ATARI ST

. GFA
BASIC

®

Version 3

*l |nterpreter






GFA BASIC
Version 3

User Manual

GFA Software Technologies, Inc.



July 1988

No part of this publication may be copied, transmitted or stored in
a retrieval system or reproduced in any way including but not
limited to photography, photocopy, magnetic or other recording
means, without prior written permission from the publishers, with
the exception of material entered and executed for the reader’s
own use.

Warranty

All programs in this manual have written expressly to illustrate
specific training points, they are not warranted as being suitable
for any particular application. Every care has been taken in the
writting and presentation of this manual but no responsibility is
assumed by the author or publishers for any errors or omissions
contained herein or any consequential loss suffered therefrom.

ISBN 1851811869

COPYRIGHT © 1988 GFA Systemtechnik GmbH
Published in the U.S. by:

GFA Software Technologies, Inc.
27 Congress St.
Salem, MA 01970



CONTENTS

Chapter 1 - Introduction

About This Manual
Using GFA BASIC 3 For The First Time
The Editor
Fundamentals
The Cursor Keypad
The Numeric Keypad
Further Editing Commands
Further Control Commands
The Menu Bar and Function Keys
Special Commands
DEFBIT, DEFBYT, DEFINT
DEFWRD, DEFFLT, DEFSTR
DEFLIST

[y

0 00 AN
—

11
12
13
20
20
20
22
22



GFA BASIC 3 - User Manual

Chapter 2 - Variables and Memory Management

Variable types
Ll & %, #$

Arrays

DIM, DIM?
OPTION BASE
ARRAYFILL

Type Transformation
TYPE
ASC(), CHRS$()
STR$() .
BINS$(), OCT$(), HEX$()
VAL(), VAL?0
CVx(), MKx3$()
CINT(), CFLOAT()

Pointer Operations
*
PEEK(), POKE, DPEEK(), DPOKE, LPEEK, LPOKE
SPOKE, SDPOKE, SLPOKE
BYTE(}, CARD{}, INT{}, LONG{}, {}, FLOAT{(}
SINGLE({ }, DOUBLE{}
CHAR{}
VARPTR; V:, ARRPTR, *
ABSOLUTE

Deleting and Exchanging
CLEAR, CLR, ERASE
SWAP
SSORT, QSORT
INSERT, DELETE

Reserved Variables
FALSE, TRUE, P1
DATES$, TIMES$, SETTIME, DATES$=, TIMES$=
TIMER

v

23

23

26
28
29
30

31
31
32
33
34
35
36
38

39
39
40
40
42
42
42
46
47

48
50
52
54

56
56
57
58



Special Commands
LET
VOID, ~

Memory Management
FRE
BMOVE

BASEPAGE, HIMEM

RESERVE
INLINE

MALLOC, MFREE, MSHRINK

Chapter 3 - Operators

Arithmetic Operators
E * //\
DIVAMOD
+ -

Logical Operators
NOT
AND
OR
XOR
m™mP
EQV

Concatenation Operator
+

Comparison Operators

<D L=D>=
<>

Assignment Operator

Operator Hierarchy
0

59
59
60

61
61
62
63
64
65
66

69

70
70
70
70

72
73
74
75
76
77
78

79
79

80
80
81
82
83

84
84

85
85



GFA BASIC 3 - User Manual

Chapter 4 - Numerical Functions 87
Mathematical Functions 87
ABS, SGN ; 88
ODD, EVEN 89
INT, TRUNC, FIX, FRAC 90
ROUND 91
MAX, MIN N ) 92
SQR 93
EXP, LOG, LOG10 94
SIN, COS, TAN 95
ASIN, ACOS, ATN 95
DEG, RAD 95
SINQ, COSQ 95
Random Number Generation 97
RND, RANDOM, RAND, RANDOMIZE 97
Integer Arithmetic 99
Commands and Functions 99
DEC, INC 100
ADD, SUB, MUL, DIV 101
PRED(), SUCC() 102
ADD(), SUB(), MULY(), DIV(), MOD() 103
Bit Operations 105
BCLR, BSET, BCHG, BTST 106
SHL, SHR, ROL, ROR 108
AND(), OR(), XOR(), IMP(), EQV() 110
SWAP() 111
BYTE(), CARD(), WORD() 112

VI



Contents

Chapter S - String Manipulation 113
LEFTS$, RIGHT$ 114

MID$ (as function) 115
PRED, SUCC 116

LEN, TRIM$ 117
INSTR 118
RINSTR 119
STRINGS, SPACES$, SPC 120
UPPERS$ 121
LSET, RSET 122

MIDS$ (as an instruction) 123
Chapter 6 - Input and Output 125
Keyboard and Screen Handling 125
INKEY$ 126
INPUT 127

LINE INPUT 129
FORM INPUT, FORM INPUT AS 130
PRINT, PRINT AT(), WRITE, LOCATE 131
PRINT USING, PRINT AT() USING 133
MODE ) 136
DEFNUM 137
CRSCOL, CRSLIN, POS, TAB 138
HTAB, VTAB 138
KEYxxx Commands 140
KEYPAD 140
KEYTEST, KEYGET, KEYLOOK 142
KEYPRESS 145
KEYDEF 146

Data Input and Output 147
Data Commands 148
DATA, READ, RESTORE 148

va



GFA BASIC 3 - User Manual

File Management
Directory Handling
DFREE(), CHDRIVE, DIR$, CHDIR
DIR, FILES
FGETDTA, FSETDTA
FSFIRST, FSNEXT
MKDIR, RMDIR

Files 159
EXIST
OPEN
LOF(), LOC(), EOF(), CLOSE, TOUCH
NAME AS, RENAME AS, KILL
BLOAD, BSAVE, BGET, BPUT

Sequential Access
INP#, OUT#
INPUT$()
INPUT#, LINE INPUT#
PRINT#, PRINT# USING, WRITE#
STORE, RECALL
SEEK, RELSEEK

Random Access 176
FIELD AS, FIELD AT
GET#, PUT#, RECORD

Communicating with Peripherals
Byte by Byte Input and Output
INP(), INP?() , OUT, OUT?()

Serial (RS232) and MIDI Interfaces
INPAUXS, INPMID$

Mouse and Joysticks
MOUSEX, MOUSEY, MOUSEK, MOUSE
SETMOUSE
HIDEM, SHOWM
STICK, STICK(), STRIG()

i

150
152
152
154
156
157
158

159
160
162
164
165

167
167
168
169
170
172
174

177

178

180
180

180 -

182
182

183
183
185
186
187



Contents

Printing 189
LPRINT, LPOS(), HARDCOPY 189
Sound Generation 190
SOUND, WAVE 190
Chapter 7 - Program Structure 193
Decision Commands 195
IF THEN ELSE ENDIF 195
ELSE IF 197
Multiple Branching 199
ON GOSUB 199
SELECT, CASE, DEFAULT, ENDSELECT, CONT 200
Loops 205
FOR, STEP, NEXT, DOWNTO 206
REPEAT, UNTIL 208
WHILE, WEND 209
DO, LOOP 210
DO WHILE, DO UNTIL, LOOP WHILE, LOOP UNTIL 211
EXIT IF 213
Procedures and Functions 214
GOSUB, PROCEDURE, RETURN 215
VAR-parameters 217
LOCAL 219
FUNCTION, RETURN x, ENDFUNC 220
DEFFN, FN 222

Error Handling 224
ON BREAK, ON BREAK CONT, ON BREAK GOSUB 225

ON ERROR, ON ERROR GOSUB 226
RESUME, RESUME NEXT 226
ERROR, ERR, ERRS$, FATAL 228

IX



GFA BASIC 3 - User Manual

Interrupt Programming

EVERY, EVERY STOP, EVERY CONT
AFTER, AFTER STOP, AFTER CONT

Other Commands
REM, ', !
GOTO
PAUSE, DELAY
END, EDIT, STOP
NEW
LOAD
SAVE, PSAVE
LIST, LLIST
CHAIN
RUN
SYSTEM, QUIT

Error Tracing

TRON, TRON#, TROFF
TRON proc, TRACE$

DUMP

Chapter 8 - Graphics

Graphics Definition Commands
SETCOLOR, COLOR

VSETCOLOR
DEFMOUSE
DEFMARK
DEFFILL
BOUNDARY
DEFLINE
DEFTEXT
GRAPHMODE

230
230
230

233
233
234
235
236
237
237
238
239
240
240
241

242
242

246

249

251
251
252
254
256
258
261
262
264
266



Contents

General Graphics Commands 268
CLIP 269
PLOT, LINE, DRAW 270
DRAW, DRAW(), SETDRAW 272
BOX, PBOX, RBOX, PRBOX 276
CIRCLE, PCIRCLE, ELLIPSE, PELLIPSE 277
POLYLINE, POLYMARK, POLYFILL 278
POINT() 279
FILL 280
CLS 281
TEXT 282
SPRITE 283

Grabbing Sections of Screen 285
SGET, SPUT 285
GET, PUT 286
VSYNC 288
BITBLT 289

Chapter 9 - Event, Menu and Window Management 293

Event Management 293
ON MENU 264
MENU() 296
ON MENU BUTTON GOSUB 300
ON MENU KEY GOSUB 302
ON MENU IBOX GOSUB, ON MENU OBOX GOSUB 304
ON MENU MESSAGE GOSUB 305

Pull-down Menus 306
ON MENU GOSUB, MENU m$() 307
MENU OFF, MENU KILL 309
MENU '\ 309

Window Commands 312
OPENW, CLOSEW 313
W_HAND, W_INDEX 315

CLEARW, TITLEW, INFOW, TOPW, FULLW 316
WINDTAB 317
X1



GFA BASIC 3 - User Manual

Other Window-related Commands
RC_INTERSECT
RC_COPY TO
ALERT
FILESELECT

Chapter 10 - System Routines

GEMDQOS, BIOS, XBIOS
L, W:

Line-A Calls
ACLIP
PSET
PTST()
ALINE
HLINE
ARECT
APOLY TO
BITBLT
ACHAR
ATEXT
L~A

VDI Routines
CONTRL, INTIN, PTSIN, INTOUT, PTSOUT
VDISYS
VDIBASE
WORK_OUT()

Special VDI Routines and GDOS
GDOS?
V~H
V_OPNWK, V_CLSWK
V_OPNVWK, V_CLSVWK
V_CLRWK, V_UPDWK
VST_LOAD_FONTS, VST_UNLOAD_FONTS
VQT_EXTENT
VQT_NAME

320
320
322
323
325

327

327
329

330
331
332
332
333
334
335
336
337
342
343
344

345
346
347
349
349

350
352
353
353
354
354
356
357
358

S~



Contents

Non-BASIC Routine Calls
C:
MONITOR
CALL
RCALL
EXEC

Chapter 11 - AES-LIBRARIES

GCONTRL, ADDRIN, ADDROUT, GINTIN, GINTOUT, GB
GEMSYS

Object Structure 372
OB_NEXT, OB_HEAD, OB_TAIL
OB_TYPE, OB_SPEC
OB_STATE, OB_FLAGS, OB_X, OB_Y, OB_W, OB_H
OB_ADR
Text Data Structure (TEDINFO)
Icon Data Structure (ICONBLK)
Bit Image Block Structure (BITBLK)
Application Block Structure (USERBLK)
Parameter Block Structure (PARMBLK)

Applications Library
APPL_INTT
APPL_READ
APPL_WRITE
APPL_FIND
APPL_TPLAY
APPL_TRECORD
APPL_EXIT

359
359
362
363
364
366

369

369
371

372
373
374
374
375
375
376
376
377

378
378
378
379
379
380
380
380



GFA BASIC 3 - User Manual

Event Library 381
EVNT_KEYBD 381
EVNT_BUTTON 382
EVNT_MOUSE 384
EVNT_MESAG 385
EVNT_TIMER 386
EVNT_MULTI 387
EVNT_DCLICK 388

Menu Library 389
MENU_BAR 389
MENU_ICHECK 389
MENU_IENABLE 390
MENU_TNORMAL 390
MENU_TEXT 391
MENU_REGISTER 391

Object Library 392
OBJC_ADD 392
OBJC_DELETE 392
OBJC_DRAW 393
OBJC_FIND 393
OBJC_OFFSET 394
OBJC_ORDER 394
OBJC_EDIT ' 395
OBJC_CHANGE 396

Form Library 397
FORM_DO 397
FORM_DIAL 398
FORM_ALERT 399
FORM_ERROR 400
FORM_CENTER 401
FORM_KEYBD 401
FORM_BUTTON 402



Contents

Graphics Library
GRAF_RUBBERBOX

GRAF_DRAGBOX

GRAF_MOVEBOX
GRAF_GROWBOX
GRAF_SHRINKBOX
GRAF_WATCHBOX

GRAF_SLIDEBOX
GRAF_HANDLE
GRAF_MOUSE
GRAF_MKSTATE

Scrap-Library

SCRP_READ
SCRP_WRITE

File selector Library

FSEL_INPUT

Window Library

WIND_CREATE
WIND_OPEN
WIND_CLOSE
WIND_DELETE
WIND_GET
WIND_SET
WIND_FIND
WIND_UPDATE
WIND_CALC

Resource Library

RSRC_LOAD
RSRC_FREE
RSRC_GADDR
RSRC_SADDR
RSRC_OBFIX

XV

403
403
405
406
406
407
408
409
410
411
412

413
413
413

414
414

416
416
417
417
418
418
421
423
423
424

425
425
425
426
427
427



GFA BASIC 3 - User Manual

Shell Library
SHEL_READ
SHEL_WRITE
SHEL_GET
SHEL_PUT
SHEL_FIND
SHEL_ENVRN

Sample Programs

Chapter 12 - Appendix

Compatibility with GFA-BASIC 2
MUL, DIV
PRINT USING
CLS, PRINT TAB
KEYPAD
MOUSEX, MOUSEY

GEMDOS Table
BI1OS Table
XBIOS Table
Table of LINE-A Variables
Table of Input Parameters for V_OPN(V)WK
Table of WORK_OUT Array of the VDI
Table of VT 52 Control Codes
Scan-code Table
ASCII Table -
Special ASCII Characters
Fill Pattern and Line Style Table
Error messages
GFA BASIC error messages
Bomb Error Messages
TOS Error Messages
Editor Error Messages

Chapter 13 - New Features in GFA BASIC 3.5

Index

XVi

428
428
428
429
430
431
431

432

443

443
444
444
445
445
445

446
457
460
471
473
474
476
477
478
479
480
481
481
483
484
485

487
529



CHAPTER 1
INTRODUCTION

With the release of GFA BASIC 3 is provided with both an extensive
programming and powerful language which is easy to use via its quick and
friendly Editor. The entire framework and design of the language
encourages structured programming and provides the user with the
necessary tools.

The Interpreter provides for simple debugging by means of the special
commands provided. The Editor supports structured programming by
automatic indentation of loops and conditions. Additionally, subroutines
canberepresented in the program listing by name only, and *opened’ to their
full length by pressing a key.

In the area of conditional commands, various additions have been made to
the commands IF-ELSE-ENDIF, which already existed in earlier versions
of GFA BASIC, e.g. ELSE-IF, SELECT-CASE. Both the values of
variables and the variables themselves can be passed to procedures.
Furthermore, the loop types FOR-NEXT, REPEAT-UNTIL, WHILE-
WEND and DO-LOQP available in earlier versions of GFA BASIC have
been extended with DO-UNTIL, DO-WHILE, LOOP-UNTIL and LOOP-
WHILE.

System level programming is achieved through the ability to call operating
system routines (GEMDOS, BIOS, XBIOS). Many of these routines are
also available in form of simple instructions. The programming of
Interrupts with EVERY and AFTER is also possible. Assembler and C
routines may be interleaved into programs with instructions like RCALL,
C:MERGE and MONITOR. The most important VDI-routines and all
AES-functions, e.g. menu and form management, are available as built-in
functions.



2 GFA BASIC 3 - User Manual

GFA BASIC provides genuine Integer arithmetic, which offers high
computing speed, as well as floating-point arithmetic with high
computational accuracy - 13 decimal places, while further variable types
-BYTE, WORD - and bit operations - BCLR, BSET, BTST, BCHG, SHL,
SHR,ROL, ROR, etc. - have been included. Graphics programs can easily
make use of the LINE-A routines which are implemented as instructions.

About This Manual

The manual begins with a short description of the GFA BASIC 3
programming language, followed by an explanation of the manual
structure and an introducticn to the use of the GFA BASIC Interpreter. It
ends with a description of the points which one must take note of when
using programs which were written in older versions of GFA BASIC.

The next chapter describes the commands for the operation of the Editor.
The remaining chapters of the manual detail the instructions and facilities
of GFA BASIC 3.0. These are arranged according to criteria concerning
the contents, with joint explanations of related terms, e.g. MIN and MAX.
In the appendix an alphabetical overview of the instructions and functions
is given, with references to the appropriate pages for full explanation.

Descriptions of Commands, etc, are laid out as follows:
® The Syntax
® Description of the permissible parameter types
@ Explanatory text
@ Example

In the Syntax description optional parameters are indicated with square
brackets, e.g.

LEFTS (a$ [, x] )



Chapter 1 : Introduction 3

In GFA BASIC there are Commands and Functions. Commands do not
return a value, e.g.

LINE 100,100,200,200

Functions, on the other hand, do return a value and can display this value
with PRINT, assign it to variables, etc. Here are some examples:

PRINT ASC("65")
PRINT ASC("a")
a=ASC ("a")
b=ASC ("a") +32

In this manual the fact that a Function returns a value is not noted in the
Syntax section, but is made clear in the explanation. In the Syntax section, -
in the case of the function ASC for example, only ASC(a$) is specified and
the fact that this would be assigned to a numeric variable is not stated.

Where many optional parameters may be given, e.g. with the DATA
statement, this is shown by three full stops:

DATA [, V, +..]

The description of permitted parameter types follows the Syhtax section.
For these types the following abbreviations are used:

avar Arithmetic variable

This a numeric variable, which can be of any form, e.g. floating point,
integer, boolean, etc.

aexp Arithmetic expression

This isany simple or complex expression which produces anumberand can
include variables. Examples of arithmetic expressions are:

a%
3
2+a%+ASC("a")



4 GFA BASIC 3 - User Manual

svar String variable

This is a character string variable ending with $, e.g.
a$

sexp String expression
This expression can be of arbitrary complexity but must finally result in a
String. Examples of string expressions are:

a$
"Test"
a$+"GFA BASIC"+LEFTS {"MANUAL", 4)

ivar Integer variable

This can be any integer variable.

iexp Integer expression —_

This is any simple or complex expression but the result must be an
integer.

bexp Boolean (logical) expression

Any expression from which the result is a Boolean number.

It is important for some numerical expressions that particular variable
types must be used. The most important example of this is with memory
addresses. Addresses must be specified as at least a four byte variable and
Boolean, Byte or Word variables are thus not allowed.

After the description of the parameter types comes the explanation of the

command. Here the meaning of the command and its individual parameters

are explained. The discussion of acommand isterminated with one ormore

examples. These examples are designed to be entered into the Editor and ™
started with RUN (shift+F10 or clicking RUN in the menu bar). After each

example the effect it produces is given.



Chapter 1 : Introduction 5

This form of command description is modified only in the section dealing
with the AES library routines. Here the name of the appropriate command
is given, followed by the explanation of its function, then the syntax of the
command with the description of the individual parameters. At the end of
the chapter concerning the libraries several longer example programs are
provided. The reasoning behind this structure is that many commands inthe
chapter must be used in correct conjunction with other commands, so that
example programs tend to contain many AES callsand tend to be somewhat
more extensive.

The manual concludes with a collection of tables and an alphabetical list
of all commands, with their page numbers.

NOTE: Where a program line is longer than the width of the
page it has been wrapped round on the page and right justified.
This will not happen when you are typing in the line, it will just
extend to the right of the screen as far as necessasary (up to 255
characters).



6 GFA BASIC 3 - User Manual

Using GFA BASIC 3
For The First Time

This section is for those who have not used GFA BASIC before. Those who
have already worked with the older versions can just scan this section or,
if feeling very confident, jump to Chapter 2.

The GFA BASIC 3 Program disk is not copy-protected, so first make a
back-up copy of the original disk. You will find a description of how to do
this in your computer manual. Put the copy of the program disk in your disk
drive and start GFA BASIC by clicking on the icon.

After a short while, the Editor screen will appear, which is where you can
write and debug your programs. For now, enter the following program
lines, pressing RETURN at the end of each line. Do not omit the spaces,
which serve to separate adjacent keywords. The indenting of instructions
within loops is done automatically by the Editor, as is the capitalisation (or
lack of it) when RETURN is pressed.

DEFFILL 1,2,8
REPEAT
WHILE MOUSEK=1

PBOX MOUSEX,MOUSEY, MOUSEX+30,MOUSEY+30
WEND
UNTIL MOUSEK=2

In the upper right comer of the screen you will find the word "Run’. Point
with the mouse arrow to this word and press the left mouse button to start
the program.

Now a white screen appears, on which the mouse pointer is visible. If you
now press the left mouse button and move the mouse about, you can draw
on the screen. A rectangle is used as a "brush’. Pressing the right mouse
button terminates the program and a box appears containing the message
"Programend’ . Pointtothe word 'Return’ in this box and press the left mouse
button to return you to the Editor.

—



Chapter 1 : Introduction 7

How does this program work? Drawing takes place with the instruction in
the centre of the program. It draws filled rectangles, with the four parame-
ters specifying the corner points. The first instruction of the program
(DEFFILL 1,2,8) determines what pattern the rectangle is to be filled with.

Information about the mouse is contained in the built-in variables
MOUSEK, MOUSEX and MOUSEY.

MOUSEK determines which mouse button is being pressed. MOUSEK=1
means that the left button was pressed and MOUSEK=2 that the right
button was pressed. MOUSEX and MOUSEY supply the x and y positions
on the screen of the mouse arrow point.

The remaining commands (REPEAT, WHILE, WEND, UNTIL) are loop
instructions. The loop formed with the commands WHILE MOUSEK=1
and WEND means ‘repeat, as long as the left mouse button is pressed’. The
outside loop, made from the instructions REPEAT and UNTIL
MOUSEK=2, means repeat, until the right mouse button is pressed’.

Since there are no further instructions after the UNTIL, the program ter-
minates after leaving this loop. Move the cursor (with the arrow keys) to
the beginning of the line after the last and enter the following intentionally
wrong program line, in which the 'i’ of the command word PRINT is
missing:

prnt "test”

When you press the RETURN key to leave the line and confirm the
instruction, a bell sounds and on the second screen line the message Syntax
error’ appears.

The Editor checks during program entry whether the instructions entered
are syntactically correct. Now, with the cursor on the letter '1’, press the
Delete key three times. The program line should now contain only:

p "tast"

Ifthe RETURN key is now pressed, then you can leave the line, as the letter
pisrecognized automatically as an abbreviation for the command PRINT.



8 GFA BASIC 3 - User Manual

The Editor

Fundamentals

The GFA BASIC 3.0 Editor is no usual text editor, but was specially
designed for program development. Syntactically wrong instructions are
recognised at the typing-in stage. In addition, commands are indented
automatically in loops or conditional sections and command names
expanded from their abbreviations, e.g. p expands to PRINT.

When writing a program a syntax check is carried out whenever the cursor
leaves the current line. If the line is not syntactically correct, then the
message 'Syntax error’ appears on the second line of the screen. It will only
be possible to move the cursor from the line by correcting the syntax or
putting an apostrophe at the beginning, thus converting it into a Comment.

Only one instruction per program line is allowed, but a comment may be
added to the end of a line by beginning the comment with an exclamation
mark.

Program lines may be up to 255 characters long. When a line exceeds 80
characters in length it is scrolled horizontally to the left. When the cursor
leaves an instruction line a syntax check is done, correct indentation of the
line is carried out and the line is formatted. In addition, redundant spaces
are removed, e.g. "2 + 2’ becomes '2+2°, and the letters belonging to
command words and variable names are adjusted according to the current
DEFLIST setting. The preset parameter DEFLIST 0 causes all command
words to be written in upper case and all variable names in lower case.



Chapter 1 : Introduction 9

The Cursor Keypad

Cursor control is by means of the block of arrow keys. The key settings are:

Left arrow - cursor moves one character left
Right arrow - cursor moves one character to the right
Uparrow - cursor moves up one line

Down arrow - cursor moves down one line

The movements of the cursor are subject to certain restrictions. It can be
moved a maximum of one character beyond the last character in a line, and
amaximum of one line beyond the last linein a program. If the cursor enters
a line which is too short for the current cursor position, the cursor jumps
to the end of that line, otherwise it maintains its current column position
(this is different to the behaviour of the cursor in earlier versions of GFA
BASIC). It also is possible to position the cursor with the mouse. To do this
point the mouse arrow to the desired place and click the left mouse button.

The Insert key inserts a blank line between the line the cursor is on and the
line above. The cursor is set to the beginning of this blank line.

Clr/Home moves the cursor to the upper left corner under the menu bar.
Control-Clr/Home jumps to the beginning of the program listing.

The Undo key will cancel any changes made in an edited line, provided that
the changes have not been confirmed by moving the cursor off that line.

With the Help key, procedures in the program listing can be shortened to
justtheir name (*folded’). This is done by moving the cursor to the line with
the word 'Procedure’ on it and then pressing Help. A "> character is placed
at the beginning of the line to indicate that folding has occurred. The
procedure can be unfolded inthe same way, or by deletingthe ' >'. Of course
this does not affect the procedure in the program itself, only as listed. This
folding up of subroutines enables one to create short clear listings in which
one ‘opens’ only the subroutine on which one is working.



10 GFA BASIC 3 - User Manual

A program with folded up procedures can look as follows. Note, that to call
a procedure in GFA BASIC 3 only the procedure name is used.
init
main _menu
r
PROCEDURE init
PROCEDURE main menu
PROCEDURE menu_list
PROCEDURE load
PROCEDURE store
PROCEDURE do work
PROCEDURE fetch info
PROCEDURE show_info

VVVVYVYVYVYV

With an opened procedure the program then appears as:

init
main menu
r
> PROCEDURE init
> PROCEDURE main menu
> PROCEDURE menu list
PROCEDURE load
FILESELECT "\ * ,RSC","",rsc file$
IF NOT EXIST(rsc file$) -
ALERT 1,"File does not exist !",1,"abort",r%
ELSE
IF RSRC LOAD(rsc file$)=0
ALERT 1,"Fault when loading the file!",1,
"abort", r$
END
ENDIF
ENDIF
RETURN
> PROCEDURE store
> PROCEDURE do work
> PROCEDURE fetch info
> PROCEDURE show_info



Chapter 1 : Introduction 11

The Numeric Pad

The numeric pad is normally used to input numbers and some other
characters. However, in addition it can, in combination with the Control
key, perform the following functions:

Control and 4  Cursor one character to the left
Control and 6  Cursor one character to the right
Control and 8  Cursor one line up

Control and 2 Cursor one line down

Control and 7 Jump to start of program
Control and 1 Jump to end of program
Controland 9 Move one page up

Controland 3 Move one page down

Control and 0 Equivalent to pressing Insert
Control and . Equivalent to pressing Delete

The functions are similar to those obtained on a PC when NUMLOCK is
not on.The numeric pad can also be switched to a mode in which the keys
can be used without having to press Control as well. The switch is made by
pressing Control and '-* on the numeric pad, and indicated by a circumflex
to the left of the menu bar. This key combination acts as a toggle switching
between modes each time it is pressed.

Further Editing Commands

The Delete key deletes the character at the cursor position, the remainder
of the line being pulled to the left.

The Backspace key deletes the character to the left of the cursor.

The Tab key moves the cursor eight character positions to the right.
Control-Tab moves the cursor eight character positions to the left.

The Return or Enter keys move the cursor to the beginning of the next line.

The Escape key enters Direct Mode, in which you can type in commands.



12 GFA BASIC 3 - User Manual

Further Control Commands

Control-Delete Deletes the line on which the cursor appears

Control-U Restores a line deleted as above, or below (the line
may be restored several times - like copying)

Control-Y Deletes the line on which the cursor appears

Control-N Inserts a blank line as with the Insert key

Control-Q Call block menu (like function key F4)

Control-B Mark beginning of block (Block start)

Control-K Mark end of block (Block end)

Control-R Page up

Control-C Page down

Control-E Replace text

Shift-control-E Find/Replace inputted text

Control-F Find text

Shift-control-F Input text and find it

Control-left arrow Cursor jumps to beginning of the line

Control-right arrow  Cursor jumps to the end of the line

Control-up arrow Page up

Control-down arrow  Page down

Control-Clr/Home  Jump to beginning of the program

Control-P Deletes everthing to the right of the cursor

Control-O Brings back the string deleted with Control-P and
inserts it at the cursor position. Perhaps it is difficult
lo remeber these combinations; we thought of:
P = Put line end into buffer
O = Output line from buffer

Control-Z Jump 1o the end of the program

Control-Tab Cursor jumps one tab position to the left

Control-G (goto) Move to Line Number display (top right on Menu
bar), then enter line number

A special group of Control commands makes the setting of 'Editor Marks'
possible. These marks are only meaningful to the Editor and have no effect
on the actual program. These marks can be set by Control-n, where nis a
number on the main keyboard. The cursor can be made to jump to a given
mark by simultaneously pressing Alternate and the appropriate number.

The key combinations of Alternate and the numbers 7-9 and 0 are pre-
allocated. Pressing Alternate and 7 makes the cursor to jump to the last
cursor position before changing modes or before a program was last Run.
With Alternate and 8 the cursor jumps to its position at the start of the
Editor. Alternate and 0 moves the cursor to the last cursor position at which
achange was made, and Alternate and 9 moves it to the position at which
the last search procedure was started.



Chapter 1 : Introduction 13

The Menu Bar and Function Keys

The items in the menu bar on the second and first screen lines are also
available via the function keys and Shift-function keys respectively.

On the far left of the menu bar is the Atari symbol (N ), clicking which
generates another menu containing the menu titles, Atari symbol and GFA
BASIC. Clicking the Atari symbol causes an Alert box to appear, giving
the title and version number of GFA BASIC 3 xx and the two options Editor
and Menu. Clicking the Editor button returns you to the Editor, or clicking
Menu brings you back to the same menu,

The GFA BASIC Menu Bar contains the following items:

Save

A File-Select box appears, by means of which the current program can be
stored by entering a program nameand clicking on OK.

Load

A program can be similarly loaded into the Editor by clicking on the
program name and then clicking on OK.

Deflist

Makes possible the adjustment of the appearance of the program listing
(see DEFLIST later on for details, or experiment).

New names

By means of this item amode can be set in which variable names are queried
as you introduce them into a program. This is useful as GFA BASIC allows
long variable names, making typing errors possibile. If you are editing a
program and do not mean to introduce new variables and you mis-type an
existing name, this feature will warn you.



14 GFA BASIC 3 - User Manual

On the right-hand side of the menu bar is a clock and the line number
display. The use of these two items is explained later on.

Under the Atari symbol there is a space for two further indicators, namely
an up-arrow character to show when Caps-Lock is active on the keyboard,
and the circumflex showing when the numeric pad is used for cursor
movements, etc. These two modes can be entered and exited by clicking
the mouse on the space for the indicator (or the indicator itself if present).

-

Load (F1)

This command load is used to load a GFA BASIC 3 program. This will be
in tokenised format, which enables programs to be loaded and saved
quickly, using less disk space. The extension .GFA will be looked for by
default.

Earlier versions of GFA BASIC saved their programs using a
different tokenisation process. For these programs to be loaded into
version 3 they must first be saved, using the old GFA BASIC, in
ASCH format ( Save,A’)andthenloadedinto Version 3 with Merge.
After that they can be stored in version 3 format with Save, and then
Loaded as normal.

Save (Shift+F1)

A File-Select box appears, in which the desired program name can be
specified. The extension .GFA will be added to the filename if no other is
given. If a file of that name already exists on the disk it will be renamed to
.BAK.

Merge (F2)

With this command a file in ASCII format can be inserted into the current
program, starting at the line above the cursor position. The default file
extension will be .LST. Syntax checking is also carried out during the
Merging process, but instead of interrupting with a Syntax error when an
uninterpretable line is encountered, the line will be prefaced with the
characters ==>’, and must be fixed before the program can be Run.



Chapter 1 : Introduction 15

Save,A (Shift+F2)

The current program will be stored in ASCII format. The extension .LST
will be added to the filename if no other is specified. If a file with that name
already exists on the disc, it will be renamed to .BAK.

Llist (F3)

This command causes the program to be printed out in the manner
specified by so-called Dot Commands within the program. They have no
effect other than on the printout, and are as follows, where ‘x' represents
a digit:

Al xx Maximum line length
.pl xx Maximum page length
f xxx Form feed character (for printers, which have other

values than &HOC (Decimal 12). (.ff 012 is the defauit)
.he head Text to be put on the first line of each page

fo foot Text to be put on the last line of each page

Jr xx Left margin

A- Conditional printing: This instruction causes the
following lines not to be printed

d+ Printing starts again if it was stopped by a previous .I-

.nlto.n9  Swiiches on line numbering adjusted {0 occupy up to
nine character positions '

.n0 Switches off line numbering

PA Forces a form feed

P- The point commands are NOT listed

P+ The point commands ARE listed, as usual

.P+ and .P- influence the whole listing (like .Nx), the last
command gives the effect.

In the header and footer text the following can also be inserted:
\ XXX The ASCII character xxx

\d Date
\t Time
# Page number

(To print the symbols \ and #, use \\ and \# respectively.)

Quit (Shift-F3)

After querying this command to make sure you are sure, GFA BASIC is
exited completely and normally you will be returned to the Desktop.



16 GFA BASIC 3 - User Manual

Block (F4)

If no block has been marked, then the message "Block ???’ appears on the
second line in order to indicate that a block command would be
unreasonable. If, however, a block has been marked, then the Block menu
appears on the top line of the screen. Items can then be chosen with the
mouse, or by pressing the key corresponding to the first letter of the
command (except for block Delete, which for safety is called from the
keyboard by Control-D).

Copy

Copies the block to the current cursor position. The block remains marked.

Move

Moves the block to the current cursor position. The block is then
"forgotten’and no further block commands can be used until another is
marked out.

Write Stores the block as an ASCII file (to be read via Merge)

Llist Prints the block out

Start Moves the cursor to the beginning of the block

End Moves the cursor to the end of the block

Del . Deletes the block (Control-D)

Hide Removes the block markers

Clicking the mouse outside the Block menu or pressing a key removes
it, and the original menu is restored.

New (Shift-F4)

The program currently in the Editor is deleted



Chapter 1 : Introduction 17

BIKEnd (F5)

The line before the cursor is marked as the end of a block. If the start of
block marker is located before this line, the block is shown in a different
colour (or with a dotted background if a monochrome monitor is being
used). The end of a block can also be marked by means of Control-K,
without recourse to the Block menu.

BlkSta (Shift-F5)

Marks the beginning of a block as above. Control-B from the keyboard has
the same effect.

Find (F6)

A string of text can be input, which then becomes the object of a search
starting from the current cursor position. If the string is found, the search
can be continued for another occurrence of the string with Control-F or
Control-L. When a string is found, the cursor is put at its position, or, if not,
at the end of the program. If Find is called again, the previous search string
is presented, which may be accepted with Return, deleted with Escape, or
edited with the cursor, delete and backspace keys. The command can also
be called directly by Shift-Control-F or Shift-Control-L.

Procedures which have been *folded’ (see above) are not searched.
Replace (Shift-F6)

This command is for replacing one string of text by another. First the user
is asked for the text to be replaced, then the replacement text. If the text
to be replaced is found, the cursor moves to the beginning of that line. The
actual replacement can be effected with Control-E, whereupon another
search is made for further occurrences of the string to be replaced. The
command can also be called from the keyboard using Shift-Control-E. The
editing facilities for the strings are available as above.

Again, *folded’ procedures are not searched.



18 GFA BASIC 3 - User Manual

Pg down (F7)

Scrolls the screen one page down. Also called via Control-C.
Pg UP (Shift-F7)

Scrolls the screen one page upwards. Also called via Control-R,

INSERT/Overwr (F8)

Switches between insert and overwrite modes.
Txt 16/text 8 (Shift-F8)

This feature is available only if a monochrome monitor is being used.It
refers to the size of characters displayed on the screen. 16-pixel high
characters (default) allow 23 lines to be displayed at once on the screen.
Using 8-pixel high characters, 48 lines are displayed.

Flip (F9)

This command switches between the Edit and Output screens. Pressing any
key or a mouse button also switches from the Output to the Edit screen.

Direct (Shift-F9)

Switches to Direct Mode, in which commands are responded to
immediately, e.g. PRINT "hello". Some commands, e.g. loop
commands, are not however available in Direct Mode. This mode can also
be reached by pressing the Escape key. In addition, by use of the up- and
down-arrow keys, the last eight commands entered in Direct Mode can be
recalled, edited, entered, etc. The Undo key recalls the last command.
Direct Mode can only be entered when the syntax of the current line in the
Editor is correct.

Several lines of instructions can be executed from Direct Mode by writing
them as a procedure in Edit mode and then calling it from Direct Mode.



Chapter 1 : Introduction 19

Test (F10)

Issuing this instruction causes all loops, subroutines and conditional
instructions to be checked for consistency without actually running the
program. ‘

Run (Shift-F10)

The program currently in the Editor is started. If this program contains a
structural fault, of the kind that could have been found with Test above, then
an appropriate error message is displayed and the program is not started.
A running program can be interrupted by the Break key’ combination,
Control-Shift-Alternate.

The Line Number & Clock Displays

The Line number display and the Clock on the right of the menu bar both
react when clicked with the mouse. In the case of the clock , the cursor
moves to the first hour digit, and the time can be set by typing in the new
time and ending with Return. The input can be edited with the Cursor and
Backspace keys, or pressing Escape aborts the process, leaving the time
display as it was.

With the Line number display, the cursor moves there, and a number can
be typed in. Pressing Return causes the cursor to jump to that line number.
Instead of clicking on the Line number display, Control-G could be typed
to produce the same effect. Only numbers are accepted as the input and they
can be edited with the Escape, Cursor and Backspace keys as before.



20 GFA BASIC 3 - User Manual

Special Commands

DEFBIT f$
DEFBYT f$
DEFINT f$
DEFWRD f$
DEFFLT f$
DEFSTR f$

f$ : string constant

DEFxxx f$

The instruction DEFxxx facilitates variable declaration, where xxx is the
variable type, specified as follows:

DEFBIT "b"!

All variables beginning with the letter *b’ or post-fixed with *!’ are declared
as Boolean (logical) variables.

DEFBYT "by"|

All variables beginning with the two letters *by" or post-fixed with 'I' (rule’
character) are declared as 1-byte integers.

DEFWRD "w" &

Allvariables beginning with the letter 'w* or post-fixed with & are declared
as 2-byte signed integers.



Chapter 1 : Introduction 21

DEFINT "i-k,m-p" %

All variables beginning with letters fromitok and mto p, or post-fixed with
'%’ are declared as 4- byte signed integers.

DEFFLT ‘"x-z" #

All variables beginning with letters from x to z, or post-fixed with "#’ are
declared as 8-byte floating point (the default variable type).

DEFSTR  "st" $§

All variables beginning with the letters ’s’ or ‘t’ or ending with '$’ are
declared character strings.

Appearances of DEFSNG or DEFDBL will be replaced automatically by
the Editor with DEFFLT.

These definitions will normally be declared at the beginning of a program,
but may be changed at any time. The post-fixed symbols will always
override any previous global definitions. The default variable type is
floating point.

The above definitions will have no effect on variable which are already in
the program, they only affect those which are still to be type in.



22 GFA BASIC 3 - User Manual

DEFLIST n
n: iexp
DEFLIST determines the format of the program listing. The numerical

expression n can take a value between 0 and 3 (inclusive). The effect of the
instruction on the listing is as follows:

n Command variable
0 PRINT abc

1 Print Abc

2 PRINT abc#

3 Print Abc#

The default mode is DEFLIST 0.

DEFLIST 0

Instructions and functions are represented in capitals. Variables, procedure
and function names are in lower case.

DEFLIST 1

Instructions, functions, and procedure and variable names are represented
with the first letter in upper case, and the remainder in lower case.

DEFLIST 2
As DEFLIST 0, except that the variable-type post-fix is added.

DEFLIST 3
As DEFLIST 1, except that the variable-type post-fix is added.

$ text

The command $, which is treated by the Interpreter like a REM, is used for
the control of the compiler.

e



CHAPTER 2
VARIABLES AND
MEMORY MANAGEMENT

Variable Types

GFA BASIC 3 allows the following variable types:
Name  Postfix Memory requirements
Boolean ! 1 Byte (1 bit in arrays)
Byte 1 1 Byte
Word & 2 Byte
Integer %o 4 Byte
Float # 8 Byte
String $ (Dependent on the length)

Boolean (logical) variables can accept only the values 0 (FALSE) or -1
(TRUE). If a non-zero value is assigned, then this value is taken as -1. This
variable type is designated by the postfix ’!°, and occupies "1’ byte of
memory. In Boolean arrays an array element requires only one bit.

Examples:

b!=TRUE
cl=x>y



24 GFA BASIC 3 - User Manual

Byte variables can accept values between 0 and 255. Larger values will
provoke a "Number not byte" error. The postfix of this variable type is the
vertical rule character 'I’. As the name implies, this variable type occupies
one byte.

Example:

x|=128
Word variables are signed 2-byte integers. The postfix of this type is '&’.
Numbers in the range -32768 to 32767 can be represented. Outside this
range, a "Number not word" error occurs.
Example:

x&=32767
Integer variables are signed, occupying 4-bytes, with the postfix '%".
Numbers can be represented in the range from -2147483648 to
2147483647.
Example:

x%=2000000000
Floatis afloating-point variable type occupying 8 bytes of memory. As this
isthe default type, no postfix isnecessary, but the type may be made explicit
with the postfix "#’. The range of representable numbers extends from
2.225073858507E-308 to 3.59538626972E+308.

Example:

x=123456789%e123



Chapter 2 : Variables and Memory Management 25

Character strings (Strings) are designated by the postfix '$’. They can
have a maximum length of 32767 characters. Strings are administered by
means of a so-called descriptor, six bytes in length. The first four bytes
contain the address of the character string, the last two bytes the length of
the Strings. If a string contains an odd number of characters a zero filler
byte is added. The address of the descriptor (Backtrailer) is also added.

Example:

a$="qwertyuiop”

The addresses of all variable types can be determined with the help of the
functions VARPTR (V:)and ARRPTR (*) . With Strings VARPTR returns
the address of the first byte of the character string, and ARRPTR returns
the address of the descriptor. With arrays one can determine the addresses
of the individual array elements with VARPTR/V:

Example:

adr%=V:x%(5)
By means of ARRPTR/* the address of the Array Descriptor can be found

Example:

Arr des%=ARRPTR (x%())



26 GFA BASIC 3 - User Manual

Arrays

DIM, DIM?
OPTION BASE
ARRAYFILL

All variable types can be used in arrays, or ‘fields'. An array can be
dimensioned with DIM, or the size of an array can be determined with
DIM?.

The management of arrays in memory is effected by means of Descriptors.
A descriptor is a structure six bytes in length, the first four bytes of which
contain the address of the array. The next two bytes specify the number of
dimensions. The array field itself begins with sets of four bytes, giving the
. number of elements in each dimension (beginning with the last dimension)
followed by the actual contents of the dimensions. With string arrays,
instead of the contents, the descriptors of the character strings follow the
four number-of-elements bytes. For example, after

DIM a%(2,3)

*a%() gives the address of the array descriptor. The number of dimensions
of the array is in the last two bytes of the descriptor, therefore

PRINT DPEEK (*a% ()+4)
returns the value 2.

The array itself begins with the number of elements in the second
dimension, where the zeroth element is taken into account (assuming
OPTION BASE 0is valid), followed by the number of elements in the first
dimension. Then

PRINT LPEEK(V:a%(0,0)-8)

returns the value 4.



Chapter 2 : Variables and Memory Management 27

PRINT LPEEK(V:a%(0,0)-4)
returns the value 3
Following this, the actual contents in the order:

a%(0,0), a%(1,0), a%(2.0), a%(0,1), a%(1,1), a%(2,1), etc.



28 GFA BASIC 3 - User Manual

DIM x(d1, [d2,...]) [,y(d1, [d2,...])]
DIM?(x()) |

X,y @ Variable name (arbitrary variable type)
dl,d2 : iexp

With the instruction DIM numerical and character string arrays can be
declared. The structure of such an array was explained in the introduction
of this section.

The possible number of the dimensions of the array is only limited by:

a) the last dimension must be smaller than 65535
b) the product of the number of the field elements must be smaller than
65535

So DIM a%(100,10,10) is permitted, as the last dimension (10) and the ™
product of the number of field elements (100* 10*10 = 10000) are both less
than 65535.

In an array, only variables of the same type may exist. The type of array
takes precedence over the type of number put into it.

The function DIM? determines the total number of elements in an array.
Example:

DIM x(10)

x(4)=3

PRINT x(LEN("test"))

PRINT DIM? (x())

4

DIM y%(2,3) ~
PRINT DIM? (y%())

--> Two arrays are declared. The output on the screen consists of the
numbers 3, 11 and 12.



Chapter 2 : Variables and Memory Management 29

OPTION BASE 0 (default)
OPTION BASE 1

With help of the command OPTION BASE it can be decided whether an
array is to contain a zeroth element or not. With OPTION BASE0 a zeroth
element is allocated, with OPTION BASE 1 it is not, and the array starts
with element number 1.

The contents of fields are not changed by the OPTION BASE- instruction,
however the indices may be, as in the following:

Example:

DIM %%(3)

FOR i%=3 DOWNTO 0
x%(1%)=1i%
PRINT i%,x%(i%)

NEXT 1%

OPTION BASE 1

FOR i%=3 DOWNTO 0
PRINT i%,x%(i%)

NEXT i%

--> x%() is declared, by default including the zeroth element, and the
elements are given the values 0-3 and printed. After OPTION BASE 1,
there is no longer a zeroth element, and accessing the element 3 actually
accesses what was element 2, etc.

The program ends with an error message on attempting to access the no
longer valid zeroth element of the array.



30 GFA BASIC 3 - User Manual

ARRAYFILL x(),y

x: Name of an array with numerical variable type
y: aexp

The instruction ARRAYFILL sets all elements of the array x() equal to the
value of the numerical expression y.

Example:

DIM x(10)
PRINT x=(4)
ARRAYFILL x(),5+1
PRINT x(4)

-->The first number printed is zero, because when an array is dimensioned —
all elements are automatically set to zero. After filling the array with 5+1’s,
the number 6 is printed on the screen.

Note: It is not possible to use the ARRAYFILL command with string
arrays.



Chapter 2 : Variables and Memory Management 31

Type Transformation

TYPE (x)
X: iexp

With the function TYPE the type of a variable can be determined. The
function operates on the pointer to the variable, and returns a value
corresponding to the variable type as follows:

Floating-point
String

Integer
Boolean
Floating-point array
String array
Integer array
Boolean array
Word

Byte

Word array
Byte array

— D 00 ~] NN R ) = O

N

Note: an invalid pointer returns the value -1.

Example:

as="test"

x%=4

DIM y(3)

PRINT TYPE (*a$),TYPE (*x%),TYPE(*y{))

--> The numbers 1. 2 and 4 appear on the screen. (*a$, etc, represent the
pointer to a variable.)



32 GFA BASIC 3 - User Manual

ASC(a$)
CHR$(x)

a$: sexp
X: aexp

ASC and CHRS are complementary functions.

The function ASC supplies the ASCI code of the first character in the
subject string. If the string is of zero length ("), zero is returned.

CHRS gives a character, from a specified ASCII code. Only the lowest 8
bits of x (the low-byte) are relevant, as ASCII codes only go up to 255.

Example:
PRINT ASC("TEST")
code|=ASC (CHR$ (65) ) ! CHR$ (65) is A’
PRINT codel,CHRS (189)

--> The numbers 84 and 65 and the copyright sign appear on the screen.



Chapter 2 : Variables and Memory Management 33

STR$(x Lyl [,z])
BIN$(xT,y])
OCT$(x [,y])
HEX$(x, y)

The functions STR$, BINS$, OCTS and HEXS$ convert a numerical
expression into a character string. -

The length of the requn'ed output string can be specified by a second
parameter. If necessary, it is padded at the front by blanks (STR$) or zeros
(BIN$, OCT$ and HEXS$). If the length specified is too short, only that
number of characters will be returned.

STR$(x)
STRS$(x,y)
STR$(x,y,z)

X, ¥, Z: aexp

STRS produces astring fromthe number 'x ', with 'y’ specifying the required
length.

A further variant of STR$ is provided with the third parameter 'z’. The
number is formatted and rounded with 'y’ characters and 'z’ decimal places.

Example:

a=123.4567

PRINT STRS(a, 6,2)
PRINT STRS (PI,5,3)
PRINT STRS (PI,2,2)

--> Prints the numbers 123.46, 3.142 and 14 on the screen.



34 GFA BASlC 3 - User Manual

BINS$(x[,y])
OCTS$(x[,yD)
HEXS$(x[,y])

X, y: iexp

BINS converts an integer to binary (base 2) representation. The optional
parameter 'y' specifies the number of character positions (1 to 32) to be
used.

OCTS converts an integer to Octal (base 8) representation. The optional
parameter 'y’ specifies the number of character positions (1 to 11) to be
used.

HEXS converts an integer to hexadecimal (base 16) representation. The
optional parameter 'y’ specifies the number of character positions (1 to 8)
to be used.

Example:
x=32+15
a$=0CT$(16+7,4)
PRINT HEX$(x),a$,BINS(1+4+16+64,8)

--> Prints 2F, 0027 and 01010101 on the screen.



Chapter 2 : Variables and Memory Management 35

VAL(a$)
VAL?(a$)
a$: sexp

VAL() turns a character string into a number. If VAL() encounters a
character that cannot be interpreted as part of a number, the conversion
stops at that point with the characters successfully converted returned as
the result. If no number is found at the beginning of the string, zero is
returned.

By adding the prefix &H (hex) or &X (bin) or &O (oct) numbers in
hexadecimal, binary and octal notation can be recognized.

The prefixes '$’ and %’ may also be used to identify hexadecimal and binary
notation respectively.

With VAL? one can determine the number of characters convertible with
VAL, returning zero if none can be converted.

Examples:

a$=STR$ (12345) ,
PRINT VAL (a$),VAL("-.123abc123"),VAL?("3.00 km")

--> The numbers 12345, -0.123 and 4 are printed on the screen.

PRINT VAL ("&H"+"AF")
-->'175" is displayed.

PRINT VAL("$AA")
PRINT VAL("%10101010")

—-->"170" is displayed twice.



36 GFA BASIC 3 - User Manual

CVI(a$) CVL(a$) CVS(a$) CVF(a$) CVD(a$)
MKI$(x) MKL(x) MKS(x) MKF(x) MKD (x)

a$: sexp
X:  aexp

The functions CVI, CVL, CVS, CVF and CVD convert character strings
into numbers, but, as opposed to VAL/STR$, it is the internal
representation which is set.

The individual CVx functions have the following effects:
CVvIl changes a 2-byte string into an integer.

CVL changes a 4-byte string into an integer.

Cvs changes a 4-byte string which contains a valid BASIC-
compatible number into GFA BASIC floating-point format.

CVF changes a 6-byte string into GFA BASIC 1 or 2 floating- point
format.

CVD  converts 8 byte string into GFA BASIC 3 floating-point
format.



Chapter 2 : Variables and Memory Management 37

MKI$, MKL$, MKS$, MKF$ and MKD$

are the inverse of the CVx functions above. Thus:

MKIS (x%)=CHRS (SHR (x$%, 8) ) +CHRS (x%)
MKL$ (x%) =CHRS$ (SHR (x%, 24) ) +CHRS (SHR (x%, 16) )
+CHRS (SHR (x%, 8) ) +CHRS (x%)

(SHR is the shift-right function. Note that the high-byte comes first.)

Uses might be reading the number formats of other programs or in saving
space when storing numbers in random-access files.

Example:
a$=MKLS$ (1000)
PRINT CVL(a$),LEN(a$)

b$=MKD$ (100.1)
PRINT CVD (b$),LEN (b$)

--> Prints the numbers 1000 and 4, and 100.1 and 8 on the screen.



38 GFA BASIC 3 - User Manual

CINT(x)
CFLOAT(y)

x: aexp
y: iexp

The function CINT changes a floating-point format number ’x’ into a
rounded integer value.

Similarly CFLOAT changes a integer 'y’ into a floating-point number. This
function is not normally required and is specified only for the sake of
completeness. With compiled programs, however, it has a use.

Example:

a=1.2345
a%$=10000
b%=CINT (a)
b=CFLOAT (a%)
PRINT b%,b

--> Prints 1 and 10000 on the screen.



Chapter 2 : Variables and Memory Management 39

Pointer Operations

*

xPEEK, xPOKE

BYTE(}, CARD{}, INT{}, LONG{}, {}, FLOAT{}
SINGLE({}, DOUBLE(}, CHAR{}

V:, VARPTR, ARRPTR, ABSOLUTE

*X

X: svar or an array name followed by ()

The multiply sign also serves as a pointer symbol. In this case *x gives the
address of the variable x in memory. With character strings *x$ gives the
address of the String Descriptor (as with ARRPTR(x$) ).

*x is synonymous with ARRPTR(x). This usage has special meaning with
the indirect passing of arrays and variables to subroutines. In addition one
can use, in Version 3, the instruction VAR,

Examples:

Version 2 Version 3

" indirect array passing | pIM a(3)
DIM a(3) changefa())
change (*a()) PRINT a(2)
PRINT a(2) !
! PROCEDURE change (VAR x())
PROCEDURE change (ptr$%) ARRAYFILL x(),1

SWAP *ptr%,x() RETURN

ARRAYFILL x(),1

SWAP *ptr%,x()
RETURN

-->The contents of the array a() are changed, without its name being used
in the procedure CHANGE. The number 1 is printed on the screen (see also
SWAP).



40 GFA BASIC 3 - User Manual

PEEK(x) DPEEK(x) LPEEK(x)
POKE x,y DPOKE x,y LPOKE x,y
SPOKE x,y SDPOKE x,y SLPOKE x,y

X, y: iexp

With the function PEEK and the instruction POKE and their variants one
can read from specified memory locations and write to them. The
individual variants are:

PEEK (x) Reads a byte from the address x.
DPEEK(x) Reads two bytes (a word) starting at address x.
LPEEK(x) Reads four bytes (a long word) starting at address x.

POKE x,y  Writes the value y as a byte to the address x.
DPOKE x,y Writes y as a 2-byte word to the address x.
LPOKE x,y Writes y as a 4-byte word to the address x.

It is important that when using DPEEK, LPEEK, DPOKE and LPEEK only
even addresses are given.

POKE instructions have variants which work in the supervisor mode. So
protected addresses, e.g. 0 to 2047, can be modified. The appropriate
instructions are SPOKE, SDPOKE and SLPOKE. Caution is advised,
particularly in the supervisor mode, since modifications to protected
addresses can have serious consequences. The functions always work in
the supervisor mode.



Chapter 2 . Variables and Memory Management 41

Example:

LPOKE XBIOS({14,1)+6,0

-> Sets the head- and tail-pointers to the keyboard buffer to the buffer start,
thus effectively erasing the buffer.

Or alternatively:

REPEAT
UNTIL INKEYS$=""

--> Deletes the keyboard buffer by character by character.



42 GFA BASIC 3 - User Manual

BYTE{x} CARD{x} INT{x} LONG{x} {x}
FLOAT{x} SINGLE{x} DOUBLE{x} CHAR{x}
x: iexp

By means of these commands one can read certain variable types starting
from a given address, or write them to an address.

As afunction, e.g. y=BYTE{x}, one can read, starting from the address x,
and as an instruction, €.g. BYTE{x}=y, one can write, again starting from
address x. '

It is important when using INT{}, CARD{}, LONG{}, {}, FLOAT{},
SINGLE{} and DOUBLE({} that only even numbered addresses are
specified, since otherwise an address error occurs and three bombs are
released. '

Type Meaning

BYTE{x} Reads/writes a byte

CARD({x} Reads/writes a 2-byte unsigned integer

INT{x} . Reads/writes a 2-byte signed integer
Instead of INT{} you may use WORD{} which has the
same effects.

LONG{x} Reads/writes a 4-byte integer

{x} Reads/writes a 4-byte integer

FLOAT{x} Reads/writes an 8-byte variable in BASIC v3 floating-
point format

SINGLE{x}  Reads/writes a 4-byte floating-point variable in IEEE
single-precision format



Chapter 2 : Variables and Memory Management 43

DOUBLE{x} Reads/writes aa 8-byte floating-point variable in IEEE
double-precision format

CHAR({x} Reads a string of bytes until a null byte (zero) is
encountered, or writes the specified string of bytes and
appends a null byte. Particularly important for
communication with C - routines and GEMDOS

With x%=LONG{adr%} the variable x% is assigned the long-word value
found at the address adr%, and with LONG{adr% }=x% the value of x%
is written as a long-word to the address adr%.

With SINGLE and DOUBLE it is possible to read or write in JEEE format,
used by some 'C’ compilers. So, with GFA BASIC, a number in the
SINGLE or DOUBLE format can be converted and displayed in
hexadecimal:

a$=SPACES (4)
SINGLE{V:a$}=1.2345
PRINT HEX$(CVL(a$), 8)

or,

a$=SPACES (8)
DOUBLE({V:a$}=1.2345
PRINT HEXS$ ({V:a$},8)
PRINT HEXS ({V:a$+4},8)

Some functions mentioned above approximately correspond: LONG{x
(or just {x} ) for instance corresponds to LPEEK(x). However, {x} is
quicker than LPEEK, although it will not work in the Supervisor mode.
Attempting to access protected storage locations (0 to 2047) with {x}
results in a bus error, with the release of two bombs.



44 GFA BASIC 3 - User Manual

Examples:

adr%=XBIOS (2)

t$=TIMER

FOR i%=1 TO 4000
VOID LPEEK (adr%)

NEXT i%

PRINT (TIMER-t%)/200

14

t$=TIMER

FOR i%=1 TO 4000
VOID LPEEK (adr$)

NEXT i%

PRINT (TIMER-t%)/200

14

e
PRINT x
FLOAT {*x}=PI
PRINT x

--> The first part of the example shows that {} works more quickly than
LPEEK, and the second part demonstrates writing a floating-point number
indirectly to a variable.

BYTE{XBIOS (2)+100*160}=&HFF
CARD{X¥BIOS (2)+102*160}=&HFFFF
LONG{XBIOS (2)+104*160}=&4HFFFFFFFF
, A

a$="test"+CHRS$ (0)
PRINT CHAR{v:a$};
r

b$=SPACES (5)
CHAR{v:b$}="word"
PRINT b$,ASC(RIGHTS (bS))



Chapter 2 : Variables and Memory Management 45

--> First, some values are written directly to the screen memory and appear
as lines. Then a$ is assigned conventionally, with a zero byte added,
whereupon it is read with CHAR and printed. Then the word "word" is
written into the space made for it by assigning b$ as five spaces. The
reassigned b$ is then printed, together with the ASCII code of its last
character, to prove that a null byte was indeed added to "word". The output
is thus “test’,'word’,’0’.



46 GFA BASIC 3 - User Manual

VARPTR(x) V:x _ —
ARRPTR(y) *y

x: Arbitrary-type variable name
y: Arbitrary-type variable name, or array name with empty brackets

VARPTR(x) or V:x returns the address of variables or strings or particular
elements of arrays.

ARRPTR(y) or *y returns the addresses of variables, but for strings or
arrays the address of the Descriptor is returned.

VARPTR and V: are synonymous, as are ARRPTR and *,

Example:

DIM x%(10)

a$="test"

PRINT VARPTR(x%(0)),V:x%(1),ARRPTR (x%())
PRINT ARRPTR(a$),*a$,VARPTR(a$)

--> The third line prints the addresses of the first two elements of x%(),
together with the address of the Array Descriptor. The fourth line prints the
address of the String Descriptor twice, followed by the address of the first
byte of a$.



Chapter 2 : Variables and Memory Management 47

ABSOLUTE x,y

x: a variable of arbitrary type
y: iexp

With the instruction ABSOLUTE the address y is given to the variable x,

Example:

ABSOLUTE x, *y
x=13

y=1

PRINT x,y,*x,*y

--> Here the variable x is assigned to the address of variable y, so that at
the end both variables have the same value (7) and same address.



48 GFA BASIC 3 - User Manual

Deleting and Exchanging

CLEAR, CLR, ERASE
SWAP

SSORT, QSORT
INSERT, DELETE

CLEAR
CLR x Ly,...]
ERASE z1() [,220),...]

X,y ¢  svar or avar
zl, z2 : name of arbitrary arrays

With CLEAR all variables and arrays are emptied. The instruction cannot
be used within FOR-NEXT loops or subroutines. When a program is Run
it is implemented automatically, otherwise it is really only applicable for
dealing with serious faults before using RESUME x appropriately.

The inétruction CLR deletes the variables specified in the list following it.

Arrays cannot be deleted with CLR however.

ERASE deletes complete arrays, which can then be redimensioned if
required. In contrast to Version 2, several arrays can be deleted at once, for

example ERASE x(),y().



Chapter 2 : Variables and Memory Management 49

Example:

x=2

y=3

CLEAR
PRINT %,y
14

x=2 y=3
CLR X
PRINT X,y
r

DIM x(10)
PRINT FRE (0)
ERASE x ()
PRINT FRE (0)

--> The above program prints three zeros and a '3’ on the screen. After that
the amount of free memory is displayed both before and after the erasure
of x(), showing that the memory occupied by the array is released by
ERASE.



50 GFA BASIC 3 - User Manual

SWAP a,b
SWAP e(),f()
SWAP *¢,d()

a,b : avar or svar
c : Pointer to an Array Descriptor
d,e, f : Names of arrays

In its most simple variant the instruction SWAP serves to exchange two
variables of the same type (SWAP ab). In addition, it can be used for
exchanging two arrays. The process is fast, since in fact only the associated
descriptors are exchanged, having the effect of also exchanging the
dimensioning of the two arrays. Arrays do not need to be dimensioned for
this. The third variant, where one of the descriptors is addressed directly,
is mainly useful for the indirect passing of arrays to subroutines (see second
example).

NOTE! The instruction SWAP should be clearly differentiated from the
function SWAP, which is discussed in the section on bit operations.

Examples:

x=1
y=2
PRINT x,vy
SWAP x,vy
PRINT x,y

--> The numbers | and 2, and then 2 and | are displayed



Chapter 2 : Variables and Memory Management 51

DIM x(3)
change (*x () )
PRINT x(2)

PROCEDURE change (adr$%)
SWAP *adr$%,a()
ARRAYFILL af(),1
SWAP *adr%,a()

RETURN

--> The array x() is filled with 1's in the procedure CHANGE without
reference to the name x(), so the subroutine is of general use. The descriptor
address is handed over to the subroutine and by means of SWAP the array
is addressed under the name a().

In Version 3 the array name itself can be passed:

DIM x(3)
change (x())
PRINT x(2)

PROCEDURE change (VAR a())
ARRAYFILL a(),1
RETURN



52 : GYFA BASIC 3 - User Manual

QSORT a(s) [OFFSET o] [WITH i()] [,n [,j% Q] -
QSORT x$(s) WITH i() [,n [,i% 0] ]

SSORT a(s) [OFFSET o] [WITH i()] [,n [,j% Q1]
SSORT x$(s) WITH i() [,n [,j% 0] ]

a(): arbitrary array, or string array
i() : Integer-array (|, & or %)

j%( : 4-byte integer array

x$() : String array - -

n: iexp
0: ‘fexp
s : +, - OT NO sign

You can SORT string fields withan OFFSET o from version 3.02 onwards.
The OFFSET determines how many characters off the beginning shall not
be considered; e.g. ‘

DIM a$(256)

FILES "*.,*" T0O "LISTE"
OPEN "I", #1, "LISTE"
RECALL #1, a$(), -1, x%
CLOSE #1

QSORT a$().

OFFSET 13, x%

OPEN "O", #1, "CON:"
STORE #1, a$(), x%

This program gives the directory as a file "LISTE", with RECALL the array
a$ gets the contents, then the directory is sorted and STOREd to "CON:". By
giving the OFFSET 13 it is not sorted by name but by the length of the files.
""and "*" and "12345678.123" is skipped.

The instructions SSORT and QSORT allow the elements of an array to be ™
sorted according to their size. SSORT utilises the Shellsort and QSORT the

Quicksort. In the brackets of the array name a plus or minus sign may be

inserted, meaning that the sort is to be done in ascending or descending order

respectively. If neither is specified, the sort by default will be done in

ascending order, as with '+,



Chapter 2 : Variables and Memory Management 53

The parameter 'n' specifies that only the first 'n' elements of the array are to
be sorted. If OPTION BASE 0 is active (the default) these are the elements
fromOton-1;if OPTION BASE 1is active the elements from 1 to n are sorted.
If n=-1 then the whole array will be sorted.

When a further integer atray is specified as the third parameter, that array will
be sorted along with the first array. Each exchange of elements in the first
array is also carried out in second. This facility can be used, for example, if
one array contains a sort code, €.g. a post code, and another array contains
related information.

During the sorting of string arrays a sorting criterion can be specified in form
of an array with at least 256 elements by means of WITH. Without indication
of WITH the normal ASCII order is used as a sorting criterion (see second
example).

Examples:

DIM x%(20)
PRINT "Unsorted: ";
FOR i%=0 TO 10
X% (1% )=RAND(9)+1
PRINT x%(i%);" ";
NEXT i%
PRINT

QSORT x%(),11
DIM index%(210)
PRINT "Descending sort: ";
FOR i%=0 TO 10
PRINT x%(i%);" ";
index% (i%)=i%
NEXT i%
PRINT

SSORT x%(-),11,index%()
PRINT "Ascending sorts: ";
FOR i%=0 TO 10

PRINT x%(i%);" ";
NEXT i%
PRINT
PRINT "Sort WITH array: ";
FOR i%=0 TO 10

PRINT index%(i%);" ";
NEXT is%

--> Gives a unsorted field and two sorted series from random numbers. In a
fourth row the values of a second field that was sorted alongside the first one
displayed.



54 ‘ GFA BASIC 3 - User Manual

INSERT x(i)=y
DELETE x(i)

x: Name of an array
i:  iexp
y:  aexp or sexp, according to variable type of the array

With the instructions INSERT and DELETE an array element can be
inserted or deleted. INSERT inserts the value of the expression y in the
array x at the position i. Allelements of the array which have an index larger
than i are shifted up one position. Thus if an element stood at position 3
before, then it will be found at position 4 after the INSERT instruction. The
last element of the array is deleted.

DELETE removes the i-th element of the array x(). All array elements
which have an index larger than i are shifted down one position. The last
element of the array is made zero (or a null string with character string
arrays).

These two instructions are highly suitable for the management of lists, in
which elements are constantly to be inserted and deleted.

Examples:

DIM x%(5)

FOR i%=1 TO 5
x%{(1%)=1%

NEXT 1%

INSERT x%(3)=33

FOR 1i%=0 TO 5
PRINT x%(1%)

NEXT i%

. --> The numbers 0, 1, 2, 33, 3 and 4 are printed on the screen.

RS



Chapter 2 : Variables and Memory Management 55

DIM x%(5)

FOR i%=1 TO 5
x%(1i%)=1%

NEXT i%

DELETE x%(3)

FOR i%=0 TO 5
PRINT x%(i%)

NEXT 1%

-->The numbers 0, 1, 2, 4, 5 and 0 are displayed.



56 - - GFABASIC 3 - User Manual-

Reserved Variable Names

FALSE, TRUE, PI
DATES$, TIMES$, SETTIME
TIMER

FALSE
TRUE
PI

The two logical constants FALSE and TRUE contain the values 0 and -1
respectively. The constant PI contains the value of the transcendental
number pi.

Example:
PRINT FALSE
IF TRUE

PRINT PI
ENDIF

--> Prints the numbers 0 and 3.14159265359 on the screen.



Chapter 2 : Variables and Memory Management 57

DATES$

TIMES$

SETTIME time$, date$
DATES$=date$
TIMES$=time$

time$, date$:  sexp

The function DATES sets the system date in the format:
DD.MM.YYYY (Day.Month.Year)

or
MM/DD/YYYY (US-FORMAT, see MODE)

Only years between 1980 and 2079 are allowed.

TIMES sets the system time. The format is:
HH:MM:SS (Hours:Minutes:Seconds)

The time is then updated every two seconds.

With the instruction SETTIME both time and date can be set. The strings
must have the same format as for TIME$ and DATES$ above. If SETTIME
is given strings in the wrong format, then the current values are not
changed.



58 . : GFABASIC 3 - User Manual

The date and time can also be set individually with DATE$= and TIMES$=.
Example:

PRINT DATES, TIMES
SETTIME "20:15:30","27.2.1988"
PRINT DATES,TIMES$

--> The system date and time are printed, re-set, and printed again.

TIMER supplies the elapsed time in 1/200 seconds since the system was
powered up. -

Example:
t%=TIMER ;
FOR i%=1 TO 2500

NEXT 1%
PRINT (TIMER-t$%)/200

--> The time in seconds required for the FOR-NEXT loop is displayed.



Chapter 2 : Variables and Memory Management 59

Special Commands

LET, VOID

With LET, values can be assigned to variables whose names are keywords.
VOID invokes a function but ignores the returned value.

LET x=y

X:  avar or svar
y:  aexp or sexp

By means of LET one can transfer the value of an expression to a variable.
The expression and the variable must either be both numerical or both
character strings. Normally LET is not necessary: it served in older
BASIC’s to allow the use of keywords as variable names. However, GFA
BASIC usually recognizes automatically when a keyword is used in this
way and allows it. '

Example:

LET print=3
PRINT print

-->"3" is displayed on the screen.



60 . GFA BASIC 3 - User Manual

VOID fx
~fi

fx: aexp
fi: iexp

Programming languages normally differentiate between commands-and
functions. Both cause some activity to be carried out, but with functions this
activity 'returns’ a value, which may be used as an element of an expression,
displayed with PRINT or assigned to a variable etc.

Often, however, the programmer is not interested in the returned value, but
only in the activity carried out. For example, the function INP(2) returns
the ASCII code of a pressed key. If the program is only supposed to wait
for a key, any key, to be pressed, then the code of the key is irrelevant.

With GFA BASIC, in such a case VOID can be used to implement the
function, *forgetting’ about the returned value. The alternative form (with
atilde ('~’) instead of VOID) calculates an integer value before forgetting
it, making it faster than VOID, which calculates a floating-point value.

Example:

VOID INP{2)
or

~INP (2)

--> Waits for a key to be pressed. Which key it was, however, will be
unknown to the program, as the returned code is lost.



Chapter 2 : Variables and Memory Management 61

Memory Management

FRE

BMOVE

BASEPAGE, HIMEM
RESERVE

INLINE

MALLOC, MSHRINK, MFREE

FRE()
FRE(x)

X: aexp

This function computes the amount of free available memory. The
parameter x is ignored, but if it is present a 'Garbage Collection’ is carried
out first (non-current versions of strings are deleted and the memory
occupied by themfreed). FRE() results in the free memory being calculated
without the Garbage Collection.

Example:

free%=FRE (0)
max¥=free%/3/4
DIM x%(max$%)
PRINT free%,max%

--> An array is dimensioned so that it occupies for instance a third of the
free memory space. Aninteger array occupies 4 bytes per element, thus the
extra division by 4.



62 GFA BASIC 3 - User Manual

BMOVE source,destination,length

source, destination, length: iexp

BMOVE copies a block of memory from one area to another. ’Source’ is
the address of the first byte of the block to be copied, ’destination’ is the
address of the first byte of the area to which the block is to be copied, and
"length’ is the length of the block.

The instruction works noticeably faster with even parameters than with
odd. It also works if the source and destination areas overlap.

Example:

DIM screen2% (64000/4)
adr%=VARPTR (screen2%(0))
FOR i%=0 TO 300 STEP 100
PBOX 0,1%,639,1%+50
NEXT 1%
PRINT "hi there!"
REM XBIOS (2)=the start-of-screen address
BMOVE XBIOS (2),adr%, 32000
BMOVE XBIOS(2),adr%+32000,32000
REPEAT .
IF MOUSEY<>my%
BMOVE adr%+my%*80,XBIOS(2),32000
my %=MOUSEY
ENDIF
UNTIL MOUSEK=2

--> Vertical movements of the mouse scroll the screen up and down.



Chapter 2: Variables and Memory Management 63

BASEPAGE
HIMEM

In the variable BASEPAGE is the address of the Basepage of the GFA
Interpreter. BASEPAGE is a 256-byte long storage area as follows:

Bytes Contents

Oto3 Address of the start of TPA (Transient Program Area)
4t07 Address of the end of TPA plus 1

8to 11 Address of text segment of the program

12t0 15 Length of the text segment

16to 19 Address of the data segment

20to23 - Length of the data segment

24 t0 27 Address of the BSS (Block Storage Segment)
28t0 31 Length of the BSS

32t035 Address of the DTA (Disk Transfer Address)
36t0 39 Address of the Basepage of the calling program
40to 43 Reserved

44 10 47 Address of the Environment Strings

4810127  Reserved

12810 255 Command line (first byte specifies length of command text)

The variable HIMEM gives the address of the first free memory location
not used by BASIC. This is normally 16384 bytes below the screen area.

Example:

a%={BASEPAGE+&H2C}
bo

a$=CHAR{a%}

EXIT IF LEN(a$)=0

PRINT a$

ADD a%,SUCC(LEN(a$)) ! sucC= next higher integer
Loop

--> Here the complete BASIC Environment is displayed.



64 GFA BASIC 3 - User Manual

RESERVE [n]
n: iexp

The size of the storage area used by GFA BASIC can be specified. If n is
positive, then n bytes are reserved for the Interpreter and the remainder is
released. If n is negative, then the whole of the free memory less n bytes
is reserved.

RESERVE

If no parameter is specified, the state when the Interpreter was started is
reestablished.

Memory can be reserved only in blocks of 256 bytes.

The instruction can be used, for instance, in order to release a storage area
for data or Resource files. If the storage area for GFA BASIC is reduced
with RESERVE, then one should not forget to enlarge it again later since
otherwise the available space becomes smaller with each execution of the
program.

Example:

RESERVE 2560
EXEC 0’ "\PROGRAM. PRG" , n n, nn
RESERVE

--> 2560 bytes are reserved for the Interpreter, and PROGRAM.PRG (if
available) is loaded and started. After exiting from PROGRAM.PRG the
reserved space is restored.



Chapter 2 : Variables and Memory Management 65

INLINE addr,length

addr : 4-byte integer variable, (not an array variable)
length: Integer constant, less than 32700

This instruction reserves an area of memory within a program.

(No comment is possible on the same line as this instruction, since memory
is internally reserved where otherwise the comment would be.)

The reserved area always begins at an even address and it is initially filled
with zeros. When implementing INLINE this address is written to the
integer variable addr. When the program is loaded or saved, the reserved
memory area is also.

Positioning the cursor on the program line which contains the INLINE
instruction and pressing the Help key causes a menu line with the entries
LOAD, SAVE, DUMP and CLEAR to appear on the top line of the editor.

LOAD is used to load a machine code program or data into the reserved
area. SAVE saves the contents of the reserved area to disk. DUMP causes
a hexadecimal printout on the printer of the reserved area. CLEAR fills the
reserved area with zeros. If the INLINE instruction is deleted, so also is the
reserved area.

The default file extension is .INL.

Into this storage area, for instance, could be put pictures, tables or machine
code programs.

Example:

See the example for C: in the system routines section.



66 GFA BASIC 3 - User Manual

MALLOC(x)
MFREE(y)
MSHRINK(y,2)

X, Y, Z: iexp

The function MALLOC (GEMDOS 72) is used to reserve (ALLOCate)
areas of memory.

If its parameter x is equal to - 1, then the function returns the length of the
largest contiguous free area. If x is a positive number, then this means that
x bytes are to be reserved. In this case MALLOC returns the start address
of the reserved area. If a fault occurred with the reservation attempt, then
the value 0 is returned.

If larger areas are to be allocated, then first some of GFA BASIC’s memory
must be freed with RESERVE.

Allocated storage areas must always be released before the end of the
program, although this is accomplished automatically when leaving the
Interpreter.

MFREE (GEMDOS 73) releases the storage location reserved with
MALLOC again. The parameter y specifies the start address of the memory
area to be released (which was returned by MALLOC). If the release
occurred without problems, the value 0 is returned, otherwise a negative
number. '



Chapter 2 : Variables and Memory Management 67

MSHRINK (GEMDOS 74) will reduce the size of a storage area
previously allocated with MALLOC. The parameter y specifies the
address of the reserved storage area (which was returned by MALLOC). -
The second parameter z gives the required (shrunk) size.

The function MSHRINK returns O if the reduction was made without
difficulty, -40 if an incorrect address was given as y, or -67, if the new
desired size was larger than the current size. It is important with MFREE
and MSHRINK that an incorrect address is never given.

Example:

RESERVE 1000

PRINT MALLOC(-1)

adr%=MALLOC (60000)

PRINT adr$

IF adr$>0
x%$=MSHRINK {adr%, 30000)
y$=MFREE (adr%)

ENDIF

RESERVE

--> GFA BASIC’s usable memory is reduced to 1000 bytes, and then the
size of the largest free memory area is printed. Then an attempt is made with
MALLOC to reserve 60000 bytes. If the reservation was successful, i.e.
adr% is not zero, MSHRINK is used to reduce the size of the reserved area
to 30000 bytes. finally MFREE releases the memory again.



68

GFA BASIC 3 - User Manual




CHAPTER 3
OPERATORS

Operators in a programming language serve to link and compare elements
in numeric and logical expressions.

In this chapter the operators available in GFA BASIC V3 are introduced
in in the following five sections.

In the first section the numerical operators +, -, *, /, A, DIV, \ and MO
are discussed. They link two numerical expressions and produce a number,
which can then be assigned to variable with the equals sign (=). The
operators + and - have a secondary function as unary operators, giving a
sign to a number (+1, -2 etc.).

The second section deals with the logical operators AND, OR, XOR, NOT,
IMP and EQV. They link two logical expressions and produce a logical
result (TRUE or FALSE). The operator NOT has a special role in that it
works on only one logical expression and reverses its logical value (TRUE
becomes FALSE and vice versa).

The third section deals with the concatenation (joining) of string
expressions using the plus sign (+).

The next section describes the comparison operators, which compare two
numerical or two string expressions and produce alogical result (TRUE or
FALSE).

The last section details the order in which operators are processed if several
occur in one expression, and the use of the bracket symbols ( and ), by
means of which the order of processing can be governed.



70 GFA BASIC 3.0 - User Manual

Arithmetic Operators

- * [ A
DIV \ MOD
+ -

These arithmetic operators link two numerical expressions and produce a
number. This number can then be used as part of another expression,
assigned to a variable, printed out with PRINT, etc. The operators + and -
are also used as signs to indicate whether numbers are positive or negative
(-1, 42, etc.). -

x+y Produces the sum of the numbers x and y (addition)

X-y Produces the difference of the numbers x and y (subtraction)
x*y Produces the product of the numbers x and y (multiplication)
x/y - Produces the quotient of x divided by y (division)

xNy Produces x raised to the power y (exponentiation).

xDIVy Results in a fast integer division of x by y.
Ny The backslash "\" character is an alternative form of DIV

x MODy  Produces the remainder of the division of x by y.

The following relations are equivalent:

x DIV y = TRUNC (x/y) .
x MOD y = x~-y*TRUNC (x/y)

(TRUNC is the Truncate function.)



Chapter 3 : Operators 71

Example:

13 DIV 4 produces 3
13 MOD 4 produces 1.

+ provides the value x with a positive sign, unless it was negative, in which
case it is left as it was.

- provides the value x with a negative sign. If it was positive, it is treated
as negative and vice versa.



72 GFA BASIC 3.0 - User Manual

Logical Operators

AND OR XOR
NOT IMP EQV

These logical operators work on bit level for 32-bit integer values. Logical
operators link two logical expressions and produce a logical result (TRUE
or FALSE). The operator NOT is an exception, in that it negates the value
of a given expression,

The numerical value for FALSE is 0, and for TRUE is -1.
(For those interested in why these values should be chosen, the reason is
that TRUE is considered to be all ones in a 32-bit integer, and FALSE to

be all zeros . Thus:

11111111111111111111111111111111

TRUE
and

00000000000000000000000000000000

FALSE

Those familiar with two's complement arithmetic will recognize that the
former is the two’s complement notation for -1.)

All logical operators can also be applied to numerical expressions. In this
case the logical operations are implemented bit by bit. The effects of logical
operators will be described with so-called truth tables. In these tables the
logical values of the linked expressions are given in the first columns, and
the result in the last column.



Chapter 3 : Operators 73

NOT x
X: iexp

The operator NOT negates a given logical expression. It is the only logical
operator, which has a single argument. Each individual bit of the argument
is modified.

I NOT x
T F
F T

Examples:

]

PRINT NOT FALSE
PRINT NOT TRUE
PRINT NOT 0

--> The numbers -1, 0 and -1 appear on the screen.
x=]
PRINT BINS (x,2)
PRINT BINS (NOT x,2)
--> 01 and 10 appear on the screen.
x%=17
PRINT BINS (x%,8),x%

PRINT BINS (NOT x%,8),NOT x%

--> Displays: 00010001 17, and 11101110 -18



74 GFA BASIC 3.0 - User Manual

x ANDy

X, y: iexp

The logical operator AND (conjunction) checks whether two logical
expressions x and y are both true. Only in this case it produces the value
TRUE ( -1) . If one or both logical expressions are wrong, then AND
produces a logical FALSE. With AND each pair of the 32 bits is tested
independently.

X y x AND y

T T T

T F F

F T F

F F F
Examples:

PRINT TRUE AND -1
PRINT FALSE AND TRUE

--> On the screen the numbers -1 and 0 appear.

x=3

y=10

PRINT BINS(x,4)

PRINT BINS(y,4)

PRINT BINS(x AND y,4),x AND y

--> Displays: 0011, 1010, 0010 and 2



Chapter 3 :‘Operators 75

xORYy

X,y: iexp

The command OR (disjunction) checks whether at least one of two logical
expressions xand y is TRUE. Only if x and y are both FALSE will the result
FALSE be produced. Unlike XOR, (see below) a TRUE result from OR
means that one or both arguments are TRUE. OR also works on bit level
with numbers.

xORy

]
]

e e B!
™ - T -]
o~

Examples:

PRINT TRUE OR -1
PRINT FALSE OR TRUE
PRINT 0 OR FALSE

--> The numbers -1, -1 and 0 are displayed.

x=3

y=10

PRINT BINS$(x,4)

PRINT BINS$(y,4)

PRINT BIN$(x OR y,4),Xx OR y

--> 0011, 1010, 1011 and the number 11 appear on the screen.



76 GFA BASIC 3.0 - User Manual

x XORy
X, y: iexp
The XOR operator produces the value TRUE if one, but not both, of the
arguments is TRUE. If they are both TRUE, or both FALSE, the result is

FALSE.

Unlike OR, where TRUE OR TRUE = TRUE, TRUE XOR TRUE =
FALSE. (XOR is the Boolean Exclusive Disjunction operation.)

Again, XOR works individually on each of the 32 bits of numeric
arguments.

>
<
e
4
Q
=
@

T -3
=T
m=- -

Examples:

PRINT FALSE XOR -1
PRINT -1 XOR 1
PRINT 0 XOR FALSE

--> The numbers -1, -2 and O are printed on the screen.

x=3

y=10

PRINT BINS (x,4)

PRINT BINS (y,4)

PRINT BINS(x XOR y,4),x XOR y

--> Displays: 0011, 1010, 1001 and 9.



Chapter 3 : Operators 77

x IMPy

X,y: iexp

The operator IMP (Implication) corresponds to a logical consequence.
Theresultis only FALSE if aFALSE expression follows a TRUE one. IMP
also works on bit level. Unlike AND, OR, XOR and EQV, the sequence of
the arguments is important.

X y x IMPy
T T T
T F F
F T T
F F T

Examples:

PRINT TRUE IMP -1
PRINT 0 IMP FALSE
PRINT TRUE IMP 0

~--> The numbers -1, -1 and 0 appear on the screen.

x=3

y=10

PRINT BINS (x,4)

PRINT BINS (y, 4)
PRINT BINS (x IMP vy, 4)

--> Displays: 0011, 1010 and 1110.



78 GFA BASIC 3.0 - User Manual

x EQVy

X,y: iexp

The operator EQV (Equivalence) produces a TRUE result only if the
arguments are both TRUE or both FALSE. EQV works on bit level and sets
the bits which are same in both arguments. This is exactly the opposite of
XOR, so x EQV y is the same as NOT(x XOR ).

X y x EQVy

T T T

T F F

F T F

F F T
Example:

PRINT TRUE EQV FALSE
PRINT FALSE EQV FALSE

——> On the screen the numbers 0 and -1 appear.

x=3

y=10

PRINT BINS (x,4)

PRINT BINS (y,4)

PRINT BINS (x EQV y,4)

--> Displays: 0011, 1010 and 0110.



Chapter 3 : Operators 79

Concatenation Operator +
a$+b$

a$,b$ : sexp

The operator '+’ also serves to link character strings together. The result is
a character string, composed of a$ and b$.

Example:

a$="GFA-"
PRINT a$+"BASIC"

--> The text 'GFA-BASIC'’ appears on the screen.



80 C‘-)-FAV BASIC 3. O User Manual

Comparison Operators
= == >= <<= <>

With these numierical, logical and string expressions can be compared with
each other. The result of this comparison is always one of the logical values
TRUE (-1) or FALSE (0). The operator '==" is an exception: string
expressions cannot be compared with it.

x=y
X,y:  exp

The operator =" compares two numerical or string expressions for equality.
If the two expressions are equal then the result is logically TRUE,
otherwise it is FALSE.

Example:

x=6

IF 2=x%/3
PRINT "Ok"

ENDIF

PRINT 2=x/3

—-=> 'Ok’ and -1 appear on the screen.



Chapter 3 : Operators 81

X::y
X,y: aexp

The operator *==" compares two numerical expressions for approximate
equality. With this operator only eight and one half decimal places (28 bits
of the mantissas of floating-point numbers) are compared.’ ==" is useful for
comparing floating-point numbers, where inaccuracies due to rounding
can occur.

Examples:

PRINT 1.0000000001=1
PRINT 1.0000000001==

--> The numbers 0 and -1 are displayed.

a=SINQ(77) ! SINQ(degrees) is a Quick,

! ! lesser accuracy, SIN function
b=SIN(RAD(77)) ! RAD converts from degrees

! ! to radians

PRINT a=b

PRINT a==

--> The numbers 0 (logically FALSE) and -1 (TRUE) appear.



82 GFA BASIC 3.0 - User Manual

X<y X>y X<=y X>=y
X,y: exp

These operators serve to compare the size of numerical and string
expressions. With numerical expressions the values are compared, and
with string expressions the comparison depends on the ASCII codes of the
characters. The string "ABC" is treated as the number sequence 65, 66, 67.

nn

In the comparison "ABC">"AAA", the first characters are compared,
which both have the ASCII code 65. Then the next characters are
compared. There B has a higher code value than "A", and "B" is then
taken as the larger’.

Here the comparison of the two strings is broken off, and the statement
"ABC" is larger than "AAA"" is deemed logically TRUE.

A special case of the comparison crops up if the two strings end before an
inequality is discovered. An example would be: "AA">"A". This statement

is rated logically TRUE, as is "A"+CHR$(0)>"A".

Now to the individual operators:

x>y TRUE if x is greater than y.

x<y -+ TRUE if x is less than y.

x>=y TRUE if x is greater than, or equal to, y.
x<=y TRUE if x is less than, or equal to, y.

The following are equivalent ways of writing the same expressions:
<=y, x=Y x>=y, x=>y
Example:

PRINT "ARA">"aaa”
PRINT -~1<=4-5

--> The numbers -1 and -1 are printed.



Chapter 3 : Operators 83

X<>y

X, y: exp

This operator checks whether two numerical or string expressions are
unequal. If this is the case, then the statement x<>y is logically TRUE. If
x and y are the same, then the result of x<>y is logically FALSE.

The expressions x<>y and x><y are equivalent.
Example:
PRINT "test"<>"test”

PRINT -1<>4-5
--> 0 and [ appear on the screen.



84 GFA BASIC 3.0 - User Manual

Assignment Operator =
X=y

X: var

y: exp

The equals sign "=’ can be used not only as a comparison operator, but also
to assign a value to anumeric or string variable. The value of the expression
y on the right of the equals sign is determined and assigned to the variable
on the left.

Numerical expressions can only be assigned to numerical variables, and
character string expressions can only be assigned to string variables.

Optionally, the command LET may be used, which also permits the
assignment of values to variables which have the same names as keywords.

Example:
x=LEN ("TEST") +3
a$="GF"+CHRS (65)
PRINT x,a$

--> On the screen 7 and "GFA" appear.

™



Chapter 3 : Operators 85

Operator Hierarchy

If several operators are used in an expression, they are processed in a
certain order, which depends on the operator’s place in the so-called
operator hierarchy. The operators at the top of this hierarchy are processed

first. The hierarchy is as follows:

0

+

=< > =D <=

+ -

A

*/

DIV MOD

+ -

mm=L L= >
AND OR XOR IMP EQV
NOT

Brackets

Character string addition
Character string comparison
Signing

Exponentiation
Multiplication, division
Integral and modulo division
Addition, subtraction
Numeric and logical comparison
Logical operators

Negation

By means of the brackets it is possible to force lower-precedence operators
to be processed before those higher up the hierarchy.

Example:

PRINT 2+4%*3
PRINT (2+4)*3
PRINT 2+ (4*3)
PRINT 3%2°2

--> The numbers 14, 18, 14 and 12 appear on the screen.



86 GFA BASIC 3.0 - User Manual




CHAPTER 4
NUMERICAL FUNCTIONS

Mathematical Functions

ABS, SGN

ODD, EVEN

INT, TRUNC, FIX, FRAC, ROUND

MAX, MIN

SQR

EXP, LOG, LOG10

SIN, COS, TAN, ASIN, ACOS, ATN, DEG, RAD
SINQ, COSQ

There are numerical functions for the following tasks: the functions ABS
and SGN supply the absolute value and the sign of a numerical expression.
ODD and EVEN check whether a number is odd or even. INT, TRUNC,
FIX and FRAC deal with separate manipulation of the parts of a number
to the left and to the right of the decimal point. ROUND rounds an
expression. MAX and MIN supply the largest or the smallest of several
numerical expressions and SQR the square root of an expression. The
trigonometrical functions are SIN, COS, TAN, ASIN, ACOS and ATN.
SINQ and COSQ are faster, less accurate alternatives for SIN and COS.
EXP and LOG compute powers and logarithms to base e. LOG 10 computes
logarithms to base 10. DEG and RAD transform values from radians to
degrees and vice versa. RND, RANDOM, RAND and RANDOMIZE deal
with the generation of random numbers.



88 GFA BASIC 3 - User Manual

ABS(x)
SGN(x)

X: aexp

The function ABS returns the absolute value of a numerical expression.
The returned value is the same as the given value, except that its sign is
ignored. The sign of the returned value is always made positive.

With the function SGN one can determine the sign of a numerical
expression thus:

b ¢ SGN{x)
Negative -1
Equalto 0 0
Positive 1
Example:
x=-2
y=ABS (x)

PRINT SGN(x),ABS(5-3),SGN(ABS (x*3))

—=> Displays the numbers -1, 2 and 1.



Chapter 4 : Numerical Functions 89

ODD (x)
EVEN (x)

X: aexp

These two functions check whether the numerical expression x is odd or
even. ODD supplies the value -1 (TRUE), if x is odd and 0 (FALSE) if x
is even. EVEN results in TRUE for aneven x and FALSE for an odd x. Zero
(0) is treated as an even number.

X ODD(x) EVEN(x)
Even 0 (FALSE) -1 (TRUE)
Odd -1 (TRUE) 0 (FALSE)
Zero 0 (FALSE) -1 (TRUE)

Example:
x=2

PRINT ODD (x),EVEN(-2),0DD(3*5),EVEN (-3*x)

--> The numbers 0, -1, -1 and -1 are displayed.



90 GFA BASIC 3 - User Manual

INT(x)
TRUNC(x)
FIX(x)
FRAC(x)

X: aexp

These functions allow independent manipulation of the parts of a
numerical expression to the left and right of the decimal point: INT,
TRUNC and FIX (TRUNC and FIX are identical) return a whole number.
The function TRUNC simply cuts off the digits to the right of the decimal
point. INT returns the largest whole number which is less than or equal to
x. There is no difference between TRUNC (or FIX) and INT for positive
x-values, however, with a negative, non-integer x a difference arises. So
TRUNC(-1.2) removes the decimal places and returns -1 as the result,
INT(-1.2), on the other hand, returns the next smaller whole number,
namely -2. FRAC returns only the fractional part of x, in other words just
the decimal places, with the same sign as x had. FRAC is complementary
to TRUNC and not to INT. It is always true that x = TRUNC(x) + FRAC(x),
but INT(x) + FRAC(x) is not equal to x for negative values.

Example:
x=-1.4
y=TRUNC (1. 3)
PRINT y, INT(x),FIX(3*x),FRAC(x~3)

-=> The numbers 1, -2, -4 and -0.4 are displayed.



Chapter 4 : Numerical Functions 91

ROUND(x [,n])

X: aexp
n: iexp

The function ROUND(x) returns x rounded to the nearest whole number.
The variant ROUND(x,n) rounds the expression x to n decimal places. If
n is zero, the effect is the same as for ROUND(x). If n is negative, the
rounding is done before the decimal point, so ROUND(155, -1) results in
the number 160. (NB: CINT() also rounds with an Integer result.)

Examples:

y=ROUND (~1.2)
PRINT y, ROUND (1.7)

--> Displays -1 and 2 on the screen.

FOR i%=~5 TO 5
PRINT i%,ROUND(PI*100,1%)
NEXT i%

--> Displays the loop variable and the associated formatted expression on
the screen: PI is multiplied by 100 and then displayed rounded to i%
decimal places. Where 1% is negative, the rounding is done to the left of the
decimal point.



92 GFA BASIC 3 - User Manual

MIN(x [,y,z,...]) MIN(x$ [,y$,z$,...])
MAX(x [9Y9z’°-°]) MAX(X$ [7Y$,z$7m])

X,YoZ : aexp
x$,y%,z$ : sexp

The function MAX retums the largest of the numerical expressions
X.Y.Z,..., specified in the parameter list. Similarly, MIN returns the smallest
value. MIN and MAX can also be applied to string expressions.

Example:
x=3
y=MAX(3,5.5-4)
PRINT MIN{x,y),MAX(-1,x*2)

--> Displays the numbers 3 and 6.



Chapter 4 : Numerical Functions 93

SQR(x)

X: aexp

Produces the square root of the numerical expression x. If the expression
x is negative, an error message is invoked.

Examples:
x=9
y=SQR (x)
PRINT y,SQR(4*4)

--> The numbers 3 and 4 appear on the screen.

PRINT SQR(SQR(16))
PRINT SQR(-2)

--> The number 2 appears, followed by an error message.



94 GFA BASIC 3 - User Manual

EXP(x)
LOG(x)
LOG106(x)

X: aexp

EXP computes e to the power x (EBuler’s number e=2.1782818284... ), and
LOG forms the inverse function, that is the natural logarithm of x.
Similarly, LOG10 returns the logarithm of x to the base 10. The numerical
expression x must be larger than zero with the logarithm function,
otherwise an error message results.

Example:
x=2
y=EXP (2)
PRINT y,LOG10 (2*5),L0G(x)

--> On the screen 7.389056098931, 1 and 0.6931471805599 appear.



Chapter 4 : Numerical Functions 95

SIN(x) COS(x) TAN(x)
ASIN(x) ACOS(x) ATN(x)
DEG(x) RAD(degrees)
SINQ(degrees) COSQ(degrees)

x,degrees : aexp

These are the trigonometrical functions. The numerical expression x is
assumed to specify radians. They compute the following:

SIN Sine

CcOS Cosine
TAN Tangent
ASIN Arc-sine
ACOS Arc-cosine
ATN Arc-tangent

To convert between radians and degrees one uses the functions DEG()
(radians to degrees) or the inverse, RAD(). DEG(x) and RAD(x) are thus
equivalent to (x * 180/PI) and (x * PI/180) respectively.

The functions SINQ and COSQ supply sine and cosine values, interpolated
in steps of one sixteenth of a degree from an internal table. For graphics
work on the screen this accuracy is not distinguishable from the values
computed with SIN or COS, however SINQ and COSQ work up to 10times
as fast. Unlike SIN and COS, degrees are expected as the arguments for
SINQ and COSQ. SINQ(degrees) corresponds to SIN(RAD(degrees)) and
COSQ(degrees) corresponds to COS{RAD(degrees)).



96 GFA BASIC 3 - User Manual

Examples:
x=90
y=COSQ (x*PI/180)

z=2T0*P1/180
PRINT y,SIN(z),TAN(45),ATN(1/2)

--> The numbers 1, -1, 1.619775190544, 0.4636476090008 appear.

alpha%=30
PRINT SINQ{alpha%)

--> The number 0.5 is displayed.



Chapter 4 : Numerical Functions 97

Random Number Generation

RND [(x)]
RANDOM(x)
RAND(y)
RANDOMIZE y

X: aexp
y: iexp

This group of commands deals with the generation of random numbers:

RND Produces arandomnumber between 0 and I (including 0, excluding
1). The optional parameter x has no meaning.

RANDOM(x) Produces arandom integer between 0 and x (including 0,
excluding x). The numerical expression x need not be integer if not all
numbers are required to have the same probability.

RAND(y) Producesa 16-bit randominteger inthe range 0toy-1. Where
y is an integer with a maximum value 0of 65535 (& HFFFF hex). If y exceeds
65535, then its low-order word is taken as the argument.

RANDOMIZE y Initialises the random number generator with the
value y. If the random number generator is initialised several times with the
same y, the same sequence of random numbers will be produced. Without
the use of RANDOMIZE at the beginning of a program, different
sequences will be generated each time the program is run, which may be
undesirable in some cases. For initialising the random number generator
one can also use RANDOMIZE (without parameters) or RANDOMIZE 0,
which initialize the random number generator with a random number.



98 GFA BASIC 3 - User Manual

Examples:

x=RND
PRINT x,RND(2)

--> Two random numbers between 0 and 1 appear on the screen.

x=RANDOM (2)
y=RAND (4)
PRINT x,y,RAND (x), RANDOM (3*x)

--> Four integer random numbers are displayed.
RANDOMIZE 3
x=RND

RANDOMIZE 3
PRINT x,RND

--> The same 'random number’ is printed twice.



Chapter 4 : Numerical Functions 99

Integer Arithmetic

Commands and Functions

DEC, INC

ADD, SUB, MUL, DIV

PRED(), SUCC()

ADD(), SUB(), MUL(), DIV(), MOD()

DEC, INC
ADD, SUB, MUL, DIV

These instructions are shorter forms of the following frequently used
statements:

DEC x corresponds to  x=x-1
INC x corresponds to  k=x+1

ADD x,y correspondsto X=Xty
SUB x,y correspondsto  X=X-y
MUL x,y cormespondsto  x=x*y
DIV x,y comrespondsto  x=x/y

The statements on the left require less time for their execution than those
on the right, particularly in the case of integer variables. It is important to
note that INC, DEC, ADD, SUB, MUL and DIV do not carry out an
overflow check with integer variables (types %.&,)). If overflow occurs,
only the appropriate number of low-order bits (8 for byte, 16 for word, etc)
are used for the result. Thus for byte-sized variables, if xI=16 and yl=17,
MUL xl,y! gives the result 16 in xI. The extra '256" in the 9th bit is ignored.



100 GFA BASIC 3 - User Manual

DEC i
INCi

I avar

The instructions DEC and INC decrement or increment respectively the
value of the specified variable, in other words subtracting or adding one (1)
to its value. These instructions can work with floating-point variables, but
are substantially faster with integers.

Examples:

x%=4

y¥=7

DEC x%

INC y%
PRINT x$%,y$%

--> The numbers 3 and 8 appear.

a|=255
INC al
INC aj
PRINT a}

--> Results in '1’ being displayed, as there was no overflow check.



Chapter 4 : Numerical Functions 101

ADD x,y
SUB x,y
MUL x,y
DIV x,y

X: avar
y: aexp

The instruction ADD increases the variable x by the value y, while SUB
reduces x by y. MUL multiplies x by y and assigns the result to x. DIV
divides x by y and puts the result in x. With these instructions x must be a
numeric variable, whilst y must be a numerical expression. These
instructions can work with floating point variables, but are substantially
faster with integers. '

DIViding a variable by zero will result in an error,

Example:

ADD x%,v% ! now X is equal to 3

SUB z%, (x¥%-1)/2 ! the numerical expression
' ' (x%-1)/2 results in 1
PRINT x%,z%

--> The numbers 3 and 2 are displayed.



102 GFA BASIC 3 - User Manual

PRED(), SUCC()
ADD(), SUB(), MUL(), DIV(), MOD()

PRED and SUCC determine the next higher or next lower number. ADD(),
SUB(), MUL(), DIV() and MOD() offer quick integer arithmetic with
Polish notation.

PRED(i)
SUCC(i)

i: iexp

PRED returns the next lower and SUCC the next higher number than the
argument. So PRED and SUCC supply the predecessor or the successor of
a numerical expression. Note that these functions operate on integer
expressions, so that any decimal places are ignored. This gives rise to the
effect that, for instance, PRED(2.1) returns the result 1, not 2. These two
functions will also operate on string expressions (see the section on
Character String Manipulation).

Example:
i%=6

J%=PRED (i%)
PRINT j%,SUCC(2),PRED(3*1%)

--> On the screen, the numbers 5, 3 and 17 appear.



Chapter 4 : Numerical Functions 103

ADD(x,y)
SUB(x,y)
MUL(x,y)
DIV(x,y)
‘MOD(x,y)

X,y: iexp
These functions can replace more usual expressions thus:

ADD (x,y) corresponds to Xty

SUB(x,y) correspondsto x—y

MUL (x,y) corresponds to x*y

DIV (x,y) correspondsto x/y or x DIV y
MOD (x,y) correspondsto x MOD y

Since these functions use integer arithmetic, any decimal places are
ignored. After the following program segment is run ...

x%=5 y¥=4
ADD vy%,3
z%=SUB (x%, 3)

... X% will have the value 5, y% the value 7 and z% the value 2. The
functions ADD, SUB, MUL, DIV and MOD can be interleaved at will. This
method of notation is known as ’Polish’.



104 GFA BASIC 3 - User Manual

Examples:

DEFINT "a-z" —
x=4

=ADD (x, x) ! v becomes equal to 8
z=SUB (x, 2)

PRINT y, z,ADD (x,MUL(y, 2))

--> The numbers 8, 2 and 20 appear on the screen.

DEFINT "a-z"
x=2
y=MUL (x, 3) !y becomes equal to 6

PRINT y,DIV(8,x),MOD(11,4) !MOD(11,4) is equal to 3
--> The numbers 6, 4 and 3 are printed.

DEFINT "a~z"

x=5

y=ADD (SUB (%, 2) ,MUL (3, 4) )

PRINT y,DIV(8,MOD(14,4))

--> Displays the numbers 15 and 4.

-



Chapter 4 : Numerical Functions 105

Bit Operations

BCLR, BSET, BTST, BCHG

SHL, SHR, ROL, ROR

AND(), OR(), XOR(), IMP(), EQV()
SWAP()

BYTE(), CARD(), WORD()

These Bit Operations affect numerical expressions at bit level. The
commands BCLR, BSET, BTST and BCHG are direct implementations of
the 68000 instructions. Note, however, that they are used as functions, not
commands.

They reset, set, test and negate individual bits. SHL, SHR, ROL and ROR
shift or rotate. AND, OR, XOR, IMP and EQYV are logical functions. In the
following explanations the convention is used that bit 0 is the least
significant bit. With 4-byte integers bit 31 is the most significant bit and is
also the sign bit (if the sign bit is set, i.e. =1, then a negative number is
represented in two’s complement form, otherwise it is a positive number).

SWAP exchanges the high- and low-order words of a 4-byte value. BYTE
reads the lower 8 bits and CARD the lower 16 bits of an expression. WORD
extends a word to form a long word, i.e. bit 15 is copied into positions 16
to 31.



106 GFA BASIC 3 - User Manual

BCLR(x,y)
BSET(x,y)
BCHG(x,y)
BTST(x,y)

X,y: iexp

These functions permit the resetting, setting, negating and testing of bits.
The bit numbers are counted starting from O on the ’right’ and are internally
ANDed with 31, so that they are always taken as being between 0 and 31,

The function BCLR sets the y-th bit of the numerical expression x to zero.
Similarly, BSET sets the y-th bit of x to 1. BCHG sets bity of x to 1 if it was
0, or resets it to 0 if it was 1. The function BTST results in -1 (TRUE) if bit
y of x is equal to 1 and 0 (FALSE) if it is equal to 0.

Examples:

x=BSET (0, 3)
PRINT x,BSET(0,5)

--> The numbers 8 (243) and 32 (2/5) appear on the screen.

REPEAT

t|=Inp(2)

PRINT CHRS(t|),CHRS (BCLR(t|,5))
UNTIL CHRS (t])="x"

--> If Caps Lock is off, this program prints the letter corresponding to the
key pressed, in both lower and upper case. (With lower case letters, bit 5
is always set; resetting this bit forces the transformation to upper case).



Chapter 4 : Numerical Functions 107

s$="TESTcase"
FOR i%=1 TO LEN({(s$)

PRINT CHRS (BCHG(ASC (MIDS (s$,1%)),5));
NEXT i%

--> Displays testCASE on the screen. Each lower case letter is changed
to upper case, and vice versa. (This will not work with umlauted

characters).



108 GFA BASIC 3 - User Manual

SHL(x,y) SHL&(x,y) SHL|(xy)
SHR(x,y) SHR&(x,y) SHR|(x,y)
ROL(x,y) ROL&(x,y) ROL|(x,y)
ROR(x,y) ROR&(x,y) RORI(X,Y)

X,y: iexp

These instructions SHift or ROtate the numerical expression x by y bits.
If the variable type is not specified this will occur over long word length
(4 bytes). If word length is specified (with &), the operation takes place
over 2 bytes, and with byte length (1) over one byte.

The third letter of the function name specifies the direction for the shift or
rotation, 'L’ standing for left, and 'R’ for right.

With word-length operations (with &) bit 15 is copied to bits 16 to 31, thus
preserving the sign. With byte-length operations bits 8 to 31 are set to 0.

The following tables show the effect of the shift instructions:

x%  SHL|(x%,1) BIN$(x %,16) BIN$(SHL|(x %,1),16)
18 36 00000000 00010010 00000000 00100100
642 4 - 00000010 10000010 00000000 00000100

x% SHL&(x%,1) BIN$(x%,16) BIN$(SHL & (x %,1),16)

18 36 00000000 00010010 00000000 00100100
130 260 00000000 10000010 00000001 00000100

x% SHR&(x%,2) BIN$(x %,16) BIN$(SHR &(x%,2),16)

24 6 00000000 00011000 00000000 00000110
4162 1040 00010000 01000010 00000100 00010000



Chapter 4 : Numerical Functions 109

{Note: the bit representations have been grouped as two sets of 8 bits for
the sake of clarity. BIN$ does not do this.)

The next examples concern rotation. Here, bits which leave one end of the
argument are pushed in again at the other end. For instance, if only the
highest bit of a byte is set, and the byte is then shifted one bit to the left
(ROLI(128,1)), the set bit which disappears off the left end is re-introduced
on the right as bit 0. With a shift to the left, (say SHLI(128,1)) the set bit
would have been lost, with bit O being made zero.

Examples of rotation are:
xl  ROL|(x1)  BINS$(x|,1) BIN$(ROL|(x),1),8)
6 12 00000110 00001100
130 5 10000010 00000101

x| ROR|(x,3)  BIN$(x|,8) BIN$(ROR|(x|,3),8)

66 72 01000010 01001000
2 64 00000010 01000000
Example:’
x|=128+1 ! bits 7 and 0 set
v%=ROR| (x|, 1) ! v becomes 192

PRINT SHL(y$%,4),y%*2"4
PRINT SHL(ROR| (128+1,1),4)

--> The number 3072 is printed three times. The function SHL(a,b) is
equivalent to a*2/b, if no bit is lost off the left end of the four-byte number
a. The bit-shift formulation, however, is clearly quicker.



110 GFA BASIC 3 - User Manual

AND(x,y)
OR(x,y)

XOR(x,y)
IMP(x,y)
EQV(x,y)

X,y: iexp

These functions operate logically on two numerical expressions. The
function AND returns a result in which only those bits are set which are set
in both x and y. The result of OR contains bits set in the places in which bits
are set in either x or y or both. XOR sets only those bits which are set in x
or y but not both (or, to put it another way: XOR sets those bits which are
different in x and y). IMP resets a bit to zero if the appropriate bit in x is
set and in y is reset, otherwise the bit is set. EQV sets a bit of the result if
the appropriate bits in x and y are both set, or both reset. (See the section
on Logical Operators for the truth tables of these functions.)

Example:

x=3

y=2

z=AND (X, y)

PRINT z,0R(2,7),XOR(x,1+4+8)

--> On the screen, the numbers 2, 7 and 14 appear.

PRINT BINS(15,4),15

PRINT BINS(6,4),6

PRINT BINS (IMP(15,6),4),"IMP(15,6)"
PRINT BINS (EQV(15,6),4),"EQV(15,6)"

--> Digplays:
1111 15
0110 6
0110 IMP (15, 6)

0110 EQV (15, 6)



Chapter 4 : Numerical Functions 111

SWAP(x)
x: iexp

The function SWAP re-formulates (if necessary) the numerical expression
x asalong word (4 bytes) and exchanges its upper and lower words (2 bytes
in each case). This could be useful when passing long word parameters to
to an operating system routine which requires the words in reverse order.

(NOTE that this function has nothing to do with the instruction of the same
name, which swaps values of variables.)

Example:

x=1044480
PRINT BINS (x,32)
y=SWAP (x)
PRINT BINS (y,32)

--> The following appears on the screen:

00000000000011111111000000000000
11110000000000000000000000001111

An example of SWAP in use might be:

~WIND SET(0,13,SWAP(t%),t%,0,0)



112 GFA BASIC 3 - User Manual

BYTE(x)
CARD(x)
WORD(x)

X: iexp

BYTE returns the lower 8 bits of the numerical expression x, and CARD
the lower 16 bits. WORD extends a word to long word length (32 bits) by
copying bit L5 to bit positions 16 to 31, thus preserving the sign.

Examples:

PRINT BYTE (255),BYTE (1+255)
PRINT HEXS$ (CARD (&H1234ABCD))

--> 255, 0 and ABCD are printed.

x$=&HFFFF

PRINT BINS (x%,32)
x%=WORD (x%)

PRINT BINS (x%,32)

--> The screen displays:

00000000000000001111111111111111
111111111111131111111111111111111



CHAPTER 5
STRING MANIPULATION

LEFTS$, RIGHT$

MIDS$ (as a function)

PRED, SUCC

LEN, TRIM$

INSTR, RINSTR

STRINGS$, SPACES, SPC

UPPERS$

LSET, RSET, MIDS$ (as an instruction)

These functions allow the manipulation of strings by selectively altering
and concatenating their contents. The functions LEFT$ and RIGHTS
return the left or right part of a character string. MID$, used as a function,
returns a section from the middle of a string, or, used as an command,
allows the replacement of part of one string with all or part of another.
PRED and SUCC return the character with the ASCII code one lower or
one higher than the first character of the specified string, while LEN
determines the length of a character string. INSTR and RINSTR search a
particular string for the occurrence of another string. STRINGS, SPACES$
and SPC generate strings composed of several identical strings, and
UPPERS transforms all lower case letters ina stringto upper case. Left- and
right-justified insertion of one string into another is accomplished with
LSET and RSET.



114 GFA BASIC 3 - User Manual

LEFT$(a$ [ x])
RIGHTS$(a$ [,x])

a$: sexp
X : iexp

LEFTS$ returns the first x characters from the character string a$. If x is
larger than the number of characters in a$, then the whole of a$ is returned.
If x is not specified, the first character of a$ is returned.

RIGHTS works similarly, except that it returns the last x characters of a$
and when x is not specified, the last character is returned.

Examples:
a$="Right-minded people use GFA BASIC"
b$=LEFT$ ("GFA Systemtechnik",4)
PRINT b$;RIGHTS (a$,5)
-->"GFA BASIC' is printed on the screen.
as$="0h, don’t"

b$=LEFTS (a$) +RIGHTS ("1look")
PRINT b$

--> 'Ok’ appears on the screen.



Chapter 5 : String Manipulation 115

MID$(a$,x [,y]) (as a function)

a$: sexp
X,y: iexp

The function MID$ returns y characters starting from position x of the
string a$. If x is larger than the length of a$ then anull string (") is returned.
If y is omitted, then the function returns the whole of the string from
position x onwards.

Example:
a$="This is the GFA BASIC manual”

b$=MIDS (a$, 13, 9) +MID$ ("version 3", 8)
PRINT b$

--> On the screen, the text "GFA-BASIC 3’ appears.



116 GFA BASIC 3 - User Manual

PRED(a$)
SUCC(a$)

a$: sexp

PRED supplies the character with the ASCII code one less than that of the
first character of the specified string. (In other words, its PREDecessor in
the ASCI table.)

Similarly SUCCreturns the character with the ASCIIcode one greater than
that of the first character of the string specified. (In other words, its
SUCCessor.)

(These functions are also effective with numbers: see the section on Integer
Arithmetic.)

PRED(a$) corresponds to the expression CHR$(ASC(a$)-1), and
SUCC(a$) to CHR$(ASC(a$)+1).

Example:
character$="blue moon"
predecessor$=PRED (character$)
successor$=SUCC (character$)

PRINT predecessor$;SUCC (predecessor$) ; successor$

-->"abc’ is displayed on the screen.



Chapter 5 : String Manipulation 117

LEN(a$)

TRIMS$(a$)

a$: sexp

LEN determines the number of characters contained in a$.

TRIMS$ removes spaces from the left and right ends of a string.

Examples:

as$="test"
x=LEN({a$)+1
PRINT x, LEN ("word")

> Displays: the numbers 5 and 4.

bs=" test "
PRINT LEN(b$)

PRINT TRIMS (b$)
PRINT LEN (TRIMS (b$))

> Displays 9, the word "test’ (without spaces) and 4.



118 GFA BASIC 3 - User Manual

INSTR(a$,b$)
INSTR(a$,b$, [ x])
INSTR([ x],a$,b$)

a$, b$ : sexp
X iexp

The function INSTR searches the character string a$ for an occurrence of
the string b$. If x is specified, then the search begins at character position
x in a$, otherwise the whole string is searched.

1fb$ is found within a$, the character position at which it begins is returned,
or, if it is not found, the function returns zero (0). This value may be
assigned to a variable or used to determine whether a particular string was
present in a$. If a$ and b$ are both null strings ("), one (1) is returned.

Example:

a$="GFA-Systemtechnik"
x=INSTR (a$, "System")
PRINT x, INSTR("GFA-BASIC","BASIC", 6)

--> The numbers 5 and 0 appear on the screen.

REPEAT
a$="123456"
b$=INKEYS$

UNTIL INSTR(a$,b$)

--> Waits until one of the specified keys has been pressed.



Chapter 5 : String Manipulation 119

RINSTR(a$,b$)
RINSTR(a$,b$,[ x])
RINSTR([ x},a$,b$)

a$, b$: sexp

X2 iexp

RINSTR() operates in the same way as INSTR except that the search for
b$ begins at the "right-hand’ end of a$. (One could say that this is theReverse
of INSTR.) ' '

Example:

PRINT RINSTR("a:\FOLDER\*.GFA","\")

> The string "\" is sought in the string "a\FOLDER\*.GFA", starting
from the end. Its first occurrence is found at position 10.



120 j GFA BASIC 3 - User Manual

STRING$(x,a$)
STRINGS$(x,code)
SPACE$(x)
SPC(x)

X,code : iexp
a$: sexp

The function STRINGS produces astring which reproduces the expréssion
'a$’ (or the ASCII character whose number is ‘code’) x times, where x has
a maximum value of 32767.
SPACE$(x) produces a string consisting of x spaces.
SPC inserts x spaces in a PRINT statement without the need to créate a
string variable or to explicitly specify the spaces by " .
Example:

a$="GFa "

b$=SPACES (5)

PRINT b$; STRINGS (3,a$) ; SPC (4) ; STRINGS (5, 65)

>' GFAGFAGFA AAAAA’ appears on the screen.



Chapter 5 : String Manipulation 121

UPPER$(a$)

a$: sexp

All lower case letters in a$ are converted to upper case. (This also happens
with characters containing umlauts.)

Example:
a$=" test”
b$=UPPERS (a$) +UPPERS ("ware")
PRINT UPPERS ("Gfa basic 3");b$

> On the screen 'GFA-BASIC 3 TESTWARE' appears.



122 GFA BASIC 3 - User Manual

LSET a$=b$
RSET a$=b$

a$: svar
b$: sexp
X,y: iexp

LSET and RSET will set the string expression b$ into a$, justified either
tothe left or to the right. If b$ is shorter than a$ (the normal situation) spaces
will be inserted to make up the original length of a$. Note that the actual
content of a$ is irrelevant: only its length is significant.

Example:

as="xxxxx"

FOR 1%=1 TO 128
LSET a$=STRS (i%) ' left-justified format
PRINT a$;

NEXT 1%

PRINT

7

FOR i%=1 TO 128
RSET a$=STR$ (1%) ! right-justified format
PRINT a$;

NEXT 1%

~INP (2)

--> Displays left- and right-justified formatted columns of numbers, then
waits for a key to be pressed.

(a$=STR$(i%.5,0) could also be used in place of RSET a$=STR$(i%) .)



Chapter 5 : String Manipulation 123

MID$(a$,x [,y]) (as an instruction)

a$: svar
X,y: iexp

MIDS$ used as an instruction makes possible the replacement of part of a
string variable a$ with the string expression b$. So with MID$(a$,x,y)=b$,
characters from b$ will overwrite those in a$, starting at the x-th character
position of a$. The optional parameter y determines how many characters
of b$ are used. If y is omitted, then as many characters as possible of a$ are
replaced with those from b$. The length of a$ is unchanged, so that no
characters will be written beyond the end of a$.

Example:

a$="GFA SYSTEMTECHNIK"
MID$ (a$, 5)="BASIC "
r

b$="Testword"

MIDS (bS, 6,10)="are you serious?”
PRINT a$,b$

—-=> 'GFA BASIC TECHNIK' and 'Testware’ are printed.



124 GFA BASIC 3 - User Manual




CHAPTER 6
INPUT AND OUTPUT

Keyboard and Screen Handling

This first section begins with an examination of the command INKEY$,
which takes a single character from the keyboard. Next, the family of
INPUT commands is examined, along with the related commands LINE
INPUT, FORM INPUT and FORM INPUT AS. The discussion of output
capabilities begins with the most simple instruction, PRINT, and goes on
to extended versions such as PRINT AT and PRINT USING. CRSCOL,
CRSLIN and POS are used to report on the current cursor position, and
TAB, HTAB and VTAB are used to control it. At the end of this section,
the KEYxxx commands are considered, these being a family of commands
forthe interrogation of the keyboard, and its configuration while a program
is running.



126 GFA BASIC 3 - User Manual

INKEY$

INKEYS$ reads acharacter from the keyboard. This function will, however,
not detect depressions of the Shift, Alternate or Control keys alone.
INKEY'$ does not wait for a key to be pressed, but scans the keyboard to
check whether a key has been pressed since the last scan. If it has, the
command accepts that pressed key, otherwise a null string (") is returned.
When the key pressed has no ASCII code, for example a Function key or
the HELP or UNDO keys, then INKEYS$ returns the scan code of the
pressed key as a two-character long string containing CHR$(0) as its first
character, and the identification code of the special key as the second
character.,

The following example demonstrates how the values returned by INKEY$
can be examined:

DO
t$=INKEYS
IF ts<omn
IF LEN(t$)=1
PRINT "Character: ";t$,"ASCII code:";ASC(t$)
ELSE
PRINT "CHR$ (0)+Scan code ";CVI(t$)
ENDIF.
ENDIF
LOOP

--> Displays the ASCII or Scan code of each key pressed.

Note: CVIturnsa2-byte string into an integer. As the first byte of the string
is zero, in this case it returns the value of the second byte.



Chapter 6 : Input and Output 127

INPUT ["text",] X [,,...]
INPUT ["text";] x [,y,...]

X,y: avar or svar

The command INPUT can be used in several ways. It accepts the input of
variables or variable lists with or without a text message being displayed
on the screen. For INPUT, the cursor will normally retain its last screen
position; however, by means of PRINT AT followed by a semicolon, or by
using LOCATE, VTAB, orHTAB, the cursor can be put at adesired screen
position.

A text string may follow the INPUT command, separated from the
following variables by acomma or a semicolon. If a semicolon is used, then
aquestion mark and a space are printed on the screen and the cursor placed
at the succeeding character position. When a comma is used, the question
mark and space are omitted, and the cursor is placed directly after the last
character of the text string.

If no text is to be displayed, then the question mark and space are printed,
and the cursor is put directly after the space (as if anull string ("") had been
used as text, followed by a semi-colon).

When only one variable is to be input, the user types in 2 number or a
character string and terminates it by pressing either the RETURN or the
ENTER key. When several values are to be entered (if there was a list of
variables after the INPUT statement in the program line), each individual
variable can be terminated by pressing RETURN or ENTER, or they may
be typed in separated by commas and all confirmed together with a single
press of the RETURN or ENTER key.

Ifastring is to be entered which may contain commas, the instruction LINE
INPUT must be used.

If a numeric variable was expected by the INPUT statement, and a non-
numeric string typed in instead, a bell signal sounds, and the input must be
repeated.



128 GFA BASIC 3 - User Manual

Prior to the RETURN or ENTER key being pressed the input can be edited
by means of the Backspace, Delete, and Left and Right arrow keys.
Pressing the INSERT key switches between ’insert’ and *overwrite’ modes
during editing. The maximum length of the input is 255 characters.

Special symbols can be entered in three different ways:

- By holding down the ALTERNATE key and typing in the ASCII code of
the desired character using the numeric pad. When the ALTERNATE key
is released, the appropriate character is displayed. For instance, with 64 as
the ASCII code, the character '@’ appears. This also works with INKEY$,
INP(2), GEM Dialog Boxes etc., if it is not switched off by the command
KEYPAD.

- By typing Control-S followed by another character, for example *Control-
S C’ for the Pi character. (Press the Control and S key at the same time, then
press C.) This feature only works with the INPUT statement or in Edit
mode, when a program is actually being typed in.

- By typing Control-A followed by the ASCII code of the desired character,
e.g.. 'Control-A 64’ for the '@’ character.

Example:

INPUT a$

INPUT "",b$

INPUT "Enter two numbers: ";x,y
PRINT a$,b$,x,y

--> Reads in two strings and two numeric variables. The first input
command generates a ’? *, the second appears with no text and the third
issues the message "Enter two numbers: ? °



Chapter 6 : Input and Output 129

LINE INPUT ["text",] a$ [,b$...]
LINE INPUT ["text";] a$ [,b$...]

a$,b$: svar

LINE INPUT is a variant of the INPUT command. Unlike INPUT, it allows
commas to be accepted as part of the input. The preceding description of
the input of variables or a variable list, and the facilities for correction of
the input prior to the pressing of RETURN or ENTER also apply to LINE
INPUT. LINE INPUT, however, may only be used with string variables.

Example:

LINE INPUT a$
INPUT b$
PRINT a$,b$

--> When the program is Run, and the text ’'com,ma’ inputted twice, a$ is
taken as ‘com,ma’ whilst b$ contains 'com’, asthe 'ma’ istakenasan separate
input and ignored. See also LINE INPUT #.



130 GFA BASIC 3 - User Manual

FORM INPUT n,a$
FORM INPUT n AS a$

n: iexp
a$: svar

FORM INPUT and FORM INPUT AS are both used to input string
variables. The value of n specifies the number of characters to be entered,
up to a maximum of 255.

Additionally, FORM INPUT AS displays the current value of a$, which
can then be edited, or taken as a 'default’ input by pressing RETURN or
ENTER immediately. The editing facilities are the same as those for the
INPUT command.

Example:

FORM INPUT 10,a$
b$="test"

FORM INPUT 5 AS b$
PRINT a$,b$

-->This asks for two strings to be entered. On the entry of the second string,
the word ’test’ is displayed as a preselected value of b$. This may then be
edited, or accepted by pressing RETURN.

——



Chapter 6 : Input and Output 131

PRINT

PRINT expression

PRINT AT(column,row);expression
WRITE expression

LOCATE row,column

expression : arbitrary combination of sexp or aexp
column,line : iexp

The instruction PRINT, without parameters, causes a blank line to be
printed. If the cursor happens to be on the last line, the entire screen is
scrolled up one line. PRINT followed by an expression causes the
expression to be printed at the current cursor position. Text strings must be
enclosed in quotes. If the expression to be printed consists of several
elements (constants, variables or expressions), the individual parts must
separated by a semicolon, comma or apostrophe, with the following
effects:

® Acommacauses the cursorto move to one position past the next column
number which is divisible by 16. In other words, the columns 1, 17, 33,
etc. are used. If thistakes the cursor beyond the end of the line, the cursor
moves to column 1 of the next line.

® A semicolon causes the output of the corresponding elements, one after
the other without any spaces being added.

® An apostrophe inserts one space between the appropriate elements.
PRINT AT makes it possible for the expression to be displayed on a
specified row, starting at a specified column. Depending on the current
screen resolution, up to 80 columns and 25 rows are available.

Note: Row and Column numbers begin at 1, not 0.

Ifawindow is open, the column and row numbers are relative to the top left-
hand corner of the window.



132 GFA BASIC 3 - User Manual

If the output expression (the message) is not terminated with a semicolon,
the cursor is placed at the beginning of the next row. If it was already at the
bottom of the screen, then the screen is scrolled up by one row.

If print control characters (ASCII characters from 0 to 31) are specified,
then these are processed by the VT-52 Emulator (see Appendix ). Similarly
to PRINT AT, LOCATE places the cursor at the specified colume and
row, i.c.inthe reverse order to PRINT AT. It will not, however, actually
display anything. (See VTAB and HTAB.)

The WRITE command can be used to send output to the screen. The
command is followed by the numerical or string expressions to be sent,
separated by commas. The output INCLUDES THE COMMAS and, with
string expressions, the quotation marks are also included. A semi-colon
may be placed after the last item to be output, in which case the usual
Carriage Return/Line Feed will be suppressed.

Examples:
a$="GFA Systemtechnik"

PRINT LEFTS$ (a$,4)+"BASIC"' 1+2;
PRINT ".0","GFA ";UPPERS (MID$ (a$,5))

-->Displays "GFA BASIC 3.0’ and 'GFA SYSTEMTECHNIK' .
PRINT AT(5,8);"Fifth column, eighth row"
--> Prints the message starting at the position x=5, y=8.

LOCATE 8,5
PRINT "Eighth row, fifth column"

--> Positions the cursor at the fifth column of the eighth row and displays
the message, again x=5 and y=8,

WRITE 1+1,"Hello", 3*4

--> The output is: * 2,"Hello", 12’



Chapter 6 : Input and Output 133

PRINT USING format$,expression [; ]
PRINT AT(column,line);USING format$,expression [; ]

format$ : sexp
expression :asmany aexp or sexp as wanted, separated by
commas

column,row : iexp

PRINT USING and its variant PRINT AT USING serve to format data
output on the screen. These commands work in the same general way as
PRINT or PRINT AT. However, the data in the expression to be displayed
are formatted according to the contents of format$.

The following symbols may be used to format a numerical expression:

# Reserves a character position for a number (digit).

A full-stop specifies the position of the decimal point within several
#’ symbols

, A comma in the appropriate place between '#’ signs causes the
insertion of a comma, e.g. as a thousands’ separator in 10,000.

- Theminus signreserves acharacter position for aminus sign, in case
the number to be printed is negative. For a positive number a space
will be printed instead. (GFA BASIC normally prints nothing
preceding a positive number.)

+ Reservesaspace forthe plussign of apositive number. If the number
is positive, the '+’ sign will be printed, but if it is negative a minus
sign will appear as usual. (Cf. -’ above.)

* Replacement for # above, with the difference that leading zeros are
replaced by asterisks, instead of blanks.

$ Causes one dollar ’$’ character to be printed before a number,
provided it is put directly before the first #’ symbol.



134 GFA BASIC 3 - User Manual

A Specifies the length of the exponent (including the "E+’) when a
number is to be printed in exponential format (e.g. E+123). If the
number of digits before the decimal point is specified using several
'# symbols, then the exponent is adjusted to take account of this. for
a negative exponent, the possibility of a >-* must be allowed for by
>-’ above.

In contrast to GFA BASIC Version 2, the principle *Formatting First’ is
adhered to. That is, in the case of overflows only the digits with character
positions reserved for them will be displayed. Thus, great care must be
taken to ensure that the string to be printed can actually be accommodated
within the format specified.
For formatting strings the following symbols are available:

& Causes the output of the entire character string.

! The output is limited to the first character of the string.

\..\" Specifies the number of characters of the string to be printed.
(The counting includes the two "\’ symbols).

Causes the output of the character following the underline (’_’)

character. A sequence of characters can be output by placing it
between two ’'_’ characters.

Examples:

PRINT USING "#.###4",PI
PRINT AT(4,4);USING "PI . . . #.###",PI;

--> Displays ’3.1416” and "PL.. 3.142".



Chapter 6 : Input and Output 135

FOR i%=1 TO 14
PRINT USING "###.## " ", 271%;
NEXT i%

--> Displays:
1.00E+00 2.00E+00 4.00E+00 8.00E+00 16.00E+00

32.00E+00 64.00E+00 128.00E+00 256.00E+00 512.00E+00
1.02E4+03 2.05E+03  4.10E+03 8.19E+03 16.38E+03

(The functions of commas and full stops can be exchanged using the
MODE command: see overleaf.)



136 GFA BASIC 3 - User Manual

MODE n

n: iexp

With MODE the representations of the decimal point and the 'thousands
comma’, as interpreted by PRINT USING (and also by STR$ with 3
parameters) can be reversed. This allows the use of the continental method

of representing numbers.

In addition, MODE selects the format of the date representation used by
DATES, SETTIME, DATES$= and FILES. The parameter n can be

between 0 and 3. The following may then be used:

MODE USING

#, ### H#
#, ### ##
#.#4#, ##
# . ###, ##

w N~ o

DATES$

16.05.1988
05/16/1988
16.05.1988
05/16/1988



Chapter 6 : Input and Output 137

DEFNUM n
n: iexp

DEFNUM affects the output of numbers by the PRINT command and its
variants. All numbers following the DEFNUM instruction are outputted to
occupy n character positions, not counting the decimal point. Rounding
takes place based on the value of the (n+l)th digit. The internal
computational accuracy is not affected.

Example:

PRINT 100/6
DEFNUM 5
PRINT 100/6

--> The numbers 16.66666666667 and 16.667 appear on the screen.



138 GFA BASIC 3 - User Manual

CRSCOL
CRSLIN
POS(x)
TABA(n)
HTAB column
VTAB line

n,column,row: iexp
X: aexp

The command group comprising CRSCOL, CRSLIN, POS and TABA
servetoreturn the location of the cursor, orto place the cursor at a particular
position.

CRSCOL returns the current column position and CRSLIN the current line
position of the cursor.

POS supplies the number of characters displayed on the screen (ANDed
with 255 to give a maximum of 255) since the last Carriage Return. The
expression x is ignored. The value returned by POS may, however, not
agree with CRSCOL e.g. if a string 120 characters long is displayed,
POS(0) in this case will return the value 120, whereas CRSCOL will return
41, the column number of the next character to be printed counting from
the left edge. With the output of control characters POS(0) has even less
to do with the current cursor column reported by CRSCOL, since POS will
keep track of non-printed characters, e.g. ESCape = CHR$(27). POS will,
however, ignore Line Feeds - Chr$(10) -, be reduced by one by the printing
of a Backspace - Chr$(8) - or be reset to zero by a Carriage Retum -
Chr$(13).

TAB(n) prints spaces until POS(0) reaches n. If POS(0) already exceeds
n, then a Line Feed/Carriage Return is executed first. The value of n is
limijted to a maximum of 255 by ANDing it internally with 255.



Chapter 6 : Input and Output 139

The instructions HTAB and VTAB position the cursor to the specified
column or line number. Note that cursor columns and lines are counted
from 1, not 0.

Examples:

PRINT AT (38,12);"Test";
PRINT CRSCOL’CRSLIN
PRINT TAB(37);"Test";
PRINT POS(0)

INP (2)

-->Onthe screen, *Test42 12’ appears and, underneath it, "Test41’. (POS(0)
returns 41, not42, asit is counted from zero rather than 1 as with CRSCOL).

PRINT AT(4,3);"Word 1"
HTAB 4

VTAB 2

PRINT "Word 2"

--> 'Word 1’ appears starting at row 3, column 1, and "Word 2’ at row 2,
column 4.



140 GFA BASIC 3 - User Manual

KEYxxx

This group of functions makes it possible to read the status of the keyboard
shift keys while a program is running as well as assigning freely definable
character strings (max. 31 characters each) to the Function Keys, which
will also be available when using the GFA BASIC Editor.

KEYPAD n
n :iexp

The numerical expression n is evaluated bit by bit and has the following
meaning:

Bit  Meaning 0 ‘ 1

0 NUMLOCK On : Off

1 NUMLOCK Not switchable Switchable
2 CTRL-KEYPAD Normal Cursor

3 ALT-KEYPAD Normal ASCII

4 KEYDEF without ALT Off On

5 KEYDEF with ALT Off On

With bit 0 set the keypad will act as a *'PC’ keypad with NUMLOCK off,
i.e. it responds with cursor movements.

With bit 1 set the 'PC’ NUMLOCK mode can be toggled with Alternate and
’-*, otherwise it cannot.

With bit 2 set, NUMLOCK is effectively switched off while the
CONTROL key is held down. Thus CONTROL-4 (on the keypad)
produces cursor movements.



Chapter 6 : Input and Output 141

With bit 3 set ASCII values for characters can be typed in with the
ALTermate key held down. When ALT is released, the character appears.
With bit 4 set, the character strings assigned with KEYDEF to the keys Fl
to F10 and Shift-F1 to Shift-F10 are output when the key is pressed. With
bit 5 set the ALTernate key must also be held down.

When turned on, the ATARI ST is effectively configured to KEYPAD 0.
With GFA BASIC in operation, the default keypad mode is decimal 46, i.e.
bits 1, 2, 3 and 5 are set.



142 GFA BASIC 3 - User Manual

KEYTEST n
KEYGET n
KEYLOOK n

n: ivar

KEYTEST is similar to INKEY$ and reads a character from the keyboard.
If no key was pressed since the last input (apart from Alternate, Control,
Shift and Caps Lock) the returned value is zero, otherwise its value
corresponds to the key in the fashion shown below for KEYGET.

KEYGET waits for a key to be pressed and then returns a long word value
corresponding to the key. This 32-bit long word is constructed as follows:

Bits 0-7 : the ASCII code

Bits 8-15: Zero

Bits 16-23 : the Scan code

Bits 24-31 : Status of Shift, Control, Alternate, Caps Lock as follows:

Bit Key

0 Right shift
1 Left shift
2 Control

3 Alternate
4 Caps lock

KEYLOOK allows a character to be read from the keyboard buffer,
without changing the buffers contents, as with KEYGET or INKEY$.

Using KEYTEST, KEYGET and KEYLOOK with byte- or word-sized
variables results in conversion from an integer value taking place
automatically. The result wiil be placed in the variable n.



Chapter 6 : Input and Output 143

Examples:

PRINT "Please press ESCape"
REPEAT The program runs
! through the loop
until the ESCape key

is pressed.

UNTIL INKEY$=CHR$(27)
14

!

PRINT "Please press ESCape again"
REPEAT ! Again runs through
d the loop but

1
KEYTEST n| ! this timg‘checks the
! ! keyboard here for
UNTIL n|=27 ! character number 27.

--> Waits twice for the ESCape key to be pressed. Note that in the second
example bits 0 to 7 are masked off automatically by using a byte-sized (8-
bit) variable.

PRINT "Please press a key"
key 1|=INP(2) ! Waits for a
o ! key-press.
PRINT "Press another key please"
KEYGET key 2|

= Waits again.
PRINT "INP(2) : ";key 1|
1

The ASCII codes
of the depressed
keys are printed

PRINT "KEYGET : ";key 2|

--> Waits twice for keys to be pressed, and displays their ASCII codes.

REPEAT
KEYLOOK n%
UNTIL n%
INPUT "Type in something ";a$

--> Waits in a loop until akey is pressed, then begins the input of a$ without
losing the initial character.



144 GFA BASIC 3 - User Manual

DO
KEYGET a%
PRINT HEXS$ (a%,8),BINS (a%,32),
QUT 5,a%
PRINT
LOOP

--> Waits for a key to be pressed and displays the value returned by
KEYGET in both hexadecimal and binary.

(Note: OUT 5,a% allows the characters associated with control codes 0-
32 to be displayed.)



Chapter 6 : Input and Output

KEYPRESS n

n: iexp

The command KEYPRESS simulates the pressing of a key. That is, the
character with the ASCII code contained in the lowest-order 8 bits of n is
added to the keyboard buffer. Additionally, the state of the Control, Shift
and Alternate keys may be passed in the highest-order byte, as defined by
KEYGET. If the ASCII code given is zero, a scan code may be passed in

bits 16 to 23, e.g. KEYPRESS &H3B0000 presses F1.

Examples:
FOR i&=65 TO 90 ! Simulates the pressing
KEYPRESS i& ! of the keys A-Z
NEXT i&
KEYPRESS 13 | .... followed by a Carriage
Return
INPUT a$ ! Characters are taken up to

the first Carriage Return
PRINT a$

--> The letters from A to Z are printed.

KEYDEF 1,"Hello"+CHRS (13)
KEYPRESS &H83B0000

PAUSE 1

LINE INPUT a$

PRINT a$

--> A string to be produced by pressing ALT-F1 is defined, then a press of
this key is simulated, followed by a slight pause to give the associated
interrupt routine time to process it. The word "Hello" is then taken as the

inputted a$.



146 GFA BASIC 3 - User Manual

KEYDEF n,s$
n: iexp
s$:  sexp

The command KEYDEF makes it possible to assign an arbitrary character

string (withamaximum length of 255 characters) to the Function Keys. The

arithmetic expressionn (with a value from 1 to 20 inclusive) determines the

key. A value of n from 1 to 10 refers to the keys F1 to F10, and from 11 to

20, to the keys Shift-F1 to Shift-F10. The defined string is available both

during the running of a program and from the GFA BASIC Editor.

However, in the Editor the ALTernate key must also be pressed, as’
otherwise the GFA BASIC commands would not be available.

Example:
KEYPAD 16 ! Sets ALT key as not required
DO
KEYDEF 1,"F1" ! String for F1 key
KEYDEF 11, "Shift+F1" ! String for Shift-F1l key
INPUT x$
LOOP

--> Instead of having to type in a string as the input, pressing F1
automatically supplies the string 'F1°, and pressing Shift-F1 supplies the
string 'Shift+F1°.



Chapter 6 : Input and Output 147

Data Input and Output

This section first describes the storing and recalling of constants with
DATA, READ and RESTORE. Then file management is dealt with,
starting with the indexing commands DIR$, CHDIR, DIR, FILES, MKDIR
and RMDIR, and explaining the structure of the hierarchical filing system.
Next comes the opening, closing, renaming etc. of files with EXIST, KILL,
NAME, OPEN and CLOSE followed by the facilities for storage of areas
of memory with BLOAD, BSAVE, BGET and BPUT. Then sequential
input and output withINPUTS$, INPUT#and PRINT#are covered, together
with indexed sequential accessing of files (SEEK, RELSEEK), as well as
random accessing (FIELD, GET#, PUT#, SEEK#, RELSEEK#). The
section on peripheral devices describes byte by byte input and output with
INP, OUT and their *query’ counterparts INP? and OUT?, and input from
the serial and MIDI interfaces (INPAUXS$, INPMIDS$).

Finally, the commands are given for the handling of the mouse and
joysticks (MOUSE, MOUSEX, MOUSEY, MOUSEK, HIDEM,
SHOWM, STICK, STRIG), and printer output (LPRINT, LPOS,
HARDCOPY). '



148 GFA BASIC 3 - User Manual

Data Commands

DATA const [,constl,const2,...]
READ var [,varl,var2,...]

RESTORE [label]

const,constl,const2 : numerical or string constants
var,varl,var2 : avar or svar

label : user-defined label

DATA statements are used to store numeric or string constants which can
then be accessed with READ. Numeric values can be specified in
hexadecimal, octal or binary form, but string constants must be enclosed
in inverted commas if they contain commas, as commas are normally used
to separate items in the DATA statement.

Internally associated with DATA and READ is the so-called data pointer,
which always points to the next item to be READ. When a program is Run,
this is the first item in the first DATA statement. The RESTORE instruction
allows the data pointer to be moved so as to point to any DATA statement,
provided the DATA statement is preceded by alabel. If nolabel is specified
by RESTORE, the data pointer is movedto the first DATA statement inthe
program.

The label can consist of numbers, letters, underline characters (*_’") or full
stops, and, unlike variable names, can begin with a number. The label
occupies a line by itself and must end with a colon, although the colon is
not used when the label is referred to elsewhere in the program.



Chapter 6 : Input and Output 149

Example:

FOR i=1 TO 3
READ a
PRINT a’
NEXT i
14
RESTORE roman numbers
READ a$,b$,c$,ds$
PRINT
PRINT a$’b$’c$’d$
14

DATA 1,2,
DATA a,b,

14

3,4
c,d
roman numbers:

DATA I,II,III,IV

--> In the loop the numeric values 1,2 and 3 are read in and printed on the
screen. After that, by means of RESTORE, the data pointer is moved to the
line containing the roman numerals as data. They are also read in and
printed.

DATA 10, &A, $A,&HA, £012,&X1010,%1010
FOR 1%=1 to 7

READ a%

PRINT a%
NEXT i%

The number 10 is read in seven times. Like INPUT, VAL etc., READ can
interpret hexadecimal numbers if they are prefixed with °$’ or '&H’, and
binary numbers if they are prefixed with *%’ or '&X’.



150 GFA BASIC 3 - User Manual

File Management

In the following section, instructions related to file organisation are
explained.

First, however, it is important to know the structure of a file specification
and the rules of the hierarchical filing system. A file specification consists
of three parts: the drive specification, the file name and the filename
extension. The drive specification contains the disk drive identification in
the range A to O, followed by a colon, The file name is up to 8 characters
in length, with, optionally, an extension comprising a full stop and up to 3
characters. Groups of files may be gathered into directories (also called
folders), which may themselves be gathered into different sub-directories
(or folders) and so on. The lowest level of grouping (which contains all the
files onthe disc in theirrespective directories and sub-directories) is known
as the root directory. Starting from this root directory, directories may be
accessed, followed by sub-directories, etc. Therefore, for a file to be
accessed, the following information must be given:

- Drive specification
- Name of directory if any, sub-directory if any, etc.
- The actual name of the file and its extension, if any

These parts are separated by reverse diagonal strokes "\" (backslashes).
Names for directories have the same format as file names. The access path
for a file is a combination of these elements.

For example;

A:\TEXT.DOC\MANUAL\CHAPTER 1.DOC
This means that the file to be accessed, named CHAPTER_1, has the
extension .DOC and is in a sub-sub-directory called MANUAL, which

itself is in a sub-directory called TEXT.DOC. TEXT.DOC is in the root
directory of disk drive A:.



Chapter 6 : Input and Output 151

Two special symbols are available to make file selection easier, which can
be used within file names and their extensions. These are the question mark
(’?’) and the asterisk (’*’). The question mark acts like a*wild card’ and will
be accepted as any character whose ASCII value is greater than 32. The
asterisk is similar, except that it can be taken as any sequence of characters
in the file specification.

The command DIR will be explained in a moment, but for now, from the
Direct Mode of GFA BASIC (reached by pressing ESCape), you can type
in 'DIR’, which will cause all the files on drive A: to be displayed.

Typing 'DIR "*.GFA"’ lists those files which have the extension *.GFA’.

Typing 'DIR "?AB?.*A"’ lists those files which have four-letter file names
with the middle two letters "AB’, and an extension ending in ’A°.

Typing *DIR "*.*"* lists all files.



152 GFA BASIC 3 - User Manual

Directory Handling

DFREE(n)
CHDRIVE n or n$
DIRS$(n)

CHDIR name$

n: iexp
name$ :  sexp

DFREE (disk free) returns the amount of space free for storage on drive
n in bytes. This can take a few seconds, or longer with a partitioned hard
disk drive. See CHDRIVE below for the meaning of the parameter n.

CHDRIVE (Change Drive) sets the default disk drive. This is the drive
which is used by DIR etc. if no other drive is specified. Any drive can be
made the default drive with CHDRIVE followed by the drive number from
0 to 16. Drive 0 corresponds to the current default drive, drive |
corresponds to A:, drive 2 to B, etc. The argument of CHDRIVE may also
be a string, in which case the first character (from A to P) identifies the
drive.

DIRS$(n) returns as a string the current access path for drive n, as set with
CHDIR below. See CHDRIVE above for the meaning of the parameter n.

CHDIR sets the current directory. Since the default drive cannot be
changed with CHDIR, the specified directory must be on the current
default drive or a specified drive.

So, after CHDIR "B\TEST", the directory TEST on drive B: becomes the
current directory, which may be accessed without the need to specify the
path 'BATEST’. With CHDIR "\", one can return to the root directory from
any sub-directory. The directory required is always looked for as a sub-
directory of the current directory. Thus if, after making B: TEST the current



Chapter 6 : Input and Output 153

directory as above, one issued the command CHDIR "TEST2", the
effective path from the root directory would be BA\TEST\TEST2.

There are two special folder names: °.” and ’..’, which are shorthand ways
of referring to the current directory path and the ’parent’ directory path
respectively. The parent path is that which leads up to, but does not include,
the current directory. For instance, with the path 'BANTEST\TEST?2’ above,
the parent path is "B\XTEST’. Thusto change the current directory to another
on the same level, perhaps TEST2A, it is only necessary to type 'CHDIR
".NTEST2A"™.

Examples:

CHDRIVE 1

PRINT DFREE (0)
PRINT DIRS$(2)
CHDRIVE "C:\"

-->Disk drive A: is selected as the current default drive, and its free storage
capacity is printed. Then the current access path for drive B: is printed, and
finally drive C: is made the current default drive.

CHDIR "\"

CHDIR "TEXT.DOC\MANUAL"

CHDIR "APPENDIX"

--> CHDIR "\" sets the current directory to be the root directory of the
current drive. In the second line MANUAL, which is a sub-directory of the
sub-directory TEXT.DOC, is made the current directory. In the third line
a further sub-directory APPENDIX is made the current directory, so that
the access path is now \TEXT.DOC\MANUALN\APPENDIX.



154 GFA BASIC 3 - User Manual

DIR p$ [TO name$]
FILES p$ [TO name$]

p$,name$: sexp

The instructions DIR and FILES allow directories to be printed out, or sent
to a specified device or file with TO.. If no device is specified, the output
goes to the screen. The desired access path and file mask (e.g. *.*) is
specified in the expression p$. FILES is very similar to DIR, with the
difference that it also provides information on the length, time and date of
the listed files, and will also list folder names, identified by a **’ prefix, if
they fulfill the conditions of the file mask.

If p$ endsin '\, withno file mask, the mask "*.*’ will be added automatically
by the BASIC.

With the optional extra *TO name$’ the directory information can be sent
to a peripheral device ortoa file. In this case name$ must contain the device
identifier (e.g. "LST:") or a file specification (e.g.
"ANCONTENTS.LST").

Examples:
DIR "A:\BOOKS\*.DOC"

--> All files with the extension .DOC in the folder BOOKS on drive A: are
listed on the screen.

DIR "A:\BOOKS\MANUAL\*.DOC" TO "B:\MANUAL\CONTENTS.ASC"

--> The list of files ending in .DOC in the folder MANUAL, which itself
is found in the folder BOOKS, is sent to the file CONTENTS.ASC in the
folder MANUAL on drive B:.



Chapter 6 : Ihput and Output 155

DIR "A:\*.*" TO "PRN:"

--> All the files on drive A: are listed on the printer.

FILES "A:\*.DOC" TO "LST:"

--> All the files on drive A: which have the extension .DOC are listed on
the printer. ‘



156 GFA BASIC 3 - User Manual

FGETDTA()
FSETDTA(addr)

addr: iexp

The DTA (disk transfer address) can be read with the function
FGETDTA() or set with the instruction FSETDTA.. The default address of
the DTA is BASEPAGE+128, but it is changed when a File Select Box is
used. This address is used by DIR, FILES and EXIST.

The DTA has the following structure:

Offset Bytes Meaning

0 21 Reserved for GEMDOS
21 1 File attributes (see below)
22 2 Time
24 2 Date
26 4 File length
30 14  File name terminated with null byte, without blanks

The meaning of the attribute bits is:

Bit Meaning (if the bit is =1)

0 The file is write protected

1 The file is hidden (excluded from DIR search)

2 The file is a System file (excluded from DIR search)
3 Disk label

4 Folders

5

Archive bit



Chapter 6 : Input and Output 157

FSFIRST(p$,attr)
FSNEXT()

p$ : sexp
attr: iexp

The function FSFIRST searches for the first file on a disc to fulfill the
criteria specified in p$ (e.g. "C\*.GFA"). If such a file is found, the
filename, together with other information, is written into the DTA (see
FGETDTA and FSETDTA). The parameter attr contains the file attributes
which the file to be found may have; for instance, it is possible to search
for hidden files (bit 1) or folders (bit 4).

The function FSNEXT() searches for the next file which fulfills the
conditions of FSFIRST. '

Example:

~FSETDTA (BASEPAGE+128) ! Set the DTA
e%=FSFIRST ("\*.GFA",-1) ! Set search criteria
! ! (~1 =all bits set)
DO UNTIL e%

IF BYTE{BASEPAGE+149) AND 16 ! If it is a folder

PRINT "*":CHAR{BASEPAGE+158}, ! indicate by a star
ELSE ! otherwise

PRINT ’CHAR{BASEPAGE+158}, ! a space before

! the file name

ENDIF
e%=FSNEXT () ! Continue search
LOOP

--> Displays all files with the extension .GFA from the current directory on
the screen, as well as all folder names with that extension, indicated with
the prefix "*’.



158 GFA BASIC 3 - User Manual

MKDIR name$
RMDIR name$

name$: sexp

The instruction MKDIR (make directory) puts a new directory (folder) on
the disc. The expression name$ contains the associated access path. With
RMDIR (remove directory) a directory is deleted, provided, however, that
it is empty (i.e. contains no files or sub-directories).

Example:

MKDIR "A:\PROGS"
RMDIR "A:\PROGS"

--> The directory "PROGS" is created on drive A:, then deleted.



Chapter 6 : Input and Output 159

Files

EXIST(name$)

name$: sexp

By means of EXIST one can determine whethera given file exists on a disc.
The parameter name$ contains the access path and the filename. The
function returns the value TRUE (-1), if the file exists, or FALSE (0) if not.

Example:

OPEN "o", #1,"TEST.TXT"
PRINT #1,"EXAMPLE"
CLOSE #1 _

PRINT EXIST ("TEST.TXT")
PRINT EXIST("TEST.DOC")

-->The file TEST.TXT is opened, some sample text is put in it, and the file
is closed again. The value -1 (TRUE) is then printed, followed by 0
(FALSE), as the file TEST.DOC does not exist.

Also see: FSFIRST, FSNEXT.



160 GFA BASIC 3 - User Manual

OPEN mode$,#n,name$ [,len]

mode$,name$: sexp
len,n : iexp

OPEN opens a data channel to a file or to a peripheral device. The
expression mode$ sets one of the following access modes:

O (output) A file is opened to receive data. If necessary, the
file will be created, or, if the file already exists, its
contents will be deleted.

I (input) A file is opened for reading.

A (append) An existing file is opened, and the data pointer set
to the end of the file. Dataoutput to the file will then
be added at that point.

U (update) An existing file is opened for writing and reading.

R (Random access) A random access file is opened for reading and
writing. This file type is described fully further on.

The numerical expression n contains the channel number and can take a
value from 0 to 99. This channel number must be specified when working
with the file. The '#’ sign before the channel number can be omitted, as the
Editor will supply it anyway. The expression name$ contains the access
path and the filename of the required file.

Instead of a filename, a peripheral device can be specified. The numerical
expression len is used only with the Random Access mode and defines the
length of a data record.



Chapter 6 : Input and Output

161

Contraction

LST: (list)

AUX: (auxiliary)

CON: (console)

MID: (musical instr. dig. interface)
IXB: (intelligent keyboard)

VID: (video)

PRN: (printer)

Meaning ~ Internally
Parallel BIOS 0

Serial (RS232) BIOS 1 v
Keyboard/screen  BIOS 2 or VDI
MIDI BIOS 3

Keyboard processor BIOS 4
Monitor BIOS 5 or VDI
Printer GEMDOS 3



162 GFA BASIC 3 - User Manual

LOF(i#n)
LOC((#n)
EOF(#n)
CLOSE [#n]
TOUCH [#] n

n: iexp

The functions LOF (length of file), LOC (location) and EOF (end of file)
can be applied only to files previously opened with OPEN. With all three
functions the numerical expression n refers to the channel number
previously specified with OPEN.

LOF returns the length of a file in bytes.

LOC returns the current position of the data pointer measured in bytes from
the beginning of the file (where LOC returns zero). (See also SEEK).

EOF determines whether the data pointer points to the end of a file (or the
whole file has been read). If the data pointer does points to the end of the
file, TRUE (-1) is returned, otherwise FALSE (0).

CLOSE closes a data channel to a file or peripheral device previously
opened with OPEN. The numerical expression n contains the number of the
channel to be closed. If the channel number is omitted, all open files are
closed.

TOUCH updates the date and time stamps of a file, giving it the current
system time and date.



Chapter 6 : Input and Output 163

Examples:

OPEN "o",#l,"TEXT.TXT"
FOR i%=1 TO 20
PRINT #1,STRS (i%)
NEXT i%
CLOSE #1
FILES "TEST‘TXT"
DELAY 20 ! Wait 20 seconds
OPEN "u",#1,"TEST.TXT" ‘
TOUCH #1 -
CLOSE #1
FILES "TEST.TXT"

--> In the example the file TEST.TXT is opened, written to, and closed
Then the file information is displayed, including the time and date. Twenty
seconds later the file is opened again, the date and time updated, then
closed. The file information is displayed again.

OPEN "i", #1,"TEST.TXT"
PRINT "file length: ";LOF (#1)
PRINT
PRINT "data","position of the data pointer”
DO UNTIL EOF (#1)
INPUT #1,a$
PRINT "":a$,LOC (#1)
LOOP
CLOSE #1

--> The example opens the file from the previous example for reading.
First the length of the file is displayed by means of LOF. Then the contents
of the file are displayed along with the associated data pointer position until
the termination condition of the loop is met when EOF(#1) is TRUE.



164 GFA BASIC 3 - User Manual

NAME old$ AS new$
RENAME old$ AS new$
KILL name$

old$,new$,name$: sexp

NAME gives the file specified in old$ the new name specified in new$. The
contents of the file are not changed. Of course, old$ and new$ must refer
to the same disc drive in their file specifications. RENAME and NAME are
synonymous.

KILL deletes the file specified in the expression "name$".
Example:

OPEN "o", #1,"TEST.TXT"
PRINT #1,"example”

CLOSE #1

4

NAME "TEST.TXT" AS "EXAMPLE.TST"
DIR

KILL "EXAMPLE.TST"

DIR

--> The file TEST.TXT is opened and some sample data written to it. It is
then renamed as EXAMPLE.TST and the directory displayed to show its
precedence. EXAMPLE.TST is then deleted and the directory displayed
again, this time to show its absence,



Chapter 6 : Input and Output 165

BLOAD name$ [,addr]
BSAVE name$,addr,count
BGET #n,addr,count
BPUT #n,addr,count

name$ : sexp
n,addr,count: aexp

With BSAVE an area of memory can be stored on disk (or RAM-disk, hard
disk drive etc.), and loaded again e.g. with BLOAD. The numerical
expression addr specifies the address of the first byte of the areatobe saved,
or, with BLOAD, the address where the data from disk is to be put. If no
address is specified with BLOAD, the address that was specified with
BSAVE when the area was saved will be used. BSAVE must also specify
the number of bytes to be saved. The parameter name$ is the file
specification of the file to which the area is to be saved, or from which it
is to be loaded. See the beginning of ’File Management’ for details of the
specification.

BSAVE and BLOAD always use a whole file. In contrast, BPUT and
BGET access a file via its channel number n, so it is possible to use BGET
and BPUT to save or load parts of a file.

Examples:

DEFFILL 1,2,4

PBOX 100,100,200,200

BSAVE "RECTANG.PIC",XBIOS({Z2),32000 !XBIOS(2) gives
! 'screen address

CLS

PRINT AT (4,20);"Picture stored. Press a key"
~INP (2)

CLS

BLOAD "RECTANG.PIC"

--> Draws a rectangle and stores the screen under the name
"RECTANG.PIC". An appropriate message is displayed, and, after a key
has been pressed, the file is re-loaded, again to the screen memory area.



166 GFA BASIC 3 - User Manual

DEFFILL 1,2,4

PBOX 0,0,639,199

DEFFILL 1,2,2

PBOX 0,200,639,399

DEFTEXT 1,0,0,32

TEXT 10,115,"the upper half"
TEXT 10,315,"the lower half"
[4

OPEN "o",#1,"SCREEN.PIC"
BPUT #1,XBIOS(2),32000
CLOSE #1

PAUSE 25

CLS

14

OPEN "i", #1,"SCREEN.PIC"
BGET #1,XBIOS(2)+16000,16000
BGET #1,XBIOS(2),16000

CLOSE #1

-->Theupper half of the screen is filled with one pattern, the lower half with
another, and appropriate messages are put in each half. Then the entire
screen is saved into the file SCREEN.PIC. After a pause, the first half of
the file is loaded into the bottom half of the screen, and the second half of
the file is loaded into the top half of the screen.



Chapter 6 : Input and Output - 167

Sequential Access

INP(#n)
OUT #n,a [,b,c,...]
INP&(#), INPT % (#), OUT &, OUT %

na,b,c,... : iexp

INP(#n) reads a byte from a file which has been previously opened with
OPEN. Similarly, OUT #nsends a byte to afile. The numerical expression

n is the channel number under which the file was OPENed.

INP and OUT without the '# can also be used for communication with the
screen, keyboard, etc. (e.g. INP(2) takes a character from the keyboard).

Only the low-order 8 bits of a,b,c,... are output, thus limiting their values
to 255.

The INP-function and the OUT-command now cater for 16 and 32 bit

input, €.g. A% = CVL(INPUTS$(4, #1)) is replaced by A% = INP(#1).
Example:

OPEN "o",#1,"TEST.TXT"
ouUT #1,128

CLOSE #1

OPEN "i",#1,"TEST.TXT"
a=INP (#1)

CLOSE #1

PRINT a

--> In the first part of the example a file is opened for output and a byte is
written to it. In the second part this byte is read back in as the variable 'a’

which, when printed, is revealed to have the value 128.



168 GFA BASIC 3 - User Manual

INPUT$(count [,#n] )

n,count: iexp

INPUTS reads "count’ characters from the keyboard and assigns them to a
string. Optionally, if the channel number n (0 to 99) is specified, the
characters are read in as bytes from afile or peripheral device. In both cases
the numerical expression 'count’ determines the number of charactersread.

Example:

OPEN "o",#1,"VERSION.DAT"
PRINT #1,"GFA BASIC, Version 3.0"
CLOSE #1
4

OPEN "i", #1,"VERSION.DAT"

v$=INPUTS (9, #1)

CLOSE #1

PRINT v$

PRINT "Please type in the Version number :";
PRINT INPUTS$ (3)

-->In the first part of the example the file "VERSION.DAT" is opened and
a message printed to it. The second part reads the first 9 characters of this
file into the variable v$ and displays v$ on the screen. Then a message
appears, and 3 characters are taken from the keyboard and printed.



Chapter 6 : Input and Output

169

INPUT #n,varl [,var2,var3,...]
LINE INPUT i#n,al$ [,a2$,a2$.,...]

n: iexp
al$,a2$,a3$:  sexp
varl,var2,var3: avar or svar

INPUT #n makes it possible to take data from a file or a peripheral device.
Individual variables or variable lists (where the variables are separated by
commas) can be input. These instructions correspond to INPUT and LINE

INPUT, though they only take input from the keyboard.
Example:

OPEN "o", #1,TEXT.DOC

WRITE #1,"Goodbye","Hello","Hello, Hello, Hello"

CLOSE #1
14

OPEN "i",#1,"TEXT.DOC"
INPUT #1,a$,b$

LINE INPUT #1,c$
CLOSE #1

PRINT a$

PRINT b$

PRINT c$

--> Three strings are written to the file TEXT .DOC. The first two are read
back in withINPUT#, the third with LINEINPUT #, as it contains commas.

The three strings are printed.



170 GFA BASIC 3 - User Manual

PRINT #n,expression
PRINT #n,USING form$,expression
WRITE#n,expression

n: iexp
form$ : sexp
expression : aexp or sexp or a combination

PRINT #n outputs data to a specified channel. PRINT #n USING allows
formatted output to a data channel. In both cases n (0 to 99) denotes the
required channel. Otherwise the instructions operate like PRINT, PRINT
USING and WRITE. PRINT #n AT, however, is not possible. The
instruction WRITE # serves primarily for the space-saving storage of data
in sequential files in a format suitable for later reading with INPUT #. The
expressions are separated by commas and character strings must be

enclosed in quotation marks.

Examples:

OPEN "o", #1, "TEXT.DOC"
PRINT #1,"test”

CLOSE #1

14

OPEN "i",#1, "TEXT.DOC"
INPUT #1,a$

CLOSE #1

PRINT a$

--> The string "test" is printed to the file TEXT.DOC, which is then closed
and re-opened for input. INPUT # takes the string from the file as a$, which

is then printed on the screen.



Chapter 6 : Input and Output 171

OPEN "o",#1,"TEST.DAT"
WRITE #1,"Version ",3,".0"
CLOSE #1

14

OPEN "i",#1,"TEST.DAT"
INPUT #1,v1$,v2$,v3$
CLOSE #1

PRINT v1$+v2§+v3$

--> Data separated by commas is put into the file TEST.DAT and
afterwards read back in again with INPUT # and displayed on the screen.



172 GFA BASIC 3 - User Manual

STORE #i,x$() [,n [TO m]]
RECALL #i,x$0,n [TOm] ,x

inm: iexp
x$(): String array
X : Variable, at least 32-bit

The instruction STORE is used for sending the contents of an array to afile
or data channel (with the elements separated by CR/LFs). The optional

‘parameter m specifies how many elements of the array are to be sent to the
previously OPENed channel n; if m is omitted, the whole array is
transferred.

The instruction RECALL allows the quick inputting of m lines from a text
file to the array x$(). If m=-1 all available lines are read. If m is too large
for the dimensioning of the array, then the number of lines read in is limited
automatically. If the end of file is reached during reading then the inputting
is broken off without an error occurring. In each case, after the reading has
been completed, the variable x will contain the number of strings actually
read.

In spite of mentioning the number of strings to be read/written you can give
the range of the strings to be stored, e.g. STORE #1, a$(), 10 TO 20.

--> That stores eleven strings to a$(), starting with number 10 up to 20,
counting ALWAYS starts with zero.

Examples:

DIM A$(1000)
FOR i%=0 TO 499

a$(i%)=STRS (RND) ! anything.
NEXT i%

OPEN "o",#1, "TESTFILE.TXT"
STORE #1,a$(),500



Chapter 6 : Input and Output 173

CLOSE #1

DIM b$(2000)
OPEN "i",#1,"TESTFILE.TXT"
RECALL #1,b$(),-1,x
CLOSE #1
PRINT x
--> The number of text lines read is displayed (500).

PRINT "Line counter:"
DIM a$(1000)
DO
FILESELECT "\*.,*", "" £f$
EXIT IF f§= ""
lcs=0
OPEN "i",#1,£$
DO
RECALL #1,a$(),-1,x%
ADDS lc%,;x%
LOOP WHILE x$%
CLOSE #1
PRINT £$'"contains”"'lc%'"lines."
LOOP

--> This program counts the lines in text files.

Note: STORE functions with files and peripheral devices, but RECALL
only functions with files, since a SEEK (see following) is used internally.



174 GFA BASIC 3 - }User Manual

SEEK #n,pos
RELSEEK #n,num

n,num,pos: iexp

The commands SEEK and RELSEEK pemmit the re-positioning of the data
pointer with an accessed file, allowing the realisation of indexed sequential
file access. The numerical expression n contains the channel number used
when the file was OPENed. Both commands can be used only with files,
not with peripheral devices. The data pointer specifies which byte of a file
was read or written last. Except for access mode A’ (used to append data
to the end of an an existing file) the data pointer has the value 0 when
opening afile. Reading or writing commences with first byte, to which the
data pointer subsequently points.

The SEEK command positions the data pointer to a specified byte number
in a file. The pointer can, however be moved a specified number of bytes
forwards or backwards with RELSEEK (relative seek): the pointer is
moved the number of bytes specified in num. RELSEEK is generally faster
than SEEK.

SEEK may use positive values of pos up to the relevant file length.
RELSEEK accepts positive or negative values of num, an error occurring
when an attempt is made to position the data pointer past the end or before
the beginning of a file. SEEK #n,0 takes the pointer to the start of a file.



Chapter 6 : Input and Output 175

Example:

OPEN "o",#1,"X.X"

PRINT #1,STRINGS (20,"*")
SEEK #1,10 a
PRINT #1,"#";

RELSEEK #1,-5

OUT #1,48,49

CLOSE #1

14

OPEN "i", #1,"X.X"
LINE INPUT #1,a$
PRINT a$
CLOSE #1

-— Displays: ******01**#*********



176 GFA BASIC 3 - User Manual

Random Access

In the following section the handling of aRandom Access file is described.
Two terms are particularly important: Data record and data field. A data
field is a single item of information, for instance a name or telephone
number. A data record consists of anumber of data fields, and is analogous
to one card in a card index. The length of arecord (in bytes) must equal the
sum of the lengths of the individual fields.

The difference between arandom access file and a sequential file liesin the
method of data access. With a sequential file the entire file must be loaded
inorder to be able to access a particular datarecord, whereas with arandom
access file the record may be obtained directly. This is particularly useful
with very large files, although this advantage is offset by greater
consumption of space on the disk, because arandom access file uses a fixed
record length, resulting in wastage if some records are shorter than others.



Chapter 6 : Input and Output 177

FIELD #n,num AS svar$ [,num AS svar$,num AS svar$, ..]
FIELD #n,num AT(x) [,num AT(x),num AT(x),...}

n,num,x : iexp
svar$ : svar (not an array variable)

The command FIELD AS is used to divide data records into fields. The
numerical expression n is the number of the data channel (0 to 99) of a file
previously opened with OPEN. The integer expression num determines the
field length. The variable svar$ contains data for one field of a datarecord.
Ifthe datarecord isto be divided into several fields, the parts 'num AS svar$’
must be separated by commas. The sum of the individual field lengths must
equal the data record length, otherwise an appropriate error message is
displayed. Thus in order to keep the field lengths to those specified in the
FIELD command it is convenient to use the commands LSET and RSET
or MIDS$.

By using AT() instead of AS numeric variables can be written to arandom
access file. In this case num must contain the length of the variable (1 for
byte-type, 2 for word-type etc.) and the brackets must contain a pointer to
the variable (see *, VARPTR). Actually an arbitrary area of memory can
be transferred by specifying the number of bytes (num) and the address of
the first byte (x). Note that there is no space after the 'AT’.

For example:

FIELD #1,4 AT (*a%),2 AT (*b&),8 AT (*c#)
Arbitrary combinations of AS and AT are possible, e.g.:

FIELD #2,4 AS a$,2 AT (*b&),8 AT(*c#),6 AS d$
Unlike in Version 2, several successive FIELD commands can be used, on
sucessive lines, referring to the same channel number. The effect is the

same as that of one long FIELD command. The maximum record length is
32767 bytes, and the maximum number of fields approximately 5000.



178 GFA BASIC 3 - User Manual

GET #n [,r]
PUT #n [,r] . . ™
RECORD #n,r

n,r: iexp

GET reads a data record from a random access file. Similarly, PUT stores
adatarecord in such a file. The parameter n (0 to 99) is the channel number
under which the file was OPENed, and the optional parameter r contains
avalue between 1 and the number of data records in the file, specifying the
number of the datarecord toberead or stored. If ris omitted, the next record
will be read or stored.

RECORD sets the number of the record next to be read or stored with GET
or PUT. (e.g. after RECORD #1,15 record number 15 will be read by GET
#1)

—
NB.: Only one record at a time can be added to a file. A FOR-NEXT loop
etc. must be used for multiple record storage.
Examples:
OPEN "r'",#1,"PERSONAL.INF", 62
FIELD #1,24 AS name$,2 AT (*house&)
FIELD #1,24 AS road$,12 AS town$
FOR i%=1 TO 3
INPUT "Name : ";n$
INPUT "House number: ";house&
INPUT "Road : "r$
INPUT "Town : "tes
LSET name$=n$
LSET road$=r$
LSET town$=t$ —_
PUT #1,1i% '
CLS
NEXT 1%

CLOSE #1



Chapter 6 : Input and Output 179

--> First an random access file (mode 1’ ) with a record length of 62 bytes
is opened. With FIELD a data record is specified as consisting of 4 fields
of 24, 2, 24 and 12 bytes respectively (adding up to 62, the record length
specified in the OPEN statement).

Then the program asks for three names and addresses. Each time the name,
house number etc. are inserted left justified into the appropriate variables
and the whole data record is written to the file.

(In older versions of GFA BASIC instead of ’2 AT(*house&)’ it was
necessary to use ‘2 AS house$’ and then 'LSET house$=MKI$(house&)’,

etc.)

OPEN "r",#1,"PERSONAL.INF", 62
FIELD #1,24 AS name$,2 AT (*house&)
FIELD #1,24 AS road$,12 AS town$
FOR i%=1 TO 3
GET #1,i%

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

NEXT i%

CLOSE #1

"Record number:

"Name
"House number :
"Road
"Town

".i%

: ":;name$

" house&

: ";road$
: ":town$

--> Here the file PERSONAL.INF is opened in Random access mode and
the three records are read in and printed out.



180 GFA BASIC 3 - User Manual

Communicating with Peripherals
Byte by Byte input and output

INP(n)

INP?(n)

OUT [#In,a [,b...]
OUT?(n)

n,a,b: iexp

INP reads a byte from a peripheral device. The numerical expression n can
accept values from 0 to 5 (see the following table) or contain a channel
number (#n). The command OUT sends a byte to a peripheral device.

Unlike GFA BASIC Version 2, one can now send several bytes with one
OUT statement.

INP? and OUT? determine the input or output status of a peripheral device.
A non-zero value is returned if the device is ready to send/receive, and zero
(logical FALSE) if it is not.

Device table

n Contraction Meaning

0 LST: (list) Printer

1 AUX: (auxiliary) Serial (RS232)

2 CON: (console) Keyboard/Screen

3 MID: (MIDI) MIDI Interface

4 IKB: (intelligentkbd.) Keyboard processor
5 VID: (video) Screen



Chapter 6 : Input and Output 181

Examples:

PRINT AT (4,4);"Press a key please”
~INP (2)

> A message is displayed and the program then waits for a byte from
device 2 (the keyboard).

our 2,27,69,10,10,10
PRINT "Hello"

--> This command clears the screen (by means of the VT-52 control
sequence ESCape + E, corresponding to the ASCII codes 27 and 69), then
issues three Line Feed characters (ASCII code 10). Thus, "Hello’ is printed
on the fourth line.



182 GFA BASIC 3 - User Manual

Serial (RS232) and MIDI interfaces

INPAUXS$
INPMID$

By means of INPAUX$ and INPMIDS$ data can be read in very quickly
from the serial and MIDI interfaces.

Example:

DO
PRINT INPAUXS;
LOOP UNTIL MOUSEK

--> Reads in all the data from the input buffer of the serial interface. This
method of data input is very much faster than inputting byte by byte.

inp_aux$=""
WHILE INP? (1)

inp aux$=inp aux$+CHRS (INP (1))
WEND

--> This alternative method is clearly slower.



Chapter 6.: Input and Output 183

Mouse and Joysticks

MOUSEX
MOUSEY
MOUSEK
MOUSE mx,my,mk

mx,my,mk: avar

MOUSEX, MOUSEY and MOUSEK supply the X and Y coordinates of
the mouse pointer, and information on the state of the mouse buttons.
MOUSE allows the gathering of that information with one statement,
giving the current mouse coordinates to mx and my and the mouse button
status to mk. MOUSEK (or mk) will give values between 0 and 3, with the
following meaning:

mk  Button(s) pressed

0 None

1 Left

2 Right

3 Both left and right



184 GFA BASIC 3 - User Manual

Example:

REPEAT
IF MOUSEK=1
PLOT MOUSEX,MOUSEY
ENDIF
UNTIL MOUSEK=2

REPEAT
MOUSE x%,y%,k%
IF k%=2
PLOT x%,y$%
ENDIF
UNTIL k%=1

-->In the first REPEAT-UNTIL loop a point is plotted on the screen at the
mouse pointer position if the left button is pressed. When the right button
is pressed the second REPEAT-UNTIL loop is entered. In the second loop,
plotting takes place provided the right button is held down. When the left
button is pressed, the loop and the program both terminate.



Chapter 6 : Input and Output 185

SETMOUSE mx,my [,mk]

mx,my,mk: iexp

The command SETMOUSE permits the positioning of the mouse cursor
under program control. The optional parameter mk can simulate the mouse
buttons being pressed or released. This unfortunately is only valid for the
VDI, not, (or seldom) with the AES.

Example:

FOR i%=0 TO 300
HIDEM
SETMOUSE i%,i%
PLOT MOUSEX,MOUSEY
SHOWM
PAUSE 2

NEXT i%

--> Moves the mouse pointer diagonally down the screen, plotting points
at its current position as it goes.



186 GFA BASIC 3 - User Manual

HIDEM
SHOWM

The commands HIDEM (HIDE Mouse) and SHOWM (SHOW Mouse)
cause the mouse pointer to be made invisible or visible respectively. Use
of the ALERT command or other AES routines causes the mouse pointer
to be switched on, and, if not required, it must be subsequently re-hidden
with HIDEM.,

During output to the screen with PRINT or the VDI or LINE-A routines the
mouse pointer is automatically switched off, but is afterwards returned to
its previous state.

Example:

REPEAT
IF MOUSEK=1
SHOWM
ENDIF
IF MOUSEK=2
HIDEM
ENDIF
UNTIL MOUSEK=3

--> The mouse pointer is activated by pressing the left button, and de-
activated by pressing the right button. Pressing both simultaneously ends
the program, when the "Program End’ Alert box leaves the pointer visible.



Chapter 6 : Input and Output 187

STICK m
STICK(p)
STRIG(p)

m,p: iexp

The ATARI ST is provided with two interfaces (Ports) for the attachment
of Mouse and Joysticks. Port O can supply mouse or joystick information,
but Port 1 can only read joystick data.

STICK 0 causes Port 0 to supply mouse information, and STICK 1 causes
it to supply joystick information. Port 1 always reads a joystick. Normally
it is not necessary to use STICK, since mouse queries (MOUSE,
MOUSEK, etc.) and joystick queries (STICK(), etc.) cause STICK 0 and
STICK 1 to be executed automatically. However, before using AES
functions (ALERT, etc.) the mouse should be activated if necessary with
STICK 0.

The function STICK(p) returns the position of a joystick. For p=0 the
joystick at Port 0 is read, and for p=1, the joystick at Port 1. The values
returned correspond to the position of the stick as follows:

519
N/
4--0--8
/N
6 210

The function STRIG(p) returns the state of the fire button of the joystick
attached to Port p as a logical value: TRUE (-1) if it is pressed, or FALSE
(0) if not.



188 GFA BASIC 3 - User Manual

Examples:

STICK 1 ! Activates joystick if attached to Port 0
REPEAT
direction%=STICK(0)
fire!=STRIG(0)
SELECT direction$%
CASE 4
' PRINT "Left"
CASE 8
PRINT "Right"
CASE 2
PRINT "Down"
CASE 1
PRINT "Up"
ENDSELECT
UNTIL fire!
WHILE STRIG(0)
WEND ! Waits for fire button to be released

--> With movement of the joystick, appropriate messages are printed until
afirebutton is pressed. After waiting for it to be released, the programends.

Note the difference between the REPEAT and WHILE constructs:

REPEAT
" program segment
UNTIL condition

WHILE condition
! program segment
WEND

With REPEAT, the program segment will certainly be executed at least
once, whereas with WHILE the program segment might not be executed
at all if the condition is false.



Chapter 6 : Input and Output 189

Printing

LPRINT expression
LPOS(x)
HARDCOPY

expression: aexp or sexp, arbitrarily mixed
X: avar (dummy argument)

LPRINT is identical to the PRINT command and its variants (LPRINT
USING, etc.), except that output goes to the printer instead of the screen,
and it is not possible to use a PRINT AT equivalent, as this would involve
re-positioning the print head. Similarly to POS, LPOS returns the number
of characters printed since the last Carriage Return.

HARDCOPY causes a copy of the screen to be output to asuitable printer,
in the same way as by pressing the ALTernate-Help keys. There is adriver
for non-Epson-compatible 9 pin printers which, unlike HARDCOPY does
not use XBIOS(20). It is activated by SDPOKE &H4EE,0.

Some hard copy drivers don't react on routine XBIOS(20). F Ostrowski
made last-minute changes to the HARDCOPY command. Now there is a
SPOKE &H4EE,0 and a VSYNC that should help even the worst cases.

Examples:

LPRINT
LPRINT "test”
PRINT LPOS(Xx)

--> The word "test" comes out on the printer (if it is attached, switched on,
and On-Line) and the current print head position appears on the screen.

FOR i%=20 TO 180 STEP 10
CIRCLE 320,200,i%

NEXT i%

HARDCOPY

--> Concentric circles are drawn on the screen, then a copy of the screen
is made on the printer.



190 GFA BASIC 3 - User Manual

Scund Generation

SOUND chan,vol,note,octave,del
SOUND chan,vol #per,del
WAVE voice,env,form,per,del

chan,vol,note,octave,del,per,voice,env,form: iexp

SOUND and WAVE serve to control the three-channel tone generator of
the ATARI ST, the three channels having nothing to do with the data
channels used to communicate with peripheral devices and files. The
parameters have the following meanings:

Chan  Channel number (0 to 3)

Vol Volume (1 to 15)

Note Note (1 to 12) determines the note as follows:

Note: 1 2 3 6 9 10 11 12

4 5 7 8
Tone: C C# D D¥ E F B G G# A A# B

Octave Octave (1 to 8)

Del Delay in 1/50ths second before the next GFA BASIC command
is executed.

Per Period of the waveform multiplied by 125000. Thus for a given
frequency, per=ROUND(125000/frequency). In the alternative
form of the SOUND command, #per can be used to replace the
note and octave parameter, e.g. SOUND 1,15,10,4,250 and
SOUND 1,15, #284,250 both produce a tone of 440Hz.



Chapter 6 : Input and Output 191

Voice

Env

Form

Channel combination: with WAVE, any channel or combinat:on
of channels may be activated simultaneously. The valuc of
*voice’ is 256 multiplied by the period (0 to 31) of the noise
generator, plus the sum of the following: ‘

1 = Channel 1

2 = Channel 2

4 = Channel 3

8 = Noise (channel 1)
16 = Noise (channel 2)
32 = Noise {channel 3)

Specifies the channels for whichthe envelope shaper (see ’form’)
is to be active. Its value is the sum of the following:

1 = Channel 1
2 = Channel 2
4 = Channel 3

Specifies the envelope shape (0 to 15) thus:

Oto3=(as9)
4t07 =(as 15)

8 = Falling saw tooth

9 = Falling linearly

10 = Triangle, beginning with fall
11 = Falling linearly, then to max
12 = Rising saw tooth

13 = Rising linearly and holding
14 = Triangle, beginning with rise

15 = Linear rising, then to zero



192 GFA BASIC 3 - User Manual

Tone generation is begun by the SOUND or WAVE command and ended
by another SOUND or WAVE command (SOUND 1,0,0,0,0 produces
silence). Asthe operating systemuses the sound chip to produce akeyboard
click, this also terminates an on-going sound output situation. The
keyboard click can be disabled by:

SPOKE &H484,BCLR(PEEK (&H484),0)

...and enabled by:
SPOKE &H484,BSET (PEEK (&H484),0)

These two statements have the effect of setting bit 0 of memory location
&H484 to zero or one respectively.

The period of the envelope is determined by the parameter 'del’.

With both SOUND and WAVE, the parameters are remembered, so that
for subsequent use with similar parameters, it is only necessary to specify
parameters up to the one that is to change: after WAVE 7,7,0,10000,100,
it is only necessary to type WAVE 1 to change the first parameter, leaving
the others the same.

Example:
SOUND 1,15,1,4,20
SOUND 2,15,4,4,20
SOuUND 3,15,8,4,20
WAVE 7,7,0,65535,300

--> A tone is produced with each channel and modulated by means of
WAVE.



Chapter 7
Program Structure

In this chapter the commands used for controlling the execution of a
program are discussed, starting with 'decision commands’, by means of
which the execution of certain program sections is carried out only if
certain criteria are met. In the case of IF, THEN, EL.SE, ENDIF and EL.SE-
IF, the criterion is a logical one: BASIC checks if a logical expression is
true or false. in addition to these are the multiple decision commands
SELECT, CASE, DEFAULT, ENDSELECT and CONT. These not only
check for true or false, but can accept arbitrary values which can be reacted
to selectively.

The next section sets out the loop commands, which make the repeated
execution of specified sections of a program possible. GFA BASIC 3 is
provided with a very large number of such loop types: FOR-TO-STEP-
NEXT, REPEAT-UNTIL, DO-LOOP or ENDLOOP, DO-WHILE, DO-
UNTIL, LOOP-WHILE, LOOP-UNTIL, EXIT-IF.

For structured programming the use of sub-routines is of great importance.
With the commands PROCEDURE, GOSUB (or @) and RETURN (or
ENDSUB) new ‘commands’ can be created in the form of subroutines.

Functions may also be defined by the user. With the commands DEFFN and
FN functions are created like formulas. More flexibility is possible with the
commands FUNCTION, ENDFUNC and RESULT, which allow the
formation of complete subroutines that return a value.



194 GFA BASIC 3 - User Manual

Also in this section is a detailed description of the the way in which
variables are dealt with by subroutines. Local variables may be declared
with LOCAL, with the effect that they are only valid in that subroutine.
Variables of the same name in other parts of the program are unaffected.
Variables can be passed to subroutines as values, or, with the VAR
command, the variable itself can be passed (called by reference), and its
value changed without the need to refer to it directly by name in the
subroutine.

The section on conditional branches also explains the commands which
deal with the following two special events: the simultaneous pressing of the
‘break keys’ Control-Shift-Alternate, which normally stop a program; and
the error situation which occurs when, for example, an attempt is made to
divide by zero, or to take the square root of a negative number etc. Both of
these events can be made to trigger the execution of a user-defined routine,
instead of stopping the program.

Itis possible in GFA BASIC 3 to call a subroutine when a specified amount
of time has elapsed, using the commands EVERY and AFTER. This is
explained in this chapter.

Towards the end of the chapter the absolute branch GOTO, the commands
PAUSE and DELAY, which temporarily suspend program execution, as
well as different methods of ending the program (QUIT, SYSTEM, END,
EDIT, NEW and STOP) are presented. The last section covers the
commands for monitoring the execution of a program (TRON, TROFF,
TRON proc, TRACE$, DUMP, ERR$, ERROR).

TN,



Chapter 7 : Program Control 195

Decision Commands

IF condition [THEN]
ELSE
ENDIF

condition :  bexp

These commands enable one to specify that asection of a program will only
be executed if a logical condition is met. The following example
demonstrates this:

IF a=1 THEN
PRINT "a is equal to i"
b=2

ENDIF

In this case a=1 is the logical condition. The instructions in the lines
between IF and ENDIF are processed only if this logical condition is MET.
If it is untrue, then the program continues with the commands after the
ENDIF and the command THEN is not considered. It should be noted that
it is sufficient to use the form:

IF a=1 insteadof IF a=1 THEN
The following construction is somewhat more complex:

IF a=1
PRINT "a is equal to 1"
ELSE
PRINT "a is not equal to 1,"
PRINT "it is equal to ";a
ENDIF



196 GFA BASIC 3 - User Manual

In this case shown above, the instructions between IF and ELSE are
processed if the logical condition after the IF is true. The program then
continues execution after the ENDIF. However, if the condition after IF is
not fulfilled, then the instructions between ELSE and ENDIF become
effective. Again, program execution is continued after the ENDIF.

Note: Any numerical expression, which is not equalto 0, i.e. is FALSE, is
considered to be true. The logical value for TRUE is -1 but any non-zero
value is considered to be equivalent.

Example:

x=1
IF x
PRINT "x is true"
ENDIF
INPUT y
IF x=9 OR ODD (y)
PRINT "y is an odd number"
ELSE
PRINT "y is an even number”
ENDIF

--> First the message 'x is true’ is displayed and then a numeric input is
requested. Since x cannot be 9, the text appears "y is an odd number’, if you
have entered an odd number, otherwise 'y is an even’ is displayed.



Chapter 7 : Program Control 197

ELSE IF condition

condition: bexp

The command ELSE IF enables nested IF's to be more clearly expressed
in a program. The following examples show a simple menu selection made
on a single key-press. If 1, s or ¢ is pressed then, respectively, a load, save
or input routine is called. In all other cases the message 'unknown
command’ is printed. The normal nested version is as follows:

DO
t$=CHRS (INP (2} )
f
IF t$="l"
PRINT "Load text"
ELSE
IF t$="s"
PRINT "Save text"
ELSE )
IF té="e"
PRINT "Enter text"
ELSE
PRINT "unknown command”
ENDIF
ENDIF
ENDIF

14

LOOP



198 GFA BASIC 3 - User Manual

The use of ELSE IF produces shorter listing with smaller program indents.

DO
t$=CHRS$ (INP (2))

IF t§="1"

PRINT of "Load text"
ELSE IF t$="s"

PRINT "Save text"
ELSE IF t$="e"

PRINT "Enter text™
ELSE

PRINT "unknown command"
ENDIF
I 4

Loorp

The program works in the following way:

If the condition after IF is fulfilled (t$="1" ), then the instructions between
IF and the next ELSE IF are processed - PRINT "Load text" - and then the
program jumps to the command ENDIF. If the condition for the first IF is
not true then the other IF’s are encountered.

Inthe second case, if the condition after the ELSE-IF command is met, then
all instructions up to the next ELSE, ELSE IF or ENDIF (if no ELSE exists)
are processed and the program jumps to the instruction after ENDIF. If
neither the condition after the IF or the condition after ELSE-IF is true, then
the commands between ELSE and ENDIF are implemented (if an ELSE
exists) .



Chapter 7 : Program Gontrol 199

Multiple Branching

ON x GOSUB procl,proc2, ...

X: iexp
procl, proc2 : procedure name without parameter

This command branches the progam to a procedure, which is in the list
specified after GOSUB. The x is a numerical (normally integer)
expression, whose decimal part (if any) is ignored. If x is smaller than 1 or
larger than the number of the procedure names after the GOSUB, then no
subroutine is called. After calling the subroutine the program execution is
continued immediately after the ON x GOSUB. With this command no
parameters can be handed to the procedure.

Example:

x=3

ON x GOSUB procl,proc2,proc3

x=1

ON x+1 GOSUB procl,proc2,proc3,procd

--> First the procedure proc3 is called, then the procedure proc2.



200 GFA BASIC 3 - User Manual

SELECT x

CASEy[TOz]or CASEy[,z,...]
CASETOy

CASEyTO

DEFAULT

ENDSELECT

CONT

X, ¥, z ¢ iexp or string-constant with a maximum length of 4
characters

The command SELECT makes branching possible using the CASE
command, on the basis of the value of the numerical expression x. The
following examples give an explanation of the program structure that
results:

x=0
SELECT x+2
CASE 1

PRINT "x is equal to 1"
CASE 2 TO 4

PRINT "x is equal to 2, 3 or 4"
CASE 5,6

PRINT "x is equal to 5 or 6"
DEFAULT

PRINT "x is not equal to 1, 2, 3, 4, 5 or 6"
ENDSELECT

--> The message 'x is equal to 2, 3 or 4" is displayed.

First the numerical expression after SELECT is evaluated, which is the
branch condition, in this case 2. Then the various CASE instructions are
gone through and checked as to whether the current value of the branch
condition is to be found.



Chapter 7 : Program Control 201

In this example the argument '1' follows the first CASE command. Since
the branch condition is 2, the program jumps to the next CASE.

After the second CASE are the arguments "2 TO 4'. As the value of x falls
within this range the condition is fulfilled and the message printed on the
screen. After that program execution continues after the command
ENDSELECT. After the third CASE command is a further variant of the
possible arguments for the SELECT command. There the desired values
are separated, in a list, by commas.

If none of the current branch criterion after the various CASE commands
is met, then the instructions between DEFAULT and ENDSELECT are
executed (assuming a DEFAULT is present). In addition, instead of
DEFAULT, OTHERWISE can be used (giving compatibility with other
BASICs) but the GFA Interpreter replaces it with DEFAULT
automatically.

Also, after CASE commands, not only numeric values but also strings may
be used as the argument. These may have a maximum length of four
characters. If only one character is specified then its ASCII value is used
as the branch criterion. If two characters are specified, then this value is
calculated as follows:

ASCII value of first character + 255 * ASCII value the second character.
... and so on for the third and fourth characters.

NOTE: The maximum length of CASE is 4 characfe_,rs, i.e.
CASE"AB,C,D".



202 GFA BASIC 3 - User Manual

Example:

exit !=FALSE
REPEAT
key%=inp (2)
SELECT key$
CASE "a" TO "z"
PRINT "the lower-case letter"+chr$ (key%)+" was
entered"”
CASE "A"™ TO "z2"
PRINT "the upper-case letter"+chr$ (key$%)+" was
entered"
CASE 27
exit !=TRUE 'program ends when <Esc> key is
pressed
DEFAULT
PRINT "an inadmissible key was pressed!"
ENDSELECT
UNTIL exit!

--> Within a loop the keyboard is queried and the the program jumps
according to which key was pressed and the appropriate message is
displayed. Pressing the Esc key is used as an abort criterion for the loop.

The next example illustrates the meaning of the CONT command, which
is effective if it comes before a CASE or DEFAULT command. This
CONT command must not be confused with the command of the same
name used for resuming execution of an interrupted program run,



Chapter 7 : Program Control 203

Example:

x=1
SELECT x
CASE 1
PRINT "x is equal to 1"
CONT
CASE 2
PRINT "x is equal to 2"
CASE 1,3
PRINT "x is equal to 3"
DEFAULT
PRINT "x is not equal to 1, 2 or 3"
ENDSELECT

--> Displays 'x is equal to 1’ and then ’x is equal to 2°.

The CONT command provides a method of jumping over a CASE or
DEFAULT command. In this example the value x is equal to the argument
after the first CASE, i.e. x=1. Therefore the message "x is equal to 1" is
printed. Then comes the CONT command, which jumps over the line
CASE 2 and, although the branch condition is not fulfilled, the CONT
command causes the instruction PRINT "x being equal to 2" to be
implemented. The normal processing continues with processing jumping
to the ENDSELECT command.

Example:

SELECT INP(2)
CASE "a" TO "g"
PRINT "a to g"
DEFAULT
PRINT "default"”
ENDSELECT

-->Ifyoupressoneofthea,b, c.d, e, forgkeysthetext 'ato g’ is displayed,
with any other key (except the shift keys) the message "default’ is printed.



204 GFA BASIC 3 - User Manual

With the CASE command a number of different possibilities can be
combined, it is not necessary for them to be written separately:

SELECT a$

CASE "a" TO "z"
CONT

CASE "A" TO "z"
CONT

CASE "ae","Oe","ue","SS","AE","Oe","Ue"
PRINT "OK"

ENDSELECT

and similarly with ranges:

SELECT a$
CASE "a" TO "Z" '"a" TO "Z","ae","oe","ue",-



Chapter 7 : Program Control 205

Loops

FOR, TO, STEP, NEXT

REPEAT, UNTIL

WHILE, WEND

DO, LOOP, DO WHILE, DO UNTIL, LOOP
WHILE, LOOP UNTIL

EXIT IF

GFA BASIC 3 is provided with an unusually large selection of loop types.
Normally one differentiates between "entry testing’ and "exit testing' loops.
"Entry testing” loops are those, such as WHILE-WEND, in which the abort
condition for the loop is checked before entry into the loop. While with "exit
testing loops’, such as FOR-NEXT, this condition is examined at the end
of the loop, consequently such are gone through at least once. A special
loop type, DO-LOOP, is also available in GFA BASIC. This type acts as
a continuous loop without an abort condition. In GFA BASIC this
command can be very flexibly used. Both after DO and after LOOP the
extensions WHILE and UNTIL can be used so that the loops begin or end
with a logical condition. In all of the loop types mentioned here, as many
as abort conditions as required may be used in the loop body using the
EXIT-IF command.



206 GFA BASIC 3 - User Manual

FOR c=b TO ¢ [STEP s]
(Instructions)

NEXT i

DOWNTO

c: avar
b,e,s : aexp

The FOR-NEXT command (also called a counting loop) is used for
repeated processing a group of instructions between the commands FOR
and NEXT. For this purpose the count variable c is incremented (or
decremented), beginning with the initial value b, as far as the end value 'e’.

The instructions in the loop body are gone through, until NEXT is reached.
There the count variable c is increased by the value s given after STEP. If
no STEP value is given, then an increment of one is assumed. Next ¢ is
checked to see whether it has exceeded the value e. If this is the case, the
loop is exited and the program continued with the command after the
NEXT If not, the program loops back again to the first instruction, this
process is repeated, until ¢ is larger than e. A consequence of this exit
method is that c, after the loop is left, is equal to to e+s, i.e. the first value
which exceeds the abort criterion. Also, the contents of a FOR-NEXT loop
will always be gone through at least once.

Inplace of a STEP value of - 1 the command DOWNTO can be used instead
of TO. However, with DOWNTO the use of STEP is not possible.

In general, for the count variable ¢ one should use integer variables,
because thereby the loop can be processed more quickly than with floating-
point variables. This is naturally not possible with non-integer STEP
increments. In place of the command NEXT followed by the count
variable, the command ENDFOR i% can be used, but the Interpreter
automatically replaces it with NEXT i%.



Chapter 7 : Program Control 207

Examples:

FOR c=1 TO 10
PRINT c’

NEXT c

FOR c=-1 DOWNTO =10
PRINT c’

NEXT c

--> Displays on the screen, the numbers:

12345678910 -1-2-3-4-5-6-7-8-9-10
a$="T*e*s*t*w*o*r*q"
FOR j=1 TO LEN(a$) STEP 2

PRINT MIDS (a$,3,1):
NEXT J

--> This displays the word "Testword’ on the screen.



208 GFA BASIC,3‘- User Manual

REPEAT
(instructions) : -
UNTIL condition

condition: bexp

The REPEAT-UNTIL command provides an 'exit tested’ loop in which a
number of instructions are repeated until a logical condition is true.

When the command REPEAT is reached in a program, the group of
instructions up to the UNTIL are processed. Then it checks whether the

logical condition after UNTIL is true (-1). If this is the case, then the

instructions after the UNTIL are implemented. However, if the condition

is false (0), then the program execution jumps to the REPEAT. The

instructions between REPEAT and UNTIL are processed at least once, as

long as the loop is not left by an EXIT IF or GOTO command.
ENDREPEAT can be used in place of UNTIL, which the Interpreter B
automatically replaces by UNTIL. -

Examples:

REPEAT
UNTIL MOUSEK

--> Waits for a mouse key to be depressed.

i=1
REPEAT
INC i
J=SOR(1)
UNTIL i>10 AND FRAC(j)=0
PRINT i

--> Displays the number '16° on the screen.



Chapter 7 : Program Control 209

WHILE condition
(instructions)
WEND

condition :  bexp

The commands WHILE and WEND can include a group of commands,
which are processed as long as the logical condition is met. If GFA BASIC
meets a WHILE command, then the logical condition following it is
checked. If it is true, then the instructions between WHILE and WEND
implemented. When the WEND is reached the program jumps to the
WHILE and the cycle begins again, until condition is false. ENDWHILE
can be written instead of WEND, which the Interpreter automatically
replaces with WEND.

Example:
WHILE INKEYS$=""

PLOT MOUSEX,MOUSEY
WEND

--> Enables drawing with the mouse, until a key is pressed. If a character
is already in the keyboard buffer, then no point is set.



210 GFA BASIC 3 - User Manual

DO
(instructions)
LOOP

The commands DO LOOP produce a continuous loop. The program
processes the instructions between DO and LOOP and returns upon
meeting LOOP to the command DO. The loop can only be left by means
of EXIT IF, GOTO or other such commands to abandon its execution. In
place of LOOP, ENDDO can be written, which the Interpreter replaces
with LOOP.

Example:

DEFFILL 1,2,4

DO
MOUSE mx,my,mk
IF mk
PBOX mx,my,mx+25,my+25
ENDIF
LOOP

--> Draws filled rectangles at the current mouse pointer position when a
mouse key is pressed.



Chapter 7 : Program Conirol 211

DO WHILE condition
DO UNTIL condition
LOOP WHILE condition
LOOP UNTIL condition

condition :  bexp

The commands DO and LOOP can be extended using UNTIL and WHILE.
The loop command DO WHILE causes the instructions in the loop to be
executed only as long as condition is true. If the loop begins with DO
UNTIL, then it is entered only if the condition is not true. LOOP WHILE
causes the program to jump back to the DO command as long as condition
is true. LOOP UNTIL requires that the condition must be false for the
program to loop back. Below, the conditions at DO are testing for true and
at LOOP are testing for false.

DO WHILE condition WHILE condition
corresponds to

LOOP WEND
DO REPEAT
corresponds to

LOOP UNTIL condition UNTIL condition

The command variants DO, DO WHILE and DO UNTIL can be combined
at will with LOOP, LOOP WHILE and LOOP UNTIL, so forming
altogether nine type of loop.

Examples:

DO
LOOP UNTIL MOUSEK

--> Waits for a mouse button to be pressed.



212 GFA BASIC 3 - User Manual

DO UNTIL MOUSEK=2
DO WHILE MOUSEK=1
LINE 0,0, MOUSEX, MOUSEY
LOOP
LOOP UNTIL INKEY$="a"

--> Draws lines when left mouse button is held down. If the right mouse
button is pressed or the 'a’ key is struck the program ends.

DO UNTIL EOF (#1)
INPUT #1,a$
LOOP

--> Reads character strings from channel 1 sequentially, until the file end
is reached.

WHILE NOT EOF (#1)

INPUT #1,a$
WEND o

-->Using WHILE WEND is slower, since, additionally, NOT is required.



Chapter 7 : Program Control 213

EXIT IF condition

condition:  bexp

By means of EXIT IF loops can be jumped out of, if the Boolian (logical)
condition is fulfilled. The actual loop type used is arbitrarily selectable.
EXIT IF can be used within IF-ENDIF and SELECT-ENDSELECT.

Example:

DO

EXIT IF MOUSEK
LOOP
REPEAT

EXIT IF INKEYS$="x"
UNTIL FALSE

-->The program terminates, if first a mouse button and then the 'x’ key are
pressed.



214 GFA BASIC 3 - User Manual

Procedures and Functions

In GFA BASIC 3 subroutines, as in most modern programming languages,
are given names. These subroutines can have parameters handed over to
them and can then work on these parameters. There are two forms of
parameter available, one where a value is passed to the sub-routine and the
second where the variable itself is passed. In the second case the variable
can be changed by the procedure without the necessity of referring to the
variable by name. These two forms are known as "call by value” and "call
by reference".

Likewise the use of local variables is possible, i.e. no consideration has to
be taken on possible name clashes when calling procedures or functions.
By means of DEFFN single-line functions to be defined and addressed
using FN function name. Multi-line functions are also possible. These are
only one special form of procedure and return a result (over RETURN).



Chapter 7 : Program Control 215

GOSUB proc [(parl,par2,...)]
PROCEDURE proc [(varl,var2,...)]
RETURN

proc: procedure name
parl,par2: sexp,aexp
varl,var2: svar,avar

Between the commands PROCEDURE and RETURN are the instructions
of a subroutine. After PROCEDURE the name of the subroutine and
possibly the list of the variables to be received are placed. Calling a
PROCEDURE takes place by giving its name at the beginning of the line,
along with a list of appropriate parameters, which are placed in brackets.
For the sake of clarity, the option of placing @ or GOSUB in front of the
procedure name is available. This also avoids the possibility of confusing
procedure names with GFA BASIC commands, e.g. @REM, @STOP.
Parameters can be constants, variables and expressions. Not only the
values, but also the variables can be passed (see VAR).

The command RETURN is used to end a procedure. When it is reached
during the program execution, the program resumes execution from the
instruction after the GOSUB. In place of the command PROCEDURE one
can write SUB and instead of RETURN, ENDPROC or ENDSUB can be
used which the Interpreter replaces itself.



216 GFA BASIC 3 - User Manual

Example:

GOSUB slow_print("** Manual for **")
@slow_print ("* GFA BASIC 3 *")

slow print ("GFA SYSTEMTECHNIK")

14

PROCEDURE slow_print (t$)

LOCAL 1%

FOR i%=1 TO LEN(tS$)
PRINT MIDS (t$,1i%,1);
PAUSE 3

NEXT i%

PRINT

RETURN

--> Slowly prints the message character by character.

a=8

@cube root (a)

PRINT a

14

PROCEDURE cube root (VAR x)
x=x"(1/3)

RETURN

--> Computes the cube root of 8 displaying 2 on the screen.



Chapter 7 : Program Control 217

VAR-parameters

V AR-parametres allow variables themselvesto be passed and not just their
contents. They make it possible, not only to pass values into a procedure
or function but also, to pass variables which can then be changed within the
procedure or function. If the command VAR is found in the parameter list
of a procedure function, all of the variables that follow will be treated as
Y AR-parameters.

With VAR parameters, unlike with global variables there is no danger of
unintended side-effects. Using VAR-parameters complete arrays can be
passed. VAR-parameters are not allowed within the calling line to a
procedure or funtion, only within its definition.

VAR-parameters must always appear as the last elements of a parameter
list.

The use of VAR-parameters is generally quicker than the use of ordinary
parameters or pointers.

Examples:

sum(13,12,a)

sum(7,9,b)

PRINT a’'b

PROCEDURE sum(x,y,VAR z)
Z=X%X+y

RETURN

--> Two pairs of numbers are added, the values being passed to the
variables a and b. Then the numbers 25 and 16 are printed on the screen.



218 GFA BASIC 3 - User Manual

DIM a(9)
FOR 1%=0 TO 9
a(i%)=RND
NEXT 1%
mean(0,9,a(),m)
PRINT "mean = ";m
PROCEDURE mean (from%, to%, VAR array{),mean)
mean=0
FOR i%=from% TO to%
ADD mean,array(i%)
NEXT i%
DIV mean, to%-from¥+1
RETURN

--> The arithmetic array filled with random numbers is calculated and
printed out.

NOTE: In Version 2 it was possible to achieve the effect of passing local
variables by passing their pointers. Using this method in Version 3 may
result in the error message 'Pointer (*x) error’. It is therefore strongly
recommended that VAR-parameters are used to pass local variables.



Chapter 7 : Program Control 219

LOCAL varl [,var2,var3,...]

varl,var2,var3: avar, svar

It is possible using the command LOCAL to limit the area of application
of variables. The variables specified after LOCAL are only valid in the
procedure in which the LOCAL command is used. Also any variables in
all subroutines called by this procedure will be local. Thus it is possible for
variables specified after LOCAL to have the same name as variables in the
main program, i.e. global variables. These global variables cannot be
addressed then in the subroutine but are available after leaving the
procedure and remain unchanged.

The variables given to a procedure or function are always local.

Example:

x=2

GOSUB test
PRINT x,y
4

PROCEDURE test
LOCAL x,y
x=3
y=4

RETURN

--> The numbers 2 and 0 are displayed on the screen.



220 GFA BASIC 3 - User Manual

@func [(parl,par2,...)]
FUNCTION func [(varl,var2,...)]

RETURN exp
ENDFUNC

func : function name
parl,par2: sexp,aexp
varl,var2: svar,avar
exp : sexp, aexp

The commands FUNCTION and ENDFUNC form a subroutine, in a
similar manner to PROCEDURE. The name of the subroutine and,
optionally, the list of variables are given after FUNCTION command.
Calling the subroutine takes place by the use of @ or FN and the function
name, followed by a parameter list if necessary. The parameters can be
constants, variables or expressions. Not only the values, but also the
variables can be handed over by the parameter (see VAR).

If the command RETURN is reached during program execution, then the
value given after it or the value of the variable named is returned. However,
in a function RETURN can be used several times, with IF or the like. A
function cannot be terminated without a RETURN command by
ENDFUNC. In a function name ending with the $ character the functions
will produce a string result.



Chapter 7 : Program Control 221

Example:

fl¥%=@fac_loop(15)
fr¥=Q@fac recurs(10)
14
PRINT "loop: fac(1l5) = ";fl%
PRINT "recursion: fac(10) = ";fr%
r
FUNCTION fac loop (£%)

w=1 -

FOR j%=1 TO £%

MUL w, %

NEXT J%

RETURN w
ENDFUNC
4

FUNCTION fac recurs (£%)
IF £%<2
RETURN 1
- ELSE
RETURN f%*Q@fac recurs(PRED (f%))
ENDIF -
ENDFUNC

--> The factorials of 15 and 10 are, respectively, computed within a loop
and recursively.



222 GFA BASIC 3 - User Manual

DEFFN func [(x1,x2,...)] = expression
FN func [(y1,y2,...)]

func,x1,x2 : var
expression,yl,y2 : exp

The command DEFFN allowsthe definition of single-line functions. These
functions can appear at any point in the program.

The term ’expression’ can any numeric or string expression which can
include any of the parameters x1, x2, etc listed in the definition. These
parameters are local variables to the function, and if they are also globally
defined, no reference can be made to them in the expression as the local
variables will be used instead. When the function is called these variables
will contain the values listed within the brackets of the function call.

The function can be called using either FN func or @func .

Functions can be nested at will, to any depth. However, recursion is not
possible and if attempted, the break-key combination will not work.



‘Chapter 7 : Program Control

223

Examples:
DEFFN test (y,a$)=x-y+LEN(a$)

x=2
PRINT Qtest (4,"abcdef™)

--> The number 4, i.e. 2-4+6 is displayed on the screen.

DEFFN first last$(a$)=LEFTS$ (a$)+RIGHTS (a$)
b$=@first last$ ("TEST")
PRINT b$

--> The text "TT" is displayed on the screen.

DEFFN fourth“power(x)=xA4
DEFFN fourth root (x)=x"(1/4)
PRINT @fourth_root(@fourth_power(1024))

--> The number 1024 is displayed on the screen.



224 GFA BASIC 3 - User Manual

Error Handling

In this section two different types of event are considered. Non GFA
BASIC specific events such as checking for mouse clicks, selecting pull-
down-menus, etc, are dealt with in other chapters (Menu and Window
Programming and AES Libraries).

The first of the two events to be discussed is the simultaneous pressing of
the Control, Shifts and Alternate keys. The second type of event is the
occurrence of an error during program execution.



Chapter 7 : Program Control 225

ON BREAK
ON BREAK CONT
ON BREAK GOSUB proc

proc : name of a procedure

These three commands control the response to the simultaneous pressing
of the Control, Shift (left shift-key only) and Alternate keys. Normally,
pressing this key combination causes the termination of a program but, it
can also be used to call a particular procedure. To do this, the procedure
to be called is defined by means of the instruction ON BREAK GOSUB
proc.

When an ON BREAK CONT is present in a program, the Control, Shift and
Alternate key combination is deactivated. An ON BREAK reactivates this
key combination once again.

Example:

ON BREAK GOSUB test

PRINT "Press CONTROL, SHIFT {(the left one) and
ALTERNATE"

Do

LOOP

r

PROCEDURE test
PRINT "that was it"
ON BREAK

RETURN

--> The request to press the key combination is displayed. When they are
pressed, the procedure "test’ switches the normal BREAK routine on again.



226 GFA BASIC 3 - User Manual

ON ERROR

ON ERROR GOSUB proc
RESUME [NEXT]
RESUME {[label]

proc : name of a procedure
label : name of a label

The occurrence of a fault (a TOS or GFA BASIC specific fault) normally
causes the output of an error message and an abnormal termination. With
ON ERROR GOSUB there is the possibility of branching to a specified
procedure, following the detection of an error. In the procedure one can
then determine the appropriate reaction to the error.

With the command ON ERROR one switches back to the normal error-
trapping, so as to display the appropriate error message and bring about an
abnormal termination. Under these conditions, therefore, when an error
arises, an ON ERROR command is implemented automatically. In order
to be able to react to a number of errors which occur one after the other, the
ON ERROR GOSUB proc command must be contained within the error-
trapping routine.

The RESUME command allows one to react in different ways when errors
have arisen and it is only used in an error-trapping procedure. When used
on its own as 'RESUME’, this command causes the error to be repeated.
RESUME NEXT continues execution with the command which follows
the command causing the error. RESUME label causes the program to
continue from the point *label’. The label for RESUME may be locate either
in a procedure or in the main program. If a fatal error occurred (see
FATAL),then only RESUME label can be used and not RESUME NEXT
or RESUME without a label.



Chapter 7 : Program Gontrol 227

Example

ON ERROR GOSUB error-trapping

ERROR 5

PRINT "and again..."

ERROR 5

PRINT "is not reached"

14

PROCEDURE error-trapping
PRINT "QOk, error intercepted"
RESUME NEXT

RETURN

--> The texts 'Ok, error intercepted’ is displayed and then ’and again...".
Then the error message ' Square root only for positive numbers’, is brought
about by ERROR 5. The label for RESUME may be located either in a
procedure or in the main program.



228 GFA BASIC 3 - User Manual

ERROR x
ERR
ERRS (x)
FATAL

X: aexp

With ERROR x, the occurrence of error number x can be simulated. (For
the table of error messages, see appendix.) This is command is particularly
useful for example, when testing an error processing routine.

The number of the error that has arisen is returned in the variable ERR and,
by means of this, one can determine the appropriate reaction to the
occurrence of a specific error.

The function ERR$(x) returns, as a string, the GFA BASIC error message
with the number x.

The variable FATAL is true if an error in the program generates an
unknown address. This can happen, for example, when the error arose from
the processing of an operating system routine. When this happens, a
RESUME or RESUME NEXT can no longer be correctly executed.

Examples:

ON ERROR GOSUB error-trapping

INPUTS "Which error do you want: ",e
ERRCR e

14

PROCEDURE error-trapping
PRINT "That was error no.: ";ERR
IF FATAL
PRINT "It was a fatal error"
ENDIF
RETURN



Chapter 7 : Program Control 229

--> The user is asked to select an error by means of its error number and
it is displayed on the screen. The program then asks for the next error
number.

~ FORM ALERT (1,ERRS$ (100))

--> The error message with the identification 100 is displayed, i.c. the
copyright message, as an alert box. '



230 GFA VBASIC 3- User Manual

Interrupt Programming

EVERY ticks GOSUB proc
EVERY STOP

EVERY CONT

AFTER ticks GOSUB proc
AFTER STOP

AFTER CONT

ticks : iexp
proc: name of a procedure

By means of the commands EVERY and AFTER, procedures can be called
after the expiration of a certain amount of time ’ticks’. The command
EVERY causes the procedure "proc’ to be called every ’ticks’ clock units.
AFTER causes this procedure to be called once only on the expiration of
’ticks’ clock units.

The clock unit (tick) is defined as one two-hundredth of a second so
ticks=200 sets an elapsed time of one second. However, a branch to the
specified procedure can only be called on every fourth clock unit, resulting
in an effective time resolution of one fiftieth of a second.

By means of EVERY STOP, the calling of a procedure can be prevented
on expiration of the time period. With EVERY CONT, the calling of the
procedure is again is allowed. The commands AFTER STOP and AFTER
CONT work similarly, being implemented internally by means of the
etv_timer vector ($400).



Chapter 7 : Program Control 231

It is only after the complete processing of a command that a check is made
to ascertain whether such a procedure is to be implemented. Thus
commands which are executed slowly, such as INP (2), QSORT, file
operations or the like, can obstruct these routines.

Example:

EVERY 4 GOSUB lines
lines! =TRUE
GRAPHMODE 3
DEFFILL 1.0
PLOT MOUSEX,MOUSEY
REPEAT
IF MOUSEK=1
EVERY STOP
ELSE
EVERY CONT
ENDIF
DRAW TO MOUSEX,MOUSEY
UNTIL MOUSEK=2
r

PROCEDURE lines
INC v%
LINE 320,vy%,639,y%
IF y%=399
y%=0
ENDIF
RETURN

--> Draws lines in the right half of the screen from top to bottom and, at the
same time, permits the user to draw using the mouse. Pressing the left
mouse button switches the moving lines in or out. The program can be
terminated by means of the right mouse button.



232 GFA BASIC 3 - User Manual

PRINT "Text follows in 3 seconds, "
PRINT "if you do not press a key"
AFTER 600 GOSUB text

REPEAT

UNTIL INKEYS<> ™" OR exit!

AFTER STOP

14

PROCEDURE text
PRINT
PRINT "here is the text”
exit! =TRUE

RETURN

-->If no key is pressed in the three seconds after the program starts, then
the message appears. If a key is pressed, then this terminates the program.



Chapter 7 : Program Control 233

Other Commands

REM, GOTO, PAUSE, DELAY
END, EDIT

STOP

SYSTEM, QUIT

REM x
’x
<commands> !x

x : arbitrary text

A line which begins with a REM or ' command, can contain any text which
is placed after these. The text, known as a REMark or comment, is not part
of the program proper or subject to the syntax control of the editor and
during program execution are not considered. They are usually used to
make clearer how the program works. In addition, comments can be added
to the end of a command line, other than one with DATA or INLINE
commands. This is done by ending the executable portion of the program
by means of an exclamation mark ’!’.

Example:
REM comment
' PRINT "comment"

PRINT "REM" ! comment

--> The word 'REM’ appears on the screen. Everthing else is ignored.



234 GFA BASIC 3 - User Manual

GOTO label

label : a programmer-defined label

By means of a ’label’, specific locations in the program can be defined and
a program started from this point with the instruction 'GOTO label’.
Program execution is commenced from the label position. The label can
consist of letters, numbers, underlines and full-stops. However, unlike with
variable names, it may also begin with anumber. It must, however, end with
a colon. The colon should be left off when refering to a label ina GOTO
command.

The use of GOTO is not allowed for jumping out of procedures, functions
or FOR-NEXT loops. The use of this command also leads to unclear
program structures which are not easy to follow and, it is generally
considered, GOTO's should be avoided wherever possible.

Example:

PRINT "place 1"
GOTO jump point
PRINT "place 2"
jump_point:

PRINT "place 3"

--> The texts "place 1" and "place 3" appear on the screen.



Chapter 7 : Program Control 235

PAUSE x
DELAY x

X: aexp

The command PAUSE suspends program execution for x/50 seconds.
DELAY has a similar effect but the argument x is specified in seconds with
a theoretical resolution in milliseconds. DELAY uses the GEM routine
EVNT_TIMER and is, therefore, recommended for use in GEM programs

Example:

PRINT "start”
BREAK 100
PRINT "a pause"
DELAY 2

PRINT "end"

--> The text ’start’ appears then, two seconds later the further message 'a
pause’ is displayed. This is followed after a further two seconds by ’end’.



236 GFA BASIC 3 - User Manual

END
EDIT
STOP

These commands terminate the execution of a program. The command
END terminates the program’s execution and displays a box with the text
"Program end’ on the screen. On clicking on the 'RETURN’ button, GFA
BASIC 3 returns to the Editor.

EDIT terminates program execution and returns control to the Editor
immediately,

STOP causes an Alert box to appear with the choice of STOP and CONT.
When the choice CONT is made, program execution continues. When the
choice is STOP, GFA BASIC goes into Direct mode. At this stage, one can
test and change the values of variables and, by means of CONT, continue
program execution.

Example:
x=3

STOP
PRINT x

--> Select the button ’STOP’ when the appropriate Alert-box appears. Now
enter, in direct mode, the following commands:

PRINT x

--> The number 3 appears, next enter:

x=4
CONT

-->The last command of the program (PRINT x) is now processed and the
number 4 appears, demonstrating that the value specified in Direct mode
has been assigned to the variable x.



Chapter 7 : Program Control 237

NEW

This command deletes the program currently in memory. In Direct mode,
for safety’s sake, the wishes of the user are queried. When in the Editor this
command can be executed by means of Shift-F4 oramouse click and, again
a safety query is made.

LOAD f$

f$: sexp

This command LOAD loads a GFA BASIC program. The expression £$
must contain the file name along with the full access path for this file. When
no extension is specified for the file, the default extension *.GFA’ is used.
Example:

LOAD "a:\TEST.GFA"

--> The program loads TEST.GFA from the root directory of drive A.



238 GFA BASIC 3 - User Manual

SAVE f$
PSAVE f$

f$: sexp

The command SA VE stores a program on disk, under the specified name,
£$. By means of the command PSA VE, the specified file can be saved with
listing protection and cannot subsequently be listed after re-loading with
LOAD as it is run immediately. In both cases, when no extension is
specified for the file, the default extension *.GFA’ is used.

Example:

SAVE "a:\TEST.GFA"

--> Saves the current program under the file-name TEST.GFA on drive A.



Chapter 7 : Program Control 239

LIST [f$]
LLIST [f$]

f$: sexp

The command LIST displays the current program on the screen.
Optionally, an access path can be specified, by which the program can be
stored in ASCII format. Program sections that are to be inserted into other
programs by means of "MERGE’, must be saved with LIST or SAVE,A
from the Editor-Menu, in ASCII format.

‘When no extension is specified for the saving of afile, . LST’ is used as the
default extension.

By means of the command LLIST, the cutrent program can be output to the
printer. The printer listing can be interrupted only by the switching off the
printer. Once switched off, the printer will probably continue to print for
some seconds before the program resumes or control is returned to the
Editor. (See LLIST and the point commands in the section covering the
Editor.) In addition, it is also possible to send text to a printer (see OPEN).

Example:
LIST "A:\TEST.LST"
--> The current program is stored under the name " TEST.LST" in ASCII

format on drive A.

.11 70
.pl 66
LLIST

--> The current program is output to the printer with a line length of 70
characters and a page length of 66 lines.



240 GFA BASIC 3 - User Manual

CHAIN f$

f$: sexp

The command CHAIN loads a GFA BASIC program into memory and
starts execution immediately the program is loaded. When no extension is
specified, the extension *.GFA’ is assumed.

Example:

CHAIN "A:\EXAMPLE.GFA"

--> The program EXAMPLE.GFA is loaded from disk and is immediately
RUN.

RUN [f$]

f$: sexp

The command RUN starts the current program. Additionally, if a complete
file name with access path is specified, then the appropriate program is
loaded and started, replacing any program currently in memory.,
Example:

RUN "A:\PART2.GFA"

--> The program PART2.GFA is loaded from drive A and RUN.



Chapter 7 : Program Control 241

SYSTEM ([n]
QUIT [n]

n: iexp

The commands SYSTEM and QUIT are equivalent in their effect, as they
both terminate program execution and leave GFA BASIC. Unlike in
Version 2, SYSTEM and QUIT return a 2 byte integer value to the calling
routine (normally the Desktop). This integer has a value of zero if the
Interpreter was terminated correctly and left the calling program to hand
over to the Desktop.

The convention applied in this case is that zero signals an error free run. A
positive 16 bit number signals the occurrence of an internal error or a
warning and a negative 16 bit number mostly points to the appropriate
operating system error message. However this is not adhered to by all
programs.

Example:

RESERVE 100
PRINT EXEC (0, "GFABASIC.PRG","","")

--> This short program starts by reducing the workspace for BASIC to 100
bytes, it then loads and runs a second copy of the GFA BASIC program.

If the program below is run, the operation of the second copy of GFA
BASIC is terminated and returns the value 23 to the original GFA BASIC.
This value will then be printed.

PRINT "This is the second level GFA BASIC"
QUIT 23



242 GFA BASIC 3 - User Manual

Program Tracing

TRON
TRON #n
TROFF

n: iexp

The command TRON (TRace ON) causes each command to be listed on
the screen as they are executed. This list can be diverted to a printer or the
serial interface by specifying the relevant channel number. The command
TROFF turns the TRace OFF again.

Example:

PRINT "Start:"

TRON

FOR i%=1 TO 5
PRINT i%

NEXT i%

TROFF

PRINT "end"

=->The word ’Start: appears on the screen, then the numbers from 1 to 5
are displayed, along with the commands which lead to their display. After
that the word "End’ is displayed.



Chapter 7 : Program Control 243

OPEN "o", #1,"\tron.lst"
TRON #1

FOR i%=1 TO 10

PRINT i%

NEXT i%

TROFF

CLOSE #1

(4

OPEN "O", #2,"prn:"

TRON #2

FOR i%=10 TO 630 STEP 10
LINE i%,0,1%,100

NEXT i%

TROFF

CLOSE #2

--> The numbers from 1 to 10 are displayed, along with the relevant
commands and a row of vertical lines at a distance of 10 pixels. This output
is directed to disk or printer.



244 GFA BASIC 3 - User Manual

TRON proc
TRACES$

proc: procedure name

With help of the instruction "TRON proc’, a procedure can be specified
which is called before the execution of each individual command. The
variable TRACES$ then contains the command which is to be processed
next. The command TRON proc makes for very efficient error tracing
when used in conjunction with TRACES$. In addition, as well the next
command to be processed being displayed, specified variables can be
outputto screen or printer, allowing changes in the variables to be followed
during the course of the program run.

Itis important that the TRON procedure should not affect the programitself
while running, so while in use, no PRINT commands should be made tothe
screen (TEXT, ATEXT, ...) and the use of VDI routines should be avoided
because of GDOS'’s use of DEFTEXT, LINE-A, etc.



Chapter 7 : Program Control 245

Example:

TRON tr proc

GRAPHMODE 3

DO UNTIL MOUSEK
x1%=100+RAND (200)
y1%=100+RAND (100)
x2%=200+RAND (200)
y2%=200+RAND (100)
PBOX x1%,y1%,x2%,y2%

LOOP

4

PROCEDURE tr proc
IF BIOS(11,-1) AND 4 ! Control key
adr%=XBIOS (2)
BMOVE adr%+1280,adr%,4*1280
PRINT AT(1,5);SPACES (80);
PRINT AT(1,5);LEFTS (TRACES, 79);
PAUSE 20
ENDIF
RETURN

--> This program draws randomly-distributed rectangles on the screen.
Pressing keys causes the commands just processed to appear on the screen.
The program is terminated by the pressing of a mouse button.



246 GFA BASIC 3 - User Manual

DUMP [a$ [TO b$]]

a$,b$: sexp

With the help of the DUMP command, the contents of variables can be
displayed during a program run; or labels, procedures and functions listed.
In addition the string expression a$ can accept the following:

Examples:

DUMP

--> Returns all values of variables and the dimensioning of arrays.
DUMP "a"

--> As above but only operates on variables or arrays which begin with ’a’.
DUMP ":"

--> Lists all labels and specifies the Editor line number where each label

is used. The variation (:b) lists only those labels which begin with b’
puMp "@"

-->Lists all procedures and functions and specifies the Editor line number
where each is found.

proc_name @ 100 (procedure)
func_name FN 200 (function returning a numerical value)
func _name $ FN 300 (function returning a string)

Labels, procedures and functions which are no longer defined, are
specified without Editor line numbers. If the program listing was saved
with the SAVE, A option and then newly reloaded, these undefined names
no longer appear. However labels, procedures and function names which
are still usable but not defined, are displayed without Editor line numbers.



Chapter 7 : Program Control 247

The Editor line number specified after the name can be jumped to in the
Editor by means of Control + G.

When the contents of a string is output, a maximum of 60 characters is
displayed. If the character string is longer than this, then the last character
displayed is *>'. If a control character, i.e. ASCII value < 32, is to be
displayed this is replaced by a full-stop.

The outputs mentioned above can also be directed to a file and, in this case,
the filename must be specified in b$.

If none is specified a default extension of .DMP is given.



248 GFA BASIC 3 - User Manual




Chapter 8
Graphics

Three different graphic modes are available on the ATARI ST: one black
and white mode and two colour modes. The actual screen coordinates
available for the graphic commands and the colours representable with
them depend on the current resolution. An overview of the available
graphic modes is given below:

Screen resolution Colours
(Coordinates) (Colour register)
Low resolution: 320 x 200 16
(0t0319) (0 to 15)
(0 to 199) from 512 colours
Medium resolution: 640 x 200 4
(0 to 639) (0to3)
(0 to 199) from 512 colours
High resolution: 640 x 400 2
(0 to 639) (Oand 1)

(0 to 399)



250 GFA BASIC 3 - User Manual

In the first section, the commands for the selection of colours
(SETCOLOR, COLOR) are covered. After that, the commands for the
selection and generation of different types of mouse pointer, display
symbols, fill patterns, frames and line-types (DEFMOUSE, DEFMARK,
DEFFILL, BOUNDARY, DEFLINE) are explained.

The next section describes the CLIP commands, which are used to trim
graphic displays, and the general graphic commands for drawing different
geometrical basic forms (PLOT, LINE, BOX, CIRCLE, ELLIPSE). The
various options for producing polygons (POLYLINE, POLYMARK,
POLYFILL) are described along with the graphic text command TEXT.
The section ends with a description of the instruction FILL.

In the last part of this chapter, the treatment of screen sections with SGET,
SPUT, GET and PUT is described.



Chapter 8 : Graphics 251

Graphics Definition Commands

SETCOLOR register,red,green,blue
SETCOLOR register,composite
COLOR colour

VSETCOLOR colour,red,green,blue
VSETCOLOR colour,composite

register,red,green,blue,composite,colour : iexp

The first variant of SETCOLOR determines the proportion of the colours
red, green and blue in a particular colour register. The intensity of the
colour elements is specified on a scale from 0 (low) to 7 thigh) and the
number of available colour registers depends on the current resolution. In
the second variant of SETCOLOR, the colour setting is defined by a single
parameter whose value is computed by the following formula:

composite = red * 256 + green * 16 + blue * 1

and, as with the other setting, the values for red, green and blue are specified
on a scale from 0 to 7.

The setting of colour elements in the colour registers is, naturally, only
applicable when in the colour modes. However, in the monochrome mode,

when a composite value other than 0 or 1 is specified, even numbers have
the same effect as 0 and odd numbers the same effect as 1.

The command COLOR determines the text colour. Values between 0 and
15, dependent on the current resolution, are valid.

Example:

SETCOLOR 0,0

On a mono monitor, the display appears as white on a black background.



252 GFA BASIC 3 - User Manual

VSETCOLOR colour, red, green, blue
VSETCOLOR colour, composite

i,r,g,b,rgbh : iexp

Through an apparently unexplained mix-up in the design of the operating
system, the colour registers used by SETCOLOR do not correspond
directly to the numbers used by COLOR. To overcome this, the command
VSETCOLOR is available.

The values of r, g and b are numbers in the range 0 to 7. The term rgb is
calculated in the same manner as SETCOLOR, i.c. :

igb=r*256+g*16+b*1
VSETCOLOR 1,2,3,4 isthe sameas VSETCOLOR 1,&H234

The syntax of the VSETCOLOR command is virtually identical to that of
SETCOLOR, the sole difference being in the parameters ‘register’ and
"colour’. They are related as shown:

For Low Resolution:

SETCOLOR

0 1 112 13 14 15
VSETCOLOR 0 2

2 3 5 11 12
3 6 7 1412 1513 1

4
4
For Medium resolution:

SETCOLOR

01 2 3
VSETCOLOR ¢ 2 3 1
And in High resolution:

SETCOLOR 0,even  corresponds to VSETCOLOR 0,0
SETCOLOR 0, odd corresponds to VSETCOLOR 0, &H777



Chapter 8 : Graphics

253

Example:

In Low resolution:

FOR i%=0 to 15
DEFFILL i%
PBOX 1%*20,0,319,199
NEXT i%
DO
a%=INP (2)
EXIT IF a%=27
VSETCOLOR a% AND 15,RAND(-1)
LOOP

--> This program draws overlapping coloured boxes, the result being 16
vertical bars (the left hand one is the same colour as the border, i.e. colour
0). By ANDing the key code with 15, a colour register number can be
chosen and this register is then set to a random value. The program is left

by using the Escape key.



254 GFA BASIC 3 - User Manual

DEFMOUSE symbol
DEFMOUSE bitpattern$

symbol: iexp
bitpattern$: sexp

The first DEFMOUSE command variant determines the current mouse
pointer, selected from the eight pre-defined types. The value of 'symbol’
defines the type of pointer in the following way:

0 --> Arrow

1 --> Double clip

2 --> Bee

3 --> Pointing Hand

4 --> Openhand

5 --> Thin cross hairs

6 -->  Thick cross hairs

7 -->  Bordered cross hairs

The second variant of the DEFMOUSE command allows the user to define
a mouse pointer. The action point, the mask colour, the pointer colour, the
bit design pattern for the appearance of the mask and the appearance of the
mouse pointer are specified by means of a character string. The action
point, is that point of the mouse pointer whose coordinates are defined as
the mouse position. If the mouse position is interrogated, it is the
coordinates of the action point which are returned.

All these values must be entered as word size values and the command
MKI$ can be used for this purpose. Thus, bitpattern$ is assembled as
follows: :



Chapter 8 : Graphics 255

bitpattern$ = MKI$(x-coordinate action point)
+ MKI$(y-coordinate action point)
+ MKI$(1) ! normal, -1=XOR
+ MKI$(mask colour)
+ MKI$(pointer colour)
+ mask$ ! (bit pattern of the mask)
+ cursor$ ! (bit pattern of the cursor)

mask$ and cursor$ consist of 16 words each, each word being the bit pattern
of a line.

Example:

DEFMOUSE 2

PAUSE 1

mS$=MKIS$ (0)+MKIS$ (0)+MKIS (1)+MKIS (0)+MKIS$ (1)

FOR i%=1 TO 16
mS=mS$+MKI$ (65535)

NEXT i%

FOR i%=1 TO 16
m$=m$+MKI$ (1)

NEXT i%

PBOX 200,150,400,250

DEFMOUSE m$

REPEAT

UNTIL MOUSEK

--> First, a bee appears as a mouse pointer. Then, after one second, the
mouse pointer turns into a line. When the mouse is placed on the black
background at the centre of the screen, the mouse changes to a rectangle,
the mask having been defined as this rectangle. The final loop is then left
by pressing a mouse button.



256 GFA BASIC 3 - User Manual

DEFMARK |[colour], [type] , [size]

colour,type,size: iexp

DEFMARK determines the colour, type and size of the marks, at the corner
points of a polygon, which are displayed by the command POLYMARK.
According to the actual screen resolution, values between 0 and 15 can be
assigned to the numerical expression *colour’ (see the start of this chapter).
The ’type’ parameter gives the following comner marks:

i --»  Full-stop
2 --> Plussign
3 > Star

4 --> Rectangle
5 --> Cross

6 --> Diamond

Values larger than 6 result in the use of the star as the comer mark. Values
for the 'size’ of the shape are specified in pixels. Thus a value of 8 will
produce a pointer that is 8 x § pixels in size. When only the second or third
parameter of the command are required, one can omit the parameters in
question and enter only the parameter-separating commas. Thus,

DEFMARK , ,4

means that the first two parameters keep their current value and the size of
the marks is set to 4.



Chapter 8 : Graphics 257

Example:

DIM x%(1),y%(1)

x%(0)=50

y%(0)=50

x% (1)=150

v%(1)=150

DEFMARK 1,4,2

POLYMARK 2,x%(),v%()

DEFMARK , 3,4

POLYMARK 2,x%(),y%() OFFSET 100,0

--> This draws two pairs of points with different corner marks.



258 GFA BASIC 3 - User Manual

DEFFILL [colour],{style],[pattern]
DEFFILL [colour],bitpattern$

colour,style,pattern : iexp
bitpattern$ : sexp

This command determines the fill pattern for the commands PBOX,
PCIRCLE, PELLIPSE, POLYFILL and FILL. It sets the colour, style and
pattern of the filling and enables one to define one’s own patterns. The
parameter colour can be assigned values from 0 to 15, depending on the
current screen resolution. (See the beginning of this chapter.) The
following results are obtained from assignment of values to style:

0 --> empty

1 --> solid

2 --> dots

3 --> hatched

4 -->  ATARI symbol (or user-defined)

Patterns can be selected from 24 dot-based patterns or 12 line-based
patterns by means of the 'pattern’ parameter. (See appendix: Fill Pattern
Table). Parameters can be omitted from this definition, as long as the
parameter-separating commas are included. Thus,

DEFFILL ,2,4

selects the fill-pattérn 2,4 and leaves the fill colour as previously defined.

In the second variation of the command DEFFILL, using the 32 byte
parameter 'bitpattern$’, a 16 by 16 pixel pattern can be defined. This
information must be presented in word format and can be assembled by
means of the MKI$ command.

The medium resolution fill pattern is represented by two bit- planes which
are combined to define the actual colours produced. The 16 words for the
second bit-plane optionally follow the 16 words for the first.



Chapter 8 : Graphics 259

The first bits from each of these bit-planes are combined, this two bit
number (in the range 0 to 3) represents the colour of the pixel at the top left
corner of the block. The second pair of bits represents the colour of the
second pixel, to the right of the first, and so on.

For low resolution, four bit-planes are needed to represent a colour fill
pattern (one plane could be used but this would give a single colour
pattern), therefore the bit pattern must be 64 words (128 bytes) in length.

The first bit-plane represents the least significant bit of the colour code. If
however the second of these planes is left off, this will result in a single
colour fill pattern, the colour being that chosen in the parameter ’colour’.

Examples:

DEFFILL 1,2,4

PBOX 10,10,40,40

BOX 50,50,100,100

FILL 70,70

FOR i=1 TO 16
£$=£$+MKI$ (RAND (65535) )

NEXT i

BOX 100,100,150,150

DEFFILL 1,£$

FILL 120,120

-->Draws two boxes filled with a standard fill pattern and a third filled with
a random pattern.



260 GFA BASIC 3 - User Manual

DO
FOR j%=0 TO 15
f$= iR}
s%=BCHG (5%, j%)
FOR i%=1 TO 16
£$=£S+MKIS (8%)
NEXT i%
DEFFILL 1, f$
PBOX 0,0,639,399
NEXT %
LOOP

-->Parallel vertical bars are displayed and increase in size until they fill the
screen. This is done by defining and altering a fill pattern and displaying
a rectangle filled with this pattern.

FOR i%=1 TO 64 ! 64 for low, 32 for med
! ! 16 for high resolution
READ a%
a$=a$+MKIS (a%)
NEXT i%

DEFFILL ,a$

PBOX 20,20,300,200

" First Bit-plane:

DATA -1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0
" Second Bit-plane:

DATA -1,-1,-1,-1,0,0,0,0,-1,-1,~1,-1,0,0,0,0
" Third Bit-plane:

paTra -1,-1,0,0,-1,-1,0,0,-1,-1,0,0,-1,-1,0,0
" Fourth Bit=-plane:

baTas -1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0,-1,0

--> This routine creates a fill pattern which, on a mono monitor, has two
broad black and white strips. In medium resolution, four strips of half the
width are produced in the four possible colours. In the case of the low
resolution mode, 16 strips of one line height result, in all 16 colours. This
pattern is then used to fill the box created by PBOX.



Chapter 8 : Graphics 261

BOUNDARY n

n: iexp

The command BOUNDARY uses the Function vsf_perimeter to switch off
(or on) the border normally drawn round a filled shape (with PBOX,
PCIRCLE, etc). When n is not zero, a border is drawn around the fill area,

when it is zero, no border is drawn.

Example:

DEFFILL 1,2,2

BOUNDARY 1 ! switch on border
PBOX 50,50,100,100
BOUNDARY 0 ! switch off border

PBOX 150,50,200,100

--> Draws two filled rectangles, one with and one without a border.



262 GFA BASIC 3 - User Manu‘al

DEFLINE [style] , [thickness] , [begin_s, end_s]

style,thickness,begin_s,end s: iexp

The command DEFLINE determines the appearance of lines drawn with
the commands LINE, BOX, RBOX, CIRCLE, ELLIPSE and POLYLINE.
The first parameter 'style’ determines the line style, with a choice between
pre-defined and user-defined styles. The following styles are available:

1 --> Solid line

2 --> Long-dashed line

3 --> Dotted line

4 --> Dot-dashed (Chain-linked) line

5 --> Dashed line

6 --> Dash dot dot..

7 --> User defined line
User-defined patterns can be created from a 16 bit value in which each bit ™
corresponds to a set point in the monochrome mode.

The second parameter 'thickness’ sets the width of the line in pixels and this
parameter must have only odd values. If even the line thickness is rounded
down to the next smallest odd number. The start and end symbols of a line
are defined by means of begin_s and end_s. The available options are:

0 --> Square
1 --> Arrow
2 --> Round

Parameters can be omitted in the definition providing the parameter-
separating commas are entered. Thus,

DEFLINE ,,1,1

specifies an arrow as a symbol for the line beginning and end, leaving style
and width unchanged. (See table in the appendix.)



Chapter 8 : Graphics 263

Example

FOR i=1 TO 6
DEFLINE i
LINE 50,i*50,200,1*50
NEXT i
DEFLINE 1,1,1,2
FOR i=2 TO 12 STEP 2
DEFLINE , i
LINE 250,1%*25,400,1*25
NEXT i
DEFLINE -&X101010101010101,1,0,0
LINE 500,10,500, 390
VOID INP(2)

--> Lines in the six pre-defined styles are drawn followed by lines of
different thickness. The line in the user-defined pattern is dotted. Finally,
the program waits for a key to be pressed.



264

GFA BASIC 3 - User Manual

DEFTEXT [colour] ,[attr] ,[angle] ,[height] ,[fontnr]

colour,attr,angle,height,fontnr : iexp

This command determines the appearance of a character string that is to be
displayed with TEXT. The parameter ’colour’, depending on the current
screen resolution, may contain a value between 0 and 15. The second
parameter ’attr’ sets the text attributes which can be created by combination
of the values given below:

0V N O
s
i
\'

—>
16 ~>

The parameter "angle’ determines the direction of the text characters, the

normal
bold

light

italic
underlined
outlined

value being specified in 1/10 degree steps in a clockwise direction.

900
|
I
I
1800 ---- Text origin ---- 0

I

i

I
2700

Note, however, that only the following values are permitted by GEM:

0
900
1800
2700

from left to right (as default) —
from bottom to top

upside down, from right to left

from top to bottom



Chapter 8 : Graphics 265

If a value other than one of the above is given, the nearest multiple of 900
is used.

The parameter "height’ specifies the text height of a capital letter in pixels
and, with the normal character sets only the following character heights are
actually readable:

4 -->Icon

6 --> Subscript

13 --> Normal character height
32 --> Expanded character height

Finally, the parameter fontnr specifies the number of the desired character
set. This font must have previously been installed. (See also GDOS:
VST_LOAD_FONT, VQT_NAME, ...)

Example:
FOR ij=0 TO 5
DEFTEXT 1,2%i{,0,13

TEXT 100,1]|*16+100, "This is the text attribute"+STR$ (i)
NEXT i}

--> Displays the example text with different attributes.



266 GFA BASIC 3 - User Manual

GRAPHMODE n

n: iexp

The command GRAPHMODE determines the way in which graphics is
outputted to the screen with relation to what is already there and is
important when pictures are to be drawn on top of one another. Four
possible modes can be represented by the numerical expression n, i.e.:

1 --> replace

2 --> transparent

3 > xor

4 -->  reverse transparency (inverted and transparent)

When n has the value 1, the new drawing is simply drawn over the existing
screen contents obliterating it completely.

When nisequalto 2, the new drawing is ORed with the existing one, which
means that the old picture can still be seen behind the new one.

With n equal to 3, the new drawing is XORed with the existing one. This
means that, at each pixel where a graphic point was already present, that
graphic dot is deleted and, for all other points, the image is drawn normally.
The importance of this mode is that the process is reversible. By XORing
the new drawing with itself the original screen is restored. Thus, by using
this mode, animation is possible by repeated drawing and "undrawing’ of
a figure as it is moved around the screen.

In the case where n = 4, the new drawing is inverted and then ORed with
the existing one. In this way, adisplay similar to mode 2 is produced, (n=2),
but the new picture is shown in reverse video.



Chapter 8 : Graphics 267

Example:

FOR i%=1 TO 4
GRAPHMODE i%
DEFFILL 1,3,8
PBOX 150*i%-100,10,150*1%,100
DEFFILL 1,2,10
PBOX 150*i%-140,50,150*i%-40,150
NEXT i%

--> Four filled rectangles are drawn, and a further four are drawn partly
overlapping the previous ones. Each pair is combined using a different

GRAPHMODE setting.



268 GFA BASIC 3 - User Manual

General Graphics Commands

First of allin this section, the use of the CLIP commands in graphic displays
is considered.

The general graphic commands PLOT, LINE, BOX, RBOX, CIRCLE and
ELLIPSE are considered next. These draw points, lines, rectangles,
rectangles with rounded corners, circles and ellipses and, by means of
PBOX, PRBOX, PCIRCLE and PELLIPSE, they can be filled with colours
or patterns. v

POLYLINE draws a polygonal shape, and corner points made up of
symbols defined with DEFMARK can be added using POLYMARK.
POLYFILL fills this Polygon with a defined pattern, in a defined colour.
POINT returns the colour of a particular screen point. FILL fills a bordered
area and TEXT makes it possible to display character strings in arbitrary
places on the screen. CLS clears the entire screen. At the end of the section,
the command, BITBLT is covered.

The Origin (location 0,0) with all these graphic commands is located in the
top-left corner of the screen. The coordinates of graphic elements can lie
outside the actual screen display area but only the visible parts of the
graphics are represented.



Chapter 8 : Graphics 269

CLIP x,y,w,h [OFFSET x0,y0]

CLIP x1,y1 TO x2,y2 [OFFSET x0,y0]
CLIP #m [OFFSET x0,y0]

CLIP OFFSET x,y

CLIP OFF

x,y,w,h,x0,y0,x1,y1,x2,y2,n : iexp

This group of commands provides the 'Clipping’ function, i.e. the limiting
of graphic displays within a specified rectangular screen area. CLIP
defines a clipping rectangle for the VDI graphic commands. ACLIP does
this for Line-A graphic routines. The screen area to be operated on,
(clipping rectangle) can be defined by the coordinates of the diagonally-
opposite corner points; as well as the top left co-ordinate and the width and
height of the clipping rectangle.

The command CLIP x,y,w,h allows the input of the upper y-coordinate 'y’
left x-coordinate 'x' as well as the width 'w' and height 'h' of the clipping
rectangle.

The command CLIP x1,y1 TO x2,y2 offers a further option by accepting
the coordinates of diagonally-opposite corner points (x1,y1) and (x2,y2).

The third variant makes it possible to define the limits of the window n'.
The optional additional command CLIP OFFSET x0,y0 makes it possible
to redefine the origin of the graphic display. In addition, the command
CLIP OFFSET x0,y0 can also be used as acommand in its own right, and
in this case, serves the same purpose in setting the origin for the graphic
displays at the point (x0,y0). The command 'CLIP OFF' switches off the
clipping function.

The limiting of graphic displays by CLIPping does not apply to the
commands GET, PUT and BITBLT, norto the Line-A calls (where ACLIP
should be used) or AES commands.



270 GFA BASIC 3 - User Manual

PLOTx,y

LINE x1,y1,x2,y2 : -
DRAW [TO] [x,y]

DRAW [x1,y1] [TO x2,y2] [TO x3,y3] [TO...]

x,y,x1,yl,x2,y2 : iexp

PLOT draws a point with the coordinates x,y on the screen. LINE draws
a line between the coordinate pairs of x 1,y 1 and x2,y2. The style and colour
of this line can be defined by means of the commands DEFLINE and
COLOR.

DRAW x,y corresponds to the command PLOT. By means of DRAW TO
X,y, a line is drawn between the coordinates x,y and the last set point,
regardless of whether this point was set by PLOT, LINE or DRAW.

A further variant of the command, DRAW x1,y1 TO x2,y2 corresponds to -
the LINE command and, additionally with this command, further

coordinates can be specified allowing shapes such as polygons to be

produced. This latter variant of the command makes it possible to create

structures which are similar to the turtle-graphic commands of LOGO and

the Hewlett-Packard standard plotter language, HPGL. In this way, it it is

possible to simulate a plotter on the screen.

Examples:

colour=POINT (x,y)
PRINT colour

PLOT x,2*50

LINE 200,200,400,100
PRINT POINT(x,100)

--> The program examines the colour of the point 50,50 and prints this out
on the screen. It then plots a second point, plots a line and reports on the
colour of the second point plotted.



Chapter 8 : Graphics 271

DO
MOUSE mx,my,mk
IF mk=1
DRAW TO mx,my
ENDIF
EXIT IF mk=2
LOOP

--> When the left mouse key is pressed, a line is drawn between the last
set point and the absolute coordinates mx, my. The loop is terminated by
pressing the right mouse button.



1972 GFA BASIC 3 - User Manual

DRAW expression
DRAW(i)
SETDRAW

i: iexp

expression : aderivative of sexp and aexp, sexp must be first
and the individual parts must be separated by
a comma, semicolon or inverted eomma,

With DRAW an imaginary pen is moved overthe screen and draws relative
to the last point. The DRAW command’s structure resembles the turtle
graphic commands of the programming language Logo. The parameters of
the DBRAW command can contain a large number of individual commands,
which are all passed to the command in the form of a string. Parts of the
expression can be given in floating-point format, allowing for the use of
variables. In this "LOGO like’ convention, an imaginary *pen’ is controlled
by means of the graphic commands and its movement over the ’paper’
creates the graphic image. The statement below is given as an example of
how these commands may be used:

DRAW "FD 100 RT ",angle,” PU BK";50

The available commands are:

FD n ForwarD  Moves the 'pen’ n pixels "forward’.
BK n BacKward Moves the "pen’ n pixels *backwards’.

SX x Scalex Scales the "pen movement’ for FD and BK by the

SY y Scaley specified factor. The scale with SX and SY works
only on the commands FD and BK. With SX0 or
SYO0 the scale is switched off. {This is quicker than
scaling with the factor 1 (SX1,SY1).)

LT a Leftturn  Turns the pen to the left through the  specified
angle ’a’, this being given in degrees.

RT a Rightturn Turns the pen as LT but to the right



Chapter 8 : Graphics 273

TT a TunTo Turns the pen to the absolute angle ’a’.
(See notation below:) '

0
i
!
270 ---- Zero point ~--- 90
I
|
180

The data for the angle, 'a’ is specified in degrees.

MA x,y Move Absolute Moves ’pen’ to the absolute coordinates for
x and y

. DA x,y Draw Absolute Moves the 'pen’ to the absolute  coordinates
forx and y and draws a line in the current colour
from the last position to the point (x,y)

MR xr,yr Move Relative Moves the ’pen’ position in the x and y
directions relative to the last position.

DR xr,yr Draw relative Moves the 'pen’ by the specified displacement
relative to its last position and draws a line in
the current colour from the last position to this
point.

The command SETDRAW x,y,w is an abbreviation for the expression
DRAW "MA" x,y,"TT",w.

CO ¢ Colour The colour sets 'c’ as 'character colour’
— (see parameter with COLOR command).

PU Pen UP Lifts the "pen’ up from the ’paper’.

PD Pen Down Lowers the "pen’ down onto the ’paper’.



274 GFA BASIC 3 - User Manual

Additionally the following pointer interrogation functions are available:

DRAW(0) returns x-position

DRAW(1) retums y-position

DRAW(2) returns angle in degrees

DRAW(3) returns the X-axis scale factor
DRAW(4) returns the Y-axis scale factor
DRAW(5) returns the pen flag (-1=PD, 0=PU)

All of these functions return floating point values.

Examples:

DRAW "ma 160,200 tt 0" !starts at 160,200 and angle 0
FOR i&=3 TO 10

polygon(i&, 90) ! draws a Polygon with i& corners
NEXT i& ‘
I
PROCEDURE polygon{n&,r&) ! né=number of corners
r

! ré=length of sides
LOCAL is&
FOR i&=1 TO né&
DRAW "fd",r&," rt ",360/n&
NEXT i&
RETURN

--> Draws a set of polygons with an increasing number of sides.

FOR i=0 TO 359 STEP 8
SETDRAW 320,200,1i
GRAPHMODE 3
DRAW "fd 45 rt 90 fd 45 rt 90 fd 45 rt 90 fd 45"
DRAW "bk 90 rt 90 bk 90 rt 90 bk 90 rt 90 bk 90"
GRAPHMODE 1
DRAW "fd 45 rt 90 fd 45 rt 90 fd 45 rt 90 fd 45"
DRAW "bk 90 rt 90 bk 90 rt 90 bk 90 rt 90 bk 90"
NEXT i

--> Forms a shape from two small squares and two large ones, and then



Chapter 8 : Graphics 275

rotates it through 360 degrees.

1%=48

" Square:

DRAW "ma 60,100 tt 45"

DRAW "fd",1%,"rt 90 £d",1%,"rt 90 fd",1%,"rt90 £4",
1%,"rt90"

' Diamond, tall:

DRAW "mr100,0 tt45"

DRAW "sx0.5 sy0"

DRAW "fd",1%,"rt 90 £fd",1%,"rt 90 £d4",1%,"rt 90f4",
1%, "rt90"

* Diamond, wide:

DRAW "mr 100,0 tt 45"

DRAW "sx(0 sy0.5"

DRAW "fd",1%,"rt 90 £4",1%,"rt 90 fd4d",1%,"rt90 £4",
1%,"rtoo"

" Large diamond, tall

DRAW "mr 100,0 tt 45"

DRAW "sx 3 sy 2"

DRAW "fd",1%,"rt 90 f4d",1%,"rt 90 fd",1%,"rt9%0 £4",
1%,"rtoo"

--> Draws a square at an angle, followed by three diamonds of various
sizes. These diamonds are produced by changing the x and y scales and
redrawing the original square.

SETDRAW 100,100,90

DRAW "PU FD 40 PD FD 40"

PRINT DRAW(0) ! X-Co=ordinate
PRINT DRAW(5) ! Pen flag

--> A horizontal line is drawn and the numbers 180 and -1 printed.



276 . GFA BASIC 3 - User Manual

BOX x1, y1, x2, y2
PBOX x1, y1, x2, y2
RBOX x1, y1, x2, y2
PRBOX x1, y1, x2, y2

xL,yl,x2,y2: iexp

BOX draws a rectangle on the screen. The co-ordinates of two opposite
corners are specified by x1,y1 and x2,y2. Similarly, PBOX draws a filled
rectangle, RBOX arectangle with rounded off corners and PRBOX afilled
rectangle with round corners.

Example:

BOX 20,20,120,120

RBOX 170,20,270,120

x=150

DEFFILL 1,2,4

PBOX 20,20 + x,120,120+x
PRBOX 170,20 + x,270,120+x
~INP (2)

--> An ordinary rectangle is drawn, followed by one that is filled and with
rounded off corners. Finally both shapes are drawn again but with a
different fill pattern. A key press is then waited for.



Chapter 8 : Graphics 277

CIRCLE x, y, r [, wl, w2}
PCIRCLE x, y, r [, wl, w2]
ELLIPSE x, y, rx, ry [, wi, w2]
PELLIPSE x, y, rx, ry [, wl, w2]

X,y,rywl,w2 :  iexp

CIRCLE draws acircle with centre coordinates x,y and radius r. Additional
starting and ending angles w1 and w2 can be specified to draw a circular
arc. Similarly, PCIRCLE draws a filled circle or filled circle segment.

ELLIPSE draws an ellipse with the centre coordinates x,y, horizontal
radius rx and vertical radius ry. Optional beginning and ending angles w1
and w2 can be specified to create an elliptical arc. Similarly, PELLIPSE
draws a filled ellipse or a filled ellipse segment. The angles should be
specified in 1/10 degree (0-3600) and are measured in an anticlockwise
direction with zero pointing to the right.

Example:

CIRCLE 320,200,100

ELLIPSE 320,200,200,100,900,1800
PCIRCLE 320,200,100,1800,2700
PELLIPSE 320,200,200,100,2700,3600

--> A circle is drawn along with three circle or ellipse segments.



278 GFA BASIC 3 - User Manual

POLYLINE n,x(),y( [OFFSET x_off,y_off]
POLYMARK n,x(),y() [OFFSET x_off,y_off]
POLYFILL n,x(),y() [OFFSET x_off,y off]

n,x_off, y_off: iexp
x(), yO : avar-array

POLYLINE draws a polygon with n corners. The x,y coordinates for the
corner points are given in arrays x() and y(). The first comer points are in
x(0) and y(0), the last in x(n-1) and y(n-1). The first and last corner points
are connected automatically. An optional parameter, OFFSET, can be
added to these coordinates, the magnitude of offset being given by x_off
and y_off.

POLYFILL fills the polygon with the pattern and colour previously chosen
by DEFFILL.

POLYMARK marks the comer points with the shape defined by
DEFMARK.

Example:

DIM x%(3),y%(3)
FOR i%=0 TO 3

READ x%(i%),y%(i%)
NEXT i%
DATA 120,120,170,170,70,170,120,120
POLYLINE 4,x%(),y%()
POLYFILL 3,x%(),y%() OFFSET -50,-50
DEFMARK , 4,10
POLYMARK 3,x%(),y%() OFFSET 40,-80
~INP (2)

--> Draws an outline triangle and a filled triangle, as well as rectangular
corner marks of a further triangle.



Chapter 8 ’: Graphics 279

POINT(x,y)
X,y : iexp

The colour of the point with coordinates x,y is determined using this
function. Values between 0 and 15 are returned for a low resolution screen,
between 0 and 3 for medium and O or 1 for high resolution.

Example:

a=POINT (100,100)
PLOT 100,100
PRINT a, POINT(100,100)

--> The computer reads the colour at 100,100, plots a point> there and
rereads its colour.



280 GFA BASIC 3 - User Manual

FILL x,y [,f]

X,Y,f : iexp

This command fills any enclosed area. The filling procedure begins at the
coordinates x,y. If the optional parameter 'f’ is present then the filling
procedure is limited only by points of the colour f and the edge of the screen.,
Iffis not present, or with f=-1, any point with a colour other than the starting
point x,y will be taken to be the edge of the area to be filled.

Examples:

LINE 0,180,639,180
FOR i=1 TO 19
BOX i*20,100,i*20 +18,180
TEXT 1*20-4,195,1
DEFFILL ,2,1
FILL i*20+1,101
NEXT i
PAUSE 100
FILL 0,180

--> This draws a straight line, placing a row of filled boxes above it. After
a seconds pause, the computer proceeds to fill in the straight line, and
anything joining it, thus partly destroying the fill patterns.

LINE 0,280,639,280
FOR i=1 TO 19
BOX 1*20,200,1i*20+20~i,280
TEXT i*20-4,295,1
DEFFILL ,2,1
FILL i*20+1,201,1
NEXT i

--> The same result as above occurs, except that the resulting fill patterns
will be different, due to the extra parameter in the fill command causing a
slightly different fill mechanism to be used.



Chapter 8 : Graphics 281

CLS [#n]
n: iexp
Deletes the screen by the output of an ESC-E-CR. Can also be sent to files.
Example:
PBOX 100,100,500,200
REPEAT -
UNTIL MOUSEK
CLS

-->Fillsthe screen partly with arectangle and deletes it after amouse button
is pressed.



282 GFA BASIC 3 - User Manual

TEXT x,y [,1],expression

X,¥,1 ¢ iexp
expression : sexp or aexp

Displays the text in ’expression’ starting at the point with the graphic
coordinates x,y. This point refers to the bottom left comer of the first
character of the expression. The parameter 1 sets the length of the text in
pixels. With 1 positive, the spacing between characters will be adjusted to
achieve this Iength, whereas with 1 negative, the length is created by
altering the size of the spaces between words. When 1 is zero, the
unchanged text is displayed.

Using DEFTEXT, various attributes of the text can be altered. DEFTEXT
however, only works with the TEXT command and with the PRINT
command when used inside a window.

Example:

s$= "this is an example”
FOR i=0 TO 23
DEFTEXT 1,1i,0,6
TEXT 50,i*16+16,s$
NEXT i
DEFTEXT 1,0,0,13
TEXT 350,50,350-50
TEXT 350,100,s$
TEXT 350,150,250,s$
TEXT 350,200,-250,s$
~INP(2)

--> Writes text in various forms on the screen and then waits for a key to
be pressed.



Chapter 8 : Graphics 283

SPRITE bit_pattern$ [,x,y]

bit_pattern$ : svar
X,y ¢ aexp

The SPRITE command enables a 16x16 pixel block to be moved around
the screen. The appropriate bit information for the pattern and its mask is
put into the string "bit_pattern$’. All values must be given in word size. For
this purpose one can use the command MKIS$, so bitpattern$ is formed as
follows:

bitpattern$ =  MKI$(x-coordinate of action point)
MKI$(y-coordinate of action point)

MKI$(0) ! for normal or MKI$(-1) for XOR
MKI$(mask colour) ! mostly 0
MKI$(Sprite colour) ! mostly 1

sprite$

+ 4+ + + +

Contained in sprite$ is the bit information for the sprite shape and its mask,
which must be specified, unlike DEFMOUSE, not successively but
alternately.



284 GFA BASIC 3 - User Manual

Example:

gfa$=MKIS (1)+MKI$ (1)+MKIS$ (0)
gfa$=gfa$+MKIS (0) +MKIS (1)
FOR i%=1 TO 16

READ pattern%, mask$

gfa$=gfa$+MKIS (mask%)+MKI$ (patterns)
NEXT 1%
DATA 0,0,0,32256,15360,16896,8192,24064
DATA 8192,24560,11744,21008,9472,23280,%472,23295
DATA 15838,16929,274,32493,274,749,286,737
DATA 18,1005,18,45,18,45,0,63
REPEAT

ADD mx%, (MOUSEX-mx%) /50

ADD my%, (MOUSEY-my%) /50

SPRITE gfa$,mx%,my%
UNTIL MOUSEK=2

--> A Sprite moves over the screen, following the movement of the mouse
pointer.



Chapter 8 : Graphics 285

. Grabbing Sections of Screen

SGET screen$
SPUT screen$

screen$ : svar

SGET copies the entire screen (32000 bytes) into a string. Similarly, SPUT
copies a 32000 byte long string into the screen memory, thus displaying it.

PCIRCLE 100,100,50
SGET b$

~INP (2)

CLS

~INP (2)

SPUT b$

-->Draws afilled circle on the screen. After a key is pressed it disappears,
after a further key depression it reappears.



286

GFA BASIC 3 - User Manual

GET x1,y1,x2,y2,section$
PUT x1,yl,section$ [,mode]

x1,y1,x2,y2,mode :
section$ :

iexp
svar

GET puts a section of screen into a string variable (x1,y1 and x2,y2 are
coordinates of diagonally opposite corners). Similarly PUT places ascreen
section (read in with GET) onto the screen at coordinates x1,y1. Using
'mode’ it is possible to control the way string is placed on the screen in
relation to the existing screen contents. In following table the relationship
between the new picture and the existing one are shown for each value of
mode. The term ’s’ represents a pixel from the new picture (the source
picture), and ’d’ the corresponding pixel from the existing screen (the

destination).
Mode Placing rule
0 0
1 s ANDd
2 s AND (NOT d)
3 s
4 (NOT s) AND d
5 d
6 s XOR d
7 sORd
8 NOT(sOR d)
9 NOT (s XOR d)

Effect

All points are cleared.

Only the points which are set in both screens
remain set.

Sets only the points which are set in the
source and clear in the destination.

The new source screen is simply transferred
(GRAPHMODE |{-Default).

Only the points which are clear in the source
and set in the destination are set.

The screen remains unchanged.

Only those points are set in one but not both
remain set (GRAPHMODE 3).

All points are set in which either or both the
source and destination are set
(GRAPHMODE 2).

All points which are clear in both screens
become set.

All points where both source and
destination are set, or both are clear, are set.



Chapter 8 : Graphics 287

10
11

12

13
14

15

NOTd The destination screen is inverted.

s OR (NOT d) A point is set if either the source is set, or the
destination is clear, or both.

NOT s The source screen is inverted before the
.placing.

(NOT s) ORd GRAPHMODE 4

NOT (s AND d) All points which were not set in ‘both
screens become set.

1 All points are set.

The important modes are:
3 Replace (default)

4 XOR

7 Transparent
13 Inverse transparent

Inaddition, if the current fill pattern is auser-defined one and bit 4 of "'mode’
is set, then the result of the above calculations will be ANDed with the user-
defined pattern.



288 GFA BASIC 3 - User Manual

VSYNC

This command is used for the synchronisation of the screen display. When
this command is issued, the computer pauses until the vertical scanning line
(raster scan) reaches the top of the screen. This results in much less screen
flicker. VSYNC can be used, for example, in the animation of screen
sections using GET and PUT.

Example:

t$=TIMER
FOR i%=1 TO 100
VSYNC
NEXT i%
PRINT SUB(TIMER,t$%)/200

--> This displays the time for 100 scans of the screen to occur.



Chapter 8 : Graphics 289

BITBLT s_mfdb %(),d_mfdb%(),par % ()

s_mfdb%(),d_mfdb%(),par%() : integer-array

The command BITBLT allows the copying of rectangular screen sections.
It is similar to the commands GET and PUT but it is quicker and more
flexible. However, it is also more complicated to use.

The parameters of the command are stored in three arrays. The first one,
s_mfdb%(), contains the structure of the source screen - the one to be
copied. In the same way, d_mfdb%() contains the structure of the
destination, i.e. the place wherethe picture is to be copied to. The third array
contains the coordinates of the source and target areas and also the copy
mode.

This command has a VDI-routine as its basis. During BITBLT adr% and
BITBLT x%() a LINE-A routine is called (see section on LINE-A calls).

The structure of the source (s_mfdb%) is same as that of the destination
screen (d_mfdb%). The abbreviations mean:

s_mfdb%() SOURCE MEMORY form description block
d_mfdb%() DESTINATION MEMORY form description block



290

GFA BASIC 3 - User Manual

The Array Elements are:

_mfdb%(0) Contains the source/destination address. This address

must be an even number. Usually either s_mfdb%(0) or
d_mfdb%(0) equals the screen address (XBIOS(2)).

_mfdb%(1) Width of the screen in pixels. This value must be divisible

by 16.

_mfdb%(2) Height of the screen in pixels.
_mfdb%(3) Screen width in words (= pixel count/16).
_mfdb%(4) Reserved, always 0.

_mfdb%(5) Number of bit planes:

High resolution = 1
Medium resolution = 2
Low resolution = 4

_mfdb%(6) to _mfdb(6) are reserved for future extensions.

If _mfdb%(0)=0, GEM will create the rest of the _mfdb parameters by
itself, pointing to the current screen.

The array par%() has the following structure:

par%(0)
par%(1)
par%(2)
par%(3)
par%(4)
par%(5)
par%(6)
par%(7)
par%(8)

Left x-coordinate of the source block
Upper y-coordinate of the source block
Right x-coordinate of the source block
Lower y-coordinate of the source block
Left x-coordinate of the destination block
Upper y-coordinate of the destination block
Right x-coordinate of the destination block
Lower y-coordinate of the destination block
Copy mode

The values for "copy mode’ correspond to those with GET/PUT. The
important ones are:

3
6
7
13 =

Hoa

Replace (GRAPHMODE 1)
XOR (GRAPHMODE 2)
Transparent (GRAPHMODE 3)

Inverse transparent  (GRAPHMODE 4)



Chapter 8 : Graphics 291

Example:
DIM smfdb% (8),dmfdb%(8),p%(8)
14

FOR i%=0 TO 639 STEP 8
LINE i%,0,639,399

NEXT i%

GET 0,0,639,399,a$

mirrorput (0,0,a$)

r .

PROCEDURE mirrorput (x%,y%,VAR x§)
IF LEN(x$)>6 ! Only if something there
a%=V:x$
b%=INT{a%}
h%=INT{a%+2}
14

smfdb% (0)=a%+6

smfdb% (1)=(b%+16) AND &HFFFO0
smfdb% (2) =h%+1

smfdb% (3)=smfdb% (1) /16
smfdb% (5) =DPEEK (a%+4)

7

dmfdb% (0)=XBIOS (3)
dmfdb% (1)=640
dmfdb% (2)=400
dmfdb% (3)=40
dmfdb% (5)=1

[

p%{(1)=0

p% (3)=h%

p% (4) =x%+b%
p% (5)=y%

p% (6) =x%+b%
p% (7)=y%+h$%
p%(8)=3



292 GFA BASIC 3 - User Manual

FOR i%=0 TO b%

p%(0)=i%
p%(2)=1%
BITBLT smfdb%(),dmfdb%(),p%()
DEC p%(4)
DEC p% (6)
NEXT i%
ENDIF
RETURN

-->Draws a set of lines, forming a triangle. The entire screen is read into
a string and then each pixel-wide column is placed back on the screen on
the other side. This has the effect of reflecting the screen in an axis down
the centre of the screen (cf. BITBLT in the section on LINE-A calls).



Chapter 9
Event, Menu and Window
Management

Event Management

There are commands in GFA BASIC which allow the monitoring of GEM
Events in a straightforward way. These events are the depression of akey
or a mouse button, the arrival of the mouse pointer inside or outside one of
two specified rectangular screen areas, and the arrival of a’GEM message’,
in which information about window management is passed.

The monitoring of these events is set up by ON MENU xxx GOSUB, where
xxx is the event to be reacted to, and is actually invoked within a program
by the ON MENU command. Each time this command is encountered, a
check is made to see if an Event has occurred. If so, and if there was a
previous ON MENU xxx GOSUB to define the reaction to that event, then
the program branches to the appropriate procedure.



294 GFA BASIC 3 - User Manual

ON MENU [t]

t: iexp

The command ON MENU supervises EVENT handling. Before using it,
the required reaction should have been specified with an ON MENU xxx
GOSUB command, the variants of which are explained in the remainder
of this chapter. For constant supervision of Events it is necessary to use this
command repeatedly. For this reason, the ON MENU command is
normally found in a loop.

The parameter t contains the time (in thousandths of a second) to elapse
before the ON MENU command is terminated. The reason for this delay
is that occasionally GEM does not notice the releasing of a mouse button
(typical effect: When the *Close’ box of a window is clicked, the window
sometimes remains open until the button is energetically clicked a few
times). By giving a suitable value to 't’, this should be prevented.

Itis a good ideato use the parameter 't’ even if a program is not specifically
concerned with the mouse buttons, as other programs, or GEM routines
called from within it, may do so.

Example:

ON MENU BUTTON 1,1,1 GOSUB test
t%=TIMER
REPEAT
PRINT (TIMER-t%)/200
ON MENU 2000
UNTIL MOUSEK=2
PROCEDURE test
RETURN



Chépter 9 : Event, Menu and Window Control 295

--> The time since the program started is displayed every two seconds. If
the left mouse button is pressed, then an Event occurs, and ON MENU is
terminated before the expiry of the two second period. A press of the right
mouse button ends the program. If one changes the first line to 'ON MENU
BUTTON 0,0,0 GOSUB test’, then the mouse monitoring is switched off,
and the time parameter behind ON MENU will have no effect.



296 GFA BASIC 3 - User Manual

MENU(x)

x : aexp (from -2 to 15 inclusive)

The variables MENU(-2) to MENU(15) contain ali the relevant
information from an Event. In the case when an item in a menu is selected,
the index of the selected item in the item list will be found in MENU(0).
(See next section on Pull-down Menus).

MENU(-2) and MENU(-1) contain the address of the Message buffer and
the address of the menu Object tree respectively. The Message Buffer lies
in the variables MENU(1) to MENU(8) and the AES-Integer Output Block
in MENU(9) to MENU(15). The use of these variables to determine
specific information is only briefly discussed here, starting with MENU(1)
and the Message Buffer.

The Identification number of an Event when it occurs can be found in
MENU(1). The other elements of the message buffer contain various
values, the interpretation of which depends on the value in MENU(1), as
shown in the following table, where different possible values of MENU(1)
are listed together with the meanings of other relevant MENU(x) variables
in each case. The values relating to window management will tend to be the
most extensively used.

MENU(1) = 10 A Menu item was chosen:
MENU({(0) Menu item index in the item list
MENU(4) Object number of the menu title
MENU(5) Object number of the chosen menu item
MENU(1) =20 A redraw of arectangular window areais required:
MENU(4) Identification number (handle) of the window

MENU(5),(6) Coordinates of the top left corner of the area
MENU(7),(8) Width and height of the area (See ON MENU
MESSAGE GOSUB for an example)



Chapter 9 : Event, Menu and Window Control 297

MENU(1) =21
MENU4)

MENU(1) =22
MENU4)

MENU(1) =23

MENU4)

MENU(1) = 24

MENU(4)
MENU(5)

MENU(1) =25
MENU(4)
MENU(S)

MENU(1) =26
MENU(4)
MENU(5)

A window was clicked (this normally means that
the user wishes to activate this window):
ID (handle) of the clicked window

The 'Close’ box of a window was clicked:
ID of the window

The *Full’ box (top right) of a window was clicked
(this normally means that the user wants to bring
that window to maximum size):

ID of the window

One of the four arrow boxes or a slider bar area of
the window border was clicked. The movement of
the slider bar is reported by MENU(1)=25 or 26.
MENU(1)=24 only shows that one of the gray
areas was clicked:

ID of the window

The area that was clicked:
: Above the vertical slider
Below the vertical slider
Up arrow
Down arrow
To the left of the horizontal slider
To the right of the horizontal slider
Left Arrow
Right Arrow

IR A A > el s

The horizontal slider was moved:
ID of the window
Position of the moved slider (a number between
1 and 1000)

The vertical slider was moved:
ID of the window
Position of the moved slider (anumber between
1 and 1000)



298 GFA BASIC 3 - User Manual

MENU(1) = 27
MENU(4)
MENU(5),(6)
MENU(7),(8)

MENU(1) = 28
MENU(4)
MENU(5),(6)
MENU(7),(8)

MENU(1) = 29

MENU(4)
MENU(1) = 40

MENU(5)

MENU(1) = 41

MENU(5)

The size of the window was changed by means of
the 'sizing' box (lower right):
ID of the window
New x and y coordinates of top left corner
New width and height of the window

The position of a window was changed:
ID of the window
New x and y coordinates of top left corner
New width and height of the window

A new GEM window was activated. This can
happen with the closing of another active window,
for example one which was used by a Desk
Accessory:

1D of the window

An accessory was selected. This value can only be
received by an accessory, which should check the
value in MENU(S) to see if that accessory is the
one referred to, or if another has been started:
Menu identification number of the accessory

An accessory was closed. This value can only be
received from an accessory, which should do a
check as for MENU(1)=40:

Menu identification number of the accessory

The variable MENU(9) contains bit information on which kind of event
has occurred. If the bit for the appropriate event is set, the variables
MENU(9) to MENU(15) and GINTOUT(0) to GINTOUT(7) will contain

information as follows:

Bit 0 --> Keyboard

Bit 1 --> Mouse button

Bit 2 --> Mouse has entered/left rectangle 1

Bit 3 --> Mouse has entered/left rectangle 2

Bit 4 --> A message arrived in the message buffer
Bit 5 --> Timer event



Chapter 9 : Event, Menu and Window Control 299

MENU(10) x-position of the mouse when event terminated
MENU(11) y-position of the mouse when event terminated
MENU(12) Mouse buttons pressed: '

0 --> None

1 -->Left

2 --> Right

3 --> Both buttons

(See ON MENU BUTTON x,y,z GOSUB for an example)

MENU(13) supplies the status of the keyboard ’shift’ keys; for each
pressed key a bit is set as follows:
Bit 0 --> Right shift
Bit 1 --> Left shift
Bit 2 --> Control
Bit 3 --> Alternate
(See ON MENU KEY GOSUB for an example)

MENU(14) gives information about a pressed key. The low-order
byte contains the ASCII code of the character, and the
high-order byte the keyboard Scan code.

(See ON MENU KEY GOSUB for an example.)

MENU(15) returns the number of mouse clicks (single click, double
click, etc) that caused the event.



300 GFA BASIC 3 - User Manual

ON MENU BUTTON clicks,but,state GOSUB proc

clicks,but,state :  iexp

proc: procedure name

This sets up the action to be taken when one or more clicks of the mouse
are received. With a subsequent ON MENU command, the named
procedure will be branched to if the conditions imposed by the parameters
are met:

clicks > Sets the maximum number of clicks which generate a response.

button > The expected button combination as follows:

0 > Any?
1 > Left
2 --> Right
3 --> Both

state > Specifies which button state (up or down) will cause the Event.
' With state=0, the Event will be prompted by the button(s) being
up, and with state=1, the button(s) being down will cause the

Event,

proc > The name of the procedure to which the program will branch if
the above conditions are met.



Chapter 9 : Event, Menu and Window Control 301

Example:

ON MENU BUTTON 1,1,0 GOSUB box
GRAPHMODE 3
REPEAT
ON MENU
UNTIL MOUSEK=2
14

PROCEDURE box
ADD 1%, 7
IF 1%>200
1%=3
ENDIF
BOX 320-1%,200-i%,320+1i%,200+i%
RETURN

--> Boxes increasing in size are drawn on the screen so long as the left
mouse button is not pressed. The program will terminate if the right mouse
button is pressed.



302 GFA BASIC 3 - User Manual

ON MENU KEY GOSUB proc

proc : procedure name

This command enables the monitoring of the keyboard. The parameter
proc is the name of aprocedure to which the program branches, if akey was
pressed during an ON MENU command.

Example:

ON MENU KEY GOSUB key output
REPEAT
ON MENU
UNTIL MOUSEK=2
14

PROCEDURE key output
PRINT "keyboard shift keys: "; MENU(13)
PRINT "ASCII-code: "; BYTE (MENU(14))
PRINT "Scan-code: "; SHR{(MENU(14),8)
PRINT

RETURN

--> With press of a key the current condition of the keyboard shift keys
(shift, control, Alternate) is announced as well as the ASCH-code and
Scan-code of the pressed key. A press of the right mouse button terminates
the program. For the meaning of MENU(13 ) and MENU(14) see
MENU(x) .



Chapter 9 : Event, Menu and Window Control 303

ON MENU IBOX n, x, y, b, h GOSUB proc
ON MENU OBOX n, x, y, b, h GOSUB proc

n,x,y b, h: iexp
proc : procedure name

These two commands monitor the mouse coordinates. If the mouse enters
(IBOX) or leaves (OBOX) a rectangular display area, the procedure proc
is branched to.

It is possible to define two rectangular display areas which are supervised
separately. 'n’ is the number (1 or 2) of the appropriate rectangle, x its left
x-coordinate, y the upper y-coordinate, b the width and h the height of the
rectangle. The monitoring takes place during the execution of an ON
MENU command.



304 GFA BASIC 3 - User Manual

Example:

ON MENU IBOX 1,250,130,140,140 GOSUB enter box
ON MENU OBOX 2,50,50,540,300 GOSUB exit box
r

GRAPHMODE 3 i
BOX 250,130,390,270
BOX 50,50,590,350
REPEAT

ON MENU _
UNTIL MOUSEK=2
14

PROCEDURE enter box
BOX 250+i%,130+i%,390-1%,270-1%
IF i%=70
i%=0
ENDIF
ADD 1i%,2
RETURN
14

PROCEDURE exit box
BOX 0+3%,0+3%,639-3%,399-3%
IF %=0
3%=50
ENDIF
SUB i%,2
RETURN

--> When the mouse enters the inner rectangle, shrinking boxes appear
inside it. when it leaves the outside rectangle, growing boxes appear there.
Pressing the right mouse button terminates the program.



Chapter 9 : Event, Menu and Window Control 305

ON MENU MESSAGE GOSUB proc

proc : procedure name

If a message arrives in the message buffer, then the program branches to
the procedure with the name proc. The monitoring of the message buffer
takes place with each ON MENU command. The structure of the message
buffers is discussed in the section concerning MENU(x) .

Example:

DIM m$ (10)
FOR i%=0 TO 10
READ m$ (i%)
NEXT i%
DATA Desk, Redraw, ——--======——=e—————o———o-
DATR2 1,2,3,4,5,6,"",""
OPENW 4,0,0
MENU m$ ()
ON MENU MESSAGE GOSUB read message
PRINT AT(1,1); B
REPEAT
ON MENU
UNTIL MOUSEK=2
14
PROCEDURE read message
IF MENU(1)=20
PRINT CHRS(7);
PRINT "A screen section”
PRINT "must be redrawn”
ELSE
PRINT CHR$(7);
PRINT "Something has happened !!!"
ENDIF

RETURN

--> To test this program, an accessory must be loaded. If selected, then the
program announces that a screen section was covered and has to be
redrawn (see also MENU(x)). At the beginning this message appears once.
The program can be terminated through a press of the right mouse button.



306 GFA BASIC 3 - User Manual

Pull-down Menus

Inthis section the commands specific to GFA BASIC 3 for control of pull-
down-menus are given. Unfortunately a certain confusion prevails in the
literature on this topic as to the meaning of some of the terms used. They
shall therefore be stated here as they are used in this manual. We use the
term ’pull-down-menu’ as a general term for menu titles or headings. In the
top screen line the constantly visible part of the menu, is where the menu
list is located. This contains the individual headings. If the mouse arrow
arrives at one of these 'headings, then under it a so-called menu unfolds.
Each part of this menu can be selected individually as a menu entry. This
choice of terminology is not generally obligatory but is used throughout
this manual, elsewhere slightly different definitions are used.

During the creation of a menu its entries are set in an array m$(). With the
command MENU m$() this pull-down-menu is displayed on the screen.
The command ON MENU GOSUB determines which procedure the
program branches to on the selection of a menu entry. When the program
is running, a check is made to see whether an entry was selected on each
occurrence of an ON MENU-command.

The command MENU OFF returns reverse video entries in the menu list
to normal display. With MENU KILL the menu is switched off. The
command MENU x,y enables menu entries to be provided with ticks or to
be displayed in light text, making this menu entry non-selectable.



Chapter 9 : Event, Menu and Window Control 307

ON MENU GOSUB proc
MENU m$()

proc : procedure name
m$() : string-array

These two commands are responsible for generating and managing amenu,
and are supported by the commands and variables in the previous section
(ON MENU, MENU()).

With ON MENU GOSUB proc, the procedure to which control will be
passed on selection of a menu entry is determined. If an accessory is
currently open, the procedure will not be called. Within the procedure,
which menu entry was selected can be found by using the variable
MENU(0). MENU(0) is the index of the selected entry in the array of the
entries m$(), and m$(MENU(0)) indicates the text clicked on the menu if
OPTION BASE 0 is currently selected. If OPTION BASE 1 has been
chosen, then the text of the selected item is in m$(MENU(0)+1).

The command MENU m$() puts the menu onto the screen. The string array
m$() contains the headings, entries and reserved space for the accessories.
The following format must be used during the arrangement of the entries
in the array m$():

m$(0) Heading of the first menu in which accessories can
exist

m$(1) Name of the first entry in the first menu

m$(2) A line of of minus signs

m$(3) - m$(8) Reserved space for accessories These elements need
only be a single character long, as their contents are
ignored. If an accessory was loaded when the
computer was switched on, this will take up one of
these strings. Otherwise they will not be printed.

m$(9) an empty string, which marks the end of the first menu



308 GFA BASIC 3 - User Manual

All further menus have the following format:

1. Heading of the menu.
2. List of the menu entries.
3. An empty string which marks the end of the menu.

After the last menu another further empty-string marks the end of the entire
Pull-down-menu. A menu entry which begins with a minus sign is

represented but is not selectable and is shown in light text.

Example: See end of this chapter.



Chapter 9 : Event, Menu and Window Control 309

MENU OFF
MENU KILL

MENU OFF returns a menu title to 'normal video' display mode. (After an
item is chosen from a menu, the menu title is displayed in inverse video).

MENU KILL deactivates a menu but does not, however, remove the menu
title list from the screen. In addition MENU KILL turns off the ON MENU
GOSUB options.

MENU x,y

X,y : aexp

With this instruction the x-th entry in a menu can be given certain
attributes. The numbering of the entries corresponds to the indexing of the
array of menu entries, counting from zero and including titles, entries for
Accessories and null strings ("").

The second parameter y specifies the attribute to be given, or removed
from, the x-th menu entry as follows:

Effect

-->  Tick to be removed, if present, from in front of a menu item

Tick to be installed in front of a menu item

-->  Menu item to be made non-selectable, and printed light

-->  Menu item to be made selectable, and written in normal
characters

W = O <
'
i
\Y

Example: See this end of the section.



310 GFA BASIC 3 - User Manual

Sample Pull-down menu program:

DIM entrys$ (20)
DATA " Desk "," Test "

DATA ----—emmmme e :1,2,3,4,5,6,"
DATA " File "," Load "," Save "
DATA ---=-=---- ;" Quit """

DATA " Titles "," Entry 1 "," Entry 2 ",""
DATA End
14
i%=-1
REPEAT
INC i%
READ entry$ (i%)
UNTIL entry$(i%)="End"
entry$ (i%)=""
14

MENU entry$ ()

ON MENU GOSUB evaluate
OPENW 0

4

REPEAT

ON MENU
UNTIL MOUSEK=2
14

PROCEDURE evaluate
MENU OFF
" MENU(0) contains array index of selected item
m¥=MENU (0)
PRINT entry$ (m%)
14

ALERT 0,"Tick before item?",0,"YES|NO",a%
IF a%=1
MENU m%,1
ELSE
MENU m$, 0
ENDIF

14



Chapter 9 : Event, Menu and Window Control 311

ALERT 0,"Lightened characters | (Not selectable)
", 0," Yes| no ",a%
IF a%=1
MENU m%, 2
ELSE
MENU m%, 3
ENDIF
RETURN

—~-> A menu is created and monitored. When a mienu item is selected, its
text is printed and the user is asked first if it is to be ticked, and then whether

it should be ’non-selectable’ or not.



312 GFA BASIC 3 - User Manual

Window Commands

GFA-BASIC offers a number of commands for simple window
management: (OPENW, CLOSEW, CLEARW, TITLEW, INFOW), but
if one wants to program windows more efficiently, taking full advantage
of the GEM facilities, then the appropriate AES-routines will need to be
used (see Chapter 11 - AES Libraries). Additionally the functions
W_HAND and W_INDEX are available as a link between the simpler
window management commands and the more extensive AES functions in
the Window library.

With the simplest of the instructions, OPENW, all four windows share a
common corner, their other corners all lying on the screen edges. When this
method is used, only one pair of coordinates is needed to define the size and
position of all four windows, these being the coordinates of the common
corner.

After a window has been opened, most commands (PRINT, PRINT AT,
TEXT etc.) will take as their origin, the top left corner of the work-area of
the window but, commands such as GET, PUT and BITBLT, which access
the screen memory directly, will still take the top left corner of the screen
for their origin. Graphics and text which leave the current window area are
automatically clipped.



Chapter 9 : Event, Menu and Window Control 313

OPENW nr [,x_pos,y_pos]
OPENW #n,x,y,w,h,attr

CLOSEW nr
CLOSEW #n

nr,X_pos,y_pos: aexp
n,x,y,w,h,attr : iexp

With 'OPENW nr’ window number nr is opened. The parameters x_pos and
y_pos determine the position of the *free’ window comner, i.e. the one which
is not on an edge of the screen. The AES routines, 'OPENW #n’ or
WINDTAB are required for more flexible window management. The
coordinates of the possible windows set up with this instruction (assuming
high-resolution mode) will be:

No. Top left corner  Lower right corner
1 (0,19) (x_pos,y_pos)
2 (x_pos,19) (639, y_pos)
3 (0, y_pos) (x_pos,399)
4 (x_pos,y_pos) (639,399)
ie.
| | | 19
- 1 I 2 |
I | I
I | I
| === |===mmmmm e | y_pos
| I |
I | I
I 3 I 4 I
| | | 399
0 X pos 639

The point (x_pos,y_pos) is thus the point of contact of the four possible
windows.



314 GFA BASIC 3 - User Manual

With the instruction OPENW 0 no genuine window is opened, but the
coordinate origin is moved to (0,19). Thus the upper 19 lines of the screen
are protected from graphical or text output. This usefully protects a menu
bar against accidental overwriting.

The instruction *CLOSEW m’_ closes the window with number nr,
"CLOSEW #n’ the window with the arbitrarily assigned number n.

Example: (See also sample program at the end of the section.)

REPEAT
IF MOUSEK=1
CLOSEW 1
OPENW 4,320,200
ENDIF
IF MOUSEKR=2
CLOSEW 4
OPENW 1,100,100
ENDIF
UNTIL MOUSEK=3
CLOSEW #1
CLOSEW #4

--> Pressing the left mouse button opens window 4 and closes window !,
or pressing the right button opens window 1 and closes window 4.
Simultaneously pressing both buttons terminates the program.

The second variant, OPENW #n, opens a window with the arbitrarily
assigned number "n’, with the position, size and attributes specifiedinx, y,
w, hand attr. The expression attr determines which components (title bar,
sliders etc.) the window is to have (sece WINDTAB below or
WIND_CREATE inthe AES section). 'n’ isthen the number to be used with
TITLEW, INFOW, etc. - it is NOT the GEM ’handle’ of the window.

CLOSEW #n closes such a window.

TN



Chapter 9 : Event, Menu and Window Control 315

Example:
TITLEW #1," Title 1 7 ! Gives title to window #1
INFOW #1,STRINGS$(15,%"...]1 ") ! Allocates Info. line

OPENW #1,16,32,600,300,&X111111111111 ! Sets coords
l + attributes and opens a window

~INP (2)

CLOSEW #1 ! Important! Closes window

-->Opens awindow with a title and an info line. Pressing akey terminates
the program.

W_HAND(#n)
W_INDEX (#hd)

n,hd : aexp

W_HAND returns the GEM ’handle’ (Identification Number) of the
window whose ’channel number’ was specified in n. W_INDEX performs
the inverse function and returns the window number for the specified GEM
handle.

Note: The window number is the value used in the simple window control
commands. The GEM handle is a different value which refers to the same
window. The GEM handle should be used to specify a particular window
when using the AES routines.

Example:

OPENW 2

PRINT W_HAND (#2)
~INP (2)

CLOSEW #2

--> Prints the "handle’ of the window numbered 2 on the screen. Pressing
a key terminates the program.



316 GFA BASIC 3 - User Manual

CLEARW [#] n
TITLEW [#] n,title$
INFOW [#] n,info$
TOPW i#nr

FULLW [#] n

The instruction CLEARW deletes the contents of window number n'.
TITLEW writes the text in 'title$' in the top line of the window. INFOW
writes the text in 'info$' on the second (information) line of the window,
and TOPW activates the window number n. FULLW brings window n to
full screen size. CLEARW[#]n clears every visible part of a window,
without activating it. Internally it is done by WIND_UPDATE and

WIND_GET.
Example: (See also sample program at the end of the section.):

DEFFILL 1,2,4

PBOX 0,0,639,399
OPENW 1

PAUSE 50

FULLW #1

PRINT " Window 1"
OPENW 4,100,100
PAUSE 50

CLEARW 1

OPENW 3

PAUSE 50

TOPW #1

PAUSE 50

CLOSEW #1

TITLEW 4," Window 4 "
INFOW 3," Window 3 "
PAUSE 100

CLOSEW #3

CLOSEW 4

--> Some windows are opened, altered and then closed again.



Chapter 9 : Event, Menu and Window Control 317

WINDTAB
WINDTAB(,j)

i,j : iexp

The value of WINDTAB gives the address of the Window Parameter table,
where the information which determines the appearance of a window is
stored. (The next piece of information following the table is the coordinates
of the graphics origin.)

The table consists of 68 bytes and is constructed in word (2-byte) format.
The use of the table is shown at the end of the section in a sample program,
where the parameters of the window to be created are placed directly into
the window table and the window then opened with a simple OPENW
instruction.

WINDTARB, in a similar way to INTIN(), etc., can be used as a two-
dimensional array, WINDTAB(). The first index refers to the number of
the window (1 to 4, or 0). The second index is:

Handle
Attributes
x-coordinate
y-coordinate
Width (external)
Height (external)

B oH W =D

The Window Parameter table can also be modified by using 'DPOKE
WINDTAB-+offset’, the offsets having the following meanings:



318 GFA BASIC 3 - User Manual

Offset Description

Handle of window 1

Attributes for window 1 (see structure below)
X-coordinate for window 1

Y-coordinate for window 1

Width of window 1

10 Height of window 1

12t022 Corresponding values for window 2

24t0 34 Corresponding values for window 3

36to 46 Corresponding values for window 4

48 -1

50 0

52t0 58 Coordinates and size for the Desktop window (0)
60 and 62  Coordinates of the ’join point’ of the four windows
64 and 65  Origin for graphic instructions (CLIP OFFSET)

XN OO

This graphic origin is applicable to AES, Line A and direct VDI calls but
PUT, GET and BITBLT always take the top left corner of the screen for
their origin.

The window attribute word is constructed bit by bit, with each set bit
denoting the presence of a particular window component.

Bit Associated window element

Window title

"Close’ box (top left)

"Full’ box (top right)

*Move’ line, with which the window can be shifted
Information line

’Sizing’ box (bottom right)

Up arrow

Down arrow

Vertical slider bar (right)

Left arrow

Right arrow

Horizontal slider bar (bottom)

— e \D OO NI ANV D WN O

—



Chapter 9 : Event, Menu and Window Control 319

Example:

It is also possible to imply WINDTAB manipulation
using the OPENW #n,x,y,w,h,attr instruction,
where with Version 2 only WINDTAB was available.

14
I
14
7
OPENW #1,100,120,200,70, &HFFF
r

" corresponds to

I

DPOKE WINDTAB+2, &HFFF
DPOKE WINDTAB+4,100
DPOKE WINDTAB+6,120
DPOKE WINDTAB+8,200
DPOKE WINDTAB+10,70
OPENW 1

r

' or

r

WINDTAB (1,1)=&HFFF
WINDTAB (1,2)=100
WINDTAB (1, 3)=120
WINDTAB (1, 4)=200
WINDTAB (1,5)=70
OPENW 1



320 GFA BASIC 3 - User Manual

Other Window-related Commands
RC_INTERSECT(x1,y1,w1,h1,x2,y2,w2,h2)

xL,yl,wlL,hl : iexp
x2,y2,w2,h2: ivar

The function RC_INTERSECT (rectangle intersection) can be used to find
whether two rectangles overlap. The two rectangles are specified by the
coordinates of the of the top left corner (x,y), the width w and height h.

If the rectangles overlap, then the logical value TRUE (-1) is returned and,
after the function call, x2,y2,w2,h2 will contain the coordinates and size of
the rectangular area which is common to both rectangles.

Ifthey do not overlap, FALSE (0) is retumned and x2,y2,w2,h2 will contain
the coordinates and size of arectangle which lies between the two specified
rectangles. In this case, either the width w2 or the height h2, or both, will
be negative or zero.

This function is normally used for the control of 'Redraws’ with GEM
windows.

Example:

BOX 100,100,400,300
x=200

y=200

w=300

h=150

BOX x,y,x+w,yth

4

IF RC_INTERSECT (100,100,300,200,x,y,w,h)
PBOX x,y,xtw,y+th
ENDIF

-->Tworectangles are drawn and the common area is represented in black.



Chapter 9 : Event, Menu and Window Control 321

oldmx=0
oldmy=0
DO
MOUSE mx,my,mk
IF mx<>oldmx OR my<>oldmy
CLS
oldmx=mx
oldmy=my
x=120
y=100
w=75
h=75
BOX x,y,x+w,y+h
BOX mx,my,mx+50,my+50
PRINT RC_INTERSECT (mx,my, 50,50,%,y,w,h)
PBOX x,y,x+w,y+h
ENDIF
LOOP

-->Two boxes are drawn on the screen, one of which can be moved about
with the mouse. The rectangle supplied by the function RC_INTERSECT
is shown in black. The value -1 (TRUE), or 0 (FALSE) is shown in the top
left corner of the screen, depending on whether or not the moving rectangle
overlaps the fixed one.



322 GFA BASIC 3 - User Manual

RC_COPY s_adr,sx,sy,w,h TO d_adr,dx,dy [,m]

s_adr,d_adr,sx,sy,w,h,dx,dy,m : iexp

The instruction RC_COPY makes possible the copying of rectangular
’screen’ sections between areas of memory, each of which represents a
screen display which may be sent to the monitor by specifying the screen
address appropriately (see XBIOS(S)). The parameters s_adr and d_adr
contain the starting addresses of the source and destination screens. The
coordinates of the top left corner and the width and height of the rectangle
to be copied should be specified in sx, sy, w and h. The coordinates of the
top left corner of the destination rectangle are dx and dy. An optional
logical operation may be performed between the source and destination
rectangles, given by 'm’ in the range 0 to 15 (see PUT). The default value
for m is 3 (replacement mode).

Example:

FOR r=1 TO 400
CIRCLE 320,200,r

NEXT r

SGET pic$

s_adr¥=V:pic$

d_adr$=XBIOS (2)

r

FOR i%=1 TO 1000

RC_COPY s_adr$,RAND (10)*64,RAND (10) *40,64,40 TO
d_adr%, RAND (10) *64, RAND (10) *40
NEXT i%

--> A simple picture is drawn and stored in pic$. RC_COPY then copies
random ’screen’ sections from pic$ in memory to the current screen
memory (given by XBIOS(2)).



Chapter 9 : Event, Menu and Window Control 323

ALERT sym,text$,default,button$,choice

sym,default :  iexp
text$,button$ : sexp
choice : avar

The command ALERT creates an Alert box. The expression sym
determines which symbol is to appear in the box. The following are valid:

0 --> Nosymbol

1 --> Exclamation mark
2 -->  Question mark

3 -->  Stopsign

The text to appear in the box is given by the expression text$. A maximum
of 4 lines is permitted, with a maximum of 30 characters in each line,
separated by "rule’ characters (I). Lines which are longer than 30 characters
are truncated.

The expression ’default’ specifies which of the box’s buttons is to be the one
with a bold border, selectable by pressing Return or Enter. As no more than
three buttons are allowed, *default’ can take a value between 0 and 3, 0
indicating that there will be no default button and selection can only be
made by clicking with the mouse.

The string expression button$ contains the text for the buttons, with a
maximum of 8 characters per button. The individual button legends are
separated by 'rule’ characters ().

On exiting from the Alert box, the variable "choice’ contains the number (1
to 3) of the selected button. (See: FORM_ALERT).



324 GFA BASIC 3 - User Manual

Example:

ALERT {,"Pick albutton”,1,"LeftiRight",a%
ALERT 0, "You pressedl Button "+STR$(a%),0,"Ok",a%

--> A box with two buttons appears. After the selection has been made,a
second box materialises stating which button in the first box was chosen.
This second Alert box has no symbol and no Default button.



Chapter 9 : Event, Menu and Window Control 325

FILESELECT #title$, path$, default$, name$

title$,path$,default$ : sexp
name$ : svar

This instruction causes a File-Select box to be created on the screen,
enabling the user-friendly selection of a filename.

The expression title$ can be a maximum of 30 characters and allows a
header to be placed in the File-Select box - available from TOS 1.4
onwards. In the expression path$ the initial drive- and path-name should
be specified. If no drive is specified, then the current drive is assumed.
default$ contains the name of the file which will appear as the current
choice. This can be selected by pressing Return, edited or deleted (by
pressing ESCape). After exiting from the Box, the name of the selected file
will be found in the string name$. If the Cancel button was selected, then
name$ will contain a null string ("").

The formats of path$, default$ and name$ conform to the conventions of
the Hierarchical Filing system, described in the chapter 'General Input and
Output', section 'File Management'.

(See also FSEL_INPUT)

Example:

DO
FILESELECT "a:\*.PRG", "GFABASIC.PRG " ,name$
IF name$=""
PRINT "You clicked the Cancel button”
ELSE IF RIGHT$ (name$)="\"
PRINT "You clicked the OK button without naming
a file"
ELSE
PRINT "You have selected the file: ";name$
ENDIF
LOOP

--> A Fileselect Box appears and responds to the choice made by the user.



326 GFA BASIC 3 - User Manual




CHAPTER 10
SYSTEM ROUTINES

GEMDOS, BIOS and XBIOS

GEMDOS(n [x,y...])
BIOS(n [,x,y...])
XBIOS(n [,x,y...])

n,x,y : iexp

These three functions are used to call GEMDOS, BIOS and XBIOS
routines, in each case the optional parameter list is passed to function
number n. In order to be able to pass the parameters in the correct variable
size, they can be prefixed with W: or L:, to denote word (16-bit) and
longword (32-bit) sized values respectively.

The number and meaning of the parameters depends, as does the returned
value, on the system routine being called. (See also Appendix.)



328 GFA BASIC 3 - User Manual

Examples:

IF GEMDOS (17)

PRINT "Printer ready”
ELSE

PRINT "Printer not ready"
ENDIF

Checks if a printer is ready to receive data through the parallel interface and
reports the status as a logical (TRUE or FALSE) value.

REPEAT
UNTIL BIOS(11,-1) AND 4

Waits until the Control key is pressed. (BIOS(11,-1) reports on the current
status of the keyboard ’shift’ keys):

Bit Key
0  Right shift
1  Left shift
2 Control
3  Alternate
4  Caps Lock

CIRCLE 320,200,180
PAUSE 30 ’
BMOVE XBIOS (2),XBIOS(2)+16000,16000

--> Draws a circle and copies its upper half to the lower part of the screen.

(XBIOS(2) returns the address at which the physical screen memory
begins).



Chapter 10 : System Routines 329

L:x
W:x

X : iexp

These two functions enable the user to pass numerical expressions to
Operating System functions and C-routines as either a word (2-byte, W:)
or longword (4-byte, L:). By default the word format is used.

Example:

DIM screen 2} (32255)
phys base$%=XBIOS (2)
old screen¥=phys base%
log " base$=V:screen 2] (0)+255 AND &HFFFFFF00
~XBIOS(5,L:1log . base$, L: phys base%,-1)
SWAP log base$%,phys base%
REPEAT
IF MOUSEK=1
~XBIOS (5,L:1log base%,L:phys base%,-1)
SWAP log base%,phys base%
REPEAT
UNTIL MOUSEK=(0
ENDIF
PLOT MOUSEX,MOUSEY
UNTIL MOUSEK=2
~XBIOS(5,L:0ld screen%,L:old screen%,-1)

--> XBIOS(5) is used to switch between two display screens each time the
left mouse button is pressed. Moving the mouse causes points to be plotted
on the screen which is NOT currently visible. Pressing the right mouse
button terminates the program.



330 GFA BASIC 3 - User Manual

LINE-A Calls

ACLIP,PSET,PTST,ALINE,HLINE
ARECT,APOLY,ACHAR,ATEXT

In the following section a group of instructions are discussed which
correspond in principle to instructions that have already been presented in
the graphics chapter. The output is substantially quicker, however, and a
slightly different syntax is used. For Line-A graphics, clipping should
always be switched on (with ACLIP), since areas of memory can be
overwritten by a line leaving the screen area, for example. Otherwise the
clipping area is that set by the last used graphic command (AES or VDI),
for example OPENW, FILESELECT, ALERT, etc.

A VDI call changes the ACLIP setting previously set with ACLIP. Line-
A calls are independent of the VDI DEFxxx commands.

NOTE!!!: The colours specified for the LINE A routines correspond to the
hardware colour register numbers (as used by SETCOLOR) and NOT to
the numbers used by the VDI (COLOR). They convert as follows:

COLORNo: 0 1 2 3 4 5 6 7 8 9 10111213 14 15
LINE-A 0 151 2 4 6 3 5 7 8 9 1012 14 11 13

colour No.

LINE A etc.
colour No: 0 1 2 3 45 6 7 8 9 101112131415
COLORNo: 0 2 3 6 4 7 5 8 9 1011141215131

—



Chapter 10 : System Routines 331

ACLIP flag,xmin,ymin,xmax,ymax

flag,xmin,ymin,xmax,ymax : iexp

This instruction makes it possible to define a *clipping’ rectangle, to which
LINE-A screen output will be limited. The coordinates of the top left and
bottom right corners of the Clipping rectangle are given by xmin, ymin,
xmax and ymax. If 'flag’ is given a non-zero value the clipping is active,
otherwise (if flag=0) it is switched off. ACLIP is not valid (unfortunately)
for PSET, PTST, ALINE, HLINE and BITBLT.



332 GFA BASIC 3 - User Manual

PSET x,y,f

xYy,f: iexp

PSET corresponds to the PLOT command, and will set the point x,y to
colour f, which can take values from 0 to 15, depending on the current
screen resolution.

Example:
FOR x%=0 to 15
FOR y%=0 TO 100 STEP 2
PSET x%,y%,x%

NEXT y$%
NEXT x%

--> Draws vertical dotted lines in the 15 colours.

PTST(x,y)
X,y : iexp

The function PTST corresponds to the function POINT(). It returns the
colour of the pixel at screen position x,y.

Example:

PSET 100,100,6
x=PTST (200, 100)
PRINT x,PTST(100,100)

--> Prints the colours of the pixels at screen positions (200,100) and
(100,100).



Chapter 10 : System Routines 1333

ALINE x1,y1,x2,y2,f,im,m

x1,y1,x2,y2.f,Is,m : iexp

ALINE corresponds to the command LINE, where (x1,y1) and (x2,y2) are
the coordinates of the end points of the line. The expression f contains the
colour, which, depending on the current screen resolution, takes values
from Oto 15.°1s’ contains 16 bits of information for the desired style of line
(solid, dashed, dotted, etc.). Each set bit corresponds to one point to be
plotted.

The parameter m determines the graphic mode and can take values from
0to3:

m  mode

0 Replace

1 Transparent

2 Inverting

3 Inverted transparent

Example:

ym$=INT (L~A-4}-1
FOR i%=0 TO 255
style$=256*i%+i%

ALINE 1i%,0,1%,ym%,1,style%,0
NEXT i%

-->Draws vertical lines of varying dottedness extending from the top to the
bottom of the screen. The term INT{L~A-4} returns the maximum y
coordinate of the screen, this being stored four bytes before the beginning
of the Line-A Parameter Table (which starts at the address L~A).



334 GFA BASIC 3 - User Manual

HLINE x1,y,x2,f,m,addr,num_pattern
x1,x2,y,f,m,addr,num_pattern: iexp

HLINE is similar to the ALINE command, but only horizontal lines can be
drawn. x1 and x2 contain the x-coordinates of the line end points, and y the
common y-coordinate. The expression f contains the colour which,
depending on the current screen resolution, take values from 0 to 15. The
parameter m determines the graphic mode as with ALINE.

Addr is the address of a block of memory which contains bit information
for several line styles each of 16 bits. Which style is used for a given line
depends on both the y-coordinate and the parameter num_pattern. They are
ANDed together and the resulting number used as an index to the style
table. Thus num_pattern should generally be one smaller than a power of
two (0,1,3,7,15 etc.), giving the effect that, with num_pattern=7, the first
eight styles will be used sequentially as the y-coordinate moves down the
screen. If num_pattern=3, one of the first four styles will be used,
depending on the y-coordinate.

Example:
AcLIP 1,0,0,639,399
14

pattern%=&X11111111111111111010101010101010
z%=V:pattern%
14

FOR 1%=0 TO 199
HLINE 0,1i%,639,1,0,z2%,1
NEXT 1%

--> Two 16-bit line patterns are put into the variable pattern%. The last
parameter is ! (implying 2 possible styles). The lines drawn then use the
two 16 bit line patterns in pattern% alternately.



Chapter 10 : System Routines 335

ARECT x1,y1,x2,y2,f,m,addr,num_pattern

x1,y1,x2,y2,f,m,addr,num_pattern : iexp

ARECT corresponds to PBOX. (x1,y1) and (x2,y2) are the coordinates of
two opposite corners of the rectangle. The parameters f,m,addr and
num_pattern have the same meaning as for HLINE.

Example:

ACLIP 1,0,0,639,399
DIM pattern& (1)
14

pattern& (0)=-21846
pattern& (1)=21845
14

pattern adr¥=V: pattern& (0)
ARECT 100,100,200,200,1,0,pattern adr¥,1

--> A rectangle filled with a chequer-board pattern (equivalent to using
PBOX after DEFFILL 2,2,4 except that no border is drawn).



336 GFA BASIC 3 - User Manual

APOLY adr_pnt,num_pnt,y0 TO y1,f,m,addr,num_pattern

adr_pnt,num_pnt,y0,y1,f,m,addr,num _patteni : iexp

APOLY is similar to the POLYFILL command. It draws an (invisible)
sequence of jointed lines, with 'num_pnt’ comners and fills the resulting area
with a user defined pattern. "adr_pnt’ is the address of the array which
contains alternating x- and y-coordinates of the corner points. The
parameter ‘num_pnt’ contains the number of points. y0 and y1 specify the
highest and lowest parts of the screen where filling can take place - itis like
a vertical-only clipping facility. The parameters f, m,addr,num_pattern
correspond to those at HLINE.

Example:
DIM x&(9),pattern& (1)
FOR i%=0 TO 7
x& (1%)=RAND (100)
NEXT i%
x& (8)=x&(0)
x&(9)=x& (1)

adr_corners$=V:x&(0)
pattern& (0)=-1
adr_pattern%=V:pattern& (0)
14

ACLIP 1,0,0,200,200
APOLY adr_corners%,4,0 TO 100,1,1,adr pattern$,0

--> Draws a random filled quadrilateral.



Chapter 10 : System Routines 337

BITBLT adr%
BITBLT x%()

adr%: iexp
x%(): Four byte Integer array

The command BITBLT calls the LINE A-routine of the same name,
whereas the command with three parameter arrays calls a VDI-routine. In
the command variation for which an address is given as a parameter, a 76
byte long table must start at this address. The meaning of the values in this
storage area can be taken from the table that follows. The offset distances
of the elements from the start of the table are shown in the column ’offset’.

In the command variation with the one four byte-Integer array, this array

must have at least 23 elements, a specified parameter standing in each.
_ Which parameter must stand in which array element can be seen in the
' column ’index’ in the following table.

The parameters marked with a star are affected by the routine, therefore
one should normally work with the command variant which uses an array
parameter, since as a copy of the array is used by the BITBLT routine, the
array itself will not be altered. In contrast, the table elements which were
given by the passing of an address will be changed.



338

GFA BASIC 3 - User Manual

Index

Name

B_WD 00
B_HT 01
PLANE_CT * 02
FG_COL * 03
BG_ COL * 04
OP_TAB 05
S_XMIN 06
S_YMIN 07
S_FOR 08
S_NXWD 09
S_NXLN 10
S_NXPL 11
D_XMIN 12
D_YMIN 13
D_FORM 14
D_XNWD 15
D_NXLN 16
D_NXPL 17
P_ADDR 18
P_NXLN 19
P_NXPL 20
P_MASK 21
SPACE * 22

Offset

00
02
04
06
08
10
14
16
18
22

24
26
28
30
32
36
38
40

42

Meaning

Screen width in pixels

Screen height in pixels

Number of bit-planes

Foreground colour

Background colour

Logical "put’ mode 0 to 15 (see PUT)
x offset for source

y offset for source

Address of the source screen

Offset to the next word of the same
bit-plane

Offset to the next line of the source
screen

Offset to the next bit-plane (always 2)

x offset for destination

y offset for destination

Address of the destination screen
Offset to the next word of the same
bit-plane

Offset to the next line of the
destination screen

Offset to the next bit-plane (always 2)

Pointer to fill pattern table
(O=no pattern)

(Source ANDed with pattern before moving)

46
48
50
52

Offset to the next line of the mask
Offset to the next plane of the pattern
Mask as for HLINE

Next 24 bytes are workspace for

the Blitter



Chapter 10 : System Routines 339

Examples:
DIM x%(1000)
14

FOR i%=0 TO 639 STEP 8
LINE i%,0,639,399

NEXT i%

14

GET 0,0,639,399,a$

mirrorput (0,0,a$)

14

PROCEDURE mirrorput (x%,y%, VAR x$)
IF LEN(x$)>6 ! Only do it if something present
xx%=V:x%(0)
a%=v:x$
b%=INT {a%}
h%=INT{a%+2}
4

INT
INT
INT
INT

xx%}=1
Xx%+2

}=h%
xx%+4}

}

}

Xx%+6})=
INT{xx%+8}=
[xx%+10}=&H3030303
INT{xx%+14}=9999
INT{xx%+16}=0
{xx%+18}=a%+6

INT {xx%+22}=2
INT{xx%+24}=SHR (b%+16,4) *2
INT{xx%+26}=2

INT {xx%+28}=9999

INT {xx%+30}=0
{xx%+32}=XBI0S (3)

INT {xx%+36}=2

INT {xx%+38}=80

INT {xx%+40}=2

{xx$+42}=0 ! pattadr
INT{xx%+46}=0 ! p nxtln

h
1
1
0
3



340 GFA BASIC 3 - User Manual

INT{xx%+48}=0 ! p nxpl
INT{xx%+50}=0 ! p mask
[

ABSOLUTE i&,xx%+14
ABSOLUTE di&, xx%+28
14

FOR i&=0 TO b%
INT {xx%+4}=1
di&=SUB(639,1&)
BITBLT xx$%
NEXT ié& '
14
ENDIF
RETURN

--> An example of BITBLT adr%.
~DIM x%(1000)
14

FOR i%=0 TO 639 STEPS 8
LINE i%,0,639,399

NEXT i%

14

GET 0,0,639,399,a$
mirrorput (0,0,a$)
14

PROCEDURE mirrorput (x%,y%, VAR x$)
IF LEN(x$)>6 ! Only do if something present
a%=v:x$
b%=INT{a%}
h%=INT{a%+2}
I

x%(0)=1

x% (1)=h%
x%(2)=1

x%(3)=1

x%(4)=0

x% (5)=&H3030303



N

Chapter 10 : System Routines 341

x%(6)=9999

x%(7)=0

X% (8)=V:x5+6

x% (9) =2

x% (10)=SHR (b%+16,4) *2
x%(11)=2

x%(12)=9999

x%(13)=0

x% (14)=XBIOS (3)
x%(15)=2
x%(16)=80
x%(17)=2

x%(18)=0 ! pattadr
x%(19)=0 ! p nxtln
x%(20)=0 ! p_nxpl
x%(21)=0 ! p mask

FOR i%=0 TO b%
x%(6)=1i%
x%(12)=639-1%
BITBLT x%()

NEXT i%

4

ENDIF
RETURN

--> An example of BITBLT x%().

Both routines reflect a picture about a vertical line down the centre of the
screen. In the routine which uses BITBLT adr%, the number of bit-planes
must be re-specified each time the instruction is used. Whichroutine to use
is more or less a matter of taste, as there is very little difference in speed
between the two. A VDI version of the program producing the same effect
is listed under BITBLT in the graphics chapter.



342 GFA BASIC 3 - User Manual

ACHAR code,x,y,font,style,angle

code,x,y.font,style,angle : iexp

By means of ACHAR an individual character with the ASCII value 'code’
can be displayed at the point with graphics coordinates (x,y). The
numerical expression 'font’ can accept values between 0 and 2 as follows:

6x6 (’Icon’ font)
8x8 (Normal font for colour)
8x16 (Normal monochrome font)

—
o n

Larger values for ’font’ are taken to be Font-header addresses. The font
must be present in the format into which it is converted by GDOS on
loading, that is in the Motorola format with High-byte before Low-byte.

Text type (bold, faint etc: 0 to 31) and output angle (0,900,1800,2700) can
be specified as for TEXT with DEFTEXT. In contrast to these TEXT
commands, the x and y coordinates refer to the top left comer of the
character, not the bottom left corner.



Chapter 10 : System Routines 343

ATEXT x,y,font,s$

x,y,font : iexp
s$: sexp

The command ATEXT outputs character strings at arbitrary screen
positions but, unlike with ACHAR, no character style or output angle can
be specified. The parameters x,y and font are the same as for ACHAR.

Example:

OPENW 0 ! Protect top line from overwriting

EVERY 400 GOSUB a clock ! Every 2 seconds call a clock

FOR i%=1 TO 100000 B
PRINT USING "#####4",i%; ! Display numbers

NEXT i%

r

PROCEDURE a clock

ACLIP 1,20,0,120,15 ! Switch clipping on,

! otherwise it will remain as set by OPENW 0,

! i.e. nothing will be seen

ATEXT 20,0,2,TIMES ! Display the time
RETURN

--> Numbers are printed continuously, but every 2 seconds a time display
is updated on the top line.

L~A



344 GFA BASIC 3 - User Manual

L~A

The function L~A returns the base address of the LINE-A variables (see
appendix).

Example:
PRINT INT{L~A}

--> Gives the number of bit-planes in the current resolution. See also the
examples under BITBLT.



Chapter 10 : System Routines 345

VDI Routines

The VDI functions are divided into seven categories:

Control fanctions
Output functions
Attribute functions
Raster functions
Input functions
Inquire functions
Escape functions

Three kinds of parameters are distinguished: Input, Output and those used for
both input and output. These parameters belong in five arrays:

CONTRL  Control

INTIN Integer input

PTSIN Point coordinate input
INTOUT Integer output
PTSOUT  Point coordinate output

The input parameters are stored in:

CONTRL(0) ’Open workstation’ opcode
CONTRL(1) Number of points in PTSIN array
CONTRL(3) Length of the INTIN array
CONTRL(5) Device handle

INTIN() Integer value input array
PTSIN() Point coordinates input array

The output parameters are:

CONTRL(2) Number of the points in the array
CONTRL(4) Length of the INTOUTarrays
INTOUT() Output array of the integer values
PTSOUT() Output array of the point coordinates

Input and output parameters are:

CONTRL(6) Device identification
CONTRL(7-n) Opcode dependent information

The array elements meaning depends on which VDI function is being called.



346 GFA BASIC 3 - User Manual

CONTRL
INTIN
PTSIN
INTOUT
PTSOUT

These functions give the addresses in the VDI Parameter Block, which are
the addresses of the first bytes of the CONTRL, INTIN etc. arrays. The
arrays can be accessed by placing an index value in brackets after the array
name, for example CONTRL(2)=x& corresponds to DPOKE
CONTRL+4,x& and x&=CONTRL(4) to x&=DPEEK(CONTRL+4). The
other arrays are also organised in word format.

The meanings are:

CONTRL -->  address of the VDI control table

INTIN -->  address of the VDI integer input table

PTSIN -->  address of the VDI point coordinate input table
INTOUT  -->  address of the VDI integer output table
PTSOUT -->  address of the VDI point coordinate output table

These tables (arrays) contain the parameters for VDI-calls.



Chapter 10 : System Routines 347

VDISYS [opcode [,c_int,c_pts [,subopc]]]

opcode,c_int,c_pts,subopc : iexp

With the instruction VDISYS the VDI function with the function code "op-
code’ is called. If opcode is not specified, then the function code must, like
the other parameters, be placed in the control block with 'DPOKE
CONTRL,0opcode’ or *CONTRL(0)=opcode’.

The number of values in the integer and point-coordinate input arrays can
be specified in the parameters c_int and c_pts. These values need not then
be placed into the Control Block. The optional parameter "subopc’ contains
the sub-opcode of the routine to be called. This must only be specified for
some VDI routines, for example Escape functions routines. The
parameters c_int, c_pts and subopc will be inserted into the CONTRL
block like so:

opc --> CONTRL(0)
c_int --> CONTRL(@3)
c_pts --> CONTRL(1)
subopc --> CONTRL(S)



348 GFA BASIC 3 - User Manual

Examples:

CONTRL (1)=3
CONTRL (5)=4
PTSIN(0)=320
PTSIN(1)=200
PTSIN(4)=190
VDISYS 11
PAUSE 25

CLS

14

PTSIN{0)=320

PTSIN(1)=200

PTSIN(4)=190

VvDISYS 11,0,3,4

PAUSE 25

CLS

r

PCIRCLE 320,200,190
--> Three different ways of drawing the same filled circle.

vD1sys 5,0,0,13

PRINT "Inverted"

PRINT "Normal"

--> Prints "Inverted’ in inverse video and "Normal’ normally.



Chapter 10 : System Routines 349

VDIBASE

The system variable VDIBASE contains the address starting from which
the current GEM version puts parameters for use in the VDI routines (text
style, clipping etc). The structure of this area could well be different in
future versions of GEM. VDIBASE is contained as a keyword in GFA
BASIC in order to give programmers the ability to access all VDI
parameters.

WORK_OUT(x)
x: iexp

This function determines the values found in INTOUT(0) to INTOUT(44),
PTSOUT(0) and PTSOUT(1) after returning from the function
OPEN_WORKSTATION. The index ’x’ can take values from 0 to 56 (see
Appendix).

Example:

screen width&=WORK_OUT (0)
screen height &=WORK OUT (1)
PRINT screen widthég,screen height&,WORK OUT (10)

--> The numbers 639 and 399 (in monochrome mode) for the screen width
and height are printed, followed by a 1 for the number of the available
character sets (WORK_OUT(10)).



350 GFA BASIC 3 - User Manual

Special VDI Routines and GDOS

The following VDI Workstation and query functions are available only if
GDOS (releases 1.0 and after) has been booted and a valid ASSIGN.SYS
file is available.

The machine independent GDOS (Graphics DEVICE Operating System)
contains graphic functions and works together with device dependent
drivers for different output devices (screen, printer, plotter, Metafiles,
etc.).

The ASCII file ASSIGN.SYS contains all necessary data concerning the
current device configuration. In this file all current Operating System and
character sets must be registered, and if necessary the access path to the
Operating System must be specified, if it is not on drive A:. The following
syntax should be noted:

id  DEVICE.SYS;
; Remarks
part1. FNT
part2. FNT
partn.FNT
id contains a number between 1 and 32767. With it the type of

device is determined as follows:

01 ... Screen

11 ... Plotter
21 ... Printer
31 ... Metafile

41 ... Camera
51 ... Graphic-Tablet



Chapter 10 : System Routines 351

If the Operating System is located on drive C: in the file GEMSYS, then
the associated ASSIGN.SYS file looks, for example, like this:

path = c:\gemsys\

0lp screen.sys; Screen driver in ROM, therefore
a ’'p’ after the ID

ATSS10.FNT

ATSS12.FNT

02p screen.sys; Driver for low resolution

ATSS10.FNT

ATSS12.FNT

03p screen.sys; Driver for medium resolution

ATSS10CG.FNT

ATSS12CG.FNT

04p screen.sys; Driver for high resolution

ATSS10.FNT

ATSS12 .FNT

21 FX80.sys; Printer driver for the FX-80

and compatible

ATSS10EP.FNT

ATSS12EP.FNT

31 META.SYS; Metafile driver

ATSS10MF.FNT

ATSS12MF .FNT

The screen-drivers SCREEN.SYS are only dummy entries, required by
GDOS’ syntax checker. The ID’s (2,3 and 4) have only to assign, for each
resolution, the order of the given fonts. Therefore the call to open a virtual
screen memory workstation is V_OPNVWK(XBIOS(4)+2). GFA BASIC
V3 makes this call internally.



352 GFA BASIC 3 - User Manual

GDOS?

GDOS? supplies TRUE if GDOS (release 1.0 or after). is resident and
FALSE otherwise.

Example:

IF NOT GDOS?
ALERT 1, "GDOS not found.",1," OK ", r%
END .

ENDIF



Chapter 10 : System Routines 353

V~H

With the following VDI functions, *hd’ stands for the VDI handle and *id’
for the identification of an output device. With this in mind, consider the
following functions:

V~H Returns the internal VDI handle of GFA BASIC. (e.g. PRINT
V~H)

V~H=x Sets the internal VDI handle (accessible through CONTRL(6))
to the value x.

V~H=-1 Sets the VDI handle (CONTRL(6)) to the value resulting from
the internal V_OPNVWK.

V_OPNWK(id)
V_OPNWK(id,1,1,1,1,1,1,1,1,1,2)
V_CLSWK()

ID: iexp

The numbers | and 2 are default values for the settings of the VDI
parameters. They can be changed (cf. WORK_OUT).

The function V_OPNWK (Open Workstation) supplies the handle hd for
the specified device *id’. In addition, further information about the device
may be requested by means of INTOUT() and PTSOUT() (c.f. VDISYS
in the section *System Routines’).

The function V_CLSWK (Close Workstation) closes the current
workstation opened with V_OPNWK and flushes its buffers. In addition
a V~H=-1 is carried out.

Example: See V_CLRWK.



354 GFA BASIC 3 - User Manual

V_OPNVWK(id)
V_OPNVWK(id,1,1,1,1,1,1,1,1,1,2) —
V_CLSVWK(id)

id : iexp

The function V_OPNVWK (Open Virtual Workstation) opens a virtual
screen driver and supplies the handle for the specified device id (cf.
V_OPNWK).

The function V_CLSVWK (Close Virtual Workstation) closes a virtual
Workstation opened with V_OPNVWK. In addition V~H=-1 is issued.

V_CLRWK()
V_UPDWK()

The function V_CLRWK (Clear workstation) clears the output buffer. For
example, the screen or the printer buffer is cleared.

For output of graphics to a printer, all commands are collected in a buffer.
The function V_UPDWK (update workstation) sends these buffered
graphic instructions to the attached device. Unlike printer graphics, for
example, all graphic instructions sent to the screen are implemented
immediately.



Chapter 10 : System Routines 355

Example (if GDOS is resident):

RESERVE 25600 ! Reserve sufficient storage memory
handle%=V _OPNWK(21) ! Determine identification
’ ! for output device
14
IF handle%=0
ALERT 3,"Installation error!",1,"Cancel”,r%
RESERVE

END
ENDIF
14
x_res%=INTOUT (0) ! Determine x and y-resolution
y_res¥=INTOUT (1) ! of the attached device
14
V~H=handle% ! Sets the internal VDI-handle
! ! to printer identification
~V_CLRWK () ! Clear buffer
4

CLIP 0,0,x res%,y res%
BOX 0,0,x res%,y_res%

LINE 0,0,x res%,y res%
LINE 0,y res%, x_res¥%,0
4

~V_UPDWK () ! Carry out Graphic commands
~V_CLSWK ()
[4

RESERVE ! Return memory to GFA BASIC

--> Sends a rectangle with a diagonal line through it to an attached printer,
if GDOS is resident.



356 GFA BASIC 3 - User Manual

VST_LOAD_FONTS(x)
VST UNLOAD_FONTS(x)

x: iexp

The function VST_LOAD_FONTS loads the additional character sets
specified in ASSIGN.SYS, if sufficient memory is available, and the
number of loaded fonts is returned. If no further fonts are available, zero
is returned.

The parameter x is should be zero with present versions of GEM, though
this may change in the future. It is important to reserve sufficient memory
for the additional character sets, using RESERVE.

The function VST_UNLOAD_FONTS removes the character sets loaded
previously with VST_LOAD_FONTS from memory. The parameter x is
currently zero as for VST_LOAD_FONTS.

Example:
RESERVE 25600
14

num fonts%=VST LOAD FONTS (0) ! How many additional
' ! character sets?
face%=VQT NAME (num fonts%, font$) ! Index and name

r ! of loaded Fonts

L4

FOR i%=1 TO num fonts$%
DEFTEXT,,,,face%
TEXT 80,80,"This is the "+font$+" font."
~INP (2)

NEXT 1%

14

~VST_UNLOAD FONTS (0) ! Remove fonts

14

RESERVE

--> Displays the names of the loaded character sets in their own fonts.



Chapter 10 : System Routines 357

VQT_EXTENT(text$ [,x1,y1,x2,y2,x3,y3,x4,y4] )

text$ : sexp
x1,y1,x2,y2,x3,y3,x4,y4 :  ivar

The function VQT_EXTENT returns the corner coordinates of a rectangle
which will surround the text in text$. The coordinates can either be found
in the variables x1,y1 to x4,y4, or in PTSOUT(0) to PTSOUT(7). The
comer points are numbered in the clockwise direction:

Corner point Position

xLyl Top left

x2,y2 Top right

x3,y3 Bottom right

x4,y4 Bottom left
Example:

INPUT text$

CLS

ATEXT 100,25,2,text$
~VQT_EXTENT(text$,x1,yl,x2,y2,x3,y3,x4,y4)
BOX x4+100,y4+25,x2+100,y2425

-->The input text is put at the arbitrary screen position (100,25),and a box
is neatly put round it.



358 GFA BASIC 3 - User Manual

VQT _NAME(i,font_name$)

i ivar
font_name$: svar

The function VQT_NAME supplies the handle of the font with the
identification number ’i’ and places the name of theloaded character setinto
the string variable font_name$.

Example:

RESERVE 25600

14

num fonts%=VST LOAD FONTS (0)

face%=VQT NAME (num fonts%, font$) ! Index and name
! ! of loaded Fonts

h§=12 ! Text height
s$="example text"

x0%=80 ! Output coordinates
y0%=80 ! for s$

DEFTEXT 1,0,0,h%, face$

14

~VQT EXTENT (s$,x1%,y1%,x2%,y2%,x3%,y3%,x4%,y4%)
r

GRAPHMODE 4

TEXT x0%,y0%,s$

PBOX x0%+x1%,y0%+yl%-h%-1,x0%+x3%,y0%+y3%-h%
14

~VST_UNLOAD_FONTS (0) ! Remove fonts
r

RESERVE

--> The string s$ is displayed inverted on the screen at (x0%,y0%).



Chapter 10 : System Routines 359

Non-BASIC Routine Calls

The commands explained in this section enable subroutines which are
written in C or assembler to be called.

C: addr([ x,y,...] )

addr : avar (at least 32 bit, ideally integer-type: adr %)
X,y : iexp

The function C: calls a C or assembler subroutine, located at the address
addr. The parameters in brackets (x, y...) will be passed to the routine. The
parameter passing is via the stack, as in C. The parameters can be sent as
32-bit longwords with the prefix "L:’,or 16-bit words with the prefix "W’
If there is no prefix, a word value will be sent. When this function is called,
first the return address and then the parameters will be found on the stack.

So, for example:
VOID C:adr%(L:x,W:y,z) leads to the following situation on the stack:
{(spp --> Retun address (4 bytes)
4(sp) --> x (4 bytes)
8Gsp) > y (2 bytes)
10(sp) --> z (2 bytes)

The value returned by the function is the contents of register d0 on return
from the subroutine (for which RTS must be used).



360 - GFA BASIC 3 - User Manual

Example:

The assembler program used here fills an area of memory (e.g. an array)
starting from a certain address with the numbers (longwords) from 0 to n.

206F0004 move.l 4(sp),al
202F0008 move.l 8(sp),do
7200 moveq.l #0,d1
6004 bra.s ct 2
20C1  ct 1l:move.l di, (al)+
5281 addg.1 #1,d1
B081 ct 2:cmp.1  d1,d0

64F8 bcc.s  ct 1
4E75 rts

N+ Me Ne Ne Ne we Ve Ne e

The GFA BASIC program is:

FOR i%=1 TO 11
READ a%
asm$=asm$+MKIS (a%)
NEXT i%

Start address
Number of values
Counter

Loop re-entry point
Loop, value write
Increment counter
finished?

no, around again ->
Return to GFA BASIC

DATA $206F,$0004,5202F, $0008,57200, 56004
DATA $20C1,$5281,5$B081,$64F8,$4E75
14

DIM x%(10000)

asm$=V:asm$
~C:asm$(L:V:x%(0),L:10000)
PRINT "E.g. x%(12) = ";x%(12)

--> The array x%() is filled with the numbers from 0 to 10000,

corresponding to:

FOR i%=1 TO n$%
X% (1%)=1%
NEXT i%



Chapter 10 : System Routines 361

To insert an assembler program in a GFA BASIC V3 program, the INLINE
command can also be used. First a file is created containing the assembler
code above by using (after the above read-data loop):

BSAVE "COUNT.INL",V:asm$,22

Then type in the following program:

INLINE asm%,22
DIM x%(10000)
~C:asm¥ (L:V:x%(0),L:10000)

Then, while still in the Editor with the cursor on the line containing the
INLINE instruction, press the Help key. From the resulting menu choose
"Load’, and from the Fileselect box select the file COUNT.INL. It will be
loaded into an area specially allocated within the program, and will be
saved with the program when it is Saved in the normal way. See INLINE,
Chapter 2, section: Memory Management. ‘



362 GFA BASIC 3 - User Manual

MONITOR [x]
x: iexp

This instruction enables one to call assembler subroutines or debugging
programs or other utilities. For this purpose the ’illegal instruction vector’
(address 16) must be set to the address of the subroutine. The MONITOR
instruction then produces anillegal Instruction exception, which causes the
computer to branch to the subroutine. This subroutine must end with RTE
(Return from Exception). The parameter x is passed to the subroutine in
register d0.

An example of its use is with tracing a C program, using a debugger. GFA
BASIC should be loaded and started from the debugger. Then, after
inputting the C program, insert the line "MONITOR asm%’ directly before
the INLINE statement. After the start of the C program the debugger will
respond because of the 'Tllegal Instruction exception’ generated by the
MONITOR command. Now one can disassemble, single-step or edit the C
program at the address now in register d0. When the C program has been
edited/examined satisfactorily, one can continue the execution of the
program with the GO’ instruction of the debugger. If the *Break’ keys Shift-
Control-Alternate are pressed whilst in the debugger, a flag wiil be set
which will cause the BASIC program to halt as soon as control is returned
to it.



Chapter 10 : System Routines 363

CALL addr([ x,y,...] )

addr: avar (at least 32 bit, ideally integer-type: adr %)
X,y :  iexp, sexp

Assembler or C subroutines can also be called with the instruction CALL,
where ’addr’ is the address of the assembler program, which must end with
an RTS instruction. It is possible to pass a parameter list to the routine.
When the CALL is made, the return address is found at the top of the stack
followed by the number of parameters given as a 16-bit word, and finally
the address, as a 32-bit word, of the parameter list. All parameters will be
put into memory as long (32-bit) words.

Strings may also be passed to the subroutine, in which case it will be the
address of the string which is found in the parameter list.

Stack structure
(sp) --> Retumn address

4(sp) --> Number of parameters (16 bit)
6(sp) -->  Address of the parameters (32 bit)



364 GFA BASIC 3 - User Manual

RCALL addr,reg%()

reg%(): Name of Integer (4-byte) array
addr : iexp

The instruction RCALL enables the assembler routine to start with pre-
allocated values in the registers, and the BASIC program to query the
register contents when the routine returns. The integer-sized array reg%(),
which must have at least 16 elements, serves this purpose. Before the
assembler routine is started, the entries in this array are automatically
copied into the appropriate registers. At the end of the routine the contents
of the registers are written back into the appropriate array elements. The
registers and array elements are related as follows (assuming OPTION
BASE 0):

Data registers d0tod7 <--> r1eg%(0) to reg%(7)
Address registers a0toab <--> reg%(8) to reg%(14)
User-stack-Pointer @7) --> reg%(15)  (return only)
Example:

The assembler listing below expects the address (logical or physical) of the
screen memory in a0. It then inverts the screen display between given y
coordinates, which are passed in d0 and d1. With a colour display, the y
coordinates will have to be adjusted accordingly.

sub d0,di ; Number of lines to invert

mulu #20,d1 ; Number of bytes to invert

subg #1,dl ; Number of bytes to invert

mulu #80,d0 ; Number of bytes not to be inverted
add.l d0,a0 ; Address of first byte to be inverted
loop: ; Loop start

not.l (al)+ ; Long (4-byte) inversion, also al=al+4
dbra dl,loop ; Decrement byte count and loop round
rts ; Return to GFA BASIC



Chapter 10 : System Routines

365

The GFA BASIC program to call this routine reads:

DO
READ a%
EXIT IF a%=-1
AS=AS+MKIS (a%)
LOOP
DATA 37440,49916,20,21313
DATA 49404,80,53696
DATA 18072,20937,65532,20085, -1
I

DIM r%(16)
xb2%=XBIOS (2)
HIDEM
FOR j%=1 TO 50
FOR 1%=0 TO 190 STEP 10
r%(0)=1%
r$(1)=399-i%
r% (8)=xb2%
RCALL V:a$,r%()
NEXT i%
NEXT %

--> The program produces a graphic display. It is also possible, as for C:,

to use the INLINE command.



366 GFA BASIC 3 - User Manual

~

EXEC mod,nam,cmdl,envs
EXEC(mod,nam,cmdl,envs)

mod : iexp
nam,cmdlienvs :  sexp

The EXEC canbe used as acommand or as afunction. It enablesthe loading
and starting of programs from disk, which return to the calling program
after completion. Before the EXEC call, the calling program must have
allocated enough memory space for the program (see example). The
parameter "'mod’ specifies the *Call mode’ as follows:

0 --> Load and Start program.
3 --> Load program only.

The string expression 'nam’ contains the filename of the program to be
loaded (and optionally started). The format of the filename conformsto the
rules of the hierarchical filing system, described in Chapter 6 : Input and
Output.

The expression’cmdl’ contains the command line, which isregistered in the
Basepage of the called program. The first character of the command line
contains its length (maximum 127). As a rule, this byte is ignored, as if it
were zero. Therefore it is normally sufficient to insert a dummy character
(e.g. "*").

The string ’envs’ contains the Environment. This is a string terminated by
CHR$(0). For a C-program, the Environment is a series of strings, each
terminated by a CHR$(0), and the whole terminated by two CHR$(0)’s
(these are added automatically by GFA BASIC). This Environment is used
by many Shell programs in order to store variables and their names, and
also by many compilers, in order to determine access paths etc.

If one calls EXEC as a function, then one receives the program’s returned
value, or, for mod=3, the address of the Basepage of the called program.
EXEC 3 is only for special programs which include overlays, debugging
programs etc.



Chapter 10 : System Routines 367

Example:

FILESELECT "\*.PRG","", £f$

RESERVE 100

SHOWM

a%=EXEC(0,£$,"","™)

RESERVE

PRINT "Back in GFA BASIC. Returned value=";a%

--> A program is loaded and called (if it does not require too much memory)
and retums to the interpreter on completion. The return vatue, which is
supplied by the EXEC function, can also be given by GFA BASIC
programs by terminating them with QUIT n or SYSTEM n.



368

GFA BASIC 3 - User Manual




Chapter 11
AES-LIBRARIES

This chapter gives an overview of the AES libraries (AES = Application
Environment Services). A detailed description of these routines would be
beyond the scope of this manual (we refer the reader to the extensive
literature already published on GEM), hence information is given in
compressed form, as follows:

a) the name of the appropriate library routine.

b) a short description of the function.

¢) the complete GFA BASIC 3 syntax for the function call, with the
meaning of all the applicable variables explained.

The chapter closes with longer example programs.

Before beginning the descriptions of the functions in the 11 AES Libraries,
itis important that the reader becomes familiar with the most important data
structures used by the AES. These are the OBJECT, TEDINFO,
ICONBLK, BITBLK, USERBLK and PARMBLK structures.

The following AES functions are implemented in a similar way to GFA
BASIC 2:

GCONTRL
ADDRIN
ADDROUT
GINTIN
GINTOUT
GB



370 GFA BASIC 3 - User Manual

They represent the addresses of the AES parameter blocks. Specifically:

GCONTRL -->  address of the AES Control block
ADDRIN  -->  address of the AES Address Input block
ADDROUT -->  address of the AES Address Output block
GINTIN -->  address of the AES Integer Input block
GINTOUT --> address of the AES Integer Output block
GB -->  address of the AES Parameter block

With an index in brackets after these functions, the appropriate parameter
positions within the block are accessed directly, for instance,
x=GCONTRL(3) corresponds to x=DPEEK(GCONTRL+6), or
GCONTL(3)=x corresponds to DPOKE GCONTRLA+6,x.

GCONTRL, GINTIN and GINTOUT expect words (2 bytes) as their
parameters, whereas ADDRIN and ADDROUT expect long words (4
bytes). So ADDRIN(2)=x corresponds to LPOKE ADDRIN+2*4 x.

The GB block address cannot be used with an index, on grounds of
compatibility with ST-BASIC; with GINTIN etc. indices are available. For
example, the second longword in the GB block ({ GB+4}) is the address of
the GEM internal global array.



Chapter 11 : AES Libraries 371

GEMSYS n
n : iexp

The command GEMSYS calls an AES routine by specifying the routine
number n. The parameters necessary for the operation of the routine must
first be placed in the appropriate AES parameter blocks.

Example:

REPEAT
GINTIN (0)=60
GINTIN(1)=30
GINTIN(2)=10
GINTIN (3)=10
GINTIN (4)=200
GINTIN (5)=200
GEMSYS 72

UNTIL MOUSEK

--> A moving rectangle is drawn on the screen, as function number 72 is
GRAF_MOVEBOX). :



372 GFA BASIC 3 - User Manual
Object Structure
Offset Contents Type Meaning
00  ob_next word pointer to the next object
02  ob_head word pointer to the first child
04  ob_tail word pointer to the last child
06  ob_type word type of object.
08  ob_flags word object information (see below)
10  ob_state = word status of the object (see below)
12 ob_spec long pointer to further information
(see below)
16 ob_x word x-position of the object
18 ob_y word y-position of the object
20 ob_w word width of the object
22 ob_h word height of the object

So the memory requirements of an object are these 24 bytes plus further
descriptive structures, e.g. TEDINFO or BITBLK structures.

OB_NEXT pointsto the following object on the same level, or, if it is the
last object on that level, to the parent object, or contains -1 if

none.

OB_HEAD points to the object’s first child, or contains -1 if none.

OB_TA]L points to the object’s last child, or contains -1 if none.

The value -1 in this context is also referred to as NIL (Not In List).

Depending on the value in OB_TYPE, OB_SPEC has the address of
different data structures, as shown in the following table:



Chapter 11 : AES Libraries 373

OB_TYPE OB_SPEC

20 G_BOX BOX info., see below

21  G_TEXT Pointer to TEDINFO graphic text

22 G_BOXTEXT Pointer to TEDINFO text-in-a-box

23  G_IMAGE Pointer to BITBLK bit image graphic

24  G_USERDEF Pointer to USERBLK structure.

25 G_IBOX BOX info., see below.

26 G_BUTTON Pointer to centred C-string, to go in a box
27 G_BOXCHAR BOX info., see below.

28 G_STRING Pointer to C-string menu item structure
29 G_FTIEXT Pointer to TEDINFO editable graphic text
30 G_FBOXTEXT Pointerto TEDINFO editable text-in-a-box
31 G_ICON Pointer to ICONBLK structure

32  G_TITLE Pointer to C-string menu title structure

For G_BOX, G_IBOX and G_BOXCHAR, OB_SPEC contains
information concerning character-content, border-type and colour of the
appropriate object. The upper 8 bits are only used by G_BOXCHAR and
contain the ASCII code of the character to appear in the box.

They contain the following values for the border:

-1to0-128

0 = no border
1to 128 = the border extends into the object for between 1
and 128 pixels
= the border extends for between 1 and 128 pixels

outside the object

The bit allocation for the object colour word is:

1111 2222 3444 5555

where:

[V SRS I S B

i Hn

Border colour (0 to 15)

Text colour (0to 15)

Text mode (0 = transparent, | = overwritten)
Fill pattern (0 to 7)

Colour of object interior (0 to 15)



374 GFA BASIC 3 - User Manual

OB_FLAGS Hex Bit no.

NORMAL &HO0000 -
SELECTABLE  &HO0001 O
DEFAULT &H0002 1
EXIT &H0004 2
EDITABLE &HO0008 3
RBUTTON &HO0010 4
LASTOB &HO0020 5
TOUCHEXIT &HO0040 6
HIDETREE &HO080 7
INDIRECT &HO100 8
OB_STATE Hex Bit no
NORMAL &HO000 -
SELECTED &HO001 0
CROSSED &HO0002 1
CHECKED &H0004 2
DISABLED &HO0008 3
OUTLINED &HO0010 4
SHADOWED &HO0020 5

The structures described in the preceding section are addressed in GFA
BASIC 3 with the following syntax (for both reading and writing):

OB_NEXT(tree%,0bj&)
OB_HEAD(tree%,0bj&)
OB_TAIL(tree%,0bj&)

OB_TYPE(tree%,o0bj&)
OB_FLAGS(tree%,0bj&)
OB_STATE(tree%,0bj&)
OB_SPEC(tree%,0bj&)

OB_X(tree%,0bj&)
OB_Y(tree%,o0bj&)
OB_Wi(tree%,0bj&)
OB_H(tree%,0bj&)

..where tree% is the address of the Object Tree and obj& the object number.
In addition the address of an individual object can be determined with
address=OB_ADR(tree%,0bj&).



Chapter 11 : AES Libraries 375

Offset
00

08
12
14
16
18
20
22
24
26

Offset

00
04
08
12
14
16
18
20
22
24
26
28
30
32
34

Text Data Structure (TEDINFO)

Contents Type
te_ptext long

te_ptmplt long

te_pvalid  long

te_font word
te_resvd word
te_just word
te_colour  word
te_resvd2 word
te_thickness word
te_txtlen word
te_tmplen word

Meaning

Pointer to text

Pointer to text mask

Pointer to validation string for input

Font
-reserved-

Text justification

Colour of the surrounding box
-reserved-

Character thickness

Text length

Text mask length

Icon Data Structure ICONBLK)

Contents

ib_pmask
ib_pdata
ib_ptext
ib_char
ib_xchar
ib_ychar
ib_xicon
ib_yicon
ib_wicon
ib_hicon
ib_xtext
ib_ytext
ib_wtext
ib_htext
ib_resvd

Type

long

long

long

word
word
word
word
word
word
word
word
word
word
word
word

Meaning

Pointer to icon mask
Pointer to icon data
Pointer to icon text _
The single character within the icon
x-position of the character
y-position of the character
x-position of the icon
y-position of the icon
Width of the icon
Height of the icon
x-position of the text
y-position of the text
Text width in pixels
Text height in pixels
-reserved-



376 GFA BASIC 3 - User Manual

Bit Image Block Structure (BITBLK)

Offset Contents

00  bi_pdata
04 bi_wb
06  bi_hl

08 bix

10 biy

12 bi_colour.

Type

long

word
word
word
word
word

Meaning

Pointer to image data

Width of the image in bytes
Height of the image in pixels
x-position of the image
y-position of the image
Image colour

—
N

Application Block Structure (USERBLK)

Offset Contents Type

00  ub_code long

04 up_parm long

Meaning

Pointer to a user assembly language
routine to draw the object.
Pointer to a PARMBLK structure.



_ Chapter 11 : AES Libraries 377

Parameter Block Structure (PARMBLK)

Offset Contents

00
04
06
08
10
12
14
16
18
20
22
24
28

pb_tree
pb_obj
pr_prevstate
pr_currstate
pb_x

pb_y

pb_w

pb_h

pb_xc
pb_yc
pb_wc
pb_hc
pb_parm

Type

long
word
word
word
word
word
word
word
word
word
word
word
long

Meaning

Pointer to object tree

Object number

Previous status

Current status

x-position of object

y-position of object

Width of object

Height of object

x-position of clipping rectangle
y-position of clipping rectangle
Width of the clipping rectangle
Height of the clipping rectangle
Parameter from the USERBLK structure

It should be noted that some functions return not only a function value, but
also return values in variables made available for that purpose. If the
function value is to be ignored, then the function should be called with
VOID or its abbreviation *~’. (In the same way as for the INP function: the
returned function value may be printed with PRINT INP(2), or ignored
with~INP(2) .) When parametershave to indicate addresses, at least 4-byte
long variable types must be used, and coordinate entries must take place in
variable types of at least 2 bytes (word or greater).



378 GFA BASIC 3 - User Manual

Applications Library

The Applications Library controls the accessing of other AES libraries.
The functions APPL_INIT and APPL_EXIT are called automatically by
GFA BASIC 3 when a program is started or ended.

APPL_INIT()

The current program is announced as an application. The function
APPL_INIT returns an Application ID that acts as the "handle’ of the current
GFA BASIC program. This identification number is, for example,
important for the installation of additional fonts.

The identification number (ap_id) of the application (program) is returned.

APPL_INIT is used for APPL_READ, APPL_WRITE and
MENU_REGISTER.

This function in GFA BASIC is a dummy function, which carries out no
operating system call, since APPL_INIT is already implemented by the
start of the GFA BASIC interpreter.

APPL_READ(id,len,adr_buffer)

id,len,adr_buffer : iexp
Returns 0 if an error occurred.

With this instruction bytes can be read from an event buffer (message pipe).

id > Identification number of the application, from whose
buffer reading is to be done.
len > Number of bytes to be read.

adr_buffer > Address of the buffer.



Chapter 11 : AES Libraries 379

APPL_WRITE(id,len,adr_buffer)

id,len,adr_buffer :  iexp

With APPL_WRITE, bytes are written into an event buffer (message pipe).
Returns 0 if an error occurred.

id > Identification number of the application, into whose

buffer writing is to be done.
len > Number of bytes to be written.

adr_buffer > Address of the buffer.

APPL_FIND(fname$)

fname$ : sexp

The identification number of another application in the system is
determined from its filename, e.g. for information exchange with other
current programs.

If no error occurs, the requested ID is returned, otherwise (if the application
is not found), -1 is returned.

fname$ > The 8-character file name (without extension) of the
sought-after application. The filename supplied must be
exactly 8 characters long, if necessary padded out with
spaces, and characters must be in upper case.

Example:
PRINT APPL FIND ("CONTROL")

--> Prints *65535’ (= -1) if the Control desk accessory cannot be found. If
it is found, the ID number (e.g. 2) is printed. Besides Accessories, one can
also find the ID of GFA BASIC (ap_id=0) and the screen manager
"SCRENMGR" (ap_id=1), which is responsible for the menu handling.



380 GFA BASIC 3 - User Manual

APPL_TPLAY(mem,num,speed)
APPL_TRECORD(mem,num)

mem,num,speed : iexp

APPL_TRECORD makes a record of user activities (mouse movement,
key presses, etc), and APPL_TPLAY plays it back at a specified speed
(speed = 1 to 10000). These functions do not work as specified in the
documentation.

With newer ROM versions these functions work approximately as
specified, except that instead of 6 bytes per event 8 bytes are used and also
the speed factor works differently. Everything else appears reliable, but
these functions should be used advisedly. We will not go into them any
further here.

APPL_EXIT()

APPL_EXIT informs the system that the program (application) has
finished, causing its identification number to be released and made
available for other programs.

APPL_EXIT exists in GFA BASIC only as a dummy function, since a
QUIT or SYSTEM command accomplishes this automatically.

In case of error, 0 is returned.



Chapter 11 : AES Libraries 381

Event Library

The Event Library allows a program to react to inputs from the mouse,
keyboard, etc, or to time-dependent events.

EVNT_KEYBD()

Waits for akey tobe pressed and returns a word-sized value, with the low-
order byte containing the ASCII code, and the high-order byte containing
the keyboard scan code.

Example:
DO

PRINT HEXS$ (EVNT KEYBD(),4)
LOOP

--> Prints values corresponding to pressed keys.



382

GFA BASIC 3 - User Manual

EVNT_BUTTON(clicks,mask,state[,mx,my,button,k_state])

clicks,mask,state : iexp
mx,my,buttonk_state : ivar

Waits for one or more mouse clicks, e.g. double-click, triple-click, etc.

Returns the number of clicks.

clicks >
mask >

state >

mx <
my <
button <

k_stat <

Maximurn allowable clicks
Mask for the desired mouse key:
Bit 0 = I : Left button
Bit 1 = 1 : Right button
Desired status, in order to terminate the event
Bit allocation as for *'mask’

x-coordinate of mouse pointer when event is terminated
y-coordinate of mouse pointer when event is terminated
State of mouse buttons when event is terminated,
as for ‘'mask’.
Condition of the keyboard ’shift’ keys on event termination:
Bit 0 = Right shift key
Bit 1 = Left shift key
Bit 2 = Control key
Bit 3 = Alternate key

The pafametcrs mx,my,button and k_state are optional, these values can
also be found by querying GINTOUT(1) to GINTOUT(4).



Chapter 11 : AES Libraries 383

Example:

DO ‘
SELECT EVNT BUTTON(Z, 1,1, mx%,my%, bu%, kb%)
CASE 1
TEXT mx%,my%,"1"
CASE 2 ,
TEXT mx%,my%,"2"
CASE 3
TEXT mx%,my%,"3"
ENDSELECT
LOOP UNTIL BTST (kb%,2) ! until CONTROL key also pressed

--> Waits for mouse clicks with the left mouse button. The number of clicks
appears on the screen at the mouse position. The program is ended by
holding down the CONTROL key as well as clicking.



384

GFA BASIC 3 - User Manual

EVNT_MOUSE(flagmxmymw,mhmcur_x,mcur_y,buttonk_state)

ﬂag,mx,my;mw,mh : iexp
mcur_x,mcur_y,button,k_state :  ivar

Waits for the mouse pointer to be located inside (or, optionally, outside) a
specified rectangular area of the screen.

The returned value is always 1.

flag >
mx,my >
mw >
mh >

meur_x<

meur_y <
button <

k_state <

Example:

DO

Presence inside (0) or outside (1) of the area is detected
Coordinates of top left comer of rectangle

Width of rectangle

Height of rectangle

x-coordinate of the mouse pointer when event occurs
y-coordinate of the mouse pointer when event occurs
Mouse key status when event occurs:

Bit ) = 1 : Right button

Bit 1 =1 : Left button
State of the keyboard ’shift’ keys when event occurs:

Bit 0 = Right shift key

Bit 1 = Left shift key

Bit 2 = Control key

Bit 3 = Alternate key

~EVNT MOUSE (0,100,100,200, 90, mx%,my%, bu%, kb%)

IF bu%

PBOX mx%-10,my%-10,mx%+10,my%+10

ELSE

PLOT mx%,my$

ENDIF

LOOP UNTIL BTST (kb%, 2)



Chapter 11 : AES Libraries 385

--> The program waits until the mouse pointer is located inside the
rectangle. Then a point is plotted at the mouse position, or a small square
is drawn if the left button is pressed. The program is ended if the
CONTROL key is held down while the pointer is within the rectangle.
Compare the effect produced by making the first parameter 1 instead of 0.

Note: While a GEM routine is being executed, the *break’ keys (Control-
Shift-Alternate) can be pressed, but will not take effect until execution has
returned to the BASIC part of the program. In general though, it is best to

exit from programs in the manner provided by the program, otherwise
memory restoration, etc, may not take place.

EVNT MESAG(adr_buffer)

adr_buffer : iexp

Waits for the arrival of a message in the event buffer.
The returned value is always 1.

adr_buffer > address of a 16-byte buffer for the message (cf. MENU(1) to
MENU(8)).If 0 is given for adr_buffer, the system message bufferis used,
i.e. MENU(1) to MENU(8).



386 GFA BASIC 3 - User Manual

EVNT_TIMER(count)

count : iexp

The function waits for a period of time expressed in "count’ in milliseconds
(see DELAY).

The returned value is always 1.

count > Number of milliseconds



Chapter 11 : AES Libraries 387

EVNT MULTI(flag,dicks,maskstateynl_flagsml xml_y,
ml_w,ml_hm2 flagsm2 x,m2_ym2 w,m2 hadr_buffer,
count[,mcur_x,mcur_y,buttonk_statekey,num_dicks])

flag,clicks,mask,state,m1_flags,ml1_x,ml_y,ml_w,ml_h: iexp
m2_x,m2_y,m2_w,m2_h,adr_buffer,count : iexp
mcur_x,mcur_y,button,k_state,key,num_clicks : ivar

Waits for the. occurrence of selected events. Returns the event which
actually occurred, with bit allocation as for 'flag’ below.

flag > Sets the event(s) to be awaited as follows:

Bit0 keyboard MU_KEYBD
Bit 1 mouse button MU_BUTTON
Bit 2 first mouse event MU_MI

Bit 3 second mouse event MU_M2

Bit 4 report event MU_MESAG
Bit 5 timer ‘ MU_TIMER

num_clicks < Number of expected mouse clicks

The parameters were already described for EVNT_MOUSE,
EVNT_KEYBD, EVNT_BUTTON and EVNT_MESAG. However, it
should be noted that two different mouse events (ml and m2) can be
awaited. With ON MENU, which uses this routine internally, the
parameters are installed for the instruction ON MENU xxx GOSUB, e.g.
*count’ is specified directly.

MENU(1) to MENU(8) Message buffer

MENU(9) Retumed value

MENU(10) = mcur_x X mouse position

MENU(11) = mcur_y y mouse position

MENU(12) = button Mouse button state

MENU(13) = k_state "Shift’ keys state (BIOS (11,-1))
MENU(14) = key ASCII and Scan code

MENU(15) = num_clicks Number of mouse clicks



388 GFA BASIC 3 - User Manual

EVNT_DCLICK(new,get_set)

—

new,get set: iexp
Sets the speed for double-clicks of a mouse button.
Returns the speed.

new > New speed (0 to4).
get_set > Determines whether the speed is to be set, or just read:

0 = Determines the current speed. (Then "new’ is a dummy).
1 = Sets 'new’ as new speed.



Chapter 11 : AES Libraries 389

Menu Library

Used for drawing the Menu Bar and managing its operation.

MENU_BAR(tree,flag)

tree,flag : iexp

Displays/erases a menu bar (from a Resource file).
Compare: MENU x$() and MENU KILL.

Returns 0 if an error occurred.
tree > Address of the menu object tree
flag > 1= Display menu bar

0= Erase menu bar (happens automatically at the end of a
program)

MENU_ICHECK(tree,item,flag)

tree,item,flag : iexp

Deletes a tick (see below) against a menu item (which should have at least
two spaces reserved for it).

Compare: MENU x,0 and MENU x,1.
Returns 0 if an error occurred.

tree > Address of the menu object tree
item > Object number of the menu item
flag > 0 =Delete tick

1 = Display tick



390 GFA BASIC 3 - User Manual

MENU_IENABLE(tree,item,flag)

tree,item,flég : iexp

This causes the enabling or disabling of menu items. The menu item will
then appear with normal characters (selectable), or grey characters (not
selectable) respectively.

Compare: MENU x,2 and MENU x,3.

Retums 0 if an error occurred.

tree > Address of the menu object tree

item > Object number of the menu entry

flag > 0=Disabled
1 = Enabled

MENU_TNORMAL(tree,title,ﬂag)
tree,title,ﬂag . iexp

Menu title switches to inverse or normal video.
Compare: MENU OFF.

Returns 0 if an error occurred.

tree > Address of the menu object tree
title > Object number of the menu title
flag > 0=Inverse video

1 = Normal



Chapter 11 : AES Libraries 391

MENU_TEXT(tree,item,new_text$)

treejitem :  iexp
new_text$: sexp

Changes the text of a menu item. This function permits the adapting of
menu entries while a program is running.

Returns 0 if an error occurred.

tree > Address of the menu object tree

item > Object number of the item to be modified
new_text$ > A string containing the new menu item (may not exceed the
length of the old one).

MENU_REGISTER(ap_id,m_text$)

ap_id: iexp
m_text$ : sexp

A Desk Accessory name is inserted into the first menu, provided that this
does not carry the number of Accessories beyond six (they are numbered
0 to 5). Note: this function can only be used with a Desk Accessory, nota
compiled program, or any other program.

Returns the object number of the appropriate menu item:

0to5  for the first to sixth Accessory entry
-1 if no further entry is possible

ap_id > Identification number of the Accessory
m_text$ > Name under which the Accessory is to be entered into the
menu (normally this is the Accessory name).



392 GFA BASIC 3 - User Manual

Object Library

Contains routines for the definition, drawing and alteration of objects.

OBJC_ADD(tree,parent,child)

tree,parent,child : iexp

An object is added to a given object tree and pointers between the existing
objects and the new object are created.

Retums O if an error occurred.
tree > Address of the object tree.
parent > Object number of the parent object, of which the new object

is to be a child. -
child > Object number of the ’child object’ to be added

OBJC_DELETE(tree,del_obj)

tree,del_obj: iexp

An object is deleted from an object tree by changing pointers in the tree.
The object itself will still be there and can be restored later by restoring the
pointers.

Returns 0 if an error occurred. —

tree > Address of the object tree
del_obj > Object number of the object to be deleted



Chapter 11 : AES Libraries 393

OBJC_DRAW(tree,start_obj,depth,cx,cy,cw,ch)
tree,start_obj,depth,cx,cy,cw,ch : iexp |

This function draws whole objects or parts of objects on the screen. A
clipping rectangle can be specified, to which the drawing is limited.

Returns 0 if an error occurred.

tree > Address of the object tree

start_obj > Object number of the first object to be drawn

depth > Number of object levels to be drawn (0 = only first object)
CX,CY > Coordinates of top left corner of clipping rectangle

cw,ch > Width and height of clipping rectangle

OBJC_FIND(tree,start_obj,depth,fx,fy)

tree,start_obj,depfh: iexp
fx,fy : ivar

This function determines the object, if any, which contains the mouse
pointer. The mouse coordinates can aiso be found.

Returns the object number, or -1 if the mouse pointer is not inside any
object.

tree > Address of the object tree to be examined
start_obj > Number of the object from which the search is begun
depth > Number of object levels to be searched (0 = only first object)

fx > Mouse x-coordinate
fy > Mouse y-coordinate

The explanation is misleading. Objc_find finds the object at the
coordinates fx, fy. You can of course supply the mouse coordinates if you
wish, but this call has nothing to do with the mouse.



394 GFA BASIC 3 - User Manual

OBJC_OFFSET(tree,obj,x_abs,y_abs)

tree,obj : - iexp
x_abs,y_abs :ivar

Computes the absolute screen coordinates of the specified object.
Returns 0 if an error occurred

tree > Address of the object tree
obj > Object number

x_abs < The computed x-coordinate
y_abs < The computed y-coordinate

OBJC_ORDEKR(tree,obj,new_pos)
tree,obj,new pos: iexp

Re-positions an object within a tree.

Returns 0 if an error occurred

tree > Address of the object tree
obj > Object number
new_pos > New level number:
-1 = One level higher
0 = Bottom level
1 = Bottom level + 1
2 = Bottom level + 2
etc.



Chapter 11 : AES Libraries 395

OBJC_EDIT(tree,obj,char,old _pos,flag,new_pos)

tree,obj,char,old_pos,flag : iexp
new_pos : ivar

Facilitates the input and editing of text in the G_TEXT and G_BOXTEXT
object types.

Retumns 0 if an error occurred.

tree > Address of the object tree

obj > Object number

char > Input character (including scan code)

old_pos > Current cursor position in input string

flag > Function selection:

0 ED_START = -reserved- (Function call does nothing)

1 ED_INIT = String is formatted and cursor switched on
2 ED_CHAR = Character processed and string re-displayed
3 ED_END = Text cursor switched off

new_pos < New cursor position in input string



396

GFA BASIC 3 - User Manual

OBJC_CHANGE(freepbjrescxcycwhnew_statusyre draw)

tree,obj,res,cx,cy,cw,ch,new_status,re_draw : iexp

This function changes the status of an object (OB_STATE) and, if
necessary, inverts (displaysin inverse video) that section of the object lying
inside the clipping rectangle. (Normally OB_STATE would be changed
directly and the object redrawn with OBJC_DRAW.)

Retums 0 if an error occurred.

tree >
obj >
TeS >
CX,Cy >
cw,ch >
new_status >

Address of the object tree
Number of the object to be changed
-reserved- (Always 0)
Coordinates of top left corner of clipping rectangle
Width and height of the clipping rectangle
New object status (see OB_STATE):
1 Redraw object
0 = Don’t redraw



Chapter 11 : AES Libraries 397

Form Library

The Form Library contains routines for Form management, i.e.
manipulation of objects in Dialog boxes etc.

FORM_DO(tree,start_obj)

tree,star_obj: iexp

This function takes over the complete management of a Form object, until
an object with EXIT or TOUCH_EXIT status is clicked.

Returns the number of the object whose clicking or double-clicking caused
the function to be ended. If it was a double-click, bit 15 will be set.

tree > Address of the object tree

start_obj > Number of the first editable object in the object tree, where
the cursor is initially to be positioned. If there is no editable
object the value in this parameter is irrelevant.



398 GFA BASIC 3 - User Manual

FORM_DIAL(flag,mi_x,mi_y,mi_w,mi_h,ma_x,ma y,
ma_w,ma_h)
ﬂag,mi_x;mi _y,mi_w,mi_h,ma_x,ma_y,ma_w,ma_h: iexp

This function serves to reserve (or release) a rectangular screen area and
for drawing expanding or shrinking rectangles.

Returns 0 if an error occurred.

flag > Function type:

FMD_START ~ reserves a display area
FMD_GROW draws an expanding rectangle

FMD_SHRINK  draws a shrinking rectangle
FMD_FINISH releases reserved display area again

W N - O
nnw

mi_x,mi_y > Top left corner of the rectangle at minimum size
mi_w,mi_h > Width and height of the rectangle at minimum size
ma_x,ma_y > Top left corner of the rectangle at maximum size
ma_w,ma_h > Width and height of the rectangle at maximum size

Example:
~FORM DIAL(1,0,0,0,0,100,100,300,100)
-> Dréws an expanding rectangle. The parameter group ’0,0,0,0’ means

that the rectangle grows from the centre of what will be the full-size
rectangle.



Chapter 11 : AES Libraries 399

FORM_ALERT(button,string$)

button : iexp
string$ :  sexp

Creates a general-purpose ALERT box.

Returns the number of the clicked button which caused the function to
terminate.

button > Number of the default (thick—bordered) button:

0 = None
1 = First
2 = Second
3 = Third

string$ > A string defining the contents of the Alert Box. The string has
the following format (note that the square brackets are part
of the string):

(i} [Message][Buttons]
where:

i =Required symbol in Alert Box:
0 = No icon
1 = Exclamation mark
2 = Question mark
3 = STOP symbol

Message = Atthe most 5 lines of text, with a maximum of 30 characters
per line, with the lines separated with rule () symbols.
Button = A maximum of 3 button names, separated by ’I’ symbols.



400 GFA BASIC 3 - User Manual

Example:

a$="[1][This is the first line|+|+|+|"+"This is the
- fifth line]"+" [One|Two|Three]™

DO

PRINT FORM ALERT(1,a$);
LOOP

--> Prints 1, 2 or 3, depending on which button is clicked, or pressing
RETURN selects the highlighted button. The program can be exited by

pressing the break keys (Shift-Control-Alternate) but this will only take
effect after the next click.

FORM_ERROR(err)

err : iexp

Displays the warning box associated with DOS Error ’err’.
Returns the number of the button which terminated the function.

err > Error number

Example:
FOR x=0 TO 63

PRINT FORM ERROR(X);
NEXT x

--> The boxed Error messages are displayed.



Chapter 11 : AES Libraries 401

FORM_CENTER(tree,fx,fy,fw,fh)

tree : iexp
fx,fy,fw,fh : ivar

This function centres the tree, i.€. Dialog box, etc, on the screen. Its position
can then be found. '

Returns: a reserved value - at the moment always 1.
tree > Address of the object tree

fx,fy < Coordinates of top left corner
fw,fh < Width and height of the centred box

FORM_KEYBD(tree,objnext_obj,char,new_objnext_char)

tree,0bj,next_obj,char,new_obj: iexp
next_char : ivar

Allows a Form to be filled out via the keyboard (see OBJC_EDIT).

Returns O if the Form was left by clicking on an object with EXIT or
TOUCH_EXIT status. Returns a value > 0 if the Form is not finished with.

tree > Address of the object tree

obj > Number of the object to be edited

next_obj > Number of the next EDITable object in the tree
char > Input character

new_obj > Object to be EDITed on the next call
next_char < Next character (derived from keyboard, etc.)

Explanation: This routine is a subroutine of FORM_DO and makes it
possible to test a character in BASIC before it is passed to GEM, e.g. to test
for a RETURN character, which would normally cause an exit from the
Form and allow it to be used to terminate an individual entry, etc.



402 GFA BASIC 3 - User Manual

FORM_BUTTON(tree,obj,clicks,new_obj)

tree,obj,clicks : iexp

new_obj : ivar

Makes possible mouse inputs in a Form.

Returns 0 if the Form was exited by clicking an object with EXIT or
TOUCH_EXIT status. Returns a value greater than 0 if the Foriz is not yet
finished with.

tree > Address of the object tree

obj > Cument object number

clicks > Maximum expected number of mouse clicks

new_obj < Next object to be edited

Explanation: This routine is a subroutine of FORM_DO.



Chapter 11 : AES Libraries 403

Graphics Library

GRAF_RUBBERBOX(lx,ty,min_w,min__h [last_w,last_h])

Ix, ty, min_w, min_h: iexp
last_w, last_h: ivar

The function GRAF_RUBBERBOX draws an outline of arectangle while
the left button is held down. The top left comer is fixed, but the width and
height of the rectangle change with the position of the mouse. The function
should be called only when a button is pressed, since it terminates when the
buiton is released.

Returns O if an error occurred.

Ix, ty > Coordinates of top left corner
min_w, min_h > Minimum width of rectangle
min_h > Minimum height of rectangle

last w < Width of rectangle when function terminates
lasth < Height of rectangle when function terminates



404 GFA BASIC 3 - User Manual

Example:

DO
~EVNT. BUTTON (1,1, 1, mx%,my$%, bu%, kb%)
~GRAF_RUBBERBOX (mx%,my%,1,1,w%, h%)
BOX mx%,my%,mx%+w%, my%+h%

LOOP UNTIL BTST (kb%, 3)

-->EVNT_BUTTON waits for the left button to be pressed, then puts the
mouse coordinates into mx% and my%, and the status of the keyboard
*shift’ keys into kb%. The variables Mx% and my% are then passed to
GRAF_RUBBERBOX, which continuously draws rectangles from
(mx%,my%) to the current mouse position. When the function is
terminated by releasing the button, GRAF_RUBBERBOX puts the last
width and height into w% and h%. A fixed box is then drawn with the
standard BOX command. The program then ends if the Alternate key was
held down when the mouse button was first pressed (i.e. bit 3 of kb% is set
to 1), or otherwise loops round to draw another box.

™~



Chapter 11 : AES Libraries 405

GRAF_DRAGBOX(iw,ih,ix,iy,rx,ry,rw,rh [last_ix,last_iy])

iw, ih, ix, iy, vx, vy, vw, vh: iexp
lastx, last_iy : ivar

This function allows a rectangle to be moved about the screen with the
mouse. Its movement is restricted to the interior of a larger specified
rectangle. The function should only be called when the left button is held
down, as it terminates when the button is released.

Returns 0 if an error occurred.

iw,ih > Width and height of the moving rectangle
ix, 1y > TInitial coordinates of top left corner of moving rectangle
IX, Iy > Coordinates of top left corner of limiting rectangle
rw,th > Width and height of limiting rectangle
last_ix < Coordinates of the top left corner of inside rectangle
last_iy < when the function terminated.
Example:

REPEAT

UNTIL MOUSEK=1
~GRAF_DRAGBOX(25,25,50,50,10,10,150,150,lx%,ly%)
BOX 1x%,ly%,1x%+25,1ly%+25

--> When the left mouse button is pressed, a smallrectangle will move with
the mouse pointer, provided that this does not take it outside the specified
larger rectangle (in this case 10,10 - 160,160). When the button is released,
the function terminates and the smaller rectangle is redrawn at its final
position with the standard BOX command.



406 GFA BASIC 3 - User Manual

GRAF_MOVEBOX(w,h,sx,sy,dx,dy)

N

w, h, sx, sy, dx,dy : iexp

The function GRAF_MOVEBOX draws a moving rectangle with constant
width and height.

Returns 0 if an error occurred.

w, h > Width and height of the rectangle
sx,sy > Initial coordinates of top left corner of the rectangle
dx,dy > Final coordinates of the top left corner

Example:

~GRAF_MOVEBOX (25, 25,0,0,150,150)

GRAF_GROWBOX(sx,sy,sw,sh,dx,dy,dw,dh)
sX,sy,sw,sh,dx,dy,dw,dh : iexp

This function draws an expanding rectangle.
Returns 0 if an error occurred. \

sx,sy > Initial coordinates of the top left comer of the rectangle
sw,sh > Initial width and height of the rectangle

dx,dy > Final coordinates of the top left corner

dw,dh > Final width and height

Example:

BOX 100,100,110,110 -
PAUSE 25

~GRAF GROWBOX (100,100,10,10,0,0,300,180)

BOX 0,0,300,180



Chapter 11 : AES Libraries 407

GRAF_SHRINKBOX(sx,sy,sw,sh,dx,dy,dw,dh)

SX, sy, sw, sh, dx, dy, dw, dh : iexp
This function draws a shrinking rectangle.

Returns 0 if an error occurred.

sx,sy > Final coordinates of top left comer of rectangle
sw,sh > Final width and height of the rectangle

dx,dy > Initial coordinates of top left corner

dw,dh > Initial width and height

Note that the FINAL coordinates are given first.

Example:

BOX 0,0,300,180

PAUSE 25

~GRAF_SHRINKBOX (100,100,10,10,0,0,300,180)
BOX 100,100,110,110



408 GFA BASIC 3 - User Manual

GRAF_WATCHBOX(tree,obj,in_state,out_state)

tree, obj, in_state, out_state : iexp

This function (which really belongs in the Object Library) monitors an
object in a tree while a mouse button is pressed, checking whether the
mouse pointer is inside it or outside. When the button is released, the status
of the object takes one of two specified values (normal selected/normal),
depending on whether the pointer was located inside the object, or outside.

Returns 1 if the mouse pointer was inside the object when the button was
released, or 0 if it was outside.

tree > Address of the object tree

obj > Number of the object to be monitored

in_state > Status (OB_STATE) to be given to the object if the mouse
pointer is found to be within it.

out_state > Status (OB_STATE) to be given to the object if the mouse
pointeris found to be outside it. The appropriate bit allocation
is found under OB_STATE.



Chapter 11 : AES Libraries 409

GRAF_SLIDEBOX(tree,parent_obj,slider_obj,flag)

tree,parent_obj,slider_obj,flag : iexp

This function also really should be in the Object Library. It moves one
rectangular object within another in a similar way to GRAF_DRAGBOX.
However, the object can only be moved horizontally or vertically and, in
addition, it must be a ’child’ of the limiting rectangle (object). The function
call should only take place when a mouse button is pressed, since the
function terminates when the button is released. The most common
application is the movement of slider bars in windows.

Returns the position of the moving rectangle relative to the limiting one:

Horizontally : 0 =farleft 1000 = far right
Vertically : 0=top, 1000 = bottom

tree > Address of the object tree

parent_obj > Object number of the "limiting rectangle”
slider_obj > Object number of the moving rectangle
flag > Direction:

0 = Horizontal
1 = Vertical



410 GFA BASIC 3 - User Manual

GRAF_HANDLE(char_w,char_h,box_w,box_h)

char_w, char_h, box_w, box_h : ivar

Returns the Identification number of the current VDI Workstation, which
is used internally for AES calls, and supplies the size of a character from
the system character set.

char_w < Width in pixels of a character from the standard set
char_h < Height in pixels of a character from the standard set
box_w < Width of a standard character cell
box_h < Height of a standard character cell



Chapter 11 : AES Libraries 41

GRAF_MOUSE(m_form,pattern_adr)

m_form, pattern_adr : iexp

This function allows the appearance of the mouse pointer to be changed.
Eight pre-defined pointers are available, or one may be defined by the user.
(However, the command DEFMOUSE is more convenient to use.)

Returns 0 is an error occurred.

m_form > Number of the mouse pointer shape:

N A W= O

255
256
257

[N A ¢ | O { T | O SO (O |

Arrow

Double clips

Busy bee

Pointing hand

Open hand

Thin cross-hairs
Thick cross-hairs
Outlined cross-hairs
User defined

Hide mouse pointer
Show mouse pointer

pattern_adr > Address of bit information defining the mouse pointer as
desired. 37 word-sized values are expected, as follows:

1= x-coordinate of the action point (i.e. the point referred to
by MOUSEX, MOUSEY etc.)
2= y-coordinate of the action point
3= Number of colour levels, always 1
4= Mask colour, always 0
5= Pointer colour, always |
6 to 21 = Mask definition (16 words, 1.e = 16x16 bits)
22 to 37= Pointer definition (16 words, i.e = 16x16 bits)



412 GFA BASIC 3 - User Manual

GRAF_MKSTATE(mx,my,m_state,k_state)

mx, my, m_state, k_state : ivar

This function supplies the current mouse pointer coordinates and the status
of the mouse buttons and the keyboard 'shift’ keys.

This is an AES routine to query the mouse. Unlike MOUSEX etc., the
function gives valid results if the pointer is within a menu bar,

Returns: a reserved value, at the moment always 1.

mx,my < Current coordinates of the mouse pointer
m_state < Mouse button status:
Bit 0 = left button
Bit 1 = right button
k_state < Status of keyboard 'shift’ keys (if key is pressed, bit is set):
Bit 0 = Right shift key
Bit 1 = Left shift key
Bit 2 = Control key
Bit 3 = Alternate key



_Chapter 11 : AES Libraries 413

Scrap Library

Contains routines enabling the exchange of data between different
applications.

SCRP_READ(path$)

path$ : svar

This function reads data, perhaps left there by another program, from a
small internal buffer, thus allowing communication between successively
implemented GEM programs. The data would often, but not necessarily,
consist of a file specification, indicating a source of data on disc.

Retumns 0 if an error occurred.

path$ < Data string or file specification.

SCRP_WRITE(path$)
path$ : sexp

The opposite of SCRP_READ. A small amount of data, perhaps a file
specification, is written into an internal buffer.

Returns 0 if an error occurred.
path$ > Data string or file specification.

Example:
~SCRP_WRITE ("c:\TMP\A.X")
Quit from BASIC here, and reload it, then...

~SCRP_READ (a$)
PRINT a$



414 GFA BASIC 3 - User Manual

File Selector Library

The File Selector Library routine enables the user to select a file from a
displayed directory, or to specify a file by typing its name,

FSEL_INPUT(path$,name$,[button])

path$, name$ : svar
button : ivar

This function invokes the standard Fileselect Box, and corresponds to the
FILESELECT instruction. The initial directory path and the default
filename are contained in the string variables path$ and name$. After the
fileselect box has been used in the normal way, and the function exited by
clicking on "OK’ or "Cancel’, these strings contain the last used directory
path and the chosen filename respectively. The optional integer variable
"button’ contains 1 or 0, depending on whether the "OK’ or *Cancel’ button
was clicked.

Returns 0 if an error occurred.

Onentry: path$ > Initial directory path
. name$ Default filename

v

A

Onexit:  path$ Final directory path
name$ < Chosen filename
button < 1if ’OK’ was clicked to exit
0 if ’Cancel’ was clicked on



Chapter 11 : AES Libraries 415

Example:

ps="a:\* *"
n$=nn
DO
~FSEL INPUT(p$,n$,b)
CLS
PRINT p$
PRINT n$
PRINT b
LOOP UNTIL b=0

--> Various filenames can be selected and displayed. The program finishes
when the 'Cancel’ button is clicked.



416 GFA BAS[C 3 - User Manual

Window Library

The Window Library contains all functions relating to Window
management.

WIND_CREATE(attr,wx,wy,ww,wh)
attr,wx,wy,ww,wh : iexp

This function allocates a new window, specifying the attributes and
maximum size. The window 1dent1ﬁcatlon number ( handle’) is returned,

or 0 if an error occurred.

Compare: OPENW #n,x,y,w,h,attr

Returmns window ID, or 0 if an error occurred.

attr > Window attributes as follows: Bit no.
&HO0001 NAME Title bar with name 0
&H0002 CLOSE Close box 1
&HO0004 FULL Full box 2
&HO0008 MOVE Move box 3
&H0010 INFO Information line 4
&HO0020 SIZE Size box 5
&H0040  UPARROW  Up arrow 6
&HO0080 DNARROW  Down arrow 7
&HO0100 VSLIDE Vertical slider bar 8
&HO0200 LFARROW Left arrow 9
&H0400 RTARROW  Right arrow 10
&HO0800 HSLIDE Horizontal slider bar 11

WX

wh

> Maximum x-position of left edge
wy > Maximum y-position of top edge

> Maximum width of the window

> Maximum height of the window



Chapter 11 : AES Libraries 417

WIND_ OPEN(handle,wx,wy,ww,wh)

handle,wx,wy,ww,wh : iexp

This function draws on the screen a window previously created with
WIND_CREATE.

Compare: OPENW

Returns 0 if an error occurred.

handle > Identification number of the window
WX > Left x-coordinate

wy > Top y-coordinate

ww, wh > Initial width and height

WIND_CLOSE(handle)

handle : iexp

This function is the counterpart of WIND_OPEN and closes the specified
window.

Compare: CLOSEW
Returns 0 if an error occurred.

handle > Identification number of the window



418 GFA BASIC 3 - User Manual

WIND _DELETE(handle)

handle : iexp

This function deletes a window allocation and frees the reserved memory
and window identification number for re-use.

Compare: CLOSEW
Returns 0 if an error occurred

handle > Identification number of the window

WIND_GET(handle,code,wl,w2,w3,w4)

handle, code : iexp
wi,w2,w3,wd : ivar

By specifying the function code 'code’, this function supplies information
about a window.

Returns 0 if an error occurred.
handle > Identification number of the window

code > Depending on the code specified, information is supplied in
w1,w2, w3 and w4 as follows:



Chapter 11 : AES Libraries 419

4 WX_WORKXYWH supplies the size of the window work area:
w! < left x-coordinate
w2 < top y-coordinate
w3 < width
w4 < height
5 WF_CURRXYWH supplies the total size of the entire window
including the borders:
wl < left x-coordinate
w2 < top y-coordinate
w3 < width
w4 < height

6 WF_PREVXYWH supplies the total size of the previous window:
w1 < left x-coordinate ‘
w2 < upper y-coordinate
w3 < width
w4 < height

7 WF_FULLXYWH supplies the total maximum size of the window
(set by WIND_CREATE):
w1 < Jeft x-coordinate
w2 < upper y-coordinate
w3 < width
w4 < height

8 WF_HSLIDE supplies the position of the horizontal slider:
wl < (1 = far left, 1000 = far right)

9 WF_VSLIDE supplies the position of the vertical slider:
wl < (1 =top, 1000 = bottom)

10 WF_TOP supplies the identification number of the top (=active)
window:
w1l < identification number



420 GFA BASIC 3 - User Manual

11 WF_FIRSTXY WH supplies the coordinates of the first rectangle in
the specified window’s rectangle list. (The list of
rectangles required to build up the window: an
unobscured window has onerectangle initslist, awindow
partially obscured by another window has several, a
totally obscured window has none):

w1 < left x-coordinate
w2 < top y-coordinate
w3 < width
w4 < height

12 WF_NEXTXYWH supplies the coordinates of the next rectangle in
the specified window’s rectangle list:
w1 < left x-coordinate
w2 < top y-coordinate
w3 < width
w4 < height

13 WF_RESVD -reserved-

15 WF_HSLIZE supplies the size of the horizontal slider bar compared
to its maximum possible size:
w1 < -1 = minimum size (1 = small, 1000 = full width)

16 WF_VSLIZE supplies the size of the vertical slider bar compared
to its maximum possible size:
wl < -1 = Minimum size
(1 = small, 1000 = full height)



Chapter 11 : AES Libraries 421

WIND_SET (handle,code,wl,w2,w3,w4)

handle, code : iexp
wl, w2, w3, w4 : ivar

This function changes pans of a window according to the specified
function code.

Returns 0 if an error occurred.
handle > Identification number of the window
code > Specifies components to be changed:

1 WF_KIND sets new window components (as with
WIND_CREATE).
w1l > new window part.

2 WF_NAME gives a window a new title:
w1, w2 > High-word, low-word of the address of the title string
(terminated with two null (0) bytes)

3 WF_INFO specifies a new information line:
wl, w2 > as above
Note: It is best to use the functions TITLEW and INFOW in place
of the above, if you are not sure of how to make the strings
stay put during the running of a program.

5 WF_CURRXYWH sets the total window size:
wl > Left x-coordinate
w2 > Top y-coordinate
w3 > Width
w4 > Height

8 WF_HSLIDE positions the horizontal slider:
w1l > 1=far left, 1000=far right



422 GFA BASIC 3 - User Manual

9 WF_VSLIDE positions the vertical slider:
w1l > 1=top, 1000=bottom

10 WF_TOP Sets the top (currently active) window

14 WF_NEWDESK Sets a new desktop Menu tree:
wl, w2 > Low-word, high-word of address of new tree
w3 > ID number of the first object to be drawn
Note: word order is the opposite of the normal order

15 WF_HSLIZE Sets the size of the horizontal slider bar compared to
its maximum possible size:
wl > -1 = minimum size
(1 = small, 1000 = full width)

16 'WF_VSLIZE Sets the size of the vertical slider bar compared to
its maximum possible size:
w1 > -1 = Minimum size
(1 = small, 1000 = full height)



Chapter 11 : AES Libraries 423

WIND_FIND(fx,fy)
fx,fy : iexp

This function determines the Identification number of a window within
which the the specified coordinates lie.

Returns the Identification number of found window, or 0 if not found.

fx > x-coordinate
fy > y-coordinate

WIND_UPDATE(flag)
flag : igxp

This function coordinates all functions connected with screen redrawing,
in particular in combination with Pull-down Menus.

Returns 0 if an error occurred.
flag  Function

END_UPDATE screen redraw completed

BEG_UPDATE screen redraw starting

END_MCTRL application relinquishes mouse supervision

BEG_MCTRL application takes over mouse supervision;
GEM functions for menu and window handling are inactive.

W N = O



424 GFA BASIC 3 - User Manual

WIND_CALC(w_type,attr,ix,iy,iw,ih,0x,0y,0w,0h)

w_type,attr,ix,iy,iw,ih : iexp
0X,0y,0w,0h : ivar

This function computes the total size of a window (including slider bars,
etc.) from the size of the work area, or, conversely, the size of the work area
from the total size of the window.

Returns 0 if an error occurred.

w_type > 0 = Compute total size
1 = Compute work area size

attr > Window components: Bit no.
&HO001 NAME Title bar with name 0
&H0002 CLOSE Close box 1
&H0004 FULL Full-size box 2
&HO0008 MGOVE Movement bar 3
&HO0010 INFO Information line 4
&H0020 SIZE Size box 5
&H0040  UPARROW  Up-arrow 6
&H0080 DNARROW  Down-arrow 7
&HO100 VSLIDE Vertical slider 8
&HO0200 LFARROW Left-arrow 9
&H0400 RTARROW  Right-arrow 10
&H0800 HSLIDE Horizontal slider 11

ix,iy > Known top-left coordinates
iw,ih > Known width and height

ox,0y < Calculated top-left coordinates
ow,0oh < Calculated width and height



Chapter 11 : AES Libraries 425

Resource Library

The Resource Library provides routines for the creation of a graphical user
interface (i.e. Dialog boxes, etc.), which allow, independently of the
current screen resolution, the exchange of data between user and program.

RSRC_LOAD(name$)

name$ : sexp

This function reserves memory and loads a resource file. Then internal
pointers are set and the coordinates of characters converted into pixel
format. (For Resources which have been defined directly in memory, with
POKE,etc, RSRC_OBFIX must be used to do this). If the file cannot be
found, RSRC_LOAD automatically does a little searching, as detailed
under SHEL_FIND.

Returns 0 if an error occurred.

name$ > File specification of the Resource file.

Example:

~RSRC_LOAD ("TEST.RSC")

RSRC_FREE()

This function releases the memory space reserved by RSRC_LOAD.
Returns 0 if an error occurred.
Example:

~RSRC_FREE ()



426 GFA BASIC 3 - User Manual

RSRC_GADDR(type,index,addr)
type,index : iexp
addr : ivar

This function (Resource Get ADDRess) determines the address of a
resource structure after it has been loaded with RSRC_LOAD. Depending
on the version of GEM, this function may only work for Object trees and
Alerts (ad_frstr).

Retumns 0 if an error occurred.

type > Type of structure whose address is to be found:

0 Object tree  (the tree loaded with RSRC_LOAD)
1 OBJECT  (object)

2 TEDINFO (text information)

3 ICONBLK (icon information)

4 BITBLK  (bit-mapped graphic information)
5 STRING  (text)

6 image data (bit-mapped graphic)

7 obspec (object specification)

8 te_ptext (string)

9 te_ptmplt  (text template)

10 te_pvalid  (text validation string)

11 ib_pmask (icon display mask)

12 ib_pdata (icon bit map)

13 ib_ptext (icon text)

14  bi_pdata (image data)

15 ad_frstr (address of pointer to free string)
16  ad_frimg  (address of pointer to free image)

index > The number (not the Object Number) of the object whose
address isrequired, counting objects of that type one by one from
the beginning of the Resource file.

addr < The required address
Example:

~RSRC_GADDR (0, 0, TREE%)



Chapter 11 : AES Libraries 427

RSRC_SADDR(type,index,addr)

type,index : iexp
addr : ivar

This function sets the address of an object.

Returns 0 if an error occurred.

type > Type of structure (see RSRC_GADDR above)

index > The number (not the Object Number) of the object whose
address is to be set, counted object by object from the beginning

of the Resource file.
addr > The address

RSRC_OBFIX(tree,obj)

tree, obj : iexp

This function converts the coordinates of an object within a tree, from
character coordinates to pixel coordinates, taking into account the current
screen resolution, It is called automatically by RSRC_LOAD, but must be
used if the object is created directly in memory by POKE, etc.

Returns a reserved value, at the moment always 1.

tree > Address of the appropriate object tree
obj > Object number of the object to be adjusted



428 GFA BASIC 3 - User Manual

Shell Library

The Shell Library routines enable one application to call another,
preserving both the original application and its environment.

SHEL READ(cmd_string$,tail_string$)

cmd_string$,tail_string$ : svar

This function allows the program to identify the command by which it was
invoked, and supplies the name, e.g. GFABASIC.PRG, and the cominand
line, if any, from a .APP).

Retums 0 if an error occurs.

cmd_string$ < String variable to contain the command line
tail_string$ < String variable to contain the name

SHEL_WRITE(prg,grf,gem,cmd$,nam$)

prg, grf, gem : iexp
cmd$, nam$ :  sexp
This function informs the AES that another application is to be started after
the current one has terminated. In contrast to p_exec (GEMDOS 75),

however, the current program does not remain resident in memory.

Returns 0 if an error occurred.

prg >

0 = Back to the Desktop

1 = Load new program
gif > 0 = TOS program

1 = Graphic application



Chapter 11 : AES Libraries 429

gem > 0 Not GEM application
1 GEM application

c¢md$ > Command line string

nam$ > Name of next application

Example:
~SHEL WRITE(1,1,1,"","GFABASIC.PRG")

--> After this, quitting the BASIC and returning to the Desktop will result
in the BASIC being restarted.

SHEL GET(num,x$)

num : iexp
x$: svar

This function reads data from the GEMDOS environmental string buffer
(into which the file DESKTOP.INF is read on start-up).

Returns O if an error occurred.
num > Number of bytes to be read
x$ < String variable to contain data
Example:
PRINT SHEL GET (500,x$)
PRINT x$

~INP(2)

--> Either the contents of DESKTOP.INF or data for the default desktop
is read into x$, and printed.



430 GFA BASIC 3 - User Manual

SHEL_PUT(len,x$)

len : iexp
x$: sexp

This function writes data into the GEMDOS environmental string buffer.
Returns 0 if an error occurred.

x$ > String containing the data to be written
len > Number of bytes to be written

Example:

" Register GFA-BASIC
~SHEL_GET (2000, a$)
q%=INSTR (a$,CHRS (26))
IF g%

a$=LEFT$ (a$, q%-1)

IF INSTR(a$,"GFABASIC.PRG")=0

a$=a$+"#G 03 04 A:\GFABASIC.PRG@*.GFAQ"
+MKI$ (&HDOA) +CHRS (26)

~SHEL PUT (LEN(a$),a$)

ENDIF
ENDIF

--> The program ’registers’ ANGFABASIC.PRG, so that with a double-
click on a .GFA program file, GFABASIC is loaded which then loads and
runs the program which was clicked on.

Note, to save this in the DESKTOP file:

~SHEL GET (3000, a$)

OPEN"(0", #1,"A:\ DESKTOP.INF"

PRINT #1,LEFT$ (A$, INSTR(AS,CHRS (26)))"
CLOSE #1

" The CHR$(26) is important



Chapter 11 : AES Libraries 431

SHEL FIND(path$)

path$ : svar

This function searches for a specified file and supplies the full file
specification. First, the specified path on the current drive is searched, then
the root directory of the current drive, then the root directory of drive A..

Returns 0 if the filename was not found, or 1 if it was.

On entry:
path$ > String containing the sought-after filename

On exit: .

path$ < Contains the full file specification if the file was found,
otherwise it is unchanged.

SHEL _ENVRN(addr,search$)

addr : avar (32-bit)
search$ : sexp

This function determines the values of variables in the GEM environment.
Returns a reserved value, at the moment always 1.

search$ > The string to be sought

addr < Address of the byte following the specified string

Example:

PRINT SHEL ENVRN(a%, "PATH")
PRINT CHAR{a%-4}

--> Displays: PATH=; A\



432 GFA BASIC 3 - User Manual

Sample Programs

In this last section example programs are provided, dealing with the
Graphics Library, Dialog boxes, Menus and Window programming. Note
that it is important to exit from all these programs in the ways specified, not
by just breaking in with Shift-Control-Alternate, otherwise memory re-
allocation, etc. will not take place and the programs (or other programs)
may subsequently fail to work without resetting the computer.

" **x Graphics Library

’ GRAF_SMP.GFA

14

REPEAT
CLS
PRINT CHRS$ (27)+"p";
PRINT "| <F1> rubber | <F2> drag | <F3> move |";
PRINT " <F4> grow_shrink | <F10> quit |"
choice|=INP (2)
r

SELECT choice|

CASE 187 ! Fl
rubber

CASE 188 1 F2
drag

CASE 189 ! F3
move

CASE 190 1 74
grow shrink

ENDSELECT

4

PRINT CHRS (27)+"q";
14

UNTIL choice|=196 ! quit with F10

7

EDIT

14

PROCEDURE rubber
GRAPHMODE 3

-~



Chapter 11 : AES Libraries 433

DEFFILL 1,2,4
REPEAT
MOUSE mx$%,my%,mk%
IF mk% AND 1
x1%=mx%
y1l%=my%
~GRAF RUBBERBOX (x1%,yl1%,16,16,1x%,1y%)
PBOX x1%,y1%,x1%+1x%,yl%+1ly%
ENDIF
UNTIL mk% AND 2
RETURN '
r

PROCEDURE drag

GRAPHMODE 3

BOX 40,40,400,300

1x%=50

ly%=50

REPEAT
BOX 1x%,1ly%,1x%+150,1y%+100
[4

REPEAT

mk%$=MOUSEK ;
UNTIL mk$% ! 1.e. until mousek<>0
p :

IF mk% AND 1 ! left button
BOX 1x%,ly%,1x%+150,1y%+100
~GRAF DRAGBOX (150,100, 1x%,1y%,40,40,360,260,1x%,1y
 BOX 1%%,1ly%,1x%+150,1y%+100
ENDIF
BOX 1x%,1y%,1x%+150,1y%+100 :
UNTIL mk% AND 2 ! right button
GRAPHMODE 1
RETURN
r

PROCEDURE move
GRAPHMODE 1
DEFFILL 1,2,4
w%=100
h%=100



434 GFA BASIC 3 - User Manual

FOR i%=0 TO 639-w% STEP w%
FOR j%=0 TO 399-h% STEP h%
~GRAF MOVEBOX (w%,h%,i%, j%,639-1%, 399-73%)
NEXT j%
NEXT i%
RETURN
I

PROCEDURE grow shrink
GRAPHMODE 1
~GRAF GROWBOX (319,199,16,16,0,0,639,399)
ALERT 0,"That was a growing box!",1,"Continue”, r%
~GRAF SHRINKBOX (319,199,16,16,0,0,639,399)
ALERT 0,"That was a shrinking box!",1," Yes ",r$%
RETURN

--> Pressing F1 to F4 causes the program to branch to the appropriate
procedure. If F1 is pressed, the outline of a rectangle appears on the screen
when the left mouse button is pressed and held down. The top left corner
is fixed, but the diagonally opposite corner moves with the mouse. When
the rectangle has the desired shape and size, and the left button is released,
the rectangle is fixed and filled. More rectangles can be drawn, or the
procedure exited by pressing the right button.

Pressing F2 causes a small rectangle to be drawn within a larger one. With
the left button pressed and held down, the smaller rectangle can be moved
about within the limits imposed by the larger one. Pressing the right button
ends the procedure.

F3 calls up the demonstration of GRAF_MOVEBOX, where sequences of
boxes move round the screen. This procedure ends by itself after a few
seconds.

Finally, with F4, a growing box is drawn with GRAF_GROWBOX, and,
after pressing RETURN, a shrinking box is drawn with
GRAF_SHRINKBOX.

Pressing F10 ends the whole program.



Chapter 11 : AES Libraries 435

! ** Dialog Box Example
’ DIAL SMP.GFA

r

DIM r%(3)

r

forml%=0 ! 0 = Dialog

iconl%=1 ! ICON in tree FORMI1
ch name%=2 ! FTEXT in tree FORM1
sur%=3 ! FTEXT in tree FORM1
stri=4 ! FTEXT in tree FORM1
town%=5 - 1 FTEXT in tree FORMI1

ok%=7 ! BUTTON in tree FORMI1
r$(1)=8 ! BUTTON in tree FORM1
r$(2)=9 ! BUTTON in tree FORM1
r%(3)=10 ! BUTTON in tree FORM1

]
]
!
]
]
!

cancel%=6 ! BUTTON in tree FORMI1
]
]
!
!
1

output$=11 ! STRING in tree FORM1
r

~RSRC FREE ()

~RSRC_LOAD ("\DIALOG.RSC") ! Load Resource file
~RSRC_GADDR(0,0,tree_adr%) ! Get address of

! ! Object tree

~FORM CENTER (tree adr¥, x%,y%,w¥, h%) ! Centre the

r ! coordlnates, depending on
d ! the current resolution

r

" Define initial editable strings

CHAR{ {OB_SPEC(tree_adr%,ch name%)}}—"Sherlock"
CHAR{ {OB_SPEC(tree_ adr%,sur%) } }="Holmes"
CHAR{{OB_SPEC(tree_adr% str%)}}="221b Baker Street”
CHAR{{OB_SPEC(tree_adr%,town%)}}="London N1"

~OBJC DRAW (tree_adr%,0,1 X%, 7%, w¥, h¥)
! Draw Object tree
14
REPEAT
ex%=FORM DO (tree_adr¥,0) ! Clicked an object
' ! with EXIT status?



436 GFA BASIC 3 - User Manual

" Put the texts from the Edit fields

" into the appropriate strings
ch_name$=CHAR{ {OB_SPEC (tree_adr%, ch name%)}}
surnames—CHAR{{OB_SPEC(tree_adr% surs) }}
street$=CHAR{ {OB SPEC(tree_adr%, str%)}}
town$=CHAR( {OB_SPEC (tree_ adr$%, town$)}}
4

FOR 1i%=1 TO 3
IF BTST (OB _ STATE(tree adr%,r%(i%)),0)

’ ! Which radio-button
radio%=r% (i%)
! ! was selected?
ENDIF
NEXT i%

UNTIL ex%=0k% OR ex%=cancel%
r

~RSRC_FREE () ! Release reserved memory
4

CLS

PRINT "Ended with: : " ex%

PRINT "Christian name : ";ch name$

PRINT "Surname : ";surname$

PRINT "Street : " street$

PRINT "Town + ";town$

PRINT "Radio: : ";radio%

7

--> The file "DIALOG.RSC" is loaded, the address of the object tree is
determined and the object tree coordinates are centred.

Then the function OB_SPEC is used to define the initial editable strings:

OB_SPEC supplies a pointer to a TEDINFO structure, which itself
contains pointers to data pertaining to editable text (validation string,
colour, text and template addresses, etc.). So the ’pointer path’ to the actual
information is shown overleaf:



Chapter 11 : AES Libraries 437

Object --> TEDINFO structure --> String

OB_SPEC(tree%,ch_name%) supplies a pointer to the TEDINFO
structure.

{OB_SPEC(tree%,ch_name%)} supplies the address held at that point in
TEDINFO.

CHAR{ {OB_SPEC(tree%,ch_name%)}} gives the string initially
inserted by the Resource Construction Set, in this case:
0123456789012345678901.

CHAR{ {OB_SPEC(tree%,ch_name%)} }="Sherlock" assigns this preset
character string a new value (namely ’Sherlock’). This is repeated for the
rest of the initial data.

Then the object tree is drawn and, inside the REPEAT-UNTIL loop, the
main FORM_DO routine is called. Its returned value, ex%, determines
when the loop is exited.

The (edited) strings are then put back into their respective variables, after -
which the object status (found by OB_STATE) of the ’radio’ buttons is
examined in a FOR-NEXT loop. Specifically, Bit 0 is tested with BTST.
Ifitis set (=1), then the corresponding button must have been selected (only
one radio button can be selected at a time), and the object number of the
button is stored in radio%.

Finally the memory space reserved for the Resource is released again with
RSRC_FREE. (This is important!!, since otherwise the available free
memory shrinks each time the program is started, which soon causes the
computer to crash.)

The button which caused the exit of the REPEAT-UNTIL loop is printed
(6 = Cancel, 7 = OKk), followed by the data strings as they were when
FORM_DO was done for the last time and the object number of the last-
selected radio button.



438 GFA BASIC 3 - User Manual

** Menu management
MENU_SMP.GFA

. w N

RESERVE FRE (0)-33000 ! Reserve space for
r ! the Resource file
IF RSRC LOAD{"folder\RCS2.RSC")=0 ! File is not in
’ B ! ’folder’, but RSRC LOAD looks further
! ! and should find it on current drive

ALERT 1, "Resource not found”,1,"End",a%
END

ENDIF

~RSRC_GADDR (0,0, menu_adr%) ! Get menu address
~MENU BAR(menu adr¥, 1) ! Display menu bar
4

! Reserve a Message Buffer of 16 bytes

" and give variable names to positions within it:
DIM message buffer&(7) ! Eight words (including 0)
mesyg . adr$=V: message buffer& (0)

ABSOLUTE mesg_type&,mesg_adr$

ABSOLUTE m_title&,mesg adr%+6

ABSOLUTE m | items ,Mesqg . adr$+8

REPEAT
ev%=EVNT MULTI (&x110000,0,0,0,0,0,0,0,0,0,0,0,0,0,
mesg _adr¥, 500)
IF BTST(ev%,4) ! a new message has arrived
IF mesg type&=10 ! reporting a menu event
title$=CHAR{OB _SPEC (menu_adr$%,m titleé)}
! ! find out what it was
item$=CHAR{OB_SPEC (menu adr%,m items&)}
PRINT AT (3,20);"Menu title: ";title$;SPC(10)
PRINT AT (3,21);"Menu item : ";item$;SPC(10)
~MENU_TNORMAL (menu_adr¥,m title&,1)
! Un-invert menu title display
ENDIF
ENDIF
UNTIL MOUSEK=2



Chapter 11 : AES Libraries 439

~MENU BAR (menu_adr%, 0) ! Remove menu bar
~RSRC_FREE () ! Release Resource memory
RESERVE ! Return reserved memory to GFA BASIC
END

_--> Atthe beginning of the program a 33 k byte area of memory isreserved.

It is returned to the GFA BASIC interpreter at the end of the program.

The Resource file is then loaded into the freed memory area, the address
of the menu tree is determined and the menu is displayed.

EVNT_MULTIsupervises the menutree, and, inthe event thatamenuitem
is selected, appropriate messages are written into the Message buffer. This
is a 16-byte long area of memory, divided into eight 2-byte words,
conveniently allocated by means of a word-sized array. Using the
ABSOLUTE command, some variables are defined as being located in this
array, enabling elements of it to be referred to by name.

In a REPEAT-UNTIL loop (exited by pressing the right mouse button),
EVNT_MULTI is called. The first word of the Message buffer (defined as
mesg_type&) then contains the value 10 if a menu item was selected. The
fourth word (m_title&, the 6th and 7th bytes) contains the object number
of the menu title, from beneath which the item was chosen. The object
number of the item is in the fifth word (m_itemé&, bytes 8 and 9). The other
elements of the buffer are not required here.

Knowing the object numbers of the menu title and the menu item, and that
OB_SPEC(...), in the case of Dialog Box Buttons and Menu items, returns
the address of text terminated with a zero byte, CHAR can be used to extract
the texts and put them into strings.

After displaying the menu title and item on the screen, the inverted menu
title is returned to its normal state with MENU_TNORMAL.



440 GFA BASIC 3 - User Manual

" ** Window demonstration
' WIND_ SMP.GFA

DEFFILL 1,2,4

PBOX 0,19,639,399

DEFFILL 1,0

7

DIM message_buffers(7) ! 16 Bytes
adr mes%=V:message buffers (0)

14

ABSOLUTE word0&,adr mes%

ABSOLUTE x&,adr mes%+8

ABSOLUTE yé&,adr mes%+10

ABSOLUTE w&,adr mes%+12

ABSOLUTE h&,adr mes$+14

4

handle&=WIND CREATE (&X101111,0,19,639,380)

title$="Window"

adr title%=V:title$

~WIND SET (handle&, 2, CARD (SWAP (adr title%)),
CARD (adr_title%),0,0)

~WIND OPEN (handle&,100,100,200,100)

~WIND GET(handle&,4,wx&, wy&, wwé, wh)

PBOX wx&,wy&, wx&+twws, wy&+whé

finish!=FALSE
REPEAT
r

~EVNT MULTI(&X110000,90,0,0,0,0,0,0,0,0,0,0,0,0,
B adr _mes%, 100, d%, d%, d%, d%, d%, d%)
SELECT word0s&
" Depending on word0s,
" one of the following cases is dealt with:

CASE 22 ! WM_CLOSED - closed
finish!=TRUE
CASE 23 ! WM FULLED - full size

~WIND_SET (handles,5,1,19,638,380)
~WIND GET (handleé&,4,wx&, wy&, wwk, whé)
PBOX wx&,wy&, wx&+ww&, wy&+whi



Chapter 11 : AES Libraries | 441

word0&=0
CASE 27,28 ! WM _SIZED,WM MOVED - re-sized or
moved :
IF w&<100
w&=100
ENDIF
IF h&<80
h&=80
ENDIF
~WIND SET(handle&,5,x&,y&, w&, hé&)
~WIND GET(handle&,4,wx&, wy&, ww&,whé)
PBOX wx&,wy&, wx&+wwé, wys+whé
word(&=0
ENDSELECT
UNTIL finish!
~WIND CLOSE (handle&)
~WIND DELETE (handle&)

--> First a Message Buffer is allocated, as in the example program
MENU_SMP.GFA, and some words within it are given variable names.

Then the window is created and its handle number determined with
WIND_CREATE, and a title is assigned to it with WIND_SET.

After opening the window with WIND_OPEN the coordinates of the work
area of the window are found with WIND_GET, and the whole area is
covered with a white rectangle.

In the REPEAT-UNTIL loop, control of the window elements is
supervised by EVNT_MULTI. Different events (signalled by word0&, the
first word in the message buffer) are dealt with by the associated CASE
selection. If the 'Close Window’ symbol is clicked, the loop terminates and
so does the program, after closing the window and deleting it from memory.



442 GFA BASIC 3 - User Manual




Chapter 12
Appendix

Compatibility with GFA BASIC 2

It is possible in GFA BASIC 3 to use programs from older GFA BASIC
versions. For this purpose, programs written in the earlier version must be
stored as ASCII files, using the SAVE,A command. They can then be
loaded into Version 3 by means of MERGE and, thereafter, treated as GFA
BASIC 3 programs being SAVEd and LOADed in the normal way.

Version 3 contains all the commands which are in earlier versions of the
BASIC interpreter, although there are some small differences in the
interpretation of commands which may make some modification of earlier
programs necessary.



444 GFA BASIC 3 - User Manual

MUL, DIV

The commands MUL and DIV work in GFA BASIC 3 with integer
variables (1,&,%) and integer parameters only.

In the earlier versions, the program:

a%=10
MUL a%,2.5
PRINT a%

produced the output 25.

In Version 3, however, MUL does not take account of the fractional parts
of inputs, treating them all as integers. Thus, the value to the right of the
decimal point is ignored, so, in the above example, the integer a% is set to
20. This incompatibility between versions is the price paid for these
commands being many times faster than their counterparts in the earlier
versions of GFA BASIC, the increase in speed coming from the use of true
integer arithmetic. This incompatibility does, of course, only apply to
integer variables.

PRINT USING

PRINT USING displays only the numbers that fit in the designated format.
This can mean that it is possible that wrong values will be displayed, instead
of wrong formats as in earlier versions, if the length of the number is too
great. The actual accuracy is, of course, not affected just the display. Care
must therefore be taken when using this command.



Chapter 12 : Appendix 445

CLS - PRINT TAB

At CLS, the string ESC-E-CR is now issued, so that the PRINT command
will be able to treat TAB correctly.

KEYPAD

A program, which queries the keys of the numeric key-pads and Alternate
and/or Control, requires that a KEYPAD 0 is used to switch this off now.
The same is valid for the function keys with Alternate.

MOUSEX - MOUSEY

If windows are active and MOUSEX/MOUSEY are interrogated, then
negative coordinates arise above and to the left of the window border (e.g.
CLIP OFFSET). In Version 2. X CARD(MOUSEX) or CARD(MOUSEY)
returned these values.

Programs written to run in Interpreted mode can be run by means of the
Run-only Interpreter which is supplied with the GFA BASIC Interpreter.
This contains all the routines necessary for the running of GFA BASIC
programs and can be distributed by bona fide GFA BASIC owners along
with their programs, thus allowing all ST users to run any software written
in GFA BASIC. The BASIC Interpreter itself is sold for use by the owner,
on one machine and copies may not be passed on to another user.

Programs written in GFA BASIC Version 3 will be capable of being
speeded up in operation by the use of the GFA BASIC 3 compiler. This is
designed to produce programs which are executable without the need for
supporting code, i.e. they are true stand-alone .PRG files which can be
distributed freely by the author. Our only request is that an
acknowledgement that they were produced using GFA BASIC be
included. ’



446 GFA BASIC 3 - User Manual

GEMDOS Table

~GEMDOS(0) pterm0()

Terminates a program. May not be used in GFA BASIC.

r%=GEMDOS(1) cconin()

Reads a character from the keyboard, displaying that character on the
screen (see INP(2)).

%  Bit 0-7: ASCIH Code, 16-23: Scan-code, 24-31: Shift keys

~GEMDOS(2,2%) cconout()
Displays characters on the screen (see OUT 2,2%).

z%  Bit 0-7: ASCII Code of the character.

r%=GEMDOS(3) cauxin()
Reads a character from the serial interface (seé INP(1)).

1%  Code of the character read

~GEMDOS(4,2%) cauxout()
Outputs a character to the serial interface (see OUT 1,z%).

z%  Code of the character to be displayed



Chapter 12 : Appendix 447

~GEMDOS(5,2z%) cpraout(
Outputs a character to the printer interface (see OUT 0,2%).

z%  Code of the character to be output

| r%=GEMDOS(6,2%) crawio()

Writes a character to the screen or, if z%=255, executes an INKEY routine
(see OUT 2,z% as well as INKEYS).

r%  with z%=255 a character is read from the keyboard

z% Codeof output character, with z%=255 then a character is read in.
r%=GEMDOS(7) crawcin()

characters are read from keyboard without screen echo (see INP(2)).

1%  Code of the character read.

r%=GEMDOS(8) cnecin()

Like GEMDOS(7), however control characters, e.g. CTRL+C, are
ignored.

1%  Code of the character read.

~GEMDOS(9,L:adr%) cconws()
Displays a character string on the screen.

adr% Address of the strings, which must end with a zero byte



448 GFA BASIC 3 - User Manual

~GEMDOS(10,L:adr %) cconrs()
Reads in a character string from the keyboard (CTRL + ¢ causes crash).

adr% Buffer for string: first byte is number of characters, second byte
number of characters to be read, then the string follows.

r! =GEMDOS(11) cconis()
Checks whether there is a character in the keyboard buffer.

r! is TRUE if a is character present, otherwise FALSE

~GEMDOS(14,d %) dsetdrv()
Changes the current drive; 0=A, 1=B, etc. (see CHDRIVE).

d% Number of the drive

r! =GEMDOS(16) cconos()
Checks whether a character can be displayed on the screen.

r! Output is always TRUE while screen is connected

r! =GEMDOS(17) cprnos()

Checks whether the parallel interface is ready to receive.

r! Output is TRUE if ready to receive (normally a printer).
r! =GEMDOS(18) cauxis()

Checks whether a character is available on the serial interface.

1! TRUE if character available, otherwise FALSE



Chapter 12 : Appendix

449

r! =GEMDOS(19) cauxos()
Checks the output status of the serial interface.

r! TRUE if a character can be output, otherwise FALSE.

© r%=GEMDOS(25) dgetdrv()
Determines the identity of the current drive.

1% Identity of the current drive (A=0, B=1, etc.).

~GEMDOS(26,L:adr%) fsetdta()

Sets the disk transfer address (DTA), normally BASEPAGE+128.

adr% The address to be set

r%=GEMDOS(42) tgetdate()
Determines the system date (see DATES).

% Date: Bit 0-4: Day, 5-8: Month, 9-15: Year minus 1980

~GEMDOS(43,d%) tsetdate()
Sets the system date (see SET TIME).

d% The new date (for format see GEMDOS(42))

r % =GEMDOS (44) tgettime()
Determines the system time (see TIMES).

% Time: Bit 0-4: Seconds, 5-10: Minutes, 11-15: Hours



450 GFA BASIC 3 - User Manual

~GEMDOS45,t%) tsettime()

Sets the system time (see SET TIME).

t% The new time (format see GEMDOS(44))

r%=GEMDOS47) fgetdta()
Determines the current disk transfer address (DTA).

1%  The address returned.

r%=GEMDOS(48) sversion()

Determines the GEMDOS version number.

%  The GEMDOS version number.

~GEMDOS49,L:b % ,r %) ptermres()

Terminates the program and reserves b% bytes in BASEPAGE (Cannot be
used in GFA BASIC).

b% Number of bytes to be reserved starting from BASEPAGE
1%  Value returned to calling program

r%=GEMDOS(54,L:adr %,d %) dfree()

Returns information about free disk space on drive d% (see DFREE},

%  -46 when a wrong drive number specified
adr% Address 4 longwords in length with structure:
Long 1: Number of free Clusters
Long 2: Total number of the Cluster

Long 3: Byte per sector
Long 4: Sectors per Cluster



Chapter 12 : Appendix 451

r%=GEMDOS(57,L:adr%) dcreate()

Creates a new directory (see MKDIR).
% -34 or-36 when a fault arises

adr% Address of the new directory name (must end with zero byte)

" r%=GEMDOS(58,L:adr %) ddelete()

Deletes a directory (sece RMDIR).

% -34,-36 or -65 when a fault arises
adr% Address of the new directory name (must end with zero byte)

r%=GEMDOS(59,L:adr %) dsetpath()

Change the current directory.
1% -34if new directory not found. '
adr% Address of directory name (must end with zero byte).

r%=GEMDOS(690,L:adr % ,a%) fcreate()

Creates a new file (see OPEN "O").

%  -34,-35 or -36 when a fault arises

adr% Address of the file name (must end with zero byte)

a%  Bit O set: write protected file,  Bit 1: hidden file,
Bit 2: System file (also hidden), Bit 3: Disk name.

r%=GEMDOS(61,L:adr % ,m%) fopen()
Opens a file (see OPEN).

%  -35 or -36 in the event of an error, otherwise 1% -33
adr% Address of the file name (must end with zero byte)
m% O for reading, 1 for writing, 2 for reading and writing



452 GFA BASIC 3 - User Manual

r%=GEMDOS(62,h%) fclose()

Closes the file with the handle h% (see CLOSE). ' o
1%  -37 when faults arise

h%  File handle of the file to be closed.

r%=GEMDOS(63,h% L:1%,L:adr %) fread()

Reads 1% bytes from the file that was opened with handle h% (see BGET).
r%  -37 in the event of an error, otherwise number of bytes read

h% Handle

1%  Number bytes to be read

adr% Address to which the bytes are to be written
r%=GEMDOS(64,h%,1:1% L:adr %) fwrite()

Writes bytes write into a file (see BPUT).

1%  -36or-37 in the event of an error, else number of the bytes written
h% Handle.

1%  Number of bytes to be written.

adr% Address, starting from which, the bytes are to be written in memory
r%=GEMDOS(65,L:adr %) fdelete()

Deletes a file (see KILL).

% -33 or -36 when a fault arises
adr% Address of the name of the file (must end with zero byte).



Chapter 12 : Appendix 453

r%=GEMDOS(66,L: n%,h%,m%) fseek()
Resets the pointer for file accesses (see SEEK, RELSEEK).

h% is handle
t%  -32 or -37 when a fault arises
n% Number ofbytes to be jumped over
m% O: starting from file beginning
1: starting from current position
2: starting from file end

r%=GEMDOS(67,L:adr% m%,a%) fattrib()
Reads or writes file attributes.

%  -33 or -34 in the event of an error, otherwise file attributes
adr% Address of the file name (must end with zero byte)
m% 0: File attribute read, 1: File attributes write
a% File attributes:
Bit 0: Write protected 1: Hidden
2: System file 3: Disk name
4: Directory 5: Archive bit

r%=GEMDOS(69,h %) fdup()
Produces a second file handle.

t%  -35 or -37 in case a fault arose, otherwise second File handle.
h%  Original file handle.

r%=GEMDOS(70,h% ,nh %) fforce()
Creates a new output handles for GEMDOS.
r%  -37 when a fault arises

h%  handle of the data channel to be diverted from
nh% handle of the channel to which the outputs are to be diverted to



454 GFA BASIC 3 - User Manual

r%=GEMDOS(71,L:adr %,d %) dgetpath()

Determines the current access path of a drive (see DIRS).

r%  -46 in case a fault arose

adr% Address, starting from which the access path is stored

d%  Drive identification (O=current, 1=A, 2=B, etc.)

r%=GEMDOS(72,L:b%) malloc()

Reserve or determine storage location (see MALLOC).

%  for b%=-1 length of the largest free storage area, otherwise Staxt
address of the reserved area or error message

b%  Number of bytes to be reserved, for b%=-1, see r%.

r%=GEMDOS(73,L:adr %) mfree()

Reserves the memory starting at adr%. This is returned by GEMDOS(72}
(see MFREE).

1%  -40 when a fault arises
adr% Address of the storage area to be released.
r%=GEMDOS(74,L:adr %,L:b%) mshrink()

Shortens reserved memory block, used with GEMDOS(72). Frees all
memory starting at address adr% that exceeds b% (see MSHRINK ).

1%  -40 or -67 when a fault arises
adr% Address of the storage area to be shortened
b%  New length of the storage area in bytes



Chapter 12 : Appendix 455

r%=GEMDOS(78,m%,L:p%,L:c%,L:e%) pexec()

Executes a program as a subroutine from the disk (see EXEC).
% -32,-33, -39, or -66 in event of an error.

m% 0:Load and start, 3:Load 4:start: 5:Return basepage
p%  Address of the program name or at m%=4 of the Basepage.
¢% Address of the command line (not at m%=4)

e% Address of the environment strings (not at m%=4)

~GEMDOS(76,r %) pterm()

terminates the current prdgram (see QUIT, SYSTEM).

r% Returns value to the calling program.r

r%=GEMDOS(78,L.:adr%,a%) fsfirst()

Searches the current indices and searches for files with the specified
names. The file name found is returned in DTA.

%  -33: File not found, -49: no further files.
adr% Address of the file name (the Wildcards * and ? may be used)
a%  File attributes:

Bit 0: Write protected 1: Hidden

2: System file 3: Disk name
4: Directory 5: Archive bit.
r%=GEMDOS(79) fsnext()

Continues a search begun with GEMDOS(78).

%  -49 if no further files on which the search string fits



456 GFA BASIC 3 - User Manual

r%=GEMDOS(86.0,L:0%,L.:n%) frename()
Names a file (see NAME, RENAME).
%  -34 or -36 when a fault arises

0%  Address of the old file name.
n%  Address of the new file name.

~GEMDOS(87,l:adr %,h % ,m %) fdatime()

Determines or sets the time and date of a file (see TOUCH).

adr% Address of the time information (4 byte).
h% File handle.

m% 0: Reading of the file time,  !: To set the file time.



457

Chapter 12 : Appendix

BIOS Table

~BIOS(0.L:adr %) getmpb()
Initialization of the MEMORY parameter block.

adr% Address of the new MPB.

r%=BI10OS(1,d%) constat()

Interrogates an input buffer (see INP?).

% 0: no character available, -1: Character available
d% 0: Parallel interface  1: Serial interface
2: Keyboard 3: MIDI interface
r%=B10S(2,d %) bconin()

Reads in a character from an inpuf buffer (see INP).

% Character read in (8 bit).
d% 0: parallel interface 1. Serial interface
2: Keyboard 3: MIDI interface
~BIOS(3,d%,b %) bconout()

Outputs a character to a device (see OUT).

d% 0: Parallel interface  1: Serial interface
2: Keyboard 3: MIDI interface
4: IKBD

b% The character to be output



458 GFA BASIC 3 - User Manual

r% =B10S(4,f% ,L:b % n%,s % ,d %) rwabs()

Reads and writes sectors to and from disk.

% 0 if no fault arose
f%=0: Readsn% sectors starting at sector s%, on drive d% at buffer
address b%

f%=1:  Writes the sectors to the disk drive
f%=2:  As %=0 but ignores media change
f%=3: As %=1 but ignores media change

b% Address of the data storage area
n% Number of sectors
% Number of the start sectors

d% Number of the drive (0=A, 1=B, etc.)

r%=BI1OS(5,n%,L:adr%) set EXEC()
Sets and reads the exception vector.
% For adr%=-1 the value of the previous vector is returned

n% Number of the exception vector
adr% New address of the vector or -1 (see %)

r%=BI10S(6) tickcal()
Interrogation of the system timer.

r% Number of milliseconds passed, with a 20ms resolution

BIOS(7,d%) getbpb()
Returns the address of the disk drive parameter block.

1% Address of the drive parameter block
d% Number of the drive (0=A, 1=B, etc.)



Chapter 12 : Appendix 459

r! =BI10S(8,d%) bcostat()

Returns the state of an output device (see OUT?).

1! TRUE if able to transmit characters, otherwise FALSE
d% 0: Parallel interface 1. Serial interface
3: MIDI interface 4: Keyboard chip (IKBD).
r%=B10S(9,d %) mediach()

Determines whether a disk was changed.

1% 0: definitely not changed (Hard disk)
1: perhaps has been changed
2: definitely changed
d% Number of the drive (0=A, 1=B, etc.)
r % =BI10S(10) drvmap()

Checks which drives are attached.
% Bit pattern with one bit corresponding to each drive (bit 0=A,

bit 1=B, etc.). Thus &x10011 means that drives A, B and E
are attached

r%=BI10S(11,c%) kbshift()

Determines or sets the status of the keyboard shift keys.

1% For ¢%=-1 current status of the shift keys is returned
c% New status:

bit 0: Right Shift  bit 1: Left Shift

bit 2: Control bit 3: Alternate

bit 4: Caps-Lock
bit 5: Alternate + Clr/Home (right mouse key)
bit 6; Alternate + Insert (left mouse key)



460 GFA BASIC 3 - User Manual

XBIOS Table

~XBIOS(0,t% ):p % ):v%) initmous()
Initialises the mouse handling routine but is not compatible with GEM.

t% 0: Switches mouse off
1: Switches mouse into relative mode
2: Switches mouse into absolute mode
4: Mouse in keyboard mode

p% Address of an information structure.
v% Address of the mouse handling routine
r%=XBIOS(2) physbase()

Returns the base address of the physical screen memory currently in use.

% Address of the physical screen memory

r%=XBI0OS(3) logbase()

Returns the address of the logical screen memory when writing to the
screen.

1% Address of the logical screen memory.

r%=XBIOS4) getrez()
Returns the current screen resolution.

% 0: 320x200, 1: 640*200
2: 640x400, 3: reserved for modified ST's.



Chapter 12 : Appendix 461

~XBIOS(5,1:1% ,\:p % ,r %) setscreen()

Enables resolution to be changed between low res and high res when using
the colour monitor. This cannot be used with GEM.

The value -1 means that no parameters are to be changed. Addresses must
start on a 256 byte boundary only.

1% New address of the logical screen memory.

p% New address of the physical screen memory.

1% New screen resolution (see XBIOS(4))
~XBIOS(6,L:adr%) setpalette()

Allows all colour registers to be reset at one time.

adr% Address of a table of 16 words, which contains the new pallet data.

r % =XBI1OS(7,n % ,c%) setcolor()
Sets or interrogates a colour register (see SETCOLOR).
% For ¢%=-1 the previous specified colour register is returned

n% Number of the colour register (0 to 15)
c%. - New colout, at c%=-1 see 1%



462

GFA BASIC 3 - User Manual

r% =XBIOS(8,L:b % ,L:f% ,d % ,sec % ,t % ,side % ,n%) floprd()

Reads sectors of the disk.

1% 0 if no fault arose

b% Address of the area, from which the sectors are read

% Unused.

d% Number of the drive (0=A, 1=B, etc.)

sec% Number of the sector, starting from one read

t% Number of the trace (TRACK), from which one reads

side%  Side disk (O or 1)

n% Number of sectors to be read (must lie on a TRACK)
r%=XBIOS(9,L:b%,L:f%,d % ,sec % ,t % ,side % ,n%) flopwr()

Writes sectors to a disk.

1%
b%
%
d%
sec%

0 if no fault arose ﬂ\

Address of the storage area to which the data is to be written
Unused

Number of the drive (0=A, 1=B, etc.)

Number of the start sector, from which writing will
commence.

Number of the track in which writing will take place

Side of the disk (0 or 1). ‘

Number of the sectors to be written (all on one TRACK)



Chapter 12 : Appendix 463

r%—XBI(E(l(l,L.b%,L:t‘%d%,sec%,t%,sth%;%Lnn%,v%)

flopfmt()

a trace of the disk formats.

1% 0 if no fault arose.

b% Address of an area for the intermediate memory (min. 8KB)

% Unused

d% Number of the drive (0=A, 1=B, etc.).

sec% Sectors per track (normally 9).

t% Number of the track to be formatted.

side%  Side of the disk (D or 1).

i% Interleave factor (normally 1).

m% Magic-Number &H87654321

v% Value in sectors after formatting (normally &HESES)
~XBIOS(12,n%,L:adr%) midiws()

Outputs the contents of a block of memory to the MIDI interface.
n% Number of the bytes minus 1, to be output
adr% Address of the source storage area

~XBI10S(13,n% ,L:adr%) mfpint()

Sets the MFP interrupt vector on the ST. This can only be used from
assembly language or 'C’ and is not available from GFA BASIC.

n% Number of the interrupt (0 to 15)
adr% New address of the interrupt



464 GFA BASIC 3 - User Manual

r%=XB10S(14,d%) iorec()
Returns the address of the IfO table used by the serial interface.

1% Address of the data buffer for the serial interface I/O table
d% 0:RS232 1.IKBD 2: MIDI

~XBIOS(15,b% h % ;ucr % ,rsr % tsr % ,scr%) rsconf()

Configures the serial interface. The parameters remain unchanged with a
value of -1.

b% Baud rate
h% Hand shake mode:
0: without 1: XON/XOFF
2: RTS/CTS  3: both
ucr% USART control register of the MFP
1st% Receiver status register of the MFP
tst% Transmitter status register of the MFP
scr% Synchronous character register of the MFP

r%=XBIOS(16,L:us%,L:sh%,L:cl%) keytbl()
Changes the keyboard translation tables.

% Address of the KEYTAB structure

us% Address of the table for keys without shift
sh% Address of the table for keys with shift

cl% Address of the table for keys with Caps-Lock



Chapter 12 : Appendix 465

r%=XBIOS(17) random()

Returns a random number (see RAND, RANDOM).

%

Number returned with 24 bit accuracy (from 0 to 16777215)

~XBIOS(18,L::b %,L:5%,d %,f %) protobt()

Creates a boot sector for the disk in memory.

b%

5%

d%

%

Address of a 512 byte buffer for the producing of the Boot
sector
Serial number that forms part of the boot sector:
-1: previous serial number retained
>24 bits: Random number returned
Disk type (tracks/sides)
0: 40 tracks, single sided (180K)
1: 40 tracks, double sided (360K, IBM)
2: 80 tracks, single sided (360K, SF340)
3: 80 tracks, double sided (720K, SF314)
0: non-executable Bootsector
1: executable
-1: leave unchanged

r%=XBIOS(19,L:b % L:f% ,d % ,sec %t %,side %,n %) flopver()

Verifies the disk contents.

b%

%
d%
sec%
t%
side%
n%

Address of the memory arca with which a comparison is
made

Unused

Number of the disk drive (0=A, 1=B, etc.)

Number of the start sector, from which comparison made
Number of the track

Side of the disk (0 or 1)

Number of the sectors to be compared



466 GFA BASIC 3 - User Manual

~XBI10S(20) scrdmp()

Calls the hardcopy routine and, thus, dumps the screen to printer. (See
Hardcopy.)

r%=XBIOS(21,c%,s%) curscon()
Configure cursor.
% when c%=5 returns the cursor blink rate
<% 0: Hide cursor 1: Show cursors
2: Blinking cursor 3: Solid cursor
4: Blink rate set to value in s%
5: see 1%.
5% when c¢%=4, blink rate set to s%
~XBIOS(22,L:t%) bsettime()

Sets date and time (see SET TIME).

t% Bit 0-4: Scconds, 5-10: Minutes, 11-15: Hours, 16-20: Day, 21-24:
Month, 25-31: Year minus 1980.

r%=XBI10S(23) bgettime()
Returns date and time (see TIMES$, DATES$).

1% For bit allocation see XBIOS(22).

~XBI10S(24) bioskey()

Re-installs the original keyboard allocation (see XBIOS(16)).



Chapter 12 : Appendix 467

XBI10S(25,n%,L.:adr%) ikbdws()
Writes bytes from memory to the keyboard processor (IKBD).

n% Number bytes minus 1, to be sent
adr% Address where the data to be sent is stored

~XBI0OS(26,i%) jdisint()
Disables an MFP interrupt.

% Number of the interrupt (0-15) to be disabled.
~XBIOS(27,i%) jenabint()

Enables an interrupt of the MFP.

i% Number of the interrupt

r%=XBI0S(28,d % ,reg%) giaccess()

Reads and writes from and to the sound chip register.

% Retums register value when reading

d% The value to be written when writing (8 bit)

% Register number (0 to 15), bit 7 defines write mode when set
~XBI10S(29,b %) offgibit()

Sets the bit of port A on the register of the sound chip to zero.

b% Bit pattern, which is ORed with the existing
contents



468 GFA BASIC 3 - User Manual

~XBI10OS(30,b %) ongibit()

Sets the port A bit of the sound chip register to 1

b% Bit pattern, which is ANDed with the existing contents
XB10S(31,t% ,c % ,d %,L:adr %) xbtimer()
Set the MFP timers.

t% Number of the timer (0 to 3)

c% Control register

d% Data register

adr% Address of the timer interrupt routine

~XBlOS(32,L:adr %) dosound()
Starts a sound sequence, which is processed in the interrupt

adr% Address of the storage area order

r%=XBIOS(33,c%) setprt()

Sets or reads the printer parameters.

% Current configuration, when c%=-1

c% Bit set reset
0 Dot matrix daisy wheel printer
1 Monochrome colour printer
2 Atari Epson printer
3 Test NLQ mode
4 Parallel RS-232 port
5 Continuous single sheet paper



Chapter 12 : Appendix 469

r%=XBIOS(34) kbdvbas()
Returns address of table with vectors to the keyboard and MIDI processor.

r% Returned address

r%=XBIOS(35,a % ,w%) kbrate()

Sets and reads keyboard repeat rate.

1% Current data, bit 0-7: repeat rate, 8-15: Time of repeat delay
a% Repeat delay
w% Repeat rate

~XB10S(36,L:adr %) prtblk()

Hardcopy routine, returns parameter block address

adr% Address of a parameter block for the hardcopy routine

~XBIOS(37) vsync()

Waits for the next vertical blank interrupt (see VSYNC)'.

~XBIOS(38,L:adr %) supexec()

Calls an assembler routine in supervisor mode (without GEMDOS system'
calls)

adr% Address of the assembler routine



470 GFA BASIC 3 - User Manual

~XBIOS(39) puntaes()

Turns off AES if it is not in the ROM.

r%=XBI10S(64,b %) blitmode()
Controls and interrogates the Blitter (only in the Blitter TOS).
1% Current blitter-status, if b%=-1, bit 1: Blitter there?. b% -1:

see %, otherwise bit 0: set Blitter, otherwise Blitter out, bit
1-14: reserved (-1), bit 15: 0.



Chapter 12 : Appendix 471

Table of LINE-A Variables

The base addresses of the line A variables are returned by means of L~A:

{L~A-906} Address of the current Font-header
1.~A-856. 37 Words, active DEFMOUSE
{L~A-460) Pointer to the current Font-headers
L~A-456 Array from four pointers, of which the last must be zero.

Each pointer points to a concatenated list of character sets. The first two
pointers are valid for resident Fonts. Third is for the GDOS-Fonts, of this
with each VDI-CALL is put back.

INT{L~A-440} Total number of this Fonts
INT{L~A-46) Text line height
INT{L~A-44} Maximum splits
INT{L~A-42} Maximum cursor line
INT{L~A-40} Length of a text line in bytes
INT{L~A-38} Text background colour
INT{L~A-36} Text foreground colour
{L~A-34} Address of the cursor in screen memory INT{la-30}
Distance of first text line from the upper screen edge
INT{la-28} CRSCOL
INT{L~A-26} CRSLIN
BYTE{L~A-24]}  Cursor blink period
BYTE{L~A-23}  Cursor blink count
{L~A-22}) Address of the data for the mode
INT{L~A-18} Last ASCII character of the font
INT{L~A-16} First ASCII character of the font
INT{L~A-12} Horizontal resolution in pixels
{L~A-10} Address of the table
INT{L~A-4%) Vertical resolution in pixels
INT(L~A-0}) Number of bit planes
INT{L~A+2} Number of bytes per screen line
{L~A+4} Pointer for the CONTRL field
{L~A+8} Pointer for the INTIN field
{L~A+12) Pointer for the PTSIN field
{L~A+16} Pointer for the INTOUT field
{L~A+20} Pointer for the PTSOUT ficld

INT{L~A+24)

Colour value for bit level 0



472 GFA BASIC 3 - User Manual
INT{L~A+26} Colour value for bit level 1
INT{L~A+28} Colour value for bit level 2
INT{L~A+30} Colour value for bit level 3
INT{L~A+32} Flag, do not draw last pixel of a line
INT{L~A+34} Line pattem
INT{L~A+36} Graph mode
INT{L~A+38} until
INT({L~A+44) 2 coordinate pairs
{L~A+46) Pointer to current fill pattern
{L~A+50) Pointer to the current fill pattern mask
INT{L~A+52} Flag for multi-coloured fill pattern
INT{L~A+54} Clipping-flag
INT{L~A+56} until
INT{L~A+64} Clipping-coordinates
INT{L~A+66} Enlargement factor
INT{L~A+68} Enlargement direction
INT{L~A+70} Flag for proportional script
INT{L~A+72} x-Offset for Textblt
INT{L~A+74) y-Offset for Textblt
INT{L~A+76} x-coordinate of acharacteronthe screen INT {L~A+78 )
y-coordinate of a character on the screen
INT{L~A+80) Width of a character
INT{L~A+82} Height of a character
{L~A+84} Pointer to character set image
{L~A+88} Width of character set image
INT{L~A+90} Text style
INT{L~A+92) Mask for shaded text output
INT{L~A+94) Mask for italic script
INT{L~A+96} Additional width for wide script
INT{L~A+98} Italic script offset on the right
INT{L~A+100} Italic script offset on the left
INT{L~A+102) Enlargement flag
INT{L~A+104} Text rotation angle
INT{L~A+106} Text colour
{L~A+108} Pointer on buffer for text effects
INT{L~A+112) Offset for a second text effects buffer
INT{L~A+114} Colour of the text background
INT{L~A+116) Flag for copy screen form, <>0 for transparent
{ L~A+118)

Pointer to routine, which terminates filling procedure -
with V 3 by means of Shift-Alternate-Control.



Chapter 12 : Appendix 473

Table of Input Parameters for
V_OPN(v) WK

Inaddition to the values given below, the following default values are used:
x Device identification number (standard)

PO =t e e e b b b e

1.: Screen 11.: Plotter
21. : Printer 31.: Metafile
4]1.: Camera 51. : Graphic tablet

Line type

Line colour

Mark type

Mark colour

Text style

Text colour

Fill type

Fill style

Fill colour

Coordinate system (0: NDC, 1: reserved, 2: RC)



474 GFA BASIC 3 - User Manual

Table of WORK_OUT Array of the

VDI B

With V_OPN(v)WK, the resultant values are returned in INTOUT(0) to
INTOUT(44) and in PTSOUT(0) to PTSOUT(11).

WORK_OUT(0)
WORK _OUT(1)
WORK_OUT(2)
WORK_OUT(3)
WORK_OUT(4)
WORK_OUT(S)
WORK_OUT(6)
WORK_OUT(7)
WORK_OUT(8)
WORK_OUT(9)
WORK_OUT(10)
WORK_OUT(11)
WORK_OUT(12)
WORK_OUT(13)
WORK_OUT(14)
WORK_OUT(15)
WORK_OUT(24)

1: bar
6: elliptical arc

9: filled rounded rectangle

2: arc

Maximum picture width in pixels

Maximum picture height in pixels

0: Exact screen memory possible, 1: Not possible
Width of a pixel in micrometer

Height of a pixel in micrometer

Number of character heights (0: Modificable)
Number of line types

- Number line widths (0: Modifiable).

Number of mark symbols

Number of mark symbol sizes (0: Modificable)
Number of character sets

Number of patterns

Number of hatching patterns

Number of pre-defined colours

Number of basic graphic functions (GDP)

until

List of basic graphic functions (GDP) Ten basic
functions are supported:

3: pie 4: circle
7: elliptical pie

5: ellipse
8:rounded rectangle
10: justified graphic text

The end of this list is marked witha-1.

WORK_OUT(25)
WORK_OUT(34)

0: Line
WORK_OUT(35)

1: Marker

until :
List of attributes of basic graphic functions:
2: Text 3:Filled out area  4: No attribute
0: Colours are not representable
1. Are representable



Chapter 12 : Appendix 475

WORK_OUT(36)
WORK_OUT(37)
WORK_OUT(38)

WORK_OUT(@39)

WORK_OUT(40)

WORK_OUT(41)

WORK_OUT(42)
WORK_OUT(43)

WORK_OUT(44)

WORK_OUT(45)
WORK_OUT(46)
WORK_OUT(47)
WORK_OUT(48)
WORK_OUT(49)
WORK_OUT(50)
WORK_OUT(51)
WORK_OUT(52)
WORK_OUT(53)
WORK_OUT(54)
WORK_OUT(55)
WORK_OUT(56)

0: Text cannot be rotated

I: Can be rotated

0: Fill functions are not possible

1: Fill functions are Possible

0: CELLARRAY unavailable

1: CELLARRAY available

Number of representable colours,

0: More than 32767

2: Monochrome

512: Medium res. or Low res.

1: Graphic cursor positioning only with
keyboard

2: With keyboard and mouse
Device input value:

I: Keyboard  2: Other device
Selection keys: 1: Function keys
Number of the string input device:
1: Keyboard

Work station type:

0: Only output I: Only input
3: Reserved 4: Metafile
Minimum character width
Minimum character height.
Maximum character width.
Maximum character height.
Minimum visible line width.
Reserved, always 0.
Maximum line width in x-direction.
Reserved, always 0.

Minimum mark width.

Minimum mark height.

Maximum mark width.

Maximum mark height.

2:0ther

2: In/output,



476 GFA BASIC 3 - User Manual

Table of VT 52 Control Codes

The St contains a VT 52 emulator which is modeled on a widely-used
terminal and by means of this, can be used for screens that do not contain
windows. The routines of this emulator can be called by the output of the
strings given in the following table by means of PRINT and these all start
with the ESC code (CHR$(27)).

CHRS$(27)+"A";  Cursor moves up one line (stops at the upper edge of
the screen)

CHR$(27)+"B";  Cursor moves down one line (stops at the lower edge
of the screen)

CHR$(27)+"C";  Cursor movestothe right (stops at the right-hand side)

CHR$(27)+"D";  Cursor moves to the left (stops at the left-hand side)

CHR$Q27N+"E":  Clear screen (CLS)

CHRS$(27)+"H";  Cursor moves to Home position (see LOCATE 1,1)

CHRS$Q2T7)+"T"; Cursor moves up one line and scrolls at the upper edge

CHR$(27)+"T"; Erases from cursor to the end of page o
CHR$(27)+"K";  Erases from cursor to the end of line
CHR$(27)+"L";  Inserts blank line at cursor position
CHR$(27)+"M";  Deletes line at cursor position (lines below scroll up)
CHRS$Q27)+"Y"+CHR$(s+32)+CHR$(z+32); corresponds to

LOCATE z,s. where s=chr$(row+32) z=chr$(column+32)
CHR$(27)+"b"+CHRS$(D); Selects f as text writing colour
CHR$Q27)+"c"+CHRS$(D); Selects f as a background colour
CHRS$(27)+"d";  Erase from top of page to cursor
CHR$(27)+"¢";  Enable cursor
CHR$(27+"f";  Disable cursors
CHR$Q27)+"j", Store cursor position
CHR$(27)+"k";  Restore cursor to position stored with ESC j
CHRS$(27)+"1"; Erase line in which the cursor lies
CHR$(27)+"0";  Erase line from beginning to cursor position
CHRS$Q27)+"p",  Select reverse video ™
CHRS$2D+"q" Switch off reverse video
CHR$Q@7)+"v",  Switch on word wrap at line end

CHRS$Q27)+"w",  Switch off word wrap at line end



Chapter 12 : Appendix 477

Scan-code Table

[5 /% [a JE /R /e i /e /8 /8]

oe a2 63 [gd 6t 160 29 ] o€ ]l 62 161 | (6364 l65 56
oF l18[1al12[13faalsTielarlaslt9lsnliB] |53} 52[48]a7] |67 (68 |69 [4n
o 11 ltF 2002122123 124125126 1271281 1c (28] {48 |5 [4p | |6 6B |6C [4E
60 2c [20 J2e [2¢ [38 (31 [32 133 134 (351 =« | 6D |6E |6F
2 | ) 78 171

70

07

08

F

29

2 |23

78 lvc

05 186

EAL:

2

Ed




—

A~

4141

Al A

72
Y

3

)

kilimnlo

3

74
~

90
A06_

23
1
[KIEN

BN
rial %4 «|D

AL AZ70 1 271 | 0223 123 | 174175

elee 1/11

Pl

¢

671168

a

i

38

o

o

ASCII Table

32
~

xS

i

A0V | L1081 [102 ] 193] 104

36

GFA BASIC 3 - User Manual

=3

395
A~

29

Led

33

put

34
28
e

¥ B

gir|s|tjiujvinwxiylzl{l]l}~la

113 114118000061 202 ] 1483119120121} 122 | 123] 124} 125]126] 127

albjcidelf|g

97

AR IR AN
U/eiadlala

-

Sped ¢

C

1428 1 229 1 1306 [ 1310132134585 ! 1354|4357 136137 138} 139|140 141 | 142[ 143

112

144 [ 1451 146 [ 147 1 448§ 149150 | 152 | 152} 1531 154} 155|156 ] 157 | 158|159

ER
Ay B
pt

*(Ele o 6o duliouj¢[f B f

478
' lp

]
8

f

2

12-35

| 206 ] 202

D98 aje

111214212181 28041 2100 216

Tgie|le ™

Z8 | 1791 1801 108 | 182 | 183 )| 184 ] 185! 186 | 187 ] 188 189 | 190191

217|218 219 220 220 222 22

233 234] 235|236 | 257 ] 238 23
] | =101 ® niz | 3|~
[ J1 =]z .|V

21243 244245 24

12492120 2011292 253 254 | 250

20012011 2021203 | 204 20%

Ll 242] 24

281199

229230 | 231|232

<

2

| B T|I7| 2o/ pTI0BIQE&EIF DEN

2241 225|226 (227|228

o -,

2

241 | 24

L7
1 .

a/0/8ele E/AIAID

e
208 2091 218

43
10

4
192,

Ci'HNJ_JT_I'IITHIJ‘J'Ji’lJ

.2

B
E



Chapter 12 : Appendix 479
Special ASCII Characters
B HUL 1 SOH 2 STX 3 EWX
4 EOT 5 ENO 6 ACK 7 BEL
8BS 9 HI 10 LF 1o
12 FF 11 14 SO 15 SI
16 DLE 17 DCL 18 DC2 19 DC3
20 DC4 21 HAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC
28 FS 29 65 30 RS 3 US
127 DEL -
i # 4 a @ =&
132 142 168 133 131 182
8 6 e & E
137 130 138 . 136 144
| i 1 1
139 161 141 140
i 0 o6 o @
148 153 162 149 147
i U 0 o
129 154 163 151 156



480 GFA BASIC 3 - User Manual

Fill Pattern and Line Style Table

2,22 2,23 2,24

M = &8 72 72

)9 , ' 3,8
cd U B
3,9 3,18 3,11 3,12
1,4,0,0 1,1,0,0 41.1,1,!3
?leﬂﬁ_——ﬂ 1,3,0,0 1,1,08,1 "
”3.,‘1;[]-,48 ....... 1,5,0,8 :1,1,1,1 "
e 1,7,0,0 e
‘5:17078——~— 1,9,0,8 m
Y T T




Chapter 12 : Appendix 481

Error Messages

GFA BASIC Error Messages

Division by zero

Overflow

Not Integer -2147483648 .. 2147483647

Not Byte 0 .. 255

Not Word -32768 .. 32767

Square root only for positive numbers

Logarithm only for numbers greater than zero

Undefined error

Out of memory

Function or command not yet implemented

10 String too long max. 32767 characters

11 Not GFA-BASIC 3.00 program

12 Program too long memory full NEW

13 Not GFA-BASIC program file too short NEW

14 Array dimensioned twice

15 Array not dimensioned

16 Array index too large

17 Dim index too large

18 Wrong number of indices

19 Procedure not found

20 Label not found

21 On.Open only "I"nput "O"utput "R"andom "A"ppend
"U"pdate allowed

22 File already open

23 File # wrong

24 File not open

25 Input wrong not numeric

26 End of file reached

27 Too many points for Polyline/Polyfill/8polymark max. 128

28 Array must have one dimension

29 Number of points too large for array

30 Merge - Not an ASCII file

31 Merge - Line too long aborted

O X0~V R WN O



482 GFA BASIC 3 - User Manual

32 ==> syntax error program-aborted
33 Undefined label

34 Out of data

35 Data not numeric

36 Undefined error 036

37 Disk full

38 Command not allowed in direct mode
39 Program error Gosub not possible

40 Clear not allowed in For-Next-loops or procedures
41 Cont not possible

42 Parameter missing

43 Expression too complex

44 Undefined function

45 Too many parameters

46 Parameter wrong must be a number
47 Parameter wrong must be a string

48 Open "R" Record length wrong

49 Too many "R"-files (max 31)

50 Not an "R"-File

52 Fields larger than record length

54 GET/PUT Field string length changed
55 GET/PUT record number wrong

60 Sprite string length wrong

61 Error while RESERVE

62 MENU error

63 RESERVE error

64 Pointer (*x) error

65 Array too small (<256)

66 No VAR-Array

67 ASIN/ACOS error

68 VAR-Type mismatch

69 ENDFUNC without RETURN

71 Index too large

90 LOCAL error

91 FOR error

92 Resume (next) not possible Fatal, For or Local
93 Stack error



Chapter 12 : Appendix 483

Bomb Error Messages

100 GFA BASIC Version 3.xx copyright 1986-1988 GFA
Systemtechnik GmbH

102 2 bombs - bus error peek or poke possibly wrong

103 3 Bombs - address error Odd word address! Possibly at Dpoke,
Dpeek, Lpoke or Lpeek

104 4 Bombs - illegal instruction executed in machine code

105 5 bombs - divide by zero in 68000 Machine Code

106 6 bombs - CHK exception 68000 interrupted by CHK

107 7 Bombs - TRAPV exception 68000 interrupted by TRAPV

108 8 Bombs - privilege violation by 68000 Machine Code

109 9 bombs - trace exception



484 GFA BASIC 3 - User Manual

TOS Error Messages

-1 General error

*
-2 *  Drive not ready
-3 *  Unknown command
-4 * CRC error disk check sum wrong
-5 *  Bad request
-6 *  Seek error track not found
-7 *  Unknown media boot sector wrong
-8 *  Sector not found
-9 *  Out of paper
-10  * Write fault
-11  * Read fault
-12  * GQGeneral error 12
-13  * Write protected
-14  * Media change detected
-15 * Unknown device
-16 * Bad sector (verify)
-17  * [Insert other disk (request)
-32  * Invalid function number
-33  * File not found
-34  * Path not found
-35 * ‘Too many open files
-36  * Access denied
-37 * Invalid landle
-39 * Out of memory
-40  * Invalid memory block address
-46  * Invalid drive specification
-49  * No more files
-64 * GEMDOS range error seek wrong?
-65 * GEMDOS internal error
-66 * Invalid executable file format
*

Memory biock growth failure



Chapter 12 : Appendix 485

Editor Error Messages

Case without Select
Select without endselect
While without Wend
Repeat without Until

Do without loop

For without Next

Wend without While
Until without Repeat
Loop without Do

NEXT without For

If without Endif

Endif without If

Else without If

Else without Endif

Exit without loop
Procedure without Return
Procedure in loop
Procedure defined twice
Function without Endfunc
Function in loop

Function defined twice
Return without Procedure
Mark defined twice

Local only in Procedure
Local not in loop
Function defined twice
Goto into/outof For-Next, Procedure or Function
Resume in For-Next loop
Resume without Procedure
No Resume in Function
Endfunc without Function



486 GFA BASIC 3 - User Manual




Chapter 13
New Features in
GFA BASIC 3.5

1. The editor uses two more bytes per program now than the old editor
(Versions 3.0 to 3.07). This accelerates the “backward scrolling” and
makes it possible to fold functions, too.

2. You can now also use the “Search” function to search in the header
rows of closed procedures or functions.

3. Listing now prints “labels” two characters to the left (as with CASE).
4. Tab functions
Tab Cursor jumps to next tabulator position.
Ctrlv+Tab Cursor jumps the last previous tab position.
LeftShift+Tab Inserts blank spaces to the next tab position.

RightShift+Tab  Deletes all blank spaces in one row up to or
from cursor.

Linear operations with vectors and matrix

All functions described in this chapter relate only to one and/or two-
dimensional fields with floating point variables.



488 GFA BASIC 3 - User Manual

System commands

MAT BASE 0
MAT BASE 1

The MAT BASE command can only sensibly be used when OPTION
BASE 0 has been activated. In this case, MAT BASE 1 can be used to set
the offset for the start of the row and column indexing of one or two-
dimensional fields with floating point variables to 1 for the matrix
operations. MAT BASE 0O resets this offset to 0 after a MAT BASE 1.

Abbreviation: mb 0/m b 1
The setting made with MAT BASE n affects the following commands

MAT READ
MAT PRINT
MAT CPY
MAT XCPY
MAT ADD
MAT SUB
MAT MUL

The default is MAT BASE 1.
Example:

OPTION BASE 0

MAT BASE 1

DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
DIM a(3,3)

MAT READ a()

PRINT a(l,1)

Outputs the value 1



Chapter 13 : New Features in GFA BASIC 3.5 489

Generating commands

MAT CLR a()
MAT SET a()=x
MAT ONE a(}

a: Name of field with numeric variables
X aexp

MAT CLR a() corresponds to an ARRAYFILL a(),0, i.e. the command
sets all elements in the field (matrix or vector) a() to a value of 0.

Abbreviation: m cl a()

MAT SET a()=x corresponds to an ARRAYFILL a(),x, i.e. the command
sets all elements in the field a() (matrix or vector) to the value x.

Abbreviation: m se a()=x

MAT ONE a() generates from a square matrix a() a uniform matrix, i.e.
a square matrix in which elements a(1,1),a(2,2),...,a(n.n) are all equally 1
and all other elements equally 0.

Abbreviation: m o a()
Example:

DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
DIM a(3,3)

MAT READ af()

PRINT a(l,1)

MAT CLR al{)

PRINT a(l,1)

Outputs the value 1, then 0.



490 GFA BASIC 3 - User Manual

DIM a(5,7)
FOR i%=1 TO 5§
FOR j%=1 TO 7 -
a(i%,3%)=RAND(10)
NEXT j%
NEXT i%
MAT SET a(),5.3
FOR i%=1 TO &
FOR j%=1 TO 7
PRINT a(i%,j%)
NEXT j%
NEXT i%

Outputs the value 3.5 35 times.

DIM a(3,3)
MAT ONE a()
MAT PRINT a()

Gives:
14 ’

1,0
0,1,
0,0

= O O

! ’



Chapter 13 : New Features in GFA BASIC 3.5 491

Write and Read commands

MAT READ a()
MAT PRINT [#ila[,g,n]
MAT INPUT #i,a()

i,g,n: iexp
a: Name of field with numerical variables

MAT READ a() reads a previously dimensioned matrix or vector from
DATA rows. '

Abbreviation: m r a()
Example:

DATA 1,2,3,4,5,6,7,8,9,10
DIM a(2,5)

MAT READ a()
PRINT a(2,4)

outputs the value 9.
MAT PRINT [#i,]a([,g,n] outputs a matrix or a vector. Vectors are

output on one row, the elements being separated by commas. With matrix,
each row is followed by a rowfeed.

The output can optionally be redirected with #i, as with PRINT.
It g and n are specified, the numbers are formatted as with STR$(x,g,n).
Abbreviation: m p [#i]a()[g,n] or m ? [#i,]a()[g,n]

Example:

DATA 1,2.33333,3
DATA 7,5.25873,9.376
DATA 3.23,7.2,8.999
DIM a(3,3)



492 GFA BASIC 3 - User Manual

MAT READ a()
MAT PRINT af)

PRINT” ”
MAT PRINT a(),7,3

Gives:
1, 2.33333, 3
7, 5.25873, 9.376
3.23, 7.2, 8.999

1.000, 2.333, 3.000
7.000, 5.259, 9.376
3.230, 7.200, 8.999

MAT INPUT #1,a() reads a matrix or vector from a file in ASCII format
(the format being the reverse of MAT PRINT, commas and rowfeeds may
be varied as with INPUT #).

Abbreviation: m i #i,a().

Example:

OPEN “o”,#1,"Test.DAT"
DIM a(3,3)

‘MAT ONE a()

MAT PRINT #1,a()

CLOSE #1

MAT CLR a{)

OPEN “i”,#1,”"Test.DAT"
MAT INPUT #1,a()

CLOSE #1

MAT PRINT a()

Gives:

o O =
N

O = O
-~

= O O



Chapter 13 : New Features in GFA BASIC 3.5 493

Copy and Transposition commands

MAT CPY a([i,jl)=b(lk,1]) [;h,w]
MAT XCPY a([i,jl)=b([k I) [, h,w}
MAT TRANS a()[=b(]

a,b: Name of fields with numerical variables
ijolclh,w:  iexp

MAT CPY a([i,j)=b([k,1])[,h,w] copies h rows with w elements each
from matrix b to the row and column offset of matrix a defined by i,j,
starting from the row and column offset of matrix b defined by Lk.

Abbreviation: m c a(i,j)=b(k,1),h,w,
m x a(i,j)=b(k,D),b,w,
m t a()=b().

Example:

DIM a(5,5),b(4,4)
MAT SET a()=1
FOR i%=1 TO 4
FOR j%=1 TO 4
b(i%,j%)=sUCC(i%)
NEXT j%
NEXT i%
MAT PRINT a{)
PRINT e
MAT PRINT b()
PRINT #—
MAT CPY a(2,2)=b(2,2),3,3
MAT PRINT a()



494

GFA BASIC 3 - User Manual

Gives:

Special cases

MAT COPY a()=b() copies the complete matrix b into matrix a if the
matrix are of the same order.

Only those elements are copied in this process for which identical indices
are given in both the source and the destination matrix.

Abbreviation: m ¢ a()=b().

Example:

DIM a(5,3),b(4,4)

MAT SET a()=1
FOR i%=1 TO 4

FOR j%=1 TO 4
b(i%,j%)=SUCC(i%)

NEXT j%

NEXT i%

+

MAT PRINT a()



Chapter 13 : New Features in GFA BASIC 3.5 495

PRINT * "
MAT PRINT b()
PRINT * "

MAT CPY a()=b(),3,3
MAT PRINT a()

Gives:

MAT COPY a(i,j)=b() copies matrix b, starting from the row and column
offset defined by MAT BASE, to the row and column offset of matrix a
defined by i,j. Only those elements are copied for which identical indices
are given in both the source and the destination matrix.

Abbreviation: m ¢ a(i,j)=b()

Example:

DIM a(5,3),b(4,4)

MAT SET a()=1

FOR i%=1 TO 4
FOR j%=1 TO 4

b(i%,j%)=SUCC(i%)

NEXT j%

NEXT i%

‘



496 GFA BASIC 3 - User Manual

MAT PRINT a()

PRINT * "
MAT PRINT b{)
PRINT * "

MAT CPY a(2,2)=b(2,2),3,3
MAT PRINT a()

Gives:

MAT COPY a()=b(i,j) copies matrix b, starting from the row and column
offset defined by i,j, to the offset of matrix a defined by MAT BASE. Only
those elements are copied for which identical indices are given in both the
source and the destination matrix.

Abbreviation: m c a()=b(i,j).

Example:

DIM a(5,3),b(4,4)
MAT SET a{)=1
FOR i%=1 TO 4
FOR j%=1 TO 4
b(1i%,j%)=8UCC(i%)
NEXT j%



Chapter 13 : New Features in GFA BASIC 3.5 497

NEXT i%

]

MAT PRINT a()

PRINT * ”
MAT PRINT b{)
PRINT * "

MAT CPY a()=b(2,2),3,3
MAT PRINT a()

Gives:

MAT COPY a(i,j)=b(k,l) copies matrix b, starting from the row and
column offset defined by k., to the offset i,j of matrix a. Only those
elements are copied for which identical indices are given in both the source
and the destination matrix.

Abbreviation: m c¢ a(i,j)=b(k,1).

Example:

DIM a(5,3),b(4,4)
MAT SET a()=1
FOR i%$=1 TO 4

FOR j%=1 TO 4



498 ~ GFABASIC 3 - User Manual

b(i%,j%)=SUCC(]%)

NEXT %
NEXT i% ‘ -,
4
MAT PRINT a()
PRINT * "
MAT PRINT b()
PRINT “ "
MAT CPY a(2,2)=b(2,2)
MAT PRINT a()

Gives:

MAT COPY a()=b() copies h rows with w elements each from the matrix
b, starting from the row and column offset defined by MAT BASE, the row
and column offset of matrix a defined by MAT BASE. Only those
elements are copied for which identical indices are given in both the source
and the destination matrix.

Abbreviation: m c a()=b().



Chapter 13 : New Features in GFA BASIC 3.5 499

Example:

DIM a(5,3),b(4,4)
MAT SET a()=1
FOR i%=1 TO 4
FOR j%=1 TO 4
b(i%,j%)=8SUCC(j%)
NEXT j$%
NEXT i%

4

MAT PRINT a()

PRINT * "
MAT PRINT b()
PRINT * ”

MAT CPY a()=b()
MAT PRINT a()

Gives:



500 GFA BASIC 3 - User Manual

MAT XCPY a([i,j)=b([k,1])[,h,w] works basically in the same manner
as MAT CPY a([i,j)=b([k,I1])[,h,w], except that matrix b is being
transposed while being copied to matrix a, i.e. the rows and columns of
matrix b are swapped while it is copied to matrix a. Array b remains
unchanged, however. Only those elements are copied for which identical
indices are given in both the source and the destination matrix.

Abbreviation: m x a(i,j)=b(k,1),h,w.

Example:

DIM a(5,3),b(4,4)

MAT SET a()=1

FOR i%=1 TO 4
FOR j%=1 TO 4

b(i%,j%)=sUCC(3%)

NEXT 3%

NEXT i%

MAT PRINT a()

PRINT * ”

MAT PRINT b()

PRINT * "

MAT XCPY a(2,2)=b(2,2),3,3

MAT PRINT a()

Gives:



Chapter 13 : New Features in GFA BASIC 3.5 501

Further special cases
As with MAT CPY a(i,j)=b(k,1),w,h.

If MAT CPY or MAT XCPY are applied to vectors, jand | may be ignored.
Following a DIM a(n),b(m), a() and b() are interpreted as row vectors, i.e.
as matrix of the (1,n) or (1,m) types.

For a and b to be treated as column vectors, they must be dimensioned as
matrix of the (n,1) or (n,1) type, ie. DIM a(n,1),b(n,1).

It both vectors are of the same order (both are row or column vectors),
MAT CPY must be used. Irrespective of the type of vectors aand b, MAT
CPY always treats both vectors syntactically as column vectors, so that the
correct syntax to be used for MAT CPY is always

MAT CPY a(n,1)=b(m,1)!
Example:

DIM a(10),b(5) ‘ a() und b() are row vectors
MAT SET a()=1
FOR i%=1 TO 5
b(i%)=SUCC(i%)
NEXT 1%
PRINT “a(): “s
MAT PRINT a()
PRINT “b(): s
MAT PRINT b()
PRINT STRINGS (45,"-")

MAT CPY a(3,1)=b(1,1) ! interprets a() and b() as column vectors

PRINT “MAT CPY a(3,1)=b(1,1): “;
MAT PRINT a()

Gives:
a(): 1,1,1,1,1,1,1,1,1,1
b(): 2,3,4,5,6

MAT CPY a(3,1)=b(1,1): 1,1,2,3,4,5,6,1,1,1



502 GFA BASIC 3 - User Manual

For MAT XCPY, one of the two vectors a and b must be explicitly
dimensioned as a row vector, the other as a column vector: for example

DIM a(l,10),b{(5,1),

Since MAT XCPY first transposes the second vector before copying it to
the first. For this reason, MAT XCPY can only be used for DIM
a(1,n),b(m,1): a{)=row vector, b()=column vector and DIM a(n,1),b(1,m):
a()=column vector, b()=row vector.

Example:

DIM a(1,10},b(5,1)

MAT SET a()=1

FOR i%=1 TO 5
b(i%,1)=SUCC(i%)

NEXT i%

MAT PRINT a()

PRINT

MAT PRINT b()

MAT XCPY a(l,3)=b(1,1)

PRINT

MAT PRINT a()

Gives:
1,1,1,1,1,1,1,1,1,1
2
3
4
5
6
1,1,2,3,4,5,6,1,1,1
Optionally, the parameters h and w can also be used when copying vectors
with MAT CPY or MAT XCPY. However, the following applies: with

MAT CPY, only the h parameter is used for w=1. No copying takes place
with w=0.



Chapter 13 : New Features in GFA BASIC 3.5 503

With MAT XCPY, only h is used for w=1 if b is a column vector to be
copied into a row vector after transposition. No copying takes place when
w=0. On the other hand, only w is used for h=1 if b is a row vector which
is to be copied to a column vector after transposition. In this case, no
copying takes place if h=0.

MAT TRANS a()=b() copies the transposed from matrix b to matrix a if
a and b are dimensioned accordingly, i.e. the number of rows from a must
correspond to the number of columns in b, and the number of columns
from a to the number of rows of n: for example, DIM a(n,m),b(m,n).

Example:

DIM a(3,4),b(4,3)

MAT SET b()=4

MAT SET a()=1

MAT PRINT a()

PRINT STRINGS (10,”-")
MAT PRINT b()

PRINT STRINGS(10,"-*)
MAT TRANS a()=b()

MAT PRINT a()

Gives:

= =
M
[T
M
(S
N
[



504 GFA BASIC 3 - User Manual

In the case of a square matrix, i.e. one with equal numbers of rows and
columns, MAT TRANS a() may be used. This command swaps the rows
and columns of matrix a and writes the matrix thus changed back to a.

(The original matrix is lost in the process but can be restored with another
MAT TRANS a()).

Abbreviation: m t a().
Example:

DIM a(5,5)

FOR i%=1 TO 5
FOR j%=1 TO 5

a(i%, j%)=9%

NEXT %

NEXT i%

MAT PRINT a()

PRINT STRINGS(10,”-")

MAT TRANS a()

MAT PRINT a()

Gives:



Chapter 13 : New Features in GFA BASIC 3.5 505

Operation commands

MAT ADD a(=b()+c()
MAT ADD a(),b()
MAT ADD a(),x

MAT SUB a(=b()-c()
MAT SUB a(),b(Q)
MAT SUB a(),x

MAT MUL a(=b(*c()
MAT MUL x=a()*b()
MAT MUL x=a()*b()*c()
MAT MUL a(),x

MAT NORM a(),0
MAT NORM a(),1

MAT DET x=a([i,j])[;n]
MAT QDET x=a([i,j1)[,n]
MAT RANG x=a([i,j])[,n]
MAT INV a(=b()

a,b,c: Names of numerical floating point fields
X: aexp; scalar value
i.j,n: aexp

MAT ADD a()=b(+c() is only defined for matrix (vectors) of the same
order, e.g. DIM a(n,m),b(m,m),c(n,m) or DIM a(n),b(n),c(n). Array c is
added 1o matrix b, element by element, and the result is written to matrix
a.

Abbreviation: m a()=b()+c().

Example:

DIM a(3,5},
MAT SET b()
MAT SET c()=

b(3,5),¢(3,5)

{
3
=4



506 GFA BASIC 3 - User Manual

MAT PRINT b()

PRINT STRINGS$(10,”-")
MAT PRINT c()

PRINT STRINGS$(10,7"-7)
MAT ADD a()=b()+c()
MAT PRINT a()

Gives:

3,3,3,3,3
3,3,3,3,3
3,3,3,3,3

MAT ADD a(),b() is only defined for matrix (vectors) of the same order,
¢.g. DIM a(n,m),b(n.m) or DIM a(n),b(n). Array b is added to matrix a,
element by element, and the result is written to matrix a.

The original matrix a is lost in the process.
Abbreviation: m a a(),b().
Example:

DIM a(3,5),b(3,5)

MAT SET a()=1

MAT SET b()=3

MAT PRINT a()

PRINT STRINGS(10,"-")
MAT PRINT b()

PRINT STRINGS(10,"-")
MAT ADD a(),b()

MAT PRINT a()



Chapter 13 : New Features in GFA BASIC 3.5 507

Gives:

MAT ADD a(),x is defined for all matrix (vectors). Here, the scalar x is
added to matrix a, element by element, and the result is written to matrix
a. The original matrix a is lost in the process.

Abbreviation: m a a(),x.
Example:

DIM a(3,5)

MAT SET a()=1

MAT PRINT a()

PRINT STRINGS(10,"-")
MAT ADD a(),5

MAT PRINT a()

Gives:

1,1,1,1
1,1,1,1,
1,1,1,1

e

(= N - S
-

(= 0~ SR«
~

N S o
~

[> 20 o SR Y
-

(= N > AR



508 GFA BASIC 3 - User Manual

MAT SUB a()=b(+c() is only defined for matrix (vectors) of the same
order, e.g. DIM a(n,m),b(n,m),c(n,m) or DIM a(n),b(n),c(n). Array c is
subtracted from matrix b, element by element, and the result is written to
matrix a.

Abbreviation: m a()=b()-c().
Example:

DIM a(3,5),b(3,5),c(3,5)
MAT SET b{)=5

MAT SET c()=3

MAT PRINT b({)

PRINT STRINGS(10,"-")
MAT PRINT c() ‘
PRINT STRINGS(10,"-")
MAT SUB a{)=b()-c()

MAT PRINT a()

Gives:

MAT SUB a(),b() is only defined for matrix (vectors) of the same order,
e.g. DIM a(n,m),b(n,m) or DIM a(n),b(n). Array b is subtracted from
matrix a, clement by element, and the result written to matrix a.

The original matrix a is lost in the process.



Chapter 13 : New Features in GFA BASIC 3.5 509

Abbreviation: m s a(),b().
Example:

DIM a(3,5),b(3,5)
MAT SET a()=3

MAT SET b()=1

MAT PRINT a()

PRINT STRINGS(10,”-")
MAT PRINT b()

PRINT STRINGS$(10,"-")
MAT SUB a(),b()

MAT PRINT af()

Gives:

MAT SUB a(),x is defined for all matrix (vectors). Here, the scalar x is
subtracted from matrix x, element by element, and the result is written to
matrix a. The original matrix a is lost in the process.

Abbreviation: m s a(),x
Example:

DIM a(3,5)

MAT SET a(})=6

MAT PRINT a()

PRINT STRINGS{10,"-")
MAT SUB a(),5

MAT PRINT a()



510

GFA BASIC 3 - User Manual

Gives:

MAT MUL a()=b(*c() is detined for matrix of an “appropriate” order.
Arrays b and ¢ are multiplied with each other. The result of this
multiplication is written to matrix a. In order for the result to be defined,
the matrix on the left (matrix b in this case) must have the same number of
columns as the matrix on the right (c in this case) has rows. Array a, in this
case, must have as many rows as b and as many columns as c, for example:

DIM a(2,2),b(2,3),c(3,2)

Arrays are multiplied as “row by column”, i.e. element a(i.j) is obtained by
multiplying the elemenis in the ith row of matrix b with the elements in the
jth column of matrix c, element by element, and then adding up the
individual products.

Abbreviation: m a()=b()*c()

Example:

DIM a(2,2),b(2,3),c(3,2)

MAT SET b()=

DATA 1,2,-3,4,5,-1

MAT READ c{)

MAT PRINT b(},5,1
PRINT STRINGS(18,”-")
MAT PRINT <(},5,1
PRINT STRINGS(18,”-")
MAT MUL a()=b(}*c()
MAT PRINT a(),5,1



Chapter 13 : New Features in GFA BASIC 3.5 511

1.0, 2.0
-3.0, 4.0
5.0, -1.0

3.0, 5.0
3.0, 5.0

With vectors instead of matrix, MAT MUL a()=b(*c() results in the
dyadic (or external) product of two vectors.

Example:

DIM a(3,3),b(3),c(3)
DATA 1,2,-3,4,5,-1
MAT READ b()

MAT READ c¢()

MAT PRINT b(),5,1
PRINT STRINGS(18,7-")
MAT PRINT c(),5,1
PRINT STRINGS(18,”-7)
MAT MUL a()=b()*c()
MAT PRINT a(),5,1

Gives:
1.0, 2.0, =3.0

4.0, 5.0, -1.0

4.0, 5.0, -1.0
8.0, 10.0,-2.0
-12.0,-15.0, 3.0

MAT MUL x=a()*b() is only defined for vectors with an equal number of
elements. The result x is the scalar product (the so-called interior product)
of vectors a and b. The scalar product of two vectors is defined as the sum
of n products a(i)*b(i),i=1,...,n.



512 GFA BASIC 3 - User Manual

Abbreviation: m x=a()*b().

Example:

DIM b(3),c(3)

DATA 1,2,-3,4,5,-1
MAT READ b()

MAT READ c()

MAT PRINT b(},5,1
PRINT STRINGS(18,"-=")
MAT PRINT c(),5,1
PRINT STRINGS(18,7=")
MAT MUL x=b()*c()
PRINT x

Gives:

MAT MUL x=a()*b()*c() is defined for qualified Vectors a and c as well
as qualified Matrix b().

Abbreviation: m x=a()*b()*c().

Example:

DIM a(2),b(2,3),c(3)
DATA 1,2,-3,4,5

MAT READ af)

MAT READ c()

MAT SET b()=1

MAT PRINT a(),5,1
PRINT STRING$(18,"-")
MAT PRINT b(),5,1
PRINT STRINGS$(18,"-")
MAT PRINT c(),5,1
PRINT STRINGS(18,"-")
MAT MUL x=a()*b()*c()
PRINT x



Chapter 13 : New Features in GFABASIC 3.5 513

Gives:
1.0, 2.0
1.0, 1.0, 1.0
1.0, 1.0, 1.0
1.0, 1.0, 1.0
-3.0, 4.0, 5.0
18.0

MAT NORM a(),0 or MAT NORM a(),1 are defined for matrix and
vectors. MAT NORM a(),0 normalises a matrix (a vector) by rows, MAT
NORM a(),1 by columns. This means that after a normalisation by rows
(by columns) the sum of the squares of all elements in each row (column)
is identical at 1.

Abbreviation: m no a(),0 bzw. m no a(),1.
Example:

DIM a(10,10),b(10,10),v(10)

pDATA 1,2,3,4,5,6,7,8,9,-1

DATA 3.2,4,-5,2.4,5.1,6.2,7.2,8.1,6,-5

DATA ~2,-5,-6,-1.2,-1.5,-6.7,4.5,8.1,3.4,10

DATA 5,-2.3,4,5.6,12.2,18.2,14.1,16,-21,~13

DATA 4.1,5.2,16.7,18.4,19.1,20.2,13.6,14.8,19.4,18.6
DATA 15.2,~1.8,13.6,-4.9,5.4,19.8,16.4,-20.9,21.4,13.8
DATA -3.6,6,-8.2,-9.1,4,-2.5,2,3.4,6.7,8.4

DATA 4.7,8.3,9.4,10.5,11,19,15.4,18.9,-20,12.6

DATA 5.3,-4.7,6.1,6.5,6.9,-9.2,-10.8,4.3,5.6,9.1

DATA 21.4,19.5,28.4,19.3,24.6,14.9,71.3,23.5,14.5,-12.3
CLS

MAT READ a()

MAT CPY b()=a() ! Source matrix stored

PRINT “Source matrix”

PRINT

MAT PRINT a(),7,2

~INP(2)



514 "~ GFA BASIC 3 - User Manual

cLS

MAT NORM a(),0
PRINT

PRINT “Row:
PRINT

MAT PRINT a(),7,2
~INP(2)

.

¢

PRINT

PRINT “Test :

PRINT

FOR i%=1 TO 10
MAT XCPY v()=a(i$, 1)
MAT MUL x=v()*Vv()
PRINT x’

NEXT i%

PRINT

~INP(2)

:

?

CLS
MAT CPY a()=b()
MAT NORM a(}),1
PRINT “Column : *“
PRINT
MAT PRINT a(),7,2
~INP(2)
PRINT
PRINT “Test : “
PRINT
FOR i%=1 TO 10
MAT CPY v()=a(l,i%)
vector v{()
MAT MUL x=v()*v()
PRINT x’
NEXT i%
~INP(2)

tCopy column af()

in the



Chapter 13 : New Features in GFABASIC 3.5 515

Gives:

Source matrix

1.00, 2.00, 3.00, 4.00,
8.00, 9.00, =1.00
3.20, 4.00, -5.00, 2.40,
8.10, 6.00, =5.00
-2.00, =-5.00, -6.00, =-1.20,
8.10, 3.40, 10.00
5.00, =-2.30, 4.00, 5.60,
16.00, -21.00, -13.00
4.10, 5.20, 16.70, 18.40,
14.80, 19.40, 18.60
15.20, =-1.80, 13.60, -4.90,

-20.90, 21.40, 13.80
-3.60, 6.00, =8.20, =9.10,
3.40, 6.70, 8.40
4.70, 8.30, 9.40, 10.50,
18.90, -20.00, 12.60
5.30, -4.70, 6.10, 6.50,
4.30, 5.60, 9.10
21.40, 19.50, 28.40, 19.30,
23.50, 14.50, -12.30
0.06, ©0.12, 0.18, 0.24,
0.47, 0.53, =0.06
0.18, 0.23, -0.29, 0.14,
0.47, 0.35, =0.29
-0.11, =-0.28, -0.34, =-0.07,
0.46, 0.19, 0.57
0.12, -0.06, 0.10, 0.14,
0.40, -0.52, -0.32
0.08, 0.10, 0.33, 0.36,
0.29, 0.38, 0.37
0.32, =~0.04, 0.29, -0.10,
-0.44, 0.45, 0.29
-0.19, 0.32, -0.44, -0.48,
0.18, 0.36, 0.45

5.00,

5.10,

-1.50,

12.20,

19.10,

5.40,

4.00,

11.00,

6.90,

24.60,

0.30,

0.29,

-0.09,

0.30,

0.38,

0.11,

0.21,

6.00,

6.20,

-6.70,

18.20,

20.20,

19.80,

-2.50,

19.00,

-9.20,

14.90,

-0.38,

0.45,

0.40,

0.42,

-0.13,

7.20,

4.50,

14.10,

13.60,

16.40,

2.00,

15.40,

-10.80,

71.30,

0.41,

0.42,

0.26,

0.35,

0.27,

0.35,

0.11,



516 GFA BASIC 3 - User Manual

0.11, 0.19, 0.21, 0.24, 0.25, 0.43, 0.35,
0.43, -0.46, 0.29

0.23, -0.21, 0.27, 0.29, 0.31, -0.41, -0.48,
0.19, 0.25, 0.40

0.23, 0.21, 0.30, 0.21, 0.26, 0.16, 0.76,
0.25, 0.15, «-0.13

Test :

1111111111

0.04, 0.08, 0.08, 0.12, 0.13, 0.14, 0.09,
0.18, 0.20, -0.03

0.11, 0.16, -0.13, 0.07, 0.14, 0.14, 0.09,
0.18, 0.13, ~-0.14

-0.07, -0.21, -0.15, -0.04, -0.04, -0.15, 0.06,
0.18, 0.07, 0.28

0.18, -0.09, 0.10, 0.17, 0.33, 0.41, 0.18,
0.35, -0.46, -0.36

0.14, 0.21, 0.42, 0.57, 0.51, 0.46, 0.17,
0.33, 0.42, 0.52

0.53, -0.07, 0.35, -0.15, 0.15, 0.45, 0.21,
-0.46, 0.47, 0.38

-0.13, 0.25, -0.21, ~-0.28, 0.11, ~0.06, 0.03,
0.08, 0.15, 0.23

0.17, 0.34, 0.24, 0.33, 0.30, 0.43, 0.20,
0.42, -0.44, 0.35

0.19, =~0.19, 0.15, 0.20, 0.19, -0.21, -0.14,
0.10, 0.12, 0.25

0.75, 0.80, 0.72, 0.60, 0.66, 0.34, 0.90,
0.52, 0.32, -0.34

Test

1111111111



Chapter 13 : New Features in GFA BASIC 3.5 517

MAT DET x=a([i,j]) [,n] calculates the determinants of a square matrix of
the (n,n) type. The row and column offsets are preset to a(0,0) or a(1,1),
depending on MAT BASE 0 or MAT BASE 1, assuming that OPTION
BASE 1 is enabled. It is also possible, however, to calculate the
determinant of a square part matrix. To do this, the row and column offsets
of a() must be specified as i and j, and the number of elements in the part
matrix as n. A part matrix of the (n,n) type is then created internally starting
from the “position” ith row, jth column.

Abbreviation: m d x=a({i,j]D[,n}.

Example:

DIM a(10,10),b(4,4)

DATA 1,2,3,4,5,6,7,8,9,~1

DATA 3.2,4,-5,2.4,5.1,6.2,7.2,8.1,6,-5

paTa -2,-5,-6,-1.2,-1.5,-6.7,4.5,8.1,3.4,10

DATA 5,~2.3,4,5.6,12.2,18.2,14.1,16,-21,-13,3.8

DATA 4.1,5.2,16.7,18.4,19.1,20.2,13.6,14.8,19.4,18.6
DATA 15.2,-1.8,13.6,-4.9,5.4,19.8,16.4,-20.9,21.4,13.8
DATA -3.6,6,-8.2,-9.1,4,-2.5,2,3.4,6.7,8.4,10.9

pDaATA 4.7,8.3,9.4,10.5,11,19,15.4,18.9,~20,12.6

DATA 5.3,-4.7,6.1,6.5,6.9,-9.2,-10.8,4.3,5.6,9.1
DATA 21.4,19.5,28.4,19.3,24.6,14.9,71.3,23.5,14.5,~-12.3
'

CLS

MAT READ a()

PRINT “Source matrix”

PRINT.

MAT PRINT a(),7,2

PRINT

PRINT “Determinant : “;

MAT DET x=a()

PRINT x;

MAT DET y=a(l,4),4

PRINT

PRINT “Determinant from a(l,4),4 : “;

PRINT y

PRINT

PRINT “Test :”



518 GFA BASIC 3 - User Manual

PRINT

MAT CPY b{()=a(l,4),4,4 ! copy to b()

MAT PRINT b(),7,2

MAT DET z=b() ! Determinant from b()
PRINT

PRINT z

Gives:

Source Matrix

1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00,
8.00, 9.00, =1.00

3.20, 4.00, =5.00, 2.40, 5.10, 6.20, 7.20,
8.10, 6.00, <5.00

-2.00, ~5.00, -6.00, -1.20, -1.50, -6.70, 4.50,
8.10, 3.40, 10.00

5.00, -2.30, 4.00, 5.60, 12.20, 18.20, 14.10,
16.00, -21.00, -13.00

3.80, 4.10, 5.20, 16.70, 18.40, 19.10, 20.20,
13.60, 14.80, 19.40

18.60, 15.20, -1.80, 13.60, -4.90, 5.40, 19.80,
16.40, -20.90, 21.40

13.80, -3.60, 6.00, =8.20, =9.10, 4.00, =2.50,
2.00, 3.40, 6.70

8.40, 10.90, 4.70, 8.30, 9.40, 10.50, 11.00,
19.00, 15.40, 18.90

-20.00, 12.60, 5,30, -4.70, 6.10, 6.50, 6.90,
-9.20, -10.80, 4.30

5.60,  9.10, 21.40, 19.50, 28.40, 19.30, 24.60,
14.90, 71.30, 23.50

Determinant : -2549840202186
Determinant from a(l,4),4 : -57.61200000001

Test:

4.00, 5.00, 6.00, 7.00
2.40, 5.10, 6.20, 7.20
-1.20, ~1.50, =~6.70, 4.50
5.60, 12.20, 18.20, 14.10

-57.61200000001



Chapter 13 : New Features in GFABASIC 3.5 519

MAT QDET x=a({i,j)[,n] works in the same manner.as MAT DET
x>a([i,j])[,n], except that it has been optimised for speed rather than
accuracy. Both will normally produce identical results. With “critical”
matrix, whose determinant is close to 0, you should always use MAT DET,
though.

Abbreviation: M qd x=a([i,j])[,n].
Example:

DIM a(10,10)

DATA 1,2,3,4,5,6,7,8,9,-1

DATA 3.2,4,-5,2.4,5.1,6.2,7.2,8.1,6,~5

DATA -2,-5,-6,-1.2,-1.5,-6.7,4.5,8.1,3.4,10

paTA 5,-2.3,4,5.6,12.2,18.2,14.1,16,-21,-13,3.8

DATA 4.1,5.2,16.7,18.4,19.1,20.2,13.6,14.8,19.4,18.6
DATA 15.2,-1.8,13.6,-4.9,5.4,19.8,16.4,-20.9,21.4,13.8
DATA -3.6,6,~8.2,-9.1,4,-2.5,2,3.4,6.7,8.4,10.9
DATA 4.7,8.3,9.4,10.5,11,19,15.4,18.9,-20,12.6

DATA 5.3,~4.7,6.1,6.5,6.9,-9.2,-10.8,4.3,5.6,9.1
DATA 21.4,19.5,28.4,19.3,24.6,14.9,71.3,23.5,14.5,-12.3
CLS

MAT READ a()

PRINT “Source matrix”

PRINT

MAT PRINT a(),7,2

PRINT

PRINT ”“Determinant with MAT DET : *;

MAT DET x=a()

PRINT x;

PRINT

PRINT “Determinant with MAT QDET : “;

MAT DET y=a()

PRINT v;

PRINT

PRINT “Deviation : “;x-y



520 GFA BASIC 3 - User Manual

Gives:
Source Matrix

1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00,
8.00, 9.00, =1.00

3.20, 4.00, -5.00, 2.40, 5.10, 6.20, 7.20,
8.10, 6.00, =5.00

-2.00, =5.00, =6.00, =-1.20, =-1.50, =6.70, 4.50,
8.10, 3.40, 10.00

5.00, -2.30, 4.00, 5.60, 12.20, 18.20, 14.10,
16.00, =21.00, ~13.00

3.80, 4.10, 5.20, 16.70, 18.40, 19.10, 20.20,
13.60, 14.80, 19.40

18.60, 15.20, -1.80, 13.60, =-4.90, 5.40, 19.80,
16.40, -20.90, 21.40

13.80, =-3.60, 6.00, =-8.20, =9.10, 4.00, -2.50,
2.00, 3.40, 6.70

8.40, 10.90, 4.70, 8.30, 9.40, 10.50, 11.00,
19.00, 15.40, 18.90

-20.00, 12.60, 5.30, -4.70, 6.10, 6.50, 6.90,
-9.20, -10.80, 4.30

5.60, 9.10, 21.40, 19.50, 28.40, 19.30, 24.60,
14.90, 71.30, 23.50

Determinant with MAT DET : -2549840202186
Determinant with MAT ODET : -2549840202186
Deviation : 0

MAT RANG x=a({i,j})[,n] outputs the rank of a square matrix. As with
MATDET or MAT QDET, you canselect any row and column offset. The
number of elements in the part matrix must be specified with n. This
creates a part matrix of the (n,n) type internally, starting from the position
ith row, jth column.

Abbreviation: m ra x=a([i,j])[,n].



Chapter 13 : New Features in GFA BASIC 3.5

521

Example:

DATA 1,2,3,4,5

DATA 3.2,4,-5,2.4,5.1

DATA -2,4,-5,2.4,5.1

DATA 5,-2.3,4,5.6,12.2

DATA 4.1,5.2,16.7,18.4,19.1
CLS

MAT READ a{)

PRINT “Source matrix”

PRINT

MAT PRINT a(),7,2

PRINT

PRINT “Rang from a(): *;
MAT RANG x=a()

PRINT Xx;

PRINT

PRINT “Rang from a{(l1,2),3 : “;
MAT RANG y=a(l,2),3

PRINT y;

PRINT

Gives:

Source matrix

1.00, 2.00, 3.00, 4.00, 5.00
3.20, 4.00, -~5.00, 2.40, 5.10
-~2.00, 4.00, =~5.00, 2.40, 5.10
5.00, =-2.30, 4.00, 5.60, 12.20
4.10, 5.20, 16.70, 18.40, 19.10

Rang from a(): 5
Rang from a(l1,2),3 : 2



522 GFA BASIC 3 - User Manual

MAT INV b()=a(} is used to determine the inverses of a square matrix.
The inverse of matrix a() is written to matrix b(), hence b() must be of the
same type as a(). '

Abbreviation: m inv b()=a().

Example:

DIM a(5,5),b(5,5),¢(5,5)
DATA 1,2,3,4,5

DATA 3.2,4,~-5,2.4,5.1

DATA ~2,4,-5,2.4,5.1

DATA 5,-2.3,4,5.6,12.2

DATA 4.1,5.2,16.7,18.4,19.1
CLS

MAT READ a()

PRINT “Source matrix a() : “
PRINT

MAT PRINT a(),7,2

MAT INV b()=a()

PRINT

PRINT “Inverse from a() : *
PRINT

MAT PRINT b(),7,2

PRINT

PRINT “Test b{()*a()>Unity matrix ? #
PRINT.

MAT MUL c()=b()*a()

MAT PRINT c(},7,2

Gives:

Source matrix a() :

1.00, 2.00, 3.00, 4.00, 5.00
3.20, 4.00, -5.00, 2.40, 5.10
-2.00, 4.00, -5.00, 2.40, 5.10
5.00, -2.30,  4.00, 5.60, 12.20
4.10, 5.20, 16.70, 18.40, 19.10



Chapter 13 : New Features in GFA BASIC 3.5 523

Inverse from af{)

0.00, 0.19, -0.19, -0.00, ~0.00
0.97, 0.02, -0.09, -0.10, ~0.17
0.71, =0.10, =-0.10, -0.01, -0.12
-1.65, ©0.17, 0.11, -0.06, 0.39
0.7y, -0.12, 0.04, 0.09, -0.17

Test b()*a()>Unity matrix ?

1.00, 0.00, 0.00, 0.00, 0.00
0.00, 1.00, 0.00, .00, -~0.00
0.06, -0.00, 1.00, .00, =~0.00
-0.00, -0.00, -0.00, .00, 0.00
-0.00, 0.00, 0.00, .00, 1.00

o = O O

Further new commands in Version 3.5

In addition to the commands described in Chapter 6, Version 3.5 of GFA
BASIC also implements three commands from the field of combinatorics,
two commands for the operation of DATA pointers,

Commands from the field of combinatorics

These commands are:

x=FACT(n)

y=VARIAT(n,k)

z=COMBIN(n,k)

x,y,X: aexp
nk: iexp

x=FACT(n) calculates the factorial (n!) of n and writes this value to the
variable x. The factorial of an integer number is defined as the product of
a multiplication with the first n integer numbers, with 0!=1.



524 GFA BASIC 3 - User Manual

y=VARIAT(n,Kk) calculates the number of variations of n elements to the
kth class without repetition, and writes this value to the variable y.

The number of variations of n elements to the kth class without repetitions
is defined as

VARIAT(n,k)=n!/(n-k)!
z=COMBIN(n,k) calculates the number of combinations of n elements to
the kth class without repetitions and writes this value to the variable z. The

number of combinations of n elements to the kth class without repetitions
is defined as

COMBIN(n,k) =n!/((n-k)!*k!)
Example:

X=FAXT(6)

y=VARIAT(6,2)
Z=COMBIN(6,2)

PRINT x,vy,2

~INP(2)

Gives:

720 30 15

Command for the operation of DATA pointers

_DATA
"DATA=

_DATA specifies the position of the DATA pointer. _DATA is 0 if the
next READ would result in an “out of data”.

_DATA= permits the setting of the DATA pointer to a value which has
been previously determined with _DATA.



Chapter 13 : New Features in GFA BASIC 3.5 525

Example:

DIM dp$%(100)
DATA 1,2,3,4,5,6,7,8,9
DATA 13,24,328,3242,1,0
i%=0
DO WHILE _DATA

dp% (i%)=_DATA

INC i%
READ a
LOOP
4
DEC i%

1

FOR j%=1% DOWNTO 0
_DATA=dp%(i%)
READ a
PRINT a

NEXT j%

~INP(2)

Gives:

0 1 3242 328 24 13 98 7 65 43 21

STE Support

Version 3.5E has some new commands specific for use on the Atari STE
computer:

STICK() The values for ‘i’ onthe STE can now be in the range 0 to 5.
0 and 1 act the same as normally found on the ST but 2 - 5 are exclusively
for the STE, and DO NOT check for the mouse at the same time. This
effectively speeds up the joystick polling.

STRIG(i) This is the eqivalent Joystick Button command.



526 GFA BASIC 3 - User Manual

The following commands are available for reading the STE’s paddle
controllers.

PADX() This command gives the X position of one of the 2 paddles
(icanbe Oor1).

PADY(@H)  The equivalent Y-Position.

PADT(@) This command reads the paddie buttons.

The following commands are available for reading the STE’s lightpen
socket.

LPENX The X position of a connected lightpen.
LPENY The Y position of a connected lightpen.

You now have the ability to detect which computer your GFA programs
are runpning on with the commands:

STE? Returns -1 for STE(or TT), otherwise 0.
T? Returns -1 for 68020 or 68030 Processor, otherwise 0.
DMACONTROL ctrlvar
ctrivar >0  Stop sound.
1 Play sound once.

3 Play sound in loop.
The following STE command allows sampled DMA sound to be played:

DMASOQUND beg,end,rate[,ctri]
beg>Sample start address.
end>Sample end address.
rate>Sample rate (0=6.25 kHz, 1=12.5 kHz, 2=25 kHz, 3=50 kHz).
ctrl>See command DMACONTROL, (above)

MWOUT mask,data
This command controls the STE-Interne Micro-Wire-Interface, and is
currently used for controlling sound.

MWOUT &H7FF,x
x=&X10 011 ddd ddd Set Master Volume



Chapter 13 : New Features in GFA BASIC 3.5 527

000000 -80dB
010 100 -40dB
101 xxx 0dB

The value of the last 5 Bits is eqivalent to HALF of the volume in dB.

x=&x10 101 xdd ddd
x=&x10 100 xdd ddd
x=&x10 111 xdd ddd

x=&x10 110 xdd ddd

00000 -40dB
01010 -20dB
101xx O0dB

The last 4 Bits*2>dB

x=&X10 010 xxd ddd

x=&X10 001 xxd ddd
0000 -12dB
0110  0dB (flat)
1100 +12dB

x=&X10 000 xx0 ddd

Set Front Left Channel
Set Front Right Channel
Set Rear Left Channel
(Reserved)

Set Rear Right Channel
(Reserved)

Set Treble
Set Bass

Set Mix (input select)

000 Off (-100 Db with volume at -80dB)
010 Mix GI sound (normal ST)

011 Reserved
100 Reserved

Example:

MWOUT &H7FF,&X10000000010 Switches the ST's sound off.

In the following example, try each of the DMASOUND lines for different

effects.

PRINT STE?
n%=360*32
DIM a| (n%)

! Prints -1 if an STE



528 - GFA BASIC 3 - User Manual

' DMASOUND V:a|(0),V:a|(n%),0
+ DMASOUND V:af(0),V:a|(n%),1

'/ DMASOUND V:al (0),V:a|(n%),2 ™
DMASOUND V:a|(0),V:a|(n%),3,3
FOR i%=0 TO n%
a|(i%)=128+SINQ(1i%*i%/7200)*127
NEXT i%
REPEAT
UNTIL MOUSEK
DMACONTROL 0
Editor
For the STE, MERGE’ing Basic files will stop when a right arrow,
(Control-D), is found at the start of the line.
N

SETCOLOR

The STE’s enhanced colour is now also supported, and the available 4096
colours can be accessed by use of SETCOLOR as normal, but the values
can now be in the range of O to 15, e.g.:-

SETCOLOR 2,13,13,13



INDEX

-

0
*

+ (Strings)
+ - (Sign)
+-%/"
<=>=

<>

el |

A

About This Manual
ABS

ABSOLUTE
ACHAR

ACLIP

ACOS

ADD

ADDY()

ADDRIN

23,233
23
22,23
23

23
233
85
39, 46
79

70

70

82

83

34

80

81

42

23

60

88
47
342
331
95
101
103
369

ADDROUT
AES-LIBRARIES
AFTER
AFTER CONT
AFTER STOP
ALERT
ALINE

AND

AND()
APOLYTO
Appendix

Application Block Structure

(USERBLK)
Applications Library
APPL_EXIT
APPL_FIND
APPL_INIT
APPL_READ
APPL_TPLAY
APPL_TRECORD
APPL_WRITE
ARECT
Arithmetic Operators
ARRAYFILL
Arrays
ARRPTR
ASC()

ASCII Table

ASIN

Assignment Operator
ATEXT

ATN

369
369
230
230
230
323
333

74
110
336
443

376
378
380
379
378
378
380
380
379
335
70
30
26
46
32
478
95
84
343
95



530

GFA BASIC 3 - User Manual

B

BASEPAGE

BCHG

BCLR

BGET

BINS$(

Binary

BIOS

BIOS Table

Bit Image Block Structure
(BITBLK)

Bit operations

BITBLT

BLOAD

BMOVE

Bomb Error Messages

BOUNDARY

BOX

BPUT

BSAVE

BSET

BTST

289,

Byte by Byte Input and Output

BYTE()
BYTE(}

C

C:

CALL
CARD(
CARD{}
CASE
CFLOAT()
CHAIN
CHAR({}
CHDIR
CHDRIVE

63

106

106
165
34
34
327
457

376
105
337
165

62
483
261
276
165
165
106
106
180
112

42

359
363
112

42
200

38
240

42
152
152

CHR$(
CINT()
CIRCLE
CLEAR
CLEARW
CLIP
CLOSE
CLOSEW
CLR

CLS
COLOR
Commands and Functions

32
38
277
48
316
269
162
313
48
281, 445
251
99

Communicating with Peripherals 180

Comparison Operators

Compatibility with
GFA-BASIC2

Concatenation Operator

CONT

CONTRL

COos

COSQ

CRSCOL

CRSLIN

Cursor Key Pad

CvVD

CVF

Cvi

CVL

Cvs

D

DATA

Data Commands

Data Input and Output
DATES$

DATES=

DEC

Decision Commands

80

443
79
200
346
95
95
138
138

36
36
36
36
36

148
148
147

57

57
100
195

TN



Index 531
DEFAULT 200 E
DEFBIT 20
DEFBYT 20
DEFFILL 258 EDIT 236
DEFFLT 20  Editor 8
DEFFN 222  Editor Error Messages 485
DEFINT 20 ELLIPSE 277
DEFLINE 262 ELSEIF 197
DEFLIST 22 END 236
DEFMARK 256 ENDFUNC 220
DEFMOUSE 254 ENDSELECT 200
DEFNUM 137 EOF( 162
DEFSTR 20 EQV 78
DEFTEXT 264 EQV( 110
DEFWRD 20 ERASE 48
DEG 95 ERR 228
DELAY 235 ERR$ 228
DELETE 54 ERROR 228
Deleting and Exchanging 48  Error Handling 224
DFREE() 152 Error Messages 481
DIM - 28 EVEN 89
DIM? 28  Event Library 381
DIR 154  Event Management 293
DIR$ 152 EVERY 230
Directory Handling 152 EVERY CONT 230
DIV (y) 70, 101,444 EVERY STOP 230
DIV() 103 EVNT_BUTTON 382
Do 210 EVNT_DCLICK 388
DO UNTIL 211 EVNT_KEYBD 381
DO WHILE 211 EVNT_MESAG 385
DOUBLE({} 42 EVNT_MOUSE 384
DOWNTO 206 EVNT_MULTI 387
DPEEK() 40 EVNT_TIMER 386
DPOKE 40 EXEC 366
DRAW 272 EXIST 159
DRAW 270 EXITIF 213
DRAW() 272 EXP 94
bDuMpP 246  Exponent 70



532

GFA BASIC 3 - User Manual

F

FALSES6
FATAL228
FGETDTA
FIELD AS
FIELD AT

File Management
File selector Library
Files

FILES
FILESELECT
FILL

Fill Pattern Table
FIX

FLOATY{}

FN

FOR

FORM INPUT
FORM INPUT AS
Form Library
FORM_ALERT
FORM_BUTTON
FORM_CENTER
FORM_DIAL
FORM_DO
FORM_ERROR
FORM_KEYBD
FRAC

FRE
FSEL_INPUT
FSETDTA
FSFIRST
FSNEXT
FULLW
FUNCTION
Function Keys
Functions

156
177
177
150
414
159
154
325
280
480
9%
42
222
206
130
130
397
399
402
401
398
397
400
401
920
61
414
156
157
157
316
220
13, 146
214

Fundamentals
Further Control Commands
Further Editing Commands

G

GB

GCONTRL

GDOS?

GEMDOS

GEMDOS Table

GEMSYS

General Graphics Commands
GET

GET#

GFA BASIC 3.5 New Features
GFA BASIC Error Messages
GINTIN

GINTOUT

GOSUB

GOTO

Grabbing Sections of Screen
GRAF_DRAGBOX
GRAF_GROWBOX
GRAF_HANDLE
GRAF_MKSTATE
GRAF_MOUSE
GRAF_MOVEBOX
GRAF_RUBBERBOX
GRAF_SHRINKBOX
GRAF _SLIDEBOX
GRAF_WATCHBOX
Graphics

Graphics Definition Commands
Graphics Library

Graphics Origin
GRAPHMODE

12
11

369
369
352
327
446
N
268
286
178
487
481
369
369
215
234
285
405
406
410
412
411
406
403
407
409
408
249
251
403
269
266



Index 533
H J
HARDCOPY 189  Joystick 183
HEX$0 34
Hexadecimal 34
HIDEM 186
HIMEM 63 K
HLINE 334  Keyboard and Screen Handling 125
HTAB 138 KEYDEF 146
KEYGET 142
KEYLOOK 142
I KEYPAD 140
KEYPAD 445
Icon Data Structure ICONBLK) 375  KEYPRESS 145
IF THEN ELSE ENDIF 195 KEYTEST 142
IMP 77  KEYxxx Commands 140
IMP() 110 KILL 164
INC 100
INFOW 316 L
INKEY$ 126
INLINE 65 L 329
INP# 167  LEFT$ 114
INP() 180 LEN 117
INP?2() 180 LET 59
INPAUXS 182 LINE 270
INPMID$ 182  LINE INPUT 129
INPUT 127  LINE INPUT# 169
Input and Output 125  Line Style Table 480
INPUT# 169  Line-A Calls 330
INPUTS$() 168  LINE-A Variables table 471
INSERT 54 LIST 239
INSTR 118  LLIST 239
INT 90 LOAD 237
Integer Arithmetic 99 LOC( 162
Interrupt Programming 230 LOCAL 219
INTIN 346 LOCATE 131
INTOUT 346 LOF() 162
Introduction 1 LOG 94
INT{} 42 LOGI10 94



534 GFA BASIC 3 - User Manual

Logical operators
LONG{}
LOOP

LOOP UNTIL
LOOP WHILE
Loops

LPEEK
LPOKE
LPOS(
LPRINT
LSET

L~A

M

MALLOC
Mathematical Functions
MAX

Memory Management
MENU

MENU KILL

Menu Library
MENU m$()

MENU OFF
MENU()

Menu Bar (in Editor)
MENU_BAR
MENU_ICHECK
MENU_IENABLE
MENU_REGISTER
MENU_TEXT
MENU_TNORMAL
MFREE

MID#$ (as function)
MID$ (as instruction)
MIN

MKD$

MKDIR

MKF$

72
42
210
211
211
208
40
40
189
189
122
344

66
87
92
61
309
369
389
307
309
296
13
389
389
390
391
391
390
66
115
123
92
36
158
36

MKI$

MKL$

MKS$

MOD

MOD(

MODE
MONITOR
MOUSE

Mouse and Joysticks
MOUSEK
MOUSEX
MOUSEY
MSHRINK

MUL

MUL

MULQ

Multiple Branching

N

NAME AS
NEW
NEXT

Non-BASIC Routine Calls

NOT
Numerical Functions
Numeric Key Pad

O

OBJC_ADD
OBJC_CHANGE
OBJC_DELETE
OBJC_DRAW
OBJC_EDIT
OBJC_FIND
OBJC_OFFSET
OBJC_ORDER
Object Library

36

36

36

70

103

136

362

183

183

183

183, 445
183, 445
66

444

101

103

199

164
237
206
359
73
87
11

392
396
392
393
395
393
394
394
392

N



Index 535
Object Structure 372  OUT# 167
OB_ADR 374  OUT?) 180
OB_FLAGS 374
OB_H 374 P
OB_HEAD 372
OB_NEXT 372 Parameter Block Structure
OB_SPEC 373 (PARMBLK) 377
OB_STATE 374 PAUSE 235
OB_TAIL 372 PBOX 276
OB_TYPE 373 PCIRCLE 277
OB_W 374 PEFEK() 40
0B_X 374 PELLIPSE 277
OB_Y 314 Pl 56
OCT$( 34 PLOT 270
Octal 34 POINT( 279
OoDbD 89  Pointer Operations 39
ON BREAK 225 POKE 40
ON BREAK CONT 225 POLYFILL 278
ON BREAK GOSUB 225 POLYLINE 278
ON ERROR 226 POLYMARK 278
ON ERROR GOSUB 226 POS 138
ON GOSUB 199 PRBOX 276
ON MENU 294 PRED 116
ON MENU BUTTON GOSUB 300 PRED() 102
ON MENU GOSUB 307 PRINT 131
ON MENU IBOX GOSUB 304 PRINTAT( 131
ON MENU KEY GOSUB 302  PRINT AT() USING 133
ON MENU MESSAGE GOSUB 305 PRINT TAB 138, 445
ON MENU OBOX GOSUB 304  PRINT USING 133, 444
OPEN 160  PRINT# 170
OPENW 313 PRINT#USING 170
Operator Hierarchy 85  Printing 189
Operators 69 PROCEDURE 215
OPTION BASE 29  Procedures and Functions 214
OR 75  Program Structure 193
OR( 110 Program Tracing 242
Other Commands 233 PSAVE 238
OTHERWISE 200 PSET 332
out 180  PTSIN 346



536 GFA BASIC 3 - User Manual

PTSOUT
PTST()
Pull-down Menus
PUT

PUT#

Q

QSORT
QUIT

R

RAD

RAND
RANDOM
Random Access
Random Number Generation
RANDOMIZE
RBOX

RCALL
RC_COPYTO
RC_INTERSECT
READ

RECALL
RECORD
RELSEEK

REM

RENAME AS
REPEAT
RESERVE
Reserved Variables
Resource Library
RESTORE
RESUME
RESUME NEXT
RETURN
RETURN x

346
332
306
286
178

52
241

95

97

97
176

97

97
276
364
322
320
148
172
178
174
233
164
208

64

56
425
148
226
226
215
220

RIGHTS$
RINSTR
RMDIR

RND

ROL

ROR

ROUND

RSET
RSRC_FREE
RSRC_GADDR
RSRC_LOAD
RSRC_OBFIX
RSRC_SADDR
RUN

S

SAVE

Scan-code Table
Scrap-Library
Screen Dumping
SCRP_READ
SCRP_WRITE
SDPOKE

SEEK

SELECT
Sequential Access
Serial (RS§232) and

MIDI Interfaces

SETCOLOR
SETDRAW
SETMOUSE
SETTIME
SGET

SGN

Shell Library
SHEL_ENVRN
SHEL_FIND

114
119
158

97
108
108

91
122
425
426
425
427
427
240

238
477
413
189
413
413

40
174
200
167

182
251
272
185

57
285

88
428
431
431



Index 537
SHEL_GET 429 SYSTEM 241
SHEL_PUT 430  System Routines 327
SHEL_READ 428
SHEL_WRITE 428 T
SHL 108
SHOWM 186 TAB 138, 445
SHR 108 TAN 95
SIN 95  TEXT 282
SINGLE{} 42 Text Data Structure (TEDINFO) 375
SINQ 95 TIME$ 57
SLPOKE 40 TIME$= 57
SOUND 190 TIMER 58
Sound Generation 190 TITLEW 316
SPACE$ 120 TOPW 316
SPC 120 TOS Error Messages 484
Special ASCII Characters 479 TOUCH 162
Special Commands 59 TRACES 244
Special Commands 20 TRIMS 117
Special VDI Routines and GDOS 350  TROFF 242
SPOKE 40 TRON 242
SPRITE 283  TRON proc 244 .
SPUT 285 TRON# 242
SQR 93 TRUE 56
SSORT 52 TRUNC 90
STEP 206 TYPE 3
STICK 187  Type transformation k) |
STICK() 187
STOP . 236
STORE 172 U
STR$() 33 UNTIL 208
STRIG() 187  UPPERS$ 121
String Manipulation 113 Using GFA BASIC 3
STRING$ 120 For The First Time 6
SUB 101
SUB() 103
succC 116 V
SUCCY) 102 Vv 46
SWAP 560 VALQ 35
SWAP() 111 VAL?( 35



538 GFA BASIC 3 - User Manual

VAR -parameters

Variable types

Variables and Memory
Management

VARPTR

VDI Routines

VDIBASE

VDISYS

vOID

VQT_EXTENT

VQT_NAME

VSETCOLOR

VST _LOAD_FONTS

VST _UNLOAD_FONTS

VSYNC

VT 52 Control Codes

VTAB

V_CLRWK

V_CLSVWK

V_CLSWK

V_OPN(V)WK Input
Parameters Table

V_OPNVWK

V_OPNWK

V_UPDWK

V~H

W
W:
WAVE

217
23

23
46
345
349
347
60
357
358
252

356

356
288
476
138
354
354
353

473
354
383
354
353

329
190

WEND

WHILE

Wildcards

Window Commands
Window Library

Window-related Commands

WINDTAB
WIND_CALC
WIND_CLOSE
WIND_CREATE
WIND_DELETE
WIND_FIND
WIND_GET
WIND_OPEN
WIND_SET
WIND_UPDATE
WORD()
WORK_OUT Array Table
WORK_OUT()
WRITE
WRITE#
W_HAND
W_INDEX

X

XBIOS
XBIOS Table
XOR

XORY)

209
209
151
312
416
320
317
424
417
416
418
423
418
417
421
423
112
474
349
131
170
315
315

327
460

76
110









