
•-.' •• 4*

BQfl IP

D3| 1

s2

rr^l

•X

™ 1

PACK

S.T.O.S.
THE GAME CREATOR

ah IB

Jhezc:

AATARI

w
^
_

^
^
„

^
_

_
_

^
^

w
w

-
o

The Game Creator
© MANDARIN/JAWX 1988

STOS Basic was developed by:

Frangois Lionet STOS Programmer
Constantin Sotiropoulos STOS Programmer
Frederic Pinlet Software Development
Jacques Fleurance Head of Marketing

'SOFTWARE
UK design and marketing:

Chris Payne Marketing Manager
Stephen Hill Manual Author
Alan McLachlan Manual Editor

Richard Vanner Project Coordinator
David McLachlan Programming/Graphics

Ifyou have any difficulty with this product, please write to:

Mandarin Software

Europa House, Adlington Park
Adlington, Macclesfield SK10 4NP

No material may be reproduced in whole or in part without written permission. While every care has
been taken, the publishers cannot be held legally responsible for any errors or omissions in the
manual or the software.

First edition: August 1988. Revised: September 1988.

ISBN 0 948104 99 6

Read this first

The STOS Master disc v
STOS was originally released as three single-sided discs. The version that comes with
your Atari ST fits onto just one double-sided disc. Therefore we have had to leave off
some files for this special package. (

The missing files are as follows:

Bullet Train

The STOS Assembler

ANIMALS2.MBK

F0NTS3.MBK

Levels 6-20 of ORBIT

Horizontal scrolling game
Line by line assembler
Sprite file
Character font file

Otherbrickdesigns

(

(

(

(

Please ignore references to these files inthis manual. Also ignore the procedure for un-
archiving an Accessory disc on page 242 of this manual.

If you would like to obtain a disc containing these files, there are two ways of getting
them:

•Send a cheque, postal order or International money order for £2 (UK),£2.25 (Europe)
or£2.50 (Overseas Airmail)to The STOS Public Domain Library, c/o Sandra Sharkey,
78 Merton Road, Highfield, Wigan WN3 6AT, England. (There are more than 50 STOS (
PD discs available - please ask for a list).

• Join the STOS User Club, asking for the STOS Extras Disc free of charge instead of
the STOS Word disc with your subscription

What happens if I corrupt my disc?
If you receive a bad copy of the STOS Master disc, please return it to Atari UKfor a re
placement. Ifon the other hand you have corrupted it by mistake, then return the disc
to Mandarin with a cheque or postal order for £2 made payable to Mandarin Software
and we will send you a new copy.

Additional information
You are using the very latest version of STOS Basic: Version 2.5 which makes STOS
compatible with the Atari STE. The precision of the floating point routine is now seven
decimal places, not 16 as itsays on page 36. This new single-precision routine is many
times faster - SIN and COS are 30 times faster than before.

(

(

i

I

(

Contents

Introduction

Making a back-up 1
Run-time programs 2
Using this manual 2

Guided tour

The sprites 3
Moving a sprite 4
Animation 4
Manipulating the screen 6
General graphics 8
The mouse 9
The joystick 10
Sound and music 11
Sound effects 12
Displaying text on the screen -windows, fonts, icons 12
Pull-down menus 14

The Editor

The Editor window 17
The function keys 18
The control keys 19
Customising the editor 21
Loading/saving Basic programs 22
Running a program 24
Entering a STOS Basic program 25
Debugging a program 29
Multiple programs 30
Splitting programs in the Editor 32
System commands 33
Naming conventions for variables 35
Types of variables 35
Arithmetic operations 38
String operations 39
Common string functions 40
Array operations 43
Memory banks 44
Types of memory banks 44
Copyingbanks 47
Deleting banks 47
Bank parameter functions 48
Saving and loading 48

- Run-only programs 50
- Basic programs 51

-Variables 53

- Images 53
- Machine code programs 54

Loading an accessory 55
Calling an accessory 55
Creating an accessory 57

Sprite commands

The Sprite Definer 59
Creating an Animation sequence 66
Grabbing sprites from the disc 68
The multipl-mode sprite definer 78
The SPRITE command 81
Moving a sprite 82
Combining horizontal and vertical movements 84
Animation 87

Using the mouse 89
Reading the joystick 92
Detecting collisions 94

-with sprites 94
-with rectangular blocks 96
- irregular shapes 97

Exceeding the 15 sprite limit 97
Sprite priority 99
The background 100
Miscellaneous sprite commands 101

Music and sound

Voices and tones 103

The MUSIC command 105

The Music definer 108

The music instructions 109

Envelopes and tremolos 111
The Envelope editor 111
Creating a piece of music 114
Predefined sound effects 117

Defining you own effects 117

Graphics functions
Clearing the screen 121
Colours 121

Drawing lines 123
Fill shapes 127
Filled types 130

(

c

(

(

(

(

(

Special effects 132
The writing modes 133
Polymarkers 134
Multi-mode graphics 136

The Screen

Multiple screens 139
Reserving a screen 141
Loading a screen 142
The screen as a string 148
Scrolling the screen 149
Screen synchronisation 151
Compacting the screen 153
Special screen effects 154

8 Text and windows

Text attributes 157

Cursor functions 159

Conversion functions 160
Text input/output 163
Windows 164

Character sets 169

- saving space 170
-using a set from a window 171
-changing the default set 172

Icons 173
-the icon definer 173

Menu commands

Creating a menu 175
Making a selection 176
Icons 180

Troubleshooting 181

10 Other commands

Control structures 183
The keyboard 191
Input/output 194
Accessing the disc 198

-sequential 198
-random 199

The printer 205
Directories 206

Trigonometric functions 209
Mathematical functions 211

Machine level instructions 219

Miscellaneous instructions 225

11 Writing a game

Planning 229
Programming 229
Adding graphics 231
Techniques 231

(

c

(

(

Appendices (

Appendix A Error messages and codes 233
Appendix B Runtime creation 239 f
Appendix C The STOS Basic floppy discs 241

-STOS Basic system disc 241
-Accessories disc 242

-Games disc 244 (
Appendix D Using Assembly language from STOS Basic 247

- CALL, AREG, DREG and TRAP instructions 247
- Assembly language interface 249 f
-TRAP #4 249 I

Appendix E The STOS Basic traps 257
- TRAP #3 (Window functions) 257
- TRAP #5 (Sprite functions) 259 (
- TRAP #6 (Floating point functions) 263
- TRAP #7 (Music generator) 265
- The PSG function 266 ,

Appendix F Structure of memory banks 267 (
-sprite bank 267
-icon bank 268

- music bank 268 /

-screen bank 270

(

(

(

(

CONGRATULATIONS on buying STOS-The Game Creator. This exciting package
hits a new high in software standards, giving you the ability to design and create arcade-
style games faster and easier than ever before.

The package is based around STOS Basic, an incredibly powerful new language
with a staggering 340 commands - many of which have more than one use.

A feature that makes STOS Basic stand out is that it is not a Gem-based language.
This allows it to run much faster than any other Basic on the ST and also takes away
many of the restraints caused by the use of Gem, such as only being able to use one
resolution.

STOS Basic replaces these Gem functions with ones of its own. There are powerful
windowing facilities and easy-to-use file selectors - and drop down menus are simple
to create.

Supplied with the STOS Basic disc are two other discs containing the accessories
and games. The accessories are what makes STOS really come to life, including
specially-designed programs which work alongside your own program to help speed
up development. The list of accessories include a Sprite Definer, Music Editor,
Character Editor, Icon Editor and many more.

The games disc contains three written in STOS Basic - Bullet Train incorporating
fast horizontal-scrolling, Zoltar, a Galaxian-style shoot-'em-up which was written in just
three days, and Orbit, a feature-packed bat-and-ball game.

As you can see, STOS is not just another Basic - it's a full-blown developers' kit
which can be used by people of any age and experience. STOS also has an exciting
future and there are plans for a number of extension discs containing new commands.

Whatever your knowledge of progamming, STOS has something to offer you. Ifyou
have never written a game before, the prospect of creating your first game may be quite
daunting. But do bear in mind that many of the all-time classics like Confuzion, Zenji,
Tetris and Split Personalities - to name but a few are - uncomplicated programs with
one or two features which have entertained computer owners in their thousands. The
strength of your game will mainly be based on your ideas, and not just your program
ming skill.

Making a back-up

The STOS discs are not protected, which means that you can make back- ups or upload
the discs on to a hard drive ifyou have one. But please don't give copies to other people.
STOS took two years of intense programming to reach its current state, so the higher
the sales, the greater will be our incentive to develop new extension discs and
accessory programs.

The three discs supplied are your STOS master discs and must be looked after. You
should copy each one on to a new, formatted disc and place the original master discs
safely out of harm's way. So if your discs get damaged, corrupted or even have files
deleted from them, you can go back to the master disc to produce new working copies.

The procedure for making back-ups is as follows:

1 Boot up the Gem Desktop.

2 Place a blank disc into drive A and format it using the menu command.

3 Now place the master disc into drive A and drag the drive A icon on to the drive B
icon.

4 Follow the instructions displayed in the dialogue boxes.
5 Repeat actions 2 to 4 for the other two discs. Refer to your Atari ST manuals ifyou

have trouble copying the discs.
6 Once the copy is complete, store the master discs in a safe place.

Run-time programs

When you have written a program in STOS Basic you may wish to get it published
as a commercial game. This is no problem in STOS - all you have to do is
save your program with a .PRG extension to create a copy which can be booted from
the Gem Desktop, but please ensure that you mention that you have used STOS on the (
loading screen. For more technical information about this subject see Chapter 3 and
Appendix B.

We at Mandarin Software are very keen to publish games written using STOS.
Address your correspondence for the attention of the Software Manager, Mandarin (
Software, Adlington Park, Adlington, Macclesfield SK10 4NP. Ifyou decide to protect
your game may we suggest that you allow other STOS users to examine and modify
your sprite and music banks? This way your game will be of greater interest to STOS
owners and could ensure higher sales. (

We want to build up a vast database of STOS users so that you can benefit from
the input of people all around the country. To help us do this we would urge you to fill
in the registration form enclosed in the STOS packaging so we can find out what users
want. You also stand towin a prize in our monthly draw. (

Using this manual

We have dedicated most of the manual around the special functions offered by STOS
Basic. Ifyou have no prior knowledge of Basic, you will need to purchase an introductory
text such as Alcock's Illustrating Basic (Cambridge University Press). In our opinion,
this book gives you an excellent insight into programming Basic. We still feel you can
easily pick up Basic from this manual, but various techniques would not seem apparent
if you learnt it this way.

The STOS manual is set out in a tutorial fashion, giving you many examples of how
to use each instruction. Programs have been included to emphasise how certain
instructions can be used to their full effect. There is aiso a comprehensive appendix
which will explain various technical information to experienced programmers.

When you enter the example programs listed in the manual you must remember that
most of them are designed to work in the low resolution mode on colour monitors, as
most commercial games use this mode. However STOS Basic can operate in all three
modes, which means that owners with monochrome monitors can use the language.

One last point. Try to get into the habit of booting STOS directly from disc rather than
from Gem. This will free 32k of extra memory for you to use in your programs.

(

c

(

(

(

(

(

(

(

(

c

(

(

<

I

(

(

(

(

(

(

(

<

(

I

I

I

STOS Basic has to be one of the most powerful versions of Basic which has ever
been written for the Atari ST. it includes a wide range of facilities for sprite
manipulation, screen flipping, and the generation of high quality music. It is also
easily expandable, so you won't be left behind by any future developments.

The quality of STOS Basic as a development system has to be determined
by the quality of the programs which can be produced with it. To provide an
example of what you can achieve with this package, we have supplied you with
three games written entirely using STOS Basic. These can be found on the games
disc, and can be listed and amended like any other Basic program. Although
STOS Basic may seem very games oriented, there are a number of other possible
applications - such as educational software - for which it would also be ideally
suited.

In this chapter we'll be giving you a guided tour of just some of STOS Basic's
exceptional features. But first, a plea from the heart. Ifyou have not already made
a backup of this package, jump immediately to the section on MAKING A
BACKUP.Although we at Mandarin will be happy to replace your disc for a nominal
handling charge if something goes wrong, you will be deprived of STOS Basic
while it's being re-duplicated.

The sprites
We'll start our tour with a brief look at the STOS Basic sprite commands. These
allow you to move and animate a sprite using simple, easy-to-understand Basic
instructions. There is no poking around in the ST's memory, and you don't need
to know anything about the ST's internal workings in order to use them.

Furthermore, STOS Basic comes complete with an excellent Sprite Editor
which can be installedpermanently inyourST's memory, and then entered at any
time by pressing just two keys. This enables you to design, test, and modify your
sprites in one smooth operation.

Let's have a look at the sprite commands in action. Before we can use these
instructions, we will first need to load some example sprites from the Accessory
disc. Place the disc into your drive and type in the lines:

modeO

load "animalsl.mbk"

We can now display one of these sprites on the screen using the SPRITE
command:

sprite 1,100,100,1

Similarly we can examine the rest of the sprites by typing in the following and
pressing any key to view each sprite in turn:

for A=1 to 50:sprite 1,100,100,A:waitkey:next A

Up to 15 of these sprites can be placed on the screen at any one time. As an
example, enter the line:

for A=1 to 15:sprite A,1,A*10,A:wait key:next A

Moving a sprite
Now for some movement!

We first draw sprite number 1 on the screen with:

sprite 1,10,100,1

This displays a sprite looking rather like an octopus. This was generated in a
matter of minutes using the STOS Basic Sprite Editor.

Let's add a little movement to this sprite:

move xl,"0(1,1,0)L320"
move on

The octopus is now moving smoothlyacross the screen in the Xdirection. Since
these sprite movements are performed using interrupts, they are therefore able
to execute completely independently ofyour Basic program. We can prove this by
typing in the following line:

for A=1 to 10000:P=P+1:next A:print P

As you can see, the octopus continued onwards, at the same time STOS Basic
was busy executing the FOR...NEXT loop.

So far, we have only moved our sprite in a simple straight line.We can however,
easily specify a whole list of these movements in exactly the same way.

move off: sprite 1,0,100,1
move x 1,"(1,3,100)(1,-3,100)L"
move on

When you type in the above commands, the octopus nowwalks slowly back and
forth along the screen.

The last few examples were restricted to horizontal motions. But there's also
a separate MOVE Y instruction to move the sprite up and down as well. To see
how this works, enter the lines:

move y 1,"(1,3.30)(1,-3,30)L"
move on

Finally, we can combine any sequence of horizontal and vertical motions likeso:

move off: sprite 1,0,0,2
move x 1,"(1,2.1501(1,-10,30)L"
move y 1,"(3,1,100)(3,-1,100)L"
move on

(

(

(

(

(

(

(

(

(

(

(

(

This technique can be used to rush all15sprites across the screen inany direction. ,
Look at the game Zoltar for an impressive demonstration of the speed of these {
commands.

Animation ,

Each of these sprites can be animated automatically with a special ANIM

instruction. ANIM displays a list of sprite images on the screen, one after another.
As this feature is performed using interrupts, it can be combined with MOVE to
produce some very effective animation.

Type in the following small example:

sprite 1,100,100,1
box 100,100to 132,132
anim 1,"(1.10)(2,10)(3,10)(4,10)L"
anim on

The octopus is now waving its arms about frantically. This is probably because it's
trapped in the box. Let's put it out of its misery and release it, using the MOVE
commands like so:

move x 1,"(1,4,75)(1,-4,75)L"
move y 1,"(1,4,24)(1,-4,24)L"
move on

Freedom at last! Our octopus has escaped.
It is important to realise that, like all the sprite commands, ANIM causes no

delay to your current program. For a further example of animation, see the
program on page 7.

The STOS Basic sprite commands

SPRITE Draw a sprite
MOVE Start/stop movements
MOVEX Move sprites left and right using interrupts
MOVEY Move sprites up and down
ANIM Animate a sprite
PUT SPRITE Copy a sprite to the screen
GET SPRITE Make a rectangular section of the screen into

a sprite
UPDATE Update sprites
AUTOBACK Switch off link between sprite background

and real screen

X SPRITE Get X coordinate of a sprite
Y SPRITE Get Y coordinate of a sprite
MOVON Check if sprite currently in motion
COLLIDE Test of sprite collisions
LIMIT SPRITE Limit sprite movements to only part of a

screen

ZONE Test if sprite enters a rectangular section on
the screen

SET ZONE Define one of 128 rectangular zones
RESET ZONE Clear current zones
PRIORITY Change sprite priority
REDRAW Redraw sprite
DETECT Detect pixel under sprite
SYNCHRO Synchronise sprite with scrolling background

A complete description of these instructions can be found in Chapter 4

Manipulating the screen
Ifyou thought the sprite commands were impressive, wait until you see the screen
manipulation routines! STOS Basic has the ability to scroll, move and copy parts
of the screen. Put the system disc into the drive and type:

load "\stos\pic.pi1"

This loads the title picture from the STOS Basic folder into the current screen. One
minor snag with these screens is that they each take up over 32k of space on the
disc. Fortunately STOS Basic includes a powerful Screen Compactor accessory
which can cram any screen down to as littleas 7k. An example screen in this format
has been placed on the accessory disc in the file BACKGRD.MBK. Let's load it into
the ST's memory:

load "backgrnd.mbk"

(

(

(

(

The above command loaded the screen into one of STOS Basics 16 memory (
banks (See Chapter 3). We can now unpack it using the UNPACK command like
this:

unpack 11,physic f

(
The effect of the above instruction was to expand the picture into the current
screen. If you now move the mouse, the picture will be steadily erased. This is
because STOS uses a separate background screen for the sprites. Also note that
the image seems to be flashing. When STOS Basic is first loaded, colour number
2 is initially started flashing. See FLASH for more details. You can turn off this
feature using:

flash off

Let's see what happens when we copy the picture into the sprite background
instead.

flash off

unpack 11,back

(

(

(
Ifyou move the mouse around on the screen as before, the picture will now be
progressively drawn.

We can incorporate these instructions into a small STOS Basic program. (^

Example:

20 appear back,rnd(78)+1
30 wait keyigoto 10

In this example we've introduced an interesting new instruction called APPEAR.
This command fades between two screens using one of 79 possible effects.

Here's another example, using the FADE instruction:

10 mode 0

20 fade 3

10 modeO: flash off:unpack 11,back (

(

(

30 reserve as screen 15

40 load "\stos\pic.pi1",15
50 fade 25 to 15

60 appear 15

Now for something rather different. One of the most impressive features of STOS
Basic is its ability to change the size of any image displayed on the screen. To that
end it provides you with the two instructions REDUCE and ZOOM.

We can demonstrate the REDUCE command by adding the following line to
the program above.

70 reduce physic to 200,50,280,100

This reduced the entire screen to a quarter of its normalsize and copied it to the
rectangle starting at 200,50.

As you might expect, the ZOOM command has the opposite effect, and
magnifies a section of the screen. We can see the effect of one of these
instructions by entering the lines:

mode 0:locate 0,0 : print "STOS Basic"
zoom physic,0,32,88,40to 0,40,319,198

This prints the string STOS Basic, and then expands to fill the screen.
An equally important capability of STOS Basic is to enable you to copy large

sections of the screen from one place to another at high speed. This can be
achieved using a powerful SCREEN COPY function. We can incorporate an
example of this instruction into our program simply by inserting a new line at 80:

80 screen copy physic.200,50,280,100 to physic.100,50

This places a copy of the miniature screen generated with REDUCE at the
coordinates 100,50

Finally, a few words about the screen scrolling commands. These allow you
to scrollany part ofthe screen either verticallyor horizontally. We can demonstrate
these instructions by inserting the lines below:

80 def scroll 1,50,90 to 250,110,1,0
90 def scroll 2,140,10 to 160.190,0.1
100 scroll 1: scroll 2: goto 100

Now for an example which combines sprites and screens into a single program.
Put the accessory disc into the drive and type:

load "backgrnd.mbk",11
load"animals1.mbk":rem Loads the sprites

10 mode 0: flash off

20 unpack ll.back: appear back,30
30 reduce physic to 200,50,280,100
40 sprite 1,130,80,80
50 move x 1,"320(2,-6,0)L"
60 anim 1."(5.5)(6.5)(7,5>(8,5)(9,5)(10,5)L"
70 move on : anim on :wait key

The screen manipulation commands

APPEAR Fade between two screens using a pattern
FADE Fade the present colour palette in single

steps to a new setting
BACK Return the address of the sprite background
PHYSIC Return the address of the physical screen
LOGIC Return the address of the logical screen
DEFAULT Return default addresses

REDUCE Reduce the screen in size

ZOOM Expand the screen in size
SCREEN COPY Copy a section of the screen from place to

place
SCREEN SWAP Swap physical screen with logical screen
SCREENS Assign part or all of a screen to a string
DEF SCROLL Define a scrolling zone
SCROLL Scroll part of the screen
GET PALETTE Load the colours of a screen in memory into

physical screen
CLS Clear part or all of screen
WAIT VBL Wait for next vertical blank

UNPACK Unpack a screen in compressed format
PACK Compact a screen to save memory

See Chapter 7 for a full explanation of the screen instructions.

General graphics

STOS Basic supports a number of the more normal graphics operations such as
CIRCLE, BOX, and POLYGON. One major difference between STOS and other
Basics however, is its ability to change the graphics resolution at any time during
a program, using just a single STOS Basic instruction.

Example:

10 mode 0:print "Low resolution"
20 print "Press a key to change graphics modes"
30 wait key:mode 1
40 print "Medium resolution"

Note that for obvious reasons the MODE command has no effect whatsoever on
monochrome only systems.

Another interesting command is SHIFT which rotates the screen pallete
through every possible colour combination. To demonstrate the effect of the
SHIFT instruction type:

shift 100

As you can see, the screen colours are continuoslychanged every fewseconds.
We can turn SHIFT off with a simple:

shift off

c

(

(

(

<

I

(

(

(

<

I

I

(
We've saved the best till last. This is the FLASH instruction which allows you to
animate any colour through a sequence of up to 16 different colour changes. Since
FLASH uses interrupts, it willoccur simultaneously with the rest of your program
without affecting it in the slightest. Let's animate colour number 0 with the line:

flash 1,"<000,5)(333,5)(666.5)(777.5)(555,5K222,5)"

This produces a startling set of multicoloured characters.

The GRAPHICS instructions

POLYMARK Print marker

ARC Draw a circular arc

EARC Draw an elliptical arc
PLOT Plot a point
POINT Determine the colour of a point
DRAW Draw a straight line
BOX Draw a hollow box

RBOX Draw rounded hollow box

POLYLINE Draw a hollow polygon
PIE Draw a pie chart
EPIE Draw an elliptical pie chart
CIRCLE Draw a filled circle

ELLIPSE Draw a filled ellipse
BAR Draw a filled bar

RBAR Draw rounded filled bar

POLYGON Draw a filled polygon
PAINT Contour fill

MODE Change graphics mode
FLASH Set flash sequence
SHIFT Rotate colours

INK Set ink colour

PALETTE Set all colour assignments
COLOUR Read/write one colour value

GR WRITING Set writing mode
SET LINE Set line type
SET MARK Set marker type
SET PAINT Set fill Type
SET PATTERN Set user-defined fill pattern
CLIP Set clipping rectangle
DIVX Width of mono screen/width of current screen

DIVY Height of mono screen/height of current
screen

CLS Clear entire screen

See Chapter 6 for a complete explanation of these instructions.

The mouse

In many respects the STOS Basic mouse pointer is rather unusual. The most
obvious difference is that it is much more colourful than the one you are used to.
This is largely because this pointer is really just a specialised version of a sprite.
The major advantage of this approach is that you can easily set the shape of the
mouse pointer to anything else you like using the CHANGE MOUSE command.

9

Examples:

change mouse 2:rem Change mouse to hand
change mouse 3:rem Change mouse to clock

You can also use the instruction to change the mouse into any one of the sprite
images currently held in the ST's memory. We'll now demonstrate this process.

Place the accessories disc in the drive and load some sprites with:

load "sprdemo.mbk"

Now change the mouse to the first of these sprites with:

change mouse 4

and to the second with:

change mouse 5

As you can see, the number used in the above instruction is just the image number
plus four.

Detecting collisions between a sprite and the mouse is easy. You can also test
a specific area to the screen to see if the user has entered it with the mouse.

Reading the mouse is equally straightforward, as the position of the pointer is
instantly returned by the X MOUSE and Y MOUSE functions.

Example:

10 locate 0,0:print x mouse.y mouse:goto 10

Ifyou run this program and move the mouse across the screen, its location will be
continually displayed.

The mouse commands

X MOUSE Return X coordinate of mouse

Y MOUSE Return Y coordinate of mouse

MOUSE KEY Test mouse buttons

ZONE See if mouse is in a rectangular zone
SET ZONE Define zone to be tested

RESET ZONE Clear zone definitions

CHANGE MOUSE Change mouse picture
HIDE Remove mouse from screen

SHOW Return mouse to normal

More details of these iristructions can be found in Chapter 4.

The joystick

STOS Basic includes a number of simple commands which enable you to test the
movements of a joystick. Place a joystick into the right socket and type:

10 if jleft then print "LEFT"
20 if jright then print "RIGHT"

10

(

30 if jup then print "UP"
40 if jdown then print "DOWN"
50 if fire then boom : goto 10

The joystick commands

JOY

JLEFT

JRIGHT

JUP

JDOWN
FIRE

Read joystick and test all functions
True if joystick moved left
True if joystick moved right
True if joystick moved up
True if joystick moved down
True if button pressed

See Chapter 4 for more information.

Sound and music

In the bad old days of computing, you were luckyto find the inclusion of a humble
BEEP instruction. The STOS Basic programmer has a much easiertime of it. Not
only can you produce high quality soundtracks for yourgames, but you can also
generate a vast range of other special effects. Furthermore, if you're already an
expert on the subject, STOS gives youcomplete controlover the ST's sound chip.

Creating a piece of music couldn't be easier, as a superb Music Editor is
includedforyour use as part of the STOS Basic package. Like the Sprite Editor,
thiscan be loaded into memory, and calledat any timestraightfrom the keyboard.
Asan example,we've placeda piece ofmusicforyouon the accessory disc. Load
this with the line:

load "music.mbk"

You can now play the music by typing:

music 2

This music plays independently of the rest of the STOS system in a similar way
to the Sprite commands.

Let's change the speed of the music with TEMPO:

tempo 10

which slows the tune down to a crawl. Now type:

tempo 100

Fast enough for you? We can also change the pitch of the music. First the music
back to normal with:

tempo 40

Now type:

transpose 30:remIncreases the pitch

and

transpose -20:rem Lowers the pitch

77

Finally, turn the music off using:

music off

Further examples of music can be found in Bullet Train.

Sound effects

STOS Basic also supports a number of useful functions for the production ofmore
basic noises. The simplest ofthese are the SHOOT, BOOM and BELL commands.
Here are a few examples for you to type in.

for A=1 to 10:boom:wait 5: next A

shoot

bell

In addition to the pre-defined effects, you can utilise the noise generator in
conjuction with the ENVEL command to produce a range of more exotic sounds.

Examples:

click off

volume 16

noise 1

envel 10,100:Rem Aeroplane
envel 10,1000:Rem Helicopter

envel 1,1:rem Reset envelope
envel 14,80:play 14.80

envel 8,40
play 37,40

STOS Basic sound commands

MUSIC Play music defined using music editor
accessory

VOICE Activate/Deactivate individual voice

TEMPO Change speed of music
TRANSPOSE Change pitch of music
VOLUME Set volume of noise

ENVEL Choose shape of note/noise
PLAY Play a single note on one of three voices
NOISE Generate some noise

BOOM Make a BOOM sound

BELL Make a BELL sound

SHOOT Make a SHOOT sound

PSG Access sound chip. Warning: Handle with
care!

See Chapter 5 for mor = details of these commands.

Displaying text on the screen

If you've used Gem, you'll probably already be familiarwith the idea of windows.
AlthoughSTOS Basic is notGem-based, itdoes incorporate a range of impressive

12

(

(

(

(

(

(

(

(

(

windowing operations. These allow you to create a window with one of 16 different
borders anywhere on the ST's screen. Each window can have its own unique
character set which can be stored in a special memory bank along with your
program. Here's a simple example of a STOS Basic window:

windopen 1,3,3,30,10,12

We can delete this window with the line:

windel 1

Now for a larger example which displays 10 windows on the screen at once.

for i=1 to 10:windopen i,3*i,i,10,10,i:next i

After this line has executed, the text cursor will be placed in the last window we
have defined. We can switch the cursor to another window using the WINDOW
command like so:

window 1

window 4

window 7

window 10

Since we don't need these windows any more, we can delete them from the
system using the DEFAULT command:

default

We'll now create a small program which displays four different character sets on
the screen at one time.

First insert the accessory disc into the drive and load the fonts into memory
with the lines:

load "fontl.mbk"

load "fontZmbk"

load "font3.mbk"

You should then type in the following small program.

10 windopen 1,0,0,9,4,4,3:rem One of 3 system sets
20 windopen 2,10,0,9,4,4,4:rem First new set
30 windopen 3,20,0,9,4,4,5:rem Second new set
40 windopen 4,30,0,9,4,4,6:rem Third new set
50 input "Window ";W
60 window w:goto 50

Any of these sets can be used to replace the three system fonts stored on the
STOSsystem disc. Just to make things simple,STOS Basic also supplies youwith
a useful Font Definer accessory which can be used to generate any new character
sets you require.

Inaddition to the normal characters, STOS Basic includes support for special
16x16 characters called Icons. These can be displayed on the screen using the
ICONS command, or incorporateddirectly intomenus. We have providedyouwith
a useful set of examples in the file ICON.MBKon the accessory disc. These can
be printed out using the program below.

13

load "ICON.MBK"

10 for X=0 to 19

20forY=0to4

30 locate X*2,Y*2
40 print icon$(X*5+Y+1)
50 next Y

60 next X

Note that just as with the character sets, there's also a Icon definer to allow you
to create your icons.

STOS Basic text commands

BORDER Change window border
CDOWN Move cursor down

CUP Move cursor up
CLEFT Move cursor left

CRIGHT Move cursor right
CLW Clear window

CURS Hide/show text cursor

SET CURS Set cursor type
DEFAULT Reset windows

HOME Cursor home

ICON$ Print an icon at current cursor postion
INVERSE Inverse text

Underlined textUNDER

SHADE Shaded text

LOCATE Set printing position
PAPER Set text background colour
PEN Set text colour

PRINT Print text

USING Formatted text

CENTRE Print centred text

QWINDOW Quick window activation

WINDOW Activate a window

WINDON Test a window to see if it's active

WINDMOVE Move a window

WINDCOPY Copy a window
WINDEL Delete a window

SCRN Get character under cursor

TITLE Set Window title

SQUARE Print square using text coords
XCURS Return X coordinate of cursor)
YCURS Return Y coordinate of cursor)
XTEXT Convert graphic coord to text coord
YTEXT Convert graphic coord to text coord
XGRAPHIC Convert text coord to graphic coord
YGRAPHIC Convert text coord to graphic coord

More details of these i nstructions can be found in Chapter 8.

Pull-down menus

As we near the end of our tour, we'll give you a brief glimpse at the incredibly useful
STOS Basic menu commands. These enable you to effortlessly create menus

14

(

(

(

(

(

(

(

(

(

(

(

c

(

which will then work automatically using interrupts. STOS menus may be
composed of either text or icons. Here is a simple example.

10 menuS(1)="Menu "
20 menu$(1,1)="ltem1"
30 menuS(1,2)= "Item2"
40 menu$(1,3)="ltem3"
50 menu on

60 A=mnselect: if A<>0 then print "You chose Item number",A
70 goto 60

STOS Basic menu commands

MENU ON

MENU OFF
MENU FREEZE

MENU$(X)
MENU$(X,Y)
ON MENU GOTO

ON MENU ON/OFF

MNBAR

MNSELECT

Start menu

Halt menu

Temporarily stop menu
Set menu title

Set menu item

Automatic menu selection

Activate/deactivate automatic selection

Menu bar selected

Item selected

More details of these instructions can be found in Chapter 9.

So far we've only demonstrated a fraction of STOS Basic's capabilities. As you can
see, STOS Basic provides you with everything you need to create superb games
and effective educational software. The followingchapters include a fullexplanation
of all the various commands. The rest is up to you.

15

~
-

~
r
\

~

On loading the STOS Basic package you are initially presented with a display
consisting of two separate windows.

The Editor window

The Editorwindow is the part ofthe screen reserved forcreating and manipulating
your programs. STOS Basic supports a powerfulscreen editor which allows you
to alter your program listings directlyfrom the screen. The heart of this system is
the text cursor which indicates the position of the next character to be input. Italso
marks the current line. This line can be entered into the editor by pressing the
Return key.

Try typing the line below followed by Return:

print "Hello"

As you type the line, each successive character is printed directly underneath the
text cursor, and this cursor is moved one step to the right. You can now edit this
line by moving the cursor back to the PRINT statement with the Up arrow key. If
you press Return at this point, the line will be re-executed. Notice how the left and
rightarrow keys move the cursor back and forth along the line. Use these keys to
place the cursor over the H, and type:

HELP!

When you press Return this message will be printed on the screen. The current
line can be edited on a character by character basis using the Backspace and
Delete keys. In addition, you can delete the entire line withShift+Delete and join
two lines together with Control+J.

The STOS Basic editor provides you with two editing modes: Insert mode and
Replace mode. Replace mode is used as the default. In this mode, anything you
enter from the keyboard will completely replace the existing text on the screen.

Insert mode is rather different. Instead of overwriting the text, a space for the
new character is automatically inserted into the line at the current cursor position.
Insert mode is indicated by a thicker cursor and can be toggled on or offusing the
Insert key. Note that the Replace mode is re-entered whenever the system is reset
by the RUN command. Now for an example showing you how this works in
practice. Type in the following lines of code.

new

10 print "This is a Simple Program"
20 input "What is your name ?";N$
30 print"Hello ";N$

This program can be edited using the arrow keys. Incidently you can also place
the cursor at the current mouse position by clicking on the left mouse button.

As an example, try changing line 20 to:

20 input "What is your Christian name";N$

17

Don't forget to press the Return keyafter you'veedited the line, otherwise itwill
remain unchanged.

To run your new program type in RUN

The function keys
The upper window contains a brief list of the current function key assignments.
Whenever you press one of these keys, the string associated with itwill be entered
on the screen, just as ifyou had typed it inyourself. You can also assign a separate
set of strings to the shifted versions of these keys, which can be displayed by (
pressing Shift.

(

(

(

Try entering the following lines:

f2 List

f7 Prints out the current directory
f4 Loads a file from the disc

Shift+f7 Loads all the accessories stored on the current disc

c

If you play around with these function keys, you may find that the string linkedto
key number 1 is continually changing. This is because the f1 key is used to hold
a copy ofyour lasteditor command. f

Example:

print "Hello"
fl

f1

fl

Ifall this wasn't enough, you can change the function key assigments at any time
with the KEY function (See Chapter 10 for more details).

(

(

Example: (

(

key(3)="boom'"
f3

Note that the ' character is used to denote Return.

A list of the current function key assignments is available using the KEYLIST
instruction:

KEYLIST (List the current function key assignments)
(

KEYLIST prints out a full list of the strings associated with each of the function z'
keys. The shifted versions of these keys are given numbers from 11-20. Stop
listing using either the spacebar, Esc, or Control+C.

f1: KEY LIST' Last line entered into the system.
f2: list Lists all or part of a program.
f3: listbank' Lists banks used by the program.
f4: fload"*.bas"' Load a Basic program with the file selector.
f5: fsave"*.bas"' Saves a file using the file selector. /
f6: run' Runs the Basic program. ^
f7: dir' Prints out directory of the current disc

18

(

<

f8: dir$=dir$+\"
f9: previous
f10:off

f11:full'

f12:multi 2'

f13:multi 3'

f14:multi 4'

f15:mode 0'

f16:mode 1'

f17:accnew:accload '

f18:default'

f19:env'

f20:key list'

Selects a subdirectory. See Chapter 10.
Selects next outer directory.
Turns off sprites.
Sets the editor window to the full screen.
Installs two editor windows.

Installs three editor windows.
Installs four editor windows.

Enter low resolution mode.

Enter medium resolution mode.
Deletes the current accessories and loads a
new set off the disc.

Re-initialise editor screen.

Change colours used by editor.
List function keys.

The Control keys
The Control keys are a set of commands to the STOS Basic editor which are
executed directly from the ST's keyboard. Here is a listofthe various controlkeys
and their effects.

Help

This displays the complex looking dialogue box as seen below. There are three
distinct parts of this box.

J — L

Editing program : 1

i 1 Size iUld ttllUId 82|Ud tt3|Ud 84

1

3
4

0
0
0

^EkELB
e?nc]

end
end

Basic accessor ies loaded
f 1- f5- f9-
f2- f 6- f 10-
f 3- f 7- f 11-
f4- f8- f 12- ^

Remaining memory: 7075bb bytes,

Thetopsectioncontainsa list ofthe programscurrently stored inthe ST's memory.
STOSBasic allows youto hold up to four Basicprograms in memory simultane
ously.

The current program is highlighed using a horizontal bar. This bar can be
movedup ordownwith the arrowkeys. As you move this bar, the top linechanges
to indicate the program numberwhich is to be edited. See the section on multiple
programs for more information.

The second part of the Help menu displays a list of the accessories installed
inthe system. These accessories can be executed directly from the help menu by
pressing one of the function keys. Alistofthese accessories, along withtheir uses
can be found on page 55.

The last lineof the help menu displays the amount of memory remaining for
the storage of STOS Basic programs. Normally this will be several hundred
kilobytes on a standard 520 ST, but if you have loaded all the accessories from
the discs, it may well be considerably less.

19

(
Control+C

Whenthese twokeys are pressed at the same time,any STOS Basic programyou /
are running will be immediately terminated and the control will return back to the
editor.

Undo (
Pressingthiskeytwice redraws the screen and reinitialises the editor. Itisnormally
used to enable you to edit a program which has corrupted the editor screen, or
used to view a line from which an error has occured and forced the program to stop.

Clr

Clears the editor window. Same as CLW.

Up Arrow

Moves the cursor up one line.

Down Arrow

Moves the cursor down one line.

Left Arrow

Moves the cursor one character to the left.

Right Arrow

Moves the cursor one character to the right.

Return

Enters a line at the current cursor position. Exactly the same effect can be
achieved by double clickingthe left mouse button.

Delete

Deletes the character underneath the cursor.

Shift+Delete

Deletes the line under the cursor.

Backspace
Deletes the character to the left of the cursor, and then moves the cursor one
space to the left.

Home

Moves the cursor to the top left hand corner of the screen.

ESC

Enter multi-mode display. See section on multiple programsfor more information.

Spacebar

Suspends a listing. Press spacebar again to resume.

20

(

(

<

(

c

(

(

(

(

(

(

c

Customising the editor
As a default, STOS Basic outputs white text on a black background. You can,
however, use any combination ofcoloursyoulike forthe textand background. The
easiest wayofchangingthese coloursiswith the ENV instruction which pages you
through 14 different colour schemes. This command is assigned to the shifted f9
key.(Shift+f9)

These colours are retained when you reset the editor using Undoor Default.
One majorsnag with this approach, is that these settings are lost everytime you
exitfrom the STOS Basicsystem. Furthermore, although14different optionsmay
sound quite a lot, it's really rather restrictive when you realise that both the text and
the background can be chosen from a palette of512 colours.Thisgives you over
260,000 possible combinations.

Fortunately, the STOS Basic package comes complete with a special configu
ration program which enables you to customise the system to your own individual
requirements. This program can be found on the STOS basic language disc and
is called "CONFIG.BAS". It can be loaded and executed by the line:

run "CONFIG.BAS"

On loading, CONFIG presents you with the following screen:

Stos Basic editor parameters

Default resolution (in colour] I I LOU I

- Page 1 i

mamm

Default language: milium

Black and White enuironnenent: JMIifM

R-G-B Colour environnenent: l*l*l*l

rPiilTJI 777 1

EEE

1 FRENCH I

1 IHUERSE 1

7EHH 866

EEE

\

[QUIT 1 1 HEX! PAGE 1

You can select any one of the various alternatives by simplymoving the mouse
over the appropriate item, and clicking on the left mouse button. If, forexample,
you wished STOS Basic to enter medium resolution instead of low resolution on
loading, youwouldplace the pointer over the MEDIUM option and press the left
mouse key.Thisbuttonwouldnowbe highlighted and the LOW optiondeselected.

You can also use this dialogueto select the colours ofthe text (PEN), and the
background (PAPER). These are specified using a standard RGB format. Each
digit in the box corresponds to the strength of either the red, green, or blue
components of the colour. These components can take intensities ranging from
0-7. An intensity of zero indicates that none of this component is to be used in the
final colour, and a value of 7 denotes the maximum intensity. These numbers can
be changed by clicking on the + or - boxes.

Supposing you wanted to set the text colour to yellow, and the background
colour to red. In this case, you would set the paper colour to a value of 700, and
the pen to 770. (yellow=red+green).

Afteryou have finished with these colour settings, you now need to save them
tothedisc. Beforeyoucan dothis,youmustfirst enter the second menu byclicking
on the Next Page option. This displays the following dialogue box.

21

; Stos Basic editor parameters - Page 1 -1

Function keys

fl I Last direct coiwand f2 ilist
f3 Uistbank* f4 :fload"*.bas">
f5 :fsave"*.bas" f6 irun1
f7 idir f8 :dirS= dirS » "\
f3 previous fl8:off
fllifull1 fl2:nulti 7-
fl3multi 3* fl4inulti 4*
f!5:node 6> flSmode l1
fl7:accneu:accload"*'K fltsfefaulr
U9:enu* f28:keg lisr

\1 Loaded accessories 1

Hi i 82 : 83 : B4 :

115 1 86 : 87 i 16
SS 1 818: 311! in

PREVIOUS PAGE 1 QUIT 1 i SftUE OH DISK I

The secondary menuallows you definethe defaultfunction key assignments, and
choose a set of accessories which will be loaded automatically along with STOS
Basic. As you move the mouse pointer around on the screen, any function key
definitions youpass over are highlighted. These keyscan be changed bysimply
clicking on the left mouse button, and then typing in the new definition.

One interesting possibility is to set the function keys to a list of the 20 most
commonly used Basic instructions. This would enable you to type in even the
longest STOS Basic programs extremely quickly.

You can also change the accessory list in exactly the same manner. In this
case youshouldenter in the name ofthe file containing each accessory you wish
to be loaded.

Finally these assignments can be saved to the disc byclicking on the Save on
Disk option. Theywill now be automatically set everytimeyouloadSTOSBasic.

Loading/Saving Basic programs

There are two possible ways you can load a Basic program into STOS Basic.
Firstly you can use the normal LOAD option like so:

load "CONFIG.BAS"

(For a fuller explanation of this command see SAVING and LOADING)

This command works fine if you know the name of the program you wish to load,
but often this is not the case. In these circumstances you can use the FLOAD
instruction to choose a file using a special file selector.

FLOAD (Load a file using the file selector)

FLOAD path$

path$ is a string containing the search path. (See DIR)

Example:

fload "*.bas"

Choose a Basic file to load. Assigned to f4

22

(

(

Whenyou type the above line, a dialogue box will be displayed on the screen. If
you are already familiar with the GEM file selector, this should prove fairly self
explanatory. If not, then the following diagramshould make things a little clearer.

LOAD file.

— UP
*AUTO
«STOS
PROTECT ,BAS
SETUP .BAS

DOWN
A:*.bas

PREUIOUS |ffl||B|

dir. |c||d|

QUIT |e|

RETURN

-= %

Aswith theequivalent Gem system, you canchoosea file byeitherclicking onone
of the filenames, or typing the name of a file directly intothe choice box. This file
can then be loaded by either double clicking on the file itselfwith the left mouse
button, clicking on the Return box, or pressing Return.

The most obviousdifference between this file selector and the Gem version,
is the lack of a scroll bar. Instead, you can page through the directory listing by
simply clicking on the Up and Down buttons. Also, you can now get a directory
listing ofthecurrent disc at anytime, by clicking onthe D/rbutton. This allows you
update the directory after you've changed discs.

Notethat the *at the front of an item is equivalentto Gem's symbol inthat it
denotes theexistanceofa folder. You can enterthisfolder byclicking onthe name.
In order to exit back to the outer directory, click on the Previous button.

As an example, try loading the CONFIG.BAS file using this file selector.

FSAVE (Save a Basic file chosen with the file selector)

FSAVE path$

FSAVE allows youto save a programchosen from a file selector box.As before,
path$ denotes the type of program you wish to save.

Type in the following small program:

10 print "Executing Line 10"
20 print "Executing Line 20"
30 print "Executing Line 30"

Now enter the line:

fsave "\bas"

or press function key f5

You will now be presented with the standardfile selector. Enterthe nameofyour
new file. As you type, the filename is displayed inthe current filebox. This text can

23

be edited inthe normal way. If you nowpress Return, yourfile will be saved to the
disc.

Youcan test this procedure by erasing the programfrom memory with.

You should now hit f4 to execute the FLOAD command, and double click on the
file with your new name. This will then be loaded.

Running a program

(

(

(

(

RUN (Execute the current STOS Basic program) /

(

The standard method of executing a STOS Basic program is using the RUN
command. There are three versions of this instruction.

RUN Run the program starting from the first line.

RUN no Run the program starting from line number no

RUN file$ Load and run the Basic program stored in file$

Examples:

Assuming yousaved the examplefile from FSAVE underthe filename TEST.BAS,
load the file with:

load "TEST.BAS"

run

Executing Line 10
Executing Line 20
Executing Line 30

Ok

run 20

Executing Line 20
Executing Line 30

new

run "TEST.BAS"

Executing Line 10
Executing Line 20
Executing Line 30

Incidentally, you can also use the RUN command from inside a program. This
allows you to chain a number of programs together.

Example:

new

I

(

(

<

(

(

(

(

10 print "Executing Test" (
20 run "TEST.BAS"
30 print "This line isjaever executed"

24 I

Any program executed in this way can be terminated using Control+C. You can
restart such a program with the CONT command.

CONT (Restart a program exited by STOP or Control+C)

CONT re-enters an interrupted program starting from the next instruction. In order
for the program to be continued, it must not have been changed in the interval
between executing the STOP and the CONT.

Example:

new

10 for i=1 to 100000

20 print i;
30 next i

run

Control+C

cont

Interrupt the program after a few seconds.
Restart program in the middle of the FOR...NEXT loop.

Entering a STOS Basic program
STOS Basic supports two different types of instructions, direct and interpreted. A
direct instruction is a command to the editor to perform an action such as listing
or saving a program. Most of these direct commands cannot however, be used
within a Basic program. Only interpreted instructions such as IF or GOSUB are
allowed.

STOS Basic distinguishes between the two sets of operations by checking the
first few characters of the current line. If these characters form a line number then
you are in interpreted mode, and any direct instructions will cause an error.
Otherwise you are in direct mode. Of course, some instructions such as RUN and
LOAD can be used in either mode.

Inthis section, we will be covering the direct mode instructions which allow you
to create and modify your STOS Basic programs.

AUTO (Automatic line numbering)

The AUTO command is a direct instruction which automatically prints out a new
line number every time you press Return. This enables you to enter long Basic
programs, without having to continually type in the line numbers. As a default,
AUTO starts off at line 10 and increments the line in units of 10.

Look at the example below:

auto

10 print "Test of AUTO"
20 goto 10
30 <Return>

run

In order to distinguish between the text generated by the computer, and the text
entered directly from the keyboard, we've underlined any text which has been
typed in by the user. Note how the Return in line 30 was used to exit from this AUTO
statement.

Now type the lines:

25

auto

30 print "This line in never reached"
40 <Return>

As youcan see, the AUTO command automatically started again from line30. This
enables you to jump back into direct mode whenever you wish, and then resume
at the point you left off.

It is important to realise that AUTOplaces you in interpret mode. This means
that any direct mode instructions you try to use will cause an error. These
instructions include all the normal screen editing operations. Therefore, if you
discover a mistake in a line you have just entered, you must exit back to the editor
in order to correct it.

Also note that there are a couple of other possible formats to this instruction:

AUTO start

AUTO start.inc

Examples:

Starts automatic line numbering from line number
start.

Starts from line start and increments each succes

sive line by the number inc.

auto 50

50 print "Test of AUTO"
60

auto 10.1

10 rem First line

11 rem Second line

12

RENUM (Renumber allorpart of a program)

When you're writinga large program, you often end up having to insert many extra
lines at various points in your routine. Inevitably, this tends to make your program
increasingly messy and hard to read. The RENUM command tidies things up for
you by neatly renumbering any or all the lines of your program. The destinations
of any GOSUBs or GOTO instructions inthe program are automatically amended
to take these new line numbers into account.

There are four different ways of using this RENUM command:

RENUM Starts by setting the first line in your pro
gram to 10, and then renumbers each
succeeding line in units of 10.

RENUM number

RENUM number.inc

RENUM number, inc, start-end

Sets the first program line to number,
and renumbers all the other lines in

increments of 10.

Starts at line number and increments

each successive line by inc.

Renumbers lines from start to end,
beginning with line number, and incre
menting each proceeding line by inc.

26

Note that STOS Basic will not allow RENUM to overwriteany existing parts of the
current program.

Example:

10 print "Example of renumber"
20 goto 50
30 gosub 70
40 stop
50 print" Destination of goto"
60 goto 30
70 print" Destination of gosub"
80 return

renum

list

LIST (List the lines ofa Basic program tothe screen)

The LIST command is used to list part or all of the current program to the ST's
screen. The format of the instruction is:

LIST Lists the entire program.

LIST first- Lists all the lines in the program starting from the line first.

LIST -last Lists the lines from the start of the program to line last.

LIST first-last Lists lines from first lo last.

Notethat youcan temporarily halt the listing at any time by pressing the spacebar.
You can also stop the listingcompletely using either Esc or Control+C. Atthe end
of the listing, a listof the banks used by the Basic program is appended. The most
common use of the list command, is to list a section of the program on the screen
for subsequent editing. See LLIST

SEARCH (Searches for a string in a Basic program)

SEARCH s$

SEARCH has to be one of the most useful of all the direct instructions, because
itallows you to find the position of a string contained within a Basic program. This
search string can include any STOS Basic instructions.

Example:

load "C0NFIG.BAS"
search "print"
3100 paper 1:pen O.windopen 1,20,6,40,6,10:curs off:print:centre "Please
insert a disc including":print:centre"the stos folder':print

In order to find the next occurrence of the string, you simply type the SEARCH
command on its own:

search

27

You can also restrict your search to a specific part of the program by adding an
optional starting and ending point to the instruction:

SEARCH a$,start-end

start is the line at which the search should begin, and end is the line at which it
should finish.

The reason why this command is so useful is that you can use it to search
throughany ofthe example programs suppliedon the STOS Basicdisc. Suppos
ing, forinstance, youwantedto see how the spriteeditoranimated itssprites. All
you need to do, is type the following lines: (

load "SPRITE.ACB"

search "anim" .
7050 M=0: gosub 10700: anim off: sprite off: update :gosub 7325: loke (
start(1)+4,$12: erase 8: update off

You can repeat this process to find out the precise locations of all the anim
instructions in the program by just typing

search

(

(

(

(

Another trick is to start any important sections of your program with a line like: (

999 rem Define sprite

This allows you to find the exact position of your routine at any time without having (
to list through the entire program.

CHANGE (Change alloccurrences ofa string in a program) f

CHANGE a$ TO b$ [,start-end]

The CHANGE command searches through a program and replaces any occur
rences of the firststring with the second. The optional startand end pointsdefine
the section of the program which should be changed.

Example:

10 AX15B=1

20 for 1=1 to 10

30 AX15B=AX15B+AX15B
40 print "Thevalue of variable AX15B is ";AX15B
50 next i

(

(

Since we've used a rather horrible variable name in this program, we can now (
change all occurrences of 4X15B into COUNT using the line: ^

change "AX15B" to "COUNT"

Listing the program now gives:

10 C0UNT=1

20 for 1=1 to 10

30 C0UNT=C0UNT+C0UNT
40print "The valueof variable COUNT is ";C0UNT

28

(

(

(

(

(

<

(

(

<

(

(

<

I

(

I

(

(

(

50 next I

See also SEARCH.

DELETE (Deletesome or all lines of a program)

DELETE first-last

The DELETE command is used to selectively erase sections of your Basic
programs. If lines first and last do not exist then this delete operation is not
performed.

Example:

new

10 rem Line 10

20 rem Line 20

30 rem Line 30

40 rem Line 40

delete 20-30

list

10 rem Line 10

40 rem Line 40

Typing a line like:

delete 11-31

has no effect.

MERGE (Merge a file into thecurrent program)

MERGE file$

The MERGE command combines a program stored in the file f//e$with the current
program. Existing lines willbe overwritten by any new lines with the same number.
This instruction is often used to merge a set of subroutines into one complete

(program.

Debugging a program

Many Basics include a special TRACE command which enables you to step
through a program one instruction at a time. The STOS Basic version of this
instruction is rather more powerful as it also allows you to track the contents of a
list of variables.

FOLLOW (Track through a STOSBasicprogram)

There are five possible formats for the FOLLOW command.

FOLLOW If the FOLLOW statement is used on its

own, the program will halt after every in
struction and list the number of the current

line. The next line in the program can be
stepped through by pressing any key.

29

FOLLOW first-last This version of the instruction only follows
the program when the lines between first
and last are being executed.

FOLLOW variable list This takes a list of variables separated by
commas and prints them out after every
instruction has executed. As before, you
can step through the program by pressing
any key.

FOLLOW variable list, first-last Identical to the instruction above, but the
variables are only followed when the lines
between firstand lastare being interpreted.

FOLLOW OFF Turns off the action of the FOLLOW com
mand.

The FOLLOW instruction has a minimal effect on the current screen, and does not
change the position of the text cursor.

Examples:

new

10 for X=0 to 10

20 for Y=0 to 10

30 next Y

40 next X

follow X,Y
run

Page through the program by pressing any key. To abort the program simply press
Control+C

Multiple programs

STOS Basic allows you to have up to four programs in memory at any one time.
These may be completely independent of each other. Ifyou suddenly decided to
change the configuration of the editor for instance, you could easily load the
CONFIG.BAS program into a separate segment of the ST's memory without
interfering with your current program.

Example:

new

10 print"This is program number ONE"
run

This is program number ONE

Ifyou now press the Help key you are presented witha complex lookingmenu. The
top line of this menu has the text Editing program: 1. Also, one of the menu lines
is inverted. This line indicates the current program segment and is highlighted by
the program cursor. Try pressing the Up and Down arrow keys. As the program
cursor moves up and down, the program number changes between 1 and 4. Move
the program cursor to the second line. The title should now read Editing program
: 2. You can enter this program segment by pressing the Help key.

Now type:

30

(

(

(

(

(

<

(

(

(

<

(

(

(

list

As you can see, the second program space is empty.

Type the following program:

10 print"This is now the second program"
run

This is now the second program.

Youcan now re-enter the firstprogram again using the Help menu. First press the
Help key, and then press the Up arrow key once. The title line will now indicate that
you are editing program number 1. Exitto this program by pressing Help, and type:

run

This is program number ONE

So far, we've only used two programs in memory. You can however readily
access any of the four programs in exactly the same manner.

/ MULTI (Display a number ofprograms simultaneously.)

MULTI n

(

I
MULTI 2 Splits the editor window in two.

rTopsection = Window 1 = Program 1
Bottom section = Window 2 = Program 2
This instruction is assigned to Shift+f2

r MULTI 3 Splits the editor into three sections.
Top section = Window 1 = Program 1
Bottom left section = Window 2 = Program 3
Bottom right section = Window 3 = Program 4
MULTI 3 is assigned to Shift+f3

(

The MULTI command simplifies the process of using multiple programs by
dividing the editor window into separate segments, one per program. These
programs can be entered with the Help key as before.

Example:

MULTI 4 Divides the editor into four quarters. Each window has its own
program. Also assigned to Shift+f4

(Note that ncan only take values between 2-4.

As a further example, select segment number 1 with Help and type in:

I

I

(

load "CONFIG.BAS"

list

Now type:

multi 2

31

which splits the window into two and redraws the listing.
You can continue this experiment by typing in the lines:

multi 3

and

multi 4

Now type in the command:

full

which expands the current window to the full screen.

FULL (Expand current window into the full screen area)

In expanding the current edit window. Full does not effect the status of any of the
other programs.

Splitting programs in the Editor

You can also use the MULTI command to split asingle program into a number of (
separate sections. This can be done using the Help menu. Position the program
cursor over program 1 and press the leftand rightarrow keys. As you can see, the
text cursor is moved between four different boxes on the program line. Move the
cursor to the first box and type in 1000 followed by Return. This sets the end point (
of the first part of the program to line 1000.

If you now exit back to the editor and type MULTI 2, the program will be split
into two windows. You can choose between these two windows using the mouse
pointer. To see how this works, position the mouse in the top windowand clickon
the left mouse button. The cursor in this window willimmediately start flashing, and
the window will be activated.

(

(

(

(

(

(

(

Enter the following line: \

list

This lists all the lines of the program until the line 1000. If you repeat this process (
in the second window, you will generate a listing of the lines 1000 onwards.

Each box on the program line represents a different section of the listing. You
can therefore use this technique to split a program into four separate parts. It is
important to note that this has no effect on any existing segments, and you can y
page through each of the programs stored in memory using the Help menu as
usual. All four of these programs can be split in exactly the same way without
interterring with each other.

GRAB (Copy all orpartof a program segment into the current program)

The GRAB command allows you to combine a number of subroutines stored in
separate program segments into one complete program. This enables you to test
each subroutine in your program independently. The syntax of the GRAB
instruction is:

GRAB n Copy program number n into the current program,
where n ranges from 1 to 4. Any attempt to use the

32

(

<

I

(

number of the current program in this instruction will
naturally generate an error message.

GRAB n, first-last Only copies the lines between first and last into the
current program.

See MERGE.

System commands

SYSTEM (Exit back toGem)

The SYSTEM instruction is used toquitfrom STOS Basic.Notethat any programs
loaded in STOS Basic which have not been saved to disc will be LOST! You should
therefore think carefully before confirming this option with Y.

RESET (Resetthe editor)

RESET simply reinitialises the editor and redraws the current screen.

DEFAULT (Reset the editor and redraw current windows)

DEFAULT redraws any currently defined windows on the screen, and resets the
STOS Basic editor. Unlike RESET, DEFAULT can be used either in direct or
interpreted mode. This allows itto be utilised at the endofa Basicprogram to jump
back to the editor. The effect of this instruction can also be achieved from the editor
by pressing the Undo key twice. Do not confuse this with the DEFAULT function.

NEW (Erase the current program)

Thiscommand deletes the currentprogram from the ST's memory. It has noeffect
on any other programs stored in different program segments.

See UNNEW.

UNNEW (Recover from a NEW and restore the current program)

UNNEW attempts to recover from the effects of a NEW command, and restore
your current program back from the dead. Itwill only work providing you have not
entered any further Basic program lines since the original NEW.

Example:

10 rem This line is dead

new

list

unnew

list

CLEAR (Clear all the program variables)

The CLEAR instruction erases all the variables and allthe memory banks defined
by the current program. It also repositions the READ pointer to the first DATA
statement in the program.

33

(
FREE (Return the amount of freememory)

FREE returns the number of bytes of memory which is currently available for use (
by your Basic program. Inaddition it reorganises the memory space used to hold
your string variables. The technical term for this process is garbage collection.
Unfortunately, the time taken by this procedure varies exponentially with the
number of strings you have defined. This may range from mere milliseconds for (
small numbers of strings, to several minutes for large string arrays with several
thousand elements.

Itis important to note that this garbage collection will also occur automatically
while your program isrunning. This ispotentially afairly serious problem asit could (
lead to your program unexpectedly halting for several minutes. The solution is to
call FREE and force this reorganisation when it will cause the least amount of
harm.

Example:

print free
707536

100 print "Thinking":x=free

Note that FREE is equivalent to the FRE(O) function found in many other Basics.

ENGLISH/FRANCAIS (Choose the language tobe used)

Since STOS Basic originates from France, all system messages are provided in
both French and English.

FRANCAIS Uses French for all subsequent dialogue.

ENGLISH Uses English for any messages (Default)

FREQUENCY (Changescan ratefrom 50 to 60 Hertz)

This function is only useful is you have a medium resolution monitorcapable of
scan rates higher than the normal50 frames per second. If you have a multi-sync
monitor, you can use FREQUENCY to improve the qualityof the screen display
considerably. Note that FREQUENCY also changes the frequency of any inter
rupts used bySTOS Basicto 60 times a second. DONOT USETHIS FUNCTION
WITH A NORMAL TV SET.

UPPER (Change listing mode to uppercase)

(

(

(

(

<

(

c

(

Normally, any instructions you type intoa STOS Basic program are listed in lower
case, and any variablesinuppercase. The UPPER directive reverses this format. /

Example:

new

10 n=10

20 PRINT "The Value of N is ",n

list

10N=10

20 print "The Value of N is ",N

34

(

(

(

upper

list

10 n=10

20 PRINT "The Value of N is ",n

LOWER (Change Editor mode to lower case)

LOWER returnsthe listing format back to the defaultcase. Any variableswill now
be listed to the screen or printer in uppercase, and instructions will be output in
lower case.

Naming conventions for variables

The names of STOS Basic variables need to conform with a number of rules.
Firstly, each variable name must begin with a letter. Also, the names must not
contain any of the following Basic keywords.

TO, STEP, THEN, ELSE, XOR, OR, AND, GOTO, GOSUB, MOD, AS

All other keywordssuch as RUN or POKE are, however, perfectly legal.

Examples of legal variable names:

A, RUNES, IPOKE, TEST, ZZ99, C5#

Here are a fewexamples of illegal names. We've underlined the illegalbits to make
things clearer.

CAST, 5C, SORT. BANDS. MODERN*. TOAD

The maximum length of these variable names is 31 characters. Note that the # and
$ suffixes denote the type of variable.

Types of variables

STOSBasicallows youto use three different types ofvariables in yourprograms.

Integers

Unlike most other Basics, integers are used by default. Since integer arithmetic
is generally much faster than the more normal floating point operations, this
strategy can often improve the speed of Basic programs considerably. Each
integer is stored in four bytes, and can range from:

-2147483648 to + 2147483648

Examples of integer variables:

A, NUMBER, HELLO

Real numbers

These are suffixed with a # character. They correspond directly to the double
precision floating point variables used in other versions of Basic. Each real
variable is*stored in eight bytes, and can range between:

35

-1.797692 E+308 and +1.797693 E+307

These real numbers are accurate to a precision of 16 decimal digits.

Examples of floating point variables:

P#, NUMBER*, TEST#

String variables

String variables are always suffixed with the $ character, and can range from 0-
65500 characters long. They are not terminated with a chr$(0).

Examples of string variables:

NAMES, TESTS, TELS

Arrays

Anyofthe above variable types can be incorporated into a table known as an array.
These arrays can be created using the DIM instruction.

DIM (Dimension an array)

I

(

(

(

(

c

I

DIM is used to set up a table ofvariables. These tables may consist of any number
of dimensions you like, but each dimension is limited to a maximum of 65535 (
elements.

Example:

10 dim A$(10|,B(10.10),C#(10,10,10) c
In order to access an individual element in this array, you simply type the array
name followed by the index number enclosed between round brackets (). The f
following small example should make this a little clearer:

new

10 dim NAMES(10),AGE(10) (
20 for l=0 to 10

30 input "What is your Name ";NAMES(I)
40 input "What is your Age";AGE(l)
50 next I {
60 print "NAME AGE"
70 print "============"
80 for l=0 to 10

90 print NAMES(I),AGE(I) (
100 next I

It is important to note that the element numbers of these arrays always start from
zero. <
See MATCH and SORT.

Constants (
As a default, all numeric constants are treated as integers. Any floating point

36 (

I

(

(

(

(

(

(

(

(

(

assignments to an integer variable are automatically converted to a whole number
before use.

Examples:

A=3.1411:printA
3

print 19/2
9

In addition to the usual decimal notation, you can also use either binary or
hexadecimal expressions.

Binary numbers are signified by preceeding them with a % character, and
hexadecimal numbers are denoted by a $ sign. Here are a few examples of the
various different ways the number 255 could be expressed.

Decimal: 255

Hexadecimal: $FF
Binary: %11111111

Note that any numbers you type into STOS Basic are converted into a special
internal format. When you list your program, these numbers are expanded back
into their original form. Since STOS Basic prints all numbers in a standard way,
this will often lead to minor discrepances between the number you entered, and
the number which is displayed in the listing. The VALUE of the number will
however, remain completely unchanged.

Floating point constants are distinguished from integers by a decimal point. If
this point is not used, then the number will always be assumed to be an integer,
even if this number occurs inside a floating point expression. Take the following
example:

new

10 fori=1 to 10000

20 A#=A#+1

30 next i

In this program, the "1" in line 20 is stored as an integer. Since the conversion
(between integer and floating point numbers takes place each time the line

executes, this program willbe inherently slower than the equivalent routine below.

(

(

(

(

new

10 for i=1 to 10000

20A#=A#+1.0

30 next I

This program executes over 25% faster than the original one because the
constant in line 20 is now stored in floating point format. You should therefore
always remember to place a decimal point after a floating point constant even if
it is a whole number.

/ Incidentally, if you mix floating point numbers and integers in an expression,
the result will always be returned as a floating point number.

Example:

print 19.0/2
9.5

37

print 3.141+10
13.141

Arithmetic operations

I

(

The following arithmetic operations can be used in a numeric expression. /

A Power

/ and * Divide and multiply
MOD Modulo operator (Produces remainder of a division)
+ and - Plus and minus

AND Logical AND
OR Logical OR
XOR Logical XOR

We've listed these operations in ascending order of their priority. This priority
refers to the sequence in which the various sections of an arithmetic expression
are evaluated. Operations with the highest priority are always calculated first.
Here is an example of how this works in practice.

print 10+2*5-8/4+5A2

This evaluates in the following order:

=255A2 = 5*5

2*5 = 10

8/4 = 2

10+10 = 20

20-2 = 18

18+25 = 43

If you wanted this to evaluate differently, you wouldsimplyenclose the parts ofthe
expression you wished to execute first in round brackets:

print (10+2)*(5-8/4+5)A2

This gives the result 12*(8A2) or 12*64 or 768. As you can see, the addition of just
two pairs of brackets has changed the sense of the expression entirely.

While on the subject of arithmetical operations, it's worth mentioning two useful
functions: INC and DEC.

INC (Add 1 to an integervariable)

INC var

INC adds one to an integer variable using a single 68000 instruction. It is logically
equivalent to the expression var=var+}, but is much faster.

Example:

new

10 timer=0

20 print "Increment A with A=A+1"
30 for 1=1 to 10000

40 A=A+1

38

(

(

(

(

(

(

(

c

(

(

(

(

I

(

(

I

/ DEC (Subtract 1from an integer variable)

I

(

50 next I

60 print "Took ";timer/50.0;" Seconds"
70 timer=0

80 print "Increment A with INC instruction"
90 for 1=1 to 10000

100 inc A

110 next I

120 print "Took ";timer/50.0;" Seconds";

run

Itshould be apparent that the second version of the FOR...NEXT loop executes
considerably faster.

DEC var

This instruction subtracts one from the integer variable var.

Example:

A=2

dec A

print A
1

String operations

Most modern Basics allow you to add two strings together like this:

A$="ST0S"+" Basic"
print A$
STOS BASIC

In addition STOS Basic also lets you perform subtraction withstring variables as
well. This operationworks by removing all occurrences of the second string from
the first.

Examples:

print "STOS BASIC'S"
TO BAIC

print "STOS BASIC'-'STOS"
BASIC

print" A String of Char acters"-" "
AStringofCharacters

Comparisons between two strings are performed on a character by character
basis using the Ascii codes of the characters.

Examples:

"AA" < "BB"

"Filename"="Filename"

"X8i" > "X#"

"HELLO" < "hello"

39

Common string functions

LEFT$ (Return the leftmost characters of a string)

LEFT$(v$,n) There are twodistinctforms of this command.The
first version of LEFTS is configured as a function /
and returns the first n characters in the string
expression v$.

Examples: {

print leftSf"STOS Basic",4)
STOS

a$=left$("0123456789ABCDEF",10) (
print AS
0123456789

10 input "Input a string";V$ I
20 input "Number of characters"^
30 print leftS(VS,N)
40 goto 10

(
There's also a different variant of LEFTS implemented as an instruction.

LEFT$(v$,n)=t$ Thisinstruction sets the leftmost ncharactersin v$
to t$. If t$ is longer than n, it is truncated to the /
appropriate length. Note that unlike the LEFTS
function v$must be a string variable rather than an
expression.

Example:

(

(

c
10 A$="** Basic"
20 left$(A$.4)= "STOS" f
30 print AS
run

STOS Basic

RIGHT$ (Return therightmost character of a string) (

RIGHT(v$,n) Return the rightmost character in v$. RIGHTS is a
function which reads n characters from the string f
expression v$ starting from the right.

Examples:

printright$("STOS Basic",5)
Basic

A$=right$("0123456789ABCDEF",10) (
print AS
6789ABCDEF

new

10 input"Inputa string";V$
20 input "Number of characters";N

40

c

(

(

30 print rightS(VS.N)
40 goto 10

As with LEFTS there's also another version of RIGHTS set up as a Basic
instruction.

RIGHT$(v$,n)=t$ Set rightmost n characters of v$to t$. Note that v$
should always be a string variable, and that excess
characters in f$are omitted.

Example:

new

10 AS="ST0S **"
20 right$(A$,5)="Basic"
30 print AS

run

STOS Basic

See LEFTS, MID$

MIDS (Return a string ofcharacters from within a string expression)

MID$(v$,s,n) The MID$ function returns the middle section of
the string v$. s denotes the number of character at
the start of this substring, and n holds the number
of characters to be fetched. If a value of n is not
specified in the instruction then the characters are
read up to the end of the string v$.

Examples:

print mid$("STOS Basic",6)
Basic

print mid$< "STOS Basic",6,3)
Bas

new

10 input "Input a string";V$
20 input "Starting Position, Number of characters";S,N
30 print mid$(V$,S,N)
40 goto 10

There's also a MID$ instruction.

MID$(v$,s,n)=t$ This version of MID$ sets n characters in v$
starting from s in the string t$. If a value of n is not
included in this instruction, then the characters are
replaced up to the end of v$.

Examples:

A$="ST0S **"
mid$(A$,6)="Magic"
print AS
STOS Magic

41

mid$(A$,6,3)="Bas"
print AS
STOS Basic

new

10 input "Input a target string ";VS
20 input "Input a substring ";TS
30 input "Starting Position, Numberof characters ";S,N
40 midS(VS,S,N)=TS
50 print V$
60 goto 10

INSTR (Search foroccurences of a string within anotherstring)

INSTR allows you to search for all occurrences of one string inside another. It is
especially useful for adventure games as it enables you to split a line of text into
its individual words. There are two forms of the INSTR function.

INSTR(dS,s$) This searches for the first occurrence of s$ in d$.
If the string is found, then the position of this
substring is returned by the function, otherwise a
value of 0 is returned.

Examples:

print instr("STOS Basic", "STOS)
6

print instr("STOS Basic'V'S")
1

print instr("STOS Basic", "FAST")
0

new

10 input "String to be searched";D$
20 input "String to be found ";SS
30 X=instr(D$,SS)
40 if X=0 then printSS," not found"
50 if X<>0 then printSS;" found at position ";X
60 goto 10

INSTR(d$,s$,p) This version of INSTR finds the first occurrence of
s$ in d$ starting from character number p.

Examples:

print instr(STOS BASIC","S",2)
4

You can change the above example to this new form of INSTR by typing the lines:

25 input "Starting position";P
30 X=instr(D$,S$,P)

Here is an example which splits a line of text separated by spaces, into its
component words.

10 print"Please type a string of characters" : input PS

42

I

(

(

(

I

(

(

I

(

(

(

(

(

(

(

I

I

(

I

(

201=0

30 repeat
40 P1=instr(P$." ",P)
50 if PloO then L=P1-Pelse L=len(P$)-P+1
60 print "Word number ",l;" = ";mid$(P$,P,L): P=P1+1
70 until P1=0

Array Operations

SORT (Sorts all elements in an array)

SORT a$(0)

The SORT instruction allows you to sort all the elements in an array into ascending
order amazingly quickly. This array can be composed of either strings, integers,
or floating point numbers. The a${0) indicates the starting point of the table to be
sorted. This starting point must always be set to the first item in the array (item
zero).

Example:

10 dim A(25)
20P=0

30 repeat
40 input "Input a number (0 to stop)";A(P)
50incP

60untilA(P-1)=0orP>25
70 sort A(0)

80 for 1-0 to P-1
90 print A(l)
100 next I

SORT is often used in conjunction with the MATCH instruction to perform complex
string searches.

MATCH (Find the closestmatch toa value in an array)

MATCH (t(0),s)

The MATCH function searches through a sorted table, and returns the item
number in which the value s was found. If s is not found, then MATCH returns a
negative number. The absolute value of this number contains the index of the first
item which was greater than s. Providing the array is of only one dimension, it can
be of type string, integer or real. Before MATCH can be used the array should
always be sorted using the SORT command.

Example:

new

10 read N

20dimDS(N)
30 for 1=1 to N

40 read D$(l)
50 next I

60 sort D$(0)

43

70 input AS
80 if A$= "I" then for 1=1 to N : print DS(I): next I: goto 70
90 POS=match(DS(0),AS)
100if POS>0 then print"found ",D$(P0S);" in record ";P0S
110if POS<0 and abs(P0S)<=N then print AS,"notfound. Closest to
",D$(abs(POS))
120if P0S<0and abs(P0S)>Nthen print AS.'notfound. Closest to";DS(N)
130 goto 70
140 data

10,"adams","asimov","shaw","heinlien","zelazny","foster","niven"
150 data "harrison","pratchet","dickson"

Note that the MATCH instruction could be used in conjunction with INSTR to
provide a powerful PARSER routine which could form the basis of an Adventure
game.

Memory banks

STOS Basic includes a number of powerful facilities for the manipulation of
sprites, screens and music. The data required by these functions needs to be
stored along with the Basic program. STOS Basic uses a special set of 15 sections
of memory for this purpose called Banks. Each Bank is referred to by a unique
number ranging from 1-15. Many of these banks can be used for all types of data,
but some are dedicated solely to one sort of information such as sprite definitions.
Every program stored in the ST's memory has its own separate set of Banks.

There are two different forms of memory bank: Permanent and temporary.
Permanent banks only need to be defined once, and are subsequently saved
along with your program automatically. Temporary Banks however, are much
more volatile and are reinitialised every time a program is run. Furthermore, unlike
permanent banks, temporary banks are erased from memory by the CLEAR
command.

Types of memory bank

Each memory bank can be one of following different types.

Class Stores Restrictions Type

Sprites Sprite definitions Only bank 1 (1) Permanent

Icons Icon definitions Only bank 2 (1) Permanent

Music Music Only bank 3 (1) Permanent

3D Future 3D extension Only bank 4 (4) Permanent

Set Holds new character sets Banks 1-15 Permanent

Screen Stores a complete screen Banks 1-15 Temporary
Datascreen Stores a screen Banks 1-15 Permanent

Work Temporary workspace Banks 1-15 Temporary
Data Permanent workspace Banks 1-15 Permanent

Menu Menu lines Bank 15 (2) Temporary
Program Machine-code program Banks 1-15 (3) Varies

Footnotes:

(1) Bank is not really general purpose. It is allocated automatically by the
appropriate accessory, or when a bank of this type is loaded.

44

(

(

(

(

(

(

(

(

(

(

(

<

(

(

(2) Reserved automatically by MENU commands. Usable by programs which
don't use menus.

(3) Reserved as either Work or Data. Renamed when program loaded into bank.
See LOAD.

(4) Reserved for future expansion.

You can get a list of the status of the Banks which are currently being used by a
program with the LISTBANK command.

LISTBANK (List the banks inuse)

LISTBANK lists the numbers of the banks currently reserved by a program, along
with their location and size.

Example:

load "BULLET.BAS"

listbanks

Reserved memory banks:
1 sprites S:$055000 E:$066500 L $011500
3 music S:$066500 E:$067300 L SOOOEOO
7 data S:$O67300 E:S069300 L $002000
8 program S:$069300 E:$069BOO L $000800
9 data S:$069B00 E:S06A200 L $000700
10 data S.S06A200 E:$06A900 L $000700
11 data S:$06A900 E:$06AF00 L $000600
12 data S:SO6AF00 E:$06C000 L $001100
13 data S:S06C000 E:$06FF00 L S003FO0

S: = The start address of the bank.

E:= The end address of the bank.

L: = The length of the bank.

As a default all these values are printed out in hexadecimal notation. You can,
however, change the format of the listings into decimal using the command HEXA
OFF

HEXA ON/OFF (Toggle hexadecimal listing)

HEXA OFF Sets bank listings to

HEX ON Sets bank listings to

Example:

load "BULLET.BAS"

hexa off

listbanks

Reserved memory banks:
1 sprites S:348160 E:419072 L7091

3 music S:419072 E:422656 L3584

7 data S:422656 E:430848 L8192

8 program S:430848 E:432896 L:2048

9 data S:432896 E:434688 L1792

45

10 data S:434688 E:436480 L1792

11 data S:436480 E:438016 L1536

12 data S:438016 E:442368 L:4352

13 data S:442368 E:458496 L16128

RESERVE (Reserve a bank)

Any banks used by the sprites, music, icons, 3D extensions, and the menus are
allocated automatically by the system. The RESERVE command allows you to
allocate any other banks which you require. Each different type of bank has its own
individual form of the RESERVE instruction.

RESERVE AS SCREEN bank

RESERVE AS DATASCREEN bank

RESERVE AS SET bank.length

RESERVE AS WORK bank.length

RESERVE AS DATA bank.length

Reserves a temporary bank of memory
for a screen. This bank is always 32k
long.

Reserves a permanent bank of memory
32k long for use as a screen. This screen
is saved along with your program, so it's
great for title screens. See Chapter 7 for
examples of this instruction in action.

Reserves a permanent bank of memory
length bytes long for use as a character
set. See Chapter 8.

Reserves a temporary bank for use as a
workspace length bytes long.

Reserves a permanent bank of memory
length bytes long for use as a work
space.

Note that ban/c may beany number between 1-15. Since banks 1 to 4 are normally
reserved by the system, it's wisest to leave these banks alone. Length is
automatically rounded up to the nearest 256 byte page. The only other limitto the
length of a bank is the amount of available memory.

Type the following lines:

new

hexa off

reserve as screen,5

listbank

Reserved memory banks:
5 screen S: 950016 E: 982784 L: 32768

This reserves bank number 5 as a temporary screen. Now type:

clear

listbank

As you can see, bank 5 has now been completly erased. In order to create a more
permanent bank, enter:

reserve as datascreen 5

46

c

(

(

(

(

(

(

I

(

(

(

(

(

(

(

(

listbank

clear

listbank

Reserved memory banks:
5 dscreen S: 950016 E: 982784 L: 32768

Bank 5 is totally unaffected by the clear command. We'll now demonstrate how this
screen can be loaded with real data.

screen copy logic to 5 Copies the current screen to bank 5.
els Erase screen

screen copy 5 to logic Copies bank 5 back to current screen, and
restores it.

For more information about SCREEN COPY see Chapter 7.

Copying banks

When using these memory banks, it's often useful to be able to transfer the
contents of one bank to another. This can be done with a special BCOPY
command.

BCOPY (Copy thecontents of a bank to another bank)

BCOPY #source TO #dest

BCOPY copies the entire contents of bank number source into bank number dest.
As usual source and dest can range from 1-15

Example:

BCOPY 5 TO6 Copies bank 5 into bank 6

BGRAB (Copy some orallbanks from a program to the current program)

BGRAB prgno [,b]

BGRAB copies one or more banks stored at program number prgno into the
current program. Program numbers between 1-4 denote one of the four programs
which can be stored in memory at any one time. Numbers from 5-16 represent an
accessory.

If the optional bank number b is not included, then all the banks attached to
program number prgno are copied into the current program, and any other banks
of memory which are linked to this program are erased. Otherwise, the bank
number specifies one bank which is to be transferred into the current program. All
other banks remain unaffected.

This instruction is used to great effect by many of the accessories on the disc.

Deleting banks

ERASE (Delete a bank)

ERASE b

47

ERASE deletes the contents of a memory bank b. As usual b can range from 1-
15. Any memory used by this bank is freed for use by your program.

Bank parameter functions
=START (Get the startaddress of a bank)

bs=START(b)

This function returns the start address of bank number b in the ST's memory.

START(b) Returns the start of bank b in the current program

START(prgno.b) Returns the start of the bank number b in program
prgno.

Note that bean range from 1-15, and prgno from 1-16. Program numbers greater
than 4 refer to accessories.

Example:

reserve as screen 10

print start(IO)

=LENGTH (Getthe length of a bank)

bl=LENGTH(b)

This function returns the length in bytes of bank number b. If a value of zero is
returned by LENGTH, then bank bdoes not exist.

LENGTH(b) Gets the length of bank b in the current program.

LENGTH(prgno.b) Gets the length of bank b in program number
prgno.

Example:

new

reserve as screen 5

print length(5)
32768

erase 5

print length(5)
0

Saving and loading
SAVE (Save partor allof a STOS Basic program)

The SAVE instruction provides a general and straightforward way of saving a
STOS Basic program on to the disc. Unlike the equivalent instruction found in most
other versions of Basic, STOS also allows you to save a variety of other types of
information. This is determined by the extension of the filename used in the SAVE
command. Here is a summary of the various data types, along with their
extensions.

48

(

<

(

(

(

<

I

(

I

(

Type of Information Extension Comments

Basic programs .BAS Normal Basic program
Accessories .ACB Load using ACCLOAD
Images .PI1, PI2orPI3 Degas format screen shot.

.NEO Neochrome format. Only in low
resolution.

Memory banks .MBK One memory bank.
.MBS All current banks.

Basic variables .VAR All currently defined variables
Listings .ASC In Ascii format
RUN-ONLY programs .PRG Executable directly from desktop.

If none of these extensions are used, then STOS adds .BAS to the Filename
automatically, and saves the current Basic program on to the disc. Any existing
program of the same name will be renamed with the extension .BAK.

We'll now discuss each of the possible options in a little more detail.

SAVE "Filename.BAS"

This saves the program with any current memory banks on to the disc under the
name Filename.BAS. If a file with the same name already exists, this is over
written.

SAVE "Filename.ACB"

Saves the Basic program as an accessory. This program can be loaded using
ACCLOAD, and accessed from the HELP menu at any time.

SAVE "Filename.PI1"[,address of screen]
SAVE "Filename.PI2"[,address of screen]
SAVE"Filename.PI3'[.address of screen]

This instruction saves a copy of the screen to the disc in Degas format. The
different extensions indicate the resolution of the image.

PI1 = Low resolution

PI2 = Medium resolution

PI3= High resolution

The Screen address is optional. Ifit is omitted from the statement, then the current
screen will be saved to the disc.

Example:

save "screen.PI1"

els

load "screen.PI1"

See LOAD.

Anyscreen saved in this manner can be subsequently edited directly from Degas.

SAVE "Filename.NEO"

Saves a low resolution screen in Neochrome format. This file can be either loaded
into a Basic program, or modified from within Neochrome.

49

save "Filename.MBK",b

This version of SAVE stores the memory bank with number b on to the disc. Itcan
be loaded back again using LOAD. An example of this function can be found in the
section on LOAD.

(

i
i

save "Filename.MBS" /

<

Saves all the banks allotted to the current program in one large file. See LOAD
".MBK" for more details.

save "Filename.VAR"

SAVE "Filename.VAR" provides you with the ability to save all the currently
defined variables directly ontothedisc. Again see LOAD for an example of this (
function.

save "Filename.ASC"

Lists the Basic program to a file inAscii format. This filecan now be edited outside
STOS Basic by a wordprocessor or a text editor. Note that the Banks of memory
are not output by this function. We've used this instruction extensively in the
creation ofthis manual. Most ofthe included listings are derived directly from the (
original programs.

BSAVE (Save a block of memory inbinary format)

BSAVE fileS, start to end

c

(

The memory stored between startand end is saved to the file file$. The data is
saved out as it is in memory with no special formatting. You can use this function (
for various tasks one of which would be to save out a character set from bank 5.

bsave "\STOS\8X8.CR0", start (5)to start (5)+length (5)

See BLOAD

Run-only programs

save "Filename.PRG''

This option saves a version of your program in a special format which allows it to (
be loaded and executed straight from the Gem desktop. In order to use this
function, you should first prepare a disc using the STOSCOPY.ACB accessory.
This makes a copy of the entire \STOS\ directory on the disc. This disc can now
be used to hold your run-only program. NEVER SAVE ARUN-ONLY PROGRAM (
ON THE ORIGINAL SYSTEM DISC!

When you save one of these programs, two files with the same name are
created on the disc. One file has the extension .BAS and is stored in the \STOS\
folder. Thesecondfile lies outside thefolder, andhas the .PRG extension. It isthis (
file which can be executed from the GEM desktop. When a run-only program
terminates or an error occurs, it immediately returns to Gem.

As anexample, generate adisc with the correct files using afreshly formatted disc (
in conjunction with STOSCOPY.ACB accessory. Now load the sprite editor into
memory using the line:

50

c

(

(

(

I

I

(

I

I

I

(

(

I

(

»

i

(

load "sprites.acb"

Place the save disc into the drive, and type:

save "sprites.prg"

At this point STOS Basic will ask you to confirm that you really wish to save this
program. Enter Y or y at this prompt.

You have now installed a run only version of the sprite generator, which can
be executed directly from the Gem desktop. To test this, quit from STOS Basic
using the SYSTEM command, and double click on the file sprites.prg. This file is
now loaded, and the sprite editor is run, just as ifyou were executing itdirectly from
STOS Basic. This program can be terminated using the menu option QUIT or
Control+C.

Notes:

1. Any attempt to execute the STOS Basic editor from a run-only program will
crash the ST completely.

2. The files PIC.PI1 and PIC.PI3 in the STOS folder contain low and high
resolution pictures which will be displayed automatically during loading. Ifyou
like, you can omit these files from the disc to save space.

3. The default colours used by your program will be the standard ones used by
the Gem Desktop, and not the normal STOS Basic colours.

4. Any of your own programs installed as RUN ONLY may be freely distributed
or sold providing you acknowledge that they were written in STOS Basic and
use the protect accessory when giving the disc to anyone who has not bought
a copy of STOS Basic.

5. If you place the run-only program in the \AUTO\ folder it will load and run
automatically, whenever the disc is booted up.

6. For more information see Appendix B.

LOAD (Load part orallofa STOS Basicprogram)

The LOAD instruction complements SAVE by allowing you to enter either a
program or data file from the disc. Here is a list of the various types of files which
may be loaded using this command.

Type Extensions allowed

Basic programs .BAS, .BAK, .ACB, .ASC
Images " NEO, .PI1, .PI2, .PI3
Memory banks .MBK, .MBS
Variables .VAR

Machine-code programs .PRG

See SAVE for a fuller discussion of these extensions.

Basic Programs

LOAD "Filename"

51

c
Loads a Basic program. Assumes the extension ".BAS"

LOAD "Filename.BAS" (
Loads a Basic program with the extension ".BAS". Identical to LOAD "filename"

Example: (

load "config.bas"
run

LOAD "Filename.BAK"

Loads a backup of a Basic program created using the SAVE "Filename" instruc
tion.

LOAD "Filename.ACB"

This loads an accessory as a normal Basic program. It can now be edited and (
debugged in the usual way.

Example:

load "type.acb"
list

(

I

(

LOAD "Filename.ASC" {

This option lets you load an Ascii version of a Basic program, created using either
a text editor, or another version of Basic. Note that this program must have line
numbers, and be in plain Ascii. First Word users should turn the WP option off (
before exporting a program into STOS Basic. It is important to realize that this
instruction does not erase the current program. Instead the new fileis merged with
this program. ^

The ability to load a Basic program in this format can be used toallow you to (
generate new STOS Basic listingswithin a Basic program. This has been used by
the sprite editor to dump the contents of a sprite bank onto the disc in the form of
a list of DATA statements.

LOAD "Filename.MBK"[,b]
(

This loads a single data file into a memory bank. Ifthe optional destination of this
data is included, then thefile is loaded directly into Bank number b, where bcan y
range from 1-15. Otherwise the file is loaded back into the bank from which itwas
saved. Note that any existing data in this bank is erased during this loading
process. Furthermore, the LOAD instruction automatically reserves a bank of the
appropriate type if it has not already been defined. (

Examples:

new

load "sprdemo.mbk
load "musdemo.mbk

load "icondemo.mbk

listbank (

LOAD "Filename.MBS"

52

(

(

Loads a series of banks stored in a single file.These banks are loaded directly into
their original bank numbers. If these banks already exist, the old versions are
erased.

Place a fresh disc into the drive, and type:

save 'BANKS.MBS"

new

listbank

load "BANKS.MBS"

listbank

As you can see, all three banks have been loaded in one operation.

Variables

LOAD "Filename.VAR"

This loads a list of variables stored on the disc using SAVE "filename.VAR". Any
currently existing variables are replaced. Note that this instruction affects ALLthe
variables in the program.

Example:

new

10dimA(100)
20 for X=1 to 100

30 A(X)=X
40 next X

50 save "numbers.VAR"

Run this program with a disc in the drive. Now type in:

new

load "numbers.VAR"

for X=1 to lOO-.print A(X):next x

See how the array A has been automatically defined by the load operation.

Images

LOAD "Filename.PI1"[,address of screen]
LOAD "Filename.PI2 "[.address of screen]
LOAD "Filename.PI3"[,address of screen]

The above commands load a Degas format picture file from the disc. Ifthe address
of the screen is not included in the statement, then this image will be loaded into
the current screen. Otherwise itwill be loaded intothe screen at address. Normally
this address will point to the start of a memory bank defined as either a SCREEN
or DATASCREEN.

Remember that PI1 denotes a low resolution screen, PI2 medium resolution,
and PI3 high resolution.

Example:

Place the disc containing the \STOS folder into your disc drive and type in:

53

(
els

If you have a colour monitor you can now type: f

modeO

load "\ST0S\PIC.PI1

and for a monochrome monitor:

load "\ST0S\PIC.PI3"

These commands load the STOS title screen into the ST's memory.

BLOAD (Load binary information into a specifiedaddress or bank)

This function load in binary data without altering the incoming information. There
are two forms of this function.

(

I

(

BLOAD fileS,addr The file file$will be loaded into the address addr. f

(

(

(

4

Machine-code programs /

BLOAD fileS, #bank file$ is loaded into bank, thus the address from
which the data resides once it has been loaded is
the start address of bank. This start value can be

found with the command:

bkaddr = start (bank)

To see an example of this command insert the accessory disc and type in the line:

bload "mouse.acb", physic

which loads in the mouse accessory at the memory address of the physical
screen.

See BSAVE.

LOAD "Filename.PRG'.b

This instruction allows you to load amachine-code program into a memory bank f
number b. Any program you wish to use in this manner should be stored inTOS
relocatable format, and must be placed in a file ending with the ".PRG"extension.
DO NOT TRY TO USE GEM-BASED PROGRAMS FOR THIS PURPOSE! You
should also avoid accessing any of the memory management functions from /
Gemdos. All other functions may be used, providing you take care.

You can call one of these functions using the CALL instruction like so:

CALLSTART (Bank number)

See Appendix C for more details.

Note that when you copy a bank containing a program into another bank, this is
automatically relocated for you.

54

(

(

(

(

I

I

(

<

<

(

The accessories

The STOS Basic accessories are special programs which lie dormant in the ST's
memory until you call them up using the Help key.

ACCLOAD (Load an accessory)

Before you can use one of these accessories you must first load it into memory
using the ACCLOAD command.

accload "name"

ACCLOAD loads the accessory from the file name into memory. Any normal Basic
programs you have entered will be completely unaffected.

Example:

accload "sprites.ACB"

You can use this function to load all the accessories stored on a disc into memory
at once. In order to do this, simply specify a name of *.

Example:

accload "*"

Note that you can also use CONFIG.BAS to install a list of these accessories
r permanently. This is very wasteful of memory and should be used with caution by

users rpstrirtprl tn p QtpnHprH ^PO.QTusers restricted to a standard 520ST.

ACCNEW (Remove allcurrently installed accessories)

ACCNEW erases all the accessories from memory. It is often used in conjunction
with ACCLOADto remove any unwanted accessories before loading a new one.

Example:

accnew:accload "*"

See also ACCNB.

Calling an accessory

A listofthe accessories currently available can be found by pressing the Help key
at any time. This displays a list of function keys alongside the accessories. Inorder
to call the accessory, simply press the appropriate key. Note that these keys only
call up the accessory from the HELP menu.

The sprite definer

This accessory is stored in the file SPRITES.ACB and provides a quick and
convenient method of creating or editing lists of sprites. A full explanation of this
program can be found in Chapter 4.

The character definer

The character definer in FONTS.ACB is used to create one of 13 user-defined

55

(

(

(

I

(

I

<

(

character sets. These sets can be accessed within a STOS Basic window, or can
directly replace the existing character set. See Chapter 8 for more details.

The icon definer

(

(

ICONS are special 16x16 characters which can be displayed in maps, or
incorporated into menus. The ICON definer in ICONS.ACB allows you to create (
up to the 255 of these objects.

The music creation utility

MUSIC.ACB holds a powerful and effective tool for composing music or sound
effects that can be used withinany STOS Basic program. Any music created with
this utility can operate independently of the rest ofthe program. See Chapter 5 for
a thorough examination of this accessory.

Compact

The screen compactor is a simple way ofcompressing a screen intoa small space.
Typical compaction ratios vary from 30 per cent to up to 75 per cent. The
COMPACT.ACB accessory provides an effective method of performing these
compressions, and saving the results on to the disc. These files can then be /"
expanded with the UNPACK instruction. See Chapter 7. *

Scan

Opens a window in the centre ofthe screen and promptsyou for a keypress. The
Scancode and the Ascii code of this key are then displayed.

Ascii

Displays an Ascii table on the screen. Note that the row and column numbers are
in hexadecimal. Convert to decimal using $.

Example:

print SFF

Mouse

(

(

(

(

(

(

(

As you move the mouse pointer around on the screen, the current Xand Y [
coordinates are displayed in the Mouse window.To exit fromthis accessory click
once on either of the mouse keys.

Type (

Prints an Ascii file on the disc to either the screen or the printer.

Stoscopy (

This accessory copies the \STOS\ folder along with its contents on to a new disc.
Since this function requires you to input the system disc intothe current drive, it's (
a good idea to set the write protect tab on your copy of the system disc before
executing STOSCOPY. Full instructions are included along with this program.

56 (

(

(

I

<

(

<

<

<

<

(

(

(

(

<

(

(

Dump

This accessory allows you to edit the contents of any part of the ST's memory.
Each byte of memory is displayed in both Ascii and hexadecimal formats. To edit
a memory location move the cursor over the appropriate point and input your new
data. When you have finished, press Return to enter the changes into memory.
These changes can be reversed by pressing Undo.

Arrow keys Move the cursor around the current screen.
Insert Displays the last page of data.
Home Displays the next page of data.
Enter Enters any changes into memory.
Undo Reverses the changes.

Note that the MENUS allow you to examine and change any of 16 possible
memory banks associated with each of the four editible programs in memory.

Creating an accessory

The only major difference between a STOS Basic accessory and a normal
program is in its ability to be called up using the Help menu. In fact, these
accessories are really just a specialised form of the multiple programs Imentioned
earlier. It's often useful for an accessory to be able to tell whether it is executing
as an accessory or directly as a Basic program. This can be done with the ACCNB
function.

ACCNB (Get accessory number)

ACCNB returns a value of zero ifa program is not installed as an accessory, and
a number between 4 and 15 if it is. This number represents the program number
of the accessory.

Example:

new

10?accnb

20 wait key

Save this program as an accessory using the line:

save "acctest.acb"

Now type:

accnew

accload "acctest.acb"

If you run the program directlyfromthe editor then the number zero will be printed.
But ifyou call up the accessory named acctest from the Help menu, the number
which is displayed will be equal to the function key you pressed + 4.

Now for a simple example of an accessory.

new

10 windopen 1,22,5,18,4,5
20 curs off

57

30clw

40 print"DATE: ";dateS;
50 locate 0,1
60 print"TIME:";time$;
70 if inkey$="" then 50
80 curs on : default

Save this under the name CLOCK.ACB and load as before.

This prints out the current time and date on the screen.

Ifyou do not have a clockcard fitted, the time and date must be set using a linelike:

timeS="16:01:00":dateS="28:06:88"

A number of rather more extensive examples of these accessories can be found
on the program disc. Feel free to play around with them as much as you like.

58

(

(

(

(

<

<

c

(

(

(

(

(

(

STOS Basic allows you to move and animate up to 15 sprites at any one time.
These sprites can represent anything from space ships to monsters, and can be
created using a powerful sprite definer included as part of the STOS package. All
sprite movements and animations occur completely independently of the rest of
the system. This means that your program can be doing something totally different
whilst the sprites are whizzing around on the screen regardless.

The Sprite Definer
STOS incorporates an extremely impressive sprite definition utility which allows
you to quickly create large sets of sprites for use by your Basic programs. You can
load this designer from the accessory disc with either:

load "sprite.acb":rem Load as a normal Basic program (Execute with RUN)

accnew:accload"sprite":rem Load as an accessory (Execute from HELP
menu)

Because of the memory constraints on a standard 520 ST you should always
remove allother STOS Basic accessories from the system before using ACCLOAD.
Furthermore, it would also be a good idea to boot STOS Basic directly from the
AUTO folder, as this will save you an additional 32k of memory.

It is important to note that designer runs in LOW resolution only. Don't panic
ifyou're restricted to a mono monitor! Aseparate version of the package has been
especially provided for you on the accessory disc -this will happily work in all three
resolutions. Although this may seem a little less powerful than designer, it is still
capable of generating some stunning effects, and indeed many of the example
sprites on the disc were created using just this utility.

Ifyou have enough available memory it's best to install the sprite editor as an
accessory, as this enables you to access it instantly from within your STOS Basic
program by pressing the <HELP><F1> keys.

On startup, designer automatically grabs any sprites which are currently
employed by your program. You then simply remove the title screen with the left
mouse button, and the sprite editor is ready for business.

L3
•--.. ^

m
IT-*"

u
i

2

i s •
HP—i •••

•••i J•••
•iiiAiiii
•Hl^JanxH:

m
LEFT P.IL.HT

£ A*"'

J*<

6 •>

un
DO •

<a •>»

59

At first glance the sprite designer may seem rather daunting. Once you have
mastered the basic principles however, using it will quickly become second
nature.

The screen can roughly be divided into six separate sections. These have
been numbered from 1-6 in the above diagram.

Here is a breakdown of their various functions.

1 The system menu

The system menu contains nine icons which control the main features of the
designer. Typical options available from this section are load/save, change size,
and a clever facilty to allow you to design an animation sequence. These
commands can be accessed directly from the screen by moving the mouse pointer
over the appropriate icon and pressing the left button. A full list of the system icons
can be found on page 64, along with a detailed explanation of each function.

2 The drawing area

This is the area on the screen in which your sprite will be drawn. Points can be
plotted at the current cursor position by pressing either the left or the right mouse
buttons. As a default the right key is set to the background, and the left key to the
colour white. You can change these colours whenever you like using a special
Colour window.

3 The scroll zone

The scroll zone allows you to see the relative size of your sprite, and scroll it in all
four directions. This scrolling can be activated at any time by clicking on one of four
different icons which border the zone:

_^t (Scrolls the sprite one pixel up)

(Scrolls the sprite one pixel down)

i (Scrolls the sprite to the left)

h> (Scrolls the sprite to the right)

4 The colour window (

<

This is divided up into two sets of 16 colours. One set of these colours is for the
left mouse button, and the other is for the right. To select a a new colour for the
mouse, you simply move the mouse pointer over the new colour and press the left
button. Your current choice will now be highlighted on the screen.

5 The tools section

The tools area contains 18 different drawing icons. These include facilities to

60

(

(

(

(

(

(

(

<

(

(

(

(

(

C

(

(

I

I

I

(

I

(

(

(

(

(

(

(

(

<

create circles, ellipses and bars as easily as a single point. There's also an
extremely useful undo feature which immediately reverses the effects of your last
command.

You can choose one of these functions by simply clicking on the appropriate
icon. The shape of the mouse pointer will now be changed accordingly to indicate
the option you have selected. Most functions require you to first set the dimensions
of an object before it can be drawn on the screen.

You normally specify the size of an item by keeping the left button pressed
while moving the mouse. When you release this button, the object can be moved
about with the mouse. You can now draw as many copies of the design on the
screen as you wish by pressing the left button at any point in the drawing area.
Incidentally, ifyou want to draw another object you can immediately reset the size
back to zero with the right mouse button.

6 The Selection window

The selection window is used to display all the sprites which are currently installed
in the ST's memory. Several of the system options use this window to allow you
to choose one of a number of images which are currently held in the ST's memory.
You can scroll through these sprites using the following icons:

(Smoothly moves the list back one place)

(Smoothly moves the list forward one place)

4
(Quickly moves the sprites backwards)

»
(Quickly moves the sprites forwards)

W
(Moves to the first sprite in the list)

&
(Moves to the last sprite in the list)

The tools icons

The tool icons provide you with a comprehensive set of drawing operations which
make it extremely easy for you to design your own sprites.

61

&.
(Plot a point)

(

(
In order to plot a point at the current mouse position, simply click on either the left
or right mouse buttons. The colour of these points can be independently set from
the colour window. (

A
(Draw a line)

This draws a straight line in the drawing area using the colour assigned to the left
mouse key. You first stretch the line to the length desired by pressing on the left
button while moving the mouse. When you release this button, the line will be
assigned directly to the pointer, and you can now draw any number of copies on
the screen.

Incidentally, if you move the mouse outside the drawing area, the pointer
reverts to an arrow, and can be used to access any of the other commands without
interferring with the current setting. This enables you to change the colourofthe
line youare defining directly from the colour window. Whenyoumovebacktothe
drawing area, the cursor is immediately replaced by a line in the new colour.

As a general rule, all the drawing options can be employed using the following
technique.

1. Set the size and shape of the object by pressing the left button at the same
time as you move the mouse.

(

c

(

(

(

Release this button to assign the currently defined object to the mouse /
pointer.

Move the mouse to the position in the sprite where you wish your object to
be placed and click on the left mouse button. You can now repeat this step /
several times to draw a number of copies of the object on the screen.

4. Remove the object from the mouse by pressing the right button.

(Draw a hollow box)

This draws a hollow box which can be expanded and contracted using the left
mouse button as explained above.

o
(Draw a hollow circle)

Draws a hollow circle whose radius can be specified by holding on the left mouse
button whilst moving the mouse.

o

62

(

(

(

(

(Draw a hollowellipse) (

<

Drawsahollowellipse.Thewidthoftheellipsecanbespecifiedbypressingthe
leftbuttonwhilethemouseismovedeitherleftorright.Similarly,theheightcan
besetbymovingthemouseupordown.

CL
(Erasedefinition)

Theclearoptionerasesthecurrentdrawingcompletely.Astheeffectofthis
commandispermanent,youarealwaysaskedforconfirmationbeforethesprite
iserased.Notethatthishasnoeffectonanyspriteswhichhavebeenpreviously
installedintheST'smemory.

&
(Fillanarea)

Fillpaintsanyhollowsectionofyourspritewiththecolourassignedtotheleft
mousebutton.Tousethisfunction,movethemouseinsidethepartofthedrawing
youwishtopaintandpresstheleftbutton.

EPS
(Choosefillpattern)

Theseoptionsallowyoutochoosewhichofthemanypossiblefillpatternswillbe
usedbyanysubsequentdrawingoperation.Thecurrentpatternisdisplayedina
smallboxpositionedimmediatelybelowtheTOOLicons.

a

•

(Choosethepreviousfillpatternfromthebox)

(Choosethenextfillpatternfromthebox)

(Drawafilledbar)

Similartoboxbutdrawsafilledbarratherthanahollowbox.

(Drawafilledcircle)

Thisdrawsafilledcirclewhichisdefinedinasimilarmannertothatusedbycircle.

(Drawafilledellipse)

HDrawsafilledellipse.Seeellipseformoredetails.

63

un
DO

(Undo the last change)

(

(
Undo is a very useful function indeed! This is because it enables you to instantly
reverse the effect of your last drawing operation from the screen whenever
necessary. Undo can beaccessed either from the tools area, ordirectly from the (
keyboard using the <UNDO> key.

3L
(Reduce sprite)

(

This function allows you to reduce the entire sprite intothe top lefthand corner of
thescreen.Themagnitude ofthe reduction canbe set using the left mouse button. /
Warning! Reduce is not the same as Change size. Instead ofsimplychanging the
definition of the sprite, reduce compresses the actual image. Some of the picture
quality is therefore lost every time you perform this operation. Note that if you
reduce a sprite and don't like the results you can easily return the sprite to its I
original size with <UNDO>.

*k
(Zoom sprite)

Zoom expands the sprite up to twice its initial proportions. As with reduce the size
of the zoom can be easily specified with the mouse. After the sprite has been
expanded, you must always confirm the zoom by pressing the left button. Also
note that you can use this option several times in sucession to enlarge the sprite
to any size you wish. Do not confuse with change size.

#
(Reverse sprite)

Reverse mirrors the sprite from left to right.

(Invert sprite)

#
The invert icon flips the sprite from top to bottom

(Rotate sprite)

This rotates the sprite in 90 degree steps. Note that rotate willonly work ifthe width
of your sprite is exactly the same as its height.

The system icons

The system icons control all the major features of the system, and allow you to
specify a number of important attributes which define the appearance of your
sprites.

64

I'll deal with these options in turn, starting from the top of the menu line and
continuing to the bottom.

Cut and Paste

•....<
(Block menu)

The block icon gives you access to an impressive array of cut and paste
operations. Here is a list of the powerful features supported by this command.

EH
(Return to the main screen)

You can also click on the right mouse button to achieve the same effect.

#
(Block defined)

This option is highlighted if a section of the screen has been previously cut.

X
(Define a block)

You use this option to copy a section of the screen from one place to another. You
first choose the area you wish to cut from the image by enclosing it with a
rectangular box. Press the left button on the corner of this section and move the
mouse cursor to specify its size. When you now release this button the block will
be cut, and a copy stored in the ST's memory. If the erase option has been
previously set, the original contents of the zone will be cleared from the screen
using the background colour. You can then copy this block to any point on the
screen with the mouse.

Qi
(Opaque toggle)

If this option is OFF then the background of the block will be transparent.
Otherwise it will be OPAQUE.

<B
(Cut and erase)

Erase informs the system that the source image will subsequently be erased from
the screen immediately after a CUT operation is performed.

3
(Grab bottom right)

Grabs the block by its bottom right corner.

(Grab the upper left)

•
65

Grabs the block using its upper left corner

(Grab upper right)

Grabs the block using its upper right corner

tn
(Grab bottom left)

Grabs the block using its bottom left corner.

Note that all the usual features of the system such as Undo and Scroll also remain
available within this mode.

Creating an Animation sequence

(Animate menu)

«*•
This option enables you to animate a sprite, and then play around with it until you
are happy with the results. Just to make things easier, it automatically displays the
exact string which would be used to achieve the same effect from the ANIM
instruction.

When you enter this mode, the following screen is displayed:

tea
tUI
iUI
tui
IWI
m
iui fln imati on s t r i ng

Jjfce

H®H
<

« I I
>

»

*»
"%% d3 ijr»

wJerck LCftCi LOfiD
"' \ GF;HL NEC OEGFiS

The first thing you notice about this screen is that the original systems icons have
been completely replaced by the following list:

E^S
(Return to main menu)

Reverts back to main menu. Also executed by pressing the right mouse button.

66

(

(

(

(

(

(

(

(

c

c

c

c

(

c

(

(

(

I

<

I

(

I

1

I

(

(

t

<

(

(

A.:
(Animate 1)

Choose the First of six separate animation sequences.

(Animate 2)

Choose the Second animation (...and so on up to six)

4j (Erase film)

Erases the whole of the current animation.

(Delete frame)

:©

Deletes a single frame from the animation.

In order to create your animation sequence, you first need to select the number
of frames to be animated. This can be done by simplyclickingon the appropriate
sprite in the Selection window with the left mouse button. Your sprite will now be
added to the current progression, and the string associated with itwill be displayed
on the screen. As a default the animation takes place at the centre of the drawing
area. You can however move this display anywhere else you like on the screen
using the mouse.

Controlling the Animation
The effect of the animation is controlled from a special dialogue box positioned to
the immediate right of the selection window. At the top of the box is a line
comprising of four arrows and a number. The number in the centre indicates the
delay in 50ths of a second between the last image in the sequence and the next
one you select. You can change this number up or down by clicking on the inner
arrows.

Youcan also highlightany single animation string using the mouse cursor. The
speed setting of this string will now be altered whenever you press the inner
arrows, allowingyou total control over the speed ofeach individualanimation step.

The second set of arrows on the control panel change the speed of the
animation as a whole. They do this by adding or subtracting one unit of time from
all the animation strings you have defined. It is important to note that this option
retains any differences between each of the separate stages.

Changing the direction
The second line of the dialogue box lets you change the direction of the animation,
and also provides you withthe ability to step through your animation a single frame
at a time. There are three different options available from this section.

(Forward animation)

67

0

Executes the animation string from left to right.

(Reverse animation)

Executes the animation string from right to left.

(Step-by-step animation)

When this is set to ON, clicking on the mouse (while the pointer is outside the
control panel) executes a single animation step.

Displaying a background screen

The finalset of options enable you to load a screen in either Degas or Neochrome
format into the background. This can now be displayed along withyour animation
using the BACKGRND icon. Warning! These screens overwrite any pictures you
have loaded with the Grab image option.

Grabbing sprites from the disc

(Grab image)

This command enables you to grab sprites directly from a file in either Degas or
Neochrome format.

There are seven possible options.

(Return to main menu)

—••' | m

Returns you back to the main menu

e>
(Grab image)

Displays the current pictureon the ST's screen. Inorder to grab a sprite from this
picture you always need to follow the steps outlined below.

1. Define the size of your sprite by enclosing it with a hollow rectangular box.
Asyou movethe mouse with the left buttonhelddown, the dimensionsofthis
box will expand and contract. When you release the button the dimensions
of the sprite are set to the current size.

2. Move the box over the part of the image you wish to grab.

3. Grab the contents of this box into the sprite bank by pressing the left button.

68

(

(Grid on/off toggle)

When this toggle is ON the grab can only start on word boundaries. This helps
when grabbing sprites that are snapped onto a boundary.

caTc

(Auto insert toggle)

If this option is ON the grabbed sprite will be transfered directly into the store.

(Grab from Neochrome picture)

Reads a Neochrome file offthe disc. If the Get Palette option has been selected
then the palette is loaded automaticallyalong with the picture.

t'E&ni.
(Grab from Degas picture)

Loads a Degas file offthe disc. If the Get Palette option has been selected then
the palette is loaded automatically along with the picture.

(Get palette duringgrab)

Loads the current palette ofcolours with the settings used by the new picture.

To exit from this mode click once on the right mouse button.. w ^....i hviii iiiiu inuuv v^muiv wiio^ UM L1I& ll^lli IIIUUOC UU ILWI I.

Grabbing a sprite from a program

II!
(Grab from the program file)

Thisenables you tograb a sprite out ofan programstored ina disc file. Unlike Grab
image, this file doesn't have to be in any particular screen format at all. It can in
fact, be anything from yourfavourite commercial game to a sprite file generated
by a different editor.

(Grab image)

Select this to grab a sprite from the loaded file.

(Select and grab from a file)

This erases thecurrent screenand loadspartofthefile into theST's memory. The
contents of this file is now displayed in the form of a screen image.

69

W:

At the bottom of the screen lies the main control panel.

•f
RNIMHLS.MBK
P: 168^ U: 3

A.

SAVE
NEC

SRVE
CiEGRS ML A

:Qnx "f-ULl

As you can see, two numbers are displayed directly underneath the name ofyour
file.

This number indicates your position in the file. Note that since the designer loads
each file in 16k chunks, there is no real limit to the size of the file you can inspect
with this function.

W denotes the current screen width, and can vary from 1 (very thin) to 20 (Full
screen). The width can easily be changed by clicking on the icons situated just
beneath the W. Youcan also redisplay the full screen withthe Full icon. The width
option is needed because differentgames store sprites in different formats. As a
general rule, if the screen you are currently displaying looks like garbage, try
altering its width - you could well be astonished at the results.

Searching through the file

On the right of the screen lies two sets of direction arrows which enable you to
scroll through the file in search of some useful images.

The single arrows move the display through the file either a line (forthe up/down),
or a single byte (left/right) at a time.The fourdouble arrows workinunits ofeither
10 lines or 8 WORDS, depending on the direction of the motion.

Once you've found something interesting, you can save the entire screen using
the Save Neochrome or Save Degas options.

You can also grab any individual sprite fromthis image. Firstpress the rightbutton
to remove the control panel. Now select the sprite with the left button in the same
way as with the grab image command.

Finallythere is the Quitoption.This returns you to the main menu withouterasing
the file you are inspecting. The next time you enter Grab programs, your current
screen will be waiting for you at exactly the same point.

70

(

(

(

I

(

(

I

(

<

<

I

I

I

I

(

I

<

(

The FILE menu
(Disc file menu)

This is the menu which is used to save and load your sprites to the disc. These
sprites are always stored in memory bank number 1. See RESERVE for more
details.

(Use palette)

Whenthis option is ON all files saved will have the current colour palette saved
with them. Files loaded into the editor will change the current palette.

(Load a sprite file)

This loads a set ofspritesfrom the disc. These are placed in bank1 and replace
anyotherspriteswhich werepreviously occupying thisbank.Notethat if youhave
selected the Palette option, then the palette used by the sprites will be loaded
automatically by this function.

(Merge a sprite file)

This command appends a sprite bank held on the disc to the one which is stored
inmemory. Warning: Mergeonlycombines the sprites stored in LOW resolution.
Like Load, the palette will be amended if you have set the Palette option to ON.

-43
(Save)

SAVE saves thecurrent contents ofspritebank1tothedisc. Warning: Any sprites
you wish tosave must first be placedinthe sprite bankwith the Put Spriteoption
before this function is called - otherwise your data will be lost.

'flS
(Save as)

Saves your sprites under a new filename.

(Quit)
QUIT

Leaves the sprite designer, losing any sprites you have defined.

(Quit &grab)
QUIT

£
GRAB

71

This option only makes sense ifthe designer has been executed as an accessory.
Quit & Grab then leaves the definer, and copies the sprites you have defined
straight into the current program.

Changing the Hot Spot

(Hot Spot menu)

Each sprite is manipulated on the screen usinga special pointcalled the HotSpot.
This can be changed to anywhere inside the sprite using the Hot Spot Menu. To
see the current setting, move the mouse into the drawing area. The hot spot will
now flash continually on the screen.

In order to make life easier for you, a number of commonly-used settings have
been assigned to the icons.

(Upper left)

Set hot spot to the upper left hand corner of the sprite.

(Upper middle)

Set hot spot to the middle of the upper line of the sprite.

(Upper right)

Set hot spot to upper right corner.

(Bottom left)

Bottom left corner.

(Bottom middle)

Q
Middle of bottom line.

(Bottom right)

Bottom right corner.

(Centre)

LT3

72

i

<

(

(

(

(

(

(

(

(

This positions the Hot Spot to the centre. One useful side effect of this is to indicate
the precise centre of the sprite. Byscrolling the sprite using the scrollwindow,you
can therefore use this feature to neatly arrange your sprite on the screen.

Changing the palette

This can be achieved with the RGB option will allows you to specify one of 512
possible shades for each of the 16 available colours.

<2J> (Alter palette)

To use this feature, first click on the colour you wish to change in the LEFTcolour
window. You can also select the colour by clicking on any individual point in the
drawingarea. Nowmove the Red/Green/Blue sliders to set this colour to a specific
value. If you wish to reverse the last colour setting you can as usual, click on the
UNDOoption. Finally press the right mouse key to return back to the main menu.

Changing the size of the sprite
(Set X and Y menu)

IP
STOS Basic allows you to use sprites ranging from 16x2 to 64x64 pixels in size.
As a default the size is set to 32x32but this can be changed at any timefrom the
SETXand Ymenu.When youcallthis option the currentsize is displayed on the
screen. You can now alter this setting using the scroll window. Note that the width
of the sprite can onlybe altered in16 pixel steps. Youshould also remember that
the Hot spot of the sprite is always reset back to the top left corner of the screen,
whenever the SET X and Y function is called.

(Squeeze sprite)

fyou press on this menu selection the sprite in the edit window will be moved into
the top left-hand corner. This frees the surrounding space and allows you to
shorten the width and heightofthe spite, thus achievingthe smallest size possible.

Placing a sprite into the bank

After you created one ofyour sprites you must always remember to place it into
the sprite bank. This can be done using the store sprite menu.

h^
(Store menu)

Here is a list of the various options.

73

bpl*¥
(Erase bank)

Erases the entire Bank. Since erase is very dangerous indeed, you are always
asked for confirmation before this function is executed.

m
(Delete sprite)

Deletes the sprite picked from the selection window. Note this option is permanent
and cannot be undone!

(Insert sprite)

INS inserts the sprite at the current slot by shifting all the sprites one place to the
right. This makes a space for the new definition in the the memory bank.

(Put sprite)

This copies the sprite you are currently editing into the sprite displayed in the
centre of the selection window. In order to avoid overwriting your existing sprites,
you should position the first empty slot at the middle of the window before use.
Warning! This option erases any data already stored in the destination sprite.

(Get sprite)

Edits the sprite you have chosen with the selection window.

To save a great deal of menu switching we have included some functions that
allow you to put and get sprites with super speed. When editing a sprite you can
place it into the store by pressing the down arrow key twice. This is the same as
using the put sprite option from the store menu. To get a sprite fromthe store just
press the up arrow key twice.

For real speed you can put the sprite in the editor and then get the next sprite
from the store just by pressing the right arrow key. Ifyou press the left arrow key
then the edit sprite will be stored and the previous sprite will be loaded into the
drawing area.

Using the Sprite designer
So far, we've only concentrated on theory. In this section, I'll be showing you how
the sprite designer can be utilized to draw an actual set of sprites for use in one
of your own programs.

7--.

(

(

(

I

I

(

(

I

(

<

I

I

(

(

(

I

(

Before we can do anything, we first need to load the sprite editor into memory.
Type the line:

accnew:accload "SPRITE"

Now enter the designer using <HELP><F1>

As an example, we'll be creating a sprite representing a certain well-known
spaceship. Here is a picture of the type of effect we will be aiming for:

4
»

•

.--- . _ 5' •%_

•IS 1 H17
•••/I

•••• BM'J
LEFT RIGHT

^ * D o
'.-.'-' O CL

4

1 i » | ft
•

a-

it: — + •••
IISSEOQ

Drawing an image

We'll start off by selecting the colour of our new sprite. Move the mouse over the
left colour window and choose a nice bright shade for the sprite by pressing the
left button over one of the colours.

We willnow draw the large disc which forms a major part of the ship. Click on the
disc option from the tools menu to set the pen to a filled circle. Move the pointer
into the drawing area and press the left button as you pull the mouse to the right.
This generates an expanding disc on the screen. When the disc is about a third
of the size of the drawing area, release the button to assign it to the mouse. We
can now place this circle in the centre right of the sprite and fix it into position with
the left mouse button.

Now for the so-called primary hull. For this section we'll need to draw a filled bar
from the middle of the disc to the edge of the screen. Select the bar option and
move the mouse to the centre of the disc. Now expand the bar by holding onto the
left button while you move the mouse to the left. Release the button when the bar
has reached a reasonable size. We can then push the hull into position and click
on the mouse to set it in place.

Finally, we will produce the two outriggers which are so distinctive of this type of
space ship. First erase the last bar with the RIGHT mouse button. Now shift the
pointer to the top of the sprite and draw a thin bar passing straight through the
primary hull. This forms a strut which will connect the two outriggers to the main
part of the ship. We can then move the mouse to the top left of the sprite and
generate a thin horizontal bar. Position this in the centre of the strut and click the
left button, and repeat this process at the equivalent point at the bottom of the
sprite. You should now be looking at a picture similar to the one I showed you
earlier.

75

Installing a sprite into the bank

Before we can save our spaceship to the disc, we need to install it into the memory
bank. This can be done with the store sprite option. Select this icon with the mouse
and then call put sprite to copy the ship into the first free position. Click on the right
mouse button to exit back to the main menu.

Now let's play around with our new sprite a little. We can rotate the ship to a new
orientation using the rotate option from the tools menu. As before we must then
save the sprite into memory with the store sprite icon. This time we'll insert the
sprite into the bank with insert. By repeating this process twice more we can
generate an image of the ship pointing in all four directions.

(

(

(

(

Saving your sprites (
After we have finished designing our sprites, we can save them to the disc using
the file icon. Place a fresh disc into your drive and call the SAVE command. This /
then displays a STOS file selector which can be used in the normal way.

Alternatively, we can incorporate our new sprites directly into the current STOS
Basic program with QUIT and GRAB. Whenever we subsequently enter the /
designer, these sprites will be loaded back into memory automatically.

Using the Animator (
I'll now show you how you can produce a simple animation sequence from the
sprite designer. First load this utility from the accessory disc like so: /

accnew:accload "SPRITE"

Now enter the designer with <HELPxF1 >. Before we can animate our sprites, we ,'
first need to create the images which make up each individual frame. As an
example of this process we'll generate a simple expanding disc.

To create the first of these frames, we select the disc option from the tools menu (
and then paint a small disc in the centre of the drawing area. Remember that we
can control the size of this disc by holding onto the left mouse button while we
move the mouse. We now install our disc into memory with the store sprite
command. The easiest option to use at this point is insert sprite. /

Ifwe repeat this process for successively larger discs, we willquickly generate the
sequence we require.

After we have created a reasonable set of images we can then enter the animation
editor using the animate option.

We are now in a position to animate our group of sprites. We start off by choosing /
the smallest disc in our sequence from the selection window by simply clicking on
it with the left mouse button. This places the disc in the centre of the animation
area, and the appropriate animation string is printed directly underneath. If we
then click on the second disc in our series, the two images are displayed on the
screen one after another. We can continue selecting images in this way, until we
have incorporated all our images into the animation sequence.

76

I

(

(

(

<

I

I

(

I

(

<

(

(

I

<

(

(

iui

•

(i.
Animation string

5)(2, 5)(3, 5)T >t, 5)

w®w
<

<«

• i • 1 •
> «JL»

"5^ C*- 4?~
>»

EfiCI
GRND

LOAD
NEC

LCflL"'
C'EGfiS

Now try moving the mouse pointer around on the display area and clicking on the
left button. As you can see, the entire animation moves immediately to the new
position.

We will manipulate our animation by moving the mouse to the control window and
clicking on the left and right "A" arrows. These change the speed of the entire
sequence. We can also alter the speed of just one of the images. Let's choose an
animation to be affected by moving the pointer over an appropriate string. We can
then change the speed of this step by selecting any of the inner most arrows.

Let's invert the animation sequence. If we select the reverse icon with the left
mouse button, the images will now be displayed in revese order and the circle will
appear to contract into nothing.

We can also display the animation against a background screen stored on the
disc. This can be done using the load Degas icon from the control panel.

Ifwe place the STOS system disc in the drive we can now load the title screen (in
PIC.PI1) from the STOS folder. To display the new screen alongside our
animation sequence we then click on the BACKGRND icon. We can then return
to the command screen by pressing the right mouse button.

Finally, we should always end our session by making a note of the animation string
on a scrap of paper. This will be needed when we wish to recreate our sequence
using the STOS Basic ANIMinstruction. We can now press the right mouse button
to return to the main menu, and save our sequence to the disc using the save
option from the file menu.

The multiple-mode sprite definer

For the users who wish to design sprites in medium and high resolutions, we have
included a breakdown of the sprite editor which can operate in all three modes.

This can be found in the file SPRITE2.ACB on the accessory disc.

In many respects SPRITE2.ACB is just a simpler version of SPRITE, and indeed
many of the basic techniques I discussed earlier will also apply equally well to
either of these two programs. One minor advantage of SPRITE2.ACB is that is
uses considerably less memory than the more powerful SPRITE program.

77

(
Another benefit is that the accessory will happily allow you to create files
containing sprites in each of the three resolutions simultaneously. This is especially
useful when designing new pointers for the mouse. (

You can load SPRITE2.ACB at any time with the line:

accnew:accload "SPRITE2.ACB

On startup the screen is split into six separate windows

The information line: This is placed at the top of the screen, just underneath
the menus. It is used to display any relevant information such as the colour
of the current pen or the size of the sprite.

The RGB Window: Click on oneofthe letters R/G/B tochange the colour f
setting used by the mouse for all future drawing operations.

The scroll window: This is utilised by the SCROLL option to scroll the sprite
in all four directions.

(

(

(
The pattern window: Holds a copy of the current fill pattern. You can change
it by repeatedly clicking on this window with the left and right mouse buttons
to page through the various possibilities. (

The sprite display: This displays a full-sized copy of the sprite you are
editing.

The drawing window: The drawing window is used to edit your sprite. To
plot a point at the current pointer position simply click on the left button. The
right mouse button can also be used in a similar fashion to delete a point from
the sprite l

Here is a breakdown of the various menu options available from this program.

STOS (

Sprites

Displays a title screen. Click the mouse to remove.

Quit

Exits from the sprite definer, losing all of your current sprite definitions.

Quit and Grab

Exits from the definer and incorporates any new definitions into your current
program. This option only works ifthe definer has been executed as an accessory.

File

Load Sprite Bank

Loads a file containing a list of sprites into bank number one. These can be edited
using the get sprite option.

78

(

(

(

(

(

(

(

<

<

I

(

(

(

(

(

I

(

(

(

(
The Cinema option enables you to animate your sprites from within the definer.

CTochoose the sprites which will make up your animation sequence, simply click
on the appropriate images in the drawing area. Then click on the left mouse
anywhere outside this window to start the animation running. You can now change
the speed of the animation with the + or - keys.

(

Save Sprite Bank

Saves all the sprites you have defined into a new file on the disc.

Save as...

Saves the bank using a different filename than the one it was originally loaded
from.

BANK

Grab from program

Grabs any sprites used by your current program from subsequent editing by the
definer. Obviously this option only applies if you have loaded the definer as an
accessory.

SPRITE

Put Sprite

Puts the current sprite into a particular slot and replaces any of the original
contents.

Insert Sprite

Inserts the sprite you are editing into bank 1, without overwriting any of the existing
images.

Get Sprite

Gets a sprite out of the memory bank to be edited.

Erase Sprite

Erases one of the sprites from the bank.

You can select the sprite used by these functions by clicking the left button over
the appropriate image in the drawing window. These sprites are displayed in
groups of nine. To page through the entire set, simply click on the NEXT and
previous boxes below this window.

Move Sprite

This allows you to assign one of the sprites to the mouse and then see how it looks
when you move it around on the screen

Cinema

Previous cinema

Restarts the last animation sequence you defined from the point you left off.

Get from DEGAS
Get from NEO

Grab a sprite from a screen stored on the disc in DEGAS or NEOCHROME format.
After you have chosen the file with the file selector, you are then presented with
a list of the currently defined sprites in the bank. Select the one you wish to load
using the left mouse button. Note that the dimensions of this sprite determine the
final size of the image which will be grabbed.

The new screen is now displayed and you can grab the image which is
underneath the mouse cursor by pressing the left mouse button. After you have
finished you can return to the editor by clicking on the right mouse button.

FIX mask

This allows you to select the mask colour used as the transparent index.

Fix Hot Point

Click the left button on the appropriate point to set the hot spot of the sprite. The
current spot can be seen flashing on the screen.

Fix Xand YSize (

(

This allows you to change the dimensions of the sprite. Click on the scroll arrows
to alter the size.

TOOLS

Erase

Erases the currently edited sprite. Does not affect any sprites stored in the bank.

Mirror

Reverses the sprite from left to right.

Flip

Reverses the sprite from top to bottom.

Scroll

Scrolls the sprite. Click on the arrow keys to scroll the sprite in any direction. I

Paint

Whenever you subsquently click the mouse in an enclosed area in the sprite, this (
willbe filledwith the current fill colour using the pattern you have selected from the
FILL window. Click on DRAW to revert the editor back to normal.

30

(

(

(

(

(.'

(

<

(

(

(

(

I

I

I

<

<

(

(

<

<

(

(

(

(

(

(

(

(

Palette

This provides you with a list of the colours available for your use. Click on a colour
to assign it to the current pen.

The SPRITE command

After we have drawn our sprites with the sprite definer, we will obviously need
some way of displaying them on the screen. This can be done using the SPRITE
instruction.

SPRITE (Displays a sprite on thescreen)

SPRITE n,x,y,p

This displays sprite number n on the screen at coordinates x and y.

n is the number of the sprite, which can range from 1 to 15. It is this number which
will be used to identify the sprite in any subsequent calls to the MOVE and ANIM
instructions.

x and y are the coordinates of the point on the screen where the sprite is to be
drawn. Unlike normal screen coordinates, these can take NEGATIVE values. The
x coordinate can vary from -640 to +1280, and the /coordinate from -400 to +800.
This allows you to move the sprite off screen without causing an error.

p specifies which of the images in bank 1 is to be used for a particular sprite. The
only limit to the number of these images is the amount of available memory.

Each sprite has an invisible handle through which itcan be manipulated, called
a Hot Spot. Whenever we draw a sprite, we always specify its coordinates in terms
of the position of this point on the screen. As a default, the hot spot is always set
to the top left hand corner of the image, but this can readily be changed using a
special option from the Sprite definer accessory.

Examples:

A number of example sprites have been placed on the accessory disc for your use.
You can load one of these sets using the LOAD instruction like so:

load "fontset.mbk"

This loads a collection of sprites which depict the various letters of the alphabet.

Now let's display some of these sprites on the screen.

mode 0:remThese sprites are designed for low resolution flash off
palette 0,S777,S444

sprite 1,100,100,6:rem Displays a 1 character at 100,100 as sprite 1
sprite 2,10,50,6:rem Displays another sprite with the same image
sprite 1,100,100,7:rem Change sprite 1 from a 1 to a 2
sprite 3,-10,100,5:rem Demonstrates the use of negative coordinates

It is important to realise that the sprite command effectively does two separate

81

(
things: Not only does it draw a sprite on the screen, but it also determines which
image will be associated with each of the 15 sprite numbers. You must therefore
always use this instruction BEFORE moving or animating a sprite. (

Moving a sprite

Any of the STOS Basic sprites can be moved across the screen using interrupts,
without affecting the execution of your Basic program in the slightest. The
command which enables you to do this is very powerful indeed and is called, quite
simply, MOVE. The MOVE instruction

This allows you to assign a complicated series of movements to a sprite, which
will then be executed automatically by STOS Basic every 50th of a second (70th
for high resolution). There are two main versions of this command, one for
horizontal motions, and another for vertical movements. These can be combined
to produce intricate patterns on the screen. Since the two instructions are
otherwise identical, we will concentrate on the MOVE X command first, and then
explain any significant differences between it and MOVE Y.

MOVE X (Move a sprite horizontally)

MOVE X n,m$

This defines a list of horizontal movements which will be subsequently performed
by sprite number n. ncan range from 1-15 and refers to the number of a sprite you
have previously installed using SPRITE.

m$ contains a sequence of commands which together determine both the speed
and direction of the sprite.

Each of these instructions is split into three separate components.

SPEED

This stipulates the delay in 50ths of a second between each successive sprite
movement. The speed can vary from 1 (very fast) to 32767 (incredibly slow)

STEP

The STEP size specifies how many pixels the sprite will be moved in each
operation. Ifthis step is positive the sprite will move to the right, and ifit is negative
to the left.The apparent speed of the sprite depends on a combination of the speed
and step. Large displacements coupled with a moderate speed will move the
spritequickly butjerkily across the screen. Similarly, a small step size combined y
with a high speed will also move the sprite very fast, but the motion will be much
smoother. The fastest speeds can be obtained with a displacements of about 10
(or-10).

COUNT

(

(

(

(

(

(

(

(

(

(

This designates the number of steps which will be completed in a single
movement. Possible values range from 0to 32767. If you use a COUNT of 0, the (
motion will be repeated indefinitely.

These three elements are placed into the movement string using the following
format: (speed,step,count) (

Here is a simple example which should make this a little clearer. Load a set
of sprites from the accessory disc with:

82 (

(

(

(

I

(

(

<

(

I

(

(

(

(

(

(

(

load "fontset.mbk"

Now define sprite 1 using the SPRITE instruction like so:

sprite 1,10,100,1

We can move this sprite with MOVE X:

move xl, "(1,3,50)"

When we execute the above command, we find to our surprise that nothing
happens. This is because we need to first initiate the motion using a special MOVE
ON instruction.

The sprite now progresses steadily across the screen. We can combine any
number of these individual movements into a single MOVE command. They will
then be executed in turn, one after another.

Example:

move x 1,"(1,1,100)(1,-1,100)"
move on

This moves the sprite from left to right, and back again.

There are also a couple of other directives available for our use. The most
important of these extensions is the L instruction (for loop), which jumps back to
the start of the list and reruns the entire sequence again from the beginning.

Example:

sprite 1,10,100,5:rem Define Sprite 5
move x 1,"(1,5,60)(1,-5,60)L"
move on

Another useful option is the E command which stops the sprite whenever it
reaches a specific position on the screen.

Example:

sprite 1,10,100,5
move x 1,"(1,5,30)E100"
move on

The most common use of this instruction is to halt a sprite which has been defined
with a count of zero at a particular point. The following example illustrates this
technique.

sprite 1,10,100,5
move x 1,"(1,5.0)E200"
move on

Note that these endpoints will only work if the x coordinate of the sprite exactly
reaches the value you originally designated in the instruction. If this increment is
badly chosen, the sprite will leap past the endpoint in a single step, and the test
will therefore always fail.

83

Incidentally, you can also use an endpoint in conjunction with the L command.
This has the effect of stopping the sprite and then executing the series of
movements again from the start.

(

(
Example:

sprite 1,10,100,5 /
move x 1 "11 B 3nlL100"move x 1,"(1,5,30)L100"
move on

In the example above, the ending condition was pretty useless, because the
motion immediately resumes from the point it had reached when the sequence
was terminated. But you can also add an optional starting position to the
movement. This returns the sprite back to its original location, and therefore allows
you to loop the sprite repeatedly through a precise section of the screen. Here is
an example of this function in action:

sprite 1,100,100,1 :rem Defines sprite 1 off screen
move x 1,"100(1,1,0)L200"
move on

The sprite now starts from 10,100, and slowly progresses to location 200,100
before looping back to 10,100.

See MOVE ON, MOVE Y, MOVE FREEZE, MOVON, ANIM, SPRITE, UPDATE

MOVE Y (Move a sprite vertically)

MOVE Y n,m$

(

(

<

(

(

This instruction complements the MOVE X command by enabling you to move a I
sprite through a complex series of vertical manoeuvers. As before, n refers to the
number of a sprite you have installed using SPRITE, and ranges between 1-15.

m$ holds the movement string. This uses an identical format to MOVE X, except
that positive displacements now correspond to a downward motion, and negative
steps to an upward movement.

Examples: (

load "fontset.mbk":rem Load sprites from accessory disc
sprite 1,100,10,5:rem Install sprite
move y 1,"10(1,1,180)L":rem Loop sprite from 10,10 to 190,10 continually

sprite 1,100,100.1
move y 1,"(1,4,25)(1,-4,25)":Rem moves sprite up and down

See MOVE X, MOVE ON, ANIM, SPRITE

(

(

(

Combining horizontal and vertical (
movements

Any list of horizontal and vertical movements may be combined with ease. All you
need to do is to split the movement into separate horizontal and vertical

84 (

components, and then assign these to individual MOVE Xand MOVE Y instructions.
Here are a couple of simple examples which illustrate this process.

new

load "fontset.mbk":rem From accessory disc
sprite 1,0,0,22
move x 1,"(1,4,79)(1,-4,79)L"
move y 1,"(1,4,49)(1,-4,49)L"
move on

Now for a slightly larger example:

new

load "fontset.mbk"

5 rem Exploding Title
10 els : click off

20 for 1=1 to 10

30 read C: sprite l,l*16+80,100,C:rem Install sprites in centre of screen
jj rem Set alternate characters moving in different vertical directions
40 if I mod 2=0 then V$="(1,-2,0)" else V$="(U,0)"
45remSet left half moving left and right halfmoving right
50 if l<6then H$="(1,-2.0)" else H$="(1,2,0)"
55 rem Set up Vertical and Horizontal components
60 move x l,HS: move y l,VS
70 next I

80wait key: boom : move on: Rem Waitfora keypress and move sprites
85 rem Image Numbers ofSpriteswhich makeup title
90 data 40,41,36,40,18,23,22,40,30,24

MOVE ON/OFF (Start/stop sprite movements)

MOVE ON/OFF [n]

Before any sprite movements you have defined by the MOVE X and MOVE Y
commands will be performed, they need to be initiated with this instruction. The
optional expression n, refersto a numberfrom 1-15which indicatesa singlesprite
you wish to move. If it is omitted then all the movement sequences you have
currently assigned will be activated simultaneously.

Similarly, MOVE OFF kills the movements of the sprites in exactly the same
way. Do not confuse MOVE ON with the MOVON function.

See MOVE X, MOVE Y, OFF

MOVE FREEZE (Temporarily suspend sprite movements)

MOVE FREEZE [n]

Thiscommand can be used to temporarily haltsome or allofthe sprites which are
currently moving. These can be restarted again using MOVEON. The value n is
optional and specifies the number of a single sprite you wish to freeze.

Example:

load "fontset.mbk":rem From accessory disc
sprite 1,0,0,1
move x 1,"(1,4,64)(1,-4,64)L"

85

(
move on

move freeze

move on (

: MO VON (Return sprite state)

x=MOVON(n) C
This function returns a non zero number if sprite number n is currently in motion
and 0 (FALSE) if it is stationary.

Example:
(

load "fontset.mbk":rem From accessory disc
move x 1,"(1,4,0)":menu on I
print movon(l)
move off

print movon(1)

Do not confuse with the MOVE ON command.

:X SPRITE (GetX coordinate of sprite)

x1=X SPRITE(n)

Returns the current Xcoordinate of sprite n. This command is frequently used as
a way of detecting whether a sprite has collidedwith the edge of the ST's screen.

Example:

load "fontset.mbk"

sprite 1,0,40,1
movex1,"10(1,1.0)L320"
move on

for i=1 to 100:locate 0,0:printx sprite(1):next i

See also Y SPRITE, X MOUSE, Y MOUSE

:Y SPRITE (Get Ycoordinate of sprite)

y1=YSPRITE(n)

This is very similar to the X SPRITE instruction, except for the fact that it returns
its Y coordinate rather than the X coordinate. As usual, n refers to the number of
the sprite and can range from 1-15. This command is often utilised to check
whether a missile has passed off the top or bottom of the screen. /

Example:

load "fontset.mbk"

sprite 2,0,0,35
movey2,"0(1,1,0)L200"
move on

for i=1 to100:locate 0,0:print ysprite(2):next i f

A further example of this function can be found in the section on collision.

86

(

<

<

(

(

I

(

<

(

(

<

(

I

I

See also X SPRITE, X MOUSE, Y MOUSE

LIMIT SPRITE (Limits sprite toa specific area)

LIMIT SPRITE x1,y1 TO x2,y2

Defines the area of the screen on which the sprites will be displayed. Whenever
they move outside this area, they willdissapear from the screen. Note that unlike
LIMIT MOUSE,this command does NOTlimit the actual movements ofthe sprites,
only their visibility.

x1 and y1 denote the top left corner of the zone, and x2,y2 indicate the point
diagonallyopposite. All the Xcoordinates used inthis command are automatically
rounded down to their nearest multiple of 16.

Example:

rload"fontset.mbk"

sprite 1,0,0,1
move x 1,"0(1,1,0)L320"
move y 1,"0(1,1,0)L200"

Cmoveon

limit sprite 100,50TO 200,150

<

(

(

(

(

(

(

(

(

In order to return the sprites to normal, simply enter a LIMIT SPRITE command
with no parameters like so:

limit sprite

See LIMIT MOUSE, CLIP

Animation

STOS Basic supplies you with a simple command called ANIM which can be
readily used to animate your sprites. This can be used to produce a wide range
of effects from a walking gorilla to an impressive explosion.

ANIM (Animate a sprite)

ANIM n,a$

This enables you to page through a chain of sprite images one after another. This
sequence will be executed at the same time as your sprite is being displayed, even
if it is also being moved using MOVE.

n refers to the number of the sprite to be animated, and a$to a list of animation
commands to be carried out.

The string a$ contains the set of instructions to the ANIM command. Each
operation is split into two separate components enclosed between brackets.

IMAGE

This is the image number of the sprite to be displayed during each step of the
animation.

87

(
DELAY

Specifies the amount of time the image will be held on the screen before the next (
image is displayed. This delay is input in units of a 50th of a second (70th for
monochrome systems).

Here is a typical example of howthis instruction works in practice. (

anim 1,"(1,10)(2,10)"

This would display image number 1 for 10/50 or a 1/5 of a second, and then flick
to image number 2.

Just as with the MOVE instruction, there's also an L directive which enables
you to repeat these animations.

So we could repeat the above animation continually with:

anim 1,"(1,10)(2,10)L"

Now for a real example of the ANIM instruction. We'll use some of the sequences (
utilized by Zoltar for this purpose. Before we can play around with these sprites,
we first need to grab them out of the game. The easiest way we can achieve this
involves a number of separate steps. We start off by loading Zoltar from the Game
disc with:

load "\zoltar\zoltar.bas"

save "zsprites.mbk'M

Finally, we simply erase Zoltar from memory and reload the sprites with:

new

load "zsprites.mbk"

These sprites can now be accessed from within any of our example programs. To
list the images which are currently available, type the following small routine:

10 mode 0: els: flash off

20 palette S0,S222,S333,$444,S555,S777,$7,$47,S770,S350,$3O0,$5O0,
$700,$515,$770,$777

30 for i=1 to 30:sprite 1,100,100,i:print i:wait key:next i

Note that the palette command in line 20 was discovered by searching through
Zoltar with:

search "palette S"

(

(

(

Wethenplacea fresh disc in the drive, and save thesprite bankin a separate file (
like so:

<

(

(

(

If you run this program you will see that images 14 to 18 form a rather nice
explosion. Let's animate this by replacing line 30 with: /

120 sprite 3,100,100,14:anim 3,"(14,2)
(15,2)(16,2)(17,2)(18,2)" : anim on

We can observe this sequence more clearly if we add an L instruction to repeat
the animation like so:

88

(

(

I

(

(

(

(

(

1

(

120 sprite 3,100,100.14:anim 3,"(14,2) (15.2)(16,2)(17,2)(18,2)L" : anim on

Note this large line number! This is to allow us to expand our program later.
Another interesting arrangement can be created using the images 2 and 3

which combine to produce one of Zoltar's wiggling missiles.

Animate this with:

30 sprite 1,160,198,2:anim 1,"(2,1)(3,1)L":anim on

and move it up the screen using:

40 move y 1,"196(1,-4,50)l" : move on

We'll now have a brief look at the sprites used to make up the spaceships. These
are composed of groups of three sprites starting from image 19.

Let's add one of these ships to our current program. Type the lines:

50 sprite 2,0,40,9: anim 2,"(19,4)(20,4)(21,4)L"
60 move x 2,"(1,4,80)(1,-4,80)l": move on 2:anim on

When you run this program, the missile fires and the ship moves from left to right.
We'll be modifying this program later in the section on collision, so it's a good idea
to save it on a separate disc with a line like:

save "ship.bas"

ANIM ON/OFF (Start an animation)

/ ANIM ON/OFF[n]

Used to activate a series of animations defined using the ANIM command, n
denotes the number of an individual sprite to be animated. If it is omitted then all

i the animation sequences you have created will be initiated at the same time.

ANIM OFF [n] stops one or all of the animations begun by ANIM ON.

(ANIM FREEZE (Freeze an animation)

ANIM FREEZE [n]

(

(

Controlling the sprite using the
(mouse

(

(89

This command temporarily pauses the current animations on the screen. If the
optional n is included, only a single animation sequence will be suspended.
Otherwise all the animations will be frozen. These can be restarted again with the
ANIM ON instruction.

The easiest way to give the user control of a sprite is to assign the sprite to the
mouse pointer with the CHANGE MOUSE command. We can then determine both
the position and status of this mouse from within our program using the X MOUSE,
Y MOUSE, and MOUSE KEY instructions.

CHANGE MOUSE (Changethe shape of the mouse pointer)

CHANGE MOUSE m

This allows you to completely redesign the shape of the mouse at any time. Three
forms are already installed into the system as a default, and are given the numbers
1 through 3. Here is a list of the various options:

m Shape
1 Arrow. (Default)
2 Pointing Hand
3 Clock

(

c

c

(
If you specify a value of m greater than 3, this is assumed to refer to an image
stored in the sprite bank. The number of this image is determined using the (
expression l=m-3. So image number one would be installed by a value offour, and
image two would be signified by a five.

Here are a few simple examples. Load the sprites from the file fontset on the |
accessory disc.

load "fontset.mbk"

and assign image 0 to the mouse with:

change mouse 8

Similarly we can set the mouse to a capital S with the line:

change mouse 43

Another powerful option is to change the default definitions for the mouse which
are stored on the disc. These can be found in the file /STOS/MOUSE.SPR on the
systems disc. You can replace these with another set like this:

• Define three sets of sprites, for EACH resolution. Ifyou only want to affect one
resolution, it's best to modify the sprites in SPRDEMO.MBK (from the
accessory disc), as this already contains a bank of sprites in the correct
format.

• Load these sprites into bank 1 using either LOAD or the QUIT and GRAB
options from the SPRITE definer.

• Place a copy of the STOS Basic system disc in the drive. DONOT USE THE
ORIGINAL SYSTEMS DISC FOR THIS PURPOSE!

(

C

(

c

(

(
Now type:

bsave "\stos\mouse.spr",start(1) to start(1)+length(1) (

Whenever you subsequently load STOS Basic, the new mouse pointers will now
be automatically utilized by the system.

See also HIDE, SHOW, X MOUSE, Y MOUSE, MOUSEKEY, LIMIT MOUSE

=X MOUSE (Get the X coordinate of the mouse pointer)

x1=X MOUSE

90

(

(

(

<

(

<

(

(

(

I

(

I

(

I

I

(

(

This function returns the current X coordinate of the mouse pointer.

Example:

new

10 home

20 print x mouse
30 wait vbhrem Stop print interfering with mouse pointer
40 if inkey$="" then 20:rem Wait for keypress from keyboard

=Y MOUSE (Gets the Ycoordinate of the mouse pointer)

y1=Y MOUSE

This function simply returns the current Y coordinate of the mouse pointer.

Example:

new

10 home

20 print y mouse
30 wait vbhrem Stop print interfering with mouse pointer
40 if inkey$=""then 20:rem Wait for keypress from keyboard

=MOUSE KEY (Get status ofmousekeys)

k=MOUSE KEY

Enables you to quickly test whether one or both of the mouse buttons have been
pressed. It returns one of the following four numbers depending on the current
state of the keys.

Value Meaning

0 If no button has been pressed
1 left button pressed
2 right button pressed

I 3 both buttons pressed

Example:

(10 ifmouse key=1then print "Left button"
20 if mouse key =2 then print "Right button"
30 if mouse key =3 then print "Left and Right button"
40 goto 10

See X MOUSE, Y MOUSE

LIMIT MOUSE (Limit mouse toa section of thescreen)

LIMIT MOUSE x1,y1 TO x2,y2

Restricts the mouse to the rectangular area defined by the coordinates (x1 ,y1) and
(x2,y2). x1,y1 denotes the top left hand corner of this box and x2,y2 to the point
diagonally opposite. Note that LIMIT MOUSE always repositions the mouse

91

pointer at the centre of the box. Also, unlike LIMIT SPRITE, the mouse is
completely trapped inside this zone and cannot be moved anywhere else in the
screen.

Example:

limit mouse 50,50 to 250,150

In order to restore the mouse to normal, simply use the instruction with no
parameters like this:

limit mouse

HIDE (Removemouse pointer from the screen)

This command permits you to remove the mouse pointer from the screen at any
time. A count of the number of occasions you have called this function is
automatically kept by the system. This number needs to be matched by an equal
number of SHOW instructions before the mouse will be returned for your use.

There's another version of this instruction which can be accessed with HIDE
ON. This ignores the count completely and ALWAYS hides the mouse. Note that
HIDE only makes the mouse pointer invisible. Itdoes NOT deactivate itfully. You
can therefore readily use the X MOUSE and Y MOUSE functions to read position
of the mouse, even if it is totally hidden from view!

Examples:

hide

hide

show

show

show

show

hide on

See SHOW

SHOW (Activate the mouse pointer)

This redisplays the mouse hidden with the HIDE instruction. As with HIDEthere's
also a version of SHOW which shows the mouse, no matter how many HIDE
commands have been executed. This is called using:

show on

See HIDE for more details.

Reading the joystick

STOS Basic includes six functions which make it very easy for you to detect the
movements of a joystick placed in the right joystick socket.

=JOY (Readjoystick)

d=JOY

92

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

<

(
This function returns a binary number which represents the current status of the
joystick. Each of these bits are set to 1 if the test proves positive and otherwise

(zero. Here is a list ofthe various bits and their meanings:

(

(

(

(

(

(

(

(

(

(

I

I

(

(

Bit number Significance

0 Joystick moved up
1 Joystick moved down
2 Joystick moved left
3 Joystick moved right
4 Fire button pressed

Don't worry ifyou are not familiar with this binary notation as you can also access
each of the directions individually with the functions JLEFT, JRIGHT, JUP,
JDOWN, and FIRE.

Here is a simple example to get you started.

load "fontset.mbk":rem From accessory disc
10 rem Move a sprite with a joystick
20 rem Set direction arrays
30 dim DX(15),DY(15)
40S=2:X1=160:Y1=100

50 for 1=1 to 15: read X,Y : DX(I)=X*S: DY(I)=Y*S : next I
60sprite 1,X1,Y1,40: J=joyand 15: X1=X1+DX(J): Y1=Y1+DY(J): if joy>15 then
X1=160: Y1=100 : goto 60 else 60
70 data 0,-1,0,1,0,0,-1,0,-1,-1,-1,1
80 data 0,0,1.0,1,-1,1.1,0,0,0,0,0,0,0,0,0,0,0

Note that we've used the variable s to set the sensitivity of the joystick. Reasonable
values range from 1(low) to 5(incredibly high).

=J LEFT (Testjoystick movement left)

x=JLEFT

JLEFT returns a value of TRUE (-1) if the joystick has been moved left, otherwise
FALSE (0). It can be used in an IF...THEN statement like this:

if jleft then print "LEFT"

=JRIGHT (Testjoystick movementright)

x=JRIGHT

JRIGHT tests the joystick and returns TRUE (-1) if has been moved right,
otherwise it returns a value of FALSE (0).

See JLEFT, JUP, JDOWN

=JUP (Testjoytsick movementup)

x=JUP

JUP returns TRUE (-1) if joystick has been moved up, otherwise FALSE (0).

93

(
See JRIGHT, JLEFT, JDOWN

=J DOWN (Test joystick movement down) (

x=JDOWN

The JDOWN function returns the value TRUE (-1) if the joystick has been pulled
down, otherwise it returns FALSE (0).

See JRIGHT, JLEFT, JUP

=FIRE (Test fire button state)

x=FIRE

This function only returns a value of TRUE (-1) if the fire button on the joystick has
been pressed.

See JUP, JDOWN, JLEFT, JRIGHT, JOY

(

(

(

(

Detecting collisions with a sprite /

COLLIDE (Detectcollisions between two sprites)

t=COLLIDE(n,w,h) (

This provides you with an easy way of testing to see whether two or more sprites
have collided on the screen, n refers to the sprite you wish to check and can range
from 0-15, with 0 denoting the mouse pointer, wand h determine the sensitivity f
of the test. You can think of w and h defining the width and height of a rectangular
box starting from the Hot Spot of the sprite. Whenever another sprite enters this
box, a collision will be detected.

t is a number in binary format which holds a list of the sprites which have collided
with sprite number n. Each bit in this number represents the status of the
equivalent sprite. So bit 1 indicates sprite 1, bit 5 denotes sprite 5 and so on. Ifa
collisionoccurs between sprite nand another sprite, the bitat the appropriate point I
is set to 1. You can test for these bits using the BTST function. If you're not
technically minded, you can save yourself some trouble by adding a statement
like:

print collided,10,10) (

Place this at an important point in your program. You can now make a note of the
number which is printed whenever a collision takesplace. This canbe tested for (
with a line like:

100 if collide(2,10,10)=6 then boom

Here's an example of this function in action. Ifyou've saved the program we used
in the section on ANIM, you can load this with the line:

load "ship.bas" (

Otherwise you will first need to create the file zsprites.mbk in the following way:

(

94 (

• Load "\zoltar\zoltar.bas":rem From the games disc
• Place a fresh disc into the drive and type: save "zsprites.mbk"
• Erase the program in memory, with: new
• Load the example sprites back with load "zsprites.mbk"

You can now enter the program below:

5 rem Initialize screen

10 mode 0 : els : flash off

15 rem Set colours

20 palette SO,$222,$333,$444,$555,S777,S7.$47,$770,$350,S3O0,$500,
$700,$515,$770,$777

25 rem Move and Animate Ship
30 sprite 2,0,40,19: anim 2,"(19,4)(20,4)(21,4)L": anim on 2
40 move x 2,"(1,6,80)(1,-6,80)l" : move on 2
45 rem Wait for a key press
50 wait key
55 rem Fire Missile

60 sprite 1,160,1982: anim 1,"(2,1)(3,1)L" : anim on
70 move y 1,"196(1,-4,60)": move on
75 rem Test for collision

80 if collide(1,10,10)=6 then boom : goto 110
85 rem Test Missile to see if it flies off the top of the screen
90 if y sprite(1)<0 then 50
95 rem Jump Back to test
100 goto 80
105 rem Explosion
110sprite 3,x sprite(2),40,14
120 anim 3,"(14,2)(15,2)(16,2)(17,2)(18,2)": anim on :move off: sprite 1,-
100.1002: sprite 2,-100,100,9 : sprite 3,-100,100,14

Let's now incorporate a user-controlled ship in this scenario with the CHANGE
MOUSE command.

Add the following lines to the program above:

21 limit mouse 0,150 to 319,198:rem Limitmouse to lower partof screen
41 change mouse 10 : rem Change mouse to picture of a ship
50 repeat: until mouse key: MX=x mouse: MY=y mouse: rem Wait for mouse
button

60 sprite 1,MX,MY+4,2 : anim 1,"(2,1)(3,1)L" : anim on
130move off: sprite 1,-100,100,2: sprite 2,-100,100,9
140sprite 3,-100,100,14 : goto 30

This gives you a ship which can be moved around with the mouse, which can fire
a missile when you press on the mouse key. You could easily detect collisions with
this ship in a similar way, just by adding a line such as

81 if collide(0,10,10)<>1 then boom

Obviously you would also need to add some sort of attack capability to the
defending ships as well!

You should now be in a position to understand the some of the programming
techniques used in Zoltar. Although it may look rather more complicated, the

95

theory behind it is identical. Feel free to load Zoltar from the games disc and play
around with it as much as you like.

Detecting collisions with
rectangular blocks /

SET ZONE (Set a zone for testing)

SET ZONE z,x1 ,y1 TO x2,y2 (

Defines one of 128 rectangular zones which can then be tested using the ZONE
command for the presence of either the mouse or a sprite, z specifies a number
from 1-128 which represents thezone to becreated. x1,y1 andx2,y2 denote the (
coordinates of the top left and bottom right hand corners of the rectangle you wish
to check.

(

(

(

(

(

(

(

See ZONE, RESET ZONE

=ZONE (Testsa sprite to see ifitis ina zone)

t=ZONE(n)

This searches for the presence of sprite n in the list of the zones defined using SET
ZONE, n can range from 0 to 15, with the mouse being indicated by sprite number
zero as usual.

After the function has been called, f will hold either the number of the zone
where the sprite was detected or a value of zero. Note that ZONE only returns the
FIRST zone which the sprite was found. If two or more zones overlap, it is not
possible to determine any other zones the sprite is also inside.

Example:

5 rem Muzak

6 rem Reset zones and clear screen

10 reset zone : els back : els physic : mode 0
15 rem Set note type
20 volume 16 : envel 9.5000
25 rem Set fill style to hollow
30 set paint 0,1,0
40 for 1=0 to 7: for J=0 to 7

45 rem Draw box

50 box 1*39,J*24 to (1+1)*39,(J+1)*24 55 rem Define zones
60 set zone l*8+J+1,l*39,J*24 to (l+1)*39,(J+1)*24
70 next J : next I

75rem Test zone and play note (
80 if zone(0) then play zone(0)+20,30
90 goto 80

See SET ZONE, RESET ZONE ff

RESET ZONE (Erasea zone)

RESET ZONE [z] f

This command erases any of the zones created by SET ZONE. If the optional z

96

(

(

I

is included, then only this zone will be reset. Otherwise all the zones will be
deleted.

Detecting collisions with an
irregular shape

=DETECT (Find colour ofpixel underneath sprite)

c=DETECT(n)

This is a very useful command which allows you to ascertain the colour of the
background pixel underneath sprite n. As usual, n can range from 0 to 15, with a
value of 0 representing the mouse pointer.

After the function has executed, c is returned containing the colour of the point
on the background screen underneath the Hot Spot of the sprite. By bordering an
object with a specific colour, and then testing for this with DETECT, you can easily
spot any collisions between an irregular area and the sprite.

Here is a simple example of this process.

load "zsprites.mbk":rem See COLLIDE for full details of how to create this

10 rem Detect demo

20 key off: mode 0: set line $FFFF,6,0,0
30 ink 2: arc 160,198,150,0.1800: ink 0

40 sprite 1,rnd(314)+2,0,2: wait vbl
50 move y 1,"(1,4,1)L": move en
60 C=detect(1)

65 if C=2 then wait vbl: XS=x sprite(l): YS=y sprite(l): box XS.YS-6 to
XS+2.YS-2: boom : goto 40
70 if y sprite(1)<200then 60 else 40

Another possible application would be to detect the collision of a laser beam with
a sprite. This beam could be easily created using the normal DRAWor POLYLINE
commands.

Exceeding the 15 sprite limit

If you've ever seen games like Galaxians or Space Invaders you will probably
consider the 15 sprite limit to be pretty restrictive. Fortunately, although you are
confined to 15 moving sprites, it's easy enough to produce the illusion of dozens
of actual sprites on the screen.

You can do this with judicious use of a pair of STOS Basic commands called
PUT SPRITE and GET SPRITE. These allow you to create a number of copies of
a sprite at once, and then just grab the ones you wish to actually move around, as
and when you need them. You can add animation to these fake sprites using the
SCREEN COPY and SCREEN SWAP instructions.

PUT SPRITE (Put a copyofa sprite on thescreen)

PUT SPRITE n

Simply places a copy of sprite number n at its current position on the screen. Note

97

c
that the sprite you have copied is completely unaffected by this instruction.

Here is an example of how this works in practice: Load the sprites in the file
ZSPRITES.MBK (See COLLIDE for details) (

load "zsprites.mbk"

Now type in the following small program: I

10 palette SO,$222,S333,$444,S555,$777,$7,$47,$770,$350,$300,$500,
S700,$515,$770,$777

201=8: mode 0: els: flash off: hide

30wait vbl: sprite 1,0,1,22,1: rem Drawship on the screen
40 move x 1,"0(1,8,0)e320": move on : wait vbl
50 X=x sprite(l): if X mod 16=8 then put sprite 1: wait vbl
60 if X=320 then 1=1+16else 50

70 if l<192 then 30 else 90

80 goto 50
90 limit mouse :sprite 1,-100,0,22: wait key (

This fills the screen with dozens of copies of a single spaceship. You can now turn
these ships back into movable sprites a few at a time, using GET SPRITE.

See WAIT VBL, MOVE

GET SPRITE (Load a section of the screen into the sprite bank)

GET SPRITE x,y,i [,mask]

This instruction enables you to grab any images off the screen and turn them into
sprites. The parameters x and y refer to the start of the rectangular area to be
captured.

/denotes the number of the image to be loaded, and MUST refer to an image which
already exists in the sprite bank. The size of the new image is taken from the
original dimensions you specified using the sprite editor. Also note that the Hot
Spot of the sprite is automatically set to the point x,y. WARNING! This command
will only work if the rectangle you are attempting to grab is completely inside the
borders of the screen.

The optional mask specifies which colour in the new sprite is to be treated as
transparent. If this mask is omitted, it willbe set to zero. By changing the mask to
a different colour you can generate a number of interesting effects. This is because
the mask colour is effectively ORed with the background. A mask of zero will
therefore simply display the area underneath the sprite in the normal way.
Otherwise the OR operation will invariably change the colour of any of the
background which shows through the sprite.

Incidentally, the mask has a rather different action in monochrome mode. All
monochrome sprites are given a special border on the screen. The thickness of
this outline is usually set to a width of one pixel, but you can increase it by including
a higher value as part of the mask.

(

(

(

(

c

(

(

(

(

(
Examples:

Place the accessorydisc in the drive and type: (

load "sprdemo.mbk"

98 I

Now enter the following small program:

10 Rem Big Mouse
20 repeatuntil mouse key
30 hide

40 get sprite X mouse,Y mouse,2: change mouse 8:show

This borrows one of the images in the SPRDEMO file and loads it with the section
of the screen underneath the mouse. It then assigns this sprite to the mouse.

We'll now look at a slightly more interesting example involving some sprites
which have been placed on the screen with PUT SPRITE.

Load the file ZSPRITES.MBK from your disc. (See COLLIDE for details of how
this data can be created)

load "zsprites.mbk"

Then enter the program:

10 rem Set colours

20 palette SO,S222,$333,S444,S555,S777,S7,S47,S770,S350,$300,S500,
$700,$515,$770,$777

25 rem Define Array P
30 dim P(20)

35 rem Reset Screen

40 hide :off: els physic :els back: ink 0
50 rem Copy 20 sprites on the screen
60 sprite 1,8,10,22: rem Draw ship on the screen
70 move x 1,"8(1,4,0)e320": move on

80 X=x sprite(l): if X mod 16=4 then put sprite 1: wait vbl
90 if X=320 then move off: goto 100 else 80
100sprite 1,400,10,23 :wait key
105 rem Choose a sprite which hasn't moved
110 S=rnd(18)+1: if P(S)=1 then 110 else P(S)=1

120 rem Get sprite
130 get sprite S*16+4,10,21
135 rem Move sprite down
140sprite 1,S*16+4,10,21: move y 1,"(1,4,50)": move on
145 rem Erase sprites
150 bar S*16-4,2 to S*16+12,18

155 rem Test if sprite still falling
160 if movon(1)=0 then 110 else 160

This program places 20 copies of a spaceship on the screen and then animates
each one in turn in an apparent violation of the 16 sprite limit. With a little more work
you could easily expand the above technique to move up to 15 sprites at a time.

Sprite priority

PRIORITY ON/OFF (Change between priority modes)

The priority of a sprite determines how sprites are displayed when they overlap on
the screen. Sprites with the higher priority always appear to have been placed in
front of sprites with a lower one. Normally, the priority of the sprites is assumed

99

(
to be in REVERSE order to the sprite numbers.

You should always remember this fact when assigning numbers to your
sprites. The mouse is effectively sprite numberzero and thereforehas the highest (
priority of all. This explains why the mouse always passes in front of any other
sprites on the screen.

There is however, also a different priority system which can be activated with
the PRIORITY ON command. Thisgivesthe highestpriority tothe spriteswith the f
largest Ycoordinate. So a sprite at 100 would pass above a sprite at 99 and behind
a sprite at 101. In practice this option allows you to create an useful illusion of
perspective. Look at the example below.

load "zsprites.mbk":rem See COLLIDE for details
1 rem Test of priority
5 mode 0 : els : flash off: hide

10 priority off:rem Set normal mode
20 sprite 1,160,100,22 : sprite 2,100,94,2
30 sprite 3,100,108,19
40 move x 2,"0(1,2,160)L" : move x 3,"320(1,-2,160)L" : move on
50 wait key
60 priorityon:rem Set Y mode

In the normal mode both of the moving sprites pass below the ship in the centre.
When you select the Y priority with PRIORITY ON, the sprites are now ranked in
order of their increasing Y coordinates. So sprite 3 moves above sprite 1 and sprite
2 passes behind it.

Note that if you want to create the most effective results, it's usually best to
position the Hot Spot of the sprite at its base. This is because the Y coordinates
used by this command relate to the position of the Hot Spot on the screen. Also
notice that the PRIORITY OFF instruction can be utilised to reset the priority back
to normal.

The background
Whenever a sprite is moved across the screen, it obscures some sections of the
graphics and reveals others. In order to use this technique, it requires a copy of /
the area underneath the sprite to be held somewhere in the ST's memory. Rather
than allocating a separate chunk of memory for each sprite, STOS Basic keeps
a copy of the entire screen to serve as a background for the sprites.

One important consequence of this approach is that the background screen /
and the normal screen must always contain exactly the same image. Ifthey don't,
the sprite will tend to corrupt the area of the screen underneath when it it is moved.
Therefore all STOS Basics graphics commands usually operate on both screens
simultaneously. You can change this state of affairs at any time using a special (
AUTOBACK command.

AUTOBACK ON/OFF (Set screen for graphics operation)

The AUTOBACK command toggles between two different drawing modes. As a
default, all graphics are sent to both the sprite background and the physical
screen. The autoback feature can be turned off using the AUTO BACK OFF
instruction, which leads to a substantial speed improvement in most of the /
graphics commands. Similarly the original mode can be reactivated with a call to
AUTO BACK ON.

Example: (

(

els

100

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I

(

<

(

(

(

(

(

<

autoback on:rem Set automatic background
circle 100,100,100:rem Draws a filled circle on both screens

Now move the mouse around on the circle. As you can see, the circle remains
unchanged.

Let's try drawing the circle with AUTOBACK turned off.

els

autoback off

circle 100,100,100:rem Draws a filled circle only on PHYSICAL screen.

If you now move the mouse on the circle, the circle will be steadily erased. This
is because the sections underneath the mouse are being copied froma background
screen in which the circle does not exist. By choosing the contents of the
background and physical screen carefully, you can produce a number of interesting
effects.

Furthermore, if your program doesn't use either the mouse pointer or the
sprites, you can speed up all the graphics operations a great deal by just switching
off the autoback feature using AUTO BACK OFF.

See BACK, PHYSIC, LOGIC

Miscellaneous sprite commands

UPDATE (Change automatic sprite updates)

Usually any sprites you draw on the screen will be automatically redisplayed
whenever they are animated or moved. This feature can be temporarily halted
using the UPDATE OFF command. When the updates are not active, the SPRITE,
MOVE and ANIM commands apparently have no effect. In reality, they are still
being operated on by the sprite instructions, but the results are simply not being
displayed on the screen. You can force any sprites which have moved to be
redrawn at their current positions using the UPDATE command like this:

update

Here is a summary of the three different forms of the UPDATE instruction:

UPDATE OFF Turns offthe automatic updating of the sprites. Any
movements or animations appearto be suspended.

UPDATE Redraws any sprites which have changed at their
new positions. This command can occassionally
be substituted for the normal WAIT VBL after a

PUT SPRITE instruction, as it is much faster.

UPDATE ON Returns the sprite updating to normal.

For an example, place the accessory disc in the drive and type:

new

load "sprdemo.mbk":rem Load some sprites
sprite 1,100,100,1:rem Install sprite at 100,100

707

move x 1"(1,1,100)(1,-1,100)l":rem Move the sprite to and fro
move on

update off:rem Stop updates

Remember that whilst the sprite in not being updated, it is still moving. We can
demonstrate this by updating the position with:

update

To see how the sprite is progressing across the screen, type in this instruction
several more times.

We can now return the sprite movements to normal with:

update

REDRAW (Redraw the sprites)

Redraws all the sprites at their current positions on the screen. Unlike UPDATE
it takes no account of whether the sprite has been changed since the last update.

OFF (Turn offsprites)

This turns off all the sprite movements and animations, and removes the sprites
from the screen. It is often used to reset the editor after you have broken out of a
program with Control+C. As a default it is assigned to function key f10.

FREEZE (Pause sprite and music operations)

Temporarily halts the actions of all the sprite commands and stops any music
which is currently being played. To restart these activities again simply type in the
line:

unfreeze

UNFREEZE (Restart sprite and music operations)

Resumes any sprite movements and music halted by FREEZE.

102

(

(

(

(

c

(

(

(

(

(

(

(

(

f

I

I

(

I

<

(

(

I

I

I

I

(

(

I

<

(

(

The Atari ST has a special sound generator which allows you to create a wide
range of different effects. STOS Basic gives you complete control over this
feature, and includes a variety of instructions to produce anything from a simple
beep to a complex sequence of music.

Voices and tones

The ST's sound chip can play up to three notes simultaneously each performed
on a separate Voice. By combining these voices, you can generate attractive
harmonics. The most fundamental of the STOS Basic sound commands is PLAY.

PLAY (Play a note)

PLAY [voice,jpitch,duration

Plays a pure note through the loudspeaker of your TV or monitor. Pitch sets the
tone of this sound, ranging from O(low) to 96(high). Rather than just being an
arbitrary number, each of these pitches is associated with one of the notes
(A,B,C,D,E,F,G). See the following table for more details. If you specify a value of
zero for the pitch, the note will not be produced, and PLAY will simply wait for a
time specified by the duration.

Octave

Note

0 1 2 3 4 5 6 7

Pitch

C 1 13 25 37 49 61 73 85

C# 2 14 26 38 50 62 74 86

D 3 15 27 39 51 63 75 87

D# 4 16 28 40 52 64 76 88

E 5 17 29 41 53 65 77 89

F 6 18 30 42 54 66 78 90

F# 7 19 31 43 55 67 79 91

G 8 20 32 44 56 68 80 92

G# 9 21 33 45 57 69 81 93

A 10 22 34 46 58 70 82 94

A# 11 23 35 47 59 71 83 95

B 12 24 36 48 60 72 84 96

Duration holds the length of time the note is to be played in 50ths of a second. A
duration of zero indicates that the sound will not be generated.

The optional voicedesignates whichofthe three voices the note isto be played
on. Voice can range from 1-3. If it is not included then the note will be sounded on
all three voices at once.

As you can see the notes go up in a cycle of 12. This cycle is known as an octave.
Here are a couple of simple examples of this function in action.

10 rem Random Music on a single voice

703

(

20 click off:rem Turn off keyboard click
30T=rnd(96): P=rnd(32):play T,P : goto 30 ,

new

10 rem Random Music on all three voices

20 click off:rem Turn off Keyboard click
30 volume 1,14: volume 2,14: volume 3,14
40V=rnd(2)+1 :T=rnd(96): P=rnd(40): play V,T,P: goto 40

new

10 rem Example of Play
20 rem Define note arrays
30 dim A(7),A#(7),B(7),C(7),C#(7)
40 dim D(7),D#(7),E(7).F(7),F#(7)
50 dim G(7),G#(7)
60 for 1=0 to 7

70 P=l*12: C(I)=P+1 : C#(l)=P+2 . D(l)=P+3: D#(l)=P+4
80 E(l)=P+5: F(l)=P+6 : F#(l)=P+7 : G(l)=P+8: G#(l)=P+9
90 A(I)=P+10 : A#(I)=P+11 : B(I)=P+12
100 next I

110 rem Define time variables
120 WN=32: HN=16 : QN=8: EN=4: SN=2 : TN=1

130 rem Turn off key click
140 click off

150 rem Set volume

160 volume 15

170 rem Read note

180 read N,T : if N<0 then 230

190 rem Play note
200 play NT
210 goto 180
220 rem Turn off sound
230 volume 0

240 click off

250 end

260 rem Music
270 data D(3).WN,E(3),WN,C(3),WN,C(2),WN,G(2),WN.-1-1

See CLICK OFF and VOLUME.

VOLUME (Changethe sound volume)

VOLUME [v,]intensity

Allows you to change the volume of any subsequently generated sounds.

Intensity refers to the loudness of this sound. Itcan normallyrange from O(silent)
to 15(very loud). There's also a special setting of 16 for the envelope generator.
See the ENVEL command for more details.

v indicates which of the three voices is to be regulated by the command. This
number can take any value from 1 to 3. As with PLAY, ifno voice is specified then
all three voices are affected.

Examples:

click off

704

(

(

(

(

(

I

(

(

(

(

c

c

I

c

(

(

<

<

(

(

(

(

I

(

I

<

(

(

<

volume 15

play 40,10
volume 5

play 40,10

new

10 for i=0 to 15

20 volume i

30 print "V0LUME";i
40 play 60,10
50 next i

See ENVEL, PLAY

CLICK OFF/ON (Turn offkeyboard click)

One minor problem you may encounter when using PLAY, is that the keyboard
beeps tend to interfere with the note. Try typing the following line:

volume 10: play 40,1000:rem Generate a tone 20 seconds long

If you now hit one of the keys while the note is playing, the note will immediately
stop. Since this could be very inconvenient, STOS Basic allows you to turn off the
keyboard click at any time with the instruction:

click off

As you might expect, the click can be reactivated by CLICKON. Incidentally, it is
important to note that this problem does not occur when using music created by
the MUSIC accessory.

The MUSIC command

Although the PLAYcommand is very useful for the generation of single tones, it's
not really suitable for the creation of real music. The most serious problem with
PLAY is that itdelays the entire program for the duration of the note. What is really
required is an instruction which would play a piece of music while a program was
doing something else. This would allow you to add a soundtrack to a game, without
spoiling any of the action. Fortunately, STOS Basic incorporates a powerful series
of commands which enable you to do precisely that.

MUSIC (Play a piece ofmusic using interrupts)

Plays some music which has been previously composed using the MUSIC.ACB
accessory. This music is always placed by the system into bank number three.

There are four different forms of the MUSIC statement.

MUSIC N (Play tune number n) The standard MUSICinstruction plays a tune
in bank 3, specified by the number n. Note
that unlike PLAY, the music is played
automatically by the system, without slowing
down your program in the slightest, n can
range from 1 to the number of tunes which are
currently installed (up to a maximum of 32).
Here's a small example to demonstrate this
process.

First load a melody from the accessory disc with the line:

705

c
load "music.mbk"

You can play this with the MUSIC instruction like so: f

music 1

This music will now play in the background independently of the rest of STOS f
Basic. You can run, list, or even load a program without interfering with it in any
way. The MUSIC command can therefore be used to add an attractivesoundtrack
to any of your programs. Examples of this technique can be found in the games
Zoltar and BulletTrain. f*

MUSIC OFF (Turn off music) The MUSIC OFF command stops a piece of
music which is currently being played. You
can restart this music from the beginning with
MUSIC ON.

MUSIC FREEZE (Temporarily
stop a piece of music) Unlike MUSIC OFF, this instructiononlyhalts

the music temporarily. Ifit is re-entered using
MUSIC ON, the music is continued from the
point itwas frozen. The most common use of
MUSIC FREEZE is to stop a piece of music
before you generate another sound effect /
such as an explosion. (See BANG, SHOOT, *
BELL, NOISE, ENVELOPE)

MUSIC ON (Restart a
piece of music) MUSIC ON resumes the current music halted

by eifher the MUSIC OFF or the MUSIC
FREEZE commands.

Example:

load 'music.mbk":rem If it has already been loaded, omit this step
music 1:rem Play music
music off

music on:rem Restart music from the begining
music freeze

music on

See TEMPO, TRANSPOSE, ENVEL

TEMPO (Changethe speed of a sample of music)

TEMPO s

(

(

(

I

(

(

(

Allows you to modify the speed of any tune played with the MUSIC command, s
is the new speed, and can range from 1(very slow) to 100 (very fast). (

Place the accessory disc in the current drive and type:

new

load "music.mbk":rem Load music
music 1:rem Play music
tempo100:rem Set music playing very fast
tempo10:rem Startmusic playing veryslow I

See MUSIC, TRANSPOSE.

706

c

<

<

<

I

<

(

(

I

(

<

<

(

'

(

(

(

TRANSPOSE (Change thepitch of a piece of music)

TRANSPOSE df

Alters the pitch of a piece of music by adding the value of df to each note before
it is played, dfcan range from -90 to +90. Negative numbers lower the note and
positive numbers increase it. A df increment of 1, by the way, corresponds to a
single semi-tone.

Load the music demo with the lines:

load "music.mbk"

Now play the music and use TRANSPOSE:

music 1

transpose 1:remIncrease the pitch by one semi-tone
transpose 10:rem Increase pitch by 10 semi-tones
transpose -20:rem Lower the pitch by 20 semi-tones

See MUSIC, TEMPO

PVOICE (Return position in music)

p=PVOICE(v)

PVOICE is a special command which allows you to find your position in some
music you are playing, v refers to the voice you wish to test, and p to the position.
It is important to understand that p is set to a number representing the address of
the note and not to the note itself. Ifa number of zero is returned by PVOICE, then
no music is being played on voice v. The PVOICE instruction enables you to
determine when the music reaches a particular point and stop it if required.

Example:

Put the accessory disc into the drive and type:

new

10 load "music.mbk"

20 music 2

30 tempo 5
40home : print pvoice(1),pvoice(2),pvoice(3)
50 if inkey$="" then 40
60 music off

This displays a number denoting the note which is being currently played. See how
we used the TEMPO command to slow things down.

You can now amend the program to stop the music at a specific stage like this:

30 tempo 40
45ifpvoice(1)=118then60

Ifyou run this program, the music is halted when PVOICE(1) reaches position 118.

VOICE (Turn on/off a voice)

VOICE OFF [v]

707

Lets you turn offone or more voices of a tune played by MUSIC. The optional voice
vcan take the numbers from 1-3 and specifies that only a single component of the
music will be suspended. If it is not included then all three voices will be
deactivated.

VOICE ON [vj

Restarts some music halted by the VOICE ON instruction. As before, v indicates
which of the three voices is to be set in motion. If it is not specified then all three
voices are set in motion.

Examples:

Place the accessory disc into the drive and type:

new

load "music.mbk"

music 1

voice off 1

voice off 2

voice off 3

voice on 2

voice on 1

voice on 3

The Music definer

STOS Basic includes a powerful accessory in the file MUSIC.ACB. This can be
used to compose a piece of music to be subsequently played with the MUSIC
commands. As this is a rather large program, users of the 520ST should always
remove all other accessories from memory before loading.

accnew:accload "music.acb"

You can now enter the accessory by pressing HELP+F1.

STOS BflWK HUS1C BLOCK TOOLS

-> Current nusic (

This screen consists of three windows which correspond to the three voices.
Each of these windows can hold a separate component of the music. You can
move between the windows using either the mouse, or the left and right cursor
keys.

70S

(

(

(

(

(

(

(

(

(

(

(

(

(

(

<

(

'

(

(

(

(

<

I

(

(

(

(

(

I

(

(

Above these windows is a set of menus and a graphical display of the current
tune in a standard musical notation. Don't worry if you can't read music, as this
window is only there as a convenient aid for those who can. The following diagram
should make the format of the main screen a little clearer.

Musical notes can be entered in any of the three windows just by moving the
cursor to the appropriate point and typing them directly from the keyboard. These
notes are split into three distinct parts. The first section consists of the name of the
note, which is input using standard musical notation, and can be one of the
following 12 possibilities:

C,C#,D,D#,E,F,F#,G,G#,A,A#,B

We've listed these notes in order of increasing pitch.
The second part of a note is the octave, which can range from 0 (very low) to

7 (very high). The higher the octave, the higher the note.
Finally, each tone has a duration specified in units of a single note. This is set

by the instructions in the table below.

Duration of note Meaning

WN Whole Note

HN Half Note

QN Quarter Note
EN Eighth Note
SN Sixteenth Note

TN Thirtysecondth Note

You can also add an additional half note to each of these durations except the SN,
by using the "." character. So QN. is a duration of a quarter of a note plus a half
-three quarters of a note. Each of these sections are combined into a single string
such as:

F#3TN

You enter these notes by moving the cursor over the voice window using either
the up and down arrow keys or the mouse, and then typing a command followed
by a Return. You can also use the function keys to move the cursor as follows.

f2 Displays the next page of your music
f1 Displays the previous page
f3 Jumps to the start of the music
f4 Jumps to the end

When you require to enter rests into the stave you only have to enter PA followed
by the note's length.

The music instructions

In addition to simple notes, the Music definer also supports a range of other
instructions which can be executed at any point in your music. Here is a list of the
various options.

VOLUME V (Set volume)

Sets the volume of the current voice to v,where vcan vary from 0 (silent) to 15 (very
loud). If this instruction is not used, then a volume of 15 is set as a default.

109

ENVEL e (Set envelope)

Allows you to choose one of a number of different waveforms for your music.
These waveforms determine the shape of the note by changing the volume over
a period of time, e refers to the envelope number. As a default eight of these
envelopes are already defined, although these can be readily changed using the
built-in Envelope editor. See the section on this utilityfor more details. Each piece
of music must contain one of these instructions at the beginning, or the tune will
not be played.

Tremolo t (Set tremolo)

Identical to an envelope except that, instead of the volume being changed, it is the
pitch of the note that is progressively altered. This adds a pleasant waver to the
note, t is the number of the tremolo to be used. As with the envelopes, eight of
these tremolos are automatically defined. Existing tremolos can be modified and
new ones created with the Tremolo definer utility.

STOP TREMOLO

Deactivates the current tremolo if one is being used.

NOISE n (Start noise)

Generates a hiss of pitch n at the same time as the notes are being played by the
current voice. The frequency of this sound ranges between 0 and 31. See the
STOS Basic NOISE command for more details.

STOP NOISE (Stopthe noise effect)

Turns off a noise created with NOISE.

NOISE ONLY (Plug each note as noise rather than a puretone)

Plays each note as a noise rather than a pure tone. This can be used to create a
number of interesting percussion effects.

MUSIC (Reset to music)

If the voice has been defined as NOISE ONLY, this returns the voice back to
normal. Do not confuse with the MUSIC command from STOS Basic!

770

c

c

(

(

(

c

(

(

c

(
REPEAT n,p (Repeat a section ofmusic)

Repeats the notes starting from the instruction number p to the end of the current /
voice, n refers to the number of times the music will be repeated. If a value of 0
is used for n, the music willbe played indefinitely. Warning: This instruction must
always be placed before the music to be repeated. If it is placed inside the loop,
then the music will never end, as the repeat is reinitialised every time it is executed. /

NTREMOLO t (Set noise tremolo)

Uses the Noise generator rather than a pure tone to create tremolo number t. The (
result is very odd indeed, but might occasionally be useful when used as part of
a soundtrack.

(

I

(

I

I

(

I

(

I

I

(

(

<

<

(

(

(

NTREMOLO OFF (Noise tremolo off)

Turns the NTREMOLO function off.

Envelopes and tremolos

Envelopes control the evolution of the volume of a note over time. These
envelopes can be created using a powerful utilitybuilt into the music definer. You
can use this facility to mimic the sound of a range of different musical instruments.

Tremolos are really very similar to envelopes except that the pitch of the
sound rather than the volume changes during the note. Tremolos can used to
produce a number of interesting vibratto effects. Like envelopes they can also be
edited using a special utility.

The Envelope editor

The Envelope and Tremolo editors are effectively one and the same. They can be
accessed at any time using the FIX ENVELOPE or FIX TREMOLO options from
the tools menu.

Since the two routines are otherwise identical, we'll concentrate on the
Envelope editor. When you enter this, the following screen is displayed.

EDITING ENUELOPE UMBER 1
15

!

Kn
—^

e
6 2

^^ •
3 4 5 seconds

PHASE \ SPEED (1-199) \ STEP (-16 to 161 \ AUHBER (9-2551
1 \ 198 •• \ 16 \ 1
2 \ 19 \ -1 V 3
3 \ \ 9 \ 3
4 \ 18 \ -1 \ 15
5 \ END \ 8 \ fl
e \ 9 \ 8 \ 8
7
9

\ 8
9

\ 8 \ 8 \.
\ 8 \ 8 '

9 \ 9 \ 8 \ 8
Fl! previous - - F2i next - - (ESC) quit - - (SPACE) to hear

- - (RETURN) to valid paraneter(ARROWS) to select phase
Tape 'bill or 'LOOP' in speed colunn to end definition,

9 'UMBER' of zerostands for infinite phase.

The top of the screen contains a graphical representation of the current
envelope. Below this there are three windows. You can move between these using
the cursor keys.

The nature of an envelope is determined by up to eight different phases. These
phases are specified using the information you have entered into the windows.

The Speed window sets the speed of the phase. Possible speeds range from
1 (slow) to 100 (fast). This number indicates the delay between each step of the
waveform. Aspeed of 100 signifies that the steps will be performed every 50th of
a second, while a speed of 1 denotes an interval of 100/50 or 2 seconds between
successive stages. In addition, you can also input the commands END or LOOP.
END simply terminates the envelope at the current point. LOOP is rather more
interesting and repeats the entire envelope, which now overlays a continuous
rhythmn on any music you subsequently play.

The Step window inputs the change in the volume to be produced in each

777

stage. Positive numbers increase the volume, while negative numbers decrease
it.

Finally there is the Number setting which determines the number of times each
phase will be executed. This can range from 0 to 255.

At the start of the session you are presented with waveform number one. You
can move to the next envelope by pressing f2 and to the previous one with f1.

Now for a simple example. In this we will be defining a new waveform for
envelope 9. Press f2 until the number 9 is displayed at the top of the screen. Move
the cursor to the first row of the Speed window and type in the following lines,
terminated by Return.

40

30

15

As you can see, an END instruction is placed automatically at the end of your
envelope. You should now add the steps of these phases by moving the cursor
to the top of the step window and entering:

2

0

Similarly you can input the number of times each stage should be performed into
the Number window.

10

10

15

The envelope will now be displayed on the screen. This consists of a sharp
increase in volume (attack), followed by a brief period when the volume stays the
same (sustain), and a slow drop (decay). Press the spacebar to hear how this
envelope actually sounds. Now move the cursor to the END statement and
change it to a LOOP. This will repeat the waveform continuously.

The pull-down menus

STOS

ACKNOWLEDGMENTS

QUIT

QUIT and GRAB

BANK

LOAD MUSIC BANK

SAVE MUSIC BANK

Exit to STOS Basic Editor.

Exit to STOS Basic Editor, and load the current
music into bank 3.

Load a memory bank containing a sample of music
from the disc. Note that this command does not
affect the music currently being edited. This allows
you to merge two sections of music together.

Save the music on to the disc. The name of the file
must end with the extension .MBK.

112

(

(

(

(

(

(

(

(

(

(

(

(

(

c

c

(

c
GRAB

c
ERASE MUSIC BANK

(
MUSIC

NEW MUSIC

(RENAME MUSIC

(

(

PUT MUSIC

(
GET MUSIC

(

(

I
ERASE MUSIC

PLAY MUSIC

(

(
PUT and PLAY

PRINT MUSIC

(
BLOCK

(

START BLOCK

(
END BLOCK

(

Grab some music from the current STOS Basic

program.

Deletes any MUSIC currently stored by the definer.

Deletes the music currently being edited, and asks
for the name of the new tune you wish to create.
Does not affect any of the music held in bank 3.

Changes the name of the current piece of music.

Copies the currently edited tune into one of the 32
different slots in bank 3. Bank 3 is used by STOS
Basicto hold your music and is limited to a maximum
of 32k. This should easily be sufficient for all
practical purposes. Since the definer only saves
the data which has been previously installed in the
bank, you must always remember to use the PUT
instruction prior to saving your music to the disc.
OTHERWISE YOUR MUSIC WILL BE LOST

FOREVER!

This option loads a sequence of music stored in
bank 3 into the music editor. If you change this
music, don't forget to place it into the memory bank
with PUT, otherwise all your amendments will be
lost. Incidentally, GET MUSIC automatically
appends any envelopes or tremolos used by your
composition into the existing set. You are, however,
restricted to a maximum of 25 envelopes and
tremolos at a time.

Allows you to delete one of the sections of music
from the bank.

Enables you to play a piece of music you have
stored in the memory bank. Ifyou wish to play the
music you are currently editing, you need to load it
into the bank first using PUT MUSIC.

Permits you to put the current music into bank 3
and then play it using just one operation.

Outputs a listing of the music you are editing to a
printer. All three voices are printed out.

Sets the start of a block at the current cursor

position. All text below this line is subsequently
displayed in inverse.

Sets the end of the block. The section of the music

making up this block is inverted. This block can
now be manipulated with COPY BLOCK and
TRANSPOSE BLOCK.

113

CANCEL BLOCK

COPY BLOCK

ERASE BLOCK

TRANSPOSE BLOCK

TOOLS

FIX ENVELOPE

FIX TREMOLO

ERASE ENV/TREM

Aborts current block and redisplays the section of
music in normal type.

Places a copy of the currently defined block at the
cursor position. This feature can be used to copy
music from one voice to another.

Erases the part of the music selected using the
START and END BLOCK commands.

Allows you to add or subtract a specific number of
semitones from the music in the current block. The

editor expects you to input a number from -90 to
+90. As with TRANSPOSE from Basic, negative
values lowerthe pitch and positive values increase
it.

Enter ENVELOPE Editor.

Edit Tremolos.

Delete all envelopes and tremolos from memory.

Creating a piece of music

In order to create some music, first enter the Music Definer using Help+f1. Now
move the cursor to the first voice and type:

ENVEL1

As you press Return, you will be prompted for an eight character name for your
music. In this example you can call the music anything you like. The ENVEL
instruction sets the waveform of the notes which will be played. Up to 16 of these
waveforms are available at any time, and these can be defined using a built-in
envelope editor. Each piece of music needs to have its own envelope setting. If
you omit this instruction the music will not be produced.

Move the cursor to the line below the ENVEL command and type:

D3WN

E3WN

C3WN

C2WN

G2WN

When you enter each line the cursor moves down one place, and the appropriate
note appears on the screen. The Insert key inserts a space at the current cursor
position and moves the rest of the music down a line.Similarly the Delete key can
be used to erase the note under the cursor.

You can now register your music into the memory bank using the PUT option
from the Music menu. This puts the tune into one of 32 different slots. These slots
have numbers ranging from 1-32 and refer to the numbers used by any subsequent
MUSIC command in your program. Move the mouse to slot number 1 and press
the left button to install your music into the bank.

In order to listen to this music, you must select the PLAYoption. As before you

774

(

(

c

(

(

c

(

(

(

c

I

c

(

(

c

<

(

I

<

<

I

(

(

<

(

I

need to choose the name of the music with the mouse.

Press the S key to play the music. If you're a science fiction fan, you may
recognise it as part of the theme from Close Encounters of the Third Kind.

The speed of this piece can be changed while the music is playing by hitting
the + and - keys, and you can alter the pitch with / and *. While the music plays,
each note is displayed on the screen.

After you have finished listening to the music, you can exit back to the main
menu by pressing the Escape key.

STBS RANK HUSIC 8L0CK TOOLS

•> Current nusic H

IT iPlaying: Cuomo

<ESC> to quit / <+> & (-> set tenpo / </> & <*> set transposition
<S> restarts nusic / (SPACE): step by step node

Once in step by step node, any other key returns to nornal.

1 Tenpo: 34 / Transposition: 8 / Hornal
1 UII 2
3
4

Kb
fl HN<(F 3 HN) (A 111] (C 1 11

5 i: ON
b
7
8

i
E
A

HN

5 on 8 F 4 QN 8: E 2 EN \
2 EN '9 flu 5 EN 1 G 4 EN V D

19 fl 3 ON Ifl F 4 ON 18: A 2 EN
11 i; 5 EN 11 E 4 EN 111 1 3 EN
12: 11 5 EN 12: F 4 EN 12: 1 3 EN

One minor problem with this tune was that itstopped playing after the last note.
STOS Basic includes a useful REPEAT instruction which can be used in this
situation. Move the cursor to the line containing the first note, and press Insert.
Now enter the instruction:

REPEAT 0,3

The REPEAT command takes two parameters. The first number specifies how
many times the music should be repeated. A value of zero indicates that the music
should be played continuously. The second number holds the starting position of
the notes to be repeated. This figure includes any instructions such as REPEAT
or ENVEL.

Now go to the Music menu and choose the Put and Play option, which
combines the actions of the separate Put and Play menus into a single operation.
When you play the tune, it will be repeated when it reaches the end.

Try adding each of the following instructions into the music in turn. Place them
just after the REPEAT command, and test the effect with Put and Play.

NOISE ONLY

Produces a literally off-beat effect.

ENVEL 5

Plays the five tones using envelope number 5.

TREMOLO 2

Adds a nice waver to the tone.

You can then save the music using the Save Music option from the Bank menu,
or incorporate itdirectly into your current program with the QUIT and GRAB option.
If you select the latter option you will be returned to the Basic Editor, and your

775

music will be automatically loaded into bank 3. You can now play this sequence
by typing:

music 1

When you've heard enough, turn the music off with:

music off

We'll now provide you with another example which demonstrates how several
different voices can be combined to produce a pleasent harmonic effect. Enter the
Music definer with Help+f 1 as before.

Move the cursor to the voice 1 window and enter the following. You don't
actually have to type every entry as the last instruction is entered automatically if
you press Return.

VOLUME 15

ENVEL1

C4QN

C4QN

C40JN

D4QN

E4HN

D4HN

C4QN

E4QN

D4QN

D4QN

C4WN

Now move the cursor to the second window with the Right arrow and enter the next
voice.

VOLUME 12

ENVEL 2

C3QN

G3QN

E3QN

G3QN

C3QN

G3QN

F3QN

G3QN

D3QN

G3QN

F3QN

G3QN

C3WN

(

(

(

c

(

c

c

c

(

(

c

(

(
You can now play this music using the Put and Play option.

Finally, we'll have a brief look at the Music example on the accessory disc.
Place this disc into your current drive, and load the file MUSIC.MBKusing the Load /
Music option.

If you call up the PLAY command, you will find that a piece of music has been
loaded into slot1 with the name Cuomo. Access this by selecting the music with f
the mouse. As usual you can change the tempo and the pitchof the music with the
+- and */ keys respectively.

776 I

(
We'll now show you how you can modify the music. Jump back to the main

screen with Escape and load the music into the editor with the Get Music option.
(Now move the cursor to the start of the first voice and hit the Insert key.

A space will be inserted into the music, and you should type in the following
command:

(

(

(

TREMOLO 2

Select the Put and PLAYoption and place the new music into the second slot. This
music will be played using tremolo number 2. The difference should be obvious!

Predefined sound effects

In addition to the musiccommandsdetailed above, STOS Basicalso providesyou
with a number of instructions which allow you to generate special sound effects
for your games.

I BOOM (Generate a noise sounding like anexplosion)

<

I

(

i

(

(

I

(

(

(

As the keyboard click interferes with this sound, it's a good idea to turn it offwith
CLICK OFF. You should also halt any music which is currently being played,
because this will be distorted by the boom. Use the command MUSIC FREEZE
for this purpose.

Example:

new

10 click off

20 boom

30 print "You're DEAD!"
40 click on

SHOOT (Create a noise like a gun firing)

SHOOT simply produces a sound of a shot being fired.

Example:

new

10 click off

20 shoot

30 print "You're DEAD!"
40 click off

BELL (Simple bellsound)

Example:

bell

Defining your own effects

So far we've only looked at the pre-defined effects, but you can also use the NOISE
command and the ENVELOPE instruction to generate a vast range of other useful
sounds.

777

NOISE

NOISE v,p

(

(
NOISE produces a sound like a rushing wind. The frequency of this noise is set
bythe pitch p, where pis a numberfrom 1 (veryhigh) to 31 (very low), vspecifies
the voice which the noise is to be played on. If it is not included the noise is output (
to all three voices simultaneously. Note that any noise generated with this
command can be played continually while a program is running - just like the
MUSIC command.

Example:

new

10 click off

20 for i=1 to 32

30 noise I

40 wait key
50 next i

The NOISEcommand really comes into its own when used in conjuction with the
ENVEL instruction.

ENVEL

ENVEL type,speed

ENVEL activates one of the ST's 16 different envelopes. These periodically alter
the volume of a sound created with either NOISE or PLAY, type specifies the type
of envelope to be used and can take any value from 1 to 15. speed ranges from
1(very fast) to 66535 (very slow) and determines the length of the sound. Before f
you can use this feature, you must first set the volumeto 16 with VOLUME.

Example:

volume 16:rem Set volume
noise 10:rem Create a noise of pitch 10
envel 10,100:rem Shape the sound using envelope 10
envel 10,10OO:rem Helicopter sound

(

(

(

(

(

(

Asyoucan see, itis possibleto utilise ENVEL to producea numberof interesting
effects. .

Here isa small program tohelp you toexplore thevarious possibilities of this I
instruction.

10 rem Program to experiment with the NOISE
20 rem and the ENVEL instructions
30els 35 locate 0,0: input"Input length of the sound from 1-10000";T
40locate0,0: print "Press a key to scroll through the sounds
50 click off

60 for J=0 to 15

70 envel J.T

80 for 1=1to 31

90 noise I
100 locate 10,10:print "Envelope";J;" ";
110locate 10,11: print "pitch ';!;" ";
120 wait key

7 7S

(

(

(

I

I

<

<

<

<

(

(

(

(

I

(

(

(

130 next I

140 next J

150input "Continue Y or N";A$160 if A$="Y" or A$="y"then 35

These envelopes can also be used to shape the pure tones generated by a PLAY
command.

Example:

click off

volume 16

envel 8,100
play 37,30

You can explore these effects using the program above by typing the following
lines:

35 locate 0,0: input "Input length of sound from 1-100";T
36 input "Starting envelope 1-15";S
37 if S<1 or S>15 then print "Bad Envelope number " : goto 36
60 for J=S to 15

80 for 1=1 to 96 step 3
90 play l,T

Note that the variable t refers to the time the note will be played in 50ths of a
second. When using the above routine, it's always a good idea to keep a pen and
paper handy to write down any sounds you want to keep. You will be amazed at
some of the noises which can be achieved with these commands.

As a general rule, NOISE is best suited for the creation of mechanical sounds
such as engines and machine guns. PLAY can generate more unusual effects -
like laser beams and alarms.

See NOISE, PLAY and VOLUME.

113

g

I

<

<

(

I

I

(

I

(

(

(

(

(

(

(

I

Although STOS Basic isn't Gem based, it still supports a wide range of powerful
graphical functions similar to those provided by the Gem VDI. These include
facilities for drawing rectangles, circles and polygons. In addition, there's also a
special set of commands which make it particularly easy to create programs
capable of running equally well in all three resolutions. To that end STOS Basic
effortlessly allows you to change between low and medium resolution at any time
within your program.

Clearing the screen

CLS (Clear the whole screen)

This instruction clears the entire screen at high speed. It is usually used to initialise
the screen at the start of a program. CLS has a number of useful extensions which
enable you to erase all or part of a screen stored anywhere in the ST's memory.
A full explanation of these options can be found in Chapter 7.

Colours

The ST allows you to display up to 16 colours on the screen at any one time. These
colours are chosen from a possible palette of 512. As you might expect, the
number of colours which are available depends on the graphics mode the ST is
currently running in. Each of the 16 colours is referred to by a number called an
index. Here is a list of the various alternatives.

Resolution Mode Maximum no

of colours

Colour

Indices

Low

Medium

High

0

1

2

16 from 512

4 from 512

2 from 2

Oto 15

Oto 3

Oto 1

Before you can draw something on the ST's screen you first need to specify which
colour you wish to use. This colour can be set using the INK instruction.

INK (Setcolour ofgraphic drawing operations)

INK index

Index is the number of the colou r to be used for all subsequent drawing operations.

Note that index number 2 is slightly unusual, in that it flashes on and off several
times a second. You can produce a similar effect using the FLASH instruction
covered in section 6.7.

COLOUR (Assign a colour toan index)

There is also a special COLOUR instruction which allows you to choose which of
the 512 colours is to be used for any particular index.

727

COLOUR index,$RGB
Index is the number of the colour to be changed.

$RGB is usuallya hexadecimal expression which determines the exact shade of
the new colour.

Thisexpression consists ofthree digits rangingfrom 0 to 7, each ofwhich sets the
strength of one of the primary colours, RED (R), GREEN (G) or BLUE (B) in the
final result. Here are a few examples of this notation:

Components Hexadecimal form Final Colour

R=0 G=0 B=0 $000 BLACK

R=7 G=0 B=0 $700 BRIGHT RED

R=7 G=7 B=0 $770 YELLOW

R=0 G=7 B=0 $070 GREEN

R=4 G=0 B=7 $407 VIOLET

R=7 G=7 B=7 $777 WHITE

R=3 G=3 B=3 $333 GREY

So if, you want to make colour number 5 yellow, you would type:

COLOUR 5,5770

When this statement is executed, any graphics displayed on the screen which
already use colour number 5, will be immediately changed to the new colour
(yellow).

=COLOUR (Read the colourassignment)

There's also a function with the same name, which takes an index number, and
finds the colour value which has been assigned to it. This is used in the following
manner:

c=COLOUR(index)
c is any variable and index is the colour number whose shade you want to
determine.

Youcan use this function to produce a listofthe current colour settings of yourST,
like this:

10 mcol=16.rem set mcol to 4 in medium res

20 for 1=0to mcol-1
30 print HEX$(colour(l),3)
40 next I

PALETTE (Set the current screen colours)

The PALETTE instructionis reallyjust a rather more powerfulversion ofCOLOUR.
Instead of loading the colour values one at a time, the PALETTE command allows
you to install a whole new palette of colours in a single line.

PALETTE list of colours

This list can contain anything up to the maximum number of colours available in
the current graphics mode.

122

{

(

(

(

(

(

(

(

(

(

(

(

(

(

(

To see PALETTE in action, type one of the lines below:

Invert the screen in high res:

PALETTE $777,SO00

Use this line for medium res:

PALETTE $000,$700.$746,$534

Use this line for low res:

PALETTE S000,$700,$070.$007,$770,$077,$707,$777,
$300.$030.$003,$330.$033. $303,$333,$345

Drawing lines

PLOT (Plot a singlepoint)

The simplest of the drawing functions provided by STOS Basic, is the plot
command, which sets any point on the screen to a specific colour. The format of
the PLOT instruction is just:
PLOT x,y [.index]
Plots a point at the coordinates x,y.

If value of index isn't included, then PLOT will use the colour which was chosen
using INK.

In order to test this function on a colour monitor type:

new

10 mode 0

20 plot rnd(319),rnd(199|,md(15)
30 goto 20

POINT (Get thecolour of a point)

As with COLOUR, there is also a function to perform the reverse of this.

c=POINT(x1,y1)
POINT returns the colour of the point at the coordinates x1,y1 in the variable c.

DRAW (Draw a line)

DRAW is another very basic instruction which allows you to draw a straight line
on the ST's screen. There are two forms of the DRAW statement:

DRAW x1,y1 TO x2,y2 Draws a line between the coordinates x7,y7 and x2,y2

DRAW TO x3,y3 Draws a line from the last line drawn, to x3,y3

Example:

new

5colour3,$707:ink3
10 draw 0,50 to 200,50

123

20 draw to 100,100
30 draw to 0,50

It is important to note that, in order to make DRAW operate at the maximum
possible speed, this instruction has been restricted to a single line type. Because
of this, any attempt to alter the line style using SET LINE will have no effect
whatsoever.

See also POLYLINE, INK.

BOX (Draw a hollow rectangle on the screen)

BOXx1,y1 TOx2,y2
*1,y7 are the coordinates of the top left hand corner of the box.
x2,y2 are the coordinates of the point diagonally opposite.

Example:

box 10,10 to 200,100

See also SET LINE, INK, and BAR

RBOX (Draw a rounded hollow box) I

This is almost identical to BOX, except that the edges of the rectangle are rounded.
As before the format is:

RBOXx1,y1 TOx2,y2
x7,y7 is the top right corner of box and x2,y2 is the bottom left corner.

RBOX isvery useful for producing Macintosh-like borders around a piece of text. (

Example:

new

5 colour 3,$7:ink 3
10 rbox 156,100 to 245,130
20 locate 20,10: print "testing..."

See SET LINE, INK and RBAR.

POLYLINE (Multiple line drawing)

POLYLINE is a very powerful instruction indeed as it enables you to generate
complex hollow polygons using just a single line of code.

POLYLINE x1,y1 TO x2,y2 TO x3,y3 ...
Where x7,y7 = coordinates of point 1, x2,y2 = point 2 and x3,y3 = point 3

POLYLINE first draws a line from point 1 to point 2, and then another linefrom point
2 to point 3. It then repeats this procedure, and draws a line between each
successive pair of points until it reaches the end of the list. This means that
POLYLINE is roughly equivalent to the lines.

DRAW x1,y1 TO x2,y2
DRAWTOx3,y3

124

(

(

(

(

(

(

(

(

(

(

<

(

(

(

(

(

<

<

I

Now type in the following line, which draws a triangle on the ST's screen:

polyline 0,20 to 200,20to 100,100 to 0,20

Notice how I've used four pairs of coordinates to draw three lines. As a general
rule, in order to create a closed polygon, the last group of coordinates should
always be the same as the first.

Also see SET LINE, INK and POLYGON.

ARC (Draw a circular arc)

ARC draws a segment of a circle on the screen. It is specified by:

ARC x1,y1,r,startangle,endangle
x1,y1 are the coordinates of the centre of the circle, r is its radius.

Startangle is the angle the arc should be started from, and endangle is the angle
at which it should finish.

Angles are measured in units of a tenth of a degree, and can therefore range from
0 to 3600. Think of a clockface - an angle of 0 would now correspond to the
direction pointed at by the short hand at three o'clock. Also, since STOS measures
all the angles in an anti-clockwise direction, an angle of 900 would be represented
by a time of twelve o'clock, and the maximum angle (3599) would be at
approximately 3:01.

The following program should make this a little clearer:

new

10 draw 100.120 to 190,120
20 for a=0to 3600 step 10
30 arc 100,120,90,0,a
40 next a

Notice that this function is also able to produce a unfilled circle:

ARC x1,y1,r,0,3600

Try:

arc 100,100,100,0,3600

See SET LINE, INK, PIE and CIRCLE

EARC (Draw an elliptical arc)

The EARC instruction is very similar to ARC, but produces an elliptical arc rather
than a circular one.

EARC x1,y1 ,r1,r2,startangle,endangle
x7,y7 are coordinates of the centre of the arc, startangle and endangle the angles
of the start and the end of the arc r1 and r2 specify the size of the two radii of the
ellipse.

If you're not mathematically minded, it may help to consider r2 to be the vertical
part of the radius, and r1 the horizontal. When r1 and r2 are the same, the ellipse

725

will be almost identical to a circle. If r2 is much greater than r1 then the ellipse will
be tall and thin, and if the reverse is true, it will be short and wide.

You can use this function to draw a complete ellipse using:

earc x1,y1.M,r2,0,3600

Example:

earc 100,100,30,50,0,3600

Example:

new

10 clsxolour 1,$47:ink 1
20 draw 120,119 to 160,119
30 for R1=40to 80 step 40
40 for R2=40 to 80 step 40
50 for A=0 to 3600 step 200 (
60 earc 120,119,R1,R2,0,A
70 next A

80 next R2

90 next R1 (

(

(

(

(

(

Line Types

So far in our examples, we have restricted ourselves to using solid lines. ButSTOS
Basic also allows you to use a wide variety of other line styles. These can be used
to great effect, in anything from the creation of simple diagrams to complex
drawing routines.

(

(
SET LINE (Set theline styles)

SET LINE mask,thickness,startpoint,endpoint i

Mask is the bitmap for the line, and thickness can range from 1 (very thin) to 40
(extremely wide). Startpoint and endpoint specify one of three styles to be used
at the beginning and the end of every line: 0=SQUARED, 1=ARROWED, /
9-Rni iwnpn V2=ROUNDED.

Mask is a 16-bit binary number which holds a so-called bitmap of the line. In this
system, any points in the line which are to be displayed in the ink colour are
represented by the binary digit 1, and any points which are to be set to the
background colour are represented by a zero.

So a normal line is denoted by the binary number %1111111111111111 and will
be displayed as:
and a dotted line like: will be produced by a mask of %1111000011110000
By setting the line mask to numbers between 0 and 65535 it is possible to generate
an almost infinite variety of different line types.

The program below contains a number of examples of this function in action.

new

10 els: colour 3,3770: ink 3

20 set line %1111111111111111,10.0,1

126

<

c

(

(

(

(

(

(

(

(

<

<

I

(

I

I

<

<

(

I

25 rem A large arrow
30 arc 100,199,90.0,1800
35 rem A dotted diagonal line
40 set line %1111000011110000,1,0,0
50 polyline 200,60 to 300.100
55 rem A single large point
60 set line %1111111111111111,20,0,0

70 polyline 100.150 to 100,160

Notice how we've used POLYLINE instead of DRAW and POINT. This is because
neither of these instructions are capable of using the line styles installed by SET
LINE.

See INK, POLYLINE, BOX, RBOX, ARC and EARC.

Filled Shapes

STOS Basic includes a number of useful instructions to enable you to create a
wide range of filled shapes.

PAINT (Contour fill)

The PAINT command allows you to fill any existing hollow surfaces on the ST's
screen with colour. As you might expect, this colour can be set with the INK
instruction. In addition, you can also use SET PAINT to specify one of a number
of different fill patterns.

PAINT x1,y1
x7,y7 are the coordinates of a point inside the object to be filled.

Look at the following example:

new

10 colour 3,$604.ink 3 ink 3
20 box 0.10 to 100,100
30 box 50,60 to 150,150
40 ink 1

50 paint 70,70

PAINT will happily fill any surface you like providing it is completely enclosed by
lines. Ifhowever, there is a gap in one of these lines, the fill colour willleak out into
the rest of the screen. The effect of this can be seen by adding line 15 to the above
example:

15 set line %1111000011110000,1,0,0

Incidentally, PAINT corresponds directly to the FILL instruction found in other
versions of Basic. Take care not to confuse the two as the STOS Basic FILL
command has a very different effect!

BAR (Draw a filled rectangle)

This draws a filled bar using the current ink colour.

BAR x1,y1 TOx2,y2
x7,yt hold the coordinates of the top left corner of the bar, x2,y2 the coordinates
of the corner diagonally opposite.

127

new

10 mode 0

20 X1=rnd(200):Y1=rnd(100):W=rnd(100):
H=rnd(80)
30 ink rnd(15)
40barX1,Y1toX1+W,Y1+H

50 goto 20

See also RBAR, BOX, SET PAINT and INK

<

<

(

RBAR (Draw a filled rounded rectangle) (

RBAR draws a filled and rounded rectangle on the screen.

RBARx1,y1 TO x2,y2 (
x7,y7 hold the starting corner of the bar.
x2,y2 hold the coordinates of the corner diagonally opposite.

If you've already typed the BAR example above, you can see how thisworks by |
nhanninn line 40 to-

t

changing line 40 to:

40rbarX1,Y1toX1+W,Y1+H

Refer also to RBAR, BOX ,SET PAINT and INK

POLYGON (Draw a filled polygon)

The POLYGON instruction is identical to POLYLINE except for the fact that it
generates a filled shape rather than a hollow one. As usual the fill colour is set
using INK, and the fill pattern with SET PAINT.
POLYGON x1 ,y1 TO x2,y2 TO x3,y3 ... (
Where x1,y1 are the coordinates of point 1
x2,y2 those for point 2 and x3,y3 those for point 3

Example: f

polygon 0.20 to 200.20to 100,100to 0,20

(

Now type in lines 10to 50: /*

(

new

10 mode 0

20 ink rnd(15)
30 X1=rrtd(200):Y1=rnd(100):H=rnd(1QO):
W=rnd(90)
40 polygon X1.Y1 to X1+W.Y1 to X1+W/2,
Y1+H to X1.Y1
50 goto 20

This program fills the screen with pretty coloured triangles.

Also see POLYLINE, INK, SET PAINT.

CIRCLE (Draw a filled circle)

CIRCLE x1,y1,r
x?,y7 are the centre of the circle and r is its radius.

728

(

(

(

(

Example:

10 mode 0

20 ink rnd(15)
30 X=rnd(200):Y=rnd(100):R=rnd(90)
40 circle X.Y.R

50 goto 20

See ARC, INK and SET PAINT.

PIE (Produce a pie chart)

PIE is used to draw a segment of a circle in the current fill colour. In practice it can
be considered to be a solid version of ARC. Like ARC it needs two angles, which
denote the starting and the ending points of the pie chart respectively.

PIE x1,y1,r,startangle,endangle
x7,y7 are the coordinates of the centre of the chart and r is its radius.
Startangle and endangle range from 0 to 3600, where 0 is 3 o'clock, and angles
increase in an anticlockwise direction.

Example:

10 rem Get free space on single density disc
20 rem Divide by 100to convert into the range 0-3600 (approx)
30 rem Change to 200 for double sided drives
40 els: colour 1,5700 : ink 1: colour 3.S70
50 D=dfree

60 D=D/100
70 pen 3 : locate 20,2: print "% Disk space free"
80 pen 1: locate 20,3: print "% Disk space used"
90 ink 3

100 pie 100,110,60,0,0
110 ink 1

120 pie 100.110.60.D.3600

This program displays the free space on the disc as a pie chart.

See also ARC, INK and SET PAINT.

ELLIPSE (Draw a filled ellipse)

The ELLIPSE instruction is used to draw a filled ellipse in much the same way that
CIRCLE produces a filled circle.

ELLIPSE x1,y1,r1,r2
x1,y1 are the coordinates of the centre of the ellipse.
r1 and r2 are the two radii.

You can now type in the following program:

new

10 mode 0

20 ink rnd(15)
30 X1=rnd(200):Y1=rnd(100):R1=rnd(90):R2=rnd(90)
40 ellipse X1.Y1.R1.R2
50 goto 20

See EARC, EPIE, INK and SET PAINT.

729

(
EPIE (Draw an elliptical pie)

This function corresponds directly to the EARC instruction and draws a solid (
elliptical pie chart.

EPIE x1 ,y1 ,r1 ,r2,startangle,endangle
x7,y7 are thecoordinates of thecentre of thesegment and r1 and r2 its two radii. (
Startangle and endangle range from 0 to 3600, and rotate in an anticlockwise
direction.

Ifthe very idea of an elliptical pie chart seems ridiculous, we've included a couple
of simple examples which may make you change your mind. (

epie 100,100.100.20,0,2225
epie 110,110,100,20,2225,3600

As you can see, the use of ellipses lends useful impression of depth to any pie
chart.

If you've already typed in the pie chart example, tryadding the following lines: |

«

100 epic 200,110,90,10,0,D
120 epic 200,110,90,10,D,3600

Fill types

STOS Basic allows you to use up to 36 different fill styles. These patterns can be
grouped into four distinct types: Solid, dotted, lined, and user-defined. Furthermore,
if you don't find the pattern you like, you can easily create one of your own.

SET PAINT (Select fill pattern)

The SET PAINT instruction has the format:

SET PAINT type, pattern, border

Type can range from 0 to 4.

The effect of the various types can be found by inspecting the table below.

Fill Type Effect

0 Surface is not filled at all

1 Surface is filled with the current INK colour (solid) {
2 Surface is filled with one of 24 dotted patterns
3 Surface is filled with one of 12 lined patterns
4 Surface is filled with a user-defined line pattern

(See SET PATTERN) f

The fill pattern is specified using a number, which can range between 1 and 24 or
1 and 12 depending on whether DOTTED or LINED type has been selected. If
neither of these types have been chosen, pattern should be set to 1. f

Border has just two possible values: 0 and 1. A border of 1 is used to indicate that
the filled surface should be enclosed in a line of the current INK colour.

The following program prints out the fill types associated with each of the different
styles:

750

(

(

(

(

(

(

(

(

(

<

I

(

<

<

<

(

(

I

<

(

(

(

new

10 rem Print out a list of dotted patterns
15 mode 0

20forTYPE=2to3

30 if TYPE=2 then LIM=24 else LIM=12

40forSTYLE=1toLIM

50 rem Set fill pattern with style number style and a border of 1
60 set paint TYPE,STYLE,1
70 rbar 0,0 to 310,180
80 locate 0,4:centre "Type "+str$(TYPE)+" Style " + strS(STYLE)
90 locate 0,6:centre "Press any key to continue"
100 wait key
110 next STYLE

120 next TYPE

Warning: Do not confuse SET PAINT with SET PATTERN!

See CIRCLE, ELLIPSE, BAR, RBAR, PIE, EPIE and POLYGON.

SET PATTERN (Set a user-defined fill pattern)

SET PATTERN is used to install the user-defined fill pattern specified with the
instruction SET PAINT.

SET PATTERN address of pattern

Address ofpattern refers to the address in the ST's memory where the new pattern
is to be found.

Patterns can be stored in either a memory bank, a string or an array of integers.
If you decide to store your pattern in a variable array, then you must always use
the VARPTR Instruction to calculate the address of this data, before you call SET
PATTERN.

So if the pattern was held in the string P$, you would use the instruction SET
PATTERN VARPTR(P$)

Each pattern is 16 points high by 16 points wide and takes up 16 two byte
words of memory for each colour plane.

But how do you create this pattern in the first place? One particularly easy
solution is to treat your fill pattern as just a 16 by 16 sprite. This allows you to draw
any of your patterns using the sprite definer, and then load this sprite data into your
program in the normal way.

LOAD "PATTERN.MBK"

(Pattern can be any set of 16x16 sprites)

Then all you need to do is work out the address of this data for use by SET
PATTERN. This can be done with the following program:

10 rem Work out size of data

20 if mode=0 then PLANES=4

30 if mode=1 then PLANES=2

40 if mode=2 then PLANES=1

50 rem Get start of sprite information block
60 S=1: rem Use image number 1. S can be any number up to the current
number of sprites
70 rem Get start of sprite parameter block for image 1
90 SP=leek(start(1)+4*(mode+1))+start(1)+4

737

(
100remGet startof sprite parmeter block for image S
110 SPB=SP+(S-1)*8 : P0S=leek(SPB)+SP+32*PLANES
120 rem Get location of sprite image (
130 P0S=leek(SPB)+SP+32*PLANES
140 rem Choose user-defined fill pattern
150 set paint 4,1,1
160rem Set user pattern to image in pos (
170 set pattern POS V
180 rem Test new fill pattern
190 circle 100,100,100

If you want to know how all this actually works, please refer to the technical
reference section in Chapter 12.

(

Special effects (
FLASH (Set flashing coloursequence)

This command gives you the ability to periodically change the colourassigned to
any colour index. It does thiswith an interrupt similar to that used bythe sprite and
the music instructions. The format of the flash instruction is:

FLASH index,"(colour, delay)(colour, delay)(colour, delay)..."

Index is the number of the colour which is to be animated.

Delay is set in units of a 50th of second.

Colour is stored in the standard RGB format (See COLOUR for more details)
The action of FLASH is to take each new colour from the list in turn, and then load
it into the index for a length of time specified by the delay. When the end of this
list is reached, the entire sequence of colours is repeated from the start.

c

(

(

<

Notethat youare only allowed to use a maximum of 16 colourchanges inany I
FLASH instruction. Here is a small examDle:

(

Now for something more complex: t

(

one FLASH instruction. Here is a small example

flash 1,"(007,10)(000,10|"

This alternates colour number 1 between blue and black every 10/50 (1/5th) of a
second.

flash 0,"(11U)(333,2)(555,2)(777,2)(555,4)
(333,4)"

If thisgivesyoua headache, youwill be gladto learnthatyoucan turn theflashing
off using the instruction:

flash off

Alsonote that onstartup,colournumber2 isa flashing colour. It'sthereforea good
idea to turn this off before loading any pictures from the disc.

See SHIFT and INK

732

<

(

I

(

(

<

(

I

(

(

<

(

<

(

(

<

(

(

SHIFT (Colour rotation)

SHIFT allows you to produce startling effects such as the famous Neochrome
waterfall. Itdoes this by rotating the entire palette of 512 colours into the 16 colour
indeces using interrupts.

SHIFT Delay [.Start]

Delay is the delay between each rotation in 50ths of a second.
Start enables you to change only the colours with indeces greater than an initial
value.

Ifa starting value is not included in the instruction, then the rotation will begin from
colour number 1.

Here is a small example of SHIFT:

shift 10

See also FLASH, PALETTE and COLOUR.

The writing modes

Whenever you draw some graphics on the ST's screen, you normally assume that
anything underneath it will be overwritten. Sometimes this can be inconvenient,
and in this case it's useful to have the ability to choose a slightly different method
of drawing. STOS Basic provides you with a special instruction called GR
WRITING for just this purpose. The format of the statement is:

GR WRITING MODE

Where MODE can take the values from 1 to 4.

Replacement mode (mode=i)

This is the default condition. Any existing graphics on the screen willbe completely
replaced by anything you draw over them.

Transparent mode (mode=2)

Transparent mode informs STOS that only the parts of the drawing which are
actually set to a specific colour are to be plotted. This means that any points in the
new drawing which have a colour of zero, are assumed to be transparent and are
therefore omitted.

XOR mode (MODE=3)

XOR combines your new graphics with those already on the screen, using a logical
operation known as exclusive OR. The net result of this mode is to change the
colour of the areas of a drawing which overlap an existing picture. One interesting
side effect ofXORmode is that you can erase any object from the screen by simply
setting XOR mode and drawing your object again at exactly the same place. This
technique can be used to wipe complex polygons from the screen amazingly
quickly.

Example:

circle 100,100.100

733

(
gr writing 3
circle 100,100,100 ,

Inverse transparent (modem).

As you mightexpect, this mode has the opposite effect of transparent mode, and /
only plots points with a colour of zero. All other points in the new picture are V.
completely ignored.

Now type in the following small example:

5 mode 0

10 for 1=1 to 4

20 els

30 centre "Mode number "+strS(i)
40 gr writing I
50 set paint 1,1,1
60 bar 100,50 to 200,150
70 set paint 3,6,1
80 circle 150,100,50
90 locate 0,4:centre "Press Return to continue"
100 wait key
110 next I

This demonstrates the action of all four writing modes. Incidentally, the reason for
the GR part of the instruction is to distinguish it from a similiar procedure called
WRITING, which is used for the text operations. You should therefore take care
not to confuse the two instructions.

See also AUTOBACK and WRITING

Polymarkers

What are Polymarkers?

Polymarkersare usefulfacilities normally provided bythe Gem VDI, which enable
you to plot lists of objects such as crosses, diamonds and squares as easily as a
single point.

POLYMARK (Plota listof polymarkers)

This instruction has the form:

POLYMARK x1 ,y1 ;x2,y2;x3,y3;
(x1,y1),(x2,y2),(x3,y3) are the coordinates ofa listof markers to be printedon the
screen.

Note that all polymarkers are drawn in the current INK colour. The marker type is
assumed to be a "." by default, and can be changed using SET MARK.

Example:

polymark 100,100:300,120

This draws two markers at 100,100 and 300,120

See SET MARK and INK.

734

(

(

I

(

(

(

(

(

c

(

(

(

(

(

(

(

<

(

(

<

I

(

(

(

I

<

I

(

SET MARK (Set the marker usedbypolymark)

This allows you to choose the marker used by POLYMARKfrom a selection of six
different marker types. Each polymarker can be drawn in eight sizes, ranging in
11 point increments from 6 to 83 pixels wide.

SET MARK type, size

Here is a table which illustrates the various possibilities:

Type Number Marker Used .

1 Point"." Note this marker is only
available in one size.

2 Plus sign "+"

Example:

3 Star "*"

4 Square
5 Diagonal cross
6 Diamond

set mark 4,83

polymark 100,100;200,100;300,100

This produces three squares on the screen.

Here is a much larger example which generates all the possible marker types in
each of the eight sizes.

10 rem Displays all six polymarkers
20 rem in each of their sizes

40 mode 0
50 rem Opens a window
60 windopen 5,0,0,40,12,2,3
70centre "POLYMARKS" : locate 0,1: centre "Press a key"
80remTurn off cursor and mouse pointer
90 curs off: hide

100 for 1=0 to 7

110 restore 240

120 for J=1 to 6

130 rem Change marker sizes in 11 point increments
140 set mark J.IM1+6
150 rem Get coordinates of mark

160 read X,Y

170 rem Draw a marker at X,Y
180 polymark X,Y
190 next J

200 wait key
210 next I

220 wait key
230 curs on : show

240 data 50,80,160,80,270,80
250 data 50,145,160.145,270,145

The square polymarkersare especially useful as they allowyou to quickly create
large grids on the ST's screen with just a few lines of code.

735

See also POLYMARK and INK.

Multi-mode graphics

In order to write programs capable of working in all three of the ST's graphics
modes it's essential to be able to determine precisely which mode the ST is
running in at any one time. Also, since some programs need to use a screen with
the maximum possible size, it would be useful to have the ability to change
between low and medium resolution when required. This feature is impossible
using GEM, but in STOS Basic it's easy. To change from a low resolution screen
to medium resolution you simply type:

mode 1

You are now in medium resolution. This instruction can also be placed in a STOS
Basic program.

Example:

10 mode 1

MODE (Change the graphics mode)

MODE n

n can be either 0 or 1.

(

(

(

(

(

I

(

Note that since mode 2 requires a special high resolution screen, a value of 2
simply doesn't make sense. Additionally, MODE will generate an error message
ifyou try to use it on a monochrome monitor. i

There is also a MODE function which can be used to read the current graphics
mode at any time.

Example:

10if mode=2 then stop:rem This program will notwork in highresolution
20 if mode=0 then mode=1: rem Enter medium resolution
30 centre "Medium Resolution"

40 locate 0,4:centre "Press a key"
50 wait key
60 locate 0,4:centre "Press a key"
70 centre "Low resolution"

80 wait key

DIVX and DIVY

Supposing you want to write a single program capable of working in all three
resolutions. There are two problems you will encounter in this situation: The
different number of available colours and the incompatible screen sizes. It's easy
enough to solve the firstdifficulty just by limiting the number of colours to 2. But
howdo you beat the second problem? STOS Basic provides you with an answer
in the variables DIVXand DIVYwhich hold two numbers denoting the current width
and height of the display area, expressed as a fraction of those used in mono
mode. Here is a small table showing the values these variables will take inall three
graphics mode.

736

(

(

(

(

c

(

(

MODE Resolution DIVX DIVY

0

1

2

Low

Medium

High

2

1

1

2

2

1

To draw graphics which lookequally good in any resolution, all you now need to
do isto assume the screen is640 by400, and divide all yourXcoordinatesbyDIVX
and your Y coordinates by DIVY.

Type the following line:

rbox 0.0 to 639/divx,399/divy

This fills the screen with a rounded box whatever graphics mode your ST is
running under.

Now for a rather larger example:

1 rem Simple graphics demo
10 els

20 C0LS=15: rem Assume low res at the start
30 rem Now test for medium res
40 if mode=1 then C0LS=3

50 rem And for high res
55 if mode=2 then C0LS=1

60 X1=rnd(319):Y1=rnd(199):W=rnd(319):H=rnd(199):C=rnd(cols):TYPE=rnd(2)
70 ink C

80ifTYPE=1 then X2=X1+W:Y2=Y1+H:box X1/divx,Y1/divy to X2/divx, Y2/divy
90ifTYPE=2 then X2=X1+W:Y2=Y1+H:rbox X1/divx.Y1/divy to X2/divx,Y2/divy
100 goto 60

CLIP (Restrict all graphics to part of the screen)

The CLIP instruction is used to restrict the actions of all the graphics commands
to a rectangular region of the screen. If you attempt to draw anything outside this
area, your object will be clipped to fit in this rectangle.

CLIPx1,y1 TOx2,y2
x7,y7 are the top left hand corner of the rectangle and x2,y2 are the coordinates
of the corner diagonally opposite this point.

Example:

new

10 els

20 clip 50,50to 150,150
30 box 50,50 to 150,150
40 circle 100,100,100

As you can see, any parts ofthe circleoutside the clipping rectangle haven't been
drawn.

This instruction is often used in conjunction with the STOS windows.

In order to turn the clipping off, simply type:

CLIP OFF

737

C
O

r
\

r
\

(

I

I

<

I

(

I

<

I

(

I

(

(

I

I

(

STOS Basic includes a powerful set of instructions which allow you to effortlessly
manipulate the size and shape of the ST's screen. These commands can be
utilised to produce some quite stunning effects. In this chapter we will be
examining the various techniques which make this possible.

Multiple screens
STOS Basic holds two screens in memory at any one time. The first is called the
Physical screen, and is the screen which is actually displayed on your televison
set. There is however, also a separate Background screen which is used by the
sprite commands. Normally the only difference between the two screens are the
sprites, which are only drawn on the physical screen. STOS Basic uses this
background to redraw any areas of the screen which are revealed underneath the
sprites when they are moved. See AUTOBACKfor more details.

BACK (Address of the background screen)

This variable holds the location of the screen used as the sprite background.

Example:

printback:rem Address of background is 983040 for 1040ST users

458752

PHYSIC (Address of thephysical screen)

PHYSIC is a reserved variable which contains the location of the screen currently
being displayed. If you load a different address into this variable, the screen will
be immediately redrawn using the screen stored at the new address.

Example:

print physic
491520 (or 1015808 on a 1040ST)
10 reserve as screen 5

20 physic=5
30 els

The above example reserves a memory bank as a screen and then assigns the
address of this bank to the physical screen. Notice how you are able to use the
number of the bank instead of an address.

When you run this program, the new screen will be cleared. Ifyou now press
the Undo key twice, the screen address will be returned to normal and the original
picture will be restored. Incidentally, the ST's hardware will only let you display a
screen stored at an address which is a multiple of 256 bytes. The RESERVE
instruction automatically takes this into account when allocating memory for a
screen.

139

LOGIC (Address of logical screen)

The Logicalscreen is the screen which is operated on by any ofthe text or graphics
instructions. Normallythis will be the same as the physical screen, but occasionally
it's useful to use a separate screen to hold an image while it is being drawn. This
allows you to draw one picture while displaying another, and then instantly switch
between them using a special SCREEN SWAP instruction. Asimilar technique is
used by games such as Starglider to generate impressive flicker free graphics.
See SCREEN SWAP for a simple example of this process.

Example:

back=logic:rem Move the mouse around and see what happens,
print back

SCREEN SWAP (Swaps the address ofthe logical and physical screens)

Swaps the addresses of the physical and logical screens. This enables you to
instantaneously switch the display between the two screens. Lookat the example
below.

10 els

20 X1=50 : Y1=50 : X2=75 : Y2=100 : X3=25 : Y3=100

40 for 1=0 to 244 step 8
50 ink 0

60 polygon X1+I-8.Y1 to X2+I-8.Y2 to X3+I-8.Y3 to X1+I-8.Y1
70 ink 1

80 polygon X1+I.Y1 to X2+I.Y2 to X3+I.Y3 to X1+I.Y1
100 next I

This program moves a triangle across the screen. As the triangle proceeds,
it generates an intense and annoying flicker. You can solve this problem by
displaying the triangle on the screen, only after it has been completely redrawn.
Add the following lines to the program above:

30 logic=back
90 screen swap : wait vbl

You should also change:

60 polygon X1+I-16.Y1 to X2+I-16.Y2 to X3+I-16.Y3 to X1+I-16.Y1

Line 30 places the address of the sprite background into the logical screen.
The triangle is now drawn on this screen without effecting the current image. The
SCREEN SWAP instruction at line 90 then swaps the logicaland physical screens
around. This causes the finished version of the triangle to appear on the screen
immediately.

The program now erases the old triangle from the invisible logical screen and
redraws it at the next position. The whole process is subsequently repeated and
the triangle apparently smoothly progresses from one side of the screen to the
other. The reason for the change at line 60 incidentally, is simply to take into
account the fact that each screen is used on alternate executions of the loop.This
means that the triangle to be erased will be twice the distance from the current
position as you would normally expect.

Note that we've intentionallyexaggerated the flicker of the above example to
illustrate the screen switching technique. In practice it would be very easy to
reduce this problem considerably even without the use of the SCREEN SWAP

740

(

(

(

(

(

c

(

(

(

c

(

<

(

(

c

(

instruction. Also notice that as we've used the background screen for our own
purposes, any of the sprite commands will interfere with the animation. Try moving
the mouse while the program runs to observe this effect. Another example of
screen switching can be found in the section on SCREEN COPY.

DEFAULT (Return initial valueof one of three screens)

DEFAULT BACK Returns initial value of back

DEFAULT PHYSIC Returns initial value of physic

DEFAULT LOGIC Returns initial value of logic

When you are using multiple screens, it's easy to lose track of the original screen
addresses. The initial contents of the variables BACK, PHYSIC and LOGIC can
be found at any time using the DEFAULT function. This function is often used at
the end of a program to set the screen back to normal.

Examples:

physic=default physic
back=default back

logic=default logic

Do NOT confuse with the DEFAULT instruction.

Reserving a screen

As you have seen, any STOS Basic program can have a number of different
screens in memory simultaneously. The following instructions allow you to
allocate a memory bank to hold one of these screens.

RESERVE AS SCREEN (Reservea bank as a temporary screen)

RESERVE AS SCREEN n

Reserves bank number n as a screen. The size of this bank is automatically set
by RESERVE to 32768 bytes. After you have created a screen in this way, you can
load it with data using either the LOAD instruction or SCREEN COPY.

Example:

10 reserve as screen 5

20 load "\stos\pic.pi1",5

Note that this screen is only intended for temporary storage and is reinitialised
every time your program is run.

See RESERVE and LOAD.

RESERVE AS DATASCREEN (Reservea permanent screen)

RESERVE AS A DATASCREEN n

The above command is identical to the RESERVE AS SCREEN instruction except
for the fact that it is installed permanently into the ST's memory. Any screen you
define as a DATASCREEN will be subsequently saved along with your program.

747

Example:

reserve as datascreen 5

clear

listbanks

I

(

See RESERVE (Chapter 3). ("

Loading a screen

(

c

c

<

c

r

c

STOS Basic lets you load a screen stored on the disc into either a memory bank
or an address.

LOAD "IMAGE.NEO",scrn
LOAD "IMAGE.PI1",scrn
LOAD "IMAGE.PI2",scrn
LOAD "IMAGE.PI3",scrn

The LOAD command loads a screen into memory from the disc file IMAGE. An
extension of NEO specifies that the file is stored in Neochrome format. Similarly,
extensions of PI1,PI2,PI3 are used to signify a screen in Degas format. Note that
scrn can be either a screen address, or the number of a memory bank.

Example:

10 load "NSTOSNPIC.Pir.PHYSIC
20 wait key
30 default

Here is a larger example which converts screen files from Neochrome format to
Degas format.

10 rem Neochrome to DEGAS converter

20 F$=file select$("*.NEO")
30 if F$="" then stop
40 reserve as screen 5

50 load FS,5
70 print "Press Return to save picture"
80 input "in DEGAS format";A$
90 right$(F$,3)="PI1"
100 save FS.5
110 input "Continue Y, or N";A$
120if A$="y"or A$="Y"then 10

GET PALETTE (Set the palette from a screen bank)

GET PALETTE(n)

Loads the colour settings of a screen stored in bank n, and display them to the
present screen. t

Example:

10 reserve as screen 5

20 load "\STOS\PIC.PI1",5
30 physic=5

142

(

(

(

(

>

(

(

I

(

(

(

(

(

<

I

(

(

(

40 wait key
50 get palette(5)
60 wait key

CLS (Clear the screen)

In addition to the normal CLS instruction there is also an expanded version which
enables you to erase sections of a screen stored anywhere in the ST's memory.
There are three possible formats of this statement.

CLS scr Clears the screen at scr

CLS scr.col Fills the screen at scr with colour col

CLS scr,col,x1,y1 to x2,y2 Replaces the rectangle at scr at coordinates
x1,y1,x2,y2 with a block of colour col.

scr refers to either the address of a screen or the number of a memory bank, col
can take any value from Oto the maximum number of available colours. xt,y,x2,y2
hold the coordinates of the top left and bottom right corners of the rectangle
accordingly. This instruction provides a very fast and effective way of erasing parts
of the screen.

Examples:

els back:rem Erases the background screen

els physic,6:rem Clears the physical screen with a block of colour 6

els back.6,0,0 to 319,50:rem Erases the function key window from back

ZOOM (Magnify a sectionof thescreen)

ZOOM scr1,x1,y1,x2,y2 TO [scr2,] x3,y3,x4,y4

Magnifies any rectangular section of the screen stored at scrl. scrl and scr2 can
be either an address, or the number of a memory bank. The coordinates
x1,y1,x2,y2 refer to the size of the rectangular area which is to be enlarged.

x7,y7 denote the top left hand corner of this rectangle and x2,y2specifies the
location of the corner diagonally opposite.

Similarly x3,y3 and x4,y4 hold the dimensions of the rectangle into which the
screen segment will be expanded.

scr2 is an optional destination screen for the enlarged image. If it is not
specified then the screen will be enlarged into the background held in BACK, and
will then be copied into the current screen. This avoids any problems with the
mouse or the sprites, and also displays the object in one smooth operation.

ZOOM is best suited to enlarging pictures with relatively large expanses of
a single colour. This is because each individual point in the picture is magnified
independently, which produces a noticable grain for large size increases.

An especially useful application of this instruction is in the creation of large
banners on the screen.

Type in the example below:

10 rem Z00M1

20 rem Set screen attributes

30els : mode 0: pen 10: curs off
40 Z$="Zooming!"

743

50 rem Find position of text
60 locate 0,4: centre ZS
70 Y1=ygraphic(4): X2=xgraphic(xcurs): X1=X2-3*ien(ZS): Y2=Y1+8
80 for 1=1 to 7

90 rem Calculate Zoom coordinates

100 X3=X1-16*I: Y3=Y1-16*I: X4=X2+16*I: Y4=Y2+16*I

110 rem Enlarge Text
120 zoom physic,X1,Y1,X2,Y2 to X3,Y2,X4,Y4
130 next I

140 wait key: curs on

This repeatedly enlarges the centred text starting at coordinates 0,4. We've kept
the routine as general as possible to allow you to incorporate parts of it into your
own programs.

We'll now expand this program slightly to demonstrate the page flipping
mentioned earlier.

Add the following lines to the above program.

11 rem Reserve 6 screens

15 for 1=5 to 11:reserve as screen I: els I: next I

121 rem Enlarge text to screen no I
125 zoom physic,X1,Y1,X2,Y2 to l+5,X3,Y2,X4,Y4
140 rem Flip between all 6 screens
150 for 1=6 to 11:physic=l:wait vbl: wait 5:next I
160 wait 30: goto 140

You should also alter line 80 to

80 for 1=1 to 6

Note that this program reserves six screens 32k long. It will work fine on astandard (
520ST, providing you remove all STOS Basic accessories from memory using a
line like:

In addition, you may also need to load STOS Basic directly on startup, rather than
executing it from within Gem, as this saves you over 32k of memory.

Another common use of ZOOM is to magnify a specific part of an image for
subsequent editing. The program below shows how this might be achieved in
practice.

10 rem Zoom Example 2
20 mode 0

30 reserve as screen 5:rem Reserve a bank for the screen

50 F$=file select$("*.neo"):rem Choose a neochrome picture
60 if F$="" then stop
80 flash off:rem Turn off flashing
90 rem Load screen into Bank 5

100load F$,5 : get palette (5)
110 rem Copy screen into Physical screen and Background
130 screen copy 5 to physic : screen copy 5 to back
140 rem Draw an expanding Box
150 gr writing 3
160 rem Click on the mouse to position Box
170 repeat: until mouse key: X1=x mouse: Y1=y mouse : X2=X1: Y2=Y1
190 wait 40:rem Wait for Mouse key to be released

744

I

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I

(

<

(

I

I

(

(

(

I

<

<

I

(

(

200 repeat
210 box X1.Y1 to X2.Y2

220 X2=x mouse: Y2=y mouse
230 box X1.Y1 to X2.Y2: M=mouse key
250 until Mo0:rem click on a mouse button to exit

260 rem Make X1.Y1 into the top corner
270 if X1>X2 then swap X1.X2
280 if Y1>Y2then swap Y1.Y2
290 rem If Right Mouse button pressed
300 rem Zoom Contents of Box to full

310 rem Screen.

320 if M=1 then zoom X1,Y1,X2,Y2 to 0,0,319,199 else box X1.Y1 to X2.Y2:
M=0: wait 40: goto 170
330 wait key
340 goto 130

Much of this program should be self explanatory. Note the lines 140-250. These
use the XOR writing mode to generate a simple expanding box. Feel free to use
this routine in any of your own programs. After this box has been defined, the line
at 320 uses the ZOOM command to expand its contents into the entire screen.
Incidently, the test for M=1 is merely to allow you to abort the current expansion
by pressing the right mouse button.

REDUCE (The inverseof zoom)

REDUCE scrl TO [scr2,]x1,y1,x2,y2

Compresses the entire screen stored at scr7 into the box specified by the
coordinates x1,y1,x2,y2. x1 and x2 hold the position of the top left corner of this
box, andX2,Y2the bottom right. scr7 and scr2 refer to either a screen address or
the number of a memory bank. As with ZOOM, if the optional destination screen
is omitted, the drawing is first placed in the background and then moved into the
physical screen.

Example:

10 rem Reduce Example 1
20 F$=file select$("*.NE0")
30 rem Choose a picture
40 if FS='"' then stop
50 mode 0: flash off: curs off

60 rem Reserve screen and load Picture

70 erase 5:reserve as screen 5

80 load FS,5 : get palette (5)
90 rem display 4 copies of picture
100forY=0to1

110forX=0to1

120 reduce 5 to X*160,Y*95,IX+1)*159+1.(Y+1)*96
130 next X

140 next Y

150 wait key
160 goto 20

This loads a Neochrome screen into a memory bank and then generates four
smaller copies of it using the REDUCE at line 120.

If you've got the second example of ZOOM handy, you can change it to use
the REDUCE instruction instead, with the line:

745

320 if M=1 then reduce 5 to X1,Y1,X2,Y2 else box X1.Y1 to X2.Y2: M=0: wait
40: goto 170

REDUCE has many possible uses. One idea would be to generate a list of large
icons similar to those utilised in the game STAR TREK. These could be assigned
to a screen zone using SET ZONE, and then selected with the ZONE command.
By storing a full-sized version in a compacted format (see PACK), you could then
effectively expand these pictures into the entire screen.

SCREEN COPY (Copy sections of thescreen)

SCREEN COPY scrl TO scr2 (Copies scrl to scr2)

SCREEN COPY scr1,x1,y1,x2,y2 TO scr2,x3,y3

SCREEN COPY is undoubtably one of the most powerful of all the STOS Basic
instructions. This is because it allows you to copy large sections of a screen from
one place to another. As usual scr7 and scr2 can refer to either a screen address
like LOGICand PHYSIC, or the number of a memory bank. x7,y7 and x2,y2 hold
the dimensions of the rectangular area which should be copied, and x3,y3 contain
the coordinates of the destination of this block. Note that the x coordinates used

in this instruction are automatically rounded down to the nearest multiple of 16.
Also the values taken by these numbers can be negative as well as positive. Look
at the table below.

Graphics Mode X Range Y Range

Low

Medium

High

-320 to 320

-640 to 640

-640 to 640

-200 to 200

-200 to 200

-400 to 400

Any points in the destination outside the normal screen are simply not copied on
the screen. This is in marked contrast with the BLIT statement supported by other
versions of Basic which crash the ST completely if an illegal screen coordinate is
used.

The best way to see how the various options work is by example. Before you
can enter these examples you first need to do a little preparation. Start off by
reserving a bank for the STOS Basic title screen with the line:

reserve as datascreen 10

Now place the STOS system disc into your drive and type:

load "\ST0S\PIC.PI1 ",10 (for low resolution monitors)

or

load "\stos\pic.pi3",10 (for high resolution monitors)

Since you will be using the SCREEN COPY instruction rather a lot in this section,
you can save yourself some typing by assigning it to one of the function keys like
this:

KEY(10)="screen copy"

This allows you to abreviate any SCREEN COPY statements in subsequent
listings to just f10.

746

(

(

(

(

(

(

I

(

(

(

<

1

(

(

(

(

Now copy the title in bank 10 into the logical screen using the lines:

els: mode 0

screen copy 10 to logic

As you move the mouse around on the screen, you will find that the picture will be
steadily eaten away. This can be avoided by loading the picture into sprite
background as well.

Example:

10 els: modeO

20 screen copy 10 to logic
30 screen copy 10 to back
40 wait key

Ifyou move the mouse when this program is being run, the screen will no longer
be erased, because the sprite background now contains exactly the same picture
as the logical screen.

By loading a picture into the background alone you can produce another
interesting effect. Try typing:

els

screen copy 10 to back

Now the title picture is steadily drawn as you move the mouse. Instant artwork!
Now enter the lines:

delete 10-40: rem Do not type in NEW as this will erase bank 10
load "sprdemo.mbk"

10 els : hide

20 screen copy 10 to logic
30 sprite 1,130,0,1
40 move y 1,"(1,1,1)L"
50 move on

60 wait key

Now for some more complicated examples. Type in the following lines:

screen copy 10,0,0,100,100 to logic.0,0

This copies the top left hand corner of the title on to the screen.

You can also use the SCREEN COPY statement with negative coordinates.

screen copy 10,0,0,100,100 to logic.-50,-50

As you can see, only the lower section of the block has been copied to the
screen.

Here's one final example of the SCREEN COPY command which enables
you to move a large coloured grid around on the screen using the mouse.

Example:

new

10 mode 0:1=14

747

15 rem Initialise screen and set square markers
20 els physic : els back:set mark 4,28
25 rem Draw a grid on the screen
30 for X=1 to 10 : for Y=1 to 9 : ink rnd(i)+1: polymark X*28,Y*20
40 next Y : next X

45 rem Reserve a screen and copy the grid to it
50 reserve as screen 10: screen copy logic to 10
60 hide : curs off:rem Kill mouse and cursor

65 logic=back:rem Set Logicalscreen to sprite background
70 rem Move the grid
75 repeat
80 els logic
85 rem Get mouse coords

90 X=320-x mouse*3 : Y=200-y mouse*3:rem Use different values for high
res

95 rem Copy the grid to the current screen
100 screen copy 10,X,Y,X+320,Y+200 to logic.0,0
110screen swapirem Swap physical and logical screens
120 wait vbhrem Synchronise screen i
130 until mouse key '
140 defaultrem Reset Editor window

The screen as a string (

STOS Basic includes two special instructions which enable you to load a section
of a screen into a string, and then manipulate itusing the normal string commands. /
This data can then be copied anywhere on the screen using a single string V
assignment.

SCREENS (Load anareaofa screen into a string) t

There are two different forms of this statement.

s$=SCREEN$(scrn,x1,y1 TO x2,y2) /

The SCREENS function is used to load an area of the screen bounded by the
rectangle x1,y1,x2,y2 into the string s$. x1,y1 refer to the coordinates of the top
left corner of this box, and x2,y2 to the point diagonally opposite. Just as with the /
crDCCM mpv inotm^tinn the* Y cnnrHinatoc aro antnmatinallu rrmnrloH flnwnSCREEN COPY instruction, the X coordinates are automatically rounded down
to the nearest multiple of 16. The expression SCRN can be either the address of
a screen or the number of one of the memory banks.

Example:

AS=screenS(physic,0,0 to 319,199):rem Assigns the entire screen to aS

S$=screen$(back,50,50 to 100.100):rem AS=area from 50,50to 100,100

reserve as screen 10

screen copy physic to 10
b$=screen$(10,0,0 to 160,100):rem Loads B$ with top of screen in bank 10

SCREEN$(scm,x,y)=a$

This instructioncopies a screen area fromthe string a$to the screen scrn,starting
at the coordinates x,y. As usual scrn can refer to either a screen address or a bank

748

(

(

(

(

(

(

<

I

(

(

(

(

I

(

(

I

<

<

I

I

(

(

<

(

I

number.Alsonote that the x coordinates used bySCREENSare always rounded
down to the nearest multiple of 16.

WarningiThis command will onlyworkwith stringswhich have been previously
loaded bythe SCREENSfunction. The SCREENSstatement provides you with a
fast and efficient way of moving large objects around on the ST's screen.

Examples:

10 SS=screenS(physic,0,0 to 100,100)
20 for y=0to 3:for x=0 to 6
30 screen$(physic,50*x,50*y)=S$
40 next x:next y

This example fills the screen with copies of the top corner of the display.

The classic application ofSCREENSis inthe creation ofcomplex backgrounds for
your games. Bybuildingyour picture out of a number of previously defined blocks,
you can combine these into a wide range of different screens. Furthermore, after
you have stored your blocks intomemory, you can hold each screen as a simple
list of numbers. In practice this simple technique can save you an immense
amount of space.

Example:

5 rem SCREENS example
6 rem Requires Disc containing complete \ST0S\ folder in order to run.
10 dim PS(10,6)
15 rem Use extension PI3 for MONO MODE.
20 mode 0: curs off: hide load "\ST0S\PIC.PI1 ".back
30 for X=0 to 9
40forY=Oto5

45 rem Copy screen segments into array
50 P$(X,Y)=screen$(back,X*32,Y*32 to (X+1)*32,(X+1)*32)
60 nextY

70 next X

80forX=0to9

90forY=0to5

100 X1=rnd(9):Y1=rnd(5)
105rem Copy segments back onto screen
110 screen$(physic,X*32,Y*32)=P$(X1 ,Y1)
120 next Y

130 next X

140 wait key
150 goto 80

In order to make it as easy as possible to draw one of these screens we have
provided you with a special MAP DEFINER program.

Scrolling the screen

DEF SCROLL (Define a scrolling zone)

DEF SCROLL n,x1,y1 to x2,y2,dx,dy

DEF SCROLL allows you to define up to 16 different scrolling zones. Each of these
is associated with a specific scrolling operation determined by the variables dxand

749

(
dy. ndenotes the number ofthe zone and can range from 1-16.x7,y? referto the
coordinates ofthe top lefthand corner of the area to be scrolled, and x2,y2\o the
point diagonally opposite. y

dx signifies the number of pixels the zone will be shifted to the right in each
operation. Negative numbersindicate thatthe scrolling will befrom right to left, and
positive numbers from left to right. <.

Similarly, dy holds the number of points the zone will be advanced up or down (
during the scroll. In thiscase negativevalues of dyare used to indicatean upward
movement and positive values a downward one.

SCROLL (Scroll the screen) (
SCROLL n

The SCROLL command scrolls the screen in the direction you have previously (
specifiedwith the DEFSCROLL instruction, nrefersto the numberofthe zone you
wish to scroll.

Example: (

1

10 def scroll 1,0,0 to 320,200,1,0

20 scroll 1:goto 20

Do NOT confuse with the SCROLL instruction used by the window commands

Now for a larger example:

5 rem Vertical Scrolls
10input "Step Size?";S:rem Choosescroll increment
11 rem Initialise screen and load background from system disc
20 mode 0 : curs off: hide : load "\ST0S\PIC.PI1 ".back
30 def scroll 1,80,0 to 240,200,0,-S:rem Define scrolling zone 1 (
40 forY=0 to 199step S:rem Scroll section of the screen
45 rem copy top of screen to bottom
50screen copy back,80,Y,240,Y+S to logic,80,200-S
60 scroll 1:rem scroll zone 1

70 next Y

80 goto 40

This loads an image from the STOS system disc and rotates it around on the (
screen. The variable S holds the number of points the picture will be moved when
each SCROLL instruction is executed. The larger the value of S, the faster and
jerkierthe scrolling. Note line50. Thiscopies the top section ofthe screen into the
bottom before itdisappears. y

Here is another example which demonstrates how horizontal scrollingcan be
achieved.

5input "Speed ";S (
7 rem Initialise screen and load background from system disc
10 mode 0 : curs off: hide : load "\ST0S\PIC.PI1 ".back
20 def scroll 1,0,80 to 320,120,-16,0:rem Define
scrolling zone 1 (
30 for Y=0 to 319step 16:rem Scroll section of the screen
35remCopy left sectionof the screen backto the right
40 screen copyback,Y,80,Y+16,120 to logic,320-16,80 : for W=1 to S :nextW
: scroll 1

50 next Y

60 goto 30

750

I

(

<

This uses a very similar technique to the last example except for the fact that
SCREEN COPY rounds all Xcoordinates down to the nearest multiple of 16. The
example is therefore forced to scroll in units of 16. Despite this the scrolling is still
reasonably smooth, especially at the slower speeds.

Now for a final example which combines a complex series of scrolling zones
to produce a fascinating effect on the screen.

1 rem Screen Scrolling demo
5 rem Needs Stos system disc in drive
10mode 0: curs off: hide : load "\stos\pic.pi1",back
15 rem Define scrolls

20 def scroll 1.0,171 to 320,200,0,-6
30 def scroll 2,0,146 to 320.175,0,-4
40 def scroll 3,0,122 to 320,150,0,-2
50 def scroll 4,0,72 to 320.125,0,-1
60 def scroll 5,0,46 to 320.75,0,-2
70 def scroll 6,0,21 to 320,50,0,-4
80 def scroll 7,0.0 to 320.25,0,-4
90 rem scroll screen

100 for Y=0 to 199

110screen copy back,0,Y,320,Y+6 to logic.0,194
130 scroll 1: scroll 2: scroll 3: scroll 4: scroll 5: scroll 6: scroll 7
140 next Y

150 goto 100

Screen synchronisation
Like most microcomputer systems, the Atari ST uses a memory-mapped display.
This isa technical term fora concept you are almost certainly already familiarwith.
Put simply, a memory-mapped display is one which uses special hardware to
convert an image stored in memory into a signal which can be displayed on your
television screen. Whenever STOS Basic accesses the screen itdoes so through
the medium of this screen memory.

The screen display is updated by the hardware every 50th of a second (70th
in Monochrome mode). Once a screen has been drawn the electron beam turns
off and returns to the top left of the screen, this process is called the vertical blank
or VBL for short. At the same time, STOS Basic performs a number of important
tasks, such as moving the sprites and switching the physical screen address if it
has changed. The actions of instructions such as PUT SPRITE, or SCREEN
SWAP willtherefore only be fullycompleted when the screen is next drawn. Since
a 50th of a second is quite a long time for STOS Basic, this can lead to a serious
lack of coordination between your program and the screen, which is especially
noticable when the next instructionalso manipulates the screen insome way. The
only effective method of avoiding this difficulty is to wait until the screen has been
updated before you execute the next Basic command.

WAIT VBL (Wait for a vertical blank)

The WAIT VBL instruction halts the ST until the next vertical blank is performed.
It is commonly used after either a PUT SPRITE instruction, or a SCREEN SWAP.
As a general rule, if your program uses sprites or screens and it only works
intermittantly, it's always worth checking to see whether you have omitted the
WAIT VBL.

SYNCHRO (Synchronise scrolling with sprites)

STOS Basic performs allsprite movements every 50th ofa second. This generally

757

works fine, but occassionally it leads to an irritating synchronisation problem.
Supposing youwant to place a sprite at a fixedpointon a scrollingbackground.

Whenever this background moves, the sprite will move along with it. It would be (
easy enough to produce a set of MOVE X and MOVE Y instructions which
precisely followed the movement of the background. Unfortunately, this wouldn't
quite work as the SCROLL instructions would not be executing at the same time
as the sprite movements. The sprite would therefore tend to drift jerkily around on (
the screen.

Luckily, STOS Basic includes a useful SYNCHRO instruction which allows
you to move all the sprites on the screen at the exact moment you require. This
enables you to effortlessly synchronise the sprites with a scrolling background. (

There are three forms of this instruction:

SYNCHRO OFF Turns off the normal sprite interrupt which moves
thesprites every 50th of a second. (

SYNCHRO Executes all the sprite movements exactly once.

SYNCHRO ON Reverts the sprite movements to normal. The (
sprites will now be moved in the normal way every
50th of a second.

We'll demonstrate how all this actually works with a small example. f
First you need to load some sprites into your micro. Place the accessory disc

into the drive and type:

load "sprdemo.mbk" , (

You can now type in the program itself:

new

10 rem Demonstration of SYNCHRO

20 mode 0 : curs off: hide : key off
30 rem Load picture from disc
40 load "\ST0S\PIC.PI1",back :screen copy back to logic (
50 rem Place sprite on the screen
60 rem Start it moving up.
70 sprite 1,144,199,1 :move y 1,"(1,-2,1)L"
80 rem Turn off sprite interrupt (
90 synchro off: move on
100 rem Define Scrolls

110 def scroll 1,80,0 to 240,200,0,-2
120 rem Scroll section of the screen

130 wait 100 : rem Wait for drive to stop
140 for Y=0to 199 step 2
150 screen copy back,80,Y,240,Y+2to logic,80,198
160 scroll 1:wait vbl: synchro f
170 nextY

180 rem Restart from bottom of screen

190sprite 1,144,199.1: move y 1,"(1.-2.1)L"
200 synchro off: move on (
210 goto 140

Notice line 160 which moves the sprite up one unit and then scrolls the screen
along with it. The WAIT VBL instruction is essential as it completes the syncronization (
process. Try removing it and see what happens.

I've chosen this specific sprite to illustrate an interesting side effect. As the

752

i

1

sprite is moved, this specific sprite background peeps through it, rather like a
window. You could use this technique to produce a range of useful special effects.

Compacting the screen

STOS Basic comes complete with a useful accessory which allows you to
compact any screen files stored in either Neochrome or Degas format into just a
fraction of their normal size. You can load this program from the accessory disc
using the line:

accnew:accload "compact.acb"

Using the compactor is simplicity itself. You start off by clicking on one of the LOAD
FILE options. This presents you with a standard STOS file selector which can be
used to choose a file in the normal way. The screen you have selected is now
loaded into the ST's memory and displayed. To return to the main menu just press
the left mouse button once.

Ifyou wish to compact the whole screen, choose the PACK WHOLE SCREEN
option from the Picture menu. The compactor will now attempt to compress the
screen using a number of different strategies. As soon as it finds the one which
uses the smallest amount of space, it will compact the file. This file can be saved
either as a memory bank or a raw binary file. The easiest option to use is the
memory bank, as this lets you subsequently load the screen directly into STOS
Basic. You can also use the Quit and Grab option to incorporate the screen straight
into your current Basic program.

In order to compact only part of the screen you begin by selecting the
appropriate option from the Picture menu. Although this section does include a
comprehensive set of instructions, we'll summarise them here for completeness.

1. Click on a mouse button to display the whole picture.

2. You start by choosing the left hand corner of the area to be compacted by clicking
on the left button. If you now press the right button and move the mouse, an
expanding box will be drawn. This box encloses the section of the screen you have
currently chosen. Similarly, by pressing the left hand button again, you can change
the position of the top corner of this rectangle.

3. After you have selected part of the screen to be compressed, press the spacebar
to compact your image. You can now save this picture on the disc using the Disc
menu as before.

The compaction utility would be useless if there was not some easy way of
restoring the screen to its full size. This can be done using the UNPACK
instruction.

UNPACK (Unpack a screen compacted with the accessory)

UNPACK bnk.scr

The UNPACK command restores a compacted screen stored in bank number bnk
into the screen scr. As usual scrcan refer to either a bank defined as a SCREEN
or DATASCREEN, or a screen address.

Example:

load "backgrnd.mbk:rem Load a compressed screen saved in bank 5

753

unpack5,back:rem Unpack bank five and load intosprite background
physic=back:rem Set physical screen to sprite background

PACK (Function topack a screen)

l=PACK scr.bnk

This is just the reverse of the UNPACK command. It's normallyeasier to use the
SCREEN COMPACTOR accessory, but ifyou do need to compact a screen within
a program, you can use the PACK function, scr refers to either a screen address
or a bank number containing a screen to be compressed, bnk denotes the bank (
which is to be used as a destination. After the pack function has been executed,
/is loaded with the length of the compressed screen.

Example: I

reserve as screen 5:rem Reserve space for source
reserve as screen 6:rem Reserve space for destination
load "Nstos\pic.pi1",5:rem Load Title screen from i
system disc in 5
L=pack(5,6):rem Pack screen
reserve as data 7,L:rem Reserve space for new screen
copy start(6),start(6)+l to start(7) (
save "title.mbk":rem Save compacted screen

Special screen effects (

APPEAR (Fade between two pictures)

APPEAR x [,y] {

The APPEAR command enables you to produce fancy fades between a picture
stored in address x or in bank x, and the current screen. The y value is optional
and refers to the type of fade you wish to use. yean range from 1 to 79. Fades I
between 1-72 always result in a COMPLETE image being copied from xto the
screen. Fades from 73-79 leave the final screen slightly different from the original
in bank x.

Type inthe example belowplacingyour backup ofthe STOS system disc into the
current drive.

(

(

(

(

Example: (
10 hide

20 reserve as screen 15

30 if mode=1 then mode=0

40 if mode=0then load "\stos\pic.pi1",15 else load "\stos\pic.pi3",15
50 els

60 input "screen effect";X
70 curs off

80 if X=0 then default: end

90 get palette (15)
100 appear 15,X
110 wait key
120 curs on

130 goto 50

754

<

(

<

FADE (Blend one ormore colours to new colour values)

This function allows you to produce stunning effects in one simple command.
There are three formats of the FADE command:

FADE speed Fade all colours to black
This version of FADE reduces each colours RBG

vaues by 1 until they reach zero, speed is the
amount of vertical blanks that must occur before

another change to the palete is made.

FADE speed TO sbank Fade the present colours to those of the specified
screen

The current colours are blended into the palette of
the screen stored in bank sbank.

FADE speed.coh ,col2, FADE separate colours to a new value

This is the most powerful of the three formats and
allows any colour to be blended into another. Enter
the line:

10 mode 0:print "bye bye...":fade 3:wait 7*3

The WAIT command is used after the FADE because the fading changes are done
during interrupt. Thus the program carries on. Because our next line will reset the
colours, it's best to wait until the original fade has been completed. The pause
value for the WAIT command can be calculated by the formula:

wait value =fade speed * 7

Once the above line has been run, the screen is left in total darkness. To bring back
some colour you would enter a line like:

20 cls:print "here I am again!"iade 3„S777,S700

Notice that there are two commas after the speed parameter. This tells STOS
Basic that you don't wish to change the value of colour 0 and this can be applied
to any colour in the palette. Colours 1 and 2 are now faded up to reveal the new
message.

Fade adds flare to your programs and gives them a professional touch similar
to credit screens from films.

Examples:

fade 3:rem press undo twice to see again

reserve as datascreen 15

load "\ST0S\PIC.PH",15
fade 10 to 15

fade 5,$777,$777,$777,$777,$777,$777.$777,$777,$777,$777,
$777,$777,$777,$777,$777,$777

755

Pattern Setting

SET PATTERN (Set upthe fill pattern)

SET PATTERN a$

You can set up a user defined fill pattern with this command. a$ must contain the
fill definition which must be a 16x16 block.

The two versions of set pattern will only work in medium and high resolution.

Example:

AS=screenS(physic,1,1 to 16,16)
set pattern AS

This is in addition to the other SET PATTERN format.

See PAINT, SCREENS

The function key window

KEY ON/OFF (Set orclearfunction key window)

(

(

(

<

(

(

(

KEY ON Turns on the function key window allowing you to select the
various options with the mouse pointer. f

KEY OFF This removes the function key window and frees the space for
further use.

You can still select the functions when the window is off by pressing the function
keys

See KEY

756

(

I

(

(

(

(

c

(

(

<

<

STOS Basic allows you to print text on the screen in a number of different ways.
Up to 13 windows can be displayed at any one time, and each of these can have
its own unique set of characters.

Text attributes

Every STOS Basic window has a separate set of attributes, such as the character
and background colours of the enclosed text.

PEN (Set colour of text)

PEN index

The PEN instruction allows you to specify the colour of any text which will
subsequently be displayed in the current window. This colour can be chosen from
one of up to 16 different colours. As you might expect, the number of colours
available varies between the different graphics modes.

Mode

0 (Low)
1 (Medium)
2 (High)

Example:

Allowable index numbers

0-15

0-3

0-1

new

10 mode 0

20 for 1=0 to 15

30 pen I
40 print"Pen number ";l;space$(10)
50 next I

60 pen 1

As a default, the pen colour is set to index number 1.

See COLOUR, PALETTE, PAPER.

PAPER (Set colour of background of text)

PAPER index

PAPER designates a colour to be used as the background for the text. As with
PEN, index denotes a colour number from 0-15 (0-3 in medium res).

Example:

new

10 mode 0

757

(
20 for 1=0 to 15

30 paper I
40 print "Paper number ";l;space$(10) /
50 next I50 next

60 wait key
70 default

On startup the background of a window is set to colour 0.

See PEN, COLOUR, PALETTE.

INVERSE ON/OFF (Enter inverse mode)

(

(
INVERSE ON swaps the text and background colours specified by PEN and
PAPER. Theeffect ofthis is to invert any new text which is printed onthecurrent f
windowwindow.

Example:

new

10 print "This is some text in normal mode"
20 inverse on

30 print "This is some inverted text"
40 inverse off

See SHADE, UNDER, WRITING.

SHADE ON/OFF (Shade allsubsequenttext)

SHADE highlights any new text on a window by reducing the brightness of the
characters with a mask.

Example:

new

10 mode 1

20 print "Normal Text"
30 shade on

40 print "Shaded Text"
50 shade off

See UNDER, INVERSE, WRITING.

UNDER ON/OFF (Set underline mode)

This instruction causes the text in the current window to be underlined.

Example:

UNDER ON

? "UNDERLINED"

UNDERLINED

UNDER OFF

? "NORMAL"

NORMAL

See SHADE, INVERT, WRITING.

158

(

(

(

(

(

I

<

<

c

(

<

I

(

(

(

(

(

(

(

(

(

(

<

(

I

WRITING (Change textwriting mode)

WRITING effect

The WRITINGcommand allows you to change the writing mode used for all future
text output.

Writing mode effect:
1 Replacement mode (Default)
2 OR mode. All characters are merged on the screen with a logical OR.
3 XOR mode. Characters combined with background using XOR.

Example:

new

5 mode 0

10 bar 0.0 to 319,199
20 print "Normal text"
30 writing 2
40 print "OR mode"
50 writing 3
60 print "XOR mode"
70 wait key
80 default

Do NOT confuse with GR WRITING.

Cursor functions

Any text you output to the screen using the PRINT instruction is always printed at
the current cursor position. STOS Basic includes a range of facilities which allow
you to move this cursor around, and print text practically anywhere on the screen.

LOCATE (Position the cursor)

LOCATE x,y

LOCATE sets the current cursor position to the coordinates xand y. This sets the
starting point for all future text operations on the screen. LOCATE uses a special
type of coordinates known as text coordinates. These are measured in units of a
single character, relative to the top left hand corner of the current window. So the
coordinates 10,10 refer to a point 10 characters down from the top of the window,
and 10 characters across from the left.

Example:

locate 10,10.print "Hi"

The possible range of these coordinates varies depending on the dimensions of
the window you are using, and the size of the character set.

Here is a small table showing the size of the screen in text coordinates in each
of the three graphics modes.

Mode X range Y range

0 0-39 0-24

1 0-79 0-24

2 0-79 0-24

159

Conversion functions

STOS Basic provides you with a useful set of four functions which readily enable
you to convert between these text and graphic coordinates.

=XTEXT(Convert an x coordinate from graphic format to text)

t=XTEXT(x)

This function takes a normal X coordinate ranging from 0-639 (0-319) in low res)
and converts it to a text coordinate relative to the current window. If the screen
coordinate lies outside the window then a negative value is returned. The following
example should make this a little clearer:

new

10 cls:print "Move the mouse about!"
20 repeat
30 X=xtext(x mouse): if X<0then 60
40 Y=ytext(y mouse): ifY<0then 60
50 locate X,Y: print "*":rem Print* at current mouse pointer.
60 until mouse key:rem Exit when a mouse button is clicked.
70 default

(

(

(

(

(

(

See YTEXT, LOCATE, WINDOPEN, XGRAPHIC, YGRAPHIC

:YTEXT (Convert aycoordinate from agraphic format to text) (

t=YTEXT(y)

YTEXT converts a coordinate ranging from 0-199 (0-399 in high res) into a text f
coordinate relative to the current window.

See XTEXT for more details. Also YGRAPHIC, XGRAPHIC, LOCATE.

:XGRAPHIC (Convert an x coordinate from textformat tographic)

g=XGRAPHIC(x) (

The XGRAPHIC function is effectively the inverse of XTEXT, in that it takes a text
coordinate ranging from 0 to the width of the current window and converts it into
an absolute screen coordinate.

Example:

new

5 mode 0 :ink 1

10 windopen 1,3,33,10
20 print xgraphic(0),ygraphic(0)
30 draw xgraphic(0),ygraphic(0) to xgraphic(27),ygraphic(7) I
40 wait key
50windel1

Note that there's also an equivalent function for Y coordinates called YGRAPHIC. /

See XTEXT, YTEXT, YGRAPHIC.

160

c

(

i

(

(

<

<

<

<

<

I

(

<

I

(

I

(

(

(

=YGRAPHIC (Convert a y coordinate from text format to graphic coordinate)

g=YGRAPHIC(y)

This function converts a coordinate in text format relative to the current window into
an absolute screen coordinate.

See XGRAPHIC, XTEXT, YTEXT.

SQUARE (Draw a rectangle at the current cursor position)

SQUARE wx.hy.border

SQUARE draws a rectangle wxcharacters wide by frycharacters high at the cursor
position, bordercan beany of the 16 possible border types used by the windows.
See BORDER for more details, wx and hy can range from 3 to the size of the
current window. After this instruction has been executed, the text cursor is placed
at the top left corner of the new box.

Example:

10 square 10,10,3
20 print "Square "

Now for a slightly larger example, which shows off all the 15 different border types:

10 els

20 for 1=1 to 15

30 locate l*2.20-l

40 square 1+3,1+3,1
50 next I

60 goto 60

See BORDER, XTEXT, YTEXT

HOME (Cursor home)

HOME moves the text cursor to the top left hand corner of the current window
(coordinates 0,0).

Example:

10 els

20 locate 10,10
30 print "Demonstration of"
40 home

50 print "HOME"

See LOCATE, XCURS, YCURS.

CDOWN (Cursor down)

CDOWN pushes the text cursor down one line. The same effect can also be
achieved using the line:

print chr$(10)

767

Example:

print "Example":cdown:cdown:print "of cdown"

See CUP, CLEFT, CRIGHT.

CUP (Cursor up)

CUP moves the text cursor up by a line, in the same way that CDOWN shifts it
down. This instruction is logically identical to the line:

print chr$(11);

Example:

print "Example":cup:cup:print "of cup"

See CLEFT, CDOWN, CRIGHT.

CLEFT (Cursor left)

The CLEFT instruction displaces the text cursor one character to the left. Note that
CLEFT is equivalent to PRINT CHR$(3).

Example:

print "Example":cleft:cleft:print "of cleft"

See CUP, CRIGHT, CDOWN.

CRIGHT (Cursor right)

CRIGHT has the opposite effect as CLEFT and moves the cursor one place to the
right. An identical effect can be achieved using the line:

Example:

print chr$(9)
print"Example":cright:cright:print "of cright"

XCURS (Variable holding the Xcoordinate of the textcursor)

c

(

c

(

(

(

(

(

<

XCURS is a variable which returns the X coordinate of the text cursor (in text
format). (

Example:

locate 10,0:print XCURS /
in10

YCURS (Variable holding the Ycoordinate of the cursor)

YCURS returns the Y coordinate of the text cursor (in text format).

Example:

locate 0,10:print ycurs
10

762

C

(

<

<

<

(

(

<

I

<

SET CURS (Set textcursorsize)

SET CURS top.base

The SET CURS instruction allows you to change the size of the text cursor, top
refers to the topmost point of the cursor, and base to the bottom. These values can
range from 1 to the maximum height of a character (normally 8 in medium and low
resolution).

Example:

set curs 1,8

CURS ON/OFF (Enable/disable textcursor)

This function removes the flashing cursor from the current window. In order to stop
the cursor flashing, CURS OFF deactivates colour number 2. Since the action of
colour 2 is not restricted to a single window, any pictures drawn in this colour will
immediately cease flashing. Similarly, the flashing cursors in every other window
will also be frozen.

Text input/output

CENTRE (Print a line of textcentred on thescreen)

CENTRE a$

CENTRE takes the string in a$and prints it in the centre of the screen. This text
is printed on the line currently occupied by the text cursor.

Example:

new

10 locate 0,1
20 centre "This is a centered TITLE"

30 locate 0,3

40 centre "And this is another one"

TAB (Move thecursor to the right)

TAB(n)

rTAB is often used in conjunction with the PRINT instruction to space out a line of
text on the screen. The action of the TAB is to move the text cursor n places to the
right before the next print operation. Itdoes this by generating a string of CHR$(9)
characters.

(

(

(

(

Example:

printtab(10); "Example: of TAB"

Example of TAB

Also:

X$=tab(15)
printX$;"15 spaces to the right"

765

15 spaces to the right

See PRINT, CRIGHT.

SCRN (Return the character on the screen at a specific coordinate)

SCRN(x.y) (

SCRN is a function which returns an Ascii character to be found at the text

coordinates x and y relative to the current window.

Example:

new

(

(

c

10 locate 0,0 (
20 print "Hello"
30 locate 0,10
40 for 1=0 to 5

50 print chr$(scrn(l,0));" ":scrn(l,0) (
RH novt I

(

60 next I

See LOCATE, PRINT.

Windows

WINDOPEN (Create a window)

The WINDOPEN instruction enables you to create a window on the ST's screen.
There are three possible formats to this statement.

WINDOPEN n,x1,y1,w,h
WINDOPEN n,x1,y1,w,h,border
WINDOPEN n,x1,y1,w,h,border,set

n is the number of the window to be opened. Permissible values for n range from
1-13.

<

<

x7,y7 are the text coordinates to the top left hand corner of the new window. i

(

w,hspecify the size in characters of the new window. Note that the minimum size
of these windows is 3 by 3.

Border chooses one of 16 possible border styles for the new window. See
BORDER for more details.

Set indicates which character set is to be used. This takes the form of a number
whichcan range from 1 to 16 depending on the sets currentlyinstalled inthe ST's
memory. The default values for the sets from 1 to 3 are:

Set Size Notes.

(

(
1 8x8 pixels default set for low resolution
2 8x8 pixels default set for medium resolution
3 8x16 pixels default set for high resolution f~

You can happily use all of these sets in each of the three resolutions. Set three in

764 I

(

(

<

(

(

(

(

I

«

(

(

(

<

<

I

(

particular can be especially effective on a colour monitor as it provides you with
a useful set of large characters.

Note: the text coordinates x1 ,y1 and the window size w,h use the new character
sizes! You can also use the font definition accessory to create your own character
sets. These sets are given numbers ranging from 4-16. See the separate section
on character sets for more details.

Example:

new

10 windopen 1,1,1,39,20 : rem Open a large window
20 windopen 2,10,10,20,5,10 : rem Small window with border 10
30 windopen 3,20,15,20,4,0,1: rem Open a window using character set one
40 windopen 4,3,103,5,3,2: rem Window with set 2 and border 3
50 windopen 5,10,3,20,5,5,3: rem Window with set 3 and border 5

In order to test these windows you can use the WINDOW function like so:

window 2

window 4

window 1

window 3

window 5

Here's another example which opens five windows on the screen, each with its
own separate set of attributes.

5 mode 0

10 for 1=1 to 5

20 windopen l,1,1+(l-1)*5,39,4,l
30 paper I: ink 1+10
40 print "Window ";l;" "
50 next I

As before, you can flick between these windows using window:

window 3

See WINDEL, WINDOW, QWINDOW, WINDCOPY, WINDON, WINDMOVE,
Character sets.

TITLE (Define a title for thecurrent window)

TITLE a$

The TITLE instruction sets the top line of the current window to the title string in
a$. Ifthe length of this string is less than the width of the window, then it is centred.
This title will now be displayed along with the window, until it is deleted by using
the BORDER command with no parameter.

Example:

new

5 mode 0

10 windopen 5,1,1,20,10

765

(
20 title "Window number 5"

30 wait key
40 border (
50 wait key
60 windel 5

See BORDER, WINDEL, WINDOPEN, WINDMOVE, WINDOW. (

BORDER (Set theborder of thecurrent window)

BORDER n

This instruction allows you to choose from one of 16 possible borders for the
current window. The variable n can take values ranging from 1 to 16. These
borders are made up from the Ascii characters 192 to 255 and can be readily
changed using the FONTS.ACB accessory.

Example:

default

10 windopen 5,5,53,10
20 title "Window number 5"

30 wait key
40 for 1=1 to 16:border hwait 5:next I

50 windel 5

Note that if you use the BORDER command on its own, the current border is
redrawn, and any title associated with the current window is erased.

WINDOW (Activate window)

WINDOW n

WINDOW sets the current window to window number n. It then redraws the

window along with any of its contents. This instruction should normally only be
used when a number of windows overlap on the screen. Ifthis is not the case then
it makes rather more sense to use the QWINDOW statement which activates the

window without redrawing it as this command is much faster than WINDOW.

Example:

new

10 for 1=1 to 13

20 windopen 1,1+5,1+2,20,8
30 next I

Now type in the lines:

run

window 5

window 10

Press undo twice to revert the screen to normal.

See QWINDOW, WINDEL, WINDOPEN, WINDON, WINCOPY

766

(

(

(

(

(

(

(

(

(

(

(

(

(

(

I

I

I

(

(

(

I

(

QWINDOW (Activate window without redrawing it)

QWINDOW n

This function sets the current window to window number n, but does not redraw
the window. It should therefore only be used if you're absolutely sure that the
window has not been overwritten by something else.

Example:

new

10 for 1=1 to 5

20 windopen 1,1,1*4,15,4 : windopen 1+5,20,1*4,15,4
30 next I

run

qwindow 1
qwindow 5
qwindow 8

Note that because QWINDOW does not have to redraw the contents of the
window, it is considerably faster than the equivalent WINDOW command. Further
examples of this instruction can be found in the accessories supplied with the
package. These can be examined using SEARCH:

load "F0NTS.ACB"

search "qwindow"

WINDON (Variable containing number of the current window)

WINDON returns the number of the currently active window.

Example:

new

(10windopen rnd(12)+1,10,10,10,10
20 print "Window number ";windon," Activated"

I

<

I

(
See WINDOW, QWINDOW, WINDON, WINDOPEN.

I WINDEL (Delete a window)

(

See WINDOW, QWINDOW, WINDOPEN.

WINDMOVE (Move a window)

WINDMOVE x1,y1

WINDMOVE moves both the current window and its contents to a new part of the
screen specified by the text coordinates x7,y1. These coordinates are based on
the character size of the window which is to be moved.

Example:

WINDOPEN 1,0,2,30.10
WINDMOVE 5,3

WINDEL n

767

This function deletes the window number n, and erases it from the screen. If the
window to be deleted is the current window, then the current window will be set to
the window with the next lowest number, and this will be redrawn automatically.

Example:

new

10 for 1=1 to 13

20 windopen 1,1+5.1+2,10,10
30 next I

40 for 1=1 to 13

50 wait key
60 windel I

70 next I

See WINDOPEN, WINDMOVE, WINDOW, QWINDOW, WINDON, WINDCOPY.

(

(

<

(

(

CLW (Clear the current window) f

CLW erases the contents of the current window and replaces it with a block of the
current PAPER colour. Note that you can perform a CLW instruction from the editor
by pressing the Clr key (or Shift+Home). I

Example:

clw:rem Clears window 0.

SCROLL ON/OFF (Switch window scrolling on and off)

The SCROLL instruction is used to control the scrolling of the current window.

SCROLL OFF turns off the scrolling. Whenever the cursor reaches past the bottom
of the screen it will now reappear from the top.

SCROLL ON restarts the scrolling. A new line is now automatically inserted when
the cursor attempts to reach past the bottom of the screen.

Example:

scroll off

Do NOT confuse this function with DEF SCROLL!

See SCROLL UP, SCROLL DOWN.

SCROLL UP (Scroll the current window up)

This instruction moves a section of the current window above the text cursor, one

line up. Anything on the top line of the window is erased.

Example:

scroll up:scroll up:scroll up

Not to be confused with DEF SCROLL.

76S

I

(

c

(

(

(

(

(

(

(

(

I

I

(

I

(

(

<

(

I

(

I

I

(

(

See SCROLL DOWN, SCROLL.

SCROLL DOWN (Scroll thecurrent window down one line)

SCROLL DOWN scrolls the area below the text cursor one line down. As a natural
consequence of this instruction, the bottom line of the window will be overwritten.

Example:

scroll down:scroll down:scroll down

See SCROLL UP, SCROLL.

Character sets

Each STOS Basic window can have its own individual character set. Three of
these sets are provided on the disc as standard, and these can be edited or
changed using the character definer FONTS.ACB.

In order to build your own character set, you should first load the font accessory
FONTS.ACB. Load this by inserting the STOS accessory disk and typing in the line

accnew: accload "FONTS.ACB"

You can access this at any time by pressing the keys Help+f1. When this utilityis
executed, the screen consists of a drop-down menu, along with two windows. The
leftmost of these windows is used to edit a character, and the rightmost window
is used to select the character to be redefined.

Start off by moving the mouse pointer to the selection window. Notice how the
character underneath the mouse pointer is inverted, and its Ascii code is displayed
at the bottom of the screen. This character can be chosen by clicking the left mouse
button.

You can now edit your character by moving the mouse cursor into the edit
window, and clicking on either the left or the right mouse buttons. The left button
sets a point at the current cursor position, and the right button erases it.

In addition, you can also manipulate your character using one of the many
options from the tool and draw menus.

After you have finished drawing your new character you can install it into the
current set by moving the mouse back to the selection window, and positioning the
pointer onto the character you wish to change. This character can now be
overwritten with the new data by clicking on the right mouse button.

The final step in the creation of the character set is to save it. There are two
possible alternatives. Firstly you can save the set to the disc in a file with the
extension .MBK. This filecan then be loaded at a later date. You can also load your
set directly intoyour current program using the Quit &Grab option. This places the
new character set into bank five, and then exits back to the STOS Basic editor.

Here is a summary of the entire process:

1. Choose a character from the Selection window using the left button.
2. Edit the character in the Edit window. The left button sets a point. The right

button deletes a point. The Tool and Draw menus manipulate the character.
3. Install the character in the Selection window with the right mouse button.
4. Repeat stages one to three until you have completed your new character set.
5. Save the set using either the Save or the Quit &Grab options from the Disc

menu.

The System menu allows you to select one of four possible sizes for your
characters. Unfortunately, not allofthese options are available inallthree graphics

763

modes. Look at the following table.

Size Modes allowed

8x8 All.

8x16 High and medium resolutions
16x8 High resolution only
16x16 High resolution only

Before you can call a user-defined character set, you first need to reserve
some space and load this set into memory. This is done automatically by the Quit
& Grab option from the font definer. If you intend to install a number of sets, it's
easiest to save the sets to the disc, and then incorporate them into your program
by hand.

LOAD "FONTI.MBK'.n

Example:

(

(

(

(

t
Saving space

RESERVE ASSET (Reserve a bank ofmemory for acharacter set) (

- RESERVE AS SET n.len

This reserves ten bytes of space in bank number n for a character set. This set can I
now be loaded into the bank using a line like:

(

reserve as set 5,4000
load "F0NT1.MBK",5 (

Note that the bank defined using this command is permanent and will be
automatically included with your current program when you save itto the disc. The
file FONT1 .MBK is one of three example character sets supplied with the package. (
Each additional set is given a unique number ranging between four and nine. The
first character set you defined is denoted by the number four, the second by five
and so on.

Supposing, for example, you reserve some space for three character sets like so:

RESERVE AS SET 6,4000
RESERVE AS SET 8.4000
RESERVE AS SET 5,4000

(

I

These sets would be accessed using the numbers: 4 for bank 6,5 for bank 8,6 for
bank 5. The size of these banks has been set to 4,000 bytes. (

You can calculate how large a character set is using the CHARLEN function.

CHARLEN (Get the length ofacharacter set) (
CHARLEN (n)

This function returns the length of a character set specified by the number n. y
Numbers one to three represent the system sets, and numbers 4 to 16 represent
supplementary sets created using FONTS.ACB.

770

Example:

? charlen(l)

See RESERVE.

CH ARCOPYfCopy a character set into a particular bank)

CHARCOPY s TO b

The CHARCOPY instruction copies character set s to bank number b. Values of
1 to 3 correspond to the system sets, and numbers 4 to 16 denote user-defined
sets.

Example:

reserve as set 5,charlen(1)

Reserve bank 5 as set of the same length as system set 1.

charcopy 1 to 5

Copy system set 1 into bank 5.

See CHARLEN, RESERVE.

Using a character set from a window

1. Find the size of the new set using DIR "*.mbk". Round this up to the nearest
1,000 bytes just to be on the safe side.

2. Reserve some space for the set using RESERVE AS SET.
3. Load your file into this bank with a line like LOAD "filename.mbk",n where n

is the number of the bank you are using to hold the set.
4. Repeat phases 1 to 3 for each new set.
5. Open a window using WINDOPEN. Set the character set number value to 3

plus the number of your set. Note you can avoid stages 1 to 3 when installing
a single character set by choosing the Quit & Grab option from the font
definer.

Example:

reserve as 5,4000: rem Assumes set is 8x8

load "F0NT1.MBK",5: rem Load example font into bank 5

Type in the following program. It creates a window, and outputs the entire
character set on to it.

new

10 windopen 1,1,1,38,23,1,4
20 for 1=32 to 255
30 print chr$(i);
40 next I

50 wait key

Simple isn't it.

If you like, you can edit this set using the FONTS.ACB accessory. Now for a

777

somewhat larger example which displays five different character sets on the
screen at once.

new

dir "*.mbk"

reserve as set 5,5000

load "F0NT1.MBK",5
reserve as set 6,5000

load "F0NT2.MBK",6

10 rem Multiple character setexample. (
20 rem Displays 5 character sets on the screen at once
30 rem Mode 1 looks rather better then mode 0.

40 rem Remove line 50 for mono monitors ^
50 mode 1:els (
60 for 1=1 to 5

70 rem Define windows using WINDOPEN
80 if l<4 then windopen l,(l-1)*26+1,0,26,12,l,l else windopen 1,(1-
4)*26+1.12,26,12,l,l (
90 rem Output all printable characters in window
100forJ=32to255

110printchrSIJ);
120 next J

130 next I

140 goto 140

Changing the default sets (

When STOS Basic is loaded, it automatically installs three system sets into the
ST's memory. These sets are stored in the STOS folder under the following /
names:

8X8.CR0 (Default set for low resolution)
8X8.CR1 (Default set for medium resolution)
8X16.CR2 (Default set for high resolution)

I

(

(

(

c
Ifyou change the contents of these files, you can modify the default character set
for your particular resolution and the ST will boot up using your own customised /
nharacter set.character set.

In order to do this you need to follow the following procedure:

• Create your new set using the FONTS.ACB accessory.
• Load your set into bank 5 of the current program using the Quit &Grab option.
• Place a copy of your system disc into the drive, and type one of the three lines

below, depending on the resolution you normally use.

Low resolution bsave "\STOS\8X8.CR0",start(5) to start(5)+length(5)
Medium resolution bsave "\STOS\8X8.CR1",start(5) to start(5)+length(5)
High resolution bsave "\STOS\8X16.CR2",start(5) to start(5)+length(5)

772

f

(
As a demonstration of this technique, load the file FONT1.MBK into the FONT
accessory using the Load File option from the Disc menu. Now use the QUIT &
GRAB option to return to the editor. Insert your copy of the STOS Basic system (
disc into the drive. DO NOT USE YOUR ORIGINAL SYSTEM DISC FOR THIS

PURPOSE! Type in one of the three lines above to set the default set for any of

I

<

<

<

(

(

(

<

I

(

I

(

<

I

(

I

the three possible resolutions.
When you reboot the copy of the STOS Basic disc, STOS will now load and

use the new font.

Note that STOS Basic can also load up to six supplementary sets as well.
These should have the extensions .CR4 to .CR9, and can be accessed using the
character set numbers four to nine respectively. Otherwise the method used to
save them is identical to that explained above. If some of these extra sets have
been loaded, the numbers of any new sets you define need to be incremented
accordingly.

Note that the size of these sets is determined when you created them with
FONT.ACB. This means you can readily use any of these six supplementary sets
for all three graphics modes.

Icons

The STOS Basic Icons are a group of useful 16 by 16 characters, stored in bank
number 2. These icons can be output to the screen at the current cursor position
using PRINT. This allows you to use them to create complicated backgrounds for
your games. You can also incorporate icons directly into a menu. See Chapter 9
for more details. We've provided a special set of icons especially for your use in
the file ICONDEMO.MBK.

ICON$ (Generate an icon at the current cursor position)

ICONS(n)

In order to output an icon to the screen you simply print a string containing a
CHR$(27) character followed by CHR$(n), where n is the number of the icon you
wish to draw. This string can be generated directly using the ICONS function.

Example:

Also:

new

load "ICON.MBK"

10forX=0to19

20forY=0T0 4

30 locate X*2, Y*2
40 print icon$(X*5+Y+1)
50 next Y

60 next X

print chrS(27)+chr$(5)
This is equivalent to print icon$(5)

The icon definer

This is very similar to the font definer accessory, but rather less involved. Itcan be
loaded using the line:

accnew:accload "ICONS.ACB"

You can now access this accessory from the editor at any time using Help+f1. On
startup you are presented with menu and two windows. The bottom window
occupies the entire width of the screen and is used to select an icon to be edited.

775

(
Ifyou are starting from scratch with a new set of icons, then this window willinitially
be empty.

You begin by choosing an icon from the selection window by moving the (
pointer over the icon to be changed, and pressing the left mouse button. You now
move the mouse pointer into the Edit window. As with the font definer, the left
button sets a pixel in the icon at the current pointer position, and the right button
clears it. After you havefinished drawing the icon you will need to update theold (
definition. This involves simply moving the mouse pointer over the appropriate
icon in the selection window, and then clicking once on the right mouse button.
When you have completed this process, you can then either save them to disc
using the save option, or load them into Bank two of your current program with Quit (
& Grab.

Summary

1. Choose the icon to be edited from the selection window using the left mouse
button.

2. Edit the Icon in the Edit window. The left button sets a point. The right button
clears a point and the icon menu manipulates the icons. I

3. Install the icon in the Selection window with the right mouse button.
4. Repeat stages one to three until you have completed your set of icons.
5. Save the Icons using either the Save or the Quit &Grab options from the Disc

menu.

774

<

I

(

(

(

(

(

(

(

(

I

I

I

<
STOS Basic provides you with a number of clever facilities for creating and
manipulating on-screen menus. Although these menus may look rather different
to their Gem equivalents, they are considerably more powerful. They are also a
great deal easier to use. The best way to explain the commands is by writing a
complete program which is developed in this chapter.

(Creating a menu

(

I

(

(

(

(

(

(

<

Before you can incorporate one of these menus into a program, you first need to
define the menu titles which will be displayed on the screen. This is done with the
MENUS command.

MENU$ fSefa menu title)

MENU$(x)=title$ [,paper,pen]

Title$ holds the title of your menu, and paper and pen are the colours of each
heading and background respectively. The value of x denotes the number of the
menu whose title you wish to create.

These menus are given numbers from 1 to 10 starting from the left hand corner
of the screen. Here is a simple example which constructs a menu consisting of just
two titles: ACTION and MOUSE.

new

10 menuS (1)="ACTION"
20 menuS (2)= "MOUSE"

Youcan nowspecify a listofoptions to be associated with each ofthese titles using
a second form of the MENUS command.

MENU$(x,y) (Set a menu option)

MENU$(x,y)=OPTION$ [paper.pen]

I The variables Xand Vin this instruction refer to the title number, and the option
number of the menu line. The string option$ represents the menu text. You can,
however, use any string you like for this purpose.

Type the following lines into your program:

25 rem Action menu

30menu$(1,1)="Quit"
35 rem Mouse menu
40 menuS (2,1)="Arrow"
50 menuS (2,2)= "Hand"
60 menuS (2J)="Clock"

This will determine the various alternatives for the ACTION and the MOUSE
menus. Ifyou try to run this program as it stands, nothing happens. The reason

775

for this is that STOS Basic first requires you to use a special command to start your
new menu running.

MENU ON (Turn on menu interrupt)

Add the following line to make the program work properly:

70 menu on

(

(

(

MENU ON has a number of possible extensions. These allow you to choose any
one of 16 different borders for your menus. You can also use this function to /
change the current menu style.

STOS Basic supports two distinct types of menu: Drop-down menus and pull
down menus. Drop-down menus are selected whenever the mouse touches the
menu line, whereas pull-down menus also require you to press the left mouse (
hnttnn pc well The full Hofinitinn nf the MFNII ON statement is therefore:button as well. The full definition of the MENU ON statement is therefore

MENU ON [border][,mode]

border can range from 1 to 16.

mode is either 1 for a drop-down menu or 2 for a pull-down menu.

If you want to use pull-down menus inyour program, you can replace line 70 with:

70 MENU ON 5,2

This generates a pull-down menu with border type 5. There's also a number of
other useful options:

(

(

(

MENU OFF (Stop menu interrupt) (

(

Permanently switches off the entire menu and clears the menu from the ST's
memory.

MENU FREEZE (Freeze menu interrupt)

Temporarily freezes the action of the menu. The menu can be restarted with
MENU ON. (

MENU$(title,option) OFF (Disable a menu option)

This instruction disables one of the list of menu items under title. Any further f
attempts to call this entry are completely ignored.

MENU$(title,Option) ON (Enable a menu option)

Reverses the effect of the above instruction.
<

STOS stores all your menus in bank number 15. This bank should therefore only
be reserved when these menus are not required in your program. (

Making a selection

The menu you have prepared is now ready for use. Itcan be read using the two
reserved variables: MNBAR and MNSELECT.

776 (

(

(

<

I

<

(

(

I

(

(

I

(

(

(

(

MNBAR and MNSELECT

MNBAR holds a number denoting the menu title you have chosen, while
MNSELECT contains the number of the specific option you have highlighted with
the mouse. You can see how this works by entering lines 90-110:

90 0PTI0N=mnbar: CHOICE=mnselect

100 print "Title Number ";0PTI0N; " Selection Number";
CHOICE

110 goto 90

Ifyou run this program, the title number and the option number you have selected
will be displayed to the screen.

This code can be expanded into a real program, by replacing the lines 100
onwards with:

100 if 0PTI0N=1 and CH0ICE=1 then menu off: stop
110 if 0PTION=2 and CHOICEoO then change mouse CHOICE
120 goto 90

Line 100 tests the menu to see ifyou have decided to exit from the program. The
action of line 110 is to check whether you wish to swap the mouse pointer. It can
then use this information to alter the pointer type with a CHANGE MOUSE
instruction.

ON MENU (Conditional menu jump)

The last example was fairly simple. But supposing you wanted to write a routine
with a larger and more complicated series of menus. In this case, your program
would need to use a long list of IF...THEN statements to deal with each and every
possibility. Inevitably this would make your program both unwieldy and hard to
change. Itwould therefore be better if there was an easier way of handling these
menus.

Fortunately STOS Basic includes a special ON MENU statement which
provides you with a painless method of managing even the largest menus. Itdoes
this by automatically jumping to one of a list of line numbers, depending on the title
you have chosen.

ON MENU GOTO linel [,line2]...
is broadly equivalent to the line:
ON MNBAR GOTO linel [,line2j...

One major difference between the above instruction and ON MENU is that ON
MENU is performed using interrupts. This allows your program to execute another
task at the same time as your menus are being tested.

Example:

new

10T=0

20 menuS (1)=" ACTION"
30 menuS (1,1)="COUNT"
40 menuS (1.2)="QUIT"
50 menu on

60 on mnbar goto SO
80T=T+1: goto 80
90if mnselect=1 then locate 0,1: printT: goto60

777

100 if mnselect=2 then stop

When you run this program, it first creates a menu, and then checks whether this
menu has been accessed. It now reaches line 80 and repeatedly adds 1 to the
variable T. Since line 60 is never executed again, playing around with the menu
has no effect whatsoever. Try replacing line 60 with:

60 on menu goto 90
70 on menu on

In this case the menu will function perfectly, despite the fact that the program is
still stuck at line 80. Furthermore, every time you choose COUNT, you willfind that
the value of the variable T has increased.

This appears to prove that line 80 is running at the same time as line 60. What
is really happening is that the menus are being tested by STOS Basic 50 times a
second using an interrupt similar to that utilised by the sprite commands.

The entire process is set in motion by the ON MENU ON instruction. As you
might expect, there's also a ON MENUOFF command which turns the menus off.
You can use this on menu routine in conjunction with any sequence of Basic
instructions you like,providing they make no attempt to input or output information
to the screen.

Up until now the examples have been fairly trivial. We will therefore go on to
describe how a STOS Basic menu can be incorporated into a real program. To that
end, we'll produce a small, but useful version of Doodle, directly comparable to
that found on the ST startup disc. As before, we will begin by defining the menu:

new

3 mode 0

5 rem Action menu

10 menuS (1)=" ACTION "
20 menuS (1,1)="DRAW"
30 menuS (1,2)="QUIT"
35 rem Pen menu

40 menuS (2)=" PENS "
50 menui(2,1)= "Small"
60 menuS (2,2)= "Medium"
70 menuS (2,3)="Large"
75 rem Colour menu

80 menuS (3)=" COLOUR "
90 for 1=1 to 16

100 menuS (3,1)= "<six spaces>",l-1,0
110 next I

Atfirst glance lines 90 to 110 seem to produce a menu consisting of nothing more
than blank spaces. But ifyou look more closely you'llsee that we're actually setting
the paper colour of each line to the value of 1-1. This neatly turns our spaces into
a bar of the appropriate colour - a technique which is used to great effect by many
of the accessories on the disc.

Note that in order to keep things as simple as possible, we've assumed that
the maximum number of colours available is 16. People with mono monitors
should therefore delete line 3 and alter line 90 to:

90 for 1=1 to 2

You must now activate the menu using the MENU ON command.

120 menu on

778

C

(

(

(

(

(

(

(

(

c

I

(

<

c

(

<

(

(

(

I

I

I

(

(

<

I

(

(

(

I

(

Before you can continue, you need to decide precisely where the program should
go when each of the menu titles are selected. In this example we've placed the
routines starting at 200, 400 and 600 respectively.

150 on menu goto 200,400,600
160 on menu on

170 goto 170

When a menu item is chosen, line 150 will automatically execute the routines at
either 200,400 or 600 depending on whether the titles ACTION, PEN or COLOUR
were picked. Incidentally the reason for the line at 170 is to give STOS Basic
something to do while the program is waiting for the menu to be used.

We'll now examine the ACTION routine at lines 200-400 which effectively
forms the heart of the Doodle program. ACTION gives you a choice between two
different alternatives: Exit or Draw. Ifyou select the Exit option then the program
should simply return to the editor.

199 rem Actions

240 M=mnselect

250 if M=2 then menu off: stop

The second possibility is that you might wish to actually do some drawing on the
screen. It's easy enough to detect whether this feature has been chosen using a
simple IF..THEN statement.

260rem If item 1 not picked go back to menu loop
270 if Mot then 150

Now comes the drawing routine itself which is rather more complicated. We will
begin by specifying precisely what we want the program to do and then see how
this effect will be achieved. What we require is a small routine to input the position
of the mouse, and then draw a filled circle at the appropriate coordinates whenever
the left mouse button is pressed. In order to enable the user to draw continuous
lines, this process should be repeated until the drawing routine is terminated with
the right button.

280 rem Draw until right mouse button clicked
290 repeat
300 rem Wait until a mouse button has been pressed
310 repeat: M=mouse key : until M<>0
320 rem If left button then draw a circle of radius SIZE*5

330 if M=1 then X=x mouse : Y=y mouse : circle X,Y,SIZE*5
340 until mouse key=2: rem Check for right mouse
390 goto 150

The code to deal with the other two menu items is very simple indeed since it only
has to read the menu using mnselect and then use this to set either the size or the
colour of the pen.

399rem SIZE=size of pen
400 SIZE=mnselect: goto 150
599rem C= Colourof pen
600 C=mnselect: if C>0 then ink C-1

610 goto 150

The initial value for SIZE needs to be set to one. There also needs to be another
line to prevent a flashing text cursor in the top left hand corner of the screen.

773

85 size=1

130 curs off: clw: rem Get rid of the flashing cursor and clear screen

i

Another problem is that the drawing operations can occasionally clash with the
menu. In extreme cases this can lead to almost total destruction of the menu line
itself. There are two things that can be done to avoid this difficulty. Firstly you can
turn off the menus during the drawing operations using MENU FREEZE. (

As an additional safeguard, it's also a good idea to restrict the mouse to the
part of the screen below the menus with the LIMIT MOUSE command. This stops
you from accidentally obliterating large sections of the menu line with part of your
drawing. (

<

200 menu freeze : rem Switch off menu

210 rem Limit mouse to below menu. Modify for use in high or medium res
220 limit mouse 0,22 to 300,180
350 menu on : rem Restart menu

360 limit mouse : rem Remove mouse limit

i

Finally, the mouse pointer has a completely different effect depending on whether (
you are drawing a circle or calling one of the menus. We therefore changed the
mouse pointer to a hand within the drawing routine, to avoid any possibility of
confusion.

230 change mouse 2: rem Change mouse to hand
370 change mouse 1: rem Change mouse back to arrow

I

Icons (

So far, all the menus we have created have been composed of text. However you
can also incorporate icons into a menu:

MENU$(1)=ICON$(2) Loads the title number with icon two.

MENU$(2,1)=ICON$(3) Associates icon 3 with option 1 of title 2.

To demonstrate how this works, there are some icons for the Doodle program in
the file ICON.MBK. This should first be loaded from the editor using LOAD
"ICON.MBK".

You should now replace lines 50 to 70 with:

50 menuS (2,1)=icon$(3):rem Small circle
60 menuS (2,2)=iconS(2):rem Medium-sized circle
70 menuS (2,3)=iconS(1):rem Large circle

These lines substitute the original PEN menu with a set of three icons representing
the various possible pen sizes. When you execute this program, these icons can
be accessed with the mouse in exactly the same way as a normal menu.

Possible ideas for expansion

780

(

(

(

(
The previous example could form the basis of quite a powerfuldrawing utility. Here
are a few of the possible ways you could expand it.
1. Add a Disc menu toallow theloading and saving of pictures via thedisc. (Use f

something like LOAD F$+".NEO" or SAVE F$+".NEO" where F$is the name
of your file).

<

I

(

<

<

(

2. Improve the resolution of your picture by using points instead of circles.
3. Add an eraser.

4. Replace the hand pointer with cross-hairs. This can be achieved by using the
Sprite Editor program to generate a sprite of the appropriate shape, and then
calling change mouse using the image number plus 4.

5. Add routines to draw other objects such as boxes or ellipses.
6. Implement a cut and paste feature using SCREEN COPY.
7. Change the size of parts of the picture using ZOOM or REDUCE.

Troubleshooting

As you have seen, using menus from STOS Basic is normally very easy indeed.
Even the best of us however, can occasionally make a mistake, and when this
happens it may help to check the following list of common problems.

Problem: The Menu flickers and dies every time you try to call it with the
mouse.

Solution: You have ordered a menu out of sequence. Check the menu
definitions.

Problem: The menu doesn't appear in your program.
Solution: You may have forgotten to use the MENU ON command.

Problem: ON MENU doesn't work.

Solution: Check whether there is an ON MENU ON statement. Also make

sure the program isn't attempting to perform Input or Output to
the screen while ON MENU is active.

787

s
o '

r
>

r
x

—

<

<

(

(

I

(

<

(

(

Up untilnowwe have concerned ourselves withmany ofthe more exciting features
of STOS Basic. But like all versions of the Basic language, STOS also includes a
variety of more mundane facilities which allow you to do a range of useful things
such as accessing the ST's screen, keyboard or disc.

The aim of this chapter is therefore to provide you with all the information you
need to familiarise yourself with the nuts and bolts of the STOS Basic system.
Whenever possible. We have included any major differences between STOS and
standard Basic. This should make itfairly easy to convert programs written in most
other dialects of Basic for use with this package. Since the scope of this manual
cannot extend to providing an in-depth tutorial on Basic itself, we have provided
a number of worked examples which should prove useful even for a complete
beginner.

Control Structures

GOTO (Jump toa new line number)

GOTO is probably the most commonly used of all the Basic instructions. The action
of a GOTO is to transfer the control of the program from the current line number,
to a new one.

GOTO line number

GOTO expression

Example:

Where line number can be any line in your Basic
program.

expression can be any allowable STOS Basic
expression involving either variables orconstants.
Technically this is known as a computed goto.

new

10 goto 30
20 print "This line is never printed"
30 print "Now executing line 30"

Now for an example of a computed GOTO.

new

10 JUMP=10

20 goto JUMP*2+20: rem same as goto 40
30 print"This line is never printed"
40 print "Jumped to line ",JUMP*2+20

This example is really a rather bad piece of programming, because any mistake
you make in line 10 or 20, could lead to your program jumping somewhere totally
unforseen. Furthermore, these computed gotos are invariably far slower than
normal ones, and make it almost impossible to renumber your program. They
should therefore be used with extreme caution.

Users of other Basics should note that STOS Basic does not support any form

785

C
of labels. This means that you should remember to place a number at the start of
each and every line. See AUTO

If you absolutely have to use labels in your program, you can simulate them (
with a computed goto like so:

100 LABEL=120

100 goto LABEL (
110 goto 110
120 print "Label reached"

Finally, GOTOs should NEVER be used tojump inside a FOR...NEXT loop, as f
this will lead to a NEXT WITHOUT FOR error.

See also ON GOTO

GOSUB (Jump toa Subroutine) c
This is verysimilarto GOTO, but has the additionalbonus ofenabling you to jump
back where you started with a RETURN instruction. The most common use of (
GOSUB is to allowyou to split a program into smaller, more manageable chunks,
known as subroutines. As with GOTO, there are two different forms of the GOSUB
instruction.

GOSUB line Jump to the subroutine at line.

GOSUB expression Jump to the subroutine at the numbergivenbythe
result of expression

Example:

new

101=1

20 gosub 40
30 goto 20
40 print "You have called this gosub ";l;"times"
50 inc I f
60 return

This demonstration was trivial, but if you have a look at some of the programs on
the disc, you will find many real examples of just this sort of subroutine. f

RETURN (Return from a GOSUB to the nextinstruction)

RETURN exits from a subroutine, and jumps back to the statement after the initial
GOSUB.

Example:

new

10 gosub 100:print"Returned"
20 end

(

(

(

(

«

100 print "Inside Gosub":return f

POP (Remove the RETURN information after a GOSUB)

The POP instruction removes the return address generated by a GOSUB and f
allows you to leave the subroutine without having to execute the final RETURN
statement.

784 <

(

(

(

<

(

(

(

(

(

(

(

(

(

(

(

(

Here is an example of this instruction in action:

new

101=1

20 gosub 40
30 goto 20
40 print "You have called this gosub ";l; "times"
50 inc I: if MOOthen pop:goto70
60 return

70 print "Gosub terminated after ";l-1;"Times"

See ON GOSUB

FOR...NEXT (Repeat a section ofcodea specific number of times)

This is the classic way of repeating parts of a Basic program. The format of the
instruction is:

FOR var=start TO finish [STEP inc]

list of instructions

NEXT [var]

When this loop is first entered, var is loaded with the value of start. The instructions
between the FOR and the NEXT are now performed until the NEXT is reached.
The NEXTinstruction increments var by either inc, or 1, depending on whether the
optional STEP has been included. The loop counter is now tested. If var is either
greater than finish (for positive increments), or less than finish (tornegative steps),
the loop is terminated, and the instruction after the NEXT is executed. Otherwise
the loop is restarted from the top.

Here are a couple of examples of FOR...NEXT loops.

for 9=1 to 100step 10:print 9:next 9

new

10 for a=32 to 255

20 print chrS(a);
30 next a

new

10 for R1=20 to 100 step 20
20 for R2=20 to 100step 20
30 for a=0 to 3

40 ink a

50 ellipse 160.100.R1.R2
60 next a

70 next R2

80 next R1

See how we've placed a number of FOR...NEXT loops inside each other. This is
known as nesting. STOS Basic will permit you to nest anything up to a maximum
of 10 FOR...NEXTs in this way. Unlike some other Basics, STOS Basic does not
allow you to replace lines 50-70 with "NEXT l,R1 ,R2". AllNEXT instructions should
be placed directly at the correct point in the program.

785

WHILE...WEND (Repeata section of code while a condition is true)

This instruction enables you to repeat a series of instructions until a specific
condition has been satisfied.

WHILE condition

list of statements

WEND

The conditioncan be any set of tests you like, and can include the constructions
ANDand OR. This check is always performed at the start of the WHILE loop. The
list of statements between the WHILE and the WEND will be only be executed if
this condition is true.

Type the following example:

new

10 input "Type in a number";X
20 print "Counting to 11"
30 while X<11

40 inc X

50 print X
60 wend

70 print "Loop terminated"

The number of times the WHILE loop in this program will be executed depends on
the value you input to the routine. If you type in a number larger than 10, you will
find that the loop is not entered at all.

As a rule, these WHILE loops should therefore only be used when a list of
statements needs to be repeated 0 or more times. The program above is
effectively equivalent to the following routine written in standard Basic:

10 input "Type in a number";X
20 print "Counting to 11"
30 if X>=11 then 70

40 inc X

50 print X
60 goto 30
70 print "Loop terminated" (

Itshould be readily apparent that the program with the WHILE statement is much
easier to read than the one which used GOTO. Each WHILE instruction in your
program should be matched by exactly one WEND statement. See /
REPEAT.UNTIL

REPEAT...UNTIL (Repeata sectionof code until a condition is satisfied)

This pair of statements is similar to WHILE...WEND except that the test for
completion is made at the end of the loop rather than the beginning. Furthermore,
the action of the UNTIL statement is to continue executing the loop until the
condition is FALSE. The format of this instruction is:

REPEAT

786

(

(

(

(

c

(

(

(

(

(

(

I

(

(

<

(

I

<

<

<

(

I

(

(

<

I

(

(

(

list of statements

UNTIL condition

where condition is a list of conditions, and the list of statements can be any set of
Basic instructions you like.

Here is a small example, taken from the. Doodle program in Chapter 9:

10 repeat
20 M=mouse key : rem test to see if mouse button pressed
30 until M<>0

40 print "You clicked on the mouse button"

we could have used a WHILE...WEND construct in this program instead. This
would have changed the routine to:

10 U=mouse key
20 while M=0

30 M=mouse key
40 wend

50 print "You clicked on the mouse button"

In this case, we would have had to use an extra instruction to test for the mouse
key at the start of the loop.

Since a REPEAT...UNTIL loop always executes at least once, this was not
needed in the first example. As with WHILE...WEND, you should always remember
to match each REPEAT with an UNTIL.

STOP (Stop running theprogram and return to the Editor)

This command stops the current program running and returns to the editor. It can
be used at any point in your program.

Example:

new

10 input "Input a number between 1 and 100 (0to stop)";N
20 if N=0then stop
30 for 1=1 to N

40 print 1*1
50 next I

60 goto 10

Note that unlike END, a program terminated with STOP can be restarted with
CONT, providing it has not been altered in the meantime using the editor.

END (Exit from the program)

This instruction exits from a program and returns to the editor. Programs which
have been terminated using END cannot be subsequently restarted using CONT.

See STOP.

IF ... THEN [ELSE] (Choose between alternative actions)

The IF...THEN instructions allow you to make decisions within a Basic program.
The format is:

787

(
IF conditions THEN statementsl [ELSE statements2]

conditions can be any list of tests including AND and OR. (

Statementsl and statements2can be either lists of STOS Basic instructions, or
line numbers. -,

The action of the IF..THEN instruction is to execute the instructions in I
statementsl if the conditions are true. If the optional ELSE statement is included,
then statements2will be performedwhen the condition is false. Otherwise control
will pass tothe line afterthe IF..THEN instruction. Thefollowing exampleprogram
demonstrates most of the various possibilities. (

10 input "Input a number";N
20 print"Number ";N;" is ";
30 ifN>0 then print "Positive"; else print "Negative"; (
40 if (N/2)*2=N then print " and Even" : goto 60
50 if (N/2)*2oN then print" and Odd"
60 input "Continue Yor N";A$ ^
70 if A$<>"Y" and ASo'y" then 90 else 10 (
80 print"Never executed"
90 stop

Note that STOS Basic restricts these IF..THEN statements toa single line. See (
NOT.TRUE.FALSE

ON...GOTO (Jump to one of a listof lines depending on a variable)

ON var GOTO linel,Iine2,line3...
(

The ON GOTO instruction allows your program to jump to one of a number of lines
depending on the valueofthe variable var. If vartakes a valueof1, for instance, y
the instruction is identical to a simple GOTO line~\. Similarly, if var holds a 2 then
the program will branch to //ne2, and so on. In order to have an effect, the
ON...GOTO statement requires var to hold a figure between 1 and the number of
possible destinations. Look at the following small example: (

new

10 input "Input a number ";N
20 on Ngoto 50,60,70,80 (
30 print"You input a number either less than 0 or greater than 4"
40 goto 10
50 print "You input the number ONE": goto 10
60 print "Youinput the numberTWO" : goto 10 /
70 print"You inputthe numberTHREE" :goto 10
80 print"You inputthe numberFOUR" :goto 10

Note that the variable used for N must always be an integer. /

See GOTO, GOSUB, ON GOSUB

ON...GOSUB (GOSUB one of a list of routines depending on a var) f

ON var GOSUB linel ,line2,line3...

This is identical to ON...GOTO except that it uses a gosub rather than a goto to (
jump to the line. When the subroutine has finished executing, it should use a
RETURN to jump back to the next instruction after the ON...GOSUB statement.

788 (

<

<

(

(

<

I

I

(

<

<

(

(

(

(

(

(

Example:

new

10 input "Input a number ";N
20 on N gosub 50,60,70
40 goto 10
50 print "Subroutine ONE" : return
60 print "Subroutine TWO" : return
70 print "Subroutine THREE" : return

See also GOSUB and ON GOTO

ON ERROR GOTO (Trap an ERROR within a Basic program)

This command is used to allow the detection and correction of errors which occur
within a STOS Basic program. Take, for instance, the following routine:

10 input "Input a positive number";N
20 print "The Square Root of ";N;" is ";SQR(n)
30 goto 10

This program works fine until you try to type in a negative number. When this
happens an error is generated, as you are not allowed to calculate the square root
of any number less than 1. STOS Basic therefore returns you to the editor, and
prints out the error message ILLEGAL NEGATIVE OPERAND in line 20.

You can avoid this problem by trapping the error with an ON ERROR GOTO
instruction. The format is:

ON ERROR GOTO line

Where line is the location of your new error correction routine.

line refers to the location of a routine which will be executed whenever an error

occurs. You can also use an expression for this purpose, but this is generally rather
a bad idea as the expression is only evaluated once, when the ON ERROR GOTO
instruction is first initialised.

Example:

10 on error goto 50
20 input "Input a positive number";N
30 print "The square root of ";N;" is ";sqr(N)
40 goto 10
50 print
60 print "I'm afraid you can only take the square root of a
positive number"
70 N=abs(N)
80 resume 10

In order to turn the action of ON ERROR GOTO off, you simply type the line: ON
ERROR GOTO 0

See RESUME, ERRN, ERRL, ERROR

RESUME (Resume execution of theprogram afteran error)

This instruction is used from within an error trap created by ON ERROR GOTO.

789

The action of RESUME is to jump back to the part of the program which caused
the problem, after the error has been corrected by your routine. You should
NEVER attempt to use GOTO in this context.

RESUME has three possible formats:

RESUME Jump back to the statement which caused the
error and try again.

RESUME NEXT Jump to statement following the one which
generated the error.

RESUME line Jump to line number.

See ON ERROR GOTO, ERROR, ERRL, ERRN

ERRN (Reserved variable containing the number of the last error)

(

(

(

(

I

When an error occurs, ERRN is automatically loaded with the error number. This (
can be printed out using a line such as:

PRINT ERRN

ERRL (Reservedvariable holding the location of lasterror)

ERRL contains the line number of the last error which occurred.

Here is a small example.

10 rem Error test routine

20 on error goto 50
30 rim I appear to have made a slight mistake!
40 stop
50 print "ERROR NUMBER ";errn;" at line ";errl
60 resume next

See also ERRN, ERROR and ON ERROR GOTO

ERROR (Generate an ERROR and return to the STOS Editor)

The action of the ERROR command is to actually generate an error. This may
sound rather crazy, but it's often quite useful. Supposing you have created a nice
little error handling routine which is able to cope with any possible disc errors.

error 2

Quits the program and prints out an out of memory error.

The most common form of this instruction is:

This uses the ERRN function to print the current error condition.
By testing the ERRN for the errors your program can correct, you only need

to revert back to the editor when absolutely necessary.

790

c

I

c

c

c

(

(

(

(

<

<

(

I

I

I

I

(

(

<

I

<

(

(

(

(

BREAK (Turn on or off the Control+C Break key)

Normally you can interrupt a program and return to the editor at any time by
pressing the two keys Control and C. Although this is useful when you're
debugging a program, itwould be very dangerous to allow this function to operate
in a commercial games program, as it would make it extremely easy for an
unscrupulous person to steal some of your code. You can therefore turn this
function off using a special BREAK OFF command.

As you mightexpect, you can also reactivate the Break keys using:

break on

Butbe warned: NEVER run a protected program unless you have made a backup
copy on the disc first. Otherwise ifthe program gets stuck ina loop,you could easily
end up losing several hours of your work.

The keyboard

KEY (Function to assign a string to a function key)

Any of the 10 function keys can be assigned a string of up to 64 characters long
using the KEY command.

KEY(x)=a$

Assigns string a$to key number X.

a$ is the stringwhich will be returned whenever key X is pressed. X is a number
from 1 to 20, where the numbers between 11-20 represent a shifted version of the
normal function keys.

Example:

1 rem Reassign function keys. Warning! In order to get the
2 rem default assignments back, you will need to reboot STOS Basic!
10 for 1=1 to 20

20 read AS

30 key (l)=A$+
40 next I

50 input "Press a function key";F$
60 print "Function key number ";F$
70 goto 50
80 data "one","two","three","four","five","six","seven","eight","nine"
90 data "ten","eleven","twelve","thirteen","fourteen","fifteen","sixteen"
100 data "seventeen","eighteen","nineteen","twenty"

If you nowrun this program, and press a function key, the number of the key you
pressed will be printed on the screen.

See also KEY LIST and FKEY

INKEY$ (Function to get a keypress)

The INKEYS function allows you to test whether a key has been pressed at any
time, without having to interrupt the action of the program. INKEYS is used in the

797

(
following way.

K$=INKEY$ (
where K$\s the string variable which will be used to hold the keywhich has been
pressed. ,

If the user presses a key, then K$ will contain the Ascii character which has y
been input, otherwise K$will be set tothe empty string"". Ascii values rangefrom
0-255and represent a standard code used to hold all alphanumeric characters.
It is important to note that some keys, such as the cursorkeys, and the function
keys, use arather different format. These must therefore be read using aseparate (
SCANCODE function.

Example:

(
10 while K$=""
20 KS=inkey$
30 wend (
40 print "Youpressed the ";K1" Key with an
Ascii code of ";asc(K$)
50 K$="" : goto 10

See CLEAR KEY and SCANCODE

SCANCODE (Input the SCAN CODE ofthe last key input with INKEY$) ,

SCANCODE is used in conjunction with INKEYS to test whether the user has
pressed a key which does not return an Ascii code. If INKEYS detects that such
a key has been input, itreturns a characterwith thevalue 0. When thishappens /
you should usetheSCANCODE function todetermine theinternal code associated
with this key.

Try typing in the following small example: /

(
10 while K$='"
20 K$=inkeyS
30 wend
40 if asc(K$)=0 thenprint "You Pressed a keywith noASCII code."
50 print "The scancode is";scancode
60 KS="": goto 10

CLEAR KEY (Initialise keyboard buffer)

(

Whenever you type acharacter on the ST's keyboard, its Ascii code is placed in (
an area ofmemory known as the keyboard buffer. It is this buffer that is read by
the INKEYS function. At the start of a program the buffer may well be full of
unwanted information. It's therefore generally a good idea to remove all this *
garbage first using CLEAR KEY. (,

Add line 5 to the program in the previous example.

5 clear key

See PUT KEY, INKEYS

792

(

(

I
INPUT$(tl) (Function to input ncharacters into a string)

(INPUTS reads ncharacters from the keyboard, waiting for each one, and then
loads them into a string. As with INKEYS, these characters are not echoed back
on the screen.

(X$=INPUT$(n)

I

(

<

<

(

(

(

(

<

(

(

X$ represents any stringvariable and n is a numberdenoting the length of the
string to be input.

Example:

new

10 clear key
20 print "Type in ten characters"
30 CS=input$(10)
40 print "You typed in the string ";C$

It is important not to confuse INPUTS with INPUT, as the two instructions are
completely different.

(Also note that there is a special version of INPUTS which is used to access the disc.

FKEY (Read the function keys directly)

FKEY is a special form of the INKEYS function which can be used to test the
function keys directly without having to tediously use SCANCODE. Whenever a
function key is pressed, FKEY returns a number between 1 and 20. Numbers
greater than 10 indicate that the key has been shifted, and a value of zero means
that no key has been pressed.

FKEY is often used in conjunction with ON...GOSUB to jump to one of a
number of subroutines depending a function key chosen by the user.

ON FKEY GOSUB linel,Iine2,line3...

See KEY, KEY LIST

WAIT KEY (Wait for a keypress)

The action ofWAIT KEY is simply to halt the program until the user hits a key.

Example:

new

10 print "Press a key"
20 wait key
30 print "Key pressed"

KEY SPEED (Change key repeat speed)

KEYSPEED repeatspeed, delay

Thisinstruction allows you totailor thespeed ofthekeyboard toyour ownparticular
taste, repeatspeed is the delay in 50ths of second between each repeated

793

character. Delay is the time in 50ths of a second between pressing a key, and the
start of the repeat sequence.

PUT KEY (Put a stringinto the keyboard buffer)

This function is used to load a string of characters into the keyboard buffer.
Carriage returns can be included in this string using the ' character. The most f
common use of PUT KEY is to call ud a direct mode command after a Droaram hascommon use of PUT KEY is to call up a direct mode command after a program has
terminated.

Example:

10 put key "new"

(

(

«

When this line is executed, the program erases itself from the ST's memory. Itdoes
this by placing a "new" into thekeyboard buffer, which isthen performed directly (
from the editor when the program ends.

Input/output

INPUT (Input a number orsome textinto a string variable)

INPUT provides you with a standard way of inputting information into a variable.
There are two possible formats for the instruction:

INPUT variable list variablelistcan be any listofvariables separated
by commas.

INPUT "Prompt";variable list Prompt may be any string of characters you
like.

When you execute an INPUTinstruction, the ST displays a ? and waits for you to
enter the required information from the keyboard. If an optional prompt has been
included, then this will be printed out instead of the "?".

Example:

new

10 input A
20 print A

If you now run this program and type in the number 10, the following dialogue will
ensue. In order to distinguish between your input, and the computers output,
We've underlined anything entered from the keyboard.

run

10

If more than one variable has been specified in the list, these should be entered (
as in the example below.

new

10 input A,B,CS
20 print A.B.CS

We'll now show you some sample dialogue of this program in action.

run

? 15.40.string of characters
15 40 string of characters

794

(

(

I

(

(

(

(

c

(

(

(

(

I

I

(

(

I

I

I

I

(

(

I

(

(

I

Notice how we've separated the three values typed in with a comma. Any commas
input as part of a string will therefore effectively split the string in two. In some
circumstances this might be a major inconvenience, so STOS Basic includes a
useful LINE INPUT instruction which allows you to use a Return instead of a
comma as the separator.

Here's another example, showing the action of the prompt:

new

10 input "Enter your age:";A
20input "Enter the month, andthe yearof yourbirth:";M$,Y
30input"Enteryour christian name and surname:";C$,S$
40 print"Age =";A
50 print"Month = ";M$;" Year =";Y
60 print "Name= ";C$,S$

run

Enter your age:26
Enter the month, and the year of your birth:Julv.1961
Enter your christian name and surname:Stephen.Hill
Age = 26
Month = July Year = 1961
Name = Stephen Hill

Incidentally, ifyou're used to another version of Basic, you should note that the ;
between the prompt and the variables, cannot be replaced by a,. See INPUT*and
LINE INPUT

LINE INPUT (Input a listof variables separatedbya Return)

Line input is exactly the same as INPUT, except that it uses a Return instead of
a comma to separate each variable you type in.

Example:

new

10 line input A.B.CS
20 printA,B,C$

run

?10

??2D

?? Hello

1020 Hello

See INPUT, LINE INPUT#

PRINT and ? (Print a listof variables of thescreen)

The PRINT instruction has precisely the opposite effect as INPUT, and prints the
contents of a list of variables at the current cursor position on the ST's screen.

PRINT list of variables

The listofvariables can include any mixture of strings or numbers. These variables
are separated by either a ; or a ,. If a semi-colon ; is used, then the data will be
printed immediately after the last variable you output using print. If, however, a

795

comma is used, the cursor will be positioned a number of spaces ahead. Normally
the cursor is moved downwards one line every time a print instruction is executed.
This line can be suppressed by placing either of the separators at the end of the
PRINT. Note that PRINT can be abbreviated to a ?. This will be expanded in full
in any program listings.

Example: I

(

new

10 print This is the story of the Hitchikers Guide to the Galaxy"
20 A=10: B=20: CS="Thirty"
30 print A,B;CS
40 print 10,20*10. "Hel";
50 print "lo"

See also USING, LPRINT and PRINT#

USING (Formatted output)

The USING statement is used in conjunction with PRINT to provide fine control
over the format of any printed output.

USING takes a special format string. Any normal alphanumeric characters in
this format string willbe simply printed out, but ifyou include one of the characters I
~#+-.;A then one of several useful formatting operations will be performed.

PRINT USING format$;variable list

Note the semi-colon between the format string format$ and the list of variables.

(

(

c
~ (Shift+#) This is used to format strings. Any occurrences of the ~ are replaced
by a character from the following string. /

Example:

new

10 print using "This is a demonstration of USING";"Small"
20 print using "1st Letter:- 2nd Letter:- 3rd Letter:-";"Basic"

If you now type: f

these lines will be displayed on the screen. t
This is a small demonstration of USING 1st LetterrB 2nd Lettera 3rd Letters

Specifies the number of digits to be printed out from a numeric variable. If this
number is greater than the size ofthe variable then excess # characters will be (
replaced by spaces.

Example:

new

10 print using "####";314211
20 print using "##### #";123456
30 print using "####"";56 f

When you run this program it will print out the following lines on the ST's screen.

196

(

I

<
4211

12345

56

+This adds a plus sign to a number ifitis positive,and a minussign ifitis negative.

(Example:

new

10 print using "+##";10
C20print using "+##";-10

run

(

run

displays:

+10

-10

(- This only includes a sign if the number is negative. Positive numbers are
preceded by a space.

I

(

(

(

(

(

(

(

(

Example:

new

10 print using "-##";10
20 print using "-##";-10

displays:

10

-10

. Places a decimal point in the number, and centres it.

Example:

print using "PI is #.###";3.1415926
PI is 3.141

; Centres a number but doesn't output a decimal point.

Example:

print using "PI is #;###";3.1415926
PI is 3141

A(Shift+6) Prints out a number in exponential form.

I Example:

PRINT USING " Here is a number A";12345.678

Here is a number 1.23345678E5

See also FIX

797

Disc access: sequential files

The Atari ST supports two different types of disc files: Sequential files and random
access files.

Sequential files are designed to be used for accessing long lists of information
at a time. These files only allow you to read information back from thedisc in the (
precise order it was written. This means that ifyou want to change just one piece
of the data in the middle of the file, you would need to read in the whole file up to
and including this value, and then write the entire file back to the disc. STOS Basic
allows you to access sequential files for either writing, or reading, but never for both (
at the same time. \

Before you can use one of these files, you first need to open a channel to the
file, using OPEN IN or OPEN OUT. You can think of one of these channels as a
pipe runningfrom the ST's memory to the file. This pipe is created whenever you (
open the channel, and can be used to transfer information to and from a disc file,
using the INPUT#, or PRINT* instructions respectively. Look at the followingsmall
example.

new

10 open out #1,"file.seq"
20 input "What is your name";N$
30print #1,NS /
40 close#1 K

This creates a file called FILE.SEQ containing your name. In order to read this
information back from the file, type in the lines: /

new

1 open in #1,"file.seq"
2 input #1,NS /
3 print "I remember your name. It is ";N$
4 close #1

Notice how both these programs perform three separate operations. /

• Open the file using either OPEN IN or OPEN OUT
• Access the file with INPUT#, or PRINT#
• Close the file with CLOSE. Note that ifyou forget to do this, any changes

to the file will be lost!

These three steps need to be completed in exactly this order, every time you
access a sequential file. Now for a somewhat larger example.

new

10 rem Choose between reading and writing routines
20input"Doyouwant to read a file <R>, write afile <W> orstop <RETURN>";A$
30 ifA$="R" or A$= "r" then 190 (
40 rem If the user simply press Return then exit
50if A$="" then stop
60 rem OPEN file "BIRTHDAY.SEQ" for output
70openout#1,"birthday.seq" (
80 rem Input a name and a birthday
90 input "Input the name of your friend or to stop";FS
100rem if name = close file and jump to main routine
110 if F$="" then close #1: goto 20 (
120print F$; "s Birthday is" : input BS
130Rem Separate items by a comma for use with INPUTS

798

(

(

I

(

(

<

140 print #1.F$;",";B$
150 rem Get another birthday
160 goto 80
170 rem Reading routine
180rem Dimension strings for WHOLEfile. Assumes maximum of 100bithdays
190open in #1,"birthday.seq"
200 rem open file for reading
210 dim FS(100),BS(100)
220 rem set item number to zero

2301=0

240 rem read file until end

250 print "List of birthdays"
260 print "======================"
270 repeat
280 rem read birthdays
290 input #1,FS(I),BS(I)
300inc I

310 until eof(1)
320 rem print birthdays
330 for J=0 to 1-1

340 print F$(J),BS(J)
350 next J

360 rem close file and go back to start
370 close #1

380 goto 20

This program creates a small database consisting of a list of the names and
birthdays of your friends. The first half of the routine loads the information into the
file BIRTHDAY.SEQ. Ifthis file already exists on the disc, it is erased. You are then
prompted to input a list of names and birthdays which are stored on the disc.

The second part of the program opens this file, reads its contents, and displays
them on the screen. For more information on sequential files see OPEN IN,OPEN
OUT, CLOSE, INPUT#, PRINT#, LINE INPUT*, INPUT$(#Channel,n), LOF,
POF, EOF

Disc access: random access files

Random access files are so called because you can access the information stored
on the disc in any random order you like. In order to use these files you first need
to understand a little bit of theory.

All random access files are composed of units called records, each with their
own unique number. These records are in turn split up into a number of separate
fields. Every field contains one individual piece of information. When you use
sequential files, these fields can be any length you wish, as the file willonly be read
in one direction. Random access files, however, always require you to specify the
maximum size of each of these fields in advance.

Supposing you wanted to produce a file containing a list of names and
telephone numbers. In this case you could use the fields:

Field Maximum length

SURNAMES 15

NAMES 15

CODES 10

TELS 10

You could now define these fields using a line like:

799

field #1.15 as SURNAMES.15 as NAMES.10
as CODES.10 as TELS

It's important to realise that the strings specified by the FIELD instruction can also
be used as normal string variables. This allows you to read and write information
to any particular field. For example:

SURNAMES "HILL" :rem Loads the surname into the field SURNAMES.

TEST$=SURNAME$:PRINT TESTS

After you've loaded your record with information, you can write it onto the disc
using the PUT command.

(

(

<

Example: (

put #1.10

Loads data into record 10 of file opened on channel 1.

Similarly, you can read a record using the GET instruction.

get #1,10

Example:

<

10 rem Open file "NAMES.RAN" for random access (
20 open #1,"R","names.ran"
30 rem Assign field strings
40 field #1.15 as SURNAMES.15 as NAMES.10 as
AREAS.10 as TELS
50 rem Choose between reading and writing
60 input "Do you want to read a number <R>, write a number <W>, or exit
<Return>";AS
70 rem exit program if <RETURN> entered. Close file first!
80 if A$="" then close #1: end
90 if A$<>"W" and A$o"w" and A$<> "R" and
AS<>"r" then 60
100 rem Get number of record

110 input "Record Number ?";N
120 rem Exit if negative number entered
130 if N<0 then 60

140 if AS="R" or A$="r" then 270
150 rem Routine to write telephone numbers
160 rem Load fields into new record

170input "Enter the surname ".SURNAMES
180 input "Enter the Christian name";NAME$
190input"Enterthe area code ?";AREA$
200input "Enter the telephone number ?";TEL$
210 rem Store record at position N on disc
220put#1,N
230 rem Goto main routine

240 goto 60
250 rem Reading routine
260 rem Read record at N into fields

270get#1,N
280 rem Print fields

200

<

C

c

c

c

c

c

(

290 print "Record number ";N
300 print "================

310 print "Name:";NAMES,SURNAMES
320print "Telephone number:";AREAS,TELS
330 goto 60

For more information see FIELD, PUT#, GET*, OPEN and CLOSE.

OPEN OUT # (Open a file for output)

OPEN OUT #channel,file$[,attribute]

The OPEN OUT instruction is used to open a sequential file for writing using
PRINT*. If this filealready exists on the disc itwill be erased. Channel is a number
between 1 and 10 by which the filewill be referred to in all subsequent operations.
File$can be any string holding the name of the new file to be opened. The optional
attribute allows you to specify the file type to be used. See DIR FIRSTS for more
details. Note that any attempt to read a file opened by OPEN OUT will cause an
error.

See CLOSE, OPEN IN, POF.LOF.EOF and PRINT*

OPEN IN # (Open a file for input)

OPEN IN #channel,file$

OPEN IN is used to open a file for reading. This file is only available for reading,
so ifyou try to write to a file open using OPEN IN, an error will occur. Channel
denotes a number ranging from 1 to 10 which is used by the instructions
INPUT#,LINE INPUT* and INPUTS (#channel,count) to specify which file is to be
read.

See OPEN.CLOSE INPUT* LINE INPUT#,INPUT$(#channel,n), EOF, POF and
LOF

OPEN # (Open a channel to a random file ora device)

There are four forms of this instruction:

OPEN #Channel,"R",file$ (Opens a random access file)
OPEN #Channel,"MIDI" (Opens a channel to the MIDI interface)
OPEN #Channel,"AUX" (Open a channel to the RS232 port)
OPEN #Channel,"PRT" (Open a channel for the printer) (assumes it's plugged in
the parallel port)

Example:

10 open #1, "AUX"
20 for 1=0 to 10
30 print #1, "STOS BASIC
40 next X

50 close #1

This program prints out ten lines oftext on the device connected to the RS232 port.
If your printer uses the parallel port change line 10 to:

207

(
10 open #1,"PRT"

Similarly you can input information froma device such as a modem witha linelike: /

30 input#1,A$:printA$

When accessing these external devices, all the normal input statements are (
available for vour use indiiriinn INPUTS and I INF INPUTavailable for your use, including INPUTS and LINE INPUT.

See PORT, CLOSE, PUT, GET, FIELDS

CLOSE # (Closea file)

CLOSE #channel

This function closes the file associated with a channel. Ifyou forget to close a file
after you have finished with it, any changes you have made to the file will be
completely ignored.

Example:

close #1

PRINT # (Print a listof variables to a file ordevice)

PRINT#Channel,variable list

This command is identical to the normal print instruction, but instead of displaying
the information to the screen, it outputs it to a file or output device specified by the
channel.

Example:

print #1, "Hello"

As with PRINT you can abbreviate PRINT* to ?#.

Example:

? #1. "Hello Again"

See also OPEN IN, OPEN OUT, OPEN, PRINT, USING

INPUT # (Input a listof variables from a file ordevice)

INPUT #Channel,variable list

INPUT* reads information from either a sequential file, or a device such as the
MIDI interface. The format of the instruction is identical to its screen equivalent. As
before it expects each piece of data in the file to be separated by a comma. INPUT
can only read up to a maximum of500characters worth ofdata at any one time. y
If your data is larger than this, you should always use the INPUTS instruction
instead.

LINE INPUT # (Input a list of variables not separated by a ",") C

LINE INPUT # has two possible formats:

202 (

(

(

(

(

(

<

(

(

I

(

LINE INPUT #Channel,variable list

or

LINE INPUT #Channel,separator$,variable list.

This function is identical to INPUT*, but it allows you to use another character
instead of a comma to separate the individual items of data on the disc. If no
separators character is included, then <Return> is assumed.

INPUT$ (Inputs a number ofcharacters from a device)

INPUTS (#Channel,count)

This reads count characters from the device or file connected to channel.

EOF # (Testfor end of file)

EOF (#Channel)

EOF is a useful STOS Basic function which tests to see the end of a file has been

reached at the current reading position. If it has, EOF returns a result of true,
otherwise false.

LOF # (Length of open file)

LOF(#Channel)

This simply returns the length of an open file. Itmakes no sense to use this function
in conjuction with devices other than the disc.

POF # (Variable holding current position offile pointer)

POF(#Channel)

The POF function changes the current reading or writing position of an open file,
for example:

pof(#1)=1000

This sets the read/write position to 1,000 characters past the start of the file. Oddly
enough POF can be used in this way to provide a crude form of random access
when using sequential files! The reason this works is simply that disc drives are
inherently random, and all sequential operations are effectively simulated using
random access.

FIELD # (Define record structure)

FIELD #channel, length 1 AS field1$,
Iength2 AS field2$

FIELD allows you to define a record which will be used for a random access file
created using the OPEN #channel,"R" command. This record can consist of up to
16 alphanumeric fields and be up to 65535 bytes in length.

Example:

FIELD #1,15 as SURNAMES.15 as NAMES.10 as CODES.10 as TELS

203

See OPEN, GET, PUT. CLOSE

PUT # (Output record R toa random access file)

PUT#channel,R

PUT moves a record from the ST's memory into record number R of a random /
access file. Before use, the contents of the new record should first be placed in the
field strings defined by FIELD, using a statement such as:

SURNAME$="HILL" /

Although you can writeexisting records in any order you like, you are not allowed
to scatter records on the disc totally at random. This means that if you have just
created a file, you can't type in something like: (

put #1,1
put #1,5

In this case, the PUT #1,5 instruction willgenerate an error, as there are no records
in the file with numbers between 1 and 5.

See also OPEN, GET, FIELDS

GET # (Input record R from a random access file)

GET #Channel,R

(

(

(
GET reads record number R stored in a random access file opened using OPEN.
It then loads this record into the field strings created by FIELD. These strings can
now be manipulated in the normal way. (

Example:

10 open #1,"R'V'test"
20 field #1.10 as NAMES
301=1

40 input "Name? ";NAMES
50 if NAME$='" then 90
60 put #1.1
70 inc I

80 goto 40
90 input "Record number?";R
100 if R<0 then close #1: end

110get#1.R
120 print NAMES
130 goto 90

Note that you can only use GET to retrieve records which are actually on the disc.
Ifyou try to grab a record number which does not exist, an error will be generated.

<

(

(

<

PORT # (Function to test if channel waiting) \

PORT(#Channel)

The PORT function tests to see if an inputdevice connected to a channels waiting
for you to INPUT some information from it.

204 (

<
X=PORT(#channel)

Ifchannel is ready to output some information, then X will be set to -1 (true), and
otherwise it will be zero (false).

The printer

There is also a separate set of instructions for use with the printer.

LLIST (Print part orallofa program ona printer)

This just lists your program to the printer. The syntax of the LLIST instruction is
exactly the same as that of LIST.

Example:

LUST 10 Outputs line 10 to the printer.

LUST 10-100 Liststhe lines from10to 100to the printer.

LLISTLists your entire program.

See LIST

LPRINT (Output a list of variables to theprinter)

As PRINT but sends your data to the printer instead of the screen.

Example:

Iprint "Hello"

See PRINT , USING, PRINT*

LDIR (List a directory to theprinter)

Lists the directory of the current disc to the printer. See DIR, for more details.

LISTBANK (Print a list of the banks usedbyyour program on theprinter)

Lists the status of all the banks used by the current program using the printer. See
LISTBANK

HARDCOPY (Screen dump)

This instruction dumps a copy of all the graphics on the screen to the printer.
Identical to pressing the Alt+Help keys from the editor. Note that people with Epson
compatible printers should first set the correct printer type. Since this requires you
to access the ST's inner workings directly, we've included an example routine for
this purpose in the technical reference section as an example of the TRAP
instruction.

WINDCOPY (Window dump)

Unlike HARDCOPY this command prints out the text in the currently open window.
As you would expect, it is much faster than the graphics dump produced by
HARDCOPY.

205

(
Directories

DIR (Print out the directory ofthe current disc) (

DIR [PATHS] [/W]

This function lists all the files on the current disc. Ifthe optional path$ is specified,
only the files which satisfy a certain set of conditions will be displayed. This path
string can contain any one of the following six parts:

• The Name of a drive terminated by a ":"
• The name of a folder to be listed. (Enclosed between two "\" characters) (
• A string of characters which willbe matched in every filename to be displayed.
• A "*" denoting that any string of up to eight characters will do.
• A "?" which automatically matches with any single character in the filename.
• A"." which separates a filename from an extension. (
If the optional /W is added then the files will be listed across the page.

Examples:

DIR "A:*.BAS":rem Lists... lists all Basic programs
on the disc.

DIR "\ST0SW ":rem Lists... lists all files in the folder STOS

DIR "\ST0S*.CR? ":rem Lists list all the available

character sets.

DIR$ (Set thecurrent directory)

This reserved variable can be used to find or change the default directory used for
all disc operations, such as loading and saving.

Example:

DIR$="\ST0S"
DIR (Displays the files in folder STOS)

DIR FIRST$ (Get first file in directory satisifying path name)

DIR FIRST$(path$,flag)

This function returns a string containing the name and parameters of the first file
on the disc which satisfies the conditions in the pathname path$. The flag contains
a number of binary bits which indicate the type of files to be searched for. The
format of this flag is:

Bit 0 Normal Read/Write files

Bit 1 Read only files
Bit 2 Hidden files

Bit 3 Hidden system files
Bit 4 Volume labels (The name of the disc)
Bit 5 Folders

Bit 6 Files which have been written to and closed

Ifyou aren't sure which type of files you want to list, you can find all the files on the
disc by setting the flag to -1.

If no file exists on the disc matching your specifications, then DIR FIRSTS will
return a null string. Otherwise it will hold the following 45 character parameter
block.

206

(

<

<

i

<

(

(

<

<

Characters Usage
0-12 Filename

13-21 Length of file
22-32 Date file saved

33-41 Time file saved
42-45 File type

See DIR NEXTS for an example of this function in action.

DIR NEXT (Get the next file satisfying current path)

DIR NEXTS returns the next file found using the path specified by DIR FIRSTS. It
can only be used after a DIR FIRSTS instruction has been executed. The string
returned by this function is in exactly the same format as the one generated by DIR
FIRSTS. As before, ifthe string returned by the function is empty, then there are
no more files in the current path.

Example:

new

10 input "Input pathS ":PS
20 N$=dir first$(P$,-1): if N$="" then end
30 print "Files matching the path string ";PS
33 print
35 print "Names";space$(8);"Size";spaceS(5);"Date";
spaceS(7);"Time";space$(5);"Type"
40 print "================================

50print N$
60 repeat
70 N$=dir nextS
80print N$
90 until N$=""

In order to print a list of the all the files on the disc, simply run this program with
a path of "*.*"

Also see DIR FIRSTS, PREVIOUS, DIR, DIR$

PREVIOUS (Sets thecurrent path up one directory)

This function can be used to move the search path up to the next outer
subdirectory.

Example:

dir$="\ST0S
dir

previous
dir

See DIRS

DRIVE (Variable containing the number of the current drive)

DRIVE is a variable containing a number representing the drive you are currently
using, with 0 denoting drive A, 1 indicating drive B etc.

207

Example:

print "Current DRIVE is ";drive
drive=1

print "Current DRIVE is ";drive

See DRIVES, DRVMAP

DRIVES (String variable holding current drive)

This function holds the letter representing the drive.

Example:

print"Current drive is ";drive$
drive$="B"
print"Current drive is ";drive$

DRVMAP (Variable holding a listof the drivesconnected)

DRVMAP holds a binary number denoting the number of the drives connected.
Each binarydigit in the number holds the status of one of the drives, startingwith
bit 0. If the bit at a particular position is set to one, then the appropriate drive is
attached to the computer. So:

Bit 0 = Drive A

Bit 1 = Drive B

Bit 2 = Drive C

(

(

(

(

(

(

(

C
Example:

print binj(drvmap,26) (

Note that, drvmap always assumes a minimum of two drives, even if you're only
using a standard ST.

DFREE (Variable containing the free space on the current disc)

DFREE holds the amount of free space remaining on a disc.

print dfree

MKDIR (Create a folder)

MKDIR folderS

This function creates a folder with the name folder$.

Example:

(

(

<

mkdir "TEST

dir (

RMDIR (Deletea folder)

RMDIR folderS (

RMDIR deletes an empty folder from the disc.

208 I

I

I

KILL (Erase a file from the disc)

(KILL fileS
This function deletes a file with the name file$trorr\ the current disc. If file$ contains

Cthecharacters "*" or"?" a series of files will be erased. You should be very careful
when you use this function as anything you kill is wiped fromthe disc permanently.

Example:

rmdir "TEST

dir

<

<

<

(

<

RENAME (Rename a file)

RENAME old$ TO new$

The RENAME function allows you to change the name of a file. old$ refers to the
existing name, and new$ to the new name. If a file already exists with the new
name you have chosen, an error will be generated.

Example:

rename "DUMP.ACB" to "EXAMINE.ACB"

This renames the DUMP.ACB accessory.

(Trigonometric functions
DEG (Convert an angle expressed in radians to degrees)

CDEGconverts angles expressed in radians intothe form ofdegrees. Adegree is
approximately equal to 57 radians.

Example:

print DEG(SO)
5156.62015618

See RAD

RAD (Convert a radian expressed in degrees to radians)

CRADconvertsangles expressed indegrees intoradians. Aradianisapproximately
equal to 57 degrees.

(

(

(

(

Example:

print RADI5156.62015618)
90

See DEG

These functions all use so called radian measure. One radian is equal to 360/2*PI
or approximately 57 degrees.

SIN (Sine)

SIN(angle)

209

(
Calculates the sine of the angle. Note that this function always returns a floating
point number, so ifyou wish to assign the return value to a variable, this must
always be of the type double precision. (

Examples:

P#=sin(pi/2)
print sin(pi/4)

See ASIN.HSIN and PI

COS (Cosine)

COS(angle)

Returns the Cosine of the number in angle as a floating point number. All angles
are measured in radians.

Q#=cos(pi/2)
print cos(pi/4)

See ACOS, HCOS and PI

TAN (Tangent)

TAN(angle)

Generates the Tangent of the angle.

Examples:

(

(

(

(

<

R#=tan(pi/3) (
print tan(pi/4)

See ATAN, HTAN and PI.

ASIN (Arc sine)

ASIN(number)

This function takes a number between -1 and +1 and calculates the angle in
radians which would be needed to generate this value with SIN.

So if X#=SIN(ANGLE) then ANGLE=ASIN(X#).

Examples:

<

(

(

A#=asin(1) (
print asin(0.5)

See SIN, HSIN(), Pl()

ACOS (Arc cosine)

ACOS(number)

ACOS reverses the action of COS in the same way that ASIN inverts the SIN
function.

270

<

(

(

I

<

I

I

(

Example:

B#=acos(1)
print acos(0.5)

See COS, HCOS(), Pl()

ATAN (Arc tangent)

ATAN(number)

Generates the arctan of number. See TAN ,HTAN, PI

Example:

C#=atan(0.5)
print atan(O)

I HSIN (Hyperbolic sine)

HSIN(angle)

(Returns a double precision number denoting the hyperbolic sine ofan angle.

See SIN, ASIN

(HCOS (Hyperbolic cosine)

HCOS(angle)

(Returns a double precision number denoting the hyperbolic cosine of angle.

See also COS, ACOS

(HTAN (Hyperbolic tangent)

HTAN(angle)

(Returns a double precision number denoting the hyperbolic tangent of angle.

See also TAN, ATAN

(PI (A constant n)

I

<

<

I

This function returns the number called PI which represents the result of the
division of the diameter of a circle by the circumference. PI is used by most of the
trigonometric functions to calculate angles.

Mathematical functions

LOG (Logarithm)

LOG(y#)

This function returns the logarithm in base 10 (logl 0) of Y# as a double precision
number.

211

(
Examples:

print log(IO) (
V#=log(100)

LN (NaturalLogarithm)

LN(Y#)

LN calculates the natural or naperian logarithm of Y#.

Examples:

print ln(10)
R#=ln(100) (

The action of LN is exactly opposite to that of EXP

EXP (Exponential function) y

EXP(Y#)

Returns the exponential of Y# as a double precision number. (

Examples:

print exp(1) (
TEST#=exp(ln(100»

=SQR (Square root)

X=SQR(Y)

SQR calculates the number which must be multiplied by itself to get the value of
Y.

(

(
X=sqr(4)

Returns a value of 2 in X. (

Example:

10 input "input apositive number ";N (
20print "The square root of ";N;" is ";sqr(N)
30 goto 10

ABS (Absolute value)

ABS(y)

ABS returns the absolute value of y, taking no account of the sign of the number.

Example:

print abs(-1),abs(1)
11

212

(

(

(

c

INT (Convert floating point number to an integer)

INT(y#)

This rounds down the decimal value of y and converts it into a whole number.

Examples:

print int(1.25)
1

print int(-1.25)
-2

SGN (Find thesign of a number)

SGN(y)

This allows you to find the sign of the number or expression in y. The function
returns one of three possible values:

-1 if Y is negative
0 if Y is zero

1 if Yis positive

10 input X
20 if sgn(X)=-1 then print "Number is negative"
30 if sgn(X)=0 then print "Number is zero"
40 if sgn(X)=1 then print "Number is positive"
50 goto 10

MAX (Getthe maximum of twovalues)

MAX(x.y)

The MAX function compares two expressions and returns the largest. These
expressions can be composed of numbers or strings of characters, providing you
don't try to mix different types of expressions in one instruction.

So

and

print max(10,4)
is ok retuminglO

print maxfHello'V'Hi")
is also legal returning Hi

But you can't however use something like:

print max(10,"Hi")

See MIN

MIN (Return the minimum of two values)

MIN(X.Y)

MIN returns the smallest of the two expressions you specified. These expressions

273

can consist of strings, integers or real numbers. However you must only compare
values of the same type.

Examples:

print min(10,4)
4

print min("Hello","Hi")
Hello

See MAX

SWAP (Swap the contents of two variables)

SWAP(X.Y)

This swaps the data between any two variables of the same type. For instance:

new

10A=1:B=100

20 C$= "Left" : D$= "Right"
30 print A,B,C$,D$
40 swap A,B
50 swap CS.DS
60 print A,B,CS,DS

DEF FN (Create a user-defined function)

DEF FN is a useful function which enables you to create your own user-defined
functions for use within a STOS Basic program.

The syntax of this function is:

DEF FN name [(variable list)]=expression

name is the name of the function you wish to define.
variable list can be any list of variables separated by commas. These variables are
local to the function. Any variables you use in the function will be automatically
substituted for the appropriate local variables whenever necessary. Also note that
variables of different types can be mixed within a single function.

FN (Call a user defined function)

FN name [(variable list)]

FN is used to execute a function defined by DEF FN.

Examples:

new

10deffnSQ(X)=X*X
20 input "Input a number";!
30 print "The square of ";l;" is ";fn SQ (I)
40 goto 20

new

10deffnDEG(R)=R*pi/180

214

(

(

(

(

(

c

(

(

(

(

(

(

(

(

(

I

<

(

(
Examples:

(10 plot rnd(640/divx-1),rnd(400/divy-1) 20 goto 10

print "Dice throw is a ";rnd(6)

y LET (Load some information into a variable)

I

(

I

(

<

I

I

I

20 print sin(fn DEG (45))

new

10 def fn SEGMENT (AS,X,Y)=mid$(AS,X,Y)
20 print fn SEGMENT("Hello ",2,3)

See how we've always placed the DEF FN statement in the program before it is
used.

RND (Random number generator)

RND(y)

RND is used to generate a random integer between 0 and y inclusive. Ify is less
than zero, RND will return the last value it produced. This is very useful when
debugging a program.

Used to assign a variable to a specific value. The use of LET is always optional and
can be omitted whenever you like.

Examples:

let A=1

let A$="Hello"+" V'there"

FIX (Set precision)

FIX(n)

This procedure fixes the precision of any real numbers which are to be printed on
the screen. There are three possibilities.

If0<n<16 then n denotes the number of figures to be output after the decimal point.

If /7>16 the printout will be proportional and any trailing zeros will be removed.

If r?<0 then all floating point numbers will be displayed in exponential format, and
the absolute value of n (ABS(n)) will determine the number of digits after the
decimal point.

Examples:

fix (2):print PI Limits the numberto two digits after the point.

fix(-4):print PI Forcesexponential mode with four figures
after the point.

fix(16):print PI Reverts to the normal mode.

String Functions

215

UPPER$ (Convert toupper case)

UPPER$(n$)

This function converts the string in n$ into upper case (capitals).

Example:

print upperSf StoS BaSic")
STOS BASIC

Do not confuse this with the editor command UPPER.

LOWER$ (Convert to lower case)

LOWER$(n$)

LOWERS translates all the characters in n$ into lower case.

print lowerSf"Stos Basic")
stos basic

This function should not be confused with the editor directive LOWER.

FLIP$ (Invert String)

FLIP$(n$) (

FLIPS reverses the order of the characters in the string n$.

Example: (

print flipSCSTOS Basic")
cisaB SOTS

SPACES (Create a string full ofspaces)

SPACE$(n)

SPACES generates a string containing n spaces.

Example:

print space$(20)" : Spaces"
:Spaces

STRINGS ("Creafe astring full of a$) (
STRING$(a$,n)

STRINGS creates a string of Ncharacters using the first character of the string a$.

Example:

print STRING$('Thecat sat on the mat ",10)
11 • 111 • 111

216

I

(

c

(

(

(

(

<

c

(

I

Note that STRING$(" ",X) is identical to SPACE$(X)

CHR$ (Return Ascii character)

CHR$(n)

Creates a string containing the character with the Ascii code N.

Example:

print chrS(66)
B

ASC (GetAscii code)

ASC(aS)

This returns the Ascii code of the first character of the string in a$.

Example:

print asc("B")
66

LEN (Getlength of string)

LEN(aS)

LEN calculates the current length of a string of characters held in a$. All the
characters of a string are counted, even if they are not visible on the screen. So
LEN(CHR$(27)+CHR$(27)) will give the number 2.

Example:

print len("12345678")
8

Do not confuse with LENGTH.

VAL (Convert a string toa number)

VAL(x$)

VAL returns the value of a number stored in the string x$. If x$does not contain
a number then VAL will be zero.

Example:

10 input "Input a number ";AS
20 A#=val(A$)
30 if A#=0 then print AS:" is NOT a number" : goto 10
40print "The square root of ";A#;" is ";sqr(A#)

STR$ (Convert number tostring)

STR$(n)

217

(
This function converts a number in a string of characters. STRS can be very useful
since some functions, such as CENTRE, do not allow you to use numbers as an
parameter. (

Example:

centre "Memory left is"+str$(free)+" bytes" (
Do not confuse STRS with STRINGS

TIMES (Get time) /

I

TIMES holds a string containing the current time in hours, minutes and seconds
using the format "HH:MM:SS"

10 time$= "10:50:00"
20 print timeS
30 goto 20

This string is updated by STOS once every 50th of a second. See also TIMER,
DATES

(

DATE$ (Get Date) I

(
This stores the current date as a string of characters in the format "DD/MM/YYYY"
where DD represents the day, MM the month and YYYY the year.

Example:

print dateS

Note that ifyou don't have a clock card fitted, this date must be set directly using
a statement like:

DATE$="09/06/1988"

See also TIMER and TIMES

FILESELECT$ (Selecta file)

This is a very powerful feature which enables you to call up a fancy dialogue box
to select one the files on the disc.

title$ is a string containing the title of the dialogue box.

border is a number from 1 to 16 denoting the border style which is to be used.

Aftercompletion of the dialogue, FILE SELECTS returns either the name of the file
or an empty string if the QUIT option was chosen.

218

<

(

«
The syntax of this function is:

f$=FILE SELECT$(path$ [,title$ [.border]]) (

path$can be any string containing the search pattern whichwill be used to display
the possible files.

(

c

Examples:

new

10 X$=file select$("*.*")
20 printX$

print file selectS("*.BAS")

See also FSAVE and FLOAD.

Machine level instructions

HEX$ (Convert number tohexadecimal)

HEX$(n)

HEX$ converts a number into a string of characters in hexdecimal notation. There
are two possible formats of this instruction.

X$=HEX$(x)
Loads x$with number x expressed in base 16

X$=HEX$(x,n)
Loads x$ with the first n digits of x, where n can range from 1 to 8.

Examples:

print hex$(colour(0))
print hexS(65536)
$10000
print hex$(65536,8)
$00010000

BIN$ (Convert number to binary string)

BIN$(x)

BINS generates the string of binary digits equivalent to the number x. As with
HEX$, you can choose whether to generate all the digits or only a few.

Example:

printbin$(255)
%11111111

print binS(255,16)
%0000000011111111

The precise syntax of the BINS function is:

x$=BIN$(x) Where x is the number to be converted to binary.

or

x$=BIN$(x,y) When x is the number to be used, and y the number of digits in the
string which will be loaded into x$. yean range between 1 and 31

219

ROL X,Y (Rotate left)

ROL is a Basic version of the ROL instruction from 68000 assembly language. The
effect to to take the binary representation of a number in y, and rotate it left by x
places.

(

l

Example: (

The number 136 is represented in binary by:

%10001000

Type in:

X=136

rol.b 1.X

This will give the number 17 or binary %00010001

As you can see, the entire number has been shifted to the left,with the highest 1
being rotated intothe lowest position. The reason for the ".b", is to instructSTOS
to treat this number as an 8-bit byte. You can also specify the sizes ".W" (word)and
".L" (long word). f

Note that this procedure expects the number to be shifted to be held ina simple
variable and not an expression.

(

(

(

Examples: (

A=1

rol 1.A
print A f
2

A=32768

rol.w 2,A

print A
1

(

If ROL is used without ".B",".W",or".L" then ".L" is assumed. Providing you use f
reasonably sized numbers ROLcan be effectivelyconsidered as a very fast way
of multiplying a number by a power of 2.

ROR (Rotate right) {

ROR X,Y

This is similar to ROL but rotates the number in the opposite direction. /

Example:

A=8

ror 1.A
print A
4

Note that ROR can be used as a very fast way of dividing a number by a power
of two.

220

C

(

I

(

I

<

(

(

(

(

(

(

(

(

BTST (Testa on";

BTST(X.Y)

This function allows you to test the binary digit at position x in the variable Y. As
with the functions ROR and ROL, y must be a single variable and not an
expression. Ifthe bit at x is set to 1, then the value of BTST will be true, otherwise
it will be false.

Example:

new

10 input "Enter a number ":N
20 input "Enter a bit to be tested ";B
30 if B<0 or B>31 then end

40 print "Bit Number ";B
50 if btst(B.N) then print" is a one " else print "is a zero"
60 print bin$(N,32)
80 goto 10

See also BCHG, BCLR, BSET

BSET (Set a bitto 1)

BSET(x.y)

BSET sets the bit at position y to 1 in the variable x. As before x must be a simple
variable rather than an expression.

Example:

A=0

bset 8,A
print A
256

BCHG (Change a bit)

BCHG(x.y)

This procedure changes bit number y in the variable x. Ifthis bit is currently a 1 then
the new value will be a zero, and vice versa.

Example:

A=0

{ bchg 1,A
print A
2

bchg 1,A
print A
0

BCLR (Clear a bit)

BCLR(x.y)

221

(

(

(

BCLR sets bit number y in variable x to a zero.

Example:

A=128

bclr 7.A
print A
0

PEEK (Getbyteat address)

PEEK(address)

This function returns the 8 bit byte stored at address. Technically-minded readers
will be interested to note that PEEK gets information from the ST's memory while
in supervisor mode. This means that you can happily type in something like:

print peek(0)

POKE (Change byte at address)

POKE address.x

Example:

poke physic+1000,255
Pokes a blob on the ST's screen

DEEK (Getword at address)

DEEK(address)

This function reads the two-byte word at address. This address MUST be even
or an address error will occur.

As with PEEK, you can use DEEK to access any part of the ST's memory including
the sections that are normally inaccessable.

Example:

print deek(O)

DOKE (Change word at address)

DOKE address,value

DOKE loads a two byte number between 0 and 65535 into address. In
knowledgeable hands this function can be very useful, but since even the best of
us make mistakes, you should always remember to save a copy of your programs
to the disc before attempting to use this function in a new routine.

222

(

(

(

(

(

c

(
Loads address with the number from 0-255 stored in x. You may use this function
to change the contents of any part of the ST's memory. But be warned that this
function isdangerous. If you poke around indiscrimantly you will almost certainly (
crash the ST completely.

<

(

(

<

(

(

(

(

Example:

doke physic+1000,65535

LEEK (Get long word at address)

LEEK(address)

The LEEKfunction returns the four-byte long word stored at address. Like DEEK,
the address used with this function must always be even. Note that ifbit 31 of the
contents of address is set, the number returned by LEEK will be negative.

Example:

print leek(O)

LOKE (Change long word ataddress)

LOKE address,number

LOKE loads address with a four-byte long word specified by number.

Example:

loke physic+10000.SFFFFFFFF

Indiscriminate use of this functioncan lead to the ST crashing completely, so take
care.

VARPTR (Get address ofa variable)

VARPTR(variable)

This function returns the location in the ST's memory of a variable. Each of the
different types of variables are stored in a different way.

Integers: VARPTR returns the location of the value of the variable.

Example:

A=0

loke varptr(A),1000
print A
1000

Real numbers: VARPTR returns the location of two long words which contain the
value of the variable in the IEEE double precision format.
Strings: VARPTR points to the first character of the string. Since STOS Basic
does notend itsstringswith a character 0, you mustobtainthe lengthofthe string
using something like: DEEK(VARPTR(A$)-2), where A$ is the name of your
variable. You could also use LEN(A$) of course.

COPY (Copy a memory block)

COPY start.finish TO destination

Thiscommand isused to rapidly move largesections ofthe ST's memoryfrom one

223

place to another. Start is the address of the start of the block of memory to be
moved, and finish is the address of the end. Destinationpoints to the first memory
location of the destination.

Note that all these addresses MUST be even.

Example:

copy logic.logic+10000 to logic+10000

This copies one part of the screen to another.

FILL (Fill memory block with a longword)

FILL start TO finish,longword

FILL copies a specific long word into a section of memory.

startis the beginning of the block and finish the end. longword is the data which
will becopiedinto each set offour memory locations betweenstartand finish. Note
that it's also possible to use the number of memory BANK as the start or finish
location.

Example:

fill logicto logic+32000,$22334455 Displays a series of lines on the screen.

fill 1 to 2,0 Fills bank 1 with 0.

Incidentally, if start and finish are specified as an address, these values MUST be
even.

=HUNT (Find a string inmemory)

X=HUNT(start TO end, AS)

(

(

(

(

(

(

(

<

(

This command is used to allow you to search through the ST's memory for a
specific character string. (

start is the position inthe ST's memory of the start of the search, and end is the
address of the end. On completion of this routine Xwill holdeither 0 (if the string
in A$ was not found) or the location of A$. I

WAIT (Wait in 50ths of a second)

WAITx (
This function suspends a STOS Basic program for x 50ths of a second. Any
functions which use interrupts, such as MOVE and MUSIC will continue to work
during this period, with the sole exception of ON MENU GOTO. (

Example:

wait 50

This waits for one second.

224

(

(

TIMER (Count in 50ths ofa second)

TIMER isa reserved variable which is incremented byoneevery50thofa second.
Here is a small example showing how this is used.

Example:

new

10 print "Started"
20 timer=0

30 if timer<500 then goto 30
40 print "Finished"

NOT (Logical NOT operation)

NOT(x)

This function changes every binarydigitina number froma 1to a 0 and vice versa.
Since True =-1 and False=0, NOT(True)=False.

Examples:

print not(-l)

new

10if not(true)=false then print"False"

Miscellaneous instructions

REM (Remark)

Any text typed in aftera REM statementwill becompletely ignored bySTOS Basic.
You cantherefore use this instruction to placecomments at appropriate points in
your programs. Note the apostrophy character;', is an abbreviation for rem.

Example:

10remThis program does absolutely nothing

DATA (Place a list ofdata items in a STOS Basic program)

The DATA statement allows you to incorporate lists of useful data directly inside
a Basic program. This data can be loaded into a variable using the READ
instruction. The format of the DATA statement is:

DATA variable list.

Each variable in the list is separated by a comma.

Example:

10 data 1,2,3, "Hello"

Unlike many other Basics, the STOS version ofthis instruction alsoallows you to
use expressions involving variables. So the following lines of code are perfectly
acceptable

225

10000 data $FF50.$890
10010 data %1111111111111,%1101010101

10020 data A
10030 data A+3/2.0-sin(B)
10040 data "Hello"+"There"

I

(

Note that the Ain line 10020 will be inputas the contents ofvariable A, and not the (
Ascii character A. Similarly the expression at line 10030 will be evaluated during
the READ operation using the current values of A and B.

Incidently, DATA must always be the only instruction on a line. y

See READ, RESTORE.

READ (READ some data from aDATA statement into avariable) (

READ list of variables

READ allows you to input some data stored in a DATA statement into a list of f
variables. Itstarts off with the first data statement in the program, and then reads
each subsequent item of data in turn. As you might expect, the variable used in
each READ instruction must always be ofthe same type as the information stored
in the current DATA statement.

Example:

new

10 for 1=1 to 10

20 read A
30 next I

40 data 1

50 data 2,3
60 rem

70 data 4,5,6,7,8

80 data 9.10

Note that STOS Basic also lets you use complex expressions in a DATA
statement.

Example:

new

10 T=10

20 read A$,B,C,D$
30 print AS,B,C,DS
40 data "String",2.T*20+rnd(100),"STOSVBasic"

(

(

(

I

(

(

READ uses a special pointer to determine the locationofthe next piece ofdata to f
be input. This pointer can be changed at any time in the program using the
RESTORE instruction.

See RESTORE, DATA. (

RESTORE (Set the current READ pointer)

RESTORE line

This instruction changes the linenumber at which a subsequent READ operation

226

<

<

I

<

<

I

<

I

(

(

(

I

<

(

(

I

willexpect to find the next DATAstatement. There are two forms of this instruction.

RESTORE line Set start of DATA statements from line

RESTORE expression Calculate line number and set read pointer to this
line.

If a data statement does not exist at the line specified by RESTORE, an
appropriate error message will generated.

Example:

new

10 restore 1000+language*10
20 read AS
30 print AS
40 end

1000 data "English"
1010 data "Francais"

francais

run

Francais

english
run

English

See also READ, DATA

TRUE (Logical TRUE)

This function returns a value of -1, which is used by all the conditional operations
such as IF..THEN and REPEAT...UNTIL to denote true.

10 if -1 then print "Minus 1 is TRUE"
20 if TRUE then print "and TRUE is ";TRUE

See FALSE, NOT

FALSE (Logical FALSE)

Whenever a test is made such as X>10, a value is produced. Ifthe condition is true
then this number is -1, otherwise it is zero. The FALSE function therefore
corresponds to a value of 0.

Print FALSE

0

See TRUE.

227

C
o

~
—

-
—

r
\

There are no real rules on how you should go about programming a game, but
there are many points which can help in its design and development.

Planning

The most important part of game writing is the initial specification and its planning.
First decide what you want the game to do then layout every detail so that you have
a complete picture of your desired end product. If you don't plan the game it will
take much longer to write than ifyou had. Remember: Fools rush in where angels
fear to tread.

Planning techniques

The initial idea may come fairly quickly - but the more interesting features may
take a while to come. Use a thesaurus to help you find more references to your
game idea. We used one while trying to think up a name for Orbit. Starting with the
word ball we soon found an apt and original name.

Say you wanted to create a game to be called Haunted House. You could start
by looking up ghost or ghoul, and then move from section to section gathering
together useful ideas which you may be able to incorporate into your games.

Once the ideas for the game have been laid out on paper, you can then start
modularising sections. This means looking at your game idea and deciding which
parts are independent areas that don't rely on other sections of the game to work.
Take for example the game Orbit: The ball that bounces around the screen would
be one module, the player's bat another and the bricks a further one.

Another aspect of planning are the screen designs. Screens in the game must
be accurate and designed to use STOS Basic's commands to their best benefit.
A badly laid-out screen will cause numerous problems during programming and
a screen re-vamp will probably be necessary wasting valuable time.

Programming

This section of the game development will take most of the time and is a very
critical stage. Programming is an art, requiring patience and logical thinking. You
will find that your skill will improve as you write more and more programs. The
emphasis with game programming is speed-a super animated space game is no
use if the response to the player is too slow.

The key word in programming is structure. All structured programs should be:

• Readable Easy to follow logic

• Reliable They do what was intended

• Adaptable For possible later modifications

Write the modules from the planning section as subroutines, thus creating a

229

<
structure, but also split the modules into sections. This creates building blocks to
work with. For example, if you write a routine that clears a section of the screen,
keep itas a subroutine and makesure ituses variables ratherthanconstants.This (
routine could then be used for clearing other sections of the screen.

Example:

10 X1=50:Y1=50:TRISIZE=20:gosub 50
30 end

49 rem * Draw a triangle at X1.Y1 with sides TRISIZE long *
50 plot xl.yl (
60 draw to x1+TRISIZE,Y1+TRISIZE
70 draw to xl-TRISIZE.YI+TRISIZE
80 draw to xl.yl
90 return

The above program contains a subroutine starting at line 50 which draws an
equilateral triangle. Line 10 calls it with the command GOSUB 50, this line also
sets up three variables: X1, Y1 and TRISIZE. X1 and Y1 are the coordinates from
which the top of the triangle willstart and TRISIZEis the length of each side. By
using these variables we have given the subroutine more scope. We could call it
again and make it produce a bigger triangle at a different location just by changing
the three variables. For example:

20 X1=10:Y1=100:TRISIZE=80:gosub 50

Line 49 includes a comment line which tells us what the routine does and what
parameters (variables) are required by the subroutine. With this line we have
added readability and adaptability. The line can also be removed if memory is
running out because it is line 50 which is called and not 49. (

Readability is taken a step further with the routine being cut into line by line
commands. Multiple lines should be generated with care as these are hard to read
and sometimes require splitting. It's best to place related commands on to the
same line so that they aregrouped together. f

Testing a module can be difficult when itbecomes large and complex but ifyou
don't try out all the possibilities, problems may arise later which cause real
programming headaches. Send dummy data into a module and examine the
results. Most modules will be small and easy to test but larger ones will require a (
good deal of attention. It's the quality not the quantity that makes a good game!

The main percentage of all programs have three programming sections:

1 The initialisation section

2 The main program loop
3 The quit section

(

(

(

(

In the initialisation section, the program should set up various defaults such as
screen colours, variables, arrays and so on. Once the game is set up it may now
operate. Section two - the main loop - should consist of a list of GOSUB /
instructions which call all the modules of the game. When all these have been
called the program should either re-start the main loop or fall through into section
three.

In most gamesthe program never stopsso there is no needfor section three, (
but if you do have a quit section then your program should reset the screen and
return control back to the user.

230 I

<

<

<

CYou will find that there are various ways to program a single situation. In this
section we will list various techniques that explain how to get the very best
performance from STOS.

I Speedy sprites

Most games require a lot of speed so that numerous sprites can be whizzed
C around the screen. The sprites inSTOS Basic are software sprites -which means

that the computer has to do all the workof calculatingwhere on the screen they
must go and also position them. The main thing to remember is that small sprites
can be moved around faster than large ones.

CSowhen you'redecidingwhat size sprites to have inyourgame, ponder on the
following points:

Numbers If you only have a couple they can be large. But if
you intend using all 15 they will have to be small.
If you need many sprites in a game then use the
copy techniques discussed in Chapter 4.

Size As we said above, the bigger the sprites are the
slower they move. If a game has missiles in itthese
would be small narrow sprites which take up little
of the computer's time.

(

(

I

Adding graphics

Computer graphics can transform simple game ideas into professional, well-
presented products. The graphics help to create a new world of reality and thus
complement the programmer's skill. The major problem with adding graphics to
a game is usually the fact that the programmer cannot draw very well. This has
therefore produced a new wave of jobs in the games industry for graphic artists.
Get help from a friend who is good at art ifyour own talents don't stretch very far.

Graphics can be split into sections:

Pictures

STOS Basic can load in files saved from Neochrome and Degas. Both these
programs are widely used and are exceptionally well-designed.

Geometry

This is more a mathematical form of graphics and you really don't need any artistic
qualities. Using STOS Basic's drawing commands you can create images on a
coordinate based system.

Sprites

These are very important in the production ofa game and can give great animation
effects that will bring your game to life. The size and number of sprites are
important factors to consider when writing a game.

Techniques

231

Scrolling the screen

When using the SCROLL command you must be aware of the limitations caused
by horizontal scrolling. Because of the vast number of calculations that the
computer has to make while scrolling the screen horizontally, it leaves little time
for anything else. The fastest way to scroll the screen left orright is to scroll it on f
16 bit (word) boundaries by steps of 16 pixels.

Another point to emphasise is that the larger the area to scroll, the slower the
scroll speed.

Collisions <

When a game is running infull swing it is imperative that your program is checking
collisions as often as possible. If you check only once a second in a shoot-'em-up /
style game then missiles will fly past aliens without killing them. Using the SET
ZONE command you can set up various areas of the screen and then ask the
computer which zones your sprites are in. This saves a lot of work and is a very
powerful feature. (

Examining code

If you feel that you cannot understand the best way to link together commands, (
it's a good idea to follow through the games listings supplied withSTOS. All three
games were written by the author of STOS Basic so they are prime examples of
well written code. Use the SEARCH command to find examples of commands. By
reading and examining this code you will learn various short cutsand techniques. /

Optimising your programs

When your program is near to completion you may wish to save memory and (
increase speed. Here are a couple of examples to show you how to optimise your
code.

10 for A=1 to 10

20 print A
30 next A

c

This can be optimised to: (

10 for A=1 to 10:printA:next A

The new line will save memory because lines 20-30 are not required and the loop (
speeds up. The commands are all related, being enclosed as a loop, so it makes
sense to group them on to a single line.

The line:

10 A=A+1

can be optimised to:

10 inc A

Here we see the use of the INC command rather than the standard Basic A=A+1
expression. It saves memory and increases speed.

232

<

(

I

(

Appendix A

Error messages

An error occurs when STOS Basic cannot continue with the program and thus
reports this fact to you with a brief statement describing what is causing the
problem. Errors can also be generated when commands are typed in direct mode.

Many of the errors are obvious and the statement does its job informing you, but
some are slightly more cryptic and need a little more explanation - hence the need
for an error appendix.

The errors are listed in alphabetical order so that you can find your entry easily and
each errors corresponding code is listed with it. This code is created and stored
in ERRN.

Error name Error code

Address error 32

An odd memory address or invalid address has been accessed using the peek and
poke commands.

Animation declaration error 58

The ANIM string command has not been properly set.

Array already dimensioned 28
An array has been re-dimensioned at the error line.

Bad date 55

The user has tried to set the date with illegal values using the DATES function.

Bad file format 1

A file to be loaded cannot be recognised by STOS as it is not of the correct format.

Bad filename 53

A filename has been used in an input/output procedure which is not legal. An
example of this would be LOAD"".

Bad screen address 43

Ascreen address has been used which is invalid for a proper screen start address.
The address must be on a 256 byte boundary.

Bad time 54

The user has attempted to set an illegal time using the TIMES function.

Bank 15 already reserved 80
This bank is already reserved and must be erased if you wish to reserve it for
another purpose.

233

(
Bank 15 is reserved for menus 81

Menus are used in the current program and thus you cannot use this bank for
anything else. (

Break 17

You have pressed Control +C. If you were in a program then STOS returns you
to the editor mode.

<
Bus error 31

An internal error has occurred possibly due to incorrect addressing using the peek
and poke commands. /

Can't continue 7

STOS cannot continue from the previous break. This mainly happens when a
program is stopped and a line is altered thus resetting all variables. /

Can't renum 11

STOS has attempted to renumber a section of your program and this action would
result in a conflict of line numbers.

Character set not defined 73

A character set has been referenced which does not exist.

Character set not found 78

You have tried to access a character set which does not yet exist.

Direct command used 15

A command which is only available from direct mode has been used within the
program.

Disc error 52

The Atari ST returns TOS disc errors back to STOS and when it's not too sure

exactly what error has occurred it will produce this error.
It's best to make sure your drive is connected, the disc is valid and the command

you processed was legal.

Disc full 51

The disc has run out of space.

Disc is write protected 50
STOS cannot write out information to the current disc because it is physically write
protected. Move the tab on the disc, or use another disc.

Division by zero 46
A number has been divided by zero and cannot be handled by STOS Basic.

Drive not connected 83

The current drive is not available. Check your leads and power.

Drive not ready 49
A disc drive is not ready for use.

End of file 64

The end of a file on a disc has been reached.

Extension not present 84 (
This occurs when you try to run a program which incorporates a new STOS Basic
command without loading the relevant extension file first.

234

(

<

(

<

<

(

c

(

I

I

<

<

I

I

I

Field too long 66
The size of the record you have created with FIELD is greater than 65535 bytes.
It's also possible that you have used more than the maximum of 16 fields.

File already closed 63
An attempt to close a file is aborted because it is already closed.

File already open 62
An attempt to open a file is aborted because it is already open.

File not found 48

You have tried to load or open a file for reading and it is not on the current disc.

File not open 59
The program is trying to transfer data to or from a file but the file has not been
opened.

File type mismatch 60
A file command has been used which does not correspond with the correct filing
system. The error would occur when you try and use the GET and PUT statements
on a sequential file.

Flash declaration error 67

The FLASH command has been called incorrectly.

/ Follow too long 9
STOS has been told to trace too many parameters.

For without next 22

I A FOR command does not have its mandatory NEXT instruction listed later in the
program.

C Illegal direct mode 14
A command input in direct mode is not recognised by STOS.

Illegal function call 13
You have tried to use a function with an illegal set of parameters.

<

<

I

(

Illegal instruction 82
When STOS is running a machine-code program this error willoccur if it finds that
the code is invalid.

Illegal negative operand 47
Some functions cannot process negative numbers, for example SQR(-1).

Illegal user-function call 40
The list of parameters you input does not match the list you specified in the DEF
FN command.

In/out error 16
An error has occurred during an input/output operation.

Input string too long 61+65
An incoming string is too long for a dimensioned variable. Or you may have tried
to INPUT # a line more than 500 characters long.

235

Line too long 6
You have attempted to enter a line more than 700 characters long. STOS can
cope with many things but a line this size is rather excessive and poor programming
style.

Memory bank already reserved 41
An attempt to reserve a memory bank has failed because it has already been
reserved.

Memory bank not defined as screen 42
A command has accessed a memory bank which must be reserved as screen and
thus cannot find the information required.

Memory bank not reserved 44
A memory bank has been accessed and is not reserved for any use.

Menu not defined 79

The MENU ON command has been called but no menu has yet been set up.

Movement declaration error 57

The MOVE instruction has not been set correctly.

Music not defined 75

Music cannot be played because there isn't a tune in memory.

Next without for 23

STOS has come across a NEXT instruction which has no FOR. Thus STOS does

not know where to loop back to.

No data on this line 33

The RESTORE instruction has tried to restore a line of data. In this case the line

did not include a data command.

No more data 34

The READ statement cannot get any more data because all of the DATA lines
have been read. In other words, you're out of data.

Pop without gosub 37
The POP instruction cannot be executed outside of a subroutine.

236

(

(

(

(

(

(

<

No more text buffer space 74
If you open over 10 windows the size of a full screen in either mode 1 or mode 2
then thespacereserved for thedatain each window gets used up and causes this (
error.

Non declared array 18
An array has been referenced which has not been set up withthe DIM instruction. (

Not done 0

A procedu re has been attempted but due to some condition the job was not carried
out. Quitting thefile selector andreturning totheeditor isan example ofthis error. (

Out of memory 2 + 8
STOS has no more memory left for allocation. Take out all accessories and excess
programs to free more memory. (

Overflow error 21

A calcultion has exceeded the size of a variable.

I

(

I

<

I

I

<

I

(

(

(

(

(

I

(

<

I

(

Printer not ready 10
The printer is not on line so STOS cannot output any data. Check all connections
and the power switch of the printer.

Repeat without until 26
A REPEAT instruction exists but has no corresponding UNTIL.

Resolution not allowed 45
This occurs on high-resolution monitors when the MODE instruction is used. It
happens on colour monitors when you try to enter high resolution.

Resume without error 38

A RESUME instruction cannot be executed unless an error has occurred.

Return without gosub 36
The program has reached a RETURN instruction but no GOSUB has been used.

Scrolling not defined 86
The SCROLL command has been used but STOS does not have the information
necessary to scroll the screen. See DEF SCROLL.

Search failed 5

A string has been searched for in the current program but STOS found no
reference to it.

Sprite error 56
Parameters for a SPRITE command have been set which do not fall inside the
required limits.

String is not a screen block 87
A string has been used in the SCREENS command which has not been designed
as a sprite block string.

String too long 30
A string has exceeded the limit of 65000 characters.

Subscript out of range 85
A subscript has been accessed which is not dimensioned to the called size. Here
is an example: DIM A$(10):A$(12)="HELLO"

Syntax error 12
The syntax (grammar) of the error line or statement is not correct. You must look
up the correct syntax in the manual or in the reference card.

System character set calied 77
You have attempted to replace a system character set with a custom character set.

System window called 76
The system windows have been used in one of the window commands. These
windows are 0, 14 and 15.

This line already exists 4
The Auto function reports this error when it comes across a line which is already
in your program.

This line does not exist 3

This error occurs when you have tried to delete a line which does not exist so the
delete operation is aborted.

237

Too many gosubs 35
STOS cannot store any more RETURN addresses.

Type mismatch 19
An illegalvalue has been assigned to a variable. For example: A$=12 should read
A$="12".

Undefined line number 29
This error will happen when you try to GOTO, GOSUB or RESTORE a line which
does not exist in the program.

Until without repeat 27
The UNTIL instruction has no repeat command listed later in the program.

User function not defined 39
A user function has been accessed which has not been set up using DEF FN.

Wend without while 25
A WEND instruction has been encountered without a matching WHILE command.

While without wend 24
The WHILE instruction has no mandatory WEND instruction listed later in the
program.

Window already opened 69
An attempt to open a window has failed because it is already open.

Window not opened 70
You have referenced a window which does not exist.

(

(

(

(

(

(

Window parameter out of range 68 /
One of the window's parameters is not valid and must be set to a legal value.

Window too large 72
A window cannot be opened because it is too big. (

Window too small 71
An attempt to open a window has failed because it is too small. The minimum size
is 3x3. I

(

(

c

(

238 Q

Appendix B

Creating a runtime disc
The following procedure will allow you to create a disc from which you can boot
any STOS Basic program without having to load STOS Basic first.

1 The first thing to do is format a blank disc and then load up STOS Basic.

2 Load in the accessory STOSCOPY.ACB with the command
accload "STOSCOPY.ACB'"

Press the HELP key and select the STOSCOPY accessory by pressing the
appropriate function key. This accessory willnow copy the required files from
your STOS Basic master disc onto the newly formatted disc.

3 Now load in your Basic program.

Type:

save "myprog.prg"

The name myprog can be changed to any eight character string for the
filename but the extension of .prg must be included. STOS will now ask you
to insert a disc containing the STOS folder, into drive A. This, of course, is
the disc which has the system files copied onto it by STOSCOPY.

4 STOS saves out your program in a special format so that it now becomes a
proper .PRG file, executable from Gem.

5 Ifyou want your file to auto boot - in other words load when you switch on
the computer - you must create a folder called AUTO. You then copy your
file into the AUTO folder and whenever you insert this disc into drive A and
turn on the ST, your program will automatically load and run.

Commercial STOS Programs
When a runtime file has been generated, it still requires protecting if it is to be
released commercially-otherwise you'll be giving away a complete copy of STOS
Basic at the same time. On the STOS Basic disc is a file called PROTECT.BAS.
This is used to save out a special version of the Basic which does not include the
editors commands - which means that other ST owners cannot change your
program or write their own STOS Basic programs by typing NEW.

The three main rules for STOS programs which are to be commercially released
are:

• You must protect all programs using the PROTECT.BAS program.

• The program must state that it was written in STOS Basic. A specially-
designed sprite with the STOS logo can be found in the SPRDEMO.MBK file

239

and a STOS icon logo is available in the ICONS.MBKfile. You could also use
the picture files from within the STOS folder.

The program must be your own workand not copied inpart or whole from the
Basic files enclosed on the Accessories and Games discs. No royalty is
payable to MandarinSoftware - so you are free to do what you likewith any
games you write. (

Adding a title screen

A runtime file searches the STOS folder for a Degas picture file - called pic.pil or
pic.pi3 when it boots up. If it finds the required file it will spin it onto the screen in
the same fashion that STOS Basic does when it loads its own title page. This gives
your program aprofessional look and something to display while it loads up all the (
system files.

Running other files

ONCE the runtime copy of your program has loaded it can run any other Basic
program with the command:

run "demo.bas"

The file demo.bas will then be loaded into memory and run.

THE following file would set MODE 0 and then load up the Sprite editor.

10 fade 3 : wait 21: mode 0: run "sprite.bas"

Of course you must save sprite.bas onto the same disc and make sure it's a .bas
file. Using this technique you can generate integrated suites of programs.

Send it to Mandarin ,

Mandarin Software are always looking out for new and exciting programs, so ifyou
develop an original, top quality product - or have any interesting ideas - we will
be pleased to hear from you. Send your disc with a stamped addressed envelope (
to:

The Software Manager, Mandarin Software, Europa House, Adlington Park,
Adlington, Macclesfield SK10 4NP. (

240

(

I

(

I

(

(

(

I

(

(

<

Appendix C

Disc 1 (STOS Basic language disc)
This is the most important of all the three discs and must be backed-up (see
Chapter 1). On this disc lies all the system filesthat STOS loads up, and if various
files get deleted then your STOS Basic won't be able to function. The list below
explains what each file is for and informsyou if files can be changed to your liking.

BASIC.PRG: Double clicking on this file will take you into STOS Basic from the
Gem Desktop.

PROTECT.BAS: Thisprogram protects run-timeprograms forcommercial release
by removingthe editorfromthe copy ofSTOS Basic itsaves to disc, (see Appendix
B).

CONFIG.BAS: Use this program to set up the system defaults which dictates the
environment that STOS Basic boots-up into.

FOLDER 1 : AUTO (Runs STOS onboot up)

START.PRG: This file loads upSTOS when the system is booted from a complete
reset.

FOLDER 2 : STOS (Holds all the system files)

There are various files included in this folder, many of which are vital to STOS. It's
best ifyou don't store any files in the folder - just keep it as it is.

The files in the STOS folder can be split into categories. The main belt of files
are the .BIN files which contain the code that the functions from STOS call.

BASIC.BIN: Contains all the control code that makes STOS operate.

FLOAT.BIN: The floating point maths functions. This file can actually be deleted
or simply stored in another folder ifyou only want to use integer values. Doing so
releases 15K of memory. See Chapter 3 on variables.

SPRITES.BIN: Code to control the sprites

MUSIC.BIN: Code for the music instructions.

WINDOW.BIN: Code for the window manager routines.

RUN.BIN:The data in this file supplies STOS with the necessary code to allow
runtime files to be saved. If you remove this file from the STOS folder you will be
unable to save .PRG files.

COMPACT.EXA: This is not a .BIN file but something verysimilar- an extension
file. Extension files are picked up by STOS and the new commands in the file are
added to the existing list. This file holds the commands for compacting and
uncompacting screens.

241

The next files are environment files which can be altered to suit your needs. I

8X16.CR2, 8X8.CR0 and 8X8.CR1: These three files are the system character
sets that are used by STOS when it boots up. All three files can bealtered (see y
Chapter 8).

MOUSE.SPR: The mouse pointer sprites are held in this file and can also be
altered. <

PIC.PI1 + PIC.PI3: These are two DEGAS pictures which STOS picks up
depending which resolution you are in. Thepicture is thenspun into view andthe
rest of the STOS system files are loaded in. You can customise your copy of STOS (
Basicbychanging these pictures to whatever you like (See Appendix Bfor more
details).

(
Disc 2 (Accessories disc)

When you doa directory of thefiles on this disc, you will find that most of them have (
an .ARC extension. This type offile consists of one or more compacted files and
is called an archive. The reason that the accessories have been archived is so that
they could all fit onto a single density disc.

Thefollowing procedure showsyou how toexpandthefiles insidethe EXTRA.ARC
archive file.

1 Format a blank disc
2 Copy EXTRA.ARC and ARC.TTP onto the blankformatted disc
3 Double click on the ARC.TTP file from the Gem desktop.
4 Enter the following line into the resulting dialogue box

xextra.arc*.*

The above line starts the process of un-archiving all the files inside the file
EXTRA.ARC.

It'svery important that youtype inthe linecorrectly. The 'x' must be present at the
start of the line and then followed by a space, the filename, another space and the
. characters.

5 Delete the ARC.TTP and EXTRA.ARC files from the disc and you willhave a
complete set of un-archived files.

6 Now repeat the procedure for all .ARC files.

Here is a list of the archive files with a sub-list showing which files are within each

EXTRA.ARC (Small accessory files)

ASCII.ACB: A table of the Ascii characters are listed with this accessory file,
enabling you to determine codes quickly.

ASM.ACB: This file loads up and runs the ASM.PRG file.

ASM.PRG: This is the line assembler .PRG file.

242

(

(

(

c

(

(

(

c

I

ASM.DOC: The documentation for using the line assembler is contained within
this file. Double click on the filename from within the Gem desktop to read it.

COMPACT.ACB: Compact whole or parts of a screen into a special format.

DUMP.ACB: List out the contents of program's memory banks in hexadecimal
notation or as Ascii characters.

MOUSE.ACB: Show the x,y coordinates of the mouse pointer. Find out, for
example, various positions of certain elements within a Neochrome or Degas
screen.

SCANASCI.ACB: Determine keycodes and key scancodes using this small but
useful utility.

INPDATA.ACB: Input data into a bank. Such data might be sprite data listed in
a magazine.

OUTDATA.ACB: List out a memory bank in a form which can be printed in a
magazine.

STOSCOPY.ACB: All the files from the STOS folder on the language disc can be
copied to a new disc.

TYPE.ACB: Load a filein and print to the screen or printer with this accessory. The
incoming data is not formatted in any way.

BACKGRND.MBK: An example of a compacted screen. See UNPACK for more
details on how to use this file.

FONT.ARC (Font accessory and font files)

FONTS.ACB: Create your own character sets.

FONT1.MBK, FONT2.MBK and FONT3.MBK: These three files are fonts which
have been created using the font accessory.

ICON.ARC (Icon accessory and an icon data file)

ICON.ACB: An accessory which allows you to create icon images.

ICON.MBK: This is an example data file created from ICON.ACB.

MUSIC.ARC (Music accessory and data files)

MUSIC.ACB: Develop tunes that you can incorporate within your own programs.

MUSIC.MBK, FUNFARES.MBK and TUNES.MBK: These are music data files
ready for you to use or modify.

SPRITE.ARC (Multi-mode sprite accessory and sprite files)

SPRITE2.ACB: This is a simple sprite editor which allows you to design sprites
in any of the three resolutions. You can only load three of the example data files
into this editor: SPRDEMO.MBK, FONTSET.MBK and BACK.MBK.

243

(
ANIMALS1 .MBK - ANIMALS2.MBK: Included in these two files are frames that
make up three animated creatures: An octopus, monkey and a dog.

DROID.MBK: This data file contains animation frames for a superbly designed
android.

FONTSET.MBK: In this file thereisa font of large characters thatcan be printed (
out and animated using the sprite commands.

SPRDEMO.MBK: This file includes a STOS Basic logo which we would like you
to includeon the title page of your programs. (

SPEXTRA.ARC (Low resolution sprite editor accessory)

SPRITE.ACB: This is the lowresolutionsprite definer program which allowsyou y
to draw graphic sprites for your games. See Chapter four for full instructions.

MAP.ARC (Room designer program and documentation)

MAP.ACB: This is the map accessory file.

MAP.DOC: Read this filefor fulldetails on how to use the map accessory program.

MAP.MAP: This is a data file that has been saved from the map accessory. The
sprites to use with this data are in the file

MAP.MBK: The sprites in this file are supplied to show you what type of sprites
are best used with the map accessory.

Disc 3 (Games disc)

(

(

(

(

The Games disc contains three folders, each of which contain a Basic game.
These games are: I

BULLET TRAIN

In this game you guide a train along a series of tracks avoiding dead end junctions I
and blasting rail trucks out of your path. The game shows off just how fast STOS
Basic can be made to run with the super-fast horizontal scrolling, coordinated
animation and fantastic sound.

ORBIT

Another example which displays STOS in all its true colours. Quick reactions are
required to play this highly skilled game. Not only do you have 20 challenging
levels to play but you can also design and add your own screens.

ZOLTAR

The versatility of STOS is really demonstrated in this game. From the user-friendly
menu system to the powerful designer which allows you to create new waves of
alien attack patterns.

To run the above games go into STOS Basic and load one in and then type the
RUN command. You can also list and edit the programs.

244

(

(

(

(

(

I

<

«

I

(

I

(

(

(

(

I

'

I

<

(

(

Here is a list of the files on the games disc and a description of what each one is
for.

FOLDER 1 :BULLET

BULLET.BAS: This is the BULLET TRAIN Basic file which you must load from
STOS Basic if you wish to play it.

BULEDIT.BAS: With this file you can design and edit tracks for playing later in
BULLET TRAIN.

TRACK01.BUL - TRACK03.BUL: These are the three tracks used in BULLET
TRAIN and they can be edited by the BULEDIT program.

FOLDER 2 : ORBIT

ORBIT.BAS: This file is the one you load into STOS when you want to play the
Orbit game.

LEVEL1.0RB - LEVEL20.ORB: These are the 20 screens that have been
designed for the ORBITgame and you can edit any one of them or even add new
screens by running the ORBIT.BAS program and using the built-in editor.

FOLDER 3 : ZOLTAR

ZOLTAR.BAS: Load this file and type RUN to play the ZOLTAR game.

PHASE1.ZOL - PHASE5.ZOL:These files are the five pre-defined levels which
can be altered and many more levels can also be added.

All the accessories and games on the three discs are written in STOS Basic - and
you will learn a great deal byexamining the listingswiththe help ofcommands like
SEARCH.

Please feel free to modifyany of these programs to suit your needs - and either
send us or tell us about the finished results. You never know - we may want to
incorporate your program in a future release of STOS.

245

e
n

*
>

r
\

r
\

~
~

<

<

<

I

I

(

I

<

(

I

I

(

I

(

Using Assembly Language
STOS Basic includes many facilities which allow you to combine assembly
language routines with your Basic programs. Usually this isn't really necessary,
but sometimes a little machine-code can work wonders even in a language as
powerful as STOS Basic.

CALL (Calls a machine-code program)

CALL address

CALL allows you to execute any assembly language program held in the ST's
memory, address can be either the absolute location of your code or the number
of one of STOS Basic's 16 memory banks.

Calling a machine-code program
1 Reserve some memory for your routine using RESERVE AS DATA

Example:

RESERVE AS DATA 7,10000

The above command reserves 10,000 bytes in bank 7 for your routine. Note
that this only needs to be done once as these DATA banks are always saved
along with your Basic program. Alternatively, you can also place your code
in a previously defined string variable, provided it is completely relocatable.

2 Load the program using a line like:

load "file.prg ",7

This program must be in TOS relocatable format in order to be usable from
STOS. Also note that the extension used for the file should always be PRG
and that any other extensions will generate an error message. Never try to
call a Gem program from STOS Basic or the system will crash completely!

3 Pass any input parameters using the pseudo variables DREG(0)- DREG(7)
and AREG(0)-AREG(6)

4 Call your program using a line like:

call 7

Your assembly language program may subsequently change any 68000 registers
it likes with the sole exception of A7, and must always be terminated with an RTS
instruction. It must never call the Gemdos traps SET BLOCK, MALLOC, MFREE,
KEEP PROCESS or any other memory management function.

247

Machine code control instructions

AREG (Variable used topass information to the 68000's address registers)

AREG(r)

AREG is an array of six PSEUDO variables which are used to hold a copy of the
first six of the 68000's address registers. This enables you to pass information to
and from a machine code function executed by either the CALL or the TRAP
instructions.

r may range from 0-6 and indicates the number of the address register which is
stored in the variable.

Whenever the CALL or the TRAP commands are executed, the contents of this
array are loaded automatically into address registers A0-A6. At the end of the
function call they are loaded back withany new information which has been placed
in these registers.

See DREG, TRAP and CALL

DREG (Variable used to pass information to the 68000's data registers)

DREG(r)

This is an array of seven elements which hold a copy of the contents of the 68000
data registers. The number r refers to the register number and can range from 0-
7 for registers D0-D7. See TRAP for an example of this function in action.

TRAP (Calls a 68000 trap function)

TRAP n [.parameters]

TRAP allows you to call one of the numerous 68000 TRAPfunctions. These traps
are really just large libraries of assembly language functions which are available
from a single machine-code instruction. You can utilise the TRAP command to
give you complete control over the inner workings of your STOS Basic programs.
However you should remember that you are effectively programming in machine
code. This means that ifyou play around withthe TRAP instruction indiscriminately,
you will almost certainly CRASH the ST.

n refers to the number of the TRAP and may range from 0 to 15. Not all of the 16
possible TRAPs have been currentlyinstalledintothe STOS system. Here is a list
of the available numbers:

0,1,13,14 (The Gemdos functions)

3,5,6,7 (The STOS functions)

A list of the various Gemdos functions can be found in any good book of machine-
code programming on the ST.

The optional parameters specify the data which is to be placed on the 68000's
stack before the TRAP function is executed. As a default these are assumed to
be of size WORD.

248

(

(

(

(

(

(

I

(

<

(

r

<

(

<

(

(

I

I

I

I

(

You can set the size directly from the TRAP instruction using a statement such as:

W,expression (Sets the size to WORD)

L.expression (Sets the size to LONG WORD)

expression can be any list of WORDS or LONG WORDS which need to be loaded
onto the stack when the function is called.

One useful bonus is that you can also include a string variable in the expression,
such as A$. In this case only the ADDRESS of the string is placed on the stack,
and a chr$(0) is automatically added to the end of the variable to convert it into the
correct format. Another way of passing information to the TRAP is using the
PSEUDO registers AREG and DREG. See the appropriate section on these
functions for more details.

Here are a few simple examples of the TRAP function in action.

trap 14,33,4:rem Set printer type to EPSON

dreg(0)=44:dreg(1)=100:dreg(2)=100: trap 5:rem Move mouse to 100,100

STOS Assembly language Interface

STOS provides a wide variety of powerful facilities for the assembly language
programmer. These allow assembly language routines to be directly incorporated
into STOS Basic programs. Two sets of STOS functions are included. The first of
these is basically an expanded version of Gemdos and uses system TRAP
number 4. Unlike Gemdos, any parameters are passed to the TRAP using
registers. The function number is placed in register DO and any other data in
registers D1 and AO. After the routine has executed, these registers return the
results, ifany, of the call. All the other registers are unchanged. Here is a list of the
various TRAP 4 routines

$0 SCONIN Get a character from the keyboard.

Input Parameters DO = $0

Output Parameters Bottom byte of D0.W holds Ascii code of key, Top
byte contains SCANCODE

$01 SCONIN with ECHO Get a character from the keyboard and print it on
the screen.

Input Parameters DO = $1

Output Parameters Bottom byte of D0.W holds Ascii code of key, top
byte contains SCANCODE

$02 SCONOUT Prints a character contained in D1 onto the screen

Input Parameters DO = $2
D1 = Ascii code of the character to be printed

Output Parameters NONE

Example:

MOVE #2.D0

249

MOVE # "B",D1

TRAP #4

RTS

This prints a "B" onto the screen

$03 READLINE Reads a a string from the keyboard

Input Parameters DO = $3
D1 = Maximum number of characters to be input
AO = Address of Buffer to hold string

Output Parameters AO = Pointer to BUFF

Note that this is almost identical to the READLINE function of Gemdos. Like the
Gemdos function CONTROL+C aborts the program.

Example:

MOVE #3,D0
LEA LEN(PC),A0
M0VE.B #20,d1

TRAP #4

RTS

LEN:DC.W0

BUFF: BDF 20,0

On return, LEN contains the number of characters in the string.

$04 SPRT Prints out a character in DOto the printer.

DO = $4 {Input Parameters
D1 = ASCII character

Output Parameters DO = 0 if an error has occurred.

$05 SPRINT LINE Prints a line of text on the screen.
Can use standard escape codes.

Input Parameters DO =$5 f
A0 = Address of string to be printed

Output Parameters NONE

Note that the string must be terminated by a zero.

Example:

I

(

(

(

(

(

I

<

(

<

LEA ADR(PC).A0 (
MOVE #5,D0

TRAP #4

ADR: DC.B 27,"STOS",0

$06 SPRINT VID Print a line of text of the screen. This is identical to
SPRINT LINE except for the fact that escape
codes are not translated.

Input Parameters DO = $6
AO = Address of string to be printed

250

(

(

I

(

(

I

I

I

I

<

(

(

I

(

(

(

<

Output Parameters

$07 BINHEX

Input Parameters

Output Parameters

Example:

NONE

Converts a binary number in DOto an Hexadecimal
string pointed to by AO.

DO = $7
D1 = number to be converted

AO = Address of hexadecimal string

MOVE #7.D0
MOVE #$FFFFA304,D1
TRAP #4

MOVE #5,D0
TRAP #4

RTS

$08 HEXBIN

Input Parameters

Output Parameters

$09 BINDEC

Input Parameters

Output Parameters

$0A DECBIN

Input Parameters

Output Parameters

$0B UPPER

Input Parameters

Output Parameters

$0C EXIST

Input Parameters

Output Parameters

Converts a Hexadecimal string pointed to by AO
into a binary number returned in DO

DO = $8
AO = Address of hexadecimal string

DO = Binary result

Converts a Binary number in D1 into a Decimal
string pointed to by AO

DO = $9
D1 = number to be converted

AO = Address of decimal string

Converts a decimal string pointed to by AO into a
binary number returned in DO

D0 = $A
AO = Address of decimal string

DO = Binary result

Converts a string of characters pointed to by AO
into upper case

D0 = $B
AO = Address of string

AO = Address of upper case string

Searches the current drive to see if the file name
pointed to by AO is on the disc.

D0 = $C
AO = Address of filename (terminated by 0).

DO= Contains the length of the file, or -1 if file not
found

251

$0F CLS

Input Parameters

Output Parameters

$10 LOCATE

Input Parameters

Output Parameters

Example:

Clears the ST's screen

D0 = $F

NONE

Moves the cursor to desired postion on the screen.

DO = $10
D1 = Top half of D1 holds X coord, and bottom half
holds Y coord

DO = None

MOVE #$10.D0
MOVE #$000A0006,D1

TRAP #4

RTS

This positions the cursor at 10,6

$11 BREAK This function prints out the contents of registers
D0-D7 and A0-A6 in hexadecimal

Input Parameters DO = $11

Output Parameters DO = None

Note DO is printed out as D0*4 by this function.

Example:

MOVE#$11,D0
TRAP #4

MOVE #0,D0
TRAP #4

$12 READ

Input Parameters

Output Parameters

Example:

MOVE #S12,D0
LEA ADR(PC),A0
TRAP #4

RTS

ADR: DC.L STOCK

DC.B 'FILE.DAT',0
STOCK: BDF 1000,0

Reads a file from the disk

DO = $12
AO = Pointer to Parameter Block

Parameter Block = Pointer to input BUFFER
filename

DO = -1 if the file does not exist

252

(

(

I

(

I

I

<

(

(

(

(

c

(

(

(

1
$13 WRITE Writes a file to the disc

<
Input Parameters DO = $13

D1 = No of bytes to be written
AO = Pointer to Parameter Block

Parameter Block = Pointer to input BUFFER
filename

Output Parameters DO = -1 if the file does not exist

(

(

<

Example:

MOVE #S13,D0
MOVE.L#10,D1
LEA ADR(PC),A0
TRAP #4

RTS

ADR: DC.L BUFF

DC.B TEST.DAT',0
BUFF: DC.B "ABCDE12345"

(
$14 CHDRIVE Change the current drive

Input Parameters DO = $14
D1 = Drive no (0 .. 3)

(
Output Parameters DO = NONE

$15 CHDIR Change the current directory

1
Input Parameters DO = $15

AO = pointer to string containing the pathname

Output Parameters DO = NONE

<
$16 MKDIR Install a new subdirectory on the disc

(

Input Parameters DO = $16
AO = pointer to string containing the new directory
name

Output Parameters DO = NONE

1 $17 RMDIR Delete a subdirectory

(

Input Parameters DO = $17
AO = pointer to string containing the name of the
directory to be erased.

Output Parameters DO = NONE

<
$18 KILL Erases a file or group of files from the disc

<

Input Parameters DO = $18
AO = pointer to string containing the name or the
pathname of the file(s) to be erased.

Output Parameters DO = NONE

(253

$19 ASCII

Input Parameters

Output Parameters

Example:

MOVE #$19.D0
MOVE #512,D1
LEABUF(PC),A0
TRAP #4

RTS

BUF: BUFFER

$1A FLOPR

Input Parameters

Output Parameters

Example:

Dumps a buffer containing ASCII text to the printer.
Only bytes between $20 and $7F are printed out.
Any other characters are replaced by a "."

DO = $19 D1 = number of bytes to be printed
AO = Address of print buffer

DO = NONE

Reads one or more sectors from the disc

DO = $19
D1 = Read parameters. Lowest word contains the
starting sector, the next byte holds the number of
sectors to be read, and the top byte of D1 is set to
the drive number (0,1,2)
AO = Data Buffer

DO = NONE

MOVE #$1A.D0
MOVE! #$0001000B,D1
LEA BUF(PC),A0
TRAP #4

RTS BUF:

BDF 1000,0

$1BFLOPW

$1C MUL32

Input Parameters

Output Parameters

Example:

MOVE #$1C,D0
LEAR(PC).A0
TRAP #4

RTS

R:DC.L0

DC.L SA0OO0,SFF

Writes one or more sectors to the disc, parameters
identical to the above call, except that DOcontains
function no $18.

Multiply two 32 bit numbers together

D0 = $1C
A0 = Address of a buffer area containing 1 long
word for the result, and 2 long words holding the 2
numbers to be multiplied.

DO = Result of calculation.

254

(

(

(

(

(

(

(

1

c

(

(

c

1

<

(

On return both DO and R contain the result. ($09F60000 in the example above)

$1D DIV32

Input Parameters

LONG WORD

LONG WORD

LONG WORD

LONG WORD

LONG WORD

Output Parameters

Example:

32 by 32 bit division.

D0 = $1D
AO = pointer to a buffer containing 5 long words.

1 =0

2 = DIVIDEND

3 = DIVISOR

4 = 0

5 = 0

DO = 0 if an error has occurred, non zero if no error.

D1 = Result

AO= pointer to 2 long words containing the quotient
and the remainder of the division.

MOVE#$1D,D0
LEA BUF(PC),A0
TRAP #4

RTS

BUFDC.LO

DC.LSFFFFFFFE.2,0.0

$1EDIV64
Input Parameters

LONG WORD

LONG WORD
LONG WORD

LONG WORD

LONG WORD

Output Parameters

Performs a 64/32 bit division

D0 = $1E
AO = pointer to a buffer containing 5 long words.

1 = Bottom half of DIVIDEND

2 = Top Half of DIVIDEND
3 = DIVISOR

4 = 0

5 = 0

DO = 0 if an error has occurred, non zero if no error.
D1 = Result

A0 = pointer to 2 long words containing the quotient,
and one long word holding the remainder of the
division.

$FFFF SET USER Install a user defined function.

Input Parameters DO = $FFFF
A0 = Address of the start of the new routine

Output Parameters DO = NONE.

Example:

MOVE #-1,D0
LEA USR.A0
TRAP #4

RTS

255

(
USR: MOVE #0,-(SP)
User function

MOVE D0.D3 (
RTS

$1F USER Calls the user function defined by SET USER

Input Parameters DO = $1F

Output Parameters Up to you.

256

c

c

(

(

(

(

(

(

(

c

(

(

(

<

<

I

I

(

(

(

<

(

(

I

<

<

The STOS Basic Traps
STOS Basic was written in a very modular way. Each separate group of Basic
functions was implemented using a special set of 68000 TRAPs, placed on the
STOS system disc. The Traps can be found in the files:

WINDOWS.BIN (TRAP #3)

SPRITES.BIN (TRAP #5)

FLOAT.BIN (TRAP #6)

MUSIC.BIN (TRAP #7)

These files are installed by STOS Basic into memory whenever it is loaded. The
advantage ofthis approach is to allow the machine code programmer unprecedent
access to the heart of the STOS Basic system. You can call up most of the more
interesting features of the package such as sprites or music directly from
assembly language. You should be very careful when using these functions as it's
quite easy to make a serious mistake and crash the system. Also note that it's good
practice to avoid accessing a function from machine code at the same time as it
is being utilised by the Basic as this can lead to unforseen errors.

The window functions (Trap 3)

TRAP 3 supports a list of TRAP functions which make it very easy to create and
manipulate STOS windows from within an assembly language program. Instead
of using the stack, these routines require all their information to be placed in one
or other of the 68000's registers. The function number is stored in register D7 and
any additional data is loaded into D0-D1 and AO. If the function returns any results,
these will be passed to your program ineither AO and DO. Warning! Some of these
functions automatically redraw all the sprites on the ST's screen! You can avoid
this by using the UPDATE OFF command from Basic.

Here is a list of the various functions:

No. Name

0 CHROUT

Action

Print a character

in current window

Parameters

DO=Character to be output

1 PRINT STRING Prints a string of A0=Pointer to string
characters in window String is terminated by 0

LOCATE Move text cursor

3 SET PAPER Set paper colour

4 SET PEN Set text colour

257

D0=X coordinate (TEXT)
D1=Y coordinate. See LOCATE

D0=Colour index of paper

D0=Colour number of pen

5 TEST SCREEN Find character

under cursor

6 INIT WINDOW Initialize a window

7 STOP INTER Stop interrupts
used by windows

8 WINDON Activate window

9 DEL WINDOW Delete window

10 INIT MODE Initialise a screen

in a new resolution

11 GET BUFFER Get address of

keyboard buffer

12 WINDCOPY Print current window

on printer

13 GET CURRENT Get current window no

14 FIX CURSOR Change size of cursor

15 START INTER Start window interrupts

16 QWINDOW Activate window

quickly

17 GET CURSOR Get position of text
cursor

18 CENTRE

19 SETBACK

20 AUTO INS

21 JOIN

22 SMALL

CURSOR

Prints centred text

string on the screen

Change address of
sprite Background

Opens a space in the
current line and places
a character in it

Joins current line with

following line

Displays a small cursor

Returns with character in DO

DO NOT CALL

D0=Window number

D0=Window number

D0=Length
AO=Address

Returned in DO

D0=Top D1=Bottom D2=0

DO NOT USE

D0=Window number

Returns

Top byte of D0=X coordinate
Bottom byte of D0=Y

A0=Address of string
to be printed

A0=Address of new Background

D0=Character to be output

23 TALL CURSOR Displays a thick cursor

24 MOVE

WINDOW

26 SET ICON

ADR

Move a window to new

position
D0=Window number

D1=X coord, D2=Y coord (Text)

Set address of ICONS A0=Address of ICON BANK

258

(

(

<

(

(

I

<

I

c

(

(

(

(

<

<

<

(

(

<

t

<

<

<

(

<

28 GET CHARSETGet address of

character set

29 SET CHARSET Set new address of

character set

D0=Set number

Returns address in DO

D0=Set number

A0=Address of new set

D0=New Border (0-16)
the current window

A0=Address of a string
for title (terminated with 0)

30 BORDER

31 TITLE

32 AUTOBACK

ON

33 AUTOBACK

OFF

35 XGRAPHIC

36 YGRAPHIC

37 XTEXT

38 YTEXT

39 SQUARE

Change the border of

Add a title to the

current window

Identical to Basic

version.

See Basic version

Convert X coord

from text to graphic

Convert Y coord

from text to graphic

Converts X coord

from graphic to text

Converts Y coord

from graphic to text

Draws a square at
current cursor

position

D0=Text coord

Returns converted coord in DO

D0=Text coord

Returns converted coord in DO

D0=Graphic coord
Returns converted coord in DO

D0=Graphic coord
Returns converted coord in DO

D0=Border (0-16)
D1=Width (Minimum 3)
D2=Height (Minimum 3)

The sprite functions (Trap 5)
The STOS Basic sprite commands are performed using a special section of the
STOS system called the SPRITE MANAGER.This handles all the interrupt-driven
movements and animations which make STOS Basic so amazingly powerful. You
can communicate with this process from machine code by using a simple set of
TRAP 5 instructions. These take the function number in register DO, and read the
various parameters in the other registers. Note that only registers D0-D1 and AO
are modified by this TRAP.

No Name Action Parameters

1 INIT MODE

2 CHANGE

BANK

CHANGE

LIMITS

Initialise the sprite
generator to a new
resolution

Change the address of A0=Address of new sprite
the sprite bank. See bank
Pn for more details

Change limits of the
display area used by
the sprites. (Called
by LIMIT SPRITE)

259

D1=X Coord of Leftmost limit

D2=X Coord of Right limit
D3=Y Coord of Top limit
D4=Y Coord of Bottom limit

SYNCHRO

PRIORITY

POS SPRITE

7 SPRITES

ON/OFF

8 SPRITE

ON/OFF

SPRITE

10 MOVES

ON/OFF

11 MOVE ON/

OFF

12 MOVE INIT

13 ANIMS

ON/OFF

Turns on/off synchro
nisation of sprites and
background (See
SYNCHRO from Basic)

D1=1 for SYNCHRO ON

D1=0 fro SYNCHRO OFF

Switch between normal D1

& Y coordinate priority D1
(See PRIORITY from
Basic)

=1 for PRIORITY ON

=0 for PRIORITY OFF

Get position of sprite
Returns X coord in DO

and Y coord in D1

D1=Sprite number

Redraws or remove all D2=1 for Redraw

sprites on screen D2=0 for erase

Redraws or removes

one sprite on screen

Draws a sprite

Starts or stops all
sprite movements

Starts or stops one
sprite movement

Defines a sprite
movement Eqivalent
to MOVE X and

MOVE Y

Same as function 10

for animations

D2=1 for Redraw

D2=0 for erase

D1=Number of Sprite

D1=Number of sprite
D2=X coordinate of sprite
D3=Y coordinate of sprite
D4=lmage number of sprite

D2=0 for STOP

D2=1 for FREEZE

D2=2 for START

D2=0 for STOP

D2=1 for FREEZE

D2=2 for START

D1=No of sprite

A0=Address of movement

string terminated by a zero
(in same format as Basic)
D1=No of sprite
D2=0 for MOVE X

D2=1 for MOVE Y

14 ANIM ON/OFF Same as function 11

but for animations

15 INIT ANIM

16 UPDATE

Define an animation

sequence.

Redraw any sprites
which have changed
since last update

260

A0=Address of animation

string terminated by 0
(in same format as Basic)
D1=Number of sprite

(

(

(

(

I

(

I

(

c

(

(

<

17 SHOW

18 HIDE

19 CHANGE

MOUSE

20 MOUSE

21 MOUSEKEY

22 SCREEN TO

BACK

23 BACK TO

SCREEN

Show mouse

Hide mouse

Changes mouse image D1=No of new image

D1=0forSHOWON

D1=1 for SHOW

D1=0for HIDE ON

D1=1 for HIDE

Get mouse coordinates Returns X coord in DO

Y coord in D1

Get mouse button

returns

Copies physical screen
to sprite background

Returns status in DO

Copies sprite background
to physical screen

24 DRAW MOUSE Redraw mouse on screen

25 SET ZONE Set test zone

26 ZONE

27 CHANGE

BACK

28 STOP MOUSE

29 DRAW

SPRITES

30 START INTER

31 STOP INTER

32 LIMIT MOUSE Limit mouse to area on D1=X coord of Left corner

33 SCREEN

COPY

Test zone

Change address of
sprite background

Stop the mouse moving
on the screen

Redraws all the sprites
on the screen

D1=No of zone

D2=Leftmost limit in X

D3=Rightmost limit in X
D4=Top limit in Y
D5=Bottom limit in Y

D1=Sprite to be tested
Returns zone number it was

found in or 0 in DO

A0=New address

Starts sprite interrupts DO NOT USE!

Stops sprite interrupts NEVER USE THIS FUNCTION!

screen

As STOS Basic

267

D2=Y coord of Left corner

D3=X coord of Right corner
D4=Y coord of Right corner

A0=Address of source screen

A1=Address of dest screen

D1/D2=(X,Y) of rectangle to be
copied
D3/D4 (X,Y) of destination
D5/D6 (W,H) of zone to be copied.

34 ICON

35 PUT SPRITE

36 INIT ZONE

37 GET SPRITE

38 REDUCE

39 INIT FLASH

40 FLASH

42 ZOOM

43 APPEAR

Put Sprite

Puts Sprite in
background screen,
providing it is
already displayed

Initialise test zones

D1=X coord of sprite
D2=Y coord of sprite
D3=No of Icon

address of sprite data

D1=Number of sprite

Equivalent to the Basic D1=X coordinate of new sprite
instruction D2=Y coordinate

D3=Pointer to sprite to be copied.
D4=Mask

Reduce a screen A0=Address of source screen

A1=Address of destination

D1=X coord of reduced screen

D2=Y coord of reduced screen

D3=Width of reduced screen

D4=Height of reduced screen

Initialise colour flashes

Set up a flash
sequence

Enlarges a section of
the screen

Fades between two

screens

44 MOVE MOUSE Changes the
coordinatesof

the mouse

D1=No of colour to be flashed

A0=Flash string terminated by
a zero. See FLASH from Basic

A0=Address of source screen

A1=Address of destination

D1=X coord of top left corner
D2=Y coord of top left corner
D3=Width of the section

D4=Length of the section
D5/D6=Coordinates of dest

A2/A3=Size in X and Y of dest

A0=Address of source screen

A1=Address of dest screen

D1=Typeoffade (1-80)

D1=New X coordinate

D2=New Y coordinate

45 MOVON

46 SHIFT

47 REDRAW

Checks whether sprite
is in motion

D1=No of sprite
Returns 0 in D1 if sprite is not
moving and 1 ifthe opposite is true

D1=Speed in 50ths of a second
D2=Colour the rotation is to

be started at.

Shifts the palette of
colours.

Identical to the Basic

function.

262

(

c

(

(

I

(

t

(

I

<

(

(

(

Floating point extension library
This gives the programmer access to a wide variety of floating point operations
and uses numbers in the IEEE 64-bit format between 10 E-307 to 10 E+308. These
routines corrupt registers D0-D4 and A0-A1. As before, the function number is
loaded into DO before calling the appropriate routine.

The first parameter should always be placed in registers D1-D2, (with D1
containing the bottom half of the number, and D1 holding the top half. Ifa second
parameter is required, this should be put into registers D3-D4 using the same
format. You can now execute the function using a TRAP #6 instruction.

$00 ADFL

Example:

Adds two floating point numbers together

MOVE #0,DO

MOVE.L #$3FF19999.D1
MOVE! #$9999999A.D2
MOVE.L D1.D3
MOVE.L D3.D4
TRAP #6

RTS

On return DO.L and DLL contain the result.

; First no in D1-D2

; Copy 1st no into
; 2nd no

$01 SBFL

$02 MLFL

$03 DVFL

$04 SINFL

$05 COSFL

$06 TANFL

$07 EXPFL

$08 LOGFL

$09 LOG10FL

$0A SQRFL

$0B ATOFL

$0C FLTOA

Subtract one floating point number from another
Parameters used identical to ADFL

Multiply two floating point numbers

Divide two floating point numbers

Takes the SIN of the number in D1-D2 and places
it in D0-D1.

Takes the COS of the number in D1-D2 and places
it in D0-D1.

Takes the TAN of the number in D1-D2 and places
it in D0-D1.

Takes the Exponential of the number in D1-D2 and
places it in D0-D1.

Calculates the naperien log of the number in D1-
D2 and returns the result in D0-D1

Calculates the base 10 log of the number in D1-D2
and returns the result in D0-D1

Takes a number in D1-D2 and returns the square
of it in D0.D1

Takes an Ascii string pointed to by A0 and converts
it into a number in floating point format in D0-D1

Takes an FP number in D1-D2 and converts it into
an Ascii string

263

Input Parameters

Output Parameters

Example:

MOVE.L

MOVE.L

MOVE

LEA

MOVE.W

TRAP #6

MOVE

TRAP

RTS

BUF. BDF 1000,0

$0D FLTOIN

$0E INTOFL

$09 EQFL

$10 NEFL

$11 GTFL

$12 GEFL

$13 LTFL

$14 LEFL

$15 ASINFL

$16 ACOSFL

$17 ATANFL

$18 SINHFL

$19 COSFL

$1 ATANFL

$1BINTFL

DO = $0C
D1-D2 = The FP number to be converted.

D3 = A digit representing the number of digits after
the decimal point in Ascii.
AO = The pointer to a buffer for the string

The length of the Ascii string (not including the final
0)
AO = A pointer to the string of Ascii characters
terminated by a 0.

#S3FF19999,D1
#99999999A,D2
#SC,D0

BUF(PC),A0
#$0031, D3

#S,D0
#4

; Load 1.1 into D1-D2

1 Digit after the DP

; Print the number on the
; screen.

Convert a FP number in D1-D2 into an integer in
DO

Convert an integer in D1 into an FP no in D0-D1

Compares the two numbers in D1-D2 and D3-D4.
Ifthey are equal then DOcontains a 1, otherwise it
contains a zero.

Compares the two numbers in D1-D2 and D3-D4.
Ifthey are not equal then DOcontains a 1, otherwise
it contains a zero.

Compare two numbers and return a 1 in DO if the
first is greater than the second.

Test if greater than or equal

Test if less than

Test if less than or equal

Calculate the Arc Sin of no in D1-D2 and return it

in D0-D1

Calculate the arc cos

Calculate the arc tan

Calculate the hyperbolic sin

Calculate the hyperbolic cos

Calculate the hyperbolic tan

Get the integer part of D1-D2 and place the result
in D0-D1

264

(

(

(

(

(

(

(

(

I

<

(

(

(

(

(

(

<

<

(

(

I

I

(

<

(

(

(

<

(

(

$1C POWFL Calculate XAYwhere X is in D1-D2 and Y is in D3-
D4. As usual the result is in D0-D1

The music generator

Like the sprite definer, there is also a special music generator which functions
completely independently of the rest of STOS Basic. This can be called from any
of your machine code programs by using a TRAP 7 instruction. To access these
routines, place the function number in DO. Note that only registers DO and AO are
modified by these commands.

The music Traps (Trap #7)

No. Name Action Parameters

0 INIT SOUND Resets sound generator
and kills music

1 START MUSIC Starts playing some AO=Address of music
music

2 STOP VOICE Stops the music D1=Number of voice
played on a single voice

3 RESTART Resumes playing a D1=Number of voice voice
VOICE single voice stopped

by STOP VOICE

4 FREEZE Freezes some music

5 UNFREEZE Resumes some music

frozen with FREEZE

6 CHANGE Change speed of music D1=New speed (0-100)
TEMPO

7 START INTER Start music interrupts DO NOT USE

8 STOP INTER Stop music interrupts DO NOT USE

9 TRANSPOSE Change pitch of music D1=Number of semi tones
by a number of
semi tones

10 GET VOICE Get position of in a D1=Number of voice Returns
voicwe position in DO

PSG (Access Programmable soundgenerator)

PSG(r)

The Atari ST incorporates a special piece of circuitry which it uses to generate the
wide range of different sounds which can be played through your monitor or
television set. This circuit is built around a single microchip known as the YAMAHA
YM 2149. It possesses the following general characteristics.

265

3 separate frequency generators (One for each VOICE)

1 noise generator (Used by STOS Basic's NOISE command)

15 different volume levels (See VOLUME)

16 preprogrammed envelopes (Accessed by ENVEL)

he precise sound produced by the circuit is determined by the contents of 14
different SOUND REGISTERS numbered from 0-13. You can access these
registers directly using the PSG command. PSG is effectively an array which holds
a copy of the current contents of the sound registers. Whenever you assign a value
to one of the elements in the PSG array, this will be automatically loaded into the
appropriate register.

Example:

print psg(1)

WARNING: This function is DANGEROUS! Incorrect usage can cause serious
damage to any disc in the current drive. This is because part of the sound chip is
also utilised by the ST's disc system. You should therefore take extreme care
when attempting to use this command.

Here is a brief list of the various sound registers and their uses.

Register Function

0 Bits 0-7 set the pitch in units of a single step for voice 1.
1 Bits 0-3 set the size of each frequency step.
2 Fine control for voice 2. Format as Register 0
3 Coarse control for voice 2. As register 1
4 Controls pitch of voice 3 in the same fashion as register 0
5 Coarse control of the pitch of voice 3
6 Bits 0-4 control the pitch of the noise generator. The higherthe value

the lower the tone.

7 Control register for sound chip.
Bit 0: Play pure note on voice 1 ON/OFF (1 for ON, 0 for OFF)
Bit 1: Voice 2 tone ON/OFF

Bit 2: Voice 3 tone ON/OFF

Bit 3: Play NOISE on voice 1 (1 for ON, 0 for OFF)
Bit 4: Voice 2 noise ON/OFF

Bit 5: Voice 3 noise ON/OFF
8 Bits 0-3 control volume of voice 1. If bit 4 is set to one then the

envelope generator is being used, and the volume bits are ignored.
Since this corresponds to a volume of 16, this explains why you
need to set VOLUME to 16 before you can use the ENVEL
command.

9 As Register 8 but for Voice 2
10 As Register 9 but for Voice 3
11 Bits 0-8 provide fine control of the length of the envelope
12 This register provides coarse control of the length of the envelope
13 Bits 0-3 choose which of the 16 possible envelope types is to be

used.

266

(

(

(

(

(

(

(

(

(

(

(

I

(

(

c

I

1 Appendix F

i
Structure of the sprite bank

(All of the STOS Basic sprites are stored in bank number 1. It begins with a block
of general information about the sprites. This designates the number of sprites in
each resolution and their position in memory relative to the start of bank 1.

I

(8 4-byte offset to address of sprite parameter block in

Offset from start

of sprite bank Meaning

0 Sprite identification code $19861987

4 4-byte offset to address of sprite parameter block in low
resolution

medium resolution

12 4-byte offset to address of sprite parameter block in high
resolution(

16 Number of sprites in low resolution

(18 Number of sprites in medium resolution

20 Number of sprites in high resolution

(

(Typical sprite parameter block

<

i

<

<

i

After this section comes a list of special SPRITE PARAMETER BLOCKS. These
hold specific information about each individual sprite and are 8 bytes in length.

Offset from start

of sprite bank Sprite 1 parameter block

22 4-byte offset to sprite 1 data

26 Width of sprite 1 (in units of 16)

27 Height of sprite 1

28 X Coordinate of hotspot

29 Y Coordinate of hotspot

30 Sprite 2 parameter block...

Finallycomes the data which makes up the actual design of the sprites.

267

(
Here is a diagram which illustrates its structure.

The Sprite Data Block (

Data for Mask (one bit plane)

Sprite Data (organised in Bit Planes) (

Although these sprites may look rather complicated, remember that you can
design and manipulate STOS Basicspriteswithout ever needingtoknow anything
about how they are really stored in memory. (

Structure of the icon bank
All STOS Basic icons are stored in bank number 2 using the following format:

Offset from start

of bank 2 Meaning

0 $28091960 This is the icon bank ID number

4 Number of icons in bank

6 Start of data for icon 1. This is 84 bytes long, and uses
the same format as the LINEA sprites.

92 Start of data for icon 2

166 Start of data for icon 3

Structure of the music bank (
STOS Basic places allitsmusicdata inBanknumber 3. Here are full details ofhow
this information is stored in the ST's memory.

Offset from start

of Music Bank Meaning

0 $13490157 This is the identification code used to
indicate a Music bank

I

(

(

(

4 Offset from start ofthe banktomusic number 1Set f
\n 7prn if nn mnsin with this number

(

Length of this memory bank. f

(

to zero if no music with this number

8 Offset to music number 2

124 Offset to music number 32.
(Maximum of 32 pieces of music

128

132 Name of Music 1 (8 letters)

140 Name of Music 2 (8 letters)

380 Name of Music 32

268 I

(

I

I

<

(

(

(

I

I

I

(

(

<

I

<

<

388

388+Length Music 1

etc

Start of Music 1

Start of Music 2

Inside the music definitions

Each piece of music starts off with its own individual header block. This contains
the definitions of all the envelopes and tremolos you have used, along with
information about the position of the various voices which make up the music.

Music Header

Byte Number Contents

0 $19631969

6

8

10

12

48

Start of voice 1 .

The Music commands

This is the Identification code used to indicate

that the data is music.

Offset to Music in voice 1

Offset to Music in voice 2

Offset to Music in voice 3

Definition of first tremolo/envelope (36 bytes
long)

Definition of second tremolo/envelope

Each note is stored as a two-byte word ranging from 0-32767. The lower half of
this word contains the pitch of the note (0-96). See PLAY for more details. The
upper byte holds the length of the note in 50ths of a second. The Music commands
are held in either two or four bytes. In order to distinguish them from normal notes,
the highest bit of these commands is set to 1. Here is a list of the various
commands and the numbers used to represent them in the music.

Number Size Command

$8000 2 bytes END

$A000 2 bytes MUSIC

$A100 2 bytes NOISE ONLY

$A200 2 bytes STOP NOISE

$A3xx 2 bytes NOISE xx

$A400 2 bytes STOP

NTREMULO

269

Meaning

Signifies end of music for this voice

Uses pure tones for music

Uses noise for music

Turns off noise

Plays noise with pitch xx

Stop Mixing Tremulo with noise

$A500 2 bytes STOP ENVE

$A600 2 bytes STOP

TREMOLO

$A7xx 2 bytes VOLUME xx

$cooo 4 bytes NTREMULO

$C100 4 bytes ENVEL xx

$C200 4 bytes TREMULO x

$C3nn 4 bytes

Stop using current tremolo

Set volume of sound to xx

Mix TREMULO with noise. Bytes 23
hold offset to tremulo definition

Use ENVEL xx. Bytes 23 hold offset
to envelope definition.

TREMULO xx Use TREMULO xx. Bytes 2-3 hold
offset to tremulo definition

REPEAT nn.note Repeat music starting from note, nn
times. Note held in bytes 2-3.

Screen banks

The format of the screen banks is very straightforward indeed. The first 32000
bytes of this memory hold the actual screen data, and the next 16 words from
number 32000 to 32032 contain a copy of the colour settings for this screen. Note
that the bytes from 32032 onwards are free, and can be used for your own
purposes.

S

270

(

(

(

(

(

c

(

(

(

c

c

c

(

(

(

(

^

incCOEEooin

(0o0
)

•DC0
1

I
t...

O
O

O
I
D

O
o

o
o

o

^
.

CVJ
•<

-
tO

C
D

C
vJ

.
W

)
C

\]
C

\J
i-

-T-.
O

J
C

\J
(0

I

0-
CO

S3
CL

C
O

O
l
C

M
T

T
Q

^
C

n
o

l
S

W
t
D

t
O

t
D

N
t
D

t
O

l
D

N
n

f
f
l
N

O
J
i
n

m
N

^
I
O

O
O

N
O

O
O

t
M

l
f
i
N

P
X

O
f
l
^

i
n

O
C

V
K

O
N

V
O

J
^

n
«

^
^

^
o

w
Q

o
n

o
o

o
o

n
n

c
j
w

t
o

o
w

w
«

)
o

i
^

o
n

^
o

i
O

)
0

^
i
n

N
O

T
-
c
\
i
o

i
^

c
i
i
n

^
o

i
^

p
j

<
N

•
CM

C
N

-^
*

-
C*J

•
-C

M
•c

\IC
\J

C
\J

C
\j.-:t-:<

\I^
C

M
C

\J
C

v
1

i-t-.
rr

.
i-.

C
M

t-:
;-^

-r
^
-r

^
C

\l^
C

M
C

M
C

M
.C

*
l

;
cvj

t-
^-.

C
M

:C
\J

Z
O

^
*;

L
L

CO
<

L
U

h
-

h
O

U
J

L
L

i
L

U
L

U

CO
b
:
:
:
.
:
:

Q
.

c
G

•
•

•
:
.

„;
<

l-h
-O

L
U

L
L

U
.L

L
C

3
3

H
c
c
^

rrn
-n

-^
^

^
^

<
iij5

>
r£

D
Q

C
3

>
L

L
y

J<
rrL

ta
:Q

.c
i_

,7
-1

<
<

u
u

i
i
i
u

i
u

i
i
i
i
i
i
i
i
U

L
.£

E
E

E
S

>
>

o
i
i
i
o

:
i
r
<

j
z
z
z
O

Q
.i

r
c
r
.i

i
x

<
<

y
q

q
q

d
q

q
q

q
q

q
q

o
q

q
d

q
c
i
q

q
q

q
q

q
i
i
i
i
i
j
i
i
j
i
u

u
i
i
u

u
i
i
i
j
i
i
i
i
i
j
i
i
i
u

i
u

.
i
i
.
i
l

C
O

O
0

-
L

U
L

U
C

O
-I

Z
O

«
8

9
C

O
L

U
_

J
^

Z
J

=
J

IX
X

I
Q

>
CO

g
»

<
^

J
j

j

5o_
j

_
j

z
o

vD
)

C
O

Q
.

T
-
u

i
m

i
O

T
-
c
o

o
o

t
n

i
f
i
W
O
O
N
O
T
-
l
f
i
O
O
)
N
T
-
^
N
S
N
O
)
<
J
N
(
0
^
t
-
O
T
-
T
-
S
T
-
n
c
O
O
T
-
O
M
D
C
O
W
W
i
n
N
W
f
]
e
o
*
*
-
I
O

(
v
i
v
^
-
'
-
T
-
c
v
i
o
t
o
w
o
j
W
'
<
t
T
-
^
^
i
n
T
-
(
D
c
M
O
)
i
o
«
w
^
<
0
(
O
P
i
O
)
N
S
i
-
(
M
C
,
)
<
n
u
)
o
n
o
^
«
)
d
i
c
M
N

•
«
-
;
c
o
c
g
c
M
<
N

'
t
-
n
n
«

«
•

y~.
-
c
m

•
*
-
:
*
-
;

*-t
*-:

:
w
w
n
^
t
:

.
.
i
-
^
n
i
-

i
^
n
'
-
T
-
P
I
'
-
f

•
*-:

•

•
oCC
O

E
a

>
<

i
s

O
m

l
u
C
O

L
U

L
L

N
L
L

U
J
o

U
J
«

r
r
z

a
:

L
L
O

<
m

_
[
n

O
O

O
O

J
S

?
Q

.o
u

i
o

?
<

h
h

u
n

:
l
J
O

j
l
»

o
O

|I
x

u
i

O
m

o
o

o
o

z
z
z
o

.c
c
a
:
c
o

c
o

H
3

=
)
<

<
o

o
o

L
u

e
)
i
_

i
O

O
O

n
:

O
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
m

m
m

m
c
o

m
c
Q

m
c
o

c
o

c
o

c
a
c
o

U
J
>

H
-
J

<
L

U
C

O
-
J

to
c
o

1
-

<
m

m
m

o

C
O

-,
LU

lu
uj

o
Q

j
la

rO
O

O
•

>
H
Z
Z
I

O
Z

<
<

<
a

l
u

x
x

x
0
0
0
0
0

_
^
^
_

.
^
^
^
^
^
_

U
J

,
c
c

r
r

0
0
0
0
0
0
0
0
0
0
0

o

£
"

9:OCO<
L

U
D

C
Q

Z
>

j
O

H
_

l
_1

z
0

0
0

0
0

0

~
^

^

w
_

w
w

^
/
^
>

_
_

(
D

^
O

)
n

^
o

n
i
n

i
D

w
o

n
<

c
u

)
u

i
(
D

t
D

i
n

a
i
^

n
a
D

N
N

i
D

^
i
o

m
c
\
j
T

r
(
O

T
-
i
f
i
n

c
o

m
N

o
i
N

t
D

C
D

^
^

^
^

N
(
M

N
C

M
N

a
)
T

-
c
>

o
o

n
n

w
t
n

v
D

)
w

^
°
m

^
^

n
^

S
^

r
^

^
N

s
r
^

^
w

,
^

O
S

N
n

o
'c

o
c
o

[
I
3

c
q

a
'n

o
n

'"
w

o
c
o

r
s
c
o

a
J
o

o
o

i
n

w
N

i
:
)
W

w
n

r
w

o
w

o
c
\
i
w

o
i
w

c
o

"
Occ
a

E[
D

'<

O

C
M

C
M

^
-.

C
M

<
O

U
.

O
i

a
:

x
h

9
in

uj
uj

z
.

O
i
:
?
?
i
i

O
O

O
O

O
O

O
O

o
.

O
=

>
=

)
I
-

X
z

z
<

<
L

U
L

U

5
5

5
5

U
J

u_
N

u
.

U
J

o
LU

y
x

S
u_

O

O
O

i
!
J
!

>

w
>

w
w

<
/>

ljj
=

)
3

3
3

O
z

z
z

z
X

L
U

L
U

L
L

I
U

J
L

ij

5
5

5
5

5

cm
cm

i-:
*-,

*-.

9
2

^
z
z
o

o
o

b
d

b
b

=
)
iillo

b
u

.z
z
z
z
c
L

C
L

C
L

<
<

<
<

[
u

u
ji

5
5

5
5

5
5

5
5

5
5

5
5

5
5

Z
Z

Z
b

b
b

b
b

O
b

b
C

L
C

L
C

L
Q

.
C

L
0

.
C

L
C

L
C

L
C

L
a
.
Q

.

U
J

O
uj

y
x

5
z

_
u

.O
x

>
o

X
<

U
JU

JC
O

L
U

U
JU

JU
JL

1
JlZ

C
J

Q
C

D
C

O
Q

=
>

>
>

>
>

>
_

J
C

0
5

c
^

H

y
-.

C
-i

t-.
y

-
y

-

ooo
2

CO
H

IT
X>

x
z

o
O

*
?

O
<

5
§

C
Jq

Z
Z

Z
*

••-.
O

J
^

^
C

\j

U
J

t
x

Q
j

lu
X

.
OC

O
r
-

Z
l

II
L

U
—

^
J

i
a
.

u
j

z
>

C
M

t-.
C

M
r
-

^

^
5

3
$

Z
L

U
b

z
o

=
i

z
s

>
>

±
X

L
_

l
_

l

o
o

b
b

a
.

a
.

a
.

a
.

f
l
)
i
n

^
T

r
c
\
j
^

n
c
v

j
't

i
\
i
(
D

T
r
p

i
n

w
i
n

^
c
r
i
i
n

c
j
^

^
T

-
^

p
}

N
(
O

T
-
^

N
^

n
n

w
n

o
*

o
w

n
n

T
-
i
D

n
[
x

)
(
j
>

i
n

n
o

N
m

«
T

-
N

c
y

m
N

i
/
>

i
n

N
"
N

^
'
-
t
'
-
q

c
q

O
D

N
O

O
T

-
n

,
c
o

^
a
i
o

o
w

n
o

T
r
m

c
o

t
o

n
n

o
^

^
^

c
n

(
D

T
-
^

w
M

o
c
)
W

(
j
i
o

c
n

o
m

f
l
^

w
o

)
(
J
i
o

i
o

i
o

i
(
j
)
W

O
>

^
o

o
J^'t-;

:
-^

;
CM

^
I

T-.
T-.

i-t
;

CV]
CM

CM
:

•>-.
CM

CM
CM

^
.-

:
-rr

t^
CM

••-:
CM

^
;C

M
t-

;
;

i-j
r-t

t~%
•

C\J
CM

X
C

O

2
O

N
:

Z
L

U
L

U
X

<
L

U
L

U
O

x
l
t

tr

L
IJ

o
>

u
j

<
_

i
r
-

x
co

z
i

u
j

L
L

U
L

L
L

O

L
U

-
I

X
<

a
_

m
o-

co
=

>
o

h
h

S
S

te
L

U
U

J
O

O
O

O
O

O

a
:>Q

_

b
:
0

c
c

o
>

m
Q

CO
w

<
Z

<
X

O
X

X
X

X
<

O
L

JJ
L

U
O

O
I
I
I
I O

W
5

Z
£

Z
°
O

C
0

h
3

X
I

I
X

X

C
O

—
I

WzU
J

b
;

o
*

O
u_

z
z

>
-

H
H

H
1

-
X

U
J
0

3
3

3
I
-

^
D

.Q
.D

.D
.C

O
I
-
>

' I
t
,

L
t

Q
O

U
J

Z
CL

CO
O

C
O

-
C

2
o

.>
->

>
>

-jX
L

^t:.
7

7
7

7
7

7
7

7
0

u
O

ir
D

J
J
lJ

U
J
lJ

z
!
Q

llJ
L

U
lJ

J
Z

I
-

L
U

L
JJ

cm
-
:

L
U

«

t
H

H
X

3
Z

>
C

l
c
l

a
_

C
O

z
z

b
UJ

LU
I

?
z

I
I

I

z<

I-
F

CO
co

co
3

2
I

•
1

I

cm

C
O

•oc2
(A

•
LU

»
E

b
>

:
-jlu

'x
H

•
-o

c
O

g
:H

o
b

<
x

c
lw

z
C

O
O

_.X
<

x
x

_
£

o
X

x
O

X
X

?
O

C
lQ

_
O

O
H

H
H

H
(jc

o
c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

c
o

•-.
C

M
C

M
C

M
r-_

o

J
5

f
5

z
co

m
5

>
>

<
co

co
co

H

C
\J

t-;C
N

J
C

\J
t-.

t
-
O

J
C

M
^

-
i
-
.

l
i
b

H
h

-
h

-

C
O

Z
C

L
U

J
U

J
<

<
=>

Q
X

X
X

z
I—

I—
t—

=x»

U
J

NL
U

.»
:_

u
i
s
o

X
L

U
<

1
L

Z
C

L
z

z
z

Z
>

z>
z
>

-:
lu

lu
y

Q
L

L
I
L

i
J
l

L
U

>
>

_i
$

o_
U

J
C

D
:

o
*

>
U

J
O

o
3

b
b

b
d

Q
D
-
Q
-
o
-
c
o
<
<
o
o
5
5
5

jO
Z

C
L

|O
m

Q
Q

Q
Q

Q
l
-
O

S
:

Z
Z

Z
Z

z
-

I
U

J
L

U
oI

C
O

X

x
ii_

_
_

_
x
_

£
;
R

g
>
>
g
g
5
5
5
?
?
g
g
5
5
x
x
x
x

c
o

i
-

oX
i_

5
£

co
a.

l_
_

C
?
,?

x
<

C
u

j5
I_

5
C

0
O

C
0

|_
0

0
X

>
-
>

-
>

>
i>

-
N

N

f
l
l
T

r
^

^
N

c
j
w

o
i
i
n

r
r
^

N
N

s
a
i
c
o

^
i
o

w
^

^
o

i
i
D

i
D

i
o

i
O

'
-
o

t
D

p
j
t
c
i
D

c
o

f
l
o

c
o

i
n

o
o

r
i
D

w
a
o

r
o

T
j
o

o
i
a
i
r
o

N
o

t
D

W
O

i
o

i
D

O
c
o

o
^

C
O

C
O

p
o

o
a
>

a
}

C
p

o
a
>

c
n

o
(_

O
C

M
C

M
C

M
O

^
C

M
O

C
M

C
O

^
^

^
|X

T
fC

O
O

}
C

M
©

c
o

*"•
C

l

c
¥

C
O
x

i
f>
-

C
O

*
O

*
h
>
t
t
?

ra
b

_i_uig
»
^
!
l
)
0

5
-

<
o

X
X

Q
X

z
>

L
U
Xo

z
C
O
U
J

<
L
U

_i
<

<
o

lu
y

p
q
a

co
co
3

z
c
o
c
o
c
o
c
o
c
o

3
<

<
<

<
<

:
L
U

L
U

U
J

L
U

L
U

H
>

>
>

>
>

<
X

X
X

X
X

H

5
-ix

X
L

U
?
z
O

C
r5

h
_

(_
|_

o
=

:0
<

0
<

o
o

5
z
z
c
L

c
o

c
o

c
o

c
o

c
o

c
o

°O
O

O
X

X
X

X
C

O
Z

)Z
)Z

)>
>

<
C

D
C

D
L

U
L

1
JL

U
U

JU
JL

U
L

1
JL

U
L

U
U

JL
U

L
U

L
U

O
x

X
X

X
X

X
X

X
Q

-
C

L
C

L
C

L
a
x

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

O
L

U
N

X
L

U
•__

-6-
•*<

L
i_

__-
__.

l
U

_
|—

\—
O

«*5
<

_
>

L
U

U
J
U

J
U

J
lJ

J
L

U
L

U
U

J
t-

—
'

'-
C

O
C

O
C

O
L

U
L

U
L

U

X
X

X

C-g-DC
lu

_>
5

z
X

X
X

X

Qoo
L

U
Z

-I
X

z
>

<
O

O
=

>
<

o
X

X
X

C
O

C
O

>
-

_
O

L
<

b
g

o
c
o

z
z

L
U

L
U

U
J

U
lL

U
L

U
Z

O
O

X
X

X
X

X
X

o
o

o
o

o
o

C
O

C
O

C
O

C
O

C
O

C
O

w

Z
X

O
=

>
co

_
:

-I
-I

x
x

U
J

cc
-i

-i
o

=
>

?
S

O
b

x
O

-i
5

X
X

<
(-

I-
H

O
O

L
U

L
U

U
J

U
J

C
O

C
O

C
O

C
O

C
O

C
O

z

<
<

o
x

x
n

o
r

h
h

h
S

<
-

L
U

L
U

L
U

O
X

I
C

O
C

O
C

O
C

O
C

O
C

O

8C
M

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

N
o

~

r
^

r*
N

r
\

~
*~

>
/*

\
n

68000 traps 248
Abbreviation for print 195
Accessing

Disc 198,199
Menu 177

Sound chip 218
Accessories 1, 52, 55, 242

Calling 55
Clearing 55
Loading 55
Font Definer 55,169
Icon Definer 56,173
Music Definer 56,108
Removing from memory 55
Screen Compactor 56,153
Sprite Detiner 55, 59, 73

Activate

Cursor 163

Window 166

Adding
Graphics 231
Icons to a menu 180

Soundtrack 108,114
Sprite to the bank 76
Title screen to your games 240
Two strings 39

Address of

Memory bank 48
Variable 223

Address registers 248
Aeroplane sound 12
Allocating a memory bank 46
Animating a sprite 4, 66, 87
Animation 76

Controlling 89
Halting 89
String 87
Sequences 66
Starting 85,89

Arc 125

Arcade games 1
Arithmetic operations 38
Arrays 43

Searching of 43
Sorting of 43

Arrow keys 20
Arrow pointer 90
Arrowed lines 126

Ascii

Character 217

Files 50,52
Table 56

Assembly language 246
Assembly language interface 249
Assign

Colour to an index 121

Image to the mouse 90
Autoback 100

Automatic

Backups 52
Line numbering 25
Menu selection 177

Sprite updates 101
Background 100

Colour 157

Screen 147

Backing up
Automatic 52

Programs 32
Run-only programs 56
STOS Basic 1,3

Backspace 17, 20
Bank parameter functions 48
Bank

Icons 44

Music 44

Screen 44

Set 44

Sprite 44
Listing of 45
Memory 44, 50
Menu 44

Bar 127

Binary
Files 50, 54
Notation 219

Numbers 37

Bit rotation 220

Bit-wise operations 221
Boolean numbers 227

Border 166

Border styles 164
Break 20, 234
Bullet train 45, 244, 245
Calling

Accessory 19,55
Assembly language 246
Direct instructions from a program 194
Machine-code program 54

Centred text 163
Centring the sprite definition 72
Chaining programs together 24
Changing

Contents of a memory location 222
Colours of a sprite 78
Cursor size 163
Default character sets 172
Default mouse shapes 90
Drive 207, 208
Graphics modes 136, 237
Hot Spot 72, 80
Language 34

275

Mouse pointer 78
Pitch of the music 107

RGB sprite colours 73
Shape of the mouse 90
Size of a sprite 73, 80
Speed of music 106
Sprite mask 80
String 28
Text writing mode 159
Volume 104

Character set 164, 169, 170, 171, 172
Examples of 172
Length 170
Reserving 46

Characters: Large 143
Choose

Colour index 121

Colours 122

Fill type 130
Polymarker 135

Circular arc 125
Clearing

Accessories 55

Editor window 20

Keyboard buffer 192
Screen 121,143
Sprite from screen 102
Window 168

Click 105

Clipping graphics 137
Clock pointer 90
Closing a file 202
Code examining 232
Collision 94

Detection 94

Example of 95
Irregular shapes 97
Sprites 232
Zones 96

Colour

Function 122

Text 157
Text background 157
Rotation 133

Sequences 132
Underneath sprite 97

Combining
Horizontal and vertical motion 84

Sets of sprites 71
Commercially releasing your programs ..239
Communications with external

devices 201, 202, 204
Compacting the screen 6, 153
Complex

Filled shape 128
Sprite movements 84

Composing music 108, 114
Compressing a screen 153
Computed Goto 183
Concatenation of strings 39
Confusion 1

Constants: Floating point 37
Contents of disc 241

Contour fill 127

Control keys 19
Control structure 183, 184, 185.

186, 187, 188
Control+C 20, 234
Control+J 17

Controlling
Animation 67, 89

Menu 176

Music 106

Sprite motion 85
Sprite with the joystick 93

Conversion functions 160

Convert

Number to a string 217
String to a number 217

Copying
Character set 171

Banks between programs 47
Memory banks 47
Program 32
Screen 7, 146, 148
Sections of memory 223
Sprites to the screen 97

Copyright 2
Copyright distribution terms 240
Correspondance address 2
Creating

Accessory 57
Basic program 17
Menu 175

Music 108, 109, 114
Run-only program 50, 239
Sprite 66
User-defined functions 214

User-defined pattern 131
Window 164

Current program 19, 30
Cursor

Control 161

Down 161

Functions 159

Home 161

Left 162

Off 163

On 163

Position 162

Size 163

Up 162
Customising the editor 21
Data registers 248
Deactivate cursor 163

Debugging aids 29, 190
Decision making 187, 188
Decrementing a variable 39
Default

Character set 172, 242
Screen resetting 141

Definer menus 60

Defining sprites in all three modes 77
Degas screens 49, 53, 69, 142, 153
Deleting 17,20

Files 209

Memory banks 47
Program 29, 33

276

(

(

(

(

(

<

(

<

c

(

c

(

(

(

(

<

<

(

I

<

<

<

(

I

<

<

(

I

<

Window 167

Demonstrations

Expanded box 145
Fonts 243

Gorf 97

Sprites 242
Designer 59
Detect: Example of 97
Detecting

Collisions between sprites 94
Collisions with irregular shapes 97
Sprites 96

Different screen sizes 136

Dimensioning an array 36
Direct

Commands 234

Mode 25

Directories 206

Directory listings 205, 206
Disabling a menu 176
Disc 128

Disc contents 241

Disc operations 198, 199, 201
Displaying a sequence of sprite images ...87
Distribution terms 239

Doodle 178

Dotted fill pattern 130
Dotted lines 126
Draw

Box 124

Image 75
Line 123

Rounded box 124

Sprite 59, 81
Drives connected 208

Editing
Basic program 17
Envelope 111
Icons 174

Line 20

Memory 57
Elliptical

Arc 125

Pie 130
End of file 203

Endpoints 84
Enlarging the screen 143
Entering

Music 109
STOS Basic program 25

Envelope Editor 111
Envelopes 111,118
Epson printers 249
Erase window 168

Erasing
File 209

Screen 121,143
Error

Line 190

Messages 233
Number 190

Trapping 189
Examining memory 57, 222
Exceeding the 15 sprite limit 97

Executing a program 24
Expanded box: Demonstration of 145
Expanded version of CLS 143
Explosion sound 117
Extensions 1

Files 242

Saving of 48
Fade, example of 6
Fades 155

Fields 199, 203, 235
File

End 203
Length 203
Pointer 203

Position 203

Selector 22, 23, 218
Fill pattern 130
Filled

Box 127

Circle 128

Ellipse 129
Polygon 128
Rounded box 128

Segment of a circle 129
Shapes 127

Filling sections of memory 224
Find

Character on the screen 164

Colour underneath sprite 97
Memory bank 48
Position in music 107

String 27, 237
Word in a string 41

Fire 94

Fix marker type 135
Flashing colours 132
Flattened

Disc 129

Pie 130

Flipping
Pages 140
Screen 140, 144

Floating point 37
Extension library 263

Folders 206, 207, 208
Font

Accessory 169
Demonstration 243

Examples of 170
Forcing a sprite to be updated 101
Formatted text 196

Free memory 34
Freeing memory 59
Freezing a menu 176
Freezing a sprite 85
Function keys 18, 191, 193

List of assignments 18
Removing of 156

Functions of strings 40
Game

Planning 229
Writing 229

Games disc 244

Gem 1, 121, 175

277

Desktop 2
Gemdos traps 248
General graphics 8
Generate

Error 190

Strings 216
Geometry 231
Get a specific number of characters 193
Get and Put sprite: Example of 99
Get cursor position 162
Get palette from the screen 142
Get the address of a variable 223

Get the colour of a point 123
Get the length of a character set 170
Getting a keypress 191
Glossary of standard Basic 183
Gorf demonstration 97

Grabbing
Sprites from the screen 98
Sprites from a program 69
Sprites from the disc 68

Graphics
Adding of 231
Commands, List of 9
Coordinates 160, 161
General 8

Multi-mode 136

Set colour of 121

Techniques 231
Halting an animation 89
Hand pointer 90
Helicopter sound 12
Help menu 19, 30, 55
Hexadecimal 219

Listings 45
Notation 45

Numbers 37

Hiding the mouse pointer 92
Hollow

Box 124

Polygons 124
Home 161

Horizontal

Scrolling 150
Sprite movements 82

Hot Point 72, 80, 81, 98, 100
Hot Spot 72, 80, 81, 98, 100
Icons 13,173

Accessory 173
Bank 44

Bank: The structure of 268

Definer 56

Incorporating icons into a menu 180
Incrementing a variable 38
Ink colour 121

INS 17
Insert mode 17

Inside

Music definitions 269

Rectangular zone 96
Inspecting memory 57, 222
Installing

Menu 175

New mouse pointers 90

Sprite 81
Sprite into the memory bank 76
User-defined pattern 131

Instant artwork 147

Intensity of sound 104
Interpreted mode 25
Interrupting a program 20
Inverse

Text 158

Transport writing mode 134
Invert string 216
Joystick 92

Commands 10

Controlling a sprite 93
Fire 94

Reading 92, 93, 94
Reading the fire button 94
Testing 92, 93, 94
Testing fire button 94

Key speed 193
Keyboard

Buffer 192, 194
Click 105

Language changing 34
Large characters 143
Last error 190

Leaving
STOS Basic 33

Subroutine 184

Length
Of a bank 48

Of a character set 170

Of file 203

Ot string 217
Limiting

Mouse cursor 91

Sprite visability 87
Line 123

Editing 20
Styles 126

Lined fill pattern 130
Linking programs together 24
List of Polymarkers 135
Listing 45

Hexadecimal 45

Lowercase 35

Program 27
Program to the printer 205
Uppercase 34

Loading
Accessory 55
Basic program 22, 51
Memory, sections of 224
Screen 53,142
Screen: Example of 146
Variables 51

Logical screen 140, 146
Loops 185, 186

Movement 83

Lowercase listings 35
Machine code

Calling of program 54
Programs 54
Running of 54

278

(

(

<

(

I

I

I

(

(

I

I

<

I

I

<

<

(

I

<

I

(

I

(

Magnifying the screen 143
Makers 134

Making abackup 1, 3
Run-only programs 56

Making decisions 187,188
Manipulating

Animation sequence 77
Screen '6, 8,139, 146
Screen as a string 148
Section of music 113

Map definer 149, 244
Masks 80
Maths functions 211

Absolute value 212

Floating point to integer 213
Logarithms 211
Maximum value 213
Minimum value 213
Square root 212

Memory banks 44, 50, 52
Copying of 47
Deleting of 47
Reserving 46
Address of 48

Finding of 48
Memory

Copying sections of 223
Editing 57
Examining 57, 222
Filling sections of 224
Freeing of 59
Inspecting 57, 222
Left 34

Loading sections of 224
Reading 222
Releasing 59
Saving of 59
Searching 224

Menu 14
Banks 44

Commands 14
Commands: List of 15
Control 176
Creation 175
Example of 178
Icons 180

Music Definer 112

Options 175
Reading 177
Selection 177
Title 175
Trouble shooting 180

Merging
Program 29
Sprite files 71

Modifying an animation sequence 67
Modular programming 229
Monitors

Monochrome 77

Multi-sync 34
Monochrome monitors 77
Mouse 9

Buttons: Testing of 91
Buttons: The reading of 91

Changing 9
Changing the shape of 90
Commands, list of 9
Cursor: The limiting of 91
Finding its position 90, 91
Pointer: Changing 78
Pointer: Hiding of 92
Pointer: Removing from the screen 92
Pointer: Replacing on the screen 92
Pointer: Restricting of 91
Pointer: The showing of 92
Position of 90, 91
Setting limits 91
Use of 89

Move sprite: A test 86
Move until 83

Movement string 82
Moving

Screen 149
Sprite 4, 82
Text control 159

Window 167

Multi-mode graphics 136
Multi-sync monitors 34
Multiple

Character sets 164,169, 170,171,172
Line drawing 124
Programs 20, 30, 32
Screens 139,140

Music 11, 105
Bank 44,112
Bank: The structure of 268
Changing the pitch 11
Changing the speed 11
Control of 106
Creating 108,109, 114
Definer 108

Definer menu 112
Entering 109
Instructions 109
Repeating asection 110
Speed change 106
Traps 265
Tutorial 114

Naming of variables 35
Neochrome screens 50, 69,142,153
Note 103

Values: A table of 103

Number bases 37, 219
Opening

Random file 201

Sequential file 198, 201
Window 164

Optimising your program 232
OR mode (text) 159
Orbit 229, 244, 245
Outputting information

To the printer 205
To the screen 195

Packing a screen 154
Page flipping 140, 144
Palette 122,142

Searching 88
Pause sprites 102

279

Perspective 100
Physical screen 139
Pictures 231

Pie chart 129

Pitch: The change of 107
Planning

Game 229

Techniques 229
Playing

Notes 103

Tunes 105

Plot a point 123
Polygons 124
Polymarker 134

Example of 135
Types 135

Position

In file 203

In music 107

Of a sprite 86
Of the mouse 90, 91

Positioning the text cursor 159
Print at cursor control 159

Printer 205

Listing a program to 205
Printing

Ascii file 56

Sequential files 202
Priority 99
Program

Backing up of 32
Copying of 32
Creating 17,25
Editing 17
Executing 24
Interrupting 20
Listing 27
Loading 51
Machine code 54

Optimising 232
Protecting 191
Renumbering 26
Resuming 189
Running 24
Saving of 48
Splitting in the editor 32
Tracing 29

Programming 229
Modularising 229
Sound generator 265
Structure 229

Protecting a program 191
Quitting STOS Basic 33
Radians 209

Random file 199,201
Example of 200
Reading 204
Writing 204

Random numbers 215

Read a screen point 123
Read and Data 225

Read colour assignment 122
Reading

Directory 206, 207

Fire button 94

Information from the keyboard 194
Joystick 92, 93, 94
Keyboard 191,192,193
Memory 222
Menu 177

Mouse buttons 91

Mouse coordinates 90, 91

Position 203

Random file 204

Screen 164

Sprite coordinates 86
Sequential file 202

Records 199

Rectangle 124
Rectangular zone: Inside of 96
Redrawing the sprites 102
Reduce 7

Example of 145
Screen 145

Registration 2
Releasing some memory 59, 241
Remove

Accessory from memory 55
Mouse pointer from the screen 92
Window 167

Renaming a file 209
Renumbering a program 26
Repeat

Section of music 110

Section of a Basic program 185,186
Speed 193

Replacement
Mode 17

Mode (text) 159
Writing mode 133

Replacing the mouse pointer on the
screen 92

Reserve

Character set 46, 170
Memory bank 46
Screen bank 46,141,146
Workspace 46

Resetting
Data pointer 226
Default screen 141

Editor 20, 33

Restarting a menu 176
Restoring a compacted screen 153
Restricting

Graphics to a window 137
Mouse pointer 91
Sprite movements 87

Resuming from an error 189
RGB 21, 78
Rotating the colour 133
Rounded box 124, 128

Run-only programs 2, 50, 239
Creating of 50

Running a machine code program 54
Running a program 24
Saving

Basic programs 23
Extensions 48

280

(

(

(

(

(

I

I

<

(

(

(

(

(

(

(

I

(

<

(

(

I

I

<

<

I

I

<

(

I

I

Memory 59, 241
Program 48
Screen 49
Screen with your program 141
Sprites 76
Variables 50

Scancodes 56, 192
Screen

Background 147
Bank reserving 141
Bank 44

Banks: The structure of 270
Clearing 121
Clearing 143
Compactor 6, 56, 153
Copy, example of 147
Copying 7, 146, 148
Copying sprites to 97
Degas 49, 53, 69, 153, 142
Dumps 205
Effects, special 154
Enlarging 143
Erasing 121, 143
Flipping 140
Flipping, example of 144
Loading 53, 142
Magnifying 143
Manipulating 139, 146
Manipulation commands, list of 8
Moving 149
Multiple 139
Neochrome 50, 69, 142, 153
Packing 154
Reserving 46
Saving 49
Scrolling 149, 232
Size, different 136
Swapping 140
Synchronization 151
Unpacking 153
Zooming 143

Screen$: Example of 148
Scrolling

Example of 151
Screen 149, 232
Sprite 60, 78

Search and replace 27, 28, 237
Searching

Array 43
For a palette 88
Memory 224

Section

Of a hollow circle 125
Of a hollow elipse 125

Select fill pattern 130
Selecting files 22, 23, 218
Selling

Games 2
Programs 239

Sequential file 198
Disc operations 201
Example of 198
Opening of 201

Set

Banks 44
Colour index 121
Colour of graphics 121
Colour of screen 122

Colour of a sprite 73. 78
Colour of text 157
Current window 166

Cursor size 163
Flashing colour sequence 132
Hot Spot 72, 80
Limits for mouse 91
Limits for sprite 87
Mouse pointer to a sprite image 90
Point 123

Polymarker 135
Precision of real numbers in printouts .215
Size of a sprite 73. 80
Text background 157
Window border 166
Window title 165

Shaded text 158
Shift+delete 17, 20
Shifting the colour 133
Showing the mouse pointer 92
Solid fill pattern 130
Sorting

Array 43
List of words 43

Sound 11
Adding a soundtrack 11
Chip 265
Commands: List of 12
Intensity 104

Sound effects 12, 117
Aeroplane 12
Defining your own 117
Envelopes 111
Explosions 117
Helicopter 12
Shooting 117

Soundtrack 108, 114
Adding 108
Example of 106

Special effects 132, 154, 155
Split Personalities 1
Splitting

String 40, 41, 42
Programs in the editor 32

Sprite 3, 81, 231
Adding to the bank 76
Animation 4, 66, 76, 87
Background 100, 139
Bank 44, 73, 78
Changing the colours 78
Changing the mask 80
Changing the RGB colours 73
Changing the size 73, 80
Clearing from screen 102
Collisions 232

Combining sets of 71
Commands, list of 5
Copying to screen 97
Creation 66
Definer 55, 73

281

Definer tools 60

Defining in all three modes 77
Demonstrations 242
Designer: The use of 73
Drawing of 59
Finding its position 86
From monochrome and medium

resolution 77

Grabbing from the disc 68
Grabbing from the program 69
Grabbing from the screen 98
Images, updating of 101
Installing into the memory bank 76
Limiting visability 87
Masks 80, 98
Mono monitors, use on 77

Movement 82

Movement: Combining horizontal and
vertical motion 84

Movement: Complex 84
Movement: Horizontal 82

Movement: Restriction of 87

Movement: Vertical 84

Moving of 4
Number of 231

Pausing 102
Priority 99
Redrawing of 102
Saving 76
Scrolling 60, 78
Selection window 60

Setting limits 87
Setting the colour 73, 78
Setting the size 73, 80
Sizes 231

Speed 231
Structure of 267

Traps 259
Standard Basic 183
Star Trek 146

Starglider 140
Start points 84
Starling an animation 85, 89
Stop flash 6
Stopping

Program 187
Sprite 85

STOS Basic

Title screens 242

Traps 248, 257
Screen 6, 146

Strings 39
Adding two strings 39
Animation 87

Convert to lowercase 216
Convert to upper case 216
Finding a word within 41
Functions 40
Searching 41
Splitting 40,42
Concatenation 39
Subtracting two strings 39

Structure

Of screen banks 270

Of the icon bank 268
Of the music bank 268
Of the sprite bank 267

Structured programming 229
Subdirectories 206, 207, 208
Subroutines 184
Subtracting two strings 39
Suites of programs 24
Swapping

Screens 140

Variables 214

Synchronise scrolling with sprites 151
System

Commands 33

Disc 241
Table of note values 103
Tabulation 163

Techniques
Graphics 231
Planning 229

Terminating a program 187
Testing

Fire button 94

Joystick 92. 93, 94
Mouse buttons 91

Sprite movement 86
Tetris 1

Text
Attributes 157

Colour 157

Commands: List of 14

Coordinates 159, 160
Cursor 159

Parsers 44

Thick lines 126

Time and date 218
Timing a program 225
Title 165

Screens 240
Toggle Hexadecimal 45
Tracing a program 29
Transparent writing mode 133
Trap #3 257
Trap #4 249
Trap #5 259
Trap #6 263
Trap #7 263
Trap command 248
Trapping errors 189
Traps 68000 248
Tremolos 111
Trigonometric functions 209
Troubleshooting 51, 151, 180
Tunes 105
Types of variables 35
Typing an Ascii file 56
Underlined text 158
Unformatted input 195
Unpacking the screen 6, 153
Updating sprite images 101
Uppercase listings 34
User-defined

Fill pattern 131
Functions 214

282

(

(

(

(

(

(

(

1

(

(

(

(

<

(

(

(

I

(

<

(

I

<

Character sets 164,169, 170,171,172
Using

Animator 76
Assembly language 246
Icons 174
Mouse 89
Sprite designer 73
Sprites on a mono monitor 77

Variable 35, 53
Arrays 36
Constants 36
Decrementing 39
Floating point 35
Incrementing 38
Integers 35
Loading of 51
Naming conventions 35
Real numbers 35
Saving 50
Strings 36
Types of 35

VBI 151
Vertical

Scrolling 150
Sprite movements 84

Voices 103, 107
And tones 103

Volume, the changing of 104
Wait

For a keypress 193

For a vertical blank 151
For atime 224

Waveforms 111
Window 12,164, 166

Border 166
Clear 168
Deleting 167
Move 167
On 166
Scrolling 168
Title 165
Traps 257

Workspace 46
Writing

Games 229
Graphics mode: 133
Text mode: 159
To a random file 204
To a sequential file 202

XOR

Text mode 159
Writing mode 133

Zenji 1
Zoltar 88, 95, 244, 245

Sprites 88, 95
Zones 96

Examples of 96
Zoom 7

Example of 144
Screen 143

283

Join the hundreds of STOS owners who are already
active members of the STOS Club.

Six times a year you will receive a professional-looking
newsletter that's packed with hints and tips, short
listings, contact addresses, an extensive public domain
library and the latest news and reviews of STOS
prociucts.

In addition you'll receive a remarkable free gift: a disc
containing STOS Word - a powerful word processor
written in STOS. This has all the features you'll need
(see below) and is currently on sale for £14.95 - but
you'll get it free of charge!

With STOS Word you can:

• Left, centre or right justify
• Cut, copyand paste
• Search and replace
• Word wrap
• Underline, inverse or shade text
• Count the works in your document
• Jump toany4 locations in your text
• Go directly to a page
• Define keyboard shortcuts
• Work in any resolution (unlike anyother STword processor)
• Load and edit First Word files
• Add icons atany point in your text (perfect for letterhead designs, digitised signatures, and

so on)

• Print out fast using the 390-byte printer driver routine on almost any printer (source code
included)

• Print on single sheets or usesprocket-fed paper
• Modify the program to your heart's content - and learn more about STOS at the same time
• Create READMEfiles to document yourprograms

... and much more besides!

STOS Word is fully documented on the disc -with support easily available if you need it .
The disc will be crammed with many other useful programs and mini-games toappeal tobeginners and
experts alike - it's not to be missed.

Whether you're a newcomer to games programming or a competent coder, the STOSClub will
help you make the most of your purchase.

Send a cheque, postal order or international money order (£10 for UK, £12 for Europe, £15
Overseas Airmail) together with your name, address and telephone number to:

The STOS Club. Aaron Fothergill, 1 Lower Moor,
Whiddon Valley, Barnstaple.North Devon, EX328NW, England

(

(

(

(

(

I

(

<

<

i

m

just keeps on growing

Speedup your STOS
games by up to 100%

£19.95

Code: 9423 I
Add dramaticsampled
sound toyour
programs
£24.95
Code 9424

m

I
Includes a precision-
made sampling
cartridge
£69.95
Code: 9425

Games Galore brings together four of the best games
written using STOS into one exciting package.
Jump onto a skateboard and negotiate bollards and pot
holes in SkateTribe;flya highly-manoeuvrable Spitfire
in Skystrike; it's cartoon fun all the way in Mouthtrap;
and horizontal scrolling and real strategy are combined
in Yomo.

FREE with every pack: STOS Squasher. Compact PRG
and MBK files to a fraction of their normal size using
these two amazing new STOS Basic commands.

Only £19.95! Code 9879

I

_, J***«l>

More than 600
ready-made sprites
for you to use
£14.95
Code: 9426

Available from computer retailers nationwide

In case of difficulty, you can order direct. Ring 051-375 2961, or send your name, address,
postcode, product code number (see above) together with a cheque payable to Mandarin
Software or your Access/Visa number and its expiry date. Postage free in the UK (Add £2
per program for Europe and £5 for overseas).
Send to: Database Direct, FREEPOST, EUesmere Port, South Wirral L65 3EB.

Your order will be despatched within 48 hours together with a free disc containing STOS
Paint (a feature-packed art program) and Pukadu (a new game from the author of
Mouthtrap on Games Galore) plus a sample STOS Club Newsletter crammed with useful
information.

SOFT WA R E

r
\

r~
S

^
o

w
^

_
w

w
_

I 1 I II 11 Mill!

ST.O.S.
THE GAME CREATOR

S.T.O.S. IS A REVOLUTIONARY PACKAGE WHICH HAS EVERYTHING YOU
NEED TO CREATE FAST, EXCITING GAMES QUICKLY AND EASILY. WHETHER
YOU'VE NEVER WRITTEN A GAME BEFORE, OR YOU'RE A COMPETENT
PROGRAMMER, YOU'LL FIND THAT S.T.O.S. IS THE PERFECT WAY TO DE
SIGN YOUR OWN ENTERTAINMENT SOFTWARE.

THE S.T.O.S. PACKAGE COMPRISES:

* S.T.O.S. BASIC, SPRITE EDITOR, ROOM DESIGNER, CHARACTER SET EDI
TOR, ICON EDITOR, MUSIC EDITOR, SCREEN COMPACTER.

*2 GAMES, ORBIT AND ZOLTAR. BOTH OF WHICH CAN BE MODIFIED:
CHANGE THE SPRITES, MUSIC, DIFFICULTY LEVELS OR DESIGN NEW
SCREENS.

	Front Cover
	Title Page
	Read This First

	Contents
	Contents 2
	Contents 3
	Contents 4

	1: Introduction
	Making a back-up
	Run-time programs
	Using this manual

	2: Guided Tour
	The sprites
	Moving a sprite
	Animation
	Table: The STOS Basic sprite commands
	Manipulating the screen
	Table: The screen manipulation commands
	General graphics
	Table: The GRAPHICS instructions
	The mouse
	Table: The mouse commands
	The joystick
	Table: The joystick commands
	Sound and music
	Sound effects
	Table: STOS Basic sound commands
	Displaying text on the screen
	Table: STOS Basic text commands
	Pull-down menus
	STOS Basic menu commands

	3: The Editor
	The Editor window
	The function keys
	The Control keys
	Customising the editor
	Loading/Saving Basic programs
	Running a program
	Entering a STOS Basic program
	Debugging a program
	Multiple programs
	Splitting programs in the Editor
	System commands
	Naming conventions for variables
	Types of variables
	Arithmetic operations
	String operations
	Common string functions
	Array Operations
	Memory banks
	Types of memory bank
	Copying banks
	Deleting banks
	Bank parameter functions
	Saving and loading
	Run-only programs
	Basic Programs
	variables
	Images
	Machine-code programs
	The accessories
	Creating an accessory

	4: Sprite Commands
	The Sprite Definer
	The tools icons
	The system icons
	Creating an Animation sequence
	Controlling the Animation
	Changing the direction
	Displaying a background screen
	Grabbing sprites from the disc
	Grabbing a sprite from a program
	Searching through the file
	The FILE menu
	Changing the Hot Spot
	Changing the palette
	Changing the size of the sprite
	Placing a sprite into the bank
	Using the Sprite designer
	Drawing an image
	Installing a sprite into the bank
	Saving your sprites
	Using the Animator

	The multiple-mode sprite definer
	The SPRITE command
	Moving a sprite
	Combining horizontal and vertical movements
	Animation
	Controlling the sprite using the mouse
	Reading the joystick
	Detecting collisions with a sprite
	Detecting collisions with rectangular blocks
	Detecting collisions with an irregular shape
	Exceeding the 15 sprite limit
	Sprite priority
	The background
	Miscellaneous sprite commands

	5: Music and Sound
	Voices and tones
	Table: Note pitches
	The MUSIC command
	The Music definer
	The music instructions
	Envelopes and tremelos
	The Envelope editor
	The pull-down menus
	Creating a piece of music
	Predefined sound effects
	Defining your own effects

	6: Graphics Functions
	Clearing the screen
	Colours
	Table: Screen modes
	Drawing lines
	Line Types
	Filled Shapes
	Fill types
	Special effects
	The writing modes
	Polymarkers
	Multi-mode graphics

	7: The Screen
	Multiple screens
	Reserving a screen
	Loading a screen
	The screen as a string
	Scrolling the screen
	Screen synchronisation
	Compacting the screen
	Special screen effects
	Pattern Setting
	The function key window

	8: Text and Windows
	Text attributes
	Cursor functions
	Conversion functions
	Text input/output
	Windows
	Character sets
	Saving space
	Using a character set from a window
	Changing the default sets
	Icons
	The icon definer

	9: Menu Commands
	Creating a menu
	Making a selection
	Icons
	Possible ideas for expansion
	Troubleshooting

	10: Other Commands
	Control Structures
	The keyboard
	Input/output
	Disc access: sequential files
	Disc access: random access files
	The printer
	Directories
	Trigonometric functions
	Mathematical functions
	Machine level instructions
	Miscellaneous instructions

	11: Writing a Game
	Planning
	Planning techniques
	Programming
	Adding graphics
	Techniques

	Appendices
	A: Error Messages and Codes
	B: Runtime Creation
	Creating a runtime disc
	Commercial STOS Programs
	Adding a title screen
	Running other files
	Send it to Mandarin

	C: STOS Basic Floppy Discs
	Disc 1 (STOS Basic language disc)
	Disc 2 (Accessories disc)
	EXTRA.ARC (Small accessory files)
	FONT.ARC (Font accessory and font files)
	ICON.ARC (Icon accessory and an icon data file)
	MUSIC.ARC (Music accessory and data files)
	SPRITE.ARC (Multi-mode sprite accessory and sprite files)
	SPEXTRA.ARC (Low resolution sprite editor accessory)
	MAP.ARC (Room designer program and documentation)

	Disc 3 (Games disc)

	D: Using Assembly Language from STOS Basic
	Using Assembly Language
	Calling a machine-code program
	Machine code control instructions
	STOS Assembly language interface

	E: The STOS Basic Traps
	The window functions (Trap 3)
	The sprite functions (Trap 5)
	Floating point extension library (Trap 6)
	The music generator
	The music Traps (Trap 7)

	F: Structure of Memory Banks
	Structure of the sprite bank
	Typical sprite parameter block
	Structure of the icon bank
	Structure of the music bank
	Inside the music definitions
	Screen banks

	STOS Basic Commands
	Index
	Adverts
	Back Cover

