lame L 50

the C 670/7(///@/‘ fw‘ o Atars
STISTE/TT Computar

Addendum

User Manual

'/v ,»DISK drive
= L floppies ¢

v MOUS{{}

Lattice C 5.5 for the Atari ST/STE/TT
By HiSoft and Lattice, Inc.
© Copyright 1992 HiSoft and Lattice, Inc. All rights reserved.

Program:
designed and programmed by HiSoft and Lattice, Inc.

Manual:
written by Alex Kiernan and David Nutkins.

This guide and the Lattice C program diskettes contain proprietary information
which is protected by copyright. No part of the software or the documentation may be
reproduced, transcribed, stored in a retrieval system, translated into any language or
transmitted in any form without express prior written consent of the publisher and
copyright holder(s).

HiSoft shall not be liable for errors contained in the software or the documentation or
for incidental or consequential damages in connection with the furnishing, performance
or use of the software or the documentation.

HiSoft reserves the right to revise the software and/or the documentation from time
to time and to make changes in the content thereof without the obligation to notify
any person of such changes.

PY -

High Quality Software

Published by HiSoft
The Old School, Greenfield, Bedford MK45 5DE UK

First Edition, March 1992 - ISBN 0 948517 56 5

Table of Contents

Lattice C 5.5

A word about pop-up menus and dialogs

The Editor’s windows
Switching Windows

Entering text and moving the cursor
Cursor keys
Tab key
Backspace key
Delete key
The Edit menu
Go to top of file
Go to end of file
Goto line

O 0V VWV ®™®oWoNNGOGCLDN

-
(=]

Block Commands
Marking a block
The Clipboard: Copy, Cut & Paste
Saving a block

- o = =
- - - O

Copying a block

-
N

Deleting a block
Copy block to block buffer
Pasting a block

- o
NNN

Printing a block

Contents Lattice C 5.5 Page i

Deleting text 13

Delete line 13
Delete to end of line 13
UnDelete Line 13
Delete block 13
Searching and Replacing Text 14
Bookmarks 15
Disk Operations 16
New 16
Loading Text 16
Revert 17
Save As... 17
Save 17
Inserting Text 17
Delete File 18
Close 18
Change Directory 18
Quitting Lattice € 19
Configuring the editor 20
Auto-indent lines 20
Auto-save configuration 20
Auto-save project 21
Cursor Mode Numeric pad 21
Hide mouse when typing 21
Make Backups 21
Show matching parentheses 22
Stop at End of Line 22
Save files on Quit 22

Page i Lattice C 5.5 Contents

Save files on run other 22

Tab setting 22
Text Buffer 23
Cursor 23
Load... 23
Saving preferences 23
Reset 24
Running other programs 24
Tools Menu 25
Menu entry 26
Command line 26
Directory 26
Save Files 27
Path 27
Pause on return 27
Report all errors 27
Run as TOS & Run as GEM 27
Make Resident 28
Running Tools 28
Run Other... 28
Run with Shell... 29
Setting the Path 29
Miscellaneous Commands 31
Fonts... 31
ASCII Table... 32
About Lattice C 32
Help Screen 33
Desk Accessories 33

Contents Lattice C 5.5 Page iii

Avutomatic Launching 33
Compiling Programs 34
The Project menu 34
New... 35
Load... 35
Save “...” 35
Save As ... 35
Edit “...”... 36
Make “...” 37
Make all “...” 38
Link “...” 38
Run “...” 38
Debug “...” 38
Directory 38
Problems 39
Compilation Errors 39
The Program menu 40
Assemble 40
Check 40
Compile 40
Pre-compile 41
Pre-process 41
Prototype... 41
Generate __PROTO style prototypes pp 42

No identifiers in prototypes -pi 42

No typedefs in prototypes -pt 42
Functions 42

Page iv Lattice C 5.5 Contents

The Options menu 43

Environment... 43
Lattice C and the environment 43
Executable path PATH 44
Include path INCLUDE 44
Library path LiB 44
Quad file QUAD 45
General... 45
Compiler options 46
Compiler options - Advanced 47
Allow nested comments -cc 47
Allow $ in identifiers -<d 47
Allow explicitly-sized bitfields <b 47
Disable trigraph processing -cg 47
Enable ‘near’/’far’ keywords -ck 47
Enable *__asm’ keywords -cr 47
Make ‘extern’ declarations global -cx 48
Make external definitions ‘extern’ -x 48
Make string literals non-‘const’ <h 48
Type based struct equivalence <q 48
Source character set -e 48
Float/double f 49
Pre-processor expansion buffer: size -zsize 50
Precompiled headers -Hfile.sym 50
Identifier significance: sig -nsig 50
Compiler options - Errors 51
Disable ‘return’ warnings -cwW 51
Disable all warnings -i*i 51
Enable all warnings - *w 51

Contents Lattice C 5.5 Page v

Make all warnings errors j*e 51
No error line printing -ce Sil
No error/warning limit -g- 51
Stop on first error/warning -q 52
Undefined tag warnings -ct 52
Error limit: num -qnume 52
Warning limit: num -gnumw 52
Warnings: 52
Compiler options - General 52
Allow multi-character constants -cm 53
Default short integers -w 53
Disable stack checking v 53
Enforce function prototypes -cf 53
Make ‘char’ unsigned -cu 53
Merge identical strings -cs 53
Strict ANSI mode -ca 53
Suppress multiple includes -ci 55
Processor -m 59
Debug -d 56
Maths -f 57
Parameters -r 58
Compiler options - Listing 59
Cross-reference source symbols -gx 59
Cross-reference system includes -gc 59
Cross-reference user includes -gd 59
Display error messages go 59
List source code -gs 59
List system includes gh 60
List user includes -gi 60
Page vi Lattice C 5.5 Contents

Narrow listing

Show #if/#ifdef excluded lines
Show macro expansions
Compiler options - Object
Always generate stack frame
Auto-load base register
Default ‘far’ code

Default ‘far’ data

Default section names
Disable auto-registerisation
Disable stack merging

long align externals

Llong align stack

Optimise for space

Type based stack alignment
Code: codename

Data: dataname

BSS: bssname

Data pointer: reg

Frame pointer: reg

Register limits - Data: num

Register limits - Address: num

Register limits - Floating point: num

Compiler options - Optimiser

Assume best case aliasing
Disable register colouring
Enable global optimisation
Enable loop invariant hoisting

Optimise for

-gn 60
-ge 60
-gm 60

61
-mf 61
-y 61
-0 61
50 62
-5 62
-mr 62
-mc 62
-cl 62
-as 62
-ms 62
-aw 63
-sc=codename 63

-sd=dataname 63

-sb=bssname
-breg
-rreg

-hdnum

-hanum

-hfnum

-Odlias
-Onocolor
O

-Oloop

O

63
63
63
64
64
64
64
64
65
65
65
65

Contents

Lattice C 5.5

Page vii

Compiler options - Pre-processor 66

Allow #if to span files <p 66
Allow nested ‘#define’s <n 66
Old-style pre-processor <o 66
Undefine all symbols -u 66
#undef’ symbols: name -uname 67
#define’ symbols: 67
#include’ directories: dir -idir 67
Assembler options 67
Add ’_’ to symbol names -u 68
Add line number information -d 68
Allow multiple listing lines -Im 68
Allow 68851 instructions -m9 68
Allow 68881 instructions -m8 68
List source file -l 68
List include files -li 68
List macro expansion text -Ix 68
Processor -m 69
Identifier significance: sig -nsig 69
EQU’ symbols: 69
INCLUDE’ directories: dir -idir 70
Executable options 70
Build GEM application g 70
Clear GEMDOS “Fastload” bit NOFASTLOAD 70
Load program in TT RAM TTLOAD 70
Perform “Malloc”s from TT RAM TTMALLOC 70
Standard symbol format DRISYM 71
TT RAM TPA size: size TPASIZE size 71
Application type 71

Page Vviii Lattice C 5.5 Contents

PREFIX’ file: file
Linker options

Add exported symbols

Ignore errors

Ignore symbol casing

Strip debugging information

Linker buffer size: size

Messages

ALVs

DEFINE symbols:
Map...

Cross reference external symbols

List external symbols
Map input file placements
Map input section placements
Map library file placements
File name width: width
Page height: height
Hunk name width: width
Line indentation: indent
Program name width: width
Symbol name width: width
Form width: width
Librarian options
Cross-reference symbols
Generate symbol listing

Verbose operation

PREFIX file

ADDSYM
IGNORE
NOCASE
NODEBUG
BUFSIZE size

MAP...
MAP...
MAP...
MAP...
MAP...
FWIDTH

HEIGHT

HWIDTH
INDENT

PWIDTH
SWIDTH
WIDTH

~— I M wu x

72
72
72
73
73
73
73
73
/3
74
75
75
75
75
75
75
75
75
75
75
75
75
75
76
76
76
76

Contents

Lattice C 5.5

Page ix

Debugger options 76

Auto ‘@’/"_’ prefix labels 77
Auto-load source 77
Display ‘ZAn’ in disassembly 77
Enable timed screen switching 77
Follow TRAPs 77
Ignore cartridge area 78
Ignore label case 78
Interpret relative offsets 78
Symbol significance: sig 78
Source line numbers 78
Resident configuration 79
LC1, LC2, GO 81
New Language Features 81
ANSI compliance 81
Extern scoping model 81
Flexible keyword ordering 82
Float as single 82
Redundant keyword combinations 82
Ref/def model 82
Restriction of register arrays/aggregates 83
Scoping rules for ‘no-linkage’ objects 83
Trigraphs 83
Type composition of scoped declarations 83
typedef model 83
Valid storage classes of local functions 83
C++ features 84
Comments 84

Page x Lattice C 5.5 Contents

Ellipsis 84

Anonymous unions 84
Floating point __asm support 84
__interrupt keyword 85
ANSI relaxations 85

Modifiable Ivalues 85

Signed and sized bit fields 85

Zero length arrays 86
Listing control directives 86

#pragma eject 86

#pragma space lines 86

#pragma title title 86
Error control directives 87

#pragma error num 87

#pragma ignore num 87

#pragma warning num 87

New error/warning messages 87
Pre-processor symbols 90
Optional definitions 90
Static definitions 91
Permanent definitions 91
Changes to the run-time model 91

Register passing mode 92
__saveds and stack checks 92
A2 as a register variable 92
__asm functions 92

Signed and sized bit fields 93

Contents Lattice C 5.5 Page xi

LC.TTP 95

New LC.TTP driver options 95
New compiler options 99
Linker 101
CLINKWITH 102
ASM 105
Basic concepts 105
Source format 105
Label 106
Operation 106
Operands 106
Number representations 107
Comment 108
Addressing modes 108
The assembler from the command line 110
Assembler directives 113
Conditional assembly 118
Macro definition 120
Pre-defined macros and synonyms 121
Interfacing C with assembly language 122
Control sections 123
Code sections 123
Data sections 125
BSS and offset sections 127

Page xii Lattice C 5.5 Contents

Function Entry Rules 128

Standard arguments 129
Register arguments 130

The __asm keyword 131
Function exit rules 132
Calling assembly from C 133
Calling C from assembly 135
Asm error messages 137
DERCS 143
Introduction 143
Running DERCS 143
Programming with DERCS 145
CPXBUILD 147
Introduction 147
Running CPXBUILD 147
Appendix A 149
Notes 151

Contents Lattice C 5.5 Page xiii

Page xiv Lattice C 5.5 Contents

Lattice € 5.5
The Editor

The editor supplied with Lattice C is fully integrated with the
system which means that you can develop programs in an intuitive
and interactive manner, creating and editing your programs in the
same environment as running and debugging your finished
masterpiece.

Moreover, those of you with strong preferences for your own editor
can dispense with the HiSoft editor and use your own favourite
package along with the TTP version of Lattice C; although you will
lose the benefits of interactive development.

The editor for Lattice C is a multi-window screen editor which
allows you to enter and edit text and save and load from disk, as you
would expect. It also lets you print some or all of your text, search
and replace text patterns and use any of your computer’s desk-
accessories. It is GEM-based, which means it uses all the user-
friendly features of GEM programs that you have become familiar
with such as windows, menus and mice. However, if you're a die-
hard used to the hostile world of computers before the advent of
WIMPs, you'll be pleased to know you can do practically everything
you’ll want to do from the keyboard without having to touch a
mouse.

The editor is 'RAM-based’, which means that the file you are
editing stays in memory for the whole time, so you don’t have to
wait while your disk grinds away loading different sections of the
file as you edit. As the ST/TT range of computers have so much
memory, the size limitations often found in older computer editors do
not exist with Lattice C. As all editing operations, including things
like searching, are RAM-based they act extremely quickly.

When you have typed in your programs it is not much use if you are
unable to save them to disk, so the editor has a comprehensive range
of save and load options, allowing you to save all or part of the text
and to load other files into the middle of the current one, for
example.

The Editor Lattice C 5.5 Page 1

To get things to happen in the editor, there are various methods
available to you. Features may be accessed in one or more of the
following ways:

i Using a single key, such as a Function or cursor key;

° Clicking on a menu item, such as Save;

o Using a menu shortcut, by pressing the Alternate key
(subsequently referred to as Alf) in conjunction with another,
such as Alt-F for Find;

. Using the Control key (subsequently referred to as Ctrl) in
conjunction with another, such as Ctrl-A for cursor word left,

° Clicking on the screen, such as in a scroll bar.

The menu shortcuts have been chosen to be, hopefully, easy to
remember.

A word about pop-up menus
and dialogs

The editor makes extensive use of dialog boxes and pop-up menus, so
it is worth recalling how to use them, particularly for entering text.
The editor’s dialog boxes contain buttons, radio buttons, and editable
text.

Exit buttons may be clicked on with the mouse and cause the dialog
box to go away. Usually there is a default button, shown by having a
wider border than the others. Pressing Return on the keyboard is
equivalent to clicking on the default button. Where there are non-
default buttons, the editor allows these to be selected from the
keyboard using the sequence Alt-first letter of the button name;
obviously where several buttons have the same first letter only one
may be selected!

Radio buttons are groups of buttons of which only one may be selected
at a time - clicking on one automatically de-selects all the others.

[Font selection |
T0S Font
GEN Font [Tiny]

[own] [=]

A dialog with buttons (OK, Cancel) and radio buttons (Normal, Small etc.)

Page 2 Lattice C 5.5 The Editor

Editable text is shown with a dotted line, and a vertical bar marks
the cursor position.

Goto line: |

Editable text

Characters may be typed in and corrected using the Backspace,
Delete and cursor keys. You can clear the whole edit field by
pressing the Esc key. If there is more than one editable text field in
a dialog box, you can move between them using the Tab key or the |
and ¢ keys or by clicking near them with the mouse.

Find: |
Replace:

Casing:

[

More than one editable text field

Some dialog boxes allow only a limited range of characters to be
typed into them - for example the Goto... dialog box only allows
numeric characters (digits) to be entered.

As well as the conventional GEM user interface facilities, the editor
also uses some extensions. To illustrate these, consider the dialog box
shown below:

[Tool configuration]
Tool number: { Menu entry: WERCS. X Make resident
Coanand line [_As shown] Directory (Tool's] Save files
Path: C:\LC\BIN\RERCS.PRG
Comnand: %7}

[Pause on return [Report all errors [J Run as 10S [l Run as GEN

The Tool Configuration dialog box

The Editor Lattice C 5.5 Page 3

Some options are accessed via ‘pop-up’ menus similar to those used by
Atari’s new control panel. Thus if you move the mouse over the As
shown selection (by Command line) and press down on the left
mouse button, a menu like this will pop up:

Connand line AT
None
Proapt
A pop-up menu

This indicates that the current setting for this option is As shown.
The mouse will highlight the current selection that you are making
and when you let go of the mouse this indicates that you have made
your selection. If you let go outside the pop-up menu then this is
taken as cancelling the selection.

The box beside Make resident has a cross in it, indicating that this
option is selected; similarly Report all errors is not selected.
Clicking in one of these boxes, or the associated text, will cause that
option to be toggled on and off.

Run as TOS and Run as GEM are a pair of ‘radio options’; the solid
box indicates the currently selected item: clicking on Run as TOS
will change both boxes.

Some of the menu items on the main ‘drop-down’ menus now have sub-
menus; these are indicated by a ¢ symbol. For example:

Cut oFS
Copy of4
Paste FS

ASCII Table... ¢Ins

Goto Top ar
Goto Bottoa 8B

Goto... &6

fArrange Hindows “JCTIRH
Cycle Hindous Horizontally
Hindow 9 Overlap

Tile
i Verticall

A sub menu

When you highlight a menu item (like Arrange Windows in the
example above), the corresponding sub-menu will appear after a
short delay. You can then move the mouse to the right to select the
particular item that you want. To cancel the operation just let go of
the mouse without selecting a sub-item or move to another item from
the main menu.

Page 4 Lattice C 5.5 The Editor

If the editor doesn’t have enough room to display the sub-menu to
the right of the main menu, it will do so on the left; the items are
selected in the same way.

The editor also uses a number of list boxes; these allow a number of
selections to be entered (e.g. multiple #include directories,
#define symbols etc.).

Add Renave

A list box
To add a new element to the list, click on the Add button, whilst an
existing element may be removed by clicking on the item (which will

become highlighted) and then clicking Remove. To edit an existing
item, double-click on it.

The Editor’s windows

Having loaded Lattice C, you will be presented with an empty
window with a status line at the top and a flashing black block,
which is the cursor, in the top left-hand corner.

The window used by the editor works like all other GEM windows, so
you can move it around by using the Title bar on the top of it, you can
change its size by dragging on the Grow box, and make it full size
(and back again) by clicking on the Full box.

Tide bor
Mo

-

ET

Closa box Full box

;_Pro
39 2 HT RN FEEAL TR0

o m‘
case FILD
{8 B iRt TR, emme) s 07

be Versicol
case FILM slevotor
/% priatf ("Is",ame) s ¥/
zh::(" directory that cea't be read\e™); L |
3 e
default:

[] N retura(8); /% athes tyses of eatity mced se processing ¥/

1f (firsttine) {
loadtable(toble, Ktablecouat, aaned;
firsttine =0;

retura(®); scrol bor
natch_foued=0;
do { * |5l
3 T [FEEEee T 2 I°EL\W'
Honizontol slevolor Hortzonwal scroll bor bax

A GEM window

The Editor Lattice C 5.5 Page 5

The status line contains information about the cursor position in the
form of Line and Column offsets as well as the number of bytes of
memory which are free to store your text. Initially this is displayed
as 29980, as the default text size is 30000 bytes. You may change this
default if you wish, together with various other options, by selecting
Preferences, described later. The ‘missing’ 20 bytes are used by the
editor for internal information. The rest of the status line area is
used for error messages, which will usually be accompanied by a
‘ping’ noise to alert you. Any message that is printed will be removed
when subsequently you press a key.

Switching Windows

The editor has support for up to seven windows, which can be
selected by pressing Alt-1 to Alt-7 (on the top row of numbers, not on
the numeric pad). The windows can be organised in a number of ways
and you can select this using Arrange Windows on the Options
menu. Try this out for yourself to get the idea of how the different
arrangements work.

If you have a preferred window arrangement, you can get the editor
to remember your preference by holding down Cirl whilst selecting
the layout. The layout will then become permanent and the editor
will rearrange the windows as necessary to conform to your
preference.

You can cycle through the open windows using the Cycle Windows
command from the Edit menu (or use Ctrl-V), by clicking on the
appropriate window with the mouse or by selecting the appropriate
sub-item from the Window item on the Edit menu.

To close a window and thus free the memory used by it, click on its
close box or use the Ctrl-W key combination.

To cut and paste between windows is just as simple as copying blocks
in a single window, i.e. mark the block and then use the Cut
command, switch windows (as described above) and then Paste. See
below for more detail on cut and paste.

Page 6 Lattice C 5.5 The Editor

Entering text and moving the
cursor

To enter text, simply type on the keyboard and at the end of each
line press the Return key (or the Enter key on the numeric pad) to
start the next line. You can correct your mistakes by pressing the
Backspace key, which deletes the character to the left of the
cursor, or the Delete key, which removes the character on the cursor.

Cursor keys

To move the cursor around the text to correct errors or enter new
characters, you can use the cursor keys, labelled <~ — t and | or the
mouse; move the cursor to a specific position on the screen with the
mouse pointer and click. If you position the cursor past the right-
hand end of the line and type some text at that point the editor will
automatically add the text to the real end of the line. If you type in
long lines the window display will scroll sideways if required.

When you cursor up at the top of a window the display will either
scroll down if there is a previous line, or print the message Top of
file in the status line. Similarly if you cursor down off the bottom of
the window the display will either scroll up if there is a following
line, or print the message End of file.

You can move the cursor on a character basis by clicking on the arrow
boxes at the end of the horizontal and vertical scroll bars.

To move immediately to the start of the current line, press Ctrl <,
and to move to the end of the current line press Cirl —.

To move the cursor a word to the left, press Shiftf <~ and to move a
word to the right press Shift —. You cannot move past the end of a
line with Shift —. A word is defined as anything surrounded by a
space, a tab or a start or end of line. The keys Cirl-A and Ctrl-F also
move the cursorleft and right on a word basis.

To move the cursor a page up, you can click on the upper grey part of
the vertical scroll bar, or press Shift 1. To move the cursor a page
down, you can click on the lower grey part of the scroll bar, or press
Shift |.

The Editor Lattice C 5.5 Page 7

Tab key

The Tab key inserts a special character (ASCII code 9) into the
buffer, which on the screen looks like a number of spaces, but is
rather different. Pressing Tab aligns the cursor onto the next
‘multiple of 4’ column, so if you press it at the start of a line (column
1) the cursor moves to the next multiple of 4, +1, which is column 5.
Tabs are very useful indeed for making items line up vertically and
its main use in Lattice C is for such things as indenting structured
program lines. When you delete a tab the line closes up as if a number
of spaces had been removed. The advantage of tabs is that they take
up only 1 byte of memory, but can show on screen as many more.

You can change the tab size before or after loading Lattice C; to
change the default use the Preferences command described shortly.

Backspace key

The Backspace key removes the character to the left of the cursor.
If you backspace at the very beginning of a line it will remove the
‘invisible’ carriage return and join the line to the end of the previous
line. Backspacing when the cursor is past the end of the line will
delete the last character on the line, unless the line is empty in
which case it will re-position the cursor on the left of the screen.

Delete key

The Delete key removes the character under the cursor and has no
effect if the cursor is past the end of the current line.

Page 8 Lattice C 5.5 The Editor

The Edit menu

The commands on the top of the Edit menu

Eg:g 2{3 may be used to perform the conventional
Paste FS Cut, Copy and Paste operations on
ASCIT Table... oIns marked blocks.

Goto Top a7 These are described under Block
Goto Botton k8 commands, below.

Goto... 86
Arrange Windows
Cycle Windous Ay
Window o

Go to top of file

To move to the top of the text, click on Goto Top from the Edit menu,
or press Alt-T. The screen will be re-drawn if necessary starting from
line 1.

Go to end of file

To move the cursor to the start of the very last line of the text, click
on Goto Bottom, or press Alt-B.

Goto line

To move the cursor to a specific line in the text, click on Goto... from
the Edit menu, or press Alt-G. A dialog box will appear, allowing you
to enter the required line number. Press Return or click on the OK
button to go to the line or click on Cancel to abort the operation.
After clicking on OK the cursor will move to the specified line, re-
displaying if necessary, or give the error End of file if the line
doesn’t exist.

Another fast way of moving around the file is by dragging the slider
on the vertical scroll bar, which works in the usual GEM fashion.

The Editor Lattice C 5.5 Page 9

Block Commands

A block is a marked section of text which may

piock ftart 1| be copied to another section, deleted, printed
or saved onto disk. Blocks may be marked
E::: g}:gt Fi using the mouse, via menu items or with

function keys.
Delete Block <©FS

Remenber Block ©F4
Paste Block F5

Print Block O]

A marked block is highlighted by showing the text in reverse.
While you are editing a line that is within a block this
highlighting will not be shown but will be re-displayed when you
leave that line or choose a command.

Marking a block

The simplest way to mark a block is to click on the first character in
the block and drag the mouse to the end of the block. The block will
be highlighted by showing the text in reverse as you drag the mouse.
When you move the mouse to the bottom of the window, the window
will scroll. Conversely, moving the mouse to the top of the window,
will cause the window to scroll in the opposite direction. You may
start marking a block, by clicking at the end if you wish.

Double-clicking will cause the word ‘under’ the mouse to be marked
as the block. If you double-click and then drag, text will be
highlighted a word at a time. Clicking in the the left hand margin
of the window causes dragging to occur a line at a time.

The start of a block may also be marked by moving the cursor to the
required place and selecting Block Start or pressing key F1. The end
of a block can be marked by moving the cursor and selecting Block
End or pressing key F2. The start and end of a block do not have to be
marked in a specific order - if it is more convenient you may mark the
end of the block first.

Page 10 Lattice C 5.5 The Editor

The Clipboard: Copy, Cut & Paste

Lattice C provides conventional clipboard facilities, as popularised
by the Apple Macintosh. Once you have marked a block you may
copy it to the clipboard by selecting Copy from the Edit menu. The
main text will remain as it is. The contents of the clipboard may then
be inserted at another position by moving the cursor there and
selecting Paste.

The current block may be deleted using Cut from the Edit menu;
selecting Paste will then insert the block that was cut (unless you
have used Copy in the mean time). Thus to move a block with this
method, Cut the block from its original position and then Paste it
into its new one.

The block menu also gives you the flexibility of the following
commands.

Saving a block

Once a block has been marked, it can be saved by clicking on Save
Block from the Block menu or by pressing key F3. If no block is
marked, the message What blocks! will appear. If the start of the
block is textually after its end the message Invalid block! will
appear. Both errors abort the command. Assuming a valid block has
been marked, the GEM file selector will appear, allowing you to
select a suitable disk and filename. If you save the block with a
name that already exists the old version will be overwritten - no
backups are made with this command.

Copying a block

A marked block may be copied, memory permitting, to another part
of the text by moving the cursor to where you want the block copied
and clicking on Copy Block or by pressing key F4. If you try to copy a
block into a part of itself, the message Invalid block! will appear
and the copy will be aborted.

The Editor Lattice C 5.5 Page 11

Deleting a block

A marked block may be deleted from the text by clicking on Delete
Block or by pressing Shift-F5. The shift key is deliberately required
to prevent it being used accidentally. A deleted block is remembered,
memory permitting, in the clipboard, for later use. This is equivalent
to Cut on the Edit menu.

Copy block to block buffer

The current marked block may be copied to the block buffer, memory
permitting, using Remember Block or by pressing Shift-F4. This can
be very useful for moving blocks of text between different files by
loading the first, marking a block, copying it to the block buffer then
switching to another window or loading the other file and pasting
the block buffer into it. This is equivalent to Copy on the Edit menu.

Pasting a block

A block in the clipboard may be pasted at the current cursor position
by clicking on Paste Block or by pressing F5. This is equivalent to
Paste on the Edit menu.

The contents of the clipboard is lost if the edit buffer
size is changed and after a compilation.

Printing a block

A marked block may be sent to the printer by clicking on Print Block
or by pressing Alf-W. An alert box will appear confirming the
operation and clicking on OK will print the block. The printer port
used will depend on the port chosen with the Control Panel, or will
default to the parallel port. Tab characters are sent to the printer as
a suitable number of spaces, so the net result will normally look
better than if you print the file from the Desktop.

If you try to print when no block is marked at all then
& the whole file will be printed.

Page 12 Lattice C 5.5 The Editor

Block markers remain during all editing commands, moving where
necessary, and are only reset by the commands Delete block and
Load.

Deleting text

Delete line

The current line can be deleted from the text by pressing Cirl-Y.

Delete to end of line

The text from the cursor position to the end of the current line can be
deleted by pressing Cirl-Q

UnDelete Line

When a line is deleted using either of the above commands it is
preserved in an internal buffer, and can be re-inserted into the text by
pressing Cirl-U, or the Undo key. This can be done as many times as
required, particularly useful for repeating similar lines or swapping
individual lines over.

Delete block

A marked block may be deleted from the text by clicking on Delete
Block or by pressing Shift-F5. The shift key is deliberately required
to prevent it being used accidentally. A deleted block is remembered,
memory permitting, in the clipboard, for later use. This is equivalent
to Cut on the Edit menu.

The Editor Lattice C 5.5 Page 13

Searching and Replacing Text

The commands on the Search menu may be

-l b used for finding and perhaps replacing
Find Next &N existing text. The strings involved are set up
Find Pravigus & by selecting Find or press Alt-F.

Replace R

Replace All This allows you to enter the find and replace
set BotkRark & strings as shown in the following dialog box:
Goto Bookmark ¢

Find: TextHindows.
Replace: Mylindow

Casing:

In the example above TextWindows has been entered as the find
string and MyWindow as the replace string.

If you click on Cancel, no action will be taken; if you click Next (or
press Return) the search will start forwards, while clicking on
Previous will start the search backwards. If you do not wish to
replace, leave the replace string empty.

If the search is successful, the screen will be re-drawn with the cursor
positioned at the start of the string. If the string could not be found,
the message Not found will appear in the status area and the cursor
will remain unmoved.

Whether test is treated as the same as TEST or Test etc. depends
on which Casing button is selected. In the example above the search
would stop if TEXTWINDOWS was found; if test!=Test was selected
then the search would not find TEXTWINDOWS .

To find the next occurrence of the string click on Find Next from the
Edit menu, or press Alt-N. The search starts at the position just past
the cursor.

To search for the previous occurrence of the string click on Find
Previous from the Search menu, or press Alt-P. The search starts at
the position just before the cursor.

Page 14 Lattice C 5.5 The Editor

Having found an occurrence of the required text, it can be replaced
with the replace string by clicking on Replace from the Search
menu, or by pressing Alt-R. Having replaced it, the editor will then
search for the next occurrence.

If you wish to replace every occurrence of the find string with the
replace string from the cursor position onwards, click on Replace All
from the Search menu. During the global replace the Esc key can be
used to abort when the status area will show how many
replacements were made. There is deliberately no keyboard
equivalent for Replace All to prevent it being chosen accidentally.

To search and replace Tab characters press Ctrl-I when typing in the
dialog box. Other control characters may be searched for in a similar
manner except for the CR (Ctrl-M) and LF (Ctrl-J) characters.
Alternatively, press Shift-Ins and this will display the character set
from which you may pick the required character with the mouse.

Bookmarks

A further way to navigate your source text is via the use of
bookmarks. A bookmark is set by selecting the appropriate Set
Bookmark item from the Search menu or by using Ctrl-Shift and a
digit key (not the numeric keypad). When you set a bookmark the
corresponding item on the Goto Bookmark menu will become
enabled. Then, selecting this item, or by pressing Cirl and the digit,
will return you to the original position.

| Search

Find... BF
Find... 8F

Find Next BN
Find Next N Find Previous &P
Find Previous &P

Replace R
Replace R Replace All
Replace All

Set Bookmark &
Set Booknark *IEGIEE

Goto Booknark oF
Goto Bockmark ¢ Set 2 A¢2 N
Set 3 A03

Set 4 Aod_

Set 6 A06
Set 7 A07
Set 8 408
Set 9 409

Goto 3 A3
Goto 4 *4
Goto 5 A5
Goto 6 *6
Goto 7 47
Goto 8 *8
Goto 9 49

When you set a bookmark, the window number to which it refers is
displayed in the menu. Going to a bookmark may cause you to switch
windows. Note that bookmarks that are set in a given window are
lost when you close that window.

The Editor Lattice C 5.5 Page 15

Disk Operations

The File menu contains many operations

'Ll:':d... gL that involve using the disk system; you
Insert File &I can save and load your source file, insert
Revert text into your source, delete a file from a
Close Al ;

Save oS disk and more.

Save fs... 8BS

Delete File
Change Directory

Quit B0

New

Select New to open an empty window, assuming that there is one
available - you are allowed up to seven windows at once in Lattice C.

Assuming that there are no more than six windows open, New will
create a window which is empty and has no title.

Loading Text

To load in a new text file, click on Load from the File menu, or press
Alt-L. This will open a new window (and warn you if no more
windows are available) or select an unused window and then a file
selector will appear, allowing you to specify the disk and filename.
Assuming you do not Cancel, the editor will attempt to load the
file. If it will fit, the file is loaded into memory and the new
window is re-drawn. If it will not fit an alert box will appear
warning you, and you should use Preferences to make the edit
buffer size larger, then try to load it again.

If the file can’t be found a dialog box will appear, asking you if you
wish to create that file. You may do so, or alternatively modify the
filename and try again.

When loading Lattice C from a CLI, you may include up to seven
filenames. The corresponding files will then be loaded
automatically. If a file cannot be found you will be asked if you wish
to create it or may change the filename if you wish. If you use the
desktop to install Lattice C as a GEM takes parameters (GTP)
program then you may also enter up to seven file names to be loaded.

Page 16 Lattice C 5.5 The Editor

Revert

Revert will warn you that you are about to lose the text in the
selected window and, assuming that you choose to continue, it will
then re-load the last saved version of the file that you were editing
in this window.

Revert will do nothing if you try to use it on a file that has not been
saved previously.

Save As...

To save the text you are editing, click on Save As... from the File
menu, or press Alt-S. The File Selector will appear, allowing you to
select a suitable disk and filename. Clicking OK or pressing Return
will then save the file onto the disk.

If you click on Cancel the text will not be saved. Normally if a file
exists with the same name it will be deleted and replaced with the
new version, but if Make backups is selected from Preferences
then any existing file will be renamed with the extension .BAK
(deleting any existing .BAK file) before the new version is saved.

Save

If you have already done a Save As (or a Load), the editor will
remember the name of the file and display it in the title bar of the
window. If you want to save it without having to bother with the
file selector, you can click on Save on the File menu, or press Shift-Alt-
S, and it will use the old name and save it as above. If you try to
Save without having previously specified a filename you will be
presented with the File Selector, as in Save As.

Inserting Text

To read a file from disk and insert it at the current position in your
text, click on Insert File from the File menu, or press Alt-I. The File
Selector will appear and assuming that you do not cancel, the file
will be read from the disk and inserted, memory permitting.

The Editor Lattice C 5.5 Page 17

Delete File

You may want to delete a file from disk (if for instance you have run
out of disk space whilst trying to save); click on Delete File. The File
Selector will appear, allowing you to select a suitable disk and
filename. Clicking OK or pressing Return will then delete the file
from the disk. If you click on Cancel the file will not be deleted.

Close

This is the same as pressing Ctrl-W and will close the currently
selected window. If the file that is being edited in this window has
been changed since it was loaded or is a new file, you will be warned
before the window is closed. You can choose to continue and lose your
changes, cancel the action or save the changes.

Change Directory

This option allows you to move the current directory path; this can
be useful when running programs which expect all of their files to be
in the same place as the program itself. After clicking on Change
Directory the File Selector will appear, allowing you to select a
suitable disk and folder name. Clicking OK or pressing Return will
then change the directory. If you click on Cancel the directory path
will not be changed.

Page 18 Lattice C 5.5 The Editor

Quitting Lattice C

To leave Lattice C, click on Quit from the File menu, or press Alt-Q. If
changes have been made to the text which have not been saved to
disk, an alert box will appear asking for confirmation.

! C:\AGK\VTREE.C
2 C:\HPGLIBTC\DEMO2.C
3 C:\HPGLIBTC\DEMO4.C

[ensmovec] | swean | | teweann | | cancar |
Backups

This example shows that two files have changed. Clicking on Save
All, As Above or pressing Return will exit the editor saving the
changes. Clicking on Cancel will return to the editor. Leave All
will ignore all the changes you have made.

If you wish to save some files but not others click on the appropriate
Leave buttons. For example if you clicked on the Leave button by
VTREE.C in the above example and then pressed Return, only
DEMO2.C and DEMOA4.C would be saved.

You can also enable and disable backups from this dialog box. This is
useful if you normally use backups, but decide that you don't require a
backup of a one line change.

The Editor Lattice C 5.5 Page 19

Configuring the editor

Selecting Preferences... from the Options menu will produce a
dialog box like this:

[Editor preferences]
% Auto-indent lines % Hide mouse when typing

Auto-save configuration Make backups
Auto-save project Show matching parentheses
Cursor mode numeric keypad Stop at end of line

Save files on Quit Save files on Run Other

Tab setting: 4 Text Buffer: 38060_ Cursor
I Cancel ” Load... JISave ns...” Reset II 0K I

The editor preferences box

This box allows you to set up the editor as you would like to use it;
you can then save your customisation to disk so that the editor will
always behave the same way. Here are the different settings that
you can change.

Avuto-indent lines

Selecting this option sets auto-indent mode. When active, an indent
is added to the start of each new line created when you press Return.
The contents of the indent of the new line is taken from the white
space (i.e. tabs and/or spaces) at the start of the previous line. This
allows you to lay out your program neatly, by simply pressing
Return.

Auto-save configuration

When this option is selected, the current preferences will
automatically be saved when you exit the editor. So when you load
the editor again, the preferences will be just the same as when you
last used it.

Page 20 Lattice C 5.5 The Editor

Auto-save project

When this option is selected, the current project will automatically
be saved when you exit the editor. So when you load the editor
again, the project (including the compiler’s options) will be just the
same as when you last used it.

Cursor Mode Numeric pad

The Cursor Mode Numeric Pad option allows the use of the
numeric keypad in an IBM-PC-like way allowing single key presses
for cursor functions, and defaults to Cursor pad mode. The keypad
works as shown in diagram below:

C-0C0U

When this option is not selected the keyboard reverts to returning
the digits etc.

Hide mouse when typing

Selecting Hide mouse when typing causes the mouse pointer to
disappear when you start entering text with the keyboard. As soon
as you move the mouse, or use a command that displays a dialog box,
the mouse will re-appear. This option may be disabled if you prefer
to always see the mouse on the screen.

Make Backups

Selecting this option causes the editor to make a backup (with the
extension .BAK) when saving files.

The Editor Lattice C 5.5 Page 21

Show matching parentheses

This facility lets you check that your parentheses match. With this
option enables, when you press) the cursor will quickly move to any
matching (character and then back to the current position, thus you
can ensure that you have closed the correct number of brackets in a
complex expression. If you find this cursor movement distracting then
disable the option.

Stop at End of Line

When this option is selected, if you press cursor left at the beginning
of a line or cursor right at the end of line, the cursor does not move.
Disabling this option, causes the cursor to move to the previous line
if you press cursor left at the beginning, and to the next line if you
press cursor right at the end.

The best way to find out which you prefer is to try using each setting.

Save files on Quit

Save files on Ouit VRS By default the editor will prompt you, if
::s you are about to quit without having

saved all the files, you have changed.

The saving of these files can be made automatic by selecting Yes or
disabled by selecting No (but don’t blame us if you forget to save your
files!).

Save files on run other

This enables you to choose whether files are saved before using the
Run Other and Run with Shell commands, in the same way as that
for Save files on Quit.

Tab setting

By default, the tab setting is 4, but this may be changed to any value
from 2 to 16.

Page 22 Lattice C 5.5 The Editor

Text Buffer

By default the text buffer size is 10000 bytes, but this can be changed
from 4000 to 999000 bytes. This determines the largest file size that
can be loaded and edited. This amount of memory is allocated for
each window in use. Care should be taken to leave sufficient room in
memory for compilations - pressing the Help key displays free
system memory, and for compilations this should always be at least
100k bytes. Changing the editor workspace size will cause any text
you are currently editing to be lost, so a confirmation is required if it
has not been saved.

Cursor
v Flashing block By default the editor cursor is a flashing
Flashing 1ine block, but this can be changed as required.
Still block
Still line

Load...

This button lets you load a settings file. The editor settings are
normally stored in a file called HISOFTED.INF in the current
directory, but the editor will ‘look down’ both the AES and
GEMDOS paths. If you want to use more than one set of preferences,
then you can explicitly load a settings file.

Saving preferences

To save the settings file you can either choose Save as... from the
Preferences box or choose Save preferences from the Options
menu.

This latter command, on the Options menu, saves the current editor,
compilation and Tools menu preferences under the name
HISOFTED.INF. If you want to call your settings file a different name
you should use Save as... in the Preferences... box, as described
below.

The Editor Lattice C 5.5 Page 23

When the editor is loaded, it looks for the HISOFTED.INF
configuration file firstly in the current directory (which is the folder
where you double-clicked on the data file), then using the system
path. Saving the editor preferences this way will put the .INF file in
the same place it was loaded from or, if it was not found, it will be
placed in the current directory path.

In addition to saving the editor configuration the current program
buffer size, from within the compilation options dialog box, is also
saved.

Use Save as... from the Preferences box to save a settings file
with a name other than HISOFTED.INF; an extension of .INF is still
usual.

With this option you can save a number of different settings files
under different names; however the editor always loads the settings
file called HISOFTED.INF when it starts up so that, if you want to
make a particular settings file the default, you will need to re-name
it to HISOFTED.INF.

Reset

Clicking on this box causes the settings to be reset to their default
values; useful if you have made a complete mess of your options.

Running other programs

There are three ways that you can execute other programs from
within the editor; Run Other..., Run with Shell... and by a selection
from the Tools menu. These different methods will now be described.

Page 24 Lattice C 5.5 The Editor

Tools Menu

The Tools menu lets you run programs of

%E?Egum ?ﬂ}i’: your choice from within the editor using a
Tool 3 &3 single keystroke or click of the mouse.

Tool 4 s‘;

}::{ 2 g‘; The configuration can be saved in the
Tool 7 " preferences file, ensuring that the same
}g:: g I:ég facilities can be used again, the next time
Tool 18 o that you run the editor.

Tool 11 o ¢

L -1 The preferences file that we supply is
Tool il gg already set up to run the tools supplied
Tool 15 i i

Tool 16 e with Lattice C.

Tool 17 N

Tool 18 o8

Tool 19 o3

Tool 20 CH

Run Other,.. 0

Run with Shell <0

Before you can use this facility you will need to configure each tool so
that the editor can find the appropriate file. To configure a tool,
hold down the Ctrl key and select the appropriate menu item or press
Ctrl-Alt and the appropriate key on the numeric keypad.

This will produce a dialog box like this:

L Tool configuration |
Tool number: 1 Menu entry: HERCS—______ [Make resident

Connand line [_As shown] Directory [_Tool's] Save files

Path: C:\LC\BIN\HERCS . PRG.
Comnand: Z‘ﬁr

[J Pause on return [] Report all errors [Run as T0S [Run as GEM

[e=1[=]

If you just want to use the default settings, you need only change the
Path item so that the file can be found; either amend this item or
click on FSel and use the file selector to select the appropriate file.

The Editor Lattice C 5.5 Page 25

Once you have made the required changes you should press Return
(or click on OK) to make your changes permanent; alternatively
pressing Cancel will ignore any changes you have made. The other
options in this box are:

Menu entry
The name typed in this field gives the name of the tool as placed on

the Tools menu. Hence in the above example the name WERCS
appears on the menu.

Command line

Connand line UEERCITAT] These options configure the way the
:une . command line is obtained for a program
Lo which is about to be run.

If None is selected then a program will be run as a plain GEM or TOS
program with no command line. If Prompt has been selected you will
be prompted for a command line in the same way as occurs when using
Run Other.

Finally As shown allows the command line on the line below to be
used. This command line is specified in the same way as that used by
Run with Shell and may have the same meta-characters in it, as in
the example above.

Directory
I/ Current This sets up which directory will be the
;:“1’:“” current one when the tool is run. Current

will leave the directory as that of the
editor itself.

Tool’s switches to the directory of the tool being run, whereas Top
window switches to where the file in the current window is stored on
disk.

Page 26 Lattice C 5.5 The Editor

Save Files

This option changes which files will be saved before running the
tool. If you select No then no files will be saved, selecting Yes (the
default) will save all files (not just the current window), whilst
Ask... will prompt you using the Save/Leave dialog described
under Quitting Lattice C.

Path

This option specifies which program is actually to be run. If you give
a full pathname, or select one by clicking on the FSel.. button then
that specific file is run. If you just use a name then this will be
treated as if you had used it as an argument to the Run with Shell
command described above.

Pause on return

This option controls whether the editor pauses after running the tool.
Typically you will select this when running a TOS program but
disable it when running a GEM program.

Report all errors

This option allows you to specify which errors the editor will bring
to your attention when returning. If this option is not selected then
you will only be alerted to negative return codes from programes, i.e.
those normally indicating GEMDOS errors. Selecting it will also
force positive program error returns to be flagged.

Run as TOS & Run as GEM

These buttons select how the program is run, either as a GEM
program or as a TOS program; note that the same warnings about
GEM/TOS mode made under Run with GEM apply here also.

The Editor Lattice C 5.5 Page 27

Make Resident

If this item is selected then when the editor next loads it will
attempt to load this tool into memory and make it resident, i.e.
merely execute the tool from memory rather than load it from disk
each time. This is particularly useful with substantial programs like
WERCS.

As well as the obvious disadvantage of permanently tying up your
memory, not all programs can be made resident. In general your own
Lattice C programs can be made resident if compiled using the
Resident startup option.

We do not recommend running third party programs in this way.
They may crash immediately, or the second time they are run or may
simple not quite work correctly possibly destroying your valuable
files in the process.

Running Tools

Running a configured tool is simple, just select the appropriate menu
item or press Alt and the appropriate key on the numeric keypad and
the program will be run using the settings described above.

Run Other...

This command, on the Tools menu (also reached by Alt-0), lets you
run other programs from within the editor, then return to it when
they finish.

When you select Run Other... you will first be warned if you have
not saved your source code (unless you have modified the setting of
the Save files on Run Other option in Preferences). Then the
GEM File Selector will appear, from which you should select the
program you wish to run. If it is a .TOS or .TTP program you will be
prompted for a command line, and then the screen will be initialised
suitably.

This is the command to use for ‘one-off’ execution of a program within
the editor. If you are likely to want to run the same program a
number of times, then use the facilities of the Tools menu. If you
would prefer to specify the program to run via a command line,
rather than using the File Selector then use the Run with Shell
command described below.

Page 28 Lattice C 5.5 The Editor

If you include the character sequence %. (i.e. per cent followed by full
stop) in the command line (remember, you are prompted for a
command line) these characters will be replaced by the full name of
the file that you are currently editing. To pass the name without its
extension, use %?.

If you need a true % to be passed type %%.

Run with Shell...

This command also lets you run other programs from within the
editor, then return to it when they finish. The keyboard shortcut for
this command is Shift-Alt-0.

It differs from Run Other in that you enter the file to run as a
command line. If the editor finds that the _shell p vector has been
set up then this will be called to execute the command. This works
well with the Craft, PKS and Gulam shells as the shell can be used
to run batch files and expand file wildcards etc.

If the _shell_p vector has not been set up then the editor will look
for the file to run using the PATH environment variable, which can be
set using the Environment command from the Options menu.

The same expansion of the current filename as used by Run Other can
be used by this command. If you wish to use the same command more
than once you will probably save time by using the Tools menu.

Setting the Path

The editor maintains a number of directory paths to make the
operation of the integrated environment natural and seamless.

Paths are routes to files. Normally you keep all files of a similar
type or usage in one folder or you may have a number of related
folders all within one outer folder. For example you probably have
an LC folder containing the Lattice C program, its tools and its
libraries.

In order that a program that uses these files can find them without
having to ask the user for help, both the ST/TT operating system and
the Lattice C editor maintain a number of directory paths, some of
which you can alter.

The Editor Lattice C 5.5 Page 29

Here is a summary of the paths used by the integrated environment,
how they are set and what uses them:

Current directory - this is a path that is set up (initially) by the
program which ran the current program. For example, for the Lattice
C editor this path will have been set up by the Desktop, assuming of
course you ran Lattice C from the Desktop. However, since the editor
allows this to be changed (via the Change Directory command on
the File menu), it is normally reset to whatever was last stored in the
HISOFTED.INF file, to save you having to change it every time you run
the editor.

Most of the disk-related functions within the editor will search this
path first.

GEMDOS path - this path is that contained in the PATH
environment variable. It is used by shells (e.g. Craft, PKS Shell,
Gulam) to locate programs to run. It is specified as a list of , or ;
separated folder names, each of which specify a folder which
should be searched when trying to locate a file.

Within the editor it is used by Run with Shell, to locate the named
program, and initially when attempting to find the LC1.LC file.
Other tools, like WERCS, may use it for locating subsidiary files,
such as WERCS.RSC and WERCS.INF.

AES path - this is the path used by the AES when the user calls one
of the AES routines which search for a file (shel_find and
rsrc_load). Internally the format of this variable is identical to
the GEMDOS path (in fact it is the GEMDOS PATH for the AES
program!), although the AES provides no way of altering it and
merely sets it to A: \ for a floppy based machine or C:\ for a hard
disk machine.

Page 30 Lattice C 5.5 The Editor

Miscellaneous Commands

Fonts...

The Fonts command is used to select different GEM or TOS fonts for
use in the editor; it can be selected either by clicking on Fonts... from
the Options menu, or by pressing Ctrl-G. It displays a dialog box like
this:

[Font selection |
T0S Font
GEM Font

=] L

The GEM Font is the font that will be used by the editor to display
text. In ST high resolution and the TT resolutions, there are three
fonts available as above. Changing to Small will double the number
of line displayed on the screen. With the Tiny font the characters
are only 6 pixels by 6 pixels wide but this does mean that even in ST
high resolution, there are over 100 characters per line and 54 lines!

In ST medium resolution, there are only two fonts; Normal and Smaill.
Small is 6 by 6 pixels and thus the characters are difficult to read but
this does give an extra 7 lines of text and over 100 characters per line.

TOS font is used by non-GEM programs. In TT medium resolution,
using 8x8 will give 60 lines instead of 30.

You should be aware that any change of font that you make here
will also be effective outside the editor, after you leave it.

The Editor Lattice C 5.5 Page 31

ASCII Table...

To be found on the Edit menu, this displays a pop-up dialog box at the
current mouse position, showing all the ASCII characters:

G EEle)
1ngGug () %+, -, /8123456789 ;<=>

wuﬁﬁgnl.r-kkioinlﬂing &l
jX13TA1 TN0° 2010098 3 WA] TUFYSA

Brr3ouTOBREOEN=2 S [J+2°° (w237

You may click on an individual character and it will be added to the
text that you are editing at the current cursor position. You can bring
up this display from the keyboard using Shift-Insert. This short cut
can also be used in the editor’s dialog boxes.

Note that the characters that would confuse the editor are ‘greyed
out’ and may not be selected. Remember that characters other than
those in the standard 7 bit ASCII set are not necessarily the same on
other computers.

About Lattice €

It you select About Lattice C... from the Desk menu, a dialog box
will appear giving various details about Lattice C, including its
version number. You will also be told the amount of free memory that
is available to you and how much is used by the resident programs
including the text in the open windows.

[Lattice C - Version 5.50]
Copyright @ HiSoft 1991, All Rights Reserved

] Resident Prograas
306800 7551 C:\RGK\VTREE.C
30000 416 C:\HPGLIBTC\DEMOZ. I:
36000 1912 C:\HPGLIBTC\DEMO4.C

Free Systen Memory: 1234968

Free Alternative Memory: 0

Eaitor releasel 3.00 E

Page 32 Lattice C 5.5 The Editor

Pressing Return or clicking on OK will return you to the editor.

Help Screen

The key equivalents for the commands not found in menus can be seen
by pressing the Help key, or Alt-H. A dialog box will appear showing
the cursor and function keys, as well as the free memory left for the
system.

Desk Accessories

If your system has any desk accessories, you will find them in the
Desk menu. If they use their own window, as Control Panel does, you
will find that you can control which window is at the front by
clicking on the one you require.

For example, if you have selected the Control Panel it will appear in
the middle of the screen, on top of the editor window. You can then
move it around and, if you wish it to lie ‘behind’ the editor window,
you can do it by clicking on an editor window, which brings the editor
window to the front; you can then re-size it so you can see some part of
the control panel’s window behind it. When you want to bring the
control panel back to the front just click on it and the editor window
will go behind. The editor’s cursor only flashes and the menus only
work when an editor window is at the front.

Automatic Launching

You may configure Lattice C to be loaded automatically whenever a
source file is double-clicked from the Desktop, using the Install
Application option.

To do this you first have to decide on the extension you are going to
use for your files, which we recommend to be .C for C files. Having
done this, go to the Desktop, and click once on LC5.PRG to highlight
it. Next click on Install Application from the Options menu and a
dialog box will appear. You should set the Document Type to be C
(or whatever you require), and leave the GEM radio button selected.
Finally click on the OK button (if you press Return it will be taken
as Cancel).

The Editor Lattice C 5.5 Page 33

Having done this, you will return to the Desktop. To test the
installation, double-click on a file with the chosen extension which
must be on the same disk and in the same folder as Lattice C and the
Desktop will load Lattice C, which will in turn load in the file of
your choice ready for editing or compilation.

Note: To make the configuration permanent, you have to use the
Save Desktop option.

Compiling Programs

Having produced your C program and saved it to disk using the
editor you can then compile it. Normally this is a two stage process;
first the compiler turns the C source file into an object file and then
the linker links this object (together with any other object and/or
libraries required) to produce an executable program.

Because most larger programs consist of more than one C source file,
the integrated compiler provides a Project manager to aid in the
maintenance of larger projects. For small, single file projects, the
project manager is still employed using a default project.

The Project menu

The Project menu allows the entire structure

T, W offan application to be set up and managed
Eena.. from within the integrated compiler.

oad. ..

save "DEFAULT" A project file (.PRJ) contains a list of all the
Save fis... files (and which files they include) and
Link “DEFAULT® options which are required to rebuild an
Hake "DEFAULT" | application.

Make all "DEFAULT"

Directory o

Run "DEFAULT" 0}

Debug "DEFAULT" #D

Associated with each project is a project directory, the directory in
which the project file is located. This directory is used as the current
directory for both compiling an running the program, thus ensuring
that subsidiary files (such as resource files) can be easily located.

Page 34 Lattice C 5.5 The Editor

NeWooa

The New... option is used to create a new project, and presents a file
selector to allow you select the project directory, and the name of the
project file. Note that you should decide on a name for your project at
this time to ensure that output file names are chosen appropriately.

Load...

The Load... option reloads a previously saved project. On loading
the project the current in-memory project definition is completely
replaced by the new one, together with all its options.

”

Save “...

This saves the current project under the name originally given to the
project.

Save As ...

Save As... is used to save the current project under a new name; this
may be useful if you are editing an old project to create a new project.

The Editor Lattice C 5.5 Page 35

Edi' II... Il...

The Edit... item is the central part of the project interface. It allows
the files which form part of a project to be set up, and the final
output file to be set. The following large dialog box is used:

[Project management |
Input files Dependent files
el | 2]
3] T
Add I el fdd I Del
Optians
Output to: |

The main part of the Project management dialog consists of two
list boxes. The left hand one is used to enter the source files which
make up the project; the files may be added, deleted or changed in
the normal list box manner. In addition it is possible to change the
‘build order’ of the files (i.e. the order in which they are built &
then linked) by clicking on an entry and dragging it to a new position.

Within a project any number of input files may be specified in the
Input files list; the extension of the file is used to decide how the
project manager will process it:

Extension Action

C ¢ Compile named file

None

S Assemble named file

LIB Include named library file when linking

LNK Include file as WITH file during linking

0 Include named object file when linking

Other

PRJ Make sub-project substituting target name in
source file list

Page 36 Lattice C 5.5 The Editor

For each source file (.C/.S) within a project dependent files may be
specified; these are the files which are included by the main source
file. To specify dependent files for a particular source file, selecting
the source file will activate the Dependent files list box allowing
any number of dependents to be entered.

In addition to allowing dependent files a source file may have
specific options set. Note that this is only required where a
particular source file should have specific options, normally the
options for the whole project should be set via the normal options
menu. To set a set of file specific options first select the file and then
select the appropriate options box which you wish to change via the
Options popup menu.

The output filename may be specified in the Output to line or via a
file selector after clicking on FSel. The extension of the output file
name is used by the project manager to decide what sort of object file
is to be built:

Extension Action

LIB Pass input files to librarian

0 Pass input files to linker for pre-linking (PRELINK
keyword)

Other Pass input files to linker and any other automatic
files (startup stubs, math libraries, gem libraries & C
libraries) for linking into an executable.

Note that the project manager recognises any non .LIB or .0
extension as a normal executable file. It is often easiest to give the
output file no extension and instead allow one to be invented based
upon the setting of the Executable options - Application type setting.

Make II... ”

Make "...” is used to start the process of rebuilding a project. The
project manager examines the time and dates of all the input source
files with respect to their object files and rebuilds only those that
have changed.

Note that you must ensure that the real time clock in your machine is
set; if you do not the project manager will not function correctly.

The Editor Lattice C 5.5 Page 37

Make all “...”

Make all *...” is used to unconditionally rebuild a project. This can
be useful if you have changed a global option which would affect the
‘code model’ and so all source files need rebuilding. This is obviously
much slower than the Make "...” option!

L’.nk II... ”

Link *...” is used to unconditionally rebuild the output file; note that
all the input files must be available, the project manager will not
attempt to build any of them. Link *...” is useful in situations where
you have simply changed one of the linker options (e.g. Linker
options - Add exported symbols) and want the project manager to
build a new output file.

Note that the name Link "...” is something of a misnomer; if the
output file is a library (oufput.lib) then the librarian would be run
instead!

R un Il... ”

Run "...” runs the output file for the current project. Note that the
output file must be executable in order to select this option; if the
output file ends in .0 or . LIB you will not be able to run it directly.

Debug “...”

Debug "...” passes the output file for the current project to the
debugger. The options to the debugger may be set using the
Options - Debugger... option.

Note that the output file must be executable in order to select this
option; if the output file ends in .0 or . LIB you will not be able to run
it directly.

Directory

giocto q, frrent] Directory is used to select which
directory is current when a program is run.

Page 38 Lattice C 5.5 The Editor

Because many GEM programs have difficulty finding subsidiary files
when run from remote directories the default setting of Directory -
Project ensures that the current directory is that of the project. For
TOS or more robust GEM programs the Directory - Current is useful to
ensure that a program will function correctly when run from a remote
directory.

Problems

When issuing a Run command from the editor the machine may seem
to ‘hang up’ and not run the program. This occurs if the mouse is in the
menu bar area of the screen and can be corrected by moving the mouse.
Similarly when a program has finished running, the machine may
not return to the editor. Again, moving the mouse will cure the
problem. This is due to a feature of GEM beyond our control.

Compilation Errors

When the compiler detects an error or something that may be an
error (a warning) it generates a message; these errors are
remembered, and can be recalled from the editor.

When you return to be editor you can use Alt-J to move to the next
error with the error message displayed in the status line. If you have
a large number of errors the editor may not be able to remember them
all. Alt-J goes to the next error regardless of the position of the
cursor; it will switch windows if required. To go to a previous error
use Ctrl-J. The editor takes account of any insertions or deletions
automatically so that unless one error (like a mistake in a
definition) has caused multiple errors you should only need to
compile once.

There’s also the Shift-Alt-J command which finds the next error after
the cursor in the current window. It is the appropriate one to use if
you have got a number of include files and want to fix all the errors in
one file before going on to the next one. You can also use it to find the
first error in a file by typing Alt-T (to go to the top) and then Shift-
Alt-J.

Occasionally the compiler will spot errors somewhat later than you
might expect. This is usually because the text up to the point it has
read is allowed in a certain context. If you have missed something
out at the end of a line, then the error may be detected at the
beginning of the next line.

The Editor Lattice C 5.5 Page 39

On occasions the compiler will generate more than one error message
as a result of a single error in your program; do not be put off by this.
If you get confused, just re-compile.

Incidentally, if you start a compilation of a large program you can

break out and returned to the editor using the key combination Left-
Right-Shift when using the integrated compiler.

The Program menu

Progran

The Program menu provides facilities for

E.’,:E;‘“e s compiling single source files in a ‘one-shot’
Compile uc manner. Although this menu allows
::::;mgg: compilation and assembly of source files,
Prototype... normally you will not use these functions,
Bixsisis larcer 4J pre_ferrmg instead the facilities of the
Next error ad Project menu.

Assemble

The Assemble option is used to assemble the current window, using
the global project options (described below). Since an assembly
language source file will normally be part of a much larger project it
is normally easier to place the description of the file within a
project for later reuse.

Check

The Check option, checks the syntax of the source text that is
currently being edited without producing any output file. If the
compiler is already loaded then this lets you check your program
quickly.

Compile

The Compile option is used to compile the current window, using the
global project options (described below). Since many C source files
will be part of a much larger project it is normally easier to place the
description of the file within a project for later reuse.

Page 40 Lattice C 5.5 The Editor

Pre-compile

The Pre-Compile option is used to generate a pre-compiled header
file suitable for inclusion in the Compiler options - Advanced
(Precompiled headers) dialog. The current source window is
processed together with the global project options (described below)
to produce a symbol file source.sym.

Note that any files mentioned in the Compiler options -
Advanced (Precompiled headers) dialog will be loaded as part
of the precompilation process and so must be available (i.e. if you are
rebuilding an existing pre-compiled header you should remove its
declaration from the Precompiled headers list).

Pre-process

The Pre-process option is used to force the compiler to write the
results of preprocessing the current source file into the output file
source.p.

Prototype...

The Prototype... option is to invoke the compilers prototype
generation option on the current window, using the global project
options (described below), building a prototype file source.i.

This option produces a dialog allowing the options for the prototype
generation to be set:

[Prototype generation |
g Generate __PROTO style prototypes

No identifiers in prototypes
No typedefs in prototypes

Functions

The Editor Lattice C 5.5 Page 41

Generate __PROTO style prototypes -pp

This option forces the compiler to generate prototypes ‘protected’ by
an __PROTO macro. Normally on re-reading the prototype file the
prototypes will be used, however if the symbol __ NOPROTO is pre-
defined by the user then the prototypes will be ignored. This can be

useful to allow portability of source files to older K&R compilers.

No identifiers in prototypes -pi

No identifiers in prototypes (- pi) suppresses the compilers generation
of formal names for the prototypes. Since these names are not
required in the prototypes removing them can save both space and
compilation time later.

No typedefs in prototypes -pt

No typedefs in prototypes (-pt) suppresses the compilers use of
typedef names within prototypes. In many cases this is desirable as
the typedef may not be ‘visible’ to the prototype file and so any
unknown types would cause the compiler to issue an error.

Functions
e The Functions option allows the user to configure
xternal . g . .
Static how prototyping deals with static functions.

There are three possible options:
All -pr

Causes the compiler to generate a prototype file containing
prototypes for all functions defined in the source file.

External -pe

Eliminates prototypes for all static functions. Only those functions
available externally will have prototypes generated for them.

Static -Ps

Generates prototypes only for static functions. Only those functions
defined with the static function will be output.

Page 42 Lattice C 5.5 The Editor

The Options menu

The Options menu provides the main place

g:::??:f.':: v from which options for both the compiler and
Enviroment... ¢ editor are set.

Resident...

Executable. .. The items on this menu relating to the
Debugger. .. compiler are described in this section; the
EEETIen. ., other options are described elsewhere.

Fonts... AG

Preferences... AT

Save Preferences

Environment...

The Environment... option allows the environment variables used by
the tools which are run (and other parts of the Lattice C system as
described above) to be altered.

The ‘environment variables’ are an array of strings which GEMDOS
creates for every program which it runs. This array of strings
contains ‘variables’ of the form name=value which the program
may interrogate to obtain information about the ‘environment’ in
which it is running (hence the name). Some typical environment
variables are: PATH - specify the directories in which a program
should look, INCLUDE - specify the directories in which a compiler
should look for include files, EDITOR - the users preferred text editor
which an application should run.

Normally a parent program creates a new environment for the child
program; if this is not done explicitly then the child ‘inherits’ a
copy of the parent’s environment. Hence every program has its own,
unique, copy of the environment.

For programs started normally from the Desktop, only a single
environment variable is available, PATH.

Lattice C and the environment

Several environment variables are used
by the compiler to locate files it may
need.

'INCLU

DE'...
'LIB'...

These are INCLUDE, LIB, PATH and QUAD.

The Editor Lattice C 5.5 Page 43

PATH Executable path

This variable defines a sequence of directory prefixes where a
program (e.g. the editor!) should search for an executable file (e.g.
when trying torun LC1, LC2, GO etc.).

On selecting the Environment-'PATH' option, the following
dialog appears (although without all the entries!):

['PATH' directories |

‘\bin\bin
t\bin\local
t\bin\unix
‘\bin\arc
i\bin\tiff
‘\bin\rcs
‘\bin\atari
\Meltt
\c\st
t\lc\toolpac
Add [Renave

[=]

This shows a list of all the directory prefixes specified in the PATH
variable. The entries in this list dialog may be manipulated in the
manner described in the section A word about pop-up menus and
dialog.

G

When a new entry is added, or an existing one edited (by double-
clicking), a file selector is presented to allow the entry of a path.

INCLUDE Include path

The INCLUDE variable is similar to the PATH variable except that it
is used by the compiler to locate include files referenced by your
program.

Manipulating this variable is done in an identical manner to that
described for the PATH variable.

LiB Library path

The LIB variable is similar to the PATH variable except that it is
used by the linker to locate input and library files referenced by the
editor.

Page 44 Lattice C 5.5 The Editor

Manipulating this variable is done in an identical manner to that
described for the PATH variable.

Note that just because a library file is in the library directory does
not mean that the file will be linked in, you must tell the compiler to
link it!

QUAD Quad file

The QUAD environment variable specifies the default intermediate
(QUAD) file name used by the compiler. If the filename has a
trailing backslash (\) then the compiler assumes that this is the
name of a directory such that it may form a filename by
concatenating the source file name to it.

On selecting the Environment-'QUAD' option, a standard file
selector appears to allow you to select a quad file name, or path. To
select a specific name, enter it in the file selector, or to set a
directory, leave the filename portion blank:

Select OUAD directory or file
Directory:
Mi\.0.

Selection: |._____

If you have a RAM disk installed you can greatly increase compiler
performance if you use this as the quad temporary directory.

General...

Because the Lattice C editor provides a full visual shell, in order
that other programs which may be run from it (e.g. the Tools, etc.),
full support is available for arbitrary environment variables (i.e.
other than PATH, INCLUDE, LIB and QUAD).

The Editor Lattice C 5.5 Page 45

On selecting the Environment-General.. option, the following
dialog appears (although without all the entries!):

[Environment variables]

EXFONTS=d:\tex\fonts\tfm

HP=n':\tnp\

FBASES=d:\tex\bases

HELL=d:\bin\bin\ksh, ttp

CC_O0PT=-C -g- -j87e -E=-e -. -ce

SER=AGK

EXFORMATS=d:\tex\formats

TMPDIR=A: \tnp\

ISTSIZE=180

OME=c:/mint

FINPUTS=.;d:\tex\fonts\af\nf_three;d:\tex\fonts\nf\ca_nf;d
Add

=

Del
[]

This shows a list of all environment variables known to the editor,
either because they were inherited from the parent, or because you
have previously set them. The entries in this list dialog may be
manipulated in the manner described in the section A word about
pop-up menus and dialog.

Note that the editor has no way of knowing which variables are
list-type variables (like PATH) and which are single assignment
type (like QUAD), so it is up to you to format the entries correctly for
the tools you intend to run.

Compiler options

T The Compiler options item and its

ffgmgl associated sub-menu are the main

Object... place (for a project or single file) in
Optiniser... . Fans .
which compilation options are set.

On selecting one of these options, one of a number of dialog boxes are
used to allow the options to be set. Within the following descriptions
the text of the option is shown on the left of the heading, whilst the
command line option (for LC.TTP users) is shown on the right.

Page 46 Lattice C 5.5 The Editor

Compiler options - Advanced

The Advanced dialog includes all the options which are of use to
experienced programmers who wish to tailor the translation
environment to their needs.

[Coapiler options - Advanced 1

Allow nested comaents]
Allow $ in identifiers

Allow explictly-sized bitfields
Disable trigraph processing
Enable 'near'/'far' keywords
Enable '__asn' keyiords

Make 'extern’ declaratlnns global
Make external definitions ‘extern’' | Renaye
Hake string literals non-'const’

Type based struct equivalence

Source character set Float/Double

Pre-processor expansion buffer: L__ Identifier significance: —

[=]

|2

Allow nested comments -cc
Allow $ in identifiers -cd
Allow explicitly-sized bitfields -cb

This option allows the compiler to recognise bitfield specifications
using types char, short and long rather than just the ANSI types
of int, unsigned int and signed int.

Disable trigraph processing -cg

Disable trigraph recognition;. Trigraphs are enabled in Strict ANSI
mode (-ca); we strongly recommend that you keep trigraphs
disabled due to the overhead incurred by their recognition.

Enable ‘near’/’far’ keywords -ck

Enables the presence of the near and far keywords even when the
Strict ANSI mode (-ca) has been specified.

Enable *__asm’ keywords -cr

Enables the register keywords __dO..__d7,__aO0..__a7 and
__fpO0..__fp7, even when Strict ANSI mode (-ca) has been
specified.

The Editor Lattice C 5.5 Page 47

Make ‘extern’ declarations global -cx

Cause all extern declarations to have global scope. The compiler
deals with implicit and explicit in-block (cf. global) extern
declarations according to ANSI, i.e. their scope is restricted to that
of the block. This option can be used to force their scope to global, for
compatibility with older non-ANSI compilers.

Make external definitions ‘extern’ -x

Cause all global data declarations to be treated as externals. This
can be useful if you define data in a header file that is included by
multiple source files. This option can be used with all the files
except one, in this case, to cause the data items to be defined in one
module and referenced as externals in the others.

Make string literals non-‘const’ -ch

When using the Merge identical strings (- CcS) option the compiler
gives each literal string the type const char [], although this
can create many warnings which were not intended. This option
disables this behaviour, and makes string literals of type char [].

Type based struct equivalence -cq

Relax the aggregate type checker to allow aggregates with common
initial subsequences to type check equivalent. This means that
struct A will be considered equivalent to struct B if the types of
struct A’s members match the types of struct B’s members over
the length of struct B. This option is most useful where a larger
structure (struct A) has a smaller structure (struct B) embedded
at the start of it and you wish to pass a pointer to struct Atoa
function expecting a pointer toa struct B.

Source character set -e
Sbit ttag| This option is used to activate the
Japanese extended character set, either for 8-bit
e SO ability or to access codes used in Asian-

language applications.

Use of any of these options disables compressed header files, and so
the full uncompressed versions must be used.

Page 48 Lattice C 5.5 The Editor

Certain Asian characters are represented by two consecutive bytes,
the first byte of which has its high bit set, i.e. a value above 127.
With the Source character set (-e) option, a two-byte Asian
character is treated as a unit in string and character constants. This
means that when the compiler scans a text string enclosed in double
quotes, it will recognise the first byte of an Asian character and
suppress lexical analysis of the second byte. So, if the second byte is
a backslash or a double quote, it will not receive any special
processing.

Also, if you enclose an Asian character in single quotes, the compiler
will produce a two-byte constant, and if you have not specified Allow
multi-character constants (-cm), it will warn you that multi-
character constants are not allowed.

8-bit Atari -e

8-bit coding is used. This means that characters above 0x80 are
treated as normal characters, thus allowing all 8-bit ASCII codes to
be embedded in a program.

Japanese -e0

Japanese coding is used. This means that characters with values from
Ox81 to Ox9F and OxEO to OXFC are treated as the start of a two-byte
sequence. The characters from OxAO to OxDF are single-byte
Katakana codes.

Korean -e2

Korean character coding is used. This means that characters with
values from Ox81 to OXFD are treated as the start of a two-byte
sequence.

Taiwanese -el

Chinese/Taiwanese coding is used. This means that characters with
values from Ox81 to OXFC are treated as the start of a two-byte
sequence.

Float/double -f
LR These options allow control over the
Float/Double WLUTTY] precision attributed to float and double

declarations used within the user code.

The Editor Lattice C 5.5 Page 49

All Double -fd
Causes the compiler to treat all declarations as double precision.
All float -fs
Causes the compiler to treat all declarations as single precision.
Mixed -fm

Causes the compiler to treat float as single precision and double as
double precision; .this is the default option.

Pre-processor expansion buffer: size -Zsize

Whilst pre-processing the source file the compiler uses several
buffers to store the pre-processed line. If this buffer overflows
(giving a line buffer overflow or pre-processor symbol loop
(macro expansion too long or circular) error) then the size may
be increased using this option. The buffer has, by default, a size of
6000 bytes for ‘big” compilers, or 3000 bytes for ‘small’ compilers

Precompiled headers -Hfile.sym

This list box specifies the precompiled header files the compiler is
to pre-load into its symbol table. Precompiled header files are
generated using the Pre-compile menu option.

There is no limit to the number of precompiled header files that may
be read in.

Identifier significance: sig -nsig

This option specifies the number of characters the compiler is to
retain for identifiers. This can be useful if more than the default of
31 is required, or to reduce to 7 or 8 for compatibility with very old
programs.

Page 50 Lattice C 5.5 The Editor

Compiler options - Errors

The Errors dialog provides options for controlling the errors reported
by the compiler. This can be useful to enable additional diagnostic
messages, or to suppress messages which are of no interest.

[Conpiler options - Errors
Ej Disable 'return' warnings Ej No error line printing

Disable all marnings No error/warning limit
Enable all warnings Stop on first error/warning
Make all warnings errors Undefined tag warnings

Error limit: L_- Warning limit: ___

t| invalid pre-processor command
k| unexpected end of file

i| file not found $

i) invalid lexical token

;| invalid macro usage

il line buffer overflow

il file stack full

;| invalid conversion

Disable ‘return’ warnings -cw

I RARERS RA RS R RS

Shuts off warning messages generated for return statements which
do not specify a return value within an int function. For conformance
with the ANSI standard, all such functions should be declared as
void instead of int.

Disable all warnings -j*i
Enable all warnings -j*w
Make all warnings errors -i*e

Promote all warnings to errors; this option can be useful to ensure that
a program compiles with no warnings whatsoever.

No error line printing -ce

Suppresses the printing of the error source line in conjunction with
any warnings or errors.

No error/warning limit -q-

Never quit on any errors or warnings.

The Editor Lattice C 5.5 Page 51

Stop on first error/warning -q

Undefined tag warnings -ct
This option enables a warning message for structure tags which are
used without definition inside a ‘scope’. These messages will be
issued at the end of the scope in a similar manner to the warning no
reference to identifier (93).
Error limit: num -gnume

This option controls the number of errors which the compiler will
tolerate before quitting. The default is 10.
Warning limit: num -gnumw

This option controls the number of warnings which the compiler will
tolerate before quitting. The default is 50.

Warnings: D no oplion
E -jnume
w -jnumw
[=jnumi

This option allows control over the error messages reported by the
compiler. It allows any warning to be ignored, promoted to an error,
or enabled. The 4 possible actions for each message are: D - default
action, E - always issue warning as an error, W - enable warning, I -
ignore warning,.

Compiler options - General

The General dialog includes the most common options used for
selecting the compilation model. It is probably the set of options you
will use most often.

1

[Compiler options - General

Allow multi-character constants
Default short integers

Disable stack checking

Enforce function prototypes

]

Make 'char' unsigned
Merge identical strings
Strict ANSI mode

Suppress multiple includes

]

Processor 68880 Debug
Haths Paraneters

(5]

Page 52

Llattice C 5.5

The Editor

Allow multi-character constants -cm
Default short integers -w

This option causes the compiler to treat all integers as 16-bit short
values. It is intended to provide compatibility with other compilers
although it does provide an increase in performance of the generated
code. When using this option, we strongly recommend use of
prototypes to catch parameter mismatch errors as not all parameters
will be promoted to 4 bytes, as is the default.

Disable stack checking -v

Disable the generation of stack checking code at the beginning of
each function.

Enforce function prototypes -cf

Forces the compiler to check for the presence of function prototypes
and to complain when one isn’t present at a function call or function
definition.

Make ‘char’ unsigned -cu
Merge identical strings -cs

Causes the compiler to generate a single copy of all identical string
constants into the code section of the program. Note that when this
option is specified, modification of any string constants at runtime
will produce unpredictable results.

Strict ANSI mode -ca

Enables full ANSI compatibility mode with full diagnostics to check
for portability problems. Note that a program may compile cleanly
with this option in effect, however this does not prove that the
program conforms to the ANSI standard, merely that the program
will compile.

Enabling this option has the following effects:
Disables anonymous unions

Disables zero length arrays within structures (note that zero
length arrays are only permitted within structures).

Disables 1ong float as asynonym for double.

The Editor Lattice C 5.5 Page 53

Causes excess (i.e. more than 2) hex digits in character
constants to be discarded rather than retained.

Enforces the ‘a cast does not yield an lvalue’ rule.

Disallows sizeof and floating point numbers in pre-
processor directives.

Enables trigraphs; these may be disabled via Disable trigraph
processing (- Q).

Disables register keywords and new keywords. Note that
some of the system header files (e.g. dos.h) will require you
to re-enable register keywords using the Enable ‘__asm’
keywords (- cr) option.

Disables warnings:

95 (unrecognised #pragma operand)
151 (use of ANSI flexible keyword ordering)

Enables warning:
148 (use of incomplete struct/union/enum tag).
Promotes the following warnings to errors:

59 (invalid storage class)

84 (redefinition of pre-processor symbol)

116 (Undefined enum tag)

101 (redundant keywords in declaration)

122 (Missing ellipsis)

132 (Extra tokens after valid preprocessor directive)
152 (cannot define function via typedef name)

162 (non-ANSI use of ellipsis punctuator)

170 (C++-style comment detected)

Forces structure equivalence to be exact type equivalence
rather than member name and type equivalence.

Disallows floating point constant expressions from
participating in case expressions.

Page 54 Lattice C 5.5 The Editor

Defines the pre-processor symbol _ANSTI as 1. Note that this
has the effect of disabling the non-ANSI features in the
header files. If you require access to non-ANSI features of the
header files you may disable this behaviour using the option
Compiler options - Pre-processor (#undef symbols: _ANSI).

Suppress multiple includes -ci

Suppresses multiple #includes of the same file. If a second
#include of the same file is encountered, the directive is simply
ignored. Note that case is important although no distinction is made
for angle brackets or quotes. This option is implied when
precompiled header files are used or created.

Processor -m

mmmmmwwe This option used to select the target processor for
which the compiler is to generate code.

68000 -m0

Causes the compiler to generate code which will run on a Motorola
68000. Decisions on code optimisation will be based on the timings for
this processor.

68010 -ml

Causes the compiler to generate code which will run on a Motorola
68010. Decisions on code optimisation will be based on the timings for
this processor. In general, code for this will run on a 68000 although
the 68010 has instructions not found on the 68000.

68020 -m2

Causes the compiler to generate code optimised for the 68020
processor. This code will not run on a 68010 or 68000 although it will
run on a 68030 and 68040.

68030 -m3

Causes the compiler to generate code optimised for the 68030
processor. This code will not run on a 68010 or 68000 although it will
work on a 68020 and 68040.

The Editor Lattice C 5.5 Page 55

68040 -m4

Causes the compiler to generate code optimised for the 68040
processor. In general, code for this will run on a 68020/68030 although
the 68040 has instructions not found on these processors.

Any -ma

Causes the compiler to generate code to run on any Motorola 680x0
family processor. Code is optimised for the 68020/68030, degrading
performance on a 68000.

Debug -d

R sy | This option used to select the level of debugging

Line only | information generated by the compiler; either line-
e level for a symbolic debugger, or source level for a

Local/flush
Hone source level debugger.

When any of the debugging options is specified, the preprocessor
symbol _DEBUG will be defined so any debugging statements in the
source file will be compiled.

Full -da

Outputs full debugging information for all symbols and structures
declared in the program even if there is no reference to them.

Full/flush -d5

Outputs full debugging information for all symbols and structures
declared in the program even if there is no reference to them.
Additionally it will cause the code generator to flush all registers at
line boundaries.

Line only -d1
Enables output of the line number/ offset table.

Local -d2

Outputs full debugging information for only those symbols and
structures referenced by the program.

Page 56 Lattice C 5.5 The Editor

Local/flush -d3

Outputs full debugging information for only those symbols and
structures referenced by the program. Additionally it will cause the
code generator to flush all registers at line boundaries.

None -d0
Disables all debugging information.

Maths -f
Dt Aeeea| This option used to select the the manner in
ne-F MC68882 : . . - o
1/0 HC68881 which floating point arithmetic is performed.
Haths VLT
Softuare IEEE

Note that if you are building a desk accessory, CPX, TSR or any other
form of resident/concurrent program you should only select None or
Software IEEE any other option will conflict with the operation of
any foreground programs.

Auto MC68881/2 -fa

Auto-detecting I/0O based 68881 emulation routines will be used when
this option is specified. The library will check for the presence of an
true 68881/68882 coprocessor or an I/O based 68881 (such as Atari’s
SFP004 or the optional MegaSTE coprocessor) and perform floating
point arithmetic on chip when possible. If no coprocessor is available
then the Software IEEE routines will be used.

Line-F MC68882 -f8

Inline Motorola 68881/68882 generated instructions using the co-
processor interface. Code compiled with this option will not operate
unless a 68881/68882 is installed which conforms to this interface.

1/O MC68881 . -fi

I/0O based 68881 maths routines will be used when this option is
specified. The library assumes the presence of an I/O based 68881
(such as Atari’s SFP004 or the optional MegaSTE coprocessor) and
performs floating point arithmetic on chip.

The Editor Lattice C 5.5 Page 57

None -f

None indicates that a program requires no floating point support.
This is the default, so that those programs which use floating point
must select one of the other options.

Software IEEE -fl

Standard Lattice IEEE routines linked into the program to perform
software emulation of all floating point operations. This code will
work on all machines but will not take advantage of a coprocessor if
present.

Parameters -r
i . This option is used to control how the compiler is

Register to generate subroutine calls and entries.
Both -rb

Defaults the compiler to use registerised parameters for all
subroutine calls, yet still generate a prologue that handles both
styles of parameter passing.

Stack -rs

The compiler default, causes the compiler to use standard stack
parameters for all subroutine calls. Those functions explicitly
declared __regargs will use registerised parameter conventions.

Register -rr

Causes the compiler to use registerised parameters for all subroutine
calls and entry points. The first two integral and two pointer items
will be loaded into DO-D1/A0-A1 (and the first two real items into
FPO-FP1 if using Line-F MC68882 (- f8)) for the call. Any function
without a prototype or explicitly declared __stdargs will use the
normal stack conventions.

Page 58 Lattice C 5.5 The Editor

Compiler options - Listing

This option is used to control the listing file generated by the ‘big’
version of the compiler.

[compiler options - Listing |

Cross-reference source syabols
Cross-reference systen includes
Cross-reference user includes
Display error messages

List source code

List systen includes

List user includes

Narrow listing

Show #if/#ifdef excluded lines
Show macro expansions

[an] [«]

Cross-reference source symbols -gx

Output a cross reference of all symbols in the source file. This option
is implied by the Cross-reference system includes (-gc) and Cross-
reference user includes (- gd) options.

Cross-reference system includes -gc

Outputs a cross reference of all compiler-provided include files found
by searching the directories specified by the INCLUDE environment
variable. By default these symbols are not printed.

Cross-reference user includes -gd

Outputs a cross reference of all user-provided include files. By
default these symbols are not printed.

Display error messages -go

Output error messages to both standard out and the listing file. By
default when generating a listing the compiler places the error
messages only in the listing file.

List source code -gs

Enables listing of the input source code.

The Editor lattice C 5.5 Page 59

List system includes -gh

Includes the contents of all include files found in the default include
directory as they were included by the source program. Normally,
only the #include directive causing the compiler to read the file is
displayed.

List user includes -gi

Includes the contents of all user-provided include files in the
expanded listing.

Narrow listing -gn

Toggles the narrow mode of the listing. By default, the listing will
be formatted for a 108 column line with most lines not exceeding 80
characters. When enabled, this option allows for listing lines up to
132 characters.

Show t#if/#ifdef excluded lines -ge

Causes the source listing to display all excluded lines as controlled
by #if or #ifdef. Normally these lines are not displayed.

Show macro expansions -gm

Displays both the original source line and the line after macro
expansion in the listing. This is useful for tracking down problems
related to preprocessor replacement of symbols.

Page 60 Lattice C 5.5 The Editor

Compiler options - Object

The Object option allows fine control over the code generation of the
compiler; you may well never use any of these options.

[Coapiler options - Object |
Almays generate stack frames Disable stack merging
Auto-load base register Long align externals
Default 'far' code Long align stack
Default 'far' data Optinise for space
Default section names Type based stack alignment
Disable auto-registerisation

Data pointer Frane pointer

Register limits: Data [_2] Address [_2] Floating point 2]

Nanes: Code: I.______.. Data: BSS:

Always generate stack frame -mf

This option forces the compiler to always generate a stack frame,
even in those instances in which the frame is not required. This
ensures that programs which expect to be able to ‘walk” up the call
chain are still able to do so.

Auto-load base register -y

This option causes each function entry sequence to load the global
data register with the value of the linker defined symbol
_LinkerDB. Note that, in general, only the functions that will be
used as entry points from an interrupt handler need to use this
feature, since register A4 will be propagated by subsequent function
calls, hence the __saveds keyword is preferable in most situations.

Default ‘far’ code -r0

Defaults all subroutine calls to far which means that the compiler
will use an absolute 32-bit relocated address to locate the target
function. Note that any functions explicitly declared near will use
the more efficient 16-bit relative offset.

The Editor Lattice C 5.5 Page 61

Default ‘far’ data -bo

This option causes the compiler to change the form of addressing used
to locate statics, externals and strings to less efficient full 32 bit
accesses.

Default section names -

This causes the compiler to use the default names of text for the
program section, data for the data section, and udata for the bss or
uninitialised data section.

Disable auto-registerisation -mr

Disables the automatic registerisation of variables. By default, the
compiler will attempt to pick likely candidates for register
variables. Note that this option has no effect if using the global
optimiser.

Disable stack merging -mc¢

Disables the deferred stack cleanup optimisation which leaves
parameters on the stack, after a call, to be reused and cleaned up by a
subsequent subroutine call or function epilogue.

Long align externals -cl

This forces alignment of all external data to longword boundaries. By
default the compiler will not necessarily ensure that external data
objects are placed on longword boundaries. Using this option may give
better object code performance on full 32 bit architectures
(68020/68030/68040).

Long align stack -as

Enable automatic longword stack realignment. By default the
compiler will not necessarily ensure that the stack is longword
aligned. Using this option may give better object code performance on
full 32 bit architectures (68020/68030/68040).

Optimise for space -ms

Causes the compiler to choose optimisations which result in a
reduction of space instead of time.

Page 62 Lattice C 5.5 The Editor

Type based stack alignment -aw

This option allows short and char to be passed on the stack at the
appropriate size. If generating CPXs in default long integer mode
this option must be used.

Code: codename -sc=codename

Causes the compiler to use the name codename for the program, or
code, section without affecting the names of the other sections.

Data: dataname -sd=dataname

Causes the compiler to use the name dataname for the data section
without affecting the names of the other sections.

BSS: bssname -sb=bssname

Causes the compiler to use the name bssname for the bss, or
uninitialised data, section without affecting the names of the other
sections.

Data pointer: reg -br,;eg
-bn

This option specifies which register the compiler
is to uses for its global base register (default A4), or
None (-bn) if none is required (e.g. if your
program is entirely non base-relative).

Note that use of this option will almost certainly make your
program incompatible with the standard run time libraries

Frame pointer: reg -rreg
-rn

This option specifies which register the compiler
is to uses for its frame pointer (default A6), or
None (- rn) if none is required.

Note that at the time of writing Frame pointer: None (- rn) is not
implemented and so may not be selected.

The Editor Lattice C 5.5 Page 63

Register limits - Data: num ~hdnum

used for passing char, short, int or long parameters

N This option specifies the maximum number of registers
Data
whenin - rr mode.

Note that use of this option will almost certainly make your
program incompatible with the standard run time libraries.

Register limits - Address: num -hanum

1] This option specifies the maximum number of registers
mrxEly2| used for passing pointer parameters when in - rr mode.

Note that use of this option will almost certainly make your
program incompatible with the standard run time libraries.

Register limits - Floating point: num -hfnum

registers used for passing float, double or long

i This option specifies the maximum number of
Floating point WA
E double parameters when in - rrand - f8 mode.

Note that use of this option will almost certainly make your
program incompatible with the standard run time libraries.

Compiler options - Optimiser

The Optimiser options allow the options for the global optimiser to
be selected. Note that for any of these options to have any effect you
must specify the Enable global optimisation (-0) option.

[__Compiler options - Optimiser |
E Assume best case aliasing

Disable register colouring
Enable global optimisation
Enable loop invariant hoisting

Optinise for

[ec) (]

Assume best case dliasing -Oalias

By default the global optimiser makes decisions about how two
objects overlap based on the available type information. This option
disables this behaviour, allowing more optimisations, but
potentially introducing unsafe optimisations.

Page 64 Lattice C 5.5 The Editor

Disable register colouring -Onocolor

By default the global optimiser examines your code for variables
with non-overlapping lifetimes and allows two or more variables to
use the same physical register. Using this option disables this
behaviour.

Enable global optimisation -0
Enable loop invariant hoisting -Oloop

When performing loop optimisation (Optimise for - Both (- 0) or
Optimise for - Time (-Otime)) enable hoisting of safe invariant
expressions out of the loop.

Optimise for -0

TITLIECKITM/ Soth | This option selects which of the optimiser’s
pace 9 . . .
tine | algorithms, which typically affect time and/or

space, are used.

Note that the names used are misnomers; Time may cause slower
execution, whilst Space may cause larger executables. The default
of Both is almost always best.

Both -0

This option performs both loop and very-busy expression hoisting;
typically this will result in a decrease in program size and in
execution time.

Space -Ospace

This option performs only very-busy expression hoisting; typically
this will result in a decrease in program size.

Time -Otime

This option performs only loop optimisation; typically this will
result in reduced execution time.

The Editor Lattice C 5.5 Page 65

Compiler options - Pre-processor

The Pre-processor options allow the characteristics of the
compiler pre-processor to be set up. Many of these options are
somewhat esoteric and included only for backward compatibility.

[Conpiler options - Pre-processor]

! L ls ‘#include’ directories
u

|2

<]

3]

Add Renove Renove
Allon 'Bif' to span files
Allow nested 'Hdefine's
0ld-style pre-processor
Undefine all syabols

o

[=]

Allow #if to span files -cp

By default the compiler gives an error for pending #endifs missing
at the end of #include files. This non-ANSI option suppresses this
behaviour.

Allow nested “#define’s -cn

When this option is enabled, the compiler ‘stacks’” #define
statements for the same identifier, with each #undef discarding the
top element from the stack.

Old-style pre-processor -co

This option places the pre-processor in pre-ANSI mode. In this mode,
macro arguments may be substituted inside string literals (superseded
by the ANSI stringisation operator, #), tokens in replacement lists
may be pasted together using a comment (superseded by the ANSI
token pasting operator, ##) and the #pragma title/eject/space
directives may be used without the #pragma (.e.
#title/eject/space).

Undefine all symbols -u

This option undefines all non __ prefixed preprocessor symbols
which are normally pre-defined by the compiler.

Page 66 Lattice C 5.5 The Editor

‘#undef’ symbols: name -uname

The #undef symboils list box shows all the pre-processor symbols
which the compiler may predefine and which may be overriden. To
disable a definition, clicking on it will ‘grey’ it out, clicking again
will re-enable it. Note that removing symbols which would not have
been generated (e.g. _M881 when Line-F MC68882 (-f8) has not been
set) has no effect.

‘#define’ symbols: name=valuve -dname=valuve
name -dname

This list box allows #define symbols to be preset. The values
entered may either be of the form name=value to indicate a
#define of the form:

#define name value

or simply name to indicate

#define name

‘#include’ directories: dir -idir

This list box allows a set of directories which the compiler is to look
in for #include files to be set up. Note that although the list box
allows an infinite number of entries, the compiler only permits 16.

Assembler options

The Assembler options item are the main place (for a project or
single file) in which assembly options are set.

[Assenbler options]
fdd '_' to syabol names Allow 68881 instructions
Add line nuaber information List source file
Allox nultiple listing lines List include files
Allow 68851 instructions List macro expansion text
Processor (68888 Identifier significance: I,_
‘EQU' sunbols g d
kd kd
5 3]
Add Renave Add Renave

(=]

The Editor Lattice C 5.5 Page 67

Add ’_’ to symbol names)

This option automatically prefixes all external references with an _.
If references to C labels have already been prefixed with an
underscore in the source, the option is not needed.

Add line number information -d

This option activates the debugging mode (in the same way as the
compiler Debug - Line only (-d1) option)

Allow multiple listing lines -Im

List additional data generated for source lines which cannot be
accommodated alongside the original source line (i.e. allows
multiple listing lines for each source line). This option implies the
List source file (- 1) option.

Allow 68851 instructions -m9
Allow 68881 instructions -m8
List source file -1

This option causes a listing of the source file to be written to the file
source.lst. The listing displays the appropriate program counter and
code information alongside the assembly source.

List include files -li

List the source for text from INCLUDE files as well as the original
source file. This option implies the List source file (- 1) option.

List macro expansion text -Ix

In addition to listing the call to a macro this option causes the
expansion text from macros to be listed. This option implies the List
source file (-1) option.

Page 68 Lattice C 5.5 The Editor

Processor -m

Fmmmmmwmessm This option controls whether warnings are
generated when code for the relevant processor is
encountered; in general each processor provides a
superset of the instructions of its predecessor.

68000 -m0
68010 -ml
68020 -m2
68030 -m3
68040 -m4
68332 -m32

Note that for processors with built in FPU’s or MMU'’s then the
relevant subset of ‘co-processor’ instructions are also enabled without
the need to specify the Allow 68851 instructions (-m9) or Allow 68881
instructions (- m8) options

Identifier significance: sig -nsig

This option specifies the number of characters the assembler is to
retain for identifiers. This can be useful if more than the default of
31 is required, or to reduce to 7 or 8 for compatibility with very old
programs.

‘EQU’ symbols: name=valuve -dname=valuve
name -dname

This list box allows EQU symbols to be preset. The values entered
may either be of the form name=value to indicate an EQU directive
of the form:

name EQU value
or simply name to indicate:

name EQU 1

The Editor Lattice C 5.5 Page 69

‘INCLUDE’ directories: dir -idir
This list box allows a set of directories which the assembler is to

look in for INCLUDE files to be set up. Note that although the list box
allows an infinite number of entries, the assembler only permits 16.

Executable options

[Executable options |
Build GEM application Perforn 'Halloc"s froa TT RAH
Clear GEMDOS "Fastload" bit Standard symbol format
Load progran in TT RAH
TT RAM TPA size: fApplication type
'PREFIX' file: | [Fsel..
Build GEM application -Lg

The Build GEM application (-Lg) option tells the compiler that you
intend to build a GEM program and that it should link with the
libraries providing the GEM facilities. The integrated compiler also
uses this setting to determine whether a program which you are
working on should be run as a GEM or a TOS program on selecting
Run *...” or Debug *...” from the Project menu.

Clear GEMDOS “Fastload” bit NOFASTLOAD

This disables the setting of the “Fastload” bit in the program
header of an executable program. This means that the whole of the
TPA will be zeroed rather than just the BSS section.

Load program in TT RAM TTLOAD

This option sets the appropriate bit in an executable program’s
header to indicate the the application would prefer to load into TT
RAM if available.

Perform “Malloc”s from TT RAM TTMALLOC

This option sets the appropriate bit in an executable program’s
header to indicate the the application would prefer to have
GEMDOS Malloc’s satisfied from TT RAM if available.

Page 70 Lattice C 5.5 The Editor

Standard symbol format DRISYM

When generating symbols in an executable program, the linker
normally generates them in ‘HiSoft extended format’; this has the
advantage of permitting 22 characters of significance, compared to 8
for standard DRI symbols. Many debuggers now understand the
HiSoft format, however this option may be used for backward
compatibility.

TT RAM TPA size: size TPASIZE size

Sets the size of TPA required for loading into alternative RAM. This
value sets the minimum amount of alternative RAM, in Kbytes,
which must be free for a program which has the TTLOAD bit set. The
minimum value is 128, the maximum 2048 (2Mb). Note that this
option implies the Load program in TT RAM (TTLOAD) option.

Application type

hwiordetecting| - The Application type options allow

Desk accessory [you to tell the compiler which sort of
dome application you are building.

Resident
Standard

Auto-detecting -ta

This option forces the use of the automatic program type detection
code, allowing an application to determine whether it is operating
as a normal program, from the auto folder or as a Desk accessory at
run-time. The external variable _XMODE can be used to determine the
current mode.

CPX -tx

This option forces the program to be built for CPX operation. A CPX
is designed to be used in conjunction with Atari’s XControl Desk
accessory and so must be tested in that environment. Note also that
every CPX must have a PREFIX file specified, as built with
CPXBUILD.

Desk accessory -ta

This option builds the program as a Desk accessory. A Desk accessory
is designed to be loaded directly by the Desktop and so must be tested
in that environment.

The Editor Lattice C 5.5 Page 71

None -t=

This option sets the compiler to link no start up code to the modules
in the project. This can be useful for building applications which
either require no startup code (because they are designed that way)
or for implementing application types not directly available from
this menu (e.g. Harlekin HPG modules).

Resident -tr

This option forces the use of the resident program startup code. The
use of this application type allows the resulting application to be
made resident using the Tools - Resident option.

Standard no option

This is the default application type and indicates that the standard
C startup code should be used. This is by far the most common option.

‘PREFIX’ file: file PREFIX file

This specifies a file which is to be prepended to the output file; this
is particularly useful for building control panel extensions.

Linker options

[Linker options]
E Add exported syabols ls

Ignore errors
Ignore syabol casing
Strip debugging information

1B

Linker buffer size: I..._ |
Messages [_Standard] ALUs [_Standard] Add Del °
[=]
Add exported symbols ADDSYM

This option causes the linker to discard external symbol information
transmitted from the compiler or assembler as a result of a debugging
option and replacing it with a symbol table constructed from global
symbol definitions. This has the advantage that library names then
appear in the symbol table, however any non-global symbols
disappear.

Page 72 Lattice C 5.5 The Editor

Ignore errors IGNORE

Force the linker to continue after serious errors. Note that the use of
this option may result in a non-executable file if an error occurs.

Ignore symbol casing NOCASE

Make the linker ignore the casing of symbols whilst resolving
external references and definitions.

Strip debugging information NODEBUG

This option strips any debugging information from the input files
which was generated as a result of a compiler or assembler debugging
option. Note that if memory is short enabling this option will allow
the link to take place in less memory.

Linker buffer size: size BUFSIZE size

This option sets the linker I/O buffer size. By default, all /O is done
in blocks as large as the available memory permits; this leads to
extremely fast link times. This option may be useful if so little
memory is available that the normal allocation scheme fails due to
lack of memory.

Messages

Tuiet i
po— The linker allows the level of messages generated
verbose | to be set using this option.

Quiet QUIET
Causes CLink to print no messages at all unless an error occurs.
Standard no option

This is the default option in which the linker prints sign on, sign off
and brief summary messages.

Verbose VERBOSE

Causes CLink to print out the name of each file as it processes it and
a summary of memory usage and elapsed time on completion.

ALVs

- The ALVs option allows you to customise the
Harnings manner in which the linker generates ALVs.

The Editor Lattice C 5.5 Page 73

When the linker is collecting the CODE type sections together, if
any are more than 32K apart and a 16-bit PC relative access is
attempted, rather than simply fail with an out-of-range error
message, CLink redirects the access to a JMP to the same location.

This jump is known as an automatic link vector or ALV. Note that this
may cause problems if you attempt to access data using PC-relative
mode, although this is not recommended anyway since on the 68030
there are separate code and data caches which can cause consistency
problems.

Inhibit XNOALVS

Prevents CLink from creating ALVs to resolve 16 bit PC-relative
code. Note that the use of this option may force CLink to fail in pass
2 with a fatal error.

Standard no option

This is the default option; it is unlikely you will ever want to use
anything other than this option.

Warnings NOALVS

Forces CLink to warn you when it creates ALVs to resolve 16 bit PC
relative code. This can be used to watch for CLink creating a non-
relocatable object from what was intended to be relocatable code.

DEFINE symbols: name=valuve DEFINE name=valve
name=name DEFINE name=name

This list box allows linker DEFINE symbols to be preset. The values
entered may either be of the form name=value to assign a specific
value or name=name, to indicate an alias for another external label.

This is option is particularly useful in conjunction with the PRELINK
option to force certain routines to be pulled from the library even
though no references to them exist.

Page 74 Lattice C 5.5 The Editor

Map...

A map file is a file describing the order and location of files and

variables processed by the linker for perusal by the user.

Cross-reference external syabols
List external syabols
Hap input file placesent
Map input section placenent
Map library placesents
File name width: l._ Progran name width: __
Page height: ___ Syabol name midth: __
Hunk name width: __ Form midth:
Line indentation:

(=]

Cross reference external symbols

List external symbols
Map input file placements
Map input section placements

Map library file placements

MAP...X
MAP...S
MAP...F
MAP...H
MAP...L

These options control which parts of the map file are generated.

File name width: width FWIDTH width (16)
Page height: height HEIGHT height (55)
Hunk name width: width HWIDTH width (8)
Line indentation: indent INDENT indent (0)
Program name width: width PWIDTH width (8)
Symbol name width: width SWIDTH width (8)
Form width: width WIDTH width (80)

These options are used customise the layout of the map file the

default values are shown in parentheses.

The Editor Lattice C 5.5

Page 75

Librarian options

[Librarian options |

Generate syabol listing

@ Cross-reference syabols
Verbose operation

Il:am:ell I [I

Cross-reference symbols -x

This option causes a librarian listing to be generated and includes a
cross reference of all symbols.

Generate symbol listing =

This option causes a librarian listing to be generated and includes a
listing of all public symbols defined in the module .

Verbose operation -v
Forces the verbose mode of operation; in this mode the librarian
prints out its progress whilst running.

Debugger options

The integrated compiler automatically makes available one of the
medium level debuggers, MonSTC or MonTTC depending on which
machine type it detects. The options for this debugger (set via Ctrl-P
inside Mon) may also be set up within the environment:

[Debugger options]
E fAuto 'e'/'_' prefix labels E Follow TRAPs

Auto-load source Ignore cartridge area
Display 'ZAn' in disassembly Ignore label case
Enable tined screen switching Interpret relative offsets

Syabol significance: 27| Source line nuabers

[=]

If you wish to use an alternative debugger (e.g. DB from
& Atari) this can be done by naming a copy of the
debugger MonSTC or MonTTC respectively.

Page 76 Lattice C 5.5 The Editor

The integrated compiler will notice such uses and not pass the
debugger strange options! Note that you should only make MonSTC
or MonTTC resident (using the Resident configuration option),
attempting to make other debuggers resident will almost certainly
crash the machine.

Auto ‘@ /’_’ prefix labels

With this option set Mon will try prefixing symbols by _ and @ if it
cannot find a label, so that if you enter main and there is no label
called main, then Mon will try _main or if this doesn’t exist then it
will try @main.

Auto-load source

Using the default settings, Mon will automatically load a C source
file and run your program until the label _main, (i.e. the beginning of
your function main), ready for you to set a breakpoint in the code.
Mon loads the source file corresponding to the first module with
debug information in the file that you are debugging.

Display ‘ZAn’ in disassembly

This option allows advanced programmers to enable the display of
the normally hidden Z registers used by some 680x0 instructions.

Note that the Display ‘ZAn’ in disassembly option will be
disabled if running on an ST.

Enable timed screen switching

Defaulting to On, this causes the display to switch to that of your
program only after 20 milliseconds. It should be switched off when a
program is about to change a screen’s address or resolution and then
turned back on afterwards.

Follow TRAPs

By default, single-stepping and the various forms of the Run
command treat TRAPs, Line-A and Line-F calls as single instructions.
However by turning this option On the relevant routines will be
entered allowing ROM code to be investigated.

The Editor Lattice C 5.5 Page 77

Ignore cartridge area

When this option is selected the Find command will not search the
ROM cartridge area of the memory map. You should select this is you
have hardware other than a ROM in this slot.

Ignore label case

This option defaults to Off. If it is set to On then if you enter fred in
an expression the subsequent search will give the value of the first
symbol that matches this, ignoring case, thus finding FRED, fred or
Fred. This option is useful for lazy typists who use the same name
with different casing.

Interpret relative offsets

This option defaults to On and affects the disassembly of the
address register indirect with offset addressing modes, i.e. XXX (An).
With the option on, the current value of the given address register is
added to the offset and then searched for in the symbol table. If
found it is disassembled as symbol (An). This option is required to
show the addresses of your global variables if they are accessed via
an address register.

Symbol significance: sig

This option specifies the number of characters the debugger treats as
significant for identifiers. This can be useful if less than the default
of 22 is required.

Source line numbers

petmal] - Mon can either show line numbers in your
off | source window in decimal, hex or not at all.

Page 78 Lattice C 5.5 The Editor

Resident configuration

The Resident option allows the selection of which tools are resident
in memory. The defaults are as shown below. Note that a tool which
is not resident will be loaded when needed by the project manager.

[Resident configuration |

Asseabler
Compiler - phase 1
Compiler - phase 2
Debugger
Librarian
Linker

Optiniser

[owa] [=]

If you find that during compilation the compiler quits with an out of
memory error, removing some of the resident tools may well ease the
situation, at the slight expense of a longer initial compilation cycle.

The Editor

Lattice C 5.5

Page 79

Page 80 Lattice C 5.5 The Editor

LC1, LC2, GO
The Compiler

The Lattice C 5.50 compiler has undergone many changes to bring the
compiler into line with the language definitions of the ANSI
standard. As such the pre-processor symbol __STDC___is now always
set to 1, even when -ca is not set, giving an ANSI model, with
extensions. If -ca is specified then _ANSI will be set to 1. Note that
the compiler has undergone no formal validation or independent
testing, although we have a high degree of confidence in its ANSI
compliance.

New Language Features

ANSI compliance

Extern scoping model

The compiler deals with implicit and explicit in-block (cf. global)
extern declarations according to ANSI, i.e. their scope is restricted
to that of the block. The Make ‘extern’ declarations global (- CX)
option can be used to force their scope to global for compatabilty
with pre-5.50 and other non-ANSI compilers.

Note that the meaning of the -cXx option has changed; the
functionally of the old - cXx option is still available via -x.

This change has some surprising side effects:

void fn(long);

void f(void)
{

extern void fn();

fn(42);
}

The Compiler Lattice C 5.5 Page 81

results in fn () being called without reference to the prototype.

Flexible keyword ordering

ANGSI flexible keyword ordering is fully supported. This allows you
to write such obfuscated declarations as:

int long unsigned typedef size_t;

any such abuses are flagged by the compiler via the warning use of
ANSI flexible keyword ordering (151).

The warning is disabled by default in ANSI mode. Note that the
placement of the storage class specifier (typedef in this instancce)
is marked as an obsolescent feature even by ANSIL

Float as single

The compiler now handles expressions of type float in single
precision; this is to conform to the requirements of the ANSI
standard.

Note that in general the use of float as a computational type is
discouraged unless using one of the co-processor math options.

Redundant keyword combinations

Redundant keyword combinations which are detected generate the
warning redundant keywords in declaration (101) in rton-ANSI
mode; in ANSI mode this warning is automatically promoted to an
error. Redundant keyword situations include:

typedef volatile int mytype;

return (volatile mytype)10; /* volatile is redundant */

Ref/def model

The ANSI external data reference/definition model is now strictly
enforced. This makes programs, of the form shown below, illegal:

static int ii;
int i1 = 42;

Page 82 Lattice C 5.5 The Compiler

Restriction of register arrays/aggregates

register arrays/aggregates are restricted in their use to those
sanctioned by ANSI. The only permitted use for such a register array
is sizeof ().

Scoping rules for ‘no-linkage’ objects

The compiler restricts typedefs to exactly one instance in a single
scope. This is to comply with the rule “If an identifier has no
linkage, there shall be no more than one declaration of the
indentifier”.

Trigraphs

Trigraphs are now fully implemented. They are disabled by default,
or enabled in ANSI mode. Due to the overhead of parsing these
sequences using the compiler with them enabled is approximately

5% slower, hence we recommend that if using ANSI mode you disable
them using the Disable trigraph processing (- cg) option.

Type composition of scoped declarations

Scoped declarations have their types correctly composed as per
ANSI rules.

typedef model

The exact ANSI typedef model is now used; this allows confusing
usages such as:

typedef int t;

struct t {
unsigned t:5; /! unsigned bit field named t
const t:5; // unnamed const int bitfield
};

Valid storage classes of local functions

Local functions declared using any storage class other than static
will elicit a warning in non-ANSI mode, or an error in ANSI mode.

The Compiler Lattice C 5.5 Page 83

C++ features

Various features have been ‘stolen’ from C++ which were omitted by
the ANSI committee. All are disabled when the -ca option is used.

Comments

C++ style comments are now permitted. The normal //..\n syntax is
used.

Ellipsis

The C++ style for variable argument functions is now available,
incurring the warning non-ANSI use of ellipsis punctuator (162).

Anonymous unions

The outer tag of unions may be omitted, since this is usually only a
placeholder anyway. For example:

struct node {
struct node *next;
int type;
union {
short sval;
long lval;
float fval;
double dval;
|
|4

Floating point __asm support

Functions declared using the __asm directive may now be passed
floating point registers viz:

void __asm fp(register __fp1 double);

Page 84 Lattice C 5.5 The Compiler

__interrupt keyword

The __interrupt keyword has always been implemented, but
caused no signifcant change to the run time model. In the 5.50 release
the __interrupt keyword modifies the function entry sequence such
that it is as if a structure of type struct except (from
sys/except.h) has been passed to the function. In addition stack
checks are automatically disabled for the function, whilst an RTE is
used for exit. Note that the formal parameter must be declared
volatile if you intend to modify any part of it prior to returning,
i.el.

void ex (struct except volatile x)

{
}

Note that this facility is for the advanced user; you must have a
good working knowledge of the processor and its exception structure
in order to use it. For details of struct except you should see the
header file sys/except.h.

X.mc680x0.f10.ssr &= ~0x100; // clear 68030 rerun flag

ANSI relaxations

Modifiable Ivalues

The construct:
*((long *)bar))++=100;

is now permitted in non-ANSI mode. This is a relaxation of ANSI
which requires that casts do not form lvalues. This causes bar to be
incremented, as expected, by sizeof (long) rather than
sizeof (*bar).

Signed and sized bit fields

signed and explicitly sized bitfields (char/short/1long) are now
permitted. The default for all such types is unsigned (ANSI leaves
this as implementation defined). Note that to enable the explicit
sizing feature you must specify the Allow explicitly-sized bitfields
(- cb) option.

The Compiler Lattice C 5.5 Page 85

Zero length arrays

The compiler now permits zero length arrays embedded within
structures when in non-ANSI mode. This is a common trick used for
allocating a variable length struture; its use is explicitly prohibited
by ANSI. Typical uses are of the form:

struct name {

int length; /! length of username
char name[0]; // characters of username
} user;

Listing control directives

#pragma eject

The #pragma eject directive causes the remainder of the listing
page to be left blank and a new page started.

If the Old-style pre-processor (- c0) option has been specified then
directive may be given as

#eject

#pragma space lines

The #pragma space directive causes the remainder of the listing
page to be left blank and a new page started if there are fewer than
lines lines remaining on the current page. Note that 1ines may be
a general pre-processor expression.

If the Old-style pre-processor (-c0) option has been specified then
directive may be given as

#space ..

#pragma title title

The #pragma title directive sets the title printed at the top of
subsequent pages to title.

Page 86 Lattice C 5.5 The Compiler

If the Old-style pre-processor (-c0) option has been specified then
directive may be given as

#title ..

Error control directives

#pragma error num

The #pragma error directive is used to promote the message num to
an error; NuM may be any general pre-processor expression.

Note that a warning which has been promoted to an error may not be
demoted to a warning again.

#pragma ignore num

The #pragma ignore directive is used to indicate that the warning
message num should be ignored; num may be any general pre-processor
expression.

#pragma warning num
The #pragma warning directive is used to indicate that the

warning message num should be enabled; num may be any general pre-
processor expression.

New error/warning messages

Warning 88, argument type incorrect, has been refined to be
either 171 (implicit cast of integral argument), 135 (assignment
to shorter data type (precision may be lost)), or the existing 85.
This gives a much better indication of potential problems.

Warning 103 (uninitialised constant) is now issued for global
variables in addition to local variables.

Warning 122, Missing ellipsis, and warning 132, Extra tokens after
valid preprocessor directive are now always enabled, previously
they were auto-enabled in ANSI mode; in ANSI mode they are
promoted to error status.

The Compiler Lattice C 5.5 Page 87

There are several new error/warning messages:

register __ fpX requires -f8 switch on LC1

A function of the form:

__asm fn(register __ fpO double);

has been defined/used without the - f8 flag having been specified.
146 (W) long case value in short switch

The compiler has detected a switch value whose range exceeds the
range of the switch type. The compilation will continue using the
truncated value.

148 (W)
use of incomplete struct/union/enum tag <name>

The named struct/union/enum tag had been used without a
corresponding in scope definition. This warning is normally disabled,
or enabled in ANSI mode.

149 (W)
undefined struct/union/enum tag in prototype scope

An undefined struct/union/enum tag has been encountered within
a prototype. Because a prototype forms its own scope it is thus
impossible to have any type (within the translation unit) which is
compatible with it.

This warning is normally only issued for enums when in non-ANSI
mode, or for all types in ANSI mode. This is because the compiler
uses the ANSI cross-translation-unit model (member name and type
equivalence) for structure equivalence when in non-ANSI mode,
rather than exact type equivalence in ANSI mode.

151 (W) use of ANSI flexible keyword ordering

The compiler has detected a use of flexible keyword ordering in
declarations, as permitted by ANSI. Note that use of such orderings
is generally confusing and less portable to older compilers. ‘This
message is disabled by default in ANSI mode (-ca).

152 (W) cannot define function via typedef name

An attempt is being made to define a function via a typedef name.
In default mode this is accepted with this warning; in ANSI mode
(-ca) it constitutes an error.

Page 88 Lattice C 5.5 The Compiler

153 (W) use of string constant concatenation

The compiler has detected a use of ANSI string concatenation. This
warning is normally disabled.

159 (W) use of unary minus on unsigned value

The compiler has detected a unary minus on an unsigned expression;
often this will not indicate an error, although it can be useful for
tracking down unexpected effects.

161 (W) no prototype at definition of public function

At the definition of a public function (i.e. non-static) there was no
in scope prototype. This may indicate a prototype missing from a
global header file. This warning is normally disabled.

162 (W) non-ANSI use of ellipsis punctuator

The compiler has detected a non-ANSI usage of the ellipsis
punctuator, typically this will indicate that C++ syntax was used,.
r.el

void fn(const char *s ..);
This warning is promoted to an error in ANSI mode.
166 unbalanced comment

The end of file was reached whilst a closing comment was still
outstanding. Note that this error is a refinement of the previously
all encompassing error, unexpected end of file.

167 (W) nested comment detected

This warning is issued whenever the compiler detects an apparent
use of comment nesting. Note that this may indicate a portability
problem to compilers which do not allow the user to dictate whether
comments nest or not. This warning is normally disabled.

170 (W) C++-style comment detected

The compiler has detcted a usage of the C++ // style commenting.
This warning is normally disabled and an error in ANSI mode.

The Compiler lattice C 5.5 Page 89

171 (W) implicit cast of integral argument

The argument to a function, or function return value, has been
implicitly cast from one integer type to another; note that this may
only occur if there is an in-scope prototype. This is a refinement of
warning 88, argument type incorrect, and is disabled by default.

Pre-processor symbols

This is a current list of pre-processor symbols which the compiler
predefines:

Optional definitions

Name Option
_ANSI -ca
_BASEREL -b1
_DEBUG -d1..-d5
LPTR without -w
_M8s1 -f8
_MDOUBL -fd
_MLATTICE -fl
_MMIXED -fm
_MSINGLE -fs
__PLAIN_CHAR_UNSIGNED -cu
_PCREL -r1
_REGARGS -re
_SHORTINT W

SPTR -w
_UNSIGNEDCHAR -cu

Page 90 Lattice C 5.5 The Compiler

Static definitions

These definitions are always made by the compiler, regardless of
the options, unless overriden using the #undef symbols (- u) option.

Name Value Meaning

ATARI 1 Host Machine

LATTICE 1 Compiler Name
LATTICE_50 1 Compiler Version
LATTICE_550 1 Current compiler release
M68000 1 Processor type

Permanent definitions

Name Value Meaning

_ DATE__ "date" Date on which compilation was
started

_ FILE__ "name" Name of main file which is
being compiled

__LINE__ n Current line which is being
translated

__REVISION__ 50 Current minor version number.

_ STDC__ 1 ANSI operation mode

_ TIME__ “time" Time at which compilation was
started

__VERSION__ 5 Current major version number.

Changes to the run-time model

There are a number of changes to the run time model which will
require most programs to be fully recompiled, whilst those with
assembly language portions may need rewriting. This section
attempts to cover those points which may cause problems within
assembler portions.

We strongly recommend that all applications are recompiled in their
entirety.

The Compiler Lattice C 5.5 Page 91

Register passing mode

In registerised parameter passing mode (-rr or __regargs) changes
have been made to the way parameters are passed. In true 68882
mode (-f8), FPO and FP1 are used to pass the first two double
parameters to the function in emulation mode (-f1) if the first
parameter in a function is of type double then registers DO/D1 are
used to pass the parameter (strictly if no integer parameters precede
them that would have used DO/D1). Note that this change alone
means that any code using real maths and - rr must be recompiled.

__saveds and stack checks

Functions which are declared __saveds now automatically disable
stack checking on a per-function basis. Note that this cannot apply to
functions called by the __saveds function.

A2 as a register variable

The compiler now makes register A2 available as a register variable,
giving 3 pointer type register variables: A2, A3 & AS5. If this register
is not preserved across calls then your program is almost certain to
crash; previously the compiler rarely relied on A2 across a subroutine
call.

__asm functions

Functions declared __asm are now always _ prefixed at link time.
This means that @ is reserved for __regargs. This also means that
it is no longer legal to write:

__asm __stdargs fn(..);

Note that for functions declared __asm it is quite legal to omit a
register specification for a parameter; any such parameters will be
passed on the stack in the normal way. Such usages elicit a harmless
warning however.

Page 92 Lattice C 5.5 The Compiler

Signed and sized bit fields

Changes to bitfields now mean that in default short integer mode
(-w) a bitfield is now shorter than in the pre-5.50 releases If you
have used bitfields at all you should consider a complete recompile.

The Compiler Lattice C 5.5 Page 93

Page 94 Lattice C 5.5 The Compiler

LC.TTP

With the release of Lattice C 5.50 the functionality of the
integrated compiler has been greatly improved, however for those
die-hard command line or dedicated editor users, the capabilities of
the command line compiler driver have also been extended.

New LC.TTP driver options

-+

list the options passed to each phase of the compiler; prior
to starting compilation the LC.TTP lists the options which it
is going to pass to each phase of the compiler.

automatically invoke SEDITOR on error. When this option is
used, the - j option is automatically turned on (to generate an
error file) and the editor given by the EDITOR environment
variable started with the command line:

$EDITOR [options] <error-file> <source-file>

the options part of this command line may be set by
appending an ‘=’ to the -E option, together with any options
required. For example, MicroEMACS (not supplied) allows
the startup file error.cmd (supplied on Disk 3) to be
automatically run when passed the -e option, hence setting
up your environment variables as:

EDITOR=c:\bin\ue.ttp ; or whatever
LC_OPT=-E=-e

would automatically invoke MicroEMACS when errors are
reported, together with a script loaded to parse the errors.

Note that the -E option will normally delete the errors file
after any editor has been successfully called.

specify listing file name. By default any listing file is sent to
the source file name, but with the extension .LST. This option
allows this to be changed if required.

The LC.TTP driver Lattice C 5.5 Page 95

-J generate error file. By default any listing file is sent to quad
file directory, but with the extension .ERR, this may be
changed by specifying the option as - j=filename.

-L When this option is present, IC invokes the linker if all
compilations are successful. The first source file name is used
as the name of the executable and map files produced by the
linker. Any other files that were compiled are supplied to
the linker as secondary object files. The Lattice C startup
routine is included as the first object module, with an
appropriate standard library file (Ic.lib) searched last.

Additional Lattice libraries and linker options may be
specified by immediately following the -L option with one
or more of the following letters:

a This invokes the ADDSYM option of the linker. It
causes HiSoft extended debugging information for all
routines to be output in the executable file.

b This invokes the BATCH option of the linker. It forces
batch mode linking.

c This invokes the NOCASE option of the linker. It
forces case-insensitive linking.

f This invokes the MAP option of the linker. It causes a
map file to be generated with the .MAP file
extension.

g This letter specifies that the GEM AES and VDI

library Icg.lib is to be searched before the standard
run-time support library. When this option is
specified the default extension for the output file
becomes . PRG rather than . TTP.

h This letter directs the linker to output the hunk
portion of the map. This is the default map if no
other map options are specified.

i This letter directs the linker to ignore errors during
linking; it is equivalent to the IGNORE linker
keyword.

! This letter directs the linker to include library

information in the map file.

Page 96 Lattice C 5.5 The LC.TTP driver

m This letter specifies that the Lattice IEEE maths
library lcm.lib is to be searched before the standard
run-time support library.

n This invokes the NODEBUG option of the linker. It
causes all debugging information to be stripped from
the final executable.

q This invokes the QUIET option of the linker. It
causes no messages to be output by the linker if a link
is successful.

s This letter directs the linker to produce a symbol

listing in the map file.

v This invokes the VERBOSE option of the linker. It
causes the linker to display statistical messages as it
is processing the object files and libraries.

X This directs the linker to include cross reference
information in the map file.

For example, - Lm will search lcm.lib before Ic.lib, and -Lvg
will search Icg.lib and Ic.lib, and display messages
regarding the current linker status. Note that the standard
libraries are always searched last.

If you want to search other libraries, you must list those
libraries after the option letters, and use plus signs as
separators. For example, -L+myfuncs.lib searches
myfuncs.lib before the standard Lattice library, while
-Lm+myfuncs.lib+\george\myfuncs. 1lib searches the
libraries myfuncs.1lib, \george\myfuncs.1lib, 1cm.1ib
and 1c.1ib. Note that the special libraries are searched
before the Lattice libraries.

The -L option creates a file in the current directory named
xxx .1nk, where xxx is the name of the first source file to be
compiled (i.e., the same name that is used for the executable
and map files). This . LNK file serves as input to the linker,
and it is not deleted at the end of the procedure. This allows
you to easily re-link if, during your testing, you find a need to
change and re-compile only one module. To do this, simply
execute CLink in the following way:

clink WITH xxx.lnk

The LC.TTP driver Lattice C 5.5 Page 97

-tx
-tx:y

-Y
-z22

where xxx.1lnk is the name of the . LNK file previously
produced by the Ic command.

At the end of the -L options, if an ‘=’ is present then the
remaining part of the -L option specifies the output file
name.

The exact meaning of -0 has changed such that it is now the
name of the compilation output file, i.e. if pre-processing or
precompiling (processes which do not require LC2) then the
output filename is now specified by -0, rather than -q as in
pre 5.50 releases.

no compile, link named files only. This is useful to allow
linking of all files on the command line with no compilation
taking place what-so-ever.

This option specifies the stack size for any or all compiler
phases. Because the compiler uses some recursive algorithms,
very complex expressions may cause it to run out of stack
space. If this happens, you can increase the stack beyond its
16K default size in the following way:

-S=n Specifies the stack size for phase 1, phase 2, and the
optimiser.

-S1=n Specifies the stack size for phase 1.
-S82=n Specifies the stack size for phase 2.
-80=n Specifies the stack size for the optimiser.

The value n in the preceding list is the number of bytes in the
stack. For example, you can specify 16 kilobytes as 16384,
16k or 16K.

use .CPX startup stub
use .CPX startup stub, specifying file y as the CPX header to
be prepended to the executable.

syntax check only (-y tolc1.tp).

generate DRI format object code

The LC_OPT variable can have the form LC_OPT="FILE”. In this
instance IC.ttp reads the options from the named file.

Page 98 Lattice C 5.5 The LC.TTP driver

New compiler options

In addition to the new LC.TTP driver options there are many
additional compiler options. All of these are listed in the Integrated
compiler section under their relative subsection. The format of these
entries is as follows:

Assume best case aliasing -Oalias

The Assume best case aliasing option is enabled via the command line
option -0alias, the emboldening of the entire option indicates that
the text should be typed literally.

Pre-processor expansion buffer: size -Zsize

The Pre-processor expansion buffer option is enabled via the command
line option -zsize, the non-bold size part indicates that the user
preference is entered here (e.g. -210000).

Ignore symbol casing NOCASE

This is a linker option (indicated by the lack of a preceding minus);
there is no way of passing these directly from LC.TTP to CLink,
however many of these options have -L equivalents (-Lc in this
instance). The full linker commands may either be passed on the
command line to CLink, or via a WITH file.

The LC.TTP driver Lattice C 5.5 Page 99

Page 100 Lattice C 5.5 The LC.TTP driver

Linker

To better support new Atari machines (e.g. the TT), several new
options have been added to the linker, in addition to greatly

improved speed for those with plenty of memory.

The new (or modified options are):

ADDSYM

BUFSIZE size

DRISYM

NOCASE

NOFASTLOAD

PREFIX file

Replace symbol table with table built from
exported symbols.

If size >0 set input and output buffer size to
size bytes, if size < O set output buffer size to
-size bytes. By default the linker now buffers
the whole of input source files for as long as
possible, this often means that no re-reading is
necessary for the second pass, although it may
run out of memory as a result. If this happens,
try setting an buffer size of 1024 to try and
release more memory. If you have plenty of
memory you may like to increase the output
buffer from the default of 4K, by specifying an
output buffer size of say -32K.

Force symbols placed in the executable to be of
standard format. Note that this option is only
effective when generating an executable file.

Ignore casing of symbols whilst resolving
externals

This disables the setting of the ‘fast load’ bit in
the program header of an executable program.
This means that the whole of the TPA will be
zeroed rather than just the BSS section. Note
that this option is only effective when
generating an executable file.

This specifies a file which is to be prepended to
the output file; this is particularly useful for
building control panel extensions. Note that
this option is only effective when generating an
executable file.

The Linker

Lattice C 5.5 Page 101

TPASIZE n Sets the size of TPA required for loading into
alternative RAM. This value sets the minimum
amount of alternative RAM, in Kbytes, which
must be free for a program which has the
TTLOAD bit set. The minimum value is 128, the
maximum 2048 (2Mb). Note that this option
automatically enables the TTLOAD option.
Note that this option is only effective when
generating an executable file.

TTLOAD This sets the load into alternative RAM bit in
the program header of an executable program.
Note that this option is only effective when
generating an executable file.

TTMALLOC This sets the malloc-from alternative RAM bit
in the program header of an executable
program. Note that this option is only effective
when generating an executable file.

The XADDSYM option has been removed, the default is now extended
format symbols, also the way in which symbols are generated has
changed... Within a linkable file both the assembler and compiler
generate a HUNK_SYMBOL section (this contains the values for all
debugging symbols), when any of the relevant debug options are
enabled.

The semantics of the ADDSYM option have also therefore changed...
If present this option causes the contents of all HUNK_SYMBOL
sections to be discarded and the executable symbol table built from
the exported symbols. This has the advantage that library names
then appear in the symbol table, howver any non-global symbols
disappear.

CLINKWITH; the CLink environment
variable

The environment variable CLINKWITH, if available, is takén by
CLink to be the name of a WITH file whose contents is to be searched
before any of the other files mentioned on the command line. This
allows a template WITH file to be generated with the standard
startup and library files mentioned in the CLINKWITH file, whilst
the additional files are specified on the command line. The format
of the CLINKWITH variable should be:

CLINKWITH=c:\lattice\default.1lnk

Page 102 Lattice C 5.5 The Linker

Note that if you are running on a TT you usually want the load bits
set to run in TT RAM etc., but CLink defaults to TTLOAD etc. off, for
compatability. If a CLINKWITH file is specified and includes the
lines:

TTLOAD
TTMALLOC

programs will automatically be linked to go into TT RAM.

The Linker Lattice C 5.5 Page 103

Page 104 Lattice C 5.5 The Linker

ASM
The Assembler

The Lattice Macro Assembler supports the development of assembly
language modules for use with C programs. Because the Lattice C
Compiler generally produces very good machine code you seldom
have to resort to assembly language programming. However, some
intimate relations between hardware and software are best
achieved in the assembly language environment. Also, assembly
language is sometimes necessary when you want to get the best
combination of code size and speed.

The assembler handles the complete set of Motorola 680x0 instruction
mnemonics as well as an extensive set of assembler directives and a
powerful macro facility. It can, therefore, be used to develop
complete systems in assembly language. Nonetheless, it is provided
primarily to supplement the C compiler and has not really been
designed for large assembly language projects. For such tasks a full
assembler package, such as DevpacST should be used giving more
power for the assembly language programmer.

Basic concepts

The assembler reads a source file and produces an object file in the
Lattice object file format, along with an optional listing of the source
and assembled code. The source file is assumed to have a . S extension
and the object file is produced with a .0 extension.

Source format

Each assembly language source line has the following format:

label operation operands comment

White space (i.e. spaces and tabs) can appear before any field and
must appear between the operation and operand.

The Assembler Lattice C 5.5 Page 105

The four fields of the source line are described below:

Label

The 1label field is optional. If it is present and is preceded by white
space, it must be followed immediately by a colon. That is how the
assembler determines that the field is a label and not an operation.
If there is no white space before the label, then the colon may be
omitted.

A label can normally be up to 63 characters long and can contain
letters, digits, underscores, periods, at symbols (@) and dollar signs.
It cannot start with a digit, and the case of letters is significant. For
example, labels XYZ, XYZ, and XyZ are distinct.

Local labels are supported using the Motorola standard syntax of a
decimal number followed by a dollar character. They may be used
between two non-local labels and need only have unique names
within that scope. Note that unlike GenST, starting a label with a
period does not signify a local label.

Operation

The operation field contains the name of an instruction, assembly
directive, or macro. This field may not begin a line; if no label is
present, then the line must begin with white space. If a label is
present but is not followed by a colon, then white space must separate
the label and operation fields.

The case of this field is not significant. That is, operation MOVE is
the same as move, this applies equally to macros.

Operands

The operands field contains zero or more expressions, depending on
the particular operation. For some operations, the operands field is
optional or never used. Expressions are composed of constants,
variables, and operators.

Page 106 Lattice C 5.5 The Assembler

A constant is a decimal, hexadecimal, octal, or binary number. The
default number base is decimal, and the other bases are indicated by
a prefix:

Number representations

Number Representation Example
Decimal a string of decimal digits 1234
Hexadecimal $ followed by a string of hex digits $89AB
Octal @followed by a string of octal @743
digits
Binary % followed by zeros and ones %10110111
ASCII Literal Up to 4 ASCII characters within “ACOT"
quotes

A variable is a label name or a name defined via an assembler
directive. The special variable, * (asterisk) can be used to signify
the current program counter.

An operator is one of the following:

Order Operator Meaning

1 e Unary minus
= Bitwise NOT

2 << Left shift
> Right shift

3 & Bitwise AND
! Bitwise OR

* Multiply
/ Divide
% Modulo
== Equal to

i= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
+ Add

= Subtract

6 > Bitwise Exclusive OR

The Order column indicates the order in which operators are
processed. Operators of the same precedence are processed from left
to right. For example, in the expression

ABC+DEF*-PDQ

The Assembler Lattice C 5.5 Page 107

the negation of PDQ is performed first, followed by the
multiplication and then the addition, although this can be
overridden by the use of parentheses as in,

(ABC+DEF) *-PDQ

Each expression represents a 32-bit value. An absolute expression is
one that contains only constants (literal or equated), while a
relocatable expression contains symbols whose value is determined
during linking.

Comment
This field is any text appearing after an operation, associated

operands and white space. A comment may also be specified after a
label or on a blank line when prefixed with a semi-colon or asterisk.

Addressing modes

The addressing modes supported by the Lattice assembler are as
follows:

Mode Example

Dn add.w d1,do

An addq.w #1,at

(An) add.w (a1),do

(An)+ add.w (at1)+,do0

- (An) add.w -(al1),do

d16(An) add.w 10(at),do

d8(An,Xn) add.w 10(al1,a2.1),do

bd (An, Xn) add.w $10000(al1,a2.1),do
([bd,An],Xn,od) add.w ([10,a1],a2.1,20),d0
([bd,An,Xn],o0d) add.w ([(10,a1,a2.1],20),d0
(xxx) .W add.w (100).w,d0

(xxx).L add.l (100).1,do

#<data> add.l #100,d0

d16(pc) add.w 10(pc),do

d8(pc,Xn) add.w 10(pc,a2.1),d0

bd (pc,Xn) add.w $10000(pc,a2.1)
([bd,pc],Xn,od) add.w ([10,pc],a2.1,20),d0
([bd,pc,Xn],od) add.w ([10,pc,a2.1],20),d0

Page 108 Lattice C 5.5 The Assembler

where:

ds 8 bit number

d16 16 bit number

bd 32 bit byte displacement

od 32 bit outer displacement

An Address register (a0-a7)

Dn Data register (d0-d7)

Xn Index register (d0-d7 /a0-a7)

Note that all the operands of the 68020 addressing modes are
optional.

Data for the 68881 floating point instructions may be specified using
floating point notation, i.e.

H2.1
H#2.1E+10

will be converted into the proper floating point formats according to
the type of instruction. For example, in the following instruction:

fmove.s #2.1,fp1

The 2.1 would be in single precision. Other sizes allowed are:

fmove.d #2.1,fp1 ; double precision
fmove.x #2.1,fp1 ; extended precision

Note that the packed data format is not converted for you. Also if
you want to specify the bit pattern by hand you may use the
following formats:

fmove.s #$12345678,fp1 ; 32 bit
fmove.d #$123456781234568,fp1 ; 64 bit
fmove.x #$123456781234567812345678,fp1 ; 96 bit

You can also specify the constants in octal (i.e. @123456712) or
binary (i.e. %0110110100110101).

The Assembler Lattice C 5.5 Page 109

Using the assembler from the
command line

The assembler can be run via the following command:
asm [>listfile] [options] filename

Optional fields are enclosed in brackets, and all fields are described
below:

>listfile

Causes the listing and error message output of the assembler to be
directed to the specified file.

options

Assembler options are specified as a minus sign followed by a single
letter; in some cases, additional text may be appended. The letter
may be in either upper or lower case. Each option must be specified
separately, with a separate minus and letter. The options are:

-d This option has two uses. It activates the debugging mode (in
the same way as the compiler -d1 option) or it defines
symbols. When used to define symbols it may be used in the
following ways.

-dsymbol
Causes symbol to be defined as if your source file had the
statement:

symbol EQU 1

-dsymbol=value

Causes symbol to be defined as if your source file had the
statement:

symbol EQU value

Page 110 Lattice C 5.5 The Assembler

-ipfx

-lopt

Specifies that INCLUDE files are to be searched for by
prefixing the filename with the string pfXx, unless the
filename in the INCLUDE statement is already prefixed by a
drive or directory specifier. Up to 16 different - strings may
be specified in the same command. No intervening blanks are
permitted in the string following the -i. Note that if a
directory name is to be specified as a prefix, a trailing
backslash must be supplied.

When an unprefixed INCLUDE filename is encountered, the
current directory is searched first; then file names are
constructed and searched for, using prefixes specified in -i
options, in the same left-to-right order as they were
supplied on the command line.

Causes a listing of the source file to be written to the
standard output. The listing displays the appropriate
program counter and code information alongside the
assembly source. One or more of the following characters may
be appended to the -1 option, with the following effects:

i List the source for text from INCLUDE files as well as
the original source file.

m List additional data generated for source lines
which cannot be accommodated alongside the
original source line (i.e. allows multiple listing lines
for each source line).

X List the expansion text for macros.

This option controls whether warnings are generated when
code for the relevant processor is encountered. The -m must be
immediately followed by one of the letters from the
following list:

0 Used for 68000 target. Provides warning if you
attempt to use 68010/020/030/040/332 only
instructions. This is the default case.

1 Used for 68010 target. Provides warning if you
attempt to use 68000/020/030/040/332 only
instructions.

2 Used for 68020 target. Provides warning if you
attempt to use 68000/010/030/040/332 only
instructions.

The Assembler Lattice C 5.5 Page 111

-nsig

-opfx

3 Used for 68030 target. Provides warning if you
attempt to use 68000/010/020/040/332 only

instructions.

4 Used for 68010 target. Provides warning if you
attempt to use 68000/010/020/030/332 only
instructions.

32 Used for 68332 target. Provides warning if you
attempt to use 68000/010/020/030/040 only

instructions.
8 Used for 68881/ 68882 target.
9 Used for 68851 target.

Sets the significance of symbols to sig characters. If no size
is specified, this option defaults to using 8 character
significance.

Specifies that the output filename (the .O file). If a
directory name is specified the output name is formed by
prefixing the input filename (the .S file which is being
assembled) with pfx. Any drive or directory prefixes
originally attached to the input filename are discarded
before the new prefix is added. No intervening blanks are
permitted in the string following the -0. Note that if a
directory name is to be specified as a prefix, a trailing
backslash must be supplied.

-u This option automatically prefixes all external references
with an underline (_). If references to C labels have already
been prefixed with an underline, the option is not needed.

-w This option works like the option -dSHORTINT.

filename

Specifies the name of the source file to be assembled. This is the nly
required field on the command line. If the name does not have an
extension .S is assumed. The object file will have the same name as
the source file, except that the source file extension is replaced with

.0.

Page 112 Lattice C 5.5 The Assembler

For example, the following command causes the assembly language
source file modn.s to be assembled, producing the object file
modn.o. A listing of the source file, along with any error messages
generated, will be written to the file modn.lIst.

asm >modn.lst -1 modn

Assembler directives

The assembler handles all the instructions of all members of the
M68000 family as detailed in the ‘Motorola M68000 family
programmers reference manual’. Assembler directives are instructions
to the assembler rather than instructions to be translated directly
into object code. Note that although the IDNT, PAGE, SPC and TTL
directives are recognised, they are not supported and do not cause
errors to be generated in order to provide compatibility with other
assemblers. Also, as with instruction mnemonics, directives cannot
begin in the first character of the source line.

COMM symbol,size

The COMM directive creates a ‘common’ block identified by symbol
and of the given size. Space for a common block is allocated at link
time and, in the absence of an external definition, is the size of the
largest block encountered by the linker.

CNOP offset,alignment

This directive aligns the program counter using the given byte
alignment and offset. For example,

cnop 1,4

aligns the program counter one byte past the next long-word boundary
relative to the start of the current section. Note that

cnop 0,2

is equivalent to the EVEN directive found in other assemblers and
will ensure that the following data is aligned on an even address
(i.e. a word boundary). This is normally only necessary when 68000
instructions follow byte-aligned data as the DC and DS directives
word-align automatically.

The Assembler Lattice C 5.5 Page 113

CSECT name[,type,alignment,reltype,relsize]

Defines a program control section. Some form of section must be
defined before any data can be generated. All parameters are
optional except name and have the following functions:

name is the control section name, note that this is case
sensitive.
type may be CODE (or 0) for instructions, DATA (or 1) for

initialised data, or BSS (or 2) for uninitialised data
sections; the default value is 0.

align specifies the alignment requirements of the control
section as a power of 2; this parameter is currently
ignored and all sections are longword aligned.

reltype specifies the relocation type, which determines the
default addressing mode to be used for all symbol
references and definitions from within the control
section. The default value is 0.

relsize specifies the size, in bytes, of the relocation data for
the section; the default value is 4.

Legal reltype and relsize combinations for relocation information
on the 68000 are summarised in the following table:

reltype relsize Description

0 4 Absolute long addressing (default)
0 2 Absolute short addressing

1 2 PC-relative offset (PC)

2 2 Address-register-relative offset (A4)

A discussion of the use of CSECT directives which are compatible
with the -b and -r options of the C compiler appears later.

[label] DC.B expression[,expression] ...
[label] DC.W expression[,expression] ...
[label] DC.L expression[,expression] ...

These directives define constants in memory. They may have one or
more operands, separated by commas. The constants and any
associated label will be aligned on a word boundary for DC.W and
DC.L. You may also specify string expressions for DC.B within single
or double quotes. ‘

Page 114 Lattice C 5.5 The Assembler

Be very careful about spaces in DC directives, as a space is the
delimiter before a comment. For example, the line:

dc.b 1,2,3 ,4

will only generate 3 bytes - the , 4 will be taken as a comment.

[label] DS.B expression
[label] DS.W expression
[label] DS.L expression

These directives reserve uninitialised memory locations. Any label
specified is set to the start of the area, which will lie on a word
boundary for the DS .W and DS . L directives. If used within a BSS
section, the reserved space is simply added to the section size and no
object code is generated.

For example, each of these lines will reserve 8 bytes of space in
different ways:

ds.b 8
ds.w 4
ds.1l 2

END
Signifies the end of program source.

ENDM
Terminates a macro definition. Must be used after a MACRO directive.
label EQU expression

This directive permanently assigns the value and type of a given
label to be equivalent to the expression. If there is an error or
forward reference in the expression, the assignment will not be made.

IDNT string
Currently ignored, provided for compatibility only.
INCBIN filename

Includes a binary file, verbatim, in the output file. Suggested uses
include graphics data and ASCII files. You may specify a drive
specifier and directory for INCBIN, otherwise it will default to
searching the current directory.

The Assembler Lattice C 5.5 Page 115

INCLUDE filename

This directive will take source code from a file on disk and assemble
it exactly as though it were present in the text. The directive must be
followed by a filename in normal GEMDOS format. If a drive
specifier or directory is included, the entire filename must be
surrounded by quotes, e.g.

include "b:\constants\header.s"

In the absence of a drive specifier, the filename is taken to be
relative to the current directory and any include directories specified
on the command line are also searched.

Include directives may be nested up to 16 levels and if any error occurs
when trying to open the file or read it, assembly will be aborted
with a fatal error.

LisT

Turns on the assembly listing. All subsequent lines will be listed until
an END directive is reached, the end of the text is reached, or a
NOLIST directive is encountered.

[label] MACRO

This starts a macro definition causing all following lines to be copied
into a macro buffer until a matching MEXIT directive is encountered.
The presence of a label determines whether Motorola-style macros
are to be used. Refer to the macro definition section for a more
detailed explanation.

MEXIT

This can be used as part of a MACRO definition to stop the current
macro expansion prematurely, usually as a result of a conditional.
EXITM is accepted as a synonym for MEXIT.

NARG

This is not a directive but a reserved symbol. Its value is the number
of parameters passed to the current macro. Note that \ # may be used
as a synonym for NARG.

NOLIST

Switches the assembly listing off.

Page 116 Lattice C 5.5 The Assembler

OFFSET [expression]

The OFFSET directive switches code generation to a special dummy
section for the generation of absolute labels. The optional expression
sets the value for the first label, otherwise zero is used. No bytes are
written to the disk and the only directive allowed is DS. This can be
used to generate labels which represent offsets into a data structure.
For example,

offset 10
next ds.1 1
title ds.b 32

will assign the value of 10 to the label next and 14 to title (i.e. 1
longword after next). To return to ordinary code generation, use the
CSECT or SECTION directive.

OPSYN name,opcode

Can be used to create a synonym of any valid label name for any
opcode, directive or macro. Some examples of synonym definition and
usage are:

opsyn banana,move
opsyn is,equ
opsyn .dcb,dc.b

banana.l doO,d1
label is 42
.dcb 1,2,3,4

The last example shows how this feature can be used to create
pseudo-directives which provide compatibility with other ST
assemblers in a way that is not possible with standard macro
definitions.

PAGE
Currently ignored, provided for compatibility only.
RORG expression

This directive changes the program counter to the specified number
of bytes from the start of the current section. Note that the value
specified must be less than the current PC.

The Assembler Lattice C 5.5 Page 117

SECTION name],type]

Define a program section. There are no restrictions on name and the
optional type may be one of the following (in upper or lower case):

CODE code section (instructions)
DATA data section (initialised data)
BSS BSS section (uninitialised data)

The default type is CODE. Note that the SECTION directive is a
subset of the CSECT directive which is explained in greater detail
elsewhere.

label SET expression

This is similar to EQU, but the assignment is only temporary and can
be changed with a subsequent SET directive. Forward references
cannot be used in the expression.

m string
Currently ignored, provided for compatibility only.
XDEF symbol[,symbol...]

Defined symbols may be exported using XDEF; the symbol type
(relocatable or absolute) will also be exported.

XREF symbol[,symbol...]

This defines labels to be imported from other programs or modules. If
any of the labels specified are already defined an error will occur,
although importing a label more than once is accepted. Note that
the symbol will inherit the relocation type of the control section in
which it appears.

Conditional assembly

Conditional assembly allows the programmer to write a
comprehensive source program that can cover many conditions. At
the start of the conditional block there must be one of the many |F
directives and at the end of each block there must be a corresponding
ENDC directive.

Page 118 Lattice C 5.5 The Assembler

IF expression

IFEQ expression
IFNE expression
IFGT expression
IFGE expression
IFLT expression
IFLE expression

These directives evaluate the expression, compare it with zero and
then conditionally assemble depending on the result. The conditions
correspond exactly to the 68000 condition codes with the exception of
the IF directive, which is identical to IFNE.

IFD label
IFND label

These directives allow control depending on whether a label is
defined or not. With IFD, assembly is switched on if the label is
defined, whereas with IFND assembly is switched on if the label is
not defined.

IFC 'string1','string2’
IFNC 'string1’,'string2’

Primarily for use within macros, these directives perform a case-
sensitive comparison of two strings, both of which must be enclosed
within quotes. IFC will only assemble the block if the strings match
exactly, whereas IFNC does not assemble if the strings match.

ELSE

Toggles conditional assembly on or off. If the preceding conditional
block was assembled, ELSE will cause assembly to stop until a
matching ENDC is encountered, and vice-versa. ELSEIF is accepted as
a synonym for the ELSE directive.

ENDC

This directive terminates the current level of conditional assembly.
If there are more ENDCs than IFs, an error will be reported.

The Assembler Lattice C 5.5 Page 119

Macro definition

Asm supports two styles of macro definition. Motorola standard
macros are defined via the following sequence:

name MACRO

ENDM
The definition must begin with the macro name followed by the
directive MACRO. This is followed by the lines that comprise the
macro itself, terminated by the ENDM directive. The MEXIT directive
may also be used within the macro to terminate the macro early.

Using this method of definition, macro parameters are referenced by
a backslash and a number, for example

move.w \2, (a0)

which would substitute the second macro parameter for \2.
Alternatively, you may wish to use the second form of macro
definition which is more flexible although non-standard:

MACRO
name [arglist]

ENDM

With this system the MACRO directive must appear first, followed by
a line showing a model of how the macro will be called. The
arglist is a comma-separated list of argument strings which
provide macro parameter names and default values in the following
format:

arg[=default]

where arg is an identifier which can be used within the macro to
refer to the corresponding argument text in the macro invocation and
default is a string that will be associated with arg when that
argument is not provided by a particular macro invocation. Note that
default must be enclosed in single or double quotes if it contains any
white space characters.

Both formats of macro definition support the NARG reserved word -
and its alternative syntax of \# - which will be substituted with
the number of macro arguments. Also, quoted strings may be passed as
macro parameters.

Page 120 Lattice C 5.5 The Assembler

In order to define labels within a macro you should use the special
symbol \ @ This causes the assembler to generate a unique number
each time the macro is used, preventing multiple definitions of the
same label.

The following example illustrates macro definition using the second
style:

MACRO

MINWORD source=#100,dest

cmp.w source,dest

blt.b min\@

move.w source,dest
min\@

ENDM

The macro name is MINWORD and it could be invoked in the following
way:

MINWORD ,d2
rts

resulting in the instructions,

cmp.w #100,d2

blt.b min.0

move.w #100,d2
min.0

rts

Note that the default value of #100 was substituted because the
first parameter was omitted and that \@ was replaced by .0
(calling the macro a second time would use .1 etc.).

Pre-defined macros and
synonyms

To aid in porting code from other assemblers there are a number of
pre-defined macros and opcode synonyms which reflect common usage
under other assemblers:

BSS MACRO
CSECT udata,2
ENDM

The Assembler lattice C 5.5 Page 121

DATA MACRO

CSECT data,1
ENDM
EVEN MACRO
CNOP 0,2
ENDM
TEXT MACRO
CSECT TEXT,0
ENDM
OPSYN ELSEIF,ELSE
OPSYN EXITM,MEXIT

| 4

Interfacing C with assembly
language

The aim of this section is to discuss the conventions which a program
must follow when interfacing to C. Attention is given to features of
the Lattice assembler, Asm, which assist in writing such code and
some of the pitfalls which can occur. Full examples of both C calling
an assembly language routine and assembly calling a C function are
given towards the end of the section.

The following list covers the main points which you should bear in
mind when writing assembly code for use with C. Each of these is
covered in greater detail with examples later in the section.

o Separate control sections containing definitions or external
references should be defined for code, initialised data and
uninitialised data (BSS) via the CSECT or SECTION
directives.

o Code references (including function calls) may use PC-relative
addressing or branch instructions if the function is within a
32K range, otherwise you should use absolute addressing (i.e. a
JSR instruction).

o Data references for near data should use register A4 as a base
pointer whereas far data must use absolute addressing.

o Near data must be defined in the named section __ MERGED.

. Standard argument passing functions are prefixed by an
underscore (_) and use values pushed onto the stack.

o Register passing functions have a prefix of @ and place some

arguments in registers with the remainder on the stack.

Page 122 Lattice C 5.5 The Assembler

o The ___asm specifier can be used to determine which register
each function argument is passed in, with certain limitations.

o The size of type int may vary between word and long. Also,
type char may be signed or unsigned depending upon compiler
options. .

° Return values appear in DO with D1 also being used for double
values. Note that the condition codes after a function call
cannot be relied upon.

o A function may only corrupt registers D0-D1/A0-A1, all others
must be preserved, including 68881 floating point registers
(except for FPO/FP1) if used.

Control sections

In order for an assembly language program to link correctly with C
object files you must use named control sections. The Lattice assembler
provides this facility through the SECTION and CSECT directives.
The latter of these provides more powerful options concerning
automatic conversion of addressing modes, although in many cases
you can simply use SECTION. A summary of both options can be found
in the assembly directives section.

Programs should be divided into code (assembly language instructions
and routines), data (initialised data and constants) and BSS
(uninitialised data) sections. Each of these is described in greater
detail below.

Code sections

All assembly language instructions should appear within code
sections. The two simplest form of directives you can use to specify a
code section are:

SECTION name
CSECT name

where name is the control section name. The compiler uses the
default section name of text for all code generation although you
may wish to use different names to identify program modules.

The Assembler Lattice C 5.5 Page 123

Any functions defined within a code section can be called from the
same module with a branch or jump to subroutine instruction which
you may wish to make PC-relative. However, in order to make a
function visible to other modules when the program is linked you
must define it as an external definition, for example,

XDEF newtable

would make the function newtable callable from any other module.
You should take into account that the C compiler automatically
prefixes all external references with an underscore character _. The
XREF directive may be used to access an external reference which is
defined in another module.

The CSECT directive may also be used to specify additional
information about the control section; its general format is:

CSECT name, type,align,reltype,relsize

Only the name parameter must be present; it specifies the name of
the control section. The type parameter describes the type of section;
code, data or BSS (the values 0, 1 and 2 may also be used). The align
parameter specifies the alignment requirements of the control
section. The last two parameters, reltype and relsize, specify the
type and size of relocation information associated with symbols
declared within the control section.

For example, the section directives described previously are
equivalent to:

CSECT name,code,4,0,4

which is interpreted as a named code section, aligned on a longword
boundary, defaulting to absolute longword addressing for symbols.
The final two parameters can be used in code sections to
automatically convert absolute long addressing to PC-relative for
more compact code, as in

CSECT text,0,,1,2
XREF _function
JSR _function

Note that we have used the number O rather than code and the
alignment parameter has been omitted as all sections are longword
aligned. The JSR instruction will actually be assembled as

JSR _function(PC)

Page 124 Lattice C 5.5 The Assembler

because we have specified a relocation type of PC-relative. To
override this you may move the XREF out of the PC-relative section.
It is also possible to use several code sections with different
relocation types, the assembler will only use PC-relative addressing
for symbols declared in the correct sections.

The advantage of using CSECT to provide PC-relative instructions is
that changing a single CSECT directive gives you the ability to
transform all external references. This provides you with an
equivalent mechanism to that provided by the -r optionon 1c.

To call a C function from an assembly language module, you must
always include an XREF declaration for the function. Before calling
the function (via JSR or BSR), you must supply any expected
arguments in the proper order either on the stack or in registers,
depending upon the style of parameter passing employed by the
function. After control returns from the called function, the stack
pointer must be adjusted to account for any pushed arguments.

XREF _cfunc

MOVE.L DO, - (A7) ;push argument

MOVE.L D1, - (A7)

JSR _cfunc ;call function

ADDQ.W #8,A7 ;restore stack pointer

This code fragment illustrates stack parameter passing, more details
can be found in the relevant section. Remember to prefix function
names with an underscore _ or @ symbol accordingly.

Data sections

There are two types of control sections in which program data can be
held; data and BSS sections (described later). The first of these is for
injtialised data and constants and may be defined with either of the
following directives,

SECTION name,data
CSECT name,data

The Assembler Lattice C 5.5 Page 125

where name is the control section name. The compiler uses two names
for data sections; data for far data (this is accessed with absolute
long addressing) and __MERGED (the program’s near data, accessed as
a base-relative offset from register A4). Examples of instructions used
to access each type of data are

move.w fardata,do
move.w neardata(a4),d1

When defining global data in assembly which is accessed by a C
program you must declare the symbol as an external with an XDEF
directive. The C source must also include an extern declaration of
the correct type. For example, this assembly program defines a global
variable:

CSECT asmdata,data

XDEF _entrynum
_entrynum DC.W 15

END

Note that data is always prefixed with an underscore. This can be
done automatically via the -u option. The corresponding C code to
declare the variable is as follows,

extern unsigned short far entrynum;

The Lattice assembler provides a way of specifying a near data
section, i.e. where all the data lies within a 32K range which is
accessed of f A4. All absolute longword references to symbols declared
within such a control section will automatically be converted to the
address-register-relative addressing mode. This is done through the
CSECT directive:

CSECT __MERGED, data, ,2,2

where the case of the section name is important. In practice, this
gives you a direct equivalent to the - b option of 1c¢, allowing you to
change the arrangement and thus the access mode for any data by
simply placing it in an appropriate control section. Consider the
following code:

SECTION text

move.w globl,do

move.l _otherdata,d1
rts

CSECT __MERGED,1,,2,2

Page 126 Lattice C 5.5 The Assembler

XREF _otherdata
globl DC.W 42

The move instructions will actually be assembled as

move.w global(a4),do0
move.l _otherdata(a4),d1

because the symbols were declared in a near data section.

BSS and offset sections

The second form of data section is the BSS or uninitialised data
section. It behaves in exactly the same way as a regular data section
except that the only directive allowed is the DS directive. By
placing all data which you require to be initialised to zero in the
BSS section you can save considerable file space because no data is
actually written, the size of the section is merely remembered.

The directives to start a BSS section are identical to data sections in
every respect other than the section type. The special section name
of _ MERGED is also recognised for near data in a similar way to that
described previously.

Although visibly very similar to a BSS section, an offset section
describes merely the layout of data and not actually a specific
instance of it. The primary use of the OFFSET directive is to provide
a simple way to declare offsets into data structures. For example,
here is a structure described in C:

struct NameNode {
struct NameNode *next;
struct NameNode *prev;
int uses;
unsigned char name[16];
}

In order to use this structure from an assembly language program, we
must use numerical offsets into the structure. To aid readability and
maintainability we wish to use symbols which refer to each element.
The following description provides just that:

OFFSET
nn_next DS.L 1
nn_prev DS.L 1

IFD SHORTINT
nn_uses DS.W 1

The Assembler Lattice C 5.5 Page 127

ELSE

nn_uses DS.L 1
ENDC
nn_name DS.B 16

sizeof_nn DS.B

This does not generate any code, simply offset values. The symbols
nn_next, nn_prev and nn_uses will be set to the absolute values
of 0, 4 and 8 respectively. The prefix of nn_ has been added to avoid
possible name clashes with other symbols and the dummy entry
sizeof_nn provides a convenient way of referring to the size of the
entire structure.

A conditional block has been used around the integer field because
the length of an integer may vary between word and longword. Using
this method, re-assembling the source with the -w flag for short
integers will automatically generate the correct offsets. Some code
which accesses this structure might look like the following:

lea firstnode(a4),a0
subq.w #1,nn_uses(a0)
move.l nn_next(a0),a0
rts

Function Entry Rules

There are several rules which the compiler enforces to provide a
mechanism for calling functions. These rules must also be followed by
assembly programmers wishing to interface with C.

Regardless of how the function was called, register A7 (the stack
pointer) always points to a return address. Register A4 points into a
program’s near data to allow base-relative addressing as discussed
in the previous section.

Depending upon the style of parameter passing employed by a
particular function, parameters may either be found on the stack, in
registers or a combination of both. Arguments are always passed by
value. An explanation of the three methods of parameter passing
follows.

Page 128 Lattice C 5.5 The Assembler

Standard arguments

This is the default method of parameter passing where all function
arguments are placed on the stack immediately before the return
address. The __stdargs keyword may also be used in a function
prototype or definition to force stack parameters. Note that functions
which take a variable number of parameters always use standard
argument passing.

Register A7 is the stack pointer which points to the 4-byte return
address followed by the arguments in left-to-right order. Arguments
can then be accessed as an offset from the stack pointer. The exact
location of the parameters on the stack depends on the argument
types and the current flags. Considering the default long integer
mode, for the function call:

char ccc;

double ddd;

int iii;

func(ccc,ddd,iii);

The compiler generates code to extend each of the parameters to the

size of an int if it is smaller and then push the arguments onto the
stack in reverse order. For example,

move.l do, - (sp)
movem.1 d2-d3, - (sp)
ext.w d1

ext.l di

move.l dl,-(sp)

This results in a stack organised in the following way:

Location Size Contents

(A7) 4 Return address
4 (A7) 4 Argument ccc
8(A7) 8 Argument ddd
16(A7) 4 Argument iii

By comparison, in default short integer mode (option -w) the
compiler would generate code to push the arguments ccc, ddd, and
iii onto the stack using two bytes, eight bytes and two bytes,
respectively:

move.w do, - (sp)
movem. 1 d2-d3, - (sp)

The Assembler Lattice C 5.5 Page 129

ext.w di

move.w d1,-(sp)
Location Size Contents
(A7) 4 Return address
4(A7) 2 Argument ccc
6 (A7) 8 Argument ddd
14 (A7) 2 Argument iii

Note that due to the widening of char types to the size of an int,
the actual parameter is in the low byte of the int although the full
integer value may be used. Also remember that char may be signed
(the default) or unsigned depending upon compiler options.

If a structure or union is passed by value to a function, then the
contents of the aggregate are copied onto the stack with the last
element pushed first. In effect you receive a complete copy of the
aggregate on the stack followed by a single byte for alignment if
necessary.

Stack space occupied by function arguments may be used by the
function as temporary workspace once the values are no longer
needed.

Register arguments

If a function is explicitly declared __regargs or is called from a
module compiled with the - rr option, some arguments are passed in
registers instead of on the stack. Note that functions which accept a
variable number of parameters always use the previous style of
parameter passing.

With register parameters, the first two pointer arguments will
appear in AO and A1, and the first two integral arguments will be in
D0/D1 and widened to an int if necessary as previously described.

When not generating inline floating point code (-f8) a double pair
will be passed in DO/D1 if both are available, or any combination of
float and integral parameter may be passed in DO/D1. When inline
FPU code is being generated then FPO/FP1 are used to pass real
parameters.

Structures and unions along with any parameters not placed in
registers are passed via the stack in the usual way.

Page 130 Lattice C 5.5 The Assembler

Obviously, the function needs to know whether it is being called
with some arguments in registers or with all arguments on the stack.
The compiler helps make this distinction by placing the character @
in front of function names that are called with register arguments,
replacing the underscore that the compiler normally supplies as a
function prefix.

The _asm keyword

Providing much greater control over register passing, the __asm
keyword allows you to specify exactly which registers parameters
are to be passed in. It can be used in both function definitions and
declarations:

int __asm mymax(register __d0 int,register __d1 int);

int __asm myfun(i,p)
register __d0 int i;
register __ai char *p;

In order for the register specifier sequence to be used, you must have
the __asmkeyword specified on the function. If you do use the __asm
keyword, you must specify a register for each parameter and not re-
use the same register for any two parameters. If you need to pass some
parameters on the stack then you should use the __regargs
keyword instead. Note that currently the compiler is restricted to
returning only basic types like 1ong, double, etc.

In order to permit the most flexibility in register passing, the
compiler does not limit what registers may be passed. However this
can lead to situations in which it is impossible to generate code that
works in the presence of aliased variables. To ensure that such
situations are not encountered, you should avoid utilising registers
that would normally be assigned as register variables and instead
only use the registers:

__do _ao __fpo
_a _at __fp1
_dz2 __fp2

The best advice is to be careful when using this feature and if you are
uncomfortable with it, use the - rr option of 1c1 (or __regargs).

The Assembler Lattice C 5.5 Page 131

Another mechanism which may be used to achieve similar effect to
__asmis the #pragma inline statement described in detail
elsewhere in this manual. When no instruction stream is present, this
will generate a function call which may use any register or the stack
for parameters and may use any register for the return value.

Function exit rules

Function return values are passed back in one or more registers,
depending on the data type declared for the function. The
conventions are:

Return Data Bits Asm Syntax Meaning
char 8 D0.B Low byte of DO
short 16 DO.W Low word of DO
long 32 DO.L All of DO
float 32 DO.L All of DO
double 64 DO.L, D1.L High bits in DO
pointer 32 DO.L All of DO

Note that the above table does not mention int. An assembly
language function should return its value as a short, if in default
short integer mode (-w) or as a 1ong if not in that mode, i.e. DO.W or
DO.L.

If inline floating point is being used (- f8) then register FPO is used
for floating point returns, viz:

Return Data Bits Asm Syntax Meaning
float 96 FPO All of FPO
double 96 FPO Allof FPO

If the function returns a structure or union, it must define a static work
area (i.e. not on the stack) to temporarily hold the returned object.
Then the function must return in DO a pointer to this temporary copy,
and the calling function will immediately move the data to the
appropriate place. This approach implies that functions returning
structures or unions are not re-entrant, although they are serially re-
usable. Such functions can be recursive if designed very carefully
with this in mind.

Page 132 lattice C 5.5 The Assembler

The registers D2 through D7 and A2 through A6 must be saved if they
are used by the function, similarly if a 68881 maths co-processor is
present (only possible on 68020 or 68030 systems) and any of the
floating point registers FP2 through FP7 is used, they must also be
saved.

After setting up the return value, a function exits with the RTS
instruction. Note that the calling function removes the arguments
from the stack.

Calling assembly from C

To illustrate how the rules governing C functions affect an assembly
language routine we have chosen a short example which can be
implemented either as C calling assembly, or assembly callingCC
(the C and assembly object modules must be linked with the startup
code and appropriate libraries). It illustrates many of the points
made previously and can be used as a basis for your own function
calls.

The function returns a hash value calculated by adding together the
ASCII codes of each character in the supplied string up to a specified
length. This value is then divided by the number held in the global
variable maxhash and the remainder (or modulo) is returned.

The calling program simply defines and initialises the variable
maxhash and calls the hash function with a sample string.
Implemented in C, this is as follows:

unsigned short maxhash; /* definition */

/* declaration (prototype) */

unsigned int

hash(unsigned int length, const char *string);

void
main(void)

{

unsigned int result;

maxhash = 101;
result = hash(4,"Banana");

The Assembler Lattice C 5.5 Page 133

The hash function coded in assembly language for default addressing
modes, parameter passing and types:

CSECT text,code control section
XDEF _hash,@hash declarations
XREF _maxhash imported global
_hash ; stdargs entry point
movem. 1 4(sp),d0/a0 get the parameters
@hash ; regargs entry point
move.l d2, - (sp) preserve register
moveq #0,d2
bra.s 1%
2% move.b (a0)+,d1
ext.w di
ext.1 d1
add.1l d1,d2
1$ subq.1l #1,d0
bcc.s 2%
divu _maxhash(a4),d2
clr.w d2 make result 32-bit
swap d2 get remainder
move.l d2,do return value in DO
move.l (sp)+,d2 restore register
rts
END

Any labels available to the C program are prefixed by an underscore
character _ or @ Note that for this function, it is easy to provide an
entry point for register parameter calling by simply bypassing the
code which loads arguments from the stack into registers for use by
the body of the function. If you are using register parameters as
default, you may leave out this code entirely.

The global variable is accessed as a base-relative offset from A4
because we are using default near data. The function must also save
D2 on the stack because it is used as a temporary register and must be
restored.

Compiling the program with default short integers, unsigned
characters and far data does not change the C source although it
causes many changes to the assembly language. The function must
now be changed to:

_hash
move.w 4(sp),do length is now a word

Page 134 Lattice C 5.5 The Assembler

move.l 6(sp),a0 changing stack offsets

@hash
move.l d2,-(sp)
moveq #0,d1 can't sign extend char
moveq #0,d2
bra.s 1$
2% move.b (a0)+,d1
add.1 d1,d2
1$ dbra do, 2% optimised loop
divu _maxhash,d2
swap d2 don't clear high word
move.w d2,do
move.l (sp)+,d2
rts

Note that the parameters now have different offsets on the stack,
characters can no longer be sign extended and global data must be
accessed using absolute long addressing.

It becomes apparent that changes in compiler options such as -b or -
r can dramatically alter the appearance of assembly code. The
Lattice compiler provides some ways of insulating the programmer
from these factors, as illustrated in the next section.

Calling C from assembly

This time, we will write the same program but as a C function called
from assembly language. In order to provide the greatest flexibility
whilst preserving code clarity, we will make use of the CSECT
directive. This is the calling program for register arguments only:

CSECT text,code,,1,2
XDEF @main PC-relative
XREF @hash
@main ; regargs version
move.w #101,maxhash
moveq #4,d0
lea string, a0
jsr @hash returns DO
rts
CSECT __MERGED,data,,2,2

The Assembler lattice C 5.5 Page 135

string DC.B 'Radish’ data access off A4

CSECT __MERGED,bss,,2,2
XDEF maxhash

maxhash DS.W 1
END

Firstly, you may notice that there are no longer underscores before
external labels. This is because the assembler can be called with the
-u option which automatically prefixes an underscore to all
externally visible labels whilst being overridden by the presence of
an @ symbol.

The relocation type and size parameters of the CSECT directive
have been used in order to provide automatic PC and A4 base-
relative addressing modes for the relevant sections. This has the
effect of automatically converting the references to string and
hash to:

lea string(a4),a0
jsr hash(pc)

Simply changing the relocation type allows the assembler to
automatically generate the correct addressing modes. This
corresponds directly to the C compiler options. To override the
default addressing mode you may simply specify another, or for
external symbols, provide an XREF in an appropriate control section.
In our example, moving the reference to @hash outside the PC-
relative section forces absolute long addressing for all references to
that symbol.

Specifying the special section name of _MERGED causes the linker to
include the section contents within the program’s near data segment
allowing base-relative addressing via A4.

Page 136 Lattice C 5.5 The Assembler

Now the hash function written in C:

/* declaration */
extern unsigned short maxhash;

unsigned int __ regargs
hash(unsigned int length, const char *string)

{

unsigned long total = 0;

while (length--)
total += *string++;

return total % maxhash;

}

The __regargs keyword is present to force the compiler to use
register passing for this function. Remember to link with the startup
code and libraries for register parameters since we are using @main
rather than _main.

Asm error messages

1 invalid opcode

An unrecognised opcode name was encountered; this is often caused by
a mis-typed instruction.

2 unrecognized opcode

An operation was encountered which was not recognised as a valid
opcode, synonym or macro.

3 data generation must occur in reloc section

A data generation operation other than DS appeared in an OFFSET
section.

4 invalid operands for this opcode

This error can be caused by invalid addressing modes, data size,
macro parameters etc.

The Assembler Lattice C 5.5 Page 137

5 (W) label ignored <label>

The label before a directive, such as a conditional, is not a recognised
syntax and has been ignored.

6 must occur inside section
A data generation directive was used outside a control section.

7 invalid symbol
A symbol containing an illegal character or characters was declared.
8 public symbol not defined <name>

The program source contained an XDEF directive of a symbol which
was not defined in the program.

9 cannot define absolute public symbol
10 external symbol redefined <name>
11 invalid expression

An OFFSET or IF directive contained an invalid expression. This
error can also be caused by an expression containing a divide or
modulo by zero.

12 missing label

An EQU or SET directive was encountered with no corresponding
label.

13 duplicate label <label>
More than one definition of the same label was encountered.
14 not inside scope of IF directive

An ELSE directive was found which did not lie within a conditional
control block.

15 invalid origin

An assembly directive causing incorrect data alignment or origin was
found.

Page 138 Lattice C 5.5 The Assembler

16 constant size not same as relocation size

A reference to a relative symbol conflicts with the byte size of
relocation information for the current control section.

17 invalid string
A define constant or condition directive contained an invalid string.
18 (W) extraneous data on input line

A valid source line was followed by invalid text, which was ignored.
This can be caused by providing too many parameters for an
assembler directive.

19 duplicate section name

A section name was re-used illegally. This error can also be caused by
an invalid OPSYN directive.

20 ELSE/ENDIF not found
An unterminated IFcc directive was encountered.
21 label offset different in pass 2

A phasing error caused by different code being generated on the first
and second pass.

22 macro argument too large

A macro invocation was encountered with an argument string which
was too long.

23 missing macro definition
The definition of a macro could not be found.

24 illegal macro definition
The syntax of a macro definition was incorrect.

25 duplicate macro definition
A macro was defined more than once.

26 invalid control section parameter

A CSECT directive with invalid parameters was encountered.

The Assembler Lattice C 5.5 Page 139

27 invalid file name

The filename specified for an INCBIN or INCLUDE directive was not
valid.

28 maximum include file nesting exceeded

The INCLUDE directive has nested files too deeply. This is caused by
included files referencing other files to a number of levels.

29 file not found
The file specified by an INCLUDE directive could not be found.

30 invalid repeat count
31 macro substitution line overflow

The substitution of macro arguments caused the line to overflow.
32 immediate data out of range

An arithmetic or logical operation was specified with an out of range
immediate value.

33 invalid effective address for opcode

An attempt is being made to use an addressing mode not supported by
the current instruction.

34 invalid instruction size

An attempt is being made to use an instruction size not supported by
the current instruction.

35 target out of range
A reference to a label which is out of range has been encountered.

36 value out of range for addressing mode
An out of range value was used in an addressing mode.

37 input line buffer overflow

A source line has exceeded the maximum length.

Page 140 Lattice C 5.5 The Assembler

38 long branch to XDEF not supported by linker

The Lattice linkable object file format does not support branches to
external labels using a long-word offset.

39 macro buffer overflow
A macro definition was too long.
40 ENDM/MEXIT not inside macro definition

An ENDM or MEXIT assembly directive was encountered outside a
macro definition.

41 target not in current section
42 (W) END directive assumed

This warning notifies you that there was no explicit END directive in
the source file being assembled.

43 invalid relocation type/size combination

The specified relocation type and relocation data size specified in a
CSECT directive are not available.

44 unknown segment type

The type specifier for a SECTION or CSECT directive was other than
CODE, DATA or BSS.

45 numeric value out of range
A value in an expression overflowed the allowable range.
46 opcode generated for <processor>

An opcode only permitted for the indicated processors was generated.

47 unrecognized expression
48 syntax error
49 invalid operation for relocatable data
50 undefined symbol
51 invalid opcode parameter reference
52 location counter not defined

The Assembler Lattice C 5.5 Page 141

Page 142 Lattice C 5.5 The Assembler

DERCS
The Resource
Decompiler

Introduction

DERCS is utility for turning a resource file created using WERCS into
a set of initialised data structures (OBJECT, BITBLK, ICONBLK etc.)
which may subsequently be compiled to give a resource file
embedded in a program.

This is advantageous when creating desk accessories (since desk
accessories should not call rsrc_load ()) and essential for writing
control panel extensions (CPXs).

DERCS supports generation of both C and assembly langauge.
Unfortunately the initialisation support available from other
languages is not sufficiently rich to allow the representation of
general resource files and so if a language of anything other than C is
selected DERCS will generate an assembly language file.

Running DERCS

DERCS is run using a command line of the form:
dercs [-options] filename [filename]

The options are denoted by a - sign then a character before the
filename. The options recognised are:

-a don’t generate ANSI style function definitions. Normally
DERCS generates any functions which it requires using the
ANSI prototype syntax, viz:

void rsrc_init(void);

The Resource Decompiler lattice C 5.5 Page 143

specifying this option causes it to use the old K&R syntax for
function definitions. Obviously this flag has no effect for
assembly language.

-Cx specify casing is to be peformed according to x rather than
the value set in the .HRD file; the values used for x are
identical to those used by WERCS:

0 mixed
1 upper
2 lower

-dx specify x as name of the section data is to be placed in. This
option allows you to configure the name of the section which
DERCS generates when outputting the data section
information for assembly language. If none is specified it
defaults to DATA. Note that Lattice C ASM users may like to
change this to °__MERGED, data’. Obviously this flag has no
effect for C.

-f Suppress output of tree fixup code. Normally DERCS
generates a function which you may call which ‘fixes up’ the
resource trees in your file (i.e. the conversion from character
to pixel co-ordinates). Specifying this options suppresses
this behaviour. You can use this option if you want to fix up
trees yourself, or if you are using more than one resource file.

-h write only a header file. This option writes only a header
file in the desired langauge. Note that with careful use of
the -1 option this allows the generation of resource file
constants for more than one language (e.g. in a mixed
assembler/C project).

-1x use language specified by language number x; the values used
for x are identical to those used by WERCS:

1 C

2 Pascal

4 Modula-2
8 FORTRAN
16 Assembler
32 BASIC

Note that for DERCS values 2 through 32 all generate
assembly language.

Page 144 Lattice C 5.5 The Resource Decompiler

-px use X as the prefix for automatically generated names. When
DERCS is generating some of the more complex AES object
structures it has to generate its own names for items which
are unnamed in the resource file. If you are merging two or
more DERCS’d resource files then this option can be used to
ensure that no naming clashes occur.

-V suppress output of section directives or include
directives. This means that DERCS will not output any of the
‘padding’ which it normally generates.

-xic generate pre-fixed resource file. This option is designed for
building CPXs and fixes up all characters based on an 8x16
character. If ic is supplied, this should be the name of a free
image in the resource file which is to be extracted into a .ICN
file ready tobe passed to CPREFIX.

The file specified first on the command line is then decompiled into
either a C source file (if C was selected as the language in WERCS),
or into assembler otherwise.

An optional second file name may be supplied to indicate a name for
the output file.

Programming with DERCS

Programming using a resource file passed through DERCS is not
dissimilar to using an ordinary resource file, the main difference is
that rsrc_gaddr () is never used. Instead, DERCS builds all of the
necessary resource information into a C file with the extension .C.
This file also contains a special resource intialisation routine
rsrc_init() (this routine actually performs the normal character
to pixel coordinate transformations made by rsrc_load()).

Consider the following fragment written without DERCS:

#include <aes.h>
#include “resource.h”

int main(void)
OBJECT *myobj ;

appl_init();
rsrc_load(“resource.rsc”);

The Resource Decompiler Lattice C 5.5 Page 145

rsrc_gaddr (TREE, MYOBJ. &myobj);
objc_draw(myobj, ROOT, ..);

rsrc_free();
appl_exit();
}

Now assume that the command:
dercs resource.rsc

had been issued, generating the files resource.c and resource.h,
then the same program could be written with DERCS:

#include <aes.h>
#include “resource.h”
#include “resource.c”

int main(void)

{
appl_init();
rsrc_init();
objc_draw(MYOBJ, ROOT, ..);

;ppl_exit(|H
}

Note that the rsrc_load() call has been replaced by
rsrc_init (), and thatthe rsrc_gaddr() and rsrc_free()
have disappeared altogether!

The object MYOBJ (which was what you named your object in
resource.rsc) which is normally declared as a #define constant by
WERCS is replaced by an OBJECT definition by DERCS, hence the
address of the object (which rsrc_gaddr () would have obtained)
is found simply by naming the object.

Page 146 Lattice C 5.5 The Resource Decompiler

CPXBUILD
CPX .HDR Utility

Introduction

CPXBUILD is used to build the .HDR files used as arguments to the
linker PREFIX option which specify the parameters for a CPX.

Running CPXBUILD

CPXBUILD is run using a command line of the form:

cpxbuild [-options] filename

The options are denoted by a - sign then a character before the
filename. The options recognised are:

-b set boot-init flag; the boot initialisation flag of the CPX is
set indicating that the CPX should be called during
XControl’s initialisation.

-ccol set title colour; the colour of the title is set to col. The colour
numbers used are those used by the AES.

-did set CPX-id; the CPX id is set to id.If id has the special
format 'cpid’ then the specifed alphanumeric cpid is used
as the long-word CPX id.

-fval set flags absolutely; the header flags are set to the absolute
value val; this option is provided to support any future
additions which Atari may make to XControl during the
lifetime of a CPXBUILD release.

-iicn specify an icon file; icn specifies a .ICN file which is to be
used as the CPX’s icon. The .ICN file is generated using
DERCS’ -xic option.

The CPX .HDR Utility Lattice C 5.5 Page 147

-ntxt set icon text; the descriptive text attached to the icon is set
to txt.

-pcol seticon colour; set icon colour; the colour of the title is set to
col. The colour numbers used are those used by the AES.

-r set resident flag; the resident flag of the CPX is set
indicating that the CPX should be made resident at the time
of XControl’s startup.

-S set set-only flag; the set-only flag for the CPX is set; this
indicates that the CPX performs all its work at boot time
and need never be called again.

-ttxt set title text; the title text for the CPX is set to txt.

-V force CPXBUILD to print sign-on and version numbers.
Normally CPXBUILD runs silently; this option causes more
information to be generated.

-vvsn set CPX version; the CPX version number is set to vsn.
Typically this will have the format major.minor.

The filename given on the CPXBUILD command line indicates the
name of the .HDR file which should be built. Note that the .HDR is
not automatically supplied; you must specifiy it if required.

Page 148 Lattice C 5.5 The CPX .HDR Utility

Appendix A
Project file syntax

A project file is the file used by the integrated compiler to control
the management of multi-module programs. These project (.PRJ) files
are in an ASCII format and are compatible with those used by the
German Pure-C™ and PKS-Edit™. The syntax may be described by
the following grammar:

project:
(* | filename) (options } = { module [(dependents) 1)

options:
.L [linker-options]
.C [compiler-options]
.S [assembler-options]
«A [librarian-options]

module:
c-source-file [compiler-options]
assembler-source-file [assembler-options]
linker-file | with-file | project-file

c-source-file:
* | filename | filename.GC

assembler-source-file:
filename . S

linker-file:
filename .0 | filename.LIB

with-file:
filename . LNK

project-file:
filename . PRJ

dependents:
filename [, dependents]

Project file syntax Lattice C 5.5 Page 149

	addendum1000_Page_01
	addendum1000_Page_02_1L
	addendum1000_Page_02_2R
	addendum1000_Page_03_1L
	addendum1000_Page_03_2R
	addendum1000_Page_04_1L
	addendum1000_Page_04_2R
	addendum1000_Page_05_1L
	addendum1000_Page_05_2R
	addendum1000_Page_06_1L
	addendum1000_Page_06_2R
	addendum1000_Page_07_1L
	addendum1000_Page_07_2R
	addendum1000_Page_08_1L
	addendum1000_Page_08_2R
	addendum1000_Page_09_1L
	addendum1000_Page_09_2R
	addendum1000_Page_10_1L
	addendum1000_Page_10_2R
	addendum1000_Page_11_1L
	addendum1000_Page_11_2R
	addendum1000_Page_12_1L
	addendum1000_Page_12_2R
	addendum1000_Page_13_1L
	addendum1000_Page_13_2R
	addendum1000_Page_14_1L
	addendum1000_Page_14_2R
	addendum1000_Page_15_1L
	addendum1000_Page_15_2R
	addendum1000_Page_16_1L
	addendum1000_Page_16_2R
	addendum1000_Page_17_1L
	addendum1000_Page_17_2R
	addendum1000_Page_18_1L
	addendum1000_Page_18_2R
	addendum1000_Page_19_1L
	addendum1000_Page_19_2R
	addendum1000_Page_20_1L
	addendum1000_Page_20_2R
	addendum1000_Page_21_1L
	addendum1000_Page_21_2R
	addendum1000_Page_22_1L
	addendum1000_Page_22_2R
	addendum1000_Page_23_1L
	addendum1000_Page_23_2R
	addendum1000_Page_24_1L
	addendum1000_Page_24_2R
	addendum1000_Page_25_1L
	addendum1000_Page_25_2R
	addendum1000_Page_26_1L
	addendum1000_Page_26_2R
	addendum1000_Page_27_1L
	addendum1000_Page_27_2R
	addendum1000_Page_28_1L
	addendum1000_Page_28_2R
	addendum1000_Page_29_1L
	addendum1000_Page_29_2R
	addendum1000_Page_30_1L
	addendum1000_Page_30_2R
	addendum1000_Page_31_1L
	addendum1000_Page_31_2R
	addendum1000_Page_32_1L
	addendum1000_Page_32_2R
	addendum1000_Page_33_1L
	addendum1000_Page_33_2R
	addendum1000_Page_34_1L
	addendum1000_Page_34_2R
	addendum1000_Page_35_1L
	addendum1000_Page_35_2R
	addendum1001_Page_01_1L
	addendum1001_Page_01_2R
	addendum1001_Page_02_1L
	addendum1001_Page_02_2R
	addendum1001_Page_03_1L
	addendum1001_Page_03_2R
	addendum1001_Page_04_1L
	addendum1001_Page_04_2R
	addendum1001_Page_05_1L
	addendum1001_Page_05_2R
	addendum1001_Page_06_1L
	addendum1001_Page_06_2R
	addendum1001_Page_07_1L
	addendum1001_Page_07_2R
	addendum1001_Page_08_1L
	addendum1001_Page_08_2R
	addendum1001_Page_09_1L
	addendum1001_Page_09_2R
	addendum1001_Page_10_1L
	addendum1001_Page_10_2R
	addendum1001_Page_11_1L
	addendum1001_Page_11_2R
	addendum1001_Page_12_1L
	addendum1001_Page_12_2R
	addendum1001_Page_13_1L
	addendum1001_Page_13_2R
	addendum1001_Page_14_1L
	addendum1001_Page_14_2R
	addendum1001_Page_15_1L
	addendum1001_Page_15_2R
	addendum1001_Page_16_1L
	addendum1001_Page_16_2R
	addendum1001_Page_17_1L
	addendum1001_Page_17_2R
	addendum1001_Page_18_1L
	addendum1001_Page_18_2R
	addendum1001_Page_19_1L
	addendum1001_Page_19_2R
	addendum1001_Page_20_1L
	addendum1001_Page_20_2R
	addendum1001_Page_21_1L
	addendum1001_Page_21_2R
	addendum1001_Page_22_1L
	addendum1001_Page_22_2R
	addendum1001_Page_23_1L
	addendum1001_Page_23_2R
	addendum1001_Page_24_1L
	addendum1001_Page_24_2R
	addendum1001_Page_25_1L
	addendum1001_Page_25_2R
	addendum1001_Page_26_1L
	addendum1001_Page_26_2R
	addendum1001_Page_27_1L
	addendum1001_Page_27_2R
	addendum1001_Page_28_1L
	addendum1001_Page_28_2R
	addendum1001_Page_29_1L
	addendum1001_Page_29_2R
	addendum1001_Page_30_1L
	addendum1001_Page_30_2R
	addendum1001_Page_31_1L
	addendum1001_Page_31_2R
	addendum1001_Page_32_1L
	addendum1001_Page_32_2R
	addendum1001_Page_33_1L
	addendum1001_Page_33_2R
	addendum1001_Page_34_1L
	addendum1001_Page_34_2R
	addendum1001_Page_35_1L
	addendum1001_Page_35_2R
	addendum1001_Page_36_1L
	addendum1001_Page_36_2R
	addendum1001_Page_37_1L
	addendum1001_Page_37_2R
	addendum1001_Page_38_1L
	addendum1001_Page_38_2R
	addendum1001_Page_39_1L
	addendum1001_Page_39_2R
	addendum1001_Page_40_1L
	addendum1001_Page_40_2R
	addendum1001_Page_41_1L
	addendum1001_Page_41_2R
	addendum1001_Page_42_1L
	addendum1001_Page_42_2R
	addendum1001_Page_43_1L
	addendum1001_Page_43_2R
	addendum1001_Page_44_1L
	addendum1001_Page_44_2R
	addendum1001_Page_45_1L
	addendum1001_Page_45_2R
	addendum1001_Page_46_1L
	addendum1001_Page_46_2R
	addendum1001_Page_47_1L
	addendum1001_Page_47_2R
	addendum1001_Page_48_1L
	addendum1001_Page_48_2R
	addendum1001_Page_49_1L
	addendum1001_Page_49_2R

