TYNE & WEAR

R A TS
EASSL S . S

ATARI ,IKS—BIT

USER GROUP

{ Issue 24 J

November/December 1996

TWAUG NEWSILEBTTRR

Publishing

TWAUG NEWSLETTER is
published bl-monthly, around
mid-month of (Jan, Mar, May, July,
Sept and Nov.)

It is printed and published by
TWAUG, no other publishing
company s invalved,

Opinion expressed by authors, in
this newsletter, is their own opinion
and do not represent the views of
TWAUG.

The Atan Fuji symbaol and Atari
name are the trademarks of Atari

Corporation. The Fuji symbol on the
front cover , Is for informational
purpose only,

TWAUG is entirety independent and
is in no way connecled with Atarl

Corporation or any associale
company.

Do you need to Contact anyone at
TWAUG lor a chal then phone

Alan Turnbull on: 01670 - 822492
of Max on: 0181 - 586 6795

Our Postal address:
TWAUG

¢/o J.Malthewson

80 George Road
Wallsend, Tyne & Wear,
NE28 6BU

A Reminder

| From this month "November our old

PO Box address has been closed.
As mentioned in our last wo issuas,
we closed the PO Box because we
didn’t get the service wa had
expectad.

Over the last four years, that we
used the PO Box, we had a numbar
of unexplained occurences where
our mail had bean put inko other
boxes and we never recelved it, We
complained on numerous occasions,

| but things never changed.

All we wanted was thal the mall
addressed to our PO Box was put
into the cormect box.

This doesn't paint a nice picture

| about our posl offices, bul we have

had enough, and yet we still have 1o
usa tham.

S0 please make sure you address all
your mall for TWAUG to the address

{ shown in the opposite column.

Thank you for your halp.

e | John's address

TWaAUG NEWSILE

BITTERIR

[} re"—.v)

s

PUBLISHING!

This new look newsletter is set
up with the Desktop Publishing
program "TIMEWORKS 2”, on
the Mega | ST with 4 meg
memory. Files are converted to
ASCII and transferred to the ST
with TARI-TALK. Those files are
then imported into the DTP and
printed with the Canon BJ-30
Bubble Jet Printer at 360 dpi, with
excellent result.

TWAUG

NEEDS @ YOU

ISSUE CONTENT

TWAUG subscriptions

Home ... 1 Copy £2.50
-DO- ... 6 Copies.. £12.50
Europe 1 Copy £2.50
-DO- ... 6 Copies.. £13.50
Overseas... 1 Copy £3.50
- DO -- ... 6 Copies.. £16.00

Issue 25 is due mid-January 97

REMINDER & NEWSccooerinrncnene 2
CONTRIBUTIONS & CONTENT 3
DON’T LET BASIC BUG YOU
Tutorial in Basic by Mike Bibby 4
GRAPHICS DISPLAY LIST....cccocveeenneee
by Mike ROWEcoeeerririieciireerieenne 10
BIT WISE.....ocoiiiiiiiienienieceneeeennneens
by Mike Bibbyc.cccecviiiiniiriniecrrennen. 17
MEMORY MONITORcccoovvmrrvnecnnnnn
Program is on disk......ccccceevvreceriecnrenene 26
SALES SECTIONccoocvciiecenrencannens 27
ARTISTIC IMPRESSIONccceceennnen.
BY MaX..ooiooiiiiieiinrircirccsreecsesenecnne 28
DISK CONTENTccoeiirirncinvernneeneenne 29
BAD NEWS REPORTccccenvveenne. 29
USER GROUPS ADVERTSccccccne.e.
for LACE & OHAUGccouvnvreniinnnn 30
FESTIVE SEASON GREATINGS...........
from TWAUG to members........cccceueee 31
ADVERTISING.........cccceovvvmmrrncineccnnenns
MICRO DISCOUNTccccervivrmeivincnns 32

November/December 1996

EO.Y
e
<
0=

C

“1“‘ /fQj 7 < 7\)LF'\D_‘\
ANLE /\ §/¢Jl L ot

DON’T LET BASIC BUG YOU

Part Vil of MIKE
BIBBY’s guide
through the micro
jungle

told you a lie in last issue when |

said we’'d be continuing with

loops! Before that we've an

interesting diversion into the
world of strings.

Strings are simply groups of
characters, letters, numbers or
punctuation marks and so on,
“strung” together. The microremems-
bers them as a group. More often
than not,
they’re words
or sentences
as in:

PRINT “This is a string”

Notice the quotes - they're the way
we signal to the Atari that it's a string

loopy over

PRINT ” This is a string”

will give different outputs, since the
second has two spaces between the
quotes and the first word.

We saw that we can label strings
with variables as in:

STRINGS$ ="This is a string”

The rule for string names are
identical to those for numeric
variables, except that string variable
names
must end
with a §.

Going ..
the most
important thing about strings is that
you have to tell the micro in advance
the maximum size they're going to
be. That is, you have to DiMension
them as in:

30 DIM STRINGS$(6)

In this case, STRINGS$ can
only ever be six characters
long. Of course, it can be under six
tong, it just can’t be over six, as
Program | illustrates.

We;]re /Sealing If you run it, you'll see the
with. Also, = following output:
whatever’s t g
between the s rl n S e 12345
quotes is reproduced exactly so: 123456

123456

PRINT “This is a string”
and:

123

t November/December 1996

TWAUG NEWSLIBTTIBIR

DON’T LET BASIC BUG YOU continued

| think you can guess what's
happened to the 1234567 you
assigned to STRINGS$ in line 80 - it
was one character too long, so the
Atari simply ignored the last
character.

10 REM PROGRAM |
20 PRINT CHR$(125)
30 DIM STRING$(6)
40 STRING$="123456"
50 PRINT STRINGS
60 STRING$="123456"
70 PRINT STRINGS
80 STRING$="1234567"
90 PRINT STRING$
100 STRING$="123"
110 PRINT STRING$

Program |

However, the micro doesn't mind the
string being shorter than maximum
size, as shown by its accepting
12345 quite happily.

And just as you can lengthen strings,
S0 you can shorten them, as shown
by the assignment of 123 in line 100.

After running the program, enter:

PRINT STRING$

and you'll fing that it's 123, as the
program left it. Now enter:

STRING$=""

- Notice that the two quotes go directly
. side by side, with no space between.
. Then enter:

PRINT STRING$

- This time instead of printing 123 as
. the value of the string, absolutely

. nothing appears on the screen save
i for the READY prompt. This is

. because the value of STRINGS is

. absolutely nothing since:

STRINGS$=""

. has absolutely nothing between the
~quotes, not even a space. This string
. is called the null string and we use it
. when we wish to wipe out, or nullify,

- astring.

To see some more aspects of strings
- on the Atari, assign:

STRING$=~"HELLO"

and then enter:

PRINT LEN(STRINGS$)

You should receive the answer:

5

¢ You see, LEN() is a function that

. tells you how long a particular string
. Is. We've used it with a string

. variable, but you can, if you wish,

- use It with a string in quotes as in:

PRINT LEN(“ABCD”)

~ This might seem a bit cockeyed 1o

November/December 1996

TWAUG NEBWSLETTER
DON’T LET BASIC BUG YOU continued

you, though. Why do we need LEN
since if the string’s in quotes you can
see how longitis, and f its a
variable you've already dimensioned
it? Don’t forget, though, that a string
doesn’t have to be the size you've
dimensioned it, it can be less.

Often, when you're using INPUT with
'a string variable, you won'’t be too
sure how long the string will be. LEN
lets you find out so you can, for
‘instance, aliow for different lengths in
your screen layout.

Betore we leave LEN, try to find the
length of the null string with:

PRINT LEN(™)

You'll receive the answer zero,
proving that the null string consists
of absolutely no characters
whatsoever.

Incidentaily, we’ve only been able to
do all this assigning to STRINGS$
because we've dimensioned it when
we ran Program 1. If we tried to
assign to a new variable as In:

TEST$~"HELLO”

| We get an error message, since
TEST$ hasn't been dimensioned.

Anyway, at present STRING$ should
“hold the value HELLO. Try entering
the following:

PRINT STRING$(1)
and you'll see HELLO appear. Now

Sy

PRINT STRING$(2)

~ and ELLO should arrive.

PRINT STRING$(3)

. will give you LLO, while:

PRINT STRING$(4)

 will produce LO.

No prices for guessing what:
PRINT STRING$(5)

gives you!

. What's happening is that by following
. STRINGS with the brackets, only

part of the string is printed. It's as if

- we're taking just a slice of the string.

. The start of the slice will be the
. character whose position in the

string is given by the number in

" brackets. It finishes at the end of the
. string.

~ So STRING$(3) would give us from
. the third letter of STRINGS$ to the

- end, giving LLO. With STRINGS$(1)
. the whole string is printed out since
. the 1 means the slice starts at the

. first letter. On the other hand

. STRING$(5) gives us a single

character slice, since the fifth letter

- of the string is also the last.
. See what happens when you try:

PRINT STRING$(6)

6 Novembes/Deocember 1996

TWAUG NEWSLETTIER
DON’T LET BASIC BUG YOU continued

Program Il gives a graphic example
of this slicing using a FOR...NEXT
loop. Here the loop variable START
decides the starting position ot the
slice. Each time through the loop the
slice starts further up the string.

10 REM PROGRAM i

20 PRINT CHR$(125)

30 DIM STRING$(10)

40 STRING$="ABCDEFGHIJ)”

50 FOR START=1 TO 10

60 PRINT STRINGS$(START)

70 NEXT START

Program Il

Let’s look at this in detail. The first
part of our program clears the
screen then sets STRINGS equal to
ABCDEFGHIJ. We then enter the
loop.

The first time through START has
the value 1 so line 60:

60 PRINT STRING$(START)
is in effect:

60 PRINT STRING$(1)

If you've been following this you'll
see it means we can print out from
the first character of STRINGS to the
last. That is it prints:

ABCDEFGHIJ
The next time through the loop

 though START is 2, so line 60 is in
~ effect:

60 PRINT STRING$(2)

: $0 we can start at the second

character of STRINGS and continue

~ to the end to give:

BCDEFGHIJ

. On the next cycle, START is 3, line
. 60 being:

60 PRINT STRING$(3)

~ which gives you:

CDEFGHIJ

: and so on.

Finally, START has the value 10, so
line 60 prints out the slice from the
10th character to the end - the single
letter J.

Actually we can slice off any part of
a string we want by giving two

~ numbers in brackets separated by a

comma. The first number specifies
the start of the slice and the second
the finish.

- Enter the following (assuming you've
run Program II):

PRINT STRING$(2,6)

- You'll get back:

BCDEF

. Remember, STRINGS$ is ABCDEFG-
. HWJ, so STRING$(2,6) gives us the

November/December 1996

TWAUG NEWSLEBTTEIR

slice with its second letter B, and
finishing with its sixth letter F. Notice
you get five letters, not four that 6-2
might lead you to expect.

Program Ill allows you to experiment
with slicing STRINGS. Initially
STRINGS is printed out, then you'll
be prompted for the number of the
character you want to start from, and
the number you want to finish with.

The slice you've requested will be
i printed out, and the process

10 REM PROGRAM III

20 PRINT CHR$(125)

30 DIM STRING$(10)

40 STRING$="ABCDEFGHIJ*
50 PRINT STRINGS$

60 PRINT "START";

70 INPUT START

80 PRINT "FINISH";

90 INPUT FINISH
100 PRINT STRING$(START, FINISH)
110 PRINT

| 120 GOTO 50
|

Srogam il

.- speated. (You can escape from the
t'oop by pressing the Break key.)

| “lay around with various slices until

! you're sure you understand how they

{ operate, then have a look at how

DON’T LET BASIC BUG YOU continued

Program Il actually works. Lines 60
and 80 prompt for an input value for
the aptly named numeric variables
START and FINISH. Line 100:

100 PRINT STRING$(START,FINISH)
then gives us exactly the slice we

~ want.

For instance, if we wanted a slice

~ from the second character to the

sixth, we would input 2 for START
and 6 for FINISH. Line 100 then
becomes effectively:

100 PRINT STRING$(2,6)

. which gives us the slice we require,

starting at the second character of
STRINGS$ and finishing with the
sixth.

Program IV uses this slicing
technique to give us the inverse of
Program Il by printing out the first
character of the string, then the first

two, followed by the first three and

SO on.

The loop formed by lines 50 to 70
does the actual printing out. The
slice always starts at the first
character of the STRINGS so the

¢ first number inside the brackets in

line 60 is fixed at 1:

60 PRINT STRINGS$(1,FINISH)
FINISH varies from 1 to 10

throughout the loop, so the end of

our slice gradually gets further and

J Novembes/December 1996

TWAUG NEWSLETTIRR

DON’T LET BASIC BUG YOU continued

10 REM PROGRAM IV
20 PRINT CHR$(125)

30 DIM STRING$(10)

40 STRING$="ABCDEFGHIJ’
50 FOR FINISH=1 TO 10

60 PRINT STRINGS$(1,FINISH)
70 NEXT FINISH

Program IV

further along STRINGS$, giving us our
triangie of letters.

After you've run Program |V enter:
PRINT STRINGS$(1,LEN(STRINGS$))

As you'll see, the whole of STRINGS
is printed out. The reason is that
LEN(STRINGS) gives us 10, the
length of STRINGS. This means that
what we've entered above boils
down to:

PRINT STRING$(1,10)

Since STRINGS starts at its first
character and finishes with the tenth,
the whole of the string is printed out.

Finally, take a look at Program V.
We're using the fact that:

PRINT STRING$(5,5)

prints out the fifth character of
STRINGS, since the slice starts and
ends with the fifth character. instead
of specitying a number, however,
we've made the loop variable,
LETTER, which ranges from 1 to 10,

.| 10 REM PROGRAM V
‘| 20 PRINT CHR$(125)
| 30 DIM STRING$(10)
| 40 STRING$="ABCDEFGHIJ®

| 50 FOR LETTER=1 TO 10
60 PRINT STRINGS(LETTER,LETTER)

| 70 NEXT LETTER

Program V

* so line 60 reads:

- 60 PRINT STRINGS(LETTER,LETTER)
- this will pick out and print each letter
. of STRINGS in turn, as you'll see

. when you run it.

By the way, we could have written

~ line 50:

50 FOR LETTER = 1 TO LEN(STRING
$)

- Since LEN(STRINGS) Is 10, this is
- equivalent to the original line 50. It

has the advantage that, if you

. missed out one of the letters of

STRINGS$ when you typed in line 40,

. the LEN(STRINGS$) automatically

compensates for the error,
calculating the true length.

Well, perhaps | didn't mislead you
too badly after all - we've used quite

- afew loops this month. And in the
. next issue there’ll be even morel

November/December 1996

v

L N

ATRT Y 0T A T PTERN S AT TR A A N TS
[i 'V\‘///;/\,‘ o .’l/\\'lr ‘P\Jr ?J\T\V\‘/Z\SJ\ Toagvn i\'\ﬁ‘y‘ﬂ}‘JrD

AT S ~L §
7R ED) ISR B VAVEIN YL, FR) SV RO R S, SN

GRAPHICS - DISPLAY LIST

CUSTOM display list,
mixing several modes on
the same screen, can
quickly and easily give
your display a professional touch.

There are two waus to create one.
Firstly you can modify a standard
display list created by the operating
system after a graphics call.
Secondly you can create an entirely
new list from scratch, or even have
several display lists in memory at the
same time.

Before you start to construct your list
there are several problems to be
considered.

If you are modifying an existing
display list it is safest to use the
graphics mode that takes up most
memory in your final display list as a
starting point for your modified list.

Also try to avoid your screen
memory crossing a 4k boundary -4k,
8k, 12k, and so on to 48k - as it will
cause problems. If you must cross a

I
|
i
|
\
|
\

border, say if an 8k mode is used,
then when the screen reaches the
boundary you need to insert another
load memory scan - see last issues
article - in the display list to point to
the start of the next 4k block of
screen RAM.

Different graphics modes take up a
different amount of screen RAM per
line. If the operating system expects
a line to take 40 bytes and in the
modified list a line takes only 20,
then the data below this line will be
shifted half way across the screen.

There are two ways of avoiding
problems with this. First you can use
“dirty programming” and design your
new lines in groups of lines which
add to make the correct number of
bytes - see examples later.

The other way is to avoid using the
operating system for Drawto, Plot or
Print commands and poke directly to
screen memory.

If you are to use Basic commands
such as Plot, Drawto or Print on the
screen you may need to fool the OS
into thinking it is drawing on the
correct screen.

This is done by poking location 87 '
($57) with Basic graphics mode of
the line involved.

Second is the problem of Basic

10

November/December 1996

TWAUG NEWSILEBTTIER
GRAPHICS - DISPLAY LIST

checking each command to check up per line in each mode is therefore
that it is in the range allowed by the = needed as it is for the second point
graphics mode it thinks Is in use. . above.

Basic Antic Bytes per

There are ways o e

0 2 40
This can commonly lead to Basic 1 6 20
thinking it is going to print off the

screen and giving an error when you 2 7 20

know full well that it is on the screen. 3 8 10

This is soived by tampering with 4 9 10

locations 88 and 89. These contain 5 10 20
the location of the top left corner of

screen memory and the OS uses 6 i 20

these to calculate the legality of a 7 13 40

8 15 40

. 9 15 40

round those dirty « = «

screen command. ’ " 15 40

The top comer can be calculated by - On to some examples. The simplest
PEEK(88)+PEEK(89)*256> If these ~ Way 10 write a modified list is shown
locations are poked with the memory M Program |. This will add two lines

location of the start of the line to - for a larger, coloured title to the top

which you want to plot or print, then ©f @ Graphics 0 screen.

the start of this line becomes " F

position 0,0 and therefore within
legal range.

Knowing the number of bytes taken

programming techniques

November/Docember 1996 1 1

TWAUG NEWSILEBITTIRIR
GRAPHICS - DISPLAY LIST

It works, but again it is dirty
programming. The maximum number
of scan lines allowed in a display list
is usually 192. This display list is
more than 192 scan lines long.

In reality Antic can cope with slightly
more lines than the theoretical
maximum. | have found that an extra
24 usually is stable, but more than
this and the screen will roll,

See last issue’s article for a table of
the number of scan lines for each
mode line.

A better programming technique
would be to calculate the number of
scan lines being used and make
sure that the total is 192 or less. This
: will usually involve moving the end of
the display list and rewriting it as in
Program Il.

As can be seen, the end of the
display list is indicated by a humber
65-$41. The two humbers following
this are the location of the start of
the display list in the order Low Byte,
High Byte. Theretore the first
number can be found by PEEK(560)
and the second by PEEK(561), as
these should be the same.

The third way is to create your own
list from scratch. This is how virtually
all machine code programs get their
display and one of the reasons that

they can be so spectacular.

If you avoid using the OS to draw to
the screen then many of the
limitations of custom dispiay lists
also disappear. However the other
side of the coin is that the OS no
longer does the hard work for you
and the programming becomes more
difficult.

Program lii demonstrates both these
points but to keep it short does not
do justice to the capabilities of your

-~ Atari,
©As | mentioned previously, Graphics

modes 12-15 are only directly
available on the XL and XE Ataris.
However, all the machines are
capabile of displaying these modes.

Many commercial games in fact use
Graphics 12, Antic mode 4. The two
most useful of these modes, 12 and
15, can be obtained using programs
iVand V.

Program VI is just a little bit of lunacy

 for light relef.

This is a brief overview of custom
display lists and gives some idea of
how they can improve the
appearance of a simple screen.

However, to bring it to life you can
use Display List interupts to achieve
numerous special effects.

12 Novembee/Docember 1996

SN S A AR | NI
N G N

PR

GRAPHICS - DISPLAY LIST

AN

SRS IINEAR

N iyl L LS K

n interrupt, in computer
terms, is when the
computer temporarily stops
executing the main
program - Basic, machine code or
any other language - and executes
another program in memory before
returning to the original program.

There are several types of interrupt
which are useful for different
functions and they can be divided
into two types.

NMI - non-maskable interrupts -
cannot be disabled by the 6502
processor and include vertical blank
interrupts - VBI - display list
interrupts - DLI - and Reset.

The VBI occurs during the screen
blank after drawing one screen and
before starting the next. These occur
every 50th of a second.

A DLI can occur after each line is
drawn on the screen and takes place
in the small delay between drawing
each line on the screen.

Don’t panic, but interrupts must
be in machine code...

i
i
\
\
i

The other type of interrupts are
called IRQ - interrupt request. These
are maskabie, which means they can
be disabled by the 6502 processor.

There are several timer interrupts,
peripheral and serial bus input/
output interrupts, the Break key and
6502 Break instructions.

NMis are handled by the Antic chip
while IRQs are handled by the Pokey
and PIA chips.

But we are only interested in DLIs for
now. A DLI can occur every time a
line is drawn on the screen.
Therefore, because it enables you to
have a small program running each
time a DLI occurs, it means you can
change various parameters as the
screen is drawn.

The result of this is that you can
change, for example, the colour of
any of the registers part way down
the screen once or many times.

This allows many more colours to be
displayed at once. Other possible

uses are to change the character set
in use part way down, change sound

November/December 1996

13

TWAUG NEWSLETTER
GRAPHICS - DISPLAY LIST

or music, move players or split
players several times, fine scrolling
in different directions - such as in
Frogger - and different screen
widths. Any of these without
interfering with your main program at
all.

All this sounds too good to be true
and there has to be a
drawback. Well, if you are
purely a Basic programmer
there is. The Interrupts
must be in machine code.

However, don't panic. There is no
reason why you cannot use DLI
routines from other sources in your
own program because using them is
very easy.

Let's begin by
looking at the
routine itself,
should you decide to try writing your
own. The first point is that timing is
critical. Only a relatively short
amount of time is available in a DLI,
so the routine must be short.

it must start by
storing any registers
ituses - A Xany -
on the stack, as the
main program will
require these back after the interrupt
and it must restore them at the end
of the routine.

It’s not at

interruet...

Also note that many locations for
colour or other functions have two
locations, the hardware register and
the shadow register. In these cases
you would normally POKE to the
shadow register and the OS
transfers the number to the
hardware register during the vertical
blank.

Any registers
changed by the
routine should
be the
hardware registers, not the shadow
registers used in Basic.

For example, to change the

background coiour in Basic you
would POKE 712 with a
number. This is the

al I ru d e to shadow of the hardware

colour register for the
background - 53274.

However, if you POKEd directly to
this the operating system would
reset it to the value in 712 during the
VBI.

This can be used to
your advantage in
that any colour
change in a DLI will
be reset to normal
each time the screen is redrawn,
thus keeping the change just below
the DLI.

14 November/December 1996

AN T e T ey

e } Y, A //‘“’ N *}J ‘\} \/ ? 7 \[T\‘ [)
/ N N A

co bl N en N i D e s —,ﬂ) \4

GRAPHICS - DISPLAY LIST

Any colour change on a line will not | For example, Page 6 is 1536. Here
occur in a constant position on that i machine code is safe from Basic and
line. This can be overcome by ~most other operations. POKE in the
storing the value in WSYNC - 54282 = code from 1536 and POKE 512 and
- before the colour register. This . 513 with 0 and 6 respectively -
delays the interrupt until the end of 6*256+0=1536. Finally POKE 54286
the line making a neat boundary. - with 192 to enable the DLI to occur.
The best way to write your own DLI Note there is only one address for
is to examine the ones in the DLI routines and if more than one is
examples in this article first. . to be used then the interrupts must
Having got your DLI routine - written ~ change the address as each is
or borrowed - it is used as follows. . executed.
First modify the display list. This " If this seems complicated, it isn't
involves changing each display list really, as the following examples
line where DLI is required by setting show.
bit 7. In other words add 128 - $80 - First you can change colours part
to the line. this can be a single line . way down the screen. Program |

Decimal Hex Disassembly

72 $48 PHA ;Save accumulator on to

stack
169,22 $A9,16 LDA $16 ;:Load accumulator with

change in colour
141,10,212 $8D,0A,D4STASD40A ;Store in WSYNC

141,26,208 $8D,1A,DOSTASDO1A ;Store in background
hardware register

104 $68 PLA :Restore accumulator value
64 $40 TIR ;Return from interrupt
Figure I: Disassembly of DLI © changes the background colour half
or several lines. ~ way down a Graphics 2 screen. Note

h than one colour register
Next POKE 512 and 513 - $200, that more than one colour registe

$201 - with the low and high byte could have been changed.

values of the location of the DLI 1 The machi.ne code for the DLI in this
machine code routine. | program disassembles as shown in

November/December 1996 1 5

WAL

Nl

ey

“,ﬂ

r}r

2] /\/ ,_Jt_wl.u] PASEEN MQ\)

GRAPHICS - DISPLAY LIST

Figure 1. This shows a single change
of colour. The colour can be
changed several times down the
screen.

In Program |l we increase the colour
of the foreground by 4 on each line
to produce a multicoloured design.

The next step from this is to make
the colours rotate. Program il
produces a gradual change in colour
rotating up the screen as seen in
numerous Atari demos.

Spectacular isn't it? And so easy.

Graphics 0 is rather plain and boring
normally. By using a DLI on each
line a spectacular multicolour -
48-colour - Graphics 0 screen can
be made as in Program IV. You can
alter the colours by changing the

All these examples involve altering
colours on screen, but other uses
are just as easy. As mentioned
before, you can change character
set part way down screen.

You can run sound effects or music
in DLIs. You can spiit players part
way down the screen to make it
appear as though there are more
than eight player-missiles. Finally
you can use DLIs to get horizontal
scrolling in different directions on
different lines.

Data statements in line 210 and 230.

Remember, as far as the Atari is
concerned, it’s not at all rude to
interrupt.

Missing programs

Where are all those programs
mentioned in the Display List and
Interrupt articles? Do not fear, |
haven’t missed them off, all these
programs are on this issue disk, to
save you the task of typing them out
yourself.

The first part of the Display List has
6 Demo programs and | named them
as DLIDEMO.001 to DLIDEMO.006.

The second part from page 13
mentions 4 programs and | named
these programs, EXAMPLE.1 to
EXAMPLE.4.

16

November/December 1996

ARTTR TS g e s LTRSS 7 R TT \—ﬁr—qf—'ﬁv——r\
IV S RN SN R
MIKE BIBBY continues - Each column in the binary system,
. . . ' known as a “bit”, contains either a
his series of articles ~ one or a zero.
aimed at lifting the veil of | Aithough the binary representation of
mystery c!oaking the ' anumber is rather combersome to
- write, this simple two-state system is
fundamentals of the ~ easily represented by electrical
Atari’s workings . circuits - which are either ON or
OFF.
e have seen that we We saw that the computer handles
can code our numbers Dits in groups of eight at a time.
in ways other than our ~ Such a group is called a byte. Thus
usual denary, or a byte contains eight bits labelled,
decimal, system. We also looked at ~ SOmewnhat perversely, bits 0 to 7.
a way of coding known as the binary ~ (See Figure 1)
system, which uses the digits 0 to 1 Bit 0, as you can see, is the “1"
to represent any number - unlike the . column. As this is the smallest value
denary system which uses the digits bit we say that bit 0 is the least
0to9. significant bit (LSB). Bit 7, the “128"
To distinguish the two systems, we column, is called the most significant
decided to prefix binary numbers bit (MSB).
with the symbol “%”. . The reason for using the numbers 0
The number “one hundred and sixty (O 7 0 label the bits instead of the
two” is encoded in each system like MOre logical 1 to 8 has to do with
this: . powers, a subject you aimost
certainly covered at school.
In denary, , o
162=100+60+2 2tothepower2!s 22 = 4
, 2tothe power 3is 2*22= 8
in binary. 2 to the power 4 is 2+2*2*2 = 16
12864321684 2 1 power 2 1S i
% 101 00010 : and§oon. 2tothegq~er8 would
. be eight twos all muitiplied together.
= 128+32+2 | Notice that as the power of two

November/December 1996 17

TWAUG N

'—_\
T
=]
~{7

VRSS! ﬁﬁ—mR
bj@i;ﬂ Ao .50

BIT WISE

increase - that is, as we multiply
more twos together - the answers
are doubling, just as our column or
bit values do.

Also, 2 to the power of 2 is 4, the
vaiue of bit 2, while 2 to the power of
3 is 8, the value of bit 3. It shouldn’t
come as any surprise to you to find
that 2 to the power of 7 is 128, the
value of bit 7.

You can verify this on the Atari by
using the symbol “*” which stands
for “to the power of”. It shares a key
with the * sign.
Try:

PRINT 2°4

PRINT 2°7
Be sure to try 2°1, which will show
you why bit 1 has the value of 2.
Also try 2°0. The answer may

surprise you. The fact is that any
number to the power 0 is 1!

Hence bit zero has the column value
of one. Figure il illustrates this.

Look at this sum:
% 1
—%10
If you think about it, that is correct,

since the sum adds one and one and
the answer %10 is binary for two.

One way of relating this to our usual
way of doing sums is to say that we
carry when we get to two, instead of
ten, as we do in our normal denary
sums.

Another way to look at is that we
have to carry when we get to two
because we aren't allowed to use
the digit “2".

If you remember, last issue we had a
rule forbidding two “coins” of the
same value.

Try this sum:
4 21
% 1 1in 3
+% 1 Odenary + 2
%1 0 1

Here we carry from the second
column to the third.

Addition is not very hard at all - just
make sure that you always “put 0
down and carry 1” when you get
two.

If you get a three then “carry one for
two and put one down”.

For example:
8421
% 111in 7
+% 1 1 decimal +3
% 1010 10

18

November/December 1996

BIT WISE

Subtraction is a little more complica-
ted and depends on whether you
borrow or decompose! The latter
phrase doesn't describe the current
economic climat. It's just that there
are two schools of thought on the
way subtraction should be taught -
the borrowers and the decomposers.

Fortunately, we can ignore binary
subtraction since we can manage
without it - as does the microproces-
sor inside your machine.

If you want to do some binary
subtraction it is straightforward
enough provided that you remember
that it is two you’re borrowing or
taking, not ten. Figure ill illustrates
the progress - without any attempt to
explain it.
Before we leave the realm of simple
sums, look what happens if we shift
everything in a binary number over
to the left, putting a zero into bit 0,
which would be left vacant
otherwise.
For example:
842t
% 101
becomes
8421
% 1010 whichis 10

This shifting to the left doubles the

whichis 5

number automatically. This isn't too
hard to visualise, because the value
of each bit is transferred to the next
higher bit, which is of course double
in value - so the end result is that the
whole number is doubled in value.

Similarly, we can do the binary
equivalent of 12 divided by 2 by
shifting to the right.

For example:
8421
% 1 1 0 0 whichis 12
becomes
8421
% 110 whichis 6

and, of course, 12 divided by 2 gives
you 6.

As each bit is moved to the right, it
occupies a column exactly one half
lower in value, thus the sum total of
all the bits is one half lower. Note the
originai bit 0 has disappeared
altogether. The loss of this bit can
cause some inaccuracies. After all, if
it were 1, when it’s halved it should
contribute 0.5 to the answer. As it is,
it's ignored.
For example, if we try to do 13

- divided by 2 in binary by shifting

| each bit right, the equivalent of 13,

November/December 1996

19

TWAUG N

J

=)

%

VT TRATTITITITEY
LIS it
. < <N LA

.

BIT WISE

Bit number 7 6 5 4 3 2 1 0
1 0 0 0 1 1 0 1
Bit value 128 64 32 16 8 4 2 1
Figure I: The bit pattern for 141
Bit number 7 6 5 4 3 2 1 0
27 26 2’5 24 2°3 22 271 20
Bit value
128 64 32 16 8 4 2 1
1 1 0 0 1 1 0 0

Figure Ii: The bit pattern for 204

8421

% 1101
becomes

8421

% 110

which is 6 in decimal. Now 13
divided by 2 gives 6.5, not 6, so what
happened to the 0.57

Well, when we shifted over the
original bit 0 (which had the vaiue 1),
we shifted it “out of the byte”. If you
like, it dropped off the end and

doesn’t appear in the answer.

Of course, it’s this disappearing 1
that would give us the missing 0.5
when it’s halved.

This sort of division, where you're
only concerned with the wholes in
the answer and ignore any
remainders, or decimal parts, is
called integer division.

Waell, that’s enough binary for this
issue, now let’s look at hexadeci-
mais.

20

November/fDecember 1996

I‘;\ffj’\y N TS
l /AN D

BIT WISE

4!.\

R f‘.ﬂ*r"\)'_’\\

.\4/4 —.égﬁ FEUNVES (_A;ﬁ.

NI R

SN

4 2 1 4 2 1
% 04 110 19 % 1 11 10- 6
- % 1 t OR - LR & 1 In decimal -3
% 1 1 % 1 1 _3
Decomposition Borrowing
Figure 1lI: Binary subtraction

s we have mentioned in

previous articles, the Atari

- and all other machines
based on the 6502

to deal with, when | am copying out
binary numbers | put a wavy line
between bits 3 and 4 to split the byte
into two equal groups of four.

For exampile, if | were copying:

microprocessor - handles its binary
numbers in groups of eight bits at a
time. Such a group of eight is called

% 10001111(=143)
| would write:

a byte.

% 100081111

However, while handiing eight
bits at a time is satisfactory
from the machine’s point of
view, from the human side of
things it’s rather difficult to
manage. Those 1s and 0s are
far too prone to error. Look at
Table | for instance. It contains
an error - can you find it?

It's all too easy to slip up when
handling binary numbers - a

Hexadecimally
speaking,

you get two
nybbles

out of every byte

single 1 in the wrong place

and all is lostl To make things easier

} Actually, splitting the byte into two

November/December 1996

_groups of four bits is standard
21

TWAUG NIEWSLITTER

practice - each group of four bits is
called a “nybble”, would you
believe?

it's not too hard to see that the
biggest number you can represent in
a nybble is 15, and the smallest is 0.

%1111 and %0000

respectively. After all, you've only got
four bits to play with!

So we can split up our byte into two
nybbiles of four bits each. Now when
we split up a binary number in this
manner we call the left-hand nybble
the most significant nybbie (MSN)
and the right-hand nybbie the least
significant nybble (LSN).

We have already created one new
number system - the binary system.

%10111011 = 187
%10101101 = 173
%10001111 = 151

%11110110 = 246
Table |

Let’s design another one that
combines the advantages of the
denary system with those of the
binary. That is, it will be easy to read
and write, yet will still allow us to
perceive the binary manner in which
the machine handles things.

BIT WISE

The system we want is called
hexadecimal. This consists of using
our standard digits 0 to 9 for the
numbers zero to nine respectively,
and the letter A to F for the numbers
10 to 15. In this way it allows us to
code the numbers available in a
nybble (that is, O to 15) with just one
digit. This digit will be in the range 0
to9orAtoF.

it may take a while to adjust to the
idea of using letters of the alphabet
for numbers, but it soon becomes
second nature. You just have to get
used to counting:

0,1,2,34,5,6,7,89,AB,CD,EF

Remember, there are B people in a
cricket team, D in a rugby league
team and F in a rugby union team.
There are C months in a year and E
days in a fortnight.

Now just as we prefix all our binary
numbers with %, we prefix our
hexadecimal numbers with $, to
avoid confusion. So $F means 15,
while $9 means 9.

Studying Table 1l will really pay
dividends - | suggest you practise
writing down bit patterns of nybbles
and their hexadecimal equivalents
until it becomes second nature.

Given that we can encode a nybble
in one hexadecimal digit and that a

22 November/December 1996

TN RIS WS BTTIER
) PR

! \ R
PEN AN N

BIT WISE

byte consists of two nybbles, it " well aware that the value a digit
should readily be apparent that we ‘ Decimal Binary Hexadecimal
can encode a byte as two hexadeci- 0 0000 0
mal digits side by side, for example: 1 0001 1
%1010 1001 2 0010 2
v v N\ 3 0011 3
%1010 %1001 g 001?:1 45
j \ 6 0110 6
$A $9 7 0111 7
\ / 8 1000 8
9 1010 9
$A9 10 1010 A
That is: ‘ 11 1011 B
%10101001 = $A9 = 169 | 12 1100 C
You just split the byte up into two :3 }:% g
nybbles - a left hand and a right 15 1111 E
hand nybble, encode each as a

hexadecimal number, then put the Tabtle i

two side by side. represents depends on the column it

You can go from hexadecimal to . isin. The number 230 is not as large

binary just as easily: i as 320, though both numbers
contain the same digits.

$8D :
/ \ - In hexadecimal coding too the

column a digit is in is important. For
%1000 $1101 - example, $10 is far greater than $01.
\y A . 4 . In binary each column is worth twice
1000° 1101 . the preceding one. In denary, our
That is: . usual number system, sach column
) . is worth 10 times the preceding one.
$8D = %10001101 = 141 ~ In hexadecimal, each column is
Although you have probably never w worth 16 times the preceding one.
thought of it in these terms, you are | Believe it or not, the columns in a

November/December 1996 23

TWAUG NEWSLBTTER

BIT WISE

four digit hexadecimal number, from
greatest to least, are worth 4096,
256, 16 and 1 respectively.

This means that;
$1101 = 4096 + 256 + 1 = 4353

For the moment let’s concentrate on
the two digit, that is, two column,
hexadecimal number, as these are
all we need to store our bytes in. In
this case the left-hand column is the
“sixteens” column, the right-hand the
units column.

So:
16 1
$21 = 2*16+ 1= 33
16 1
$2D= 2*16+13= 45
16 1
$80= 8*16+ 0=128
16 1
$CO0= 12*16+ 0=192

To transiate a two digit hexadecimal
number into denary simply multiply
the number in the left-hand column
by 16 and add it to the number in the
right-hand column - remembering to
translate A to F if necessary.

The second column has the value 16
since the first column can only
handle numbers up to 15 ($F) - the

largest you can fit into a nybble
(%1111). After 15, you have to use a
second column for 16, that is $10.

Just as in denary, we “carry” at 10
since the largest value our columns
can handle is 9, so in hexadecimal
we carry at 16, since the largest our
columns can handle is 15 ($F).

- Itis the fact that we carry at 16 that

! gives this number system its name
“hexadecimal” - here “hex” stands
for 6, “decimal” for ten.

“Hexadecimal” = 6 + 10 = 16.

Given a second column $10, as we
have seen is 16, 17 will be $11,
while $12 is 18 and so on until we
reach 31, which is $1F.

We have then run out of legal digits
for the units column, so if we want to
go on to 32 we had better give
ourselves another 16, and set the
unit column back to zero, that is $20.

Another way of looking at the second
column is that it comes from the
most significant nybble. To turn the
least significant nybble into the most
significant nybble, we have to shift it
over to the left four times.

If you cast your mind back to near
the beginning of this article, this is
equivalent to multiplying it by two
four times in succession, that is

24

November/December 1996

\ H ‘ /j\v / f(:iw \?f N ?‘< <\
IAVIVENY IS, BN @4@\\

BIT WISE

2x2x2x2=16.

This is why a hexadecimal digit
representing the most significant
nybble is 16 times larger than the
same digit representing the least
significant nybble.

The largest number you can store in
a wo-digit hexadecimal number is
$FF = 15 x 16 + 15 = 255. This is, of
course, the same as the largest
number we could store in a binary
byte - we often refer to a two digit
hexadecimal number simply as a
byte.

To obtain the hexadecimal
equivalent of a positive integer
(whole number) less than 256, we
divide it by 16. The quotient is the
left-hand digit, the remainder the
right-hand, translating into A to F
where necessary.

For example:
174 : 16 =10R 14
That is:
$A R $E
Hence 174 = $SAE

Anyway, here’s a program that will
convert from denary to hexadecimal
for you. The workings shouldn’t be
too hard to foliow.

Once you've undestood it, how about
writing one that will convert from

hexadecimal to denary?

i
|

~ That's all for now. In next issue we’ll

be looking at ways of combining
binary numbers.

| 10 REM DENARY TO HEX

'| 20 DIM HEX$(16),ANSWERS$(2)

| 30 HEX$="0123456789ABCDEF"
| 40 PRINT "DENARY (0 - 255)*;
| 50 INPUT NUMBER

|60IF NUMBER<>INT(NUMBER) OR
‘| NUMBER<0 OR NUMBER>255
.| THEN GOTO 40

| 70HI=INT(NUMBER/16)

80 LO=NUMBER-HI*16

| 90 ANSWERS=HEX$(HI+1)

| 100 ANSWERS$(2)=HEX$(LO+1)
| 110 PRINT ANSWERS$

1120 PRINT

130 GOTO 40

Program |

November/December 1996

25

wv N
R, K\U

SIRWIAR

J_[\\J) i Jx

BWSLETTER
MEMORY MONITOR

ere is a Hexadecimal/Ascii
memory dump utility written
entirely in machine code.
Although memory dump
utilities are fairly common, this little
routine is far from standard. The
program is written in machine code
and resides in Page 6, that is the
area known as 1536 to 1792 in
decimal or $600 to $700 inhexacde-
cimal. This area of memory is not
used by BASIC or the operating
system, so is free for utilities such as
this. The machine code is unaffected
by LOAD, SAVE or NEW. This
makes it possible to run Basic
programs at the same time and
examine how they are stored in
memory. The operating system can
be examined and the system
variables can also be monitored.

The routine displays 192 memory
locations on a Graphics 0 screen in
both Hexadecimal and Ascii. When it
has completed this task it goes back
and displays the same 192 locations
again. This is repeated until one of
the cursor keys are pressed.

You might imagine that printing 192
memory locations in hex and Ascii
would take a long time. However,
remember that this is machine code.
The routine updates the screen 30 or

40 times a second. The advantage
of constantly displaying the same
area of memory over and over again
is that locations that change are
instantly updated and can be seen
quite easily. The system clock, for
instance, can be seen rapidly ticking
away in page zero.

To monitor any section of memory
enter:

X=USR(1536,n)

where n is the address from which to
start displaying. To return to Basic
press the space bar.

Pressing the cursor up key (No need
to hold CONTROL) will increment
the start address by 8 and the
display scrolls up. Pressing the
cursor down key decrements the
start address by 8, scrolling the
screen down. the screen continues
scrolling until any other key is
pressed. The Return key is the most
convenient key to stop.

The scrolling is very fast. The routine
takes about three seconds to whizz
through 1k of memory, so its very
easy to move backwards or forwards
through RAM or ROM. There's quite
a lot to be learned by scanning the
memory using the monitor. Try
looking at Page zero first. The clock
can be seen ticking away at

26

November/December 1996

MEMORY
MONITOR

$12-$14. Every time $14 reaches 0
$4E is incremented. Press a key and
$4E is reset to zero.

Page 1 is the 6502 stack. This can
be seen to be flashing quite rapidly
as data is pushed on and pulled off.

$22B is interesting. When a key is
pressed the delay before auto repeat
comes into operation is placed here.
This counts down to zero, and if the
key is still being pressed the auto
repeat delay is placed here. Again
this counts down to zero.

The Basic line buffer is around $580.
You can see here what you've just
typed in.

Basic programs are stored at around
$1F30 on my Atari 800 XL with disc
drive. It may be different on other
Ataris.

The program Memory Monitor is on
the issue disk. This article is also
included, in case someone wants to
make a hard copy of it instead of
using the mag all the time.

SALE

Black Box with the enhanced Floppy
Board, 90 megabyte Hard Drive, 4
PBI Drives plus Modem --- all for
£400 or near offer.

Contact: John Matthewson on
0191 - 262 6897

This is a bargain, the cost of the
Black Box with enhanced Floppy
Board alone, when purchased was
about £300 pius.

Upgraded 800XL to 256K complete
with Power supply for £40 or near
offer.

Contact:
Alan Turnbull on
01670 - 822 492

These computers make the ideal
inexpensive Christmas gift.

Please do not forget, when sending
letters and renewal forms to TWAUG
to use the new address:

TWAUG

c/o J. Matthewson

80 George Road
Wallsend, Tyne & Wear
NE28 6BU

November/December 1996 27

TWAUG NEBWSLBTTER

28 November/December 1996

,, SN)\/ /\ —Ttvf/\j (\‘7«‘—‘1? 7/‘\?’? v—wmx’—_)y—g\
/ yiagd HOAVVES I SIS NS

DISK CONTENT

This month issue disk contains a number of demos, those demos are from
the article GRAPHICS - DISPLAY LIST and INTERRUPTS, starting at page
10 to page 17. 've named the demos DLIDEMO.001 to DLIDEMO.006 and
for the second part, covering the interrupts article, the demo programs are
called EXAMPLE.1 to EXAMPLE 4. | cannot say much about them, the
explanation for them is in the article.

The program Memory Monitor, again the articie on page 26 teils you all
about it. | have used that program not fong after | started computing and |
was facinated with the display. This is a program for the beginner to look into
the memory of his computer.

In issue 23 | mentioned on page 35 that the Routines for Coding Capers
written by Tomohawk would be included in issue 24 and these are on Side A
of this issue disk. You must dig out issue 23 for the explanation.

On Side B is a game called ROBO MASH, | never played this game and
therefore | cannot say anything about it.

| have some bad news to report, no, no!l { am not leaving TWAUG, but Kevin
Cooke is. | received the Game Review, it was very late, but | still waited to
include it in this issue, unfortunately the disk was corrupted and | am unable
to rescue anything from it. "PANIC!” it sure was, | was so upset | could have
sat down and cried my eyes out. Never before, not since I've started doing
this newsletter, was | feeling so low as | did when | knew | couldn’t include
the review of Kevin. | was short of material as well and so in desparation |
had to cut down on the size of the issue. | apologize for that, John wanted
the master copy, as the deadline had already past for the publication.

Now Kevin Cooke also informed me, that due to lack of spare time he now
has, that this was the last of his reviews and | can't even include it. So we
are now looking for a replacement reviewer. Anyone willing to take on that
job? The payment is free issues as long as you are willing to write for us, or
PD library disks, or like me voluntary and unpaid. Get in touch! MAX

November/December 1996 29

TWAJG NEWSLETTER
ADVERTISING USER GROUPS

The LONDON
ATARI

COMPUTER
ENTHUSIASTS

As a member of LACE you will
receive a monthly newsletter
and have access to a monthly
meeting. They also support the
ST and keep a large selection
of ST and 8-bit PD software.

The membership fee is
£8.00 annually
for more information contact:

Mr. Roger Lacey
LACE Secretary

41 Henryson Road
Crofton Park

London SE4 IHL
Tel.: 0181 - 690 2548

Mervy Thristmas

O.H.A.U.G.

The OL’HACKERS
ATAR! USER
GROUP INC,

O.H.A.U.G. is an all 8-bit user group
in the STATE of NEW YORK.
They are producing a bi-monthly
double sided disk based
newsietter. The disk comes with
its own printing utility, which lets
you read the content of the disk,
one screen page at the time,
and/or you can make a hard
copy of the disk, in one, two or
three columns and 6 to 8 lines to
the inch. A large PD Library is
available.

Contact:
Mr.Ron Fetzer
O.HA.UG.
Secretary & Treasurer
22 Monaco Avenue
Elmont, N.Y. 11003
USA

W Seasons
Greetings

30 November/December 1996

R et R

- osan ¢
of
C.UA.U.6.

would like to wish
our
Subscribers

1 Merry Whristmas

ann

a Mappy New Bear

M%

MovemberiDecomber 1996 1

TWAUG NBWSILBTTEBR

MICRO-DISCOUNT

The complete Mail Order Ak

Jlk service for Atari 8 Bit
XIL/XE users ATARI

ATARIi 4 th September 1995

