (Oxdfff) ;

. . . _fpc __ bul lt ln_fpc is used to generate inline MC68881
transcendental instructions using the Line-F opcodes.
It takes two parameters, the second of whicn is the
operand to be passed to the function for evaluation,
whilst the first is the 'encoded extension field', i.e.
the low 7 bits of the FPC opcode. Consider the
inlining of the function sin:

double sin (double) ;

#define sin (x) _builtin_fpc (1 4 , x)

geta4 This 'function call' forces the global data register,
A 4 , to be loaded at the start of a function. It is
exactly equivalent to using the _saveds keyword
on the function definition, but may be used in bortable code with a placebo definition of geta4

eing used in a non-Lattice environment.

The Compiler LaHice C 5 Page 8 1

getreg getreg directly obtains the contents of a specific
register; this can be useful in situations where you
need to pick up specific register values, e.g. the
stack pointer.

putreg putreg allows you to store a value into a specific
register.

Using these functions allows direct access to the instruction stream and code
generation. Note that, whilst code may be inserted in the instruction stream
using _emit, it is often easier and more useful to use the #pragma lnl lne
capability of Lattice C 5 described below.

lln l ine Calls
The #pragma lnl lne directive allows the Lattice C compiler t o generate
inline code, either to support direct calling of the operating system or to use
features of the processor not supported by C.

The directive has the form:

#pragma inline [<r>=] <name> ([<parms>])
{ [register <s 1 > [, <s2>] [, . . .]] [" <emit> " ; [. . . ;]] }

The various parts of the directive are:

<r> the register in which the function returns its
value.

<name> the name of the previously prototyped
function which is to be inlined.

<S l > ,<S2> the registers which are destroyed as a result
etc. of this call.

'<emit>' the hexadecimal string to be placed in the
instruction stream.

<parms> gives the manner in which the parameters are passed to the call
as follows:

([<cast> I <r 1 >] [, [<cast> I <r2> 1 1 [, . . .]])

Page 82 LaHice C 5 The Compiler

where:

<cast> an optional cast to (short) so that the �arameter is
placed on the s tack as a short (rat er than the
natural size for the type) .

<r l > a register in which the parameter is to be passed.

The I separators above indicate alternatives, so that a parameter may be
cast or assigned to a register. The [. . .) notation indicates that the enclosed
parameters are optional, so that a <parms> value may even consist of
commas with no intervening casts or register assignments.

Consider calling the GEMDOS function C c o n o ut, this takes a single
parameter which is the character to be printed. Before executing the
GEMDOS trap, we must also specify GEMDOS function number, 2 in this case:

#def ine _TRAP_1 " 4e41 "

void _vgs (short , short) ;

#define Cconout (c) _vgs (2 , c)

#pragma inline _vgs ((short) , (short))
{ regist e r d2 , a2 ; _TRAP_1 ; }

This results in the parameter c being pushed onto the stack as a short-word
followed by the function number 2 as a short word, followed by the GEMDOS
trap. Prior to the call the registers 02 and A2 are saved.

Calls to more complex parts of TOS may also be effected; consider the l lnead
function:

#define _LINEA_D " aOOd "

void linead (int , int , LA_SPRITE * , void *) ;

#pragma inline linead= (dO , d 1 , aO , a2)
{ register d2 , a6 ; _LINE_A_D ; }

This calls the Line-A sprite routine with the co-ordinates in DO and D l and
the sprite definition and save blocks in AO and A2 . Prior to the call, 02 and
A6 are saved. Note that A2 is not saved, along with 02 and A6, as this is
implicit in its usage in the call.

The Compiler LaHice C 5 Page 83

The #pragma lnllne directive may also be used to extend the language to
encompass features of the processor which the language cannot express.
Consider a general rotate instruction:

#define __ ROL_L_D1 _DO ' e3b8 '

unsigned long _lrotl (unsigned long , int) ;

#pragma inline dO=_lrot l (dO , d 1) { __ ROL_L_D1_DO ; }

This would then allow the use of the 68000 rotate instruction in the
instruction stream without recourse to a function.

A more complex function might be used to pack two short word values into a
long word. This might have the form:

unsigned long pack (short , short) ;

#define SWAP DO
#define Move:w_o1_oo

' 4840 '
' 3001 "

#pragma inline dO=pack (dO , d 1)
{ __ SWAP_DO ; __ MOVE_W_D1 _DO ; }

!Compi ler Operational E rrors
These indicate that the compiler is having trouble operating correctly because
it cannot access required files or cannot obtain enough disk or memory space.
Some of these errors are caused by not providing the required prototyping
information to phase 1 so that it will manipulate a function into a format
usable by phase 2, or by some other misuse of a low level facility.

-1 option ignored

More than 16 -1 option strings were specified. Only the first 16 are retained
and used.

-r option has been moved to LC l
A -r option was detected on phase 2. This option was moved to the first phase
of the compiler with the version 5 release.

_bulltln_fpc requires -f8 switch on LC 1

A call has been made to _bulltln_fpc during phase 2 when phase 1 was not
using the MC68881 flag. The first phase should be re-run with the -f8 flag.

Page 84 LaHice C 5 The Complier

Argument to abs must be an Integral type

In phase 2 the function _bulltln_abs has been passed a non-integral type.
This function must be prototyped correctly so that the first phase will convert
any parameters to the required type.

Argument to emit must be an integral constant

In phase 2 the opcode to _bulltln_emlt is a non-constant value. Only constant
values may be used for the opcode specification.

Arguments to max/mln must be an Integral type

In phase 2 the function _bulltln_mln or _bulltln_max has been passed a non­
integral type. These functions must be prototyped correctly so that the first
phase will convert them to the required type.

Can't create debugger Intermediate file

The first phase of the compiler could not create its intermediate file for the
debugging output. This error usually results from a full directory on the output
disk.

Can't define _LINE_ and _FILE_

An a ttempt has been made to pre-define __ LI N E _ _ or __ F I LE_ from the
command line; such redefinitions are illegal.

Can't open debugging file

The second phase could not open the debugging symbol file.

Can't open precompiled header file

One of the pre-compiled header files specified via the -H option could not be
opened by the first phase.

Can't create object file

The second phase of the compiler was unable to create the object file. This
error usually results from a full directory on the output disk.

The Compiler LaHice C 5 Page 85

Can't create quad file

The first phase of the compiler was unable to create the quad file. This error
usually results from a full directory on the output disk, or an attempt to use a
nonexistent disk.

Can't open file for pre-processor output

The first phase of the compiler was unable to open the pre-processor output
file. This error usually results from a full directory on the output disk.

Can't open prototype file

The first phase of the compiler was unable to open the prototype file. This
error usually results from a full directory on the output disk.

Can't open quad file

The second phase of the compiler was unable to open the quad file. This error
usually occurs when you call phase 2 of the compiler (lc2) directly with an
invalid quad file name.

Can't open source file

The first phase of the compiler was unable to open the source file. This error
usually occurs because you mis-spelt the file name or did not specify the
proper drive and/or directory path.

Can't open symbol file

The first phase of the compiler was unable to open the symbol file. This error
usually results from a full directory on the output disk.

Combined output file name too large

The output file name constructed by combining the source or quad file name
with the text specified using the -o option exceeded the maximum file name
size of 64 bytes.

Corresponding message not found in le l . lc

The error number which the compiler generated could not be found in the error
file le l . lc .

Page 86 LaHlce C 5 The Complier

Dead assignment eliminated <symbol>

The global optimiser has detected a redundant assignment to symbol . Note
that these assignments may not be visible in your program, but generated
internally by the compiler.

End of file on object file

The second phase of the compiler detected an end of file condition on the
object file. This usually indicates a full disk.

Error message too long In le l . lc

An error message in the le l . lc file exceeded the maximum length permitted.

Error reading symbol file

The second phase encountered an error when reading the debugging symbol
f i le .

Fi le name missing

The source file name was not specified.

File name too large

The name of the file passed to the second phase exceeded the maximum file
name length.

File too short

A pre-compiled header file expired prematurely. This indicates that the
structure of the pre-compiled header file is damaged in some way.

Floating point opcode must be a constant

In phase 2 the opcode to _bulltln_fpc is a non-constant value. Only constant
values may be used for the opcode specification.

Full path name of source file too long -- not retained

The full pathname exceeded the maximum length permitted in the debugging
output file and so was not retained.

The Complier LaHice C 5 Page 87

Intermediate fi le error

The first phase of the compiler encountered an error when writing to the quad
file. This error usually results from an out-of-space condition on the output
disk.

I nvalid - b option

The character following the -b option was not 0 or 1 ; see the section LC, The
Complier for the valid options.

Invalid -e option

The character following the -e was not a 0, 1 , or 2. This usually occurs
because the line was mistyped. Retype the line and try again. See the section
LC, The Complier for a list of the valid compiler control options.

Invalid -f option

One of the characters following the -f option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

Invalid -J option. Warning/error not specified

Following the -j option to le l an error number was not specified; see the
section LC, The Complier for details of the -j option.

Invalid -m option

One of the characters following the -m option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

Invalid -r option

One of the characters following the -r option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

Invalid -s option

One of the characters following the -s option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

Page 88 LaHice C 5 The Complier

Invalid attribute flags for builtin function

An _bulltln function has the wrong attribute types; this indicates that it was
incorrectly prototyped during the first phase. Check the types of the
parameters in the prototype.

Invalid Intermediate file

During the second phase the intermediate file was found to be damaged in
some manner.

Invalid option

An invalid command line option was specified, and that option will be
ignored. See the section LC, The Complier for a list of the valid compiler
control options.

Invalid register specification for getreg

A register specification to __ bu l l tl n_getreg was invalid. The register
specification must be a constant in the range 0 to 15.

Invalid register specification for putreg

A register specification to __ bu l l t ln_putreg was invalid. The register
specification must be a constant in the range 0 to 15.

Invalid symbol defin ition

The name attached to -d specifying a symbol to be defined was not a valid C
identifier or was followed by text which did not begin with an equals sign.

le l . lc is corrupt

An error occurred whilst the compiler was attempting to read the error file
lc l . lc.

No functions or data defined

The compiler reached the end of the source file without finding any data a
function definitions. One common cause of this error is to forget a comment
terminator (• /) during the first function in the source file. This causes the
compiler to gobble up your program as if it were a comment.

The Compiler LaHice C 5 Page 89

No register specified for ASM call

During phase 2 a function has been declared using an _asm convention, but no
register was supplied where one was needed.

Not enough memory

This message is generated when either phase of the compiler uses up all the
available working memory.

Parameters beyond file name Ignored

Additional information was present on the command line beyond the name of
the source file. A common source of this error is to place compiler options after
the file name.

Reference has overlapping defin ition <symbol>

The global optimiser has detected a reference to symbol which overlaps a
definition which it has seen. This may or may not indicate an error in your
program, but should be investigated.

Same register used twice for parameters

During phase 2 a register has been used twice in an __ asm call. All registers
used in such a call must be distinct.

Seek error on object file

The second phase of the compiler detected a seek error on the object file. This
usually indicates a full disk.

Symbol file corrupted

The second phase detected a corrupt symbol file. This rarely occurs and may
be related to a full disk or lack of disk integrity.

Unable to continue compilation due to previous B LTN
e rror(s)

The second phase has been forced to abort due to previous errors encountered
when processing _bulltln functions.

Page 90 LaHice C 5 The Complier

Unable to find 'le l . lc'

The first phase is unable to find the error file le l . lc which contains its error
messages.

Undefined variable <symbol>

The global ortimiser has detected a reference to symbol without seeing any
definition o this symbol. This almost certainly indicates a bug in your
program.

Unrecognized -c option

One of the characters following the -c option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

Unrecognized -j option

One of the characters following the -f option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

Unrecognized -p option

One of the characters following the -p option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

U nrecognized -q option

One of the characters following the -q option was not a recognised compiler
control character. See the section LC, The Complier for a list of the valid
compiler control options.

Value for putreg must be an integral type

In phase 2 the function _bulltln_putreg has been passed a non-integral type.
This function must be prototyped correctly so that the first phase will convert
them to the required type.

Wrong number of parameters for builtin function

In phase 2 an __ bul l t in function has been passed the wrong number of
parameters .

The Compiler LaHice C 5 Page 9 1

!Syntax errors and warn ings
These indicate that the compiler is having difficulty understanding your C
source program. The message includes the source file name and line number
identifying the point at which the problem was detected. An error message
indicates that the problem prevents the construction of a usable object module
and must, therefore, be corrected. A warning message indicates that the
compiler detected something unusual but will proceed to make an object
module, using appropriate assumptions about what you intended the source
code to do.

Syntax errors and warnings are reported via a message with the following
format:

fff nnn Error xxx : mmm
where the message components are:

fff This is the name of the source file that was being
processed when the error occurred.

mn This is the number of the source file line that was being
scanned when the error occurred. Source file lines begin
at 1, not 0.

X X X This is the error number, as listed below.

m m m This is the error message text.

All messages listed below indicate fatal errors unless the message number
listed below is followed by (W). When a fatal error occurs, the compiler will
not produce a usable object module. The le command alerts you to this
condition by beeping and pausing, unless you use the -C option to force
continuous compifation.

If the message number below is followed by (W), then it is a warning. When
such a message is displayed, the compiler will produce a usable object module
by making reasonable assumptions about what you intended the source file to
do. Nonetheless, it's a good idea to investigate these warnings, since the
compiler's assumptions may disagree with your intentions.

Page 92 LaHice C 5 The Complier

1 Invalid pre-processor command

This error is generated by a variety of conditions in connection with pre­
processor commands, including specitying an unrecognised command, failure to
mclude white srace between command elements, or use of an illegal pre­
processor symbo .

2 unexpected end of file

The end of an input file was encountered when the compiler expected more
data. This may occur on an #Include file or the original source file. In many
cases, correction of a previous error will eliminate this one.

3 file not found <name>

The file <name> specified on a #Include command was not found.

4 Invalid lexical token

An unrecognised element was encountered in the input file that could not be
classified as any of the valid lexical constructs (such as an identifier or one of
the valid expression operators). This may occur if control characters or other
illegal characters were detected in the source file.

5 invalid macro usage

A pre-processor #define macro was used with the wrong number of arguments.

6 line buffer overflow

Expansion of a #define macro caused the compiler's line buffer to overflow.
This may occur if more than one lengthy macro appeared on a single input
line or if the closing parenthesis was missing from a macro invocation.

7 file stack full

The maximum extent of #Include file nesting was exceeded; the compiler
supports #Include nesting to a maximum depth of 16.

8 invalid conversion

A cast (type conversion) operator was incorrectly specified in an expression.

The Complier LaHice C 5 Page 93

9 undefined Identifier <name>

The named identifier was undefined in the context in which it appeared;
that is, it had not been previously declared. This message is only generated
once; subsequent encounters with the identifier assume that it is of type lnt
(which may cause other errors).

1 0 Inval id subscript expression

An error was detected in the expression following the c character
(presumably a subscript expression). This may occur if the expression in
brackets was empty.

1 1 string too large or not terminated

The length of a string constant exceeded the maximum allowed by the
compiler (256 bytes). This will occur if the closing " (double quote) was
omitted in specifying the string.

1 2 invalid structure reference

The expression preceding the period (.) or indirect (->) structure reference
operator was not a structure or pointer to a structure.

1 3 member name missing

An identifier indicating the desired aggregate member was not found
following the period (.) or arrow (->) operator.

1 4 undefined member <name>

The indicated identifier was not a member of the structure or union to which
the period (.) or arrow (->) referred.

1 5 invalid function call

The identifier preceding the left parenthesis of a function call was not
implicitly or explicitly declared as a function.

1 6 Invalid function argument

A function argument expression following the left parenthesis on a function
call was invalid. This may occur if an argument expression was omitted.

Page 94 LaHice C 5 The Compiler

1 7 too many operands

During expression evaluation, the end of an expression was encountered but
more than one operand was still awaiting evaluation. This may occur if an
expression contained an incorrectly specified operation.

1 8 unresolved operator

During expression evaluation, the end of an expression was encountered but an
operator was still pending evaluation. This may occur if an operand was
omitted for a binary operation.

1 9 unbalanced parentheses

The number of opening and closing parentheses in an expression was not equal.
This error message may also occur if a macro was poorly specified or
improperly used.

20 invalid constant expression

An expression which did not evaluate to a constant was encountered in a
context which required a constant result. This may occur if one of the
operators not valid for constant expressions was present.

2 1 il legal use of aggregate

An identifier declared as a structure or union was encountered in an expression
where aggregates are not permitted. Only the direct assignment and
conditional operators may be used on aggregates, and explicit or implicit
testing of aggregates as a whole is not permitted.

22 (W) structure used as function argument

An identifier declared as a structure or union appeared as a function argument
without the preceding & operator. Aggregates may be passed by value, so
this is a legal construction. The warning message is generated to alert you
that earlier versions of Lattice C (before version 3) passed the address of the
aggregate in this case.

23 invalid use of conditional operator

The conditional operator was used erroneously. This may occur if the ?
operator was present but the : was not found when expected.

The Complier LaHice C 5 Page 95

24 pointer operand required

The context of the expression required an operand to be a pointer. This may
occur if the expression following • did not evaluate to a pointer.

25 modifiable lvalue required

The context of the expression required an operand to be an lvalue. This may
occur if the expression following & was not an lvalue, or if the left side of an
assignment expression was not an lvalue.

26 arithmetic operand required

The context of the expression required an operand to be arithmetic (not a
pointer, function, or aggregate).

27 arithmetic or pointer operand required

The context of the expression required an operand to be either arithmetic or a
pointer. This may occur for the logical OR and logical AND operators.

28 missing operand

During expression evaluation, the end of an expression was encountered but not
enough operands were available for evaluation. This may occur if a binary
operation was improperly specified.

29 invalid pointer operation

An operation was specified which was invalid for pointer operands (such as
one of the arithmetic operations other than addition).

30 (W) pointers do not point to same type of object

In an assignment statement defining a value for a pointer variable, the
expression on the right side of the = operator did not evaluate to a pointer of
the exact same type as the pointer variable being assigned, i.e. it did not
point to the same type of object. The warning also occurs when a pointer of
any type is assigned to an arithmetic object. Note that the same message may
be a fatal error if generated for an initialiser expression or in some situations
involving mixed memory models.

3 1 integral operand required

The context of an expression required an operand to be integral, i.e. one of the
integer types (char, lnt, short, unsigned, or long) .

Page 96 LaHice C 5 The Complier

32 invalid conversion specified

The expression specifying the type name for a cast (conversion) operation or a
slzeof expression was invalid.

34 invalid lnltial iser expression

The expression used to initialise an object was invalid. This may occur for a
variety of reasons, including failure to separate elements in an initialiser list
with commas or specification of an expression which did not evaluate to a
constant. Some experimentation may be required in order to determine the
exact cause of the error.

35 closing brace expected

During processing of an initia liser list or a s tructure or union member
declaration list, the compiler expected a closing right brace, but did not find
it. This may occur if too many elements were specified in an initialiser
expression list or if a structure member was improperly declared.

36 (W) control cannot reach this statement

A statement within the body of a switch statement was not preceded by a
case or default prefix which would allow control to reach that statement.
This may occur if a break or return statement is followed by any other
statement without an intervening case or default prefix.

3 7 duplicate statement label <label>

The specified s tatement label was encountered more than once during
processing of the current function.

3 8 unbalanced braces

In a body of compound statements, the number of opening left braces (and
closing right braces I was not equal. This may occur if the compiler got out of
phase due to a previous error.

39 invalid use of keyword <keyword>

One of the C language reserved words appeared in an invalid context (e.g. as
a variable name).

The Compiler LoHice C 5 Poge 97

4 0 break not Inside loop o r switch

A break statement was detected that was not within the scope of a while,
do, for, or switch statement. This may occur due to an error in a preceding
statement.

4 1 case not Inside switch

A case prefix was encountered outside the scope of a switch statement. This
may occur due to an error in a preceding statement.

42 Invalid case expression

The expression defining a c a s e value did not evaluate to an integral
constant.

43 duplicate case value

A case prefix was encountered which defined a constant value already used
in a previous case prefix within the same switch statement.

44 continue not inside loop

A continue statement was detected that was not within the scope of a while,
do, or for loop. This may occur due to an error in a preceding statement.

45 default not Inside switch

A default prefix was encountered outside the scope of a switch statement.
This may occur due to an error in a preceding statement.

46 more than one default

A default prefix was encountered within the scope of a switch statement in
which a preceding default prefix had already been encountered.

4 7 while missing from d o statement

Following the body of a do statement, the while clause was expected but not
found. This may occur due to an error within the body of the do statement.

Page 98 laHice C 5 The Complier

4 8 invalid while expression

The expression defining the looping condition in a while or do loop was null
(not present). Indefinite loops must supply the constant 1, if that is what is
intended.

49 else not associated with if

An else keyword was detected that was not within the scope of a preceding If
statement. This may occur due to an error in a preceding statement.

50 label missing from goto

A statement label following the goto keyword was expected but not found.

5 1 label name conflict <label>

The indicated identifier, which appeared in a goto statement as a statement
label, was already defined as a variable within the scope of the current
function.

52 Invalid If expression

The expression following the If keyword was null (not present).

53 Invalid return expression

The expression following the return keyword could not be legally converted to
the type of the value returned by the function.

54 invalid switch expression

The expression defining the value for a switch statement did not define an
integral value or a value that could be legally converted to an integer.

55 (W) no case values for switch statement

The statement defining the body of a switch sta tement did not contain at
least one case prefix.

56 (W) colon expected

The compiler expected but did not find a colon (:) . This error message may be
generated if a case expression was improperly specified, or if the colon was
simply omitted following a label or prefix to a statement.

The Compiler LaHice C 5 Page 99

57 (W) semi-colon expected

The compiler expected but did not find a semi-colon (;) . This error generally
means that the compiler completed the processing of an expression but did not
find a statement terminator. This may occur if too many closing parentheses
were included or if an expression was otherwise incorrectly formed. Because
the compiler scans through white space to look for the semi-colon, the line
number for this error message may be beyond the actual line where a semi­
colon was needed.

58(W) m issing parenthesis

A parenthesis required by the syntax of the current statement was expected
but was not found (as in a while or for loop). This may occur if the enclosed
expression was incorrectly specified, causing the compiler to end the
expression early.

59 invalid storage c lass

In processing declarations, the compiler encountered a storage class invalid for
that declaration context (such as auto or register for external objects). This
may occur if, due to preceding errors, the compiler began processing portions of
the body of a function as if they were external definitions.

60 Incompatible aggregate types

The types of the aggregates involved in an assignment or conditional
operation were not exactly the same. This error may also be generated for
anum objects, which are treated as integers.

6 1 (W) undefined structjunion tag <name>

The indicated structure or union tag was not previously defined; that is, the
members of the aggregate were unknown. Note that a reference to an
undefined tag is permitted if the object being declared is a pointer, but not if
it is an actual instance of an aggregate. This message may be issued as a
warning after the entire source file has been processed if a pointer was
declared with a tag that was never defined.

62 structure/union type mismatch

A structure or union tag has been detected in the opposite usage from which it
was originally declared (i.e., a tag originally applied to a st ruct has
appeared on an aggregate with the union specifier) . The Lattice compiler
defines only one class of identifiers for both structure and union tags.

Page 1 00 LaHice C 5 The Compiler

63 (W) duplicate declaration of Item <name>

The indicated identifier has been declared more than once within the same
scope. This error may be generated due to a preceding error, but is generally
the result of improper declarations.

64 structure contains no members

A declaration of the members of a structure or union did not contain at least
one member name.

65 Invalid function definition

An attempt was made to define a function body when the compiler was not
processing external definitions. This may occur if a preceding error caused the
compiler to get out of phase with respect to declarations in the source file.

66 (W) invalid array l imit expression

The expression defining the size of a subscript in an array declaration did not
evaluate to a positive integral constant. This may also occur if a zero length
was specified for an inner (i.e. not the leftmost) subscript of an array object.

6 7 Illegal object

A declaration specified an illegal object as defined by this version of C.
Illegal objects include functions which return arrays and arrays of functions.

68 illegal object for structure

A structure or union declaration included an object declared as a function. This
is illegal, although an aggregate may contain a pointer to a function.

69 structure includes Instance of self

The structure or union whose declaration was just processed contains an
instance of itself, which is illegal. This may be generated if the • is
forgotten on a structure pointer declaration, or if (due to some intertwining of
structure definitions) the structure actually contains an instance of itself.

7 0 Invalid use o f structure qualifier

The formal parameter of a function was declared illegally as a function.

The Complier LaHice C 5 Page 1 0 1

7 1 formal declaration error <name>

A variable was declared before the opening brace of a function, but it did not
appear in the list of formal names enclosed in parentheses following the
function name.

7 2 external Item attribute mismatch

An external item has been declared with attributes which conflict with a
previous declaration. This may occur if a function was used earlier, as an
implicit lnt function, and was then declared as returning some other kind of
value. Functions which return a type other than lnt must be declared before
they are used so that the compiler is aware of the type of the function value.

73 (W) declaration expected

In processing the declaration of objects, the compiler expected to find another
line of declarations but did not, in fact, find one. This error may be generated
if a preceding error caused the compiler to get out of phase with respect to
declara tions.

74 (W) lnitiallser data truncated

A string constant used as an initialiser for a char array defined more
characters than the specified array length. Only as many characters as are
needed to define the entire array are taken from the first characters of the
string constant.

75 Invalid sizeof expression

An attempt was made to apply the slzeof operator to a bit field, which is
il lega l .

76 left brace expected

The compiler expected, but did not find, an opening left brace in the current
context. This may occur if the opening brace was omitted on a list of
initialiser expressions for an aggregate.

7 7 identifier expected

In processing a declaration, the compiler expected to find an identifier which
was to be declared . This may occur if the prefixes to an identifier in a
declaration (parentheses and asterisks) are improperly specified, or if a
sequence of declarations is listed incorrectly.

Page 1 02 LaHice C 5 The Complier

7 8 undefined statement label <label>

The given statement label was referred to in the most recent function in a
goto statement, but no definition of the label was found in that function.

79 (W) duplicate enumeration value

More than one identifier within the list for an enumeration type had the
same value. While this is not technically an error, it is usually of
questionable value. ·

8 0 Invalid bit field

The number of bits specified for a bit field was invalid . Note that the
compiler does not accept bit fields which are exactly the length of a machine
word (such as 32 on a 32-bit machine); these must be declared as ordinary lnt
or unsigned variables.

8 1 pre-processor symbol loop (macro expansion
too long or circular)

The current line contains a reference to a pre-processor symbol that is a
circular definition.

82 maximum object/storage size exceeded

The size of an object exceeded the maximum legal size for objects in its storage
class; or, the last object declared caused the total size of declared objects for
that storage class to exceed that maximum.

83 (W) reference beyond object size

An indirect pointer reference (usually a subscripted expression) used an
address beyond the size of the object used as a base for the address
calculation. This generally occurs when an expression makes reference to an
element beyond the end of an array.

84 (W) redefin ition of pre-processor symbol <name>

A #define statement was encountered for an already defined symbol. The
first definition is pushed, so that an additional #undef statement is needed
to undefine the symbol.

The Complier LaHice C 5 Page 1 03

85 (W) function return value mismatch

The expression specifying the value to be returned by a function was not of the
same type as the function itself. The value specified is automatically
converted to the appropriate type; the warning merely serves as notification
of the conversion. The warning can be eliminated by using a cast operator to
force the return value to the function type. This warning is also issued when a
return statement with a null expression (i.e. no return value) appears in a
function which was not declared void; generation of the warning for this
particular context can be disabled using the -cw option on the le command.

86 (W) formal definitions conflict with type l ist

The types of the formal parameters declared in the actual definition of a
function did not agree with those of a preceding declaration of that function
with argument type specifiers.

87 (W) argument count incorrect

The number of function arguments supplied to a function did not agree with
the number of arguments in its declaration using argument type specifiers.

88 (W) argument type incorrect

The type of a function argument exrression did not agree with its
corresponding type declared in the list o argument type specifiers for that
function.

89 (W) constant converted to required type

The type of a constant expression used as a function argument did not agree
with its corresponding type declared in the list of argument type specifiers
for that function.

90 invalid argument type specifier

The type specifier for an argument type in a function declaration was
incorrectly formed. Argument type specifiers are formed according to the rules
for type names in cast operators or slzeof expressions.

9 1 Illegal void operand

One of the operands in an expression was of type void; this is expressly
disallowed, since void represents no value. This is often caused by attempting
to assign the result of a function declared as 'void' returning to a variable.

Page 1 04 Lattice C 5 The Complier

92 (W) statement has no effect

An expression statement did not cause either an assignment or a function call
to take place. Such a statement serves no useful purpose, and can be
eliminated; usually, this error is generated for incorrectly specified
expressions in which an assignment operator was omitted or mistyped.

93 (W) no reference to Identifier <name>

An object with local scope was declared but never referenced within tha t
scope. This warning is provided as a convenience to warn of declarations that
may no longer be needed (if, for example, the code in which the variable was
used was eliminated but not its declaration). It may also occur if the only use
of the object is confined to statements which are not compiled because of
conditional compilation directives such as #lfdef or #If.

94 (W) uninltial ised auto variable <name>

An auto variable was used in an expression without having been previously
initialised by an assignment statement or appearing in a function argument
list with a preceding & (i.e. its address passed to a function). Note that the
compiler considers the variable initialised after any statement causes it to be
initialised, even though control may not flow from that statement to other
subsequent uses of the variable. Note also that this warning will be issued if
the third expression in a for statement uses a variable which has not yet been
initialised, which may be incorrect if that variable is initialised inside the
body of the for statement.

95 (W) unrecognised #pragma operand

The operands of the #pragma statement did not match the syntax expected.
This may occur, for instance, if an lnllne directive had missing semi-colons.

99 (W) attempt to change a const lvalue

The program is writing to a const object. This is not permitted by the
definition of such objects.

1 00 (W) no prototype declared for function

A function was called with no in-scope prototype. This message can only occur
if the -cf option is set.

The Compiler LaHice C 5 Page 1 05

1 0 1 redundant keywords In declaration

More keywords than permitted appeared in the declaration of a variable or
function.

1 02 conflicting keywords In declaration

The attempted declaration contained conflicting keywords (e.g. near far) .

1 03 (W) unlnltlallsed constant <name>

A variable has been declared with the const modifier, but no initialiser has
been supplied so that the variable is, by definition, undefined and cannot
subsequently be initialised (since it is constant).

1 04 (W) conversion from pointer to const/Volatlle to
pointer to non-const/volatile

A conversion from a pointer to an object specified using the const or volatile
modifier has been assigned to a pointer which does not have that property.
Hence the compiler will be unable to honour the const/volatlle property of
the object when accessed through the new pointer.

1 06 postfix expression not allowed on a constant

An attempt was made to use a postfix operator (++, etc.) on a constant.

1 07 too many lnltlalisers

The declaration encountered contained more initialisers than elements existed
to place the values into.

1 09 Invalid use of type name or keyword

The type name used was illegal in the context in which it occurred, e.g.
attempting to pass a typedefd name as a parameter to a function.

1 1 6 (W) Undefined enum tag <name>

The program is accessing an object of type enum with the named tag, which
has not been defined.

Page 1 06 LaHice C 5 The Complier

1 1 7 Enum contains no members

An empty enumeration declaration has occurred. This will happen if the tag
space between the left and right brace is empty.

1 1 8 Conflicting use of enum/struct/union tag <name>

A structure, union or enumeration tag has been detected in a different usage
from which it was originally declared (e.g. a tag originally applied to a
struct has appeared on an aggregate with the union specifier). The Lattice
compiler defines only one class of identifiers for structure, union and enum
tags.

1 1 9 Identifiers missing from defin ition of function
<name>

An attempt is being made to define a function using the prototyped format,
however a name has not been supplied for one of the parameters.

1 21 (W) Hex constant too large for char (high bits will
be lost)

The hexadecimal or octal constant just defined is too large to fit into an object
of type char. This will occur if one is defining a constant larger than 127. The
-cm option of le 1 may be used to permit multi-character constants.

1 22 (W) Missing el l ipsis

An ellipsis (. . .) did not appear in a function prototype when the compiler
expected to see one (e.g. after a trailing comma).

1 23 No tag defined for enumeration (cannot
construct prototype)

The enumeration type used in a function prototype currently has no tags
defined, hence the compiler cannot construct a function prototype to represent
i t .

1 24 Debugger symbol table overflow

The amount of information required to generate the source level debugging
output has overflowed the compiler's table.

1 25 I nvalid number

The 'number' encountered cannot be parsed as a legal number.

The Complier LaHice C 5 Page 1 07

1 26 (W) #endif, #else, or #elif out of order

The compiler has detected a #endlf, #else or #ellf without a matching #If.

1 27 Operand to # operator must be a macro
argument

An attempt has been made to use the stringisation operator (#) on an
identifier which did not appear as a macro argument in a macro definition.

1 28 #error usage

This error number is allocated to the ANSI #error directive. The error
message issued will be that specified by the user.

1 32 (W) Extra tokens after valid preprocessor directive

A valid pre-processor directive was parsed (e.g. #endlf), but tokens which
could not be attached to the directive that appeared afterwards.

1 33 Cannot redefine macro <name>

An illegal attempt is being made to redefine a macro. This will occur if you
attempt to define any of the predefined macros LFILE_ etc.).

1 35 (W) Assignment to shorter data type (precision
may be lost)

An assignment has been made from a wider data type to a more narrow one
(e.g. long to short) . This may cause data loss at run time.

1 36 Invalid use of register keyword

The register keyword cannot be used in the context it appeared in.

1 39 (W) Missing #endif

The end of compilation unit was reached whilst a #endlf was still pending.

Page 1 08 LaHtce C 5 The Complier

1 40 (W) sizeof operator used on array that has been
converted to pointer

The slzeof operator has been applied to an array which was converted
quietly to a pointer type. This occurs when a function argument has array
limits of r J i.e. is of indeterminate size.

1 42 (W) Array size never given for <name>

The compilation unit finished before the named array's size had been
defined. This will occur if a tentative definition occurred in the module (of
the form, for instance, Char X[J)
1 43 Object has no address

An attempt has been made to obtain the address of a register variable which
can have no address. Note that this error is issued whether or not the object
is actually assigned to a register.

1 44 Combined storage for strings and constants
exceeds maximum

The size of the static near data area exceeds the maximum of 64K. This error
would be issued at link time if not issued by the compiler. Note that there is
no limit on far data.

1 54 (W) no prototype declared for function pointer

The function pointer being accessed has not been fully specified so that a
complete prototype is not known for it (e.g. void (•x){) would have no
prototype, whilst void ex)(vold) would).

1 55 (W) no statement after label

A label appears, but no statement appears after it. The standard requires
that a statement appears after every label, even if it is the null statement
(;) .

The Complier LaHice C 5 Page 1 09

I nternal Errors

These indicate that the compiler encountered some internal condition that
should not have occurred. They are reported via the message:

CXERR : xx
where xx is the error number. When such a message occurs, compilation is
terminated immediately, and both the quad file and the object file are
probably unusable. If you get one please send us copies of the source files you
are attempting to compile.

1 Invalid error or warning message code number.

2 Call to function not applicable to the current environment.

3 Invalid symbol table access.

4 Declaration chain is broken.

5 An unlink error occurred while processing an "undef''.

6 The compiler attempted to push back too many tokens.

7 There is no aggregate list for a structure reference.

8 Stack underflow has occurred.

9 Invalid attempt to generate the address of a constant.

10 A test value is not a constant.

1 1 Invalid unary operator.

12 Invalid binary operator.

13 A scaling object is not a pointer or array.

14 Unexpected end-of-chain while restoring internal context.

15 Invalid quad type.

16 Deletion length i s less than two bytes.

17 Insufficient memory.

18 An error occurred when releasing memory.

19 Invalid condition during temporary assignment.

Page 1 1 0 LaHice C 5 The Complier

20 Invalid condition while processing program section.

21 Literal pool generation error.

22 Invalid condition while processing data section.

23 Invalid quad file.

24 End-of-file while processing "for" quad.

25 Invalid register number.

26 Temporary save or restore error.

27 Invalid operand size.

28 Invalid storage base.

29 Error during branch folding.

30 Error during control statement processing.

31 Error during special addressing setup.

32 Invalid object description block offset.

33 Too many function parameters.

34 Indirect argument for call-by-reference.

35 Invalid external relocation value.

36 Error during search of the debugging information lists.

37 Error during search of library lists.

38 Array size invalid for optimisation

38 Error determining pointer size

39 Invalid register parameter quad

40 Unsupported type for register parameter

41 Invalid register parameter specification

42 Byte register required

77 Out of index registers

99 Miscellaneous error

The Compiler LaHice C 5 Page 1 1 1

Page 1 1 2 LaHice C 5 The Complier

Clink
The Linker

CLink is the standard linker for Lattice C and may either b e used i n the
integrated mode as described in EdC, The Screen Editor, or directly from the
command line.

The linker command line specifies which files are to be linked together and
in what order. Note that the order of linking is significant as this allows a
symbol defined in a module linked earlier to override one in a later module;
this is often useful when replacing standard library routines with your own
custom versions.

lA simple Clink command l ine
T o link a single C object file together with a startup stub and library the
command line used could be:

CLINK c . o mine . o LIB lc . lib

this will produce an executable program (assuming no errors occur) named
mlne.prg; note that the name of the executable is taken from the second
named file in the link sequence.

!Concepts
CLink provides several unusual features whilst linking, this allows more
flexibility when initially writing your program leaving many of the decisions
up to the linker.

A LV s

When CLink i s collecting all of the CODE type sections together, i f any are
more than 32K apart and a 1 6-bit PC relative access is attempted, rather
than simply fail with and out-of-range error message, CLink redirects the
access to a JMP to the same location. This jump is known as an automatic link
vector or ALV . Note that this may cause problems if you attempt to access
data using PC-relative mode, although this is not recommended anyway since
on the 68030 there are separate code and data caches which can cause
consistency problems.

The Llnker Lattice C 5 Page 1 1 3

Near DATA/855

CLink supports a 64K near data section which can be accessed via a global
base register (traditionally A4). This section is formed from all sections
which are named _MERGED (as described in the assembler section) and then
several variables are created by the linker to allow the initial base of this
to be set up. This is discussed later under the Reserved symbols section.

!D i rectives
The CLink directives allow the input files and the format of the output file
to be specified.

Input directives

The input directives allow the names of the object files to be linked to be
passed to the linker. The linker works by collecting all sections which have
identical types into a single output section; note that apart from the special
name _MERGED section names are ignored when generating executable files.

When a file is required by CLink it initially looks in the current directory for
the file, if it is found there then that file is used, otherwise a search is made
for it in the paths mentioned in the L IB environment variable. The L I B
variable consists o f a list of semi-colon (;) o r comma (,) separated items which
indicate paths where the file should be searched for, e.g.

LIB=c : \ lc \ lib ; c : \ mylibs

FROM files

Page 1 14

Specifies the object files that are the input files for the
linker. If the first i tem on the command line is a
filename then the FROM keyword is optional and may
be omitted. FROM may be used more than once with the
files for each F R O M adding to the list of files to be
linked.

To specify more than one file in a single FROM
statement they may either be listed after it separated
by spaces or +, e.g.

FROM a . o+b . o

LaHice C 5 The Llnker

LIB files Specifies the files to be scanned as libraries. Only
modules within the l ibrary which contain symbols
which are referenced will be included in the final object
module. Note that L IBRARY is a synonym for LIB . The
same syntax used for specifying multiple FROM files
may be used for multiple libraries.

Output directives

The output directives control the format and type of the final file created by
the linker when a link has been completed successfully. The output file
generated by the linker is normally directly executable by GEMDOS (unless
the PRELINK option has been used) and is, by default, named the same as the
second object module supplied by a FROM option with its .o suffix replaced
by . prg; if only one file is linked then the the output name will be based on
tha t file. The format of the file is identical to the normal GEMDOS
executable file, but with the DATA and BSS sections split so that they
contain both the Near (__ M E R G E D) data and Near (__ M E R G E D) BSS
sections. This leads to a load map of the following form:

_end

Far BSS

Near BSS _BSSLEN

_edata, _BSSBAS

Near DATA _DATALEN

_DATABAS, _UnkerDB

Far DATA

_etext

Code

The Llnker LaHice C 5 Page 1 1 5

Note that the symbols marked are all discussed under the Reserved
symbols section below.

ADDSYM

NODEBUG

PRELINK

TO fi le

XADDSYM

Pre-l inking

This causes CLink to emit standard DRI symbols for all
symbols in the input object files regardless of whether
the input object file was compiled with one of the -d
options. Note that the option XADDSYM is normally
preferred.

Suppresses any symbol table information or symbolic
debug information in the final object file. This is
equivalent to the object file that would be produced if
Strip were run on the final object file. Note that ND is a
synonym for NODEBUG.

Causes CLink to output an object module with references
and definitions still intact so that it can be linked later
on to produce a final executable file. This is designed for
development of large projects where the programmer is
only changing a single source module. Note that a
prelinked object file cannot have ALVs inserted into it
and so CLink may be unable to satisfy all 1 6 bit PC­
relative references when linking with the prelinked
fi le .

Specifies the name of the output file which is to be
created, overriding the default name generation
discussed above. If the file name specified begins with a
period (.) then the normal default name generation is
performed using the extension specified after the period
rather than . PRG.

This causes CLink to emit HiSoft extended symbols for
all symbols in the input object files regardless of
whether the input object file was compiled with one of
the -d options. This is extremely useful for use with a
symbolic debugger such as M onSTC . Note that that
when the PRELINK directive is in force then XADDSYM
is a synonym for ADDSYM.

Pre-linking is similar to a normal link, however instead of producing the five
load sections from identically typed sections, it coalesces only identically
typed and named sections into output sections. If a section is unnamed then it is
merged with the first named section of the same type. Note that the special
name _MERGED is considered a type-modifier and hence only sections named
_MERGED will be coalesced with _MERGED sections.

Page 1 1 6 LaHice C 5 The Llnker

When pre-linking ALVs are applied according to the normal rules, i.e ALVs
will be generated for out of range branches within a section, and all cross­
output-section references.

During pre-linking variables will often have undefined values (since the
modules in which these are defined are to be linked later) and so all of these
variables are reported. Note that this means that an error has technically
occurred and the return code from CLink will be non-zero. This is likely to be
important to users of make type utilities.

!Map fi les
A map file is a file describing the order and location o f files and variables
processed by the linker written to a normal file for perusal by the user. These
files provide a large number of options for the programmer to customise the
output format; they are enabled using the M A P directive which has the
format:

MAP [[f ilename] , opt ion , option , . . .]

The f l lename gives the name of the file to which the map file is to be
written, this may be of the form . MAP to indicate that the filename should
be based on the output file name. The options specify which parts of the
map file are to be written and all consist of single letters:

Option Meaning

F Produce a mapping of input files in the output file

H Show where the input hunks (sections) were
placed

L Map the library placements

s Show all external symbols

X Show a cross reference of external symbols

When generating cross-reference information it is often useful to be able to
separate this from the map file information. This can be done using the XREF
directive which allows a separate cross-reference file to be specified. It has
the form:

XREF f ilename

The Llnker LaHJce C 5 Page 1 1 7

To control the layout of the map file several directives are available which
are used in the same way as the more normal output directives or options:

FWIDTH n

HEIGHT n

HWIDTH n

INDENT n

PWIDTH n

SWIDTH n

WIDTH n

'WITH' files

Width of file names (default 1 6) .

Lines on a page in map file, 0 indicates no pagination
(default 55) .

Width of hunk names (default 8) .

Columns to indent on a line. This is included in width
(default 0).
Width of program unit names (default 8) .

Width of symbol names (default 8) .

Sets the maximum line length for the map and cross
reference listings. This is useful when sending the output
to a device which has different line length
requirements. If not specified one width defaults to 80.

A WITH file provides a method for encapsulating long and complex (or short
and simple) CLink command lines in a control file, known as a W I T H file,
traditionally with the extension . LNK . The format of a WITH file is identical
to the normal command line driven structure, except than line breaks may be
used in place of spaces. For example the first simple command line example
could have the WITH file:

FROM c . o mine . o
LIB lc . lib

Consider a slightly more complex example of program which is to consist of
two modules (object files) and a library:

FROM c . o+mine . o+hers . o
LIB lc . lib
TO prog 1 . ttp
XADDSYM
VERBOSE
MAP . map , F , H , X

the obj ect f iles
and a simple library
output f ile name
add HiSoft extended symbols
output messages during linking
produce map f ile

Note the use of the ; to delimit comments in a WITH file. This file can then
be passed for execution to the linker using the command line (assuming the
WITH file is saved as mywlth . lnk)

CLINK WITH mywith . lnk

Page 1 1 8 Lattice C 5 The Llnker

A more complex example would be to consider a mixed language example with
both C and assembler modules. Assuming that the main project was written in
C, the normal C runtimes would have to be included, additionally it may be
necessary to force some external data items defined in the assembly language
to use the _ prefix required by C, this can be done using the DEFINE directive:

FROM c . o
a . o+b . o
d . o+e . o
LIB lcg . lib+lc . lib
TO prog2 . prg
DEFINE _menu=menu

MAP . map , f , h , l , s
XREF . xrf
HEIGHT 66
FWIOTH 1 0

C startup code
assembler obj ect f iles
C obj ect f iles
GEM & C runt ime libraries
output f ile
alias menu def ined in assembly
to menu referenced in c
map f ile
separate cross - reference f ile
longer page lengt h
narrower filename width

Note that the contents of W TH files are always processed after any files
explicitly named on the command line, hence if the last WITH file were
named mywlth2.1nk, then the command line:

CLINK WITH mywith2 . lnk LIB mylib . lib

would search the myl lb. l lb file before searching the lcg. llb or lc . l lb files.

!Compiler Options and Clink
The -b 1 option

This option causes all data, within a program, to be merged into one large
block which is referenced via 16-bit references. C Link is aware of where these
references occur and will order the output so that the theoretical maximum of
64K is possible.

The - r l option

The -r 1 option causes al l subroutine references to be via 16-bit relative
branches. References which span more than 32k are noted by CUnk and given
an ALV, or Automatic Link Vector, which it creates, and are guaranteed to
transfer control to the actual routine the caller was trying to reach.

The Llnker LaHice C 5 Page 1 1 9

The -d options

If a module is compiled with debugging turned on (any of -d l through -d5),
then C Link will parse this debugging information if it encounters any errors,
and if a line number can be found, report the line number on which the error
occurred. This is significantly more useful than merely reporting the module
which caused the problem.

!Reserved symbols
To provide access to the base of the sections created by the linker various
symbols are invented by the linker. These are as follows:

_RESBASE, _RESLEN Reserved symbols

These are reserved symbols used in the Lattice C resident startup code. If you
use them in your own code your programs are almost certain not to work
correctly.

_LinkerDB Pointer to static merged data section

The address of this external variable points to the base of the merged data
section. It is this variable which is referenced when a function is defined as
_soveds.

_BSSBAS, _DATABAS Base of merged data sections

These names refer to the base locations in the MERGED data section. The
location of __ B S S B A S is the first byte of the merged BSS, whilst
__ DATABAS is the first byte of the merged data. These variables may be
accessed using the code sequence (note that only one underscore is used since a
further one is added automatically by the compiler):

extern void *far _BSSBAS , *f a r _DATABAS ;
void * x , *y ;

x=& BSSBAS ;
y=&:::DATABAS ;

_BSSLEN , _DATALEN Merged section lengths

The addresses of these names give the length of the respective _MERGED
data section in longwords . Note that these variables must be accessed as longs
otherwise the compiler may attempt to relocate them, giving random values
as a result.

Page 1 20 Lattice C 5 The Llnker

extern void *far _BSSLEN , *far _DATALEN ;

long a , b ;

a= (long) &_BSSLEN ;
b= (long) &_DATALEN ;

end, edata, etext Last locations In program

These names refer to the last locations in the program. The address of _etext
is the first location above the executable program text, that of _edata the
first location above the initialised data area and e n d the location
immediately after the uninitialised data area.

!Standard l ibraries
Because o f the large number o f options, a wide selection of libraries for use
under the various compilation models is supplied. The 'normal' libraries are:
c . o, the startup code; lc . l lb the standard C library; lcm . l l b the standard
maths library; lcg . l ib the standard GEM library.

All libraries are named according to consistent naming conventions made up of
an initial leading letter, either c for a startup stub, or le for a library,
optionally followed by one of the following letters to indicate the type of the
library:

Letter Type of library

m Library is for floating point maths

g Library is for GEM support

Note that the standard C library must always be linked after the maths or
GEM libraries but that the rela tive order of maths and GEM libraries is
unimportant.

Following this prefix, none, one or more of the following letters are used to
indicate the options used to compile the library:

Letter Type of library

s Default short integer library (-w)

r Register parameter passing library (-rr)

rb Non-base relative library (-bO)

The Llnker LaHice C 5 Page 1 2 1

The startup stubs may also be followed by an additional suffix; currently the
suffices allocated are:

Suffix Type of startup stub

ace Desk Accessory

aut Auto program type detecting

res Resident program

Hence for instance the file lcsrnb. l lb is a short integer, register passing non­
base relative C library, whilst lcgr . l lb would be a long integer register
passing GEM library. Similarly a file called csrnbacc . o would be a short
integer, register passing non-base relative Desk Accessory startup stub.

The GST libraries supplied follow identical naming conventions but use a .bin
file extension to indicate that they are in the GST format.

!Clink Messages
Whilst running CLink may discover things which it needs to bring to your
attention. These may either be error messages or observations on the program
which is being built.

Clink Warn ings/messages

The messages in this section although warnings, will often indicate that the
final program will be unusable in the form intended and you should not run it
unless you are certain that you understand what you are doing.

Warning MERGED data > 64K, use -bO on LC

The merged data section has exceeded the limit of 64K. The problem may be
rectified by either compiling your program using the -bO option on le, or
explicitly declaring some of your arrays far.

Warning! Absolute reference to <name>
module: <mod> file: <file>

An absolute reference was detected to a merged data item, whilst building a
resident load module. This warning will only be given if a reference has been
made to the symbol __ RESBASE, i.e. the linker is building a resident load
module.

Page 1 22 LoHice C 5 The Llnker

Warning: ALVs were generated

This message is generated when the NOALVS option is used, indicating t h a t
ALVs were generated . Note that this message will not b e issued i f the
XNOAL VS option is used.

Enter a DEFINE value for <name> (default _stub):
Undefined symbols. . . First Referenced

These messages indicate that the linker has encountered a reference to a
symbol for which it cannot locate a definition. The second message is issued if
the BATCH keyword is specified, whereas the first allows you to specify an
alternate name for the reference.

This error may occur because you have called a function using one name, but
possibly mis-spelt the definition. Alternatively you may not be linking with
the correct libraries, e.g. if the symbols mentioned include names such as
_CXA55 then you are not linking with the floating point maths library,
similarly, references to variables such as __ AESpb indicate that you have
used GEM, but not linked with the GEM library.

Cli n k E rrors

These are the errors which may be issued by the linker. In general errors may
be ignored by use of the IGNORE keyword to CLink, however programs so
produced may not function correctly. The error numbers are broadly divided so
that 200-400 may be issued by either pass. 401 -500 are issued by pass 1, whilst
501-599 are issued during pass 2.

Note that if a module has been compiled with debugging turned on (-dl
through -d5) then the line number on (or near) to where the problem occurred
will also be reported.

200 Out of memory!

The linker does not have enough memory left to successfully complete the
link.

300 System error <val> on read

A system error occurred whilst attempting to read .from the disk. This should
only occur if the disk has been damaged in some way. The value of the error
is given by <vol>.

The Llnker LaHice C 5 Page 1 23

30 1 System error <val> on write

A system error occurred whilst attempting to write to the disk. This will
normally indicate that the disk is full. The value of the error is given by
<VOI> .

400 • • • Break: Clink terminating

This message is printed when the operation of the linker is interrupted by
the user pressing Ctri-C . Note that the keyboard is only checked whilst screen
input or output is occurring.

425 Cannot find l ibrary <file>

The file named in a LIB statement could not be located by the linker. This is
probably due to a full pathname not being given for the file.

426 Cannot find object <file>

The file named in a FROM or ROOT statement could not be located by the
linker. This is probably due to a full pathname not being given for the file.

443 '<file>' is an invalid file name

The filename specified in a FROM, L I B or ROOT statement is invalid.
Typically this will be because the name is null.

444 hunk_symbol has bad <val> symbol <file>

A hunk_symbol hunk type was encountered by the linker which did not have
the external type set to zero, but instead to v o l . If this error occurs it
indicates that the named input file was damaged in some manner.

445 Invalid hunk_symbol <name>

A hunk_symbol hunk type was encountered by the linker during parsing of the
external definitions. The named symbol was attached to this hunk.

446 Invalid symbol type <val> for <fi le>

Whilst parsing external declarations an unknown symbol type <val> was
encountered in the named file.

448 <file> is not a valid object file

The named file did not match the specifications for an object module.

Page 1 24 LaHice c 5 The Llnker

449 No hunk_end seen for <file>

On reaching the end of a hunk within the named file an end marker did not
appear.

450 Object fi le <file> is an extended library

An attempt has been made to use a library as the operand of a FROM or
ROOT statement. Libraries may only be searched, not included.

50 1 Invalid Reloc 8 or 1 6 reference

An attempt has been made to generate a branch between two differently
named sections. Branches may only occur within a common section. This error
will normally indicate an attempt to execute the data section!

502 <name> symbol - Distance for Reloc 1 6 > 327 68

The target of a 16 bit branch is more than 32K away from the reference. In
general you should not see this message due to AL V generation.

503 <name> symbol - Distance for Reloc8 > 1 28

The target of an 8 bit branch is more than 128 bytes away from the reference.
Note that the compiler does not generate such external branches and that the
assembler does not allow their generation.

504 <name> symbol - Distance for Data Reloc 1 6
> 32768

A 16 bit base-relative data section access is attempting to reach more than
32K. This error will normally indicate you are very close to the 64K limit on
near data, and a a module has had its data section fall off the end of the
merged data section (biassed by 32K). The solution is to reorder your modules
putting the ones with large data sections alternatively you may have to
move some of your near data to for.

505 <name> symbol - Distance for Data Reloc8 > 1 28

An 8 bit base-relative data section access is attempting to reach more than
128 bytes. This error will normally indicate incorrect code generation from the
compiler.

The Llnker LaHice C 5 Page 1 25

506 Can't locate resolved symbol <name>

During the second pass the tinker could not locate the named symbol in its
table. This will either indicate an internal tinker failure or a damaged
library file.

507 Unknown Symbol type <val>, for symbol <name>

During the second pass the tinker could not match the type of the named
symbol in its table. This will indicate an internal tinker failure.

508 Symbol type <val> unimplemented

Whilst parsing external declarations an unknown symbol type <VOI> was
encountered in the named file. Note that the equivalent error (446) is
reported during pass 1 .

509 Unknown hunk type <val> in Pass2

The named file did not match the specifications for an object module. Note
that this message is identical to the pass 1 error 448.

5 1 0 <name> symbol - Reference to unmerged data
item

A module has attempted to access an unmerged (far) data item using a near
access. This will usually occur if one module of a program is compiled using
the -b 1 option whilst another module uses -bO. The error message also suggest
the action: try -bO option on LC.

5 1 5 An ALV was generated pointing to data
<name> symbol

An AL V was generated in the data section of the program. This will only
occur if code generation has been performed in a data section, and as such this
error will normally indicate an internal compiler failure.

600 Invalid command '<cmd>'

The named command was not recognised by the linker. The commands which
are recognised are discussed in the section CLink, The Llnker.

60 1 <cmd> option specified more than once

An attempt has been made to specify a command, which may only appear
once, more than once, e.g. attempting to specify two TO files.

Page 1 26 Lattice C 5 The Llnker

602 Unable to open output fi le '<file>'

The named outlut file could not be opened. This may be because the disk or
directory is ful .

603 <val> Is not a valid number

The value <VOI> which appeared as a numeric argument could not be parsed
as such.

604 with file is not readable

An error occurred whilst reading the WITH file.

605 Cannot open with file '<file>'

The named WITH file could not be opened.

607 No FROM files specified

No FROM or ROOT files were specified so the linker cannot start linking.

608 Premature EOF encountered

End-of-file occurred unexpectedly. This will normally indicate serious file
system structure problems.

609 Error seeking in file <fi le>

An error occurred whilst attempting to seek about the named file. This will
normally indicate serious file system structure problems.

6 1 1 Reloc found with odd address for symbol
<name>, file <file>

A 16 or 32 bit relocation was attempted on a non word-aligned boundary. This
is always illegal on the 68000.

ERROR: Invalid decimal constant '<val>' .

The value <val> which was entered in response to an undefined symbol was
an invalid decimal constant.

The Llnker LaHice C 5 Page 1 27

ERROR: Invalid hex constant '<val> ' .

The value <VOI> which was entered in response to an undefined symbol was
an invalid hexadecimal constant.

ERROR: Multiply defined symbol '<name>' .

A symbol has been redefined. The file in which it first appears i s named, as
is the file in which the attempted re-definition occurs.

ERROR: Symbol '<name>' is not defined.

The named symbol which was entered in response to an undefined symbol was
also undefined.

Hunk #n not written

The numbered hunk n was not written to disk. This will indicate an internal
linker failure.

Unknown internal error

An internal error occurred whose error number was not recognised. This
indicates a serious internal linker failure.

Page 1 28 LaHice C 5 The Llnker

Batch e r
The Com mand Shel l

Batcher is a command line processor modelled on the COMMAND.COM
processor of MSDOS. It can be used instead of the GEM icon interface if you
like, or it can be used to run batch files. Unlike some other command line
interpreters on tl�e ST, you can still run GEM programs (such as EdC) from
Batcher.

To run a program under Batcher, give the file name for the program. If you do
not give an extension and a file without an extension cannot be found, Batcher
will try to load a file with the extension . PRG. then .TOS and finally .TIP.

There are a number of commands built-in to Batcher i.e. no other program has
to be loaded in order that they can be executed. These are described in the
following sections.

Batcher can also be used to set up environment variable values used to
configure the compiler, and to tell Batcher where to look for programs.

First we will describe the commands that are built in to Batcher and then we
will discuss its line editing and batch file facilities .

!AVAI L Available memory I
AVAIL displays the size of the largest free GEMDOS block of memory.

Ieo Change Directory I
The CD command changes the current directory. Directories are also known as
folders.

This command takes one parameter; the name of the directory to go to. The
syntax of the directory name follows the standard syntax used for path
names. If the first character is a backslash (\) then the path is relative to
the root directory. Otherwise, it is relative to the current directory. In
addition, . . refers to the directory one level towards the root directory from
the current directory.

The Command Shell LaHice C 5 Page 1 29

Note that, following the operating system convention, there is a separate
'current' directory for each drive. This means that, to move to a particular
directory, you should first use the Change Disk command described below and
then use the CD command. For example to move to C: \ LC you would use:

C :
CD \ LC

This scheme has a useful advantage. Say you have two versions of a program
in E :\ MINE\OLD and D:\MINE\ NEW. Then after using:

CD E : \MINE\OLD

and
CD D : \MINE\ NEW

you can use E: and D: to refer to these two directories.

IB : Change Disk I
B: (or b:) makes disk B the current disk. Any drive letter may be used so that
whenever you reference a file without giving an explicit disk designator, the
current disk will be used.

IC LS Clear screen I
This command clears the screen and enables line wrap. If the CO.OUR
command has been used then the screen colours will be set as per the last
colour command. CLS is useful of your program has left you with black text on
a black background!

!COLO U R Set screen colours I
This command takes two numeric parameters which set the background and
foreground screen colours, using TOS rather than GEM colours, as shown in the
table below

Nwnber

0

1

2

3

Page 1 30

High Mediwn

White Whi te

B lack Red

Green

Black

LaHice C 5 The Command Shell

e.g. If you are using mono-chrome:

COLOUR 0 1

would use black text on a white background. If you are using medium
resolution:

COLOUR 3

would give red characters on a black background.

!COPY Copy Files I
Copy files. You can copy single files or groups of files. You can use wildcards
in the source and destination names. For example, to copy all the .C files from
disk A to disk D enter the command:

COPY a : * . C 0 :

To make a backup code of all the .C files whose name starts with the letter
F, you could use:

copy f * . c * . BAK

Note that the f is omitted in the second file specification.

You can ask to be prompted for the files to be copied by specifying the /0 (for
ask) flag. e.g.

COPY d : \ myfiles \ * . o a : \ / a

will prompt you with the names of all the . o files i n the d : \ myflles
directory.

You may reply:

V copy this file

N ignore this file

Q or Ctrt-c quit and don't copy any files

A copy this and the remainder of the files

The Command Shell LaHice C 5 Page 1 3 1

You can also modify the order in which the files are listed by using the /S
(for size order) or /D (for date order) flags, optionally followed by a - to
reverse the order; so

copy \ f red \ * . c a : /ad
would prompt you for the . c files in the fred directory on the root of the
current drive, in date order.

Notice that you may enter commands and arguments in either upper or lower
case.

Copy will use as much free memory as it can and read in as many files as
possible. This means that copying files is often considerably faster than with
the Desktop, especially on a single floppy system.

COPYWARN Enable file overwrite warnings

The COPYWARN command lets you enable warnings when over-writing an
existing file using the COPY command. Use

COPVWARN ON

to enable this. If you are prompted, press Y to over-write this file, N to leave
this file and A to copy this and all subsequent files without asking.

I DEL Delete Files I
D E L deletes files. You can use a wild card specification and Batcher will
prompt you before it deletes each file to ensure that you really want to delete
it. Type V to delete this file; N not to delete it; Q to quit the delete command
and A to delete the remaining files.

To avoid the prompting entirely, use the N flag:

DEL * . PRG/ N

You can also modify the order in which the files are listed by using the /S
(for size order) or /D (for date order) flags, optionally followed by a - to
reverse the order.

Page 1 32 LaHice C 5 The Command Shell

IDC Disk Change I
The ST's operating system can fail to notice that a floppy disk has been
changed with the potentially disastrous consequence of corrurting the floppy.
This is especially a problem when using disks with identica serial numbers
under TOS 1 .4 and 1 .6.

The DC command can be used to ensure that the operating system notices that
you have changed a floppy disk. It may be followed by a drive letter, but by
default it will apply to drive A. Thus

DC

will ensure that the operating system notices that the disk in drive A has
been changed and

DC B :

will inform the operating system that the disk in drive B has changed. If you
find that use this command frequently, then you should consider using the
DISKCHANGE command.

ID I R Directory List I
This commands lists the files in a directory. You may follow D I R by a
directory name or a drive name or a wild-card file name for which files to
display. For example:

DIR headers
DIR B :
DIR d : \ lc \ * . c

If you specify the W flag, only the file names are displayed. Otherwise, the
names, sizes and dates for the files are displayed.

DIR d : \ sources \ * . c /W

You can also modify the order in which the files are listed by using the /S
(for size order) or /0 (for date order) flags, optionally followed by a - to
reverse the order:

DIR * . h / D

lists all the . H files in the current directory, in date order.

The Command Shell LaHice C 5 Page 1 33

I DISK CHANGE Set auto-diskchange mode I
Using

DISKCHANGE ON

causes Batcher to ensure that the operating system has noticed that a disk
has changed whenever you use a built-in command that refers to a floppy
disk drive. As such it takes a second or two before the command is executed.
We thus recommend that it is not used on floppy only systems unless you are
changing disks a great deal. Its effect can be disabled by using:

DISKCHANGE OFF

which is the default. You can ensure that the operating system notices a
particular disk change by using the DC command, see above.

I ECHO Echo commands I
Echo commands as they are processed. When echoing is on, each command in a
batch file will be displayed on the screen before it is executed. You can use

ECHO OFF

to prevent the commands in batch files being echoed as they are performed
and ECHO ON to turn this back on.

If the parameter to ECHO is not ON or OFF then the text will be echoed to
the screen. For example:

ECHO This is a message

will display 'This Is a message· .

I ERA Erase Files I
-

This command is exactly the same as DEL and is supplied for the benefit of
CP/M users.

I EXIT Exit Batcher I
This command exits Batcher. You do not need to use this in . BAT files since
Batcher will exit when it comes to the end of the batch file.

Page 1 34 LaHice C 5 The Command Shell

I FORMAT Format floppy disk I
This will format standard ST double-sided disks without any interleave. It
should be followed by the drive to format e.g.

FORMAT B :

will format the disk in drive B. A second (optional) parameter may be
supplied giving the volume label which is to be given to the disk, e.g.

FORMAT B : VOL ID

Formats a disk in drive B with a volume label of VOLID.

I FREE Free disk space I
Returns the free space (in bytes) on a disk. For example,

FREE

gives the free space on the current disk while:

FREE A :

gives the free space on drive A.

IMKD I R Make Directory I
This command creates a new directory (or folder) with the given name. You
may use a full path specifica tion if you wish, al though MKDIR will not
attempt to create more than one directory at once.

MKDIR SOURCES

will create a directory called SOURCES on the current disk.

IMOUSE Control Mouse Vi!;ibility I
Turns the mouse on (use MOUSE ON) or off (MOUSE OFF) . This is useful if you
run a program which leaves the mouse in a funny state. Whenever you run a
. PRG program, CLI enables the mouse. It disables the mouse on return. If a
program disables the mouse and fails to re-enable it before it exits, subsequent
programs will not show the mouse cursor.

The Command Shell Lattice C 5 Page 1 35

Conversely, entering MOUSE OFF in Batcher will prevent the mouse cursor
appearing when you run a program, which can be useful when running non­
GEM applications that have extensions of . PRG.

When Batcher runs programs with extensions of .TOS and .TIP the mouse is
not enabled.

To set the mouse back to the default value, issue MOUSE ON commands until
the mouse appears and then issue MOUSE OFF commands until it vanishes
again.

I PAUSE Pause for keypress I
PAUSE will wait for a single key to be pressed. This can be used in batch files
so that the user can read the previous output or change disks.

I REM Remark I
Used to place a comment in a batch file - the line is ignored.

IREN Rename I
Rename files. Wild cards can be used:

REN * . 0 * . 00

will rename all the files in the current directory with extension . o to have
extension .00.

IRMD IR Remove Directory I
This command deletes a directory (or folder) with the given name. The
directory must be empty before you can remove it. You may use a full path
specification if you wish.

RMDIR A : \ SOURCES

will delete a directory called SOU R C E S on the current disk if it does not
contain any files.

Page 1 36 LaHice C 5 The Command Shell

ISCREENSA VE Set screensave mode I
When turned on (SCREENSAVE ON) the screen is not cleared before a . PRG
file i s run. This i s useful when running . PRG files that are not really GEM
applications, so that you can see the output from previous commands.

IS ET Set Environment Variable I
Sets environment variables. If you just type SET, the current environment
variable values are listed.

SET I NCLUDE=d : \ headers
SET PATH=d : \ lc ; c : \ bin

You can remove a variable by setting it equal to no value. For example,

SET QUAD=

removes the QUAD environment variable. The environment variables used by
Lattice C are described under LC, The Compiler.

!SMALL Set font size I
This command is only really useful in monochrome.

SMALL ON

will cause TOS output, like that from Batcher, to appear in the 8x8 system
font. On a high resolution screen, this gives 50 lines on the screen.

SMALL OFF

selects the 8xl6 font giving the usual 25 lines in monochrome, but only 12 in
medium resolution.

ITV P E Type File I
TYPE displays a file on the screen.

TYPE HELLO . C

The Command Shell LaHice C 5 Page 1 37

IVI RTUALDISK Perform virtual disking I
This command is used by the installation program so that Batcher can
perform 'virtual disking' i tself ra ther than using the operating system
routines, which do not work reliably. However, as all Batcher commands do
not support this facility, we do not recommend that it is used interactively.

!WH ICH Which file would ru n I
This command returns the path of the file that will be run if you use a given
filename. For example,

WHICH WERCS

will tell you from where W E R C S will be loaded if you type W E RC S to
Batcher. This can be very useful if it appears that you are running the wrong
program, particularly if it is called TEST !

!Line Editing
When using Batcher you can also use the cursor keys. The +- and """* keys will
move the cursor within the current line, whilst you can us the i key to
display the previous command that you entered to Batcher . This is very
useful if you have made a simple typing mistake. The area of memory where
these commands are stored is known as the history buffer. You may press i more
than once; this will display the other lines that you entered previously. If
you go too far back in the history buffer, then press J. and then commands will
be displayed in the order in which they were entered.

Pressing Backspace will delete the character to the left of the cursor;
Delete will delete the character under the cursor. Pressing Ctrl and +- wil l
take you to the beginning of the current line and Ctrl and -+ will take you to
the end of the line.

You can also recall the last line that starts with a particular character
sequence by typing " first. For example:

A le [Return]

will display the last line that started with LC and you can then edit this
line if required. Using a prefix of ! will cause the last such command to be run.
For example:

I cl [Retu rn)

Page 1 38 LaHice C 5 The Command Shell

will probably run the last CLink command.

Batcher also supports some of the traditional M5-DOS line editing keys:

F l copy one character from the previous line

F3 copy the rest of the previous line

F5 dear the current line

Delete ignore one character from the previous line

Insert cause the following characters to be inserted. Pressing
Insert again switches this off.

The best way to learn about these features is to experiment.

!Batch fi le faci l ities
Batch files are very useful for re-compiling groups of files. For example, you
might have a single batch file that re-compiles (and re-assembles) every
module in a large program. A batch file consists simply of the list of
commands that you wish to execute and has the extension . BAT. To run a
batch file, just type its name from within Batcher. If you are using the GEM
Desktop you can just double-click on the batch file, if you have installed
Batcher for the document type . BAT.

When Batcher is executed without a command line, it looks for a batch fi le
called AUTOEXEC . BAT and executes the commands contained in this file. The
most common use of this facility is to set up environment variables, and your
preferences, but you can use it for any purpose.

Batch files may have parameters. Within the batch file these are referenced
as % 1 , %2 up to %9 for the last parameter. To include a % character in a
batch file use % % .

For example if mv.bat contained

Then:

del %2
ren %1 %2

mv mine . c new . c

The Command Shell LaHice C 5 Page 1 39

would rename mlne.c to new.c deleting any old version of new.c.

If the first two non-space characters on Batcher's command line consist of /C,
Batcher treats the rest of its command line as a single command. This
facility is provided so that you can use Lattice C system function to run
Batcher commands from within your own programs. You need to set the
C O MSPEC environment variable so that the system function will know
where to find Batcher.

!Redirection
Batcher supports command line re-direction. To cause the output from a
program that would normally be sent to the screen via GEMDOS to be sent to
a file, add > (greater than) and the name of the file. e.g

dir * . c >mydir

will create a list of the C files in the current directory to the file mydlr. You
can also append to an existing file by using >>, thus:

dir * . h »mydir

would add the . h files in the current directory to the end of the file, mydlr .
You can also re-direct input to come from a file using <.

Note that all redirection operators must be at the end of the command line
and that due to problems with the operating system, some programs may
behave strangely if their input/output is re-directed. Some of these anomalies
are described in the Volume I l l - Atarl Ubrary manual.

Page 140 LaHice C 5 The Command Shell

WERCS
The Resource Editor

WERCS is a n acronym for WIMP Environment Resource Construction Set and is
pronounced Works . It allows you to create and edit resource files for use with
GEM programs.

!What is a Resource Fi le?
A resource file i s a special file (normally with the extension . RSC) that
contains resources. A resource is actually a tree structure in memory which is
used by the GEM AES to produce such things as:

• Menus
• Dialog boxes
• Icons
• Alert boxes
• Strings

A resource file contains such things to deliberately keep them separate from
your program code. In addition, the X-Y co-ordinates of every item in a tree is
stored in such a way as to produce the same visual layout, regardless of the
screen resolution. This means one resource file can be used for all screen modes
and by many different programs.

Using resource files is good practice because it encourages modularity and aids
portability thus saving you time and energy in the long run.

A certain understanding of the way a resource file works is required in order
to create and use such a file.

Each resource file contains one or more t rees . A tree may be one of five
different types: Form, Menu, Free String, Alert or Free Image. Forms and Menus
are the most common; each of these, in turn, consists of individual objects,
where each object has a distinct type, use, purpose and appearance.

Whilst you are learning to use WERCS we recommend that you start off by
using just Forms.

The Resource Editor LaHice C 5 Page 141

What is a Tree ?

Forms (or Dialog Boxes) and Menus are GEM AES object trees and to understand
resource files you need to understand the structure of object trees.

Many of the WERCS commands work on parts of object trees and we shall use
tree terminology to describe them.

When it is loaded into memory an object tree is like an array of records, each
record describing an object. The first object (with index 0) is called the root
object. It is normally the outer box of a Dialog Box. Each object in the tree has
eleven fields. Three of these fields, the head, tail and next fields, hold integer
values that dictate to the AES the structure of the tree. Fortunately you do
not normally need to access these directly, W E R C S does it for you. As an
example, say we have a Dialog Box like this:

Message

rad i o! radi o2

OK

The tree structure this represents can be shown as:

Page 142 LaHice C 5 The Resource Editor

where the components of each box are:

obj index name

head I tail I next

Most of the terminology used to describe object trees is similar to that used in
human family trees; of course objects only have one parent and most people
don't think of themselves as ultimately descended from a root!

Object number 0 is called the root of the tree. Its ch ildren are Message,
Radio Box and OK button. Radio box's parent is outer box; its children are
First Radio and Second Radio; its siblings are Message and OK button.
First radio and Second radio are childless and they are grand children of the
root object, outer box.

Normally what is important with object trees is the tree structure, not the
order that the items are in memory. The detail of how trees are stored in
memory is described in Appendix B - Resource Details.

What is an Object?

There are thirteen types of object that you can have in object trees; most of
them are some form of text or boxes or a combination of both. Different types
have different memory requirements; in general the more flexibility the more
bytes are used.

As well as the fields described above, associated with each object is its
position, size and also some flags and states .

The position of an object is always given relative to its parent; normally you
set the position and size of the object using the mouse - WERCS takes care of
the calculations for you.

The flags and states are used for two purposes; first to change the appearance
of an item; for example whether a box has an outline (Outlined), and also to
give information to the AES; for example that clicking on a Button will cause
control to be transferred back to your program (Exit) . To start off with you
need not be too concerned about flags and states as WERCS gives you sensible
defaults.

The Resource Editor LaHice C 5 Page 143

The thirteen types of objects are as follows:

• Box

• IBox

• String

• Button

• Text

• BoxText

• BoxChar

• Title

• FText

• FBoxText

• Image

• Icon

• ProgDef

Page 144

A straightforward box - can have a fill pattern and a border.

An 'invisible' Box; only truly invisible if it has no border.

A straightforward string of characters.

Like a String but with a box round it; normally used for Dialog
Box buttons.

Like a String but with more formatting possibilities: colour, size
and justification.

Like Text but with a surrounding box as well.

A single character in a box. The most memory efficient way to
have a single character in a filled or coloured box.

A special form of String only used in Menus.

This is like Text but can be used for editable text so that you
can type in characters, numbers etc. The programming interface
isn' t easy but we show you how to do it in the example
program.

Like FText but with a box around it.

A simple bit-mapped graphic image.

Like an Image, but with a mask so that it changes sensibly
when selected and also has a character and string associated
with it. Originally invented for the desktop's disk icons.

A programmer-defined object with its own drawing routine. We
recommend that you don't try these out until you've exhausted
the possibilities of the pre-defined objects.

LaHice C 5 The Resource Editor

Header Fi les

In order for a program to use a resource file, the programmer must be given a
method of referring to each tree and object; WERCS helps you by creating a
header file, as well as the actual resource file. As you create a resource file you
can give names to both trees and objects, so that you can refer to these names
within your program. The header file contains constants which translate
these names into integer values. The header file is then #Included as normal
into your program.

If the compiled version of the header file is out of step with the resource
file, strange things will happen; this varies from slight mis-behaviour to
total system crashes.

!Quick Tour
Running WERCS

To run WERCS, simply double-click on the WERCS. PRG icon. WERCS also
needs its . RSC and . LNG files in order to run.

There now follows a whistle-stop tour of WERCS introducing the editing
facilities available. A more detai led reference section is to be found in the
next section.

Low Resolution

WERCS runs in all screen modes, for maximum flexibility. When running in
low-resolution, the title of each menu is reduced to the first two characters
only. However, the full menu title is shown at the top of the menu box, once
it has been pulled down.

Creating a New Resource File

Having loaded and executed, WERCS will display a tree window, labelled
U ntltled. A tree window displays all the trees within the file and initially
this is blank since you are starting with an empty file.

The Resource Editor Lattice C 5 Page 145

When creating a new resource file it is best to select the programming
language for which you require the header file before you enter any names.
This can be done by selecting Language from the Fi le menu. You can also
choose whether your names will be upper-, lower- or mixed-case. Selecting the
language before you start ensures you don' t make any naming errors while
building the file. Naturally C is the default language with this version of
WERCS.

Creating a New Tree

To create a new tree you simply select a suitable type of tree from the Tree
menu - this stage is known as tree-level editing. An icon representing this type
of tree will appear in the tree window, together with a dialog box. The main
point of interest for the time being is the name that you wish to call the tree
- when you are happy with its name press Return and you will then be at the
object-editing level.

Creating Objects

WERCS will now display a window showing the new tree, allowing you to
add and edit new objects. To add an object, select the object type from the
Object menu. The mouse will change into a representation of that object, then
you should click where you require the object to be placed. To name this
object, double-click on it , to move it simply drag it, or to re-size it click on its
lower right-hand corner.

When you are satisfied with the objects in this tree, clicking on the Close box
will return you to the main tree window. If you don' t like anything you have
done, the last session may be aborted by selecting Abandon Edit from the Edit
meillL

When the tree window is visible, an existing tree may be edited by double­
clicking on its icon. Certain attributes, such as the name, may be changed by
single-clicking to produce a dialog box.

When you are happy with your resource file, ensure the correct language
choice has been made then Save As the file. This will create the . RSC file
containing the actual resources, a . HRD file containing your names for each
item, and a header file.

Page 1 46 LaHice C 5 The Resource Editor

!Using WERCS

General

Most of the editing actions inside WERCS are obtained from menus or via the
corresponding keyboard short-cut. Keyboard shortcuts are shown in each menu
with a � symbol denoting the Alt key, and A denoting the Ctrl key. Menus that
are inapplicable at a particular time are disabled. Owing to a bug in the
original version (1 .0) of the operating system, the titles are not disabled
when using these ROMs, although naturally these commands will have no
effect. There is a summary of the keyboard short-cuts at the end of this
chapter.

I ntroduction to Creating and Editing Trees

There are two main levels when running WERCS. The Tree Level is used for
manipulating which trees are in your file and the Object Level for the items
within those trees.

When you open a file (or use New) a window containing the trees in the file
is shown, known as the tree window. You can add a new tree to the file by
clicking on one of the items on the Tree menu: Form, Alert, Free String, Menu
and Free Image . Whilst you are learning to use WERCS and if you are not
familiar with GEM it is best to just use Forms. Forms account for the vast
majority of trees in any case.

Note that a Form is also known as a Dialog Box; we use the terms inter­
changeably. Generally we use Form in the context of editing and in the
programming section we refer to Dialog Boxes.

After clicking on Form from the Tree menu you will be presented with a
dialog box like this:

The Resource Editor LaHice C 5 Page 147

You can now enter the name of the tree. The defaults for these are M E N U 1 ,
MENU2, FORM l , FORM2 etc.

Pressing the Return key or clicking on the Edit button will then let you edit
the objects within the tree. The other buttons and fields are described in
detail later.

To edit an existing tree, such as a Menu or a Form, double-click on the
appropriate tree icon. You will then be taken straight to the Object Level.

Changing Objects

Once you have clicked on Edit from the Name of Tree box you are ready to
add objects to the tree. To add a new item to a tree, click on the required item
type from the Object menu. The mouse will change to an outline
representation of the item that you are adding. Release the mouse button and
move the mouse to where you would like the new item, then press the mouse
button. If you decide you do not want to add this item after all, click on the
Cancel item from the Edit menu.

When you have finished editing a form click on the Close box; this will
return you to Tree Level mode.

Selecting objects

To change the attributes of any object, single-click on it. It will then be
selected (highlighted) and you can use most of the menus to change its
attributes, the border for example. The exceptions to this are the text items,
Images and Icons; to edit these, double-click on an object.

When the object is selected the GEM selected bit is used to show this. This
means that if you click on a box it will appear black. In particular if you
click on the outer box it will all go black. If you didn' t mean to click there
you can either:

• click on the menu item Cancel from the Edit menu,

• click outside the box, or

• click on the item that you meant to select.

If you wish to edit the parent of the current object, single-click with the AL T
key held down - the parent of the object will then be selected. If you already
have an item selected and ALT-click again, its parent will be selected. This
may be repeated any number of times until the whole tree is selected. To bring
up the Text Box of an object's parent double-click whilst holding down ALT.

Page 1 48 LaHice C 5 The Resource Editor

Item Names and Text

To change the Text or Name (remember: Text is the displayed message; Name
is what your program will know the item as) of an object, double-click on that
item - this will present a Text dialog box. This varies depending on the item.

For example a Box only has a Name and presents a dialog box like this:

Buttons have one Text field and so have this type of box:

Whereas FText and FBoxText items have the appropriate TEDINFO fields as
well:

To make the Name the same as the Text, click on the Same button - this is
like clicking on O K except that the object will be given a name based on the
text of that object and the Prefix for this tree, if any. This can save a great
amount of tedious object naming. For editable text the name is taken from the
Template thus giving the same name as your prompt.

The Resource Editor LaHice C 5 Page 149

Since underline characters are used by WERCS in a special way then, when
editing text fields, you should enter underline characters (_) as tildes (-) and
vice versa . If we didn't do this it would be impossible to see how many
underlines you have in your Template strings.

To enter control characters into strings enter \ \ (two back slashes) followed by
the ASCII symbol corresponding to the control character. For example the
ALT key symbol is entered as \ \ 7 . Similarly the copyright symbol (©) is
\ \ 1 89. Don't try and enter a null character \ \ 0 as the AES treats this as the
terminator of the string.

In the unlikely event that you need to enter two consecutive back-slashes type
three instead; for three back-slashes type four and so on.

When using formatted text (FText or FBoxText) you should ensure that the
Text field has the same number of characters as the Template field has -s
(stored in the file as underlines). If you are using different Valid characters
then you should have the same number of characters in the Valid field as
there are -s in the Template field.

If you are using the same character throughout the Valid string you can enter
just one as in the example above. We have not seen this facility officially
documented but it works with all known versions of the operating system at
the time of writing.

The other attributes of TEDINFOs (such as Large/Small characters) are set
using the Text menu.

BoxChars (single characters surrounded by boxes) have their own dialog box,
thus:

Page 1 50 LaHice C 5 The Resource Editor

Moving and Sizing Objects

To change the size of an item, place the mouse near its bottom right-hand
corner and drag to the required size. By near its bottom corner we normally
mean within one character cell of the bottom corner but inside the object. If the
object is less than a character high then you should click within the bottom
half-character of the box. Similarly if it is less than one character wide you
need to click within a half-character of the right.

Note that the border of an object is often outside the object itself as is any
outline or shadow of a box. This area is not considered part of the object by
the objc_find call. This means that you will not be able to select or drag an
object by clicking in its border, outline or shadow. Also, any program you
write to handle such objects must bear this in mind.

To move an object within a tree, drag from somewhere other than the bottom
right-hand corner. If the object has any children, they will move with the
object.

To move or size any parent or siblings of an object, first select the required
objects using ALT-clicking as described under Selecting Objects above and
then drag as if you were moving a single item.

If you want a quick copy of an object or objects, select and then Shift-drag.
Generally it is best to Shift-click with the mouse near the top left corner of
the object as this is where the object will appear. This will let you move a
new copy of the object leaving the old one where it was, so you can drag the
new one to its new position. This is particularly useful if you have a set of
similar objects with the same flags and attributes set (say disabled, right
justified small Text). Set up the first one and then Shift-drag to create the
rest.

If you using Shift -clicking to move an object which has children, you will get
copies of the children too. When you let go of the mouse you will be asked
whether you wish to delete the children too. Indicate that you do wish to
delete the children; otherwise you will get an extra set of children, starting
where you originally clicked.

If you move an object outside its parent then you will be asked for
confirmation of this (unless you are in Expert Mode).

if you move an object so that it would completely cover another object or
objects then you will again be asked if you wish to adopt these objects as
children of the object that you have moved. If the new position of the object
will partially cover another then you will be given an error message.

The Resource Editor LaHice C 5 Page 1 5 1

After you have moved or sized an object it may be snapped to the nearest
character or half-character boundary, if you have used the Auto Snap or
Half Character Snap commands.

You may also change the position and size of an object using the Extras
command from the Flags menu.

Editing Images

Double-clicking on Images will bring up the Icon Editor which will give a
screen display similar that below:

Desk F i l e Ed i t F l ags Tree Object Hlsc F i l l Border Text

0 �iHffili!l. ,. B l tHaD Edi tor IH

I M A G E

I rl R G £
t!IJ

iiiillni!l��illi!!!:!iiiiffiil!
... H-

... H-

'

..

..

t • . I ·
c • •• ,.

P' l. l l

� l a p

... . . p

· · �

c.....: a a

The largest and main part of the display is used for editing the Image a
pixel at a time. Beneath this is an Actual Size representation of the Image,
as it will appear in your form and to the right are various buttons that you
may click on.

To change an individual pixel, just click in the appropriate place on the
screen; if it was black it will become white and vice-versa . To make a number
of pixels the same colour click and drag; note that the actual size display
will only the updated when you release the mouse button.

At the top of the button area are the buttons for changing the height of the
Image together with the current height (28 in the example above). To
increase the height click on H+ and to decrease it click on H-. Both of these
work one pixel at a time and will repeat if you hold the mouse button down.
The size of the main display changes to ensure that it is as large as possible
whilst still displaying the Image at actual size beneath it.

Page 1 52 Lattice C 5 The Resource Editor

If you decrease the height by too much, increase the height again and the
newly displayed area will be the same as it was before you made the Image
display smaller. The maximum height of Image that you can edit is 1 28
pixels. If you attempt to edit a larger image, it will be truncated to 128 pixels
h igh.

To change the width of the Image click on the W + and W- buttons; the
current width is displayed to the right of these buttons. GEM restricts the
size of Images to multiples of 16 pixels (so that it can draw them on the
screen quickly) so these buttons change the width 16 pixels at a time. The
width of the main display and the button will change to give as large a main
area as possible. These buttons do not repeat if you hold them down. As with
height changes, do not worry if you make the width too small by mistake,
just click on W+ and the area that you have just deleted will re-appear.

The maximum width of an Image that can be edited is 128 pixels. Again,
editing an image that is more than 1 28 pixels wide will cause it to be
truncated.

The arrow buttons scroll the main display in the appropriate direction.
Scrolling upwards and to the left loses the pixels that are removed from the
Image. The pixels that are lost when scrolling to the right or downwards can
be retrieved by scrolling to the left and upwards, assuming that the maximum
size of 128x128 is not reached.

The C lear button will clear the entire Image to white; unless you are in
Expert Mode you will be prompted to check that this is what you want.

The F i l l button will fill the entire Image to black; as with Clear you will
normally be prompted for confirmation.

VFI Ip and HFI Ip reflect the Image in a vertical/horizontal line through the
middle of the Image. The best way to understand this is to try it. Clicking on
VFIIp (or HFIIp) twice is like doing nothing at all.

Line is used to draw a line of black pixels. The mouse cursor will change to a
+; click where you would like the line to start and then on where you would
like the line to finish.

Cancel is used to cancel all the changes that you have made since entering
the Image Editor; if you are not in Expert Mode you will be prompted to
ensure that this is what you require.

To name an Image, double-click in the Actual Size area; the usual name box
will then be displayed.

The Text menu can be used to set the foreground colour of the Image.

The Resource Editor LaHice C 5 Page 1 53

The normal way to exit from the Image Editor is via the Close box although
you can also use the commands on the File and Mise menus.

Editing Icons

The display when editing an Icon is like this:

Editing an Icon is like editing an Image except that the main display consists
of the Data of the Icon on the left and the Mask of the Icon on the right.
There are also some extra buttons in the Icon Area, and the Icon's string and
character fields can also be accessed.

There are two Actual Size displays; the one on the left normally shows the
icon not selected; that on the right shows it selected. If however you set the
Selected bit using the F lags menu from the Object Level window then these
will be the other way round. The Icon on the left is always as it will appear
in the file.

The extra buttons for Icons are used as follows:

Data and Mask are a pair of radio buttons; if Data is selected then the Data
bit map is used as the source for the commands below and also as the current
bitmap for Clear, Fi l l , VFIIp and HFIIp; WERCS will remind you which bitmap
you are destroying unless you are in Expert Mode. The rest of the commands
are described assuming that Data has been selected; to perform the action the
other way click on Mask to select it first.

·

Page 1 54 Lattice C 5 The Resource Editor

Copy, AND, OR, and XOR perform the appropriate logical operation; so that
Copy will make the Mask the same as the Data; AND will set only the bits
in the mask that are already set in both the Mask and the Data; OR will set
bits that are set in either or both and X 0 R will set those bits that are
different in the two bitmaps.

Cover will copy the mask and surround the bits that are already set with
extra bits. The source bitmap should not have any pixels set around each edge
as these will be cleared in the source so that it can be covered correctly. This
is useful for producing the first attempt at an Icon's mask from its Data
bitmap; this is another command that is best understood by experiment. As
usual you will be warned about the area that will be destroyed before
proceeding if you are not in Expert Mode. If you delete something
unintentionally you can always use Cancel to revert to the Icon before you
entered the Icon editor.

Zoom causes the current selected bitmap, Data or Mask, to take up the
whole of the main display; this is intended for editing large Icons where
each pixel is very small in the main display. Click on Zoom again to return
to the normal display.

Visually a finished Icon has three components; the Bitmap part, the String
(ICON in the example above) and the Character (A in the example above).
Every object of type Icon has an overall size just like any other GEM object;
this is normally bigger than the Bitmap itself. The three components may
each be positioned independently relative to the top left corner of the object.
In the example, the Bitmap is to the left of the box and the Text near the
bottom in the middle. Strangely the single Character's position is actually
relative to the bitmap not the main object. Also GEM will draw the Bitmap
and String even if they are outside the object's box.

To edit the text of the Icon's String, double-click on the text in the Actual
Size display; this will bring up the usual text name box so that you can enter
the String and also set the Name of the Icon object. The Icon Text may also be
moved in the normal manner. Editing the Icon's Character works in a similar
way and you may also move the Bitmap itself within the nominal box
represented by co-ordinates of the object. The object's co-ordinates are changed
as usual in the Object Level window.

Frequently Icons do not need either or both of the String and Character
attributes; you can just set these to be blank. So that you can edit such text, on
entry to the Icon Editor, blank strings are represented as __ and blank
characters as -· As a result of this and the fact that the actual display for
icons is simulated (so that WERCS knows accurately where the components
are) the Actual Display is not quite the same as the GEM display in the
main Object Level window or when the Icon is displayed by your program.

We will now describe the menus in detail.

The Resource Editor LoHice c 5 Page 155

File Menu

The Fi le menu i s used to manipulate which file you are editing. Initially you
are editing a blank file, shown within a window labelled Untltled.

New

To starting editing a new empty file, click on the N e w item from the File
men\L

Loading

To load an existing resource file click on Load and select the appropriate file
from the File Selector. An alert box saying .HRD file not found will appear if
this file is missing - you will still be able to edit your file although any
names previously attached to trees or objects will be lost.

Another way of loading a file is to set up the GEM Desktop to load WERCS
when you click on . RSC or . HRD files, using Install Application. Similarly you
may invoke W E RCS from a CLI (such as Batcher) in which case the file
extension is not required.

If you wish to load a resource file created with another resource editor you
may like to convert the other editor's equivalent of the H R D file into a true
. HRD file, in order to preserve the names of your items, using the conversion
utility WCONVERT.

Importing Images

Images and Icons converted using the WIMAGE utility can be imported using
the Import Image item on the File menu. You will be presented with the File
Selector to enter the file to import. This will copy the object to the
Clipboard, subsequently selecting Paste from the Edit menu will place it in
your file.

This command actually copies the second object from the first tree in the file
to the Clipboard.

Saving

Clicking on Save As will present you with the standard file selector and you
can choose a filename for the current file. Clicking S a v e saves the file,
without pause, under its original name - if the file was Untltled then Save
will do a Save As.

Page 1 56 LaHice C 5 The Resource Editor

The filename you enter into the File Selector for Save As need not have any
extension - suitable extensions will be added by W E R C S . In addition to a
. RSC file, an . HRD (for HiSoft Resource Definition) file is also saved. This is
a special file which contains such details as the names you have selected for
the contents of that file and which other language files are to be created .
This method ensures that, once you decide a particular resource file is to be
used for C, for example, WERCS will know each time you edit it. The .HRD
file format is described in detail in Appendix B.

Save Prefs

The default values for various options such as the language that you are using
and the character snap for new files when WERCS is loaded are read in from
a file called WERCS. INF . This is searched for on the standard GEM path.

To change the defaults use the Save Prefs item on the File menu.

Language

To change the files that are created when you use S a v e , click on the
Language item on the Fi le menu. This will present you with the following
dialog box:

The Resource Editor LaHice C 5 Page 1 57

You can select the language used for the header file when you next Save the
resource file. It also allows you to select the names to be in lower-, upper- a­
mixed-case. Details of supported languages and file extensions may be found
in Appendix B.

Quit

To leave WERCS, click on Quit. If you have changed the file you are editing
you will be given the opportunity to save or lose your modifications. You can
also use the Close box on the tree window to achieve the same effect.

Flags Menu

This menu contains the various attributes that are part of the ob_state and
ob_flags fields of object tree items. A selected item is shown ticked. The
corresponding standard GEM names for the fields are as follows :

Select able SELECT ABLE

Default DEFAULT

Exit EXIT

Editable EDITABLE

Radio Button RBUTION

Touch Exit TOUCH EXIT

Hide HIDETREE

Selected SELECTED

Crossed CROSSED

Checked CHECKED

Disabled DISABLED

Outlined OUTUNED

Shadowed SHADOWED

UnHide Children

The item Unhlde children will dear the H I D ETREE bit for any immediate
children of the selected object so that they become visible and you may then
select them once more.

Page 1 58 LaHice C 5 The Resource Editor

Extras

This displays a dialog box similar to that shown below which allows direct
access to the object's internal structure and thus care should be taken when
using this command.

The X, V, Width and Height items are relative to the object's parent in pixels.
These may be modified; use this with care as you can easily make objects
move outside their parents.

The Extended Type is the most significant byte of the object word. This is
ignored by the AES but may be used for your own purposes.

No Of Children is the number of first generation children that an object has.
It does not include 'grand-children'.

Index In tree is the object number relative to the root object of the tree.

Child number is 0 for the first child of its parent, 1 for the second and so on.
This field may be changed, in which case the objects between the old and new
positions will change position in the tree. The easiest way to place the
children of a particular parent in a particular order is to select the first child
and make this child 0 then select the second child and make this child 1, etc.

The Resource Editor LaHice C 5 Page 159

Objects may also be re-ordered using Sort from the Mise menu.

Parent gives the Index In tree number of the object's parent.

The buttons in the box (Image and Icon in the above example) tell you what
type the selected object is and let you change the object's type. Image may be
changed to Icon, Box to mox, String to Button, and Text, FText, BoxText and
FBoxText interchanged.

Changing Icons into Images loses the mask and string items of the Icon so you
are prompted for confirmation unless you are in Expert Mode.

Fi l l Menu

The Fi l l menu lets you change the fill pattern of the object, the colour of the
fill and whether it is opaque or transparent. Opaque means that text will be
displayed with a white background whereas transparent means that the fill
pattern and fill will show 'behind' the text.

The fill pattern and colour are only applicable to Box, BoxChar, BoxText and
FBoxText objects . The transparent/opaque setting is only applicable to
BoxText, Text, FBoxText and FText objects.

The Fill menu is also used to set the background colours of icons.

Border Menu

Lets you change the colour and size of the border for an object. Clicking on the
Size item brings up a box as below:

The Border Size is specified in pixels as appropriate. A negative size means
the border is drawn inside the box; a positive number means it is drawn
outside. This is only normally useful with Box, BoxChar, BoxText, FBoxText
and mox objects.

If set for FText or Text objects, the border affects the size of the box that is
drawn when the object is selected thus increasing or decreasing the visual size
of the object.

Page 1 60 LaHice C 5 The Resource Editor

Text Menu

The Text menu lets you change the justification, colour, and size of the text
object types: BoxChar, BoxText, FBoxText, Text and FText. The actual text is
changed by double-clicking on the object.

C l i p bo a rd

The clipboard is a special area of memory which can contain trees or objects.
It is ideal for moving or copying items between different areas of a resource
file, or between different resource files. All clipboard commands can be found
on the Edit menu.

Cut

Cut will copy the currently-selected object to the clipboard with its children
and removes the current object from the tree. If the object has children you
will be asked if you wish to delete them as well. If you choose not to delete
the children they will become the children of the deleted object's parent. The
object may then be pasted somewhere else.

Paste

Changes the mouse form to a pointing finger and waits for you to left-click.
This will place a copy of the object at that position. To cancel this, click on
Cancel on the Edit menu.

Copy

Copy copies the current selection to the clipboard and leaves it in place.

Cancel

Cancel is used to cancel the selection of a menu when the mouse has changed
to a non-pointer form. For example, if you click on Str ing from the Object
menu and decide tha t you do not want a new string after all, click on Cancel .

From within the Image/ Icon editor, Cancel will cancel all the changes you
have made since you entered the Image/Icon editor. You are prompted with a
dialog box first to ensure that this is really what you wish to do.

The Resource Editor LaHice C 5 Page 161

Abandon Edit

This allows you to abort the object-level editing that you are currently
performing. All changes made since you chose to edit the current tree will be
lost. It's ideal if you have made a major mistake in editing a particular tree.

Delete

Delete works like Cut but leaves the contents of the clipboard intact.

To copy just some of the objects of a parent, create a new Box
using the Object menu and make this cover the objects you
wish to copy. Then select Copy and use Delete (not Cut) to
delete your temporary Box, but not its children. Now use
Paste to place the copy of the objects where you need them
and then Delete to remove the outer Box again. This sounds
more complicated than it is in practice.

Mise Menu

Auto Size

With Auto Size enabled, every time you change the text of an object the size
of the object's box will change to just surround it; thus if you make the text of
a Button longer it will make the Button bigger; shortening the string will
make the box smaller. If you switch Auto Size off, the Button would stay the
same size and the new text would not necessarily fit in the existing box.

Auto Naming

If Auto Naming is enabled (shown by a tick) then objects are automatically
given a Name as if the SCJme button in the Text dialog box had been clicked.
The Name is based on the tree's prefix, if any, and the Text of the item.

Auto Snap

If this item is selected from the Mise menu then every item that you move or
size will be snapped to the nearest character boundary. This is useful to make
sure that items line up and will appear the same in different screen
resolutions.

Page 1 62 LaHice C 5 The Resource Editor

Half Char Snap

If this item is selected from the Mise menu then objects will snap to the
nearest half-character boundary, in a similar way to character snap.
However if you are designing a resource file to run in more than one resolution
then objects will not necessarily come out the same, as half a character in one
resolution may be either a whole character or a quarter of a character in
another resolution.

Find Text

This enables you to find occurrences of a particular string within the text
fields of the objects. You are presented with a dialog box, as below,

For example, if you have a number of menus and cannot remember which menu
contained the item Stop you could use this command. The appropriate tree is
opened and the object containing the string is selected.

Find Name

This item searches for a particular named object within the file, opens the
appropriate tree and selects the object. The box presented looks like this:

The Resource Editor LoHice C 5 Page 1 63

Number Select

This allows you to select an object given its object number in the current tree;
this can be useful if you have an object outside its parent.

Sort

This enables you to sort the children of a particular object according to
various possible criteria that are selected from the dialog box:

Page 1 64 Lafflce C 5 The Resource Editor

Top to Bottom and Bottom to Top will sort the objects according to their y
position on the screen whilst Left to Right and Right to Left will sort them
according to their x position on the screen. There are two priorities for the
sort, First and Second. Note that the sort does not affect the objects' positions
on the screen, it affects their order in memory and within the tree.

The default is F irst, Top to Bottom and Second, Left to Right. So, say we
have 6 objects (names obja to objf in any order in the tree and in memory)
with screen representations as follows:

objd

objb

obja

objf

obje

objc

and then we sort using the default options. The objects will be sorted so that
their order in memory and in the tree is objd, obja, obje, objb, objf, objc.
Note that the sort will not affect the screen representations.

Alphabetic means that the s trings of the objects are compared rather than
their screen positions. Sorting alphabetka�ly does not mean that the objects
will change position on screen only that their position in the object tree and
in memory may change.

Remember to select the parent of the objects that you wish to sort before you
click on Sort. You can use Alt-clicking to select the parent of a given object.

Test

Test lets you test out a Form, Menu or Alert Box. In order to test a Form i t
must have an object (such as a Button) with the EXIT and SELECTABLE flags
set, or alternatively with the TOUCHEXIT flag set. If it does not then you are
given an error message.

When you click on an Exit Button (or click on an item if testing a Menu) then
you are told which item you have selected and its name, if any. You can
choose whether to continue testing the tree, or return to W E RC S . If you
double-click on a TOUC H EXIT item then the value displayed will not include
the top bit, as returned by form_ do.

Expert level

If this is enabled (shown by a tick) then all warnings to do with tree re­
organising are suppressed: for example, when an object is given a new parent,
or commands that effect the entire data or mask bitmaps in the icon editor.
This also includes the warning about losing information when changing an
Icon to an Image using Extras and when using the Abandon Edit command.

The Resource Editor LaHice C 5 Page 1 65

Tree Level Editing

Forms

Forms are the most common type of tree in resource files; they are normally
used for dialog boxes, but can also be used for replacement desktops, to change
the pattern of the background in a GEM program or to add icons to it. When
you create a new Form or single-click on an existing one in the file window,
you are presented with a dialog box like the one below:

The name of the tree may be changed. WERCS will check to ensure that it is
a valid name according to the current selection of Language, with the correct
case, and that it is not a duplicate of a current name. If the other item with
this duplicate name is an object you can use the Find Name command to select
it and then change its name.

Remember that in Mixed case Ok and OK are different names but if you have
selected Lower or Upper case then they are not.

Pressing the Return key or clicking on the Edit button will then let you edit
the objects within the tree.

Cancel will not add a new tree to the file and will disregard any changes to
the tree name that you have made.

To add more than one tree without editing them immediately, click on the
OK button - this lets you set up a number of trees without entering the objects.

Page 1 66 Lattice C 5 The Resource Editor

To re-order the trees in a file, click on the Move button. This will change the
mouse form to a pointing finger; you should then click on the tree that you
wish to place immediately after the current form. Owing to the structure of
resource files, when the file is reloaded, the Menus and Forms will be first,
followed by the Free Strings and Alerts, followed by the Free Images.

To delete or copy an entire tree, click on the appropriate button. To paste a
tree from the clipboard into your file, click on Paste from the Edit menu.

This box also lets you set up the Prefix for this particular tree. This is used to
provide the start of the names of objects if you use Auto Naming.

To edit an existing tree, double-click on the appropriate tree icon. You will
then be taken straight to the Object Level.

Menus

Menus are a very special type of Form which must conform to a number of un­
published rules, otherwise GEM will behave strangely. Fortunately, when
using WERCS, you don't have to worry about these rules as WERCS will cope
with them for you.

When you ask for a new menu you will see a screen similar to that below:

F i l l Border Text

, ,,! '

Normally Menus consist of Titles (which are displayed along the top of the
screen) and Strings (which are displayed in the pull-down menus themselves).
To add a new Title, click on Title from the Object menu and then click in the
menu bar where you would like it. The other Titles (and their menus) will be
moved if required.

The Resource Editor lattice C 5 Page 1 67

To add items to a given Title, first click on the Title itself; this will cause
the appropriate Menu to appear, for example:

H l st F i l l Border Text
"'"' 1, !,

You can then insert objects in the usual manner, normally Strings, and objects
below the new object will be moved down. You should ensure that the mouse
pointer is at the left edge of the box when inserting objects; otherwise yoo
will leave a 'hole' to the left of it. .

You can use types other than Strings in Menus if you wish; we used WERCS to
produce its own resource file, for example. You can also change the flags and
states of items just as if you were editing a Form. For those objects that have
them, the items on the Fil l, Border and Text menus can be used.

If you want your menu to work in more than one resolution don't use Icons or
Images or you will find that there will either be gaps between them or they
will overlap. This is because the width and height of these objects are a
different number of character cells in different resolutions . This can be
avoided by adjusting the object once it is loaded so that there are no gaps
between icons.

The boxes surrounding menus must not be take up more than one quarter of the
screen, otherwise the system may crash. Be especially careful, when
designing menus for use in Low Resolution.

The Tree Name box can be used in the same way as for Forms.

Free Strings

A Free Str ing is a string of characters that is not connected with any
particular tree. They can be used to facilita te foreign-language versions of
software, for example.

The Name and Text of the Free String can be modified in the same way as
any other type of string in WERCS so that you can use \ \ to enter control and
graphics characters for example.

Page 1 68 Lattice C 5 The Resource Editor

To edit an existing Free String, it is only necessary to single- or double-click to
bring up the box shown above.

The Delete, Copy, Move and OK buttons work in the same way as with
Forms, detailed earlier.

Make Alert can be used to turn a Free String into an Alert. You should ensure
that the String conforms to the rules for Alerts, as described below.

Alerts

Alert Boxes are actually stored as Free Strings (see above) but are passed to
the AES form_alert call to display an alert box.

There are two types of restrictions as to the contents of Alerts; the first type
is those restrictions documented by Atari (to keep down the amount of memory
used by the AES when displaying them) and the second type of restriction is
caused by bugs in the first release of the operating system ROMs.

As officially documented, each line in an alert box must be no more than 30
characters and there is a maximum of 5 lines. Each Button must be no more
than 20 characters each and there is a maximum of three Buttons. Strings and
Buttons may not contain l or I characters. ROMs prior to 1 .2 do not check for
the infringement of these rules and failing to adhere to them will corrupt
certain areas of the AES workspace! W E R C S rigidly enforces these rules
when converting the tree representation back to a string.

The release 1 .0 of the ST ROMs contained various bugs, including long
buttons/short text problems. Before releasing a commercial program ensure you
have checked all your Alerts on a 1 .0 ROM machine. Subsequent ROM
releases (1 .2 a.k.a. Blitter TOS, 1 .4 a .k.a. Rainbow TOS and 1 .6 a .k.a. STE
TOS) have these problems corrected. These difficulties with the early ROMs
have not been documented and so WERCS cannot check reliably for them. If
you have later ROMs you have the flexibility to use some Alerts that it is
not possible to use with the earlier ROMs.

The Resource Editor LaHice C 5 Page 1 69

The dialog box that you are presented with, when you single-click on an Alert
Box in the file window, looks like this:

• v • •

Which icon will appear in the Alert Box is controlled by clicking on the
appropriate icon in the tree display as above.

The Delete, Copy, Cancel, OK and Move buttons work in a similar way to
those on the Form Tree Name dialog box.

Clicking on Make String turns this item into a Free String rather than an
Alert.

Clicking on Edit (or double-clicking on the the icon from the tree level
display) will open an Object Level window that looks similar to that opened
when you are editing a Form.

You should only add Strings and Buttons to the Form and these will be re­
positioned auto�atically by WE RCS . You can edit the Text in the normal
way and also delete, copy and paste objects. Modifying the flags and states of
the parts of an object will not affect the final Alert Box.

Page 1 70 LaHice C S The Resource Editor

Re-ordering the Buttons in Alert Box is achieved by dragging a Button. If you
drag button A onto Button B then the Buttons will be re-arranged so that
Button A is immediately before Button B. This is similar to the moving of
Titles in Menus. If it sounds complicated, experiment and you should soon get
the hang of it.
Alerts are represented as strings of the format shown below:

[icon) [line1 l line2 . • • l linen) [button1 l button2 J
where Icon is one of:

0 No icon
1 Question Mark icon
2 Exclamation Mark icon
3 Stop icon

l ine 1 , l lne2 etc. are the various message lines and button 1 are the various
Buttons. To check that you understand this, create an Alert and then change
it to a Free String and, assuming that it is small enough to fit on the screen,
you will be able to inspect it.

Free Images

A Free Image is an Image-type object that is not connected with any
particular tree. When you use rsrc_gaddr you get the address of a B ITBLK
rather than an object.

The Tree Name dialog box for Free Images works in the same way as that for
Forms except that clicking on Edit takes you straight to the Image Editor as
for Image objects.

The Resource Editor LaHice C 5 Page 1 7 1

Keyboard Shortcut Summary

The following table gives the keyboard shortcuts when the Alt, Ctrl or Shift
keys are held down.

Key Alt Clrl Shift

A Abandon Edit Border Size Alert

B Shadowed Box

c Copy Crossed BoxChar

D Default Form

E Extras Editable Button

F Find Text FText

G Find Name Disabled F BoxText

H Selected Number Delete

I Import Image Smal l text I Box

J Large Text Icon

K Expert Hide Image

L Load Left Free Image

M Centre Menu

N New Right

0 Sort Outlined

p Language Opaque ProgDef

Q QLit Transparent

R Save As Radio Button Free String

s Save Selectable String

T Test Touch Exit Text

u Auto Naming Un Hide BoxText

V Paste Selected Title

w Auto Size

X OJ Exit

y Char Snap Checked

z Half Snap

Page 1 72 LaHice C 5 The Resource Editor

Note also that the Backspace key is used to delete objects, whilst the
Undo key cancels an operation.

There is a rationale behind the choice of keyboard shortcuts to help you
remember them; the Alt keys refer to commands on the Fi le, Edit and Mise
menus, Ctrl for the Flags, Fill, Border and Text menus and Shift for the Object
and Tree menus. We have attempted to make shortcuts use the initial letter
of the item as far as possible; the exceptions to this are the standard
clipboard shortcuts and the following:

P Programming Language,

0 Order (Sort),

IIG Greyed (Disabled),

AB Border (Shadowed).

The Resource Editor LaHice C 5 Page 1 73

Page 1 74 LaHice C 5 The Resource Editor

MonST2C
The Debugger

!Introduction
MonST was originally designed a s a low level debugger for debugging
assembly language programs but we, and many other people, have found i t
useful in debugging C programs. The version of MonST that we supply with
Lattice C, MonST2C . has been enhanced so that it 'knows' about where, in
memory your program lines start and automatically loads your program and
source code for you.

Together with the facilities of the original MonST, such as function labels, a
full integer expression evaluator and named access to external variables,
MonST2C gives you many of the features of a high level symbolic debugger.
It does not give you access to local variables, floating point numbers, structures
etc. As it was originally designed as a low level debugger some knowledge of
assembly language is useful when using MonST2C.

As MonST2C uses its own screen memory, the display of your program is not
destroyed when you single-step or breakpoint, making it particularly useful
for graphical-output programs such as GEM applications. It also uses its own
screen drivers so it is possible to single-step into the operating system screen
routines such as the AES or BIOS without affecting the debugger. MonST2C
will also work in low resolution, thus allowing you to debug programs that
run in low resolution.

Initially we shall describe how to use MonST2C to debug programs that are
compiled as a single module. Using it with multi-file applications will be
described later.

If you are already an expert at using the version of MonST supplied with
Devpac ST version 2 then please read the next two pages on the use of
MonST2C with Lattice C.

The Debugger LaHice C 5 Page 1 75

!Preparing to use MonST2C
If you are going to debug a program using MonST2C you should ensure that
you have selected the compiler's -d3 flag when compiling your program,
either using the Complier Options box or from the compiler's command line.

When linking you should either check Llnker Symbols from the Options
menu if invoking the linker from the editor or use the XADDSYM keyword if
using an explicit linker command line or link file. Do not use the -Ln option as
this will remove much of the debugging information.

This will ensure that the addresses of your functions, the library functions
that you use, your program's external variables, and the address
corresponding to each line of your source code will be stored in your executable
file. Don't be surprised if this causes it to increase in size dramatically!

Whilst we recommend using -d3 for most purposes there are two other
variants of the -d flag that you may find useful:

Using -d 1 includes the name and line number information for MonST2C,
producing very much smaller files than using -d3, but has two disadvantages
compared with -d3.

Normally the compiler will make some of your variables register variables
automatically. Using -d3 will force the compiler to store every such auto­
generated register variable in memory at the end of each statement. This has
the advantage of generally making the assembly language code generated
easier to understand. If you are using the -d 1 flag then it is probably a good
idea to use the - m r compiler flag which will d isable the automatic
registerisation completely.

The other disadvantage of -d 1 is that it only stores the filename of the
source file in the debug information rather than the ful l pathname. Thus it
can only be used to debug files that are in the current directory.

The -d2 option is exactly the same as -d3 except that the output files are
slightly smaller and the compiler chosen register variables will not be
flushed to memory; they will remain in registers.

Using -d4 and -d5 will create still larger files than -d2 and -d3, however
the additional information is of no use to MonST2C.

Don't use the Global Optimiser when preparing code to be debugged with
MonST2 C as the transformations that it performs can make the code
produced appear to bear very little similarity to your source code!

Page 1 76 LaHice C 5 The Debugger

!Invoking MonST2C
From the Desktop

MonST2C is supplied as a GEM program with extension . PRG; to debug a TOS
application you can rename it as M O N ST2 C . TOS or install it as a TOS
program. This will ensure that the operating system will perform the same
initialisation as if you were running your program without it. Once executed
MonST2C will prompt you for the name of the file to load.

If you debug a TOS program with the GEM version of the
debugger it will work fine but the screen display will
probably be messy; however, debugging a GEM program with
a TOS debugger will cause all sorts of nasty problems to occur
and should be avoided.

From the Editor

If you are using the standard editor configuration file, EDCTOOLS.INF,
MonST2C can be invoked using the Debug option on the Tools menu and Alt
and the 5 key on the numeric key pad. Of course, the editor will need to be
able to find the MONST2C .PRG file for this to work. Invoking the debugger
in this way will load the . PRG file corresponding to the file being
edited.The debugger will also load your source file too.

The type of initial screen mode used when invoked from the editor is
determined by the GEM and TOS buttons in the Tool Configuration dialog.
See the section EdC, The Screen Editor for more details. The rules described
above about using the wrong type of screen initialisation are also relevant
here.

From Batcher

I f you wish t o invoke MonST2C from Batcher, just type

monst2c t e s t

i f test is the program that you are debugging.

The Debugger Lattice C 5 Page 1 77

IMonST2C Dialog and Alert Boxes
MonST2C makes extensive use of dialog- and alert-boxes which are similar in
concept to those used by GEM programs but have several differences.
MonST2C does not use genuine GEM-type boxes in order for it to remain robust
- that is to avoid interaction when debugging programs that themselves use
GEM calls. In addition the mouse is not available within the debugger itself
which makes objects like true GEM buttons impossible.

A MonST2C dialog box displays the prompt ESC to abort above the top left
corner of the box together with a prompt, normally followed by a blank line
with a cursor. At any time a dialog box may be aborted by pressing Esc, or
data may be entered by typing. The cursor, Backspace and Del keys may be
used to edit entered text in the usual way and the whole line may be deleted
by pressing the C l r key - note that this is different to GEM dialog boxes
which use the Esc key to delete a whole line of text. An entered line is
terminated by pressing the Return key, though if the line contains errors the
screen will flash and the Return key will be ignored allowing correction of
the data before pressing Return again. Another difference is that dialog
boxes that require more than one line of data to be entered do not allow the
use of the cursor up and down keys to switch between different lines - in
MonST2C the lines have to be entered in order.

A MonST2C alert box is a small box displaying a message together with the
prompt r Return J and is normally used to inform the user of some form of
error. The box will disappear on pressing the Return or Esc keys, whichever
is more convenient.

! I n it ia l Display
If you have run MonST2C without a command line you will be presented
with a dialog box prompting for an executable program name. You should
enter the name of the program that you wish to debug. If you omit the file's
extension, MonST2C will look for a . PRG, . TIP and .TOS file in that order.

Page 1 78

Certain features work differently or are not available when
using MonST2C in low resolution. They are shown with
this icon.

LaHice C 5 The Debugger

!Front Panel Display
The main display of MonST2C is via a Front Panel showing registers, memory
and instructions. The name Front Panel stems from the type of panels that
were mounted on mainframe and mini computers to provide information on the
state of the machine at a particular moment, usually through the use of
flashing lights. These lights represent whether or not particular flip-flops
(electronic switches) within the computer are open or closed; the flip-flops
that are chosen to be shown on this panel are normally those that make up
the internal registers and flags of the computer thus enabling programmers
and engineers to observe what the computer is doing when running a program.

So these are hardware front panel displays; what MonST2C provides you
with is a software front panel - the code within MonST2C works out the state
of your computer and then displays this information on the screen.

The initial M onST2C display consists of five windows, similar to those
shown below. In low-resolution the arrangement of the windows is slightly
different to allow efficient use of the smaller available screen space.

Regtsurs
DB : BBBBBB42 8 88CA 11EB 88CA 12EB AB : BBBE4886 26DE 8888 8881 BODE 2E1C OBOE
D1 : BB888881 � 2E 8186 BBEB 8838 88 A1 : 888E2A'D 8888 8888 8888 8888 8888 8888
D2 : BBBBDDD1 � 2E 8186 BBED 8838 DB A2 : DDDED5D4 BBBE 8504 8832 fCDD BODE 8604
D 3 : fffffD48 H **** **** **** **** A3 : DDDE2E1C OBOE 2502 8888 8888 8888 8888
D4 : BBDBDDBD 682E 8186 BBED 8838 A4 : DDDE287C 8888 8888 8828 2828 2828 2828
D5 : BBDDDDDB 682E 8186 DBED 8838 A5 : BBBED5DD 8888 8888 BODE 85D4 8832 fCDD
D6 : BDBBDDDD 682E 8186 BBED 8838 A6 : BDDE4814 8832 f8C6 BODE 88DC 8888 8881
D 7 : B0889998 692E 9186 DOEO 9839 A 7 : DOBE4994 BODE 26DE BODO 8991 OBOE 2E1C
SR : DlDD u A7 ' DDDDI78A 8488 8898 8888 BBBB 8888 8888
PC : BBBEBC4E LINK A6 U-$14

BBBEBC4E ..11a i n OLIKK A6 , U-$U 88888888 682E 8186 ,QI
BBBEBC52 HDUEH . L D5-7 , - CA7l 88888884 BBEB 8838 IX 8
OBOEOC56 HDUED UI D7 80000008 OOOD IC88 \<il
088EBC58 HDUE , L uhoo, D6 OBBOOOOC OOOD IC8E \<S
OOBEOC5E LEA AEScantra l CA4l AB 88880818 BOBD ID26 \=&

. . . 88890914 BBOD ID2C \= ,
8881/* 88888818 BOBD IDI2 1=2
0882 * rocp - fu l l y confi gure the nathine after th BBBDBD1C DDOD ID38 1=8
0883 * 00008820 DOOD IDlE 1=>
0884 * Started 1/3/8' A l ex 6 . K i ernan 80080824 ODDD ID44 1=D
0885 * 00000828 OOED AC56 IX�U
8886 * Cono i l e u s i n a : 8888882C DBEB DBCA J'G(J'II

ngnST 2 . 85c C HlSofS 1998

The top window (1 Registers A4) displays the values of the machine's data
and address registers, together with the memory pointed to by these registers.

The Debugger LaHice C 5 Page 1 79

The next window (2 Disassembly PC) is the disassembly window; this
displays several lines of assembly instructions, by default based around the
program counter (PC), shown in the title area of the window. A => sign is used
to denote the current value of the PC.

Window number 3 is the memory window which displays a section of memory
in word-aligned hex and ASCII.

Window number 4 is the source code window; it shows a a portion of your
source code and the corresponding line numbers.

The final window at the bottom of the screen, which is un-numbered, is the
smallest window and is used to display messages.

One of the most powerful features of M o n S T 2 C is its flexibility with
windows - an extra window may be created, the font size can be changed, and
windows may be locked to particular registers; these features are detailed
later.

Simple Window Handl ing

MonST2C has the concept o f a current window - this i s denoted by displaying
its title in black. The current window may be changed by pressing the Tab
key to cycle between them, or by pressing the Al t key together with the
window number, for example Alt-2 selects the disassembly window. (AZERTY
keyboard users please note - the Shift key is not required when using Alt to
select windows). Note that the lowest window can never be made the current
window - it is used solely for displaying messages.

!Command Input
MonST2C is controlled by single-key commands which creates a very fast
user-interface, though this can take getting used to if you are familiar with a
line-oriented command interface of another debugger. Users of HiSoft
DevpacST and HiSoft debuggers on other machines should find that they
are already familiar with many of the commands.

In general the Alt key is the window key - when used in conjunction with
other keys it acts on the current window.

Page 1 80 Lattice C 5 The Debugger

Commands may be entered in either upper or lower case. Those commands
whose effects are potentially disastrous require the Ctrl key to be pressed in
addition to a command key. The keys used were chosen to be easy to
remember, wherever possible. Commands take effect immediately - there is no
need to press Return - and invalid commands are simply ignored. The relevant
sections of the front panel display are updated after each command so any
effects can be seen immediately.

MonST2C is a powerful and sometimes complex program and we realise that
it is unlikely that many users will use every singfe command. For this reason
the remainder of the M onST2C manual is divided into two sections - the
former is an introduction to the basic commands of the program, while the
latter is a full reference section. It is possible for new users and beginners to
use the debugger effectively while having only read the Overview; don't be
intimidated by the Reference section.

IMonST2C Overview
The most common low-level command in MonST2C is probably single-step,
obtained by pressing Ctri-Z (or Ctri-Y if you find it more convenient). This will
execute the instruction at the PC, the one shown in the Register window and,
normally, also in the Disassembly window. After executing it the debugger
re-displays the values of the registers and memory displayed, so you can
watch the processor execute your program, step by step. Single-stepping is the
best way of going through sections of code where you don't understand what is
going on, but it is also the slowest - and it deals with your program only on an
assembly language level, not in terms of your C program. There is, of course,
an answer.

A breakpoint is a special word placed into your program to stop it running and
enter MonST2 C . There are many types of breakpoint but we will restrict
ourselves to the simplest for now. A breakpoint may be set by pressing Alt-8,
then entering the address you wish to place the breakpoint. You can enter an
address in MonST2C as a symbol, as a hexadecimal line number preceded by
#, hex (the default base), a decimal line number preceded by # \ or as a
complex expression. Examples of valid addresses are main. too. # 1 0. #\ 1 23
1 O + m yd ata . If you type in an invalid address the screen will flash and
allow you to correct the expression. You can omit the leading _ or @ of C
function names if you wish.

Having set a breakpoint you need some way of letting your program actually
run, and Ctri-R will do this. If will execute your program using the registers
displayed and starting from the PC . M o nST2C will be re-entered if a
breakpoint has been hit, or if a processor exception occurs.

The Oebugger Lattice C 5 Page 1 8 1

M o n ST 2 C uses its own screen display which is independent from your
programs. If you press the V key you will see your current programs display,
pressing another key switches you back to M onST2C . This allows you to
debug programs without disturbing their output at all.

Any window may be zoomed to the full screen size by pressing Alt-Z. To return
to the main display press Alt-Z or the Esc key. The Esc key is also the best
way of getting out of anything you may have invoked by accident. The Zoom
command, like all Alt-commands, works on the current window which you can
change by pressing Tab. You can dump the current window to your printer by
pressing Alt-P.

To change the address from which a window displays its data, press Alt-A,
then enter the new address. Note that the disassembly window wiii always
re-display from the FC after you single-step, because it is locked to the FC.
The locking of windows is detailed in the Reference section.

To quit MonST2C press Ctri-C . Strange as it may sound this will not always
work - what Ctri-C does is terminate the current program, which may be
MonST2C or, more likely, the f.rogram you are debugging., in which case
MonST2C wiii stiii be in contro . You know when you have terminated the
program under investigation because it wiii say so in the lower window. Once
your program has been terminated, pressing Ctri-C will terminate MonST2C.

We hope this overview has given you a good idea of the most common
features of MonST2C to let you get on with the complex process of writing
and debugging programs. When you feel more confident you should try and
read the Reference section, probably best taken, like all medicine, in small
doses.

IMonST2C Reference
N umeric Expressions

MonST2C has a full expression evaluator, based on that in the DevpacST
assembler, GenST, including operator precedence. We decided that changing
MonST2C to use the standard C operators would be confusing for users who
are already familiar with MonST2 .

The following operators are supported, in decreasing order of precedence:

monadic minus (-) and plus (+), address of line number (#)

bitwise not (-)

shift left (<<) and shift right (> >)

Page 1 82 LaHice C 5 The Debugger

bitwise And (&), Or (I) and Xor (A)
multiply (*) and divide (/)

addition (+) and subtraction (-)

equality (=), less than (<), greater than (>), not equals (<>)

The comparison operators are signed and return 0 if false or -1 ($FFFFFFFF) if
true. The shift operators take the left hand operand and shift it the number
of bits specified in the right hand operand, vacated bits are filled with
zeroes.

This precedence can be overridden by the use of parentheses (and). With
operators of equal precedence, expressions are evaluated from left-to-right.
Spaces in expressions (other than those within quotes - ASCII constants) are
not allowed.

All expression evaluation is done using 32-bit signed-integer arithmetic, with
no checking of overflow.

The MonST2C expression evaluator also supports indirection using the { and }
symbols. Indirection may be performed on a byte, word or long basis, by
following the } with a period then the required size, which defaults to long.
If the pointer is invalid, either because the memory is unreadable or not an
even address (if word or longword indirection is used) then the expression
will not be valid.

For example, the expression

{data_sta rt+ 1 0} . w

will return the word contents of location data_start+ 1 0, assuming data_start
is even. Indirection may be nested in a similar way to ordinary parentheses.

Numbers

Absolute numbers may be in various forms:

decimal constants, e.g. \ 1 029

hexadecimal constants, e.g. 1 2f or $ 1 2f

octal constants, e.g. @730

binary constants, e.g. %1 1 000 1 0

character constants, e.g. 'X'

The Debugger LoHice C 5 Page 1 83

\ is used to denote decimal numbers, $ is used to denote hexadecimal numbers
(the default), % for binary numbers, @ for octal numbers and single ' or double
' quotes for character constants.

Character Constants

Whichever quote is used to mark the start of a string must also be used to
denote its end and quotes themselves may be used in strings delimited with
the same quote character by having it occur twice. Character constants can be
up to 4 characters in length and evaluate to right-justified longs with null­
padding if required. For example, here are some character constants and their
ASCII and hex values:

· a ·

' hi '
" Test •
" it ' s "
' it " s '

Symbols and Registers

a
hi
test
it ' s
it ' s

$00000051
$00006869
$54657374
$6974277C
$6974277C

Symbols may be referred to and are normally case-sensitive and significant to
either 8 or 22 characters (depending on the form of debug information used),
though this can be changed with Preferences.

Normally there is no need to type the initial _ or @ of C language labels. You
can enforce the need to include the or @ with the Preferences command

Registers may be referred to simply by name, such as A3 or D7 (case
insensitive), but this clashes with hex numbers. To obtain such hex numbers
precede them with either a leading zero or a $ sign. A 7 refers to the user
stack pointer.

There are several reserved symbols which are case insensitive, namely TEXT,
DATA, BSS, END, SP, SR, and SSP. END refers to one byte past the end of the
BSS section and SP refers to either the user- or supervisor-stack, depending on
the current value of the status register. Remember that the names of all your
external variables and functions will also be available.

In addition there are 10 memories numbered MO through M9, which are
treated in a similar way to registers and can be assigned to using the Register
Set command. Memories 2 through 5 inclusive refer to the current start
address of the relevant window and modifying them will change the start
address of that window.

Page 1 84 LaHice C 5 The Debugger

Window Types

There are four window types and the exact contents of these windows and
how they are displayed is detailed below. The allowed types of windows are
shown in the table below.

Window Allowed Types

1 Register

2 Disassembly

3 Memory

4 Disassembly, Memory or Source code

5 Memory

Register Window Display

The data registers are shown in hex, together with the ASCII display of
their low byte and then a hex display of the eight bytes they point to in
memory. The address registers are also shown in hex, together with a hex
display of 12 bytes. As with all hex displays in MonST2C this is word­
aligned, with non-readable memory displayed as • • .

The status register is shown in hex and in flag form, additionally with U or S
denoting user- or supervisor-modes. A7' denotes the supervisor stack pointer,
displayed in a similar way to the other address registers.

The PC value is shown together with a disassembly of the current instruction.
Where this involves one or more effective addresses these are shown in hex,
together with a suitably-sized display of the memory they point to.

For example, the display

TST . W $ 1 2A (A3) ; 00001 FAE OF0 1

signifies that the value o f $ 1 2A plus register A3 i s $ 1 FAE, and that the word
memory pointed to by this is SOFO l . A more complex example is the display

MOVE . W $ 1 2A (A3) , - (SP) ; 00001 FAE OF01 �0002AC08 FFFF

The source addressing mode is as before but the destination address is $2AC08,
presently containing $ FFFF . Note that this display is always of a suitable
size (MOVEM data being displayed as a quad-word) and when pre-decrement
addressing is used this is included in the address calculations.

The Debugger LaHice C 5 Page 1 85

No hex data is shown for the data registers and the address
register data area is reduced to 4 bytes . In addition the
disassembly line may not be long enough to display complex
addressing modes such as the second example above.

Disassembly Window Display

Disassembly windows display memory as disassembled instructions. On the
left the hex address is shown, followed by any symbol, then the disassembly
itself. The current value of the PC is denoted with �.

If the instruction has a breakpoint placed on it this is shown using square
brackets (c J) afterwards, the contents of which depend on the type of
breakpoint. For stop breakpoints this will be the number of times left for this
instruction to execute, for conditional breakpoints this will be a ? followed by
the beginning of the conditional expression, for count breakpoints this will be
a .; sign followed by the current count, and for permanent breakpoints a • is
shown.

The exact format of the disassembled op-codes is Motorola standard, as
accepted by the assembler, asm. All output is upper-case (except lower-case
labels) and all numeric output is hex, except trap numbers. Leading zeroes are
suppressed and the $ hex delimiter is not shown on numbers less than 10.
Where relevant numerics are shown signed. The only deviation from Motorola
standard is the register lists shown in MOVEM instructions - in order to save
display space the type of the second register in a range is abbreviated, for
example

MOVEM . L d0 - d3 / a0 - a2 , - (sp)

will be disassembled as

MOVEM . L d0 - 3 / a0 - 2 , - (sp)

Any displayed symbols replace the hex address display,
limited to a maximum of 8 characters.

Memory Window Display

Memory windows display memory in the form of a hex address, word-aligned
hex display and ASCII. Unreadable memory locations are denoted by • • . The
number of bytes shown is calculated from the window width, up to a
maximum of 16 bytes per line.

Page 1 86 LaHice C 5 The Debugger

Source-code Window Display

The source-code window displays ASCII files in a similar way to a screen
editor. The default tab setting is 8 though this can be toggled to 4 with the
Edit Window command.

Window Com mands

The Alt key is generally used for controlling windows, and when used applies
to the current window. This is denoted by having an inverse title and can be
changed by pressing Tab, or Alt and the window number.

Most window commands work in any window, zoomed or not, though when i t
does not make sense to do something the command is ignored.

Alt-A Set Address

This sets the starting address of a memory or disassembly window.

Alt-8 Set Breakpoint

Allows the setting of any type of breakpoint, described later under
Breakpoints.

Alt-E Edit Window

On a memory window this lets you edit memory in hex or ASCII. Hex editing
can be accomplished using keys 1 -9, A -F, together with the cursor keys.
Pressing Tab switches between hex & ASCII, ASCII editing takes each
keypress and writes it to memory. The cursor keys can be used to move about
memory. To leave edit mode press the Esc key.

On a register window this is the same as Alt-R, Register Set, described
shortly.

On a source-code window this toggles the tab setting between 4 and 8.

Alt-F Font size

This changes the font size in a window. In high resolution 16 and 8 pixel
high fonts are used, in colour 8 and 6 pixel high fonts are used. This allows a
greater number of lines to be displayed, assuming your monitor can cope.

Changing the font size on the register window causes the position of windows
2 and 3 to be re-calculated to fill the available space.

The Debugger LaHice C 5 Page 1 87

Alt-L Lock Window

This allows disassembly and memory windows to be locked to a particular
register. After any exception the start address of the window is re-calculated,
according to the locked register.

To unlock a window simply enter a blank string.

By default window 2 is locked to the PC. You can lock windows to each other
by specifying a lock to a memory window, such as M2.

Alt-O Show Other

This prompts for an expression and displays it in hex, decimal and as a
symbol if relevant.

Alt-P Printer Dump

Dumps the current window contents onto the printer. The print can be aborted
by pressing Esc.

Alt-R Register Set

Allows any register to be set to a value, by specifying the register, an equals
sign, then its new value. It can also be used to set the values of the MonST2C
memories MO to M9. For example the line

a3=a2+4

sets register A3 to be A2 plus 4. You can also use this to set the start address
of windows when in zoom mode so that on exit from zoom mode the relevant
window starts at the required address.

Alt-S

Do not assign to M4 if window 4 is currently a source-code
window.

Split windows

This either splits window 2 into window 2 and window 4, or splits window 3
into window 3 and window 5. Each new window is independent from its
creator. Pressing Alt-S again will unsplit the window.

This command has no effect.

Page 1 88 LaHice C 5 The Debugger

Alt-T Change Type

This only works on window 4 (created either by splitting window 2 or by
loading a source file) . It changes the type of the window between
disassembly, memory and source-code (if a file has been loaded).

Alt-Z Zoom Window

This zooms the current window to be full size. Other Alt commands are still
available and normal size can be achieved by pressing Esc or Alt-Z again.

Zooming the register window can be extremely useful as i t
allows you to see the 'hidden' registers MO. M l and M6-M9.

Cursor Keys

The cursor keys can be used on the current window, and their action depends
on the window type.

On a memory window all four cursor keys change the current address, and Shift

i and Shift ! move a page in either direction.

On a disassembly window i and ! change the start address on an instruction
basis, � and � change the address on a word basis.

On a source-code window i and ! change the display on a line basis, and Shift

i and Shift ! on a page basis.

Screen Switching

MonST2C uses its own screen display and drivers to prevent interference with
a program's own screen output. To prevent flicker caused by excessive screen
switching when single-stepping the screen display is only switched to the
program's after 20 milliseconds, producing a flicker-free display while in the
debugger. In addition the debugger display can have a different screen
resolution to your program's if using a colour monitor.

V View Other Screen

This flips the screen to that of the programs, any key returns to the
MonST2C display.

The Debugger LaHice C 5 Page 1 89

Ctrl-0 Other Screen Mode

This changes the screen mode of MonST's display between low and medium
resolution. It re-initialises window font sizes and window positions to that of
the initial display. This will not effect the screen mode of the program being
debugged.

This command is ignored on a monochrome monitor.

As MonST2C has its own idea of where the screen is, what mode it is in and
what palette to use you can use MonST2C to actually look at the screen
memory in use by your program, ideal for low-level graphics programs.

If your program changes screen position or resolution, via
the XBIOS or the hardware registers, it is important t ha t
you temporarily disable screen switching using
P r e fe r e n c e s while executing such code; otherwise
M o n ST 2 C will not notice the new attributes of your
program's screen.

When a disk is accessed, when loading or saving, the screen display will
probably switch to the program's during the operation. This is in case a disk
error occurs, such as a write-protection violation or a read error, as it allows
any GEM alert boxes to be seen and acted upon.

B reaking into Programs

Shift-Ait-Help Interrupt Program

While a program is running it can be interrupted by pressing this key
combination, which will cause a trace exception at the current value of the
PC. With computationally intensive program sections this will be within the
program itself but with a program making extensive use of the ROM, such as
the GEMOOS or AES, the interruption will normally be in the ROM itself, or
the line-F handler stored in low-memory. If this is the case it is recommended
that a breakpoint be placed in your actual program area then a Return to
Program command (Ctri-R) issued.

Pressing Alt-Help without the Shift key will normally produce a screen dump
to the printer - if you press this accidentally it should be pressed again to
cancel the dump.

It is possible for this key combination to be ignored when pressed - if this
occurs press it again and it should work. Pressing it when in MonST2C itself
will produce no effect.

Page 1 90 LaHice C 5 The Debugger

A program should never be terminated (using Ctr i-C) if it
has just been interrupted in the middle of a ROM routine.
This is likely to cause a system crash.

B reakpoints

Breakpoints allow you to stop the execution of your program at specified
points within it. MonST2C allows up to eight simultaneous breakpoints, each
of which may be one of five types. When a breakpoint is hit MonST2C is
entered and then decides whether or not to halt execution of your program,
entering the front panel display, or continue; this decision is based on the
type of the breakpoint and the state of your program's variables.

Simple Breakpoints

These are one-off breakpoints which, when executed, are cleared and cause
MonST2C to be entered.

Stop Breakpoints

These are breakpoints that cause program execution to stop after a particular
instruction has been executed a certain number of times. In fact a simple
breakpoint is really a stop breakpoint with a count of one.

Count Breakpoints

Merely counters; each time such a breakpoint is reached a counter associated
with it is incremented, and the program will resume.

Permanent Breakpoints

These are similar to simple breakpoints except that they are never cleared -
every time execution reaches a permanent breakpoint MonST2C will be
entered.

Conditional Breakpoints

The most powerful type of breakpoint which allow program execution to stop
at a particular address only if an arbitrarily complex set of conditions apply.
Each conditional breakpoint has associated with it an expression (conforming
to the rules already described). Every time the breakpoint is reached this
expression is evaluated, and if it is non-zero (i.e. true) then the program will
be stopped, otherwise it will resume.

The Debugger LaHice C 5 Page 19 1

Alt-B Set Breakpoint

This is a window command allowing the setting or clearing of breakpoints at
any time. The line entered should be one of the following forms, depending on
the type of breakpoint required:

< a d dress>
will set a simple breakpoint.

<address>, <ex presslon>
will set a stop breakpoint at the given address, after it has executed
<expression> times.

<address > , =
will set a count breakpoint. The initial value of the count will be zero.

<address>, •

will set a permanent breakpoint.

<address> , ? <expressi o n >
will set a conditional breakpoint, using the given expression.

<address> , -
will clear any breakpoint a t the given address.

Breakpoints cannot be set on addresses which are odd or unreadable, or in
ROM, though ROM breakpoints may be emulated using the Run Until
command.

Every time a breakpoint is reached, regardless of whether the program is
interrupted or resumed, the program state is remembered in the History buffer,
described later.

Help Show Help and Breakpoints

This displays the text, data and BSS segment addresses and lengths, together
with every current breakpoint. Alt-commands are available within this
d isplay.

Page 1 92 LaHice C 5 The Debugger

Ctri -B Set Breakpoint

This sets a simple breakpoint at the start address of the current window, so
long as it is a disassembly window. If a breakpoint is already there then it
will be cleared.

u Go Until

This prompts for an address, at which a simple breakpoint will be placed
then program execution resumed.

Ctri - K Ki l l Breakpoints

This clears all set breakpoints.

Ctri-A Set Breakpoint then Execute

A command that places a simple breakpoint at the instruction after that at
the PC and resumes execution from the PC. This is particularly useful for DBF­
type loops if you don't want to go through the loop, but just want to see the
result after the loop is over.

Ctri- D GEMDOS Breakpoint

This allows a breakpoint to be set on specific GEMOOS calls. The required
GEMDOS number should be entered, or a blank line entered if any existing
GEMDOS breakpoint needs to be cleared.

H istory

MonST2C has a history buffer in which the machine status is remembered for
later investigation.

The most common way of entering data into the history buffer is by using you
single-step but, in addition, every breakpoint reached and every exception
caused enters the machine state into the buffer. Various forms of the Run
command also cause entries to be made into this buffer.

H

The history buffer has room for five entries - when it fills
up, the oldest entry is removed to make room for the
newest entry.

Show H istory Buffer

This opens a large window displaying the contents of the history buffer. All
register values are shown including the PC as well as a disassembly of the
next instruction to be executed.

The Debugger Lattice C 5 Page 1 93

If a disassembly in the H i story display includes an
instruction which has a breakpoint placed on it the c J s
will show the curren t values for that breakpoint, not the
values at the time of the entry into the history buffer.

Quitt ing MonST2C

Ctri-C Terminate

This will issue a terminate trap to the current GEMDOS task. If a program
has been loaded from within M o n ST 2 C it will be terminated and the
message Program Terminated appear in the lower window. Another
program can then be loaded, if required.

If no program has been loaded into MonST2C it will itself terminate when
this command is used.

Terminating some GEM programs prematurely, before they
have closed workstations or restored window control
properly can seriously confuse the AES and VDI. This may
not be noticeable immediately but often causes crashes
when a subsequent program is executed.

Loading & Saving

Ctri - L Load Executable Program

This will prompt for an executable filename then a command line and will
attempt to load the file ready for execution. If MonST2C has already loaded
a program it is not possible to load another until the former has terminated.

The file to be loaded must be an executable file - attempting to load a non­
executable file will normally result in TOS error 66 and further attempts to
load executable files will normally fail as GEMDOS does not de-allocate the
memory it allocated before trying to load the errant file. I� this occurs
terminate MonST2C, re-execute it and use the Load Binary File command.

8 Load Binary File

This will prompt for a filename and optional load address (separated by a
comma) and will then load the file where specified. If no load address is
given, memory will be allocated from GEMDOS and used. MO will be set to
the start address and M 1 to the end address.

Page 1 94 LaHice C 5 The Debugger

s Save Binary File

This will prompt for a filename, a start address and an (inclusive) end
address. To re-save a file recently loaded with the Load Binary File command
<fl lename> .MO, and M 1 may be specified, assuming of course that MO and
M 1 have not been re-assigned.

A Load ASCI I File

This powerful command allows an ASCII file, normally of source code, to be
loaded and viewed within MonST2C . Window 4 will be created if required
then set up as a source-code window. Memory for the source code is taken from
GEMDOS so sufficient free memory must be available. It is recommended that
source-code be loaded before an executable program to ensure enough memory.

If the file currently being debugged contains Lattice debug information,
MonST2C will use the line number information corresponding to the new
source file that has been loaded. Thus, loading the source file will change
the effect of the # operator.

Window 4 is not shown, though an ASCII file may may be
loaded in low-res then viewed after switching to medium
resolution using Ctrl-0 and pressing Alt-S, Alt-T, Alt-T.

If an ASCII file is loaded after an executable program the
memory used will be owned by the program itself, not
M o n ST 2 C . When such a program terminates, any
displayed source-code window will be closed. This is also
the case when the source text is automatically loaded by
MonST2C.

Executing Programs

Ctri -R Return to program I Run

This runs the current program with the given register values at full speed and
is the normal way to resume execution after entry via a breakpoint.

Ctri -Z Single-Step

This single-steps the instruction at the PC with the current register values.
Single-stepping a TRAP, Line-A or Line-F opcode will, by default, be treated
as a single instruction. This can be changed using Preferences.

The Debugger LaHice C 5 Page 1 95

Ctri ·Y Single-Step

Identical to Ctri-Z above but included for the convenience of German users.

Ctri-T Interpret an Instruction (Trace)

This interprets the instruction at the PC using the displayed register values.
It is similar to Ctri-Z but skips over BSRs, JSRs, TRAPs, Line-A and Line-F
calls, re-entering the debugger on return from them to save stepping all the
way through the routine or trap. It works on instructions in ROM or RAM.

Ctri ·S Sk ip an Instruction

Ctri-S increments the PC register by the size of the current instruction thus
causing it to be skipped. Use this instead of Ctri-Z when you know that this
instruction is going to do something it shouldn't or that you don't like.

R Run (various)

This is a general Run command and prompts for the type of execution,
selected by pressing a particular key.

Run G Go
This is identical to Ctri-R, Run, and resumes the program at full speed.

Run S Slowly

This will run the program at reduced speed, remembering every step in the
history buffer.

Run I Instruction

This is similar to Run Slowly but allows a count to be entered, so that a
particular number of instructions may be executed before MonST2C is entered.

Run U Until

You will be prompted for an expression which will be evaluated after every
instruction. The program will then run, albeit at reduced speed, until the
given expression evaluates to non-zero (true) when MonST2C will be entered.
For example if single-stepping a DBF loop which used d6 in the ROM code
you could say Run Until d6&ffff=ffff (waiting for the low word of d6 to be
$FFFF) or, alternatively, PC=FC8B 1 A, or whatever.

Page 1 96 Lattice C 5 The Debugger

This should not be confused with the Until command,
which takes an address, places a breakpoint there then
resumes execution.

With all of these commands (except Run Go) you will then be asked Watch
V /N? If V is selected then the MonST2C display will be shown after every
instruction and you can watch registers and memory as they change, or
interrupt execution by pressing both Shift keys simultaneously. If N is selected
then execution will occur while showing your program's display and execution
may be interrupted by pressing Shlft-Ait-Help.

Selecting Watch mode with screen switching turned off is
likely to result in a great deal of eye strain as the
display will be flipped after each and every instruction,
particularly alarming with colour monitors.

With any of these R u n modes (except G o) all information after every
instruction will be remembered in the history buffer. In addition TRAPs wi l l
be treated as single-instructions, unless changed with Preferences; though
see the warnings under that command about tracing all the way through ROM
routines.

When a program is running with one of the above modes a couple of pixels
near the top left of the display will flicker, to denote that something is
happening, as it is possible to think the machine has hung when, in fact, it is
simply taking a while to Run through the code, an instruction at a time.

Searching Memory

G search memory (Get a sequence)

This will prompt Search for B/W /L/T /I?, standing for Bytes, Words, Longs,
Text and Instructions.

If you select B, W or L you will then be prompted to enter the sequence of
numbers you wish to search for, each separated by commas. MonST2C is not
normally fussy about word-alignment when searching, so it can find longs on
odd boundaries, for example. If you wish to force a particular alignment,
finish the list of items to search for with ',W'; for word boundaries or ',L' for
longword boundaries.

If you select T you may search for any given text string, for which you will be
prompted. You will also be asked whether you wish the search to be case
sensitive; if you press Y then Test will match TEST or TeSt

The Debugger LaHice C 5 Page 1 97

If you select I you can search for part or all of the mnemonic of an instruction;
for example if you searched for $ 1 4(A you would find an instruction like
MOVE. L D2 ,$ 1 4(A0). The case of the string you enter is important (unlike
MonST version 1), but you should bear in mind the format the disassembler
produces, e.g. always use hex numbers, refer to A7 rather than SP and so on.

Once you have selected the search type and parameters, the search begins,
control passing to the Next command, described below.

N find next

This can be used after the G command to find subsequent occurrences of the
search data. With the B, W , L and T options you will always find at least
one occurrence, which will be in the buffer within MonST2C that is used for
storing the sequence. With the T option you may also find a copy in the
system keyboard buffer. With these options, the Esc key is tested every 64k
bytes and can be used to stop the search. With the I option, which is very
much slower, the Esc key is tested every 2 bytes.

The search area of memory goes from 0 to the end of RAM, then via the
system ROM area and cartridge area then back to 0. MonST2C will not
search the cartridge area if the environment variable NOCARTRIDGE exists.

The search will start just past the start address of the current window (except
register windows) and, if an occurrence is found, it will re-display the window
at the given address.

Searching Source-Code Windows

If the G command is used on a source-code window the T sub-command is
chosen automatically and, if the text is found, the window will re-display
the line containing it.

M isce l l a neous

Ctri -P Preferences

This permits control over various options within M onST2 C . The first three
require Y /N answers, pressing Esc aborts and Return leaves them alone.

Screen Switching

Defaulting to On, this causes the display to switch to that of your program
only after 20 milliseconds. It should be switched off when a program is about
to change a screen's address or resolution and then turned back on afterwards.

Page 1 98 LaHice C 5 The Debugger

Follow Traps

By default, single-stepping and the various forms of the Run command treat
TRAPs, Une-A and Line-F calls as single instructions. However by turning this
option O n the relevant routines will be entered allowing ROM code to be
investigated.

If you are interested in this sort of low-level hackery, you should consider
purchasing DevpacST as it provides facilities from recovering from the after
effects of interrupting the operating system code.

Relative Offsets

This option defaults to On and affects the disassembly of the address register
indirect with offset addressing modes, i.e. xxx(An) . With the option on, the
current value of the given address register is added to the offset and then
searched for in the symbol table. If found it is disassembled as symboi(An) .
This option is required to show the addresses of your global variables if they
are accessed via an address register.

Ignore Case

This option defaults to Off. If it is set to On then if you enter fred in an
expression the subsequent search will give the value of the first symbol that
matches this, ignoring case, thus finding FRED, fred or Fred. This option is
useful for lazy typists who use the same name with different casing.

Show Line Numbers In Source

MonST2C can either show line numbers in your source window in decimal
(press D), hexadecimal (H) or not at all (press N). Using hexadecimal line
numbers has the advantage that you can use them directly with the # line
number operator. This if you can see that you want to execute your program
until the line with number 001 C then just type U (for run until) # 1 C .
Remember how ever that AO through A7 and DO through D7 are register
names and take priority over hexadecimal numbers. To enter line number AO
use #SAO.

Decimal line numbers are naturally more civilised but remember that you
need to prefix any decimal number with \ . If you want to find the address of
line 28 decimal, use #\28 not #28.

The Debugger Lattice C 5 Page 1 99

Auto Load Source

Using the default settings, MonST2C will automatically load a C source file
and run your program until the label _main, (i.e. the beginning of your
function main), ready for you to set a breakpoint in the code. MonST2C loads
the source file corresponding to the first module with debug information in
the file that you are debugging. This would normally be your main program.
You can disable this feature if you do not wish to load this source file or you
wish to debug a program written in anot}ler language. Please see the sections
at the end of this chapter concerning the use of MonST2C with multi-module
programs.

Automatic Prefix Labels

Using the default setting MonST2C will try prefixing symbols by _ and @ if
it cannot find a label, so that if you enter main and there is no label called
main, the MonST2C will try _main or if this doesn't exist then it will try
@main.

This facility is extremely useful since C functions normally have an _ added
by the compiler. When using register passing @ is used as the prefix instead
of _. Thus you can just use the C name without bothering about the prefix.

Should there be an assembly language name the same as a C name, say test
and _test, then you will need to use the _ explicitly to get the C function
rather than the assembly language one.

You can disable this option so that only exact matches of names are
supported.

Symbols Option

This allows control over the use of symbols in expressions in MonST2C . It
will firstly ask whether the case of symbols should be ignored, pressing Y
will cause case independent searching to be used. It will then prompt for the
maximum length of symbols, which is normally 22 but may be reduced to as
low as 8.

Top Of RAM

This indicates to MonST2C which memory location should be considered the
top of memory by the Search Memory (G) command. Normally you will not
need to change this as it defaults to the system variable phys_top; but you
may need to modify it if you are debugging software that lowers phys_top.

Page 200 LaHice C 5 The Debugger

Save preferences

Reply V to this command to save your current preferences to the file
MONST2 . 1NF in the current directory. When MonST2 loads it will read your
current preferences from this file. MONST2 . 1NF must be in the current directory
when MonST2C is loaded.

Intelligent Copy

This copies a block of memory to another area . The addresses should be
entered in the form

<start> , <inclus ive_end> , <dest inat ion>

The copy is intelligent in that the block of memory may be copied to a
location which overlaps its previous location.

L

No checks at all are made on the validity of the move;
copying to non-existent areas of memory is likely to crash
MonST2C and corrupting system areas may well crash the
machine.

List Labels

This opens up a large window and displays all loaded symbols. Any key
displays the next page, pressing Esc aborts. The symbols will be displayed in
the order they were found on disk.

w Fill Memory With

This fills a section of memory with a particular byte. The range should be
entered in the form

<start> , <inclus ive_end> , <f illbyte>

The warning described under the I command about the lack of checks applies
equally to this command.

M Modify Address

Included for compatibility with MonSTl, equivalent to Alt-A.

0 Show Other Bases

Included for compatibility with MonSTl, equivalent to Alt-O.

D Change Drive & Directory

The Debugger LaHice C 5 Page 20 1

This allows the current drive and sub-directory to be changed.

Ctri-Ait-N umeric Dot Reset machine

Holding down Ctrl and Alt and then pressing the Dot (.) key on the numeric
keypad will cause the machine to be reset. Great for Mega ST owners with 1 .2
ROMs but without long arms!

Ctri -E Re- Instal l Exceptions

This command causes MonST2C to re-install the exception vectors; useful if
you are debugging a high level language program whose runtime routines use
the exceptions. Naturally, Lattice C 5 programs do not normally modify the
exception vectors. This must be used after the user's program has modified the
exceptions.

Command Summary

Window Commands

Aft-A . Set Address
Alt-B . Set Breakpoint
Alt-E . Edit Window
Alt-F . Font Size
Alt-L . Lock Window
Alt-O . Show Other
Alt-P . Printer Dump
Alt-R . Register Set
Alt-S . Split Windows
Alt-T . Change Type
Alt-Z . Zoom Window

Screen Switching

V . View Other Screen
CtJK) . Other Screen Mode

Breakpoints

Alt-B . Set Breakpoint
Help . Show Help and Breakpoints
Ctri-B . Set Breakpoint

Page 202 LaHice C 5 The Debugger

U . Go Until
Ctri-K . Kill Breakpoints
Ctri-A . Set Breakpoint then Execute
Ctrl-0 . GEMDOS Breakpoint

Loading and Saving

Ctri-L . . . Load Executable Program
B . Load Binary File
S . Save Binary File
A Load ASCII File

Executing Programs

Ctri-R . Return to program I Run
Ctri-Z Single-Step
Ctri-Y . Single-Step
Ctri-T . Interpret an Instruction (Trace)
Ctri-S . Skip Instruction
R . Run (various)

Searching Memory

G . Search Memory (Get a sequence)
N . Find Next

M iscellaneous

Ctri-Ait-Dot Reset machine
Girl-C . Terminate
Ctri-E . Re-install breakpoints
Ctri-P . Preferences
D . Change Drive & Directory
H . Show History Buffer
1 . Intelligent Copy
L . List Labels
M . Modify Address
0 . Show Other Bases
W . Fill Memory With
Shlft-Ait-Help Interrupt Program

The Debugger LaHlce C 5 Page 203

Debugging Stratagem

Hints Be Tips

If you have interrupted a program using Shlft-Ait-Help or by a Run Until
command and have found yourself in the middle of the ROM, there is a way
of returning to the exact point in your program which called the ROM. Firstly
ensure the Follow Traps option is on, then do Run Until with an expression of
sp=a7. This will re-enter MonST2C the moment user mode is restored which
will be in your program.

When using Run Until knowing that it will take a quite a while for the
condition to be satisfied, give MonST2C a hand by pre-computing as much of
the expression as you can, for example

(a3> (3A400 - \ 1 00+M1))

could be reduced to

a3>xxx

where xxx has been calculated by you using the Alt-O command.

If you do use a label with Run Until then explicitly including any leading _ a
@ will speed up the table search considerably.

Bug Hunting

There are probably as many strategies for finding bugs as there are
programmers; there is really no substitute for learning the hard way, by
experience. However, here are some hints which we have learnt, the hard
way!

Firstly, a very good way of finding bugs i s to look at the source code and
think. The disadvantage of reaching first for the debugger, then second for
the source code, is that it gets you into bad habits. You may switch to a
machine or programming environment that does not offer debugging, or at
least not one as powerful you are used to.

If a program fails in a very detectable way, such as causing an exception,
debugging is normally easier than if, say, a program sometimes doesn't quite
work exactly as it should.

Page 204 LaHice C 5 The Debugger

Many bugs are caused by a particular memory location being stepped on.
Where the offending memory location is detectable, by producing a bus error,
for example, then a conditional breakpoint placed at one or more main
subroutines can help greatly. For example, suppose the global variable
m a ln_ptr is somehow becoming odd during execution. The conditional
expression could be set up as

{main_ptr}&1

If this method fails, and the global variable is being corrupted somewhere
un-detectable, the remaining solution is to Run Until that expression, which
could take a considerable time. Even then it may not find it, for example if
the bug is caused by an interrupt happening at a certain time when the stack
is in a particular place.

Count breakpoints are a good way of tracking down bugs before they occur. For
example, suppose a particular subroutine is known to eventually fail but you
cannot see why, then you should set a count breakpoint on it, then let the
program run. At the point where the program stops, because of an exception
say, look at the value of the count breakpoint (using Help) . Terminate the
program, re-load it , then set a stop breakpoint on the subroutine for that
particular value or one before it. Let it run and then you can follow through
the subroutine on the very call that it fails, to try and work out why.

Exceptions

MonST2C uses the 68000 processor exceptions to stop runaway programs and to
single-step, so at this point it would be useful to explain them and what
normally happens when they occur on an ST.

There are various types of exception that can occur, some deliberately, others
accidentally. When one does occur the processor saves some information on the
SSP, goes into supervisor mode and jumps to an exception handler. When
MonST2C is active it re-directs some of these exceptions so it can take control
when they occur. The various forms of exceptions, their usual results, and
what happens when they occur with M o nST2C active is shown in the
following table:

The Debugger LaHice C 5 Page 205

Number Exception Usual effect MonST2C active
2 bus error lonhs trapped

3 address error lonhs trapped

4 illegal instruction lonhs trapped

5 zero divide tunb; trapped

6 CHK instruction lonhs trapped

7 TRAPV instruction lonhs trapped

8 privilege violation lonhs trapped

9 trace lonhs used for single-stepping

10 line 1010 emulator fast VDI interface fast VDI interface

1 1 line 1 1 1 1 emulator internal TOS internal TOS

32 TRAP #0 tunb; trapped

33 TRAP #1 GEMOOS call GEMOOS call

34 TRAP #2 AES/VDI call AES/VDI call

35-44 TRAP #3-#12 tunb; trapped

45 TRAP #13 XBIOS call XBIOS call

46 TRAP #14 BIOS call BIOS call

47 TRAP #15 lonhs trapped

Exceptions 2 to 8 are caused by a programmer error and are trapped by
MonST2C.

Exception 9 can remotely be caused by programmer error and is used by
MonST2C for single stepping.

Exceptions 10, 1 1, 33, 34, 45 and 46 are used by the system and left alone.

The rest (i.e. the unused TRAP exceptions) are diverted into MonST2C, but
can subsequently be re-defined to be exploited by programs if required.

The 'bombs' entry in the table above means that the ST will a ttempt to
recover from the exception, but it is not always successful.

When an exception occurs, the ST prints on the screen a number of bomb
shapes (or mushrooms on the old disk-loaded TOS), the number being equal to
the exception number. Having done this, it will abort the current program
(losing any unsaved data from it) and attempt a return to the Desktop.

If the exception was caused by or resulted in important system variables being
destroyed then the attempt may fail and the machine will not recover.

Occasionally very nasty crashes can cause the whole screen to fill with bombs
(or mushrooms) which looks very impressive, but is not very useful!

Page 206 Lattice C 5 The Debugger

Memory Layout

The usual versions of MonST2C eo-reside with programs being debugged; that
is, they are loaded, ask for a filename, and load that file in together with
any labels.

It is useful to examine the usual logical memory map both with and without
MonST2C, shown below:

high memory

Free

Free

System
low memory

Without MonST2C With MonST2C

The actual code size of MonST2C is around 25k, but in addition it requires an
additional 32k of workspace. This may seem large but it is required for the
copy of the ST screen memory saved by M onST2C; this is a most useful
feature of the debugger.

Exception Analysis

When an unexpected exception occurs, it can be useful to be able to work out
where and why it occurred and, possibly, to resume execution. Often a quick
curse and a look at your source code may get your program working quicker
though!

The Debugger LaHice C 5 Page 207

Bus Error

If the FC is in some non-existent area of memory then look at the relevant
stack to try and find a return address to give a clue as to the cause. If the PC
is in a correct area of your program then the bus error must have been caused
by a memory access to non-existent or protected memory. Recovering from bus
errors and resuming execution is generally not possible.

Address Error

If the PC is somewhere strange the method above should be used, otherwise
the error must have been caused by a program access to an odd address.
Correcting a register value may be enough to resume execution, at least
temporarily.

Illegal Instruction

If the PC is in very low memory, below around $30, it is probable that it was
caused by a jump to location 0. If you use MonST2C to look here you will see
a short branch together with, normally, various O R I instructions (really
longword pointers) and eventually an illegal instruction.

Privilege Violation

This is caused by executing a privileged instruction in user mode, normally
meaning your program has gone horribly wrong. Bumping the PC past the
offending instruction is unlikely to be much help in resuming the program.

Using MonST2C with other languages

A major feature of M onST2C is its ability to use symbols taken from the
original program whilst debugging. MonST2C supports two formats for label
information - the DRI standard, which allows up to 8 characters per symbol,
and the HiSoft Extended Debug format, allowing up to 22 characters.

Most of HiSoft's language products support both formats (for example,
DevpacST, H ISoft BAS IC and FTL Modula-2) and many other vendors'
compilers and linkers have an option to produce DRI-format debugging
information.

The line number information format is, at the present time, specific to Lattice
C and as such the line number operator, #, can only be used with programs
compiled with one of the debugging options (-d l to -d5) .

Page 208 LaHice C 5 The Debugger

Using MonST2C with multi - module programs

MonST2C will initially read the line number information and source file for
the first module in the file that was compiled using -d. Thus, if you are only
interested in debugging one module at a time then compile just this module
with -d3: the appropriate source code will be loaded automatically.

If you wish to debug more than one file at once, then you can switch to
another file by explicitly loading the appropriate source file using the A
command.

For Devpac MonST2 Users

If you are used to the version of MonST that is part of Devpac ST version 2,
here are the differences:

• Source line numbers can now be displayed in either hexadecimal or
decimal. This is set using the Preferences command.

• Using the default settings, M o n ST2C will automatically run the
program until the label _main and load the source file corresponding to
the first debug information in the file.

• The operator # is used to give the address corresponding to a given C
line number. To use this you need to use the compiler's -d option. The
argument to # is a general MonST2C expression and so when using a
number this should be in hexadecimal or prefixed by \ for decimal. Thus
1 0 and #\ 1 6 both give the address of line 16 of the program.

• The ASCII load command will change the action of the # operator if
the appropriate debug information is available.

• MonST2C has no support for disassembly to disk. Dissassembly to the
printer is only available via Alt-P .

The Debugger LaHice C 5 Page 209

Page 2 1 0 LaHice C 5 The Debugger

ASM
The Assem bler

The Lattice Macro Assembler supports the development of assembly language
modules for use with C programs. Because the Lattice C Compiler generally
produces very good machine code you seldom have to resort to assembly
language programming. However, some intimate relations between hardware
and software are best achieved in the assembly language environment. Also,
assembly language is sometimes necessary when you want to get the best
combination of code size and speed.

The assembler han9les the complete set of Motorola 680x0 instruction
mnemonics as well as an extensive set of assembler directives and a powerful
macro facility. It can, therefore, be used to develop complete systems in
assembly language. Nonetheless, it is provided primarily to supplement the
C compiler and has not really been designed for large assembly language
projects. For such tasks a full assembler package, such as DevpacST should be
used giving more power for the assembly language programmer.

!Basic Concepts
The assembler reads a source file and produces an object file in the Lattice
object file format, along with an optional listing of the source and assembled
code. The source file is assumed to have a .s extension and the object file is
produced with a .o extension ..

Source Format

Each assembly language source line has the following format:

label operation operands comment

White space (i.e. spaces and tabs) can appear before any field and must
appear between the operation and operand.

The four fields of the source line are described below:

Label

The label field is optional. If it is present and is preceded by white space, it
must be followed immediately by a colon. That is how the assembler
determines that the field is a label and not an operation. If there is no white
space before the label, then the colon may be omitted.

The Assembler Lattice C 5 Page 21 1

A label can normally be up to 63 characters long and can contain letters,
digits, underscores, periods, at symbols (@) and dollar signs. It cannot start
with a digit, and the case of letters is significant. For example, labels XYZ,
xYZ, and XyZ are distinct.

Local labels are supported using the Motorola standard syntax of a decimal
number followed by a dollar character. They may be used between two non­
local labels and need only have unique names within that scope. Note that
unlike GenST, starting a label with a period does not signify a local label.

Operation

The operation field contains the name of an instruction, assembly directive,
or macro. This field may not begin a line; if no label is present, then the line
must begin with white space. If a label is present but is not followed by a
colon, then white space must separate the label and operation fields.

The case of this field is not significant. That is, operation MOVE is the same
as move, this applies equally to macros.

Operands

The operands field contains zero or more expressions, depending on the
particular operation. For some operations, the operands field is optional or
never used. Expressions are composed of constants, variables, and operators.

A constant is a decimal, hexadecimal, octal, or binary number. The default
number base is decimal, and the other bases are indicated by a prefix:

Number Representations

Number Representation Example

Decimal a string of decimal digits 1 234

Hexadecimal $ followed by a string of hex digits $89AB

Octal @ followed by a string of octal digits il743

Binary % followed by zeros and ones % 1 0 1 1 0 1 1 1

ASCII Up to 4 ASCII characters within " AC9T "
Literal quotes

A variable is a label name or a name defined via an assembler directive. The
special variable, • (asterisk) can be used to signify the current program
counter.

Page 2 1 2 LaHice c 5 The Assembler

An operator is one of the following:

Order Operator Meaning

1 - Unary minus

- Bitwise NOT

2 < < Left shift

> > Right shift

3 & Bitwise AND

I Bitwise OR

4 . Multiply

I Divide

% Modulo

5 - Equal to

I= Not equal to

< Less than

<= Less than or equal to

> Greater than

>=
Greater than or equal to

Add +
Subtract

-

6 11 Bitwise Exclusive OR

The Order column indicates the order in which operators are processed.
Operators of the same precedence are processed from left to right. For
example, in the expression

ABC+DEF* - PDQ

the negation of PDQ is performed first, followed by the multiplication and
then the addition, although this can be overridden by the use of parentheses
as in,

(ABC+DE F) * - PDQ

Each expression represents a 32-bit value. An absolute expression is one that
contains only constants (literal or equated), while a relocatable expression
contains symbols whose value is determined during linking.

The Assembler LaHk:e C 5 Page 2 1 3

Comment

This field is any text appearing after an operation, associated operands and
white space. A comment may also be specified after a label or on a blank line
when prefixed with a semi-colon or asterisk.

!Addressing modes
The addressing modes supported by the Lattice assembler are as follows:

Mcxle Example

Dn add . w d 1 , d0

An addq . w # 1 , a 1

(An) add . w (a 1) , d0

(An) + add . w (a1) + , d0

- (An) add . w - (a 1) , d0

d 1 6 (An) add . w 1 0 (a1) , do

dB (An , Xn) add . w 1 0 (a 1 , a2 . l) , dO

bd (An , Xn) add . w $ 1 0000 (a 1 , a2 . 1) , dO ('020 only)

([bd , An l , Xn , od) add . w ([1 0 , a 1 I , a 2 . 1 , 20) , dO ('020 only)

([bd , An , Xn l , od) add . w ((1 0 , a 1 , a2 . 1 1 , 20) , dO ('020 only)

(XXX) . W add . w (1 00) . w , dO

(XXX) . l add . ! (1 00) . ! , dO

#<data> add . ! #1 00 , d0

d 1 6 (pc) add . w 1 0 (pc) , dO

dB (pc , Xn) add . w 1 0 (pc , a2 . l) , d0

bd (pc , Xn) add . w $ 1 0000 (pc , a2 . 1) ('020 only)

([bd , pc I , Xn , od) add . w ([1 0 , pc 1 , a 2 . 1 , 20) , d O ('020 only)

([bd , pc , Xn l , od) add . w ([1 0 , pc , a 2 . 1 I , 20) , d O ('020 only)

Page 2 1 4 LaHice C 5 The Assembler

where:

d8 8 bit number

d 1 6 1 6 bit number

bd 32 bit byte displacement

od 32 bit outer displacement

An Address register (o0-o7)

On Data register (d0-d7)

Xn Index register (d0-d7 /a0-o7)

Note that all the operands of the addressing modes marked 68020 are
optional.

Data for the 68881 floating point instructions may be specified using floating
point notation, i.e.

".#2 . 1
... #2 . 1 E+1 0

will be converted into the proper floating point formats according to the type
of instruction. For example, in the following instruction:

fmove . s #2 . 1 , fp 1

The 2 . 1 would be in single precision. Other sizes allowed are:

fmove . d
fmove . x

#2 . 1 , fp 1
#2 . 1 1 f p 1

; double precision
; extended precision

Note that the packed data format is not converted for you. Also if you want
to specify the bit pattern by hand you may use the following formats:

fmove . s
fmove . d
fmove . x

#$1 2345678 , fp 1
#$1 23456781 234568 , fp 1
#$1 23456781 23456781 2345678 , fp 1

j 3 2 bit
j 64 bit
j 96 bit

You can also specify the constants in octal (i .e. @ 1 2 3 4 5 6 7 1 2) or binary (i.e.
%0 1 1 0 1 1 0 1 00 1 1 0 1 0 1).

The Assembler LaHice C 5 Page 2 1 5

!Using the Assembler
The assembler can be run via the following command:

asm (>listf ile) [option s) filename

Optional fields are enclosed in brackets, and all fields are described below:

> l lstfl le

Causes the listing and error message output of the assembler to be directed to
the specified file.

options

Assembler options are specified as a minus sign followed by a single letter; in
some cases, additional text may be appended. The letter may be in either
upper or lower case. Each option must be specified separately, with a
separate minus and letter. The options are:

·d This option has two uses. It activates the debugging mode (in the same
way as the compiler -d l option) or it defines symbols. When used to
define symbols it may be used in the following ways.

-dsymbol
Causes symbol to be defined as if your source file had the
sta tement:

symbol EQU 1

·dsymbol=value

Causes symbol to be defined as if your source file had the
sta tement:

symbol EQU value

-lpfx Specifies that I N C L U D E files are to be searched for by prefixing the
filename with the string pfx, unless the filename in the INCWDE
statement is already prefixed by a drive or directory specifier. Up to 4
different -1 strings may be specified in the same command. No
intervening blanks are permitted in the string following the -1. Note
that if a directory name is to be specified as a prefix, a trailing
backslash must be supplied.

Page 2 1 6 LaHice C 5 The Assembler

When an unprefixed INCLUDE filename is encountered, the current
d irectory is searched first; then file names are constructed and
searched for, using prefixes specified in -1 options, in the same left-to­
right order as they were supplied on the command line.

- l (llst) Causes a listing of the source file to be written to the standard output.
The listing displays the appropriate program counter and code
information alongside the assembly source. One or more of the
following characters may be appended to the -1 option, with the
following effects:

List the source for text from I N C L U D E files as well as the
original source file.

m List additional data generated for source lines which cannot be
accommodated alongside the original source line (i.e. allows
multiple listing lines for each source line).

X List the expansion text for macros.

-m This option controls whether warnings are generated when 68020 code
is encountered. The -m must be immediately followed by one of the
letters from the following list:

0 Used for 68000 target. Provides warning flags if you attempt to
use 68020 only instructions. This is the default case.

2 Used for 68020 target. Turns off the warnings supplied in the
-mO option.

3 Used for 68030 target.

-opfx Specifies that the output filename (the . o file). If a directory name is
specified the output name is formed by prefixing the input filename
(the . s file which is being assembled) with pfx . Any drive or
d irectory prefixes originally attached to the input filename are
discarded before the new prefix is added. No intervening blanks are
permitted in the string following the - 0 . Note that if a directory
name is to be specified as a prefix, a trailing backslash m ust be
supplied.

-u This option automatically prefixes all external references with an
underline (_) . If references to C labels have already been prefixed
with an underline, the option is not needed.

-w This option works like the option -dSHORTINT.

The Assembler LaHice C 5 Page 2 1 7

filename

Specifies the name of the source file to be assembled. This is the only
required field on the command line. If the name does not have an extension . s
is assumed. The object file will have the same name as the source file, except
that the source file extension is replaced with .o .

For example, the following command causes the assembly language source file
modn . s to be assembled, producing the object file modn .o . A listing of the
source file, along with any error messages generated, will be written to the
file modn. lst.

asm >modo . lst · 1 modo

!Assembler D i rectives
The assembler handles al l the 68000, 68020, and 68030 instructions using the
s tandard Motorola syntax. Assembler d irectives are instructions to the
assembler rather than instructions to be translated directly into object code.

Note that although the I DNT, PAGE, SPC and TIL directives are recognised,
they are not supported and do not cause errors to be generated in order to
provide compatibility with other assemblers . Also, as with instruction
mnemonics, directives cannot begin in the first character of the source line.

CNOP offset,alignment

This directive aligns the program counter using the given byte alignment and
offset. For example,

coop 1 , 4

aligns the program counter one byte past the next long-word boundary relative
to the start of the current section. Note that

cnop 0 , 2

is equivalent to the EVEN directive found in other assemblers and will ensure
that the following data is aligned on an even address (i.e. a word boundary).
This is normally only necessary when 68000 instructions follow byte-aligned
data as the DC and DS directives word-align automatically.

CSECT name(,type,alignment,reltype,relsize)

Defines a program control section. Some form of section must be defined before
any data can be generated. All parameters are optional except name and
have the following functions:

Page 2 1 8 LaHice C 5 The Assembler

name

type

align

is the control section name, note that this is case sensitive.

may be CODE (or 0) for instructions, DATA (or 1) for initialised
data, or BSS (or 2) for uninitialised data sections; the default value
is 0.
specifies the alignment requirements of the control section as a
power of 2; this parameter is currently ignored and all sections are
longword aligned.

reltype specifies the relocation type, which determines the default
addressing mode to be used for all symbol references and definitions
from within the control section. The default value is 0.

relslze specifies the size, in bytes, of the relocation data for the section;
the default value is 4. Legal type and size combinations for
relocation information on the 68000 are summarised in the following
table:

Type Size (bytes) Description

0 4 Absolute long addressing (default)

0 2 Absolute short addressing

1 2 PC-relative offset (PC)

2 2 Address-register-relative offset (A4)

A discussion of the use of CSECT directives which are compatible with the -b
and -r options of the C compiler appears later.

(label)
(label)
(label)

DC.B
DC.W
DC.L

expression(,expression)
expression(,expression)
expression(,expression)

These directives define constants in memory. They may have one or more
operands, separated by commas. The constants and any associated label will
be aligned on a word boundary for DC . W and DC . L. You may also specify
string expressions for DC.B within single or double quotes.

Be very careful about spaces in D C directives, as a space is the delimiter
before a comment. For example, the line

dc . b 1 , 2 , 3 , 4

will only generate 3 bytes - the , 4 will be taken as a comment.

The Assembler LoHice C 5 Poge 2 1 9

(label)
(label)
(label)

DS.B
DS.W
DS. L

expression
expression
expression

These directives reserve uninitialised memory locations. Any label specified
is set to the start of the area, which will lie on a word boundary for the
DS. W and DS. L directives. If used within a BSS section, the reserved space is
simply added to the section size and no object code is generated.

For example, each of these lines will reserve 8 bytes of space in different
ways:

END

d s . b 8
ds . w 4
ds . l 2

Signifies the end of program source.

ENDM

Terminates a macro definition. Must be used after a MACRO directive.

label EQU expression

This directive permanently assigns the value and type of a given label to be
equivalent to the expression. If there is an error or forward reference in the
expression, the assignment will not be made.

IDNT string

Currently ignored, provided for compatibility only.

INCBIN filename

Includes a binary file, verbatim, in the output file. Suggested uses include
graphics data and ASCII files. You may specify a drive specifier and
directory for I N C B I N , otherwise it will default to searching the current
directory.

INCLUDE filename

This directive will take source code from a file on disk and assemble it
exactly as though it were present in the text. The directive must be followed
by a filename in normal GEMDOS format. If a drive specifier or directory is
included, the entire filename must be surrounded by quotes, e.g.

include " b : \ constant s \ heade r . s •

Page 220 LaHice C 5 The Assembler

In the absence of a drive specifier, the filename is taken to be relative to the
current directory and any include directories specified on the command line
are also searched.

Include directives may be nested up to 16 levels and if any error occurs when
trying to open the file or read it, assembly will be aborted with a fatal error.

L IST

Turns on the assembly listing. All subsequent lines will be listed until an EN)
directive is reached, the end of the text is reached, or a NOLIST directive is
encountered.

(label) MACRO

This starts a macro definition causing all following lines to be copied into a
macro buffer until a matching MEXIT directive is encountered. The presence of
a label determines whether Motorola-style macros are to be used. Refer to the
macro definition section for a more detailed explanation.

M EXIT

This can be used as part of a M A C R O definition to stof. the current macro
expansion prematurefy, usually as a result of a conditiona .

NARG

This is not a directive but a reserved symbol. I ts value is the number of
parameters passed to the current macro. Note that \ # may be used as a
synonym for NARG.

NO LIST

Switches the assembly listing off.

OFFSET (expression)

The OFFSET directive switches code generation to a special dummy section for
the generation of absolute labels. The optional expression sets the value for
the first label, otherwise zero is used. No bytes are written to the disk and
the only directive allowed is DS. This can be used to generate labels which
represent offsets into a data structure. For example,

next
t itle

The Assembler

offset
ds . l
ds . b

1 0
1
32

LaHice C 5 Page 221

will assign the value of 1 0 to the label next and 1 4 to t itle (i.e. 1 longword
after next). To return to ordinary code generation, use the CSECT or SECTION
directive.

PAGE

Currently ignored, provided for compatibility only.

RORG expression

This directive changes the program counter to the specified number of bytes
from the start of the current section. Note that the value specified must be
less than the current PC.

SECTION name(,type)

Define a program section. There are no restrictions on name and the optional
type may be one of the following (in upper or lower case):

CCXlE
DATA
BSS

code section (instructions)
data section (initialised data)
BSS section (uninitialised data)

The default type is CODE. Note that the SECTION directive is a subset of the
CSECT directive which is explained in greater detail elsewhere.

label S ET expression

This is similar to EQU, but the assignment is only temporary and can be
changed with a subsequent SET directive. Forward references cannot be used in
the expression.

TTL string

Currently ignored, provided for compatibility only.

XDEF symbol(,symbol . . .)

Defined symbols may be exported using XDEF; the symbol type (relocatable or
absolute) will also be exported.

XREF symbol(,symbol. . .)

This defines labels to be imported from other programs or modules. If any of
the labels specified are already defined an error will occur, although
importing a label more than once is accepted. Note that the symbol will
inherit the relocation type of the control section in which it appears.

Page 222 LaHice C 5 The Assembler

Conditional Assem bly

Conditional assembly allows the programmer to write a comprehensive source
program that can cover many conditions. At the start of the conditional block
there must be one of the many IF directives and at the end of each block there
must be a corresponding ENDC directive.

I F expression
IFEQ expression
IFNE expression
IFGT expression
IFGE expression
I FLT expression
I FLE expression

These directives evaluate the expression, compare it with zero and then
conditionally assemble depending on the result. The conditions correspond
exactly to the 68000 condition codes with the exception of the IF directive,
which is identical to I FNE.

IFD label
IFND label

These directives allow control depending on whether a label is defined or not.
With IFD, assembly is switched on if the label is defined, whereas with I FND
assembly i s switched on i f the label i s not defined.

IFC 'string l ' , 'string2'
I FNC 'string 1 ' , 'string2'

Primarily for use within macros, these directives perform a case-sensitive
comparison of two strings, both of which must be enclosed within quotes. FC
will only assemble the block if the strings match exactly, whereas IFNC does
not assemble if the strings match.

ELSE

Toggles conditional assembly on or off. If the preceding conditional block was
assembled, E LSE will cause assembly to stop until a matching ENDC is
encountered, and vice-versa.

ENDC

This directive terminates the current level of conditional assembly. If there
are more ENDCs than IFs, an error will be reported.

The Assembler LaHice C 5 Page 223

!Macro Defin ition
Asm supports two styles of macro definition. Motorola standard macros are
defined via the following sequence:

name MACRO
-

ENDM

The definition must begin with the macro name followed by the directive
M A C R O . This is followed by the lines that comprise the macro itself,
terminated by the ENDM directive. The MEXIT directive may also be used
within the macro to terminate the macro early. Using this method of
definition, macro parameters are referenced by a backslash and a number, for
example

move . w \ 2 , (aO)

which would substitute the second macro parameter for \ 2 . Alternatively, you
may wish to use the second form of macro definition which is more flexible
although non-standard:

MACRO
name [arglist]

ENDM

With this system the MACRO directive must appear first, followed by a line
showing a model of how the macro will be called. The argllst is a comma­
separated list of argument strings which provide macro parameter names and
default values in the following format:

a rg [=default]

where arg is an identifier which can be used within the macro to refer to the
corresponding argument text in the macro invocation and default is a string
that will be associated with org when that argument is not provided by a
particular macro invocation. Note that default must be enclosed in single or
double quotes if it contains any white space characters.

Both formats of macro definition support the NARG reserved word - and its
alternative syntax of \ # - which will be substituted with the number of
macro arguments. Also, quoted strings may be passed as macro parameters.

In order to define labels within a macro you should use the special symbol
\ @ . This causes the assembler to generate a unique number each time the
macro is used, preventing multiple definitions of the same label.

Page 224 Lattice C 5 The Assembler

The following example illustrates macro definition using the second style:

min \ �

MACRO
MINWORD source=# 1 00 , dest
cmp .w sou rce , dest
blt . b min \@
move . w source , dest

ENDM

The macro name is MINWORD and it could be invoked in the following way:

MINWORD , d2
rts

resulting in the instructions,

min . O

cmp . w
blt . b
move . w

rts

1 00 , d2
min . o
1 00 , d2

Note that the default value of # l OO was substituted because the first
parameter was omitted and that \ @ was replaced by .0 (calling the macro a
second time would use . 1 etc.).

!Interfacing C with Assembly Language I
The aim of this section is to discuss the conventions which a program must
follow when interfacing to C. Attention is given to features of the Lattice
assembler, Asm, which assist in writing such code and some of the pitfalls
which can occur. Full examples of both C calling an assembly language routine
and assembly calling a C function are given towards the end of the section.

The following list covers the main points which you should bear in mind
when writing assembly code for use with C. Each of these is covered in
greater detail with examples later in the section.

• Separate control sections containing definitions or external references
should be defined for code, initialised data and uninitialised data
(BSS) via the CSECT or SECTION directives.

• Code references (including function calls) may use PC-rela tive
addressing or branch instructions if the function is within a 32K range,
otherwise you should use absolute addressing (i.e. a JSR instruction).

• Data references for near data should use register A4 as a base pointer
whereas far data must use absolute addressing.

The Assembler LaHice C 5 Page 225

• Near data must be defined in the named section _MERGED.

• Standard argument passing functions are prefixed by an underscore (_)
and use values pushed onto the stack.

• Register passing functions have a prefix of @ and place some arguments
in registers with the remainder on the stack.

• The __ asm specifier can be used to determine which register each
function argument is passed in, with certain limitations.

• The size of type lnt may vary between word and long. Also, type char
may be signed or unsigned depending upon compiler options.

• Return values appear in DO with D 1 also being used for double values.
Note that the condition codes after a function call cannot be relied
upon.

• A function may only corrupt registers DO-D 1 / AD-A 1 , all others must be
preserved, including 68881 floating point registers (except for FPO/FP 1)
if used.

Control Sections

In order for an assembly language program to link correctly with C object files
you must use named control sections . The Lattice assembler provides this
facility through the SECT ION and CSECT directives. The latter of these
provides more powerful options concerning automatic conversion of addressing
modes, although in many cases you can simply use SECTION. A summary of
both options can be found in the assembly directives section.

Programs should be divided into code (assembly language instructions and
routines), data (initialised data and constants) and BSS (uninitialised data)
sections. Each of these is described in greater detail below.

Code Sections

All assembly language instructions should appear within code sections. The
two simplest form of directives you can use to specify a code section are:

SECTION name
CSECT name

where n a m e is the control section name. The compiler uses the default
section name of text for all code generation although you may wish to use
different names to identify program modules.

Page 226 LaHice C 5 The Assembler

Any functions defined within a code section can be called from the same
module with a branch or jump to subroutine instruction which you may wish to
make PC-relative. However, in order to make a function visible to other
modules when the program is linked you must define it as an external
definition, for example,

XDEF newtable

would make the function newtable callable from any other module. You
should take into account that the C compiler automatically prefixes all
external references with an underscore character (_) . The XREF directive may
be used to access an external reference which is defined in another module.

The CSECT directive may also be used to specify additional information
about the control section; its general format is:

CSECT name , type , align , reltype , relsize

Only the n a m e parameter must be present; it specifies the name of the
control section. The type parameter describes the type of section; code, data
or BSS (the values 0, 1 and 2 may also be used) . The al ign parameter
specifies the alignment requirements of the control section. The last two
parameters, re l type and rels lze, specify the type and size of relocation
information associated with symbols declared within the control section.

For example, the section directives described previously are equivalent to:

CSECT name , code , 4 , 0 , 4

which is interpreted a s a named code section, aligned on a longword
boundary, defaulting to absolute longword addressing for symbols. The final
two parameters can be used in code sections to automatically convert absolute
long addressing to PC-relative for more compact code, as in

CSECT
XREF
JSR

text , 0 , , 1 , 2
function :::function

Note that we have used the number 0 rather than code and the alignment
parameter has been omitted as all sections are longword aligned. The JSR
instruction will actually be assembled as

JSR _function (PC)

because we have specified a relocation type of PC-relative. T o override this
you may move the XREF out of the PC-relative section. It is also possible to
use several code sections with different relocation types, the assembler will
only use PC-relative addressing for symbols declared in the correct sections.

The Assembler LaHice C 5 Page 227

The advantage of using CSECT to provide PC-relative instructions is t h a t
changing a single CSECT directive gives you the ability t o transform all
external references. This provides you with an equivalent mechanism to that
provided by the -r option on le.

To call a C function from an assembly language module, you must always
include an XREF declaration for the function. Before calling the function (via
JSR or BSR), you must supply any expected arguments in the proper order
either on the stack or in registers, depending upon the style of parameter
passing employed by the function. After control returns from the called
function, the stack pointer must be adjusted to account for any pushed
arguments.

XREF _cfunc

MOVE . L
MOVE . L
JSR
ADDO . W

DO , - (A7)
D1 , - (A7)

cfunc
1iB , A7

; pu s h a rgument

; call function
; restore stack pointer

This code fragment illustrates stack parameter passing, more details can be
found in the relevant section. Remember to prefix function names with an
underscore U or @ symbol accordingly.

Data Sections

There are two types of control sections in which program data can be held;
data and BSS sections (described later). The first of these is for initialised
data and constants and may be defined with either of the following
directives,

SECTION name , data
CSECT name , data

where name is the control section name. The compiler uses two names for
data sections; data for far data (this is accessed with absolute long
addressing) and __ MERGED (the program's near data, accessed as a base­
relative offset from register A4). Examples of instructions used to access each
type of data are

Page 228

move . w
move . w

fardata , dO
neardata (a4) , d1

Lattice C 5 The Assembler

When defining global data in assembly which is accessed by a C program you
must declare the symbol as an external with an XDEF directive. The C source
must also include an extern declaration of the correct type. For example, this
assembly program defines a global variable:

CSECT
XDEF

_ent rynum DC . W
END

asmdata , data
_entrynum

1 5

Note that data is always prefixed with a n underscore. This can be done
automatically via the -u option. The corresponding C code to declare the
variable is as follows,

extern unsigned short far ent rynum ;

The Lattice assembler provides a way of specifying a near data section, i.e.
where all the data lies within a 32K range which is accessed off A4. All
absolute longword references to symbols declared within such a control section
will automatically be converted to the address-register-relative addressing
mode. This is done through the CSECT directive:

CSECT __ MERGED , data , , 2 , 2

where the case of the section name is important. In practice, this gives you a
direct equivalent to the -b option of le , allowing you to change the
arrangement and thus the access mode for any data by simply placing it in an
appropriate control section. Consider the following code:

globl

SECTION
move . w
move . l
rts

CSECT
XREF
DC . W

text
globl , dO
_otherdata , d 1

__ MERGED , 1 , , 2 , 2
otherdata

42

The move instructions will actually be assembled as

move . w
move . l

global (a4) , d0
_ot herdata (a4) , d 1

because the symbols were declared in a near data section.

The Assembler LaHice C 5 Page 229

BSS and Offset Sections

The second form of data section is the BSS or uninitialised data section. It
behaves in exactly the same way as a regular data section except that the
only directive allowed is the DS directive. By placing all data which you
require to be initialised to zero in the BSS section you can save considerable
file space because no data is actually written, the srze of the section is merely
remembered.

The directives to start a BSS section are identical to data sections in every
respect other than the section type. The special section name of _MERGED is
also recognised for near data in a similar way to that described previously.

Although visibly very similar to a BSS section, an offset section describes
merely the layout of data and not actually a specific instance of it. The
primary use of the OFFSET directive is to provide a simple way to declare
offsets into data structures. For example, here is a structure described in C:

st ruct NameNode {

} ;

st ruct NameNode • next ;
st ruct NameNode *prev ;
int uses ;
unsigned char name [1 6) ;

In order to use this structure from an assembly language program, we must use
numerical offsets into the structure. To aid readability and maintainability
we wish to use symbols which refer to each element. The following
description provides just that:

OFFSET
n n_next DS . L 1
nn_prev DS . L 1

IFD SHORTINT
nn_u ses DS .W 1

ELSE
nn_uses DS . L

ENDC
nn name DS . B 1 6
sizeof_nn DS . B 0

This does not generate any code, simply offset values. The symbols nn_next,
n n_p r e v and nn_uses will be set to the absolute values of 0, 4 and 8
respectively. The prefix of nn_ has been added to avoid possible name
clashes with other symbols and the dummy entry s lzeof_nn provides a
convenient way of referring to the size of the entire structure.

Page 230 Lattice C 5 The Assembler

A conditional block has been used around the integer field because the length
of an integer may vary between word and longword. Using this method, re­
assembling the source with the -w flag for short integers will automatically
generate the correct offsets. Some code which accesses this s tructure might
look like the following:

lea
subq . w
move . l
rts

f irstnode (a4) , a0
1 , nn_uses (a0)
nn_next (aO) , aO

Function Entry Rules

There are several rules which the compiler enforces to provide a mechanism
for calling functions. These rules must a lso be foflowed by assembly
programmers wishing to interface with C.

Regardless of how the function was called, register A7 (the stack pointer)
always points to a return address. Register A4 points into a program's near
data to allow base-relative addressing as discussed in the previous section.

Depending upon the style of parameter passing employed by a particular
function, parameters may either be found on the stack, in registers or a
combination of both. Arguments are always passed by value. An explanation
of the three methods of parameter passing follows.

Standard Arguments

This is the default method of parameter passing where all function arguments
are placed on the stack immediately before the return address. The _stdargs
keyword may also be used in a function prototype or definition to force stack
parameters. Note that functions which take a variable number of parameters
always use standard argument passing.

Register A 7 is the stack pointer which points to the 4-byte return address
followed by the arguments in left-to-right order. Arguments can then be
accessed as an offset from the stack pointer. The exact location of the
parameters on the stack depends on the argument types and the current flags.
Considering the default long integer mode, for the function call:

char ccc ;
double ddd ;
int Hi ;
func (ccc , ddd , ii i) ;

The Assembler LaHice C 5 Page 231

The compiler generates code to extend each of the parameters to the size of
an lnt if it is smaller and then push the arguments onto the stack in reverse
order. For example,

move . l
movem . l
ext . w
ext . l
move . l

dO , - (sp)
d2 - d3 , - (sp)
d 1
d 1
d 1 , - (sp)

This results in a stack organised in the following way:

Location Size Contents

(A7) 4 Return address

4 (A7) 4 Argument ccc

8 (A7) 8 Argument ddd

1 6 (A7) 4 Argument iii

By comparison, in default short integer mode (option -w) the compiler would
generate code to push the arguments ccc, ddd, and Ill onto the stack using two
bytes, eight bytes and two bytes, respectively:

move . w dO , - (sp)
movem . l d2 - d3 , - (sp)
ext . w d1
move . w d 1 , - (sp)

Location Size Contents

(A7) 4 Return address

4 (A7) 2 Argument ccc

6 (A7) 8 Argument ddd

1 4 (A7) 2 Argument I l l

Note that due to the widening of char types to the size of an lnt, the actual
parameter is in the low byte of the lnt although the full integer value may be
used. Also remember that char may be signed (the default) or unsigned
depending upon compiler options.

Page 232 LaHice C 5 The Assembler

If a structure or union is passed by value to a function, then the contents of the
aggregate are copied onto the stack with the last element pushed first. In
effect you receive a complete copy of the aggregate on the stack followed by a
single byte for alignment if necessary.

Stack space occupied by function arguments may be used by the function as
temporary workspace once the values are no longer needed.

Register Arguments

If a function is explicitly declared __ regargs or is called from a module
compiled with the -rr option, some arguments are passed in registers instead
of on the stack. Note that functions which accept a variable number of
parameters always use the previous style of parameter passing.

With register parameters, the first two pointer arguments will appear in NJ
and A 1 , and the first two integral arguments will be in DO/D 1 and widened to
an l nt if necessary as previously described. Structures, unions and double
precision floating point numbers, along with any parameters not placed in
registers are passed via the stack in the usual way.

Obviously, the function needs to know whether it is being called with some
arguments in registers or with all arguments on the stack. The compiler helps
make this distinction by placing the character @ in front of function names
that are called with register arguments, replacing the underscore that the
compiler normally supplies as a function prefix.

The _asm Keyword

Providing much greater control over register passing, the __ asm keyword
allows you to specify exactly which registers parameters are to be passed in.
It can be used in both function definitions and declarations:

int __ asm mymax (register __ dO int , register __ d1 int) ;

int __ asm myf u n (i , p)
register __ dO int i ;
register __ a 1 char • p ;

I n order for the register specifier sequence to b e used, you must have the
_asm keyword specified on the function. If you do use the _asm keyword,
you mus t specify a register for each parameter and not re-use the same
register for any two parameters. If you need to pass some parameters on the
stack then you should use the _ _ regargs keyword instead. Note that
currently the compiler is restricted to returning only basic types like long,
double, etc.

The Assembler LaHice C 5 Page 233

In order to permit the most flexibility in register passing, the compiler does
not limit what registers may be passed. However this can lead to situations
in which it is impossible to generate code that works in the presence of
aliased variables. To ensure that such situations are not encountered, you
should avoid utilising registers that would normally be assigned as register
variables and instead only use the registers:

The best advice is to be careful when using this feature and if you are
uncomfortable with it, use the -rr option of lc l (or _regargs).

Another mechanism which may be used to achieve similar effect to _asm is
the #pragma lnllne statement described in detail elsewhere in this manual.
When no instruction stream is present, this will generate a function call
which may use any register or the stack for parameters and may use any
register for the return value.

Function Exit Rules

Function return values are passed back in one or more registers, depending on
the data type declared for the function. The conventions are:

Return Data Bits Asm Syntax Meaning

char 8 DO.B Low byte of DO

short 16 DO.W Low word of DO

long 32 DO.L All of DO

float 32 DO.L All of DO

double 64 DO.L Dl .L High bits in DO

pointer 32 DO.L All of DO

Note that the above table does not mention lnt. An assembly language function
should return its value as a short, if in default short integer mode (-w) or as a
long if not in that mode, i.e. DO.W or DO. L.

Page 234 LaHice C 5 The Assembler

If the function returns a structure or union, it must define a static work area
(i.e. not on the stack) to temporarily hold the returned object. Then the
function must return in DO a pointer to this temporary copy, and the calling
function will immediately move the data to the appropriate place. This
approach implies that functions returning structures or unions are not re­
entrant, although they are serially re-usable. Such functions can be recursive
if designed very carefully with this in mind.

The registers D2 through D7 and A2 through A6 must be saved if they are
used by the function, similarly if a 68881 maths eo-processor is present (only
possible on 68020 or 68030 systems) and any of the floating point registers FP2
through FP7 is used, they must also be saved.

After setting up the return value, a function exits with the RTS instruction.
Note that the calling function removes the arguments from the stack.

Call ing Assembly from C

To illustrate how the rules governing C functions affect an assembly language
routine we have chosen a short example which can be implemented either as
C calling assembly, or assembly calling C (the C and assembly object modules
must be linked with the startup code and appropriate libraries). It illustrates
many of the points made previously and can be used as a basis for your own
function calls.

The function returns a hash value calculated by adding together the ASCII
codes of each character in the supplied string up to a specified length. This
value is then divided by the number held in the global variable maxhash
and the remainder (or modulo) is returned.

The calling program simply defines and initialises the variable maxhash
and calls the hash function with a sample string. Implemented in C, this is
as follows:

u n s igned s hort maxhash ; / * definition * /
/ * declaration (prototype) * /
u n s igned int hash (unsigned int length , const char * st ring) ;

void main (void)
{

}

unsigned int result ;

maxhash = 1 01 ;
result = hash (4 , " Banana ") ;

The hash function coded in assembly language for default addressing modes,
parameter passing and types:

The Assembler LaHice C 5 Page 235

CSECT text , code cont rol section
XDEF _hash , �hash declarat ions
XREF _maxhash imported global

-hash ; stdargs entry point
movem . l 4 (sp) , d0 / a0 get the parameters

�hash j regargs entry point
move . l d2 , - (sp) preserve register
moveq #O , d2
bra . s 1 $

2$ move . b (aO) + , d 1
ext . w d 1
ext . l d 1
add . l d 1 , d2

1 $ subq . l #1 , d0
bcc . s 2$
divu _maxhash (a4) , d2
clr . w d2 make result 32 - bit
swap d2 get remainder
move . l d2 , d0 return value in DO
move . l (sp) + , d2 restore register
rts

END

Any labels available to the C program are prefixed by an underscore
character (_) or @ . Note that for this function, it is easy to provide an entry
point for register parameter calling by simply bypassing the code which
loads arguments from the stack into registers for use by the body of the
function. If you are using register parameters as default, you may leave out
this code entirely.

The global variable is accessed as a base-relative offset from A4 because we
are using default near data. The function must also save 02 on the stack
because it is used as a temporary register and must be restored.

Compiling the program with default short integers, unsigned char and far
data does not change the C source although it causes many changes to the
assembly language. The function must now be changed to:

_hash

�hash

2$

1 $

Page 236

move . w
move . l

move . l
moveq
moveq
bra . s

move . b
add . l
dbra

4 (sp) , d0
6 (sp) , ao

d2 , - (sp)
#O , d1
#O , d2
1 $

(aO) + , d 1
d 1 , d2
d0 , 2$

LaHice C 5

length is now a word
changing stack offsets

can ' t sign extend char

opt imised loop

The Assembler

divu
swap

move . w
move . l
rts

_maxhash , d2
d2

d2 , d0
(sp) + , d2

don ' t clear high word

Note that the parameters now have different offsets on the stack, characters
can no longer be sign extended and global data must be accessed using absolute
long addressing.

It becomes apparent that changes in compiler options such as -b or -r can
dramatically alter the appearance of assembly code. The Lattice compiler
provides some ways of insulating the programmer from these factors, as
illustrated in the next section.

Call ing C from Assembly

This time, we will write the same program but as a C function called from
assembly language. In order to provide the greatest flexibility whilst
preserving code clarity, we will make use of the CSECT directive. This is the
calling program for register arguments only:

CSECT t ext , code , , 1 , 2
XDEF @main PC- relative
XREF @hash

ilmain regargs version
move . w #1 01 , maxhash
moveq #4 , d0
lea string , aO
j sr @hash returns DO
rts

CSECT __ MERGED , data , , 2 , 2
st ring DC . B ' Radish ' data access off A4

CSECT __ MERGED , bss , , 2 , 2
XDEF maxhash

maxhash DS . W 1
END

Firstly, you may notice that there are no longer underscores before external
labels. This is because the assembler can be called with the -u option which
automatically prefixes an underscore to all externally visible labels whilst
being overridden by the presence of an @ symbol.

The Assembler LaHice C 5 Page 237

The relocation type and size parameters of the CSECT directive have been
used in order to provide automatic PC and A4 base-relative addressing modes
for the relevant sections. This has the effect of automatically converting the
references to string and hash to:

lea string (a4) , a0
j sr hash (pc)

Simply changing the relocation type allows the assembler to automatically
generate the correct addressing modes. This corresponds directly to the C
compiler options. To override the default addressing mode you may simply
specify another, or for external symbols, provide an XREF in an appropriate
control section. In our example, moving the reference to @hash outside the PC­
relative section forces absolute long addressing for all references to that
symbol.

Specifying the special section name of _MERGED causes the linker to include
the section contents within the program's near data segment allowing base­
relative addressing via A4.

Now the hash function written in C:

/ * declarat ion * /
extern u nsigned short maxhash ;

u n s igned int __ regargs
hash (unsigned int lengt h , const char * st ring)
{

}

unsigned long total = o;
while (le ngt h - -)

total += * st ring++ ;

return total % maxhash ;

The _regargs keyword is present to force the compiler to use register passing
for this function. Remember to link with the startup code and libraries for
register parameters since we are using @main rather than _main.

Page 238 LaHice C 5 The Assembler

IAsm Error Messages
Branch out of range for 8-Bit offset

A short branch to a label outside the range of an 8-bit offset was specified.
This can be cured by simply changing the branch size to word.

Branch out of range for 1 6-Bit offset

A word branch to a label outside the 16-bit range was specified.

Can't branch short to EXTERN

Asm does not allow short branches to an external label, causing this error.

Can't create object file

It was not possible to generate the object file. This can be caused by invalid -
o options, disk full, protected files, etc.

Can't open source file

The source file could not be opened, often caused by an incorrect filename.

Combined output file name too large

The object file prefix specified from the command line caused the output
filename to exceed the maximum length of 128 characters.

Constant size not same as relocation size

A reference to a relative symbol conflicts with the byte size of relocation
information for the current control section.

Constant too large

An invalid ROM constant number was specified for an FMOVECR instruction.

Data generation must occur in reloc section

A data generation operation other than OS appeared in an OFFSET section.

The Assembler LaHice C 5 Page 239

Definition symbol not found

Internal error, should never happen.

Duplicate label
More than one definition of the same label was encountered.

Duplicate macro definition

A macro was defined more than once.

Duplicate section name

A section name was re-used illegally.

ELSE/ENDIF not found

An unterminated IFcc directive was encountered.

END directive assumed (W)

This warning notifies you that there was no explicit E N D directive in the
source file being assembled.

Error writing object file
Execution terminated

A DOS error occurred whilst writing the object file to disk.

Errors detected -- Processing terminated

This message appears at the end of the assembly process if any errors
occurred. Any object file generated will be invalid .

External name table overflow

The maximum number of imported labels exceeded the maximum of 256.

External symbol defined

A definition for a label also declared as an external reference was
encountered.

Page 240 LaHice C 5 The Assembler

Extraneous data on input line (W)

A valid source line was followed by invalid text, which was ignored. This
can be caused by providing too many parameters for an assembler directive.

File name missing

The command line did not contain a file to assemble.

File not found

The file specified by an INCLUDE directive could not be found.

Generating 32 bit branch, code only valid on 68020

This warning is generated when assembling a long branch for the 68000
processor.

Generation argument count

Internal error, should never happen.

I l legal macro defin ition

The syntax of a macro definition was incorrect.

Immediate data size error
Immediate data too large

An arithmetic or logical operation was specified with an out of range
immediate value.

Immediate mode not allowed

An instruction which does not support immediate addressing was encountered
with an immediate mode operand.

Input l ine too large

A source line exceeded the maximum length of 255 characters.

Invalid Addressing Mode

Generated by an illegal addressing mode being supplied to certain 68020 a
floating point instructions.

The Assembler LaHice C 5 Page 241

Invalid command line option

The assembler was invoked with an unrecognised command line option.

Invalid control section parameter

A CSECT directive with invalid parameters was encountered.

I nvalid Data Size

The vector of a BKPT instruction was out of range.

Invalid destination mode

The second operand of an instruction was specified with an illegal addressing
mode.

Invalid Effective Address for Opcode

One of the address translation cache family of instructions contained an
illegal addressing mode.

I nvalid expression

An OFFSET or I F directive contained an invalid expression. This error can also
be caused by an expression containing a divide or modulo by zero.

Invalid file name

The filename specified for an INCBIN or INCLUDE directive was not valid.

Invalid generation function index

The assembler attempted to generate an illegal instruction.

Invalid Length

A LINK instruction was encountered with an illegal stack offset.

Invalid l ist option

The assembler command line contained an unsupported listing option.

Page 242 LaHice C 5 The Assembler

Invalid mode

An illegal addressing mode was used with an instruction.

I nvalid opcode

An unrecognised opcode name was encountered; this is often caused by a mis­
typed instruction.

Invalid operands for this opcode

This error can be caused by invalid addressing modes, data size, macro
parameters etc.

Invalid origin

An assembly directive causing incorrect data alignment or origin was found.

Invalid relocation type/size combination

The specified relocation type and relocation data size specified in a CSECT
directive are not available.

Invalid shift count

The bit count contained in a shift or rotate instruction was out of range.

Invalid Size
Invalid Size Field
Invalid Size For Mode

Each of these errors are caused by an invalid or unsupported data size
extension to an instruction or addressing mode.

Invalid source

A MOVES instruction was specified with an invalid source operand.

Invalid source mode

The first operand of an instruction contained an unsupported effective address.

Invalid string

A define constant or condition directive contained an invalid string.

The Assembler LaHice C 5 Page 243

Invalid symbol

A symbol containing an illegal character or characters was declared.

Invalid vector
This error is generated if a TRAP instruction has an out of range vector.

-1 option Ignored

The maximum number of include directories which can be specified on the
command line has been exceeded.

k-factor out of range

The k-factor specified for an FMOVE instruction on packed data was out of
range of the legal values.

Label ignored (W)

The label before a directive, such as a conditional, is not a recognised syntax
and has been ignored.

Label not found in pass 2

Internal error, should never happen.

Label offset different in pass 2

A phasing error caused by different code being generated on the first and
second pass.

Lexical result overflow
Lexical type error
Lexical value overflow

Internal errors, should never happen.

Long Branches to EXTERNs not supported by the Linker

The Lattice linkable object file format does not support branches to external
labels using a long-word offset.

Page 244 Lattice C 5 The Assembler

Macro argument too large

A macro invocation was encountered with an argument string which was too
long.

Macro buffer overflow

A macro definition was too long.

Macro nesting level exceeded

This error occurs when a macro definition references other macros too many
levels deep.

Macro substitution l ine overflow

The substitution of macro arguments caused the line to overflow.

Maximum Include file nesting exceeded

The INCLUDE directive has nested files too deeply. This is caused by included
files referencing other files to a number of levels.

M issing label

An EQU or SET directive was encountered with no corresponding label.

Missing macro defin ition

The definition of a macro could not be found.

Must occur inside section

A data generation directive was used outside a control section.

Not enough memory

The assembler ran out of memory when trying to allocate some internal buffer
space.

Not inside macro definition

An assembly directive only valid within a macro definition, such as E NDM,
was encountered outside a macro.

The Assembler LaHice C 5 Page 245

Not inside scope of IF directive

An ELSE directive was found which did not lie within a conditional control
block.

Number Too Big

A value in an expression overflowed the allowable range.

Options beyond file name Ignored

Any command line options specified after, rather than before the file to be
assembled have been ignored.

Public symbol not defined (W)

The program source contained an XDEF directive of a symbol which was not
defined in the program.

Seek error on object file
Execution terminated

An attempt was made to move past the end of an object file. This is usually
caused by an invalid RORG directive.

Target out of range

This error is generated if a DBRA instruction to a label which is out of range
is found.

Too many control sections

This error signifies that the number of SECTION or CSECT directives has
caused more than the allowed number of sections to be generated.

Unknown segment type

The type specifier for a SECTION or CSECT directive was other than CODE,
DATA or BSS.

Unrecognized opcode

An operation was encountered which was not recognised as a valid opcode,
synonym or macro.

Page 246 LaHice C 5 The Assembler

Value out of range for mode

An out of range value was used in an addressing mode.

Value out of range for PC Relative addressing

An out of range value was used in a PC relative addressing mode.

Warning 68020 or 68030 opcode generated (W)

This warning is generated when a non-68000 processor instruction is
encountered and can be disabled from the command line by specifying an
alternate processor.

I ntern a l E rrors

These are internal errors generated when the assembler encounters a situation
which should not occur internally. If you encounter one of these please send us
an example piece of source code which demonstrates the problem.

Memory freed Incorrectly

Mode lexical pointer error

Section not found in pass 2

The Assembler Lattice C 5 Page 247

Page 248 LaHice C 5 The Assembler

The Lattice C 5 Tools
Lattice C 5 comes with several tools which are non-essential to the operation
of the compiler, but which can enrich the programming environment.

lh ramdsk Reset Proof RAM Disk I
If you have a megabyte or more of RAM then you can use some of this memory
as a very fast disk which will make a hard disk seem slow. The problem
with many ramdisks is that they disappear when you press reset. If you are
developing a new GEM-based program and are having problems with your
mouse or menu you can need to reset quite often.

RAMI NST. PRG and RAMINST. RSC let you set up a ramdisk that will survive
resets. Whilst this will work in 99% of cases ,occasionally, if a program
crashes in a particularly nasty way you will lose the contents of the ramdisk.
To avoid this save the source code on to a real disk before running your
progra m . H ramdsk will additionally copy the files and folders that you
would like on the ramdisk automatically when you switch on.

The version of HRAMDSK . PRG that we supply with Lattice C is configured
for our recommend setup for users with one floppy disk and one megabyte of
RAM as described in the Installation Guide. Before running RAM I N ST to
tailor the ramdisk to your preferences, HRAMDSK. PRG should normally be in
the AUTO folder on the current disk as this will be used as a basis for the
ramdisk driver.

To run RAM I N ST copy it just double-click on RAMI NST. PRG. If the driver
cannot be found in the AUTO folder is not you will be presented with a file
selector to enter the drive, path and file to load. Once the driver has been
loaded, RAMINST will present you with a GEM dialog box like this:

Lattice C 5 Tools

Copied fl les/Direttories:
Dr lvt: " :

l isk S i z e : Jl�
tlr fntries: 111.

ltlm f i l es!

51Ye as : 1 :\IUTU\IIIIIIDSII .PRL__

[ill[] Dill:] Dill]

Lattice C 5 Page 249

You can change the files and folders that are copied by clicking on one of the
relevant fields and editing it. To clear out the existing names click on the
Clear Flies button.

You can use simple filenames, filenames with wildcards or directory names. If
you specify a directory name the entire directory (and any sub-directories
within it) will be moved to the ramdisk. Note that you can specify the drive
from which the files are copied.

Change the size of the ramdisk by simply modifying the Disk Size field. This
is the amount of memory used by the disk and is slightly larger than the
data size because some of the space is used for the directory and the file
allocation table. You can use any size you like, subject to the available
amount of RAM.

Normally you can have up to 112 directory entries in your main directory (just
like a standard floppy disk) and this is usually sufficient. However you may
change the maximum number of directory entries using the Dlr entries field of
the dialog box. For example, if you have a two and a half Megabyte
ramdisk and using it to store (amongst other things) all the relocatable files
for your 100 module wonder program and don't want to put them in a sub­
directory, you can use this option to increase the number of directory entries.

If you don't like the ramdisk being called drive M you can change this too.
You can also change the disk, directory and file to which the driver will be
saved.

Finally if you wish to modify a differently installed version of the ramdisk
you can click on the Load button and load another file.

Note that the ramdisk is only designed to be run from the AUTO folder; it
can't be run once the system has booted.

Page 250 LaHice c 5 LaHice C 5 Tools

l lcompact Header file compressor I
This command is used to create a compressed version of a header file tha t
may be processed more quickly by the compiler.

!compact inf ile outfile

The !compact command compresses a file by performing four basic
operations:

C o m p ress ion

Multiple and meaningless blank characters are removed. Expressions are
analysed according to standard C precedence rules to determine which are
safe to remove.

E l imination

All comments and unnecessary blank lines are removed.

Tra nsformation

Certain sequences such a s hex constants are converted into more efficient
representations. For example, OxOOOOOO 1 is transformed to 1 . These
transformations take place only if the secondary representation is more space
efficient.

Tok e n isation

A limited number o f common keywords are reduced to a single token character
with the high order bit set. This fixed set of keywords is known to the
compiler and will be automatically expanded as they are encountered.

The end result of compacting a header file is anywhere between 20% and 75%
smaller depending upon the original contents. The compiler will
automatically expand the header file on input so that error messages will
print out the original line (without comments) for a diagnostic.

LaHice C 5 Tools LaHice C 5 Page 25 1

lomd Object Module Disassembler I
This utility program disassembles an object file produced by the Lattice C
Compiler and produces an output listing consisting of assembly-language
statements, possibly interspersed with the original C source code.

omd >output opt ions obj ect source

The object field is required and gives the complete object file name. That is,
omd will not automatically supply the .o extension.

The source field is optional; if present, it must be the complete source file
name. When this field is used, you should have compiled the source file with
the -d option (see the le command) to produce the debugging information in
the object module that allows omd to associate a particular source line with
the object code that was generated. If you did not use the -d option, then the
C source lines will not appear in omd's output.

The >output field is optional and redirects omd's output from the screen to
an output device or file. Most programmers use omd by redirecting its output
to a file and then printing the file. See the example below.

The options field need not be present. The Atari implementation of omd
only accepts the following option:

- X Override the default size of the buffer used to hold the external symbol
section of the object module. For example, -x200 establishes a buffer
that can hold 200 external symbols, which is the default. You should
increase this value if o m d reports that there are too many external
symbols.

Example

This example compiles MVPROG. C to produce MYPROG . O, which is then
disassembled. The disassembled listing is saved in the file MVPROG. LST.

le - d myprog
omd >myprog . lst myprog . o myprog . c

Page 252 Lattice C 5 Lattice C 5 Tools

loml Object Module Librarian I
The object module librarian oml can create a library file by combining object
modules, generate a listing of the modules (and their public symbols)
contained in a library, or manipulate modules within an existing library file.

Library files provide a convenient way of collecting object modules to be
presented as a group of available components during linking; the linker then
includes only those modules from the library which are actually needed by
the program being built. Libraries are especially useful when several
programs make use of common subroutines, since these subroutines can be
placed in a library file and included, as required, when the programs are
linked .

A library file is made up of object modules, each of which was originally a
single file. Each module within the library is identified by a module name,
which is normally obtained from the object module itself (the Lattice object
module format defines a special program unit or module name record). This
name is placed in the object module by the translator (assembler or compiler)
program which generates it. Some modules may not contain a module name at
all; in that case, the librarian assigns a module name of the form $1'YY'1,
where nnn is a decimal number indicating that the module was the nth
un-named module encountered in the library.

In order to perform replacement of modules within a library file, it is
necessary to ensure that the module contains a program unit or module name.
The Lattice C 5 Compiler and assembler always place a module name in the
object files they produce. The current versions of the compiler and assembler
use the name of the object file. Thus, compiling ftoc.c produces an object
module with the name ftoc.o.

When the tinker examines a library file to find modules to be incorporated
into a program, the module name is not important; instead, the linker decides
if a module is needed on the basis of the public symbols it defines. A module
may define one or more such symbols, which identify program components
such as functions or variables. Because the presence of more than one
definition for a symbol may cause confusion, the librarian warns when it
examines or constructs a library file which includes multiple definitions of a
symbol.

Each invocation of o m l specifies a particular library file upon which
operations are to be performed. Then, a sequence of one or more commands is
used to indicate the desired operations.

Lattice C 5 Tools Lattice C 5 Page 253

Commands may be specified on the command line used to execute oml, or they
may be read from s td ln , or a combination of both. If no commands are
specified on the command line, commands are automatically read from stdin,
which is usually the user's console but can be redirected to a file. The special
command @ (valid only on the command line) is used to switch command
input from the command line to stdln; an explicit file name may be attached
to the @ to force commands to be read from that file. Commands are read
from a file or from stdln until an end of file condition is detected; if commands
are being read from the user's console, a Ctri-Z must be used to end command
input.

Each command is specified as a single character, usually followed by a list of
module names or object file names. Commands and file/module names are
separated from each other by white space. If a command is followed by one or
more names, the first name specified is not checked as a possible command;
thus, names which might be confused with commands must be specified as the
first name following a command.

The format of the command to invoke the librarian is:

oml [<cmdf ile] [>listf ile] [options] libfile [commands]

The various command line specifiers are shown in the order they must appear
in the command. Optional specifiers are shown enclosed in brackets.

<cmdflle Causes commands to be read from the named file, provided that
no commands are specified on the command line or that the @
command (see below) is not used to force commands to be read
from std ln . If this option is omitted and neither of the above
conditions is met, commands are read from the user's console.

>l l stfl le Causes the listing output generated by oml to be written to the
named file. If omitted, listing output is directed to the console.

l lbflle Specifies the name of the library file to be created or
manipulated; this is the only command line field which must be
present.

Options are specified as a minus sign followed by a string of characters which
may not include white space. The options available are:

-b Forces the 'batch' mode of operation; in this mode no user
interaction will occur.

Page 254 LaHice C 5 LaHice C 5 Tools

·opfx Specifies that the output filenames for the X command are to be
formed by prefacing the module name with pfx. Note that if a
directory name is to be specified as a prefix, a trailing node
separator (a backslash under GEMOOS) must be supplied on the
prefix.

·S Causes a listing of the public symbols defined in the module to
be included in the listing produced by the I command.

·V Forces the 'verbose' mode of operation; in this mode the
librarian prints out its progress to date.

·X Causes a cross reference of symbols to be output in the listing
produced by the I command.

Commands are specified by a single character; if alphabetic, either upper or
lower case may be used. They are separated from each other and from
elements of file or module name lists by any white space. The commands are:

@fi l e Causes the remainder of command input to be read from stdln,
or from the named file.

d list Deletes the named modules from the library. Since modules
without program unit names are assigned module names by the
librarian, it may be necessary to obtain a listing (via the I
command) in order to determine the assigned Snnn name for the
module which is to be deleted.

Causes generation of a listing of the modules in the library
after all other requested operations have been performed. I f
the -s option is used on the command line which invokes oml,
the listing will include the public symbols defined in each
module as well as a list of the module names themselves.

r list Replaces the named object files in the library, or adds them to
the library if not already present. Note that replacement of
existing modules in a library will work correctly only if the
file name is the same as the module name. Note that a is a
valid synonym for r.

LaHice C 5 Tools LaHice C 5 Page 255

x list Extracts the named modules from the library, creating files of
the same names. Note that if the module name includes a path
name, the librarian will attempt to create a file with that
name. All files are created in the current directory unless the -
o option is used; in that case, each module name is prefixed
with the text specified on the -o option. If the special name •

is specified in an extraction then oml will extract all files in
the library. o m l will terminate execution if an attempt to
extract a module is unsuccessful. Note that it is an error to
specify the same name in both a replacement and an extraction
l ist .

If replacement modules or deletions are specified, a new version of the library
file will be built, provided that no errors are detected. This new version is
created first as a temporary file; when it has been completely built, the
original library file (if it existed) is deleted, and the temporary file
renamed. This sequence ensures that the original l ibrary file will not be
affected if an error is detected.

Modules are always included in a library in topologically-sorted order, so
that no backward references occur (except in the case of modules which
reference each other, which are retained in the same order in which they are
encountered).

Warning messages are produced if a module named in a deletion or extraction
list was not found in the library or if a second definition for a public symbol
is encountered in one of the modules to be included.

Exa m ples

The following examples illustrate the use of oml . Remember that replacing
modules within a library file only works correctly if the module name is the
same as the file name.

Building a New Library

Create a list of the file names of the object modules which will make up the
library. Then create the library using the following command:

oml new . lib r @name . lst

where new. l lb is the name of the library to be created, and name. lst contains
a list of the files to be included in the library. Note that creation of a new
library is one occasion where the correspondence between file and module
names is not required.

Page 256 LaHice C 5 LaHice C 5 Tools

Extracting Modules from a Library

Use the following command to break out all of the modules from a library:

om1 - o \ ob j ect \ cfuncs . 1ib x

Note that this command will be successful only if no module names in the
library cfuncs . l lb contain path names. A file for each of the modules in the
library will be created in the directory \ object\ in this example.

Deleting Modules from a Library

Use the following command to delete modules from a library:

om1 cfuncs . 1ib d tribe . o

This example deletes the module trlbe.o from the library cfuncs. l lb.

Listing the Modules in a Library

Use the following command to obtain a listing of the modules and symbols in
a library file:

om1 - s test . 1ib 1

The listing may be saved to a file using 1/0 redirection:

om1 >test . 1st - s test . 1ib 1

laHice C 5 Tools LaHice C 5 Page 257

I strip Symbol Strip Utility I
Strip is a utility for removing the symbol table and any symbolic debugging
information, from an executable file.

strip f ile 1 [file 2 • . .]

Any number of files, which should include any extension, may be specified. If
a file is not executable it is simply ignored.

Example

This example compiles MYPROG.C to produce MYPROG.O, which is then
linked and then has its symbols and debug information removed:

le - d3 - La myprog
strip myprog . ttp

Page 258 LaHice C S LaHice C 5 Tools

lwconvert Resource Name Converter I
Wconvert is a utility for converting the name files from the Digital
Research and Kuma Resource Construction Sets. It is provided so that you can
edit resource files produced using these programs with W E R C S while
retaining your names for trees and objects.

There are two versions of this program:

wconvert.prg lets you select the file to convert using the file selector. After
it has converted one file it will let you select another one if you wish.

The second version is wconvert.ttp which takes the names of the file(s) to
convert on the command line for CLI users. Wildcards may be used with this
version.

Wconvert treats files differently depending on their extension:

DEF it is assumed to be a Digital Research RCSl file.

RSD it is assumed to be a Kuma K-RSC file (actually the same basic format
as RCSl) .

DFN it is assumed to be a Digital Research RCS 2 file.

The file will be converted into a . HRD file of the same name and in the same
directory as the old file, ready for use with WERCS. Remember to make sure
that the Language and Case settings are correct when you edit the file with
WERCS for the first time.

LaHice C 5 Tools LaHice C 5 Page 259

lwimage Image Converter I
Wlmage is a utility for converting parts of Neochrome and DEGAS format
files into resource files.

After starting wlmage and you will be prompted to enter a file to convert
via a File Selector. This file may be a Neochrome format file (normally with
an extension of .NEO) or un-compressed Degas/Degas Elite file (normally . PI3,
.PI2 or . Pi l) . Wlmage knows about medium and high resolution Neochrome
format files even though Neochrome itself does not.

Converting colour pictures to Images and Icons has the disadvantage that
GEM Icon and Images have only two colours. Also note that the maximum size
of Images and Icons that can be converted is 128x128 pixels.

After entering the file name, the Image file will be loaded and you will be
presented with a dialog box like this:

Page 260

S e l ect Co l ours to use :
-

C o l our 0
C o l our 1
C o l our 2
C o l our 3
C o l our 4
C o l our 5
C o l our 6
C o l our 7
C o l our 8
C o l our '
C o l our A
C o l our B
C o l our C
C o l our D
C o l our E
C o l our f

• 1111:11 Data
None ••.f.'w.l

I •

I
I
I
I
I
I
I
I
I
I
I
I
I

I

Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

Du i t I

LaHice C 5

Mask Both
Mask Both
Mask Both
Mask Both
Mask Both
Mask Both
Mask Both
Hask Both

llask Both
Mask Both
Hask Both
Hask Both
Hask Both
Hask Both
Hask Both
Hask Both

(][]

LaHice C 5 Tools

The box above is for a low resolution picture. If the picture is a medium or
high resolution picture then only the appropriate colours will be displayed.
If you are converting from a low resolution picture and the screen is in low
resolution mode then the boxes after Colour 2 etc. will be in the appropriate
colours as displayed by Neochrome.

This dialog box enables you to indicate which colours are to be treated as
Data and Mask bits in the Icon or Image that wlmage produces. If Both is
selected for a particular colour then the corresponding pixels of this colour
will be set in both the Data and Mask. If Data is selected they will be set in
the Data but reset in the Mask. If Mask is selected then pixels of this colour
will be set in the Mask but reset in the Data. If None is chosen then the bits
will be reset in both the Data and the Mask. When importing an Image, only
the Data setting is used.

You will then be presented with a dialog box like this :

Enter the area of the picture that will be converted. Indicate whether you
are producing an Icon or an Image by clicking on the appropriate radio button.

If you wish to use the mouse to select the area, ensure that the Use Mouse
button is selected; this button will be disabled if this picture may not be
displayed in the current resolution. If Use Mouse has not been selected then
the area to import is taken from the co-ordinates entered.

If you click on OK you will then be prompted to use a File Selector to enter
the output file to which your Image or Icon will be written in the form of a
resource file. This can be imported into another resource file using the Import
Image item from the WERCS File menu.

After the file has been saved you will be given the opportunity to import
another image or to quit the Wlmage program.

LaHice C 5 Tools LaHice C 5 Page 261

Page 262 Lattice C 5 Lattice C 5 Tools

Appendix A
I m plementation

Behaviou r
This appendix tries to detail the areas Lattice C 5 which are traditionally
different across compilers, and often left undefined. Reliance on any of this
information will, in general produce non-portable programs; note that this
includes reduced portability to other Lattice C systems.

This section is based around Appendix F.3 of the ANSI C Standard document
and the paragraph numbers relate to those paragraphs in that standard.

!Trans lat ion
2 . 1 . 1 .3
Diagnostic messages are issued on the console device describing the error
situation encountered. For syntax violations the compilation is subsequently
terminated .

!Environment
2 . 1 . 2 . 2 . 1
The arguments to main() are parsed from the command line as passed to the
program via the GEMDOS P e x e c () call. Whitespace characters are
considered to be separators unless enclosed in single or double quotes. The
argv(O) string points to an empty string as the program name is not available.

When started by a process supporting the Atari extended command line
format, the arguments to main() are as supplied by the parent process.

A third argument is passed to main() representing the environment variable
vector, as described under envlron.

2 . 1 . 2 . 3
An interactive device is assumed to be those for which GEMDOS indicates
that Fseek() cannot be performed.

Implementation Behaviour LaHice C 5 Page 263

! Identifiers
3 . 1 .2

The number of significant characters is specified by the -n compile time
option. This has a default of 31, and a maximum of 100.

The linker treats all characters as significant, with full case significance.

!Characters
2 . 2 . 1

The source and execution character sets are the Atari ASCII set.

2 . 2 . 1 . 2

No shift states are used for encoding of multibyte characters.

2 . 2 .4 .2 . 1

There are always eight bits in a char giving a range from -128 to 1 27 for
signed characters or 0 to 255 for unsigned.

3 . 1 . 3 .4

The source character set is mapped as-is to the execution character set

Multiple character constants are supported when using the - c m flag. The
lexical characters are parsed right to left and are packed low byte upwards.
Hence the character constant 'ALEX' would pack:

31-24 23-16 15-8 7-0
' A ' ' L ' ' E ' ' X '

The "C" locale is used to convert multibyte characters into corresponding wide
characters (codes) for a wide character constant.

Page 264 Lattice C 5 Implementation Behaviour

3 . 2 . 1 . 1

The type char defaults to signed, but may be configured as unsigned at
compile time (-cu) .

!Integers
3 . 1 . 2 .5

All integer types are two's complement.

Type lnt is configurable to be 16 or 32 bits. The default setting is 32 bit, with
16 bit being available when using the -w option.

Type short is 16 bits; type long is 32 bits.

3 . 2 . 1 . 2

The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length is truncation
to the lower bits of the assigned integer.

3 . 3

Bitwise operations on signed integers produce results as if the integers were
unsigned.

3 . 3 . 5

The sign of the remainder on integer division is the same a s that o f the
quotient.

3 . 3 . 7

Right shift of a negative-valued signed integral type produces a sign
extended type.

Implementation Behaviour LaHice C 5 Page 265

!F loating Point
3 . 1 .2 .5
The floating point format used is the IEEE standard format for both float and
double. long double is implemented as double in the current release.

Single-precision Floating Point

The single precision IEEE format represents a number in 4 bytes. Note that all
calculation is performed using doubles so that use of floats will only reduce
storage space and not increase the speed. The bit layout is:

31 3D-24 23-0

Sign Exponent Mantissa

The sign bit is 0 for positive numbers and 1 for negative numbers. The
mantissa has an implied binary point at bit 23 and thus ranges in value from
1 .0 to <2.0. The exponent is held in excess 127 format. The IEEE denormalised
format is not currently supported . When the exponent is 255, the value
represents Not-A-Number (NaN), the type of which is determined by the
mantissa . Zero mantissas indicate Infinity (oo), whilst non-zero mantissas
indicate other NaN conditions. The number zero is represented by all bits
zero.

The following (non-portable) definition may be used to access the individual
fields of a float atomically:

union
{

f loat f ;
st ruct
{

int s : 1 ; I * sign * /
int e : B ; / * exponent * /
int f : 23 ; / * mantissa * /

} b ;
} j

Page 266 LaHice C 5 Implementation Behaviour

Double-precision Floating Point

The double precision IEEE format represents a number. in 8 bytes. The bit
layout is:

62-52 51-Q

Sign Exponent Mantissa

The sign bit is 0 for positive numbers and 1 for negative numbers. The
mantissa has an implied binary point at bit 51 and thus ranges in value from
1 .0 to <2.0. The exponent is held in excess 1023 format. The IEEE denormalised
format is not currently supported . When the exponent is 2047, the value
represents Not-A-Number (NaN), the type of which is determined by the
mantissa . Zero mantissas indicate Infinity (oo), whilst non-zero mantissas
indicate other NaN conditions. The number zero is represented by all bits
zero.

The following (non-portable) definition may be used to access the individual
fields of a double atomically:

union
{

double d ;
struct
{

int
int
int
int

} b ;
} ;

3 . 2 . 1 . 3

s : 1 ; I * sign * I
e : 1 1 ; I * exponent * I
f 1 : 20 ; I * high bit s o f mant issa * I
f2 : 32 ; I * low bits o f mantissa * I

In default mode (-fl) truncation of an integer to floating point is towards zero.
In -f8 mode the direction of truncation is as specified by the maths coprocessor
(user-selectable) .

3 . 2 . 1 .4

In default mode (-fl) truncation of an floating point number to a narrower
floating point type is towards nearest. In -f8 mode the direction of truncation
is as specified by the maths coprocessor (user-selectable).

Implementation Behaviour LaHice C 5 Poge 267

IArrays and Pointers
3.3.3 .4, 4. 1 . 1
s l ze_t is always of type unsigned long lnt. Traditionally it has been
unsigned lnt.

3 . 3 .4
Casting a pointer to an integer requires that the target type be long (or lnt in
default long integer mode), or truncation will occur. Casting an integer to a
long is as if the integer were first extended to long.

3.3.6, 4. 1 . 1
ptrdlff_t is of type long.

I Registers
3.5 . 1
The compiler honours as many register variable declarations as possible on a
lexically first encountered basis for integral, pointer and floating point types
(when the -f8 option is used). If the global optimiser is used all registers are
remapped to provide maximal usage.

The number of registers available for register declarations is not fixed and
hence is undefined. Typically a minimum of 4 scalar and 2 pointer variables
will be available.

IStructs , Un ions, Enums, and Bit-fields
3 . 3 . 2 . 3
Accessing a member of a union object using another member of a different type
produces undefined behaviour.

Page 268 LaHice C 5 Implementation Behaviour

3 . 5 . 2 . 1

The members of a structure are aligned according to the alignment restrictions
of the basic type. Hence the structure:

st ruct
{

char x ;
char y [3] ;

} ;

would not align y. Whereas the structure:

st ruct
{

} ;

char x ;
int y [3] ;

would align y. The amount of padding inserted (when required) is determined
by the -1 flag which will force long word alignment. When -1 is not present
the default alignment is word alignment.

A plain lnt bit-field is treated as an unsigned lnt bit-field

The members of a bit-field are always elements of a long. This means that
the members are also of type long.

A bit-field never straddles a long boundary.

A bit-field is packed from the top down hence the definition:

st ruct
{

} ;

unsigned abcde : 5 ;
unsigned fghij k : 6 ;
unsigned lmn : 3
unsigned opqrs : 5 ;
unsigned tuvwxyz : 7 ;

would pack as:

31-27 26-21

abcde fghij k

Implementation Behaviour

20-18 17-13 12-6

lmn opqrs tuvwxyz

LaHice C 5

5-0

??????

Page 269

3 . 5 . 2 . 2

Enumeration types have the integral type lnt.

!Qua l i f iers
3 .5 .3

Whether a reference to a n object with volati le qualified type between
sequence points constitutes an access is undefined.

IDeclarators
3 . 5 .4

The maximum number of declarators that may modify an arithmetic,
structure, or union type is limited by available memory.

!statements
3.6 .4 .2

The maximum number of case values i n a switch statement i s limited by
available memory.

!Preprocessing Di rectives
3 . 8 . 1

The value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character
constant in the execution character set. Such a character constant may have a
negative value.

3 . 8 . 2

System include files (those in < > brackets) are located initially in the
current directory, then in the directory mentioned in the INCLUDE environment
variable, then in directories mentioned on the command line via the -1 option.

Page 270 LaHice C 5 Implementation Behaviour

User include files (those in • • ' s) are located initially in the current, then in
directories mentioned on the command line via the -1 option, finally in the
directory mentioned in the INCLUDE environment variable.

The mapping of includable file names to external source names is obtained by
taking the last eight characters of anr 'directory' portions (\ or I delimited)
together the same portion of the fina filename and any extension.

3 . 8 . 6

The behaviour on the #pragma lnllne directive is as described i n the section
LC, The Compiler. This is the only supported #pragma directive.

3 . 8 . 8

The definitions for _DATE_ and _TIME_ when respectively, the date and
time of translation are not available are the date and time of compiler build.

Implementation Behaviour LaHice C 5 Page 271

Page 272 Lattice C 5 Implementation Behaviour

Appendix B
Resource Detai ls

This appendix contains detailed information on programming with resource
files, compiling the WERCS example program and the file formats used by
WERCS.

This section of the manual is designed to help you when programming with
resource files that have been created by WERCS. The first section describes
the objects and their attributes, whilst the second considers the programming
aspects of these data structures. It continues by considering the multi-language
support available from W E RCS and concludes by discussing the W E RCS'
specific file formats.

!Objects
There are thirteen different types of objects as follows:

B ox

A Box is a rectangle whose interior colour and fill pattern is controllable, as
is its border thickness.

B ox Char

A BoxChar i s a graphic box containing a single text character. I t also has
colour and border size attributes.

BoxText

Similar to Text objects (see later) but in addition surrounded by a border
whose size and colour can be specified.

B utton

A Button is displayed as a centred string of characters with a border. If the
default flag is set, pressing the Return key in the standard form-handler is
the same as clicking on the Button. A Default button is shown with a wider
border. A new Button created with WERCS has its Selectable and Exit flags
set.

Resource Details LaHice C 5 Page 273

FBoxText

An FBoxText object is a formatted BoxText object; in addition to the normal
Text attributes, it also has border attributes, a template and two extra strings
for text entry. These extra strings are called the Template and Valid fields.
The AES displays the Template s tring as if it were displaying any other
type of text except that for every underline character it displays a character
from the main text string. For example, a date field object might consist of a
Text entry of:

0 1 1 088

and a Template of

Date :_/_/_

this would be displayed as

Date : 0 1 / 1 0/88

if it were an FBoxText.

Remember: underline characters are entered as tildes (-) .

The Valid string is used when the object is used as a Form using the GEM
form_do command. The Valid string specifies which characters may be
typed for each underline character in the Template s tring. The different
validation characters are:

X all characters allowed

9 Only 0-9

A A-Z and space

a A-Z, a-z, 1 28-255 and space

N A-Z, 0-9 and space

n A-Z, a-z, 0-9, 128-255 and space

p A-Z, a-z, 0-9, 128-255, \ : ? • . _

p A-Z, a-z, 0-9, 128-255, \ : _

F A-Z, a-z, 0-9, 128-255, : ? • _

f A-Z, a-z, 0-9, 128-255, _

Page 274 LaHice C 5 Resource Details

In the above A-Z includes non-English capital letters. 128-255 means that a 1 1
characters greater with value greater than 128 can be used, including lower
case non-English letters and the £ sign.

You can use different validation characters in the same string if you wish.
Thus for the date example above we would use the 9 character for all 6
character positions since the only characters allowed in dates are digits.

The most commonly used of these validation digits are probably X and 9.
Note that i f you wish to enter negative numbers you have to use X (otherwise
the - sign would not be allowed).

Also the pathname options (P and p) are of limited value as a number of
software producers sadly use illegal pathname characters such as - in their
filenames. All but the X, F and f validation characters also have the
undesirable feature with the first, 1 .0, operating system ROMs of crashing
the system when you press _!

Note that whilst validation characters, P, p, F and f allow you to enter lower
case letters these are echoed as the upper case equivalents.

If otherwise illegal characters are present in the Template string then the
AES will skip past them if they are entered. With our date example typing
I will skip to the next field even though I is not otherwise a valid
character.

You should ensure that there are at least as many underlines in the Temrlate
string as there are characters in the main Text string; otherwise all o the
latter will not be displayed. If you are intending to use this object as a Form
in situ as normal, you should have the same number of characters in the Text
string as there are underlines in the Template; if you don't observe this then
if the user types a long string, the next string from your resource file will be
corrupted. This restriction does not apply if you are intending to change the
address of the Text field when the resource file is loaded.

So, in general, ensure that there are exactly the same number of characters in
your Text string as there are underlines in your Template string.

Surprisingly, the Valid string does not have to contain a character for every
underline in the Template string; if all the validation characters are the
same then you can use just one. We have not seen this officially documented
but it certainly works on all versions of the operating system we have used
and can lead to considerably reduced resource file and memory usage if you
have long strings.

Resource Details LaHice C 5 Page 275

If the first character in a text field is the at-sign (@), then form_do will
display your string as underlines and place the cursor at the start of the
string. Thus you can enter a blank string of n characters by typing, say - , n-1
times, press cursor left until you are at the start of the string and then press
@ . The string will then disappear; but don't worry; it will be stored in your
file ready for use.

FText

Similar to a FBoxText (see above) but without border attributes.

I Box

An IBox is a so-called invisible box, similar to a Box but hollow. It is only
truly invisible if its border has a thickness of zero.

Icon

This consists of two bit-map images, one for data and one for a mask. In
addition a string of characters and a single character are also associated
with it. Icons also have their own foreground and background colours.

Image

An Image is a graphic bit-map with a foreground colour a ttribute. It differs
considerably from an Icon; it has no mask (so cannot be distinguished on a
patterned background), and no associated text or single character.

ProgDef

This type of object is for advanced programmers only. It allows you to create
your own types of object by supplying your own drawing routines. ProgDefs are
displayed in WERCS as boxes with a diagonal line. ProgDefs are also known
as Us e r D efs . We have seen the la t ter term used mainly in older
documentation; a hangover perhaps from days when a Digital Research user
was someone who wrote the assembly language to install CP /M on their
computer.

String

A String is a sequence of characters drawn in black and in the s tandard
system font. If you require different sized or coloured text you should use one
of the formatted text object types.

Page 276 LaHice C 5 Resource Details

Text

Actually graphic text; this is a sequence of characters that can be displayed
in the system font or in a small font and can be left-, centre- or right-justified.

Title

Objects of type Title are only used as Menu titles. Their use in other types of
tree is not recommended; they have the same attributes as Strings.

Flag Types

The different flag types for objects are as follows:

Selectable

The Selectable flag is used in conjunction with the form_do AES routine. If
this flag is set then if the user clicks on the object during a form_do call it
will be highlighted and the Selected state bit will be set. If the Selected bit
was already set, the object will be shown as normal and the Selected bit
reset.

Thus setting this bit effectively turns any object into a Button without
changing the appearance of the object. All Buttons that are to be used as such
should have this bit set; this is the default when you create a new Button
with WERCS.

Default

The Default bit tells the AES that this is the default button of the form, i.e.
the one which will be returned if the user types Return.

Normally this is used for Buttons but can also be used for other types. With
Buttons the Default bit causes the object to be displayed with a wider border
so that the user can see the default. For other objects there is no change in the
screen display.

If the Default bit is set for an object you should normally a lso set the
Selectable and Exit bits.

We do not recommend having more than one Default item in a form; the user,
your program and the AES are likely to get confused.

Resource Details Lattice C 5 Page 277

Exit

The Exit bit is used to indicate that clicking on this object will cause
form_do to return to your program, with the index of this object as its result.
If the Exit bit is not set the user can continue to edit the Form.

This bit can be used for any type of object, but only with Buttons is the size of
the border increased to indicate to the user that this is an Exit Button. When
you create a new Button using the Object menu this bit will be set.

The Selected bit should be set whenever the Exit bit is set.

Editable

The Editable bit should only be set for the FText and FBoxText objects; this
indicates that the user may edit the text in this field. If you set this bit for
other types of objects the AES will mis-behave often causing the system to
bomb. The fields in the TE D INFO structure used by the AES for FText and
FBoxText objects must conform to strict rules as described under FBoxText.

There is no need to set other flags in conjunction with the Editable flag.

Do not use an Editable text field as the last object in a Form; all the current
versions of the operating system will crash if you press cursor down when
editing this field.

Radio Button

The Radio Button bit is used to indicate that an object is one of a set of radio
buttons. The objects need not be of type Button.

Every sibling of the object should have the Radio Button bit set; to ensure
this you can use an mox to surround just the objects that you wish to be Radio
Buttons. Radio Button objects should have the Selectable flag set.

For an example of programming with Radio Buttons see the WTEST program.

Touch Exit

The Touch Exit bit is used to tell the AES to exit form_do when the user
moves the mouse pointer over an item and clicks on it. The exit occurs when
the mouse button is pressed down (rather than released as in the case of the
Exit flag). Touch Exit also differs from Exit in that the button need not be
Selectable. When using form_do, if the user double-clicks on a Touch Exit
object then the top bit of the return value will be set. Even if your program is
not interested in double-clicks, you still need to mask off the top bit.

This flag may be used with any kind of object.

Page 278 LaHice C 5 Resource Details

Hide

The Hide bit is used to hide an object and all its children from the AES. This
means that the object is not displayed by objc_draw and will not be found by
objc_flnd. This is useful when you wish to remove part of a tree temporarily,
without re-organising that tree. For example, WERCS itself uses this facility
when drawing the Extras dialog box to ensure that only appropriate types of
objects are shown.

If you have hidden an object using WERCS you cannot use the Hide command
from the Flags menu to unhide it again because you cannot select it; instead
select its parent and then use the UnHide Children command from the same
menu instead.

Flag States

The flag states for objects are as follows.

Selected

If the Selected flag is set, it indicates that the object will be displayed
highlighted. This bit is changed from 0 to 1 or from 1 to 0 if the object is
Selectable when the user clicks on the appropriate object. Any type of object
may have this bit set.

C rossed

The Crossed bit causes the AES to draw a white diagonal cross through the
object. If the object is Selected then the cross is displayed as black. This flag
can be used on all objects except !Boxes.

Checked

If the checked flag is set the AES will draw the object with a black tick
mark, ./, inside it with the tick in the top left corner. When the object is
Selected the tick is shown in Black. The Checked flag may be used for any
type of object including IBoxes.

Disabled

If the Disabled flag is set for an object then i t is shown greyed, that is, with
less intense colour than normal. In addition, Disabled objects may not be
Selected when using form_do or as part of a Menu even if they have the
Selectable bit set. Note, though, that Disabled Editable fields may be
edited !

Resource Details Lafflce C 5 Page 279

Outlined

If the Outlined bit is set then the object is drawn with a black box outside it.
Note that this does not form part of the object as far as objc_flnd, for
example, is concerned. This bit may be used with all types of objects.

Shadowed

If the Shadowed bit is set for an object a shadow is drawn outside the object
in the object's border colour; this includes Buttons. The Shadowed bit has no
effect on objects without a border.

Selecting both Outlined and Shadowed attributes produces a messy display of
the object and should be avoided.

Object, Flags and States Summary

The following table shows which attributes change the appearance on screen
for each type of object. Text Attr refers to the alignment and size of text:

Fi l l F i l l Xparent Border Border Text Text
Pattern Colour /Opaque Colour Size Colour Attr

Box .t .t .t .t

.BoxChar .t .t .t .t .t

BoxText .t .t .t .t .t .t .t

Button

F BoxText .t .t .t .t .t .t .t

FText .t .t .t .t

I Box .t .t

Icon .t .t

Image .t

ProgDef

String

Text .t .t .t .t

Title

Page 280 Lattice C 5 Resource Details

The following table shows the effect of particular flag/ state sets for a number
of the Flags. Remember that Selectable, Radio Button, TouchExit, Selected
and Outlined may be used for all types of objects except Titles:

Box

BoxChar

BoxText

Button

FBoxText

FText

I Box

Icon

Image

ProgDef

String

Text

Title

Key:

.,

•

Default Exit Editable Crossed Disabled Shadowed

� "' • ., � .,

� � • ., ., .,

� � • ., ., .,

., ., • ., ., .,

� � � ., ., .,

� � � ., ., •

� � • • � .,

� � • ., ., •

� � • ., ., •

� � • ., ., •

� � • ., ., •

� � • ., ., •

� � • ., ., •

Changes appearance of object and the behaviour of the AES .

Changes the behaviour of the AES but not the appearance.

Has no effect.

Causes the machine to crash with bombs.

Resource Details LoHice C 5 Poge 28 1

!Programming with Resources
This section details the various data structures and object types, together
with common AES programming algorithms. This section uses the standard
names and typedefs for the data structures and their components which are
supplied in the header file aes.h.

Tree Structure

OBJECT Structure

A tree is stored in memory as an array of objects. Each object has pointers to
allow the AES to tree-walk as required. The structure is as follows:

typedef st ruct obj ect
{

short ob_next ;
s hort ob_head ;

short ob_t a il ;

unsigned short ob_type ;

unsigned short ob_flags ;
unsigned short ob_st ate ;
void *ob_spec ;
s hort ob_x ;

short ob_y ;

short ob_widt h ;
short ob_height ;

} OBJECT ;

index of obj ect ' s next sibling
index of first child or - 1 if
none
index of last child or - 1 if
none
obj ect type (high byte is
ignored by the AES and used for
extended obj ect numbe rs)

depends on obj ect type
X co - ordinate of obj ect
relat ive to parent (in pixels)
V co - ordinate of obj ect
relative to parent (in pixels)
widt h of the obj ect in pixels
height of the obj ect in pixels

All the fields are present for al l objects although the ob_spec field depends
on the object type and is usually a pointer to another structure as described
below.

Page 282 LaHice c 5 Resource Details

When it is loaded into memory an object tree is like an array of records. The
first object (with index 0) is called the root object. It is normally the outer Box
of a dialog box. Each object in the tree has three fields called ob_head,
ob_tal l and ob_next. These hold integer values that dictate to the AES the
structure of the tree. Fortunately you do not normally need to access these
directly, WERCS does it for you. As an example, say we have a dialog box
like this:

He ss age

rad i o ! rad i o2

OK

The tree structure this represents can be shown as:

where each box represents:

Resource Details

obj index name

head I tail I next

LaHice C 5 Page 283

When this is stored in memory the index and first three fields of the various
objects will be:

Index ob_head ob_tail ob_next name

0 1 5 -1 outer box

1 2 3 4 Radio Box

2 -1 -1 3 First Radio

3 -1 -1 1 Second Radio

4 -1 -1 5 Messag e

5 -1 -1 0 OK button

Object number 0 is called the root of the tree. Its children are M essage,
Radio Box and OK button. Radio box's parent is outer box; its children are
First Radio and Second Radio; its s iblings are Messag e and OK button.
First Radio and Second Radio are childless and they are grand children of
the root object, outer box.

Normally what is important with object trees is the tree structure not the
order that the items are in memory. For example, don' t assume that the first
child immediately follows its parent.

We can now give concise definitions of the ob_head, ob_tal l and ob_next
fields:

ob_head

ob_tall

ob_next

points to the first child (or is -1 if childless)

points to the last child (or is -1 if childless)

points to the next sibling or, if there are no more siblings,
to the object's parent.

Values for the o b_type field, together with the interpretation of the
ob_spec field will now be described, followed by the definition of the data
structures to which they refer.

Box G_BOX 20
The ob_spec field contains the colour word (low word) and border thickness
(high word).

Page 284 LaHice C 5 Resource Details

Text G_TEXT 2 1
The ob_spec field contains a pointer to a TEDINFO structure; the te_ptext
pointer within the structure points to the actual displayed text.

BoxText G_BOXTEXT 22
The ob_spec field contains a pointer to a TEDINFO structure; the te_ptext
pointer within the structure points to the actual displayed text.

Image G_IMAGE 23
The ob_spec field contains a pointer to a BITBLT structure.

ProgDef G_PROGDEF 24
The ob_spec field contains a pointer to an APPLBLK structure.

I Box G_IBOX 25
The ob_spec field contains a colour word (low word, only border colour
attribute used) and border thickness (high word).

BuHon G_BUTTON

The ob_spec field contains a pointer to the displayed string.

BoxChar G_BOXCHAR

The ob_spec field is used for the following fields:

bits 24-31
bits 16-23
bits 0-15

String

ASCII value of displayed character
border size
colour word

G_STRING

The ob_spec field contains a pointer to the displayed string.

FText G_FTEXT

26

27

26

29
The o b _ s p e c field contains a pointer to a TED INFO structure. The text
pointed to by te_ptext is merged with the template pointed to by te_ptmplt
before display. The fill attributes in te_color are ignored.

Resource Details Lattice C 5 Page 285

FBoxText G_FBOXTEXT 30
The o b_spe c field contains a pointer to a TED I N FO structure. The text
pointed to by te_ptext is merged with the template pointed to by te__ptrnplt
before display.

Icon G_ICON 3 1
The ob_spec field contains a pointer to an ICONBLK structure.

Title G_TITLE 32
The ob_spec field contains a pointer to the displayed string.

Object Flags

The various flags in the ob_flags field have the following values as bits and
as a hexadecimal mask:

Name on Menu Standard Name B i t Mask

Selectable SELECT ABLE 0 Oxl

Default DEFAULT 1 Ox2

Exit EXIT 2 Ox4

Editable EDITABLE 3 Ox8

Radio Button RBUTION 4 OxlO

LAST OB 5 Ox20

Touch Exit TOUCH EXIT 6 Ox40

Hide HIDETREE 7 Ox80

INDIRECT 8 Ox lOO

The LASTOB bit is used by the AES to find the last object in an object tree; it
is set for the last object and the last object a lone. This bit is handled by
WERCS for you but you may find it useful to access it if you write routines to
manipulate trees in memory.

Page 286 Lattice C 5 Resource Details

If the INDIRECT bit is set, the ob_spec field is treated as a pointer to the
o b_spec field rather than the value itself. WERCS does not allow you to
set this bit; if you need it then your program should set it and re-initialise
the ob_spec field as required.

Object States

The following table gives the values as bits and masks of the ob_state field.

Name on Menu Standard Name Bit Mask

Selected SELECTED 0 Ox1

C rossed CROSSED 1 Ox2

Checked CHECKED 2 Ox4

Disabled DISABLED 3 Ox8

Outlined OUTUNED 4 Ox10

Shadowed SHADOWED 5 Ox20

Border Thickness

The low byte of the high word in some ob_spec fields stores the border
thickness in pixels. A value of 0 means no border, positive values give a
border inside the object, negative values force it outside the object.

Colour Word

The colour word used in some o b_spec fields consists of the following
components:

Border Text X!O Fill Fill
Colour Colour Pattern Colour

1 5 1 2 1 1 8 7 6 4 3 0

In the above diagram the numbers indicate the bits, so that the Border
Colour is in bits 15-12, the four most significant bits of the first byte.

X/0 is the Transparent/Opaque bit; Opaque is indicated by the bit being set.

Resource Details LaHice C 5 Page 287

Fil l Pattern is as on the Fil l menu with 0 indicating hollow- and 7 solid- fill.

The Border, Text and Fi l l Colours are as on the appropriate menus. The
standard names for the colours are:

Colour Value Colour Value

WH ITE 0 LWH ITE 8

BLACK 1 LBLACK 9

RED 2 LRED 10

GREEN 3 LGREEN 1 1

BLUE 4 LBLUE 12

CYAN 5 LCYAN 13

YELLOW 6 LYELLOW 14

MAGENTA 7 LMAGENTA 15

The L in the above names indicates light. If you must encode a colour word into
your program the best base to use is hexadecimal.

TEDINFO Structure

This structure is used by the object types BoxText, FBoxText, Ffext and Text:

typedef struct text_edinfo
{

Page 288

char •te_ptext ;
char *te_ptmplt ;

char *te_pvalid ;

short t e_font ;

s hort te_j u n k 1 ;
short te_j u st ;

s hort te_color ;

s hort te_j unk2 ;
short t e_thickness ;

pointer to actual text
pointer to template ; editable
portion denoted by u nderscores
pointer to string containing
validation characters
font used : 3=system font , 5=small
font
reserved for future use
text j ustif ication required :
O=left , 1 =right , 2=centre
obj ect colou r and pattern of box ­
type obj ects (see previously for
word format)
reserved for future use
border thickness

LaHice C 5 Resource Details

short te_txtlen ;

short te_tmplen ;

} TEDINFO ;

ICONBLK Structure

length of te_ptext st ring
(including null)
length of te_ptmplt st ring
(including null)

This is used by the Icon object type only:

typedef st ruct icon_block
{

s hort * ib_pmask ;
short * ib_pdata ;
char * ib_ptext ;

short ib_char ;

short ib_xchar ;

short ib_ychar ;

short ib_xicon ;

short ib_yicon ;

short ib_wicon ;

short ib_hicon ;
short ib_xtext ;

short ib_ytext ;

short ib_wtext ;

short ib_htext ;
} ICONBLK;

pointe r to icon mask
pointer to icon data
pointer to the text displayed wit h
the icon
low byte is the displayed character ,
high byte defines colou r u sed - top
n ibble is foreground colour , bottom
nibble is background
X c o - ordinate of ib char relat ive to
ib xicon

-

y co - ordinate of ib_char relat ive to
ib_yicon
X co - ordinate of icon relative to the
ob_x of the ob j ect
Y co - ordinate of icon relat ive to the
ob_y of the obj ect
width of the icon image in pixels
(must be a multiple of 1 6)
height of icon image i n pixels
X co - ordinate of icon ' s text relat ive
to t he ob_x of t he obj ect
Y co - o rdinate of icon ' s text relative
to t he ob_y of t he obj ect
width of rectangle to d isplay icon ' s
text in (centred)
height of icon ' s text

The bit images for the mask and data are stored as arrays of words.

B ITBLK Structure

This is used by the Image object type and Free Images only:

typedef st ruct bit_block
{

short *bi_pdata ; pointer to bit image

Resource Details LaHice C 5 Page 289

short bi_wb ;

short bi_hl ;
short bi_x ;
short bi_y ;
s hort bi_colo r ;

} BITBLK ;

width of image data in byte s (must be
eve n)
height o f image in pixels
source X co- ordinate
source Y co- ordinate
colour word (see previously)

bl_x and bl_y are used as offsets into the bit image given by bl_pdata; any
bits before this will be ignored.

APPLBLK Structure

This is used by ProgDefs:

typedef struct appl_blk
{

int (*ab_code) (PARMBLK *) ; pointe r to code to d raw the
obj ect

long ab_parm ; passed as a

} APPLBLK ;

PARMBLK Structure

paramete r to the low - level
drawing routine

This is passed to ProgDef drawing routines:

typedef struct parm_blk
{

OBJECT *pb_t ree ; pointe r to start of obj ect t ree
short pb_obj ; the obj ect index
short pb_prevstate ; the old state of the obj ect to be

changed
short pb_currstate ; t he new (changed) state of the

obj ect
short pb x · - J the pixel X screen c o - ordinate of

the obj ect
short pb_y ; the pixel Y screen co - ordinate of

the obj ect
short pb w · - J the pixel width the obj ect
s hort pb_h ; the pixel he ight of the obj ect
short pb_xc ; the pixel X co - ordinate of the

current clip rectangle
short pb_yc ; the pixel Y screen c o - ordinate of

the current clip rectangle
short pb_wc ; the pixel width of the current clip

rectangle
short pb_hc ; the pixel height of the current

clip rectangle

Page 290 LaHice C 5 Resource Details

long pb_parm ;

} PARMBLK ;

copied f rom the ab_parm value in
the APPLBLK

If pb_prevstate and pb_currstate are the same then the AES is drawing
the object, not changing it.

H ints & Tips on Resources

Using ProgDefs

If a loaded resource file contains any ProgDef objects, their ob_spec; field
will not be initialised on loading - this is up to the programmer. An APPLBLK
structure needs to be allocated and initialised, then a pointer to it planted in
the relevant ob_spec field.

The drawing routine (in the a b_code field) will then be called whenever
that object needs drawing or changing (remember that if you have a ProgDef
in a menu this may occur at any time). The routine called should normally be
declared as both __ stdargs and __ saveds, taking a single parameter
pointing to a PARMBLK. Hence a typical declaration would be:

int __ stdargs __ saveds my_progdef (PARMBLK *pb) ;

When your custom drawing routine has finished, the value it returns is the
ob_state value which you wish the AES to render over your object, i.e.
returning a value of 0 applies no extra effects, whereas returning CROSSED
(for instance) would draw a cross over the object. Note that any number of
ob_state values may be ORed together to produce the desired effect..

When designing ProgDefs it is often easiest to base them on existing objects
which can be manipulated in W E R CS, e.g. in the example program we
implement a rounded button based on the normal square button, hence the text
may be manipulated from within WERCS.

When the AES calls your drawing code you are still in the AES's 'context',
i.e. you are using its stack, hence recursive routines or large local arrays may
cause it to overflow. Note that this also means that the routine which is
called must be compiled with stack checks off (the -v option). Also note that
the AES is not re-entrant hence you may not make any calls to it (although
you can, and should, call the VDI).

If you draw using the AES's handle (as in our example) then you should
ensure that you maintain any of the VDI attributes, alternatively you may
use your own virtual workstation which will avoid these problems.

Resource Details Lattice C 5 Page 291

Creating New Desktops

It is possible to replace the standard GEM background pattern (the area of
the screen not used by the menu bar) using a special tree. This allows
different colours and fill patterns to be used, as well as allowing icons to
appear on the desktop.

A Form should be created in WERCS with the root object being a borderless
Box with a suitable fill pattern and colour. If any icons are required these
should be added to this Form. The size of the Form is not relevant. To tell
GEM to use this Form, the size and position (Ob_x, ob_y, ob_ width and
ob_helght) fields in the root object should be set to the usable screen size,
found using the AES wlnd_get(DESK . WF _WORKXYWH call. The form
can then be installed using a wlnd_set(WF _NEWDESK call with an object
parameter of zero. Before your program terminates, the desktop must be de­
installed by passing a NULL value to the same call.

Note that installing a desktop does not cause it to be drawn and you should
normally call form_do(FMD_FINISH , . . . to force a redraw of the area.

Common Mistakes and h ow to avoid them

The following is a list of common mistakes made when programming with
GEM and resources in general. The reasons given here are brief as there is
insufficient space to expand upon them; they act as pointers for where to look
in other documentation.

Problem: My program was mainly working but now it crashes during its
initialisation.

Reason: Your resource file is out of step with your program and what was
the Menu that you were displaying is now a Form; as a result the
GEM menu_bar call bombs. Re-compile all the parts of your
program that rely on the header file.

Problem: My dialog box doesn't disappear after you click on OK.

Reason: The dialog box is on top of one of your windows and you are not
replying to WM_RE D RAW events. If you don't open a window,
the Desktop will re-draw the desktop tree for you automatically .

Problem: My program crashes when it should be displaying a Dialog Box.

Reason 1: If you have no editable fields and are passing -1 as the starting
object the machine may crash, despite what some documentation
says. Use 0 instead.

Reason 2: If you do have editable text fields make sure that they conform
to the rules under FBoxText regarding editable text.

Page 292 LaHice C 5 Resource Details

Problem: A GEM program crashes unexpectedly. After rebooting, the same
program works correctly under the same conditions.

Reason: A program has modified GEM's data structures unintentionally.
There are many possible ways of doing this; one to look out for is
not doing a v_clsvwk after a v_opnvwk; that is leaving a Virtual
Workstation open.

Problem: The mouse disappears or leaves extra pixels on the screen ('mouse
droppings').

Reason: Your graf_mouse calls are mis-balanced in some way. For each
hide (M_ ON) call you must have a show (M_ OFF) call.

Problem: There are mouse droppings where a menu has been pulled down.

Reason: You are not using wlnd_update (BEG_UPDATE • . . . a n d
graf_mouse (or the VDI v_hide_c) before writing to the screen.

Problem: When using some desk accessories the screen display is messed up.

Reason: Make sure that you are taking note of WM_REDRAW events and
only updating the areas given by the wlnd_get (WF _FIRSTXYWH .

. . . and wlnd_get (WF _NEXTXYWH calls. To test this, move a
desk accessory about the screen; the Control Panel and the Saved!
desk accessory can both be used.

Problem: Some desk accessories 'lose' their mouse when invoked from my
program.

Reason: Make sure you don't remove the mouse until after you have done a
wind_ update (BEG_UPDATE • . . . call and make sure that it is
visible before calling wlnd_update for END_UPDATE.

Problem: The program works fine in medium and high resolution, but
crashes when accessing a menu on 'old' ROM machine.

Reason: Your menu is taking up more than one quarter of the screen. When
running in Low Resolution, a menu may not contain more than 16000
pixels. If you are using large menus, you may wish to consider
using a special menu for low resolution, as WERCS does.

Resource Details LaHice C 5 Page 293

IWERCS Language Details
This section details the language specific details o f the name files produced
by WERCS .

Assembly Language

If you have selected Assembler from the Language dialog box WERCS will
produce a file with extension .I containing EQU statements of the form:

label EOU 1

If you have a saved a resource file called TEST. RSC you would then include
the constants from the name file using:

I NCLUDE TEST . !

The characters allowed in names are:

A-Z, a-z and _ as the first character and:

A-Z, a-z, 0-9, _ and . in subsequent characters.

Although designed with DevpacST in mind, the . I file can be used with
other assemblers that follow the Motorola standard.

BASIC

I f you have selected BASIC from the Language dialog box W E RC S will
produce a file with extension .BH containing CONST statements of the form:

CONST label%=1

If you have a saved a resource file called TEST.RSC you would then include
the constants from the name file using:

rem $include test . bh

The characters allowed in names are:

A-Z, a-z as the first character and:

A-Z, a-z, 0-9, _ and . in subsequent characters.

Page 294 LaHice C 5 Resource Details

The . BH file is designed with HI Soft BASIC and Power BASIC in mind, and
adaptation to other BASICs for the Atari ST is s tra ightforward
straightforward so long as the BASIC is suitable for serious GEM work.

c
If you have selected C from the Language dialog box WERCS will produce a
file with extension . H containing #define pre-processor statements of the
form:

#define label 1

If you have a saved a resource file called TEST.RSC you would then include
the constants from the name file using:

#include " TEST . H "

The characters allowed in names are:

A-Z, a-z and _ as the first character and:

A-Z, a-z, 0-9, and _ in subsequent characters.

All sixteen characters of the name are significant as is the case with
Lattice C 5. This may cause problems with some other C implementations,
such as the HISoft C Interpreter, if your names have the first eight characters
the same.

FORTRAN

If you have selected FORTRAN from the Language dialog box WERCS will
produce a file with extension . INC containing PARAMETER definitions of the
form:

I NTEGER*4 LABEL
PARAMETER (LABEL=1)

The characters allowed in names are:

A-Z, a-z as the first character and:

A-Z, a-z ,0-9, and _ in subsequent characters.

All sixteen characters of the name are significant as in Prospero FORTRAN;
the W E R C S output was designed for use with this compiler and with
Prospero's GEM bindings; they may not be appropriate for other FORTRANs.

Resource Details LaHice C 5 Page 295

We would like to apologise for the lack of an example FORTRAN program;
we do not have the necessary FORTRAN expertise to produce this.

Modula-2

I f you have selected Modula from the Language dialog box W E RCS will
produce a file with extension . D E F containing a definition module. For
example, if you have saved a resource file called TEST. RSC, the file will be
of the form:

DEFINTION MODULE TEST ;
CONST label= 1 ;

END TEST .

If you are writing a one-module program you can use an implementation
module of the same name.

Otherwise, you will need to write a implementation module like this:

IMPLEMENTATION MODULE TEST ;
END TEST .

To access the constants from your other modules use:

FROM TEST IMPORT label ;

IMPORT TEST ;

and then access the labels as, for example, TEST. Iabel .

Remember not to use the same name as your main module i f you are using this
method.

The characters allowed in names are:

A-Z, a-z, $ and _ as the first character and:

A-Z, a-z, 0-9, $ and _ in subsequent characters.

All sixteen characters of the name are significant.

Although designed for use with FTL Modula-2, the name files inay be used
with any Modula-2 compiler that follows the Third Edition of Wirth's book.

Page 296 LaHice C 5 Resource Details

Pas c a l

If you have selected Pascal from the Language dialog box W E R C S will
produce a file with extension . INC containing constant definitions of the form:

CONST
label= 1 ;

If you have a saved a resource file called TEST. RSC you would then include
the constants from the name file using:

{$ I TEST . INC }

The characters allowed in names are:

A-Z, a-z as the first character and:

A-Z, a-z, 0-9, and _ in subsequent characters.

All sixteen characters of the name are significant.

Although our example programs are for Personal Pascal, the . I N C files
generated are suitable for use with most Pascal compilers.

!The WTEST Example Programs
Compil ing WTEST

To illustrate the most common resource-handling programming requirements,
we supply an example program written in a variety of languages. The
programs all do the same thing but the implementations vary according to
the language used. A ready-to-run version called WTEST. PRG is supplied on
the master disks; it needs WRSC. RSC to run.

To re-compile WTEST first you need to run WERCS and then use the Load
command from the File menu to load WRSC.RSC from your backup disk. When
WRSC . RSC is loaded the name file, WRSC.HRD containing the names of the
forms and objects will be loaded as well.

All the following commands are on the File menu. Click on Language and
then select the language that you wish to use by clicking on the appropriate
radio button in the dialog box. Next save the file using Save; this will re­
save the WRSC . RSC resource file, the name file WRSC . H RD and also a file
for the language of your choice. Next use Quit to leave WERCS.

Resource Details LaHice C 5 Page 297

One more general point: if you edit a resource file and change its structure you
will need to re-compile your program, in case any constants have changed.

c
WTEST . C is the source file for use with Lattice C 5. This is an extended
version of the standard WTEST, only supplied with Lattice C 5, which
rather than using square buttons, uses rounded ones. Several other headers
files supplied as part of Lattice C 5 are also used.

Assembly Language

WTEST.S is the source file for use with DevpacST2 . As well as the WRSC . I
file produced by WERCS you will need GEMMACRO.S and AESLIB .S from
your DevpacST master disk.

BASIC

WTE ST . BAS is the HISoft BASIC version which will also compile under
Power BASIC. It needs the GEMAES.BH file from your BASIC master disk as
well as the WRSC . BH file produced by WERCS.

Modula-2

WTEST .MOD i s the FTL Modula-2 version. You will need to compile the file
WRSC.DEF produced by WERCS before you compile WTEST. MOD. You will
also need to compile WRSC . MOD from your WERCS backup disk before you
link.

Pascal

WTEST. PAS i s the Personal Pascal version; to compile this you will need
GEMSUBS.PAS from your Personal Pascal backup disk.

WTEST structure

The different versions of W T E S T all do the same thing but the
implementations vary according to the language used. We have tried to keep
variable names and procedure/ function names as consistent as possible.

The program is deliberately over-simplified; it manages to avoid calling the
VDI completely and gets away with an evnt_mesag, avoiding the dreaded
evnt_m ul t l . The general structure of the code in all the programs is as
follows:

Page 298 LaHice C 5 Resource Details

Procedure I NITIALISE

This does the required GEM initialisation then loads the resource file. The
tree address of the menu is found and the menu installed. The usable screen
size is found and certain global variables initialised.

Procedure SETDESK

This sets the new desktop pattern to be a particular address and forces the
AES to re-draw the whole screen.

Procedure DEINITIALISE

Resets any installed desktop, removes the menu bar, frees the resource, then
does any required GEM de-initialisation.

Procedure HANDLE_DIALOG

A general dialog box handler which starts by centring and drawing the box.
User interaction is handled by form_do and, on return, if the exit object was
a Button, it is de-selected.

Procedure SET_TEDINFO

This allows a particular TED INFO structure to have its data portion set to a
particular string.

Procedure GET_TEDINFO

Allows a particular TEDINFO structure to return its data portion.

Procedure ROU ND_BUTTON

This i s the code that the ProgDef in the Lattice C 5 version of WTEST uses.

Procedure OBJ_INIT

This modifies the button objects in the dialog box to be ProgDefs. The strings
already there are saved and used subsequently for the round buttons. It also
determines the AES's VDI handle for the use of ROUND BUTION. This
routine is only supplied in the Lattice C 5 version.

-

Procedure SET_BUTTON

This allows one particular radio Button to be set from a group. I f invalid
parameters are specified the routine will never finish.

Resource Details LaHice C 5 Page 299

Procedure GET_BUTTON

Allows a group of radio Buttons to be interrogated to see which is selected.

Procedure TEST_DIALOG

This handles the particular dialog box in the resource file. It implements
proper cancelling - that is, if it is cancelled, the Button state and Text entry
are left alone.

Procedure HANDLE_MENU

This i s the menu-click dispatcher; it takes various actions, depending on
which menu item has been clicked, and also de-selects the menu title.

Procedure MAIN

This is the main loop, acting only on MN_SELECTED message events. In a
proper program evnt_multl would be used and a far greater selection of cases
would have to be dealt with.

Page 300 LaHice C 5 Resource Details

IHRD fi le format
. HRD files consist of a header record, any number of variable length data
records and then an end-of-file record.

HRD Header record

Name Size Meaning

version word 1 at present

autonamlng byte 1 if auto-naming selected

0 if no auto-naming

langflag byte 1 if C,

2 if Pascal,

4 if Modula-2,

8 if FORTRAN,

16 if assembler,

32 if BASIC

autosnap byte 0 if no character-snap

1 if half character-snap

2 if full character-snap

casing byte 0 if mixed

1 if upper

2 if lower

autoslzlng byte 1 if auto-sizing

0 if no auto-sizing

reserved byte not used at present

Resource Details LaHice C 5 Page 30 1

HRD Data Record

Name Size Meaning

type byte 0 if Form,

1 if Menu,

2 if Alert,

3 if Free String,

4 if Free Image,

5 if object (rather than tree),

6 if end-of-file record,

7 if record names a prefix rather than a
name.

reserved byte not used at present

treelndex word number of tree

objlndex word if object then object number within tree

name varie Name terminated with a single null
s

ILNG fi le format
The WERCS. LNG file is a text file containing the information that WERCS
uses to work out which name file to produce, what to output and what is a
valid name. You can modify this if you wish; though be warned that it is
easy to produce files that your compiler won't like.

The file consists of a number of Language specifications followed by an end
record. Each Language specification starts with a line like:

* LANGUAGE C

where C is the name of the language. This is used purely for documentation
purposes; it won't affect the Language Dialog Box for example. The records
are for C, Pascal, Modula-2, FORTRAN, assembler, and BASIC in that order.

The end record is a single line:

*END
and should be the last line in the file; the information following it will be
ignored.

Page 302 LaHice C 5 Resource Details

The other lines in the language specification may appear in any order and
can be one of:

* SOURCE . H

This specifies the extension of the source file that WERCS will generate (. H
in this example); the full stop (.) must be present.

*SIGN I F I CANCE 1 6

Specifies the number of significant characters in names; minimum 1 maximum
16. The default is 16.

* I N ITIAL a - z , A - Z , _
Specifies the characters that are allowed a s the first letter o f the name. The
hyphens (-) indicate a range of letters. The commas may be omitted. The
equivalent of this would be

* I NITIAL a - zA - Z_

which is far less obvious. Do not put spaces in the IN ITIAL string. The default
is a-z, A-Z.

* FOLLOW a - Z , A- Z , 0 - 9 , _
specifies which characters are allowed in names other than in the first
position. The syntax to specify the characters is the same as for " IN ITIAL.
Default is a-z, A-Z, 0-9.

* !NIT
*TREE
*OBJECT
*EXIT

These commands specify the text that is generated in the source file. The
" IN IT text is generated once at the top of the file, " E N D at the end of the file,
"TREE for each named tree in the file and "OBJECT for each named object.
Each entry may be more than one line long, the entry being terminated by the
next • command. The following special pairs of characters may be used:

Character Meaning

% F base file name (without drive, directory or extension),

% T name of the current tree,

% N name of the current object,

% V the value of the current object (for "OBJECT) or tree
(for "TREE),

% % a single % character.

Resource Details LaHice C 5 Page 303

Of the above only % F and % % should be used in " I N IT and " EXIT. The
default for " IN IT, " EXIT, "OBJECT and "TREE is no text at all.

See the WERCS. LNG file for an example. If you want to generate code for a
language that is not supported already, modify the definition of another
language that you do not use. If you are adventurous you can even change the
name of the Button in the Language box in WERCS.RSC but if something goes
wrong don' t blame us!

Page 304 LaHice C 5 Resource Details

Appendix C
Converting to

Lattice C 5
!Lattice 3.04
Old Lattice 3 .04 programs are probably the easiest programs to convert to
Lattice C 5. Often few or no changes will be required. There have however
been many changes to gain ANSI conformance on the runtime libraries and
some rationalisa tion of names to match those used by Lattice C on other
architectures. The important changes for upgrade users are:

• abs has been changed so tha t it only deals with the type lnt.

• malloc, calloc, free, realloc have been extended to respond correctly to
passing of ANSI N ULL arguments. Note that this means that any use of
mal loc(O) will return a N U LL pointer. Also note that free returns the
'type' void, not lnt as with the previous release.

• An extra level of data hiding has been introduced between the ANSI file
and GEMDOS file handling. In particular f l leno no longer returns a
GEMDOS file handle, but instead an internal handle. The _chkufb
function may be used to obtain the mapping from internal to GEMOOS
handles.

• dcreat, d c lose, dopen, dread, dwr l te and d s e e k have had an
underscore prefix added. Note also that the level of functionally at this
level is significantly greater than before, as many of the GEMOOS
anomalies are removed at this level .

• AZ is no longer recognised as end of file marker in text files; this usage
was not widespread and invariably caused confusion.

• lsdata, lsdptr, lsstatlc, lsauto, lsheap and lspptr were hang-overs from
the MS-DOS implementation in version 3 and not strictly relevant to the
68000 environment and so have been removed.

• Almost all internal variables have been renamed or removed, any
references to such variables should (in general) be removed.

• The values placed in _OSERR are now the positive GEMOOS error codes.
This change was to increase conformity with other Lattice compilers.

Converting LaHice C 5 Page 305

•

•

•

•

•

•

•

•

•

allmem and bldmem are no longer relevant to the new dynamic memory
manager (cf. the old static memory manager); any calls to these functions
are best removed.

The exec family of functions are no longer available, they did not
perform as described under the old documentation anyway (in fact they
were fork synonyms). TOS is incapable of performing exactly the
operations required to implement these functions as previously described.

The -n flag on the compiler has the opposite sense to that under 3.04, i.e .
-n truncates to eight characters rather than increasing the significance to
32 characters.

The Line-A functions have all been implemented, and a correct header
file made available together with many extensions . In particular, the
showmouse macro from l lnea .h has been corrected to include the hide
depth parameter; ref�r to the Line-A documentation for details.

In conformance with ANSI, m e m c py is not guaranteed to perform
correctly when blocks overlap. Under version 3 this case was handled
correctly.

_MNEED is defunct due to the dynamic memory model used. It may be
• used to specify an initial heap size (e.g. if you have a program which

will have only very small malloc requiremer.ts) although it no longer
specifies the maximum heap size. In particular negative values are
ignored.

The GEM AES and GEM VDI header files have been split into two,
although both may be included via #Include <gemlib.h>.

Many of the types in the AES and VDI prototypes have been changed to
reflect more natural type usage. This should not, however, affect the
code generated.

The AES, VDI and Line-A libraries were re-written from scratch, hence
any bugs in the old libraries are most unlikely to exist in the new
libraries .

Other Differences

This section lists other differences from version 3; hopefully all important
conversion differences are listed above. Here is the list of the improvements
and changes in Version 5, relative to Version 3:

• The compiler now uses sequence points to ensure correct evaluation and
side effect generation according to the standard.

Page 306 LaHice C 5 Converting

• The compiler now includes a full ANSI pre-processor with string
facilities, token facilities and appropriate scoping of substitution
symbols. The d e f i n e d () directive is also supported. In addition,
DATE and _TIME_ provide the date and time of compilation.

• The const and volatile keywords are supported.

• Function prototypes may now include an optional parameter name. Also
functions taking a variable number of arguments may be indicated with
ellipses ' . . . ' .

• String literals may now be concatenated to allow easier coding of long
strings.

• The cast operation (void ") correctly coerces a type without any warning.

• Many diagnostic messages have been added to detect programs that do
not conform to the ANSI standard.

• The compiler now recognises several new keywords:

signed Overrides any default unsigned options.

near Declares a data item to be addressed relative to
the global base register. When used with a
subroutine, it indicates a PC-relative subroutine
ca l l .

tar Declares an item that must be addressed with a
full 32 bit address.

huge Same as far.

_regargs Defines a subroutine
register parameters.

that is to be called with

_stdargs Defines a subroutine that is to be called with
standard stack parameters.

_asm Defines a subroutine that takes its parameters in a
specific register

_saveds Defines a subroutine that is to load up the global
base pointer upon entry.

_Interrupt Defines a subroutine
interrupt code.

that may be called from

Converting LaHice C 5 Page 307

•

•

•

•

•

•

•

•

•

•

•

•

To provide faster compilation of a large project, the symbol table may be
saved out to disk so that it can be used in future compilations. If you run
a large header file through the compiler and save it in this way,
subsequent compilations using that header file will be much faster.

The compiler provides an option to ignore redundant #Include statements
(i.e. several #Include statements that refer to the same file) .

The search rules for #Include files have been modified to conform to
standard UNIX search conventions.

It is now possible to disable particular error messages as well as to
change the severity of most messages. Along with this, it is now possible
to specify a maximum number of erro.rs allowed in a compilation so that
the compiler will abort.

We have implemented an improved form of error recovery for many of
the common mistakes to eliminate many of the situations that resulted in
the cascade of errors.

All of the compiler messages have been moved to a separate file to
simplify adapta tion of the compiler to non English language
environments.

In order to produce a compiler that fits well on a smaller system, we
have elected to provide a big version of the compiler that includes some
additional features. If you wish to take advantage of these features (at
a cost of about 1 5K), you must use this big compiler instead of the
standard one.

The big compiler provides a full listing ability including macro expansion
display, nest level counting, and include file listing. This listing may
also include an optional cross reference of all variables, #define values
and structure tags.

The big version of the compiler may be used to generate prototype files of
all functions encountered in a module. This eliminates the potentially
tedious task of constructing the list of prototypes for all functions in a
project.

The compiler generates instructions optimised for each of the 680x0
family processors including support for the address modes found on the
68020 and 68030.

The compiler provides an option to generate in-line floating point
instructions which directly access the 68881 and 68882 maths eo­
processors. This code takes advantage of register tracking.

You may now instruct the compiler to choose code sequences optimised for
space or for time.

Page 308 LaHice c 5 Converting

•

•

•

•

•

•

•

•

•

•

•

•

In addition to the -rO I -r 1 flags, you may freely mix the style of
subroutine calls with the near and far keywords. Those declared near
will be referenced with the pc-relative addressing while far will use the
full 32-bit addressing.

Data may be addressed much more freely with the near and fa
keywords. These control the type of addressing to be used for external
data. Only those items declared near will be addressed as a 16-bit offset
from the A4 register. All others will be accessed with a full 32-bit
address.

When the -cs option is used, string constants will be placed in the code
section. This option is beneficial when using the -bO option.

Two styles of register parameters are supported. The -rr option causes the
compiler to place, automatically, up to four parameters in registers for
subroutine calls. The _asm keyword may be used in conjunction with a
register specification list to cause the compiler to pass parameters in a
given register.

The compiler now tracks the condition codes affected by the generated
code in an attempt to avoid generating unnecessary test instructions.

Stack cleanup on subroutine calls is delayed as long as possible to allow
coalescing and even elimination of the cleanup across multiple calls.

The bitwise Boolean operations generate better code for dealing with
constant values.

Division by 2, 4, or 8 no longer generates a subroutine call. The compiler
generates inline code to normalise and perform the calculation.

Bit shift operations have been re-written completely. The compiler now
generates optimal shift sequences for all constant values.

The compiler attempts to place as many variables as possible in registers
unless this feature is explicitly disabled.

The code generator now takes full advantage of all 68000 address modes
including auto increment and PC-relative indexed. Tracking of indexing
operations allows the compiler to suppress unnecessary additions and
substitute indexed address modes.

Loading of specific constants has been optimised to generate the optimal
code sequence and avoid MOVE.L # as much as possible.

Converting LaHice C 5 Page 309

• Several new built-in functions have been added:

abs Return the absolute value of an integer.

_emit Insert a hex word into the instruction stream.

. . . _fpc Generate MC68881 transcendental operation .

geta4 Force loading of the global data register.

getreg Obtain the contents of a specific 68000 register.

m ox Return the larger of two integers.

memcmp Compare memory blocks.

memcpy Copy memory block.

memset Initialise memory block.

mln Return the smaller of two integers.

putreg Directly store into a specific 68000 register.

strcmp Compare strings.

strcpy Copy strings.

strlen Obtain string length.

• Many small code optimisations suggested by users have been
implemented. In particular, the compiler no longer will generate NOP
instructions. Also, MOVEM instructions in the prologue/epilogue that
reference a single register are converted to MOVE mstructions.

• All GEMDOS/BIOS/XBIOS functions are available via inline TRAPs
eliminating the overhead of 'stub' based methods.

• swi tch sta tements on values which are in the range of a short are
converted to use the more efficient code.

• The entire run-time library has been re-written to take advantage of
better algorithms. The most important routines were recoded in assembly
language.

Page 3 1 0 Lattice C 5 Converting

IH iSoft C
Converting HiSoft C programs to Lattice C 5 is normally fairly simple,
requiring few changes to the source code. The following options are
recommended to ensure compatibility with the HiSoft C model:

-aJ Force all characters to unsigned; HiSoft C always considers plain
characters to be unsigned. The use of this option will ensure that any
dependencies on this behaviour will not cause unexpected effects.

-fd Force all floating point declarations to be of type double as HiSoft C
only supports the double real format.

The following points should also be taken into account when converting code:

• If you are using the HiSoft C toolbox the main function should be
renamed as lc_maln, so that the special initialisation code runs before
your program.

• The HiSoft C toolbox is supplied already compiled as a library for use
with Lattice C 5 and can simply be linked in - see the I nstal lat ion
Guide.

• HiSoft C programs which do not use the GEM toolbox, but do use GEM,
must use appl_lnlt and appl_exlt. Their use is optional under HiSoft C,
whereas Lattice C 5 uses these calls to perform some initialisation itself.
Failure to call these will result in mysterious crashes.

• The HiSoft C functions strgetfn and strsplfn were re-named from their
traditional Lattice names. The functions strmfn and strsfn respectively
should be used in their place. The easiest solution is to define this
mapping on the command line to Lattice C (since HiSoft C would not
allow the mapping within the program) viz:

- dstrgetfn=st rmfn - dst rsplfn=st rsfn

Where code cannot be made to run successfully under both systems, the IC and
LATTI C E pre-processor symbols can be used to distinguish between the
translation environment; HiSoft C always defines I C , Lattice C 5 always
defines LATIICE. Hence one can write:

#ifdef IC
I* HiSoft c specific code * I

#else
I * Lattice C version of the code * I

#endif

Converting LaHice C 5 Page 3 1 1

Page 3 1 2 Lattice C 5 Converting

Appendix D
GST Support

lLinkST, The GST format l inker
I ntroduction

LlnkST i s a linker that links GST-format files. In general we recommend that
you use the Lattice C Linker,Cllnk rather than LlnkST since CLink is faster
and has more facilities. LlnkST does have one advantage over C Link though:
it will let you link with other languages that produce GST format files.

For example, if you have some assembly language written with GenST, the
assembler supplied as part of HiSoft DevpacST2, then you could use GenST
to produce a GST-format file and then link it, together with your C code and
the GST libraries, to produce an executable program. If the assembly language
module you have is short or doesn't use the extensions to the Motorola
standard provided by DevpacST, we recommend that you convert your
assembly language to the Lattice assembler, asm, so that you can use CLink.

If you wish to link your Lattice C code with code written in another high
level language that supports the GST format (producing a so-called mixed
language program) or you wish to use a third party library provided in GST
format, then you will need to use LlnkST.

Producing mixed language programs is not for the faint hearted; you need to
ensure that the required start up code is provided for both languages and that
the memory models, including register conventions,are compatible. Fortunately
Lattice C 5 provides a wealth of options, so that you can match most popular
conventions. See the section on LC, The Compiler.

If you are 'only' linking with assembly language, things are much simpler
since you can modify the code that is being called to handle whichever
memory model you wish to use.

Note that Lattice C 5 does not produce the other commonly used format on the
ST, DRI linkable code, because this linker format is not sufficiently rich to
support some of code constructs that Lattice C 5 generates.

LlnkST will only link GST-format files.

GST Support LaHice C 5 Page 3 1 3

Compil ing code in GST format

To produce code that can be linked with LlnkST you will need to use the
LC .TIP driver's -z option or, alternatively, convert a Lattice format file to
GST format by using lc2gst as described at the end of this appendix.

If you are producing a program that is larger than about 32K using GST
format then you cannot use the compiler's default small code model because
GST linkers cannot generate ALVs, the clever method that Clink uses to allow
you to use the small code model with large programs. Thus you will need to
use the -rO option when compiling GST-format libraries.

The GST libraries that we supply follow the same naming conventions as
those in Lattice format only with the GST .bin extension. If you are using -10,
you'll need to use lcnb.bln, lcgnb.b ln and lcmnb.b ln as your libraries,
which give you large code and large data. Thus to link with these you will
also need to use the -bO compiler flag.

There are a few other points regarding the use of GST format:

• The maximum amount of near data is restricted to 32K rather than 64K
as with CLink.

• Lattice line number debugging information cannot be included in your
executable program.

• There are some errors that C Link can spot that LlnkST cannot; these are
mainly mis-uses of memory models.

I nvoking Lin kST

As with most of the tools supplied with Lattice C 5 you can either run LlnkST
from the Desktop or from a shell and can either supply a complete command
line or specify a link file which contains the required information.

The command line should be of the form:

<filename> < - opt ions> [f ilename] [- options]

Options are denoted by a - sign then an alphabetic character, supported­
options being:

-B generate a true BSS section for any such named sections

-0 debug - include all symbols in the binary file using DR standard 8
character format (for MonST2C o� other debuggers)

Page 3 1 4 LaHice C 5 GST Support

-F force pass 2 of the linker, useful if you want to see all errors (as any
pass 1 errors will, by default, stop the link before the second pass)

-L specify that all following filenames are library filenames

-M dump a map file showing the order of the sections and labels. The
map filename will be the main filename with an extension of . MAP

-0 specify object code filename, may be followed by white space before
filename

-Q 'quiet' mode, which disables the pause after the link

-S dump a symbol table listing, The symbol table filename will be the
main filename with an extension of . SYM

-T truncate to eight characters

-U force upper case

-W specify control file filename, defaults to . LNK extension

-X extended debug, using the HiSoft Extended Debug format for use with
MonST2C .

Normally any file specified given are assumed to be input files, defaulting to
the extension of . B IN, though if a . LNK extension is specified it will be taken
to be a control file. After a -L option, filenames are all assumed to be library
files.

The output file can be specified with the -o option on the command line, or
using the O UTPUT directive in the control file. If there is more than one of
these directives or options, the last one is used . If there is none given, then
the first input filename specified in the command line or control file is used,
with an extension of . PRG.

Example Command Lines

PART1 PART2 - d

Reads PART l .B IN and PART2 . BIN as input files, and generates PART l . PRG as
an output file complete with debugging information.

PART1 PART2 - o TEST . PRG

Reads PART l . B IN and PART2 . B I N as input files, and generates TEST. PRG as
an output file.

GST Support Lattice C 5 Page 3 1 5

- o TEST . TOS START - 1 MYLIB - s

Reads START. B IN as a n input file, selectively reads MYLI B . B IN as a library,
and generates the output file T E ST . TOS and the symbol listing file
TEST.SYM .

LinkST Running

LlnkST has two passes - during pass 1 i t builds up a symbol table of all
sections and modules, and during pass 2 it actually creates the output file.
When it starts it prints a logon message, then reports on which files it is
reading or scanning during both passes. This gives you some idea of what
takes time to do, as well as exactly where errors have occurred.

If there is enough free memory at the end of pass 1, LlnkST will use a cache to
store the output file, which speeds up the process greatly. If it uses the cache
it will write to the disk at the end of pass 2, and report the number of errors.

When the link finishes you will be prompted to press a key before quitting.
This is to give you an opportunity to read any warning or error messages
before returning to the Desktop. You can disable this pause by using the -q
option, useful if you are using a CLI .

Error and warning messages are directed to the screen - if you want to pause
output you can press Ctri-S, while Ctri-Q will resume. Pressing Ctri-C will abort
the linker immediately.

You can re-direct screen output to a disk file by starting the command line
with

>FI LENAME . TXT

or you can re-direct it to a printer by starting the command line with

>PRN :

to the parallel port, or

>AUX :

to the serial port.

If you do re-direct output in this way you should use the -q option as you
won't be able to see the prompt at the end of the linking.

Page 3 1 6 LaHice C 5 GST Support

Control Files

The alternative way to run the linker is to have a control file for the
programs which you are linking together.

If you require a lot of options which won' t fit on the command line or you get
bored of typing them, you can use a control file, which is a text file
containing commands and filenames for the linker. The default extension is
. LNK and the control filename is specified on the command line using the -w
(for With) option. Each line can be one of the following:

I NPUT <f ilename>

This specifies a filename to be read as an input file. The default extension is
. BIN if none is given.

OUTPUT <f ilename>

This specifies the filename to be used for the output file. There is no default
extension - you must specify it explicitly.

LIBRARY <f ilename>

This specifies a filename to be scanned as a library. The default extension is
. BIN if none is given.

SECTION <sect ionname>

This allows specific section ordering to be forced.

DEBUG

All symbol names included in the link are put in the output file so that
debugging programs such as MonST2C can use them when the program is
running.

XDEBUG

Similar to the debug option but uses HiSoft Extended Debug format for up to
22 character significance.

DATA size [K]

The BSS segment size is set accordingly. The size can be given either as a
number of bytes or as a number of K-bytes (units of 1 024). This option is
particularly useful for the Prospero compilers which effectively use the BSS
segment for their stack.

GST Support LaHice C 5 Page 3 1 7

BSS <sect ionname>

Specifies that the named section should lie in the GEMDOS BSS section area.
This can save valuable disk space, but will generate errors if the section
contains any non-zero data. This should not be used at the same time as the
DATA statement.

TRUNCATE

Causes all symbols to be truncated to 8 characters. This is sometimes required
to link assembly language with long labels to high-level language code with
short labels.

UPPER

Forces all symbols to be automatically upper-cased. This is sometimes
required when a compiler or assembler generates case-insensitive code.

Blank lines in the control file are ignored, and comments can be included by
making the first character in the line a • , a ; or a I .
With the INPUT or OUTPUT directive, i f the filename i s specified as • i t is
substituted the first filename on the command line. This can be useful for
having a generic control file for linking C programs for a particular memory
model.

An example control file is:

* cont rol f ile for linking large model gem programs
I NPUT CNB
I NPUT *
XDEBUG
LIBRARY LCGNB
L IBRARY LCNB
SECTION TEXT
SECTION DATA
BSS UDATA

Assuming this control file is called CPROG. LNK, the LlnkST command line

TEST - w CPROG

will read as input files C N B . B I N and TEST . B I N , and scan the libraries
LC G N B . B I N and LC N B . B I N . The object code, including extended debug
information, will be written to TEST. PRG, as no output file was explicitly
specified.

Page 3 1 8 LaHice C 5 GST Support

The two SECTION directives, above, ensure that the TEXT and DATA sections
appear in the correct order in the output file. The BSS directive ensures that
the U DATA section is treated as a true BSS section.

If you do not specify a drive name in the control file or on the command line,
the default drive will be assumed. If you run LlnkST from the Desktop, the
default drive will always be the same as that containing the file on which
you double-clicked; though if you run it from a CLI or from the editor this
will not necessarily be so.

LlnkST Warnings

Warnings are messages indicating that something might be wrong, but
probably nothing too serious.

duplicate definition of value for symbol <x>

The symbol was defined twice. This can happen if you replace a subroutine in
a module with one of your own, for example. The linker will use the first
definition it comes across, and give this warning on the second.

module name is too long

Module names can only be 80 characters long.

comment Is too long

Comment directives are only allowed to be 80 characters long (don't ask u;
why, we don't know!).

absolute sections overlap

Two absolute sections clash with each other.

SECTION <x> is neither COMMON nor SECTION

A section name was specified without defining its type.

LinkST General Errors

unresolved symbol <x> In file <x>

The symbol was referred to but not defined in the file. There may also be
other files which refer to the symbol, but this error gives you a start in your
search!

GST Support LaHlce C 5 Page 3 1 9

XREF value truncated

A value was too large to fit into the space allocated for it, for example a BSR
to an external may be out of range.

bad control line <x>

An illegal line was found in a control file.

non-zero data in BSS section

A section wanted as a true BSS section contained non-zero data.

LinkST Input/Output (1/0) Errors

file <x> not found

Can't open output file <X>

Can't open map file <x>

Can't open symbol file <x>

Can't open input file <x>

I/o error on Input file

disk write failed

filename <x> was too long

LinkST Binary File Errors

These are errors in the internal syntax of the input file, and should not occur.
If they do it probably means the compiler, assembler or converter produced
incorrect code.

missing SOURCE directive

Can occur if a file is not in GST format, for example a DRI file.

Page 320 LaHice C 5 GST Support

runtime relocation is only available for LONGs

attempt to redefine Id of symbol <X>.

attempt to DEFINE <X> with <id> of zero
bad operator code Ox99 In XREF directive

bad truncation rule In XREF

wrongly placed SOURCE directive

bad directive <99>

<id> <99>not DEFINEd as a SECTION but used as one

attempted re-use of <id> <99>as SECTION id

attempted re-use of <X> as SECTION name

section is COMMON but being used as though it's not

SECTION is being misused as COMMON

unexpected end of input file

' Linker Bug' Messages

These can be produced as a result of internal checks by the linker. If you get
one please send us copies of the files you are trying to link!

GST Support LaHice C 5 Page 321

IGSTi ib, The GST format l ibrarian
GSTI Ib is a librarian that is designed for maintaining GST format libraries.
When specifying filenames to GSTI Ib you must explicitly include the file
extension, normally .bin.

GSTIIb has a number of different possible command lines as shown below:

Replace modules

gstlib r [vsq] [a l b obmod] library [f iles . . .]

This will replace any current occurrences of the modules contained in the
given fl ies. If a module is not already present in the library then it will be
added. If the library does not exist then a new library will be created that
just contains these files. The following additional options may be used

V (verbose) . Echo when adding or replacing a module or
creating a library.

a mod (after). If adding a new module insert it after mod.

b mod (before) .If adding a new module insert it before mod.

s (sort) . Sort the library so that it can be scanned by a linker
in a single pass, if possible. If this fails due to circular
references then the new l ibrary will be saved in
l lbname . tmp and the original library left as it was.

q (quit). Wait for Return to be pressed before exiting GSTIIb,
for use with the Desktop.

Update modules

gstlib u [vsq] [a l b obmod] library [f iles . . .]

This works in precisely the same way as the replace modules option except
that the modules are only updated if the versions in the files are more up to
date than the version in the library. Exactly the same options may be used as
with the r option.

Page 322 LaHice C 5 GST Support

Load modules

gstlib l [vq] p rog . lib [files . . .]

This option can be used to produce a library that contains just the modules
that would be included when linking a program. The V and q modifiers have
their usual meaning. For example:

gstlib 1 prog . bin c . bin yourprog . bin lc . bin

could be used to create a library containing the modules required by
yourprog. You could then run LlnkST without the need to scan the library.
Once you have created a library using this option it is unwise to sort it
subsequently.

Delete modules

gstlib d [vsq] library [modules]

Deletes the modules with the given names. As usual v will cause the
librarian to inform you of its progress, q will pause before exiting and s wil l
attempt to sort the library after performing the deletions.

Move modules

gstlib m [vsq] [a j b obmod] library [modules . . .]

Moves the given modules to thr end of the library unless either a or b are
specified, in which case:

a mod moves the modules immediately after obmod and
b omod moves the modules immediately before obmod.

The other modifiers have their usual meanings.

Tabulate modules

gstlib t [vvvvvq] library [modules . . .]

This form of command line displays information about the given modules in
the library. If no module list is included, the information is given about all
modules. The different levels of information are as follows:

v module names only
vv as per v and the size and date
vvv as per vv and the list of exported (xdef) symbols

GST Support LaHice C 5 Page 323

vvvv as per vvv and the list of imported (xref) symbols
vvvvv as per vvvv and a cross reference of the symbols

As ever, q may be included to pause before GSTIIb terminates.

Extract modules

gstlib x [vkq] library [modules]

This extracts the given modules from the library. If no modules are specified
then all the modules are extracted. Note that module names may have .o, . c
or .bin appended to them depending o n the tool that produced them. The
additional modifiers are:

k keep date stamp from library on the extracted files
v inform the user of progress

q pause before exiting

If a module that is being extracted does not have a name it will be placed in
a file called dummy### . B I N where ### is a unique decimal number.

Librarian command files

If the command line to GSTIIb contains an @ sign, the name following this is
taken as a command file name and the command read from this. Additionally
such files may contain lines starting with #; these are treated as comments.
Long lines may be split by using \ as the last character of the line.

Example command lines

gstlib tv lc . bin

List all the modules in the library lc . bln; there are quite a few!

gstlib xk lc . bin printf . o

Extract the module prlntf. o into a file called prlntf.o retaining the date stamp
that it had in the library.

g st lib d lc . bin printf . bin

Remove the module prlntf.bln from lc.bln.

The source code to GSTIIb is supplied; see the Installation Guide for details.

Page 324 Lattice C 5 GST Support

Uc2gst, The Object Fi le Convertor
lc2gst is a tool for converting Lattice C object files to the GST format. It has
three different forms of command line as follows:

lc2gst f ile . o
lc2gst - o d i r \ f ile . o
lc2gst - o j ohn f ile . o

The first form simply converts flle .o to flle .bln. Note that the . o is required.

The second form places the converted file in the directory dlr; note that the
terminating \ must be present. This option can be used to keep your GST
format files in one directory.

The final form causes flle . o to be converted to john . bl n . Note that the . b in
extension is always used, regardless of any explicit extension after the -0.

lc2gst can convert more than one file at once: simply include the other files to
convert at the end of the commllnd line. I t does not, however, expand
wildcards itself, so that you will need a shell that supports this, such as
Craft, to provide this facility.

GST Support LaHice C 5 Page 325

Page 326 LaHice C 5 GST Support

Appendix E
Quick Options Reference

LC LC1 LC2

- b - b Base relative data

- bO - bO Non-base relative data

- b 1 - b 1 Base relative data

- B Always use 'big' compiler

- c+ - c + Suppress structure messages

- ea - ea ANSJ compatibility

- cc - cc Allow nested comments

-cd - cd Allow S in identifiers

- ce - c e Suppress error line printing

- cf -cf Require function prototypes

- cg - cg Process ANSI trigraphs (not implemented)

- c i - c i Suppress multiple includes o f same file

- ck - c k Allow new keywords

- c l - c l Forces long alignment o f all external data

- cm - cm Allow multiple character constants

-eo - eo Enable old style preprocessor

- cq - cq Strengthen aggregate equivalence type checking

- er - e r Allow register keywords

- C S - c s Create only one copy o f identical strings

- et - et Enable warnings for tags used without definition

- c u - c u Force all char declarations a s unsigned char
- cw - cw Shut off warning for return without a return value

- e x - e x Treat all global declarations a s externals

- C Continue on error

- d - d Enable debugging

-dO - dO Disable debugging

Quick Options LaHice C 5 Page 327

· d 1 · d 1 Enable debugging · dump line table

· d2 · d2 Generate symbol information

· d3 · d3 Generate symbol information, dump at every line

· d4 · d4 Generate full symbol information

· d5 · d5 Generate full symbol information, dump at every line

- dx=y · dx=y Define preprocessor symbol

- e - e Recognise extended character set

- eo - eo Japanese character set

- e 1 - e 1 Chinese character set

- e2 - e2 Korean character set

- Ex=y Define environment variable x with value y
. f · f Use standard Lattice libraries

·f8 ·f8 Generate code for Motorola 68881
-fa -fa Auto-detecting 1/0 based 68881
·fi · f i 1 / 0 based 68881 maths

· f l · f l Use standard Lattice libraries

·fd ·fd Treat all declarations as double precision

- fm -fm Use float a s single precision and double a s double precision

-fs · f S Treat all declarations as single precision

· Qd - gd Cross reference defined symbols

· QC · QC Cross reference compiler provided files

· Q e - g e List excluded lines

- g h · Qh List header files

· Q i - g i List included files

- gm - gm List macro expansions

- gn -gn Print narrow lines

· QS · Q S List source

· Q X · Q X Produce cross reference listing

·Hxxx - hx x x Read i n header file xxx

- ix - ix Specify include directory

- j <n> · j <n> Disable message n

· j <n>e - j <n>e Make message n an error instead of a warning

Page 328 Lattice C 5 Quick Options

- j <n>i - j <n>i Disable message n
- j <n>w - j <n>w Enable message n as a warning

- L+ Specify additional linker objects

- La XADDSYM option

- Lb BATCH option

- Lf MAP option

- Lg GEM library

- Lh Hunk map option

-Ll Ubrary map option

- Lm Lattice maths library

- Ln NODEBUG option

- Lq QUIET option

- Ls Symbol map option

- LV Verbose option

- LX XREF map option

- 1 - 1 Align objects on longword boundaries

- M Only compile modified source files

- m -m Generate code for Motorola 68000
-mo -mo Generate code for Motorola 68000
-m1 -m1 Generate code for Motorola 68010
- m2 - m2 Generate code for Motorola 68020
-m3 - m3 Generate code for Motorola 68030
- ma -ma Generate code for all Motorola processors

- me -me Disable cleanup overhead reduction enhancement

-mr -mr Disable automatic registerisation

-ms -ms Generate code optimised for space

- mt - mt Generate code optimised for time

- n - n Retain only 8 characters for identifiers

- o x - o x Place object file in location x

- p - p Preprocess only

- pe - pe Generate prototypes only for externs

-ph - ph Generated precompiled header file

Quick Options Lattice C 5 Page 329

· PP - pp Generate prototypes with _PROTO for portability

- pr -pr Generate prototype file

· PS ·PS Generate prototypes only for static functions

- qx · O X Place quad file in location x

- q<n>e - q<n>e Quit compilation after n errors/warnings

- q<n>w - q<n>w Quit compilation after n warnings

- q Same as -q l e l w
- q - - q - Never quit on any errors or warnings

- r - r Default subroutine calls to near (PC-relative)

- ro - ro Default subroutine calls to for (Absolute)

- r 1 - r1 Default subroutine calls to near (PC-Relative)

- rr - rr Default subroutine calls/ entries to register conventions

- rs - rs Default subroutine calls/ entries to stack conventions

- rb - rb Generate code for both register and stack convention entries

-Rx Place compiled objects into library x

· S · S Specify default segment names

- sb=x - sb=x Specify name for BSS segment

- sc=x - sc=x Specify name for code segment

- sd=x - sd=x Specify name for data segment

-ta Force linking o f a desk accessory startup stub

-td Force linking o f auto detecting startup stub

- t r Force linking o f resident startup stub

·t=x Use file x as the startup code

· U · U Undefine all preprocessor symbols

· UX ·UX Undefine preprocessor symbol x

· V · V Disable stack checking code

•W ·W Default to short integers

· X · X Treat all global declarations a s externals

- y - y Load up A4 with base address at start of functions

· Z Generate GST-Iinkable code

Page 330 LaHice C 5 Quick Options

Appendix F
The Lattice C Start- U p

!Introduction
The Lattice C compiler is supplied with a wide range of differing startup
stubs which perform various levels of initialisation and have differing
impacts on the programs which may be written.

!The stubs
4 different stubs are provided for the following purposes:

Standard - suffix none

This family of stubs provide the normal entry and exit code required by a
GEM or TOS program designed to be run either from the Desktop or from
another program via GEMDOS Pexec. They perform full command line
parsing via either the Atari extended command line method, or if this is not
available via the command line embedded in the programs basepage. The
memory available to the program is assessed and various internal variables
are initialised to support the dynamic memory allocator (note that this
allocator is careful to ensure that bugs in TOS pre-1 .4 are not aggravated).
The environment variables available are also parsed into the standard UNIX
envlron format.

The final call, from the startup code, is to the pre-maln routine _main which
initialises the standard 1/0 library prior to calling the main routine. If your
program uses no standard 1/0 you may wish to declare your main function as
_main to ensure that no superfluous library routines are drawn in.

Desk Accessory - suffix 'ace'

The desk accessory family of stubs perform the minimal initialisation
required by desk accessories. The only 'normal' operations performed are the
initialisation for the clock function and the reading of the OS information.
The stack space for a desk accessory is fully contained within the s tartup
code, so if a different stack size is required this must be dane by modifying
the stack size in the startup and reassembling it, the relevant line is:

base ds . b 256

The Lattice C Start-Up Lattice C 5 Page 33 1

which is normally near to the last line in c • s .

These stubs perform no command line parsing, no environment setup, no
standard file opening and no dynamic memory allocator initialisation. This
last point is so that all DAs are forced to conform to the requirement that a
DA may not legally use GEMDOS Malloc.

In order to circumvent the malloc problem you may add static arrays to the
library free memory list using the _addheap function. The function has the
prototype:

void _addheap (void * base , size_t length) ;

Calling this function with the base of a static array and and a length count
adds those bytes to the library heap. For example:

int main (void)
{

}

static long heap [1 00) ;

_addheap (heap , sizeof (heap)) ;

Note that the length of the heap must be a longword multiple. Also be
aware that if you never call this function and your program calls any function
which must malloc() memory (e.g. fopen()) then all such calls will fail.

Because desk accessories are always GEM programs they must always be
linked with the GEM library, additionally the DA startup is specified using
the -to option.

Auto-detecting - suffix 'aut•

This family of stubs allow a program to detect how it has been run, from the
auto-folder, as a desk accessory, as a GEM program or as a TOS program. An
external variable, lnt _XMODE, is made available so that the program may
perform the requisite initialisation:

0 Standard GEM program

1 Standard TOS program

2 GEM DA

3 Auto folder TOS program

Page 332 LaHice C 5 The LaHice C Start·Up

For the GEM/TOS modes (0, 1 and 3) the startup code performs otherwise as
described for a normal GEMOOS program. For the DA mode, the stack issue
recurs, in this instance the startup code re-uses the space taken by the startup
code as the stack for the desk accessory. This gives approximately 750 bytes
of stack space, which may be increased by inserting NOPs, immediately
before the lsada2 label. Other than this oddity, the DA startup sequence is
identical to that described previously.

Resident - suffix ' res'

The resident stubs provide a facility for generating programs which are both
residentable and re-entrant. This is used, for example, by LC2 so that it may
be multiply re-executed from within the integrated environment. The resident
stubs place no special restrictions on the programmer other than that all
accesses to the data must be referenced through A4, i.e. the normal -b 1 model.
Note that these means there must be no far data whatsoever.

In the resident mode the startup code initially detects whether or not the
program is being executed in a resident manner, or whether it has been run
normally, as if by Pexec(O, . . .). A copy of the near data section is then made
so that any relocation required may be performed on it, prior to initialising
A4. Note that in this mode the default locations of any global data variables
exported for a symbolic debugger point to the original constant copy of the
data and not the copy which is in use.

To use a residentable program from within your own application, it must
initially be loaded using Pexec(3 , . . .) and then shrunk viz:

#include <osbind . h>
#include <basepage . h>

bp= (BASEPAGE *) Pexec (3 , prog , • • , • •) ;
Mshrink (bp , bp - >p_t len+bp - >p_dlen+Ox 1 00) ;
Mf ree (bp - >p_env) ; / * kill the environment * /

To execute this program, another basepage must be allocated for the active
copy, and then executed:

BASEPAGE *ap= (BASEPAGE *) Pexec (5 , NULL , command , env) ;

ap - >p_tbase=bp - >p_tbase ;
ap - >p_tlen=bp - >p_tlen ;
ap - >p_dbase=bp - >p_dbase ;
ap - >p_dlen=bp - >p_dlen ;
ap - >p_bbase=ap+ 1 ;
ap - >p_blen= (long) ap - >p_hitpa - (long) ap - >p_lowtpa - sizeof (*ap) ;
e r r=Pexec (4 , NULL , (char *) ap , NULL) ;
Mfree (ap - >p_env) ;
Mfree (ap) ;

The LaHice C Start-Up LaHice C 5 Page 333

where c o m m a n d and e n v give the command line and environment
respectively that are to be passed to the child process.

If a residentable program is to be executed normally a standard Pexec(O • . . .)
suffices. Please note that a residentable program whilst conforming to the
normal GEMOOS program load format contains many extensions which are
generated by the linker in order to support the resident concept. At this time
it is not our intention to provide detailed information on this since such
information is only useful to the startup stubs (provided) and the linker,
CLink.

U ser suppl ied stubs

A user specified s tub may be passed, by the user, to the compiler driver.
Typically this is used when the startup code has been modified for a special
purpose, or the stack size of a D.A. has been increased, for example.

The name of the stub is communicated to the driver via the -t= option, in
conjunction with the -L options. Hence to compile and link with the stub
mystub.o:

le - L - t=mystub . o myprog . c

Naming conventions

The naming conventions for the startup stubs follows exactly the same pattern
as that for libraries . The first character of a startup stub is always c,
followed by:

Letter Type of library

s Default short integer (-w)

r Register parameter passing (-rr)

nb Non-base relative (-bO)

The final three character suffix, as described above, are as follows:

Suffix Type of startup stub Option

ace Desk accessory -to

aut Auto program type detecting -td

res Resident program -tr

User User specified stub -t=

Page 334 LaHice C 5 The Lattice C Start-Up

Hence a file called c s r n b a c c . o would be a short integer, register passing
non-base relative desk accessory startup stub.

IRe-assembl ing c.s
The startup code is provided so that it may be modified a s the user requires.
To re-assemble it the command:

asm [opt ions] c . s

should be used, either from a shell, the desktop or as a Too l / Run Other
command from the environment.

The options part dictates what sort of stub is to be produced, all types of stub
are controlled using various -d parameters. These are:

AUTO Auto-detecting (-td)

DA Desk accessory (-to)

GST GST compatible (-Z)
NOBASER Non-base relative mode (-bO)

REGARGS Register passing mode (-rr)

RESIDENT Residentable program (-tr)

SHORTINT Default short integer mode (-w)

Hence to build the stub described earlier, c s r n b a c c . o, the command used is:

asm - dDA - dREGARGS - dNOBASER - dSHORTINT c . s

Note that this will in fact build the linkable file into c , o rather than
c s rnbacc . o.

Also note that specifying GST does not build a GST compatible linkable file,
the • o produced by asm must be passed through lc2gst first.

The Lattice C Start-Up LaHice C 5 Page 335

Page 336 LaHice C 5 The LaHice C Start-Up

Appendix G
ST ASCI I Table

Here is the 8-bit ASCII representation of the ST's character set:

0 0

1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

1 1 B

12 c
13 D

14 E

15 F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15

tL? � � (! ·� I [+� J 0 .f. J' ';. � Jl I'
0 2 3 "1 S 6 '1 8 9 a � f: '!l ;te tt

! 1 1 11 $ 1. & • C l * + � I
B 1 2 3 4 5 6 7 8 9 ; < = > ?
@ A B C D E f 6 H I J K L M N 0
P 0 R S T U U W X V Z [\ 1 A
' a b t d e f g h i j k 1 n n o
p Q r s t u v w x y z { I } N A
c u e a a a a t e e e 1 1 1 � ft
� e I 6 o o fi u y o U C £ ¥ a f
a i 6 u n " � g L � , � � i c •
a o S s ce iE fl n o · · , r ql © ® lM
U U M l a 1 n 1 r n u ' J) n J
C B D ! � 1 � fl 1 1 D , , § A �
� a r � I o � r Q e g s � � e n = ± � :S r J + � 0 • • ,- n 2 � -

The most significant four bits of the ASCII representation are shown down the
left side whereas the least four significant bits are across the top so that, for
example:

4C (4*16+12=76 decimal) represents L

7B (7*1 6+1 1 = 123 decimal) represents {

ST ASCII Table LoHice C 5 Poge 337

Page 338 Lattice C 5 ST ASCII Table

Appendix H
VT52 Screen Codes

When writing to the screen via GEMDOS or the BIOS calls, the screen driver
emulates VT52 protocols. The control codes are sent via escape sequences,
which means an escape character is sent (27 decimal, or $1 B) followed by one
or more other characters.

ESC A
ESC B
ESC C
ESC D
ESC E
ESC H
ESC I
ESC J
ESK K
ESC L

ESC M
ESC Y

ESC b

ESC c
ESC d
ESC e
ESC f
ESC j
ESC k

ESC I
ESC o
ESC p
ESC q
ESC v
ESC w

Cursor up; no effect if at the top line
Cursor down; no effect if at the bottom line
Cursor right; no effect if on the right hand side
Cursor left; no effect if on left hand side
Clear screen and home cursor
Home cursor
Move cursor up one line; if at top scrolls the screen down a line
Erase to end of screen, from the cursor position onwards
Clear to end of line
Insert a line by moving all following lines down. Cursor is
positioned at start of the new line
Delete a line by moving all following lines up
Position cursor; should be followed by two characters, the first
being the Y position, the second the X. Row and column numbering
starts at (32, 32) which is the top left
Foreground colour; should be followed by a character to determine
the colour, of which the four lowest bits are used
Background colour; similar to above
Erase from beginning of display to the cursor position
Enable cursor
Disable cursor
Save the current cursor position
Restore a cursor position saved using ESC J; note that this is not
supported on the original 1 .0 ROMs
Erase a line and put cursor at start of line
Erase from start of line to cursor position
Inverse video on
Inverse video off
Wrap around at end of line on
Wrap around at end of line off

For instance these codes may be used in a normal prlntf statement to print
information one after another, on the same line, e.g.

printf (' \ 033IProcessing %s \ 033K\ n ' , file) ;

VT52 Screen Codes LaHice C 5 Page 339

Page 340 LaHice C 5 VTS2 Screen Codes

Appendix I
B ibl iography

le Programming
Advanced C Schildt, Herbert (1 986)

ISBN 0-07-881208-9, McGraw-Hill, Berkeley, CA 94710, USA.

Advanced C Techniques & Applications
Sobelman, Gerald E. and Davld E. Krekelberg (1 985)

ISBN 0-88022-162-3, QUE Corporation, Indianapolis, IN 46250, USA.

Advanced C: Food For The Educated Palate Gehani, Narain (1 985)

ISBN 0-88175-078-6, Computer Science Press, Rockville, MD 20850, USA.

ANSI C: A Lexical Guide Mark Williams Company (1 988)

ISBN 0-13-037814�3, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

ANSI X3. 1 59- 1 989 - Programming Language - C ANSI (1 990)

American National Standards Institute, 1430 Broadway, New York 10018,
USA.

C For Beginners Sinclalr, Ion (1 986)

ISBN 0-86161 -206-X, Melbourne House Publishers Ltd., 60 High Street,
Kingston-Upon-Thames, Surrey KTl 4DB, U.K.

C Programming Guide Purdum, Jack (1 983)

ISBN 0-88022-022-8, QUE Corporation, Indianapolis, IN 46250, USA.

C Self-Study Guide Purdum, Jack (1 985)

ISBN 0-88022-149-6, QUE Corporation, Indianapolis, IN 46250, USA.

C Wizard's Programming Reference Schwaderer, W. David (1 985)

ISBN 0-471-82641-3, Wiley Press, New York, NY 10158, USA.

C: A Reference Manual, 2nd Edition
Harbison, Samuel P. and Guy L. Steele Jr (1 984)

ISBN 0-13-109802-Q, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

Bibliography LaHice C 5 Page 34 1

Common C Functions Brand, Kim Jon (1 985)

ISBN 0-88022-069-4, QUE Corporation, Indianapolis, IN 46250, USA.

Debugging C Ward, Robert (1 986)

ISBN 0-88022-261-1, QUE Corporation, Indianapolis, IN 46250, USA.

Efficient C Plum, Thomas and Jim Brodie (1 985)

ISBN Q-91 1537-05-8, Plum Hall, Cardiff, NJ 08232, USA.

Going from BASIC to C Traister, Robert J. (1 985)

ISBN 0-13-357799-6, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

Introducing C Alien, Boris (1 986)

ISBN O-Q0383-105-1 ,William Collins Sons & Co. Ltd., 8 Grafton Street, London
W1X 3LA, U.K.

Learning to Program in C Plum, Thomas (1 983)

ISBN Q-91 1537-00-7, Plum Hall, Cardiff, NJ 08232, USA.

Microsoft C Run-Time Library Jamsa, Kris (1 985)

ISBN 1-55615-227-2, Microsoft Press, Bellevue, WA 98009, USA.

Programming In C For The Microcomputer User
Traister, Robert J. (1 984)

ISBN 0-13-729641-X, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

Software Engineering in C
Darnell, Peter A. and Philip E. Margolis (1 988)

ISBN 0-387-96574-2, Springer-Verlag, 175 Fifth Avenue, New York, NY 10010,
USA.

Standard C Plauger, P. L. and J. Brodie (1 989)

ISBN 1 -55615-158-6, Microsoft Press, 1 601 1 NE 36t h Way, Box 97017,
Redmond, Washington, 98073-9717, USA..

The C Compendium Lawrence, David and Mark England (1 985)

ISBN 0-946498-86-6, Sunshine Books, 12-13 Little Newport Street, London
WC2H 7PP, U.K.

The C Library Jamsa, Kris (1 985)

ISBN 0-07-881 1 10-4, McGraw-Hill, Berkeley, CA 94710, USA.

Page 342 LaHice C 5 Bibliography

The C Programmer's Handbook Bolsky, M. l . (1 985)

ISBN 0-13-1 10073-4, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

The C Programmer's Handbook Hogan, Thorn (1 984)
ISBN 0-89303-365-0, Brady Communications Company, Inc., Bowie, MD 20715,
USA.

The C Programming Language, 2nd EdiHon
Kernlghan, Brian W. and Dennls M. Ritchle (1 988)

ISBN 0-13-1 10370-9, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

The C Toolbox Hunt, William James (1 985)

ISBN 0-201-1 1 1 1 1-X, Addison-Wesley Publishing Company, Reading, MA,
USA.

UNIX System V Programmers Reference Manual AT&T (1 987)

ISBN 0-13-940479-1, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

Variations In C Schustack, Steve (1 985)

ISBN 0-914845-48-9, Microsoft Press, Bellevue, WA 98009, USA.

168000
1 6-Bit Microprocessors Whltworth, lan R. (1 985)

ISBN 0-00-3831 1 3-2, William Collins Sons & Co. Ltd., 8 Grafton Street,
London W1X 3LA, U.K.

68000 Assembly Language Programming 2nd Edition
Kane, G., D.Hawkins and L.Leventhal (1 987)

ISBN 0-07-881232-1, Osborne/McGraw-Hill, 2600 Tenth Street, Berkely, CA
94710, USA.

68000 Machine Code Programming Barrow, David (1 985)

ISBN 0-00-383163-9, William Collins Sons & Co.Ltd., 8 Grafton Street, London
W1X 3LA, U.K.

68000, 680 1 0, 68020 PrimerKelly-Bootle, Stan and Bob Fowler (1 985)

ISBN 067-22405-4, Howard W.Sams & Co., 4300 W.62nd Street, Indianapolis,
IN 46268, USA.

Bibliography LaHice C 5 Page 343

M68000 Family Programmer's Reference Manual
Motorola Inc. (1 989)

Motorola Semiconductor Products Inc., PO Box 20912 Phoenix, AZ 85036, USA.

Mastering The 68000 Microprocessor Robinson, Phillip R. (1 985)

ISBN Q-8306-1886-4, Tab Books Inc., Blue Ridge Summit, PA 17214, USA.

Microprocessor Systems: A 1 6-Bit ApproachEccles, William J. (1 985)

ISBN 0-201-1 1985-4, Addison-Wesley Publishing Company, Reading, MA,
USA.

Programming the 68000 Williams, Steve (1 985)

ISBN 0-89588-133-0, SYBEX Inc., 2021 Challenger Drive #100, Alameda, CA
94501, USA.

The MC68000 User's Manual 7th Edition Motorola Inc. (1 989)

ISBN 0-13-567074-8, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

The MC68020 User's Manual 2nd Edition Motorola Inc. (1 985)

ISBN 0-13-566878-6, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

The MC68030 User's Manual Motorola Inc. (1 987)

Motorola Semiconductor Products Inc., PO Box 20912 Phoenix, AZ 85036, USA.

The MC6888 1 /MC68882 User's Manual Motorola Inc. (1 987)

ISBN 0-13-566936-7, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

!Algorithms & Data Structures
Algorithms in C Sedgewick, Robert (1 990)

ISBN 0-201-51425-7, Addison-Wesley Publishing Company, Reading, MA,
USA.

C Chest and Other C Treasures Holub, Alien I. (1 987)

ISBN 0-934375-40-2, M & T Books, 501 Galveston Drive, Redwood City, CA
94063, USA.

Compilers: Principles, Techniques and Tools
Aho, Alfred V, Ravi Sethi and Jeffrey D. Ullman (1 986)

ISBN 0-201-10194-7, Addison-Wesley Publishing Company, Reading, MA,
USA.

Page 344 LaHice C 5 Bibliography

Data Handling Utilities In C
Radcliffe, Robert A. and Thomas J. Raab (1 986)

ISBN 0-89588-304-X, Sybex, Berkeley, CA 94710, USA.

Data Structures and Algorithms
Aho, Alfred V, John E. Hopcroft and Jeffrey D. Ullman (1 983)

ISBN 0-201-00023-7, Addison-Wesley Publishing Company, Reading, MA,
USA.

Fundamental Algorithms Knuth, Donald E. (1 973)

ISBN 0-201 -03809-9, Addison-Wesley Publishing Company, Reading, MA,
USA.

Semlnumerical Algorithms Knuth, Donald E. (1 98 1)

ISBN 0-201-03822-9, Addison-Wesley Publishing Company, Reading, MA,
USA.

Sorting and Searching Knuth, Donald E. (1 973)

ISBN 0-201-03803-X, Addison-Wesley Publishing Company, Reading, MA,
USA.

1ST Specific
A Hitchhikers Guide to the BIOS Atari Corp (1 986)

Atari Corp, 1 196 Borregas Avenue, Sunnyvale, CA 94086, USA.

Atari GEMDOS Reference Manual Atari Corp (1 986)

Atari Corp, 1 196 Borregas Avenue, Sunnyvale, CA 94086, USA.

Atari ST Internals 3rd Edition
Bruckmann, Rolf, Lothar Englisch and Klaus Gerlts (1 988)

ISBN 0-91 6439-46- 1 , Data Becker GmbH, MerowingerstraBe 30, 4000
Diisseldorf, West Germany.

COMPUTE! 's ST Applications Guide: Programming in C
Field, Simon, Kathleen Mandis and Dave Myers (1 986)

ISBN 0-87455-078-5, COMPUTE! Publications, Inc., P.O. Box 5406 Greensboro,
NC 27403, USA.

Bibliography Lattice C 5 Page 345

COMPUTEI's Technical Reference Guide, Atari ST - Volume 1: VDI
Sheldon Leeman (1 987)

ISBN 0-87455-093-9, COMPUTE! Publications, Inc., P.O. Box 5406 Greensboro,
NC 27403, USA.

Concise Atarl ST 68000 Programmer's Reference
Katherlne D. Peel (1 986)

ISBN 1-85181-017-X, Glentop Publishers Ltd., Standfast House, Bath Place,
High Street Barnet, Herts ENS SXE, U.K.

GEM Programmer's Guide, Volume 1 : VDI Digital Research (1 987)

Digital Research Inc., 60 Garden Court, P.O. Box DRI, Monterey, CA 93942,
USA.

GEM Programmer's Guide, Volume 2: AES Digital Research (1 987)

Digital Research Inc., 60 Garden Court, P.O. Box DRI, Monterey, CA 93942,
USA.

GEMDOS Extended Argument (ARGV) SpecificationAtari Corp (1 989)

Atari Corp, 1 196 Borregas Avenue, Sunnyvale, CA 94086, USA.

Professional GEM

ANTIC Publishing

Oren, Tim (1 985)

Programmers Guide to GEM Balma, Phillip and William Fltler (1 986)

ISBN 0-89588-297-3, SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710, USA.

Rainbow TOS Release Notes Atari Corp (1 989)

Atari Corp, 1 196 Borregas Avenue, Sunnyvale, CA 94086, USA.

S.A.L.A.D. - Still Another Line A Document Atari Corp (1 987)

Atari Corp, 1 196 Borregas Avenue, Sunnyvale, CA 94086, USA.

STE TOS Release Notes Atari Corp (1 989)

Atari Corp, 1 196 Borregas Avenue, Sunnyvale, CA 94086, USA.

The Pexec Cookbook Atari Corp (1 989)

Atari Corp, 1 196 Borregas Avenue, Sunnyvale, CA 94086, USA.

Page 346 LaHice C 5 Bibliography

Appendix J
Technical Su ort

So that we can maintain the quality of our technical support service we are
detailing how to take best advantage of it. These guidelines will make it
easier for us to help you, fix bugs as they get reported and save other users
from having the same problem. Technical support is available in five ways:

Phone our technical support hour is normally between 3pm and 4pm,
though non-European customers' calls will be accepted at other
times.

Post if sending a disk, please put your name & address on it.

B I X ™ our username is (not surprisingly) hi soft . Would UK customers
please use CIX or more old fashioned methods; it's cheaper for
everyone.

C I X ™ our username is (still not surprisingly) hisoft.

G Enie™ our username is . . . OK, you've guessed it!

For bug reports, please always quote the program, computer, version number of
the program (the one from the file READ. ME) and the serial number found on
your master disk. If your problem is with the compiler please ensure that you
tell us all compiler options which you used so that we can attempt to
duplicate the problem.

If you think you have found a bug, try and create a small program tha t
reproduces the problem. I t i s always easier for us to answer your questions i f
you send us a letter and, i f the problem i s with a particular source file,
please enclose a copy on disk (which we will return).

Remember, technical support is only available to registered users i.e. those
people that have filled out the registration card enclosed with Lattice C 5
and mailed it to HiSoft.

!Upgrades
As with all our products, Lattice C 5 i s undergoing continual development and,
periodically, new versions become available. We normally make a small
charge for upgrades, though if extensive additional documentation is supplied
the charge may be higher. All users who return their registration cards will
be notified of major upgrades.

Technical Support LaHice C 5 Page 347

!Suggestions
We welcome any comments o r suggestions about our programs and, to ensure we
remember them, they should be made in w;riting.

!Common Problems
The following is a list o f common mistakes made when starting programming
with Lattice C. Please check these carefully against your problem before
ringin for technical support.

.,
•

•

., •

•

.,
•

•

., •

•

Why does the linker complain that symbols beginning with _CX or
_AES are undefined and wants me to enter a "DEFINE value"?

These are symbols in the floating point maths library and/ or GEM
libraries (respectively), if you have used any floating point maths or
GEM calls you must link with the relevant library. This involves
selecting Link with floating point or Link with GEM from the options
menu if using the integrated compiler, or using the -Lm or -Lg options
from the command line.

My program was nearly finished, but suddenly the compiler has
started reporting "Intermediate file error'' . How can I stop this?

This almost certainly means that the compiler has run out of space on
the device on which it is creating the quad (intermediate) file.
Either delete some files from the appropriate disk, or if it is a RAM
disk, and you have enough memory left, increase its size.

Whenever I try to read/write screen images, they a lways get
corrupted. Why?

The libraries support two modes of file operation, text (the default)
and binary. In text mode all CR/LF pairs are considered special and
may be removed/added by the library. If using a binary fife (such as
a screen image) make sure you have selected the binary mode of
operation, see the page on fopen() etc. for more details on this.

My program mysteriously crashes, and I think this is the compiler
corrupting the stack. Is this a bug?

What has probably happened is that you have either allocated too
much stack space with stack checks disabled (these a re on by
default), or that you are writing over the end of an array which you
have allocated on the stack. This problem can be hard to track down,
so always make sure you test your program with stack checks on.

Page 348 Lattice C 5 Technical Support

I ndex
$ legality 61
68000 68, 217
68010 68
68020 68, 217
68030 68, 217
68881 floating point 63
_asm keyword 79, 233
_BSSBAS,linker 120
_BSSLEN, linker 120
_DATABAS, linker 120
_DATALEN, linker 120
DATE pre-processor symbol 58
_edata, linker 121

end, linker 121
=etext, linker 121
_far keyword 77
FILE pre-processor symbol 58
_huge keyword 77
_interrupt keyword 79
LINE pre-processor symbol 58
_LinkerDB, linker 120
_MERGED, linker 1 15
_near keyword 78
_PLAIN_CHAR_UNSIGNED pre-

processor symbol 59
_regargs keyword 71, 79, 233
_RESBASE, _RESLEN, linker 120
_saveds keyword 73, 79
_stdargs keyword 71 , 80
STDC pre-processor symbol 58
TIME pre-processor symbol 58
_OSERR 32

abandon file, resource editor 162
absolute code 71, 1 19
absolute expression, assembler 213
Adding symbols 66
Additional Tools 249
address error 206
Addressing modes 214
aggregate equivalence, strengthen, -

cq 61
Alert boxes, debugger 178
Alert, resource editor 169
align long objects 67

alignment 269
Alphabetic, resource editor 165
ANSI compatibility mode 60
ANSI extensions 75

const 75
enwn 75
signed 76
void 76
volatile 77

APPLBLK 290, 291
ASCII Table 337
ASCII table, Editor 42
ASCII, assembler Literal 212
ASM, the assembler 3, 21 1
Assembler 3, 21 1

calling conventions 228
Comment 214
conditional assembly 223
conditionals

end, ENOC 223
if defined, IFD 223
if equal, IFEQ 223
if equivalent, IFC 223
if greater than or equal, IFGE 223
if greater than, IFGT 223
if less than or equal, IFLE 223
if less than, IFLT 223
if not defined, IFND 223
if not equivalent, IFNC 223
toggle, ElSE 223

constants 212
data listing 217
directives 218

CNOP, conditional alignment 21 8
conditional assembly 223
CSECT 226
CSECT, conditional alignment 218
OC, define constants 219
DS, define space 220
ElSE, toggle conditional assembly 223
END, end assembly 220
ENOC, end conditional assembly 223
ENDM, end macro definition 220
EQU, equate label 220
IDNT 220
IFC, if equivalent 223
IFD, if defined 223
IFEQ, if equal 223
IFGE, if greater than or equal 223
IFGT, if greater than 223
IFLE, if less than or equal 223

Index LaHice C 5 Poge 349

IFLT, if less than 223
IFNC, if not equivalent 223
IFND, if not defined 223
INCBIN, include binary 220
INCLUDE, include source 220
LIST, enable listing 221
MACRO, define macro 221
MEXIT, exit macro invocation 221
NOLIST, disable listing 221
OFFSET, start offset section 221
PAGE, page throw 222
RORG, relocatable origin 222
SECTION, define program section 222
SET, temporary equate 222
TTL, set title 222
XDEF, export label 222
XREF, import label 222

error messages 239
Function Exit Rules 234
includes, listing 217
Label 21 1
labels

equate, EQU, = 220
start offset section, OFFSET 221
temporary equate, SET 222

listing
disable 221
enable 221
page throw 222
title 222

macro expansion listing 217
macros

calling 225
default parameters 224
define macro, MACRO 221
definition 224
end macro definition, ENDM 220
exit macro invocation, MEXIT 221

Number Representations 212
Opcode 212
Operands 212
Operation 212
operator 213
options 216

debugging, -d 216
defining symbols, -d 216
listing 217

data generation 217
include files 217
macro expansion 217

object file, placing, -o 216
short integer, -w 217
target processor, -m 217
underline prefacing, -u 217

reserved symbols
NARG, number of macro arguments 221

variable 212
assembler, ASCII literal 212
assembler, binary number 212
assembler, decimal number 212
assembler, floating point 215
assembler, hexadecimal number 212
assembler, octal number 212
assembler, running 216
Assembly language 225

calling conventions 79, 80, 233
resource editor 294

assembly language calling
conventions 79

ATARI pre-processor symbol 58
auto naming, resource editor 149, 1 62
auto size, resource editor 1 62
Auto Snap, resource editor 152, 162
auto-detecting program 332
Automatic Link Vector 1 19
Automatic linking 66, 72
automatic program detection 72
automatic registerisation 68
AVAIL, CLI 129

• a
Backspace key, Editor 28
Backup, master disks 1
Backups, editor 31
base-relative 59, 78, 1 19, 228
BASIC, resource editor 294
Batch file 139

comments 136
exit 1 34
parameters 1 39

batch mode 66
Batcher 2, 129, (See CLI)
Beginning of line, Editor 27
Bibliography 341

68000 343
Algorithms & Data Structures 344
C Programming 341
ST Specific 345

Big compiler 59
Binary, assembler 212
BITBLK structure 289
Block buffer, Editor 35
Block commands (see Editor, block

commands)

Page 350 LaHice C 5 Index

Border, resource editor (see Resource
Editor, border)

Box, resource editor 144
BoxChar, resource editor 144, 150
BoxText, resource editor 144
breakpoint, debugger (see debugger,

breakpoint), (see Debugger,
breakpoint)

building pre-compiled headers 74
Built-in Functions 80
bus error 206
Button, resource editor 144

• c
C++ mode 60
calling assembler macros 225
calling assembly language 228
Calling Conventions 78

assembly langauge 233
assembly language 79
interrupt code 79
register 79, 233
standard 80

cancel, resource editor 161
Case dependency, Editor 29
CD, CLI 129
char, unsigned 59, 62
character constants, multiple, -cm 61
character set, extended 63
Child number, resource editor 159
CHK instruction 206
choosing a library 121
Clear text, Editor 30
CLI 129

AVAIL 129
Batch files 139

parameters 139
CD 129
clear screen 130
CLS 130
COLOUR 130
comments 136
COPY files 131
COPYW ARN 132
create directory 135
Cursor keys 138
DC 132
DEL 132
delete

directory 136
files 1 32

DIR 133
directory

change 1 29
create 135
current 129
delete 136
list 1 33

disk change 132
disk format 134
disk free space 135
DISKCHANGE mode 133
drive, current 130
ECHO commands 134
enable file overwrite warnings 132
environment variables, setting 137
ERA 134
EXIT batch file 134
font 137
FORMAT disk 134
FREE disk space 135
history 138
Line Editing 138
l ist

directory 133
file 1 37

memory free 129
MI<DIR 135
MOUSE control 135
PAUSE command 136
redirection 140
REM 136
REN 136
rename file 136
RMDIR 136
SCREENSA VE mode 136
SET 137
SMALL characters 137
TYPE 137
VIRTUALDISK 137
WHICH 138

CLink, The Linker 3, 23, 1 13
CLINKWITH environment variable

1 19
CIS, CLI 130
CNOP directive, assembler 21 8
eo-processor, maths 63
code generation 68

68000, -mO 68
68010, -m1 68

Index LaHice C 5 Page 35 1

68020, -m2 68
68030, -m3 68
automatic registerisation, -mr 68
deferred stack cleanup, -me 68
family mode, -ma 68
short integer, -w 73, 217
space optimisation, -ms 68
stack checking, -v 73
time optimisation, -mt 69

code generator 53
code model 71, 228
COLOUR, CLI 130
colour, resource editor (see Resource

Editor, colour)
Command Line Interpreter (See CLI)
Command line, setting within

Editor 38
COMMAND.COM 129
comment, assembler 214
compatibility mode

$ legality, -cd 61
allow register keywords, -er 61
ANSI, -ea 60
C++, -c+ 60
constant string copying, -cs 61
enable structure warnings, -et 62
enforce prototyping, -cf 61
error source line suppression, -ce 61
longword align data, -cl 61
make char unsigned, -cu 62
make globals external, -ex 62
multiple character constants, -cm 61
permit new keywords, -ck 61
pre-ANSI pre-processor, -eo 61
return value warnings, -cw 62
strengthen aggregate equivalence, -cq

61
suppress includes, -ci 61

compatibility option 60
Compile, Editor 36
Compiler 2, 51

built-in functions 80
Calling Conventions 78
character set 63
code generator 53
Command line operation 51
compiling and linking from Editor 37
compiling from Editor 36
CXERRs 110
Environment Variables 56

Errors 84
Extensions 74

ANSI 75
const 75
enwn 75
signed 76
void 76
volatile 77

Calling Conventions 78
_asm 79, 233
_interrupt 79
_saveds 79

Storage Classes 77
far 77
huge 77
near 78

file name 58
goto error 36
Integrated 25
Internal Errors 1 1 0
lcl 52
lclb 52
LC2 36, 53
librarian 72
line number 58
linking 66, 72
options 39, 59
options, Tutorial 18
Parser 52
phase 1 52
phase 2 53
phases 52
Pre-compiled Header Files 74
Pre-processor 52
Return Codes 51
start date 58
start time 58
Storage Classes 77
syntax check 36

compiler includes
cross reference 64
listing 64

Compiler options, saving in Editor
48

Compiler Tools 249
Compiling and linking, Tutorial 6, 9
compress header files 251
conditional alignment, assembler,

CNOP 218
conditional alignment, assembler,

CSECT 218
conditional assembly see assembler

Page 352 LaHice C 5 Index

const modifier 75
constant strings 61
constants, assembler 212
continuous compilation 60
control characters, resource editor

150
controlling errors 65
controlling warnings 65
converting programs 305
Copy block, Editor 34
COPY files, CLI 131
copy memory, debugger 201
copy, resource editor 161
COPYWARN I CLI 132
cross referencing 64, 217

compiler includes, -gc 64
linker symbols, -Lx 67
symbols, -gx 65

cross referencing, linker 1 17
CSECT directive 226
CSECT directive, assembler 21 8
Cursor appearance, Editor 44
Cursor keys

CU 1 38
debugger 189
Editor 27

Cursor positioning, Editor 26
cut, resource editor 161
CXERR, compiler 1 10

• o
data model 59, 77, 1 19, 228
data, longword align 61
DC directive, assembler 219
DC, CLI 133
debug

suppression with linker 1 1 6
DEBUG pre-processor symbol 59
DEBUG symbol 62
Debugger 3, 22

abort 194
address, set 187
alert boxes 1 78
Auto Load Source 200
Automatic Prefix Labels 200
baseconvert 188
breakpoint 181, 191

conditional 191
count 191

Index

GEMDOS 193
kill 1 93
permanent 191
remove 193
set 1 87, 192, 193
show 192
simple 191
stop 191

conunand summary 202
compiling 176
copy memory 201
cursor keys 189
dialog boxes 178
disassembly window 186
edit 187
executing programs 195
expressions 1 82
find 197
Follow Traps 199
font 1 87
front panel 179
GEMDOS breakpoint 193
hints 204
history 1 93
Ignore Case 199
input 180
interrupt program 190
labels 1 84
line numbers 181, 199
linker symbols, Editor 40
load binary 194
load program 194
load source 195
lock window 188
low resolution 186, 190, 1 95
memory layout 207
memory window 186
MonSTIC 175
numbers 183
overview 181
preferences 198
print window 1 88
register

set 1 88
window 185

registers 1 84
Relative Offsets 199
running 177
running program 196

go 196

Lafflce C 5

instruction 196
slowly 196

Page 353

until 196
running programs 195
save binary 195
Save preferences 201
screen mode 190
screen switching 189, 198
search memory 197
Show Une Numbers in Source 199
single step 195
skip 196
split window 188
symbols 184
Symbols Option 200
terminate 1 94
Top Of RAM 200
user screen 189
windows 180, 185

commands 187
disassembly 1 86
edit 1 87
lock 1 88
memory 186
print 1 88
register 1 85
source code 187
split 1 88
type 189
zoom 189

zoom window 189
debugging mode 62
debugging_ assembler option 216
debugging_ removing 66, 258
Decimal, assembler 212
default assembler macro parameters

224
Default, flag type 286
deferred stack cleanup 68
define assembler macro, MACRO

221
define constants, assembler, DC 219
define pre-processor symbols 63
define program section, assembler,

SECTION 222
define space, assembler, DS 220
defines, cross reference 64
defining assembler macros 224
defining symbols, assembler 216
DEGAS 260
DEL, CLI 132
Delete all text, Editor 30
Delete block, Editor 35
Delete key, Editor 28

Delete line, Editor 30
Delete to end of line, Editor 30
delete, resource editor 1 62
Deleting text, Editor 30, 32
denormalised 266, 267
Desk accessories, Editor 49
Desk accessory

building 331
linking 72
Saved! 50

Desktops, resource editor 292
Dialog boxes, debugger 178
Digital Research RCS 259
DIR, CLI 133
Directory change, Editor 32
disable assembler listing, NOLIST

221
disable debugging 62
disable stack checking 73
disassembler, object module, omd

252
Disk Operations, Editor 31
DISKCHANGE, CLI 134
double precision 267
double precision, force 64
DRI linkable code 313
DS directive, assembler 220

• E
ECHO, CLI 134
EdC, The Screen Editor 2, 25

EOC.PRG 25
LC.PRG 25

EDC.INF 50
EDC.PRG 4
EDCTOOLS.INF 9, 45, 48
Editable, flag type 286
Editing Icons, resource editor 1 54
Editing Images, resource editor 152
Editor 2, 25

arrange windows 40
ASCII table 42
automatic indent 43
backspace key 28
backups 31, 33, 43
beginning of line 27
block commands 34

block buffer 35
block end 34

Page 354 LoHice C 5 Index

block markers 34, 35
block start 34
copy block 34
copy to block buffer 35
cut & paste between windows 48
delete block 35
marking a block 34
paste block 35
print block 35
remember block 35
save block 34

change directory 32
changing fonts 41
compiler options, saving 48
compiling and linking C 36

compile 36
compile & link 37
Compiler options 39
global optimiser 40
go to error 36
jump to error 36
link with floating point 40
link with GEM 40
tinker symbols 40
linking 37
load LC2 43
running the program 37
running the program under GEM 37
syntax check 36
thorough check 36

cursor appearance 43
cursor keys 27
cursor positioning 26
cut & paste blocks 48
cycle windows 41
delete all text 30
delete file 32
delete key 28
delete line 30
delete to end of line 30
deleting text 30
desk accessories 49
disk operations 31
EDC.PRG 25
end of line 27
Find (See Search)
fonts, changing 41
goto end of file 29
goto line 28
goto top of file 28
Help key 43, 48
inserting text 32
LC.PRG 25
load another command 48

Index

load automatically 49
loading text 31
making backups 31
numeric keypad 47
numeric pad 43
options menu 39
page down 27
page up 27
PATii and Saved! 50
preferences command 36, 37, 43
preferences, saving 45
quit 33
replace all 30
replacing 29
run other 37, 38
run with shell 38
save as . . . 31
save preferences 45
save text 31
search

case dependency 29
control characters 30
next 29
previous 29
special characters 30
Tab 30

searching 29
searching and replacing 29
smart parentheses 43
start of line 27
status line 26
tab key 27
tab size, changing 43
text buffer, changing 43
Tools 45

conunand line 47
configuring 46
environment 47
errors on return 47
installing new tool 46
path 46
pause after running tool 47
run other/run with shell 46
running tool 47
save files before running tool 47
saving info on tools 48
type of tool 46

undelete line 30
windows, arrange 40
windows, cycle 41
windows, description 49
windows, switching between them 48

LaHlce C 5 Page 355

word left 27
word right 27
WordStar keys 27
wrap at end of line 43

ELSE directive, assembler 223
empty type 76
enable debugging 62
enable listing, LIST 221
enable structure warnings 62
Enabling warnings 66
end assembler macro definition,

ENDM 220
END directive, assembler 220
End of file, goto, Editor 29
End of line, Editor 27
ENDC directive, assembler 223
ENDM directive, assembler 220
enforce prototyping 61
Entry rules 231
enum keyword 75
enum type 75
Environment

CLI 137
CLINKWITH variable 1 19
Compiler 56
INCLUDE variable 36
LIB variable 1 14
PATH variable 38, 39
saving variables used by tools,

Editor 48
setting 56, 63
variables

INCLUDE, Include path 56
LC_OPT, Default options 57
LIB, Library path 57
PATH, Executable path 56
QUAD, Intermediate directory 57

variables used by tools, Editor 47
environment variables 137
EQU directive, assembler 220
equate label, assembler, EQU, = 220
ERA, CLI 134
Errors 22, 84

control 65
maximum 70
source line suppression 61
Tutorial 1 1

Exceptions, re-install, debugger 202
excluded source listing 64
Executable path (See Environment,

PATH)

executing programs, debugger 195
exit macro invocation, assembler,

MEXIT 221
Exit rules 234
EXIT, CLI 134
Exit, Editor 33
Exit, flag type 286
expert level, resource editor 165
exponent 266, 267
export assembler symbol, XDEF 222
expressions, debugger 182
extended character set 63
extended debug, option

linker 1 16
Extended Type, resource editor 159
Extensions, language 74
external, make globals 62, 73
extract prototypes 70
Extras, resource editor 152, 159

• F
far keyword 59, 71 , 77
FBoxText, resource editor 144, 150
file name field width, linker 1 18
file selector 5 , 8
fill, resource editor (see Resource

Editor, fill)
find name, resource editor 163
Find next, Editor 29
Find previous, Editor 29
find text, resource editor 163
find, debugger 197
Find, Editor (See Editor, searching)
Flag States (See Resource Editor,

s tates)
flags, resource editor 158, 286
Floating point 63

auto-detecting 63
double-precision format 267
1/0 mapped 63
IEEE 64
linking with, Editor 40
MC68881 63
Single-precision format 266

floating point, assembler, 215
Font

changing in CLI 137
changing in Editor 41
debugger 187

Page 356 LaHice C 5 Index

FORMAT I CLI 135
forms, resource editor 166
FORTRAN, resource editor 295
Free Image, resource editor 171
Free String, resource editor 168
FREE, CLI 135
from files, linker 1 14
FText, resource editor 144, 150
Function

entry rules 231
exit rules 234
return value 62

• G
G BOX 284
G-BOX CHAR 285
G-BOXTEXT 285
G-BlJITON 285
G-FBOXTEXT 286
G-FTEXT 285
G-IBOX 285
G-ICON 286
G-IMAGE 285
G-PROGDEF 285
G-STRING 285
G-TEXT 285
G=TITLE 286
GEM

changing fonts, Editor 41
example, Tutorial 16
linking 66
running a compiled program 37, 40
tool type, editor 46

generic pointer 76
GenST 313
Global optimiser

Editor 40
invoking 69

Global optimiser, GO 3, 53
globals data register 73, 79
globals, make external 62, 73
Goto end of file, Editor 29
Goto error, Editor 36
Goto error, Tutorial 14
Goto line, Editor 28
Goto top of file, Editor 28
GSf

compiler option 73
compiling 314

Index

oonvertor 325
GenST 313
librarian 322
limitations 314
linker 313

command line 314
control files 317
errror messages 319
warnings 319

GSTlib (see GST, librarian)

• H
Half Character Snap, resource

editor 152, 163
header file compressor, lcompact

251
Header files, locating 56, 65
Header files, pre-compiled (See

Pre-compiled header)
Height, resource editor 159
Hexadecimal, assembler 212
Hide, flag type 286
Hints

debugger 204
general 21
resources 291

HiSoft C 31 1
history

CLI 138
debugger 193

hramdsk 249
HRD file

format 301
resource editor 146

huge keyword 77
hunk field width, linker 1 18
Hunk map 66

IBox, resource editor 144
Icon

resource editor 144
editing 1 54
importing 1 56, 260

ICONBLK structure 289
identifier significance 69
IDNT directive, assembler 220
IFC directive, assembler 223
IFD directive, assembler 223

LaHice C 5 Page 357

IFEQ directive, assembler 223
IFGE directive, assembler 223
IFGT directive, assembler 223
IFLE directive, assembler 223
IFL T directive, assembler 223
IFNC directive, assembler 223
IFND directive, assembler 223
illegal instruction 206
Image

resource editor 144
editing 152
importing 1 56, 260

Implementation Behaviour 263
import assembler symbol, XREF 222
Importing Images 260

resource editor 156
INCBIN directive, assembler 220
INCLUDE (See Environment,

INCLUDE)
include binary, assembler, INCBIN

220
INCLUDE directive, assembler 220
Include files

locating, compiler 65
resource editor 145
suppression 61

Include path (See Environment,
INCLUDE)

include source, assembler, INCLUDE
220

INCLUDE, set path 65
Index in tree, resource editor 159
INDIRECT, flag type 287
Infinity 266, 267
Inline

directive 82
OS Calls 82

Inserting text, Editor 32
Install applica tion 49
Installation guide 4, 9
Integrated Compiler 25
Intermediate directory (See

Environment, QUAD)
Intermediate files 22

placing 70
Intermediate files, locating 57
interrupt code conventions 79
interrupt program, debugger 190
Invalid block! 34

• J
Jump to error, Tutorial 14

• K
K-RSC 259
Keywords 74

_asm 79, 233
far 77
huge 77

_interrupt 79
near 78
regargs 71, 79
saveds 73, 79

=stdargs 71, 80
const 75
enum 75
far 59, 71, 77
huge 77
near 59, 71, 78
permit new keywords 61
signed 76
void 76
volatile 77

keywords, linker 1 16

• L
labels, debugger 184
Language Extensions 74
Language, resource editor 157
large code model 71, 1 1 9
large data model 59, 77, 1 1 9
LASTOB, flag type 286
Lattice 3.04 305
LATTICE pre-processor symbol 58
LA TTICE_SO pre-processor symbol 58
LC, The compiler 2, 51
LC.PRG

Integrated Compiler 25
LCl 3, 52
lclb 52
LC2 3, 53
LC2, load from editor 45
lc2gst (see GST,convertor)
LC OPT (See Environment,

LC_OPT)

Page 358 LaHice C 5 Index

lcompact, header file compressor
251

LIB (See Environment, LIB)
LIB environment variable 1 14
Librarian 253

Lattice 253
LC 72

Libraries 121
GEM, linking 66
maths, linking 66

libraries, linker 1 15
Library files, locating 57
Library map 66
Library path (See Environment,

LIB)
Line Editing, CLI 138
line length, linker 1 1 8
line numbers, debugger (see

debugger, line numbers)
Line, goto, Editor 28
Linker 2, 1 13

_BSSBAS 120
_BSSLEN 120
_DATABAS 120
_DATALEN 120
_edata 121
_end 121
_etext 121
_LinkerDB 120
_MERGED 1 15
_RESBASE, _RESLEN 120
adding linker symbols 116
CLink 113
colunms, number of 118
compiling and linking from Editor 37
cross referencing 117
debug suppression 116
Errors 123
extended format 1 16
file name field width 118
from files 114
hunk field width 118
keywords

ADDSYM 1 1 6
FROM 1 1 4
FWIDTH 1 1 8
HEIGHT 1 1 8
HWIDTH 1 1 8
INDENT 1 1 8
LIB 1 1 5
LIBRARY 1 1 5

MAP 117
ND 1 16
NODEBUG 116
PRELINK 116
PWIDTH 118
SWIDTH 118
T0 1 1 6
WIDTH 1 1 8
XADDSYM 1 1 6
XREF 1 1 7

LC 66, 72
adding symbols, -La 66
automatic program detection 72
batch mode, -Lb 66
cross reference, -Lx 67
desk accessory 72
GEM, -Lg 66
hunk map, -Lh 66
library map, -Ll 66
map file, -Lf 66
maths, -Lm 66
removing deubgging. -Ln 66
verbose mode, -Lv 67

libraries 1 1 5
library ordering 121
line length 118
linking from Editor 37
listing indent 118
map file 1 17
number of colunms 118
output filename 116
pre-linking 116
program width 1 18
source files 114
symbol width 1 18
symbols 116
symbols, Editor 40
width, file name field 1 1 8
WITH file examples 1 18

Linking with GEM 66
Linking with maths 66
LinkST (see GST,linker)
LIST directive, assembler 221
listing

disable, assembler, NOLIST 221
indent, linker 118
page throw, assembler, PAGE 222

listing, source (See source listing)
LNG file format 302
Load automatically 49
load binary, debugger 194
load global data register 73, 79
load program, debugger 194

Index LaHlce C 5 Page 359

load source, debugger 195
loading

resource editor 156
Loading text, Editor 31
Locating

header files 56, 65
intermediate files 57
library files 57
programs 56

Locating include files 65
long alignment 67
longword align data 61
Low Resolution

debugger (see Debugger, low
resolution)

resource editor 145
LPTR pre-processor symbol 59

• M
M68000 pre-processor symbol 58
macro arguments, assembler, number

of, NARG 221
Macro Assembler (See Assembler)
macro definition, assembler,

MACR0 221
MACRO directive, assembler 221
macros

expansion listing 65, 217
make option 68
mantissa 266, 267
map

cross reference 67
hunk 66
library 66

map file
linker 1 1 7

map file, generating 66
maths eo-processor 63
maths, linking 66
maximum errors 70
maximum warnings 70
memory layout, debugger 207
Memory, 512K against 1Mb+ 4
Menus, resource editor 167
MEXIT directive, assembler 221
mixed precision, force 64
MKDIR, CLI 135
modifiers

const 75

signed 76
volatile 77

Modula-2, resource editor 296
MonST2C (see debugger)
MOUSE, CLI 1 35
MSDOS 1 29
multiple character constants, -cm 61
multiple include suppression 61

naming of libraries 121
naming, resource editor 162, 1 66
NaN 266, 267
NARG, assembler reserved symbol

221
narrow listing 65
near keyword 59, 71 , 78
Neochrome 260
new keywords, permit 61
New, resource editor 156
No more errors 37
NOLIST directive, assembler 221
non-base-relative 59, 77, 1 19, 122
Not-A-Number 266, 267
number of columns, linker 1 18
Number representations, assembler

212
number select, resource editor 164
numbers, debugger 183

• o
ob_head 284
ob next 284
ob-tail 284
ob)ect file, placing 69, 216
object module disassembler, omd 252
object module librarian, oml 253
object, struct defintion 282
object-level editing, resource editor

146
objects 141

Copying 161
Flags (See Resource Editor:flags)
Resource Editor 143, (see Resource

editor, objects)
Octal, assembler 212
OFFSET directive, assembler 221
omd, object module disassembler 252

Page 360 LaHice C 5 Index

oml, object module librarian 253
opaque, resource editor 160
opcode, assembler 212
operand, assembler 212
operation, assembler 212
operators

assembler 213
debugger 182

optimisation
deferred stack cleanup 68
registerisation 68
space 68
time 69

Options
$ legality mode, -cd 61
68000 family mode, -ma 68
68000 mode, -mO 68
68010 mode, -m1 68
68020 mode, -m2 68
68030 mode, -m3 68
absolute code, -rO 71
adding deubgging, -Ln 66
adding symbols, -La 66
align long objects, -1 67
allow register keywords, -er 61
ANSI compatibility mode, -ea 60
Auto-detecting 68881 mode, -fa 63
automatic registerisation, -mr 68
base-relative, -b1 59
batch mode, -Lb 66
big compiler, -B 59
C++ mode, -c+ 60
char unsigned, -cu 62
code generation, -m 68
code model, -r 71
compatibility mode, -c 60
Compiler 39, 59
constant string copying, -cs 61
continuous compilation, -C 60
control errors/warnings, -j 65
cross reference compiler includes, -gc

61
cross reference defines, -gd 64
cross reference tinker symbols, -Lx 67
cross reference symbols, -gx 65
cross referencing, -g 64
data model, -b 59
debugging mode, -d 62, 176
default 57
deferred stack cleanup, -me 68

define symbols, -d 63
disable debugging, -dO 62
dual standard, -rb 71
eliminate static prototypes, -pe 70
enable structure warnings, -et 62
enable warning, -jnw 66
enforce prototyping, -cf 61
environment, -E 56, 63
error source line suppression, -ce 61
excluded source listing, -ge 64
extended character set, -e 63
extract portable prototypes, -pp 70
extract prototypes, -pr 70
extract static prototypes, -ps 70
floating point, -f 63
force double mode, -fd 64
force mixed mode, -Ern 64
force single mode, -fs 64
full debugging 62
generate GST code, -z 73
generate precompiled header, -ph 69
hunk map, -Lh 66
I/0 mapped 68881 mode, -fi 63
identifier significance, -n 69
invoke global optimiser, -0 69
Lattice IEEE mode, -fl 64
LC_OPT 57
librarian, -R 72
library map, -Ll 66
line debugging, -d1 62
tinker verbose mode, -Lv 67
linking automatic detection, -td 72
linking desk accessory, -ta 72
linking with GEM, -Lg 66
linking with maths, -Lm 66
linking, -L 66
list compiler includes, -gh 64
list macro expansions, -gm 65
list user includes, -gi 64
load global data register, -y 73
load pre-compiled header, -H 65
longword align data, -cl 61
make char unsigned, -cu 62
make globals external, -ex 62
make globals external, -x 73
make option, -M 68
map file, -U 66
maximum errors/warnings, -j 70
Motorola 68881 mode, -f8 63
multiple character constants, -cm 61

Index LaHice C 5 Page 361

narrow listing, -gn 65
non-base-relative, -bO 59
object file, placing, -o 69
PC-relative code, -r1 71
permit new keywords, -ck 61
pre-ANSI pre-processor, -eo 61
pre-process only, -p 69
pre-processor, -p 69
promote warning to error, -jne 65
QUAD file, placing, -q 70
real maths, -f 63
registerised entry, -rr 71
return value warnings, -cw 62
section naming, -s 72
set environment, -E 56, 63
set INCLUDE path, -i 65
short integer, -w 73
space optimisation, -ms 68
stack checking, -v 73
standard stack, -rs 71
startup code, -t 72
strengthen aggregate equivalence, -cq

61
suppress multiple includes, -cl 61
suppress source listing, -gs 65
suppress warning, -jni 65
time optimisation, -mt 69
undefine symbols, -d 73
unsigned char, -cu 62

Options menu, Editor 39
output filename

linker 116

• P
packing bit-fields 269
PAGE directive, assembler 222
Page down, Editor 27
page throw, assembler, PAGE 222
Page up, Editor 27
parameter passing, register 61
parent, resource editor 148, 160
PARMBLK 291
P ARMBLK structure 290
Parser 52
Paste block, Editor 35
paste, resource editor 161
PATH

Environment 56, 137
Saved! 50

PAUSE I CLI 136
PC-relative code 71, 1 19, 228
portable prototypes 70
pre-ANSf pre-processor, -eo 61
Pre-compiled header 61, 74

building 74
generate 69
load 65
using 74

pre-defined symbols 58
pre-linking, linker 1 1 6
Pre-processor 52, 58

DEBUG symbol 62
define symbols 63
options 69

eliminate static prototypes, -pe 70
extract portable prototypes, -pp 70
extract prototypes, -pr 70
extract static prototypes, -ps 70
generate precompiled header, -ph 69
pre-process only, -p 69

pre-ANSI 61
pre-defined symbols 58
quoted string substitution 61
suppress multiple includes 61
undefine symbols 73

precedence, operator, assembler 213
precision

double 64
mixed 64
single 64

prefacing, underline 217
Preferences

debugger (see Debugger, preferences)
Editor 43
resource editor 157

prefix, resource editor 162, 167
Print block, Editor 35
Printer, the Install desk accessory

35
processor target 217
ProgDef, resource editor 144
program width, linker 1 1 8
programming with resources 282
Programs, locating 56
prototypes

eliminate static 70
enforce 61
extract all 70
extract static 70
portable 70

Page 362 LaHlce C 5 Index

. Q
QUAD (See Environment, QUAD)
QUAD files (See intermediate

files)
Quit, Editor 33

• R
Radio Button, flag type 286
ramdisk 249
real maths (See floating point)
Redirection, CLI 140
register keywords, allow 61
register passing 122
registers, debugger 184
Registration card 1
relocatable expression, assembler

213
relocatable origin, assembler, RORG

directive 222
REM, CLI 136
removing debugging 66, 258
removing symbols 258
REN, CLI 136
Replace all, Editor 30
Replacing, Editor 29
reserved symbols

linker 1 20
resident program 333
Resource editor 3, 141

Abandon Edit 162
alert 169
alphabetic 165
APPLBLK 290
assembly language 294
auto naming 149, 162
Auto Size 162
auto snap 152, 162
BASIC 294
BITBLK 289
border

colour 1 60
menu 1 60
thickness 287

box 144, 273, 284
BoxChar 144, 150, 273, 285
BoxText 144, 273, 285
Button 144, 273, 285

C 295
Cancel 161
Checked 279
child 284
child number 159
Clipboard 161
rolour

border 160
fill 1 60
names 288
numbers 288
word 287

control characters 150
Copy 161
copying trees 167
Crossed 279
Cut 161
Default 277
Delete 162
deleting trees 167
Disabled 279
Editable 278
editing icons 154
editing images 152
example program 297
Exit 278
Expert level 165
extended type 159
extras 152, 159
FBoxText 144, 150, 274, 286
fill colour 160
Fill Menu 160
Find

name 1 63
text 1 63

Flag Types 277
flags 143, 158

menu, 158
summary 280

flags menu 158
Forms 166
FORTRAN 295
free

image 1 71
string 168

FText 144, 150, 276, 285
grand child 284
greyed. 279
Half Char Snap 163
half character snap 152, 163
head 142

Index LaHice C 5 Page 363

height 159
Hide 279
hints 291
HRD file 146

format 301
IBox 144, 276, 285
Icon 144, 276, 286
ICONBLK Structure 289
image 144, 276, 285

free 1 41 , 1 71
Importing 1 56

importing images 156
index in tree 159
Keyboard Shortcut Summary 172
Language 157
language details 294
LNG file format 302
Loading 156
low resolution 145
Make String 170
menus 167
Mise Menu 162
mistakes 292
Modula-2 296
naming 162, 166
New 156
New Desktops 292
next 142
Number Select 164
ob_head 284
ob_next 284
ob_tail 284
object-level editing 146
objects 143

Copying 1 51
editing 148
Moving 151
naming 149
re-ordering 159, 164
Selecting 148
Sizing 1 51
states 287
struct defintion 282
summary 280
text 1 49

opaque 160
other languages 302
Outlined 280
parent 148, 160, 284
PARMBLK 290
Paste 161
preferences 157

Page 364

prefix 162, 167
ProgDef 144, 276, 285, 291
Quit 1 58
Radio Button 278
re-order, trees 167
root 284
Save Prefs 157
Saving 156
Selectable 277
Selected 279
Shadowed 280
sibling 284
snap 162
Sort 164
states 143, 1 58
string 144, 276, 285

free 141, 1 68
tail 142
TEDINFO 149, 150, 274, 278
TEDINFO Structure 288
Template. 274
Test 165
Text 144, 277, 285

colour 1 61
justification 1 61
menu 161
size 161

Text Menu 161
Title 144, 277, 286
Touch Exit 278
transparent 160
Tree level editing 146, 166
tree name box 166
trees 142

Copylng 167
deleting 1 67
re-order 1 67

underline 150
UnHide Children 158, 279
UserDef 276
Valid 150, 274
WERCS.INF 1 57
width 159
WTEST 297

Resource File 141
Resources, programming with 282
Return Codes, compiler 51
return value warnings 62
RMDIR, CLI 136
RORG directive, assembler 222

Lattice C 5 Index

Run compiled program with GEM,
Editor 37, 40

Run compiled program, Editor 37
Run other, Editor 37, 38
Run with shell, Editor 38
Running program

debugger 1 96
Running programs, debugger 195

• s
save binary, debugger 195
Save block, Editor 34
Save preferences, Editor 45
Saved! desk accessory 50
Saving text, Editor 31
screen driver 339
Screen Editor (See Editor) 25
screen switching, debugger 189
SCREENSA VE, CLI 137
Search 29

case dependency 29
next 29
previous 29
replace all 30
replacing 29

search, debugger 197
section (See hunk)
SECTION directive, assembler 222
section naming 72
Selectable, flag type 286
Serial number 1
SET directive, assembler 222
set title, assembler, TTL 222
SET, CLI 137
Setting, Environment 56, 63
Shell 2

run from Editor 38
tools menu, Editor 46

short integer mode 73, 122, 217, 232
signed modifier 76
significance, identifiers 69
single precision 64, 266
single step, debugger 195
skip, debugger 196
small code model 71, 1 19, 228
small data model 59, 78, 1 19, 228
SMALL, CLI 137
sort, resource editor 164
source code, debugger 187

source files, linker 1 14
source line suppression, error 61
source listing 64, 217

assembler data listing 217
assembler includes 217
compiler includes, -gh 64
excluded source, -ge 64
macro expansion 217
macro expansions, -gm 65
narrow, -gn 65
suppress source, -gs 65
user includes, -gi 64

space optimisation 68
SPTR pre-processor symbol 59
stack checking, disable 73
Start of line, Editor 27
startup stub 121
states, resource editor 158
static prototypes

eliminate 70
extract 70

Status line, Editor 26
Storage Classes 77
strengthen aggregate equivalence

types, -cq 61
String, resource editor 144
strip, symbol stripper 258
struct appl_blk 290
struct bit block 289
struct icon_block 289
struct object 282
struct parm_blk 290
struct text_edinfo 288
struct, alignment 269
structure warnings, enable 62
subroutines

absolute, -rO 71
control 71
dual standard, -rb 71
PC-relative, -r1 71
registerised entry, -rr 71
standard stack, -rs 71

Suggestions 348
Suppress

multiple includes 61
warnings 65

symbol width, linker 1 1 8
symbols

adding 66
cross reference 65

Index LaHlce C 5 Page 365

cross reference, linker 67
debugger 184
linker 116
pre-defined 58

symbols, removing 66, 258
Syntax check, Editor 36

• r
Tab key, Editor 27
target processor 217
Technical support 1 , 347
TEDINFO

resource editor 149, 150
TEDINFO structure 288
temporary equate, assembler, SET

222
terminate, debugger 194
test, resource editor 165
Text

clear, Editor 30
delete, Editor 32
deleting, Editor 30
insert, Editor 32
load, Editor 31
resource editor (see Resource Editor,

text)
save, Editor 31

Thorough check, Editor 36
time optimisation 69
Title, resource editor 144, 1 68
Tools 249
Tools menu (see Editor, Tools)
Top of file, goto, Editor 28
TOS

changing fonts, Editor 41
setting command line from Editor 38
tool type, Editor 46

Touch Exit, flag type 286
transparent, resource editor 160
TRAPV instruction 206
Tree level editing

resource editor 146, 166
tree level editing, resource editor

147
tree name box

resource editor 148, 166
trees, resource editor (see Resource

Editor, trees)
TTL directive, assembler 222

TIP
setting command line from Editor 38

Tutorial 4
compiler errors 1 1
compiler options 18
compiling and linking 6, 9
using GEM 16

TYPE, CLI 137
types

bit-field 269
enum 75
void 76

• u
undefine pre-processor symbols 73
undefined structure warnings 62
Undelete Line, Editor 30
underline prefacing 217
underline, resource editor 150
Undo line delete, Editor 30
unhide children, resource editor 158
union, alignment 269
unsigned char 59, 62
Upgrades 347
user includes, listing 64

• v
Valid, resource editor 150
variable, assembler 212
variable, program counter,

assembler 212
verbose mode 67
VIRTUALDISK , CLI 138
void type 76
volatile

-
modifier 77

VT52 screen codes 339

• w
Warnings 84

control 65
enabling 66
function return value 62
maximum 70
promotion to error 65
suppressings 65
undefined structure tag 62

wconvert 259

Page 366 LaHice C 5 Index

WERCS 3, (See Resource Editor)
WERCS.INF, resource editor 157
What blocks! 34
What errors! 37
WHICH, CLI 138
width, file name field in tinker 1 18
Width, resource editor 159
wimage 260
Windows

arrange in Editor 40
cut & paste in Editor 48
cycle in Editor 41
debugger (see Debugger, windows)
switching Editor windows 48

with file
linker

examples 1 1 8
Word

left, Editor 27
right, Editor 27

WordStar keys, Editor 27
writing assembly language 225
WTEST 297

• x
XDEF directive, assembler 222
XREF directive, assembler 222

• z
zero divide 206
zoom window, debugger 189

Index LaHice C 5 Page 367

	vol-one000_Page_01
	vol-one000_Page_02_1L
	vol-one000_Page_02_2R
	vol-one000_Page_03_1L
	vol-one000_Page_03_2R
	vol-one000_Page_04_1L
	vol-one000_Page_04_2R
	vol-one000_Page_05_1L
	vol-one000_Page_05_2R
	vol-one000_Page_06_1L
	vol-one000_Page_06_2R
	vol-one000_Page_07_1L
	vol-one000_Page_07_2R
	vol-one000_Page_08_1L
	vol-one000_Page_08_2R
	vol-one000_Page_09_1L
	vol-one000_Page_09_2R
	vol-one000_Page_10_1L
	vol-one000_Page_10_2R
	vol-one000_Page_11_1L
	vol-one000_Page_11_2R
	vol-one000_Page_12_1L
	vol-one000_Page_12_2R
	vol-one000_Page_13_1L
	vol-one000_Page_13_2R
	vol-one000_Page_14_1L
	vol-one000_Page_14_2R
	vol-one000_Page_15_1L
	vol-one000_Page_15_2R
	vol-one000_Page_16_1L
	vol-one000_Page_16_2R
	vol-one000_Page_17_1L
	vol-one000_Page_17_2R
	vol-one000_Page_18_1L
	vol-one000_Page_18_2R
	vol-one000_Page_19_1L
	vol-one000_Page_19_2R
	vol-one000_Page_20_1L
	vol-one000_Page_20_2R
	vol-one000_Page_21_1L
	vol-one000_Page_21_2R
	vol-one000_Page_22_1L
	vol-one000_Page_22_2R
	vol-one000_Page_23_1L
	vol-one000_Page_23_2R
	vol-one000_Page_24_1L
	vol-one000_Page_24_2R
	vol-one000_Page_25_1L
	vol-one000_Page_25_2R
	vol-one001_Page_01_1L
	vol-one001_Page_01_2R
	vol-one001_Page_02_1L
	vol-one001_Page_02_2R
	vol-one001_Page_03_1L
	vol-one001_Page_03_2R
	vol-one001_Page_04_1L
	vol-one001_Page_04_2R
	vol-one001_Page_05_1L
	vol-one001_Page_05_2R
	vol-one001_Page_06_1L
	vol-one001_Page_06_2R
	vol-one001_Page_07_1L
	vol-one001_Page_07_2R
	vol-one001_Page_08_1L
	vol-one001_Page_08_2R
	vol-one001_Page_09_1L
	vol-one001_Page_09_2R
	vol-one001_Page_10_1L
	vol-one001_Page_10_2R
	vol-one001_Page_11_1L
	vol-one001_Page_11_2R
	vol-one001_Page_12_1L
	vol-one001_Page_12_2R
	vol-one001_Page_13_1L
	vol-one001_Page_13_2R
	vol-one001_Page_14_1L
	vol-one001_Page_14_2R
	vol-one001_Page_15_1L
	vol-one001_Page_15_2R
	vol-one001_Page_16_1L
	vol-one001_Page_16_2R
	vol-one001_Page_17_1L
	vol-one001_Page_17_2R
	vol-one001_Page_18_1L
	vol-one001_Page_18_2R
	vol-one001_Page_19_1L
	vol-one001_Page_19_2R
	vol-one001_Page_20_1L
	vol-one001_Page_20_2R
	vol-one001_Page_21_1L
	vol-one001_Page_21_2R
	vol-one001_Page_22_1L
	vol-one001_Page_22_2R
	vol-one001_Page_23_1L
	vol-one001_Page_23_2R
	vol-one001_Page_24_1L
	vol-one001_Page_24_2R
	vol-one002_Page_01_1L
	vol-one002_Page_01_2R
	vol-one002_Page_02_1L
	vol-one002_Page_02_2R
	vol-one002_Page_03_1L
	vol-one002_Page_03_2R
	vol-one002_Page_04_1L
	vol-one002_Page_04_2R
	vol-one002_Page_05_1L
	vol-one002_Page_05_2R
	vol-one002_Page_06_1L
	vol-one002_Page_06_2R
	vol-one002_Page_07_1L
	vol-one002_Page_07_2R
	vol-one002_Page_08_1L
	vol-one002_Page_08_2R
	vol-one002_Page_09_1L
	vol-one002_Page_09_2R
	vol-one002_Page_10_1L
	vol-one002_Page_10_2R
	vol-one002_Page_11_1L
	vol-one002_Page_11_2R
	vol-one002_Page_12_1L
	vol-one002_Page_12_2R
	vol-one002_Page_13_1L
	vol-one002_Page_13_2R
	vol-one002_Page_14_1L
	vol-one002_Page_14_2R
	vol-one002_Page_15_1L
	vol-one002_Page_15_2R
	vol-one002_Page_16_1L
	vol-one002_Page_16_2R
	vol-one002_Page_17_1L
	vol-one002_Page_17_2R
	vol-one002_Page_18_1L
	vol-one002_Page_18_2R
	vol-one002_Page_19_1L
	vol-one002_Page_19_2R
	vol-one002_Page_20_1L
	vol-one002_Page_20_2R
	vol-one003_Page_01_1L
	vol-one003_Page_01_2R
	vol-one003_Page_02_1L
	vol-one003_Page_02_2R
	vol-one003_Page_03_1L
	vol-one003_Page_03_2R
	vol-one003_Page_04_1L
	vol-one003_Page_04_2R
	vol-one003_Page_05_1L
	vol-one003_Page_05_2R
	vol-one003_Page_06_1L
	vol-one003_Page_06_2R
	vol-one003_Page_07_1L
	vol-one003_Page_07_2R
	vol-one003_Page_08_1L
	vol-one003_Page_08_2R
	vol-one003_Page_09_1L
	vol-one003_Page_09_2R
	vol-one003_Page_10_1L
	vol-one003_Page_10_2R
	vol-one003_Page_11_1L
	vol-one003_Page_11_2R
	vol-one003_Page_12_1L
	vol-one003_Page_12_2R
	vol-one003_Page_13_1L
	vol-one003_Page_13_2R
	vol-one003_Page_14_1L
	vol-one003_Page_14_2R
	vol-one003_Page_15_1L
	vol-one003_Page_15_2R
	vol-one003_Page_16_1L
	vol-one003_Page_16_2R
	vol-one003_Page_17_1L
	vol-one003_Page_17_2R
	vol-one003_Page_18_1L
	vol-one003_Page_18_2R
	vol-one003_Page_19_1L
	vol-one003_Page_19_2R
	vol-one003_Page_20_1L
	vol-one003_Page_20_2R
	vol-one003_Page_21_1L
	vol-one003_Page_21_2R
	vol-one003_Page_22_1L
	vol-one003_Page_22_2R
	vol-one003_Page_23_1L
	vol-one003_Page_23_2R
	vol-one003_Page_24_1L
	vol-one003_Page_24_2R
	vol-one003_Page_25_1L
	vol-one003_Page_25_2R
	vol-one003_Page_26_1L
	vol-one003_Page_26_2R
	vol-one003_Page_27_1L
	vol-one003_Page_27_2R
	vol-one003_Page_28_1L
	vol-one003_Page_28_2R
	vol-one003_Page_29_1L
	vol-one003_Page_29_2R
	vol-one003_Page_30_1L
	vol-one003_Page_30_2R
	vol-one003_Page_31_1L
	vol-one003_Page_31_2R
	vol-one003_Page_32_1L
	vol-one003_Page_32_2R
	vol-one003_Page_33_1L
	vol-one003_Page_33_2R
	vol-one003_Page_34_1L
	vol-one003_Page_34_2R
	vol-one003_Page_35_1L
	vol-one003_Page_35_2R
	vol-one004_Page_01_1L
	vol-one004_Page_01_2R
	vol-one004_Page_02_1L
	vol-one004_Page_02_2R
	vol-one004_Page_03_1L
	vol-one004_Page_03_2R
	vol-one004_Page_04_1L
	vol-one004_Page_04_2R
	vol-one004_Page_05_1L
	vol-one004_Page_05_2R
	vol-one004_Page_06_1L
	vol-one004_Page_06_2R
	vol-one004_Page_07_1L
	vol-one004_Page_07_2R
	vol-one004_Page_08_1L
	vol-one004_Page_08_2R
	vol-one004_Page_09_1L
	vol-one004_Page_09_2R
	vol-one004_Page_10_1L
	vol-one004_Page_10_2R
	vol-one004_Page_11_1L
	vol-one004_Page_11_2R
	vol-one004_Page_12_1L
	vol-one004_Page_12_2R
	vol-one004_Page_13_1L
	vol-one004_Page_13_2R
	vol-one004_Page_14_1L
	vol-one004_Page_14_2R
	vol-one004_Page_15_1L
	vol-one004_Page_15_2R
	vol-one004_Page_16_1L
	vol-one004_Page_16_2R
	vol-one004_Page_17_1L
	vol-one004_Page_17_2R
	vol-one004_Page_18_1L
	vol-one004_Page_18_2R
	vol-one004_Page_19_1L
	vol-one004_Page_19_2R
	vol-one004_Page_20_1L
	vol-one004_Page_20_2R
	vol-one004_Page_21_1L
	vol-one004_Page_21_2R
	vol-one004_Page_22_1L
	vol-one004_Page_22_2R
	vol-one005_Page_01_1L
	vol-one005_Page_01_2R
	vol-one005_Page_02_1L
	vol-one005_Page_02_2R
	vol-one005_Page_03_1L
	vol-one005_Page_03_2R
	vol-one005_Page_04_1L
	vol-one005_Page_04_2R
	vol-one005_Page_05_1L
	vol-one005_Page_05_2R
	vol-one005_Page_06_1L
	vol-one005_Page_06_2R
	vol-one005_Page_07_1L
	vol-one005_Page_07_2R
	vol-one005_Page_08_1L
	vol-one005_Page_08_2R
	vol-one005_Page_09_1L
	vol-one005_Page_09_2R
	vol-one005_Page_10_1L
	vol-one005_Page_10_2R
	vol-one005_Page_11_1L
	vol-one005_Page_11_2R
	vol-one005_Page_12_1L
	vol-one005_Page_12_2R
	vol-one005_Page_13_1L
	vol-one005_Page_13_2R
	vol-one005_Page_14_1L
	vol-one005_Page_14_2R
	vol-one005_Page_15_1L
	vol-one005_Page_15_2R
	vol-one005_Page_16_1L
	vol-one005_Page_16_2R
	vol-one005_Page_17_1L
	vol-one005_Page_17_2R
	vol-one005_Page_18_1L
	vol-one005_Page_18_2R
	vol-one005_Page_19_1L
	vol-one005_Page_19_2R
	vol-one005_Page_20_1L
	vol-one005_Page_20_2R
	vol-one005_Page_21_1L
	vol-one005_Page_21_2R
	vol-one005_Page_22_1L
	vol-one005_Page_22_2R
	vol-one005_Page_23_1L
	vol-one005_Page_23_2R
	vol-one005_Page_24_1L
	vol-one005_Page_24_2R
	vol-one005_Page_25_1L
	vol-one005_Page_25_2R
	vol-one005_Page_26_1L
	vol-one005_Page_26_2R
	vol-one005_Page_27_1L
	vol-one005_Page_27_2R
	vol-one005_Page_28_1L
	vol-one005_Page_28_2R
	vol-one006_Page_01_1L
	vol-one006_Page_01_2R
	vol-one006_Page_02_1L
	vol-one006_Page_02_2R
	vol-one006_Page_03_1L
	vol-one006_Page_03_2R
	vol-one006_Page_04_1L
	vol-one006_Page_04_2R
	vol-one006_Page_05_1L
	vol-one006_Page_05_2R
	vol-one006_Page_06_1L
	vol-one006_Page_06_2R
	vol-one006_Page_07_1L
	vol-one006_Page_07_2R
	vol-one006_Page_08_1L
	vol-one006_Page_08_2R
	vol-one006_Page_09_1L
	vol-one006_Page_09_2R
	vol-one006_Page_10_1L
	vol-one006_Page_10_2R
	vol-one006_Page_11_1L
	vol-one006_Page_11_2R
	vol-one006_Page_12_1L
	vol-one006_Page_12_2R
	vol-one006_Page_13_1L
	vol-one006_Page_13_2R
	vol-one006_Page_14_1L
	vol-one006_Page_14_2R
	vol-one006_Page_15_1L
	vol-one006_Page_15_2R
	vol-one006_Page_16_1L
	vol-one006_Page_16_2R
	vol-one006_Page_17_1L
	vol-one006_Page_17_2R
	vol-one006_Page_18_1L
	vol-one006_Page_18_2R
	vol-one006_Page_19_1L
	vol-one006_Page_19_2R
	vol-one006_Page_20_1L
	vol-one006_Page_20_2R
	vol-one006_Page_21_1L
	vol-one006_Page_21_2R
	vol-one006_Page_22_1L
	vol-one006_Page_22_2R
	vol-one006_Page_23_1L
	vol-one006_Page_23_2R
	vol-one006_Page_24_1L
	vol-one006_Page_24_2R
	vol-one006_Page_25_1L
	vol-one006_Page_25_2R
	vol-one006_Page_26_1L
	vol-one006_Page_26_2R
	vol-one006_Page_27_1L
	vol-one006_Page_27_2R
	vol-one006_Page_28_1L
	vol-one006_Page_28_2R
	vol-one006_Page_29_1L
	vol-one006_Page_29_2R
	vol-one006_Page_30_1L
	vol-one006_Page_30_2R
	vol-one006_Page_31_1L
	vol-one006_Page_31_2R
	vol-one006_Page_32_1L
	vol-one006_Page_32_2R
	vol-one006_Page_33_1L
	vol-one006_Page_33_2R
	vol-one006_Page_34_1L
	vol-one006_Page_34_2R
	vol-one006_Page_35_1L
	vol-one006_Page_35_2R
	vol-one006_Page_36_1L
	vol-one006_Page_36_2R
	vol-one006_Page_37_1L
	vol-one006_Page_37_2R

