The $\# 1$ Magazine For Atari Computer Owners

C O M P U T I N G

SPECAL CAMES LSSUE
 Dousur six IX CRUNCHER smumismane

REVIEWS:
Astronauts
L.A. Swat
Panther

Give 'Bm A.N.A.L.O.G., Harry!

Two Historic Facts:

1Dewey did not defeat Truman for the Presidency in 1945. Truman went on to be known for his truthful, forthright style and as one of the nation's most popular Chief Executive Officers.

2You can save time, and save a lot of money by subscribing to A.N.A.L.O.G. Computing Magazine. Save \$19 off the cover price with the convenience of having A.N.A.L.O.G. delivered directly to your door before it even hits the newsstands. To order use the handy postage-paid order card located in the back of this magazine!

1 YEAR FOR ONLY \$28
 SAVE \$19 OFF THE COVER PRICE

 in its current form. As of next month, ANALOG Computing will be merged with ST-LOG of form a comprehensive Atari-specific publication. If you've read the publisher's letter in the previous issue, you know our reason for the merge: The U.S. Atari market is not large enough to support two Atarispecific magazines from the same publisher. Specifically, advertising, which provides an inportant portion of every magazine's earnings, is an at all-time low.
The publisher's letter also stuted that this month we woild sere you more details about the new magazine. That task has fallen to me (lucky guy).
The new ANALOG Computing will be much larger than the magazine you're now holding in you hands. It will contain 132 pages, 48 of which will be in full color A magazine of this size will give us plenty of space to cover the A tari market in full, while still providing the types of features and columns you've come to expect.
Although we'll still be offering monthly disks, both 8 -bit and ST, we've decided not to provide the disk version on the newsstands.
We feel that having two versions of the same magazine will be confusing to both buyers and retailers. If you're interested in obtaining the disk each month, we urge you to subscribe. Thase who don't wish to subscribe will be able to order the disks by mail. We will be offering a service that will get disks out to you immediately upon the receipt of your order. In addition, we hope to be able to lower the disk price.
Little otherwise is going to change. Essentially, the meiging of the magazines will give you more for your money. We will be providing complete Atari coverage in a much larger format for the same price.
As usual, we would like to hear from you. Your input is impor tant to us. If you have any ideas, let us know. If there's something. we can do to make the new magazine better suit your needs, drop us a line. We'll give serious consideration to all your comments, and even share some of them in "Reader Comment."
As always, we at ANALOG Computing are looking forward to serving you, our readership, for many years to come.
Please send all correspondence regarding this editorial to: ANALOG Computing, P.O. Box 1413-M.O., Manchester, CT 06040.

ANALOG Zooms Into the 24th Century 10

TX Cruncher 52

Skull Island 58

Q

6
 Error Manual

Here's a helpful program that'll turn those cryptic error messages into plain English.
by Matthew J.W. Raicliff
10

ANALOG Zooms

 Into the 24th CenturyFans of Star Trek: The Next Generation won't want to miss this interview with two of the hit show's artists.

by Frank Cohen

14

Keeping Your Alcari Busy
This tutorial shows you how
to turn your computer into a clock and provides some valuable programming information along the way.
by Reid Brockway

18

Double Six

A colorful version of Backgammon for your Atari.
by Pierre Roberge
36

Fast Move

For BASIC programmers wanting a convenient way to control Player/Missile graphics.
by John W. Litlle

52

TX Cruncher
Take control of Tx as he scoots across his electric grid, consuming energy and avoiding the Hulk Robots.
by Frank Martone

58
 Skull Island

You awaken to find yourself laying on the beach of a strange island. What dangers lie in wait for you? Can you get off the island safely?
by John Patuto

ENTS

Star Trak: The Nex photographs: © and and Phoragraphs: © and © ${ }^{\text {® }} 1989$
PARAMOUNT PICTURES CORPORATION. All rights reserved. Star Trok, Star Trok:
The Next Generation and The Next Generation an
U.S.s. Enterprise are U.S.S. Enterprise are
tradomarks of PARAMOU PICTURES CORPORATION.

56 Astronauts
Matthew J.W. Ratcliff

57 L.A. Swat/Panther Matthew J.W. Ratcliff

C OL UMNS

22 BASIC Training Cliayton Walnum

 28 Database DELPHI Michael A. Banks
32 Boot Camp
 Tom Hudson

48 The End User
Arthur Leyenberger

DEPARTMENTS

3 Ediforial
 Clayton Walnum

26 8-bit News

31 Disk Contents
46 BASIC Editor II
Clayton Walnum

55 M/L Editor

Clayton Walnum

ANALOG COMPUTING STAFF

Publisher

 LEE H. PAPPAS Executive Editor CLAYTON WALNUM Art Director LEW BRYANTAssociate Editor ANDY EDDY Managing Editor DEAN BRIERLY East Coast Editor
ARTHUR LEYENBERGER
West Coast Editor
CHARLES F. JOHNSON
Contributing Editors
MICHAEL BANKS, FRANK COHEN,
MATTHEW J. W. RATCLIFF
Cover Photography
GARRY BROD
Model
STEVE STERLING
Cover Illustration ALAN HUNTER Illustrations
FABIENNE MASON JENNY ADAMS

LUI
Copy Chief
SARAH WEINBERG
Copy Editor
ALYSON GOULD
Editorial Assistants
PATRICIA KOURY CATRINA MASON ROBIN THOMPSON Chief Typographer DAVID BUCHANAN
Typographers B. MIRO JR. QUITA SAXON LIGAYA RAFAEL LARRY GANNON Contributors JOE D. BRZUSZEK TOM HUDSON BARRY KOLBE BRYAN SCHAPPEL BRAD TIMMINS
Vice President, Production DONNA HAHNER Advertising Production Director
JANICE ROSENBLUM
Advertising Production Coordinator
National Advertising Director
JAY EISENBERG
(213) 467-2266
(For regional numbers, see right)
Subscriptions Director IRENE GRADSTEIN

Analog Computing Published
By L.F.P., Inc.
President
JIM KOHLS
Vice President, Sales JAMES GUSTAFSON
Vice President, Client Relations VINCE DELMONTE
Corporate Director of Advertising PAULA THORNTON
Corporate Editorial
TIM CONAWAY, PAMELA CARR
-GTOBER 1989
ISSUE 77

Where to Write

All submissions should be sent to: ANALOG Computing, P.O. Box 1413-M.O., Manchester, CT $06040 \cdot 1413$. All other editorial material (letters press release, etc.) should be sent to: Editor ANALOG Computing, 9171 Wilshire Blvd., Suite 300, Beverly Hills, CA 90210.
Correspondence regarding subscriptions, in cluding problems and changes of address, should be sent to: ANALOG Computing, P.O. Box 16927. North Hollywood, CA 91615, or call (818) 760-8983.

Correspondence concerning a regular column should be sent to our editorial address, with the name of the column included in the address.
We cannot reply to all letters in these pages so if you would like an answer, please enclose a selfaddressed, stamped envelope.
An incorrectly addressed letter can be delayed as long as two weeks before reaching the proper destination.

Advertising Sales

Address all advertising materials to:
Paula Thornton - Advertising Production
ANALOG Computing
9171 Wilshire Blvd., Suite 300
Beverly Hills, CA 90210.
Permissions
No portion of this magazine may be reproduced in any form without written permission from the publisher. Many programs are copyrighted and not public domain.

Due, however, to many requests from Atari club libraries and bulletin-board systems, our new policy allows club libraries or individually run BBSs to make certain programs from ANALOG Computing available during the month printed on that issue's cover. For example, software from the July issue can be made available July 1.

This does not apply to programs which specifically state that they are not public domain and, thus, are not for public distribution.
In addition, any programs used must state that they are taken from ANALOG Computing Magazine. For more information, contact ANALOG Computing at (213) 858.7100, ext. 163.

Subscriptions

ANALOG Gomputing, P.O. Box 16927, North Hollywood, CA 91615; (818) 760-8983. Payable in U.S. funds only. U.S.: \$28-one year, \$54.two years, $\$ 76$-three years. Foreign: Add $\$ 10$ per year. For disk subseriptions, see the cards at the back of this issue. Authors

When submitting articles and programs, both program listings and text should be provided in printed and magnetic form, if possible. Typed or printed text copy is mandatory, and should be in upper and lowercase with double spacing. If a submission is to be returned, please send a selfaddressed, stamped envelope.

For further information, write to ANALOG Computing, P.O. Box 1413-MO, Manchester, CT 06040.1413.

JE Publishers Representative
6855 Santa Monica Blvd., Suite 200
Los Angeles, CA 90038
$\begin{array}{ll}\text { Los Angeles } & \text { - (213) } 467-2266 \\ \text { San Francisco } & \text { - (415) } \\ \text { Chicago } & \text { (312252 } \\ \text { Chis-2489 } \\ \text { Denver } & -(303) \\ \text { New York City } & \text { (25-4331 } \\ \text { New } & \text { (2124-7767 }\end{array}$

The most frustrating aspect of Atari BASIC programming has got to be dealing with the language's arcane error codes. Atari BASIC is a marvel, considering all its functionality squeezed into a mere 8 K of ROM, but reasonable explanations for error numbers simply couldn't fit.

As Kevin Pate explained in "Accessing Atari XL Hidden Memory" (ANALOG Computing, June 1989), XL, XE and XEGS computers have a full 8 K of RAM loitering under the built-in BASIC ROM. It would be nice to stash part of our BASIC reference manual in there-the section with all the error-code explanations. This can streamline the BASIC debugging process, eliminating the need to flip through the dog-eared pages of the BASIC manual, looking for the error description and possible cause.

The Error Manual presented here loads a file called ERROR.MAN into memory under Atari BASIC and stashes an index routine into page six (1536-1791). The indexer hooks into the keyboard handler ("K:" device) and is activated with the Control-Escape "hot key." Any time your program bombs, press the hot key to see a description of the error at the top of the display. It even works while the program is running.

Typing it in

Listing 1 is the program that will create your copy of Error Manual. Type it in, checking your work with BASIC Editor II (found elsewhere in this issue), then save it to disk. When this program is run, a file named AUTORUN.SYS will be written to the disk in Drive 1. This file is the Error Manual program.

Once you've created the main program from Listing 1, type in Listing 2, also checking your work with BASIC Editor II. After saving a copy of this program to disk, run it. A file called ERROR.MAN will be written to the disk in Drive 1. This file contains all the error descriptions and is needed by Er ror Manual if it is to run properly.

Using the Program

When run, Error Manual first asks which drive the ERROR.MAN file is on. Press Return to accept the default Drive 1, or enter the drive number.

You may add any error descriptions you wish to the ERROR.MAN file, including sta-

tus messages that may be used to provide information about a program while it is running. This is done by modifying Listing 2 and rerunning it to create a new ERROR.MAN file. Each data statement must begin with the error number and be followed by a text description of the error code, separated by a comma. The explanation of the error cannot have any embedded commas, a limitation of the Atari BASIC READ command. Use semicolons or dashes for punctuation.
Although the errors are defined in numerical order, they may be in any sequence desired because of the search algorithm used by the indexer. You can define custom error codes and explanations for unused error values of one through 255 . A special message is defined for error code 255 in Line 5620, as an example. Note that the data statement for error number zero in Line 5630 must always be last, since it is used as an end-ofmanual marker by the index routine.
Each description must be 38 characters or less. This is enough to provide a useful report of each error code and possible remedy. For example: 169: DISK DIR FULL;XIO\#254 = format.

An error 169 occurs when all of the directory entries of the disk have been used (64 files with Atari DOS). An XIO \#254 command can be issued from BASIC to format a new disk. As you can see, this brief note can save you a lot of frustration; an error description requires only one line of the display with this approach. In some of the errors, part of the description begins with a question mark to indicate a possible cause of the error. Potential solutions are recommended in some messages.

The error-code report is always posted at
the top line of the screen. If a graphics mode is enabled with a text window, the error code is displayed on the top line of the window. Error Manual does not attempt to describe an error if the cursor is on the top line (which could mangle your program, should you press return on top of an error-message line), or a graphics mode where no text window is currently enabled. If you suspect an error has occurred, break from the program and press Control-Escape again.
Atari BASIC does not always save the error codes in memory location 195, where Er ror Manual looks for an error to interpret. Add the following two lines of code to your programs to ensure that BASIC always updates location 195 for you:

$$
0 \text { TRAP } 32000
$$

32666 STOP
The TRAP signals Atari BASIC to save the error number for you at memory location 195. Without a TRAP, this location is not updated. You can POKE 195 with the error in question and press Control-Escape for a description.
As an example of custom error codes, suppose you have a program that processes huge amounts of data and you wish to keep tabs on its progress. The following status messages could be defined:

5611 DATA 175, Reading RAW data 5612 DATA 176 , Performing calculations 5613 DATA 177 , Writing formatted data

After creating a new ERROR.MAN file with these changes, you can then read the operating status of your program without disrupting its computational flow. (No time is
wasted printing to the screen or checking for user status requests by your data processing program.) The read, calculate and write sections of code would use a single POKE to location 195 with a 175,176 or 177 . Atari BASIC saves error codes in location 195 after having processed an error TRAP. Your poking values here will have no adverse effects on the execution of the program, but will allow Error Manual to provide reports while the program is running.
Error Manual works with just about any Atari-compatible DOS except SpartaDOS X. Atari BASIC must be on when the program is first run. If it is disabled because you held the Option key at power-up or an external cartridge is installed, Error Manual detects it, issues a warning message and exits gracefully.
I did a bit of testing with the Atari Assembler Editor (Asm/Ed) cartridge, and Error Manual will work with it. However, Asm/Ed does not keep assembly error codes in the same location as BASIC. Adventurous programmers may wish to eliminate the external -cartridge test code and expand Error Manual for use with the Assembler Editor. I use MAC/65 almost exclusively, however. When Error Manual is allowed to bank switch ROM and BASIC RAM with MAC/65 installed, nasty things happen. It works a couple of times and then crashes the system.
A great deal of code-8K total-could be loaded into the RAM under BASIC. A short USR routine or small handler in page four or page six of memory could allow access to a massive amount of additional computing power. Since this technique works properly only while using built-in Atari BASIC, it is logical to use this space to enhance the language. Error Manual serves as a good example. The Atari BASIC Source Book from Compute! Books, by Wilkinson, O'Brien and Laughton, is an excellent tour guide as you strive to augment BASIC's power.
There is much more memory available under the operating system. However, DOS XL, Atari DOS XE, SpartaDOS and others like to use this extra RAM to give you more BASIC programming space. The 130XE memory banks and XL memory expansions can be used for such extensions too, but they are most commonly used for RAM disks. That 8 K under Atari BASIC goes to waste more often than any other segment of your computer's RAM. Use the techniques of the Er ror Manual to get the most out of your machine.

LH	ERROR MAN
	REM $\#$ LISTING
	REM * by Matthew
	REM
	REM
	REM \# BY ánálog
	REM *
	RE
	10 DIM
RT	20 ? "PLACE DI5K IN DRIUE 1,":? "THEN PRE55 RETURN':INPUT A
BH	
	40 READ A:IF $0\rangle-1$ THEN PUT \#1,
	50 ? "ALL
UА	1000 DÁTA $255,255,0,5$ $14,111,114,32,77,97,1$
IM	$\begin{aligned} & 1016 \text { DATA } 97,108,44,32,98,12 \\ & , 116,42,82,97,116,155,40 \end{aligned}$
II	1020 DATA $99,41,32,49,57,5$ $5,110,97,108,111,103,32$
IU	$\begin{aligned} & 1036 \text { DATA } 67,111,109,112, \\ & 10,103,155,155,27,66,65,8 \end{aligned}$
	1040 DATA $67,32,105,115,32$, 79, 78, 33,253,155,155,73
FY	1050 DATA $116,32,77,85,83,8$,32,111,110,32,116,111,155
LZ	1060 DATA $114,117,116,32,69$ $2,32,77,97,116,117,97,108$
	1070 DATA $155,27,67,97,110$, $, 32,114,117,110,32,69,82,82$
	1086 DATA $79,82,32,77,97,110$ 8,253,155,119,104,161,110,32
TM	$1090 \text { DATA } 97,110,32,69,88,84 \text {, }$ $65,76,67,65,82,84,82$
KH	1100 DATA $73,68,71,69,155,105$ $12,114,101,115,101,110,116,33$
	1110 DATA $155,27,73,110,115,1$,108,97,116,105,111,110,32,11
BB	1120 DATA $102,155,69,82,82,79,82,32,77$,97,110,117,97,108,155,67
F0	1130 DATA $79,77,80,76,69,84$ $67,111,110,116,114,111,108$
SY	1146 DATA 45,69,83,67,65,8
	111,32,101,110,97,98,108
	$4,32,117,115,161,32,66,65$
JB	1160 DATA 83,73,252,52,247 ,70,70,32,165,110,155,83
KD	1170 DATA 112,97,114, 116
	4,32,111,114,32,121,111,117
	$\begin{aligned} & 1180 \text { DATA } 32,119,105,108,10 \\ & 65,83,72,155,27,65,66,79 \end{aligned}$
TT	$\begin{aligned} & 1190 \text { DATA } 82,84,32,69,114,1 \\ & 32,77,97,110,117,97,108,32 \end{aligned}$
GU	1200 DATA $105,110,115,116,9$
	7,116,105,111,110,155,27,69,82
RY	1210 DATA 82,
	111, 116,32,102, 111, 117,110
M0	1220 DATA $100,155,27,67,97,11$ $32,111,112,101,110,32,100,101$
8H	1230 DATA $115,116,105,110,97$,
	11,110, 155,27, $80,114,101,115,115$
54	1246 DАTA $32,69,83,67,65,86$ $119,105,99,161,32,97,110$
	1250 DATA $100,155,82$
	,116,111,32,97,98,111
	1260 DATA 116,46, 155,
	, 32,100,114,105,118
RP	$\begin{aligned} & 1270 \text { DATA } 115,32,69,82,82,79 \\ & 65,78,32,111,110,32,63 \end{aligned}$
	1280 DATA 32,91,49,93,
	,120,112,101,99,116,101,1
	1290 DATA 32,101,114
	1,110,32,111,112,101,110, 155,
	130日 DATA $102,32,69,82,82,79,82$ 97,110,117,97,108,32,102

NP 1320 DATA $32,101,248,53,243,54,114,114$, 111, 114, 32, 111, 110,32,82,69
ZK 1330 DATA $65,68,155,27,111,162,32,69,8$ $2,82,79,82,32,77,97,110$
PM 1340 DATA $117,97,108,32,162,105,168,16$ $1,46,155,27,49,32,32,32,32$
TQ 1350 DATA $32,32,32,32,32,32,68,49,58,6$ $9,82,82,79,82,46,77$
MH 1360 DATA $65,78,155,27,169,0,32,69,55$, $169,0,162,52,32,113,55$
JU 1370 DATA $173,250,3,240,8,169,108,162$, $52,32,113,55,96,173,1,211$
LH 1380 DATA $41,2,249,8,169,54,162,52,32$, $113,55,96,169,49,141,41$
DE 1390 DATA $54,169,113,162,53,32,113,55$, $169,54,162,29,160,10,32,44$
CA 1469 DATA $55,173,29,54,261,27,208,8,16$ $9,35,162,53,32,113,55,96$
FN 1410 DĂTÁ $261,155,240,11,201,49,144,21$ $2,261,57,176,208,141,41,54,162$
HP 1426 DATA $16,169,12,157,66,3,32,86,228$ $, 162,16,169,3,157,66,3$
IU 1430 DATA $169,4,157,74,3,169,46,157,68$,3,169,54,157,69,3,32
EK 1446 DÁA $86,228,152,16,10,169,68,162$, $53,32,113,55,76,59,54,173$
GU 1450 DATÂ $1,211,9,2,141,1,211,162,16,1$ $69,7,157,66,3,169,0$
QY 1466 DATA $157,68,3,169,160,157,69,3,16$ $9,254,157,72,3,169,31,157$
YK 1470 DATA $73,3,32,86,228,192,136,240,1$ $8,169,236,162,53,32,113,55$
PA 1480 DATA $162,16,244,54,156,55,169,12$, $157,66,3,32,86,228,96,162$
WU 1496 DATA $16,169,12,157,66,3,32,86,228$ $, 165,12,141,1,6,165,13$
FC 1509 DATA $141,2,6,169,6,133,12,169,6,1$ $33,13,32,3,6,169,172$
CC 1516 DATA $162,52,32,113,55,173,1,211,4$ $1,253,141,1,211,96,142,68$
ZA 1520 DATA $3,141,69,3,140,72,3,162,6,14$ $2,73,3,169,5,141,66$
OB 1530 DÂTÁ $3,76,86,228,83,58,0,72,162,9$ $6,169,12,157,66,3,32$
K 81540 DATA $86,228,162,96,169,3,157,66,3$ $, 169,66,157,68,3,169,55$
PY 1556 DATA $157,69,3,164,157,75,3,41,249$ $, 73,16,9,12,157,74,3$
UA 1560 DATA $76,86,228,141,68,3,142,69,3$, $133,224,134,225,160,0,140$
KA 1570 DATA $73,3,177,224,201,27,240,10,2$ 00, 208, 247, 238, 73, 3, 230, 225
YW 1580 DATA $208,246,146,72,3,169,11,141$, $66,3,162,0,76,86,228,0$
ZA 1590 DATA $6,233,6,32,255,255,120,173,8$ $, 2,141,82,6,173,9,2$
QU 1690 DATA $141,83,6,169,72,141,8,2,169$, $6,141,9,2,88,96,48$
VO 1616 DATA $58,65,75,75,44,69,114,114,11$ $1,114,32,77,97,110,117,97$
QQ 1620 DATA $198,44,98,121,32,77,97,116,4$ $2,82,97,116,155,63,58,69$
DJ 1630 DATA $114,114,111,114,32,117,116,1$ $66,161,162,155,72,173,9,216,201$
WI 1640 DATA $156,246,4,164,76,255,255,72$, $138,72,152,72,173,1,211,9$
5U 1650 DATA $2,141,1,211,165,84,246,4,165$ $, 87,249,3,76,218,6,165$
KF 1660 DATA $195,240,57,169,0,133,208,169$,160,133,209,160, 0, 177,208,246
UN 1670 DATA $24,197,195,240,31,230,208,20$ $8,2,230,269,177,268,261,155,208$
IZ 1686 DATA $244,230,268,268,232,230,209$, $208,228,169,58,133,208,169,6,133$
UA 1690 DATA $209,76,177,6,230,208,208,12$, $230,299,208,8,169,28,133,268$
OE 1700 DATA $169,6,133,269,160,0,177,208$, $201,155,240,20,201,32,208,4$
KE 1710 DATA $169,6,240,7,201,91,176,3,56$, $233,32,145,88,260,268,230$

KH 1720 DATA $192,39,240,9,169,0,145,88,20$ 6, 192, 39, 268, 249, 173, 1, 211
PB 1730 DATA $41,253,141,1,211,164,168,104$ $, 170,164,104,104,64,224,2,225,2,54,54$ 1740 DATA -1

LISTING 2: BASIC

(continued on page 50)

12 ISSUES ONLY \$28

The Complete

ATAR

INTRODUCING ANALOG'S NEW EXTENDED FORMAT!

128 FACT-FILLED PAGES BRINGING YOU THE LATEST FROM BOTH THE WORLD'S OF 8-BIT AND ST! FINALLY, ONE PUBLICATION GIVING
YOU THE COMPLETE ATARI COVERAGE YOU NEED!
P.O. Box 16927

North Hollywood
CA 91615

GET THE NEW ANALOG COMPUTING ON DISK!
$\square 12$ ISSUES OF ANALOG COMPUTING WITH 8-BIT DISK-ONLY \$79! (CDJXY)
$\square 12$ ISSUES OF ANALOG COMPUTING WITH ST DISK-ONLY \$79! (CDJxw)

NAME \qquad
ADDRESS
CITY \qquad STATE \qquad ZIP \qquad
\square PAYMENT ENCLOSED \square BILL ME
CHARGE MY \square VISA \square MC
\# \qquad EXP \qquad

SIGNATURE

MONEY BACK ON UNUSED PORTIONS OF SUBSCRIPTIONS IF NOT SATISFIED! FOREIGNADD \$10. MAKE CHECKS PAYABLE TO LFP, INC. YOUR FIRST ISSUE WILL ARRIVE IN 6 TO 8 WEEKS. WATCH FOR IT! OFFER EXPIRES JANUARY 31, 1990

STAR TREK The Moxi Gonoration Photos 1989 Paramount Plitures corparation. All rights resorved.

Ror I dipt into the future, far as human eye could see, saw the vision of the world and all the wonder that would be." So wrote Alfred, Lord Tennyson about the coming era of wonder. This was the 1800 s, an era in which Tennyson saw the light of a new hope and prosperity. The industrial age was decades away, but technological change was inevitable.
We are now approaching another wave of wonder and awe. The fin de síecle is bringing computers into a new age of computer affinity: The days when computers were viewed as a threat are slipping away, yielding to a view of them as companions to be regarded more as helpful tools than as unknown chemical compounds.

Television has been the best reflection of the public's opinion of computers and technology. In the 50 s , Commander Corey fought alien space ships equipped with highly technological-looking devices. The 60s saw crazed mainframe computers threatening to destroy the world in the Outer Limits television series. In the 70s we watched secret agent Max Smart defend the country with the aid of computers and, occasionally, an an-
droid. The 80s have brought computers to our homes and bombarded us with a hundred channels of cable television featuring such computer-age characters as Max Headroom.

The accuracy of many television programs has been startling. Interstellar space flight, artificial hibernation, cybernetics and artificial intelligence seem less like science fiction today partly because television has covered these futuristic issues. Television currently offers an unusual mix of new ideas and programs, with Star Trek: The Next Generation leading the pack. Once a week the starship Enterprise journeys into unknown parts of the galaxy to discover new cultures and life forms.
The Next Generation builds on the original Star Trek series, which premiered in the late 1960s. The story ideas and visual effects made Star Trek different from other sciencefiction television shows. Science-fiction writers were called upon to create a world that was believable, an extrapolation of the period's technology three hundred years into the future.
Twenty years after the original show was cancelled, The Next Generation unites a new
cast to cover morality and ethics issues once a week. The audience gets a glimpse at what the world of the future looks like, and the results are impressive.

In two seasons of new episodes, we have seen the crew of the Enterprise struggle with computer viruses, computer pirates and advanced technology. Many of the scripts deal with today's problems, projected into the Enterprise scenario. Written by futurists, the scripts are believable.

Recently, ANALOG Computing was given a chance to discuss the world of Star Trek with two of the artists who bring the show's technology alive every week: Mike Okuda, graphic designer, and Rick Sternbach, senior illustrator. Although their principal responsibility is to make the sets, computer displays and other visual effects come to life, Okuda and Sternbach have a clear futuristic vision of technology and computers.

ANALOG: Star Trek's new Enterprise is currently the public's most visible computer terminal of the future. What went into the design of the computer interfaces of the Enterprise?

Okuda: What we wanted to project was the idea that all the [computer] displays were software definable. For example, when the ship is in warp drive, the displays show different information than when the ship is orbiting a planet. The same display acts and reacts depending on the situation or context of usage. We very deliberately didn't push the technology of the computers we use. We couldn't afford to see a great deal of control reconfiguration on camera.
ANALOG: When you talk about not being able to afford something, I take it you mean budgetwise for filming the effect.
Okuda: Yes. Some sets have working computers built into them. For the most part, if we need a display screen to do a specific thing, we can rig it to do that particular thing. It might be a computer panel turning on or on object lighting up. But for the most part you can really see the technology working, not because of the action on a panel, but because of the way the actor works with it.

ANALOG: Are the voice-activated computer panels designed to look different from the others?

Okuda: Not really, because, theoretically, each panel is a general-purpose terminal that just happens to be currently configured for a specific task. Some of them just lend themselves to being more voice-aware than others.

Sternbach: Theoretically, you could walk up to any of these panels and fly the vehicle. If you have the correct training, as a pilot,
for example, you could walk up to any of these black panels and say, "Reconfigure for navigation." And just go.

ANALOG: There are a number of portable computing devices that the crew walks around with from time to time. Are these just calculators, or are they something more?

Sternbach: You could call them Pocket Cray computers. They are separate and portable. When you see an actor walking around with one of these small grey Personal Access Display Devices (PADDs), it is like a baby panel. You could be walking down a corridor or sitting in a lounge while working with your PADD; you don't always have to be standing in front of a panel. Even though the image is fairly small, you have all the resolution of a larger panel. You can pop from menu to menu.

Okuda: If you have enough memory. [laughs]

Sternbach: Whenever you see a panel [portable or not], they pretty much all do the same thing.

ANALOG: Have you given any consideration to the type of operating system that would make it all work?

Okuda: The operating system is the Library Computer Access Retrieval System, the version is 40273.

ANALOG: The Enterprise appears to be the flagship of the fleet. Is the operating system available off the ship to the common person?

Sternbach: Oh, gosh no. This was produced by Star Fleet Research and Development.

Okuda: That's true; however, one would assume that eventually this standard technology would absolutely be available to the average person. But you should remember that the average person wouldn't need all the add-on modules for warp [drive] field regulation or other ship maintenance.

ANALOG: Do you envision the Star Trek world to be like 1984, with Big Brother computer looking over your shoulder?

Okuda: I very much believe in the power
of the personal computer to get people working and productive. I try to project, in subtle little ways, that even though the technology is advanced, it is accessible by everyone. For example, one of the scripts had a crew member looking at a personal document. In the upper-left corner of the screen I drew in red letters, "Personal Information, Restricted Access." The idea was that even though computers are everywhere, the people who run the computers respect the privacy of the individual.

Sternbach: The downside to all this widespread use of computers can be seen today. Look at some companies monitoring telephone operators to determine their productivity. It stifles creativity and puts a lot of pressure on the workers. We have almost the opposite here in the future. You're free to design things [with the computer] that will be useful and exciting. Using computers as tools lets you build an exciting future.

One of the reasons Mike and I have been

© * PARAMOUNT PICTURES CORPORATION
slaving over this show is that Star Trek did for us what the show did for us originally 27 years ago. It was a spark. We thought, "Wow, maybe we can do that out in space!" We try to prompt that kind of response from people watching the show now. Maybe we can give someone else that little kick of imagination.
ANALOG: It is really refreshing to hear two graphic artists talk in such technical and well-thought-out terms. Would you expect this from other artists?

Sternbach: Between Mike and myself, we have enough science background and enough people we can contact to give the writers what they need. And they do ask for information all the time.

Okuda: We are in a fortunate situation here in that we have a good relationship with the writers. Whenever possible, they'll ask us for things. They'll say, "The warp engines are going to blow up on the U.S.S. Yamato. What would happen? What would have caused that to do that?" We give them some information, and where they can use it, they put it into the story.

Sternbach: Another part of this is that we didn't come from the traditional Hollywood background. I mean, we didn't just come off a detective show. We came from science to Star Trek.
ANALOG: The mission of the Enterprise seems somewhat military in nature. Has that affected your design of the technology?

Okuda: The typical crew member is hired onboard because he is responsive, resourceful and technically able. We're not trying to say that in the 24th century everyone has to learn to use a computer. You won't find messages saying "Don't use DELETE **." There is a difference between the crew members on the Enterprise and everyone else. The crew members are creative, highly skilled professionals who have been sent off to do a bunch of assignments. The buttons on our panels are tools; they are not mind-controlling directors.

Sternbach: The people who contribute to the running of the ship are not being judged on their productivity-for example, how many buttons they push in a day. It's based on whether they can do their jobs.

ANALOG: What about situations other than their decision-making, on which the crew members could be judged. For example, in consumer situations, what happens when they want to buy something? Are there any other uses for the panels, other than maintaining the ship?

Sternbach: I don't know. Do they have money in the 24th century?

Okuda: There is presumably some sort of tracking of resources. But [the people of the

MIKE OKUDA

RICK STERBACH

24th century] are by no means as successoriented as we are today.

ANALOG: Can the computers be thoughtdriven?

Okuda: We've abandoned the idea of that kind of personal control. Some of the alien cultures the Enterprise encounters will have mind-directed devices, but the Enterprise panels are manually oriented.
Sternbach: That will surely happen in the future, but today it's awfully hard to get that across to the audience.

Okuda: On television, that would translate into a lot of voiceovers. At this point, many of our ideas are constrained to the television program. For example, we have a lot more buttons than I really think we would have this far into the future. Our first concept of a control panel had 12 buttons on it, which didn't go over very well. You have to consider what a panel looks like to the audience. Twelve buttons are probably all you might need, but it doesn't look interesting visually.
ANALOG: For that matter, doesn't it seem like having 1,000 people on a space ship is unnecessary? If you only need 12 buttons on a panel, why 1,000 crew members on the Enterprise?
Sternbach: These thousand-plus people
have a reason for being here; they're not all here to run the ship. They are here to run scientific experiments, some are en route to somewhere else, and there are people of various disciplines.

Imagine packing all the support people necessary to run the Space Shuttle into the Shuttle craft-all the people back in Houston supporting the ship. In Houston you have science-support people and engineers. Beyond the orbiter itself, you really do need more than five people to make it work. The Enterprise uses everyone it needs to support the ship, but it brings all of them along for the ride.

ANALOG: Back to the idea of buttons, some new Buick cars come with a touchsensitive video screen to set the radio, airconditioning and trip indicators. They use a CRT coated with touch-sensitive materials. It's crude, but it exists today. Where do you see this technology going?

Sternbach: We started with that kind of idea, only took it into the future and made it better.

Okuda: You've got your basic buttons. These each control a function or process. You also have organizational controls that split the panel into areas. We also have these small joystick panels. We are specifically not supposed to use them very often. [As a user] I shouldn't have to aim a pointer at deck 27 to get information from the display. I should be able to touch the screen or ask it for information. But sometimes you might want to do something out of the ordinary that requires this sort of control.

Sternbach: What happens if your user isn't humanoid? In your Ammonia helmet, you might not be able to talk to the panel.

ANALOG: All of the panels seem to have accompanying sounds. When an actor hits a button, you hear a small tone. Was this something you developed?

Okuda: All of the sounds were created by the post-production company. Many times you can take something that looks exciting, but by adding those little beeps, it brings it to life much more than if we had spent money to rig a control to work with an actor.

Sternbach: I think [the sounds] are great. There have been times when an actor goes to push a button and it doesn't work and you hear a "wrong" sound. The idea that a button can reject its user is great.

Okuda: There is something more than just a touch matrix designed into the material of the panel. In addition to the touch matrix and the display matrix, there are programmable transponders built in there. When you hit a
(continued on page 26)

K
 YOUR by Reid Brockway AT ARI

 What do you do with your Atari when you're not using it to compute? Do you turn it off? Do you leave it on, announcing patiently to the world that it is "READY"? Do you load up a game and leave it endlessly playing itself in the demo mode? Well, here's something more practical for your Atari to do when it has time on its hands: Turn it into a clock."Right," you say. "Just what I need, another digital clock."

Guess again. This is an analog clock, with hands and tick-tocks and everything. Actually, it only looks like an analog clock; you can't get much more digital than a digital computer. So I guess you'd have to say it's a digital analog clock.

Besides being a fun novelty, this program illustrates several useful techniques you may wish to use in other programs. (See "What Makes it Tick?" below.) And there are several ways you can enhance the program if you want to. Plus, this clock has a special feature: a metric version. If you select the metric option when you start your clock, you'll get a metric readout.

Building and Running Your Clock

To make your digital analog clock, simply type in the BASIC program (and don't forget to check your typing with BASIC Editor II), save it, then type RUN. The program will ask you for the current time in hours and minutes, separated by a comma. (I know, a colon is proper. I got lazy.) It will take anything, even negative time. The clock then winds and displays itself and starts keeping time, synchronized to the power line just like any appliance clock. Its ticks and tocks are exactly one half-second apart, and it updates its hands every ten seconds. The color-cycling Attract mode is disabled, so you can leave your clock running if you want to, although it would be a good idea to turn the brightness down on your TV if you do. (One of the suggested enhancements is to make the colors rotate through various pleasing combina-tions-your own Attract mode.)

What Makes it Tick?

The program incorporates several useful techniques you may want to use in other programs. These include generating characters in a graphics mode, measuring time accurately, calculating and plotting positions around a circle and generating sounds with controlled attack, peak and decay times.

Line 120 reads a machine-language routine into page-six RAM. This routine is used to generate the ticks, tocks and winding sound and is an example program straight out of Appendix 9 of the Atari Assembler/Editor manual. It is called with the BASIC USR function as follows:

$$
\mathrm{X}=\mathrm{USR}(1536, \mathrm{~F}, \mathrm{~A}, \mathrm{P}, \mathrm{D})
$$

where F controls the frequency of the note you want, A is the attack time, P is the plateau time (loudest portion) and D is the decay time. If you have the manual you can

FINALLY, THERE'S THE TIMEKEEPING
"WORKS" OF OUR CLOCK. THE ATARI HAS THREE

> ADDRESSES-18, 19 AND 20-WHICH ARE REGISTERS COLLECTIVELY REFERRED TO AS THE "REAL-TIME CLOCK." THEY COUNT 1/60THSECOND TV FRAMES, WHICH ARE SYNCHRONIZED TO THE 60-HERTZ AC POWER IN YOUR WALLS. THESE REGISTERS ARE ZEROED BY THE PROGRAM WHEN THE CLOCK IS STARTED (LINE 330). THEN THE COUNT THEY ACCUMULATE IS USED TO UPDATE A VARIABLE REPRESENTING TIME, CALLED (OF ALL THINGS) TIME. ACTU= ALLY, TIME IS KEPT IN DEGREES OF ROTATION OF THE BIG HAND.
study the details, or you can simply plug the routine into your program using the contents of Lines 120 and 690-710.

Lines 240-270 draw a clock face. The program runs in Graphics mode 6 and the center of the face is at X, Y position 83,48 in that mode. The two formulas compute points around a circle at a radius R for angles theta in degrees measured clockwise (how appropriate!) from vertical. Note that numbers on a clock are 30 degrees apart.

Since Graphics 6 is a nontext mode, dis-
playing the numerals is a bit tricky. The subroutine that does this, Lines 600-670, is a little complicated but very handy. With a few changes it can be used in other modes as well. It finds where the Display List is located, and, from that, the location of screen RAM. Then it draws the characters of string MSG\$ where you want them by copying the shape-defining information from Atari's standard character set into screen RAM. MSG\$, and the desired XY coordinates of the leftmost character are supplied by the calling routine. (See Line 300 .)
Finally, there's the timekeeping "works" of our clock. The Atari has three addresses-18, 19 AND 20-which are registers collectively referred to as the "real-time clock." They count $1 / 60$ th-second TV frames, which are synchronized to the $60-\mathrm{Hertz} \mathrm{AC}$ power in your walls. These registers are zeroed by the program when the clock is started (Line 300). Then the count they accumulate is used to update a variable representing time, called (of all things) TIME. Actually, TIME is kept in degrees of rotation of the big hand.
Note that when the real-time clocks register reach their maximum value, 65535 , they reset to zero. This takes a little over 18 hours. Currently, when this happens our clock stops. One of the suggested enhancements is to overcome this limitation.

TIME is used to compute new positions of the hands. This is done every ten seconds (Lines 410 and 390), based on another variable, SEC, which actually is a count of seconds. SEC is also used to time the ticks and tocks. SEC is updated every half-second when 30 more counts of the real-time clock accumulate.
Those are the key design features of our clock. If you would like to add some features of your own, here are some suggestions:

- Make it run longer than 18 hours.
- Add your own color-rotating Attract mode.
- Add a true digital readout.
- Turn it into an alarm clock.
- Add graphics to make it a mantle clock, cuckoo clock, etc.
- Make it chime or cuckoo.
- Add a sweep second-hand.

After all, you might as well keep your computer as busy as possible when it has time on its hands.

Reid Brockway is a systems and software engineer for Intermetrics, Inc., where he designs real-time software for aircraft and space applications. 묵

LISTING 1：BASIC

Hy 18 REM $\begin{array}{llll}\text { HT } & 11 & \text { REM } & \text { \＃DIGITAL ANALOG CLOCK } \\ \text { AG } & 12 & \text { REM } & \text { by Reid Brockway }\end{array}$
AG 12 REM＊
by Reid Brockway
ZW 13 REM
COPYRIGHT 1989
UD 14 REM
IS REM＊BY ANALOG COMPUTING

GG 20 DIM A $5(1): I N C R=30: D A T L N=730: D I G I T 5=$ 12
UY 3日 ？＂K＂：？：？＂DIGITAL CLOCK＂：？？？ RUN
C5 40 ？＂Tell me what time it is．＂：？
EM 50 ？＂（homes 月 Finmtas ）＂：
OF 66 TRAP 50 ：INPUT HRS，MIN
ZP 70 ？？？＂Do you want a＇metric＇clock＂
LS 80 INPUT $\mathrm{A}^{2}: I F$ A与〈〉＂Y＂THEN 100
P0 90 INCR＝36：DATLN＝740：DIGIT5＝10
YH 106 TRAP 40000：GRAPHIC5 2＋16：P0SITION 1，4：？\＃6；＂JUST A MOMENT＂：POSITION 1， 6 ： ？\＃6；＂WHILE I WIND MY5ELF＂
LX 110 REM Read in sound subrounting
JP 120 FOR I＝0 TO 73：READ K：POKE 1536＋I， K ：NEXT I
SI 130 REM Make minding sumid
YC 140 FOR $I=1$ TO 5：FOR J＝1 TO 20
$0 R 150 \mathrm{~A}=\mathrm{USR}(1536,30-\mathrm{J} / 5,1,1,1)$
GE 160 NEXT J：FOR W＝1 T0 2日日：NEXT W：NEXT I
LO 170 REM Infitialization
GA 180 TIME $=$ HRS $5 * 360+$ MIN＊$*-1$
TB 190 DIM MSGS（2）
HU 200 GRAPHICS $6+16$
WR 210 SETCOLOR 4，2，0：COLOR 1
RE $220 \mathrm{R}=35: 5 \mathrm{EC}=0$ ： $\mathrm{N} 8 \mathrm{THLF}=30:$ LITTLE＝20：BIG $=34:$ HAND $5 F L=0: T I C K=0: D E G$
JN 230 REM DRaM clack face
YK 240 FOR THETA $=0$ TO 360 STEP INCR
BJ $250 \mathrm{X}=83+\mathrm{R} * 5$ IN（THETA）
BC $260 \quad Y=48-R * C O S$（THETA）
QK 270 PLOT $\mathrm{K}, \mathrm{Y}:$ NEXT THETA
FB 280 REM Gतd nilmenals to face
YT 290 RESTORE DATLN
HW 300 FOR $N=1$ TO DIGITS：M5GS＝5TRS（N）：REA D X，Y：G0SUB 660：NEXT N
JG 310 G0SUB 430：G05UB 480：REM Add hands

EH 330 POKE 18， $0:$ POKE 19， $0:$ POKE 20,0
ZK 340 REM Main clock rounting
LT 358 IF（PEEK（18）＊65536＋PEEK（19）＊256＋PE EK（203）$>=$ NKTHLF THEN 370
UK 368 POKE $77,0: G O T 0 \quad 350$
TB 370 NXTHLF $=$ NXTHLF +30
IT $380 \quad A=U S R(1536,20 *(T I C K+1), 1,3,1)$
PT 390 IF HANDSFLく〉O THEN ON TICK +1 GOSUB 430,480
DQ 400 SEC＝5EC＋0．5：TICK＝NOT TICK
00410 IF SEC＝10 THEN HANDSFL＝1：SEC＝0
OK 420 GOTO 350
NH 430 REM EMbr，to पPate Ificie hand
XN 440 T＝TIME：GOSUB 550： $80 \mathrm{LD}=\mathrm{K}: Y 0 \mathrm{CD}=\mathrm{Y}$
LB 450 T＝TIME＋1：G05UB 550：XNEW＝X：YNEW＝Y
MR 460 G05UB 570：RETURN
LN 470 REM Embromtile to णPatig big hend
WJ 480 T＝TIME：GOSUB $530: X O L D=X: Y O L D=Y$
JT 498 T＝TIME 1 ：GOSUB 530 ：XNEW＝X：YNEW＝Y
vo 500 G0SUB 570
DB 510 TIME＝TIME＋1：HAND $5 F L=0:$ RETURN
50520 REM Ellose to convint hend Rosis． HW $530 \quad 8=83+B I G * S I N(T): Y=48-B I G * \operatorname{Cos}(T)$
ZJ 54θ RETURN
HT $550 \quad 8=83+$ LITTLE＊SIN（T／12）：$Y=48$－LITTLE＊ $\cos (T / 12): R E T U R N$

IL 570 COLOR 0：PLOT 83，48：DRAWTO XOLD，YOL D：COLOR 1：PLOT 83，48：DRAWTO XNEW，YNEW ZR 580 RETURN

RP 600 DLIST＝PEEK $(560)+$ PEEK $(561) * 256$
HK 610 SCRAM $=$ PEEK（DLIST＋4）＋PEEK（DLIST＋5）＊ 256
WK 620 FOR I＝1 TO LEN（MSGS）
XM 630 SHAPE $=57344+8$＊（ASC（MSG与（I，I））－32）
CH 640 STARTLOC $=5$ CRAM $+8+20 * Y+I-1$
PG 650 FOR $J=0$ TO 7

660 POKE 5TARTLOC＋2日＊J，PEEK（5HAPE＋J） 670 NEKT J：NEKT I：RETURN 680 REM EMMn sumpouting cade
DU 690 DATA $104,104,104,141,6,210,104,104$ ，133，204，104，104，133，205，104，104，133，2 06，169，160，141，1，210，166，204，32，65， 6 700 DATA $24,105,1,201,176,208,241,169$ $14,166,205,32,65,6,56,233,1,208,246,16$ $9,175,141,1,210,166,206,32,65,6,56$ $19,136,208,253,202,208,248,96,256$
JM 720 REM［UMEREIS PDSEition dFita
WJ 730 DATA $13,8,15,22,16,44,15,65,13,80$ $10,86,7,80,5,65,4,44,4,22,6,8,9,0$ 740 DATA $14,13,16,33,16,57,14,78,10,88$ $, 6,78,4,57,4,33,6,13,9,0$ 부

by Pierre Roberge

Every computer owner has in his software collection at least one computerized "thinking game." The Atari 8-bit owner is no exception. Whether it be chess, checkers, reversi, battleship or connect four, there's surely one of these games present on your disks. There is, however, a game that's been overlooked: backgammon. But now Double Six is here.

Typing it in

Type Listing 1, check it with BASIC Editor II (found elsewhere in this issue) and save it. Now type NEW and type Listing 2, checking it with BASIC Editor II and saving it when it's been entered correctly. When RUN, Listing 2 will create all the missing lines from the main program that contain the control characters used in machine-language subroutines. These lines will be listed to a file called D:DOUBLE6.CHR.

Now LOAD＂D：DOUBLE6．TMP＂，ENTER ＂D：DOUBLE6．CHR＂and save the complete program as DOUBLE6．BAS．You are now ready to go！

Playing the Game

Double Six is a game for two players in which Joystick One moves the red men and Joystick Two moves the blue men．Each play－ er has 15 men set on＂points＂around the game board．The red men move counter－ clockwise from the top－right section of the board to the bottom－right section（red＇s in－ ner table）；the blue men move clockwise from the bottom－right section to the top－right sec－ tion（blue＇s inner table）．Note the red and blue arrows that indicate the way around．The ob－ ject of the game is to remove all your men from the game board by the roll of the dice． More on that later．
First you press the joystick button in order to determine who goes first．The dice will stop rolling．The blue player has the top die， the red player has the bottom one．If both players roll the same number，they must try again until one of them has rolled the higher number．That player then goes first，using the

numbers shown on the two dice．The players then play in turn using the two dice．The pointer in the center of the board turns red or blue depending on which player＇s turn it is．

Use your joystick to place the pointer on the man you want to move，use it again to choose a die．Your man will move according to the number shown on the die．You can move the same man with the two dice as long as the points designated by each die are open， or you can play each of the two numbers with different men．
When a die has been used，an＂ X ＂will ap－ pear in front of it to indicate you cannot use it again．A player must use both numbers of each roll whenever possible．If he can use only one number，he must，if possible，use the larger．When you cannot move at all， press＂ P ＂to pass the play to your opponent．
If you roll doubles（the same number on both dice），you move according to the num－ bers shown on one die four times．You can move the same man all four moves，or any other combination of men you choose．
Any point on the playing board on which two or more men of the same player sit is called a blocked point．A blue man can－ not land on a point blocked by red men，
and vice versa．On a real board there is no limit to the number of men one player may have on a point．But since this is a ＂graphic＂board，there is a limit of ten men per point．

Since men of opposite colors cannot oc－ cupy the same point，when a man lands on a point containing only one man of the other color，he removes the opponent＇s piece and takes his place．The removed man is placed on the＂bar＂（the middle strip that separates the board）．Once one of your men has been placed on the bar， you must＂enter＂it into your opponent＇s inner table before you may move any of your other men．Entering is accomplished by moving the man on the bar to the point indicated by either of the two dice，as long as that point is not blocked．If you can－ not enter because both points indicated are blocked，the turn passes to the other play－ er．A＂shutout＂occurs when each point in your opponent＇s inner table is covered by at least two men．

You cannot start removing your men from the board until all 15 of them are in your inner table．You may then remove your men from points corresponding to the numbers rolled or you may move your men within your inner table according to the dice．You must use your entire roll， if possible．This means that if you roll a five but have no men on your fifth point （counted from the right），you must take a man from your sixth point and advance him to the first one．You cannot remove a man if the point he is on is lower than the number you＇ve chosen．

There are a few options available dur－ ing the game：$<\mathrm{P}>$ ass，$<\mathrm{Q}>$ uit and $<S>$ ave Game．These options are self－ explanatory．

Programming Noles

Double Six is written in BASIC but uses machine－language strings to speed up the initializing procedure．The game is ready to play almost instantly after typing RUN． I used the wide playfield to draw the game on a GRAPHICS 1 screen，using the un－ seen parts of the playfield to store infor－ mation about the game．That permitted me to greatly simplify the logic of the game． Also，the program contains plenty of REM statements for those of you who want to know how it ticks．

Pierre Roberge is a mechanical en－ gineer who works for a company based in Quebec City．He＇s been programming his 130XE for more than two years．

g Pierre Roberge

COPYRIGHT 1989
N 5 REM＊
M 6 REM \because
M 8 REM
Z 16 GOSUB 1000：GET HN2，A：IF Aく＞79 THEN 164
 Aく＞89 THEN 164

AK 14 W＝N6 4 KTURN：$C 5=32+W: C D=11+W: C 50=96-W$ ：$C D O=75-W: P T=28+W: P O K E \quad 5 C+\%+Y, P T+N 2 H C Y$ －N2883
YX 16 IF OK THEN GOSUB 112
NO 17 REM $\begin{gathered}* \\ * \\ \text { CHOOSE POINT } \because \notin ~\end{gathered}$
26
2D 26 POKE 77，N0：IF PEEK（764）〈〉N255 THEN 128
$225 T=P E E K(632+T U R N): 8 A=X: Y A=Y: 8=8+(5 T$ Tール（3）N（ 124 IF $X<\rangle \& A$ OR $Y\rangle Y A$ THEN POKE $5 C+H A+Y$ －

26． $\mathrm{CHA}=\mathrm{PT}+\mathrm{N} 2 *(Y=N 288):$ POKE $5 \mathrm{C}+8+Y, \mathrm{CHA}:$ IF PEEK（644＋TLRN）THEN 20
28 SOUND N0，N16，N10，N14：P1＝5C＋N48： $1=8$ ：Y1ニY：I＝r＊N1：SOUND N0，NO，NO，N0
PH 30 IF（PEEK（5C＋153＋N264＊TURN）〈〉N194 AN （b）$K\rangle N 9\rangle$ OR 《K二N9 AND $Y=N 288-N 24 * T U R N\rangle$ THEN 86
WE 31 REM 米块 FIND TOP MAN ON PILE＊
32 DP＝N24＊（（Y＝N288）－（Y＝N264））：PA＝5C＋+ $\mathrm{Y}+\mathrm{D}$ 为N5： $\mathrm{P}=\mathrm{PEEK}$（PA）： $\mathrm{PB}=(\mathrm{P}=\mathrm{CD})$
$34 E=(I N T(P A / N 2)=P A / N 2): C=A B S(C E=N Q) * C$ D P〈〉CD THEN 86
ID $36 \cdot P A=P A-D P: P=P E E K \subset P A): X F P=C S-P B * N 21$
$38 P A=P A+D P: P=P E E K(P A): F O R \quad I=N 1$ TO N4： FOR J＝N1 TO 26：POKE PA，P：NEKT $1: F O R ~ J=$ N1 T0 20：POKE PA，N0：NERT J：NERT I
HE 39 REM ऊ ERASE MAN FROM
$\mathrm{T}($（PA－5C）／N24））＊N24－5C）－C）＊（Kく〉N9）＋N19 $4 *(8=N 9)) *(\mathrm{~PB}=\mathrm{N} 0)+\mathrm{C} 53 \mathrm{~PB}$
T1 41 REM＊＊DRAN MAN ON POINTER＊

$445 \mathrm{~T}=\mathrm{PEEK}(632+T U R N): Z A=Z: Z=Z+N 244665 \mathrm{~T}$ $\mathrm{MAK} / \mathrm{N} 2)=\mathrm{MAK} / \mathrm{N} 2)$
ZH 46 IF $Z\rangle Z A$ THEN POKE $5 C+Z Q, 126$ POKE SC＋ZA＋N1，N126
48 POKE $5 C+Z, 66: P O K E \quad S C+Z+N 1, P T+N 2 *(Z=$ N3＠6）：IF PEEK（644＋TURNУ THEN 44
$5650 \mathrm{UND} \mathrm{NO}, \mathrm{N} 16, \mathrm{~N} 16, \mathrm{~N} 14: \mathrm{D}=\mathrm{D} 1 *(Z=\mathrm{N} 282)$＋ D2 2 （ $Z=N 366)+N 1$ ：T＝（TLRRN＝N6）－TURN
IS 52 SOLND N0，NO，N日，N6：IF $X+D>N 15$ AND $Y=$ N288－N24 \because TURN THEN GOSUB 104
4053 REM $\because \because$ MOUE MÂN ON BAR \because
TU 55 REM $\because *$ WALK MAN ON BOARD $\because 甘$
JL $56 A=C K=N 3$ AND $Y=N 264+N 24 * T U R N): D X=C C Y$ $=N 288)-(Y=N 264) 3 * T * N O T$ A：DY＝N24\％T＊A： 8 $A=K: Y A=Y: 8=K+D B: 8=R+D K *(K=N 9): Y=Y+D Y$
858 POKE $5 C+8 A+Y A, N 194 \times(8 A=N 9): P O K E ~ S C+$
 B，NO：FOR I－NI TO SE：NEKT I
BR $66 \mathrm{D}=\mathrm{D}-\mathrm{N} 1: I F \mathrm{D}$ THEN 56
RT 61 REM 拉 CHECK FOR REMOUAL OF MAN＊
AD 62 IF $\mathrm{K}=\mathrm{N} 16$ THEN PA＝PAH：GOTO 72
KM 63 REM $* *$ PUT MAN ON POINT $* *$
$86 \mathrm{DP}=\mathrm{N} 24 \%((Y=\mathrm{N} 288)-(Y=\mathrm{N} 264)): \mathrm{PA}=\mathrm{SC}+\mathrm{K}+$ HEN 86
IH $66 A=N Q: P A=P A+D P: P=P E E K \& P A) \& P B=(P=C D D$ PC－NOT 【P＝N2 OR P＝66）［IF P＝CSO THEN G 051184
68．$A=A+M 1: P A=P A-D P \because P C: P=P E E K(P A): I F \cdot P=$ C5－PB HN21 AND A SN5 THEN 68
TV IF $A=N 5$ THEN $P A=50+K+V+N 52 D P \cdot I F \cdot P B$ 72 POKE $5 C+8+Y, N 194 K \mathbb{K}=N 162$ FFOR $I=N 1$ T 0 N4：FOR $J=N 1$ TO N10：POKE PA，NO：NEKT J ：FOR J二N1 TO N10
3 M NEXT J：NEHT T：POKE $Z=Z+N 24 *((Z=N 282)-(Z=N 366))$
 $+Z$ ，N126：POKE $5 C+Z+N 1, N 126 ; P O K E, 5 C+Z B ; N$ 126：POKE $\quad 5 C+Z B+N 1, N 126$

0 O77 REM $*$ ※ CHECK FOR WINNER H_{H} 78 IF $\mathrm{K}=\mathrm{N} 16$ THEN $\mathrm{K}=\mathrm{Ki:IF}$ PAH $\mathrm{I}_{\mathrm{P}} \mathrm{PBH}+\mathrm{Ni4}$ HEN 136
EK 79 REM $* *$ MEN IN INNER TABLE $*$（
IK 80 IF $8>$ N9 AND 81 （N9 AND Y＝N288－N24＊TL RN THEN POKE 5C＋N24＊TURN，PEEK（5C＋N24＊T URN）+N 1
as 82 MAK＝MAK－N1：IF MAK THEN 18
IH 83 REM $*$ END OF MAIN LOOP $*$
FM 84 TURN＝NOT TURN：POKE 5C＋23，TURN：OK＝N 1：GOTO 14
DJ 85 REM $\#$ ILLEGAL MOUE ROUTINE $\# \#$
K5 86 SOUND NG，N24，N6，N16：POKE SC＋ $8+Y$ ，N19 4＊（K＝N9）：POKE P1，CH：POKE 5C＋ $\mathrm{Ki}+\mathrm{Y} 1$ ，CHA POKE SC＋Z，N126：POKE 5C＋Z＋N1，N126
PL 88 FOR I＝N1 T0 N24：NEXT $I: K=81: Y=Y 1: 50$ UND NG，Na，N6，NE
 26：F0R I＝N1 T0 N194：NEXT I：GOTO 18
CT 91 REM RHIT ROUTINE＊ 2 为
RC 92 POKE 53277，N0：POKE 53265，N0：POKE 55 9，34：POKE 106，PEEK（740）：END
KT 93 REM $\because *$ BAR ROUTINE $* *$
 $\mathrm{C}+417-\mathrm{N} 264 \% \mathrm{~T}$ URN： $\mathrm{PP}=\mathrm{PEEK}(\mathrm{PAB}): \mathrm{PBB}=\mathbb{\mathrm { CP }} \mathrm{P}=\mathrm{C}$ DO）： $\mathrm{PCB}=$ NOT（ $\mathrm{PP}=\mathrm{N} 194$ ）
TM $96 A=A+N 1: P A B=P A B+D P B * P C B: P P=P E E K(P A B)$ $: I F P P=C 50-P B B * N 21$ AND A＜N5 THEN 96
WF 98 IF $A=N 5$ THEN PAB＝5C＋417－N264 2 TURN：I F PBB THEN POP ：GOTO 86
CX 100 IF $X>$ N9 9 AND $Y=N 264+N 24$ \％TURN THEN P OKE SC + NOT TURN前N 24 ，PEEK CSC + NOT TURN ＊ N 24 ）－N1
ZB 102 POKE PA，NO：POKE PAB，C50－N21\％ 6 PBB 0 R $A=N 5$ ）：PC＝N0：RETURN
KH 103 REM $\boldsymbol{*}^{*} *$ REMOUAL ROUTINE $*$
DK $104 \mathrm{PAH}=5 \mathrm{C}+510-456$ 年TURN： $\mathrm{PBH}=\mathrm{PAH}$
A0 $106 \mathrm{PAH}=\mathrm{PAH}+\mathrm{N} 1:$ IF PEEK $(\mathrm{PAH})=\mathrm{CS}$ THEN 10 6
UN 108 IF PEEK（5C＋N24＊TURN）＜N15 OR K＋D〉N1 6 THEN POP ：GOTO 86
YZ 110 RETURN
TT 111 REM $\because \in$ ROLLING DICE ROUTINE $\because \Leftrightarrow$
 126
Jo 114 D1＝INT（RND（N0）$\because N 6$ ）：$D 2=I N T(R N D(N 6)$ \％ N6）：FOR I＝NQ TO N2：A＝USR（ADR（MOUES），AD $\mathrm{R}(\mathrm{D} 5)+\mathrm{D} 1 * \mathrm{~N} 9+\mathrm{I} * \mathrm{~N} 3,5 \mathrm{C}+162+\mathrm{I}$＊ 48 8，N3）
BP 116 A＝USR（ADR（MOUES），ADR（D5）＋D2＊N9＋I\＃N $3,5 C+336+I \times N 48, N 3$ ）：NEKT I：50UND N0， 150 ，N2，N8：50UND NG，N6，N0，N0
GF 118 IF PEEK（644＋TURN）THEN 114
KL 120 SOUND N0，N16，N10，N14：MAK＝N2＋N2＊CD1 ＝D2）：POKE 764，N255：50UND N0，N0，N日，N0 122 IF PEEK（644＋TURN）＝N日 THEN 122
ZN 124 RETURN
PZ 125 REM $* *$ PRINT TEKT ROUTINE $* *$
Wa 126 A＝USR（ADR（MOUES），ADR（TXTS），5C＋554， 20）：RETURN
DK 127 REM ${ }^{2}$＊QUIT $*$
FK 128 GET \＃N2，A：IF $A=81$ THEN 92
BR 129 REM $* *$ SAUE GAME $* *$
NK 130 IF $A=83$ AND INT $(M A K / N 2)=M A B / N 2$ THE
 018
XD 131 REM $*$ PA55 $* *$
NS 132 IF $A=80$ THEN SOUND N0，N14，22，N16：P OKE SC＋ZB，N126：POKE 5C＋ZB＋N1，N126：GOT0 84
OE 134 GOTO 20
BL 135 REM $\#$ K WINNER ROUTINE $\because *$
ZF 136 W＝5C＋514－456\％TURN：W5＝＂
＂：IF T URN THEN W与ニ＂
JP 138 FOR I＝PAH TO PAH－N14 STEP－N1：POKE I，N0：50UND N0，I，N10，N10：POKE I＋456\％62 ＊TURN－N1），N0
YS 140 FOR J＝Ni TO Ni6：NERT J：NERT I：SOUN D NO，NO，NO，N0
LK 142 FOR I＝N1 TO N6：A＝USR（ADR（MOUE5），AD R（W5），W，N6）：F0R J＝N1 T0 N16：NERT J：A＝L 5R（ADR（MOUES），ADR（＂Winmen＇），W，N6）
MI 144 FOR J＝N1 TO N24：NEKT J：NEKT I
 126
KY 148 GET \＃N2，A：IF A＝89 THEN GOSUB 1172： OK＝NQ：GOTO 164
TK 150 GOTO 92
GW 151 REM $*$ LOAD／SAUE ROUTINE $\because *$
 5，N8）＝5L5：GOSUB 126：TRAP 158：CLOSE \＃N1 ：OPEN \＃N1，5L，N0，＂D：DOUBLE6．5CR＂
TC 154 POKE SC＋ $8+\mathrm{Y}$ ，N0：POKE 850，RW：POKE 85 2，PEEK ©883：POKE 853，PEEK（89）：POKE 856， N64：POKE 857，N2

LU 156 A＝U5R（ADR（＂hhherindi＇），N16）：TURN＝PEE K（5C＋23）：CLOSE $\# N 1: 0 K=N 0: R E T U R N$

 N0， $\mathrm{NB}, \mathrm{NB}, \mathrm{Na}$
LR 160 GET \＃NZ，A：IF A＝89 THEN 152
ZP 162 RETURN
SW 164 G05UB 112
UM 165 REM \ldots ※ WHO GOES FIRST ROUTINE $*$

UG 168 IF D1 1 D2 THEN TKTS $(5,8)=" 42 \%$ 与＂：TUR $\mathrm{N}=\mathrm{N} 0:$ POKE $\quad \mathrm{SC}+\mathrm{X}+\mathrm{Y}, 28+\mathrm{N} 2 *(\mathrm{Y}=\mathrm{N} 288)$
KK 170 IF D1 $1>$ D2 THEN TKT $5(5,8)={ }^{\prime \prime} \mathrm{b} 1 \mathrm{ue}$＂：TUR $\mathrm{N}=\mathrm{N} 1:$ POKE $5 \mathrm{C}+\mathrm{K}+\mathrm{Y}, 92+\mathrm{N} 2 *(\mathrm{Y}=\mathrm{N} 288)$
OI 172 G0SUB 126：F0R I＝N0 T0 N194：NEXT I； IF D1＝D2 THEN 164
EM 174 POKE SC＋N282，N126：POKE $5 C+N 282+N 1$ ， 126：POKE SC＋N306，N126：POKE 5C＋N306＋N1， 126：G0T0 14
RD 999 REM $\boldsymbol{*}_{*}$ INITIALIZE ROUTINE K_{k}
IM 1010 N1＝1： $\mathrm{N} 2=2$ ： $\mathrm{N} 3=3: \mathrm{N} 4=4$ ： $\mathrm{N} 5=5$ ： $16=6$ ： $\mathrm{N} 8=$ 8：N9＝9：N10＝10：N14＝14：N15＝15：N16＝16：N21 $=21$ ： $\mathrm{N} 24=24$ ： $\mathrm{N} 48=48$ ： $\mathrm{M} 64=64$ ： $\mathrm{N} 126=126$
TJ 1012 M194＝194：N255＝255：N264＝264：N282＝2 82：N288＝288：N306＝306：X＝N3：Y＝N264：Z＝N28 2
LH 1014 DIM TKT（ 20 ），SLS（N4），WS（N6）：CLOSE HN2：OPEN HN2，N4，NQ，＂K＂
JP 1015 REM $*$ MOUE CHARACTER SET $\# *$
YC 1016 RAMTOP＝PEEK（106）－N8：CH5ET＝RAMTOP 256：A＝USR（ADR（MOUES），57344，CH5ET，1024）
FW 1018 POKE 106，RAMTOP－N1：GRAPHIC5 17：P0 KE 559， $\mathrm{N} 0: \mathrm{POKE} 756, \mathrm{CH} 5 \mathrm{ET} / 256$
PH 1019 REM $*$ CHANGE CHARACTER SET $* *$
OG 1020 POKE N16，N64：POKE 53774，N64： $\mathrm{A}=\mathrm{USR}$ （ADR（TRANSFS）， 1022,63 ，CHSET＋N8）
YM 1022 DATA $0,102,102,102,102,0,102,0$
DZ 1624 DATA $254,254,254,254,254,254,254$ ， 254
SR 1026 DATA $254,254,254,254,254,254,124$ ， 124
HB 1028 DATA $124,124,124,124,124,124,124$ ， 56
HA 1030 DATA $56,56,56,56,56,56,56,16$
LII 1032 DATA $16,16,16,16,16,16,16,16$
NW 1034 DATA $0,28,28,4,8,0,0,0$
CP 1036 DATA $124,254,254,254,254,254,254$ ， 254
CB 103
24
J 1040 DATA $16,56,56,56,56,56,56,56$
YW 1042 DATA $56,124,254,124,186,68,186,68$
1044 DATA $0,0,0,0,0,28,28,56$
1046 DATA $0,0,0,126,126,0,0,0$
1048 DATA $0,0,0,0,0,28,28,0$
51050 DАТА $0,6,14,24,48,224,192,0$
1052 DATA $0,124,198,202,210,226,124,6$ 1054 DATA 0，52，116，52，52，52，52，0 1056 DATA $0,124,206,28,56,0,254,0$
1058 DATA $0,254,0,28,14,198,124,0$
1060 DATA $0,6,54,102,198,246,6,0$
A 1062 DATA $0,254,0,252,14,206,124,0$
SW 1064 DATA $0,28,64,220,206,206,92,0$
WK 1066 DATA $0,254,0,28,56,112,112,0$
Qa 1068 DATA $0,60,198,56,198,198,60,0$
J 1070 DATA $0,116,230,230,118,4,112,0$ 1072 DATA $0,6,28,28,0,28,28,0$
QX 1074 DATÁ $0,0,28,28,0,28,28,56$
HS 1076 DATÁ $16,16,56,56,124,108,198,130$
YZ 1078 DATA $0,0,126,126,0,126,0,0$
HF 1080 DATA $130,198,108,124,56,56,16,16$
YH 1082 DATA $0,124,230,206,28,56,0,56$
QR 1084 DATA $56,124,254,254,124,186,68,56$
HI 1086 DATA $0,24,12,198,198,246,198,0$
BS 1088 DATA $0,220,198,220,198,198,220,0$
FY 1090 DATA 0，28，198，192，192，198，28， 0
WU 1092 DATA $0,216,198,198,198,198,216,0$
RT 1094 DATA $0,222,192,216,192,192,222,0$
ZM 1096 DATÁ $0,222,192,192,216,192,192,0$
QW 1098 DATA 0，30，192，192，206，194，28，0
BY 1100 DATA $0,198,198,222,198,198,198,0$
DQ 1102 DATA $0,244,48,48,48,48,188,0$
KS 1104 DATA $0,14,6,6,6,198,116,6$
KU 1106 DATA $0,204,216,192,216,204,198,0$
ZM 1108 DATA 0，192，192，192，192，194，222，0
TN 1110 DATA $0,194,214,222,202,194,194,0$
FJ 1112 DATA $0,198,198,214,222,206,198,0$
MC 1114 DATA $0,124,230,194,194,230,124,0$
BY 1116 DATA $0,220,198,198,220,192,192,0$
CL 1118 DATA $0,28,198,198,198,204,54,0$
OL 1120 DATA $0,220,198,196,216,204,230,0$
GY 1122 DATA $0,124,226,120,30,142,124,0$
UN 1124 DATA $0,254,0,56,56,56,56$ ， 6

KO 1126 DATA $0,198,198,198,198,198,222,0$
BQ 1128 DATA $0,198,198,198,198,12,24,0$
QU 1130 DATA $0,194,194,202,222,214,194,0$
GG 1132 DATA $0,198,238,24,48,238,198,0$
Na 1134 DATA $0,198,198,28,24,24,24,0$
MF 1136 DATA $0,254,0,56,112,0,254,0$
BC 1138 DATA $28,56,118,230,160,86,40,20$
UF 1140 DATA $0,192,224,48,24,14,6,0$
UN 1142 DATA $56,28,110,103,5,106,20,40$
MP 1144 DATA $255,255,255,255,255,255,255$, 255
DT 1146 DATA $0,66,126,126,126,126,60,0$
KE 1147 REM ** TURN ON P/M GRAPHIC5 ${ }^{*} *$
DC 1148 PMBA5E= (RAMTOP $+N 4) * 256$
Q.J 1150 POKE 54279, RAMTOP + N4

FZ 1152 POKE 53277, N3:POKE 623,N8
QS 1153 REM $* *$ CLEAR P/M MEMORY $* *$
00 1154 A=USR (ADR (CLEARS), PMBASE, 1024)
PZ 1155 REM $*$ CREATE $3-D$ BORDER $* *$
RO 1156 FOR I=NO TO N48:POKE PMBASE+423+I 63: NEKT I
PE 1158 POKE PMBASE+551, 127:POKE PMBA5E+6 03, N255: POKE PMBA5E+679, 252: POKE PMBAS E+731, N255
MI 1160 POKE PMBASE+807,N255:POKE PMBASE+ 859, N255: POKE PMBASE+935,240:POKE PMBA SE $+987,252$
GU 1162 FOR I=N0 TO N2:POKE PMBASE+420+I, N48:POKE PMBASE+472+I,N48:NERT I:POKE PMBASE+475,N48
$\mathrm{PZ} 1164 \mathrm{~A}=\mathrm{U} 5 \mathrm{R}$ ($\mathrm{ADR}(\mathrm{TRANSF}$) $), 1166, \mathrm{~N} 1,53248$)
BU 1166 DATA $48,80,111,143,52,109,166,6,3$,3,3,3,0
WR 1167 REM $*$ COLORS $* *$
Na 1168 A=USR (ADR (TRANSF5), 1170, N1, 704)
HQ 1170 DATA $6,6,6,6,70,134,0,8,10$
UI 1171 REM $* *$ DRAW SCREEN $\# \notin$
IN 1172 SC=PEEK (88) +PEEK (89)*256: A=USR (AD R(TRANSF§), 1174, N24,5C3:POKE 559,47:RE TURN
KN 1174 DATA $5,0,0,32,32,32,6,228,239,245$ $, 226,236,229,0,243,233,248,0,96,96,96$, $0,0,0$
KY 1176 DATA $5,126,126,126,126,126,126,12$ $6,126,126,126,126,126,126,126,126,126$, $126,126,126,126,126,126,126$
ZA 1178 DATA $0,0,98,108,117,101,90,0,0,0$, $0,0,0,0,0,0,0,0,0,0,0,0,0,0$
RB 1186 DATA $126,126,126,126,126,126,126$, $126,126,126,126,126,126,126,126,126,12$ $6,126,126,126,126,126,126,126$
FB 1182 DATÁ $126,126,126,126,66,96,125,12$ $6,126,126,126,126,59,32,126,126,126,12$ $6,126,126,126,126,126,126$
TB 1184 DATA $126,126,254,254,254,254,254$, $254,254,254,254,254,254,254,254,254,25$ $4,126,126,126,126,126,126,66$
YN 1186 DATA $2,126,194,32,2,66,2,96,2,194$ $, 96,2,66,2,66,32,254,126,191,0,191,126$,126,67
CF 1188 DATA $3,126,194,32,3,67,3,96,3,194$ $, 96,3,67,3,67,32,254,126,0,0,0,126,126$, 68
BE 1190 DATA $4,126,194,32,4,68,4,96,4,194$,96,4,68,4, 68,4,254, 126,191, 0, 191, 126, 126,69
NW 1192 DATA $5,126,194,32,5,69,5,69,5,194$ $, 96,5,69,5,69,5,254,126,0,0,0,126,126$, 70
HW 1194 DATA $6,126,194,32,6,70,6,70,6,194$, $96,6,70,6,70,6,254,126,191,0,191,126$, 126,126
JB 1196 DATA $126,126,194,0,0,0,0,0,0,194$, $0,0,0,0,0,0,254,126,66,92,126,126,126$, 126
TK 1198 DATA $126,126,194,0,0,0,0,0,0,194$, $0,0,0,0,0,0,254,126,66,30,126,126,126$, 70
LE 1200 DATA $6,126,194,96,70,6,70,6,70,19$ $4,32,70,6,70,6,70,254,126,191,0,191,12$ 6,126,74
OK 1202 DATA $10,126,194,96,74,10,74,10,74$ $, 194,32,74,10,74,10,74,254,126,0,0,0,1$ 26,126,73
ZT 1204 DATÁ $9,126,194,96,73,9,73,32,73,1$ $94,32,73,9,73,9,73,254,126,191,6,191,1$ 26,126,72
GA 1206 DATA $8,126,194,96,72,8,72,32,72,1$ $94,32,72,8,72,8,96,254,126,0,0,0,126,1$ 26,66
RN 1208 DATA $2,126,194,96,66,2,66,32,66,1$ $94,32,66,2,66,2,96,254,126,191,6,191,1$ 26,126,126
RZ 1210 DATA $126,126,254,254,254,254,254$,
$254,254,254,254,254,254,254,254,254,25$ $4,126,126,126,126,126,126,126$
vo 1212 DATA $126,126,126,126,66,32,61,126$ $, 126,126,126,126,123,96,126,126,126,12$ $6,126,126,126,126,126,126$
QY 1214 DATA $126,126,126,126,126,126,126$, $126,126,126,126,126,126,126,126,126,12$ $6,126,126,126,126,126,126,126$
ZF 1216 DÁá $0,0,0,50,37,36,26,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0,0,0,0$
RO 1218 DATA $126,126,126,126,126,126,126$, $126,126,126,126,126,126,126,126,126,12$ $6,126,126,126,126,126,126,126$
LD 1220 DATA $0,0,0,0,167,161,173,165,154$, $0,46,165,183,0,175,178,0,47,172,164,0$, $0,0,0$

LISTING 2: BASIC

$B Z$	1	REM	$*$
$K O$	2	REM	$*$
LOUBLE SIK			

WY 10 CLOSE \#1:0PEN $\# 1,8,0, " D: D O U B L E 6 . C H R$ ":FOR I=1 TO 397:READ A:PUT H1, A:NEST I:FOR I=1
I:CLOSE
EB 100 DATA $49,48,48,48,32,68,73,77,32,84$,82, 65, 78,83,79,36
OC 102 DATA $40,49,49,53,41,58,84,82,65,78$ $, 83,70,36,46,49,44$
DC 104 DATA $53,48,41,61,34,164,104,133,20$ $9,104,133,208,104,104,133,205$
KN 106 DATA $104,133,213,104,133,212,165,1$ $36,133,203,165,137,133,204,160,2$
BM 198 DATA $165,203,24,113,203,133,203,14$ $4,2,230,204,160,1,177,203,217$
DI 110 DATA $208,0,144,234,208,5,136,34,15$ $5,49,48,48,50,32,84,82$
EK 112 DATA $65,78,83,70,36,49,53,49,44,49$,49,53,41,61,34,192
ZF 114 DATA $255,208,242,160,4,169,0,133,2$ $14,206,177,203,201,71,176,23$
ZF 116 DATA $201,44,240,21,233,48,133,215$, $165,214,10,133,214,10,10,101$
GD 118 DATA $214,101,215,133,214,144,226,1$ $60,0,132,207,160,0,165,214,145$
52120 DATA $212,230,212,208,2,230,213,164$ $, 207,268,202,198,265,208,167,96$
GF 122 DATA $34,155,49,48,48,52,32,68,73,7$ $7,32,77,79,86,69,36$
DJ 124 DATA $46,52,51,41,58,77,79,86,69,36$, 61, 34,104,104,133,211
HY 126 DATA $104,133,210,104,133,213,104,1$ $33,212,104,133,214,104,170,268,2$
AU 128 DATA $198,214,166,0,177,210,145,212$ $, 260,298,4,230,211,230,213,202$
LC 130 DATA $208,242,198,214,16,238,96,34$, $155,49,48,48,54,32,68,73$
BA 132 DATA $77,32,67,76,69,65,82,36,40,52$ $, 50,41,58,67,76,69$
QH 134 DATA $65,82,36,61,34,164,104,133,20$ $4,104,133,203,104,133,206,104$
EH 136 DATA $133,205,166,206,160,0,169,0,1$ $45,203,136,208,251,236,204,202$
EB 138 DATA $48,6,208,244,164,265,268,240$, $198,204,166,0,145,203,96,34$
BT 146 DATA $155,49,48,48,56,32,68,73,77,3$ $2,68,36,46,53,52,41$
IL 142 DАТА $58,68,36,61,34,0,0,0,0,191,0$, $0,0,0,191,0$
UD 144 DATA $0,0,0,0,0,0,191,191,0,0,0,191$, 0, 6, 0,191
MJ 146 DATA $191,0,191,0,0,0,191,0,191,191$, 0, 191,0,191,0,191
CG 148 DATA $0,191,191,0,191,191,0,191,191$, 0,191,34,155

So far, all the programs we've written have run from top to bottom, processing one instruction after another until they get to the last line of code. It is, of course, impossible to write fullsized programs without some way of controlling program flow. Therefore, we need to be able to construct loops so we can easily perform repetitive processing. We also need to give our programs decision-making abilities. In this installment, we'll take a look at these two ways of controlling a program's order of execution.

What Is a Loop, Anyway?

Many times when writing a program, we come across a process that must be performed repeatedly. It's inefficient to write the same instruction over and over when we could just tell the computer, "Hey, you! Do this ten times!" A loop is a program construct that allows us to say just that to the computer. It gives us a way to send the program back to the same point over and over until certain criteria are met.
For example, let's say we want to get three
numbers from the user. We could do it this way:

10 DIM NUMBER5 (3)

20 PRINT "ENTER THREE NUMBER5:"
36 INPUT A: NUMBER5(1)=A
40 INPUT A: NUMBER5(2)=A
50 INPUT A: NUMBERS(3)=A
But by using a loop, we can get all three numbers with only a single INPUT statement. Here's the program above written using a simple loop:
10 DIM NUMBERS(3)
$20 \quad \mathrm{H}=0$
$30 \quad \mathrm{~K}=\mathrm{K}+1:$ IF $\mathrm{K}=4$ THEN GOTO 60
40 INPUT A:MUMBER5 (K) = A
50 Gото 30
60 END
Do you see the loop? Here we're using the variable X to both count the number of times we've passed through the INPUT statement and also as an index into the array NUMBERS. But before I describe how this program works, there are a few new things you need to understand.
Those of you who are used to seeing algebraic equations may find the statement $\mathrm{X}=\mathrm{X}+1$ in Line 30 a little confusing. Just remember that, in BASIC, a statement like
this is solved from right to left. In other words, first we add one to X , then give that value back to X . All we're doing is simply adding one to X .

In Line 30 there's also an IF. . .THEN statement, which allows us to control program execution based on the values of variables. If the expression immediately following the IF is true (in this case, $X=4$), the instructions following the THEN (in this case, GOTO 60) are performed. If the expression is false, program execution drops down to the next line after the IF. . .THEN statement. Anything on the same line following the THEN will be ignored.

And that brings us to the GOTO statement. Common sense has probably already told you what it does, but just for record let me state it here: The GOTO statement lets us send program execution to any program line we wish, simply by placing the line number after the GOTO. In other words, the statement GOTO 60 will cause the program to jump to Line 60 and continue execution from there.

Now that we're familiar with these new statements, let's look at the program flow for the above example. We'll list the lines in the

AININC

order the running program encounters them．Note that for some reason，Atari BASIC doesn＇t allow us to INPUT a value directly into an array．First we have to get the value into a regular numeric variable， then set the array element equal to that variable．

Line 10：Dimension the array NUMBERS．

Line 20：Set X equal to zero．
Line 30：Add one to X ，making it one Is $X=4$ ？No，so drop down to the next line．

Line 40：Get a value for NUMBERS（1） （remember： $\mathrm{X}=1$ ）from the keyboard．

Line 50：Go back to Line 30.
Line 30：Add one to X ，making it two．Is $X=4$ ？No．

Line 40：Get a value for NUMBERS（2） （now $\mathrm{X}=2$ ）from the keyboard．

Line 50：Go back to Line 30.
Line 30：Add one to X ，making it three． Is $X=4$ ？No．

Line 40：Get a value for NUMBERS（3） from the keyboard．

Line 50：Go back to Line 30.
Line 30：Add one to X ，making it four．
Is $X=4$ ？Yes！Jump to Line 60.
Line 60：End program．
Now，I＇ll admit that the second pro－ gram，the one using the loop，is actually longer and harder to understand than the ＂non－loop＂version．But what if we want－ ed to get ten numbers from the keyboard？ Or 50 ？Or 100 ？The fact is，we can per－ form the loop any number of times without enlarging the program．Here＇s the same program，changed to get 1,000 num－ bers from the keyboard：

10 DIM NUMBERS（1000）

$20 \mathrm{~K}=0$
$30 \mathrm{~K}=\mathrm{K}+1:$ IF $\mathrm{K}=1001$ THEN GOTO 60
40 INPUT A：NUMBERS（K）＝
50 GOTO 30
60 END
If we had written this program using the ＂simple＂method，without a loop，we would have needed 1,000 lines of INPUT

statements！Now you can see the real pow－ er of a loop．We can simplify the above program even further．BASIC has a spe－ cial construction known as the FOR ．．．NEXT loop，which lets us set up a loop without having to do all the house－ keeping；that is，the program itself will keep track of the value of X，automatically incrementing it as needed and breaking out of the loop at the proper time．Here＇s our program again，written using a FOR．．．NEXT loop：

```
10 DIM NUMBERS(1000)
20 FOR K=1 TO 100日0
30 INPUT A:NUMBERS(K)=A
40 NEKT %
50 END
```

The first time the program gets to Line 20 ， it sets X to one．It then drops down to Line 30，where it gets a value for NUMBERS（1）． At Line 40，X is incremented（increased by one），and the program jumps back to Line 20，where X is tested to see if it＇s larger than 1,000 ．If it＇s not，the program again drops down to Line 30 to get a value for NUM－ BERS（2）．At Line 40， X is again increment－ ed，and program execution jumps back to Line 20．The value of X is still less than 1,000 ，so we go through the loop again．Even－ tually， X will become 1,001 ．The value will be tested at Line 20，and because X is now out of the range of our loop，the loop is end－ ed．Program execution automatically con－ tinues at the statement immediately following
the NEXT X，or in this case，at Line 50 ， where the program ends．

We don＇t need to construct our FOR ．．．NEXT loops exactly as shown in the first example．We could have put the entire program on one line．It would still operate properly：

10 DIM NUMBER5（1000）：FOR K＝1 TO 1000：INPUT A：NUMBERS（K）＝A： NEKT K：END

This is hard to read，though．I＇d write the above program like this：

10 DIM NUMBERS（1000）
 20 FOR K＝1 T0 10日0：INPUT A：NU MBERS（K）＝A：NE HT K 36 END

By putting the loop all on one line，it can execute much faster．

When using a FOR．．．NEXT loop，we don＇t have to＂count by ones．＂By using the STEP keyword，we can make a loop count by whatever interval we want：

```
10 FOR K=0 TO 10 STEP 2
20 PRINT K
30 NEHT H
```

This program will give us this output：
0
2
4
6
8
10

We can even have a loop that counts backwards：

```
10 FOR K=10 T0 0 STEP -2
20 PRINT K
30 NEHT %
```

The output from the above program would be：

10
8
6
4
2
6

Conclusion

Now that we know how to handle loops and IF．．．THEN statements，we have most of the tools we need to write fairly sophisticated programs．Still，BASIC is a rich language and there＇s a lot of territory left to cover．Next time，we＇ll learn about simple disk access and write a program that＇ll review everything we＇ve learned so far．See you then．

Clayton Walnum is the executive editor of ST－LOG and ANALOG Computing，as well as the associate editor of Videogames \＆Computer Entertainment．

PACKAGE DEALS FROM SAN JOSE COMPUTER

nex
 You SAVE OVER S175

SUPER ATARI ST SOFTWARE PACKAGE

TRACKER THE GUHD OF THIEVES THE PAWN THE SENTRY GOLIDEN PATII STARGLIDER -

ACTION / STRATEGY / 3D GRAPIIICS GRAPHIC TEXT ADVENTURE GRAPHIC TEXT ADVENTURE STRATEGIC / CHESSLIKE GRAPHICS ADVENTURE (NO TYPING!?) ACTION SHOOT-EM UP W/ FAST 3D GRAPHICS
$\$ 44.95$ REG. $\$ 34.95$ REG. $\$ 34.95$ REG. \$35.95 REG. $\$ 34.95$ REG. $\$ 39.95$ REG.

1200XL PACKAGE

» COMPUTER «»»PRINTER «» PLOTTER «
" 1200XL «» 1025 «»» 1020 《

- 1025 DOT MATRIX PRINTER (80 COL.)
- PAC-MAN CARTRIDGE
- BASIC WITH TUTOR SET

INCLUDES:
 - 64 K COMPUTER

- 1020 PRINTER PLOTTER

ALL ITEMS ARE RECONDITIONED EXCEPT 1020 PRINTER

» COMPUTER «»» PLOTTER « " 1200 XL «") 1020 «

INCLUDES:

- 64K COMPUTER
- 1020 PRINTER PLOTTER
- BASIC CARTRIDGE
- PAC-MAN CARTRIDGE

ALL ITEMS ARE NEW EXCEPT 1200XL COMPUTER

DRIVE
 SPECIAL

 9 9 A SAVINGSOF $\$ 30$
" 810 «

INCLUDES:

- 810 DISK DRIVE (RECON)
- DOS 2.5 W/MANUAL
- POWER SUPPLY AND CABLES
* SPECIAL PRICE AVAILABLE ONLY WHEN PURCHASED WITH ABOVE SYSTEMS. ONE PER SYSTEM ONLY!

RAINBIRD TITLES

Knight Orc	$\$ 9.95$
Tracker	$\$ 9.95$
Advanced Art Studio	$\$ 9.95$
Guild of Thieves	$\$ 9.95$
The Pawn	$\$ 9.95$
Golden Path	$\$ 7.95$
Universal Military	
\quad Simulator	$\$ 14.95$
Carrier Command	$\$ 29.95$
Jinxter	$\$ 9.95$
Sentry	$\$ 9.95$
StarGlider	$\$ 9.95$

ALL ITEMS REG. $\$ 39.95-\$ 49.95$
ST SOFTWWRE THTLES AVAHABLE

SOFTWARE PAKH1
$\$ 29.95$

INCLUDES:

- SLIME - INV. TO
- CHICKEN PROGRAMING
- BASIC - DONKEY
- GORF KONG
- JOURNEY - BANDITS TO THE • CLAIM PLANETS JUMPER
- TURMOIL • DELUXE
- PAC-MAN INVADERS

ASTRA 2001 DUAL DRUVE $\$ 199$ DOUBLE DENSITY DUAL DISK DRIVE (2 DRIVES IN ONE CASE)

COLOR PRINTER PLOTTER

COMPLETE WITH:

- 2 PEN SETS
- 1 ROLL PAPER
- POWER SUPPLY \& CABLE

\$14.95

BRAND NEW
$\begin{array}{cc}\text { COLOR } & \$ 3.98 \\ \text { BLACK } & \$.89\end{array}$

1027 PRINTERS 1025
EXTRA PEN SETS
DISK DRIVES FOR 800/XL/XE COMPLETE WITH: POWER SUPPLY I/O CABLE DOS $2.5 \mathrm{~W} /$ MANUAL

	DISK DRIVES
	FOR 800/XL/XE
	ATARI $810 \quad \$ 129.00$
	ATARI $1050 \quad \$ 169.00$

BASIC CARTRIDGE BASIC TUTOR (2 BOOKS)
OX
TURMOIL
PAC-MAN (no box)
DONKEY KONG (no box)
GORF (400,800)
GORT. (400
CIICKEN
SLIME $(400,800)$
CI.AIM JUMPPR

DELUXE INVADERS
JOURNEY TO THE PL.ANI:TS
STAR RAIDERS
MISSLE COMMAND
GALAXIAN
DEFFNDFR

CARTRIDGES FOR THE 800/XL/XE

BASIC CARTRIDGE	\$4.95					STAR RAIDERS II	\$19.95
BASIC TUTOR (2 BOOKS)	\$4.95	ET	\$4.95	ROBOTRON	\$19.95	DAVID'S MIIDNIGHT MAGIC	\$19.95
Q ${ }^{\text {d }}$	\$4.95	FACEMAKER	\$4.95	TENNIS	\$19.95	ARCHON	\$19.95
TURMOIL	\$4.95	MATH ENCOUNTER	\$7.95	FINAL LEGACY	\$19.95	KARATEKA	\$19.95
PAC-MAN (no box)	\$4.95	DANCE FANTASY	\$8.95	MARIO BROS	\$19.95	CHOPLIFTER	\$19.95
DONKEY KONG (no box)	\$4.95	LOGIC LEVELS	\$8.95	DONKEY KONG JR	\$19.95	GATO	\$24.95
GORF (400,800)	\$4.95	MEMORY MANOR	\$8.95	JUNGIE HUNT	\$19.95	ACE OF ACPS	\$24.95
CIICKEN	\$4.95	LINKING LOGIC	\$8.95	MOON PATROL	\$19.95	LODE RUNNER	\$24.95
SIIME (400,800)	\$4.95	DELTA DRAWING	59.95	BATTLEZONE	\$19.95	BARNYARD BLASTER (LG)	\$24.95
CI.AIM JUMPER	\$4.95	HEY DIDDLE DIDDLE	\$9.95	FOOD FIGHT	\$19.95	DARK CIIAMBERS	\$29.95
DELUXE INVADERS	\$4.95	GRANDMA'S FOUSE	\$9.95	HARDBALL	\$19.95	AIRBALL	\$29.95
JOURNEY TO THE, PL.ANIETS	\$4.95	FRACTION FEVER	\$9.95	FIGIIT NIGITT	\$19.95	SUMMER GAMES	\$29.95
STAR RAIDERS	\$4.95	ALPHABET 700	\$9.95	ONE ON ONE BASKETBALL	\$19.95	CROSSBOW (LG)	\$29.95
MISSLE COMMAND	\$4.95	ALF	\$9.95	DESERT FALCON	\$19.95	EAGLES NEST	\$29.95
GALAXIAN	\$4.95	DIG DUG	\$14.95	NECROMANCER	\$19.95	CRIME BUSTIERS (LG)	\$29.95
DEFENDFR	\$4.95	MILLIPEDE	\$14.95	RESCUE ON FRACTALUS	\$19.95	MICROFILER (database)	\$39.95
		SKY WRITER	\$14.95	BALLBLAZER	\$19.95		
		FOOTBALL	\$14.95	blUE MAX	\$19.95		
		SK SOFPM	T.	HHE 800/XM	${ }^{\text {F }}$		
DAVID'S MIDNIGHT MAGIC	\$4.95	COMMBAT	\$4.95	ADVENTURELAND	\$4.95	ALIEN AMBUSH	\$4.95
REPTON	\$4.95	PREPPIE I	\$4.95	PIRATE ADVENTURE	\$4.95	DISPATCH RIDER	\$9.95
BANDITS ($48 \mathrm{~K} 400,800$)	\$4.95	PREPPIE II	\$4.95	SECRET MISSION	\$4.95	SILICON DREAMS	\$9.95
Cl.AIM JUMPER	\$4.95	THE COUNT	\$4.95	VOODOO CASTLE	\$4.95	VISICALC	\$29.95
TIME WISE	\$4.95	FREAKY FACTORY	\$4.95	STRANGE ODYSSEY	\$4.95	BOOKKEEPER	
CROSSCIIECK	\$4.95	LASER IIAWK	\$4.95	REPTON	\$4.95	W/ num keypad	\$29.95
MISSION ASTEROID	\$4.95	CRYSTAL RAIDERS	\$4.95	IIULK	\$4.95	IOME ACCOUTANT	\$29.95

HARDWARE \& ACCESSORIES

850 PRINTER INTERFACE $\$ 79.95$ 1010 PROGRAM RECORDER $\$ 29.95$ TWO JOYSTICK SET $\$ 9.95$ SPACE AGE JOYSTICK $\$ 14.95$ WICO COMMAND JOYSTICK \$24.95 WICO THE BOSS JOYSTICK $\$ 19.95$ ATARI TRACKBALLS $\$ 9.95$ ATARI SX212 MODEM $\$ 89.95$ AVATEX 1200 IC MODEM $\$ 89.95$ DOS 2.5 W/ MANUAL $\$ 4.95$ 600XL (NO Transformer) \$19.95 400,800,850,1200XL Transforner \$14.95 XL/XE Transformer $\$ 19.95$

BOOKS - BOOKS	
	¢

1010 PROGRAM RECORDER \$29.95 SAVE AND L PROGRAMS

LIGHT SPEED C DEVELOPMENT KIT

FAX US YOUR ORDER!

 FOR FASTER SERVICE PLEASE INCLUDE: - NAME- BILL TO ADDRESS

VISA / MASTERCARD

- SHIP TO ADDRESS

ORDERS ONLY

- PIONE H CARD ADDRESS MUST MATCI

TO PURCIIASE. BILL TO ADDRESS

SAN JOSE COMPUTER
 T H E A T A R I S T O R E
 640 BLOSSOM HIL.I. RD. SAN JOSE, CA 95037
 STORE (4O8) 224-8575 • BBS (4O8) 224-9O52 • FAX (4O8) 224-8574

SIIIPPING: ADD \$5,00 TO ALL, ORDERS. AIR AND INTERNATIONAL, SHIPPING F:XTRA. THAT'S IT. WARRANTY: 90 DAY WARRANTY ON ALL ITEMS. TAX: CALIFORNIA RESIDENTS ADD 7\% SALES TAX PREPAYMENT: USE VISA, MASTERCARD, MONEY ORDER, CASHIER'S CHECK OR PERSONAL CHECK. PERSONAL CHECK MUST CLEAR PRIOR TO SHIPMENT. CO.D.: CASH, CASHIER'S CHECK OR M.O. ONLY.

Prices subject to change without notice.
Brand and/or product names are trademarks or registered trademarks of their respective holders.
Ad produced on an ATARI ST using CALAMUS and printed on an ATARI SLM804 PostScrpt compatible laser printer.

```
In two seasons of new episodes, we have seen the crew of the Enferprise struggle with compuler viruses, compuler piraties and advanced technology. Many of The scripls deal with today's problems projected into the Enferprise scenario. Written by fulurists, the scripts are believable.
```


part of the panel, you feel the reaction of the control. There is a depth dimensionality to the panel.
Sternbach: The idea is part of a nano-

technology. We take a piece of 14 -inch Plexiglas and lay it into the set to create a panel. If this were the world of the 24th century, we would be using a material that has 50 or more layers of materials, each layer performing a different task. For us to create this material today would cost an arm and a leg. But in the 24th century, this stuff comes off a roll!

ANALOG: Can these panels project threedimensional displays?

Okuda: They can; however, the style of the operating system tends not to use this capability. Budget limitations on the show have made us keep the displays two-dimensional; however, the panels could perform multidimensionally. An example of this operation might be a crew member looking at a projection of the harmonic subspace distortions of the ship.

Sternbach: It could also be a twodimensional display of a three-dimensional object. You have to remember that these panels are also used by nonhumans. They might not have depth perception and could not use the dimensional display because their interoccular dimensions are too close for depth.

Okuda: There is another part to this. If we are designing for the 24th century, we really don't know how a lot of three-dimensional imagery will appear when a user is looking into it. For example, if I had designed a little three-dimensional ball coming out of each button, I would be most concerned with how easily that control works. It might be that the panel would become too cluttered, or it might get in the way of another panel's use.
ANALOG: One of the shows featured a computer virus attacking the Enterprise computer. What did you think about that episode?

Okuda: I thought it was exciting, but the level of computer technology was not quite as advanced as it will really be that far into the future. The idea of an information-based weapon of that kind was pretty good. I thought the computer would be a little more protected than it appeared.
Sternbach: That's really a problem of the time constraints we have working on a show like this. [The writers] might want to polish a script for a couple of months, but they just don't have that kind of time.

Time hasn't hindered these artists' creativity. Okuda and Sternbach have implanted their vision of computer/human symbiosis into the new series by The Next Generation portraying computers and technology in a fundamentally different way than did its predecessors: Okuda and Sternbach have added a friendly and open image to the touch panels aboard the Enterprise.
If television is a reflection of the public perception, the technology on display in Star Trek: The Next Generation could well be right around the corner. After all, it was less than 50 years ago that television brought us to the moon and Mars. By making it visual and responsive, the Star Trek vision may have brought us that much closer to new worlds and wonders.

Frank Cohen is a programmer, author, graphic designer and music hobbyist. You may contact Frank directly on CompuServe (76004,1573) and GEnie (FRANK.COHEN), or by writing to P.O. Box 14628, Long Beach, CA 90803-1208.

Quiet Those Printers

The Silencer Mat is now available from JTB Communications. The mats come in a variety of sizes and are designed to reduce office noise produced by typewriters, computers and printers. They also protect desktop surfaces from scratches. The Silencer Mat is available in charcoal-gray and features acoustical-foam lamination.
Also available is the Mighty Mat series, which comes in blue, silver and red. Its sponge rubber construction grips the desk surface, reducing vibration.
JTB Communications
222 W. Adams Street, Suite 589
Chicago, IL 60606
(312) 263-3063

Peripheral Switch Box

The Robox X-Changer data switch allows two computers to electronically switch between two different peripherals, such as serial or parallel printers, plotters and modems. Switching can be accomplished using a remote switch or by software. The X-Changer comes in two models, one for parallel devices and one for serial devices, the former featuring 36-pin Centronics connectors, the latter featuring DB-25 connectors. The unit lists for \$129.95.

Support Systems International Corp. 150 South Second Street, Dept. CC
Richmond, CA 94804
(415) 234-9090

Address Book

Twenty-Fifth Century has announced Mailing List Plus for the 8-bit Ataris. Names and addresses are typed on-screen just as they will appear on the labels, and two keys allow the user to move through the address database, making corrections wherever needed. Names and addresses can be categorized, allowing the user to group entries based on a keyword. This feature makes it possible to create labels for a specific subset of the address database.
Entries can be searched on several fields, including first name, last name, city or zip code. Mailing List Plus will also print standard labels one or two across and provides the ability for the user to adjust spacing to accommodate just about any label size. Mailing List Plus sells for $\$ 14.95$, including labels.
Twenty-Fifth Century
234 Fifth Avenue, Suite 301
New York, NY 10001
(516) 932-5330

NEW DESKTOP MATS FROM COMPUTER COVERUP The SILENCER is one of fwo new series of mats for persomml computors, iypowrifors and printers introduced by Computer Coverup, Inc.

Frog Software

UltraBASIC has just released a group of four new programs for the Atari 8-bits. Superfrogs is a seven-game arcade pack that allows over 10,000 game variations. Superfrogs Funspeller features six one- or two-player educational games designed to help improve spelling skills. In Tank Math, players can try their hands at various math problems, including practicing Roman numerals. In the event of an incorrect answer, the program will work out the problem step by step. Track Stack 2.0 will transfer up to 15 unprotected machinelanguage programs to a Track Stack disk, from which they can be loaded with the press of a single key.
UltraBASIC, Inc.
10 East 10th Street
Bloomsburg, PA 17815
(717) 784-4545

by Michael A. Banks

hings have been a little strange lately; for two months this summer, I avoided almost all online activities. This is decidedly different for me because I have been an intense telecomputing maven, buff, fan and devotee for nearly seven years. The main reasons behind all of this, which are a little too personal and involved to go into here, were complicated by the fact that I had to finish a book on an extremely tight schedule. (Unfortunately, this resulted in no little suspense for ANALOG's editor, and no Database DELPHI column for you-my apologies.)
Thus, I couldn't afford the luxury of chatting with friends in conference on DELPHI. Nor could I dribble away precious minutes browsing DELPHI's excellent travel service; forget planning a vacation -I was working to pay for last year's.
I had no time to check out the databases in the Atari SIG, and I couldn't waste time swapping bad puns and outrageous gossip via E-mail. No cruising SIG Forums for interesting (or stupid) message threads either. (I didn't even read Forum messages to $m e$, and delayed reading some E-mail for up as long as three weeks.)

During one particularly intense 16-day period, I didn't log on to any online services or BBSs.

Although I was too busy to think about it,

I missed DELPHI. But it wasn't so much the habit of signing on and checking mail and such that I missed; it was the people. E-mail, messages, conferences-all the "people" activities on DELPHI were what I missed the most.

When I finally started signing on to DELPHI regularly again, it was a strange feeling-not unlike visiting, for the first time in ten years, the town where you grew up. Things had changed. A lot.
I found new files galore in the Atari SIG databases and encountered lots of new DELPHI members-many of whom were already old hands. The sheer quantity of new messages in the Atari SIG Forum alone left me babbling in the dust-there were over 500 of them!

I should have expected this. Like any community, DELPHI evolves. Some of the evolution is the result of new services being added and existing services being improved. But most of it is human dynamics; our online world being as microcosmic as it is, change occurs much faster than in the "real"

world-with the result that the changes in less than two months were almost staggering. When you can assimilate the changes one or two at a time on a week-to-week basis, it's not that noticeable. But being hit with two months' worth of changes all at once threw me off a little.
All of this says something about the vitality imparted DELPHI and its SIGs by its designers and members.

It was an interesting sabbatical, though one I'm not likely to take again soon-just catching up on E-mail and Forum messages took three hours.
Despite (or perhaps because of) my odd sabbatical, I've a few new things to report. So....

Cafthing Up

So, how did I catch up on what I'd been missing? Well, after wading through my E-mail, I hit the SIGs. I've already mentioned the wealth of new Forum messages in the Atari SIG (there are some pretty good threads on gaming going on, by the way). What I didn't mention was how I dealt with them.
I started to scan all new messages by headers using the DIR NEW command, but found it overwhelming (imagine trying to "scan" 20 -odd screens of message headers!) So I narrowed them down by using the DIR NEW TOPIC command. For example, I typed DIR NEW TOPIC TELE to display the headers for new messages stored under the Telecommunications topic. That made things a bit easier-there were only a couple of screens of headers, so I could scan for interesting subjects, which I duly noted and used to further trim the list with DIR NEW SUBJ < subject>.
I did the same thing with other topics of interest, in most cases just using READ NEW SUBJ < subject > after I noted the interesting messages. (This proved to be easier than using DIR NEW SUBJ <subject> because I didn't have to try

to remember or write down message numbers.)
When I'd finished going through the Forum, I typed 99999 to read the very last message in the Forum (some had been added while I was catching up!), just for the heck of it.
As usual, I checked out the preview of the upcoming issue of ANALOG Computing, which is always in the Recent Arrivals database (type DA REC to access it, then press Return to see a directory of the newest items). I also scanned the programs from the current issue (DA CUR, for the Current Issue database).
If you find yourself offline for a couple weeks or more, try these "catch-up" techniques-they work!

New News

DELPHI has replaced the Associated Press newswire with United Press International (UPI) news and features. UPI offers a wide selection of interesting features and columns, in addition to the news coverage typical of newswire services.
To check out the new UPI news service, type GO NEWS UPI at the Atari SIG menu. You'll see this menu:

UPI Hews Menu:

Hewsbrief	Sports
Human Interest Stories	Entertainment
Mational News	Weather
International News	Exit
Business \& Finance	

UPI) (Please select an item) :
Select an item, and you'll see a numbered list of news stories and features; to read a story, type its number.
Other items on the News menuincluding Accu-Weather-remain unchanged.

Se Habla Español?

The DELPHI/Regional menu now boasts a fourth selection; in addition to

versions of DELPHI for Argentina, Boston and Kansas City, there's now a DELPHI/Miami selection, which is a Spanish-language regional operation in Florida. The entire service is in Spanish and was developed by SISCOTEL, the company that developed DELPHI/Argentina.

To take a quick trip to Miami, type GO DEL MIAMI at the Atari SIG menu. (It helps to be able to speak Spanish, of course! Bienvenido!)

Hof Tip: Meet the Pros in the SF SIG!

Do you read science fiction and fantasy? Want to meet some of the foremost authors in the field? Check into DELPHI's Science Fiction/Fantasy SIG (GO GR SF), where you'll find fascinating conversations among fans and writers in the Forum. You can also meet such popular writers as Pat Cadigan, Jack Chalker, Nebula-winner George Alec Effinger, Mike Resnick, Joel Rosenberg and others "in person" during the SF SIG's weekly conference, which is held on Wednesday nights between 9:30 p.m. and 11:00 p.m., EST.

Poker Tournaments

DELPHI's Trivia Quest has for months been one of the hottest online activities anywhere, with truly intense competition for prizes, glory and honor. Now it appears that DELPHI's weekly online poker games may equal or surpass TQ in popularity on an individual as well as tournament basis.

If you haven't tried your hand at poker (a variation of seven-card stud), type GO ENT POKER at the Atari SIG's menu. Good luck!

That's it for now. See you in conference! (Tuesday evening, 10:00 p.m., Eastern time; be there, or be an obtuse rectangle!)

In addition to science fiction novels and books on model rocketry and other topics, Michael A. Banks is the author of DELPHI: The Official Guide and The Modem Reference, both from Brady Books. You can write to him via E-mail on DELPHI to membername KZIN.

Attention Programmers!

ANALOG Computing is interested in programs, articles, and software review submissions dealing with the Atari home computers. If you feel that you can write as well as you can program, then submit those articles and reviews that have been floating around in your head, awaiting publication. This is your opportunity to share your knowledge with the growing family of Atari computer owners.

All submissions for publication, both program listings and text, should be provided in printed and magnetic form. Typed or printed copy of text is mandatory and should be in upper and lower case with double spacing. By submitting articles to ANALOG Computing, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of ANALOG Computing. If not accepted for publication, the articles and/or programs will remain the property of the author. If submissions are to be returned, please supply a self-addressed, stamped envelope. All submissions of any kind must be accompanied by the author's full address and telephone number.

Send your programs and articles to: ANALOG Computing P.O. Box 1413-M.O. Manchester, CT 06040-1413

DISK LISTING

THE ANALOG \# 77 DISKETTE CONTAINS 13 MAGÁZINE FILES. THEY ARE LISTED BELOW:

SIDE 1:

E.EXT	LANG.	LOAD	ARTICLE NAME
DOUBLE 6 , BAS	BASIC	LOAD	DOUBLE SIX
ERRMAN , OBJ	ML	(\#4)	ERROR MANUAL
ERROR .MAN			ERROR Manual data
TXCRUMCH. BAS	BASIC	LOAD	TX CRUNCHER
CLOCK . BAS	BASIC	LOAD	KEEPING BUSY
SKULL , BAS	BASIC	LOAD	SKULL ISLAND
STRIMG1			SKULL ISLAMD DATA
STRIMG2			SKULL ISLAND DATA
FASTMOUE.BAS	BASIC	LOAD	FAST MOUE DEMO
LEMAME, EXT	LANG.	LOAD	ARTICLE NAME
ERRMAN .M65	MAC/65	LOAD	ERROR MANUAL SOURCE
FASTMOUE.M65	MAC/65	LOAD	FAST MOUE SOURCE
MLEDITOR. BAS	BASIC	LOAD	M/L EDITOR
EDITORII.LST	BASIC	ENTER	BASIC EDITOR II

TO LOAD YOUR ANALOG DISK

1) INSERT BASIC CARTRIDGE CNOT REQUIRED FOR XE OR XL COMPUTERS).
2) TURN ON DISK DRIUE AND MONITOR,
3) INSERT DISK IN DRIUE.
4) TURN ON COMPUTER. (XL AND XE OWNERS: DO NOT HOLD DOWN OPTION KEY!)

WARNING: BEFORE YOU RUN A PROGRAM, READ THE APPROPRIATE ARTICLE IN THE MAGAZINE, FAILURE TO DO SO MAY YIELD CONFUSING RESULTS.

NOTE: OHLY PROGRAMS WITH THE , BAS, COM OR , OBJ EXTENSION MAY BE RUN FROM THE MENU. OTHER PROGRAMS SHOULD BE LOADED AS INSTRUCTED IN THE LOADING NOTES AND MÁY RERUIRE ADDITIONAL SOFTWARE AS LISTED BELOW. HOWEUER, YOU SHOULD MOT ASSUME THAT EUERY FILE WITH THE PROPER FILE EXTENSION HILL RUN FROM THE MENU, YOU MAY HAUE TO MOUE CERTAIN PROGRAMS TO A DIFFERENT DISK TO OBTAIN CORRECT RESULTS.

EXT DESCRIPTION
.M65 REQUIRES THE MAC/65 ASSEMBLER

- AMA REQUIRES THE ATARI MACRO ASSEMBLER
- ASM RERUIRES THE ATARI ASSEMBLER/EDITOR
-ACT RERUIRES THE ACTION! CARTRIDGE
- LGO RERUIRES THE ATARI LOGO CARTRIDGE
-SYN REQUIRES THE SYNAPSE SYN ASSEMBLER

LOADING NOTES

f you solved last issue's multi-byte math problems, give yourself a pat on the back. Successful completion of these programming puzzles indicates that you're well on your way to becoming proficient in 6502 assembly language.

Whether you solved the problems or not, take a look at the following possible solutions. There are many ways to solve any programming problem, and these examples may show you a different approach.
tained in NEWBAL is stored in low-order to high-order format, just like OLDBAL and WITHD.

> IF THE INC OPERATION IS PERFORMED ON A BYTE CONTAINING \$FF, TME BYTE'S VALUE WILL "ERAP AROUND"I TO ZERO.

The above shows the solution to the first problem given last month. You were asked to subtract the two-byte BCD variable WITHD from the three-byte variable OLDBAL, placing the result in the three-byte variable NEWBAL; OLDBAL $=108673$ and WITHD $=4285$.

As you can see, both OLDBAL and WITHD are defined using the .BYTE directive. Standard data-storage formats are used, so the values are defined from low-order to high-order. That is, 108673 is defined as .BYTE $\$ 73, \$ 86, \$ 10$. The variable NEWBAL is simply set up as $*=*+3$, reserving three bytes for the result of the operation.
The program itself uses the usual multibyte subtract structure for the first two subtract operations. The third subtract uses a "dummy" value of zero for the third byte of WITHD, since it is one byte shorter than OLDBAL. This ensures that any borrows from lower-order bytes will be processed properly.

Try executing this program on your computer. After it is finished, examine the threebyte NEWBAL to be sure it contains 104388 (108673-4285). NEWBAL is located at memory location \$0622-0624. If you display these locations, you will see something like this:
$0622 \quad 88 \quad 4310$
You will note that the number 104388 con-

Solution Two

The second problem I assigned last month asked you to subtract each byte of the tenbyte TABLE2 from the corresponding byte of TABLE1, placing the results in the ten-byte TABLE3. The initial values for TABLE1 and TABLE2 are:

TABLE1 . BYTE $\$ 10,518,540,586,590$.BYTE 5AO, SBC, SCO, \$FQ,5F8 TABLEZ . BYTE $500, \$ 08,514,52 F, 59 \mathrm{~A}$. BYTE $\$ 90,50 \mathrm{~B}, 522, \$ 65, \$ 78$

If done properly, TABLE3 should contain the following values when the program is finished:
$510,510,52 C, 557,500,510,5 B 1,59 E, 58 B, 580$
A possible solution to this problem is shown here:

10	\% $=5600$			
20	CLD		; BINA	DE
30	SUBLP	LDX $\# 9$	110 BYTES	TO DO
405		LDA TABLE1, ${ }^{\text {d }}$; GET BYTE	1
56		5EC	; SINGLE B	YTE!
60		5BC TABLE2,	; SUBTRACT	BYTE2
70		5TA TABLE3, ${ }^{\text {S }}$, AND 5TOR	E IT
80		DEX	; NEXT BYT	
90		BPL 5UBLP	; DO ALL 1	BYTES
0106		BRK	; ALL DONE	
0119	0 TABLEI	1 . BYTE $\$ 10$,	518,549,58	6,59A
0120		- BYTE 5A0,	5BC, 5C0, 5F	5F8
0130	- Tablez	2 BYTE 500,	508, 514,52	, 59A
0146		. BYTE 590,	508, 522,56	5,578
0159	6 TABLE3 $*=*+10$,			

As you can see, this problem can be solved by simply indexing through all ten bytes of
result of the operation. Here is an example of the INC operation:

INC n (ZERO PAGE)
INC nn (ABSOLUTE)
INC n, X (ZERO PAGE INDEXED X) INC nn, X (INDEXED X)

DEC n (ZERO PAGE)
DEC nn (ABSOLUTE)
DEC n, X (ZERO PAGE INDEXED X) DEC nn, \mathbf{X} (INDEXED X)

The INC instruction simply adds one to the value contained in the memory byte referenced and places the result back into the memory location. The accumulator is not affected, but the Sign and Zero flags reflect the

Here we're using the variable COUNT as a simple counter to control the addition of ADDVAL. We will add ADDVAL to itself five times. When finished, ADDVAL will be multiplied by 32 . Let's walk through this example.
Line 20 clears the decimal mode so that we'll be working in binary mode.
Lines 30-40 initialize COUNT to five.
Lines 50-60 initialize ADDVAL to seven. When complete, this program will multiply seven by 32 , with a result of 224 (\$E0) in the accumulator.
Lines 70-100 add ADDVAL to itself, placing the result back in ADDVAL. This has the effect of multiplying ADDVAL by two each

WHEN YOU GET DEEPER INTO ASSEMBLY LANGUAGE, YOU"LL NEED TO MANIPULATE BYTES IN WAYS THAT BASIC CANTT.

time it is done.
Line 110 decrements COUNT by one. When COUNT reaches zero, the Zero flag will be set. This will be our signal to stop.

Line 120 checks the Zero flag to see if all five multiplies have been done. If the Zero flag is not set, the program will branch (BNE) back to the label LOOP.

Line 130 breaks the program when all five iterations of the loop are complete.

Lines 140-150 define the one-byte storage areas ADDVAL and COUNT.

As you can see, the INC and DEC instructions can come in handy when you need a counter or want to add or subtract without affecting the accumulator. We have used the X and Y registers to perform counter functions, but if these registers are in use, you can always set up a byte and use the INC and DEC instructions instead.

Bit-Flipping

When you get deeper into assembly language, you'll need to manipulate bytes in ways that BASIC can't. Now we'll look at four instructions that allow a wide variety of ways to manipulate and test the contents of the accumulator. These instructions are AND, BIT, ORA and EOR.

[^0]The above shows how the AND function works. As you can see, two bytes are used as inputs to the function. The corresponding bits of these two bytes are examined. If the bit of the first byte is one AND the bit of the second byte is one, the result for that bit will be one. Otherwise, that bit of the result will be set to zero. This process is repeated for all eight bits.
In 6502 assembly language, the AND function has the following eight formats:

AND -n (IMMEDIATE)
AND nn (ABSOLUTE)
AND n (ZERO PAGE)
AND (n, X) (PRE-INDEXED INDIRECT) AND (n),Y (POST-INDEXED INDIRECT) AND n, X (ZERO PAGE INDEXED X) AND nn, X (INDEXED X) AND nn,Y (INDEXED Y)

In each of these formats, the accumulator is ANDed with the memory byte indicated in the operand. The result of the AND function is placed in the accumulator. The Sign and Zero flags are set according to the result.

The AND function is most often used to mask off certain bits of the accumulator or test bits to see if they are on.
Let's say you want to get a random number that does not exceed seven. You could use the code:

GETRND LDA RANDOM
 CMP 48
 BCS GETRND

This code gets a random number and checks to see if it is greater than seven. If it is, the program loops back to GETRND and tries again. This routine works, but it may need to try several times before it gets a good value.

We can perform the same function easily
with the AND instruction. By using the AND instruction, only one try is necessary. It even takes less memory than the previous example. The code is:

LDA RANDOM AND $\$ 07$

This code masks the contents of the accumulator with the value seven. Below are three possible outcomes of the procedure. As you can see, none of them exceeds seven.

This is just one example of the use of the AND operation. We'll cover more uses in the future.

A companion to the AND function is the BIT (bit test) instruction. It performs almost the same function as AND, but changes only the status flags. BIT does not affect the contents of the accumulator. The primary function of the BIT operation is to test the contents of the accumulator. BIT has the following formats:

BIT nn (ABSOLUTE)
 BIT n (ZERO PAGE)

Besides not changing the accumulator as a result of the AND operation, BIT handles the status flags differently. The ZERO flag is handled the same as AND. The SIGN and OVERFLOW flags are set to bits seven and six of the operand, respectively. This is a
strange twist，and I＇ve not yet encountered a situation where I＇ve used this odd flag set－ ting．The following code shows a typical use of the BIT instruction．

```
LDA BYTE
BIT TESTBT
BNE BITON
    .
```


This code uses the bit mask TESTBT to see if the one bit of the memory location labeled BYTE is set．The value contained in BYTE is placed in the accumulator，then the BIT in－ struction is executed．Since TESTBT is the location used by the BIT operand，the ac－ cumulator is set，and the result of the BIT operation will be a not－equal condition．In this case，the BNE instruction would cause the program to branch to the location BITON． Otherwise，the program would fall through to the code after the BNE instruction．

I personally don＇t use BIT instructions much．Unfortunately，the designers of the 6502 didn＇t allow for an immediate format of this instruction．As a result，you must set up all the masks you use somewhere in mem－ ory，making the operation a bit more cum－ bersome．

This OR That

Another bit－manipulating instruction used fairly often is the ORA（OR accumulator） operation．The formats of this instruction are：

ORA－n（IMMEDIATE）
ORA nn（ABSOLUTE）
ORA n（ZERO PAGE）
ORA（ n, X ）（PRE－INDEXED INDIRECT） ORA（ n ），Y（POST－INDEXED INDIRECT） ORA n ，X（ZERO PAGE INDEXED X） ORA nn，X（INDEXED X）
ORA nn，Y（INDEXED Y）
Unlike the AND operator，which only sets the result bit when both input bits are one， the OR operator sets the result bit when ei－ ther input bit is one．The following example shows how the OR function works：

BYTE	$1:$	1	0	1	1	0	1	1	0
$0 R$	BYTE	$2:$	0	1	0	1	0	0	1

> ANOTHER BIT－MANIPULATING INSTRUCTION USED FAIRLY OFTEN IS THE ORA （OR ACCUMULATOR） OPERATION．

As you can see，the OR operation sets the result bit if either bit one OR bit two is set． If both bits are off，the result bit will also be off．Like the AND operation，the ORA oper－ ation affects only the Sign and Zero flags．
The OR operation is used to turn on specif－ ic bits in a byte，most often in graphics han－ dlers．The following code demonstrates how the OR instruction works．

```
*二5608
ORS .BYTE $80
    , END
```

 LDA \(454 C\); \(54 C\) IN ACCDM
 ORA \#511 ;OR WITH \(\$ 11\)
 ORA ORS ;OR WITH \(\$ 80\)
 BRK ;ALL DONE!
 Line 20 loads the accumulator with \＄4C （01001100 binary）．

Line 30 ORs the accumulator with the con－ tents of the memory location OR3．Since OR3 is defined as $\$ 80$ ，the accumulator will be OR＇d with 10000000 binary．After this in－ struction is executed，the accumulator will contain \＄DD（11011101 binary）．
Line 50 stops the execution of the program． At this point you can see that the accumula－ tor contains \＄DD．

An ANALOG Exclusive

The last accumulator manipulation instruc－ tion we＇re going to look at this time is EOR （exclusive－OR）．This instruction works like OR except that when both input bits are set， the result bit will be turned off．The follow－ ing example shows how EOR works：

BYTE $1:$	1	0	1	1	0	0	1	1
EOR BYTE $2:$	1	0	0	1	1	0	1	0
	RESULT：	0	0	1	0	1	0	0

The EOR instruction is commonly used in graphics routines and for flipping the setting of bits in program flags．Let＇s see how the EOR instruction lets us flip bits．The follow－ ing example shows the EOR function flipping all the bits of a byte to the opposite binary settings：

[^1]No matter what the contents of byte one， if it is exclusive－OR＇d with \＄FF（binary 11111111），the result of the operation will be the mirror－image of the first byte．The 6502 code necessary for this operation is：

```
LDA\mp@code{#FB1}
EOR #SFF
```

What if we only want to flip a certain bit？ The following example shows the flipping of only the four bit of byte one：

```
BYTE 1: 1% 0 1 1 0
EOR BYTE 2: 00000100
RE5ULT: 1 0
```

As you can see，the bit has been flipped to a one．The equivaleni 6502 code for this example is：

```
LDA H5B1
EOR #504
```

The EOR operation is easy to use．All you need to do is determine which bits you want to flip and exclusive－OR the accumulator with the appropriate byte．Like the AND and ORA operation codes，EOR sets the Sign and Zero flags according to the result of the operation．

Problem Time．

Here are some good bit－manipulation prob－ lems for you to solve for next month．

In each of the following problems，you are given bit patterns before and after a bit－ manipulation operation．You must determine （1）the operation（AND，ORA，EOR）and（2） the second bit pattern used to obtain the re－ sult．Some problems have two possible an－ swers．These are indicated with a（2）to the right of the problem．If you＇ve read careful－ ly，these should be a snap to solve．

```
BYTE 1 OPN BYTE 2 RESULT
01060011 01000001
11061011 10100010
11110000 01000000
01010101 111111111
110910日0 01111100
11111111
010日0111 00010010
```

Until next time，try developing some prob－ lems of your own．It＇s a good idea to try some addressing modes other than the ones used in this column．Next month we＇ll find out how to do simple multiplication and divi－ sion！

by John W. Little

To see Fast Move in

action, type in Listing
1, save and run if.
You"ll see four players,
two cars and fwo
arrows. after the
period described on
the screen, the arrows
will move by
themselves, turning to
face the directions in
which they are
moving.
his is a machine-language routine that will move players smoothly at speeds I can't even imagine a use for. The speed is completely variable, so it should be able to accommodate just about any need. An important benefit of the speed capability of this routine is its ability to move all four players, quickly and smooth1 y , at the same time. The movement routine is completely machine language and runs during the Vertical Blank Interrupt; only the setup is in BASIC. This allows those unfamiliar with assembly language to use it, and also allows changing of parameters while the BASIC program is running. It is compatible with all the 8 -bit Ataris and is completely relocatable, except for the pointer tables in page six and three bytes in page zero.
Using Fast Move, the BASIC programmer can:

1) Move different players at different speeds;
2) Change player speed, while the program is running, from the keyboard or from within the BASIC program;
3) Choose horizontal or vertical (or both) wraparound or have the players stop at userdefined screen limits;
4) Change players' shapes to match the directions in which they are moving;
5) Combine players zero and one or two and three to make multicolored players;
6) Control player movement by poking memory locations with "joystick-type" values instead of using joysticks;
7) Choose single- or double-line resolution.
The first time you use Player/Missile (P/M) graphics, it seems like a complicated procedure; so many variables to define, so many things to remember, not to mention the fact that you first have to create the players and then put the value of each byte of the player into the program. After you go through all that, the result is usually disappointing as your creation jerks slowly across the screen.

The fact is, P / M graphics are complex, but with a good reference (there are numerous good books and magazine articles on the subject) and a memory map, the average BASIC programmer can make them work. Fast Move will not save you from having to know all that, because you have to tell Fast Move everything it needs to know in order to move your players just the way you want them to move. The big difference is, using Fast Move, your BASIC program will have a degree of control over your players that is possible only from machine language. Fast Move looks complex because it is versatile, but the results will more than make up for the effort required as your players move smoothly across the screen, just the way you pictured when you decided to try P / M graphics.

However, you don't have to know anything to run the demo program; so before we get into the nitty-gritty of using Fast Move, I'll describe it.

Running the Demo Program

To see Fast Move in action, type in Listing 1 , save and run it. You'll see four players, two cars and two arrows. After the period described on the screen, the arrows will move by themselves, turning to face the directions in which they are moving. The cars will respond to joysticks zero and one. The speeds of the arrows have been set in the BASIC program, but the cars' speeds can be changed by keys one through five on the keyboard.
Players are normally of a single color, but when two differently colored players are combined to form a single player, any area of overlap can be a third color. To see the multicolored players, with some really terrible sound effects thrown in, stop the demo by hitting the system reset key. Delete Lines $360-470$. This removes the shape-changing capability. A little familiarity with the program will show that changing the shape of combined players would be rather complex, although certainly possible. Now add these lines:

[^2]```
280 FOR A=P0+48 TO P0+48+14:R
EAD B:POKE A,B:NEXT A
290 FOR A=P 1+48 TO P 1+48+14:R
EAD B:POKE A,B:NEKT A
520 DATA 0,231,231,231,126,36
,255,255,255,255,255,0,0,0,0
530 DATA 0,0,0,0,0,0,0,255,25
5,255,153,153,153,153,129
540 DATA 0,135,135,255,65,127
,64,64,64
550 DATA 0,225,225,255,130,25
4,2,2,2
```

After making these changes, run the program again. The players will begin their movement more quickly now because the data for all the different shapes doesn't have to load this time. The players are no longer cars and arrows: one is orange, green and blue, the other is red, white and green. The second one will move around by itself and emit terrible noises, while the first will respond to stick zero and emit a high tone while moving. To see how the third color is dependent on player priority, change Line 170 back to POKE 623,1 and run again. Or, to see what the individual players looked like before they were combined, delete Line 195 . The players will break in half, one vertically, one horizontally.
So far, the players have been in single-line resolution. To see the combined players in double-line resolution, change the following lines:

> 175 POKE $559,34+8$
> 200 POKE $1550,15:$ POKE 1551,11
> $0:$ POKE $1548,50:$ POKE 1549,200
> 240 POKE $1665,1:$ POKE 1554, PEE
> K $(1550): P 0 K E ~ 1555$, PEK $(1551)$
> 270 PQ=PMBA5E+512:P1=P0+128:
> P2=P1+128:PS=P2+128

Run the program now, and you'll see that the players have stretched to twice their original height. At this size, they can travel the screen vertically in no time. Slower speeds and shorter players seem to be in order when using double-line resolution.

## Using Fast Move

Probably the best way to explain the use of Fast Move is to go through the demo program, line by line. Each feature will be explained as we come to the program line that sets up that feature.
But first let me explain the basic premise behind the shape-changing ability: Instead of creating one shape for a player and putting its data into the $\mathrm{P} / \mathrm{M}$ area, you define several shapes (such as the arrows that point in eight different directions) and store the data at predefined locations outside the P/M area. To display the player, you copy its initial shape into the $\mathrm{P} / \mathrm{M}$ area. To change the shape, you simply copy the new shape into the $\mathrm{P} / \mathrm{M}$ area, right on top of the old one. Fast Move handles the copying for you; you control it with

## POKES in BASIC.

Line 80 creates a new RAMTOP and sets aside 16 pages of protected memory above it. This is enough space for the P/M area, the ML routine (Fast Move itself), if you want to put it there (the demo puts it in a string), data for all the player shapes and 800 bytes of unused memory, which must be left directly above the new RAMTOP. (In some situations, the OS will scroll screen data into this area and overwrite anything that happens to be there.)

Line 90 sets the graphics mode, which forces the OS to set up a new display list under the new RAMTOP. For this demo, any graphics mode will work.
Line 100 tells the OS where to find PMBASE. For single-line resolution $\mathrm{P} / \mathrm{M}$, PMBASE has to be an address that is divisible by 2048. Our reserved area contains two such addresses, RAMTOP and RAMTOP +2048 . Since the 800 bytes directly above RAMTOP are subject to clearing by the OS, we choose RAMTOP +2048 . And, since the contents of RAMTOP and PMBASE must be expressed in "pages" of 256 bytes each for the OS, PMBASE is first defined as RAMTOP +8 pages and this is poked into 54279 . However, our program requires PMBASE to be an actual address, so it is redefined by multiplying it by 256 .
Lines 110 and 120 define the data that make up the string in Line 130. Lines 130 and 140 zero out any residual garbage from memory above RAMTOP, before the program is placed there, using a short ML routine called $\mathrm{ZE}+$. This routine zeroes a page at a time, and the format is " $\mathrm{X}=\mathrm{USR}(\mathrm{ADR}(\mathrm{ZE} \$)$, [beginning address],[\# of pages to clear]." So Line 140 clears 16 pages starting at RAMTOP. Notice that Line 140 also clears page 6. Fast Move uses the first 87 bytes of page 6 as pointers and indicators of certain conditions, such as wraparound. If your own program will use part of page six, use ZE\$ at your own discretion.

In Line 150, you inform Fast Move whether you're using a 400/800 machine or the XL/XE type. It uses this information to know how to handle players 2 and 3 , which have no corresponding joysticks in the XL/XE machines. See the section below on combining players, for an advantage of the XL/XE machines.

Line 160 turns on players but no missiles. The use of missiles is so applicationdependent that including a handler for them would almost certainly limit their uses.

Line 170 gives all players priority over all playfields. In the demo showing multicolored players, 32 was added to the origi-
nal priority value, allowing the third color to appear.

Line 175 enables DMA (Direct Memory Access) and defines its use with a standardsize playfield, players only, and single-line resolution. For double-line resolution, we subtract 16 from the value poked.
Line 180 defines the colors of the players.
Line 190 defines all players as being of normal width. Poking an address with 1 will double that player's width, and poking with 3 will quadruple it. Players do not all have to be of the same width.

Line 200 defines the screen limits of player movement. Poking addresses 1548-1551 will set, respectively, left, right, top and bottom limits. For example, players may be restricted to the bottom half of the screen by poking 1550 with a value equal to half a player's vertical range. For single-line resolution players, this would be 128 ; for double-line, it would be 64 .

Line 210 defines the initial horizontal positions of the players. Each player requires two memory locations, the OS's Horizontal Position Register and a pseudo-register. They must both contain the same values at all times because the OS registers cannot be read, only written to. Fast Move uses Locations 1544-1547 (for players 0-3) for the pseudoregisters, and the FOR-NEXT loop pokes the same values into the OS registers. Positions $50-200$ will be on the playfield, on most TVs. Poking positions lower or higher will cause the player to be off-screen, from where it may be moved onto the screen by the user program. Once on the screen, it will be subject to the screen limits that were set in line 200.

Line 220 defines the length of each player. Locations 1556-1559 are poked with the vertical length of players $0-3$, respectively. Assigning a player a length of 0 will crash the program.
Line 230 sets the initial speed (location 1610) of players whose speed will be changeable from the keyboard. These players must have their individual speed locations (1606-1609 for players 0-3 respectively) poked with 0 . Players that will not need to have their speeds changed from the keyboard, or that will move at a speed different from the others, should have their speed poked directly into their individual locations. For example, in the demo, the initial keyboard speed is 1 , players 0 and 1 will move at keyboard speed (their speed locations are poked with 0 ), player 2 will have a speed of 2 , and player 3 will have a speed of 3. These locations may also be poked with different values from your own program while it is running. Location 1610 must contain a positive nonzero value unless
all four individual speed locations contain positive nonzero values, or the program will crash.

In line 240, address 1605 is poked with 0 to indicate single-line resolution, or with 1 for double-line. The rest of the line must stay the same.

Line 250 establishes the vertical difference between the top movement limit and the bottom, for use in the vertical wraparound function.

Line 255 tells the ML routine how many players it must move. If you wish to control some players by means other than Fast Move, Fast Move must have the lower-numbered ones. For example, if you poke 1616,3, Fast Move will take players 0-2 and leave player 3 for you to control.

In Line 260, poke 1599,1 for horizontal wraparound. Poke with 0 to stop at screen limits. Address 1600 controls vertical wraparound.

Line 270 describes the standard $\mathrm{P} / \mathrm{M}$ setup for single-line resolution.
Line 280 reads the data defining player 0's shape into the player's initial vertical position. The format is: FOR A=[PLAYER\#] + [POSITION] TO [PLAYER\#]+[POSITION] $+[$ PLAYER LENGTH-1]. For example, player 0 is ten bytes long, and when it first appears it covers positions 48-57. The position of the first byte is considered to be the position of the player. Lines 290-310 define players 1-3. POSITION must be between one- and 255-player length for single-line resolution; for double-line, it must be between one- and 127-player length. Vertical positions from about 30 to about 220 will be on the screen for single-line resolution ( 15 to 110 for doubleline). Players initially positioned off the screen may be moved onto the screen by the user program, after which they will be subject to the screen limits.

Lines 320-350 poke the initial positions of players 0-3 into their respective pointers in page six.

Fast Move will allow your players to stay one shape during your whole program, or to change shape whenever they change direction. In order to accomplish the latter, you must first create all of the shapes you wish to use, up to a possible maximum of eight per player, and store them in specified memory locations so the ML routine can copy them onto the screen when they are needed.

Line 360 reads the data for all eight shapes of player 0 and pokes it into a designated part of the reserved area; if you refer back to Line 220, you'll see that all the players were defined as being ten lines long. So 80 bytes of data are poked into the storage area for play-
er 0. Lines 370-390 do the same for players 1-3.
Note that each player's data is placed into a different page, beginning at the second byte of the page. Because each player does need a separate page, and there are exactly three pages in the "unused" area between PMBASE and the missile area, the data for the first three players was stored here, with the fourth player data taking the page before PMBASE.

So, at 256 bytes per page, player 0's data starts at (PMBASE +2 pages +1 byte), player 1 starts at (PMBASE +1 page +1 byte), player 2 starts at (PMBASE +1 byte), and player 3 starts at (PMBASE-1 page +1 byte). These are not mandatory locations for the shape data, and in fact may not be used with double-line resolution, because then the unused P/M area is only 384 bytes long. Any other data storage location must be coordinated with lines 400-470 in the BASIC program. The four pages used for data storage must be consecutive in memory, with player 0 having the highest page and player 3 the lowest.

Line 400 installs the page six pointers to tell the ML routine where each of the player 0 shapes are stored. Since each player has a separate page for its shape data, each pointer in page six has to contain only the low byte of the address it points to. There is one pointer in each of eight addresses from 1561 to 1568, and the shapes they point to, respectively, starting with 1561 , are up, up-left, upright, down, down-left, down-right, left, right. Because Line 400 is so important to the operation of the shape-changing, we'll dissect the line.

POSHAPE=1561: This cannot be changed unless you also change the ML routine.

$$
\text { FOR } \quad I=P M B A S E+513 \quad \text { TO }
$$

PMBASE $+513+X$ STEP $Y$ : This FOR-NEXT loop computes the first data address of each shape for player $0 . X=7 *$ length of player 0 . $\mathrm{Y}=$ length of player 0 . The first time through the loop, the address of the up shape is poked into P0SHAPE; next time through, the address of the up-left shape is poked into POSHAPE +1 , and so on, until the first address of each shape has been poked into the pointer table. Note that in Line 360, 80 bytes of data were read and poked into the data storage area for player 0 . In Line 400, because the player is ten bytes long, every tenth address of that data storage area is poked into the page six pointers for player 0 . These pointers tell Fast Move where to find each one of the shapes.
POKE POSHAPE,I-INT(I/256)256: As stated above, only the low byte of each data ad-
dress is poked into the pointers.
Lines 410-460 install the shape pointers for players 1-3.

Line 470 tells Fast Move the page number where player 0's data is stored. It figures out the page numbers for the other three players.
To use players that do not change shape, lines may be deleted, as in the combined players demo, or the appropriate pointers in addresses 1561-1592 may be poked with 0s. If shape-changing is desired, but eight different shapes are not (say, if you wanted only horizontal and vertical shapes, but no diagonal ones), zeroing the pointers for diagonal movement will prevent the shapes from changing during diagonal movement. Specifically, zeroing the diagonal pointers for player 0 would mean poking 0 into addresses $1562,1563,1565$, and 1566 . And, of course, these pointers may be changed by your BASIC program while it is running.

Line 490 jumps to the subroutine, which reads the ML routine into the string MOVE\$.
In Line 500, the USR call shows an argument of $\mathrm{ADR}(\mathrm{MOVE}$ ) +11 . If loading the ML routine somewhere other than in a string, simply use an argument equal to the load address +11 .
Line 510 uses addresses 1603 and 1604, the Alternate Movement Indicators (AMI) for players 2 and 3, to move the arrows around on the demo. Since all of the values returned by a joystick are positive integers equal to or less than 15 , Poking the AMI's with random numbers less than 15 causes the players to move at random. When a number is poked that is not a valid joystick value, the player does not move. AMI's for players 0 and 1 are 1601 and 1602, respectively.
When Fast Move is used with an Atari 400 or 800 , and players are being moved via the AMI's, a joystick plugged into any port will override the AMI. With an XL/XE, the sticks for players 0 and 1 will override the AMI's but players 2 and 3 may be moved only via the AMIs.

Data Lines 520-550 contain the data used to display all the players at the beginning of the demo (one player per DATA statement). This is the data that is read in Lines 280-310. If your BASIC program did not need all four players on-screen at the beginning, some or all of these lines would not be here. If shape changing is not used, the leading and trailing zeroes in the DATA statements are not required. However, when using shapechanging, all shapes for the same player must be the same length. This can require DATA statements to be filled out with 0s, especially when some shapes are vertical and some are horizontal for the same player. Also, the
first byte of each shape must be 0 . Let's look at the DATA statements for player 0 .
Lines 560-630 contain the eight shapes for player 0 . Line 560 contains nine bytes that actually create the up shape and a first byte of 0 . So, player 0 must be defined in Lines 220 and 280 as being ten bytes long. Line 570 has only six bytes that actually create the upleft shape, so it must be filled out on both ends with 0s. And, in Line 520, the initial shape must have enough 0 s to make it a total of ten bytes long. Note that the DATA statement for the first shape of player 0 does not match the DATA statement for player 0 in Line 520, because the first shape for each player is the up shape, and player 0 's initial shape in the opening screen was facing to the right. Lines 280-310 merely provided an initial display, because the players have to start somewhere. They could have been placed offscreen and moved on-screen by Fast Move.
Lines 32000-32590 read the ML routine into MOVE\$.

## Combining Players

The XL/XE machines may have a slight disadvantage as far as the number of joystick ports they have, but with Fast Move, they have a slight advantage. If the $\mathrm{XL} / \mathrm{XE}$ indicator is allowed to contain a 0 (indicating an 800 ma chine) when used on an XL or XE, and if both "combine" indicators are set to 1 in Line 195, all players will respond to stick 0 or AMI 0 . This means they may all be combined into one six-color player, which requires only one joystick or AMI to control it. (Nothing earthshattering, but it could be handy.)

When combining all four players in this fashion, there is one limitation that must be observed in addition to the other instructions laid out below for combining players: The even-numbered players must have the same horizontal position, and the odd-numbered players must have the same horizontal position. For example, all four players may have their Horizontal Position Registers set at 100 (they would be stacked more or less vertically) or players 0 and 2 could be at horizontal position 100 while players 1 and 3 could be at Position 105.

Now let's look at the lines we changed in the demo to see the combined players.

Line 170 changes player priority so the overlap area will be a third color.

Line 195 enables players 0 and 1 to combine by poking 1 into Location 1612, and enables players 2 and 3 to combine by poking Location 1613. Two players may be positioned together on the screen, but if the appropriate address is not poked with 1 , the two players will separate when moved.

Line 210 changes the horizontal positions of players 1 and 3 so they will combine on the screen with players 0 and 2 .

Line 220 changes the lengths of players 0 and 1 to match their new appearance.

Line 225 establishes the difference between the horizontal positions of two players that have been combined. Location 1614 is for players 0 and 1,1615 is for players 2 and 3 . If this line is included when players are not being combined, it won't hurt anything.
Line 230 changes the speed of player 3 to match that of player 2 .

Lines 280 and 290 read the new longer length of players 0 and 1 into P/M memory.

Lines 508-518 add the sound effects to the combined-players demo. Lines 508 and 509 turn on the high tone whenever player $0-1$ is moved, and the other lines turn on different sounds for each direction player 2-3 moves.

Lines 520-550 contain data for the new appearance of all four players. Notice the large number of 0 s in players 0 and 1 , though they don't change shape while moving. This is because two players that are combined must be the same length, and they must begin at the same vertical position and end at the same vertical position. Horizontal position is unimportant; two players can be combined and not even be touching each other.

## Double-Line Resolution

Line 175 enables DMA for double-line resolution.

Line 200 sets new vertical screen limits because a double-line resolution player has a vertical range of only 128 bytes instead of 256.

Line 240 tells the ML routine we are using double-line resolution.

Line 270 is the standard $\mathrm{P} / \mathrm{M}$ setup for double-line resolution.
I've tried to make this program as versatile and universal as possible. I would be interested in hearing comments, questions, or complaints about Fast Move, and will do my best to answer them.


REM **MAKE ROOM FOR P/M AND ROUTINE
a 76 REM
80 RAMTOP=PEEK (106): POKE 106, RAMT0P-16 : RAMTOP=PEEK (106)
QA 90 GRAPHICS 17
100 PMBASE=RAMTOP+8:POKE 54279, PMBASE: PMBASE=PMBASE*256
HL 116 REM STRING DATA $104,104,133,209,10$ $4,133,208,104,104,133,267,160,0,152,17$ $0,145,208,200,208,251,230,209,232$
F 120 REM DATA $228,207,208,244,96$
 10PT
$140 \quad x=U 5 R(A D R(Z E 5), 1536,1): 8=U S R(A D R(Z$ E5), RAMTOP*256, 16)
RA 142 REM
ZM 144 REM $\because$ H $400 / 800$ OR KL/XE? $\because \because$
RM 146 REM
150 POKE 1611, 0:REM $1=\mathrm{KL} / \mathrm{KE}$
RC 152 REM
154 REM **P/M INF0**
RO 156 REM
UY 160 POKE 53277, 2
IO 170 POKE 623,1
GB 175 POKE 559, $34+8+16$
HQ 180 POKE 704,38:POKE 705, 151:POKE 706, 55:POKE 767,206
RI 182 REM
186 REM **SET-UP FOR ML ROUTINE**
KJ 186 REM
58, 0: POKE 53259 58,0:POKE 53259,0
200 POKE 1550, 30:POKE 1551, 220:POKE 15 48,50:POKE 1549,206
210 POKE 1544, 95:POKE 1545, 115:POKE 15 46,135: POKE 1547,155:F0R I=0 TO 3:POKE $53248+\mathrm{I}$, PEEK (1544+I):NEXT I
AK 220 POKE 1556, 10:POKE 1557, 10:POKE 155 8,9:POKE 1559,9
FU 230 POKE 1610, 1:POKE 1606, 0:POKE 1607, 0:POKE 1608, 2: POKE 1609,3
JL 240 POKE 1605, 0: POKE 1554, PEEK (1550): P OKE 1555, PEEK (1551)
WU 250 POKE 1598, CP
OE 255 POKE 1616, 4
RF 262 REM
SN 264 REM *HSET-UP P/M AREA
DZ 270 REM 280 FOR $A=P 0+48$ TO P0+48+9:READ B:POKE A,B:NEKT A
290 FOR $A=P 1+48$ TO P1+48+9:READ B:POKE A, B:NEXT A
EE 306 FOR $A=P 2+48$ TO P2+48+8:READ B:POKE A,B:NEXT $A \quad$ TO P3+48+8:READ B:POKE A, B:NEXT $A$
OW 312 REM
DI 314 REM $\because * S E T-U P$ PLAYER LOCATION POINT ERS $\%$ \%
RI 316 REM
ZF उ20 POKE 1537, INT ( (P $0+48) / 256):$ POKE 15 36, P0 + 48-(PEEK (1537) $\because 256)-1$
F उ30 POKE 1539, INT ( (P1+48)/256): POKE 15 38, P1 4 48-(PEEK (1539) *256)-1
JA 346 POKE 1541, INT ( $(P 2+48) / 256)$ : POKE 15 40, P2 +48 - (PEEK (1541) *256) -1
UA 358 POKE 1543, INT ( $(P 3+48) / 256):$ POKE 15 42, P3 +48-(PEEK (1543) $* 256)-1$
RE 352 REM
J0 354 REM $*$ KET-UP PLAYER SHAPES**
RQ 356 REM
UE 360 FOR I=PMBASE+513 TO PMBASE+513+79: READ A:POKE I, A:NEXT I
370 FOR I=PMB A $5 \mathrm{E}+257$ TO PMBASE+257+79: READ A:POKE I, A: NEXT I
HE 380 FOR I=PMBASE +1 TO PMBASE $+1+71:$ READ A:POKE $I, A: N E X T$ I
390 FOR $I=P M B A S E-255$ TO PMBASE-255+71: READ A:POKE I,A:NEXT I
RM 392 REM
HU 394 REM **SHAPE-FINDING POINTERS $H^{*}$
RY 396 REM
WN 406 POSHAPE $=1561: F O R$ I=PMBASE+513 T0 P MBASE+513+70 STEP 10:POKE POSHAPE,I-IN $T(I / 256) * 256: P 6 S H A P E=P 6 S H A P E+1: N E X T$ I
RD 410 P15HAPE=1569:FOR I=PMBASE+257 TO P MBASE + 257+78 STEP 10:POKE P15HAPE,I-IN T (I/256)*256: P15HAPE=P1SHAPE+1
FY 420 NEXT I
SA 430 P2SHAPE=1577:FOR I=PMBASE+1 TO PMB ASE $+1+63$ STEP 9:POKE P25HAPE,I-INT $\mathbb{C} / 2$ 56) $* 256:$ P 25 HAPE $=P 25 H A P E+1$

GC $44 \theta$ NEXT I
00450 PJSHAPE $=1585$ :FOR I=PMBASE-255 TO P MBASE-255+63 STEP 9:POKE P3SHAPE, I-INT MBASE-255+63 STEP 9:POKE P3SH
$(I / 256) * 256: P 3 S H A P E=P J S H A P E+1$
GG 460 NEXT I
470 POKE 1593, INT ( (PMBASE +513)/256) 480 REM
482 REM ※ ※READ IN DATA FOR ML ROUTINE

|  | $*$ |
| :--- | :--- |
| RR | 484 |


|  |
| :--- | :--- |

$\begin{array}{lll}\text { R } & 498 & \text { G05 } \\ 495 & \text { REM }\end{array}$
PA 497 REM ※ $\because$ START ML ROUTINE $\because$
I 499 REM
Co 500 A=USR (ADR (MOUES), ADR (MOUES) +11)
QW 502 REM
PJ 504 REM ※ $\because D E M O *$
RI 506 REM
C 510 POKE 1603, INT (RND (6) $\because 15$ ) : FOR I=0 T 0 50;NEKT I:POKE 1604, INT (RND (0) $\because 15$ ): F OR I=0 TO 50:NEKT I:GOTO 510
aY 512 REM
PE 514 REM
PG 520 DATA $0,68,255,255,255,255,255,68,0$
PI 530 DATA $0,68,255,255,255,255,255,68,0$
55 DАТА $0,16,16,16,16,146,84,56,16$
TG 560 DATA $0,60,60,94,60,60,60,60,94,60$ RO 570 DATA $0,0,40,240,122,188,30,40,0,0$ ED 580 DДТА $0,0,20,15,94,61,120,20,0,0$ RW 590 DATA $0,60,94,60,60,60,60,94,60,60$ EB
600
DАTA $0,0,20,15,94,61,120,20,6,0$ OD 610 DATA $0,0,40,240,122,188,30,40,0,0$ $\begin{array}{lll}\text { CI } & 620 \text { DATA } 0,34,255,255,255,255,255,34,0\end{array}$
PJ ${ }^{630} 0$ DATA $0,68,255,255,255,255,255,68,0$
$\qquad$ TD 640 DATA $0,60,60,94,60,60,60,60,94,60$
QL 650 DATA $0,0,40,240,122,188,30,40,0,0$ EN 660 DATA $0,0,20,15,94,61,120,20,0,0$ RT 670 DАTA $0,60,94,60,60,60,60,94,60,60$ ER 680 DATA $0,0,20,15,94,61,120,20,0,0$ QT 690 DATA $0,0,40,240,122,188,30,40,0,0$ CF 700 DATA $0,34,255,255,255,255,255,34,0$


G 710 DATA $0,68,255,255,255,255,255,68,0$
PU 720 DATA $0,16,56,84,146,16,16,16,16$
IY 730 DATA $0,240,192,160,144,8,4,2,1$
AY 740 DATA $0,15,3,5,9,16,32,64,128$
UU 750 DATA $0,16,16,16,16,146,84,56,16$
QM 760 DATA $0,1,2,4,8,144,160,192,240$
WE 770 DATA $0,128,64,32,16,9,5,3,15$
Q0 780 DATA $0,16,32,64,255,64,32,16,0$
RE 790 DATA $0,8,4,2,255,2,4,8,0$
PS 800 DATA $0,16,56,84,146,16,16,16,16$
IU 810 DATA $0,240,192,160,144,8,4,2,1$
AU 826 DATA $0,15,3,5,9,16,32,64,128$
UR 830 DATA $0,16,16,16,16,146,84,56,16$
QJ 840 DATA $0,1,2,4,8,144,160,192,240$
WB 856 DATA $0,128,64,32,16,9,5,3,15$
QL 860 DATA $0,16,32,64,255,64,32,16,0$
RB 87 D D A $0,8,4,2,255,2,4,8,6$
KT 32000 RESTORE 32060
GX 32010 FOR I=1 TO 1072:READ Z:MOUESEI,I y=CHRS (Z) : NEKT I
CY 32020 READ $Z: I F Z\langle \rangle-1$ THEN ? "ERROR IN CODE! CHECK DATA STATEMENTS!":END DT 32040 RETURN
TC 32060 DATA $104,104,170,104,168,169,7,3$ $2,92,228,96,216,169,6,141,17,6,168,173$ , 252
CN 32070 DATA $2,201,31,208,7,169,1,141,74$ , $6,208,42,201,30,268,7,169,2,141,74$ 32080 DATA $6,268,31,201,26,208,7,169,3$ , 141, 74, 6, 208, 20, 201, 24, 268, 7, 169, 4
FA 32090 DATA $141,74,6,208,9,201,29,208,5$ , 169,5,141, 74,6,173,18,6,141,14,6
RD 32109 DATA $173,19,6,141,15,6,192,1,208$ $, 8,173,76,6,246,13,136,240,10,192,3$
KH 32116 DATA $268,27,173,77,6,246,1,136,1$ $73,69,6,240,16,173,14,6,56,233,128,141$ 32120 DATA $14,6,24,109,62,6,141,15,6,1$ $73,75,6,240,4,192,2,176,7,185,120$
32130 DATA $2,201,15,208,5,185,65,6,240$ $, 106,141,24,6,172,17,6,185,20,6,133$
KW 32140 DATA $265,185,70,6,240,8,141,16,6$ $288,9,24,144,156,173,74,6,141,16,6$
32150 DATA $152,24,109,17,6,141,83,6,13$
$3,203,169,6,133,204,160,0,177,203,141$, 3,2
81
JD 32160 DATA $6,206,177,203,141,82,6,162$, $0,173,24,6,201,14,246,43,232,261,10,24$ 0,
321
WO 32170 DATA $38,232,201,6,240,33,232,201$ $, 13,240,28,232,201,9,240,23,232,201,5$, 240
PB 32180 DATA $18,232,201,11,240,13,232,20$ $1,7,248,8,208,3,24,144,171,24,144,125$, 172
QN 32190 DATA $17,6,208,24,189,25,6,240,31$ $, 205,58,6,240,26,141,58,6,141,84,6$
32200 DÁTÁ $173,57,6,141,85,6,208,102,1$ $92,1,208,27,189,33,6,240,3,205,59,6$ 32210 DATA $240,125,141,59,6,141,84,6$, $73,57,6,56,233,1,141,85,6,288,71,192$ 32220 DATA $2,208,30,189,41,6,240,99,20$
$5,60,6,240,94,141,66,6,141,84,6,173$ $5,60,6,240,94,141,60,6,141,84,6,173$ 32230 DATA $57,6,56,233,2,141,85,6,208$,
$46,24,144,156,192,3,208,70,189,49,6$
HU 32240 DATA $240,65,265,61,6,240,60,141$,
$61,6,141,84,6,173,57,6,56,233,3,141$ 32250 DATA $85,6,208,6,24,144,54,24,144$ ,216,160, 0, 200, 173, 84, 6, 133, 203, 173,85 AT 32260 DATA $6,133,204,177,203,141,86,6$, $173,81,6,133,203,173,82,6,133,204,173$, 176
8
QT 32270 DATA $6,145,203,196,205,208,221,2$ $24,3,144,24,224,6,144,102,240,103,224$, 7,240

32280 DATA $102,238,17,6,172,17,6,204,8$ $0,6,208,191,76,98,228,173,81,6,295,14$ 32290 DATA $6,240,83,162,0,160,1,173,81$ $, 6,133,203,173,82,6,133,204,177,203,13$ | 6 |
| :--- |
| 32 |

32300 DATA $145,203,196,205,200,200,144$ $, 245,206,81,6,160,0,173,83,6,133,263,1$ 69, 6
32310 DATA $133,204,173,81,6,145,203,20$ $5,14,6,246,34,232,236,16,6,208,203,172$
32320 DATA $6,173,24,6,201,10,240,12,20$ $1,6,240,11,288,163,24,144,166,24,144,8$ 9
NG 32330 DATA $24,144,82,24,144,81,173,64$, $6,240,146,164,205,173,81,6,133,203,173$ , 82
32340 DATA $6,133,204,177,203,170,169,0$ $, 145,203,173,81,6,24,109,62,6,56,229,2$ ${ }^{65}$
32350 DATA $141,81,6,133,203,138,145,20$ $3,136,208,16,173,83,6,133,203,169,6,13$ 3,204
32368 DATA $173,81,6,145,203,208,183,17$ $3,81,6,56,237,62,6,24,101,205,141,81,6$ 32370 DATA $208,187,24,144,165,144,85,1$ $44,86,173,81,6,24,101,205,205,15,6,240$ , 78
R0 32380 DATA $162,0,164,205,173,81,6,133$, $203,173,82,6,133,204,177,203,200,145,2$ 03,136
32390 DATA $136,16,247,238,81,6,160,0,1$ $73,83,6,133,203,169,6,133,204,173,81,6$ 32490 DATA $145,203,24,101,205,205,15,6$ $, 240,28,232,236,16,6,208,202,172,17,6$, 173
32410 DATA $24,6,201,9,240,95,201,5,246$ , 88, 208, 166, 24, 144, 86, 24, 144, 80, 173,64 32420 DATA $6,240,155,164,205,173,81,6$, $133,203,173,82,6,133,204,177,203,176,1$ 69,0
32430 DATA $145,203,173,81,6,56,237,62$, $6,24,101,205,141,81,6,133,203,138,145$, 203
AF 32440 DATA $136,208,16,173,83,6,133,203$ $, 169,6,133,204,173,81,6,145,203,208,18$ 7,173
32450 DATA $81,6,24,169,62,6,56,229,205$ $, 141,81,6,208,187,169,1,208,168,24,144$ 32460 DATA $104,162,0,172,17,6,192,1,20$ $8,15,173,76,6,240,36,136,185,8,6,24$
32470 DATA $109,78,6,208,17,192,3,208,2$ $2,173,77,6,246,17,136,185,8,6,24,109$ 32480 DATA $79,6,200,153,8,6,153,0,208$, 32480 DATA $79,6,200,153,8,6,153,6,28$
$208,199,185,8,6,205,12,6,208,8,173$
32490 DATA $63,6,240,186,173,13,6,56,23$ $3,1,153,8,6,153,0,208,192,0,208,31$
32500 DATA $173,76,6,240,59,185,8,6,24$, $105,1,205,13,6,208,48,185,8,6,56$
32510 DATA $237,78,6,208,33,24,144,44,2$ $4,144,151,192,2,208,29,173,77,6,240,24$ 32520 DATA $185,8,6,24,105,1,205,13,6,2$ $08,13,185,8,6,56,237,79,6,153,8$
32530 DATA $6,153,0,208,232,236,16,6,20$ $8,214,240,166,162,0,172,17,6,192,1,208$ $8,214,240,166,162,0,172,17,6,192,1,208$
32540
DATA $15,173,76,6,240,73,136,185$, $8,6,24,109,78,6,208,17,192,3,208,24$ $8,6,24,109,78,6,208,17,192,3,268,24$
32550 DATA $173,77,6,240,54,136,185,8,6$ $, 24,109,79,6,206,153,8,6,153,0,208$
32560 DATA $169,0,240,202,192,0,208,14$, $173,76,6,246,26,185,8,6,24,109,78,6$
AQ 32570 DATA $208,12,173,77,6,240,12,185$, $8,6,24,109,79,6,205,13,6,240,8,185$
32580 DATA $8,6,205,13,6,208,8,173,63,6$ $, 249,154,173,12,6,24,105,1,153,8$
32590 DATA $6,153,6,208,232,236,16,6,20$ $8,143,240,134,-1$

32330 DATA $24,144,82,24,144,81,173,64$ $6,240,146,164,205,173,81,6,133,203,173$ :
32340 DATA $6,133,204,177,203,179,169,0$ , $145,203,173,81,6,24,105,62,6,56,229,2$ 145
323
32350 DATA $141,81,6,133,203,138,145,20$ $3,136,208,16,173,83,6,133,203,169,6,13$ 3,294
32360 DATA $173,81,6,145,203,208,183,17$ $3,81,6,56,237,62,6,24,101,205,141,81,6$ 32379 DATA $208,187,24,144,165,144,85$, $44,86,173,81,6,24,101,205,205,15,6,240$ , 78
0 32380 DАTA $162,0,164,205,173,81,6,133$, $203,173,82,6,133,204,177,203,200,145,2$ 03,136

HF 32390 DATA $136,16,247,238,81,6,160,0,1$ $73,83,6,133,203,169,6,133,204,173,81,6$ JT 32400 DATA $145,203,24,101,265,205,15,6$ $, 246,28,232,236,16,6,208,202,172,17,6$, 173
GK 32410 DATA $24,6,201,9,240,95,201,5,240$ $, 88,208,166,24,144,86,24,144,80,173,64$
TI 32420 DATA $6,240,155,164,205,173,81,6$, $133,263,173,82,6,133,204,177,203,170,1$ 69,0
BB 32430 DATA $145,203,173,81,6,56,237,62$, $6,24,101,205,141,81,6,133,263,138,145$, 293
AF 32446 DATA $136,208,16,173,83,6,133,203$ $, 169,6,133,204,173,81,6,145,203,208,18$ 7,173
PI 32450 DATA $81,6,24,109,62,6,56,229,205$ $, 141,81,6,208,187,169,1,208,168,24,144$
FN 32460 DATA $104,162,0,172,17,6,192,1,20$ $8,15,173,76,6,240,36,136,185,8,6,24$
EA 32470 DATA $109,78,6,208,17,192,3,208,2$ $2,173,77,6,240,17,136,185,8,6,24,109$
FZ 32480 DATA $79,6,209,153,8,6,153,0,208$, $208,199,185,8,6,205,12,6,208,8,173$
HO 32490 DATA $63,6,240,186,173,13,6,56,23$ $3,1,153,8,6,153,0,208,192,0,208,31$
WO 32500 DATA $173,76,6,240,59,185,8,6,24$, $105,1,205,13,6,208,48,185,8,6,56$
32516 DATA $237,78,6,208,33,24,144,44,2$ $4,144,151,192,2,268,29,173,77,6,240,24$ 32520 DATA $185,8,6,24,105,1,205,13,6,2$ $08,13,185,8,6,56,237,79,6,153,8$
KO 32530 DATA $6,153,0,288,232,236,16,6,20$ $8,214,240,166,162,6,172,17,6,192,1,208$
TA 32540 DATA $15,173,76,6,240,73,136,185$, $8,6,24,109,78,6,208,17,192,3,208,24$
MB 32550 DATA $173,77,6,240,54,136,185,8,6$ $, 24,109,79,6,200,153,8,6,153,0,208$
32560 DATA $169,0,240,202,192,0,208,14$, $173,76,6,240,26,185,8,6,24,109,78,6$
AQ 32576 DATA $208,12,173,77,6,240,12,185$, $8,6,24,109,79,6,205,13,6,240,8,185$
ZW 32580 DATA $8,6,205,13,6,208,8,173,63,6$ $, 246,154,173,12,6,24,105,1,153,8$
TD 32590 DATA $6,153,0,208,232,236,16,6,20$ $8,143,246,134,-1$

## LISTING 2: BASIC

| 01 | . OPT NO LIST |
| :---: | :---: |
| 0100 | ;FASTMOUE U1.01 BY J.LITTLE |
| 0165 | ; COPYRIGHT 1989 |
| 0106 | ;BY ANALOG COMPUTING |
| 8110 |  |
| 8120 | ; MOUES ALL 4 PLAYERS DURING UBI |
| 0130 | ; WITH OR WITHOUT JOYSTICK |
| 0140 |  |
| 0150 | ; $\because \mathrm{FA} 5 \mathrm{~T}$ |
| 0160 | ; $* 5 \mathrm{MO} 0 \mathrm{TH}$ |
| 0170 | ; $\because$ RELOCATABLE |
| 0180 | ; 可ARIABLE SPEED FOR EACH PLAYER |
| 0190 |  |
| 0269 | ; CHANGES 5HAPES OF PLAYERS |
| 0216 | ; TO MATCH DIRECTION OF MOUEMENT |
| 0220 |  |
| 0250 | ;OPTIONAL HORIZONTAL OR UERTICAL |
| 0260 | ; |
| 0270 |  |
| 0280 | ; DOUBLE OR SINGLE LINE RESOLUTION |
| 0290 |  |
| 0300 | ; ALL PARAMETERS POKED IN BASIC |
| 0310 |  |
| 0320 | ;PLAYERS 0,1 OR 2,3 MAY BE |
| 0330 | ;COMBINED TO MAKE MULTI-COLOR |
| 0335 | ; PLAYERS |
| 0340 |  |
| 0350 | ; WORKS WITH 400/800 OR KL/HE 05'5 |
| 9366 |  |

0100
0106 0110 8120 ; MOUES ALL 4 PLAYERS DURING UBI 0130 ; WITH OR WITHOUT JOYSTICK 0150 ; *FAST 0160 ; $\because 5 M 00 T H$ 0170 ; $\because R E L O C A T A B L E$ 0180 ; $\because$ UARIABLE SPEED FOR EACH PLAYER

0209 ; CHANGES SHAPES OF PLAYERS 6216 ; TO MATCH DIRECTION OF MOUEMENT 0250 0260 ;
0280
6280 ; DOUBLE OR SINGLE LINE RESOLUTION
030 ; ALL PARAMETERS POKED IN BASIC

0320 ;PLAYERS 0,1 OR 2,3 MAY BE
0330 ;COMBINED TO MAKE MULTI-COLOR
0335 ; PLAYERS
0350 ; WORKS WITH $400 / 800$ OR KL/HE 0S'S


0370
0380
0390
0460
0410
0420
0430
0440
0470
0480
0490
0560
0510 05 0570 0580 ;

0609 ; PAGE SIX CONSTANTS $*$
0610
9615 ; POINTTERS TO ADDRESSES OF PLAYERS
$0620 \mathrm{PQ}=\$ 0600$;PLAYER 0
$0630 \mathrm{P1}=50602$;PLAYER1
$0640 \mathrm{P2}=50604$ PLAYER2
$0640 \mathrm{P2}=50604 \quad$;PLAYER2
0650 P3
6655
0656 ; HORZ POSITION PSEUDO-REGISTERS
0660 HUARO $=\$ 0608$;PLAYERO
0670 HUAR1 $=50609$;PLAYER1
$\begin{array}{ll}0670 \text { HUAR1 }=50669 & \text {;PLAYER1 }\end{array}$
$\begin{array}{ll}0688 & \text { HUAR2 }=5060 A \\ 0685 & \text { HUARS }=\$ 060 B \\ \text { HUAER2 }\end{array}$
0686
0687 ;PLAYERS' SCREEN BOUNDARIES
0688 SCRNLEFT $=\$ 060 \mathrm{C}$;LEFT
0689 SCRNRIGHT $=5060 \mathrm{D}$;RIGHT
0690 SCRNTOP $=\$ 060 \mathrm{E}$; TOP
0691 SCRNBTM $=5060 \mathrm{~F} ;$ BOTTOM
0692 ;FOR CHANGING SPEED OF PLAYERS 0693 ;FOR CHANGING
0694 SPDUAR $=\$ 0610$
0694 SPDUAR $=\$ 0610$
0695 ;FOR ROTATING PLAYERS DURING UBI
0696 PCOUNTER $=\$ 0611$
0697
0698 SAUETOOP $=\$ 0612$;TEMP 5TORAGE
0699 SAUEBTM $=\$ 0613$;TEMP STORAGE
0706 LEN $=50614$;LENGTH OF PLYR 0
$\begin{array}{lll}0706 \\ 0710 & \text { LEN }=\$ 0614 & \text {;LENGTH OF PLYR } 0 \\ 06615 & \text {;LENGTH OF PLYR } 1\end{array}$
$\begin{array}{ll}0710 \text { LEN1 }=\$ 0615 & \text {;LENGTH OF PLYR } 1 \\ 0720 \text { LEN2 }=\$ 0616 & \text {;LENGTH OF PLYR } 2\end{array}$
0730 LENS $=\$ 6617$;LENGTH OF PLYR 3
0735 TEMPSTICK $=50618$;HOLD STICK UAL
0746 ;
0759 ;POINTERS TO ADDRESSES FOR
0755 ; DIRECTIONAL SHAPES
0760 P0SHAPE $=50619$; UP SHAPE
0770 P05HAPE1 $=5061$ \& $;$ LP LEFT SHAPE
0780 P0SHAPE2 $=5061 \mathrm{~B}$; UP RIGHT
0790 P0SHAPES $=\$ 061 C$;DOWN
0800 P65HAPE4 $=\$ 061 \mathrm{D}$;DOWN LEFT
0810 P0SHAPES $=\$ 061 E$;DOWN RIGHT
8820 P0SHAPE6 $=\$ 061 F$;LEFT
0830 PQSHAPET $=\$ 0620$;RIGHT
0840 P1SHAPEG $=\$ 0621$; $4 P$ SHAPE
0850 P1SHAPE1 $=\$ 0622$; LP LEFT SHAPE
0866 P1SHAPE2 $=\$ 0623$;UP RIGHT
0870 P1SHAPES $=\$ 0624$;DOWN
0880 P15HAPE4 $=\$ 0625$;DOWN LEFT
0890 P15HAPES $=50626$;DOWN RIGHT
0908 P1SHAPE6 $=\$ 0627$;LEFT
0910 P15HAPE7 $=\$ 0628$;RIGHT
0920 P2SHAPE $=\$ 0629$; UP SHAPE
0930 P2SHAPE1 $=\$ 062$ A ; UP LEFT SHAPE
0940 P2SHAPE2 $=\$ 062 \mathrm{~B}$; UP RIGHT
0950 P2SHAPES $=5062 \mathrm{C}$;DOWN
0960 P25HAPE4 $=\$ 062 \mathrm{D}$;DOWN LEFT
0970 P2SHAPES $=5062 \mathrm{E}$;DOWN RIGHT
0980 P2SHAPE $=\$ 062 F$;LEFT
0990 P2SHAPE7 $=\$ 0630$;RIGHT
1000 P SHAPE $=\$ 6631$; 1 P SHAPE
1010 PJSHAPE1 $=\$ 0632$; UP LEFT SHAPE
1020 PJSHAPE2 $=\$ 6633$;UP RIGHT
1036 P35HAPEJ $=50634$;DOWN
1040 P3SHAPE4 $=\$ 6635$;DOWN LEFT
1050 P3SHAPE5 $=\$ 0636$;DOWN RIGHT
1060 P3SHAPE6 $=\$ 0637$;LEFT
1070 PJSHAPE7 $=\$ 0638$;RIGHT
1086 ;
1085 ;HI-BYTE OF SHAPE ADDRESSES
1090 SHAPEPAGE $=\$ 0639$
1100 ;
1105 ;LO-BYTE ADDRESS OF CURRENT SHAPE
1110 PGSHADR $=5063 A$;PLAYER 0
$1120 \mathrm{P} 15 \mathrm{HADR}=5063 \mathrm{~B}$;PLAYER 1
$1130 \mathrm{P} 25 \mathrm{HADR}=\$ 063 \mathrm{C}$;PLAYER 2
1140 PJSHADR $=\$ 063 D$;PLAYER 3
1296 ;
1256 ;
1260 UDIFF $=\$ 063 E$;SCRNBTM-SCRNTOP
1270 HWRAP $=\$ 063 F$;HORZ WRAP-AROUND
1280 UWRAP $=50640$;UERT WRAP-AROUND

1298
1
0 L
310 L00K1 $=\$ 0641$
1329 L00K2 $=50642$
$1320 \mathrm{LOOK2}=\$ 0643$
1339
1346
1346
1
DBLRES $=\$ 0645 \quad$;DOUBLE-LINE RES
SPDUARQ $=\$ 0646$; SPEED PLAYERO
5PDUARI $=\$ 0647$
SPDUAR2 $=59648$
SPDUARZ $=50648$
COMMON $=\$ 064 A \quad$; STORE SPDUAR
1408
1405 KLIND $=5064 \mathrm{~B}$; $\mathrm{KL} / \mathrm{KE} 05$
1416 COMBIN01 $=\$ 064 \mathrm{C}$; COMBINE P0\&P1
1426
1422
1422
; HORZ DIFFERENCE BETWEEN PO \& P1
DIFFG1 $=5964 \mathrm{E}$
1440 DIFF23 $=\$ 064 \mathrm{~F}$
1450 NUMPLYR $\bar{S}=\$ 0650$; 㧊 OF PLAYERS
1460 LOCATION $=\$ 0651$;OF CURRNT PLYR
1470 POINTER $=\$ 0653$;TO LOCATION
$1480 \mathrm{PS}=\$ 0654$;CURRNT SHAPE ADR
1485
1490
1490
1495
1500 ;
1501
1502
1502 ; ARECATION", "POINTER", AND "'PS"
1503 ; NEE ROTATED INTO PAGE 0 AS
1505
1506
1510
TITLE "FASTMOUE U1.01"
. SET 2,77
SET 3,0
.SET 4,66

- TAB 12,16,24
*= 37672 ;ORIGIN
PLA
;
; INIT́TALIZE UBI ROUTINE
PLA ; START ADR HIBYTE
TAK
TAY
; LOBYTE
LDA 47
JSR 5E45C
RTS
START OF UBI ROUTINE


## START CLD

LDA 40 ;FIRST PASS...
TA PCOUNTER ;OF UBI
TAY ; STICK INDEX
;COMMON SPEED CHOICE FROM KEYBD
ONE CMP $\# 31$
;SPEED $=1 ?$
BNE TWO
LDA \#
STA COMMON
IF NOT, CHECK 2
;IF 50, CHANGE..

TWO
; THEN CHECK STICK
BNE THREE
LDA
STA COMMON
BNE LOOK
THREE CMP 426
BNE FOUR
LDA \#3
5 TA COMMON
BNE LOOK
FOUR CMP $\$ 24$
BNE FIUE
LDA 44
STA COMMON
BNE LOOK
FIUE CMP $\$ 29$
BNE LOOK
LDA $\$ 5$
STA COMMON
$\square$
BEGINNING OF MOUEMENT LOOP---
; IF 2 PLAYERS ARE COMBINED,
; ARRANGEMENTS MUST BE MADE FIRST-
LOOK LDA SAUETOP ; REINSTATE ORIG STA SCRNTOP ; SCRN TOP, BOTTOM LDÁ SAUEBTM ; IN CASE THEY
STA SCRNBTM ; WERE CHANGED.
CPY 41 ;IS THIS PLAYER1?


| 3210 | BEQ 5HAPE |
| :---: | :---: |
| 3220 | BNE IMTERMRETURN |
| 3290 | ； |
| 3300 | INTERMLOOK CLC |
| 3310 | BCE INTERMLOOK2 |
| 3320 | ； |
| 3330 | INTERMRETURM CLC |
| 3340 | BCC INTERMRETURN1 |
| 3356 | ； |
| 3360 | ； |
| 3370 | SHAPE LDY PCOUMTER ；PG CURRENT？ |
| 3380 | BNE 5HAPE1 ；N0，CHECK P1 |
| 3382 | ； |
| 3385 | ；CHECK PLYRO 5HAPE POINTER FOR |
| 3386 | ；ADDRES5 CONTAINING 5HAPE DATA． |
| 3390 | LDA P0SHAPE0， 8 ； |
| 3400 | BEO 55J ；ZERO＝N0 CHANGE． |
| 3410 | CMP P65HADR ；NEW 5HAPE＝0LD？ |
| 3420 | BEO 55J |
| 3430 | STA PQSHADR |
| 3440 | 5Ta PS ；N0，CHange shape |
| 3450 | LDá Shapepage ； |
| 3460 | 5 TA P5＋1 |
| 3470 | BNE CHANGE ；Go get changed． |
| 3480 | SHAPE1 CPY \＃1 |
| 3490 | BNE SHAPE2 |
| 3500 | LDA P1SHAPE0， 8 |
| 3510 | BEO 55J |
| 3520 | CMP P15Hadr |
| 3530 | 55J BEQ SAMESHAPE |
| 3540 | STA P1SHADR |
| 3550 | STA P5 |
| 3560 | LDA SHAPEPage |
| 3570 | SEC |
| 3580 | SBC ${ }^{\text {H }}$ |
| 3590 | 5TA P5＋1 |
| 3600 | IBNE CHANGE |
| 3610 | SHAPEZ CPY ${ }^{\text {H2 }}$ |
| 3620 | BNE SHAPES |
| 3630 | LDa P2SHape0， K |
| 3640 | BEQ 5AMESHAPE |
| 3650 | CMP P2SHADR |
| 3660 | BEO 5AMESHAPE |
| 3670 | 5Ta P2SHADR |
| 3680 | 5TA PS |
| 3690 | LDA SHAPEPAGE |
| 3700 | SEC |
| 3710 | SBC ${ }^{\text {¢ } 2}$ |
| 3720 | STA PS＋1 |
| 3730 | bne chamge |
| 3731 | ； |
| 3732 | ； |
| 3733 | INTERMLOOK3 CLC |
| 3734 | BCC IMTERMLOOK |
| 3735 | ； |
| 3736 | ； |
| 3749 | 5HAPES CPY H3 |
| 3750 | BNE SAMESHAPE |
| 3760 | LDA P35HAPE0， 8 |
| 3770 | BEQ SAMESHAPE |
| 3780 | CMP PSSHADR |
| 3790 | BEO SAMESHAPE |
| 3800 | 5TA P35HADR |
| 3810 | STA PS |
| 3820 | LDA SHAPEPAGE |
| 3830 | SEC |
| 3840 | 5BC \＃3 |
| 3850 | STA P5＋1 |
| 3860 | BNE CHAMGE |
| 3870 | ； |
| 3880 | ； |
| 3890 | IMTERMRETURN® CLC |
| 3900 | BCC RETURN |
| 3910 | ， |
| 3920 | INTERMLOOK1 CLC |
| 3930 | BCC IMTERMLOOK3 |
| 3940 | ， |
| 3950 | CHANGE LDY \＃0 ；REPLACE． |
| 3960 | LOOP INY ；OLD．．． |
| 3951 | LDA P5 |
| 3952 | 5 SA PAGEE |
| 3963 | LDA P5＋1 |
| 3964 | 5Ta Pageoti |
| 3970 | LDA（PAGE0），Y ；SHAPE．． |
| 3971 | STA TEMP |
| 3972 | LDA LOCATION |
| 3973 | Sta Pagee |
| 3974 | LDA LOCATION＋1． |
| 3975 | 5 TA PAGEQ＋1 |
| 3976 | LDA TEMP |
| 3980 | STA（PAGE0），Y ；WITH．．． |
| 3990 | CPY LENGTH ；MEW．．． |
| 4000 | BNE LOOP ；SHAPE， |
| 4016 | SAMESHAPE CPK H3 ；DIRECTION INDES |
| 4620 | BCC MOUELP ；FOR H （3 |
| 4070 | CPX \＃6，；FOR 2〈8＞6 |
| 4986 | BCC INTERMOUE ；DOWN |
| 4140 | BEQ INTERMLEFT ；FOR $\mathrm{K}=6$ |
| 4150 | CP\％${ }^{\text {H }}$ |
| 4160 | BEO INTERMRIGHT |
| 4178 |  |


| 4180 | ；－－RETURN ROUTINE；PLACED IN |
| :---: | :---: |
| 4181 | ；MIDDLE OF PROGRAM T0 FACILITATE |
| 4182 | ；BRANCHING．RETURNS TO CHECK |
| 4190 | ；NEXT PLAYER OR EHITS UBI AFTER |
| 4191 | ；LAST PLAYER－－ |
| 4200 |  |
| 4210 | RETURN INC PCOUNTER |
| 4220 | LDY PCOUMTER ；WHO＇5 NEXT？ |
| 4230 | CPY NUMPLYRS ；ALL PLAYER5？ |
| 4246 | BNE INTERMLOOK1 ；N0，GO AGAIN． |
| 4250 | JMP \＄E462 ；RETURN FROM UBI |
| 4260 | ； |
| 4270 |  |
| 4280 | ；－UPWARD MOUEMENT ROUTINE－ |
| 4290 |  |
| 4300 |  |
| 4310 | MOVEUP LDA LOCATION ；IS PLYR AT |
| 4320 | CMP SCRNTOP ；TOP OF SCRN？ |
| 4330 | BEQ UWRAP ；WRAP－AROUND？ |
| 4340 | LDX HO ；NO，IMIT SPDUAR |
| 4350 | UP5PEED LDY \＃1 INIT BYTE－COUNT |
| 4351 | LDA LOCATION |
| 4352 | Sta Pagee |
| 4353 | LDA LOCATION＋1 |
| 4354 | STA Pageeri |
| 4360 | UPMORE LDA ©PAGE08，Y ；MOUE．． |
| 4370 | DEY ；OHE BYTE． |
| 4380 | STA 《PAGE0），Y ；UPWARD |
| 4390 | CPY LENGTH ；FINISHED MOUING？ |
| 4400 | INY |
| 4410 | INY |
| 4428 | BCC UPMORE ；NO，KEEP MOUING． |
| 4430 | DEC LOCATION ；MOUE FINISHED． |
| 4440 | LDY Hor ；STORE NEW． |
| 4441 | LDa Pointer |
| 4442 | Sta Pageo |
| 4443 | LDA \＃6 |
| 4444 | STA PAGE0＋1 |
| 4450 | LDA LOCATION ；PLAYER． |
| 4460 | STA 《PaGE0），Y ；ADDRES5． |
| 4479 | CMP SCRNTOP ；TOP OF SCRN？ |
| 4489 | BEQ LIWRAP ；YES，WRAP－AROUND？ |
| 4490 | IMX ；IF NOT， |
| 4500 | CPK SPDUAR ；CHECK SPEED AND |
| 4510 | BNE UPSPEED ；MOUE AGAIN |
| 4520 |  |
| 4530 | LDY PCOUNTER ；UERT MOUE DONE． |
| 4540 | LDA TEMPSTICK ；CHECK FOR |
| 4550 | CMP H10 ；DIAGONaL MOUE |
| 4560 | BEO INTERMLEFT |
| 4576 | CMP ${ }^{\text {d }} 6$ |
| 4580 | BEO INTERMRIGHT |
| 4590 | BME RETURN |
| 4606 | ； |
| 4610 | INTE＇MRETURN4 CLE |
| 4620 | INTERMRETURN4 CLC |
| 4630 | BCC RETURN |
| 4640 | ＇${ }^{\text {d }}$ |
| 4650 | Intermove cle |
| 4660 | BCC MOUEDOWM |
| 4670 |  |
| 4680 | INTERALEFT CLC |
| 4690 | BCC INTERMLEFT6 |
| 4700 | ＇${ }^{\text {a }}$ |
| 4710 | INTERMRIGHT CLC |
| 4720 | BCC INTERMRIGHT6 |
| 4730 | ； |
| 4740 |  |
| 4750 | ；－DETERMINE IF UERTICAL |
| 4751 | ；WRAP－AROUND IS DESIRED AND |
| 4752 | ；IMPLEMENT FOR UPWARD MOVEMENT |
| 4768 |  |
| 4770 |  |
| 4780 | UWRAP LDA UWRAP ；WRAP－AROUND？ |
| 4790 | BEQ RETURN ；NO |
| 4800 | LDY LEMGTH |
| 4801 | LLOOP LDA LOCATION |
| 4802 | sta Pageo |
| 4803 | LDA LOCATION＋1 |
| 4804 | STA PAGE0＋1 |
| 4805 |  |
| 4810 | ；ONE BYTE AT A TIME |
| 4811 | ；Store player data in kreg．．． |
| 4812 | ；AND ZERO OUT．．． |
| 4813 | ；LOCATION BEIMG MOUED FROM． |
| 4820 | LDA ©Page ${ }^{\text {d }}$ ，Y |
| 4830 | TA\％； |
| 4840 | LDA \＃0 ； |
| 4850 | STA（PAGE0），Y ； |
| 4855 | ； |
| 4860 | LDA LOCATION ；OLD LOCATION． |
| 4876 | CLC UDEF＇${ }^{\text {PLUS }}$ SCRM LEMGT |
| 4880 | ADC UDIFF ；PLUS SCRN LENGTH |
| 4890 | 5EC ；MINUS |
| 4900 | 5BC LENGTH ；PLAYER LENGTH． |
| 4910 | Sta location ：＝NEW LOCATION |
| 4912 | 5 TA PAGE0 |
| 4920 | Tha ；Store data In |
| 4930 | Sta 《Page日y，y ；NEW LOCATION． |
| 4940 |  |
| 4950 | DEY ；MOUE FINISHED？ |
| 4960 | BNE ULOOP2 ；IF NOT，PREPARE |




## A LETTER FROM THE PUBLISHER

It's no secret that the U.S. Atari market isn't as healthy as it could be. The 8 -bit computer line has declined in popularity, while the ST, though it has gained a respectable following in Europe, has yet to find its niche in the states. For these reasons, most software companies won't develop products for the Atari systems.

This lack of software support has a subtle, but nonetheless powerful impact on magazines that rely on the Atari market for their well-being. The cold fact is that advertisers for the 8 -bit products are nearly nonexistent, and there are precious few advertisers for ST products.

Since, for profitable publications, we depend to a great extent upon advertising, we are left with two choices if our publications are to continue: We can increase the price of our magazines, thus forcing readers to pick up the tab for the lack of advertising, or we can find a way to make the magazines less expensive to produce. We've opted for the latter.

There are, of course, many ways we can cut the magazines' publishing costs: We can reduce the page count. We can get rid of the color. We can pay contributors less. Unfortunately, none of these options, nor others, not mentioned here, makes much of a difference in the long run.

After much thought, we decided that although the Atari market is not capable of supporting two Atari-specific magazines from a single publisher, it is active enough to support one. So we're going to combine ANALOG Computing and ST-LOG into a single monthly publication.

Don't panic! When you think about it, the merging of the magazines will allow us to produce a much nicer publication. And since the single magazine will be larger than either of the individual ones, we won't have to cut much from our content. In fact, after doing some analysis, we've discovered that we will be able to offer the same columns, departments and types of features you've come to expect. Little will change, except that everything will come to you under a single cover.

The November issue will be the first combination magazine. Next month we'll give you more details on what the new publication will be like, as well as our plans for the future. (We plan some nice surprises, like a reduction in the cost of magazine disks.)

We believe that merging ANALOG Computing and ST-LOG is the best solution to a tough problem. It allows us to continue publication while giving you your full money's worth. It also gives Atari a chance to prove their claim that in the coming year they will emerge a strong presence in the U.S. When that time comes, we plan to reevaluate the situation and possibly separate the publications once again.

Recently, Atari supporters have had to stick together like never before. We've been there, providing support and information for nearly nine years. And we plan to be there for many more.

Here's to the future!


Lee H. Pappas
Publisher

STORE HOURS
TUE - FRI 10am - 6 pm SAT - 10am - 5pm CLOSED SUN - MON

| SOO/XL/XE SOFTWWARE <br> A LL TITLES ON DISK |  |  | 800/XL/XESORTWARE all Titles on Cartridge |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ENTERTAINMENT | PROGRAMMING | LINKWORD: ITALIAN .... 22.50 | ENTERTA INMENT |  | SPRINGER |  |
| 12. ADAMS ADVENTURES .. 14.95 | diamond (GEM O/S) . . . 69.95 | MASTER TYPE .......... 14.95 | 3D TIC-TAC-TOE ...... | 9.95 | SPACE INVADERS |  |
| aliants . . . . . . . . . . 26.95 | Dos 2.5 ............. 7.95 | PRE-SAT WORD ATTACK .. 14.95 | AIRBALL ( $\mathrm{XL} / \mathrm{XE}$ ) | 24.95 | Star raiders |  |
| ALIT, REALITY CITY.... 26.95 | dos xe.............. . . 10.00 | States and capitals .. 9.95 | ALIEN AMBUSH . | $\begin{array}{r} 24.95 \\ 9.95 \end{array}$ | star raiders ii |  |
| alt. real dungeon ..... 26.95 | DISK 1/O ............. 26.95 | SPELling bee (AG 5-10) 14.95 | ACE OF ACES . $(\mathrm{XL} / \mathrm{XE})$ | 24.95 | SUBMARINEE COMMANDER | 14.95 |
| Assulit force ........ 19.95 | kyan pascal .......... 62.95 | TOUCH TYPING ......... 9.95 | ARCHON ............ | 19.95 | Summer games ( $\mathrm{XL} / \mathrm{XE}$ ). | 24.95 |
| AUTO DUEL .............. 35.95 | LIGHTSPEED C ........ 35.95 | QUIZ MASTER CONSTR.... 8.95 | ASTEROIDS | 15.95 | SUPER BREAKOUT ...... | 9.95 |
| BEYOND CASTLE WOLF.... 14.95 | Sparta dos x ......... 71.95 | QUIZ MSTR. USA CONSTR. 8.95 | AStro chase | 14.95 | SUPER COBRA | 4.95 |
| BISMARK ............... 26.95 |  |  | atari tennis | . 95 | thunderfox | 95 |
| ROP \& WRESTLE ......... 26.95 |  | Americar education: | atlantis | 14.95 | tURMOIL | 9.95 |
| bruce lee . . . . . . . . . 17 |  | $\mathrm{A}_{+}+$grammer $64+\ldots .{ }^{\text {a }}$ - 17.95 | BARNYARD BLASTER | 24.9 |  |  |
| Castle wolfenstein.... 14.95 |  | A+ READING COMP G1-8 17.95 | BATTLEZONE | 95 | PROGRAMM |  |
| CHAMP. LODE RUNNER . . 26.95 |  | A+ Science 63-4 .... 17.95 | B.C. QUEST FOR TIRES | 19.95 | ACTION | 71.95 |
| COSmiC tunnels ....... 9.95 |  | A+ Science c5-6 ... 17.95 | BOULDERS \& BOMBS |  | ACTIONI TOOLKIT-DISK | 26.95 53 |
| 1)-8uG . . . . . . . . . . . . . 7.95 | PRODUCTIVITY | A+ SCIENCE G7-8 $\ldots . .17 .95$ | caverrs of boabs | $\begin{aligned} & 14.95 \\ & 14.95 \end{aligned}$ | BASIC XL |  |
| dallas puest ......... 7.95 | ANIMATION STATION .... 79. | A+ Spanish ......... 17.95 | CENTIPEDE ..... |  | BASIC XL |  |
| deluse invaders ...... 7.95 | R …....... 29 | A + U.S. Gov. G10+ .. 17.95 | CHICREN. | 14.95 9.95 | ${ }_{\text {BASIC }}$ LOGO XE |  |
| FIGHT NIGHT $\ldots$. . . . . . 17.95 | ATARIWRITER (CART ONLY)19.95 | A+ U.S. HIST. G5+ .. 17.95 | CHOPLIFTER | $14.95$ | $\begin{aligned} & \text { LOGO } \\ & \text { MAC/ } \end{aligned}$ |  |
| GAuntlet (64K) ....... 31.50 |  | A+ Vocabulary $64+\ldots 17.95$ | CLAIM JUMPER (400/800) | $\begin{array}{r} 14.99 \\ 9.95 \end{array}$ | MAC/65 TOOL |  |
| Dfeprer dungeons.... 22.50 | ATARIWRITER 80 | A+ WORLD GEOG. G8+ . 17.95 | cloudburst | 9.95 | PILOT .......... |  |
| GUNSLINGER ........... 26.95 | REQUIRES XEP80 .... 44.95 | A+ WORLD HIST. G8+ . 17.95 | COBRA | 14.95 |  |  |
| HARD HAT MAC ......... 7.95 | ATARI BUSI MUSIC II | (G - grade level) | CRIME BUSTER | . | PRODUCTIVITY |  |
|  | AWARDWARE ( 1050 ) . . . . . . 13.50 |  | crossbow |  |  |  |
| KARATEKA . ............... 13. KNICKERBOCKERS . ...... 13. | BANK STREET WRITER.... 14 | tari: | CROSSFIRE | 9. | fun with art |  |
| KORONIS RIFT ......... 13.50 | blazing paddles ...... 31.50 | DIVISION DRILL ...... 9.95 | ) |  | Crofiler |  |
| LAST V-8 | CELEBRITY COOKBOOK ... 26.95 | GRAPHING ........... 9.95 | DARK CHAMBERS (XL/XE). |  |  |  |
| L.A. SWAT/PANTHER ... 8.95 | COMPUTE YOUR ROOTS ... 35.95 | instructional comput 9.95 | DEFENDER | $\begin{aligned} & 19.95 \\ & 110 \end{aligned}$ |  |  |
| Leaderboard .......... 13.50 | Datamanager .......... 8.95 | PLAYER MAKER ....... 9.95 | deluxe invaders | 7.95 |  |  |
| Lode runner . . . . . . . . 13.50 | Electronic checkbook . 8.95 | prefixes .......... 9.95 | desert falcon |  |  |  |
| mtcroteague baseball. . 35.95 | MILY FINANCE ...... 6.95 | SCREEN MAKER ....... 9.95 | dig dug | 19.95 |  |  |
| Napoleon at waterloo . 22.50 | GUITAR WIZARD ........ 26.9 | SECRET FORMULA Interm 9.95 | DONKEY KONG | 5.00 |  |  |
| MONTEZUMA'S REVENGE... 14.95 | HOME ACCOUNTANT ...... 19.95 | Secret formula advanc 9.95 | DONKEY KONG JR. | 19.95 |  |  |
| mousequest ............ 17.95 | HOME FILING MANAGER. . $\begin{array}{r}6.95 \\ \text { HOMEPAK }\end{array}$. $\quad$ 24.95 | Spell in context 8.. 9.95 | EASTERN FRONT (1941). | 19.95 |  |  |
| MOON Shuttle $\ldots$. ${ }^{\text {a }}$. ${ }^{\text {a }}$. 7.95 | INVENTORY MASTER ........ 82.95 | CbS (AGE 3-6): | е.t. PHone home |  |  |  |
| NIBBLER $\cdot$............. 12.95 | INVENTORY MASTER ...... 80.95 LETTER WIZARD ....... 29.95 |  | FIGHT NIGHT | 19.95 |  |  |
|  | LETTER WIZARDMONEY MANAGER ..........29.95 <br> 8.95 | AStrogrover ........ 8.95 | final legacy |  |  |  |
|  | MUSIC CONSTRUCTION SET $\begin{array}{r}8.95 \\ \hline\end{array}$ | big bird spec delive 8.95 | FOOD FIGHT (XL/XE) | 19.95 | wail ab surl. |  |
| OHI's WELL ... o'RIIEY'S MINE | MUSIC CONSTRUCTION SET 13.50 NEWSROOM ( $1050 \quad 64 \mathrm{~K}$ ). 44.95 | Ernie's Magic shape. 8.95 | football | 14.95 | math encounters ... |  |
| ptrates of rarr. Coast 22 | news station ......... 26.95 | desigmmare: | FROGG | 14.95 | fisher price (pre |  |
| PTTFATL/, DEMON ATTACK . 13.50 | NEWS STA. COMPANION. . 26.95 | MATHMAZE (6-11) .... 26.95 |  |  | dance fantasy |  |
| preppie I \& II ....... 9.95 | Page designer ....... 26.95 | mission Algebra ( $13+$ ) 13.50 | GORF (400/800) | $\begin{array}{r} 24.95 \\ 5.00 \end{array}$ | IIINKING LOGIC |  |
| Rescue on fractalas... 13.50 |  | SPELLICOPTER (6-11). 35.95 | gyruss . |  | LOGIC LEVELS |  |
| rome \& the barbarians 17.95 | PRINT PONER (1050).... 13.50 | TIEK TOEK (AGE 4-6): | hardball | 19. | MEMORY MANOR |  |
| SPITFIRE 40 ......... 31.50 | PRINTKIT (1050) ....... 13.50 |  | into eagles nest (XL/XE) 19.95 |  | SpItharer (age 3-10): |  |
| Starfleet I .......... 44.95 | PRINTSHOP | ABC'S .............. 8.95 | JOURNEY TO PLANETS | $9.95$ |  |  |
| Star raiders il ...... 17.95 | P.S. COMPANION (64K) - 24.95 | COUNT AND ADD $\ldots . . .88 .95$ | Joust | 19.95 | ALF IN COLOR CAVES |  |
| SPY VS. SPY 111 ...... 17.95 | P.S.GRAPHICS LIBRARY 117.95 | Smart thinker ...... 8.95 | Jungle hunt |  |  |  |
| Stockmarket .......... 22.50 | GRAPHICS LIBRARY 217.95 | spelling ........... 8.95 | KABCOMI |  | DELTA DRAWING |  |
| Strip poker .......... 26.95 | P.S.GRAPHICS LIBRARY 317.95 | Subtraction ........ 8.95 | karatek | 19.95 | FACEMAKER |  |
| Summer games ......... 17.95 | PROOF READER ........ 17.95 | THINKING SKILLS .... 8.95 | krazy antics | 14.95 |  |  |
| tax nodge . .......... 9.95 | PUBLISHING PR | ALL 6 TINK TONKS.. 39.95 | Lode runner | 24.95 |  | $\begin{aligned} & 9.95 \\ & 9.95 \end{aligned}$ |
| TEMPLE OF APSHAI ..... 9.95 | RUBBER STAMP ......... 26.95 | UHICORE: | MARIO BROS (XL/XE | 19.95 | STORY MACHINE(AGE 7 - ADULT): |  |
| the hulk ............. 5.35 | SYNTREND . . . . . . . . . . 14.95 |  | megamania | 9.95 |  |  |
| tomahawk (64K) ....... 26.95 | MAILER ......... 35.95 | 10 Little robots | MILLIPEDE | 14.95 | ADV.CREATOR (400/800).9.95 |  |
| trailblazer .......... 26.95 | 17 | (PRE-SCHOOL) .... 26.95 | MISSILE COMMAND | 5.00 | FRACTION FEVER ...... 9.95 (* = REQ. LIGNT GUN) |  |
| Ultima II ............ 35.95 | TIMEWISE | FUN BUNCH (6-ADULT) 26.95 | moon patrol | 19.95 |  |  |
| ultima ili ........... 35.95 | TURBOWORD/80 COLUM | RACECAR RITHMETIC | MR. COOL | 9.95 |  |  |
| ulitima iv ............ 53.95 | REQUIRES XEP80.... 44.95 | (AGE 6+) .......... 26.9 | MS. PAC MAN | 19.95 |  |  |
| Universe . ............ 44.95 | VIDEO TITLESHOP (64K). 26.95 |  | NECROMANCER | 19.95 |  |  |
| ZAXXON (400/800) ...... 13.50 | GRAPHICS COMPANION. 17.95 | WEEkLY Reader (PRE-SChool) : | ONE ON ONE (XL/XE) | 19.95 | ******************* |  |
|  | virtuoso ............ 29 | STICKY BEAR SHAPES . 26.95 | pac man | 5.00 |  |  |
| MICROPOSE SPECIALS!! | VISICALC ............. 24.95 | Sticky bear numbers. 26.95 | PENGO | 19.95 | SPECIAL PRICE |  |
| CONFLICT IN VIET NAM . 10.95 | EDUCATION | STICKY  <br> STICKY  <br> BEAR ABC'S $\ldots$ <br> OPPOSITE 26.96 <br> 2.95  | PLATTERMANIA | 9.95 |  |  |
| cxrusade in europe ... 10.95 | atari light module | STICKY BEAR OPPOSITE Sb BASKET BOUNCE | POLE POSITION | 19.95 | TARI |  |
| DECISION IN DESERT $\ldots 10.95$ | (REQ. StARTER SET) . 9.95 |  | POPEYE |  |  |  |
| F-15 strike eagle .... 14.95 | BuzzWord . . . . . . . . . . 35.95 |  |  |  | A |  |
| KENNEDY APPROACH ..... 10.95 | GRandma's house ( 10) 9.95 |  | RESCUE ON FH |  | NOW ONLY |  |
| Nato Commander ....... 10.95 | hey diddle (age 3-10). 9.95 |  | RETURN OF THE JE | 14.95 |  |  |
| Illent service ....... 12.95 | LINKWORD: SPANISH .... 22.50 |  | ROBOTRON: 2084 | 19.95 |  |  |
| SOLO FLIGHT .......... 12.95 | LINKWORD: GERMAN ..... 22.50 | ( - (made) ${ }^{\text {a }}$ | SKY WRITER | 14.95 | LIMITED TIME ON |  |
| P Gunder ........... 10.95 | LINKWORD: FRENCH ..... 22.50 |  | SLIME (400/800) | 9.95 | ghtgun | 34.95 |

## SUPERSPMCMA IS

RECONDITIONED ATARI MIERCHEANIISE 30 DAYY WARIRANTY

| $\begin{gathered} 800(48 \mathrm{~K}) \\ \text { COMPUTER } \\ \$ 79.95 \end{gathered}$ | $\begin{aligned} & \text { SPACE AGE } \\ & \text { JOYSTICK } \\ & \$ 5.00 . \end{aligned}$ | 3-1/2" DISKS <br> AS LOW AS 75 CENTS <br> 10 FOR $\$ 8.95$ <br> 100 FOR \$80 | 1020 COLOR PRINTER/PLOTTER $\$ 19.95$ | ATARI BOOKKEEPER $\$ 14.95-$ NO BOX | $\begin{gathered} 5-1 / 4 \text { " DIS KETTES } \\ \text { AS LOW AS } 20 \text { CENTS } \\ 10 \text { FOR } \$ 4.00 \\ 100 \text { FOR } \$ 29.95 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1030 MODEM WITH EXPRESS: $\$ 24.95$ | $\underset{\substack{\text { ATARI } \\ \text { TRACKBALL } \\ \$ 9.95}}{ }$ | 1000 FOR $\$ 750$ DOUBLE SIDED WITH old demo software | (new in box) <br> 0 COLUMNS WIDE inc. Pens, paper, etc. | ATARI NUMERIC KEYPAD $\$ 7.95$ | 1000 FOR $\$ 200$ most are unnotched WITH OLD SOFTWARE |



 subject to change.

Phone orders accepted TUESDAY THROUGH FRIDAY from 10:00 am to 6:00 pm PST
We carry a full line of ATARI products - large public domain library - write or call for free catalogue

## by Clayton Walnum

BASIC Editor II is a utility to help you enter BASIC program listings published in ANALOG Computing. To simplify the identification of errors, each program line is evaluated immediately after it's typed, eliminating the need for cumbersome checksum listings. When you've finished entering a program using BASIC Editor II, you can be certain it contains no typos.
An option is provided for those who wish to use standard BASIC abbreviations. Also, the program retains all Atari editing features. Finally, for those who prefer to type programs the conventional way, using the built-in editor, a post-processing mode is available. It allows you to check typing after the entire listing has been entered.

## Typing in the Editor

To create your copy of BASIC Editor II, follow the instructions below- exactly.

## Disk version:

(1) Type in Listing 1, then verify your work with Unicheck (see Issue 39).
(2) Save the program to disk with the command SAVE "D:EDITORLI.BAS".
(3) Clear the computer's memory with the command NEW.
(4) Type in Listing 2, then verify your work with Unicheck.
(5) Run the program (after saving a backup copy) and follow all the on-screen prompts. A data file will be written to your disk.
(6) Load Listing 1 with the command LOAD "EDITORLl.BAS".
(7) Merge the file created by Listing 2 with the command ENTER ' $D: M L . D A T$ ".
(8) Save the resultant program with the command LIST "D:EDITORII.LST"'

Cassette version:
(1) Type in Listing 1 and verify your work with Unicheck.
(2) Save the program to cassette with the command CSAVE. (Do not rewind the cassette.)
(3) Clear the computer's memory with the command NEW.
(4) Type in Listing 2 and verify your work with Unicheck.
(5) Run the program and follow the onscreen prompts. A data file will be written to your cassette.
(6) Rewind the cassette.
(7) Load Listing 1 with the command CLOAD.
(8) Merge the file created by Listing 2 with the command ENTER " $C$ :".
(9) On a new cassette, save the resultant program with the command LIST " $C$ :'".

## Using the Editor

Take a look at one of the BASIC program listings in this issue. Notice that each program line is preceded by a two-letter code. This code is the checksum for that line; it's not a part of the program.

To enter a program listing from the magazine, load BASIC Editor II with the ENTER command, and run it. You'll be asked if you wish to allow abbreviations (see your BASIC manual). If you do, type $Y$ and press RETURN. Otherwise, type $N$.

Note: If you set BASIC Editor II to allow abbreviations, the program will run slightly slower.

Your screen will now be divided into two "windows." The upper window will display each line after it's processed, as well as the
checksum generated for that line. The lower window is where program lines are typed and edited.
When the program's waiting for input, the cursor will appear at the left margin of the typing window. Type a program line and press RETURN. The line will be evaluated and reprinted in the message window, along with the checksum generated.
If the checksum matches the one in the magazine, then go on to the next program line. Otherwise, enter the command $E$ (edit) and press RETURN. The line you just typed will appear in the typing window, where you may edit it. When you think the line has been corrected, press RETURN, and it'll be reevaluated.
Note: You may call up any line previously typed, with the command $E$ followed by the number of the line you wish to edit. For example, $E 230$ will print Line 230 in the typing window. Do not attempt to edit any program lines numbered 32600 and higher. These lines fall within the BASIC Editor II program.
If you're using BASIC abbreviations, the two versions of the command $E$ work slightly differently. The command $E$, without a line number, will call up the line exactly as you typed it. When you append the line number, the line will be printed in its expanded (unabbreviated) form.

## Leaving the Edifor

You may leave BASIC Editor II at any time, by entering either $B$ (BASIC) or $Q$ (quit). If you type $B$, the Editor will return you to BASIC. Enter LIST to review your work, if you wish. Note that lines 32600 and above are the Editor program. Your work will appear before these lines. To return to the Editor, type GOTO 32600.
Type $Q$, and you'll be asked if you really want to quit. If you type $Y$, the Editor program will be erased from memory, and you may then save your work in any manner you like. If you type $N$, the $Q$ command will be aborted.

## Large Listings

If the program you're entering is particularly long, you may need to take a break. When you want to stop, type $Q$ and press RETURN, then save your work to disk or cassette. When you're ready to start again, load the program you were working on, then load BASIC Editor II with the ENTER command. Type GOTO 32600, and you're back in business.

## Thepostrprocessor

Many people may not want to use BASIC Editor II when entering a program listing， preferring，instead，the Atari＇s built－in editor． For that reason，BASIC Editor II will allow you to check and edit your programs after they＇ve been typed．

To take advantage of this option，type any magazine program in the conventional man－ ner，then save a copy to disk or cassette（just in case）．With your typed－in program still in memory，load BASIC Editor II with the ENTER command，then type GOTO 32600.
Respond with $N$ to the＂abbreviations＂ prompt．When the Editor appears on your screen，enter the command $P$（post－process）， and the first program line will appear in the typing window．Press RETURN to enter it into the Editor．
The line will be processed，and the check－ sum，along with the program line，will be printed in the upper window．If the checksum matches the one in the magazine，press RETURN twice，and the next line will be processed．
If you find you must edit a line，enter the command $E$ ，and the line will be moved back to the typing window for editing．
When the entire listing has been checked， you＇ll be asked if you wish to quit．Type $Y$ and press RETURN．The Editor program will be removed from memory，and you may then save the edited program in any manner you wish．

## Murphy＂s Law

Anyone who＇s been associated with comput－ ing knows this is the industry Murphy had in mind．You may find that，after typing a pro－ gram with BASIC Editor II，it still won＇t run properly．There are two likely causes for this．
First，it may be that you＇re not following the program＇s instructions properly．Always read the article accompanying a program before at－ tempting to run it．Failure to do so may present you with upsetting results．

Finally，though you can trust BASIC Edi－ tor II to catch your typos，it can＇t tell you if you＇ve skipped some lines entirely．If your program won＇t run，make sure you＇ve typed all of it．Missing program lines are guaran－ teed trouble．

One last word：Some people find it an un－ necessary and nasty chore to type REM lines． I don＇t condone the omission of these lines， since they may be referenced within the pro－ gram（a bad practice，but not unheard of）．If you want to take chances，BASIC Editor II is willing to comply．

# When you＇ve finished entering a program using BASIC Edifor II，Y०u can be certain if contains no typos． 

Listing 1. BASIC listing．


32708 POKE 842，13：STOP
32702 POKE 16，112：POKE 53774，112：RETUR

CHECKSUM DATA．
（see issue 39＇s Unicheck）


Listing 2. BASIC listing．

```
10 DIMLS(120),䜣S(119),AS(1)
*)
30 IF AS="C" THEN 50
40 ? "PLACE FORMATTED DISK IN DRIUE":?
"THEN PRESS RETURW"!INPUT LS:OPEN &II,
8,0,"D:ML,DAQ"":GOTO 60 P
:IMPUU' LS:OPEN HSSETTE,PRESS RETURN"
60 L5="32608 MS (1) "L与(13)=CHRS (34)
70 N=119:G05UB 130:LS(14)=MLS(1,58):LS
(LEN(LS) +1)=CHRS (34):? म1;L$
LS(1)="32610 MS (59)=":($(14)=CHR$(3
4):LS(15)=MLS(59):LS(LEN(LS)+1)=CHRS(3
4):?41;LS
100 MLSNM,MN98:G0SUB 130:LS(11)=MLS:L
5(LEN(LS)+i)=CHRS(34):? #i;LS
110 LS(1)="'32614 ES=":LS(10)=CHRS(34)
120 MLS='"':N=69:G0SUB 130:L5(11)=MLS:L
30 FOR K=1 TO N:READ A:MLG(X)=CHRS(A)
INEKT X:RETURN 104, 133,204,104,133,203,
140 DATA 104,104,133,204,104,133,203,1
44,104,133,205,169,0,141,3,6,141,2,6,1
150'DATA 141, 6,6, 238,3,6,32,68,218,172
,2,5,177,203,133,212,32,170,217,32,182
160 DATA 173,3,6,133,212,32,170,217,32
219,218,32,210,217,165,212,141,0,6,16
201,141,1,6,24
6,109,5,6,141,5,6,144,3,141,4,6,173,1
i8,109,5,6,141,5,6,144,3,238,6,6,238,2
,4,6,133,212,173,5,6,133,213,96
8, 104,141,255,6,169,0,1333,213,216,165
,88, 133,265,165,89,133,206 205,105,40,
200 DAG, 174,255,6,24,165,205,105,40,1
,177,205,201,64,144,18
201,192,144,6,201,224,144,7,176,8,24,1
220 DATA 64,145,203,200,192,114,240,2
208,215,177,203,201,32,208,3,136,208,2
47,200,132,212,96
6,169,0,133,213,216,165,136,133,205,1
240 DATA 205, 205,253,6,208,8,200,177,2
```



```
81,205,133,205,144,228
201,55,240,4,160,0,240,8,132,212,96
```

CHECKSUM DATA．
（see issue 39＇s Unicheck）

[^3]
## Atcifl's PCES makes the End User so exciting.

## by Arthur Leyenberger

ecently I was on a business trip that took me to Los Angeles. My business meetings were scheduled for the end of the week, so rather than return to the East Coast on Friday night via a "red eye" flight, I decided to stay the weekend and enjoy the Southern California experience. I spent two days with a childhood buddy.
Normally, LA is not really my kind of place, but I always try to make the best of my business travels; I try to do something a little different in whatever city I happen to be visiting. As it turned out, LA was a great place to do something "a little different."

You see, National Car Rental has a deal they call "California Classics" available only at LA International Airport and in Reno, Nevada. California Classics refers to vintage automobiles that can be rented just like ordinary cars for as long as you want. Instead of renting just another "jelly bean" (like a Taurus or one of its imitators), you can be seen tooling down Wilshire Boulevard in a ' 57 Chevy, a ' 62 Caddy convertible or perhaps a ' 52 Lincoln.

So I dropped off the company-paid-for "no-name" econobox, picked up a 1962 Thunderbird convertible and headed south on the 405 to see my buddy, Mike. If cars were
measured in smiles-per-gallon, this T-Bird would be the EPA's number-one choice in America. You wouldn't believe the reactions I got-waves, smiles, thumbs-up-it made me feel good to be alive and well in sunny Southern California.

The weekend was a blast. Cruising had never been this good-top down, blue skies, oldies tunes on the radio-I hadn't felt so good in a long time. After I returned to New Jersey (I did take a "red eye" after all), I started thinking about that 27 -year-old T-Bird. I also started thinking about the Atari 8-bit computers.

Driving the T-Bird for two days was a real experience. Aside from the "feel-good factor," the car was, in some ways, showing its age. Sure, it seemed mechanically safe (I should hope so), but it didn't have any of the modern features that many of us take for granted even in inexpensive cars. Fuel economy was in the single digits and no shoulder belts were available.
The Atari 800 sitting on the desk next to me is a lot like that ' 62 T-Bird. Like the car, the 800 is at least one, if not two generations old. By today's standards, the 8 -bit 6502 microprocessor is slow and incapable of the latest "gee-whiz" graphics available on machines like the ST. Just as you would probably find it difficult to obtain parts for the T-Bird, few, if any new 8 -bit Atari programs are available.

The analogy could be taken even further, but my point is that the 800 (as well as the XL, XE and XEGS models) fulfills a need just like that T-Bird. The T-Bird is fun, fun, fun and so are the 8 -bit Atari machines. More important, 8 -bit users know their computers are still functional and can perform the basics of computing and more. Excellent word processors, spreadsheets, telecommunications and graphics programs are still available for the Atari computer, making it useful for both serious and leisure computing activities.
Many 8-bit users have not traded up to an ST or other computer (perish the thought) for one simple reason: Their computers still satisfy their computing needs. A wealth of programming languages makes it an excellent machine for program development, and the graphics are still superior to other machines in its class. A lot can be done with an Atari 8-bit computer, and the hundreds of thousands of users prove it.
I enjoyed driving that ' 62 T-Bird convertible, just as I enjoy using my Atari 800. I was introduced to the world of microcomputers through the 800 . The 8 -bit Ataris may be showing their age compared to the latest in computing technology, but they still can compute. And that's what it's all about, isn't it?

## Juse Amolher Show

Well, the 40th Consumer Electronics Show is now history. Attendance at the latest Summer CES in Chicago marks my 14th semiannual trip into consumer electronics nirvana. Here, the near- and sometimes long-term future of car audio, home office and photographic products, audio and video hardware, entertainment products, car and home security and home automation is shown for all to see. The equivalent of 17 football fields' worth of exhibit space showcases almost one hundred categories of products.
Atari was at CES, but their emphasis, as before, was on games. That's not bad, just consistent with Atari's new focus. According to Atari, COMDEX (the COMputer Dealers EXposition) is the correct forum for their computer products, whereas CES is appropriate for their entertainment products. However, there was an ST attached to a MIDI program on one outside corner of their booth, as well as a couple of the Atari MS-DOS clone machines.
The big news at the Atari booth was the introduction of the Atari Portable Color Entertainment System (PCES). In Atari's words, it is "the world's first color portable handheld video game system." Actually, they don't have a name for it yet, so I'll refer to it as
the PCES for now.
What is the PCES? Hype aside, it's a handheld game machine. Using a 3.5 -inch builtin color LCD screen, the PCES can display graphics with up to 16 simultaneous colors from a palette of 4,096 colors. Resolution is 160 by 102 pixels, not very good by most standards but adequate when viewed on the small LCD display. Also, it uses a $16-\mathrm{MHz}$ processor, which is faster than other video-game machines, like Nintendo and Sega.

The PCES is a completely self-contained unit. Slightly larger than a videocassette and weighing about a pound, it can be used individually or linked with up to eight other units for multi-player games. The system has 64 K RAM and runs on six "AA" batteries. It can also be powered by an AC adapter or used with a cigarette-lighter adapter.
Main controls of the PCES consist of an eight-way "joypad," four fire buttons, two option buttons, a pause and an on/off switch. Other features include a headphone jack for quiet operation, the ability to rotate the screen image 180 degrees so that both right- and lefthanded players can play (a logical option given the unit's butterfly shape), four-channel sound and volume and screen-contrast controls.

Games will be available on credit cardsized ROMS that slip into the unit. These game cards, which will sell for "under \$35," typically contain 256 K bytes of program and data, but are capable of holding as much as two megabytes of information. Epyx's California Games (an action game familiar to many Atari 8-bit and ST owners) will be bundled with the unit. Five other gamesBlue Lightning (a first-person jet fighter game), Time Quests and Treasure Chests (an adventure/strategy game), Gates of Zendocon (an arcadelike action game), Impossible Mission (an action/adventure game) and Monster Demolition (an action game)-will also be available at the time of the PCES release.
Atari is working closely with Epyx to develop more titles for the PCES. They also hope to interest third-party developers in the system so that the potential PCES user has dozens of games to choose from. The retail price of the Atari Portable Color Entertainment System is $\$ 150$. It is scheduled to be available this fall, in time for the Christmas season.

## The Inside Story

I wouldn't be able to live with myself unless I told you the inside story on Atari's PCES. After all, that's what makes End User so exciting, right? Anyway, here's the scoop: The PCES was developed by Epyx in-house
and the rights to it were sold to Atari literally moments before CES began.

Yup, Atari does not acknowledge publicly that Epyx designed and developed the PCES. You see, I and other ANALOG editors got a glimpse of the PCES prototype at the last Consumer Electronics Show, held in January in Las Vegas. We had to sign a nondisclosure agreement with Epyx before we were allowed to see the machine. In fact, ANALOG's sister publication, VideoGames and Computer Entertainment, was going to run an exclusive cover story on the PCES in a summer issue.
Epyx told us they were delaying the introduction of their portable game machine, originally scheduled for the summer CES. When we arrived at Chicago's McCormick Place for the first day of CES, we were surprised to see Atari demonstrating the unit. Sources told us that the final contract between Epyx and Atari had not been signed until just hours before the show started. Apparently, negotiations had been going on for some time.

It was obvious from the poor quality of the section of the Atari booth used to present the PCES (a couple of black-and-white posters) that the arrangements were done at the last minute. In addition, Atari placed no preannouncements of the product in any of the daily trade magazines. Compared to Nintendo, which was also presenting a hand-held video game called the Game Boy, Atari's effort seemed lackluster.

Epyx wasn't discussing the Atari hand-held game deal at all. Rumors suggested that Epyx ran out of cash during the development of the product and was seeking someone or some company to bail them out. Interestingly, one Atari spokesperson told me that Atari now owns 40 percent of Epyx. This, however, was vehemently denied by the Epyx PR person.

## The Compelition

Nintendo is clearly the biggest name in video games right now. Their booth, some 50,000 square feet, hosted dozens of Nintendo licensees. Also shown at "Nintendo Village" was their new portable game machine, the Game Boy.

The Game Boy is a $\$ 90$ hand-held unit that weighs about ten ounces and operates on four "AA" batteries. Unlike the Atari portable game machine, the Game Boy uses a monochrome non-backlit LCD screen. The unit features stereo sound and has a headphone jack. In addition, two Game Boys can be joined together via a cable for two-person games, such as baseball and tennis.

Nintendo has the advantage when it comes to game titles. Packed with the Game Boy
will be Tetris, and other popular titles, such as Super Mario Brothers, will be available immediately. Also, the game cards for the Nintendo unit will be priced at "under $\$ 20$." It is only natural to compare the Atari PCES with Nintendo's Game Boy. The Atari game is easier to see because of its color and backlighting. In addition, the Atari screen is larger than that of the Game Boy. However, Nintendo has a larger presence in the game market and will, no doubt, launch a major advertising and promotion campaign. Given Atari's track record when it comes to advertising, who knows what they will do to promote the PCES.
Ultimately, it will be interesting to see how each of these portable games fares in the marketplace; a repeat of the early Atari 800 days could happen. You'll recall that in the early 1980s, when the Atari 800 was originally competing with the Commodore 64 , the superior sound and graphics of the 800 never overcame the superior marketing and pricing of the Commodore 64. Nintendo is now as powerful (or more so) than Commodore was in its heyday.

## The Rest of Atari

In addition to the Atari portable game and a couple of computers here and there, the focus of Atari's booth was games for the 2600, 7800 and XE game systems. Twenty new titles, which will be available by the end of the year were announced for these three systems. Atari has also lowered the prices of two of their game machines to $\$ 50$ for the 2600 and $\$ 70$ for the 7800. In addition, Atari has made available light guns for the 2600 and 7800.

The wackiest part of Atari's booth was their display of a full line of calculators. To me, selling calculators is just another sign that Atari, as a corporation, lacks focus. An old adage suggests that if you try to do too many things, you will not do any of them well. Perhaps Atari should listen to this advice and concentrate their limited resources on just a couple of product lines-such as computers and games.

As I've said many times before, the Consumer Electronics Show is always interesting. Of all the new technology that is displayed, there is usually some neat stuff that really appeals to me. And though Atari may no longer be the leader in video games or low-cost/high-power computing, they never fail to surprise me.

Arthur Leyenberger is a freelance writer who lives in beautiful New Jersey. He can be reached on CompuServe at 71266,46, or on DELPHI as ARTL.

## （continued from page 8）



YZ 5206 DATA $20, B A D$ Device \＃；$\# 51-7$ onl
5219 DATA 21，LOAD File ERTOR；NOT SAUE format
H 5220 DATA $128, B R E A K ~ K E y ~ A b O R t ~ d u r i n g ~ I ~$ 523 DATA 129，TOCB Error；file already OPEN
L 5240 DATA 13日，NONEKI5TANT DEUICe；？FILE NAME 5250 DATA 131，IOCB Write only；cant REA 5260 DATA 132，INUALID HINIT CMd；？HIO o $r$ IOCB
OW 5270 DATA $133, D E U I C E$ or File not OPEN
YW 5286 DATA $134, B A D$ IOCB \＃；1－7 only in BASIC
5290 DATA 135, IOCB Read Only ERR；cant write
MA 5300 DATA 136, END OF FILE
UZ 5310 DATA 137，TRUNCATED Record；？IMPUT line

7 5330 DATA 139，DEUICE NAK；？I／0 CMd OF？ cables
DF 5340 DATA 140，LOST data on serial I／0 5350 DATA 141，CURSOR OUt of Range；？GR Mode
too 5370 DATA $143,5 E R I A L$ Bus Data Frame CK SM ERR
AH 5380 DATA 144, DEUICE DOREJValid CMd ？r

| UL． | 5390 | data | 145，INN |
| :---: | :---: | :---: | :---: |
| PP | 5496 | DATA | 146，FUNCTION Not Implemented |
| 日P | 5416 | data | 147，NOT enuf RAM for GR Mode |
| DD | $5429$ | DATA | 148，UNRECOGNIZED disk format |
| RR | $\begin{aligned} & 5430 \\ & t a \end{aligned}$ | data | 150，DIRECTORY not found－spar |
| K | 5440 | dATA | 151，FILE Exists－5parta |
| GD | 5459 | data | 152，MOT binary file－5par |
| RK | $\begin{aligned} & 5460 \\ & d-5 p \end{aligned}$ | data | 154，LOADER－5YMBOL not define |
| PY | 5470 | DATA | 158，0uT of memory sparta |
| GH | $\begin{aligned} & 5480 \\ & \text { em } \end{aligned}$ | data | 160，DRIUE \＃ERR；？not in syst |
| PF | $\begin{aligned} & 5499 \\ & \text { fers } \end{aligned}$ | data | 161，T00 many 0PEN FILE5；？buf |
| UW | $\begin{gathered} 5500 \\ \text { new } \end{gathered}$ | data | 162，DI5K Fu11： 2 I0\＃254＝format |
| PW | $\begin{aligned} & 5516 \\ & \text { d } 1005 \end{aligned}$ | DATA | 163，FATAL System I／0 ERR；？ba |
| HI | $\begin{aligned} & 5520 \\ & \Gamma^{2} \quad \text { fil } \end{aligned}$ | data <br> e | 164，FILE \＃Mismatch；？POIN |
| YUI | 5530 <br> Chars | DATA | 165，INUALID FILENAME；？len |
| CY | 5540 | DATA | 166，POINT Data Length ERR |
| KZ | $5550$ k | data | 167，FILE LOCKED；${ }^{\text {PIOH36＝un10c }}$ |
| KU | 5560 | DATA | 168，INUALTD Device Command |
| YH | 5570 | data | 169，DI5K DIR FULL；KIO\＃254＝fo |
|  | rmat |  |  |
| EG | 5580 | dATA | 170，FILE Hot Found；？FILENAME |
| DI | 5596 | DATA | 171，POINT Invalid；？FILE upd |
|  | ate |  | 172．TLIEGAL append to D05 T |
|  | file |  | 172，ILLEGAL APPend to bos I |
| TU | 5619 | data | 173， BAD sectors during Forma |
|  | T |  |  |
| JR | 5620 | DAT | 255，ERROR Manual by Mat |
|  | （c） | ANALOG |  |
| YZ | 5630 | DATA | 6，END OF ERROR MANLAL |
| EH | 9096 | DATA | －1，End of ERROR Manual data |

## SPECIAL CHARTER SUBSCRIPTION RATES

## INTRODUCING



SAVE 40\％OFF THE COVER PRICE
$\qquad$
$\square$
$\square$
$\square$


| $\square$ SIGN ME UP FOR 6 ISSUES OF LAPTOP MAGAZINE FOR ONLY \＄13．95！ |  |  |
| :---: | :---: | :---: |
| $\square$ PAYMENT ENCLOSED $\square$ BILL ME | CHARGE MY $\square$ VISA | $\square \mathrm{MC}$ |
| No．EXP | SIGNATURE |  |
| NAME |  |  |
| ADDRESS |  |  |
| CITY STATE ZIP |  |  |
| Money back on unused subscriptions if not completely satisfied．Foreign add \＄7．Make check payable to LFP，INC．，Your first issue will arrive in 6 to 8 weeks．Watch for it． |  |  |
| CJWYV | Offer expi | vember 26 |





$\qquad$ :TECHNICALL REPORTS
: COMPU'TER SOFTWARE
P.O. BOX 16927, N. HOLLYWOOD, CA 91615
$\square$ Yes!Payment Enclosed - Charge My $\square$ VISAMC NAME $\qquad$ \# $\qquad$ EXP $\qquad$ SIGNATURE $\qquad$ CITY $\qquad$ STATE $\qquad$ ZIP $\qquad$

Money back on unused subscriptions if not satisfied! Foreign-add $\$ 10$ for postage. Your first issue will arrive in 6 to 8 weeks. WATCH FOR IT!!

 3 8 6
2
2
$\square$
$+2$

 (x) 혛


$$
\frac{2}{4}
$$

L

$$
2
$$

$$
2
$$

$\qquad$ 2 1

0


## by Frank Martone


his time munching on a variety of power cells. The different power cells are called Popo, Kentu and Circa.

Popo are diamond shaped and worth 100 , points, Kentu are cross shaped and worth 250 points and Circa are circular and worth 500 points. Each progressive screen will have more and more power cells. If you get really lucky, you may be able to find a magic star or two, which is worth a whopping 5,000 points.

Tx does not live alone on the electric grid, however. He has some lovely neighbors, the
elcome to the amazing world of Tx Cruncher. What is Tx? It's a little demon that just loves to feed on electric energy. Tx lives on an electric grid, happily spending . , mum of three will attack him at once. These robots also have the ability to lay out traps on the grid. If Tx snags one of these traps, or if he bumps into a Hulk Robot, you can bet he'll lose one of his five lives.

Tx does have an amazing power, though: He can send himself to Hyperspace one time on each screen. If you press the joystick button, Tx will disappear and reappear in a different spot-hopefully, a safer one, although I have seen him land on a trap sometimes.

You have to stay alive for only 75 seconds on each screen; you will then automatically advance to the next screen. After every three screens you will enter a bonus screen, where you must grab five magic stars while avoiding the traps. If you get them, you will receive a random bonus of from 1,000 to 10,000 points. If you hit a trap, you lose the bonus round.

Go get 'em, Tx!

Frank Martone's interest in computers started in junior high school, where he learned BASIC programming. He got his first computer, an Atari 400, when he was 12. Within two years his first game was published. He is now 21.

## LISTNG 1：BASIC

 1 ING 32 REM A．L．0．G 17 ：PO A． 0 ．
＝0：G0SUB
5 G05uB 400 ： 10：5ETCOLOR 2 RND 0 ）16：5ETCOLOR 0， 8 BRS＝30：DIFF＝400：51＝19：52＝20：CTT＝0
6 POKE 756，CH／256：BI＝5：53＝1：54＝23：55＝0 ：56＝3：EG＝17：G0B＝13
7 SCR＝PEEK（88）+256 ＊PEEK（ 89 ）
8 FOR G＝2 TO 22：POSITION 0，G：？ $\boldsymbol{H} 6$ ； mm
 D 0，0，0，0：NEXT G：HYP＝1
11 FOR B＝1 TO BRS：K1＝INT（RND（ 0 ）＊19）：K2 ＝INT（RND（ 0 ）＊20）＋3：POSITION K1，K2：？\＃6；

12 FOR HJ＝0 TO 1：NEXT HJ：SOUND 0，0，0，0 ：NERT B
13 FOR T＝1 TO EG：E1＝INT（RND（日）＊19）：E2＝ INT（RND（0）＊20）＋3：P05ITION E1，E2：？\＃6；＂ ；＂：50UND 0，200，10，10
14 FOR HJ＝1 TO $3:$ NEKT HJ：50UND $0,0,0,0$ ：NERT T
15 FOR C＝1 TO GOB：POSITION RND（ 0 ）$* 18$ ， R ND（0）＊18＋3：？\＃6；＂j＂：SOUND 0，C，6，10：504 ND 0，0，0，0：NEST C
$16 \mathrm{~K}=9: Y=10: U=10:$ TIME $=0$
17 COLOR 0：PLOT 7，10：DRANTO 12，10：PLOT 7，11：DRAWTO 12，11：PLOT 7，12：DRAWTO 12 ， 12
18 POSITION 0，0：？\＃6；＂5CORE t पGF＇＂：POSITION K，Y：？\＃6；
19 FOR G＝1 TO 8日：5OUND 6，G＊3， $0,10:$ NEKT G：SOUND 0，0，0，0：POSITION 16，1：？\＃6；＂＋ ＇$:$ TIME $=76$
20 5CR＝PEEK（88）＋256＊PEEK（89）：P0SITION 9，1：？H6；INT（TIME）；＂＂；：GOSUB 4100 $215 \mathrm{~T}=5 \mathrm{TICK}(\theta): T R=5 \mathrm{TRIG}(\theta): T P=5 \mathrm{CR}+8+20$ ＊Y：POKE 709，14：POKE 77，0
22 IF TR＝0 AND HYP＝1 THEN GOSUB 2051
31 POSITION 1，1：？\＃6；SC：POSITION 17， ？ 46 ；TUM：SETCOLOR 3，PEEK（53770）， 14
32 LOCATE $X, Y, B C$
33 IF BC＝35 THEN FOR G＝1 T0 4：FOR R＝－1 3 IF BC＝35 THEN FOR G＝1 TO 4：FOR R＝－1
5 T0 15 STEP 3：SOUND 0，ABS（R）＋35， 10,10 5 TO 15 STEP $3: 50 U N D$ 0，AB
：NEXT R ：NEXT G：SC＝5C＋5000
$3550 U N D$ 1， $0,0,0:$ TIME＝TIME－0．5：U＝U＋1：I $F$ TIME＜THEN GOTO 7009
47 IF BC＝247 THEN FOR W＝15 TO 0 STEP 2：SOUND B，10， 6, W：NEKT W： $5 \mathrm{C}=5 \mathrm{C}+100$ 48 IF BC＝59 THEN FOR W＝15 T0 0 STEP -2 ：SOLND 0，WK 3,10 ，W：NERT W：SC＝5C＋250 49 IF BC＝106 THEN FOR W＝79 T0 11 STEP $-5: 50 U N D 6, W \neq 4,10,8: N E K T W: 5 C=5 C+500$ 50 POKE SCR＋ $8+20$ 为Y，U
51 POKE 709，0：IF K＞18 THEN POKE 5CR＋＋＋ 20＊Y，0： $\mathrm{K}=\mathrm{B}-1$
52 IF $K<1$ THEN POKE $5 C R+K+20 * Y, 0: ~ X=8+1$ 53 IF $Y<3$ THEN POKE SCR $+X+20 * Y, 0: Y=Y+1$ 54 IF Y＞22 THEN POKE SCR $+8+20 * Y, 0: Y=Y-$
1 IF RND（8）＊6＜2 THEN G05UB 509
57 IF RND 60$\rangle * 5\langle 2$ AND $5 C\rangle 20009$ THEN G05 UB 550
58 IF RND（0）＊4〈2 AND 5C＞50000 THEN GOS山B 588
60 5OUND 0，0，0， $0:$ IF BC＝45 THEN GOTO 20 09
61
IF $X=51$ AND $Y=52$ THEN GOSLB 300 $\begin{array}{llllll}61 & \text { IF } X=51 & \text { AND } Y=52 \\ 62 & \text { IF } X=53 & \text { AND } Y=54 & \text { THEN GOS GUB } & 300\end{array}$ 63 IF $X=55$ AND $Y=56$ THEN G05UB 300 64 IF SC＞100000 THEN POKE 710，PEEK（537 $70)$
65 IF $5 C>30000$ AND PEEK $(53770)=44$ THEN GOSUB 100
80 IF U＞10 THEN U＝9
81 POKE 709，0：POKE 789，14：IF RND（9）\＃DI FF＜13 THEN POSITION RND（0）＊19，RND（ 0 ）＊1 8＋3：？H6；＂－＂：SOUND 0，255，10，5
82 GOTO 20
99 REM－－MAGIC STAR APPEARS！－－
100 POSITION RND（ 3 ） 19 ，RND（ 8 ）$\because 18+4$ ：？4 6；＇4＂
161 FOR R＝2 TO 20：50UND 0，R＊4，10，10：50 UND 1，R＊8，10，10：POKE 712，R＊5：S0UND 2，R ，10，10：POKE $712, \mathrm{R}:$ NEKT R
i 102 POKE 712，0：FOR T＝0 TO 3：SOLND T， 0 ， 0，0：NEXT T：RETURN
300 POSITION $\mathrm{K}, \mathrm{Y}:$ ？\＃6；＂＇＋＂：FOR G＝14 T0 1 STEP－1：FOR W＝1 TO 25：NEXT W：SETCOLO R $0,12, G: \operatorname{SOUND} 0, G, 10, G$
301 SOUND $1, G+2,10, G: N E K T$ G：SETCOLOR 0 ，12，14：50UND $0,0,0,0: 50$ UND $1,0,0,0$ 302 FOR EX＝4 TO 6：POKE SCR $+\mathrm{H}+20$ 米Y，EX：F OR W＝1 TO 30：NERT W：SOLND 0，10，0，10：NE KT EK：POKE SCR $+8+20 * Y, 0: 8=9: Y=10$
303 FOR 5＝0 T0 2：50UND 5，0，0，0：NERT 5 364 TUM＝TUM－1
305 IF TUM＝0 THEN GOTO 5900
306 FOR L＝15 T0 1 STEP－ $0.3: 50 U N D 1, L$ ， 6，L：50UND 2，L，6，L：NEKT L
310 FOR $R=0$ TO 2：SOUND $R, 0,0,0$ ：NEST $R$

311 POSITION 51，52：？ $46 ; " 11: P O S I T I O N 5$
 ETCOLOR 0， 8,10
326 RETURN
400 GRAPHICS 18：POKE 711，88：51＝19：52＝1 $8: 53=2 ; 54=18: 55=0: 56=5$
410 POSITION 1，5：？\＃6；＂now Gntering Eg rean＇： $5 \mathrm{~N}=5 \mathrm{~N}+1$
411 POSITION 9，8：？\＆6；＂g＂； $5 N$
412 FOR $G=1$ TO 20
420 FOR $D=15$ TO 0 STEP $-2: 50 L N D$ 0，14， 1日，D：POKE 7日8，D：NEKT D：NEKT G：RETURN 6，D：POKE RO8，D：NERT D：NERT G：RETURN 499 REM ROBOT INTELLIGENCE
500 SNK $=5 C R+51+20 \times 52: 50=58$
510 POKE SNK， $0: 50 U N D \quad 0,20,6,10$
521 IF $Y<52$ AND $\mathrm{K}=51$ THEN $52=52-1:$ GOTO 529
522 IF Y＞52 AND $X=51$ THEN S2＝52＋1：GOTO 529
525 IF $\mathrm{X}\langle 51$ THEN S1＝51－1：SU＝58
526 IF $X>51$ THEN $51=51+1$
529 POKE 5CR＋51＋26＊52， 50
530 RETURN
$550 \quad 5 N K 1=5 C R+53+20 * 54: 5 U=58$
555 POKE SNK1，0：50UND 6，10，6，10
557 IF $X<53$ THEN $53=53-1: 5 \cup=58$
558 IF $X>53$ THEN 53 $533+1$
559 IF $Y<54$ AND $X=53$ THEN $54=54-1$
560 IF Y＞54 AND $X=53$ THEN $54=54+1$
561 POKE $5 C R+53+20 * 54$ ， $5 U$
570 RETURN
580 SNK2 $=5 C R+55+20 * 56: 5 U=58$
585 POKE 5NK2，0：50UND 0，3，6，5
587 IF $K<55$ THEN 55＝55－1：5U＝58
587 IF $X<55$ THEN $55=55-1: 5 U=58$
588 IF $X>55$ THEN $55=55+1$
588 IF $X>55$ THEN $55=55+1$
589 IF $Y\langle 56$ AND $K=55$ THEN $56=56-1$
$\begin{array}{lllll}589 & \text { IF } Y<56 & \text { AND } X=55 & \text { THEN } & 56=56-1 \\ 590 & \text { IF } Y>56 & \text { AND } & X=55 & \text { THEN } \\ 56=56+1\end{array}$
591 POKE $5 C R+55+20$ 年 56 ， 5 U
595 RETURN
1006 REM－－CHARACTER SET－－
$1010 \mathrm{CH}=(\operatorname{PEEK}(106)-8) * 256$
1015 FOR I＝0 TO 512：POKE CH＋I，PEEK 553 44 ＋IJ ：NEKT I
1020 RESTORE 1100
1030 READ A：IF Aく日 THEN RETURN
1040 FOR J＝0 TO 7：READ B：POKE CH＋A⒏ J
1646 FOR
B：NEXT J
B：NEKT
1050 GOTO 1030
1050 GOTO 1030
1699 REM－－REDEFINED CHARACTERS－－
1100 DATA $10,20,62,127,93,73,127,99,62$
1116 DATA $11,20,62,127,93,73,127,119,6$
$\frac{1}{2}$
1115 DATA $12,20,62,127,127,127,127,127$ ， 62
1120 DATA $4,0,0,4,0,16,8,64,0$
1125 DATA $5,1,66,0,34,8,64,20,128$
1130 DATA $6,0,0,4,80,8,20,0,0$
1140 DATA $2,255,0,255,0,255,0,255,0$
1143 DATA $58,60,126,231,255,189,189,24$ 1143 DATA $58,60,126,231,255,189,189,24$ ， 36
1146 DАTA $27,56,16,186,238,186,16,56,0$
1147 DATA $55,0,16,46,84,40,16,0,0$
1149 DATA $63,7,5,7,56,46,184,128,128$
1150 DATA $42,16,68,0,146,6,68,16,0$ 1176 DATA $3,146,84,16,238,16,84,146,0$ 1175 DATA $26,0,0,0,0,0,0,1,3$
1177 DATA $28,0,0,0,0,0,0,128,192$
1178 DATA $29,7,7,7,15,15,15,15,7$
1179 DATA $30,255,156,8,8,207,8,156,255$ 1180 DATA $31,224,224,112,112,112,112,2$ 40,224
1181 DATA $32,7,3,7,24,48,24,4,9$
1182 DATA $61,189,195,255,126,60,24,24$ ， 0
1183 DATA $62,224,192,224,24,12,24,32,6$
1184 DATA $49,0,0,0,255,0,255,0,0$ 1190 DATA $8,170,77,170,77,179,77,170,7$
1191 DATA $13,66,129,36,6,0,36,129,66$ 1192 DATA $7,6,13,14,8,68,66,34,28$
1192 DATA $7,6,13,14,8,68,66$,
1193 DATA $1,0,0,0,0,0,0,0,0$
1194 DATA $1,44,56,66,3,2,4,0,9$
1194 DATA $1,44,56,66,3,2,4,0,9$
1195 DATA $1,14,16,66,4,2,4,4,5$
1196 DATA $1,44,55,68,0,0,0,1,6$
1197 DATÁ $1,14,15,18,1,0,1,1,1$
1198 DATA $1,57,85,58,7,0,3,8,9$
1199 DATA $1,17,15,51,1,0,1,4,4$
1200 DATA $1,19,19,99,9,9,9,2,4$
1201 DATA $1,14,16,66,4,2,4,4,5$
1262 DATA $1,0,0, \theta, 0,0,0, \theta, 0$
1203 DATA $1,19,19,99,9,9,9,2,4$
1265 DATA $1,57,85,58,7,0,3,8,9$ 1207 DATA $1,44,55,68,0,0,0,1,6$ 1210 DATA $1,0,0,0,0,0,0,0,0$ 1211 DATA $1,44,56,66,3,2,4,0,9$ 1212 DATA $1,44,56,66,3,2,4,6$, 1213 DATA $1,0,0,0,0,0,0,0,0$ 1214 DATA $1,44,56,66,3,2,4,6,9$ 1216 DATA $1,0,0,0,0,0,0,0,0$
1219 DATA $1,0,0,0,0,0,0,0,0$
1220 DATA $1,19,19,99,9,9,9,2,4$ 1221 DATA $1,19,19,99,9,9,9,2,4$
1222 DATA $1,17,15,51,1,0,1,4,4$ 1223 DATA $1,57,85,58,7,0,3,8,9$ 1223 DATA $1,57,85,58,7,0,3,8,9$
1224 DATA $1,19,19,99,9,9,9,2,4$

1225 DATA $1,19,19,99,9,9,9,2,4$
1226 DATA $1,0,0,0,6,0,0,0,0$
1230 DATA $1,0,0,0,0,0,0,0,0$
1231 DATA $1,44,56,66,3,2,4,0,9$
1232 DATA $1,0,0,0,0,0,0,0,0$
1233 DATA $1,19,19,99,9,9,9,2,4$
1234 DATA $1,19,19,99,9,9,9,2,4$
1235 DATA $1,17,15,51,1,0,1,4,4$
1236 DATA $1,57,85,58,7,0,3,8,9$
1237 DATA $1,19,19,99,9,9,9,2,4$
1238 DATA $1,19,19,99,9,9,9,2,4$
1239 DATA $1,44,56,66,3,2,4,0,9$ 1239 DATA $1,44,56,66,3,2,4,0$
1242 DATA $1,0,0,0,0,0,0,0,0$
1242 DATA $1,0,0,0,0,0,0,0,0$
1250 DATA -1
1250 DATA -1
2000 FOR R＝1 T0 4：POSITION $X, Y: ? ~ \& 6 ; "-$
＂：SOUND 0，0，0，0：FOR D＝1 TO 4：NEKT D：PO
SITION $K, Y: ?$ ？；＂＂：SOUND 0，200，10， 10 2061 NEST R
2016 GOSUB 300：GOTO 20
2056 REM HYPERSPACE
2051 POSITION $X, Y: ?$ H6；＂＂＇FOR EX＝4 TO
6：POKE SCR $+\mathrm{K}+26$ KY，EX：FOR W＝1 T0 5 ：NEK T W：NEKT EX
2052 POSITION $X, Y: ?$ \＃6；＂
2052 POSITION X，Y：？H6；
2054 FOR R＝15 T0 0 STEP $-1: 50$ UND $0, R, 1$ 2054 FOR R＝15 T0 0 STEP－1：50UND 0，R，1
$0, R: 50$ UND 1，R＊2，10，R：S0UND 1，R＊63，10，R 0，R：50UND $1, R * 2,10, R: 50 U N D$ 1，R＊63， $10, R$ ：POKE 712，R＋79：NERT R：POKE 712，0
2056 POSITION $\mathrm{X}, \mathrm{Y}: ?$ H6；＂
$2057 \mathrm{~K}=$ INT（RND $(6) * 14)+4: Y=I N T$（RND $(6) * 1$ 7）+5
$\begin{array}{ll}2058 & \text { POSITION } X, Y: ? ~ \# 5 ; " 1 " ~ \\ 2059 \text { FOR EX＝4 TO 6：POKE } 5 C R+X+20 * Y, ~ E X: ~\end{array}$ FOR W＝1 TO 5：NEKT W：NEKT EK
2060 POSTTTON $X, Y: ?$ \＃6：＂
$2061 \mathrm{HYP}=0$
2070 GOTO 20
299 REM－－TITLE SCREEN－－
3000 GRAPHICS 17：POKE 756，CH／256
3003 POKE 708，122：POKE 711，15：POKE 709
3005 $\mathrm{K}=10 ; Y=20$
3006 SOLND 0，0，0，0：POSITION $X, Y:$ ？\＃6；＂ ＋＂：FOR D＝1 T0 15：NEXT D：POSITION $X, Y:$ ？ \＃6；＂＂： 50 UND $0,20,10,10$
$3007 \mathrm{Y}=\mathrm{Y}-1: I F \quad Y=7$ THEN FOR $D=15$ T0 $0 \quad 5$ TEP－ $0.3: S 0$ UND $0, D \notin 33,8, D: P 0 K E 712, D+4$ TEP－ $0.3: 50 U N D ~ 0, D 3$
5：NEXT D：GOTO 3626
3008 GOTO 3006
3026 POKE 717
3026 POKE 712，0：POKE 708，14：POKE 716， 8
3027 POSITION 2，9：？\＄6；＂TK CRUNCHER
3028 POSITION 2，11：？ $46 ; "$ 亿 $\quad$ を
3029 POSITION 0，13：？ $46 ; "$ ．

## （mmminni

3040 POSITION 1，16：？\＄6；＂by frank mar tone＂：POSITION 6，22：？\＃6；＂QQoQQQQQQQQQ QQQQQQQQ＂
3041 POSITION 0，3：？\＃6；＂QQRQQRQQQQQQQQ QQQQQQ＂
3047 FOR D＝1 TO $1000:$ NEXT D：GOTO 4000 4000 GRAPHICS 1＋16：POKE 756，CH／256：P0K E 708，14：POKE 710，55：P＝5
4001 P0SITION 4，2：？\＃6；＂Paint scald＂ 4002 POSITION 0，3：？\＃6；＂QQQQQQQQQQQQQO anana＠＂
40日3 POSITION 0，22：？\＃6；＂QQQQQQQQQQQQO QQQQQQQ＇
QQQQUQQ
4004 POSITION 1，P：？\＄6；＂POPO
100＇＂：G0SUB 490日
106＂：GOSUB 4906
4005 POSITION 1，P：？H6；＂KENTU
250＂：GOSUB 4909
4006 POSITION 1，Pi？A
509＇：G05LB 49日日 ？\＃6；＂CIRCA
4007 POSITION 1，P：？\＃6；＂MAGIC STAR \＃ 5008＇：GOSUB 4906
4010 POSITION 5，18：？\＃6；＂PRES5 START＂： FOR $D=1$ TO 50：NEKT D
4011 POSTTION 5，18：？\＃6；＂press start＂： FOR D＝1 TO 50：NEKT D
4015 IF PEEK $(53279)=6$ OR $S T R I G(8)=0$ TH 4015 IF PEEK
EN GOTO 4030
4020 GOTO 4610
4930 FOR I＝0 TO 19：COLOR 0：PLOT I，0：DR AWTO I，22：NEHT I：GOTO 5
4050 GOTO 4050
4099 REM－－JOYSTICK MOUEMENT ROUTINE－－
4100 IF $5 T=14$ THEN $U F=1: D F=0: R F=0: L F=0$ 4111 IF $5 \mathrm{~T}=13$ THEN DF＝1：LF＝0：RF＝0：LF＝0 4112 IF $5 \mathrm{~T}=7$ THEN RF＝1：DF＝0：LF＝0：UF＝0 4113 IF $5 \mathrm{~T}=11$ THEN LF＝1：RF＝0：DF＝0：UF＝0 4114 IF UF＝1 THEN POKE TP，0：Y＝Y－1 4114
415
IF $D F=1$ THEN POKE TP， $0: Y=Y+1$ 4115 IF DF $=1$ THEN POKE TP，0：Y $\mathrm{Y}=\mathrm{Y}+1$
4116 IF RF＝1 THEN POKE TP，0： $\mathrm{X}=\mathrm{X}+1$ 4116 IF RF＝1 THEN POKE TP，0： $\mathrm{X}=\mathrm{X+1}$
4117 IF LF＝1 THEN POKE TP，0： $\mathrm{X}=\mathrm{K}-1$ 4117 IF LF＝1
4150 RETURN
450 RETURN
4900 FOR $D=15$ TO 0 STEP－ $1: 50$ UND 0,50 ， 10，D：NEKT D：P＝P＋3：RETURN
4999 REM－GAME OUER－－
5000 POSITION 17，1：？\＃6；＂0＂：FOR E＝14 T
06 STEP－1：SETCOLOR 0 STEP－1：SETCOLOR 2，4，E：FOR R＝1 T0
$10: N E X T$ R：SOUND $0, E, 0,10: N E X T E: S N=0$

## For use in machine-language entry. by Clayłon Walnum

M/LEditor provides an easy method to enter our machine-language listings. It won't allow you to skip lines or enter bad data. For convenience, you may enter listings in multiple sittings. When you're through typing a listing with M/L Editor, you'll have a complete, runnable object file on your disk.
There is one hitch: It's for disk users only. My apologies to those with cassette systems.
Listing 1 is M/L Editor's BASIC listing. Type it in and, when it's free of typos, save a copy to disk, then run it.
On a first run, you'll be asked if you're starting a new listing or continuing from a previously saved point. Press S to start, or C to continue.
You'll then be asked for a filename. If you're starting a new listing, type in the filename you want to save the program under, then press RETURN. If there's already a file by that name on the disk, you'll be asked if you wish to delete it. Press Y to delete the file, or N to enter a new filename.
If you're continuing a file, type in the name you gave the file when you started it. If the program can't find the file, you'll get an error message and be prompted for another filename. Otherwise, M/L Editor will calculate where you left off, then go on to the data entry screen.
Each machine-language program in ANALOG Computing is represented by a list of BASIC data statements. Every line contains 16 bytes, plus a checksum. Only the numbers following the word DATA need to be considered.
M/L Editor will display, at the top of the screen, the number of the line you're currently working on. As you go through the line, you'll be prompted for each entry. Simply
type the number and press Return. If you press Return without a number, the default is the last value entered.
This feature provides a quick way to type in lines with repetitions of the same number. As an added convenience, the editor will not respond to the letter keys (except Q for "quit"). You must either enter a number or press Return.
When you finish a line, M/L Editor will compare the entries' checksums with the magazine's checksum. If they match, the screen will clear, and you may go on to the next line.
If the checksums don't match, you'll hear a buzzing sound. The screen will turn red, and the cursor will be placed back at the first byte of data. Compare the magazine listing byte by byte with your entries. If a number is correct, press RETURN.
If you find an error, make the correction. When all data is valid, the screen will return to gray, and you'll be allowed to begin the next line.
Make sure you leave your disk in the drive while typing. The data is saved continuously.
You may stop at any time (except when you have a red screen) by entering the letter $Q$ for byte 1 . The file will be closed, and the program will return you to BASIC. When you've completed a file, exit M/L Editor in the same way.
When you've finished typing a program, the file you've created will be ready to run. In most cases, it should be loaded from DOS via the L option. Some programs may have special loading instructions; be sure to check the program's article.
If you want the program to run automatically when you boot the disk, simply name the file AUTORUN.SYS (make sure you have DOS on the disk.).

The two-letter checksum code preceding the line numbers here is not a part of the BASIC program. For more information, see the "BASIC Editor II" elsewhere in this issue.

## LISTING 1: BASIC LISTING



## REVIEWS:

# ASTRONAUTS <br> Reviewed by Mathew J.W. Retcliff 

Happy's Programs Astronauts is a triviaquiz program for devoted followers of the NASA programs from the Mercury and Gemini missions through the Space Shuttle (mission 51-L). It is actually a rote drill, asking the same types of questions over and over again.

When booted, the main menu presents three selections: You may practice the Mercury/Gemini programs, the Apollo space shots or the Space Shuttle missions. By pressing the appropriate number and Return, or by positioning a highlighter and pressing the fire button, the menu selection is made.

The program's text-menu and question .screens can be navigated with either joystick or keyboard control. However, the user is constantly prompted to press a key to continue. At this point a joystick fire button should be equivalent, but instead, the button is simply ignored. The joystick user-interface is inconsistent and frustrating, and for this reason, Astronauts is best played entirely with keyboard control.

If Space Shuttle is chosen from the main menu, for example, you are presented with the first question. The questions are selected at random from a database loaded from disk. A typical question would be "Lousma, Fullerton were the crew members of:", followed by five choices of shuttle mission numbers. The only variation on this theme is that in some cases, the mission is given and the crew members are presented multiple choice.

When a question is answered correctly, a rocket blasts off for your entertainment. The drill problems continue until you press the "Q" key at the end of a round to quit. A final tally of questions asked, total correct and percentage score is presented. Pressing any key returns to the main menu.
I found this to be a terribly boring game, not much more exciting than flash cards. If you have a need to learn all the space missions and the names of their crews, Happy's Programs Astronauts may prove useful. If trivia is your thing, it might come in handy as a party game. Beyond that, however, I really cannot find anything interesting about this simple quiz program.

## THE CREW OF

GEMINI 10
MIS5ION WAS:

## 1. COOPER

2. LOUELL \& ALDRIN
3. GLENN
4. ARMSTRONG \& SCOTT
5. YOUNG \& COLLINS

PRESS TO QUIT
ANY OTHER KEY TO CONTINUE

Happy's Programs Astroncutis Bensley. Consulting
P. O. Box 301

217 W. Welnut St.
Westifield, IL 62474
(217) 967-5465 $\$ 19.95$

## REVIEWS:

## L.A.

Reviewed by Matthew J. W. Ratcliff


uSwat and Panther are two games on one disk from Mastertronic at one affordable price. This game may be found where Commodore 64 games are sold, with the Commodore version on side one and the Atari version on the flip side. Inside the box is a disk, period; all documentation is on the back of the package. The games are fairly simple and easy to learn. so the paperwork won't be missed.
L.A. Swat places you in the West Side of Los Angeles, where a gang has taken over. You lead a team of officers through the streets and shoot the hoodlums as they come at you. Hand grenades are lobbed at you and must be dodged. Occasionally, snipers take pot shots from the rooftops of the buildings that line the streets. Sometimes an overturned car must be worked around.
In a gruesome animated effect, a police officer is clobbered over the head until dead by a hood who catches up with him. Whenever an officer is shot or hit by a grenade, he falls over backward, a well-done effect. One of the officers flanking him takes over the point, until no one is left.
As you walk up the street, shoot along any point of the compass and at 45 -degree angles to blow away the gang members coming at you from every direction. At the end of each street you are met by an onslaught of gang members running fast and furious and throwing plenty of grenades. After a short time, one will come running at you holding a hostage. Shoot the bad guy without harming the hostage-your ultimate goal is to save the hostages.
At the end of each street comes the next level, which is faster and tougher to beat. But then, the battle against crime is never finished.
Panther is a smooth-scrolling graphic adventure that is a cross between Blue Max and Choplifter. Since you are the "one and only poor sucker who can fly a Panther ground attack craft," you must fly diagonally across three different screens in order to save the city of Xenon.
At various depots along the way, you will


SCORE: Gegose


LEUEL: 1
Pallise

## L.A. Swat and Panther Mastertronic 711 West 17th St., Unit G9 Costa Mesc, CA 92627 (714) 833-8710 48K Disk, \$9.99

see people waving at you. Land your Panther craft nearby and pick up as many stranded souls as possible. Don't dally, because a swarm of attack craft will beset you in short order. The object of the game is to collect as many lost people of Xenon as possible and score as many kills of enemy aircraft as you can.
The sound effects and graphics are quite good in Panther. There are some haunting effects and music that are superb and make the game a lot more fun to play. The biggest problem with this game is the way the enemy "swarms" you. Often, all three attack craft will come at you at once, with no space on the screen between any of them. Your firing speed at them is very sluggish, as it takes a while to judge the altitude of the attack craft by their shadows. You cannot outfly them;
they stick with you until either you kill them or they kill you.
Panther would be an excellent game if each ship you evaded simply flew off the screen and came back later. And if the ships flew in predictable formation and further apart, Panther would be playable. As it is, however, it is simply a frustrating joystick exercise with some good graphics and musical effects.
Both L.A. Swat and Panther are fairly welldone games with a few basic flaws. L.A. Swat is quite playable, but without much depth. It is a fairly challenging game that will hold your interest for a while. Panther could have been much more. I really wanted to like this game, with its wonderful music and detailed graphics, but it seriously lacks in the playability department. Still, for the low price tag, these are fair rainy-day games.



## SKLULL

Mystified, you wake to find yourself half buried beneath the sands of a strange and vast island. Looking sedward, your eyes gace upon the remains of your wrecked ship. As you struggle to recall the past events that brought you to this seemingly tropieal paradise, your hazy memory pinpoints only a violent stom at sea and your attempts to keep your once-senworthy vessel afloat.
Cenain only that you are somewhere in the South Pacific, you climb to your leed. uiving to get a bearing on your present location. Suddenly, your eyes fall upon a wooden board lying on the beach some yards awval. As you approach it, you realize if is some kind of a sign. Brushing away the sand from the roming mood, you reveal the words
"Welcome to Skuill Thland.
Your pulse quiekens as you realize the meaning behind these words. In legend, many attempted to sail to Skull Iskand? to discover the magie it possessed, but no man ever retumed from his adyenture,
The sounds of the jungle surround you. Destiny calls. You set out to escape Skull Island-or die trying,


## The Game

Skull Island is a text-adventure game that offers a lot more than just a little challenge. Time was taken in writing and developing this software so that it would have great detail and enough excitement for hours of enjoyment. Two years of programming, problem solving, testing and retesting were spent to create Skull Island and to ensure that all who played the game would find it as exciting as possible.

On the outside, Skull Island may appear to be an ordinary text-adventure game, but what the inside holds sets it apart from all others. Incorporated into this game are musical tunes and sound effects, along with deliberate background coloring to aid you in your adventure through the vast areas of Skull Island. This, along with an exciting character set and compelling scenario, will show you why Skull Island is a game that will not soon be forgotten.

## Typing it In

Listing 1 is the main game program. Simply type it as it appears, making certain that all the lines are correct. (Use BASIC Editor II, found elsewhere in this issue, to check
your work.) Because of the use of some control characters, you should be very careful to enter them in correctly. One misplaced control character will adversely affect the execution of the program, and it may very well make the game unsolvable. Once you have completed typing Listing 1 , save it to disk under the filename D:SKULL.1, but do not run it yet.

Now type Listing 2. As you can see, Listing 2 contains many DATA lines. These lines contain the heart of Skull Island. Again, if anything is mistyped, chances are you will not be able to run Skull Island successfully.

After typing in Listing 2, save it to disk under the filename D:SKULL.2, then run it. It will prompt you to have the disk with SKULL. 1 ready. Once you have it in place, hit Return, and in a few moments it will create two files (D:STRING1 and D:STRING2). You can now run D:SKULL. 1 and play the game.
In future play, you need not use D:SKULL. 2 again. Simply make sure that D:SKULL.1, D:STRING1 and D:STRING2 are all on the same disk.

## Game Play

Skull Island is an adventure game in which you must enter commands to solve riddles and problems in order to win. The program recognizes a variety of words in a standard two-word verb-noun sentence. It also has an array of single-word commands for movement and other special tasks. I'll have more on that later.

When entering-in a two-word command, such as GET WOOD or READ PAPER, you need to type only the first three letters of each word (i.e. GET WOO and REA PAP) for quicker input. Of course, spelling out the en-

tire word will not adversely affect the program in any way. One small hint here: If you need to use GO TO, type it as one word (GOTO).

Along with the two-word commands are single-letter commands for special tasks. These are 'N'orth, 'S'outh, 'E'ast, 'W'est, 'D'own, 'I'nventory, 'H'elp, 'Q'uit, 'X' Present Score, 'Y' Change to Atari Character Set and ' $Z$ ' Change to Skull Island Set.
The object of the game is to wander around the island searching for a way to escape. You will find many objects scattered around the island that may prove useful in your escape. There is something unusual about Skull Island, and that is the great wall that surrounds it, making it almost impossible to leave. Yet legend has it that there are magical ways of lowering the wall in certain sections of the island. It is up to you to discover the secret.
You can carry up to six objects at once; simply hitting "I" will give you an updated list of your inventory. Of course, you can drop any object at any time, but be careful; some things are worth hanging on to.
The Help command is unique. In other adventures, when you ask for help you are usually given a clue or hint as to what to do next. In Skull Island you are given a musical tune. It is up to you to decipher what this tune is trying to tell you. There is, however, another way of receiving help: Each time you enter a new section of the island, you are told which directions you can travel in (i.e. north, west . . .?). You will notice the "?" When you see this, the location you are in may or may not be special in some way. Again, it is up to you to discover the meaning behind each question mark.
Also, whenever you see a new object or enter another section, be sure you examine everything. If you do not, you may find yourself hopelessly wandering throughout the island.
Finally, Skull Island keeps track of your score and number of moves. You are allowed a maximum of 300 moves, and your highest possible score is 285 . To view your score and number of turns at any time, enter the " X " command. If you are curious, the smallest number of moves possible to solve this adventure is 82 .

Good luck!

John Patuto is currently studying computer science and communications at William Paterson College in Wayne, New Jersey. His current projects include a series of business programs for the Atari 130XE, an 8-bit Star Trek simulator, and somewhere down the line, the sequel to Skull Island.

G5 0 POKE 580，1：POKE 16，112：POKE 53774，11 $2: C=1: D=6: E=C+C: A=C-C: H 1=D-C$
MJ 1 DIM $005(1), \operatorname{DLIS}(64), L S(43), F S(42), R S$ （16），NS（12），US（12），DRS（24），DIRS（6），ITS （16），UUS（63），NNS（105），INUS（D），IIS（D）
 （D）$I 25(D), I 35(D), I 45(D), I 55(D), I 65(D)$ ，I75（D），I85（D），I95（D），I105（D），I115（D）
MJ DIM I125（D），I135（D），I14S（D），I15S（D） I165（D），I175（D），I18与（D），I195（D），I20 S（D ），I215（D），I225（D），I995（D），I16IS（D）
EA 4 DIM YNS（3），OKS（10），WNS（19），CS（31）， 55 \＄（65），515（22），WS $5(33)$, PW $5(20)$, PW1 $5(20)$
UU 8 DIM I255（D）：G0SUB 29000：DON＝32009：GS $=2650: \mathrm{NTH}=2605: \mathrm{DHT}=2610: \mathrm{NRM}=2615: \mathrm{HUH}=2$ 600
YR 9 PRO＝3500：PK＝21：0K＝49：ILUE＝2500：ILN0＝ 2550：0KU＝54：0KN＝2999：LOC＝100：NLC＝59：IT $5=1699$ ： $\mathrm{DCH}=4444$ ： $\mathrm{TW}=\mathrm{PK}-\mathrm{C}$
ZC 10 OPEN \＃C， 4, ค，＂K：＂：POKE 703， 4 ：POKE 75 6，145：POKE 752，C：POKE 709，14：G05UB 12： GOTO 13
 ull Island $\langle<\langle<\langle\lll \lll<\langle " ;$ ：RETURN
TJ 12 POSITION C，19：？HE；＂C\＆e\＆e\＆e\＆e\＆e\＆ 5 k ull Island \＆e\＆e\＆e\＆e\＆e\＆巴＂；：RETURN
TW 13 a＝USR（ADR（DLIS），ADR（DLIS）＋32）：POKE 54286，192：POKE 559，34：GOTO 15
RD 14 FOR I＝15 TO A STEP－ $2.5: 50$ UND $A, A T$ ， 10，I：NEKT I：SOUND A，A，A，A：RETURN
HP 15 POP ：POP ：QX＝A：POSITION E，A：GOSUB L OC：？HE：？HE；＂You can go：＂；DRS：DIR＝LE N（DIRS）
NY 16 POSITION E，D：？HE；＂You can see＂；：I F BG THEN DL＝30日
RC 17 IF I995＝＂XKKKKX＇THEN ？HE；＇nothing interesting．＂：GOTO PRO
TD 18 IIS＝I995：G05UB IT5：G0T0 PRO
UL 20 POP ：POP ：AT＝43：QX＝A：N5＝＂＇M：US＝＂M：JP ＝A：R今＝＇＂＇：FOR $0=A$ TO E：GOSUB 14：NEKT $Q:$ ？WN与；： $\mathrm{NCH}=\mathrm{A}: \cup C H=A: U T=A: T R A P$ TW
21 POKE 702，64：POKE 694，A：IF PEEK（764） $=255$ THEN GOSUB 17000：GOTO PK
MC 22 UT＝A：$B=$ PEEK（764）：IF $B=60$ THEN GOTO PK
HT 23 IF $B=39$ OR $B=154$ THEN GOTO PK
YS 25 GET HC，R：IF R＝155 THEN 50
IK 26 IF $(\mathrm{R}<32$ OR $\mathrm{R}=127$ OR $\mathrm{R}=125$ OR R＞154 AND $R\langle 160$ OR R〉252）AND $R\rangle 27$ THEN GO TO PK
RD 27 IF R＝126 AND JP＝A THEN GOTO PK
PB 28 IF $R=27$ THEN $R=32$
 JP＝JP－C：GOTO PK
RM 31 G05UB 35：JP＝JP＋C：？＂Ł＂；CHR $5(R)$ ；＂（2］ ：RS（JP）$=$ CHRS（R）
MR 32 GOTO PK
$B U 35 \mathrm{IF}$ JP $=16$ THEN GOTO PK
AF 36 RETURN
49 ？OK与：TR＝TR＋C：RETURN
 US＝＂＂：GOTO ILUE
SD 51 TRAP 60： $0=\mathrm{USR}(\mathrm{L}$, ADR（R5），ADR（＂＂），R1 ）：US＝RS（C，$Q-C): N \$=R S(0+C, R 1): T R A P$ ILUE ：U15＝US（C， 3 ）：TRAP ILN0：N15＝NS（C，3）
OA 52 TRAP 15：FOR CH＝C TO LEN（UUS）STEP 3 ：UCH＝UCH＋C：IF U1S＝UUS（CH，CH＋E）THEN GO то OKU
53 NEKT CH：GOTO ILUE
YD 54 FOR CH＝C TO LEN（NNS）STEP 3：NCH＝NCH $+C: I F$ N1S＝NNS（CH，CH＋E）THEN GOTO OKN 55 NEKT CH：GOTO ILNO
IA 57 FOR I＝D TO 15： $\mathrm{K} 1=\mathrm{USR}(A D R(F 5), \mathrm{I}):$ NEX T I：RETURN
$59 \mathrm{XK}=\mathrm{A}: Y Y=A: D G R=A: F O R \quad I=A$ TO $15: \mathrm{K} 1=\mathrm{US}$ R（ADR（FS），I）：NERT I：GOTO 15 R（ADR（F）$), I): N E R T$ I：GOT0 15
68 G05UB $75: R S=R 5(C, C): F O R$ CH＝C TO $5: I$ $F$ RS＝SWS（CH，CH）THEN 70
KU 63 NEST CH：GOSUB OK：IF RS＝＂I＂THEN IIS ＝INUS：POSITION E，13：？\＃2；＂You are carr ying＂；：G05UB IT5－9：G0T0 PRO
FU 64 IF RS＝＂H＂THEN 31900
GK 65 IF RS＝＂Q＂THEN Qu＝5：？＂反＂：POKE 756， 145：GOSUB 12：GOTO DON
CU 66 IF RS＝＂X＂THEN GOSUB 1800：GOTO PRO
PR 67 IF RS＝＇Y＂THEN ？＂K＂：OK与＝＂$\ggg \gg 0 . K$
 224：G05UB 11：GOTO PRO
FW 68 IF R $5=$＂Z＂THEN ？＂反＂：OK $5=" Н H$ O．K
 145：G05UB 12：G0T0 PRO
IP 69 IF RS＝＂\％＂THEN 15999
RW 70 FOR CH＝C TO DIR：IF R $5=D I R \$(C H, C H) T$ HEN GOSUB OK：G05UB 2700：GOTO NLC
Wh NEHT CH：？＂You can＇t go in that dir ection．＂：GOTO PRO
WU 75 IF LEN（R5）＝C THEN 90
BT 76 IF LEN（RS）＝E THEN US＝RS：GOTO ILUE
IM 80 U1S＝R（（C， 3$): F O R$ CH＝C TO 33 STEP $3: I$ F U1S＝W5 $5(\mathrm{CH}, \mathrm{CH}+\mathrm{E})$ THEN RETURN

BT 81 NEXT CH：GOTO 92
LE 90 FOR CH＝C TO 12：IF RS＝SWS（CH，CH）THE N RETURN
ZW 91 NEXT CH：US＝RS：GOTO ILUE
AA 92 FOR CH＝C TO LENCUUS）STEP 3：IF U1S UUS（CH，CH＋E）THEN ？OK（CC，D）；RS；＂what ？＂：POP ：GOTO PRO
LP 93 NEKT CH：FOR CH＝C TO LEN（NN5）5TEP 3 ：IF UIS＝NNS（CH，CH＋E）THEN ？OKS（C，D）；＂ Do what to the＂；RS；＂？＂：POP ：GOTO PRO
AC 94 NEST CH：US＝RS：GOTO ILUE
EL 100 POKE 710，40：POKE 709，14：POKE 712，A ：？HE；＂You are lying on the lagoon of＂ ：？HE；＂a strange island．A sign says：＂
UZ 101 ？HE；＂＇WELCOME TO SKLLL ISLAND＂＂： L＝200：WL＝1100：I995＝I05：DRS＝＂East／West＂ ：DIR与＝＇EW＇：H1＝5：RETURN
YF 115 105＝I995：RETURN
RJ 150 POKE 710， $36:$ POKE 712，C：POKE 709，14 ：？\＃E；＂You are walking along what is＂ ？मE；＂known as＇Death Beach＇，＂：Hi＝7
LT 160 I995＝I15：EL＝1450：WL＝1400：DR今＝＂East ／West＂：DIRS＝＂EW＇：RETURN
YU 165 I15＝I995：RETURN
NJ 200 POKE 710，18：POKE 709，14：？HE；＂You＇ re lost deep within a large＂i？HE；＂den se rain forest．＂：NL＝1450：5L＝250：Hi＝8
YM 210 I995＝I25：EL＝550：WL＝100：DR5＝＂North／ south／East／West／？＂：DIRS＝＂NSEW＂：IF LOC $=206$ THEN RETURN
NY 211 GOTO 1466
YS 215 I2 $5=1995:$ RETURN
LU 250 POKE 710，210：POKE 709，14：？HE；＇You ＇ve come across a field that＂？\＃E；＂ha 5 dozens of Palm Trees．＂＇：NL＝200：H1＝E
EI 260 I995＝I35：DR5＝＇North／？＂：DIRS＝＇N＂：R ETURN
ZT 265 I35＝T995：RETURN
80 300 POKE 710，48：POKE 709，14：？HE；＂You are walking on a forbiddened＂：？\＃E；＂an cient Burial Ground of past＂：H1＝7
DB 301 ？HE；＂Mohandian Kings．＂：5L＝350：I99 §＝I4 5 ：DRS＝＂South／？＂：DIR $\$=$＝＇S＂：BG＝D：RET URN
ZF 315 I45＝I995：RETURN
HO 350 POKE 710，8：POKE 709，C：？HE；＂You ar e walking amidst hundreds＂：？\＃E；＂of er upting geysers．＂：NL＝306：EL＝460
C5 360 I995＝I55：DRS＝＇North／East＂：DIRS＝＇NE ＂： $\mathrm{XK}=$ RND（C）：$Y Y=$ TR： $\mathrm{H} 1=\mathrm{C}:$ RETURN
ZU 365 I5 $5=1995$ ：RETURN
IR 370 ？＂A geyser erupted in your face．＂ ：GOTO DON
EM 400 POKE 710，32：POKE 769，10：？\＃E；＂You＇ ve come across a clearing＂：？HE；＂which has dozens of giagantic＂：I995＝I6
YU 401 POKE 712，A：？HE；＂Totem Poles．＂：NL＝ 450：EL＝950：WL＝350：DRS＝＇North／East／West ？＇י＇：DIRS＝＇NEW＇：HI＝E：RETURN
Z5 415 I65＝I995：RETURN
YF 450 POKE 710，66：POKE 709，14：？HE；＂You＇ re walking aside a volcano＂：？HE；＂in a dried－up lava fisure．＂：NL＝500：SL＝400
50460 I995＝I75：EL＝900：DRS＝＇North／5outh／E ast／？＂：DIRS＝＂NSE＂： 8 ＝RND（C）：YY＝TR：HI＝ C：RETURN
AI 465 I75＝I995：RETURN
PP 470 ？＂A lava－avalanche has buried you ＇＂：GOTO DON
AA 500 POKE 710，128：POKE 709，14：？HE；＂A f riendly native welcomes＂：？HE；＂you int o his Uillage，＂：NL＝550：5L＝450：H1＝E
E0 510 I995ニI85：DRS＝＂North／5outh／？＂：DIRS ＝＇NS＂：RETURN
AF 515 I85＝I995：RETURN
YY 550 POKE 710，148：POKE 709，14：？\＃2；＂You ＇ve come across＂：？HE；＂a large grassy clearing．＂：NL＝600：5L＝500：EL＝650：H1＝E
J0 560 I99 $=195:$ WL＝200：DRS＝1＇North／south／E ast／West＂：DIRS＝＂N5EW＂：RETURN
AU 565 I95＝I995：RETURN
DU 600 IF NOT TOR THEN LOC＝1350：GOTO LOC
LR 601 GOTO 1500
KG 610 NL＝1500：5L＝550：I995＝I105：DRS＝＂Nort h／south／？＂：DIRS＝＂NS＂：$K K=R N D(C): Y Y=T R:$ H1＝C：RETURN
50615 I105＝I995：RETURN
LM 620 ？＂The lion made you his next meal －＂：GOTO DON
YW 650 POKE 710，38：POKE 709，14：？HE；＂Quic k sand traps surround you＇：？\｛E；＂as yo u step onto this shaky land．＂
FC 660 I995＝I115：5L＝700：WL＝550：DRS＝＂50uth ／West＂：DIR与＝＂ 5 W＂： $8 K=$ RND（C）：YY＝TR：H1＝C： RETURN
TF 665 I115＝I995：RETURN
KR 670 ？＂You＇ve sunk into the quicksand． ＂：GOTO DON
NC 700 POKE 712，C：POKE 710，96：POKE 709，14 ：？HE；＂You＇ve come across what seems＂：

？HE；＂to be a deserted village，＂ 710 I995＝I125：NL＝650：5L＝750：DR5＝＂North ／50uth／？＂：DIRS＝＂N5＂：H1＝3：RETURN
715 I125二I995：RETURN 715 I125＝I99S：RETURN
750 POKE $710,36: P O K E$ 750 POKE 710，36：POKE 712，32：POKE 769，1 4：？HE；＂AS you walk apon this sand＂：？ \＃E；＂dune，a hasty wind thrashes up．＂
N0 760 I995ニI135：NL＝700：SL＝1000：EL＝800：WL ＝850：DRS＝＇North／5outh／East／West＂：DIRS＝ ＂NSEW＇：HI＝E：RETURN
765 I135ニI995：RETURN
806 POKE 710，34：POKE 712，36：POKE 709，1 4：？HE；＂You＇ve come upon an area fille d＂：？HE；＂with bamboo Plants．A sign＂
FK 801 ？the；＂here says：＇Bamboo burns wel 1：＂：I995＝I145：WL＝750：DR5＝＂West／？＂：DI RS＝＂W＂＇：H1＝E：RETURN
815 I145ニI995：RETURN
W 850 POKE 712，C：POKE 710，4：POKE 709，14： ？\＆E；＂You are walking along a large＂；？ tE；＂fisure made of sharp rocks．＂
UB 860 H1＝E：I995＝I155：5L＝900：EL＝750；DR5＝＂ 860 H1＝E：I995＝I15S：SL＝900：EL
South／East＂：DIRS＝＂＇SE＂：RETURN
865 I15S＝I995：RETURN
WM 900 POKE $710,20:$ POKE 709，C：？HE；＂A fou 1 stench is in the air as you＂：？HE；＂C ome across a dingy swamp area．＂：H1＝7
ULL $\quad 5$ 910 POKE 712，A：I995＝I165：NL＝850：SL＝950 ：EL＝1000：WL＝450：DR5＝＂North／5outh／East／ West／？＂：DIRS＝＂NSEW＂：RETURN
1H 915 I165＝I995：RETURN
QE 950 POKE 710，14：POKE 709，C：？HE；＂You＇r e at the southern edge of＂：？\＃E；＂the i sland．There＇s a strange＂： $\mathrm{Hi}=\mathrm{D}$
E 951 ？HE；＂feeling in the air，＂：I995＝II 6IS：NL＝900：WL＝40日：DR5＝＂North／West／？＂＇ DIRS＝＇NW＇＂：BG＝A：RETURN
965 I16IS＝I995：RETURN
1000 POKE 712，C：POKE 710，18：POKE 799， 1 4：？\＃E；＂Animals are all around you＂＇？ みE；＂as you enter a savage jungle．＂
NL 1010 I99今＝I175：NL＝750：5L＝1050：WL＝900：D R与＝＂North／5outh／West＂：DIRS＝＂NSW＂：H1＝7： RETURN
1015 I175ニI995：RETURN
1050 POKE 710，245：POKE 709，14：？HE；＂Yo U＇re at the only section of＂：？HE；＂the island where you can make＂：Hi＝E
FT 1051 ？\＃E；＂Something of it．＂：NL＝1000：I 995＝I185：DR5＝＂North／？＂：DIRS＝＂N＂：RETUR N
1065 I185＝I995：RETURN
1100 POKE 710，128：POKE 712，128：POKE 70 9，14：？HE；＂You＇re now swimming in the＂ ：？抽；＂lagoon．Havin＇fun ？＂：EL＝100
 DGR＝5：YY＝RND（C）： $8 K=T R: H 1=C: R E T U R N$ 1115 ？＂It＇s gone forever now！＂：I995＝＂ หタหX 1120 ？＂You just drowned．＂：GOTO DON 1150 POKE 710，128：POKE 712，148：POKE 76 9，14：？मE；＂You are now in your boat，＂ ？\＃E；＂IIt＇s been a tiring day，＂：DGR＝5 1160 I995＝I255：DR5ニ＂？＂：DIR $5="$＂：YY＝RND （6）： K （ $=$ TR：H1＝4：RETURN
1170 ？＂You failed to complete your jo urney．＂＇：GOTO DON
1200 ？みE；＂You are on top of a＂：？HE；＂ very tall Palm Tree．＂
0 1210 DL＝250： $995=T 195: D G R=5: D R S=1 D o w n '$ ：DIRS＝＂D＂：H1＝9：RETURN
RR
NF 1215 T195＝I995：RETURN 1250 ？HE；＂You are on top of a＂：HE；＂ strange plat form．＂：DL＝950：I995＝I255：DG R＝5：DR与＝＂DOWn＂：DIR $5={ }^{\prime \prime} D^{\prime \prime}: H 1=D ; R E T U R N$ 1265 G0SUB 5000：G05UB 18000：？＂It＇s be en zapped to another location！＂
1268 FOR CH＝C TO D：IF T995（CH，CH）＝＂X＂ THEN I995（CH，CH）＝CHRS（NCH）：GOSUB LOC＋1 5：I995＝I255：LOC＝1250：RETURN
AK 1269 NEXT CH：GOSUB 18090：GOTO 1268
1300 ？\＃E；＂You are inside a native＇s＂： ？HE；＂hut，someone＇s here，＂
13 1310 EL＝500：I995＝I205：DR5＝＂East＂：DIRS＝ ＂E＂：HI＝E：RETURN
PG
1350 POKE 710，C：POKE 769，E：？HE；＂It＇s to dark to see＇i？HE；＂anything in here ＂ 1 ： $5 \mathrm{~L}=550:$ I995＝I255：DGR＝5
1360 DRS＝＂South $\because$ and hurry！＂：DIR5＝＂ S＇：YY＝RND（C）： $8 K=T R: H 1=C: R E T U R N$
1365 GOTO 1115
1370 ？＂You fell and broke your neck．＂ ：GOTO DON
1400 POKE 710，128：POKE 712，128：？HE；＂Y ou are now swimming in＂：？\＃E；＂the ocea n．Sharks are all＂：？HE；＂around you．＂ 1416 DGR＝5：I995＝I255：EL＝156：DR5＝＂East／ ？＂：DIRS＝＂E＂：YY＝RND CC）：$K K=T R: H I=C: R E T U$ R $\stackrel{+}{\mathrm{N}}$

1415 GOTO 1115
1420 ？＂You were just attacked by shar kS．11：GOTO DON
1450 GOTO 200
$1469 \mathrm{SL=296}$ ： $\mathrm{WL}=150$ ： $\mathrm{Hi=8}:$ I995＝I215：DR5＝ 1460 SL＝200：WL＝150：H1＝8：I995＝I215
＂5outh／West／？＂：DIR5＝＂SW＂：RETURN
1465 I215ニI995：RETURN
1500 POKE 710，C：POKE 709，14：？\＃E；＂You＇ re walking dangerously＂：？\＃E；＂thru the Caves of Death．＂：5L＝600：I995＝I225
1510 H1＝C：DRS＝＂South／？＂：DIRS＝＂S＂：IF L $0 \mathrm{C}=1500$ THEN RETURN
1511 G0TO 610
1511 G0T0 610
1515 I225＝I995：RETURN
1690 IF IIS＝＂XXXKXX＂THEN ？\＃E；＂nothin gat all．＂：RETURN
$169108=\mathrm{C}$
1699 FOR IC＝C TO D：IF IIS（IC，IC）＝＂X＂T HEN NEXT IC
1790 IF NOT AK THEN IN8＝0
1791 RESTORE 2099＋ASC（IIS（IC，IC））：READ ITS：？\＃E；＂a＂；ITS；＂．＂：IF NOT $Q \&$ THEN IN8＝IN8＋C：GOTO 1776
1710 FOR CH＝IC＋C TO D：IF IIS（CH，CH）〈〉＂ $X^{\prime \prime}$ THEN RESTORE 2099＋ASC（IIS（CH，CH））：R EAD ITS：GOTO 1730
1720 NEXT CH：RETURN
1730 IF OX THEN ？HE，＂A＂；ITS；＂
1730 IF 1750
＂GOTO 1750
＂：GOTO 1750
1740 ？ $\mathrm{HE}, "$
A＂；ITS；＂．＂
1750 IF NOT QX THEN IN8＝IN8＋C
1751 GOTO 1720
1776 IF IC＝6 THEN RETURN
1777 GOTO 1710
1800 ？＂You＇ve scored＂；5c；＂points in
＂；TR；＂turns＂：RETURN
2099 DATA Coconut shell
2190 DATA Piece of Paper
2191 DATA Piece of Wood
2102 DATA Coconut
2103 DATA Black Pearl
2104 DATA Diamond
2105 DATA Sharp Rock
2106 DATA Crystal $5 k u l 1$
2107 DATA Rusty saw
2108 DATA Piece of Bamboo
2109 DATA Bag
2116 DATA Bunch of Nails
2111 DATA Machete
2112 DATA Piece of Bark
2113 DATA TOFCh
2114 DÁTA Giant Volcano
2115 DATA Tall Palm Tree
2116 DATA lot of Trees
2117 DATA strange Platform
2118 DATA Burial Platform
2119 DATA Symbolic Pole
2120 DATA Native Hut
2121 DATA Native Girl
2122 DATA Flat Boulder
2123 DATA Hungry Lion
2124 DATA Bell
2125 DATA Native
2126 DATA stalk of Bamboo
2127 DATA Large stone
2128 DATA Small Fire
2129 DATA Hole
2500 FOR CH＝C TO LEN（U5）：U5（CH，CH）$=\mathrm{CHR}$ \＄（ASCCUS（CH，CH）+128 ）：NE CH CH
 OTO PRO
2550 FOR CH＝C TO LEN（NS）：NS（CH，CH）$=\mathrm{CHR}$与（ASC（NS（CH，CH））＋128）：NEXT CH
2551 ？＂I don＇t know what a＂＇i；NF；＂＇i 5．＂：GOTO PRO
2600 ？＂I don＇t understand what you me an．＂：GOTO PRO
2605 ？＂I don＇t see it here．＂＇：GOTO PRO 2610 ？＂You can＇t，you don＇t have it！＂ ：GOTO PRO
2615 ？＂You can＇t，there＇s no room her e．＂：GOTO PRO
2650 ？＂That＇s impossible，＂：GOTO PRO
2700 IF RS＝＂N＂THEN LOC＝NL
2701 IF RS＝＂S＂THEN LOC＝SL
2702 IF RS＝＂E＂THEN LOC＝EL
2703 IF RS＝＂W＂THEN LOC＝WL
2703 IF R5＝＇＂W＇＂THEN LOC＝WL
2704 IF R5＝＇D＇＂THEN LOC＝DL
2705 RETURN
2999 NCH＝NCH－C：IF UCH＝TW＋C THEN UCH＝C： GOTO 3003
3000 IF UCH＝13 THEN UCH＝12
3001 IF UCH＞12 THEN UCH＝UCH－C
3002 ON UCH GOTO $3906,3906,4024,4024,4$ $056,4675,4100,4105,4109,4169,4150,4175$ ，4185，4200，4225，4225，4250，4275，4300
3003 ON UCH GOTO 4325
3100 IF NCH＝E OR NCH＝13 OR NCH＝11 THEN $5 \mathrm{HIP}=5 \mathrm{HIP}-5$

3101 IN7＝IN7－C：RETURN
3333 FOR I＝50 TO C 5TEP－C：50UND C，50－ I，10，10：NEXT I
3334 FOR I＝15 TO A STEP－ $0.5: 50 U N D ~ C, 7$ 5＋I，8，I：NEXT I：RETURN
3400 FOR I＝C TO 4： $\mathrm{X}=\mathrm{ASC}(555(I, I)): 50 \mathrm{LN}$ D $E, X, 10,15: F O R$ CH＝C TO 10：NEXT CH：50L ND $E, A, A, A: F O R$ CH＝15 TO A STEP－ 0.75 3401 POKE 712，CH：SOUND E， $\mathrm{K}, 10, \mathrm{CH}:$ NEKT CH：NERT I：RETURN
3450 FOR CH＝C TO 22 STEP E： $\mathrm{X=A} 5 \mathrm{C}$（515（C H，CH））：SOUND E，K，10，8：50UND $3, \mathrm{~B} / \mathrm{E}, 10, \mathrm{D}$ ：FOR I＝C TO ASC（Sis（ $\mathrm{CH}+\mathrm{C}, \mathrm{CH}+\mathrm{C})$ ） $\operatorname{HE}$
EM 3455 NEKT I：SOUND E，A，A，A：NEKT CH：5OUN D 3，A，领 A：RETURN
3475 FOR CH＝5 TO 10： $\mathrm{B}=\mathrm{ASC}(555(\mathrm{CH}, \mathrm{CH})):$ SOUND E，X，10，6：SOUND 3，X／E，10，8：FOR I＝ C TO CH：NEKT I：SOUND 3，A，A，A：NEKT CH 3478 SOUND E，A，A，A：RETURN
3500 IF TOR AND TR $>$ TOR +3 THEN TOR＝A：？
＂your torch just went out．＂：GOSUB 3550 ：GOTO 3506
3501 IF NOT FIRE THEN 3506
3502 IF TR〈FIRE＋4 THEN 3506
3503 FIRE＝A：？＂The fire went out，＂：FOR $\mathrm{CH}=2$ T0 D：IF $\mathrm{I} 9 \mathrm{~S}(\mathrm{CH}, \mathrm{CH})=" \downarrow "$ THEN I9ち（ $\mathrm{CH}, \mathrm{CH})=$＇S＇י＇：GOTO 3505
3504 NEKT CH
3505 IF LOC $=550$ THEN GOTO NLC
3506 IF TR＞ 15 AND NOT FOOD THEN ？OKS （C，D）；＂You have starved to death．＂：GOT 0 DON
3507 IF TR＝300 THEN ？OKS（C，D）；＇YOU ha ve taken to many turns．＂：GOTO DON 3510 IF NOT YY OR YY＝INT（YY）THEN 352 －
3511 IF TR＝KX THEN 3515
3512 IF YY＜0．8 THEN GOTO LOC＋TW
3513 YY＝RND（C）：GOTO TW
3515 TR＝TR＋C：GOTO TW
3520 IF NOT XX THEN GOTO TW
3525 IF TR＝YY THEN GOTO TW
3530 IF $8 K<0.13$ THEN GOTO LOC＋TW
3535 IF $\mathrm{XX}<0.5$ AND NOT SKU THEN GOTO LOC＋TW
I 3540 KR＝RND（C）：GOTO TW
3550 IF LOC＝600 OR LOC $=1500$ THEN LOC＝1 350：GOTO NLC
3551 RETURN
3900 IF NCH $>14$ THEN GOTO GS
3950 IF INT＝D THEN ？＂You are carrying to much．＂：GOTO PRO
$3975 \mathrm{FOR} \mathrm{CH}=\mathrm{C}$ TO D：IF $\mathrm{I} 995(\mathrm{CH}, \mathrm{CH})=\mathrm{CHR} 5$ （NCH）THEN G05UB OK：I99S（CH，CH）＝＂Xי：GO T0 4000
3976 NEST CH：FOR CH＝C TO D：IF INUS（CH， $\mathrm{CH})=\mathrm{CHR}(\mathrm{NCH})$ THEN ？＂You already have that item．＂：GOTO PRO
3977 NEKT CH：GOTO NTH
4000 IF NCH〈〉 11 THEN 4006
4004 FOR HC＝C TO D：IF INUS（HC，HC）＝＂M＂
THEN NAI＝C：SHIP＝SHIP＋5：GOTO 4006
4005 NEXT HC：？＂Not without something to put them in．＂：Ig9s（CH，CH）＝＂${ }^{\prime \prime}:$ ：GOTO PRO
4006 IN7 $=$ IN7＋C：SC＝5C＋10：IF NCH＝E OR NC $\mathrm{H}=13$ THEN $5 \mathrm{HIP}=5 \mathrm{HIP}+5$
4012 IF NCH＝4 OR NCH＝5 OR NCH＝7 THEN 5 $\mathrm{C}=5 \mathrm{C}+10 \mathrm{NCH}$
4013 IF NCH＝7 THEN SKU＝5
4015 GOSUB LOC＋15：FOR CH＝C TO D：IF INU $5(\mathrm{CH}, \mathrm{CH})=\mathrm{C} \mathrm{X}$＂THEN INUS $(\mathrm{CH}, \mathrm{CH})=\mathrm{CHR} 5(\mathrm{NCH}$ 2：GOTO 4021
4020 NEXT CH
4021 G05UB 57：POSITION E，13：？\＃2；＂You are carrying＂＇：IIS＝INUS：GOSUB ITS－9：0 x＝0：GOTO 16
4022 GOTO PRO
4024 IF IN8 $8=$ D THEN GOTO NRM
4025 IF NCH＞ 14 THEN GOTO GS
4026 FOR CH＝C TO D：IF INUS $(\mathrm{CH}, \mathrm{CH})=\mathrm{CHR} \$$ （NCH）THEN 4028
4027 NEKT CH：GOTO DHT
4028 IF（NCH＝5 AND LOC〈〉1300）OR（NCH＝ 4 AND LOC 〈〉700）OR（NCH＝7 AND LOC 〈〉 105 6）THEN SC＝SG－TW：IN7＝IN7－C：GOTO 4030 4029 GOTO 4031
4030 G05UB 3333：？＂It shattered into a Million Pieces！＂：Gosub DCH：GOTO 4021 4031 IF NCH＝4 OR NCH＝5 OR NCH＝7 THEN G 05UB OK：GOSUB 4500：GOTO 4038
4032 IF LOC＝550 AND NCH＝D THEN GOSUB 4 400
4033 IF NCH＝3 AND LOC〈〉 1250 THEN 4045 4034 IF NCH＝10 AND NAI AND IN8＞ 4 THEN GOTO NRM
4035 IF NCH＝10 AND NAI THEN SC＝5C－TW： 5 HIP＝5HIP－5：GOTO 4039

4036 G0SUB उ100：G0SUB OK：FOR CH＝C TO D ：IF I995（CH，CH）＝＂X＇THEN I995（CH，CH）＝C HRS（NCH）：GOSUB LOC＋15：GOTO 4038
4037 NEXT CH
4038 SC＝SC－10：G0SUB DCH：G05UB 4053：GOT 04021
PJ 4039 GOSUB 4051：FOR CH＝C TO D：IF INUSC $\mathrm{CH}, \mathrm{CH})=" \mathrm{M}$＂THEN INUS $(\mathrm{CH}, \mathrm{CH})=" \mathrm{X} "$
NO 4040 IF INUS（CH，CH）$=י " H$ THEN INUS（CH，C H）$={ }^{\prime \prime}{ }^{\prime}$
B 4041 NEXT CH：FOR CH＝C TO D：IF I99S（CH $\mathrm{CH})=$＂ X ＂THEN $I 995(\mathrm{CH}, \mathrm{CH})=" \mathrm{~L}$＂：G05UB LOC ＋15：G0T0 4043
KE 4042 NERT CH
KT 4043 FOR CH＝C TO D：IF I995（CH，CH）＝＇ K ＇ THEN I99与（CH，CH）＝＂世H：IN7＝IN7－E：G05UB L 0C＋15：G0SUB OK：GOTO 4021
4044 NEXT CH
4645 IF IN8＞ 4 THEN GOTO NRM
4046 GOSUB OK：GOSUB 3333：FOR CH＝C TO D ：IF I99今（CH，CH）＝＂ K ＂THEN I995（CH，CH）＝＂ ＂1：GOTO 4648
KY 4047 NEST CH
4048 FOR CH＝C TO D：IF I995（CH，CH）＝＂ X ＂ THEN I995（CH，CH）＝＂年：GOSUB LOC＋15：IN8＝ IN8＋E：GOTO 4056 4049 NEKT CH
4050 G05UB DCH：INT＝IN7－C：GOTO 4021
4051 IF LOC＝1250 THEN ？＂You can＇t dro P the bag of nails here．＂：GOTO PRo 4052 RETURN
W 4053 IF NCH＝14 AND TOR THEN ？＂The tor ch went out．＂：TOR＝A：IF LOC＝1500 OR LOC $=600$ THEN LOC＝1350：GOTO NLC 4054 RETURN
4056 IF NCH＝C THEN 4060
4657 IF NCH 〈〉18 THEN GOTO HUH
4058 IF LOC〈〉400 THEN GOTO NTH
4059 G05UB 0K：？＂It says：Girls fancy precious stones＂：？＂＂4Men prefer dark beads．＂：GOTO PRO
4060 FOR CH＝C TO D：IF INUS（CH，CH）＝＂${ }^{\prime \prime}$ THEN GOSUB OK：？＂भt＞＞＞＞＞＞＞＞＞t＞＞＞十廾t read 5：＂：GOTO 4062
4061 NEXT CH：GOTO DHT
4062 ？＂To lower the weir around this＂ ？？＂atoll，leave a glister on a stone． ＂：GOTO PRO
4075 IF NCH〈15 OR NCH〉17 THEN ？＂You c an＇t climb that！＂：GOTO PRO
4076 ON NCH－14 GOTO 4677，4080，4098
4077 IF LOCく〉456 THEN GOTO NTH
4078 LOC＝300：GOSUB OK：？＂You slid ou
the top to a new place，＂：GOTO NLC
4080 IF LOC＝200 OR LOC $=1450$ THEN ？＂Yo ucan＇t climb these trees．＇：GOTO PRO 4081 IF LOC 〈〉 250 THEN GOTO NTH
4082 G05UB OK：LOC＝1200：GOTO NLC
4090 IF LOC＜＞ 300 AND LOC＜＞950 THEN GOT 0 NTH
4091 GOSUB OK：IF LOC＝300 THEN BG＝5 4092 LOC＝1250：GOTO NLC
4100 IF NCH＝20 AND LOC＝1300 THEN ？＂Sh e＇s not into that！（1＇i：GOTO PRO
4101 IF NCH〈＞3 THEN ？＂You can＇t eat t hat ！י：GOTO PRO
4102 FOR CH＝C TO D：IF INUS（CH，CH）＝CHR （NCH）THEN GOSUB OK：？＂Thanks，but it tasted kind of funny．＂：GOTO 4104
tasted kind of funny．
4103 NEKT CH：GOTO DHT
4104 INT＝IN7－C：SC＝5C－5：FOOD＝5：G0SUB DC H：GOTO 4021
4105 IF NCH〈＞29 THEN GOTO HLH
4106 IF FOOD THEN ？＂You already drank the milk．＂：GOTO PRO
4107 FOR CH＝C TO D：IF INUS（CH，CH）＝＂ゆ＂
THEN GOSUB OK：？＂Thank you，it was del icious．＂＇FOOD＝5：GOTO PRO
4108 NEXT CH：GOTO DHT
4169 IF NCH＞29 AND（NCH〈＞31 AND NCH $\rangle 3$ 2）THEN GOTO HUH
4116 G05LB 15000：IF NCH＝16 AND CLOC＝20 0 OR LOC $=14503$ THEN 4119
4111 IF NCH＝16 AND LOC＝250 THEN 4130 4112 IF NCH＝17 AND CLOC＝300 OR LOC $=950$ 3 THEN 4130
4113 IF NCH 15 THEN NCH＝NCH＋E
4114 FOR CH＝C TO D：IF INUS（CH，CH）$=$ CHR $\$$ （NCH）OR I995（CH，CH）＝CHRS（NCH）THEN 41 16
4115 NEKT CH：GOTO NTH
4116 G05UB OK：IF NCH＞16 THEN 4118
4117 ON NCH＋C GOTO $4120,4122,4121,4123$ ， $4124,4124,4125,4124,4121,4119,4146,41$ $42,4126,4121,4128,4130$
4118 ON NCH－19 GOTO 4122，4123，4131， 413 3，4132，4119，4119，4119，4119，4140，4134

Lil 4119 ？＂There＇s nothing interesting ab out it．＂：GOTO PRO 4120 IF NOT FOOD THEN ？＂It＇s full of coconut milk．＂：GOTO PRO
4121 ？＂Looks like it could be useful． ＂：GOTO PRO
CH 4122 ？＂It has something written on it ．＂：GOTO PRO
4123？＂Sounds like something＇s inside －＂：GOTO PRO
4124 ？＂It＇s very fragile．＂：GOT0 PRO
UL 4125 ？＂It looks like flint．＂：GOTO PRO 4126 IF 5HA THEN ？＂It seems quite sha RP．＂：GOTO PRO
NN 4127 ？＂Seems kind of dull．＂：GOTO PRO FF 4128 IF TOR THEN ？＂It＇s burning brigh tly：＂：GOTO PRO
4129 ？＂It isn＇t burning．＂：G0T0 pRO
RD 4130 ？＂It looks climable，＂：G0T0 PRO
4131 ？＂She＇d like a sign of affection ＂：GOTO PRO
PI 4132 ？＂It seems quite ferocious ！＂：G0 TO PRO
BM 41 PRO
JG 4134 FOR CH＝C TO D：IF I995（CH，CH）＝＂＂ THEN ？＂There＂s a crystal skull in the THEN ？＂There＇
re．＂：GOTO PRO
RII 4135 NEKT CH：？＂It＇s quite empty．＂：GOT 0 PRO
KY 4140 ？＂It seems quite hot．＂：GOTO PRO 4142 ？＂They could be useful．＂：GOTO PR 0 4145 ？＂It＇s quite sea－worthy．＂：Goto p R0
UK 4146 IF NAI THEN ？＂II＇s full of nails ＂＇：GOTO PRO
DZ 4147 FOR CH＝C TO C：GOTO 4135
CZ 4150 IF NCH〈 19 THEN GOTO HUH
4151 IF LOC〈＞560 THEN GOTO NTH
4152 LOC＝1306：G05UB OK：G0T0 NLC
4175 IF NCH〈〉TW AND NCH〈〉33 THEN GOTO G5
4176 G0SUB 12000：TF LOC〈〉1300 THEN ？＂ I don＇t see her around here．＂：GOTO PRO E 4177 IF NOT KIS THEN ？＂She＇d like a gift first．＂：GOT0 PRO
4178 IF FC THEN 4184
4179 IF IN8＝D THEN GOTO NRM
4180 G0SUB OK：GOSUB 3499：POKE 799，14：？ ＂That was quite pleasing．She＂：？＂tha nks you by droping a saw，＂：FC＝5
RL 4181 FOR CH＝E TO D：IF I995（CH，CH）＝＂ 8 ＂ THEN I995（CH，CH）＝＂1＂：G05UB LOC＋15：5C＝5 C＋15：G0TO 4021
KS 4182 NEXT CH
B 4184 ？＂Being the savage that she is， she＂：？＂stabs you for being too kinky ！＂：GOTO DON
UJ 4185 IF NCH〈＞14 THEN ？＂You can＇t ligh $t$ that on fire ！＂：GOTO PRO
FP 4186 IF NOT FIRE OR LOCく〉550 THEN？＂ I don＇t see a fire around here．＂＇Goto PRO
ZA 4187 FOR CH＝C TO D：IF INUS（CH，CH）＝＂ THEN 4189
GW 4188 NEXT CH：GOTO DHT
TM 4189 G05UB 0K：SC＝5C＋15：？＂It＇s now lit but not for long，＂：TOR＝TR：GOTO PRO
04206 IF NCH $\rangle 23$ THEN GOTO HUH
4201 IF LOC $\langle>700$ THEN GOTO NTH
4202 IF IN8＝D THEN 4179
4203 G0SUB OK：G0SUB 4212：FOR CH＝E TO D ：IF I99S（CH，CH）$=$＂L＂THEN GOTO PRO
YQ 4204 NEXT CH：？＂Suddenly，a native app ears＂；：FOR CH＝E TO D：IF I995（CH，CH）$=$＂ X ＂THEN I995（CH，CH）＝＂L＂：GOTO 4206
KI 4205 NEST CH
KU 4206 G0SUB LOC＋15：FOR CH＝E TO D：IF I 12 $5(C H, C H)={ }^{4}-1 "$ THEN 4210
BJ 4207 NERT CH：？＂．＂：5C＝5C＋5：GOTO 4021
4210 ？＂and takes＂：？＂the pearl，He 5 ays＇Dig a hole where＂：？＂the ground $c$ an measure time．＂＂：sc＝sc＋25
AX 4211 I995（CH，CH）＝＇K＇＂：GOSUB LOC＋15：G0T0 4021
PZ 4212 FOR $Q 甘=\mathrm{C}$ TO 3：FOR I＝15 TO A STEP － $0.5: 50$ LND C， $75,10, I: 50$ UND $A, 75,16, I: N$ EXT I：NEKT $a 甘: R E T U R N$
PZ 4225 IF NCH〈〉25 AND NCH〈〉16 THEN GOTO HUH
LN 4226 IF NCH＝25 THEN 4235
4227 TF LOC＝259 THEN？＂You can＇t do $t$ hat to this tree．＂：GOTO PRO
GI 4228 IF LOC $\rangle 200$ AND LOC $\rangle 1450$ THEN？ ＂I don＇t see any trees here．＂：GOTO PRO 4229 IF CHOP THEN ？＂You already did．＂ ：GOTO PRO

Ra 4230 FOR CH＝C TO D：IF TNUS（CH，CH）＝＂1＂ THEN GOSUB OK：SC＝5C＋15：CHOP＝5：GOTO 423 1
2
42
4
4231 NEXT CH：？＂You can＇t do that empt $y$ handed．＂：GOTO PRO
4232 IF LOC＝200 THEN I25（C）， $\mathrm{C}={ }^{-1}{ }^{-1}: I 215$

4233 IF LOC $=1456$ THEN I215（C，$C)={ }^{-10}: I 2$ \＄（C，C）＝＂8＂：I995＝1215
4234 G0suB 10000：？＂As this tree falls ，so do all the＂：？＂rest in the dark $f$ orest．＂：GOTo 4021
4235 IF LOC＜＞800 THEN ？＂I don＇t see a Stalk here．＂：Goto PRo
4236 IF CTB THEN ？＂You already did．＂： GOTO PRO
4237 FOR CH＝C TO D：IF INUS（CH，CH）＝＂II＂ THEN 4239
4238 GOTO 4231
4239 IF NOT SHA THEN ？＂The Machete＇s not sharp enough．＂：GOTO PRO
I0 4240 CTB＝5：G0SUB OK：5C＝5C＋5：I145（C，C）$=$ ＂＂＇：I995＝I145：GOTO 4021
4250 IF NCH〈＞ 28 THEN GOTO HUH
4251 IF DGR THEN ？＂You can＇t dig a ho le here．＂：GOTO PRO
4252 IF INB＝D OR（LOC＝750 AND IN8）4）T HEN GOTO NRM
4253 FOR CH＝C TO D：IF TNUS（CH，CH）＝＂义＂ THEN 4255
4254 NEKT CH：？＂You don＇t have anythin g to dig with．＂：GOTO PRO
4255 GOSUB 4261：FOR CH＝C TO D：IF I9956 $\mathrm{CH}, \mathrm{CH})=$＂$\ddagger$＂THEN ？＂There＇s already one here．＂：GOTO PRO
4256 NEKT CH：GOSUB OK：FOR CH＝C TO D：IF I995（CH， CH$)=" \mathrm{X}^{\prime \prime}$ THEN $I 995(\mathrm{CH}, \mathrm{CH})=" \nmid " ;$ GOSUB LOC＋15：GOTO 4258
4257 NEXT CH
4258 IF LOC〈〉750 THEN GOTO 4021
4259 ？＂A Crystal skull is inside the hole！＂：SC＝5C＋5：FOR CH＝CH＋C TO D：IF I99 S（CH，CH）〈〉＂X＂THEN NEKT CH
 ＋15：G0T0 4021
4261 IF NOT FOOD THEN ？＇Not until yo u do something first．＂：GOTO PRO
4262 RETURN
4275 IF NCH〈〉 12 THEN GOTO HUH
4276 IF LOC $\langle>850$ THEN ？＂You can＇t do that here．＂：GOTO PRO
4277 FOR CH＝C TO D：IF INUS（CH，CH）＝＂14＂ THEN G05UB OK：SHA＝5：？＂Your Machete is now sharp．＂：GOTO PRO
4278 NEST CH：GOTO DHT
4300 IF NCH＜31 THEN GOTO HUH
4301 IF LOC $\rangle 1050$ THEN ？＂You can＇t do that here．＂：GOTO PRO
4302 IF NOT FENC THEN ？＂You can＇t do that．．．Yet！！י＇：GOTO PRO
4303 IF 5HIP〈＞15 THEN？＂You＇re missin g an essential item，＂：GOTO PRO
4304 IF IN7＞4 THEN ？＂DROP the things you don＇t need first．＂：GOTO PRO 4305 SC＝5C＋TW：G05UB OK：LOC＝1150：INU5＝＇＂ 8ห88ㅈ＇：GOTO NLC
4325 IF NCH〈〉JO AND NCH〈＞ 34 THEN GOTO HUH
4326 G05UB 13060：G05UB OK：IF LOC＝1150 THEN SC＝5C＋50：？＂K＂：POKE 756，145：G05UB 12：G0TO 4330
4327 ？＂Sleeping on skull Island is ri sky．＂：？＂A head－hunter has just scalpe d you．＂：GOTO DON
4330 FOR I＝A TO 15：K1＝U5R（ADR（FS），I）：N EKT I：FOR CH＝E TO 15：POSITION 3，CH：？
 4331 POKE 710, CH＊E：SOUND E，CH＊J，10， $8: 5$ OUND 3，CH＊D，16，D：NEKT CH：POKE 716，128： FOR I＝C TO 40 ：NEST I
PO 4332 FOR CH＝C TO $31: I=A S C(C S(C H, C H)): 5$ OUND E，I，10，10：50UND 3，I＊3，10，4：FOR aK $=C$ TO D：MEKT QK
433S SOUND E，$A, A, A: N E K T$ CH：5OUND $3, A, A$ ，A
4334 K1＝U5R（ADR（F5），12）：P05ITION 4，13： ？HE；＂You have survived a journey thru ＂：？\＃E；＂skull Island．＂；WIN＝D
G 4341 ？HE；＂You are now living＂：？HE；＂ on Paradise Isle with the native＂：？ \＃E；＂girl as your wife．＂：GOTO DON
4460 FOR CH＝E TO D：IF I $995(C H, C H)=" 1 "$ THEN I995（CH，CH）＝＂ゅ＂：G05UB LOC＋15：G05L B OK：GOSUB DCH：SC＝5C＋TW：GOTO 4402 B OK：GOSUB DCH：SC＝S
4461 NEKT CH：RETURN
4402 G05UB 3334：IN8＝IN8－C：？＂As the ro ck strikes the boulder，it＂：？＂lights the bamboo on fire．＂：FIRE＝TR

4403 INT＝IN7－C：GOTO 4021
4444 FOR CH＝C TO D：IF INUS（CH，CH）＝CHRS （NCH）THEN INUS（CH，CH）＝＂X＂：GOTO 4446 KY 4445 NEKT CH
CH 4446 IF NCH＝11 THEN NAI＝A
ZW 4447 IF NCH＝7 THEN SKU＝
CC 4448 RETURN
AL 4500 IN7＝IN7－C：IF NCH＝4 THEN 4510
KU 4501 IF NCH＝5 THEN 4529
UU 4502 ？＂The skull disappears into a cl oud of＂：？＂smoke as the fence lowers $h$ ere．＂：GOSUB 500日：FENC＝5：SC＝5C＋TW
ZH 4503 POKE 709， 14 ： $5 \mathrm{KH}=\mathrm{A}:$ RETURN
BZ 4510 FOR CH＝C TO D：IF I99S（CH，CH）$=י$ L＇ THEN ？＂He thanks you and says：＇Dig a hole＂：？＂where the ground＂；：GOTO 4512
HT 4511 NEXT CH：IN7＝IN7＋C：？＂廿＂；：GOTO 403 6
TL 4512 ？＂can measure time．＇＂： $5 \mathrm{C}=5 \mathrm{C}+\mathrm{TW}$ RETURN
WZ 4520 ？＂She takes it gratefully．＂：KI5 5：RETURN
AZ 5000 FOR CH＝A TO 200 STEP 3：POKE 709，C H：SOUND A，CH，10，10：NEKT CH：5OUND A，$\hat{A}$ ， $\boldsymbol{A}$ ，A：RETURN
MQ 10000 FOR CH＝C TO 4：JP＝D： $0 X=12: G 0 S U B 1$ 0010：JP＝8：0X＝8：G05UB 10010：NERT CH：G05 UB 3333：RETURN
JZ 10010 FOR $K=J P+5$ TO JP STEP－E：GOSUB 1 0065：NEXT X：FOR $\mathrm{K}=\mathrm{JP}$ TO JP＋ 4 STEP 5：G0 SUB 10065：NEXT X：SOUND $3, A, A, A$
MI 10011 SOUND $C, A, A, A: F O R \quad R=C$ TO D：NEKT R：RETURN
CM 10065 SOUND $3, X * 3, C, 0 X: 50 U N D ~ C, ~ X, 8,0 X *$ 6．7：RETURN
EM 12006 IF NCH＝TW THEN RETURN
GK 12061 GOTO HUH
aH 13006 IF NCH $=30$ THEN RETURN
KB 13005 ？＂Watch it！${ }^{2}$＂：GOTO PRO
WB 15000 IF NCH〈＞ 29 AND NCH〈＞31 AND NCH〈＞ 32 THEN RETURN
N5 15005 IF NCH〈＞ 29 THEN 15100
LW 15010 FOR CH＝C TO D：IF（INUS（CH，CH）＝＂＇V ＂OR I99与（CH，CH）＝＂凶＂）AND NOT FOOD TH EN POP ：GOTO 15500
OR 15015 NEXT CH：GOTO NTH
IH 15100 IF LOC＜＞ 1150 THEN GOTO NTH
IK 15110 GOSUB OK：GOTO 4145
KY 15500 GOSUB OK：？＂It looks drinkable．＂ ：GOTO PRO
NH 15999 IF TRく＞D THEN GOTO PRO
5P 16000 TRAP 16000：POKE 752，A：FOR CH＝C T 0 14：IF PW1 $\$(C H, C H)="$＂THEN ？＂＂；：NE KT CH
WP 16001 ？CHRS（ASC（PW15（CH，CH））＋64）；：NEX T CH：？＂＂；：INPUT PWS
TU 16002 FOR CH＝C TO LEN（PW5）：PWS（CH，CH）$=$ CHRS（ASC（PWS（CH，CH））＋10）：NEKT CH
YY 16003 IF PWS＝＂［＿0］＾＊ROL＿UK＂THEN GRAPH ICS A：TRAP 40000：GOTO 16750
ZG 16004 POKE 752，C：GOTO 32020
OB 17000 IF LOC＝950 OR CLOC＝1250 AND NOT BG）THEN POKE 712，RND（C）＊250：UT＝UT +5 ． 6E－63
UM 17001 UT＝UT＋0．01：IF UT＜10 THEN RETURN
 t there？＇：GOTO TW
18000 ON INT（5＊RND（C）＋C）GOTO 18100， 18 200，18300，18400，18506
KH 18100 LOC＝600：I995＝I10与：RETURN
TH 18200 L0C＝1200：I995＝I195：RETURN
AR 18300 LOC＝650：I995＝I115：RETURN
TG 18400 LOC＝450：I995＝I7S：RETURN
RI 18500 L0C＝350：I99今＝I5S：RETURN
IS 29000 GRAPHICS A：POKE 16，112：POKE 5377 4，112：POKE 710，A：POKE 752，C：POKE 709，A ：POSITION 12，10：？＂Initializing．．．＂
ZY 29001 FOR I＝A TO 15 STEP $6.3:$ POKE 799， I：NEKT I：FOR I＝15 TO A STEP－0．3：POKE 709，I：NEKT I
KK 29002 POKE 559，C 30000 TRAP
RJ 30005 INPUT HC，DLIS：INPUT HC，LS：L＝ADRC LS）：INPUT HC，FS：INPUT \＃C，CS：INPUT HC， 5 55
EZ 30010 FOR I＝1536 TO 1710：GET \＃C，Q：POKE I，a：NEXT I：CLOSE HC
YY 30015 OPEN HC， $4, A$, ＂D：STRING1＂：AT＝USR $<1$ 619，36864）：CLOSE HC：GOTO 31450 30208 GRAPHIC5 A：
e not found．＂：END
YR 31450 UUS＝＂GETTAKDROGIUREACLIEATDRTEKA LOOENTKISHUGLIGRINCUTSAWDIGSHABUIGOT＂： SWS＝＂NSEWDIHOKYZ\％＂
SH 31455 WS $5=$＂NORSOUEASWESDOWINUHELOUIKKK


OG 31460 NNS＝＂＇5HEPAPWOOCOCPEADIAROC5KUSAW BAMBAGNAIMACBARTORUOLTREPLAPOLHUTGIRBO ULIOBELNATSTASTOFIRHOLMILSLEBOASHIYOU＇
KS 31462 NN $5(103,105)=" \mathrm{HEL}$＂
 $=105: I 45=105: I 55=105: 165=105: I 75=105: I$ 85＝I05：I9与＝I05：I105＝105：I115＝105
EJ 31751 I125＝I05：I135＝I05：I145＝I05：I155 I05：I165＝I05：I175＝I05：I185＝I05：I195＝I6与：I205＝I0与：I215＝I05：I225＝10与：I255＝I05
 $r^{\prime \prime}: I 35(C, C)=" 4+": I 45(C, C)="+": I 65(C, C)=$

J0 31760 I10S（C，C）＝＇山＂：I125（C，C）＝＇川＂：I14\＄
 I175（C，C）＝＂14＂： $1185(C, C)="+": I 16 I S=I 05$

 ＂： $155(\mathrm{C}, \mathrm{C})=" \mathrm{H}: I 0 \$(\mathrm{C}, \mathrm{c})=" \vdash$
IH 31770 I7S（C，C）＝＂＇＂：OK $5=1 \mathrm{HH}$ O．K．＂：WN

RF 31800 515＝＇困 PHICS E：POKE 559，A：POKE 712，4：POKE 710 ，4：POKE 709，156
CY 31801 POKE 16，112：POKE 53774，112：POKE 756，145：POSITION A，E：？\＃D；＂Ce巳 5kull i 5land eeer：POKE 752，C：POKE 82，0：？
EJ 31802 POSITION 8，4：？HD；＂BY＂：POSITION A，6：？\＃D；＂\％\＆\％Fohn Ratita \％\＆\％＂：？＂＂e Copyright 1989 जan John Patuto Ill＂
GR 31803 ？：？＂A．N．A．L．O．G．Comp uting＂：POKE 559，34：G05UB 31804：POKE 82 ，2：GOTO 31810
GJ 31804 FOR K＝24 TO 65 STEP E：I＝ASC ©SS5C X，X J）：FOR R＝A TO 3：50UND R，I＋R，10，8：NE KT $R$
WH 31805 FOR $\mathrm{I}=\mathrm{C}$ TO ASC $(555(8+\mathrm{C}, \mathrm{B}+\mathrm{C})(20 /$ （H1－4）：NEKT I：SOUND E，$A, A, A: N E X T$ X：50U ND $C, A, A, A: S O U N D ~ 3, A, A, A$
KB 31806 SOUND $A, A, A, A: R E T U R N$
CS 31810 FOR CH＝C TO 20：NEXT CH：OPEN HE，8 ，A，＂5：＂：POKE 16，112：POKE 53774，112：RET URN
GK 31900 IF NOT FOOD AND TR ${ }^{2} \mathrm{D}$ THEN ？＂YO u＇re slowly growing weaker．＂：GOTO TW
UZ 31910 ON H1 G05UB $3450,3475,4212,31930$ ， $3475,5000,31804,10060,3333$
zo 31920 FOR I＝C TO D：NEXT I：GOTO TW
EU 31930 FOR CH＝11 TO 23： $\mathrm{K}=\mathrm{ASC}(555(\mathrm{CH}, \mathrm{CH})$ 3：SOUND E，K，10，10：50UND 3，K／E，10， $8: F 0 R$ $I=C$ TO CH／1．5：NEXT I：50UND $3, A, A, A$
J5 31932 NEXT CH：SOUND E，A，A，A：RETURN
532069 IF NOT WIN AND NOT OU THEN GOS UB 3450
or 32016 G05uB 1800：？＂Want to try again凅；
D0 32011 GET HC，$X: I F K=89$ THEN RUN
WP 32612 IF $\mathrm{K}\langle>78$ THEN 32011
ME 32020 ？יKי＂：？：FOR CH＝C TO E：IF NOT W
四［＂：NEXT CH：GOTO 32022
团 回＂：NEKT CH：GOTO 32022
KH 32022 SOUND E，RND（A）$\because 255,10$ ，E：IF PEEK C 53279）（ $>$ D THEN 32022
HM 32023 RUN

## ISTING 2：BASIC



PI 2 REM $*_{*} *$ STRING GENERATOR FOR $\# \# \#$
KJ 3 REM $*$ SKLLL ISLAND $\quad * *$
EW 5 REM＊＊


WU 8 REM
IN 10 DIM AS（2）：？＂म＂：？：？：？＂Place the disk to Create the string＂：？＂files in Drive Hi and hit rREIMRD］＇＂；INPUT AS 15？：？：？＂One Moment．．．creating File ．．．＂：？
20 CLOSE \＃1：OPEN \＃1，8，0，＂D：STRING1＂
30 FOR $X=1$ TO 1024：READ A：？\＃1；CHRS（A） ：：NEKT X：？\＃1：CLOSE $\sharp 1: 0 \mathrm{PEN} \sharp 1,8,0, י \mathrm{D}:$ ；：NERT X：
I 35 FOR $X=1$ TO 64：READ $A: ?$ H1；CHRS（A）； NEST X：？H1
40 FOR $x=1$ TO $43:$ READ $A:$ ？H1；CHRS（A）； NEKT X：？\＃1


56 FOR X=1 TO 42:READ A:? H1;CHRS(A);: NERT X:? H1
60 FOR $x=1$ TO 31:READ A:? H1; CHRS(A);: NEKT $\mathrm{K}:$ ? H1
B 65 FOR $X=1$ TO 65:READ A:? H1;CHRS(A) ;: NERT $\mathrm{B}:$ ? H1
IM 67 FOR $X=1$ TO 175:READ A:? H1; CHRS( $A$ ); : NERT X : ? \#1
70 CLOSE H1:? :? :? "All Done... Now Ru n Skull Island..."':END
99 READ $A: X=8+1: G 0 T 099$
Y 106 DATA $0,0,0,0,0,0,6,0,12,24,48,48,4$ $8,0,48,0,0,162,102,162,0,0,0,0,51$
110 DATA $102,204,0,0,0,0,0,264,102,51$ $0,0,0,0,0,24,36,66,153,153,66,36,24,66$ $0,0,0$
, 195
F 120 DATA $102,24,24,102,195,66,12,24,48$ $, 0,6,0,0,0,28,56,112,112,112,56,28,0,5$ $6,28,14$
130 DATA $14,14,28,56,0,6,102,60,255,60$ $, 162,0,0,0,24,24,126,24,24,0,0,0,0,0,0$ 146 DATA $8,28,24,48,0,0,0,126,0,0,0,0$, $0,0,0,0,16,56,16,0,6,6,12,24,48$
RJ 150 DATA $96,64,0,28,54,102,266,214,230$ $, 124,6,48,246,48,48,24,24,254,6,248,20$ $4,6,60,96,198$
160 DATA $126,0,124,108,6,63,3,99,126,0$ $, 22,54,108,264,254,4,14,6,62,112,224,1$ $24,6,198,252$
JC 170 DATA $0,62,102,192,252,198,198,252$ $0,254,198,198,6,12,24,48,6,66,162,198$, $124,198,198,124,0$ 186 DATA $124,198,198,126,6,140,120,0,1$ $6,56,16,0,16,56,16,6,8,28,8,6,8,28,24$, 48,6
190 DATA $12,24,48,24,12,6,0,6,0,126,0$, $0,126,0,6,96,48,24,12,24,48,96,0,254,1$ 98
206 DATA $12,24,24,0,24,0,126,255,153,2$ $31,126,162,66,24,30,54,102,198,254,198$ ,198, 0, 30,54,102 210 DATA $252,198,198,254,0,30,54,102,1$ $92,192,198,254,0,246,216,264,198,198,1$ $98,252,0,30,54,96,252$
220 DATA $192,198,254,6,30,54,96,252,19$ $2,192,192,0,30,54,96,192,222,198,254,0$ ,162,162,198,198,254
PA 230 DATA $198,198,6,254,152,24,48,48,48$ $, 254,0,254,24,12,6,198,198,252,0,50,16$ $2,264,248,264,198$
MD 246 DATA $198,6,24,48,96,192,198,198,25$ $4,0,62,122,218,218,218,194,230,0,18,58$ ,122,218,218,218,222
AG 258 DАТА $0,28,54,162,198,198,198,124,6$ $, 30,54,162,254,192,192,192,0,28,54,162$ , 198, 222, 198, 126, 0 260 DATA $30,54,162,254,216,264,198,0,3$
$0,54,96,252,6,198,252,6,126,24,48,48,9$ $6,96,96,0,38$
TC 270 DATA $162,198,198,230,254,124,0,102$ $, 102,198,198,198,108,56,0,206,134,134$, $182,182,188,248,0,198,198$
280 DATA $108,56,44,236,198,0,38,102,19$ $8,254,6,198,252,0,248,146,6,62,96,192$, $254,0,0,30,24$
ZU 290 DATA $24,24,24,30,0,0,64,96,48,24,1$ $2,6,0,0,120,24,24,24,24,120,0,0,8,28,5$

NH 300 DATA $99,0,0,0,0,0,0,0,0,0,255,0,0$, $0,0,0,0,0,0,0,0,224,252,255,255$ 310 DATA $252,224,0,255,0,142,138,142,2$ $34,0,255,255,6,238,170,266,170,0,255,0$ $324,248,159,191,248$
320 DATA $224,6,0,0,0,248,248,24,24,24$, $3,7,14,28,56,112,224,192,192,224,112,5$ $6,28,14,7$
DU 330 DATA $3,1,3,7,15,31,63,127,255,0,0$, 0,248,252,254,255 3,248,252,254,255
$40,240,0,0,0,0,255,0,236,170,170,234,0$ ,255,255 350 DATA $0,238,68,68,78,0,255,0,0,6,7$,
$15,31,63,255,0,28,28,119,119,8,28,0,7$, 15,
360
360 DATA $8,8,8,8,8,7,0,0,0,255,255,0,0$ $, 6,0,7,63,255,255,63,7,0,162,153,56$ 370 DATA $92,26,24,48,48,32,112,241,2$ $, 255,255,255,255,255,0,234,74,74,78,0$, $255,224,16,16,16$
Qa 380 DATA $16,16,16,224,255,0,200,174,17$ $0,174,0,255,192,153,28,58,88,24,12,12$, $255,6,238,138,138$
HA 396 DATA $238,0,255,120,96,120,96,126,2$ $4,30,0,0,24,60,126,24,24,24,0,0,24,24$, 24,126,60
ON 460 DATA $24,0,0,24,48,126,48,24,0,0,0$, $24,12,126,12,24,0,0,255,0,230,134,96,2$ 30,0

KL 410 DATA $255,0,0,56,108,204,140,246,0$, $192,192,220,246,230,198,124,0,6,0,28,5$ $4,96,192,126,6$
420 DATA $6,6,30,54,102,198,126,0,0,0,6$ $0,102,252,128,254,0,28,54,96,192,248,1$ $92,192,0,0$
W 436 DATA $0,60,162,198,126,6,254,192,19$ $2,220,246,230,198,198,0,0,24,6,24,24,4$ $8,96,0,0,6$
FE 440 DATA $0,6,6,6,204,120,192,192,216,2$ $40,246,216,266,0,12,24,48,96,96,96,96$, $0,0,0,60$
Y 450 DATA $246,182,182,182,0,0,0,220,246$ $, 236,198,198,6,0,0,28,54,162,198,124,0$ , 6, 0, 60,102
II 460 DATA $198,252,192,192,0,0,120,204,1$ $98,126,6,6,0,0,156,182,224,192,192,0,0$ , 6, 66,96,252
476 DATA $6,252,6,12,24,254,48,48,48,48$ $, 0,0,0,102,162,230,198,124,0,0,0,198,1$ $98,198,108$
486 DATA $56,0,0,0,198,214,126,108,68,0$ $, 0,0,102,220,24,60,102,0,0,0,102,198,1$ $9,0,102$,
$98,126,12$
सH 490 DATA $248,0,0,254,156,56,114,254,0$, $0,24,60,126,126,24,60,0,24,24,24,24,24$ ,24,24,24
CI 500 DATA $0,126,120,124,110,162,6,0,8,2$ $4,56,126,56,24,8,6,16,24,28,36,28,24,1$ 6, 0
(0) 516

73 DATA $164,104,141,1,2,104,141,0,2,1$ $73,48,2,133,203,173,49,2,133,204,166,2$ $4,169,130,145,203,169,0,141,243,2,96$ 520 DATA $0,72,138,72,169,6,162,10,141$, $10,212,141,24,208,142,23,208,230,208$ 525 DATA $165,268,41,16,74,74,74,141,1$, 212, 164, 176, 164, 64
IH 536 DATA $104,104,133,206,104,133,205,1$ $04,133,264,164,133,203,169,0,168,133,2$ $13,177,203,133,267$
RG 540 DATA $104,104,168,136,48,10,165,207$ $, 269,205,208,247,206,132,212,96,169,0$, 133,212,96
ZE 550 DATA $104,104,164,170,165,88,133,20$ $3,165,89,133,204,216,24,262,48,15,165$, 203,165,40,133
J5 560 DATA $203,165,204,105,0,133,264,24$, $144,238,160,159,169,0,145,203,136,208$, 251,96
570 DATA $80,80,60,52,46,52,60,60,60,60$ $, 52,46,44,46,52,0,52,52,46,44,38,44,46$ $, 0,46,46,44,46,52,60,60$
586 DATA $180,140,120,96,160,120,92,78$ $92,78,130,130,110,130,130,110,130,110$, 80,86,96
590 DATA $96,108,185,200,215,200,165,25$ $0,215,250,195,200,185,200,215,200,165$, $250,215,256,195,200$
$50,1810,260,215,206,140,150,150,1$ $00,165,250,215,244$
1440 DАTA $72,169,100,141,10,212$
1450 DATA $141,24,208,141,26,208$
1460 DATA $169,6,141,9,212,104$
1479 DATA $64,104,164,133,204,104$
1486 DATA 133,203,169,0,133,205
1490 DATA $169,224,133,206,162,4$ 1500 DATA $160,0,177,205,145,203$ 1510 DATA $200,208,249,230,204,230$ 1520 DATA $206,202,208,240,96,104$ 1530 DATA $162,16,169,9,157,66$ 1540 DATA $3,104,157,69,3,164$ 1550 DATA $157,68,3,169,6,157$ 1569 DATA $72,3,169,4,157,73$ 1579 DATA $3,32,86,228,96,104$ 1580 DATA $162,16,169,5,76,58$ 1590 DATA $6,9,104,169,6,9,0,133$ 1606 DATA $212,169,0,133,213,96$ 1601 DATA $72,138,72,152,72,169,0,162,0$ , 169, 0
1602 DATA $141,10,212,141,26,208$
1603 DATA $142,24,208,140,25,208$
1604 DATA $169,0,141,22,208,141,10,210$, $169,6,141,9,212,169,0,141,23,208,169,1$ $56,141,0,2$
OT 1605 DATA $104,168,104,170,164,64,72,16$ $9,0,141,10,212,141,26,208,169,104,141$, $16,210,141,0,2,104,64$ ㄷ


## （continued from page 54）

CF 5005 FOR $\begin{gathered}\mathrm{D}=7 \text { TO 12：P0SITION 5，D：？\＃6；＂} \\ \text {＂：NEXT D }\end{gathered}$
RK 5010 POSITION 6，8：？46；＂Rame aUCT＂
AR 5050 FOR L＝20 T0 70：SOUND $0, L, 10,10: 50$ UND $1, L, 6,10: N E X T L$
So 5061 SOUND 0，0，0，0：SOUND $1,0,0,0: C=0$
5H 5062 POSITION 6，8：？H6；＂Rame ougn＂
BH 5065 FOR W＝1 TO $30: N E X T$ W：POSITION 6， 8 ：？46；＂
AL 5070 FOR W＝1 T0 30：NEXT W：C＝C＋1
CC 5075 POSITION 5，10：？46；＂PRPS5 Etind
FF 5076 IF $C=28$ THEN FOR $I=0$ T0 19：COLOR 0：PLOT 0，I：DRAWTO 19，I：FOR D＝1 T0 5：NE XT D：NEXT I：GOTO 3000
5 5080 IF PEEK（53279）＝6 OR STRIG（日）＝0 TH EN SN＝0：GOTO 5
5N 6000 GOTO 5062
NG 6999 REM－－MUSIC－－
BM 7000 POSITION 9，1：？H6；＂回＂：POSITION $\mathcal{K}$ ， Y：？み6；＇＂吕＂：POKE 708,14
ZL 7001 SOUND $0,255,10,10: 50$ UND $1,254,10$ ， 10：F0R L＝1 T0 50：P0KE 710，RND（0）$\times 89: \mathrm{NE}$ XT L
LB 7002 RESTORE 7100
YH 7095 READ MUSIC
HN 7066 IF MUSIC＝ 255 THEN GOTO 7120
UQ 7010 SOUND 0，MUSIC，10， 10
KM 7020 SOUND 1，MUSIC－1，10，16
TH 7025 FOR G＝1 T0 5：NEXT G：POKE 712，MUSI C：POKE 710，PEEK（53770）
SP 7650 GOTO 7005
BR 7100 DATA $121,96,96,121,91,91,81,81,81$ $, 91,108,121,144,128,144,121,108,121,72$ $, 64,72,91,81,53,47,45,53,33,35,40$
KJ 7116 DATA $45,47,53,60,60,255$
EW 7120 SOUND $0,0,0,0: 50 U N D ~ 1,0,0,0: P O K E$ 712，0
UJ 7122 FOR I＝0 T0 19：COLOR 0：PLOT I，0：DR AWT0 I，22：NEXT I
7201 IF DIFF＜110 THEN DIFF＝120
$\mathrm{YJ} 7202 \mathrm{CTT}=\mathrm{CTT}+1$
FR 7204 IF CTT＝3 THEN GOTO 9069
PZ $7207 \mathrm{EG}=\mathrm{EG}+7$ ：WB＝WB＋0．5：DIFF＝DIFF－27
KR 7208 G05UB 400
FU 7210 BRS＝BRS＋1：GRAPHICS 1＋16：POKE 756， $\mathrm{CH} / 256$ ：SETCOLOR 2，RND（1）＊14，9：SETCOLOR 9，8，10：GOB＝G0B＋7：G0TO 7
B6 8999 REM－－BONUS SCREEN－－
ER 9000 GRAPHICS 17：POKE 710，14：P05ITION 5，5：？46；＂bonus round＂：CTT＝0
MW 9001 POSITION 3，10：？H6；＂＇ROI NTST नRiE $5{ }^{11}$


JP 9005 FOR $D=1$ T0 100：POKE 708，RND（0）＊16 ＋50：NEXT D
QH 9010 GRAPHICS 17：POKE 756，CH／256：P0SIT ION 5，0：？\＃6；＂bonus romid＂： $\mathrm{X}=10: Y=10: P$ OKE 708，156

 $T=6: 51=4: 52=16$
 Gqgqq＂${ }^{\prime \prime}$ IF SC＞70000 THEN T＝3
PT 9013 P05ITION 5，23：？\＃6；＂AUOID TRAPS＂
GM 9014 FOR K＝5 T0 21 5TEP 3
DY 9015 POSITION $3, K:$ ？ $46 ; "$－
DR 9617 NEXT K：SCR＝PEEK（88）＋ 256 FPEEK（89）： BS 0
50 9050 TP＝5CR＋8＋20＊Y：5T＝STICK ©0）：POKE 71 0， 14
HY 9051 IF X＝51 AND $\mathrm{Y}=52$ THEN G0T0 9700
AL 9052 IF SC＞60060 AND RND（0）$\because 9<5$ THEN G 05山B 500
NI 9055 GOSUB 4100：IF $8>18$ THEN POKE SCR＋ $X+20 * Y, 0: X=X-1$
SU 9060 IF $X<1$ THEN POKE $5 C R+X+20 * Y, 0: X=K$ $+1$
XU 9061 IF $Y<5$ THEN POKE $5 C R+8+20 * Y, 0: Y=Y$ $+1$
009062 IF $Y>20$ THEN POKE SCR $+X+20 * Y, 0: Y=$ $\mathrm{Y}-1$
II 9063 SOUND $0,0,0,0$
LL 9064 IF BS＝5 THEN GOTO 9200
LU 9070 POKE TP，11：FOR D＝1 TO 8：NEKT D：LO CATE X，Y，BC：POSITION 7，2：？ $46 ; " C O U N T "$ ；B5
TL 9075 IF BC＝45 THEN GOTO 9700
RW 9080 POKE TP，0：POKE 710，PEEK（53770）
JP 9100 IF TIME＝0 THEN T1＝INT（RND（0）＊15）＋ 3：T2＝INT（RND（0）＊15）＋4：POSITION T1，T2：？廿6；＂思＂
$K J 9103$ TIME＝TIME＋1：IF TIME $>T$ THEN POSITI ON T1，T2：？ $46 ; "$＂：F0R $D=10$ T0 0 STEP－ 1：SOUND 0，10，10，D：NEXT D：TIME＝0
YB 9107 IF $B C=163$ THEN FOR $D=1$ TO 10：50UN D $0, \mathrm{D}+2,8,6: \mathrm{POKE} 712, \mathrm{D}$ 前：NEXT D：BS＝BS＋ 1：50UND 0，0，0，0：POKE 712， 0

9150 GOTO 9050
9200 REM
KF 9240 POSITION 3，23：？46；＂CONGRATULATIO NS＂
UN 9241 POSITION 5，2：？46；＂MNNOMBODTS＂ UM 9245 FOR $D=1$ T0 40：50UND 0，RND（0）$\because 10,1$ 0，10：50UND 1，RND（0）$\because 20,10,10: N E \& T$ D：A＝ INT（RND（ 0 ）$\because 10) * 1000+1000: 5 \mathrm{C}=5 \mathrm{C}+\hat{\mathrm{A}}$
SP 9246 POSITION 5，2：？\＆6；＂BONUS＂；A；＂ ＂：SOUND 0，0，0，0：50UND $1,0,0,0$
ZK 9247 FOR $D=1$ T0 20：FOR $F=15$ TO 0 STEP －1：POKE 708，F：NEXT F：NEKT D
BH 9248 SN＝5N＋1：G0SUB 406：GRAPHICS 1＋16：P OKE 756，CH／256：SETCOLOR 2，RND（1）＊14，9： SETCOLOR 0，8，10：GOTO 7
UK 9250 GOTO 9250
LA 9700 POKE TP，0：POSITION 3，23：？ $46 ; " 50 R$ RY NO BONUS＂
QT 9704 FOR JJ＝30 TO 50
YH 9705 FOR $D=-15$ TO 15 5TEP 3：SOUND 0，AB S（D）＋JJ，16，10：POKE 708，D＋50：NEKT D
OY 9706 NEKT JJ
DZ 9707 SOUND 0，20，6，10：P0KE 708，255：F0R $D=1$ T0 $40: N E H T$ D： 50 UND $0,0,0,0$
AC 9710 5N＝5N＋1：GOSUB 400：GRAPHICS 1＋16：P OKE 756，CH／256：SETCOLOR 2，RND（1）＊14，9： SETCOLOR 0，8，10：GOTO 7
UW 9999 GOTO 9050


## - 6 <br> H <br> Ethis <br> SSUE

HORE

## BOOT CAMP

$+$


End User Database Delpil




[^0]:    BYTE 1: $0 \quad 1 \quad 1.018011$
    AND BYTE 2: 1 日 111000101
    RESULT: 001000001

[^1]:    BYTE 1： 1011110001 EOR BYTE 2： $1 \times 111111111$

    RE5ULT： 01001110

[^2]:    195 POKE 1612,1: POKE 1613,1 225 POKE 1614, PEEK (1545)-PEEK
    (1544): POKE 1615, PEEK (1547)-P EEK (1546)
    508 IF PEEK (632) <>15 THEN 504
    ND $1,30,10,8$ :GOTO 510
    509 SOUND 1, $0,0,0$
    510 POKE 1603, INT (RND (0) *15):
    IF PEEK (1603) $=14$ THEN SOUND O , 2, 6, 15:FOR I=0 TO 50: NEXT I:
    SOUND 0, 0, 0, 0: GOTO 508
    511 IF PEEK (1603) $=10$ THEN 501
    ND $0,12,6,15: F O R$ I=0 TO $50: \mathrm{NE}$
    KT I: SOUND 0, 0, 0, 0:GOTO 508 512 IF PEEK (1603) $=11$ THEN SOU ND $0,22,6,15: F O R$ I=0 TO $50: \mathrm{NE}$ XT I: SOUND 0,0,0,0:GOTO 508
    513 IF PEEK $(1603)=9$ THEN SOUN D $0,32,6,15:$ FOR I=0 TO 50:NEX T I:50UND 0, 0, 0, 0:GOTO 508
    514 IF PEEK $(1603)=13$ THEN SOU
    ND $0,42,6,15: F 0 R$ I= TO $50: \mathrm{NE}$
    KT I:SOUND 0,0,0,0:GOTO 508
    515 IF PEEK (1603) $=5$ THEN SOUN
    D $0,52,6,15$ :FOR $I=0$ TO $50:$ MEX
    T I: SOUND 0, 0, 0, 0:GOTO 508
    516 IF PEEK $(1603)=7$ THEN SOUN
    D $0,62,6,15:$ FOR $I=0$ TO $50: \mathrm{NEX}$
    T I:SOLUD $0,0,0,0: G 0 T 0508$
    517 IF PEEK (1603) $=6$ THEN $50 U N$
    D 0,72,6,15:FOR I=0 TO 50:NEK
    T I:SOUND 0,0,0, 0:GOTO 508
    518 FOR I=0 TO 25 : NEST I:GOTO 508

    Now change these lines:
    170 POKE 623,33
    210 POKE 1544,95: POKE 1545,95
    :POKE 1546,135:POKE 1547,140:
    FOR I=0 to 3:POKE $53248+$ I, PEE
    $\mathrm{K}(1544+\mathrm{I})$ : NEKT I
    220 POKE 1556, 15: POKE 1557, 15
    :POKE 1558,9:POKE 1559,9
    230 POKE 1610,1:POKE 1606,0:P
    OKE 1607,0:POKE 1608,2:POKE 1
    609,2

[^3]:    10 DATA 203，265，465，844，294，973，652，27
    $0,978,797,278,275,835,209,361,763927$
    50 DATA $355,94,254,420,935,848,580,41$
    $, 974,564,5435$

