

GFA BASIC

Compiler

for the Atari ST Series

Written by GFA Systemtechnik

Distributed by
MichTron Inc.

576 South Telegraph
Pontiac, MI48053

Tel: (313)-334-5700
BBS: (313)-332 -5452

TABLE OF CONTENTS

Introduction 3
Operation. 4
Options5

Interruption. ,6
Integer overflow .8
Error messages. .9
Bombs10

Command differences. 11
CHAIN12
FILESELECT14
RESUME 14

Surprises 16
Speed , 17
Compatibility 18
License fees. 19
Internals. 19

GF A Compiler Page 2

Introduction

There are two kinds of programming languages: interpreter
languages and compiler languages. Characteristic of an
interpreter is fast development and testing of (short)
programs. Compiler languages - like the teaching language
Pascal - require more effort in the coding of the program,
and tests are as a rule difficult to carry out. In return the
programs are - usually - faster and are automatically
protected against listing of the source code.

The GF A BASIC Compiler converts programs written with
the GFA BASIC Interpreter into machine-language
programs. That means simply that your programs will run
faster and will require neither GFA BASIC nor its
associated RUN ONLY interpreter.

It will compile only those programs that have been stored
from the GFA BASIC Interpreter in the SAVE mode; not
with SAVE A, LIST or PSA VE.

The compiler requires no extra linker or even assembler,
but produces directly a complete machine-language
program.

GFA Compiler Page 3

Operation

1. Write a program with the interpreter and test it as
usual.

2. Save the program with SAVE on a diskette and leave
the interpreter.

3. Insert the compiler diskette and start the compiler
with a double-click.

4. The video screen shows an OPTIONS window,
through which you can control compiler operation.

5. After you select the COMPILE box or press the
<RETURN> key, a FILESELECT box appears, from which
you may choose the program to be compiled.

6. The compiler reads the program and checks the
program structure (DO loops and so forth), operating as a
counterpart to the interpreter.

7. The compiler reads the program and translates it into
machine code.

8. The compiler follows with a FILESELECT box for
selecting the name under which the compiled program will
be known.

9. Then the OPTIONS window reappears (Step 4). You
may compile other programs or return to the OEM desktop
with ABORT.

10. Start your program with a double-click.

OF A Compiler Page 4

Options

In GFA BASIC (after Version 2.0) a command OPTION
"text" is provided, which is useful for extra control of the
compiler. In addition, you can make adjustments with the
window displayed at the beginning of the compiler.

You can make the following adjustments:

OPTION "U?" STOP??? on dialog box

Adjustment of the response to interruptions through
the three STOP keys:

<SHIFT>+<ALTERNATE>+<CONTROL>.

OPTION "T?" TRAPV ??? on dialog box

Does the program always react to overflow in integer
arithmetic?

OPTION "E?" ERRORS ??? on dialog box

Option to show error messages as text in the compiled
program, or to save disk space by not including the
error messages in the compilation.

OPTION "B?" BOMBS ??? on dialog box

Will ignore or accept BOMB error messages (those
with error numbers greater than 100).

GF A Compiler Page 5

Interruption
OPTION "Ux" or STOP xxxx

With this option, you can choose whether and when the
STOP key:

<SHIFT>+<ALTERNATE>+<CONTROL>

will be answered. The more often the query is made, the
longer and slower the program becomes (each query costs
four bytes of memory space).

OPTION "UO" STOP NEVER on dialog box

Shuts off the Stop key query.

OPTION "UI"

Inserts exactly one query at this point.

OPTION "U2" STOP LOOP on dialog box

After this, a query will occur before the following
commands: GOTO, LOOP, UNTIL, WEND and
NEXT.

OPTION "U3" STOP EVER on dialog box

After this, a query will be made after each command.

GF A Compiler Page 6

An example of OPTION "Ux":

OPTION "UO" !Disable Stop
PRINT" S top not on"
REPEAT

PRINT "*";
UNTil.., MOUSEK AND I !untilleft Mouse key

ON BREAK GOSUB HELP
DO !Endless loop

OPTION "UI"
PRINT "#";

LOOP

PROCEDURE HELP
PRINT "Help";
IF MOUSEK AND 2

END
ENDIF

RETURN

!Exit with Sh-Alt-Ctrl

land right Mouse key

This small program first runs in a loop; printing stars. It
cannot then be halted by pressing the STOP keys
<SHIFT>+<ALTERNATE>+<CONTROL>. After you
press the left mouse button, the program runs in the next
loop, printing crosses. Now the program can be interrupted
with the three keys. The subprogram is now called (ON
BREAK GOSUB), from which you can end the program by
pressing the right mouse button.

Important: In the procedure for handling the STOP key,
you should choose OPTION "UO,". Insert OPTION "uo"
directly before the procedure and immediately after the
RETURN command; turn the interrupt on again.

GF A Compiler Page 7

Integer overflow

In compiled programs, a few arithmetic commands
(concerning integers) will be directly carried out by the
program without a call to any subprogram (for example,
INC A %). Most of the time one can proceed without using
a test of overflow; since this costs time and space and since
for a range of -2 billion to + 2 billion, overflow hardly ever
occurs.

OPTION liT +" TRAPV + on dialog box

After this command, the arithmetic commands that
follow will be combined with a TRAPV command.
When an error is found a display seven bombs or error
message # 107 will occur.

OPTION "T·" TRAPV . on dialog box

After this command the call to TRAPV is eliminated.

GF A Compiler Page 8

Error text

For errors in compiled programs, a short error message is
usually displayed, for example:

Error # -033, PC>$OOxxxxxx.

Through an option, it is possible to include, in the compiled
program, a somewhat longer error message. "Error -33"
then appears as "Data not found. II

OPTION "E+" ERRORS TEXT on dialog box

Error messages appear as text when this command is used.
This uses some memory space, but makes the detection of
errors much simpler.

OPTION "E-" ERRORS NO. on dialog box

Here no error messages are included. Therefore any
error messages appear only as numbers on the video
screen.

The last setting applies that when OPTION "E-" stands as
the last command in a program, no error messages are
included, independent of the preceding settings.

With the error messages there still remains one possibly
confusing statement:

PC>$OOxxxxxx.

This shows the position of the program counter of the
68000 CPU at the last test of the STOP key (OPTION
"U?").

GF A Compiler Page 9

Bombs

The Atari is known for frequently handing out bombs. The
bombs are shown on the screen because an exception has
been encountered that is not defined; for example, locating
the beginning of a word on an uneven storage address. The
GF A BASIC Interpreter catches most of these errors and
then often (though not always) is ready to work and the
program and data are still intact. One can likewise choose
to apply these catches of bomb errors in compiled
programs.

OPTION "B+"

OPTION "B-"

BOMBS + on dialog box

BOMBS - on dialog box

When "B+" or BOMBS + has been chosen last, the
appropriate catch routines are inserted into the
compiled program.

Then, for example, a DPEEK(INTIN+3) will not lead
to 3 bombs and loss of program and data, but only to
ERROR 103, which can be caught with ON ERROR
GOSUB xxx and RESUME.

GFA Compiler Page 10

Command differences

There are a very few commands that have meaning only for
the interpreter and cannot be carried out by the compiler:

LIST
TRON
DEFLIST
LOAD
STOP

LLIST
TROFF
SAVE
PSAVE
CONT

These commands require either a listing of the program or
are meaningless in compiled programs (PSAVE), and also
are not especially useful in interpreter programs.

OF A Compiler Page 11

CHAIN 'lilename"
Interpreter:

First, the filename attached will be examined to determine
whether there is a "." after the last ''\'' (that is, whether the
filename has an extension). If not, ".BAS" will be
appended to the filename. Then the file will be opened,
checked to see if it is a GF A BASIC program (interpreter),
then loaded and started. For erroneous filenames, an error
message will be displayed or else the ON-ERROR-GOSUB
routine called.

Compiler:

The filename will in no case be altered. The given
filename will be given over to the GEM-AES function
sh_write and the compiled program ended with QUIT. On
return to the GEM Desktop, the corresponding program is
called, exactly as if with a double-click and with the usual
white title line with the program name on the screened
(colored) Desktop background. The program called
occupies no more storage area after this command.
Together with the program, sh_ write also will write the
contents of BASEPAGE + 128 as a command line.

GFA Compiler Page 12

That sounds complicated, as it is; nevertheless, a few
examples should clear things up:

CHAIN "DATEI2.PRG"

Here the program (compiled by GFA BASIC) IS

loaded from the diskette and started.

A$="TEST.DOC"
A$=CHR$(LEN(A$))+ A$+CHR$(O)
BMOVE VARPTR(A$),BASEPAGE+ 128,128
CHAIN "lST_ WORD.PRG"

Here 1ST_WORD (a word processing program by
GST, distributed by Atari) is loaded and started. The
text file "TEXT.DOC" is preselected, so that
1ST_WORD shows no FILESELECT box. The two
complementary following commands write the
filename under the GEMDOS convention on the upper
half of the base page. Through the CHAIN command
this command line is then transferred to GEM. GEM
then writes this line in the appropriate spot in the
program called.

POKE BASEPAGE+128,0
CHAIN "lST_ WORD.PRG"

Here 1ST_WORD is also loaded, but it is guaranteed
to be without the document name. Without the POKE
command, it could happen that a name placed in the
basepage could be encountered.

See also: EXEC (Interpreter manual V 2.0, Appendix F14)

GFA Compiler Page 13

FILESELECT "path", ''jile'',Jile$

In compiled programs there must be at least 32,500 bytes
free before calling this command, because the compiler
reserves no fixed secondary storage. The interpreter
reserves a few fixed storage areas of 32 Kbytes for an
editor and can then also use these for the FILESELECT
call in order to save the old screen background. The
compiler on the contrary uses no fixed background storage,
but instead uses dynamic string regions.

RESUME

RESUME NEXT

The RESUME command without declaration of a label is
little different than it is under the interpreter. RESUME or
RESUME NEXT must know, respectively, where the
corresponding command begins or ends. To that end a
large table would have to be attached to the program that
retains the distance to each compiled command.

Instead, the GFA BASIC Compiler stores only the interval
between the appearances of OPTION "Ux." The program
counter necessary for the resumption of the program will
also be saved there, so that a RESUME is (usually) possible
after TOS errors as well. The "side effect" that OPTION
"Ux" also lets the computer check the three STOP keys
permits one to break off through ON BREAK CONT or,
even more usefully, use ON BREAK GOSUB xxx to reach
a defined break routine.

The example program on the next page seeks first to load
the data "MCODE.DAT" into the string A$. If the data
cannot be loaded - for whatever reason - an error message
is displayed. Although the program runs in a loop, which
theoretically can be ended only through a RETURN, one
can stop the program also with the three STOP keys after a
certain question.

GF A Compiler Page 14

Example of ON ERROR/RESUME/ON BREAK and
OPTION "Ux"

,
OPTION "UO"
ON BREAK GOSUB STOP
ON ERROR GOSUB ERROR
OPTION "U1"
OPEN "I",#1,"MCODE.DAT"
A$=INPUT$(LOF(#1),#1)
CLOSE #1
ON ERROR

,
PROCEDURE ERROR

CLOSE #1
PRINT "Cannot load" "MCODE.DAT"
PRINT "Error number" 'ERR
PRINT "Please fix error'"
PRINT "and press RETURN"
REPEAT

OPTION "U1"
UNTIL INKEY$=CHR$(13)
RESUME

RETURN
PROCEDURE STOP

PRINT "Program stop (YIN)?";
REPEAT

A$=UPPER$(INKEY$)
IF A$="J$"

END
ENDIF

UNTIL A$="N"
PRINT

RETURN

GF A Compiler Page 15

Surprises

What is the result of the following program:

FOR 1=-2 TO 2
PRINT I;"/";I"=";I/I

NEXT I

Entirely clear!!!?!

Naturally: -2/-2=1
-1/-1=0
0/0= Division by Zero

But what do you think! -2/-2=1
-1/-1=1
0/0= 1 What next??
1/1=1
2/2=1

Why????

The compiler is fairly dumb, but it notices when something
is to be divided by itself and writes a 1, using the program:

PRINT 1'''/'''1'''='' 1 , " ,

The case that one divides 0 by 0 is rare (and foolish)
enough, that one safely can substitute the value for the
division. The same goes also for addition, subtraction and
multiplication; thus (A+B)*(A+B) is converted to the much
faster double(A+B).

In general one may not expect too much of this
optimization: A+B-B will not be recognized, though B
B+A will.

GF A Compiler Page 16

Speed
There is a difference between the running speed of an
interpreted program and that of the corresponding compiled
program (hopefully). There are, however, commands that
are more accelerated than others by the compiler. So
especially fast compiled programs often come from
especially slow interpreter programs.

The principal advantage of the compiler is the better use of
integer arithmetic. For example, for INC A % a single
machine instruction is required, though for the interpreter
there must always be some 50 commands, of which 49
serve only to determine the operation to be carried out and
have nothing to do with the particular program. On the
other hand, the corresponding interpreter commands play
hardly any role in a sine calculation because it hardly
matters whether 5000 or 5050 commands are carried out.
(5,000 steps to do the numerical approximation)

Especially revealing is a comparison of integer variables.
Thus it happens that the fastest numerical loop with integer
variables is not, as for the interpreter, the FOR-NEXT loop.
Indeed, this loop is faster under the compiler than it is
under the interpreter, but its speed is surpassed by the
REPEAT-UNTIL loop under the compiler.

FOR 1%=1 TO 1000
NEXT 1%

is therefore slower than:

1%=0
REPEAT

INC 1%
UNTIL 1%> 1000

OF A Compiler Page 17

Compatibility

If you want to write a program for which it is important
how much storage space a number occupies because for
example, you want to save a number field on the diskette
with BSA VE, please calculate in your program:

bytes%=VARPTR(a(1»-VARPTR(a(O»

Then you can transfer your BASIC program, should the
number format should be altered sometime.

GFA Compiler Page 18

License fees

The programs constructed with the GF A BASIC Compiler
may be distributed without payment of a license fee.

The name of the programming language, GFA BASIC,
however, should be included on the diskette, packaging or
instructions. (Thanks)

Internals

The calls for the routines in the runtime library
(mathematical routines for the most part) arise through jsr
xxx(a6).

Especially for OPTION "U" is jsr (a6) used (only by the
compiler).

There is a fixed address for interpreted and compiled
programs, at which also machine programs can begin to
run, in order to respond to errors. It is possible to call the
normal BASIC error routines through

moveq #num,dO
jmp 2(a6)

Before CALL and C: all registers are automatically saved
(a3-a6). It is not necessary to save other registers in a
machine routine.

GF A Compiler Page 19

YOUR RIGHTS AND OURS: This copy of GFA BASIC COMPILER
IS li censed to you. You may make copies for your own use or for archival storage. You
may also sell your copy Without notifying us. However, we retain copyright and other
property nghts m the program code and documentation . We ask that GFA BASIC
COMPILER be used either by a single user on one or more computers or on a single
computer by one or more users. If you expect several users of GFA BASIC COMPILER
on several computers, contact us for quantity discounts and site-licensing agreements .
Also if you intend to rent this program, or place this program on a BBS, contact us for the
appropiate license and fee.

We think this user policy is fair to both you and us; please abide by it. We will not
tolerate use or distribution of all or part of GFA BASIC COMPILER or its
documentation by any other means.

LIMITED WARRANTY In return for your understanding of our legal rights,
we guarantee GFA BASIC COMPILER will reliably perform as detailed in this
documentation, subject to limitations here described, for a period of thirty days. If GFA
BASIC COMPILER fails to perform as specified, we will either correct the flaw(s)
within 15 working days of notification or let you return GFA BASIC COMPILER to
the retailer for a full refund of your purchase price. If your retailer does not cooperate,
return GFA BASIC COMPILER to us. While we can't offer you more cash than we
received for the program, we can give you this choice: 1) you may have a cash refund of
the wholesale price, or 2) you may have a merchandise credit for the retail price, which
you may apply toward buying any of our other software. Naturally, we insist that any
copy returned for refund include proof of the date and price of purchase, the original
program disk, all packaging and documentation, and be in salable condition.

If the disk on which GFA BASIC COMPILER is distributed becomes defective within
the warranty period, return it to us for a free replacement. After the warranty period, we
will replace any defective program disk for $5.00.

We cannot be responsible for any damage to your equipment, reputation, profit-making
ability or mental or physical condition caused by the use (or misuse) of our program.

We cannot guarantee that this program will work with hardware or software not generally
available when this program was released, or with special or custom modifications of
hardware or software, or with versions of accompanying or required hardware or software
other than those specified in the documentation.

Under no circumstances will we be liable for an amount greater than your purchase price.

Please note: Some states do not allow limitations on how long an implied or express
warranty lasts, or the exclusion or limitation of incidental or consequential damages, so
some of the above limitations or exclusions may not apply to you.

UPGRADES AND REVISIONS: If you return your information card,
we will notify you if upgrades to GFA BASIC COMPILER become available. For
minor upgrades and fixes, return the original disks to us with $5.00. For major revisions,
the upgrade fee is typically 15-20% of the original suggested retail price.

FEEDBACK Customer comments are VERY important to us. We think that the
use, warranty and upgrade policies outlined above are among the fairest around. Please
let us know how you feel about them.

Many of the program and documentation modifications we make result from customer
suggestions. Please tell us how you feel about GFA BASIC COMPILER - your ideas
could make the next version better for all of us .

COPYRIGHT NOTICE The GFA BASIC COMPILER program code and
its documentation are Copyright (c) 1987 by GFA Systemtechnic.

Atari ST Fast 2-pass Compiler
byGFA

