The #1 Magazine For Atari Computer Owners

F!NGLDS

COMPUT N ¢

SEPTEMBER 1989 DISK VERSION $12.95
ISSUE 76 :

rue ouurs

Reviews:

- Diamond GOS
Chessmaster 2000
Crosshow

Type-in software:
Macro Editor
RAM Disk 800XL
Skeet Shoot

And more!

7

|4369 ||| Program your XF551 disk drive!

50077""8 |

Two Historic Facts:

Dewey did not defeat Truman for the Presidency in 1945.

Truman went on to be known for his truthful, forthright style

and as one of the nation’s most popular Chief Executive Officers.
-

1

You can save time, and save a lot of money by subscribing to
AN.AL.O.G. Computing Magazine. Save $19 off the cover
price with the convenience of having A.N.A.L.O.G. delivered directly
to your door before it even hits the newsstands. To order use the
handy postage-paid order card located in the back of this magazine!

1 YEAR FOR ONLY $28

SAVE $19 OFF THE COVER PRICE

1 YEAR WITH DISK ONLY $79

BY CLAYTON WALNUM

The latest Consumer Electronics Show was
recently held in Chicago, and Atari amazed
everyone by unveiling a new product that vir-
tually no one had heard of before the show.
Although the rumored 16-bit game system has
yet to be released, Atari displayed a new
hand-held color game machine. The unit,
which is about the size of a videotape, has
a 3%-inch screen capable of displaying 16
colors simultaneously. An eight-position con-
troller pad takes the place of a joystick, while
several other buttons take on various control
and firing duties.

One of the machine’s unique features is its
ability to flip the screen image so that it can
be held with the controller pad on either the
left or right side. That ought to make all you

SEPTEMBER A.NL.A.L.O.G. Computing

lefties happy. But what really makes this unit
special is that, unlike the hand-held game
machines currently available, the new Atari
model is not limited to a single game, but
rather incorporates cartridges, just like its
larger cousins. Six games from Epyx have al-
ready been announced. The “‘cartridges” are
actually small cards about the size of a cred-
it card. Each game card can hold as much
as two megabytes of data, although the cur-
rent cards hold only 128K.

The $149 machine, which is projected for
release in September, runs for up to eight
hours on six “AA” batteries and includes a
headphone jack. How did Atari manage to
slip such a surprise into the show? The fact
is that the new game machine was originally
developed by Epyx, which intended to release

it themselves but for some reason (rumor has
it that the announcement of the Nintendo
“Game Boy,” a similar machine, scared the
powers-that-be at Epyx) decided to drop the
project. Atari apparently decided the machine
was a much better unit than the one planned
by Nintendo (and, if all the specifications are
accurate, it is), and decided to take a.chance
with it, making the necessary agreements
with Epyx.

So although the new game machine wasn’t
developed by Atari’s research department, it
is a perfect addition to their videogame line.
It will be interesting to see how Atari han-
dles the marketing of this unique product—
one that could prove to be immensely popu-
lar. Let’s hope they take the aggressive ap-
proach they’ve been promising. [

3

E 4

8

RAM Disk 800XL

Now 800XL owners can use some hidden memory to set up a RAM disk.
by Jerry van Dijk

10
Sharp Shooter

More light-gun fun from the author of last month’s light-gun tutorial, *“Gun Assist.”
by Matthew J.W. Ratcliff

12
Recursion

It has been claimed that Atari BASIC, because of its inability to pass parameters into
subroutines, is not capable of recursion. Guess again.
by Gregg Hesling

16
Skeet Shoot

Ready? Pull! Use your joystick to blast clay pigeons out of the sky in this all-machine-
language simulation.
by Tracy Jacobs

54
XF551 Commands

An exploration of the undocumented commands for controlling the new
XF551 disk drive.
by Jerry van Dijk

58
Macro Editor

Type complete lines with a single keystroke. This program will also create an AUTO-
RUN.SYS file that'll install your macros at every boot-up.
by Frank Seipel

on page 58

ANALOG Computing (ISSN 0744-9917) is published monthly by L.F.P., Inc., 9171 Wilshire Blvd., Suite 300, Beverly Hills, CA 90210. © 1989 L.F.P., Inc. Return
postage must accompany all manuscripts, drawings, photos, disks, etc., if they are to be returned, and no responsibility can be assumed for unsolicited materials.
All rights reserved on entire contents; nothing may be reproduced in whole or in part without written permission from the publisher. U.S. subscription: $28 for one
year (12 issues), $52 for two years (24 issues), $76 for three years (36 issues). Foreign subscription: Add $10 per year. Single copy $3.50 (add $1 for postage). Change
of address: Six weeks advance notice, and both old and new addresses are needed. POSTMASTER: Send change of address to ANALOG Computing Magazine,
P.O. Box 16927, North Hollywood, CA 91615. Second-class postage paid at Beverly Hills, CA, and additional mailing offices.

4 SEPTEMBER A.N.A.L.O.B. Computing

51 Grosshow

by Matthew J.W. Ratcliff

52 Diamond GOS

by James F. Patterson

57 Grime Buster

by Matthew J.W. Rateliff

65 The Chessmaster 2000

by Matthew J.W. Ratcliff

R R

42 BASIC Training

by Clayton Walnum

44 Boot Camp

by Tom Hudson

56 ST Notes

by Frank Gohen

62 The End User

by Arthur Leyenberger

3 Editorial

by Clayton Walnum

6 8-hit News
39 M/L Editor

by Clayton Walnum

40 BASIC Editor Il

by Glayton Walnum

6/ Disk Gontents

SEPTEMBER A.N.A.L.O.B. Computing

ANALOG

Publisher
LEE H. PAPPAS
Executive Editor
CLAYTON WALNUM
Art Director
KRISTEL PECKHAM
Associate Editor
ANDY EDDY
Managing Editor
DEAN BRIERLY
East Coast Editor
ARTHUR LEYENBERGER
West Coast Editor
CHARLES F. JOHNSON
Contributing Editors
MICHAEL BANKS, FRANK COHEN,
MATTHEW J. W. RATCLIFF
Cover Photography
GARRY BROD
Model
STEVE STERLING

lllustrations
JOHN BERADO
STEVE STERLING
K.P.

Copy Chief
SARAH WEINBERG
Copy Editors
ALYSON GOULD
NORMA EDWARDS
RANDOLPH HEARD
TIM POWER
KIM TURNER
Editorial Assistant
PATRICIA KOURY
Chief Typographer
ALICE NICHOLS
Typographers
DAVID BUCHANAN
B. MIRO JR.

QUITA SAXON
LIGAYA RAFAEL
Contributors
JOE D. BRZUSZEK
TOM HUDSON
BARRY KOLBE
BRYAN SCHAPPEL
BRAD TIMMINS
Vice President, Production
DONNA HAHNER
Advertising Production
Director
JANICE ROSENBLUM
Advertising Production
Coordinator
MAGGIE CHUN
National Advertising Director
JAY EISENBERG
(213) 467-2266
(For regional numbers, see right)
Subscriptions Director
IRENE GRADSTEIN

Analog Computin? Published
By L.F.P, Inc.
President
JIM KOHLS
Vice President, Sales
JAMES GUSTAFSON
Vice President, Client
Relations
VINCE DELMONTE
Corporate Director of
Advertising
PAULA THORNTON
Corporate Editorial
TIM CONAWAY, PAMELA CARR

SEPTEMBER 1989
ISSUE 76

Where to Write

All submissions should be sent to: ANALOG
Computing, P.O. Box 1413-M.0O., Manchester, CT
06040-1413. All other editorial material (letters,
press release, etc.) should be sent to: Editor,
ANALOG Computing, 9171 Wilshire Blvd., Suite
300, Beverly Hills, CA 90210.

Correspondence regarding subscriptions, in-
cluding problems and changes of address, should
be sent to: ANALOG Computing, P.O. Box 16927,
North Hollywood, CA 91615, or call (818)
760-8983.

Correspondence concerning a regular column
should be sent to our editorial address, with the
name of the column included in the address.

We cannot reply to all letters in these pages,
so if you would like an answer, please enclose a
self-addressed, stamped envelope.

An incorrectly addressed letter can be delayed
as long as two weeks before reaching the proper
destination.

Advertising Sales

Address all advertising materials to:
Paula Thornton — Advertising Production
ANALOG Computing
9171 Wilshire Blvd., Suite 300
Beverly Hills, CA 90210.
Permissions

No portion of this magazine may be reproduced
in any form without written permission from the
publisher. Many programs are copyrighted and
not public domain.

Due, however, to many requests from Atari club
libraries and bulletin-board systems, our new poli-
cy allows club libraries or individually run BBSs
to make certain programs from ANALOG
Computing available during the month printed on
that issue’s cover. For example, software from the
July issue can be made available July 1.

This does not apply to programs which specifi-
cally state that they are not public domain and, thus,
are not for public distribution.

In addition, any programs used must state that
they are taken from ANALOG Computing Maga-
zine. For more information, contact ANALOG
Computing at (213) 858-7100, ext. 163.

Subscriptions

ANALOG Computing, P.O. Box 16927, North
Hollywood, CA 91615; (818) 760-8983. Payable
in U.S. funds only. U.S.: $28-one year, $54-two
years, $76-three years. Foreign: Add $10 per
year. For disk subscriptions, see the cards at the

back of this issue.
® N Authors

When submitting articles and programs, both
program listings and text should be provided in
printed and magnetic form, if possible. Typed or
printed text copy is mandatory, and should be in
upper- and lowercase with double spacing. If a sub-
mission is to be returned, please send a self-
addressed, stamped envelope.

For further information, write to ANALOG
Computing, P.O. Box 1413-MO, Manchester, CT
06040-1413.

JE Publishers Representative
6855 Santa Monica Blvd., Suite 200
Los Angeles, CA 90038

Los Angeles — (213) 467-2266
San Francisco — (415) 864-3252
Chicago — (312) 445-2489
Denver — (303) 595-4331
New York City — (212) 724-7767

Image Scanner

Innovative Concepts has announced several
new products for the 8-bit Atari computers,
including Easy Scan II, a graphics image
scanner that replaces the original Easy Scan
and now supports graphics modes 8, 9, 10,
11 and 15. Scanned graphics can be printed,
displayed on the monitor or saved to disk as
standard 62-Sector picture files. The scanner,
which sells for $99.95, requires an XL or XE
with 128K and an Epson-compatible printer.
Original Easy Scan owners can upgrade their
software for $20.00.

Also available from Innovative Concepts is
“Ramdrive + XL to XE,” a 128K upgrade
for the Atari 800XL. Innovative Concepts

claims that this upgrade makes the 800XL

fully compatible with the 130XE, including
the extended ANTIC modes. The kit includes
the upgrade board, RAM chips, and instruc-
tions for use with DOS 2.5, MyDOS, Spar-
taDOS and the SpartaDOS X cartridge. It
sells for $59.95.

Finally, Innovative offers “The Happy
Doubler;” a utility that allows Happy 1050
owners to program up to eight drives for com-
plete compatibility with ICD’s U.S. Doubler.
This $19.95 package also includes an extra
disk full of additional utilities.

Innovative Concepts

31172 Shawn Drive

Warren, MI 48093

(313) 293-0730

CIRCLE #108 ON READER SERVICE CARD.

Disk utility package

A new package just released by Creative
Software Systems provides disk-drive own-
ers with a set of handy utilities, including a
sector editor, a file copier and two sector
copiers. The system supports most DOS fun-

ctions—lock, unlock, rename, delete and
format—and adds some new ones: verify,
close and undelete. Also, directories may be

sorted and printed. The utilities are fully
menu-driven and run on any 8-bit Atari with
at least 48K. The price is $15.95.

- Creative Software Systems has also
released a self-documenting disassembler,

- which can disassemble from a disk file, from

memory or from a sector, inserting comments

~ on key memory locations. The listing may be
sent to a disk file or a printer. The disassem-

bler sells for $5.95.
Creative Software Systems
8715 Valley View, #3
Barrien Springs, MI 49103
(616) 471-3745

CIRCLE #109 ON READER SERVICE CARD.

New computer stands

CompuStac Company has announced their
new CompuStac height-adjustable pedestal-

type computer stands. The CompuStac is -
unique in that it can be adjusted to the exact

height required by the user, and the pedestal
design makes it convenient to get your com-
puter off your desk while keeping it within

easy reach. Prices vary depending on the
model chosen.
'CornpuStac Company
- 819 West 4th Street, Suite 7
San Pedro, CA 90731
(213) 831-8017
CIRCLE #110 ON READER SERVICE CARD.

4
7
A
£
¥

,
i g

A helpful arachnid

If you're worried about your computer

, equlpment getting stolen, there’s something

you can do about it. The Spider, a new
product from AlteCon Data Communica-
tions, is a battery-operated alarm that will
warn you when someone is tampering with
your equipment. The Spider has five “tenta-
cles,” each of which may be attached to a
piece of your equipment. If the tentacles are

cut or ripped off, or the alarm itself is tam-
pered with, a 98-decibel alarm will sound for
up to two and a half hours. The Spider is
priced at $107.50.

AlteCon Data Communications, Inc.

1333 Strad Avenue

North Tonawanda, NY 14120

(716) 693-2121

CIRCLE #111 ON READER SERVICE CARD.

SEPTEMBER A.NLA.L.O.@. Computing

A LETTER FROM THE PUBLISHER

It's no secret that the U.S. Atari market isn’t as healthy as it could be. The 8-bit com-
puter line has declined in popularity, while the ST, though it has gained a respecta-
ble following in Europe, has yet to find its niche in the states. For these reasons, most
software companies won't develop products for the Atari systems.

This lack of software support has a subtle, but nonetheless powerful impact on maga-
zines that rely on the Atari market for their well-being. The cold fact is that adver-
tisers for the 8-bit products are nearly nonexistent, and there are precious few
advertisers for ST products.

Since, for profitable publications, we depend to a great extent upon advertising,
we are left with two choices if our publications are to continue: We can increase
the price of our magazines, thus forcing readers to pick up the tab for the lack of
advertising, or we can find a way to make the magazines less expensive to pro-
duce. We've opted for the latter.

There are, of course, many ways we can cut the magazines’ publishing costs: We
can reduce the page count. We can get rid of the color. We can pay contributors
less. Unfortunately, none of these options, nor others, not mentioned here, makes
much of a difference in the long run.

After much thought, we decided that although the Atari market is not capable of
supporting two Atari-specific magazines from a single publisher, it is active enough
to support one. So we're going to combine ANALOG Computing and ST-LOG into
a single monthly publication.

Don’t panic! When you think about it, the merging of the magazines will allow us
to produce a much nicer publication. And since the single magazine will be larger
than either of the individual ones, we won’t have to cut much from our content. In
fact, after doing some analysis, we've discovered that we will be able to offer the
same columns, departments and types of features you've come to expect. Little will
change, except that everything will come to you under a single cover.

The November issue will be the first combination magazine. Next month we'll give
you more details on what the new publication will be like, as well as our plans for
the future. (We plan some nice surprises, like a reduction in the cost of magazine disks.)

We believe that merging ANALOG Computing and ST-LOG is the best solution to
a tough problem. It allows us to continue publication while giving you your full money's
worth. It also gives Atari a chance to prove their claim that in the coming year they
will emerge a strong presence in the U.S. When that time comes, we plan to reevalu-
ate the situation and possibly separate the publications once again.

Recently, Atari supporters have had to stick together like never before. We've been
there, providing support and information for nearly nine years. And we plan to be
there for many more.

Here's to the future!

4N Py

lee H. Pappas
Publisher

SEPTEMBER A.N.A.L.0.3. Computing 7

Disk 800XL

A RAM disk (a part of memory that DOS
thinks is a fast disk drive) is a nice thing to
have. Ask any 130XE owner. Unfortunately,
the RAM disk driver that comes with DOS
2.5 only works with the extended memory of
the 130XE. And the poor and helpless 800XL
owner is left with nothing but dreams of all
the things he could do if only. ...

Building the RAM disk
without gle

Before taking the program apart to see how
it works, let’s see it ar work. Type in the data
from listing one as MDRIVE.OBJ using the
M/L EDITOR. Next format a fresh disk and
write the system files to it (using option H
from the DOS menu; make sure you're us-
ing DOS 2.5). Now copy MDRIVE.OBIJ to
the new system disk, and finally rename it
to RAMDISK.COM.

Don’t forget to mark the disk as contain-
ing the 800XL RAM disk to prevent future
confusion with the 130XE version.

Putting it to the test

To use the RAM disk, simply boot the new
system disk. After loading DOS.SYS, the
8

by Jerry van Dijk

RAM disk driver is automatically loaded. Af-
ter a message, the boot continues normally
with BASIC, DUP or AUTORUN.SYS. Now
you have a RAM disk called D5: at your dis-
posal. Try a directory of D5: (Press “A” from
the DOS menu and type “D5:” at the “fil-
spec” prompt). If everything went according
to plan, you’ll see a short flash (which can-
not be helped since every time DS: is ac-
cessed the operating system is temporarily
disabled) and find yourself with 108 free Sec-
tors left on D5: for your use.

The D5: device can be treated like any oth-
er drive on your system, with four minor ex-
ceptions:

1. Part of the runtime code of the RAM disk
driver uses page 6. From $6BC (1724) up to
and including $6FF (1791) to be precise. So
you’ll have to be careful with programs that
store ML routines here. Most will work with-
out a hitch, however, and for those that
won’t. . .well, you can’t have everything.

2. When power is switched off or the sys-
tem crashes, you lose the contents of the
RAM disk. Such is the nature of the beast,
so beware. (It is, of course, Reset-resistant.)

3. Contrary to normal disks, D5: has only
one directory Sector, which means the maxi-

mum number of files possible is eight. This
is reasonable. The small number of available
Sectors and the need to save them back to a
normal disk when shutting down makes it un-
likely that more files will ever be needed. It
also means there are seven more Sectors for
you to play with. If you do try to access one
of the nonexistent directory Sectors, DOS
returns with error code 144 (disk error).

4. Last, it’s impossible to reformat the DS5:
device from DOS. The only way to reformat
D5: is to run the RAMDISK.COM program
again using the L option from the DOS menu.
If you accidentally do try to format D5:, DOS
will show you the errors of your ways with
error code 168 (invalid command).

If you’re working in BASIC, you can also
use the RAM disk to store DUP.SYS (and,
if activated, MEM.SAV) and access it instant-
ly. To do this, boot a disk containing the
800XL RAM disk file. From BASIC, go to
DOS and copy the DUP.SYS file to D5:.
Then return to BASIC and type POKE
5439,53 and press Return. Type DOS again
and the menu should appear immediately.
Any BASIC program in memory will be over-
written, so you should have MEM.SAV ac-
tivated. continued on page 26

SEPTEMBER A.NLA.L.O.8. Computing

D

10

by Matthew JW. Ratcliff

SEPTEMBER A.N.A.L.0.@. Computing

harp Shooter is a light-gun game for

any Atari XL, XE or XEGS computer

equipped with an Atari light gun. A

challenging target-practice game, it re-

quires quick reflexes and a good eye,
and will improve your shooting skills for Bug
Hunt, Barnyard Blaster, Cross Bow and other
Atari shoot-"em-ups. Sharp Shooter is best
when played with several friends for some
neighborly competition.

Typing it in

To create your copy of Sharp Shooter, you
may either type in Listing 1 using M/L Edi-
tor (found elsewhere in this issue) or type in
the Action! listings (Listings 1 and 2) and
compile them yourself. The compiled game,
as created by Listing 1 or as supplied on this
month’s disk, may be loaded from DOS as
a binary file, without BASIC or any external
cartridge installed. If you wish to compile the
Action! listings, you will need the Action!
cartridge.

The game

When the program is run, the title screen
will display a reminder to attach the light gun.
Press the gun’s trigger to start the game, or
the escape key to return to DOS.

The game screen is presented in the form
of six pistol targets, three across the top and
three across the bottom. Each is made up five
concentric circles, the center, of course, be-
ing the bull’s-eye.

Sharp Shooter selects a target at random
and draws a rectangle around it. Take aim and
squeeze off a shot. If the bull’s-eye is hit, a
pleasant “ding”” sound will be heard. A com-
plete miss of the target results in a dull thud.
A hit anywhere else on the target is ac-
knowledged by a brief “splat” sound, and the
game continues. Each target is selected ten
times throughout the game, for a total of 60
shots per game. Since each target can be ran-
domly selected at any time, you cannot an-
ticipate where to aim next. This hones
reflexes and hand/eye coordination used to
SEPTEMBER A.N.A.L.O.8G. Computing

aim the gun. Press the escape key during
game play to quit early.

At the end of a game, firing statistics are
tallied and displayed. At the top of the screen,
the average bullets-fired-per-minute statistic
is presented. A good shooter will average
about 40 to 45.Total successful target hits are
displayed, out of the 60 shots fired. Below
this is the missed-shot count—the sum of all
shots that hit beyond the outermost ring of
the selected target. A count of bull’s-eyes is
displayed, and score and accuracy round out
the statistics. During game play each bullet’s
distance from dead center is calculated. Of
course, the closer to the center, the higher
the score. Accuracy is a percentage based on
total bull’s-eyes accrued versus total shots
fired (60). A running high score and best ac-
curacy are also presented.

Programming notes

Action! programmers may wish to take a
look at GUNREAD.ACT. This procedure,
GUNREAD, returns the light gun’s coor-
dinates. The caller must pass a pointer to the
x (card) and y (byte) variables to receive the
readings. This routine maps the gun position
to coordinates for the present graphics mode.
The comments for this routine explain the al-
gorithm fully. (This is an Action! version of
the assembly language routine employed in
Gun Assist from last month’s issue of
ANALOG.)

You may wish to take a look at the func-
tion ISqrt in the main program as well.
This routine will return the square root of
an integer as a byte value. The algorithm
has been around for a long time; I found
it in a 6502 assembly language program-
ming manual written by Leo J. Scanlon.

It works like this: Count the number of
times successive odd numbers (1, 3, 5, 7,
etc.) can be subtracted from the number of
interest until it goes to zero or negative.
This count is the integer square root.

The integer square root comes in handy

in many applications. It is used in Sharp
Shooter to solve for the radius, r, of each
shot from the center of the bull’s-eye. The
formula is r = ISqrt(x*x + y*y), where
x and y are the differences between the
bullet’s impact point and the center of the
current target.

The code in the GAMESCREEN proce-
dure generates all the pistol targets, from
a table of circle centers, XCS and YCS. The
circles are drawn entirely with integer math
computations. A circle is eight-way sym-
metrical, so only an eighth of the points
need to be calculated. If you ever draw a
circle using floating point calculations and
sine or cosine functions, then you are wast-
ing a lot of computing time!

Conclusion

Sharp Shooter is certainly not the most
sophisticated Action! game to appear in the
pages of ANALOG, but it does present the
basics of implementing the Atari light gun
in a game. The GUNREAD procedure may
prove useful in your Action! programming
efforts. Even if you don’t program in Ac-
tion!, it should be fairly simple for you to
translate it to Atari BASIC.

Sharp Shooter is my first Action! pro-
gram. Now that I have finally taken the
plunge into this high-level structured lan-
guage for the Atari, I am seriously addict-
ed. Its similarities to the C programming
language—what I spend most of my work-
day using—are very strong, and Action!’s
editor is more sophisticated than some
word processors. If you hope to move up
to C, Pascal, Ada or some other “high-level
structured language” in the future, I think
that you will find the Action! language a
superb stepping stone.

Matthew Ratcliff, a frequent contributor
to ANALOG Computing, lives in St.
Louis, Missouri, with his wife and two
children.

continued on page 30
1

Hllustration by Steve Sterling

If you’ve spent any time away from BASIC
(gasp!), you've probably run into something
called “recursion.” Simply put, recursion is
a subroutine’s ability to call itself. BASIC,
as many people will tell you, doesn’t support
recursion. But, as I'm going to explain be-
yond all levels of reason, not only does BA-
SIC support recursion, but it’s very easy to
implement!

Solving a problem usually requires break-
ing it down into smaller problems. Some-
times, however, you break down a problem
and find you've got the original problem,

e

by Gregg Hesling

only in a smaller form. This type of solution
is called “recursive.” There are three main
requirements for recursion: 1) the subroutine
must call itself; 2) on each successive call,
the problem must be the same but smaller in
size; and 3) a “degenerative case’ is always
reached and handled directly, without call-
ing the subroutine. The degenerative case is
usually when the problem is so small it can
be accomplished in one step.

An effective example of this is an exponen-
tial program that multiplies a number by it-
self a certain number of times. If we wanted

to know what 2 to the power of 3 (2 A3) was,
we'd break it down into this:

A) Set result to equal 1.

B) Multiply the result by 2.

C) Multiply the result by 2.

D) Multiply the result by 2.

E) Print result.

If we set up a subroutine to multiply the
result by the root, we could call it from the
main program three times. Or we could have
the subroutine call itself three times and then
return to the main program to print the re-
sult. The latter would be a recursive solution.

SEPTEMBER A.N.A.L.O.G. Computing

To be flexible, we’d need the subroutine to
multiply the result by the root a number of
times equal to the exponent. If we decrement-
ed the exponent every time we called the sub-
routine, we'd be making the problem smaller
and smaller until exponent was 0, and we’d
stop multiplying. That is the degenerative
case. Then we go back to the main program
and print the results.

Oops, one small problem. When we print
the exponent, it will always equal 0! We could
print the exponent first, but that’s cheating.
We could set up another variable to hold the
original value of the exponent, but that has
nothing to do with the article. Here is a recur-
sive program with an interesting solution:
18 7 “Root ";:INPUT ROOT
28 ? “Exponent ";:INPUT EXPON
ENT
38 WNUMBER=1:GO5UB &&

48 7 ROOT;"A'";EXPONENT;"="';NU
MBER

58 END

68 EXPONENT=EXPONENT-1:IF EXP
ONENT>8 THEN GOSUB 68

78 NUMBER=NUMBERXROOT:EXPONEN
T=EXPONENT+1

86 RETURN

If EXPONENT is 3, line 60 calls itself
three times. When EXPONENT is 0, RE-
SULT is multiplied by the ROOT and EX-
PONENT is incremented. When RETURN
is reached, the program pops back up to the
end of line 60 and immediately falls through
to line 70, repeating the process until EXPO-
NENT is back to its original value and RE-
SULT is the answer. Then, when it hits
RETURN again, it returns control to line 30.

“Now, wait,” you're probably saying.
“Aren’t there other, easier ways to do this?”
Well, sure. How about changing line 60 to
this:

68 FOR LOOP=1 TO EXPONENT:NUM
BER=NUMBER¥ROOT : NEXT LOOP:RET
LIRN

Now, wasn’t that easy? This solution is, in
most respects, better than the recursive so-
lution! So why recurse? To answer that, let’s
look at a program that requires recursion.
Then we’ll see how to make recursion work
in BASIC.

The Towers of Hanoi

The first program, HANOI.BAS, is based
on a supposedly ancient idea, but I can’t im-
agine anyone thinking of it without having a
computer to solve it. The problem is this: If
you have three poles, with a number of disks
stacked (in descending sizes, like a pyramid)
on the first pole, how do you move them to
the second pole without placing a larger disk

SEPTEMBER A.NLA.L.O.G. Computing

on top of a smaller one? You may, of course,
place them on the third pole temporarily.

The solution, ironically, is very simple; it’s
the execution that’s difficult. To move the bot-
tom disk from the first pole to the second
without putting it on top of one of the other
disks (all of which are smaller), you're go-
ing to have to move the rest of the disks to
the third pole. To get all of those disks to the
third pole, you're going to have to move all
the disks but the bottom two to the second
pole. (It took me weeks to reason this out,
so please make sure you understand it before
continuing.)

Let’s rewrite that paragraph substituting
pole #1 with “Source,” pole #2 with “Dest,”
pole #3 with “Spare,” and number of disks
with N.

To move N disks from the Source pole to
the Dest pole, you’re going to have to move
N-1 disks to the Spare pole. Since the spare
is now the destination, let’s swap the poles’
labels and decrement N. To move N disks
(really N-1 disks) to the new Dest pole, you’re
going to have to move N-1 (N-2) disks to the
new Spare pole. Since the spare is now the
destination. . ..

If we continue this until N equals 1 (the
“degenerative case”), we'll just move the top
disk from the Source pole to the Dest pole,
whichever that happens to be.

That was the easy part. Next we have to
back up and “de-switch” the Dest and Spare
poles in order to move the next disk (N+1)
to the other pole. If you're completely baf-
fled, it’s because recursion usually does this.
But don’t get diskouraged! I suggest you re-
vert to those old standbys, the pencil and pa-
per. And be sure the pencil has a big eraser
on it!

Once we have N-1 disks on the spare pole
and move the Nth disk to the Dest pole, we
still aren’t finished. Now we have to move N-1
disks from the spare pole to the dest pole.
The simplest solution would be to, of course,
exchange the Spare pole with the Source pole.

Now we have to move N-1 disks from the
Spare pole to the Dest pole.

It would take no less than 1,023 moves to
solve for ten disks by hand. But by substitut-
ing labels and adding recursion, we should
be able to do it in under twenty lines of BA-
SIC. That is why one should recurse!

How recursion works

In standard Pascal, the algorithm looks like
Figure 1. You’ll note that at the end of the
subroutine there are three successive calls to
the subroutine. In Pascal (and most lan-
guages), whenever you call a subroutine, a
whole new set of variables is created and the
values are passed. When the subroutine
returns, the original values are restored. Be-
cause of this, variables with the same name
can exist. Also because of this, BASIC
“shouldn’t” support recursion. If you used
the same variable name in BASIC, you'd lose
the original value without any chance of
recovery. Since recursion needs that recov-
ery (you’re going to hate me for saying this),
we have to save the values ourselves.

Fortunately, it’s easy. To save the variables,
all you need to do is save them in an array.
This way you only need a variable, such as
LEVEL(X), to tell you which set of varia-
bles to restore. Just replace X with a refer-
ence number and you're all set.

Alas, there is a price, and it can be a dear
one. In Pascal, when you return from a
subroutine and the new set of variables is
tossed, you get all the RAM back. In BASIC,
however, you have to declare your arrays (and
their limits) before you use them. And when
I say limits, I mean the maximum possible
amount needed. And none of this is returned
to you until the program is finished. This is
a serious drawback. BASIC, though, isn’t of-
ten used for professional purposes, and even
with the reduced RAM, it should handle all
of your needs.

In the next two programs, I managed to cut

PROCEDPURE Towers (Count,

BEGIN

source,

pest, Sparel

IF Count=1 (¥ Degenerative case ¥}

THEN

(¥ Move the disk from Source to Dest ¥)

ELSE
BEGIN
Towers (Count-1,
(¥ pecrement Count,
Towers (1, Source,
(*® Count is set to 1,
Towers (Count-1, Spare,
(¥ Decrement Count,
END;
END;

Source,
swap Dest and Spare)
pest,
50 an immediate move is made *¥)
best,
swap Source and Spare)

Spare, Dest);
Sparel;

Sourcel;

FIGURE 1

13

down on space by using strings instead of ar-
rays. But this also increases confusion, and
I'm not sure where the trade-off should begin.

Heap Sort

Heap Sort is a sorting algorithm that sorts
entries as you enter them. Since BASIC also
doesn’t support dynamic allocation (I'm not
even going to get into that here), it isn’t real-
ly in order. It stores the entries in a pseudo-
binary tree, with left and right pointers de-
termining the order. To sort it out upon re-
quest, we use—you guessed it—recursion.
* We’ll have to use pointers from a parent to
its children (hi-tech computer jargon) because
setting it up as a perfect binary tree in BA-
SIC would mean reorganizing it every time
something was added, and that would take far
too much time and waste far too much space.
To store, we just compare our number with
the top number and go left or right appropri-
ately. We keep comparing until we find a hole
to store that number. If this sounds a little
bit like recursion, you’re learning quickly. It
is recursion, but it’s “easy” recursion because
it doesn’t store previous variables. We’ll con-
centrate on the “fetching” part of the pro-
gram, which does.

The array is stored something like this:

5
LN
Z b6
A R
) Rt T
F i 1
3 E

The lowest number is all the way down the
left side. The next-smallest number is its par-
ent, and then the larger numbers are off to
the right. We could go down the left side eas-
ily to retrieve the number, but then how
would we get back up? We’ll need a pointer
to point back to the previous number, or we’ll
quickly get lost. We can use an array or a
string, depending on how much RAM you
can waste. This way, with just a little help
from recursion, we can figure out just where
we're heading (and where we just came
from.)

Recursion works perfectly here because the
problem is thus: We need to go all the way
down the left side until we find the bottom
number. We can rewrite this as “Go left un-
til there is no more left to go.” This is a clas-
sic recursive action. The degenerative case
is the bottom of the array, while the program
is broken down into just one action: Go left
(young man, go left). After we reach the bot-
tom, we’ll need to back up one. Thus, we’ll
need to store the previous number’s position
in an array variable. Then we’ll go to the right
and check for a left child. We don’t store the
position of a parent with a right child because
14

we've already printed that number and don’t
need to return there. When we’re complete-
ly through with the right leg, we just jump
back to the point before the left leg, as every-
thing beneath that has been “extracted.”

Gee, that was short, but that’s pretty much
all there is to it. Whether you dissect the pro-
gram to figure out how it ticks, or quietly
shelve it in your library (or wonder why you
bought a disk subscription), it’s an. . .um. ..
interesting program.

QuikSort

QuikSort is, in every instance I've seen,
faster than any other sorting algorithm. Why
this is, I’'m not entirely sure, but for quite
some time I’ve been denied the ability to use
QuikSort in BASIC because it uses recursion.
Well, it’s finally here.

QuikSort works on the premise of break-
ing an array down to smaller arrays and sort-
ing them. For instance, to sort “CEBDA”
alphabetically, QuikSort would first sort “C”
by moving it over and putting the “lesser”
letters behind it, thus ending up with
“BACED.” The next step is to sort “BA,” and
then “ED.’ The final result, “ABCDE,” is
correct, took only three passes, was quite
quick and was terribly confusing. Try it on
a few other words and you’ll discover how
good QuikSort is.

The problem comes when you need to sort
“BA” and “ED.” Unless your computer sup-
ports multi-tasking, the computer needs to do
one at a time and you need to remember the
position of “ED.” As in Heap Sort, all you
need to do is store the location of the right
array before sorting the left. If the left array
needs to be broken down more, then this
needs to be stored also, etc. So we label the
strings (or arrays) FIRST$ and LAST$, and
store that information. It eats up RAM, but
the return in speed is definitely worth it.

A few final words: As I tried to explain in
the opening paragraphs, recursion is not a
panacea. In actuality, there aren’t many pro-
grams that require recursion, or can even use
it. And those that do should be thought over
carefully to see whether or not they could be
done in a simpler fashion. But some prob-
lems just can’t be beat when using recursion,
and I hope you understand when to use this
powerful tool (and when not to!) now.

Gregg Hesling lives in sunny Southern
California, but might as well live in Alaska
for all the time he spends outdoors. He was
disappointed on his nineteenth birthday when
he realized that he knew everything there was
to know about Atari BASIC, but had never
done anything with the information. He feels
better now.

1 REM ¥¥¥¥¥ THE TOWERS OF HANOI 66
2 REM ¥Wobd¥ by GREGG HESLING 66666k
5 GRAPHICS B:POKE 7168,6:POKE 782,14:P0
KE 82,8:7 "COUNT ";:INPUT COUNT:IF CcoOU
HT{1 OR COUNT>12Z THEW 5

9 REM RAM is not a problemwm in this pro
50 we indiscriminantly waste it
18 DIM POLE(Z,12) ,COUNTC{COLNT), S0URCE(
COLUNTY ,PESTC(COUNT) ,SPARECCOLNT) : POKE 7

T

7]

=t

£5)

-

< aram,

-

TR

& 52,117 VK"
=

i4 REM fAssign the poles tewmporary labe
1s and tell how many discs are on each
pole

15 SOURCE=8:DEST=1:5PARE=Z:POLE{(50URCE
;BY=COUNT:POLECDEST,B8)=68:POLE(SPARE, 8)
-8

19 REM Make the poles and put the disc
5 on pole #i

28 FOR A=18 TO 21:POSITION 6,0:7 "N,
1 .Il’ll .":NEHT a:?

L] R ety o

25 FOR A=1 TO COUNT:POLECSOURCE,aY=CcOU
NT-a+1:B-A-INT{A/2Z) :C=(A/Z2=INT(A/2)) P
OS5ITION 6-B,A-COUNT+Z21:GOSUB 808:NEXKT A

38 GOSUB 98:IF COUNT=1 THEN GOSUB 58:G
0OTO 48:REM Move the top disc and don't
save the labels

32 POSITION 9,8:7 "SAVING'":COUNT(LEVEL
J=COUNT:50URCE(LEVELY=S50URCE:DEST(LEVE
LY=DEST:SPARE(LEVEL)=5PARE

35 REM Save the current labels,
witch the DEST and SPARE poles
37 A=DEST:DEST=S5PARE:SPARE=A:COLUNT=COU
NT-1:LEVEL=LEVEL+1:GOTO 38

48 LEVEL=LEVEL-1:IF LEVEL{8 THEN POSIT
ION 9,8:7 "COMPLETE'":END

4% POSITION 9,8:7 "“"RESTORING':COLUNT=CO
UNT(LEVEL) : SOURCE=SOURCE {LEVEL) :DEST=D

SEPTEMBER A.N.A.L.0O.G. Computing

then s

EST(LEVEL) : SPARE=-SPARE (LEVEL)Y : GOSUB 386

45 REM Restore the previous labels, wo

ve the top disc to the DEST pole, and

swap SOURCE with SPARE

47 GOSUB S58:POSITION 9,8:7 "“"SWITCHING"
tCOUNT=COLUNT-1:A=S0URCE:S0URCE=SPARE:S

PARE=-A:GOTO I8

49 REM Move disc to top of screen

58 A=POLE(SOURCE,®8) :POLE(SOURCE,8)=A-1
tB=POLE(SOURCE,A) :C=(B/2=INT{(B/2)) :B=B
=INTI(B/2)

55 FOR D=fA TO 26:POSITION SOURCEX*13I+6-
B,Z1-D:GOSUB 80:POSITION SOURCE*13+1,2
Z2-D:GOSUB B85:NEXT D

59 REM Move disc from SOURCE to DEST
68 POSITION 8,1:FOR A=1 TO ABS{(DEST-50
URCE}*13:? CHRS5(254+ ((DEST—-SOURCE}>B83)
J'NEKT A

78 A=POLE(DEST,8)+1:POLEC(DEST,8)=A:POL
E(DEST,AY=-B*Z+C—-1:FOR D=21 TO0 A+l STEP
=1:POSITION DEST*13+6-B,23-D:G0O5UB 86
74 REM Lower disc down to DEST

75 POSITION DEST*13+1,22-D:GOSUB 85:KNE

KT D:RETURN

79 REM Print disc

80 ? CHRS(3I2+1Z1%C);:FOR E=1 TO B*Z2:?

"l'"; :NEXT E:? CHRS(32-7%C); :RETURN

84 REM Erase disc

85 7 ¢ ";CHRS (32+121%(D{13)) ;CHRS(
32-7%(Dp{1333;" ":RETURN

96 POSITION ©,08:?7 “COUNT=";COLNT;"™ ":p
OSITION 19,8:7 “LEVEL=":IF LEVEL THEN

POSITION Z4+LEVEL,8:7 LEVEL-1;" ';

23 POSITION 13%50URCE+4,23:7? "SOURCE'";
tPOSITION 13*DEST+4,23:7 " DEST ';:PO

SITION 13I%*SPARE+4,23:? "SPARE ';

97 FOR LOOP=1 TO 106:NEXT LOOP:POSITIO
|, s Ty e "":RETURN :REM To spe
ed things up, change 186 to 1

LISTING 2: BASIC

3 REM 300000006%% HEAPSORT MO0
5 REH 3¥000d¥ by GREGG HESLING 336
18 TRAP 18:CLR :7? "Max. sizesentry";:I
NPUT SIZE:RAM-INT((FREI(B)-5IZE-588)/7(5
IZE+6)):DIM ARRAYS (RAMXSIZE) ,AS(5IZE)
11 REM Recursion devours RaM, up to Z8
% in this program depending on the "ma
XiMuM 5ize per entry"
15 DIM LEFTS(RAM%Z) ,RIGHTS (RAM%2) ,LEVE
LS (RAM®Z) :LEFTS="¥": LEFTS (RAMM®ZY =9 1 |
EFTS{2)=LEFTS:RIGHTS=LEFT5:GOTD 50
16 REM LEFTS and RIGHTY% will store the
pointers, while LEVELY will be the '
ecursive variable saver"
28 Y-ASCOLEFTS(K*Z2-1))¥256+ASCILEFTS (X
¥Z33):IF Y-8 THEN IB:REM There is no le
ft child
24 REM The address of the current node
is stored, then we make the left chil
d the current node and go again
25 Z=INT(X/256) :LEVELS{LEVEL+1,LEVEL+1
J=CHRS$(Z) :LEVEL$(LEVEL+2,LEVEL+2)=CHRS%
(K—-Z¥256) :LEVEL=LEVEL+2:X=Y:GOTO 286
I8 ? ARRAYS((X-1)XSIZE+1,X¥S5IZE):REM na
RRAYS is printed in sorted order -- le
ft child, parent, then right child
I35 Y-ASCC(RIGHTS (X¥2-1)1%*256+ASCIRIGHTS
(K*23):IF ¥ THEN K=Y:GOTO Z8:REM Follo
W right leg without saving positions
39 REM Restore the last saved position
-- the parent with a left child -—- an
d go directly to PRINT
48 IF LEVEL THEN LEVEL=LEVEL-Z:H=ASC(L
EVELS (LEVEL+1))%¥256+ASC(LEVELS(LEVEL+2
1):GOTO 30

58 ? :? COUNT;'" records used'",RAM-COLN
T;" records left"

55 7 “Entry: ";:INPUT AS:X=1:IF as=vn
THEN SORT=1:LEVEL=8:GOTO 2Z0:REM Go to
recursive printing routine

52 REM Store new string, then use a bi
nary tree search to determine the new
string's position and set pointers

68 A=SIZEXCOUNT:FOR B=1 TO SIZE:ARRAYS
(a+BI="" "“:NEXT B:ARRAYS(A+1,A+LENCAS))
=AS:COUNT=COUNT+1:IF COLNT= 1 THEN 55
65 IF ARRAYSC((COLNT- —1)¥SIZE+1,COUNT*S5I
ZE)>ARRAYS (X~ —1)¥S5IZE+1, H*SIZE) THEN 7
5:REM Follow left or rlght branch?

62 REM Left branch. If there is a chi
1d, go to it. Else, save new entry at
this point

78 Y-ASCCLEFTS(X¥2-1))%¥256+ASCILEFTS (X

#2311 :GOSUB 88:LEFTS(A,AY=CHRS(C)Y :LEFTS
(a+1,A+1)=CHRS (B-C*256) : GOTO 55

74 REM Right branch. If there is a ch
ild, go to it. Else, save new entry a
t this point

75 YSASCIRIGHTS (H*Z2-1))¥256+ASC(RIGHTS
(H¥Z)) :GOSUB B8B:RIGHTS(A,AY=CHRSIC) :RI
GHT$(A+1,A+1)=CHRS (B-C¥256) :GOTO 55

88 IF Y THEN X=Y:POP :GOTO 65

85 A-K*Z-1:B=COUNT:C=INT(B/256) :RETLRN
89 REM Change line 55 to line 56 and t
ype "55 IF COLUNT THEN GOSUB 95" to see
previous entries and their pointers
98 FOR X=1 TO COLNT:? ASCC(LEFTS (X*2-1)
I¥Z56+ASCILEFTS (H*2)) ,ARRAYS ((X—-1)%5IZ
E+1,X%*5IZE),

95 ? ASC(RIGHTS (X%¥2-1))%*256+ASC (RIGHTS
(K¥*2)) :NEXT H:RETLURN

LISTING 3: BASIC

T REM 3B033MN%E QUTIKSORT 3EMIEMMEMNICNNNE
5 REM ¥ by GREGG HESLING 388666
18 CLR :? "Max. size/entry";:INPUT 5IZ
E:RAM=INT({FRE(B)-5IZE-5808)/(5IZE+4/3)
3:DIM ARRAYS (RAMMSIZE)Y, AS(SIZE)

11 REM 57% of RAM is lost when SIZE eq
uals 1, but only 1% is lost when SIZE
is 65 or more

15 DPIM FIRSTS(RAM/ZI*2),LASTS(RAM/I¥2Z)
LASTS=""#"":LASTS (RAM/IX2I =9 LASTSC2) =
LASTS:FIRSTS=LASTS:GOTO 85

16 REM FIRSTS and LASTS will hold poin
ters to the beginning and end of array
5 that need to be sorted

18 REM Lines 28-48 take the first entr
Yy in the array and move it over until
everything less than the pivot

1% REM is to the left, while everythin
g greater is to the right.

28 PIVOT=(FIRST-1)®*SIZE+1:A5=ARRAYS(PI
VOT,PIVOTH+S5IZE-1)

38 FOR A=-FIRST*S5IZE+1 TO (LAST-1)®#5IZE
+1 STEP S5IZE:IF ARRAYS(A,Aa+SIZE-1)>aS
THEN 48

35 ARRAYSIPIVOT,PIVOT+SIZE-1)=ARRAYS(A
JAFSIZE-1) :PIVOT=PIVOT+SIZE: ARRAYS (A, N
+5IZE-1)=ARRAYS(PIVOT,PIVOT+SIZE-1)

48 NEXT A:ARRAYS(PIVOT,PIVOT+S5IZE-1)=A
S:PIVOT=(PIVOT-1)/SIZE+1:IF PIVOT+1i)>=L
AST THEN 686

49 REM If there are entries to the rig
ht of PIVOT, the first and last positi
ons are saved

58 A-PIVOT+1:B=INT(A/256) :FIRSTSC(LEVEL
+1)=CHRS(B) :FIRSTS(LEVEL+2)=CHRS(A—-B*2
96) tA=INTCLAST/256)

55 LASTS(LEVEL+1)=CHRS$(A)Y :LASTS(LEVEL+

23=CHR$(LAST-A%¥256) : LEVEL=LEVEL+2:? CH iF

SEPTEMBER A.N.A.L.O.G. Computing

|

by Tracy Jacohs

keet Shoot is a one-player action game written in 100 %
machine language that will run on all 8-bit Atari computers.
Type in Listing 1 using M/L Editor, then load Skeet Shoot
using Atari’s DOS binary load.
Once the game is booted up, the title screen will appear.
Press START to begin. The gunsight will appear in the middle
of the screen. Be aware that gravity pulls the gunsight down. Press
the joystick up to release the clay skeets.

The object of the game is to get the highest possible score. The
skeets are slung out at random speeds—slow, medium and fast.
The score for hitting the slow skeets is ten points, 25 for the medi-
um and 50 for the fast.

L= SEPTEMBER A.NL.A.L.O.G. Computing

 ber of skeets hit, the number of shells that have been used, your

~ At the bottom of the screen are counters that record the num-

score and the number of the round that you are on. There are
30 rounds in all.

At the end of the game, you get five points for every shell not
used. There is a total of 60 shells, but you are allowed only two
shells per round.

Press START to play again.

Tracy Jacobs, a high school student, has been programming
his 800 XL for about five years, and programming in assembly
language with his older brother, Michael, an electronics techni-
cian, for a little over a year.

SEPTEMBER A.N.A.L.O.G. Computing

5|74

LISTING 1: M/L EDITOR DATA

i886 pATA 255,255,308,72,1860,80,169,69,
133,12,16%,72,133,13,169,08,3744

ieie pATA 162,0,157,0,64,157,8,65,157,
8,66,157,8,67,157,08,741

ieze paThA 68,157,0,69,157,8,78,157,08,7
1,232,268,22%,1608,08,185,8144

ieze paThn 26,80,176,200,185,20,80,141,
8,%96,72,24,173,88,72,1085,3422

1648 pATA 1,141,86,72,17%,81,72,185,0,
141,81,72,1064,2062,2088,231,87087

1858 DATaA 2088,192,124,2068,218,169,144,
141,48,2,169,80,141,49,2,169,5662

18668 DATA 192,141,14,212,169,156,141,0
+2,169,79,141,1,2,16%,08,2601

SCORE: 00000
ROUND: 001

i878 paTha 141,22,72,169,242,141,26,288
,169,64,141,7,212,169,88,141,8543

ig8e8 DATA 192,2,141,194,2,169,134,141,
195,2,169,108,141,193,2,169,6588

i8%8 DATA 126,141,0,268,141,1,72,141,1
;2688,169,0,141,2,208,141,5852

ii88 paTA 3,72,141,3,2068,141,4,72,141,
6,72,141,7,72,141,24,1683

iiie pATA 72,141,25,72,141,28,72,141,2
6,72,169,16,141,46,168,141,3578

11?6 DATA 47,100,141,48,100,141,2393,39
,141,240,99,141,241,99,141,22,93229
11¥8 DATA 166,141,23,100,141,24,168,16
9,62,141,47,2,169,3,141,29,2289

ii4e DATA 268,169,120,141,6,72,163,268
,141,12,72,141,13,72,169,1,3438

i1i58 DATA 141,8,208,141,9,268,32,13,78
,169,1,141,5,72,141,6,1495

iise paTA 72,162,08,32,152,76,32,85,76,

18

SEPTEMBER A.NLA.L.O.G. Computing

9 B@eg

ShOgf

32,77,78,162,08,189,52, 2364
1178 DATA 73,157,135,96,232,224,11,246
,14,76,38,73,51,43,37,37,1439

11868 DATA 52,8,51,40,47,47,52,189,6,22
4,157,8,64,189,255,224,8792

1198 DATA 157,255,64,232,208,241,169,6
4,141,244,2,162,80,189,221,78,16882
1268 DATA 157,8,64,2082,16,247,173,31,2
88,201,6,2088,249,141,308, 208,827

izi@8 DATA 162,0,189,1268,73,157,135, 96,
232,224,11,246,45,76,186,73,7175

iz28 paTa 6,0,6,0,8,08,0,8,0,8,0,173,11
,212,2081,123,1398

1238 DATA 288,249,173,42,2,208,3,32,10
1,77,173,11,212,2681,123,246,9127

1248 DATA 249,173,17,72,201,2,48,64,724
8,08,32,215,77,32,242,77,5442

1258 DATA 169,114,141,8,268,141,1,72,1
69,136,141,8,72,32,13,78,1738

1260 DATA 169,8,141,1,216,173,128,2,26
1,14,268,249,169,0,141,17,6689

1278 DATA 72,173,160,216,141,16,72,169,
8,141,42,2,169,18,141,29,2139

iz88 paTa 72,32,161,77,16%,8,133,77,76
,134,77,173,11,72,201,1,3548

1298 paTh 248,25,16,208,174,28,72,224,2
,16,19,173,16,268,201,08,3648

1308 DATA 240,3,76,6,74,76,211,74,76,2
44,74,76,28,75,172,128,5457

1318 DaTA 2,174,1,72,185,45,79,261,98,2
46,19,16,108,56,224,48,3022

1328 DATA 144,2,282,202,76,38,74,56,22
4,204,176,2,232,232,142,1,8882

1338 DaTA 72,142,8,2088,76,178,74,172,1
28,2,185,61,79,246,21,16,4685

1348 DATA 2,48,20,56,173,0,72,2601,212,
176,9,32,148,74,32,1408,4426

1358 DATA 74,32,148,74,76,131,73,56,17
3,8,72,281,16,144,245,32,55601

1368 DATA 182,74,32,182,74,32,182,74,3
2,162,74,76,131,73,24,173,2869

1378 DATA 16,72,185,14,141,9,72,174,8,
72,172,18,72,262,185,77,5053

1388 DpATa 79,157,06,68,232,200,204,9,72
,288,243,169,8,157,0,68,6620

i3%e paTa 266,8,7Z,96,24,173,168,72,185
,14,141,9,72,174,0,72,1268

1488 DATA 172,18,72,169,0,157,8,68,232
,185,77,79,157,8,66,200,5964

1416 DATA 232,204,9,72,208,243,238,08,7
2,96,24,173,16,72,165,14,3414

1428 DATA 141,9,72,174,8,72,172,10,72,
185,77,79,157,8,68,232,5273

1438 DATA 2080,204,9,72,2088,243,240,8,7
6,47,74,169,08,141,42,2,3163

1448 DATA 169,8,141,29,72,173,42,2,208
,3,32,1681,77,174,28,72,2331

14508 DaTh 232,142,28,72,169,15,141,11,
72,238,8,72,173,1,72,141,3927

1468 DATA 1,288,24,173,18,72,105,9,141

,9,72,174,8,72,172,18,1917
1476 paTa 72,185,137,79,157,8,69,232,2
6@,284,9,72,2088,243,266,11,9938

1488 DATA 72,76,83,75,173,18,72,165,9,
141,9,72,174,8,72,172,3870

1498 DATA 18,72,169,8,141,11,72,169,86,
i57,8,6%,232,200,204,9,6196

15688 DATA 72,208,244,174,8,72,32,32,78
.32,152,78,76,131,73,141,4171

1518 DpATH 29,72,169,8,141,42,2,32,161,
77,96,17%3,13,208,41,4,1988

1528 DATHh 208,13,173,13,208,141,30,268
,41,8,2088,49,76,131,73,173,6895

1536 paTa 5,72,261,15,16,236,238,7,72,
173,5,72,185,22,141,5,2725

1548 DATA 72,169,42,32,71,75,174,7,72,
32,32,78,32,133,78,169,2691

1558 DATA 128,32,198,78,17%,27,72,32,1
84,75,76,90,75,173,6,72,3372

1568 DATA 261,15,16,25,238,7,72,173,6,
72,165,27,141,6,72,169,2953

1576 DATA 42,32,71,75,32,198,78,173,27
,72,32,184,75,76,131,73,4114

1588 DATA 24,189,25,72,141,25,72,169,8
,169,24,72,141,24,72,32,875

1598 DpATa 77,78,96,174,23,72,232,142,72
X,72,224,49,268,13,173,6,5678

1688 DATA 72,185,3,141,6,72,169,08,141,
23,72,24,173,6,72,185,1772 .
1616 DATA 4,141,9,72,174,13,72,172,6,7

* Atari Public Domain & Shareware
Software

* Over 250 Theme Disks! Every disk
is Guaranteed!

* Games! Graphics! Educational!
Music! Utilities! Home & Business!

" Fast dependable world-wide service!

Send for your FREE descriptive
Catalog.

BELLCOM
P.O.Box 1043-G
Peterborough, Ontario
Canada K8J 7A5

CIRCLE #104 ON READER SERVICE CARD.

SEPTEMBER A.N.A.L.0.8. Computing

19

$ meeﬂﬂ

ShOel

2,2802,185,90,79,157,0,4886

i6ze DATA 71,232,200,204,9,72,208,243,
169,08,157,8,71,266,13,72,58508

1638 DATA 173,13,72,201,24,248,70,96,1
74,23,72,232,142,23,72,224,7871

icd4e DaTa 49,208,13,173,5,72,16085,3,141
29,72,169,08,141,23,72,1662

1656 DATA 24,173,5,72,185,4,141,9%,72,1
74,12,72,172,5,72,282,3933

1668 DATA 185,98,79,157,0,78,232,260,2
84,2,72,2088,243,169,08,157,9785

1676 DaTh ©,70,2086,12,72,173,12,72,261
»24,2408,68,96,32,242,77,6597

1686 DaTh 238,26,72,238,17,72,173,10,2
16,141,15,72,32,5,77,185,2596

1690 DATh 8,141,3,208,141,4,72,169,288
»141,13,72,169,1,141,6,4117

1786 pATA 72,169,0,141,28,72,141,08,210
»141,1,216,141,28,2,174,5183

1716 paThn 26,72,224,31,240,45,32,32,78
$32,171,78,141,306,268,96,5374

i7ze paTa 32,215,77,238,17,72,173%,18,2
10,141,14,72,32,255,76,141,6873

1736 paTh 2,268,141,3,72,169,268,141,1
2,72,169,1,141,5,72,141,4479

1748 DATA 36,2068,96,169,5,32,184,75,17
4,8,72,232,142,8,72,224,76899

1758 DATA 60,2408,3,76,187,76,162,8,189
+246,76,157,135,96,232,224,2172

1768 DATA 9,2498,3,76,208,76,173,31,208
,281,6,240,11,169,06,141,7116

1778 pAaTA 2,208,141,3,208,76,222,76,32
,13,78,76,144,72,39,33,2462

1788 DATA 45,37,0,47,54,37,58,173,14,7
2,76,8,77,173,15,72,8%1

1798 DATA 2061,85,48,17,201,176,48,8,16
,1,96,169,50,76,18,77,1252

1888 DATA 169,118,76,18,77,169,192,76,
18,77,32,16,76,173,16,72,2134

1818 DATA 56,201,50,144,162,32,16,76,1
?3,16,72,56,2081,160,144,91,6666

is2e paThA 32,16,76,76,147,77,32,283,75
;,56,173,08,72,201,212,176,8345

isze paTA 3,32,146,74,173,16,72,56,2061
,50,144,14,32,2083,75,173,5738

1846 DATA 16,72,56,201,160,144,3,32,28
3,7?5,76,227,73,174,29,72,6622

1850 DaTA 189,219,79,141,0,216,232,189
$219,79,141,1,210,232,189,219,4315
1868 pATA 79,141,28,2,232,142,2%,72,16
9,255,141,42,2,96,173,14,5419

1876 paAThA 72,2081,85,48,22,201,1708,48,1
45,16,29,173,15,72,281,85,5119

1888 pAThA 48,35,201,170,18,160,16,42,7
6,227,73,174,3,72,202,142,7123

1898 baTh 3,72,142,2,2088,76,34,77,174,
3,72,232,142,3,72,142,5233

1568 DpATA 2,208,76,34,77,174,4,72,282,
142,3,208,142,4,72,76,4688

1518 paTh 62,77,174,4,72,232,142,3,208
»142,4,72,76,62,77,173,5413

1%ze paThA 5,72,105,4,141,9,72,174,12,7
2,172,5,72,16%,8,157,3649

1938 DATH O,70,232,200,20604,9,72,208,24

4,96,173,6,72,105,4,141,6661
1948 DATA 9,72,174,13,72,172,6,72,169,
8,157,8,71,232,200,204,8368

1958 DATA 9,72,208,244,96,162,8,169,8,
232,157,0,68,157,0,69,4748

1968 DATA 224,255,208,245,32,1682,74,96
,168,8,138,56,23%,100,144,4,6639

1978 DATA 208,170,176,248,24,152,185,1
6,141,19,72,168,8,138,56,233,6596

1986 DATA 18,144,4,280,170,176,248,24,
152,1085,16,141,28,72,138,185,6228

1998 DATh 16,141,21,72,96,173,25,72,13
2,212,178,24,72;13%,213,32,6921

28008 DATA 170,217,32,230,216,160,0,177
,243,48,3,200,208,249,41,127,10813

2818 DATA 162,4,56,233,32,157,6,168,22
4,0,240,16,2082,136,192,255,1562

2828 DATA 248,5,177,243,24,144,235,208
,169,48,2608,238,96,173,19,72,158

2030 DATA 141,22,160,173,26,72,141,23,
1688,173,21,72,141,24,160,96,3848

2848 DATA 173,19,72,141,239,99,173,28,
72,141,248,99,173,21,72,141,7956

28508 DATA 241,99,96,173,19,72,141,46,1
00,173,20,72,141,47,1608,173,5824

2068 DATA 21,72,141,48,160,96,173,16,7
2,56,201,160,176,17,56,201,7176

2878 DATA 50,176,6,169,10,141,27,72,96
,169,25,141,27,72,96,169, 4851

2880 DATA 50,141,27,72,96,56,128,216,2
4,24,24,24,225,0,0,0,98

20896 DATA 0,0,0,0,0,08,124,12,12,124,96
,96,124,8,8,08,8222

2180 DATA 124,12,124,12,124,6,0,8,8,0,
54,62,6,68,195,195,1589

2118 DATA 195,195,195,195,60,0,56,108,
i08,108,108,108,56,0,0,0, 580

2128 pATA 56,188,168,1608,56,08,0,0,60,8,
28,54,28,85,0,08,5938

2138 DaTh 0,0,0,0,0,0,0,08,9,8,1,1,1,8,
255,255,71

2148 DATA 255,8,08,0,0,0,0,8,8,8,1,255,
8,8,1,255,9561

2158 DATA @,0,1,255,0,16,16,16,0,08,8,1
46,8,08,8,16,5517

2160 DATA 16,16,0,56,124,254,0,48,1280,
252,0,32,112,248,0,32,4384

2176 DATA 112,9,0,0,0,0,0,08,8,8,08,08,0,
28,65,8,3665

2188 DaTh 34,8,32,132,32,80,128,16,128
,64,128,32,0,0,0,08,8102

2198 DpATh 0,8,08,0,124,124,124,124,124,
174,124,6,0,8,72,138,2422

2200 DATA 72,174,22,72,189,188,79,232,
142,22,72,141,160,212,141,26,7067

2218 DATA 208,141,24,288,169,30,265,22
,72,208,5,169,0,141,22,72,4507

2220 DATA 104,1708,104,64,242,242,242,2
42,242,242,226,210,194,178,162, 146,890
8

2230 DATA 130,114,98,82,66,2,2,2,4,4,4
,4,4,4,4,4,3982

2240 DATA 4,4,4,20,143,6,18,138,4,16,1
33,2,14,130,10,18,8320

20

SEPTEMBER A.NL.A.L.0O.8. Computing

I e
hOol

2250 DATA 130,12,0,0,0,208,132,4,18,134
,4,16,136,4,14,138,9468

2260 DATA 4,40,45,1,46,42,2,46,36,2,0,
8,0,18,143,18,6058

2276 DATA 9,138,8,8,135,7,7,133,6,6,13
1,5,268,8,2008,0,1656

2286 DaTa 166,0,3,08,1,5,2,9,28,0,1,5,2
,9,6,08,3135

2298 DATA 34,18,5,0,1,4,2,8,30,0,1,4,2
,8,4,0,2993

2380 DATA 36,10,43,06,1,3,2,7,32,6,1,3,
2,7,2,8,3067

2318 DATA 38,18,81,6,1,1,2,6,34,8,1,1,
2,6,48,18,3883

2328 pATA 1,0,1,51,1,40,1,47,1,52,1,51
,1,26,17,8,4940

2338 DaATA 1,51,1,35,1,47,1,50,1,37,1,2
6,11,8,1,48,4778

2340 DATA 1,41,1,52,1,51,1,26,18,8,1,5
8,1,47,1,53,5467

2358 DATA 1,46,1,36,1,26,11,8,246,248,
248,194,8,96,130,1308,7730

2360 DATA 130,130,130,140,140,141,141,
141,141,141,141,141,130,130,130,130,82
3

2376 DATA 136,130,136,136,136,136,136,
13e8,2,65,144,80,0,226,2,227,7088

2388 DATH 2,38,72,0,0,06,0,08,0,08,8,0,08,
8,8,0,2658

ie +0PT NO LIST
20 .0PT 0BJ
30 ; 33 SKEET SHOOT 306¢

40 ;programed by Tracy and Mike Jacobs
50 ;programed in Mac/65 by 055 inc.

68 *= $4000
76 PLAYERS .DS5 50408 ;RESERVED
86 PLAYER® .DS $6188 ;MEMORY FOR

98 PLAYERL .DS $6188 ;PLAYERS

8180 PLAYERZ .DS $0168

8118 PLAYERI .DS 50188

8128 DOSVIN = $e6cC JRESET POINTER
8138 SDLSTL = 58238 ;DL POINTER (LB)
8148 SDLSTH = $8231 ;DL POINTER (HB)
8158 INTL = $0208 jDLI POINTER (LB)
8166 INTH = $eze1 ;DLI POINTER (HB)
81786 NMIEN = $D4OE JINTERRUPT ENABLE
81808 WSYNC = $p40A JHALIT HOR. SYNC
8198 CHSET = PLAYERS ;NEW CHAR SET

8200 HPOSP® = $DBBO ;HOR. PLO

82186 HPOSP1 = $p881 ;HOR. PL1

8226 HPOSPZ = $DBB2Z ;HOR. PL2

8238 HPOSP3 = $DBAI ;HOR. PL3I

8248 SIZEP® = $D688 ;SIZE OF PL®
8258 SIZEPL1 = $D809 ;SIZE OF PL1
8268 SDMCTL = $822F ;(DMA) CONTROL
8270 GRACTL = $D61iD ;GRAPHIC CONTROL
8288 PCOLP® = $82C8 ;COLOR OF

8298 PCOLPL = $82C1i ;PLAYERS

8300
8310
83ze
8330
8340
8350
8360
8370
e3se
8390
a400
0410
0420
8430
0440
8450
0460
0470
a480
8490
8500
as51e
0520
8536
8540
8550
8560
8570
a580
8590
0600
8610
8620
8630
0640
8650
8660
0670
0680
8690
8700
87106
8720
8730
8740
8750
8760
8778
0780
87%e8
0800
asie
0820
08306
e840
8850
8860
e87e
0880
a8le
6900
8910
89206
0936
8948
8950
8960
es7e
09806
89298
1060
ieie
1020
ie3e
ie4e
ie5e
10680
ie78
ie8e
ie3%e6
1100
ii1e
1128
1130

PCOLP2 = $82C2
PCOLP3 = $02C3
PMBASE = $D487

STICK = $8278
TRIG8 = $p6ie
VUCOUNT = $p40B
PAPL = $peep
HITCRL = $DOLE
RANDOM = $D26A
CHBAS = $02F4
COLBK = $peia
COLPFZz = $p@is

FRO = $p4
IFP = $p9nan
FASC = $DBE6

INBUFF = $F3

; BUFFER ASCIIX
CDTMVI = $821C
CDTHMF3 = $8224
CONSOL = $DOiF
AUDCL = 5p26i
AUDFL = $p266
AUDCTL = $p268
ATRACT = $4D

SCR = PLAYERS+
DISP =

i
;Reserved Bytes

?
LOCATION .DS 1

PLXO .DS 1
PLX1 .DS 1
PLK2 .DPS 1
PLX3 .DS 1
SKEEL .DS 1
SKEE2 .DS 1
HIT .DS 1
S5HOTS .DS 1
TEMPO .DS5 1
DRAW .DS 1
DIS2 .DS 1

;ON THE SCREEN
LOSKEEL .D5 1
LOSKEEZ .DS 1
DIRECT .DS 1
DIRECTZ .DS 1
SPEED .DS 1

CHECK .DS5 1
NUMBER .DS 1
HUNDRED .DS 1
TEN .D5 1
ONE .DS 1
DLIREG .DS 1
CSIZE .DS 1
SCOREH .DS 1
SCOREL .DS 1
ROLIND .DS 1
POINT .DS 1
TSHOT .DS 1

AUINDX .DS 1
H
;START SET UP

LDA # {BEGIN
5TA DOSVIN

LDA # >BEGIN
5TA DOSVIN+1

CLEAR MEMORY F
CHARACTER SET,

- e e e

LDA HO
LDX 10

CLEAR 5TA PLAYER
5TA PLAYERS+

;P/M BASE
;JOYSTICK (€A)
;JOYSTICK TRIGGER
JUER. LINE COUNT
jPL1 TO PLAYERS
JCOLLISSION CLR
;RANDOM &
;CHARACTER BASE
;BACKGROLUND COLOR
;COLOR PLAYFIELDZ
JFLOATING POINT #t
;i (FP) CONVERSION
;CONVERSION (SUB)
JPOINTER TO

JTIMER 3

;€33 FLAG/VECTOR
;CONSOL PORT KEYS
JAUDIOCL) CONTROL
JAUDIOCL) FREQ.
JAUDIO CONTROL
;MODE TIMER

$2000 ;DISPLAY

SCR+$B3E8 ; COLNTERS

for Variables

JPLAYER 1,2 Y POS
jAIM X POS.
JBULLET X POS.
JSKEETL X POS.
;SKEET2 X POS.
;CHAR FOR SKEET1
;CHAR FOR SKEET2
JHIT COLNTER

i SHOT COLINTER

; TEMPORARY REG.
iPLAYERS POINTER
SLENGHT OF BULLET

;¥ POS. OF SKEE1
;Y POS. OF SKEE2
;SKEET1 DIRECTION
}SKEETZ DIRECTION
sWHICH SPEED

;88 FINISH SKEES
;MATH REGISTERS

;DLI REGISTER
;SKEETS DISTANCE
JHI BYTE OF SCORE
jLO BYTE OF SCORE
;ROUND COUNTER
JVALUE OF SKEETS
;STAY OF BULLET
;AUDIO REG.

;WHEN RESET IS
;PRESS

;GAME WILL

;START OVER.

OR PLAYER,
AND SCREEN

5,8
50100, X

5TA PLAYERS+502600,X%
5TA PLAYERS+508300,X

5TA PLAYERS+

$e400,%

5TA PLAYERS+505600,X
5TA PLAYERS+50600,X
STA PLAYERS+50700,X%
INX

BNE CLEAR

SEPTEMBER A.NL.A.L.O.3. Computing

21

a2

Bunndwiod 90 1'V'N'VY H3aN31Ld3s

1146 BEGIN LDY #0 ;DRAKW
1156 CONTST LDA CHARDPT,Y ;CHARACTERS
ii6e Tax ;ON THE
117e INY ; SCREEN
iige LDbA CHARDT,Y
1196 STORDT STa SCR

i28e8 PHA

1218 CLC

1226 LDA STORDT+1
1230 apc #1i

12406 STA STORDT+1
1256 LDA STORDT+2
i260 apc ne

1276 STA STORDPT+2
i28@ PLA

1298 DEX

i3e0 BNE STORDT

1316 INY

13206 CPY 8124

133@ BNE CONTST

1340 ;

1356 ;SET UP SCREEN

1368 ;

1378 SUS LDA HLST&25S
1380 S5TA SPLSTL

1398 LDA #LST/256
14060 5Ta SDPLSTH

14186 LDa #1952

1420 STA NMIEN

1430 LDA #DLI&255 ;SET DLI
1440 S$TA INTL

1450 LDba #DLI/256
1460 SThA INTH

1476 LDA #6

1480 S5Ta DLIREG

1438 LDA 18242

1566 5Ta COLBK

1516 ;

1528 ; SET UP P/M GRAPHICS
1536 ;

1548 START LDA # >PLAYERS
1558 5Ta PMBASE

15660 LDA #88

1570 S5TA PCOLPE

1580 5TA PCOLPZ

i59%e LDA #8134

1606 5TA PCOLPI

1616 LDa #$8a

1620 STA PCOLPL

1638 LDA #2126

1648 STA HPOSP@

16586 STaA PLX@

1666 5TA HPOSPL

1676 ;

1688 ;CLEAR REGISTERS
i698 LDA &e

i7ee STA HPOSP2

i7ie STA PLX2

1728 5TA HPOSP3I

1736 5TA PLXI

1740 5TA SHOTS

1750 2TA HIT

1766 5TA SCOREH

1770 5Ta SCOREL

1780 5TA TSHOT

1796 5TA ROUND

1860 ; CLEAR NUMBERS ON SCREEN
igie LDA #16

i8z8 5TA DISP+78

1830 5TA DISP+71

1840 STA DISP+72

1850 5TA DISP+7

i86e 5TaA DISP+8

1876 5TA DISP+9

i8se 5Ta DISP+46

ig9e 5TaA DISP+47

b8 1:1:]
i91ie
1926
1938
1948
1958
1968
i%7e
i98e
1998
20080
2810
2620
2838
20848
26850
2060
2878
2080
20898
2180
2110
2128
2138
2140
21586
2168
2178
2180
2190
22608
2210
2228
2236
2240
2258
2260
2278
2280
2238
2360
2310
2320
2338
2346
2358
2368
2370
2380
2398
2400
2410
2420
2430
24480
2450
2466
2470
24860
2430
2560
2518
2520
2536
2540
2550
2560
2578
2580
2590
26680
2610
2620
2630
2640
26508

S5TA DISP+48
SET UP SCREEN POINTERS

~ e

LDA #62

5TA SDMCTL

LDA #3

5TA GRACTL

LDA #1260

STA LOCATION

LDA #2068 $SET SKEETS
5TaA LOSKEEL ;IN THERE
5TA LOSKEEZ ;STARTING
LDA #1 ;POSITION
STA SIZEP@

5Ta SIZEPL

JSR CLRAIM ;CLEAR GUNSIGHT

LDa #1

5Ta SKEEL

STA SKEE2

LDX #e

JSR RESET

JSR RESET2
JSR TSCORE

PRINT TITLE IN SKY

e e e

LDX %@
PRINT LDA SKESHO,X
S5TA SCR+135,K
INK
CPX #11
BEQ LCHAR
JMP PRINT
SKESHO .SBYTE "SKEET SHOOT"

:
; REDEFINE CHARACTER SET
2
LCHAR LDA $E@68,X

STA CHSET,X

LDA $EGFF,X

S5TA CHSET+$FF,X

INK

BNE LCHAR

LDA # >CHSET

S5TA CHBAS

LDX %86
CHANCH LDA CHDATA,X

STA CHSET+8,X

DEX

BPL CHANCH

WAIT FOR (START) KEY

€3 n en e

KEY LDA CONSOL
CMP 236
BNE CKEY
STA HITCRL

CLEAR TITLE

LDK %0
CSCR LDA CLRSCR,X
STA SCR#+435,H
INK
CPX #11
BEQ PLULL
JMP CSCR
CLRSCR .SBYTE " LL

e e e

H
;} UCOUNT DELAY ROUTINE
i
CHK LDA VCOUNT

CMP #123

BNE CHK

Lba CDTMF3

2660
2678
2680
2698
2788
2718
2728
2738
2748
2758
2768
2776
2788
27398
3111
2818
2820
2838
28480
2858
2860
2878
2g8e
2838
2%a8
2916
2328
2330
23948
2950
2968
23970
2986
2938
Jaea
3eie
3eze
3eze
3e40
Iase
3068
3eze
iage
3898
3iee
3110
3128
3138
3i48
3158
3166
3178
3ige
3198
3268
3218
3228
3238
3248
3258
3z66
3270
3286
3296
3300
3310
3320
3330
3340
3358
3360
3378
3386
3398
3408
3418

BNE CHK2
JSR aue
CHKZ LDA VCOUNT

CMP #123
BEQ CHK2
LDA CHECK
CMP #12

BMI DIR

BEQ PULL

BEGIN PLAY

e e

ULL JSR CLRSKEL
JSR CLRSKEZ
Lba #ii4
5TA HPOSP@
STA PLX@

LDa #1306

STA LOCATION
JSR CLRAIM
LDa #6

5Ta AUDCL

;HQIT FOR STICK

:

PULLS
LDA STICK
CMP 14
BNE PULLS
Lpa e
5TAa CHECK
LDA RANDOM
3Ta SPEED
LDa #6
5TA CDTMF3
LDA #18
5TA AUINDX
JSR ale
Lba #e
5TA ATRACT

DIR JMP PICKDIR

:

Cou LbPA DISZ
CHMP 81
BEQ CLRSHOT
BPL GOBULL

H
;JOYSTICK CONTRO

z
TRIG
LDX TSHOT
CPX 82
BPL LRMOVE
LDA TRIGE
CMP %18
BEQ FIRE
JMP LRMOVE
FIRE JMP SHOT
GOBULL JMP SHOOT

;CLEAR SKEET1
JCLEAR SKEETZ
;SET PLAYERS
;TO THERE
;POSITIONS
;AND HWAIT

;FOR THE STICK
;TO BE PUSH UP

;CLEAR AUDIO
TO BE PUSHED UP

;L0AD RANDOM 3t
;FOR SPEED.
;MAKE SLINING
3 SOLND .

s
D¢

JRELEASE SKEETS.

i
ik

;COUNT LENGTH OF
JBULLET ON
;THE SCREEN

L

;COLUNT SHOTS THAT
;HAVE BEEN FIRED
;IF THO HAS BEEN
;FIRED THEN YOUR
;0UT OF SHELL

;FIRE GUN
;DISPLAY BULLET

CLRSHOT JMP ERASE ;CLEAR SHOOT

LRMOVE LDY STICK
LDX PLXe
LDA STRX,Y
CMP %0
BEQ STOHOZ
BPL RIGHT
LEFT SEC
CPH %40
BCC LEFT2
DEX
DEX
LEFTZ JMP STOHOZ
RIGHT SEC
CPX %204
BCS STOHOZ
INK

;MOVE YOLR
;AIM LEFT OR
JRIGHT

Buiandwo) *©'0"1'V'N'V 4H3gn31d3s

e

3428
3438
3446
3450
3460
3470
I480
3490
3568
3518
3528
3538
3546
3558
3560
3578
3580
3590
3600
36108
36208
3638
3640
3650
3668
3678
3688
3698
3708
3710
3720
3738
3740
3756
3760
3770
3788
3798
3gea
3gie
3s82e
3838
3840
3ase
3860
3878
3880
3goe
3900
3910
3920
3938
3948
3950
3960
3978
3986
3998
4000
4010
4020
4030
40840
4050
4060
4070
4080
4098
4100
4110
4120
4130
4148
4156
4160
4178

INK
STOHOZ STX PLXe
STH HPOSPG
JMP HMOVE
UDMOVE LDY STICK ;MOVE YOUR AIM
LPA STRY,Y ;UP OR DOWN
BEQ MacC
BPL MDN
BMI MUP
MDN SEC
LDA LOCATION
CMP #1212
BCS MacC
JSR MOVEDN
JSR MOVEDN
JSR MOVEDKN
MAC JMP CHK
MUP SEC
LDA LOCATION
CMP 816
BCC MaC
JSR MOVEUP
JSR MOVELP
JSR MOVEUP
JSR MOVEUP
JMP CHK
MOVEUP CLC
LDA DRAKW
ADC ni4
STA TEMPO
LDX LOCATION
LDY DRAKW
DEX
LOOPUP LDA PIC,Y
STA PLAYERG,X
INK
INY
CPY TEMPO
BNE LOOPUP
LDA #6
STA PLAYERG,X
DEC LOCATION
RTS

;MOVE PLO UP

’

MOVEDN CLC
LDA DRAKW
ADC #i4d
5ThA TEMPO
LDX LOCATION
LDY DRAKW
LDA %8
5Ta PLAYERG,X
INK

LOOPDN LDA& PIC,Y
5TA PLAYERG,X
INY
INK
CPY TEMPO
BNE LOOPDN
INC LOCATION
RTS

;MOVE PL@® DOWN

;
HMOVE CLC
LDA DRAKW
ADC %14
5TA TEMPO
LDX LOCATION
LDY DRAKW
LOOPH LPA PIC,Y
STA PLAYERG,X
INK
INY
CPY TEMPO
BNE LOOPH
BEQ JUMPUP
JUMPUP JMP LUDMOVE

JHOZ. MOVE

4180
4196
4200
4216
4226
4236
4240
4250
4266
42786
4288
4298
4308
43186
43208
4330
4348
4350
4360
4378
4380
4338
44080
4410
4420
4436
4448
4450
4460
4478
4480
4490
45680
4510
4526
4530
4548
4550
4568
4578
4588
4596
4608
4618
4628
4638
4640
4650
4668
4670
4680
4698
4768
4710
4720
4730
47480
4756
4768
4770
47880
4790
4860
4810
4820
4830
48480
4858
4868
48780
4888
4896
4960
4916
4928
4930

SHOOT AT THE SKEET

Mi%ee e e

HOT LDA $#t0
5TA CDTMF3
LDA #t6
STA AUINDK
LDA CDTMFI
BNE CONTS
JSR aue

CONTS LDX TSHOT ;DISPLAY BULLET

INK ;15 LOOPS ON THE
STH TSHOT ; SCREEN
LDA #1S
5TA DISZ
INC SHOTS
SHOOT LDA PLK®
5TaA HPOSP1
CLC
LDA DRAW
Aapc #9
5Ta TEMPO
LDX LOCATION
LDY DRAKW

BULLET LDA PICZ,Y

5TA PLAYERL,X

INK

INY

CPY TEMPO

BNE BULLET

DEC DISZ

JMP COLL

}MAKE AUDIO
;GUN SHOT

2

ERASE LDA DRAW ;ERASE THE BULLET
apc #9
STa TEMPO
LDX LOCATION
LDY DRAMW
LDba #He
STA DIS2

CLRLOP LDA 8
STA PLAYERL,X
INK
INY
CPY TEMPO
BNE CLRLOP
LDX SHOTS
JSR DISPNUM
JSR PUTSHOT
JMP CHK

;CHANGE SHOT REG.

?

SOUMAK STA AUINDX
LDA #He
STA CDTMF3
JSR AUe
RTS

?
;COLLISION

i

COLL LPba PIPL
AND #1504
BNE CCOLOR

*

COLLZ LDPA PiPL
STA HITCRL
AND 1508
BNE HIT2
JMP CHK

i
CCOLOR LDA SKEEi ;SHOT SKEET1

CMP 815 JCHECK IF IT

BPL COLLZ ;HAS BEEN HIT

INC HIT ;BEFORE.

LbA SKEEL ;JNO!

apc u22 ;CHANGE CHARACTER
5TA SKEEL ;MAKE SOME

49480
49508
4960
49780
4380
4998
5000
Seie
5026
56030
5048
sese
5068
5876
5886
se9%e
5iee
5iie
5128
5130
5140
51586
5166
5178
5ige
5198
5268
5210
5220
5238
5248
5250
5260
5270
5280
5298
536806
5318
5320
5330
5348
5350
5368
5378
53gae
5398
5460
5410
5428
5430
5448
54586
5466
5476
5480
5496
5568
5518
5528
5538
5540
55580
5568
5578
5580
5598
56680
5618
5620
5638
5648
56508
5668
5676
5680
5696

LDA 42

JSR SOUMAK
LD¥ HIT

JSR DISPNUM
JSR PUTHIT
LDA #8128
JSR SCSP
LDA POINT
JSR Bi6

JMP COLLZ

i

HITZ LDPA SKEEZ
CMP 815
BPL MACZ
INC HIT
LDbA SKEE2

apc #zz
5Ta SKEEZ
LDa H42Z
JSR S0UMAK
JSR SCSP
LDA POINT
JSR B16
MACz JMP CHK

?

Bi6 CLC
ADC SCOREL
S5TA SCOREL
LDA e
abC SCOREH
STA SCOREH
JSR TSCORE
RTS

i
SMALLZ LDX CSIZE ;KEEP TRACK

INK

STH CSIZE

CPX 49

BNE SKEEZUP
MAKEZ LDPA SKEEZ

apc #3

STA SKEEZ

LDa #8

STa CSIZE

P/M OF SKEET (

Mo e ne

KEEZUP CLC
LDA SKEE2
apC 84
STA TEMPO
LDX LOSKEEZ
LDY SKEEZ
DEX

LOOPSKZ LDA MG,Y

;NOISE
JAND GIVE ME
}SOME POINTS.

;SHOT SKEET2
;SAME AS BEFORE

;16-BIT MATH
;ADDITION
;ROUTINE

;0F SKEET
;DISTANCE

;CHANGE
;CHARACTER OF
;THE SKEET

23

5TA PLAYER3,X

INK

INY

CPY TEMPO
BNE LOOPSK2
LDa 36

5Ta PLAYERZI,
DEC LOSKEEZ2
LDA LOSKEEZ
CMP 24

BEQ RESETZ
RTS

i
SMALLL LDX CSIZE
INX
STH CSIZE
CPH 49
BNE SKEEiUP
MAKEL LDPA SKEEL
apc #3
STA SKEEL

JKEEP TRACK
;OF DISTANCE
i SKEET1

;CHANGE CHARACTER

e

Buandwod *@'0™1'V'N'V H3IgnN31Ld3s

5708
5718
5720
5738
5748
5758
5766
5778
5788
5798
5860
5818
5828
5830
5846
5850
5860
5870
s88e
5898
5968
5918
5926
5938
5948
5956
5968
5976
5988
5998
60080
6061ia@
6828
66838
6648
6058
6068
66878
6088
6898
6168
6iie
6120
6138
614@
6158
6168
6178
6188
6198
62088
6210
6228
6238
6248
6258
6268
6278
6286
6298
6386
6310
6328
6338
6348
6358
6368
6378
6386
6390
6408
6410
64260
6436
6448
6450

LDA u6
STa CSIZE

?
; P/M OF SKEET (1)
2
SKEE1UP CLC
LDA SKEE1
aDC 114
5TA TEMPO
LDX LOSKEEL
LDY SKEE1
DEX
LOOPSKL LDA MG,Y
5TA PLAYERZ,X
INK
INY
CPY TEMPO
BNE LOOPSK1
LDA @
STaA PLAYERZ,X
DEC LOSKEE1
LDA LOSKEEL
CMP 824
BEQ RESET
RTS

T e n e

INC ROLND
INC CHECK
LDA RANDOM
5Ta DIRECT2
JSR SIDEZ2
abc #8

5TA HPOSP3I
5TA PLHI
LDA #2868
5TA LOSKEEZ
LDA #1

5TA SKEEZ
LDA #8

5TAa TSHOT
5Ta AUDF1
5TA aUDPCL
5TA CDTMUZ
LDX ROLND
CPH #31

BEQ aDDUP
JSR DISPNUM
JSR PUTROD
5TA HITCRL
RTS

ESET JSR CLRSKE1L
INC CHECK
LDA RANDOM
STA DIRECT
JSR SIDEL
5T4 HPOSP2
5TA PLX2
LDA #2068
5TA LOSKEEL
LDA #1
5TA SKEEL
5TA HITCRL
RTS

RESET REGISTERS & COLNT ROLNDS
ESETZ JSR CLRSKEZ

RESET SKEET1 REGISTERS

?

ADDUP LDA uS
JSR Bi6
LDX SHOTS
INK
STX SHOTS
CPX 160

AT END OF GAME
JGIVE 5 POINTS
;FOR EVER BULLET
;THAT IS LEFT.

;DISPLAY ON
;THE SCREEN

S5TA SCR+135,X ;GAME OVER

;KAIT FOR
;START KEY TO
;BEGIN.

1GET PLAYERS 1,2
;0UT OF THE
WAy

OVER"
;SKEET ONE
JDIRECTION

2 ;SKEET TWO
;DIRECTION

JLEFT SIDE
;MIDPDLE
JRIGHT SIDE

1 ;MOVE SKEET1
;up

LZ ;MOVE SKEET2

;up

; GRAVITY

i
JMAKE 16-BIT AUDIO WITH SUSTAIN

6460 BEQ GAME
6470 JMP ADDUP
6480 ;

6498 GAME LDX 1@

6560 OVER LDA END,X
6510

6520 INK

6530 CPX #9

6540 BEQ JAM

6558 JMP OVER
6568 ;

6578 JAM LDA CONSOL
6588 CMP #6

6590 BEQ AGAIN
6600 LDA $@

6610 sTA HPOSP2
6620 STA HPOSP3
6630 JMP JaM

6648 ;

6658 AGAIN JSR CLRAIM
6668 JMP START
6670 ;

6688 END .SBYTE “GAME
6690 ;

6788 SIDEL LDA DIRECT
6710 JMP SIDE
6728 SIDE2 LDA DIRECT
6738 SIDE CMP #85
6740 BMI LSIDE
6750 CMP #1786
6768 BMI MIDDLE
6770 BPL RSIDE
6788 RE RTS

6798 RSIDE LDA #50
68088 JMP RE

6818 MIDDLE LDA 118
6820 JMP RE

6838 LSIDE LDA 3192
6840 JMP RE

6858 SKEEUZ JSR SMALL
65860 LDA SPEED
6878 SEC

6888 CMP #58

6890 BCC PICK2
65980 JSR SMALLL
6918 LDA SPEED
6920 SEC

6930 CMP #168
6940 BCC PICKZ
6950 JSR SMALLL
65968 JMP PICKZ
6970 SKEEZUZ JSR SMAL
6980 SEC

6998 LDA LOCATION
7008 CMP #1212
7010 BCS PAST
7620 JSR MOVEDN
7638 PAST LDA SPEED
7648 SEC

7858 CMP 2150

7060 BCC GOUP
7070 JSR SMALL2Z
7080 LDA SPEED
7898 SEC

7100 CMP #1168
7118 BCC GOLP
7128 JSR SMALLZ
7130 ;

71408 GOUP JMP COU
7150

7160

7170 ;

7188 AU® LDX AUINDX
7198 LDA SOLUNDL,X
7200 STA AUDFL
7210 INK

7228
7230
7248
7250
7268
7276
7286
7296
73080
7310
7328
7338
7348
7350
7360
7370
7380
7396
7480
7410
7420
7430
7448
7458
7460
7470
7480
7490
75688
7510
7528
7538
75480
7558

7568.

7578
7588
7596
76080
7616
7628
7630
7640

7658
7660
76708
7680
7690
77008
7710
77206
7736
7748
7750
7760
7778
7780
7738
7860
78ie
78206
7830
7840
7850
7860
7870
7880
7890
7900
7918
7920
7930
79480
79508
7960
7976
7980

LDA SOUNDL,X
STA AUDCL
INX

LDA SOUNDL, X
5TA CDTMUZ
INX

STH AUINDH
LDA #SFF

5TA CDTMFI
RTS

$ICKDIR LDA DPIRECT ;MOVE IN MWHAT

CMP #8%5

BMI SLEFT

CMP 8170

BMI SKEEUZ

BPL SRIGHT
PICKZ LbA DIRECT

[185

BMI SZLEFT
CMP #1708
BMI SKEE2ZUZ
BPL S2RIGHT
JMP COU
SLEFT LDX PLK2
DEX
STH PLX2
STH HPOSPZ
JMP SKEELZ
SRIGHT LDX PLXZ
INK
STX PLK2
STX HPOSP2
JMP SKEEU2Z
SZLEFT LDX PLXZ
DEX
STH HPOSP3
STX PLHI
JMP SKEEZUZ

jDIRECTION
;SKEETL

2 ;MOVE DIRECTION
3 SKEETZ

;MOVE SKEET1
JLEFT

;MOVE SKEET1
JRIGHT

JLEFT

S2RIGHT LDX PLXI ;MOVE SKEET2

INX
STX HPOSPI
STH PLHI

JMP SKEEZUZ
CLRSKEL LDA SKEE

apc 14

5TA TEMPO

LD LOSKEEL

LDPY SKEEL
BLANKL LDA une

5TA PLAYERZ,

INX

INY

CPY TEMPO

BNE BLANKL

RTS

JRIGHT

1 ;CLEAR SKEETL E::::j

CLRSKEZ LDA SKEEZ ;CLEAR SKEET2

apc #4
S5Ta TEMPO
LDX LOSKEEZ
LDY SKEE2
BLANKZ LDa #t@
5TA PLAYERZ,
INK
INY
CPY TEMPO
BNE BLANKZ
RTS
CLRAIM LDX une
LDA e
CLRLOOP INX
5TA PLAYERG,H
STA PLAYERL,X
CPX 255
BNE CLRLOOP
JSR MOVEUP
RTS

;CLEAR AIM

;MOVE SKEET2 E

Pa'lg

Buiandwo) "800 1'V'N'V 5383 1d3s

(=11

7998
goeoae
geie
geze
8a3le
gede
8ese
8068
geze
8o8e
8e9e
giee
8iie
8ize
g13e
8148
8158
81608
8i7e
gise
8196
8266
8218
8228
8238
8248
8258
8260
8278
8280
8298
8360
83ie
8320
8338
8348
8358
8360
8378
838e
83%8
8400
8418
8428
8438
8440
8458
8466
8478
8486
8490

8588
8518
85286
8538
85486
8558
8566
8570
8588
8598
8608
86186
8620
8638
8640
8658
8668
8678
8680
8698
g7ee
871e
8728
873e@
8748

DISPNLM
THA
SEC
Lei SBC
BCC
INY
Taxr
BCS
Lez cLC
TYA
apc
5TA
LDY
THA
SEC
L83 SBC
BCC
INY
Tax
BCS
L84 CLC
TYA
apc
STA
TRA
apc
STA
RTS

LDY $t@ ;DISPLAY NUMBER
;ON THE SCREEN

#1564
Lez
LeL

us10e
HUNDRED
p-1:]

#sea
Le4

Leg

#nsie
TEN

#nsie
ONE

i
TSCORE LDA SCOREL ;PRINT SCORE

STA
Lba
5T
JSR
JSR
LDY
sei LDA
BMI
INY
BNE
582 AND
LDX
583 SEC
SBC
STA
CPH
BEQ
DEX
DEY
CPY
BEQ
LDA
CcLC
BCC
564 INY
LpA
BNE
565 RTS

FRO ;0N SCREEN
SCOREH

FRO+L

IFP

FASC

1o

CINBUFF),Y

b1 ¥4

1:3 8
#S7F
14

520
DISP+38,K
une

585

HSFF
5084

C(INBUFF),Y
583

#ns30
583

PUTHIT LDA HUNDRED ;PUT # OF

5ThA
LDA
5Ta
LbA
5TA
RTS
PUTSHOT
5ThA
LDa
STa
LDa
5TA
RTS

DISP+46 ;HITS ON
TEN 3 SCREEN
DISP+47

ONE

DISP+48

LDA HUNDRED ;PUT # OF

DISP+7 ;SHOTS ON
TEN ; SCREEN
DISP+8

ONE

DISP+9

PUTROD LDA HUNDRED ;PUT # OF

5Ta
LDba
5Ta

DISP+78 ;ROUNDS
TEN ;ON SCREEN
DISP+71

8758
8760
8778
8780
8790
ggee
8810
8820
8830
8848
885e
8860
8870
88886
8890
8908
891e
8928
8938
894@
8950
8968
8970
8988
8990
9868
9eie
90260
9030
9040
20850
9060
9870
9086
sa83@
9iee
9iie
9128
9138
9148
9158
9168
9179
9188
9198
9200
9218
9228
9238
9248
9258
9260
9276
9280
9298
9308
92316
9320
9330
93480
9358
9360
9370
9388
9398
9460
9418
9428
9438
9448
9458
94680
9478
9480
9498
9560

LDA ONE
5TA DISP+72
RTS

SCSP LDA SPEED ;SET VALUE OF
SEC 3 SKEETS
cMP 168 ;DEPENDING ON
BCS SCS6 3 SPEED
SEC
CMP S50
BCS 5C25

5Cie LDa #i6
5TA POINT
RTS

5C25 LDaA 825
STA POINT
RTS

5C58 Lba #56
STA POINT
RTS

;GIVE 1@ FOR SLOKW

JGIVE 25 FOR MED.

jGIVE 58 FOR FAST

DATA FOR NEW CHARACTER SET

£ e e e

HDATA .BYTE 56,1206,216,24,24
.BYTE 24,24,225
.BYTE 9,0,06,0,0,8,8,8
.BYTE ©,124,12,12,124
.BYTE 96,96,124
.BYTE ©,0,0,124,12,124,12,124
.BYTE 0,0,08,8,08,54,62,6
.BYTE 60,195,195,195,195
.BYTE 195,195,660
.BYTE 0,56,108,108,1088
.BYTE 108,188,56
.BYTE 6,0,0,56,108,108,108,56
.BYTE 0,0,0,0,0,28,54,28
.BYTE 85,0,0,06,08,08,8,8

i
JLEFT OR RIGHT DPATA FOR STICK

i
STRX .BYTE ©,0,0,0,8,1,1,1
.BYTE 6,-1,-1,-1,0,08,0,8

H

jUP OR DOWN DATA FOR STICK

i

STRY .BYTE ©,0,0,0,0,1,-1,8
.BYTE ©,1,-1,0,0,1,-1,806

GRAPHICS FOR AIMCGLUNSIGHT)

IC .BYTE 16,16,16,0,8,8
.BYTE 146,6,0,0,16,16,16

i
;GRAPHICS FOR SKEETS

:

MG .BYTE ©,56,124,254,0,48,128
.BYTE 252,06,32,112,248,0,32
.BYTE 112,0,0,0,0,0,8,0,0
.BYTE 0,0,6,0,286,65,8,34,8
.BYTE 32,132,32,80,128,16
.BYTE 128,64,128,32,0,0,06,0,0

H

;GRAPHICS FOR BULLET

H

PIC2 .BYTE 9,0,0,124,124,124
.BYTE 124,124,124,124,06,8,0

H

;DLI ROUTINE

i

DLI PHA
TRA
PHA
-LDX DPLIREG
LbA TABLE, X
INK
STH DLIREG
STA WSYNC

9510 sTA COLBK

9520 5TA COLPF2

9530 DLOOP LDA #38

9540 CMP DLIREG

9550 BNE Al

9560 Lba #o

9570 5TA DLIREG

9588 a1 PLA

9590 TAR

9600 PLA

9610 RTI

9620 ;

9638 ;COLOR TABLE FOR SKY

9640 ;

9650 TABLE .BYTE 242,242,242,242,242
9660 .BYTE 242,226,216,194,178
9670 .BYTE 162,146,130,114,98,82
9680 .BYTE 66,2,2,2,4,4,4,4,4,4
9698 .BYTE 4,4,4,4,4

9700

H
9718 ;DATaA FOR

AUDPIO SOUNDS

9728 ;

9730 SOLUNDL .BYTE 28,$8F,6

9748 .BYTE 18,$84,4

9750 .BYTE 16,$85,2

9760 .BYTE 14,582,180

5770 .BYTE 10,%$82,12

9780 .BYTE 9,0,8

3790 .BYTE 20,584,4

9808 .BYTE 18,586,4

9810 .BYTE 16,588,4

9820 .BYTE 14,%8a,4

9830 "BYTE 40,52D,1

3840 ‘BYTE 40,%24,2

3850 \BYTE 40,%24,2

9860 .BYTE ©,8,0

3878 SOUNDZ .BYTE 18,$8F,18

9880 .BYTE 9,58h,8

5890 \BYTE 8,%$87,7

3900 .BYTE 7,5$85,6

3918 .BYTE 6,%$83,5

9920 ;

9938 ;DATA FOR SCREEN

9940 ; E::{:J
2958 CHARDT .BYTE 2080,8,200,0,168,8
9960 .BYTE 3,8,1,5,2,9,28

9970 \BYTE ©,1,5,2,9

9980 \BYTE 6,0,34,18,5,08,1,4,2,8
9990 "BYTE 30,8,1,4,2,8,4,0,36,18
818088 .BYTE 43,6,1,3

916018 .BYTE 2,7,32,8,1,3,2,7,2,8
@i18ez8 .BYTE 38,10,81,8,1,1,2,6,34,8
918030 .BYTE 1,1,2,6,40,18,1,8,1
910048 .BYTE 51,1,48,1,47

918858 .BYTE 1,52,1,51,1,26,17,0,1
9100666 .BYTE 51,1,35,1,47,1,58,1,37
918678 .BYTE 1,26,11,0,1,40,1,41,1
818088 .BYTE 52,1,51,1,26,18,8
818098 .BYTE 1,50,1,47,1,53,1,46,1
910188 .BYTE 36,1,26,11,0

810110 ;

918128 ;DISPLAY LIST

810138 ;

918140 LST .BYTE $F@,$Fa,$Fe,5C2
818158 .BYTE SCR&255,S5CR/256
e18168 .BYTE $82,$82,%82,5$82,582
8108176 .BYTE $8C,S$8C,58D,%8D,58D
818188 .BYTE 58D, $8D,$8D, 58D
818198 .BYTE $82,$82,582

916200 .BYTE $82,582,5$82,582,$82,582
818218 .BYTE $82,582,982,2,541
910228 .WORD LST

610238 ;

810240 :SCREEN DISPLAY

816258 ;

010268 .END &=

@

=5
®

@

D

continued from page 9

How things came fo be

When my usual attack of the pre-Christmas
flu grounded me recently, I started thinking
again about a project that had already been
on my mind for quite some time, but for
which I had never found enough time to im-
plement: a RAM disk for the 800XL. There
is, after all, in every 64K XL, a 14K bank
of RAM beneath the operating system ROM’s
where it does, more or less, nothing.

The question then was how to use this
RAM as a drive. The first possible solution
that occurred to me was to write a RAM disk
device driver. I soon discarded that sugges-
tion, however, because it would involve writ-
ing a complete File Management system. And
that particular wheel is already among us in

the guise of DOS.SYS.

So why not adapt the DOS RAM-disk rou-
tines to work with the much smaller 800XL
free RAM space? Alas, after a lot of disas-
sembling, this proved to be a dead end too.
I have no doubt at all that it could be done,
but not without a commented source listing,
like the one available for DOS 2.0 in Inside
Atari DOS.

At this point I was ready to abandon the
project had my fiancee not challenged me to
go on. Wasn’t I the one who kept telling peo-
ple what a wonderful and flexible machine
the 800XL really was? (See, Caroline, I told
you you'd get the credit you’re due.) So grum-
bling (quietly) I started again by studying the
DOS 2.0 listing.

And then the golden idea hit home.

All DOS functions eventually vector

“The most useful program for the Atari since Print Shop!*"

FORMS GENERATOR — ==

for the Atari 800, 800XL, 65XE, 130XE

26

Designed by Jeff Brenner, columnist for Computer Shopper
magazine, of "Applying The Atari" fame, and author of book
and magazine articles in COMPUTE!, ANALOG and others.
LOOK WHAT YOU CAN DO WITH FORMS
GENERATOR: Purchase merchandise by mail? Next
time, send a customized purchase order form! Does
your home or business ever need statements, in-
voices, proposals, job work orders, gift certificates,

keeping, since you can save filled forms to disk!

==

etc.? No problem! Use FORMS GENERATOR's scrolling spreadsheet-
style screen to design almost any form to suit your exact needs. What
you see on-screen is what you get on paper! Use the text mode with any
80-column printer, or the high-res graphics mode with the Epson,
Gemini/Star, Okidata, Panasonic or Prowriter for remarkably realistic
forms. BUT THAT'S JUST THE BEGINNING: Once you've designed a
form, you can program FORMS GENERA TOR to make all calculations
automatically! Imagine: after you enter quantities, descriptions and
prices, FORMS GENERATOR moves about the form calculating ex-
tended prices, subtotals, and even the sales tax! Like magic! (Sample
invoices included). You can also use FORMS GENERATOR for record

NAMED A “BEST BUY" IN 8-BIT SOFTWARE BY ANTIC MAGAZINE, JANUARY 1988.
Our “down to planet Earth” price: Only $23.95 (product #ATA611).

FOR C.0.D. ORDERS CALL (516) 932-5330

Send coupon to:

Twenty-Fifth

— ———— — — — — — — —
O YES! Please rush me FORMS GENERATOR (product l
#ATAG611) with complete documentation, 90-day free
replacement warranty, full customer service support and

~ 20-page Atari software catalog. | am enclosing $23.95

Centuru"‘, ~ + $3.50 shipping and handling. I
7~ DOCheck/Money Order enclosed 0OC.0.D. (add $2.50)
-§ R - Name
— 7
= . =7 Addess
Software Division city
Dept. AT 2
234 Fifth Avenue State Zip

Suite 301

New York, N.Y. 10001 DEALER INQUIRIES INVITED.

[

CIRCLE #1017 ON READER SERVICE CARD.

New York State residents add 8% sales tax
“The Print Shop and Atari are registered trademarks of Broderbund Software and Atari

l— Corp., respectively. — Prices and availability subject to change without notice.
— e — — — —— e — —

I
I
l
|
|
I

—

through SIOV and DSKINV for their im-
plementation. And for each of these routines
there is in DOS 2.5 one, and only one, place
where it is called. So if we could just inter-
cept these calls, we would then be able to
check whether the device addressed is a
RAM disk and, if so, take appropriate meas-
ures. And that is precisely what RAM Disk
800XL does.

For the hard-core addict

Listing 2 is the assembly language source
code for RAM Disk 800XL. You don’t need
to type it in, it is there only for those people
interested in assembly language program-
ming. Figure 1 shows how the extra RAM is
used by the DS5: driver. Figure 2 gives you
the MDRIVE memory usage.

Address: Use:

$C000 + +

| MDRIVE SIO routine |

$CI00: + + +

| VTOC (sector $168) |

$C180 + +

| Directory (sector $169) |

$C200 + +

| data (sector $171-$18C |

$CFFF + !

$D800 + +

| data (sector $18D-$IDC |

$FFFF + +

Figure 1.
RAM disk memory usage

MDRIVE: Run Use:

$3800 $3800 + +

| install MDRIVE |

$38EC $6BC + +

| runtime routines |

$3930 $C000 + -

| SIO commands |

$39CF + +

Figure 2

MDRIVE memory usage

Jerry van Dijk uses his Atari both as a study
tool and for recreation. His main interests are
system-level programming and the use of com-
puters in law practice.

SEPTEMBER A.NLA.L.O.3. Computing

MIL EDITOR DATA

LISTING 1

: ASSEMBLY

LISTING 2

i8e8 DaTa 255,255,8,56,208,57,32,2689,5
6,169,234,141,35,241,173,35,8711

18168 DATh 241,178,3%,226,56,224,234,24
6,1,96,169,11,162,8,141,66,6018

i828 DATA 3,169,163,141,68,3,169,56,14
1,69,3,173,285,56,141,72,5187

1838 DATA 3,173,206,56,141,73,3,32, 86,
228,32,289,56,169,8,168,5337

1848 DATA 153,8,193,153,128,193,268,20
8,247,169,2,141,0,193,169,1160, 9878
1858 DATA 141,1,19%,169,168,141,3,193,
169,127,141,56,193,169, 255,168, 1673
1868 DATA 57,153,8,193,2680,192,69,208,
248,169,248,153,0,193,172,208,3598
1878 DATA 56,185,49,57,153,255,191,136
,2088,247,32,226,56,172,287,56,1134
i888 DATA 185,237,56,153,187,6,136,208
,247,173,18,7,%,80,141,18, 3765

1898 DaATA 7,32,224,7,169,188,141,187,1
6,169,6,141,188,16,169,202,6664

1188 DATA 141,176,7,169,6,141,177,7,96
,125,29,29,29,29,29,29,8924

1118 paATa 32,32,83,1081,116,116,185,118
,183,32,85,112,32,65,84,65,1902

1128 paTa 82,73,32,56,48,48,88,76,32,8
2,97,189,32,68,185,115, 1686

1138 DaTA 187,155,155,4%2,8,69,168,120,
169,0,141,14,212,173,1,211,6483

1148 DATA 133,203,169,254,141,1,211,96
,165,2083,141,1,211,88,169,64,8778

1158 DATA 141,14,21%2,96,32,243,6,248,3
,76,83,228,168,1,1468,3,4597

1166 pATA 3,96,32,243,6,2408,3,76,89,22
8,1208,169,8,141,14,212,6527

1178 DaTa 173,1,211,133,2083,169,254,14
1,1,211,32,8,192,165,2083,141,23

1186 DATA 1,211,88,169,64,141,14,212,1
92,8,96,173,08,3,2601,49,4204

1198 DaATA 208,5,173,1,3,2601,5,96,173,2
,3,201,82,240,37,201,6174

1200 DATA 80,240,18,2081,87,240,14,197,
8%,240,4,160,168,208,2,160,8964

1216 DATA 1,140,3,3,96,32,72,192,173,4
,3,133,204,173,5,3,2647

1226 DATA 133,205,288,13,32,72,192,134
,204,132,285,174,4,3,172,5,57008

1238 paATA 3,134,206,132,2087,1608,127,17
7,2084,145,206,136,16,249,48,207, 1857
1248 DATA 173,11,3,201,1,248,6,104,104
,160,144,288,196,173,18,3,6351

1258 DATA 281,164,268,5,162,0,168,193,
96,281,105,2688,5,162,128,168, 9115

1268 DATA 193,96,201,113,144,225,201,2
21,176,221,261,141,176,18,56,233,2638
1276 DATA 113,32,143,192,169,194,208,5
,56,233,141,32,143,192,169,216,1480
1286 DATA 24,101,265,168,166,2604,96,13
3,204,169,08,133,2605,162,7,6,6839

1298 DATA 284,38,205,202,208,249,96,22
6,2,227,2,8,56,08,0,8,1045

00010 LI OFF

006206

00030 * *
00040 * MDRIVE 2.5 *
geasa-¥. L mmsessacho *
60060 * *
00070 ¥ Ram disk driver for B8O0XKL *
0eE6H e o Hith D05 2.5 —~=T= ¥*
00090 * *
68061606 * Use as RAMDISK.COM (D5:) *
06116 * *
80126 ¥ Author: Jerry van Di jk ¥*
00130 * Pelikaanhof 15 3*
00140 * 2312 EA Leiden *
00150 * The Hetherlands ¥*
06166 * ¥*
80170 ¥ Last revision: 12-dec-1988 *
00180 * 3*
00190 * Written in SynAssembler *
00200 * *
80210 * >>> USES PART OF PAGE 6 << *
06220 * 3*
80230 IOOOHHOEBHOCO0H0BHBHEHBNOOOBDE

90240 ;

)

Disk 800XL

e
; MDRIVE CONSTANTS
T,
H

MAXSEC .EQ $81 ;Max sector .hi
OFFSET .EQ $38 ;VUTOC off-set
SECNUM .EQ $45 ;VUTOC data sec
USEC .EQ $68 ;VUTOC sec lo
DSEC .EQ $69 ;DIR sec lo
SECLOMW .EQ $71 ;DATA sec low
SECMID .EQ $8D ;DATA sec mid
SECHIGH .EQ $DD ;DATA sec high
TESTBYT .E@ SEA ;RAM test byte
;

e
3 MDRIVE EQUATES
P
H

TEMP .EQ $CB ;Memory stat
ZPAGE .EQ SccC ;Temp. adr
MPROG .EQ $386868 ;Prog begin
RTSTART .EQ $3I8EE ;RT origin
EXSTART .EQ $3932 ;EX origin
RAMLOW .EQ $C880 ;Low RAM blk
vToc .EQ $C1688 ;VUTO0C adr
DIR .EQ $C1806 ;DIR adr
LOWBANK .EQ $C266 ;DATA lo adr
HIGHBANK .EQ $D866 ;DATA hi adr
S0MERAM .EQ $F123 ;Test RAM

H

; it
H DOS 2.5 CONSTANTS
el s
;

DS .EQ $85 ;D5: device
DRVUS EQ $58 ;Drive S
SECLEN EQ $7F ;Sector length
;

; =
i D0S 2.5 EQUATES
e
i

DRUBYT EQ $76A ;Act. drives
DSIO EQ $7B6 ;5I0V call
DINIT EQ $7E8. ;Init DOS
DDSK EQ $186B ;DSKINV call
H

'

; ATASCII CODE'S

O s S
; ;

cD .EQ $1D ;Cursor down
CLS .EQ $7D ;Clear screen
EOL .EQ $9B ;Clear screen
H

2

; KL SYSTEM CONSTANTS
SRR S o e
?

I0CBSO .EQ $86 ;IOCB ® offset
NMIOFF .EQ $88 ;NMI off value
0K .EQ $81 ;No error code
PUTBUF .EQ $6B ;CIO0 put buf
DISK .ER $31 ;S5I0 dis code
NMION .EQ $40 ;NMI on value
HRITE JEQ $58 ;SI0 put cwmd
READ .EQ $52 ;S5I0 get cwmd
STATUS JEQ $53 ;SI0 stat cwd
VERIFY .EQ $57 ;SI0 put cwmd
NOSEC .EQ $98 ;Sector error
NOCMD .EQ $a8 ;Cmd error
RAMON .EQ $FE ;ROM disable

H

2

H KL SYSTEM EQUATES
e
H :
DDEVIC .EQ $388 ;DCB device
DUNIT .EQ $381 ;DCB unit
DCOMND .EQ $382 ;DCB cwmd
DSTATS .EQ $383 ;DCB status
DBUFLO .EQ $384 ;DCB buf lo
DBUFHI EQ $385 ;DCB buf hi
DALXL EQ $38A ;DCB sec lo
DAUXZ .EQ $36B ;DCB sec hi
ICCOM LEQ $342 ;CIO cwd
ICBAL JEQ 5344 ;CI0 buf 1lo
ICBAH .EQ $345 ;CIO buf hi
ICBLL JEQ $348 ;jCIO len lo
ICBLH .EQ $349 ;CIO len hi
PAGEG .EQ $6BC ;Free space
PORTB .EQ $D3681 ;Memory ctrl
NMIEN .EQ $D4BE ;NMI control
DSKINV .EQ SE453 ;5I0 status
CIOV .EQR $E456 ;CIO vector
S5I0V .EQ $E459 ;5I0 vector
i X I
HHOEHH0HB808800606080600868608688¢
¥* Check for RAM module *
FHOBHHHOGEHEEBHOBHEORBOOBEHOR0E
; This module is the first run

:
H

; when MDRIVE is executed. It
; checks whether there is RAM
; beneath the 05. If there is
; it runs the install module

SEPTEMBER A.N.A.L.O.8. Computing

27

82

Buandwod *©'0™1'V'N'VY H3IgaW3 L3S

81310
613286
81336
01346
81356
81366
81376
81386
81396
614080
81416
81420
81436
01448
61450
81460
01476
81480
81490
81566
81516
81526
81536
81540
815586
01566
81576
81586
81596
01660
81616
816286
81636
01646
01656
81660
81676
01686
81690
817080
81710
817206
81736
01746
81758
61760
81776
81780
81796
01800
81816
81820
81836
818406
81856
81860
01876
618886
61890
81966
019186
81926
81936
01946
01956
01966
019786
01986
61996
02608
020616
826260
82636
02640
826050
02060
626706
620680

; otherwise it simply exits.
H

.0R MPROG

i
MDRIVE
i
; Disable 0S5 ROM's
i

JSR ROMOFF

Store & retrieve a byte

(St

LDA HTESTBYT
S5TA SOMERAM
LDA SOMERAM
TaX

Restore 05 ROM's

e e

JSR ROMON

Check if there is RAM

o~ e

CPX HTESTBYT
BEQ INSTALL
RTS

’

IGO0
* INSTALL RAM DISK MODULE *
FIEOOOOOOO000000000000000000000¢

Module to install the RaM
disk. It formats the disk,
makes the DO0S patches and
copies the runtime and
modules in place.

NSTALL

First print a message

L ST T P S,

LDA H#PUTBUF
LDX H#IOCB®
STA ICCOM
LDAa #MSG
5Ta ICBAL
LDA /MSG
5TA ICBAH
LDA MSGLEN
5TA ICBLL
LDA MSGLEN+1
5TA ICBLH
JSR CIOV

Disable 05 ROM's

e ten e

JSR ROMOFF

Clear vtoc & directory

LDA #6
TAY

.8 5Ta VTOC,Y
5TA DIR,Y
INY
BNE .0

Write VUTOC sector

LDA #2

S5TaA VUTOC

LDA #116

5TA UTOC+1

LDA #168

STA VUTOC+3

LDA #/61111111
STA VUTOC+OFFSET
LDA #711111111

02696
62160
821186
62126
62136
82140
8z150
821686
82170
82180
82196
62260
82210
82220
82230
62249
82256
62260
82276
82280
82296
82368
82316
823286
82336
02340
82358
82360
82376
623806
62398
8z468
82416
82426
62436
62446
02456
62466
62478
62488
82498
82560
82518
82528
82530
025486
82556
825660
82576
82586
82590
82668
626186
82620
82636
826480
82658
826680
62676
626860
82696
82768
82716
82728
62736
82748
82750
82760
827760
62786
82796
628066
028160
82826
82836
828406
62856
828660

LDY HOFFSET+1
1 5TaA VUTOC,Y

INY

CPY HSECNUM

BNE .1

LDA #71111106686

5Ta VTOC,Y

Copy execute module in place

LDY EXLEN

.2 LDA EXSTART-1,Y
STA RAMLOW-1,Y
DEY
BNE .2

Enable 05 ROM's

[

JSR ROMON

Copy runtime module in place

~ulnn

LDY RTLEN

3 LDA RTSTART-1,Y
5TaA PAGE6-1,Y
DEY
BRE .3

Add DS: to DOS

LDA DRVBYT
ORA HDRVUS
5TA DRVBYT
JSR DINIT

Patch DOS DSKINV call

~e e ne

LDA HMDSK
5Ta DDSK

LDA /MDSK
S5TA DDSK+1

;

; Patch DOS SIO0 call

; LDA HHMSIO
5Ta DSIO
LDA /MSIO
STA DSIO+1L

Imstallation done

- e

RTS

;

; The message

;

MSG .DA #BCLS,HCD,HCD,HCD
.DA HCD,HCD,HCD
.A5 ' Setting Up ATA'
.AS5 'RI 860XKL Ram Dis'
S Uk
.DA HEOL,HEOL

MSGLEN .DA MSGLEN-MSG
: RuNtime Wodule length
RTLEN .DA HRTEND-PAGE6+1
Execute module length

KLEN DA HEXEND-RAMLOW+1

e [T~ e e

OMOFF

[N . L

Disable 05 ROM's

82870
62880
62896
82968
82916
82920
82936
82946
82950
029660
829760
82986
82996
63000
830180
83620
83630
68364606
836858
836686
83676
830680
83696
83160
83118
831286
83136
83146
83156
63166
83176
631886
83196
83266
83216
83220
83230
83240
83256
83266
03276
832886
83296
83366
83318
83326
83336
83346
83350
83366
83376
83386
83396
83460
83418
63426
83436
83448
83450
83460
03476
834860
83496
835080
83516
83526
83530
83546
83556
835660
83576
83586
835960
83660
83616
83620
836308
63640

-

SEI

LDA HNMIOFF
STA NMIEN
LDA PORTB
STA TEMP
LDA HRAMON
5TA PORTB
RTS

;
ROMON

Enable 05 ROM's

e

LDA TEMP
5TA PORTB
CLI

LDA HNMION
5TA NMIEN
RTS

FIFOOOO00000000000E00000000000
* RUNTIME MODULE *
FIFEEHEOE0E00E0E00000000G000000

y

; This code is called by DOS if
; it executes a DSKINV (SIO

; status) or SIO call.

; If device is D5: and it is a
; status call the status is set
; to OK and the routine exits.
3 If device is D5 and it is a
; S5I0 call then the 05 ROM's

; are disabled and a jumMp is
;

;

H

’
H

?
;

’

~+
(=}

it

made to the execute module
execute the command.

If the device isn't DS: then
the routine continues with
DSKINV or SIOV.

Runtime code origin:

.0R PAGE®6
.TA RTSTART

;
;
MDSK
H
; Check if device is DS:
;
JSR CHKDEV
BEQ DODSK

If not continue with DSKINV

e e e

JMP DSKINV

H
;j0therwise set status & return

i
DODSK LDY HOK
STY DSTATS
RTS
i
i
; SI0OV PATCH
D
i
MSIO

JSR CHKDEV
BEQ DOSIO

If not continue with SIOV

Buiandwo] "0 1'V'N'V HIgn3ILd3s

Si=]

83656
83668
036760
03680
83690
837006
837106
03720
83736
03746
83750
03760
83776
837806
83798
038006
03810
03826
03830
03846
038560
83860
838786
038880
83898
832968
839186
83928
6839306
83946
83956
839680
83970
03986
63996
04060
046186
040626
04036
04040
040586
0406680
046876
040680
046986
f4168
04118
84126
04136
04146
841586
041686
84178
041886
84198
04266
042186
04226
84236
04240
04256
04260
04276
04236
04296
04360
043186
04328
043306
043406
04356
04366
84376
04386
04396
04468
04416
044280

JMP

[~ TSRS

0510 SEI
LDaA
5TA
LDA
5TaA
LDA
5TA
JSR
LDA
5ThA
EET
LDA
5TA
CPY
RTS

SI0V

Otherwise run execute module

HNMIOFF
NMIEN
PORTB
TEMP
HRAMON
PORTB
EXEC
TEMP
PORTB

HNMION
NMIEN
He

RUNTIME SUBROUTINES

HKDEV

it is.

e e e e e (D e e e e e

LDaA
CHP
BNE

Check if S5I0 device is DS:
Returns with zero flag set is

DDEVIC
HDISK
CHKDN
DURIT
HDS

* EXECUTE

This code,

COMMAND MODULE *

which is hidden

RAM Disk SI0 commands.

i
i
; beneath the 05, executes the
i
i

.0R
.TA

KEC LDA
CHP
BEQ
CHP
BEQ
CHMP
BEQ
CMP
BEQ

No command

et S

RAMLOH
EXSTART

Decode command

DCOMND
HREAD
GETSEC
HHRITE
PUTSEC
HUERIFY
PUTSEC
STATUS
SETOK

then return error

HNOCHMD
ERRKIT

ERRXIT STY

HOK
DSTATS

044360
84446
04456
04460
04476
044860
04496
04500
04516
04526
04536
045406
04556
045660
84576
045860
84596
04600
04610
04620
04636
84640
04650
04660
84670
04686
046960
047086
84716
04728
047306
04740
047560
04766
047760
04780
84796
64800
04816
64826
084830
04840
04858
04860
04876
04886
04896
849060
849186
04926
049336
84946
84956
04966
04970
04986
64998
685060
05010
05020
85630
050480
65056
05066
05076
050860
05696
851606
85116
85126
85136
85146
65158
851686
85176
6851806
85196
05200

EWSEL -1 moei) SREEEERARR
;
PUTSEC
;
H Calculate sector address
;
JSR CALC
;
; Move data set-up
v LDA DBUFLO
STA ZPAGE
LDA DBUFHI

5TA ZPAGE+1
BNE MOVE

GET SECTOR

ETSEC

calculate sector address

e e e (e e e e a

JSR CALC

Move data set-up

e e

STX ZPAGE

STY ZPAGE+1
LDX DBUFLO
LDY DBUFHI

e e e e

() m e n

¥ R S

[RSP

Move the data: FROM address
in (ZPAGE), TO address in X

OVE

STK ZPAGE+2

S5TY ZPAGE+3

LDY HSECLEN

LDA (ZPAGE),Y
5TA (ZPAGE+2),Y
DEY

BPL .86

BMI SETOK

First check the high byte

LDA DAUKZ
CHMP HMAXSEC
BEQ DOCALC

If not then a illegal secto

ECERR

PLA
PLA
LDY HNOSEC
BNE ERRKIT

Check if vtoc sector

ocaLc

LDA DAUX1
CHP HUSEC
BHE CHKDIR

e

r

If it is set address § return

LDX #vTOC
LDY /VUTOC

852180 RTS

685220 ;

85238 ; Check if directory sector

05240 ;

85258 CHKDIR CMP H#DSEC

685260 BNE CHKDAT

85270 ;

85288 ; If so, set address & return
85290 ;

85300 LDX HDIR

853180 LDY /DIR

85326 RTS

85330 ;

85348 ; Check if sector not too low
85358 ;

853608 CHKDAT CMP HSECLOMW

85376 BCC SECERR

85386 ;

853908 ; Check if not too high

65400 ;

854106 CMP HSECHIGH

05426 BCS SECERR

85436 ;

85440 ; Find RAM bank

854506 ;

85460 CHMP HSECHID

85476 BCS .8

05480 ;

85496 ; Calculate low bank

855606 ;

85516 SEC

855260 SBC HSECLOH

85536 JSR MULT =
85546 LDA /LOKWBANK —
65550 BNE .1 7.} =
05560 ; -
95570 ; Calculate high bank >
6855806 ;

85590 .0 5ED g
85600 SBC HSECMID

85610 JSR MULT &
85620 LDA /HIGHBANK ><
05636 ; -
85640 ; Add all up & return

85656 ;

856606 .1 CLC

85670 ADC ZPAGE+1

85680 Tay

85696 LDX ZPAGE

85700 RTS

85716 ;

05720 j-——————— =
85736 ; MULTIPLY $88

A57AM; ==cse e Eta st ot S e
85750 ;

85760 ; Multiply Accu with $88.

857768 ; Result in (ZPAGE}.

85786 ;

85796 MULT STA ZPAGE

685800 LDA #0

65816 5TA ZPAGE+1

058206 LDR #7

858306 .6 ASL ZPAGE

85840 ROL ZPAGE+1

85856 DEX

85860 BNE .0

85876 RTS

058806 ;

B S B e o e e e e e e e e e e T
859606 ; END OF EXECUTE

B D B = = e e e e e e R T e
85920 ;

859308 EXEND

859406 ;

85950

85960 * END OF MDRIVE 2.5 *
859780

85980 ; =

continued from page 11
LISTING 1: M/L EDITOR DATA

1886 DATA 255,255,214,63,136,88,96,26,
79,132,26,79,132,215,63,48, 4451

1818 DATA 48,48,144,144,144,223,63,8,0
,6,08,1,5,32,40,99,7430

1828 DATA 41,49,57,56,51,32,65,99,116,
185,111,118,32,67,111,109, 2646

1836 DATA 112,117,116,161,114,32,8%3,18
1,114,118,185,99,181,115,162,255, 8261
1848 DATA 134,166,160,12,208,10,132,16
6,166,11,2688,4,132,166,168,5,5792

1856 DaTA 134,165,162,8,134,163,16,18,
i68,18,176,152,157,66,3,165,3332

1868 DATA 163,248,18,157,74,3,165,164,
157,75,3,169,0,168,157,73,5315

1878 DATA 3,177,165,157,72,3,248,18,24
,165,165,185,1,157,68,3,2972

1888 pATa 165,166,105,8,157,69,3,76,86
,228,96,134,165,132, 166,160, 8481

1898 DATA 3,76,38,64,134,165,132,166,1
62,6,134,163,168,9,32,38,3709

1186 DATA 64,208,18,169,11,157,66,3,16
9,155,76,86,228,96,133,76,6227

1116 DATA 1368,64,141,176,64,168,16,8,1
9,17,1,1%1,186,142,193,4,2622

1126 DATA 168,128,152,76,127,64,164,13
2,248,18,134,133,16,38,133,136,56562
1138 DaTh 208,258,166,133,96,164,132,2
46,18,134,133,708,133,166, 136, 268, 9498
1148 DATA 2560,166,133,96,164,211,16,16
,133,134,134,135,56,169,0,229, 7228
1158 DATA 134,168,169,8,229,135,176,15
2,96,134,211,224,0,16,3,32,4482

1168 DATA 184,64,133,130,134,131,165,1
33,16,14,176,69,211,133,211, 165, 9458
1176 DATA 132,32,184,64,133,132,134,13
3,169,6,133,135,96,2468,27,202,8482
1186 DATA 134,199,1760,248,21,134,198,1
69,08,162,8,108,6,198,144,2,3699

1198 DaTa 181,199,202,208,246,24,181,1
35,133,135,165,134,166,135,96,32, 8258
12680 DATA 261,64,166,130,248,27,134,19
6,166,132,240,21,2082,134,199,162,2216
1216 DATHA 8,10,38,135,6,198,144,6,1681,
199,144,2,238,135,202,2608,9911

1228 DATA 246,133,134,165,1308,166, 133,
32,237,64,165,1%1,166,132,32,237,59
1238 DATA 64,76,180,64,32,201,64,165,1
33,240,39,162,8,358,130,36, 4540

1248 DATA 131,38,135,56,165,131,229,13
2,168,165,135,229,133,144,4,13%,9674
1258 DATA 135,132,131,282,2088,231,165,
130,42,162,6,164,131,132,134,76,8214
1260 DATA 180,64,162,16,38,1368,38,131,
42,176,4,197,132,144,3%,229,6389

1270 DATH 132,56,2082,208,239,38,130,38
2131,133,134,165,130,166,131,76,8747
1280 DATA 180,64,32,68,65,165,134,165,
135,96,133,160,134,161,132,162, 9663
1298 DATA 24,104,133,132,105,3,1656,104
,133,133,185,68,72,152,72,160, 5386

1300 DATA 1,177,132,133,130,260,177,13
2,133,131,200,177,132,168,185,160,2962
1318 DATA B,145,138,136,16,248,165,17,
208,15,230,17,76,140,64,8,4185

1326 DATA 99,9,17,25,24,19,33,35,51,96
,16,22,192,136,240,8,2320

1338 DATA 152,192,128,240,18,76,127,64
,138,74,74,74,74,178,152,157,6975

i340 pATH 192,5,96,162,1,134,17,72,32,
140,64,1084,168,96,72,134,4374

13508 DATA 161,132,162,168,169,08,153,19
2,5,168,177,161,141,0,5,168,6585

1368 DATA 200,169,155,208,2,177,161,15

@[@@@ﬁ@w

3,0,5,136,208,248,104,162,8,7770

1378 DATA 168,5,32,91,64,76,218,65,134
,161,178,164,161,165,183,32,9136

1386 DATA 166,64,76,218,65,32,14,64,76
,218,65,134,161,170,164,161,8531

1398 paTh 165,183,32,22,64,76,218,65,3
2,28,64,132,160,189,72,3,3637

1488 DaTh 240,3,56,233,1,168,8,145,165
,164,166,96,134,162,1768, 164,92

1416 DATA 162,165,183,72,169,255,133,1
63,104,72,134,161,132,162,166,8, 8795
1420 DATA 165,163,145,161,104,164,162,
32,72,66,76,218,65,162,7,134,6006

1438 DaTA 163,16,168,16,16,176,165,163,
i157,66,3,169,8,157,72,3,2672

1448 paATA 157,73,3,152,32,86,228,133,1
68,76,218,65,169,155,178,165,631

1458 DATA 183,134,161,164,161,162,11,7
6,127,66,160,155,2088,247,32,38,8175
1466 DaTh 64,76,218,65,133,212,134,213
,32,1708,217,32,230,216,168,255,4422
1478 paTh 162,0,208,232,177,243,157,88
,5,16,247,73%,128,157,86,5,6182

1488 DaTh 14%,88,5,96,162,8,32,188,66,
165,183,162,80,1608,5,32,4723

1498 DaTh 22,64,76,218,65,162,0,32,214
.66,76,156,66,168,8,133,4813

i5088 DATA 168,138,132,162,166,162,32,1
88,66,165,168,76,219,66,1608,8,7533
1518 DaATa 32,239,66,165,168,76,178,66,
134,162,1760,164,162,165,183,192,2749
1528 DaTh ©,16,22,72,134,161,132,162,1
668,45,32,165,66,56,169,0,4161

1538 DaTA 229,161,178,16%,8,229,162,16
8,184,76,239,66,32,8,67,76,4985

1548 DATA 156,66,32,15,67,165,1668,76,1
78,66,134,162,132,163,162,68,7073

1558 DATA 164,162,132,162,32,1860,66,20
0,185,80,5,145,162,136,16,248,8862
1568 DaTh 96,224,0,16,237,133,1608,134,
161,132,162,56,169,8,229,168, 9758

15768 DaTA 168,169,8,229,161,178,152,32
,180,66,232,138,168,185,79,5, 8664

1588 DaTA 145,162,136,288,248,138,145,
162,2008,169,45,145,162,96,165,183,2246
1598 DaTa 162,19,142,80,5,162,86,160,5
,32,119,66,169,88,162,5, 3666

1688 DATA 133,164,134,165,166,6,132,16
8,132,161,132,162,177,164,133,163,1521
1618 DaTa 2308,163,169,32,200,209,164,2
68,5,280,196,163,48,247,177,164, 3385
1628 DaTA 261,45,2688,3,133,162,200,196
,163,16,54,177,164,281,48,48,7931

1638 DATA 48,281,58,16,44,56,233,48,17
8,165,161,72,165,160,10,38,5847

1648 DATA 161,18,38,161,24,1061,1660,133
,160,104,101,161,133,161,6,166, 7645
1658 DATA 38,161,24,138,1061,160,133,16
9,144,2,238,161,2600,196,16%,48,645
1668 DATA 202,165,162,240,13,56,169,0,
229,1608,133,160,169,08,229,161,474

1678 DaTA 133,161,96,133,164,134,165,1
69,4,133,166,169,36,32,158,66,6638
1686 DATA 169,0,162,4,6,164,38,165,42,
26%,206,248,185,48,2081,58, 8593

1698 DATA 48,2,185,6,32,158,66,198, 166
,208,229,96,133,192,134,193,1995

1700 DATA 148,248,5,1660,0,177,192,133,
194,230,194,162,13,181,162,157,2214
1718 DATA 240,5,202,288,248,134,139,13
4,138,230,138,164,136,196,194,176,4779
1720 DATh 218,177,192,201,37,268,15,23
8,138,26008,177,192,201,37,2468,6,1378
1736 DATA 261,69,208,8,169,155,32,158,
66,76,73,68,164,139,230,139,8713

1748 DATA 238,139,133,160,185,248,5,19
8,241,5,164,1608,192,67,240,238, 3864
1758 DaTA 192,83,2088,6,32,59,66,76,73,

30

SEPTEMBER A.NL.A.L.0.3. Computing

R AN S N e o i] ggmkﬂﬁﬂ]lIlllIIIIllllIllllllllllllllllllllllllll

68,192,73%,2068,6,32,8,2061

1768 DATA 67,76,73,68,1%2,72,208,6,32,
3,68,76,73,68,32,214,3149

1778 DATA 66,76,73,68,134,161,132,162,
16,16,108,10,176,16%,38,157,4413

i788 DaTh 66,3,32,86,228,32,218,65, 1608
,8,189,78,3,145,163,189, 7663

1738 pATA 76,3,145,161,189,77,3,200,14
5,161,96,134,161,168,10,18,41681

isee pATA 10,176,152,157,77,3,165,161,
157,76,3,165,163,157,78,3,58061

1818 paTa 169,37,157,66,3,32,86,228,76
,218,65,2,83,58,235,68,5528

isze paAThA 2,69,58,240,63,72,169,08,32,5
3,66,169,12,133,163,169,5788

1838 DaTa B,174,243,68,172,244,68,32,2
54,65,169,6,32,53,66,104,4914

1840 DATA 133,164,41,48,73,28,133,163,
169,6,174,238,68,172,239,68,97008

1858 DATA 76,254,65,133,91,134,92,132,
98,133,85,134,86,132,84,96,6565

ise68 DaATA 32,41,69,173,253,2,141,251,2
,173,238,68,133,165,173,239,2785

1878 DATA 68,133,166,169,08,133,163,133
,164,169,6,96,32,48,69,160,5448

isse paTha 17,76,174,66,32,35,69,169,6,
76,125,66,32,41,69,169,27548

1898 paTA 6,174,253,2,76,161,66,201,5,
16,22,133,1608,152,41,15,3533

1%68 DATA 133,162,138,16,16,16,168,5,16
2,166,168,157,196,2,157,22,50876

1%ie DATA 268,96,32,48,69,160,18,76,17
4,66,174,16,216,201,0,2408,8281

1328 DATA 9,134,132,162,0,134,133,32,1
5,65,134,168,%96,108,132,162,5371

1338 paTA 168,201,7,48,5,1608,1808,32,12
7,64,138,153,0,218,165,162,7798

i%48 pPATA 16,16,16,18,5,163,153,1,214,
26,173,50,2,41,23%,141,5916

1358 DATA 56,2,141,15,218,169,0,162,8,
157,0,2108,282,16,250,96,8145

i1%668 DaTa 170,18%,112,2,133,1608,96,162
;,8,201,4,48,3,232,41,3,3025

1%78 DATA 168,18%,08,211,57,234,69,133,
166,96,4,8,64,128,162,06,4158

1%88 DaThA 201,2,48,3,232,41,1,168,1389,
8,211,136,208,4,74,74,58086

1998 DaTaA 74,74,41,15,133,168,96,178,1
89,16,208,133,1608,96,133,162,9808

2008 DATA 134,163%,160,08,177,162,133,16
8,268,177,162,133,161,96,13%,160,1948
2018 DaTA 134,161,152,1606,0,145,168, 96
;382,30,70,200,165,163,145,160,9248
2828 DATA 96,72,169,08,133,164,1084,133,
160,134,161,132,162,160,0,165,932%
2636 DATA 164,166,163,2408,16,145,166, 2
88,208,251,238,161,198,163,2688,245,838
o

206408 DaThA 2408,3,145,1608,2680,196,162,20
8,249,96,133,160,134,161,132,162,3487
26568 DaTA 166,08,165,165,248,22,177,162
,145,160,2060,2088,249,230,161,238,7385
2668 DATA 163,198,165,208,241,248,5,17
7,162,145,1608,200,196,164,208,247,7026
2678 DAThA 96,133,164,134,165,132,162,1
66,08,132,1608,132,161,177,164,289,25308
2088 DATA 162,2498,3,32,169,70,2061,0,208
§,1,96,133,166,2080,177,164,3682

268268 DATA 2069,162,208,5,196,166,144,24
5,96,162,255,134,160,144,3,177,20681
2168 DATA 162,232,134,161,96,133%,1608,1
34,161,132,162,1608,0,177,162,145,%41
2118 DATA 160,2408,8,168,177,162,145,16
8,136,208,249,96,133,160,134,161,3348
2128 pATA 132,162,166,8,177,162,197,16
$,176,2,133%,165,198,164,24,165,529
2138 DpATA 162,101,164 ,133,162,144,2,23
8,163,56,165,165,229,164,176,2,813

@h@@ﬁ@ﬁ

2146 DATA 169,8,76,191,78,133,168, 134,
161,132,162,160,8,177,162,2408, 1860
2158 DATA 13,133,166,198,164,56,165,16
5,229,164,248,2,176,1,96,1768,177

2168 DATA 197,166,144,8,24,165,166,178
,181,164,133,165,165,165,289,166,2927
2176 DATA 144,3,145,166,24,165,160,101
,164,133,160,144,2,230,161,138,596
2188 DATA 76,195,768,110,83,92,83,2,3,3
,1,1,1,8,8,128,7001

2198 paTaA 1,1,1,2,2,9,6,55,71,2,2,3,2,
1,1,8,3426

2200 DATA ©,128,128,128,128,2,3,128,12
8,73,71,80,8,58,128,15,1644

2218 pATA 76,99,71,32,154,65,51,71,3,1
69,0,141,92,71,173,52,3936

2220 DATA Z,141,91,71,173,91,71,41,255
,141,91,71,173,92,71,41,6113

2238 DATA B,141,92,71,173,53,2,141,9%3,
71,165,87,141,95,71,169,6735

22408 DATA 46,205,91,71,169,8,237,92,71
,176,3,76,2680,71,24,173,6553

22508 DATA 91,71,185,227,141,91,71,173,
92,71,1685,08,141,92,71,169,6421

2260 DATA 255,285,91,71,169,8,237,92,7
1,144,3,76,2080,71,168,8,5748

2278 DATA 148,92,71,169,255,141,91,71,
169,98,2085,91,71,169,8,237, 9658

2280 DATA 92,71,176,3,76,225,71,168,8,
148,92,71,169,98,141,91,6853

2298 DATA 71,56,173,91,71,23%,90,141,9
1,71,173,92,71,233,08,141,7844

2380 DATA 92,71,169,159,285,91,71,169,
8,237,92,71,144,3,76,11,4561

2318 DATA 72,168,8,148,92,71,169,159,1
41,91,71,24,173,71,71,189,5983

2328 DATA 95,71,133,174,173,72,71,185,
8,133,175,168,0,177,174,141, 8865

2330 DATA 94,71,173,94,71,73,128,248,3
,76,53,72,14,91,71,46, 2561

2348 DATA 9%,71,76,75,72,173,94,71,133
,132,17%,92,71,178,173,91,8604

2358 DATA 71,32,165,64,141,91,71,138,1
41,92,71,56,173,93,71,233,8074

2368 DaTA 17,141,93,71,169,127,265,93,
71,144,3,76,99,72,168,8,4727

2378 DATA 148,93,71,169,95,205,93,71,1
44,3,76,114,72,169,95,141,70822

2388 DpATA 93,71,24,173,89,71,189,95,71
,133,174,173,968,71,185,8,5471

2398 DATA 133,175,168,8,177,174,141,94
,71,17%,94,71,73,128,248,3, 7665

2488 DATA 76,153,72,14,93,71,76,169,72
,173,94,71,133,132,173,93,7753

2418 paTA 71,162,8,32,165,64,141,93,71
 17%,51,71,133,174,173,52, 7247

2478 pATA 71,133,175,173,92,71,168,1,1
45,174,173,91,71,136,145,174,9814

2438 DATA 173,53,71,133,174,173,54,71,
133,175,175,9%,71,145,174,96,9373

2446 DATA 76,711,72,168,0,132,26,132,1
9,96,5%,12,76,223,72,169,5534

2458 pATA 1,133,133,169,0,133,132,165,
19,162,08,32,15,65,133,174,4893

24660 DATA 136,133,175,24,165,174,181,2
6,141,218,72,165,175,165,0, 141, 8443
2478 DATA 219,72,173,219,72,133,161,17
3,718,72,13%3,1606,96,80,08,58, 7258

2486 DATA ©,181,8,76,22,73,32,154,65,1
3,73,2,168,8,132,77,1824

2498 DATA 173,13,73,2601,1,173,14,73,23
%,0,144,3,76,54,73,140,4233

2588 DATa 14,73,260,146,13,73,169,158,
2085,13,73,169,0,237,14,73,6272

2516 DpATA 144,3,76,79,73,160,8,140,14,
73,169,158,141,13,73,173,6138

2528 DATA 15,73,201,1,144,3,76,94,73,1
66,1,146,15,73,169%,196, 6058

SEPTEMBER A.NL.A.L.O.B. Computing

31

e ————————— v | g%ﬂmﬁﬂﬁﬂj

@[h]@@ﬁ@[r

2538 DATA 205,15,73,144,3,76,189,73,16
9,198,141,15,73,56,173,13,5066

2540 DATA 73,233,1,133,160,173,14,73,2
33,0,133,161,172,15,73,166,7823

2558 DATA 161,165,168,32,92,69,24,173,
13,73,105,1,133,160,173,14,4877

2568 DATA 73,165,6,133,161,172,15,73,1
66,161,165,1660,32,92,69,56,6375

2578 DATA 17%,15,73,233,1,133,162, 164,
162,174,14,73,173,13,73,32,5439

2588 DATA 92,69,24,173,15,73,1685,1,133
,162,164,162,174,14,73,173,7716

2598 DATA 13,73,32,92,69,169,16,141,16
,73,169,15,133,163,168,8,5264

2688 DATA 162,188,169,8,32,157,69,160,
8,140,18,73,140,17,73,169,4665

2618 DATA 200,2085,17,73,169,8,237,18,7
3,176,3,76,249,73,238,17,7674

2628 DATA 73,208,236,238,18,73,76,223,
73,17%3,16,73,208,3,76,61,5914

2638 DATA 74,56,173,16,73,233,1,141,16
,73,173,16,73,133,163,160,7082

2640 DATA 8,162,146,169,08,32,157,69,16
6,0,148,18,73,1408,17,73,3439

2658 DATA 169,100,2065,17,73,169,08,237,
18,73,176,3,76,58,74,238,6559

2668 DATA 17,73,288,236,238,18,73,76,3
2,74,76,249,73,169,08,133,7103

2678 DATA 163,160,8,162,0,169,0,32,157
,69,96,236,255,23,168,76,60865

2688 DATA 82,74,142,76,74,141,75,74,16
6,1,148,77,74,136,1408,78,6181

2698 DATA 74,169,0,205,75,74,169,8,237
,76,74,48,3,76,168,74,4894

2760 DATA 56,173,75,74,237,77,74,141,7
5,74,173,76,74,233,8,141,7626

2718 DaTa 76,74,24,173,77,74,185,2,141
,77,74,173,75,74,261,8,5233

2728 pATA 173,76,74,233,0,16,3,76,157,
74,238,78,74,76,97,74,5296

2736 DATA 173,78,74,133,1608,96,1,79,0,
48,76,173,74,141,166,74,5838

2748 DATA 160,8,132,77,24,173,221,63,1
89,166,74,133,174,173,222,63, 886

2756 DATA 185,08,13%,175,169,08,141,168,
74,177,174,141,167,74,24,173,9507

2760 DATA 229,63,1689,166,74,133,174,17
%,230,63,105,0,133,175,177,174,1349
27708 DATA 141,169,74,56,173,167,74,233
,26,13%,1608,173,168,74,233,8,59

2786 DATA 133,161,56,173,169,74,233,26
,133,162,164,162,166,161,165,168,3235
2798 DATA 32,92,69,24,173,167,74,185,2
6,133,166,173,168,74,105,0,6729

2800 DATA 133,161,56,173,169,74,233,26
,13%,162,164,162,166,161,165,1608, 3255
2818 DATA 32,76,69,24,173,167,74,185,2
6,133,168,173,168,74,1085,08,6717

2828 DATA 133,161,24,173,169,74,185,26
,133,162,164,162,166,161,165, 168, 2283
2838 DATA 32,76,6%,56,173,167,74,233,2
6,133,1668,173,168,74,233,0,9809

28408 DATA 133,161,24,173,169,74,185,26
,133,162,164,162, 166,161,165, 168, 2363
28568 DATA 32,76,69,56,173,167,74,233,2
6,133,168,173,168,74,233,0,9829

2868 DATA 133,161,56,173,169,74,233,26
,133,162,164,162,166,161,165,168, 3315
2876 DATA 32,76,69,173,253,2,208,3,76,
221,75,166,08,1408,169,74,8028

2886 DATA 169,15,265,169,74,176,%,76,2
88,75,173,169,74,133,163,160, 807

2898 DATA 18,162,68,169,8,32,157,69,16
0,0,1468,168,74,148,167,74,7530

29088 DATA 169,208,205,167,74,169,0,237
,168,74,176,3,76,202,75,238, 1085

2918 DaATA 167,74,2068,236,238,168,74,76
,176,75,238,169,74,76,144,75,483

2920 DATA 169,8,133,163,160,0,162,0,16

9,08,32,157,69,96,16,8,2222

2938 DATA 76,227,75,142,223,75,141,222
,75,173,222,75,261,6,173,223,3164

2948 DaTa 75,233,0,48,3,76,8,76,56,169
,8,237,222,75,133,168,8337

2958 DATA 169,0,237,223,75,133,161,96,
173,223,75,133,161,173,222,75, 3643
2968 DATA 133,166,96,6,30,17,0,18,08,24
4,255,244,255,23,0,18,6219

2978 DaTh ©,17,76,37,76,1608,08,132,77,2
80,148,253,2,169,5,141,7768

2988 DATA 28,76,169,25,285,208,76,176,3
,76,183,79,169,0,141,22,4376

2998 DATA 76,173,20,76,141,21,76,160,0
,1408,24,76,146,23,76,140,4517

30680 DATA 26,76,140,25,76,173,21,76,20
5,23,76,173,22,76,237,24,6147

3818 DaTA 76,16,3,76,91,79,24,173,25,7
6,189,23,76,133,174,173,6600

38ze DaTaA 26,76,109,24,76,133,175,24,1
65,174,109,23,76,133,172,165, 8986

3838 DaTa 175,189,24,76,133,173,24,165
,172,165,1,141,29,76,165,173,7975

3848 DATA 165,0,141,38,76,56,173,2%,76
,237,21,76,133,174,173,30,7284

i858 paTh 76,237,22,76,133,175,56, 165,
174,237,21,76,133,172,165,175, 1888
3868 DaTa 237,22,76,133,173,24,165,172
,185,1,141,27,76,165,173,105, 8044

3878 DATA B,141,28,76,173,22,76,141,32
,76,173,21,76,141,31,76,4243

3886 paTa 173,23,76,141,33,76,160,8,14
8,19,76,169,5,2685,19,76,4582

3898 DaTa 176,3,76,239,78,24,173,221,6
3,189,19,76,133,174,173,222,10859

3188 DPaThA 63,105,0,133,175,24,160,8,17
7,174,189,31,76,133,168,169,8982

3116 DaTa ©,169,32,76,133,161,24,173,2
29,63,109,19,76,133,174,173,9257

3178 DATA 238,63,185,8,133,175,24,177,
174,189,33,76,133,162, 164,162,780

3138 DATA 166,161,165,1608,32,92,69,24,
17%,221,6%,189,19,76,133,174,7998

148 paTa 173,222,63,185,8,133,175, 24,
1668,08,177,174,169,33,76,133,72683

3158 DATA 168,169,8,133,161,24,173,229
,63,189,19,76,133,174,173,2308,1398
I168 DATA 63,105,0,133,175,24,177,174,
189,31,76,133,162,164,162, 166,826

3170 DATA 161,165,166,32,92,69,24,173,
221,6%,189,19,76,133,174,173,8969

3186 DATA 222,63,185,8,133,175,24,168,
8,177,174,189,33,76,133,160, 8046

3198 DATA 169,8,133,161,24,173,229,63,
189,19,76,13%,174,173,230,63,412

32686 DATA 185,0,133,175,56,177,174,237
,31,76,133,162,164,162,166,161,2772
3216 DATA 165,168,32,92,69,24,173,221,
63,109,19,76,133,174,173,222,717

3220 DATA 63,185,0,133,175,24,1608,8,17
7,174,189,31,76,133,168,169,9022

3238 DATA ©,169,32,76,133,161,24,173,2
29,6%,189,19,76,133,174,173,9377

3240 DATA 238,63,185,08,133,175,56,177,
174,237,3%,76,133,162,164,162,1694
3258 DATA 166,161,165,168,32,92,69,24,
17%,221,63,189,19,76,133,174,8118

3268 DATA 173,222,63,105,8,13%,175,56,
168,08,177,174,237,31,76,133,9215

3278 DaTA 1606,169,8,237,32,76,133,161,
24,173,229,63,189,19,76,133,7723

3280 DATA 174,173,238,63,185,8,133,175
,56,177,174,237,33,76,133,162,718

3298 DATA 164,162,166,161,165,160,32,9
2,69,24,173,221,63,109,19,76,6927

33080 DATA 133,174,173,222,63,185,0,133
,175,56,168,0,177,174,237,33,9912

3318 DaTA 76,133,160,169,0,133,161, 24,
173,229,63,189,19,76,133,174, 8863

32

SEPTEMBER A.N.A.L.O.3. Computing

3328 DAThA 173,230,63,185,8,13%,175,56,
177,174,237,31,76,133,162,164, 1249
3338 DATA 162,166,161,165,16@,32,92,69
,24,173,221,63,109,19,76,133,7239

3348 DATA 174,173,222,63,165,0,133,175
,96,1608,08,177,174,237,33,76,9153

3358 DATA 133,160,169,08,133,161,24,173
122%,63,109,19,76,133,174,173,9839
3368 DaTa 230,63,165,0,133,175,24,177,
174,169,31,76,133,162,164,162,288

3378 DATA 166,161,165,168,32,92,69, 24,
173%,221,63,169,19,76,133,174,8238

3388 DaTa 173,222,63,105,8,13%,175,56,
1608,0,177,174,237,31,76,133,9335

3398 DaTa 160,169,08,237,32,76,133,161,
24,17%,229,63,189,19,76,133,7843

3488 DATA 174,173,230,63,185,08,133,175
+24,177,174,108%9,33,76,133,162,90606
3418 DATA 164,162,166,161,165,166,32,9
2,69,238,19,76,76,219,76,173,9869

3428 DATA 36,76,141,26,76,173,29,76,14
1,25,76,238,23,76,208,3,6108

3438 DAThA 238,24,76,174,28,76,173,27,7
6,32,224,75,24,165,168,1685,7733

3448 DATA 6,133,174,165,161,185,8,133,
175,165,175,72,165,174,72,174,1846
3458 DbATA 30,76,173,29,76,32,224,75,.0
4,133,174,1064,133,175,165,174,187%
3468 DATA 197,1608,165,175,229,161,48,3
,76,88,79,173,28,76,141,26,6111

3476 DATA 76,173,27,76,141,25,76,56,17
3,21,76,233,1,141,21,76,5029

3488 DATA 173,22,76,23%,08,141,22,76,76
,85,76,24,17%,208,76,105,4472

34%8 DATA 5,141,208,76,76,50,76,96,80,0
;98,08,1,1081,08,168,506

3588 paTh 0,106,8,76,118,79,32,154,65,1
04,79,4,24,173,221,63,5943

3516 DaTa 169,1688,79,133,174,173,222,6
3,185,8,133,175,162,0,141,114,9214
3528 DATA 79,168,0,177,174,141,113,793,
173,185,79,141,116,79,173,104,9729
3536 DaTA 79,141,169,79,56,173,169,79,
237,113,79,141,189,79,173,116,9949
3540 DaTa 79,237,114,79,141,118,79,174
,116,79,173,1089,79,32,224,75,9087

3558 DATA 165,161,141,118,7%,165,1668,1
41,189,79,24,173,22%,63,1689,168, 9866
3568 DATA 79,133,174,173,2308,63,1085,8,
133,175,169,0,141,114,79,166, 9362

35706 DaATA 8,177,174,141,11%,79,173,167
y79,141,112,73,173,1686,79,141,9591
3586 DaTA 111,79,56,173,111,79,237,113
272,141,111,79,173,112,79,237,1385
3596 DATA 114,79,141,112,79,174,112,79
J173,111,79,32,224,75,165,161,521

3686 DaTa 141,112,79,165,160,141,111,7
?,17%,118,7%,133,133,173,189,79,89
3618 paTaA 133,132,173%,116,79,1768,173,1
8%,7%,32,15,65,141,1689,79,138,7192
3620 DaTA 141,116,79,173,112,79,133,13
2,173,111,79,133,132,173,112,79,153
3638 DATA 176,173,111,79,32,15,65,141,
111,79,138,141,112,79,24,173,7317

3648 DaTA 169,79,169,111,79,141,169,79
,173,118,79,108%,112,7%,141,1168, 8585
36568 DaTa 79,173,169,79,201,113,173,11
8,79,233,2,48,3,76,134,80,6524

3660 DaTA 174,116,79,173,169,79,32,79,
74,162,06,141,114,79,165,1668,8529

3678 DATha 141,113,79,76,144,808,160,08,1
40,114,7%,169,26,141,113,79,7466

3688 DATA 173,114,79,133,161,173,113,7
?,133,1668,96,76,158,80,169,08,85908

36906 DATA 32,245,68,160,4,162,2,169,19
$,32,30,708,76,261,80,25,6088

3788 DaATA 83,384,97,114,112,32,83,184,
111,111,116,1061,114,44,32,98,5646

37168 DATA 121,32,77,97,116,42,82,97,11

@h@@ﬁ@[ﬁ

6,162,80,169,175,32,40,66,6647

3728 DATA 76,238,80,26,40,99,41,32,49,
57,96,57,44,32,65,116,20619

3738 DATA 97,108,111,183,32,67,111,189
,112,117,116,185,1168,163,162,80, 8295
3748 DpATA 169,211,32,40,66,76,249,88,0
,162,80,169,248,32,408,66,7612

3758 DATA 76,37,81,33,67,111,116,116,1
81,%9,116,32,76,1085,183,104,6152

3768 DATA 116,32,71,117,116,32,1082,185
,114,115,116,32,163,97,169,101,6701
3778 pATA 32,112,111,114,116,162,81,16
?,3,32,40,66,76,48,81,8,2740

37868 DAThA 162,81,169,47,32,40,66,76,89
,81,36,80,114,101,115,115,5631

3790 pATA 3I2,212,210,201,199,199,197,2
1i8,32,102,111,114,32,78,69,88,8776
3888 DATA B84,32,163,97,189,101,32,111,
114,162,81,169,58,32,46,66,5331

3818 pATA 76,133,81,33,116,121,112,101
$32,32,197,211,195,193,2088,197,4241
3828 DATA 160,32,107,181,121,32,116,11
1,32,101,120,1685,116,32,112,114,6604
3838 DATA 111,163,114,97,189,162,81,16
3,99,32,48,66,173,126,2,73,5883

3848 DaTa 15,246,10,173,252,2,73,28,24
8,3,76,1409,81,173,128,2,7877

3858 DaTa 73,14,240,16,173,252,2,73,28
,248,3,76,157,81,96,8,5838

i868 DATA 1,0,76,181,81,160,0,146,175,
81,169,5,205,175,81,176,748

3878 DATA 3,76,211,81,173,175,81,174,1
79,81,157,231,63,238,175,81,3812

3888 DpATA 76,186,81,168,0,1408,175,81,1
69,5,2085,175,81,176,3,76,8628

38%8 DATA 27,82,169,6,32,138,69,165,16
8,141,177,81,173,177,81,77,346

396868 DATA 175,81,2068,3,76,226,81,174,1
75,81,189,231,63,141,176,81,2533

3218 DbaTh 174,177,81,189,231,63,174,17
5,81,157,231,63,173,176,81,174,389%6
3928 pATA 177,81,157,231,63,238,175,81
;,76,216,81,56,4,08,76,33,5877

3336 DbATh 82,160,0,140,28,82,169,15,28
5,28,82,176,3,76,164,82,6841

3948 DATA 56,169,15,237,28,82,133,163,
i608,16,162,60,169,08,32,157,7425

3958 DATA 69,56,169,15,237,28,82,133,1
63,166,16,162,64,169,1,32,6535

39668 DATA 157,69,160,0,148,29,82,169,2
58,2085,29,82,176,3,76,1083,8256

3378 DATH 82,238,22,82,76,87,82,56,169
»15,237,28,82,13%,163,1608,9414

3?88 DpaATa 16,162,80,169,0,32,157,69,56
»169,15,237,28,82,133,163,8391

X298 DATH 160,16,162,84,1692,08,32,157,6
9,160,0,1498,29,82,169,2508,92278

4088 DATA 285,29,82,176,3,76,158,82,23
§,29,82,76,142,82,238,28,87064

4818 DATA 82,76,38,82,169,0,133,163,16
8,8,162,8,169,08,32,157,6177

4828 DATHA 69,162,08,133,163,1606,06,162,0
+169,1,32,157,6%,96,16,4818

4838 DATA 251,76,196,82,160,08,148,121,
82,169,15,2065,191,82,176,3,29

4848 DaThA 76,65,83,56,169,15,237,191,8
2,133,16%,160,8,162,248,1693,3238

4858 DATA 8,32,157,69,173,191,82,133,1
63,168,6,162,245,16%,1,32,9665

4868 DATA 157,69,1608,0,148,192,82,169,
2958,2085,1%2,82,176,3,76,7,92591

4876 DaTh 83,238,192,82,76,247,82,56,1
69,15,237,191,82,133,163,168, 2928

4886 DATA 8,162,180,169,8,32,157,6%,17
3,191,82,133,163,1608,12,162,567

48%8 DAThA 194,169,08,32,157,69,160,0,14
8,192,82,169,250,205,192,82,3491

4188 DpATA 176,3,76,59,83,238,192,82,76

SERPTEMBER A.N.A.L.O.G. Computing

33

,43,83,238,191,82,76,201,1459

4116 DATA 82,169,8,133,163,160,0,162,0
,169,8,32,157,69,169,0,5749

4126 pATA 133,163,166,0,162,0,169,1,32
,157,69,96,58,11,8,6,1833

4130 paATA 10,0,12,1%4,3,57,0,3,0,29,4,
6,0,33,20,0,6221

4140 DATA 76,115,83,168,0,140,108,83,2
80,140,107,83,136,1408,189,83, 9659

4150 DATA 140,106,83,148,105,83,32,155
,80,169,31,32,245,68,169,12,7797

4160 DATA 141,200,2,168,8,140,98,83,14
9,1008,8%,1460,99,83,148,102,8571

41706 DATA 83,146,101,83,140,104,83,140
,10%,83,32,34,76,32,208,72,6418

4180 DaTA 32,178,81,168,08,1408,94,83,14
8,95,83,169,5,205,95,83,8452

4198 DATA 176,3,76,70,85,169,3,141,253
,2,1608,1,140,93,83,169,8608

4208 DATA 18,205,93,83,176,3,76,64,85,
174,94,83,189,231,63,133,472

4216 DATA 160,165,160,32,178,74,169,83
,133,163,1660,92,162,83,169,110,1703
4228 DATA 32,96,71,173,128,2,73,15,248
,18,173,252,2,73,28,246,9087

4238 DATA 3,76,230,83,173,252,2,73,28,
240,3,76,98,84,169,255, 1044

4246 DATA 141,252,2,169,0,32,245,68,76
,53,84,25,83,104,97,114,6270

4258 DATA 112,32,83,164,111,111,116,18
1,114,44,32,98,121,32,77,97,5654

4260 DATA 116,42,82,97,116,162,84,169,
27,32,48,66,76,90,84,26,4305

4278 DATA 46,99,41,32,49,57,56,57,44,3
2,65,118,97,168,111,183,5031

4280 DATA 32,67,111,189,112,117,116,18
5,116,183,162,84,169,63,32,40,7138
4298 DATA 66,96,238,253,2,169,3,205,25
3,2,144,3,76,116,84,168,9308

4308 DATA 1,140,253,2,172,92,83,174,11
1,8%,173,110,83,32,19,73,6765

4316 DATA 169,0,133,163,174,94,83,189,
231,63,133,164,172,92,83,174,2758

4320 DATA 111,83,173,118,83,32,115,79,
165,161,141,97,83,165,1608,141,1455
4338 DATA 96,83,169,5,205,96,83,169,0,
237,97,83,16,3,76,183,7404

4348 DATA 84,238,98,83,32,30,82,169,25
,285,96,83,169,0,237,97,9423

4358 DATA 83,16,3,76,241,84,238,101,83
,208,3,238,102,83,56,169,709

4360 DATA 26,237,96,83,133,174,169,0,2
37,97,83,13%,175,24,173,99,774

4376 DATA 83,101,174,141,99,83,173,100
,83,181,175,141,180,83,76,252,1753
4380 DATh 84,238,1683,83,208,3,238,104,
83,32,193,82,173,120,2,73,8438

4398 DATA 14,240,3,76,252,84,160,0,148
,253,2,174,94,8%,189,231,2896

4468 DATA 63,133,168,165,168,32,178,74
,238,94,83,169,5,205,94,83,339

4418 DATA 144,3,76,45,85,1608,0,1408,94,
8%,32,178,81,169,3,32,561%

4426 DATA 138,69,24,165,160,105,1,141,
253,2,238,93,83,76,207,583,680

4438 DaATh 238,95,83,76,187,83,32,220,7
2,165,161,141,111,83,165,168,2229

4448 DATA 141,1160,83,169,0,133,133,169
,68,133,132,173,111,8%,176,173,2128
4458 DATA 118,83,32,68,65,141,118,83,1
36,141,111,8%3,173,118, 83,201,818

44680 DATA 16,173,111,83,233,14,144,3,7
6,151,85,173,111,83,133,133,9761

4478 DATA 173,118,83,133,132,169,14,17
8,169,16,32,68,65,141,118,83,7422

4488 DATA 138,141,111,83,76,159,85,160
,8,140,111,83,140,1108,83,169,9700

4490 DaTh 255,141,252,2,169,8,32,245,6

@h@@ﬁ@ﬂr

8,168,208,162,2,169,198,32,7678

4588 DATA 3I0,70,1608,2,162,0,169,2,32,3
5,69,76,215,85,24,83,5143

4518 DATA 164,97,114,112,32,83,164,111
,111,116,161,114,32,66,121,32,6177
4528 DbaTa 77,97,116,42,82,97,116,162,8
5,169,198,32,40,66,76,248,9888

4538 paATA 85,22,768,185,116,97,1068,32,8
3,99,111,114,101,32,1062,111,6826

4548 DATA 114,32,82,111,117,116,1688,32
,162,85,169,225,32,59,66,174,9452

4558 DATA 188,83,173,187,83,32,231,66,
238,187,83,208,3,238,188,83,1463

4568 DATA 76,35,86,15,66,117,1688,168,1
81,116,115,47,77,165,116,32,6287

4578 DATa 32,61,32,162,86,169,19,32,59
,66,174,111,83,173,110,83,8217

4588 pATA 32,231,66,76,70,86,15,84,111
,116,97,188,32,72,1685,116,6596

4598 paTA 115,32,32,32,61,32,162,86,16
9,54,32,59,66,174,162,83,6585

46688 DaTA 173,101,83,32,231,66,76,185,
86,15,84,111,116,97,188,32,6453

4618 DATA 77,185,115,115,161,115,32,61
,32,162,86,169,89,32,59,66,66837

4626 DATA 174,164,83,173,163,83,32,231
,66,76,146,86,15,66,117,1688,7556

4636 DaTa 1088,115,161,121,161,115,32,3
2,32,32,61,32,162,86,169,124,63%22

4648 DaTA 32,59,66,17%,98,83,32,229,66
,76,172,86,15,83,9%,111,7628

46586 DATA 114,161,32,32,32,32,32,32,32
;,32,61,32,162,86,169,156,60826

4668 DaATA 32,59,66,174,180,83,173,99,8
3,32,231,66,173,185,83,205,1349

4678 DATA 99,83,173,186,83,237,160,83,
144,3,76,217,86,173,188,83,213

4680 DATA 141,106,83,173,99,83,141,1865
,8%,76,236,86,15,65,99,99,8183

4698 DATA 117,114,97,99,121,32,32,32,3
2,32,61,32,162,86,169,220,80627

47068 DaATA 32,59,66,169,0,133,133,173,9
8,83,133,132,169%,10808,162,08,9623

4716 paATA 32,15,65,141,1106,83,138,141,
111,83,169,0,133,133,169,608,9447

4726 DATA 133,132,173,111,83,1768,173,1
i6,83,32,68,65,141,116,83,138,9027
4736 DATA 141,111,83,173,189,83,265,11
8,83,169,08,237,111,83,144,3,9486

4748 DaTA 76,57,87,173,116,83,141,1869,
83,174,111,83,173,116,83,32,9044

4758 DpATA 214,66,76,71,87,1,37,162,87,
169,69,32,48,66,76,82,5116

4768 DATh 87,0,162,87,169,81,32,40,66,
76,108,87,1%5,72,1685,163,5568

47708 DaTh 104,32,83,99,111,114,161,32,
z2,32,61,32,162,87,169,92,6779

4786 DaTA 32,59,66,174,1606,83,173,185,
83,32,231,66,76,143,87,15,7838

4798 DATA 66,101,115,116,32,65,992,99,1
17,114,57,99,121,61,32,162,7849

48060 DAaTa 87,169,127,32,59,66,173,169,
83,32,212,66,76,161,87,1,7262

4816 paTa 37,162,87,169,159,32,48,66,7
6,172,87,0,162,87,169,171,98579

4828 DATA 32,408,66,76,206,87,23,80,114
,101,115,115,32,32,212,242,384

4838 DATA 233,231,231,229,242,168,32,1
16,111,32,112,168,97,121,162,87,10688
4848 DATA 169,182,32,48,66,76,240,87,2
3,79,114,32,116,121,112,1081,79324

4858 DATA 166,197,211,195,193,288,197,
166,32,116,111,32,1081,126,1085,116,1166
4868 DaTA 162,87,169,216,32,48,66,173,
128,2,73,14,248,108,17%,252,771

4878 DaTh 2,73,28,2408,3,76,247,87,173,
1286,2,73,15,248,108,173,9086

4888 DATn 252,2,73,28,240,3,76,8,88,17

34

SEPTEMBER A.N.A.L.O.G. Computing

[e T R R P | gSﬁkﬂWE]IIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

3,120,2,73,14,240,10,6052
4898 DATA 173,252,2,73,28,246,3,76,25,
88,173,252,2,73,28,240,9414 ﬁkj[ﬁhgﬁ
4980 DATA 3,76,137,83,169,255,141,252,
2,169,08,32,245,68,76,91,1

4318 DATA 88,25,8%3,1084,97,114,112,32,8
3,164,111,111,116,101,114,44,7598

4920 DATA 32,98,121,32,77,97,116,42,82
,97,116,162,88,169,65,32,7679

4938 DATA 40,66,76,128,88,26,40,99,41,
32,49,57,56,57,44,32,2128

4948 DATA 65,110,97,188,111,103,32,67,
111,109,112,117,116,1605,118,103,8882

4950 DATA 162,88,169,101,32,40,66,96,9
6,226,2,227,2,112,83,0,6538

LISTING 2: ACTION!

SHARP SHOOTER
by Matthew J.HW. Ratcliff

COPYRIGHT 1989
BY ANALOG COMPUTING

fom e e e s e ww

CHECKSUM DATA
[48 BB 1E 62 8B 18 18 12
78 14 5B BE 9%E 58 2Z EE
D8 EB EZ 41 52 46 14 71
8B IA 83 1F A4 53 18 1
YTE RTS=L5681 This declaration
Mmust be the first
compiled code if
using this pgm with
‘'05/7a4+ versions 2.2
and before

[X] ™= e e e s

e e e e me we

; Game global target array

BYTE ARRAY HCS5=[26 79 132 26 79 1321
BYTE ARRAY YCS5=I[48 48 48 144 144 1441
BYTE ARRAY Tgsel (6}

BYTE Jiffy = 28
BYTE Jiffyl = 19
BYTE CH = 764

BYTE TRIGGER= 632
BYTE attract= 77

?
PROC ZeroTime (3
CARD Timer=1%

Timer = 8

E Get elapsed time in jiffies
éﬂRD FUNC GetJTime ()

CaRDP tic

tic = Jiffyli*256 + Jiffy

PROC BlastC CARD xb, BYTE yb)

BYTE =

CARD d
Attract = @

IF xb { 1 THEN

Xb = 1

FI

IF xb »158 THEN
Xb = 158

FI

IF yb { 1 THEN
yb = 1

FI

IF yb > 198 THEN
yb = 198

FI

Flot(xb-1, ybl}
Plotixb+l, ybl
Plotixb, yb-1)
Plotixb, yb+i)

s = 16
Sound(@, 186, 8, 15)

FOR d = 8 TO 288
Do

¥
op
WHILE s H @
(1]
g =5 -1
Sound(8, 148, 8, =53
FOR d = @ TO 188
Do
;
op
op
Soundf{@, 8, 8, 8)

RETLRN

Return the integer square
ROOT of the value passed.

filgorithm: The integer square
root is the count of the total
successive odd numbers, starting
from 1, that can be subtracted
from the parameter before it goes
negative.

M e e e s we we e me e

BYTE FUNC ISqrtd INT r J

BYTE i, J
i =l
i= @
WHILE ¢(r > 83
Do
r=r - i
R S
IF r = @8 THEN
i=Jjt1
FI
oD

RETURNC j 3

PROC SelTarget{ BYTE tg)

SEPTEMBER A.N.A.L.O.G. Computing

35

lIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIggﬁkﬂﬁﬂj

CARD X
BYTE vy

Aattract = 8

X
9

HC5(tgl
YC5(tgl

Plot(x-26,Y-26)

DrawTo(x+26,Y-26)
DPrawToi(x+26,y+26])
DrawToi(x—-26,y+261)
DrawTo(x—-26,Y-26)

IF color # 8 THEN
FOR ¥y = 8 TO 15
Do
Sound{8, 68, 18, Yyl
FOR x = 8 TO 2886
Do
H
oD
oD
Sound(8, 6, 8, B8)
FI

RETURN

z

INT FUNC ABS(INT NUMBER)
IF {NUMBER { 8) THEN
RETURN (—NUMBER)

F-I

RETURN (NUMBER]J

PROC GAMESCREEN)

BYTE I,R

INT DH

INT DY

INT PHI, PHIKY, PHIY
CARD H

BYTE Y

Attract

= 8
color = 1

FOR R=5 TO 25 STEP S5

Do

DXE=R

pY=8

PHI = 8

WHILE DR >= DY
Do

PHIY = PHI+DY+DY+1

PHIXKY= PHIY-DHE-DX+1

XK = DR

¥ = DY

FOR I=8 TO 5
DO
Plot (HCSCIX+X,YCS5(I)+Y)
Plot (KCS{I)+Y,YCS(I)+K])
Plot (HCS(IX+Y,YCS5(I)-H)
Plot (HCS({IJ+X,YC5(I)-Y]
Plot (XCS(IJ-H,¥YCS5(I)-Y)
Plot (XCS(I)-Y,YCS5(I)—-X)
Plot (XCS(IJ-¥,YCSUCI)+H)
Plot (XCS(I)-H,YCS5(I)+Y)
op

PHI = PHIY

pY = pY + 1

IF ABS(PHIXY)+8<{ABS(PHIYY THEN

PHI= PHIRY
DX = DX-1
FI

%ﬂﬂ@@ﬁ@[ﬁ

0D ; WHILE
oD ; R LOOP
RETURN

INT FUNC GetRadius{ INT X,
tg9)

INT xxX, Yy, rr

rr = KC5(tg)
RN IS

b & =l o Gl o]
XX = AbsS(XX)
rr = YCS5(tg)
yy = 9y

uyy = yy-rr
Yy = Absiyyl
XX 2 XX ¥ X%
Yy = yy ¥ yy
XX = XX + yy

IF xx { 625 THEN
rr = Isqrti xx 3}

?
PROC Title()

Graphicst 8)
Poke (718, 43
PrintE("Sharp Shooter,
PrintE("{c) 19289,

by Mat¥Rat'l
Analog Computing')

PrintEC'""'")

PrintE("'Connect Light Gun first game p
ort'"l

PrintEC(''"

PrintE("Press Q¥{Aqd for NEXT game or
FEDGIIS key to exit prog

II)
PrintE("type
ram'"l

Do

i
UNTIL TRIGGER=15 OR CH = 28
oD

Do

H
UNTIL TRIGGER=14 OR CH = 28
oD

’
PROC RandTgts()
BYTE i, y, f

FOR i = 8 TO 5

Do
Tgselfid = i
oD
FOR i = B8 TO 5
Do
[h31]

f = Rand(& J
UNTIL f # 1
op

Yy = Tgselli)

Tgsel (il = Tgsel (f2

SEPTEMBER A.NL.A.L.O.G. Computing

INT y, BYTE

IIIIIIIIllIIlIIIIIIIIIIIIIIIIIIIIIIIIEg%mkﬂﬁﬂ]llllllllIlIlIlIlIIIIIIIIIIIIIIIIIIIIIIIIII

Tgsel(f) = y
oD
RETLURN

BYTE bi, bo

FOR bi = 8 TO 15
Do
sound(8, 68, 16, 15-bi)
Sound(i, 64, 18, 15-bi)
FOR bo = @ TO 258
Do
H
op
Sound(6, 86, 18, 15-bil
Sound(e, 84, 168, 15-bil
FOR bo = @8 TO 258
Do
;
oD
oD
Soundt(e, &, 8, 83

Sound(i, 8, 8, 8)
RETURN

BYTE bi, ba

FOR bi = 8 TO 15
Do
Soundi(g, 248, 8, 15-bi)
Soundti, 245, 6, bil
FOR ba = 8 TO 258
DO
;
oD
Sound{d, 188, 8, 15-bil
Soundi8, 194, 12, bil
FOR ba = 8 TO 258
Do
;
oD
oD
Soundt(8, 6, 6, 8]
Sound{i, 8, 8, B8}
RETURN

PROC HMAINC)
BYTE vy, f, i, J
INT radius
BYTE bulls
CARD score, hits, misses
CARD hiscore, round

BYTE hipct
CARD X

BYTE BK=712
round = X
hipct = @
hiscore = @
TitleC)

Do
; Until ESCAPE
Graphics(31)

BK = 12
bulls = @
score = @
hits = 8
Mmisses= B
GAMESCREEN ()

ZeroTime (2

SSﬁMj[ﬁHQF H ggggggi:%)target selection

i=-8
FOR j = 8 TO 5
Do
color = 3
FOR f = 1 TO 18
Do
S5elTarget(tgself i))
Do

GunRead(@x, Gy J
UNTIL TRIGGER=15 OR CH=28
oD
IF CH = 28 THEN
CH=255
Graphics (8}

PrintEC("Sharp Shooter, by HMat*

Rat'}

PrintEC'"(cY 1989, aAnalog Compu
ting')

RETURN

FI

color = color + 1

IF color > I THEN
color = 1

FI

Blasti x, y 1)

radius = GetRadiusix,y,tgselfil]

IF radius {= 5 THEN
bulls = bulls + 1
BingBong ()

FI

IF radius <= 25 THEN
hits = hits + 1
score = score + (26-radius)

ELSE
Mmisses = misses + 1
BingBap ()

FI
Do
UNTIL TRIGGER=14
oD
color = @
SelTarget{ tgsel(il)l

i =1 4.1
IF i > 5 THEN
i=- a8
RandTgts(}
FI
color = Rand(3) + 1
op
op
X = GetJTime ()
X = X/68
IF ®x { 3688 THEN
X = 36868rx
ELSE
X =8
25
CH = 255

Graphics (@)
Poke (718, 28)
Position(Z,2)

PrintE("Sharp Shooter By HMat*Rat'l

Print("Final 5core for Round ')
PrintCEL round)
round = round + 1

Print{"Bullets/Min = ')
PrintCEC x 13
Print{"Total Hits =iy
PrintCEL hits 3
Printi("Total Misses = ')
PrintCE{ Wmisses 3}
Print('"Bullseyes ="
PrintBEC bulls)
Print('Score ="

SEPTEMBER A.NL.A.L.0O.3. Computing

37

e @Bﬂ@[’@

PrintCE({ score J
IF score » hiscore THEN

hiscore = score
FI
Print("Accuracy =11
X = 188 ¥ bulls
X = xX/68
IF x > hipct THEN
hipct = x
FI
PrintCt x J
PrintE ("%}
PrintE("'")
Print(''"High Score =y

PrintCEC(hiscore 1}

Print("Best Accuracy= ")

PrintB{ hipct 13

PrintE('"¥%"])

PrinteE!"')

PrintE{"Press [IECLCIOaM to play™
PrintE("or typelEETTJ3 to exit'™)
+11]

LUNTIL TRIGGER=14 OR CH=Z8

oD

Do

LUNTIL TRIGGER=1S5 OR CH=Z8

oD

DO

UNTIL TRIGGER=14 OR CH=2Z8

op

UNTIL ¢CH = 28}
op

CH=25%

Graphics(a)

PrintE("Sharp Shooter, by Mat¥Rat')
PrintEC("(c) 1989, Analog Computing'l
RETLRN

LISTING 3: ACTION!

GUNREAD . ACT

¥
Ll
H CHECKSUM DATA

;[6A BA 3IA 75 52 1

Read the fAtari light gun

and convert the readings

of LPENH & LPENV to current
graphics mode screen coordinates

Algorithm developed by:
Matthew J. W. Ratcliff
Ratware Softworks

(c) 19589

For Analog Computing

Algorithm:

The DELTA-X gun readings were
apparently DESIGNED to be 168

with DELTA-Y at 96. These values
work out to be multiples of two,
by powers of two, for each and
EVERY possible Atari graphics wode
8 through 15 (full screen wmodes).

The X reading starts at about 89
at the far left of the display,
increases to 227 at about text
column 34, then drops to zero.
It increases to about 2Z at the
far right of the display.

The ¥ reading starts at about 17
at the top to 112 at the bottowm.

e few fem s

@m@ﬁ@ﬂr

GunRead normalizes the X reading
to 8-159, inclusive and Y to a
range of 8-95. Then the XSHIFT
and YSHIFT tables are accessed,
based on the current graphics wode.
If the value is less than 128, it
is a right shift count fdivide).

A value of 128 indicates a single
left shift (multiply by 23).

The end result is a valid X,Y
coordinate reading of the light
gun for the present graphics

mode. It is up to the user

to assure the screen intensity
CCOLOR*1G6+INTENSITY)Y is at a level
to get valid gun readings. @A value
of at least 18 is recommended.

A "flash'" technique may work best
S5et all playfield intensities to
14, call GunRead, and restore the
original playfield colors.

e e e e e e e e s e e we e e e e e e e e e e e e

PROC GunRead(CARD POINTER xx,
BYTE POINTER yy)

BYTE
450

ARRAY xXshift=[2 3 I 1 1 1 86 6 12§
127 zan e

BYTE
128

ARRAY yshift=[Z2 2 T 2 1 1 6 6 128
128 128 2 I 128 1281

CARD
BYTE

GunH
GunY

DINDEX= $57
LPENH = 3564
LPENV = 565

BYTE
BYTE
BYTE
BYTE

shift, index

Gunk

= LPENH
Gun¥ =

Gun¥ & SFF
LPENV
DINDEX

{= 48 THEN

Gunk + 227
IF GunX > 255 THEN
Gunk = 255

FI

FI

Guny
index =

IF GunH <= 98 THEN
Gun¥ = 98
FI

Gun¥ = GunX - 96

IF GunX > 159 THEN
GunH = 159

FI

shift = xshiftlindex)

IF shift = 128 THEN
Gun¥ = Gun¥ LS5H 1

ELSE

Gun¥ = GunX RSH shift
FI
GunY = GunY - 17

IF GunY¥ > 127 THEN

GunY = @ continued on page 61

38

SEPTEMBER A.N.A.L.0.8. Computing

U T

I L !

T Y

M/L EDITOR

For use in machine-language entry.

by Clayton Walnum

Editor provides an easy
method to enter our
machine-language list-
ings. It won’t allow you
to skip lines or enter bad
data. For convenience, you may enter listings
in multiple sittings. When you’re through typ-
ing a listing with M/L Editor, you’ll have a
complete, runnable object file on your disk.

There is one hitch: It’s for disk users only.
My apologies to those with cassette systems.

Listing 1 is M/L Editor’s BASIC listing.
Type it in and, when it’s free of typos, save
a copy to disk, then run it.

On a first run, you’ll be asked if you’re
starting a new listing or continuing from a
previously saved point. Press S to start, or
C to continue.

You’ll then be asked for a filename. If
you’re starting a new listing, type in the file-
name you want to save the program under,
then press RETURN. If there’s already a file
by that name on the disk, you’ll be asked if
you wish to delete it. Press Y to delete the
file, or N to enter a new filename.

If you’re continuing a file, type in the name
you gave the file when you started it. If the
program can’t find the file, you’ll get an er-
ror message and be prompted for another file-
name. Otherwise, M/L Editor will calculate
where you left off, then go on to the data en-
try screen.

Each machine-language program in
ANALOG Computing is represented by a list
of BASIC data statements. Every line contains
16 bytes, plus a checksum. Only the numbers
following the word DATA need to be con-
sidered.

M/L Editor will display, at the top of the
screen, the number of the line you’re current-
ly working on. As you go through the line,
you’ll be prompted for each entry. Simply

SEPTEMBER A.N.A.L.O.Q. Computing

type the number and press Return. If you
press Return without a number, the default
is the last value entered.

This feature provides a quick way to type
in lines with repetitions of the same number.
As an added convenience, the editor will not
respond to the letter keys (except Q for
“quit”). You must either enter a number or
press Return.

When you finish a line, M/L Editor will
compare the entries’ checksums with the
magazine’s checksum. If they match, the
screen will clear, and you may go on to the
next line.

If the checksums don’t match, you’ll hear
a buzzing sound. The screen will turn red,
and the cursor will be placed back at the first
byte of data. Compare the magazine listing
byte by byte with your entries. If a number
is correct, press RETURN.

If you find an error, make the correction.
When all data is valid, the screen will return
to gray, and you’ll be allowed to begin the
next line.

Make sure you leave your disk in the drive
while typing. The data is saved continuously.

You may stop at any time (except when you
have a red screen) by entering the letter Q for
byte 1. The file will be closed, and the pro-
gram will return you to BASIC. When you’ve
completed a file, exit M/L Editor in the same
way.

When you’ve finished typing a program,
the file you’ve created will be ready to run.
In most cases, it should be loaded from DOS
via the L option. Some programs may have
special loading instructions; be sure to check
the program’s article.

If you want the program to run automati-
cally when you boot the disk, simply name
the file AUTORUN.SYS (make sure you have
DOS on the disk.).

The two-letter checksum code pre-
ceding the line numbers here is not
a part of the BASIC program. For
more information, see the ‘“BASIC
I elsewhere in this issue.

LISTING 1: BASIC LISTING

ie gIH BF €16) ,N$(4),A5(1),BS¢1) ,F$(15)

| 20 LINE= 1000 RETRN 155:BACKSP=126:CHKS
UM=0:EDIT=

} 30 GOSuB 450 POSITION 16,637 "Btart or

| Eontinue? ";1GOSUB 500:7 CHRS$ (A

46 POSITION 10,8:7 "FILENAME';}: INPUT F

tPOKE 752,112 " »

e IF LEN(Fs)(! THEN POSITION 26,10:7

":1GOTO 4
8 IF FS(I ga()"h'" THEN F1$="D:'":F15¢(

FS
0 F$
-] IF CHR$ €AY ="'5"* THEN 12

mo

10 CLOSE #2:0PEN uz,s,e,ns:com 170
20 TRAP 160:0PEN $2,4,0,F15$:G0SUB 440
POSITION 16,18:7 "FILE ALREADY EXISTS
1"IPOKE 752,0
38 POSITION 10,12:7 --Enasz IT? “;:G0S
B 580:POKE 752,1:7 CHRS(A
40 IF cunsm)-"u" OR cnnSm)—--n" THEN
CLOSE #2:GOTO0 30
158 IF CHRS(A))"'Y" AND CHRS €AY O'y» T
| HEN 130
133 gkglsul;: s‘:z 1OPEN $2,8,0,F15

50:POSITION 10,117 "I ELE
[LINER ",LINE CHKSUM=8
80 L1=3:FOR X=1 TO 16:POSITION 13%(X{
0) +12%(X)9), g#z tPOKE 752,0:7 "BYTE #'

210 POSITION 22,X+2:? BYTE;" *

228 BF (K)=BYTE: CNKSUM CHKSUMGBVYE*X IF
CHKSUM) 9999 THEN CHKSLUM=CHKSUM-10000
230 NEKT X:CHKSUM=CHKS!UM+LINE: IF CHKSU

 M>9999 THEN CHKSUM=CHK5UM-1000

250 IF EDIT AND L=8 THEN 270

2608 C=VAL (N$)

270 POSITION 22,X+2:7 C;" o

286 IF C=CHKSUM THEN 300

290 GOSUB 440:EDPIT=1:CHKSUM=0:GOTO 186
3060 FOR X=1 TO 16:PUT #2,BF (X) :NEXT X:
LINE-LINE+10:EDIT=0:G0TO0 170

310 L=0

320 GOSUB S500:IF CaA=ASC('Q'™) OR A=ASC(
''q"'3)) AND X=i AND NOT EDIT THEN 420
338 IF A{DRETRN AND A{)BACKSP QND ad4
8 OR_A)S57) THEN 320

331 IF A=RETRN AND N$='""" THEN N$=MOD$
:35 IF A=RETRN AND L=8 AND X>1 THEN 35

3408 IF C((A=RETRN AND NOT EDIT) OR A=B
ACKSP) AND L=0 THEN 320
350 IF A=RETRN THEN POKE 752,1:7 ' ':R

360 IF A{YBACKSP THEN

F L)1 THEN N$= NS(l L 1) :GOTO 390
380 N§=uv

390 ? CHR$(BACKSP);:L=L-1:GOTO 320

400 L=L#4:IF LOL1 THEN A=RETRN:GOTO 35

. 410 NS(L)=CHRS(A):? CHRS(A);:GOTO 320
420 GRAPHICS O:EN D

. 438 GOSUB 440:POSITION 10,10:? "NO SUC
H FILEI":FOR =i T0O 1000:NEXT X:CLOSE
#2:G0T0 30

. 440 POKE 710,48:50UND 0,100,12,8:FOR X
=1 70 50: NEKT X:S0UND 0,0,0 0: RETURN
450 GRAPHICS 23:POKE 16,112:POKE 53774
,112:POKE 559,0:POKE 71

460 DL= PEEK(SGD)*ZSS*PEEK(561)*! POKE
DL-1,70:POKE DL+2,6

470 FDR H=3 TO 39 STEP 2:POKE DL+X,2:N
EXY X: FOR K=4 TO 40 STEP 2:POKE DL*N 8

NEXT
480 PDKE DL+41,65:POKE DL+42,PEEK(560)
tPOKE DL+43, PEEK(561) : POKE 87,0

490 POSITION 2,0:? "analog ml editor':
POKE 559,34.RETURN

500 OPEN #1,4,0,"K:":GET ##1,A:CLOSE #1
IRETURN

38

BASIC---

ASIC Editor I1 is a utility to help you

enter BASIC program listings pub-

lished in ANALOG Computing. To

simplify the identification of errors,

each program line is evaluated im-
mediately after it’s typed, eliminating the
need for cumbersome checksum listings.
When you’ve finished entering a program us-
ing BASIC Editor II, you can be certain it
contains no typos.

An option is provided for those who wish
to use standard BASIC abbreviations. Also,
the program retains all Atari editing features.
Finally, for those who prefer to type programs
the conventional way, using the built-in edi-
tor, a post-processing mode is available. It al-
lows you to check typing after the entire
listing has been entered.

Typing in the Editor
To create your copy of BASIC Editor II,
follow the instructions below— exactly.

Disk version:

(1) Type in Listing 1, then verify your work
with Unicheck (see Issue 39).

(2) Save the program to disk with the com-
mand SAVE “‘D:EDITORLI.BAS’".

(3) Clear the computer’s memory with the
command NEW.

(4) Type in Listing 2, then verify your work
with Unicheck.

(5) Run the program (after saving a back-
up copy) and follow all the on-screen
prompts. A data file will be written to your
disk.

(6) Load Listing 1 with the command
LOAD “EDITORLI.BAS”".

(7) Merge the file created by List-
ing 2 with the command ENTER
“D:ML.DAT”".

40

Editorll

(8) Save the resultant program with the com-
mand LIST “D:EDITORII.LST"".

Cassette version:

(1) Type in Listing 1 and verify your work
with Unicheck.

(2) Save the program to cassette with the
command CSAVE. (Do not rewind the
cassette.)

(3) Clear the computer’s memory with the
command NEW.

(4) Type in Listing 2 and verify your work
with Unicheck.

(5) Run the program and follow the on-
screen prompts. A data file will be written to
your cassette.

(6) Rewind the cassette.

(7) Load Listing 1 with the command
CLOAD.

(8) Merge the file created by Listing 2 with
the command ENTER ““C:”.

(9) On a new cassette, save the resultant pro-
gram with the command LIST “‘C:”’

Using the Editor

Take a look at one of the BASIC program
listings in this issue. Notice that each program
line is preceded by a two-letter code. This code
is the checksum for that line; it’s not a part
of the program.

To enter a program listing from the maga-
zine, load BASIC Editor II with the ENTER
command, and run it. You’ll be asked if you
wish to allow abbreviations (see your BASIC
manual). If you do, type Y and press
RETURN. Otherwise,.type N.

Note: If you set BASIC Editor II to allow
abbreviations, the program will run slightly
slower.

Your screen will now be divided into two
“windows.” The upper window will display
each line after it’s processed, as well as the

checksum generated for that line. The lower
window is where program lines are typed and
edited.

When the program’s waiting for input, the
cursor will appear at the left margin of the typ-
ing window. Type a program line and press
RETURN. The line will be evaluated and
reprinted in the message window, along with
the checksum generated.

If the checksum matches the one in the
magazine, then go on to the next program line.
Otherwise, enter the command E (edit) and
press RETURN. The line you just typed will
appear in the typing window, where you may
edit it. When you think the line has been cor-
rected, press RETURN, and it’ll be
reevaluated.

Note: You may call up any line previously
typed, with the command E followed by the
number of the line you wish to edit. For ex-
ample, E230 will print Line 230 in the typ-
ing window. Do not attempt to edit any
program lines numbered 32600 and higher.
These lines fall within the BASIC Editor II
program.

If you’re using BASIC abbreviations, the
two versions of the command E work slightly
differently. The command E, without a line
number, will call up the line exactly as you
typed it. When you append the line number,
the line will be printed in its expanded (un-
abbreviated) form.

Leaving the Editor

‘You may leave BASIC Editor II at any time,
by entering either B (BASIC) or Q (quit). If
you type B, the Editor will return you to BAS-
IC. Enter LIST to review your work, if you
wish. Note that lines 32600 and above are the
Editor program. Your work will appear be-
fore these lines. To return to the Editor, type
GOTO 32600.

Type O, and you’ll be asked if you really
want to quit. If you type Y, the Editor pro-
gram will be erased from memory, and you
may then save your work in any manner you
like. If you type N, the QO command will be
aborted.

Large listings

If the program you’re entering is particu-
larly long, you may need to take a break.
When you want to stop, type Q and press
RETURN, then save your work to disk or cas-
sette. When you’re ready to start again, load
the program you were working on, then load
BASIC Editor II with the ENTER command.
Type GOTO 32600, and you’re back in
business.

SEPTEMBER A.N.A.L.O.G. Computing

The post-processor

Many people may not want to use BASIC
Editor II when entering a program listing,
preferring, instead, the Atari’s built-in editor.
For that reason, BASIC Editor II will allow
you to check and edit your programs after
they’ve been typed.

To take advantage of this option, type any
magazine program in the conventional man-
ner, then save a copy to disk or cassette (just
in case). With your typed-in program still in
memory, load BASIC Editor II with the
ENTER command, then type GOTO 32600.

Respond with N to the “abbreviations”
prompt. When the Editor-appears on your
screen, enter the command P (post-process),
and the first program line will appear in the
typing window. Press RETURN to enter it into
the Editor.

The line will be processed, and the check-
sum, along with the program line, will be
printed in the upper window. If the checksum
matches the one in the magazine, press
RETURN twice, and the next line will be
processed.

If you find you must edit a line, enter the
command E, and the line will be moved back
to the typing window for editing.

When the entire listing has been checked,
you'll be asked if you wish to quit. Type ¥
and press RETURN. The Editor program will
be removed from memory, and you may then
save the edited program in any manner you
wish.

Murphy’s Law

Anyone who's been associated with comput-
ing knows this is the industry Murphy had in
mind. You may find that, after typing a pro-
gram with BASIC Editor II, it still won’t run
properly. There are two likely causes for this.

First, it may be that you’re not following the
program’s instructions properly. Always read
the article accompanying a program before at-
tempting to run it. Failure to do so may present
you with upsetting results.

Finally, though you can trust BASIC Edi-
tor II to catch your typos, it can't tell you if
you've skipped some lines entirely. If your
program won’t run, make sure you've typed
all of it. Missing program lines are guaran-
teed trouble.

One last word: Some people find it an un-
necessary and nasty chore to type REM lines.
1 don’t condone the omission of these lines,
since they may be referenced within the pro-
gram (a bad practice, but not unheard of). If
you want to take chances, BASIC Editor II is
willing to comply.

SEPTEMBER A.NL.A.L.O.G. Computing

When you’ve finished entering a

program using BASIC Editor 11, you

can be certain it contains no typos.

Listing 1.
BASIC listing.

32600 IF FL THEN 32616
32602 DIM L$(115),5V$(115),C25(2), BS(L
15) ,M$(119), 55(98) ES(69), n*(x):rL 1:
TMTAB=PEEK (136) +PEEK (137) %25
32604 GRAPHICS @:POKE 718, D'P 0:ABR=0:
2 “ALLOW nesnEuraTIons";:quur A$IIF A
$=i'yii QR A$= THEN ABR=1
32606 BS(l) g CL15) =" ":1BS(2)=BS
32616 OPEN #17,4,0,"E:":L$=" ":GOSUB 3
2662:START=0
32618 POKE 766,1:POKE 83,39:POSITION 1
2 SUIF LEN(L$)(39 THEN ? L$:GOTO 32624
32620 IF LENC(L$)<77 THEN ? L$(1,38):7
L$(39,LENCLS)) 1GOTO 32624
32622 7 L$CL,38):7 LSC3I9,76)17 LS(77,L
EN(L$))
32624 POKE 752,0:POKE 766,08:POKE 559,3
4:POKE 82,1:POKE 83,38: Posxrrou 0,107
O TINPOT 117 LS POKE »d

= s—"p") AND START=

|7 E'" OR L$="e' THEN E=1:P0S
ITION 1,10: 7 SU$S GOTO 32624
32630 IF L$="a" uR L$=""q"" THEN 32690
32632 IF L$='""" AND P=1 THEN 32686
32634 IF L$=""" THEN 32624
32636 IF L$="B'" OR L$="b' THEN GRAPHIC
S 8:?7 “TYPE 'GOTO 3I2600' TO CONTINUE':

E

32638 IF LSCL,13="E" OR L$(1,1)=""e'" TH

EN E= 1:1RQP 32624 EL= UOL(LS(Z)) POSITI
2

ILIS 3262
32640 SUS=LS:TRAP 32624:X=VAL(LS)
32642 START=L:IF P AND NOT E THEN 326

52

32644 GOSUB 32674:IF NOT ABR OR P THE
N 32652

32646 POKE 766,0:7 CHRS(125): PDSITIO
0,3:L= VAL CLS)Y tLIST L1? 17 1?2 “CONT':L$

32648 POSITION 8,0:POKE 842,13:5TOP
32650 POKE 842 12:A=USRCADR(SS) ,ADRILS

),4):L8=LSC1,

32652 CHKSUME USR(QDR(HS) ADRCLS) ,LENCL

$)) 1CHKSUM= CNKSUH*PEEK(1541)*65536
32654 CHK= CHKSUM- CINT (CHKSUM/676)%676)
tHIZINT (CHK/26) :LO=CHK- (HI%*26):C2$ (1) =
CHRS (HI+65) :1C25(2) =CHRS (LO+65)

32656 IF NOT P OR E THEN E=8:GOSUB 32
662:IF NOT P THEN 32660

32658 POKE 83,39:POKE 752,1:FOR X=3 TO
5:POSITION 1,X:? BS(L, 383 1POSITION i,
R+7:7 BS(L, 383 {NEXT K:POKE 83,38

32660 POKE 766,1:POKE BX,SO.POSITION 6
;71?7 C25:POKE 752,0!6070 32618

32662 GOSUB 32702:POKE 766,0:POKE 752,
1:? “K'":POKE 82,1:DL-PEEK(560) +256%PEE
K(561) +4

32664 POKE DL~1,78:POKE DL+2,6!POKE DL
+3,112:POKE DL+4,112:POKE DL+5,112:P0K
E DL+13,112:POKE DL+14,112

32666 POKE DL+22,112: PUXE DL+23,112:P0
KE DL+24,65:POKE DL’ZS PEEK(SSU)IPDKE
DL+26, PEEK (561) : POKE 39

32668 POSITION 260, 0!’ " basic edl‘gcp

7 2

32670

T7 PR
32672 POKE 559,34 :RETURN

32674 GRAPHICS O:POKE 559,0:POKE 766,11
1POKE 82,8:POKE 83, 39!PDSITION 0,3:7 L
§$:? 17 " $? “CONY"!POSITXON 0,0

32676 POKE 842,13:5T0P

32678 POKE 842,12:TRAP 32682:A-USRCADR
(ES) UAL(LS))XIF A=4 THEN POP 1GOTO 32
68

32680 RETURN

32682 GOSUB 32662:50UND 0,75,10,8:FOR
K=L TO 20:NEXT X:SOUND ©,0,0,0:P0SITIO
N 1,3:7 "SYNTAX ERROR!'":POKE 766,1
32684 POKE 83,38:POSITION 1,10:7 SVU$:G

0T0 32624
32686 LINE=PEEK(STMTAB) +PEEK(STMTAB+1)
#256:IF LINE)>32599 THEN 32696

32688 OFS=PEEK(STMTAB+2) :STMTAB=STMTAB
+OFSiPOSITION 1,9:LIST LINE!GOTO 32624
32690 POKE 766, 0 POSITION 10:7 "“READ
Y TO QUIT";: INPUT ASIIF hS(s"V" THEN P
OSITION 1,10:? BS(1,38):GOT0 32624
32692 GRAPHICS ©8:7 l? 1?7 (FOR X=32600
TO 32636 STEP 2:? X:INEXT X:? "CONT":PO
SITION 0,08:POKE 842,13:5TO0P

32694 POKE 842,12:GRAPHICS 0317 :? :? 1
FOR K=32638 TO 32674 STEP 217 KINEXT X
1?7 1?7 "CONT":POSITION 8,0

32696 POKE 842,13:570P

32698 POKE 842,12:GRAPHICS ©0:7 1?7 :7 1
FOR X=32676 TO 32762 STEP 2:7 NINEXT X
1?7 1? “POKE 842,12'":POSITION 0O,

32700 POKE 842,13:STOP
:2702 POKE 16, 112:POKE 53774,112:RETUR

CHECKSUM DATA.
(see issue 39’s Unicheck)

32600 DATA 6,665,923,757,809, 171 225,8
96,532,499,916,267,912,144,735,84
32638 baTa’ 37,358,230,693,706,878,317,
127,36,597,238,258,182,430,168,5315
32668 DATA 864,953,472,385,887,724,72,
687,908,736,625,612,672,1684,891,9672
32698 DATA 8,856,85,949

Listing 2.
BASIC listing.

10 DIM L$€120),MLSC119),A5C1)

20 GRAPHICS 0|POKE 710,0:7 QIS ?h
SSETTE'"; 1 INPUT AS:IF ﬁg(pAlML QND 05(e
D'"" THEN 20

30 IF A$='"C'" THEN 50

40 ? "PLACE FORMATTED DISK IN DRIVE'":?
"“THEN PRESS RETURN":INPUT LS$:0PEN 811,
8,0,"D:ML.DAY":GOTO 60

50 ? :? “READY CﬁSSETTE, PRESS RETURN"
3 1INPUT LS:0PEN 811, 'C:

60 L5=""32608 M$(1)= "'Lg(ll) =CHRS (34)

70 N=119:GOSUB 130:LS(14)=MLS(1,58):L$S
CLEN(LS) +1)= CHR5(34):7 Hi;LS

80 L$C1)="'32610 M$(59)=":1$(14)= CHR$ (3

4): LS(iS)‘HLs(S’)xLS(LEN(Ls)Ol) =CHR$ (3

32612 S$=":L$(10)=CHRS (34)

0 iN=98:GOSUB 130:LS(11)=MLS:L
$(LEN(LS)§1) CHRS$(34):? ﬂl'Ls
110 LSC1)="32614 ES=":L$(10)= CHR$ (34)
120 MLS='""':N=69:GOSUB 130: L5(11) MLS L
$(LEN(L5)+1)'CHR5(34)" BL;LS:E
130 FOR X=1i TO N:READ A: HLg(K) CHRS(Q)
INEXT X:RETURN
140 DATA 104,104,133,204, 164 133, 293 1
04,104,133, 205 159 0,141,3,6,141, 1

4 1,5,
156 DATA 141,6,6,238,3,6,32,68,218,172
12,6,177,203, 133 212, 32 179 217 32,182
,221 32, 68 21
160 bATA 171 3 6,133,212,32,170, 217 32
219,218,332, 210 217 155 212 141,0,6,16

,213,141,1,5,24

70 DATA 173, ,1069,4,6,141, 4 6 173,
2,109,5 16, 141 5,6,1 4,3,230 »238, 2
4,

8 pATA 6,172,2, 6,196 205, 208 176 173
,4,5,133, 212 173 S, 133 213

190 DATA 104,104, 133 204,104, 131 203,1
04, 184 1414, 255 6,169,0, 133 213 216 165
,80,1 205 155 69 133 206

200 DAYQ 174 255 124, 165 205,105,40,1
33,205,144,2,230, 206 202 288 2‘2 160 [}
,177 205 201 64, 144 18

210 DATQ 201,96,144,19,201, 120 144 18
201,192,144, 6 201 224 144 176 24 i
s, 32 144 3, 56, 33

220 DaYﬂ 64 145,203,200,192,114,240,2,
208,215,177,263,201,32, 208 8 136 208 2
47, 208 182 212 56

230 pata 104 104 141,254,6,104,141,253
,6,169,0,133,213,216,165, 136 133 205 1
65, 37, 131 206 160 0,177

240 pata 205 205 253 6,208,8,200,177,
05,205,254,6,240,15, 160 2, 177 285 24, 1
01,205,133, 205 144 228

250 a!a 230 206 176 224 160,4,177,205
1201,55,240, 169 e, 249 112 212 36

CHECKSUM DATA.
(see issue 39’s Unicheck)

10 DATA 283,265,465,844,294,973,652,27
9,978,797,278,275,835,209,301,7639
50 _DATA 355,94,254,420,935,840,580,41
1974,564,5435

a1

TRAINING:

ARRAYS

hy Clayton Walnum

o far we’ve talked about two kinds of
variables: numeric and string. In this
installment, I'd like to cover a varia-
tion on numeric variables, a powerful
data structure known as an array.
Arrays can be a little confusing at first, but
in order to be a proficient BASIC program-
mer you must be able to handle them.
Actually, we've already talked a little about
arrays, because a string is really nothing more
than a character array. Last month, when we
talked about strings, I provided this diagram:

12345
BIEIM[N|Y

Here you can see that we've got a series
of values (in this case, character values)
stored consecutively in memory. Each
character in the string can be identified (in-
dexed) according to its position in the string.
Now let’s take the above diagram and replace
the character values with numeric values:

234 8
271291

We have now converted the string—a
character array—into a numeric array. Just
like the string, each value in the array is iden-
tified by a number that represents its posi-
42

tion. In other words, we can access the
number 2 by referring to the third “element”
of the array. This is where things get confus-
ing, because with numeric arrays, we’re al-
ways working with two numbers: the index
(or position) of a value and the value itself.

Programming with arrays

Just like strings, array variables have to be
dimensioned so BASIC knows how much
space to reserve for them. The DIM state-
ment for a numeric array looks almost exactly
like the DIM statement for a string. The only
difference is we don’t end the variable name
with a dollar sign. Here’s a DIM statement
for the array illustrated above:

i8 DIM NUMBERS(3)

This program line tells BASIC that we want
to use an array called NUMBERS and that
the array will need to store a maximum of
six values.

Whoa! Six values? Yep. You see, array in-
dexes actually start at zero. The first position
of NUMBERS is actually position 0. But be-
cause most people tend to think of position
1 as the first position in a series, BASIC
programmers (mostly being people too) like
to ignore the 0 element and begin with ele-
ment 1. Let’s revise our illustration to show
what our array really looks like:

Bk 202 k5
3| f2{9(1

I’ve placed a question mark in element 0
because, unless we’ve placed a number there,
we can’t be sure exactly what’s stored in that
position. Usually it’ll be a 0, but it’s a good
programming practice not to trust the value
of any variable we haven’t first initialized
(given a value to).

Now that we have a name for our array, we
can use the indexes to access any values in
the array. If the array was set up as illustrat-
ed, we could refer to the number 2 with the
statement NUMBERS(3). We interpret this
as meaning the value stored in the third ele-
ment (skipping element 0) of NUMBERS.
Remember: the number in parentheses is not
a value stored in the array, but rather the po-
sition of the value we want.

How would we refer to the number 1 in the
array NUMBERS? Everyone who said
NUMBERS(5) gets a gold star.

Although our illustration shows the array
already filled with values, in our program we
still have an uninitialized array. To get the
values into NUMBERS(), add the follow-
ing line to Line 10 from above:

28 NUHMBERS(1)=5:NUMBERS(2)=7:
HUMBERS £3)=2 :NUMBERS (43 =9 :NUM
BERS(5)=1

This is only one way of getting the job
done. It’s not the best way, but until we learn
about loops, it’s the best we can do. In Eng-
lish, Line 20 reads “Place the value 5 into
position 1 of the array NUMBERS; place the
value 7 into position 2 of the array NUM-
BERS; place the value 2 into position 3 of
the array NUMBERS. . .’ etc.

To prove that we have indeed set up our ar-
ray as shown in the original illustration, add
these lines to our program:

38 PRINT NUMBERS (1)
48 PRINT NUMBERS (2]
28 PRINT NUMBERS (3]
68 PRINT NUMBERS (4)
78 PRINT HUMBERS (3]

If you were to run this program, you would
get the following output:

88 X=1:PRINT NUMBERS (X)
98 X=2:PRINT NUMBERS (X)
1668 X=3:PRINT NUMBERS (X)
1168 X=4:PRINT NUMBERS (X)
1268 X=3:PRINT NUMBERS (X)

An array’s index doesn’t have to be a con-
stant (an explicit number). It can also be a
SEPTEMBER A.NLA.L.O.8. Computing

variable. For example, add the following lines
to our program:

Now when you run the program, you’ll get
the following output:

RN ORI

The first five numbers in the list were print-
ed by Lines 30 through 70, using constants
as array indexes. The second five numbers
were printed by Lines 80 through 120, using
the variable X as the index and changing the
value of X each time we used it.

Two-dimensional arrays

The above examples used a one-
dimensional array. Unlike strings, though,
numeric variables can have two “dimen-
sions.” Two-dimensional arrays are some-
times thought of as ““tables” or “matrices”
because they organize data in much the same
way we would if we drew a table of values
on a piece of graph paper, like this:

LA A4
a2|2(4|1|8
7|1/6|2(9
1{4|7]2|1

To locate a value in a table like this, we
need to have two indexes, the column and the
row. For example, the value 6 can be found
in column 3, row 2. This table is a graphic
representation of a two-dimensional array.
Let’s use the array name TABLE,and dimen-
sion the array as a two-dimensional array:

18 DIM TABLELS, 3)

In the above line, we’'ve told BASIC that
we want a two-dimensional array with five
columns and three rows (actually, six
columns and four rows if we count the 0 ele-
ments). If we wanted to refer to the number
6 in the above table, we could call it
TABLE(3,2).

Here’s a simple way to get the values from
the table into our array. Add these lines to
Line 10:

SEPTEMBER A.NL.A.L.0O.3. Computing

28 TABLEIL1,1)=5:TABLE(2,1)=2:
TABLE(3, 1)=4:TABLE(4, 1J=1:TAB
LE(S,1)=8
38 TABLE(1,2)=7:TABLE(2,2)=1:
TABLE(3, 2)=6:TABLE(4, 2)=2:TAB
LECS, 2)=9
48 TABLE(1,3)=1:TABLE(2,3)=4:
TABLE(3, 3)=7:TABLE(4,3)=2:TAB
LE(S,3)=1

In Line 20 we initialize row 1 of the array,
in Line 30 we initialize row 2, and in Line
40 we initialize row 3. As you can see, multi-
dimensional arrays are much more compli-
cated than single-dimensional arrays, and
they can store a great deal more data.

Just as with a one-dimensional array, we
may use numeric variables as indexes for a
two-dimensional array. Frequently, the
familiar X and Y are used as ‘“‘coordinates”
for the location of a piece of data.

What's the point?

Why are arrays so valuable to us as
programmers? Because they allow us to
quickly and conveniently access data. For ex-
ample, suppose we had a class with five stu-
dents in it. We could store each student’s final
grade average in an array, then use the stu-
dent’s ID number as an index for finding his
grade. The following program illustrates this
use of an array:

18 DIM GRADES(5]
28 GRADES(1)=88:GRADES(2)=75:
GRADES (3)=92:GRADES (4] =67 : GRA

DES (5] =86

38 PRINT "ENTER STUDENT ID NU
MBER"

48 INPUT STUDENT

98 PRINT "STUDENT'S GRADE AVE

RAGE IS ";GRADES(STUDENTI

Line 10 dimensions the array GRADES().
Line 20 initializes GRADES(), putting each
student’s grade into one element of the ar-
ray. Line 30 prompts the user for an ID num-
ber, and Line 40 retrieves this number from
the keyboard. Line 50 displays on the screen
the grade for the student ID entered in Line
40.

When you run this short program, you’ll
see something like this:

ENTER STUDENT ID NUMBER
?3
STUDENT'S GRADE AVERAGE IS 92

Just be careful not to enter a number low-
er than 1 or greater than 5. If you enter a 0,
you’ll get a value that doesn’t mean anything
because we never initialized element O of the
array. If you enter a number greater than 5,
you’ll get an error because you’ll be trying
to access an array element that doesn’t exist.
Try it and see what happens.

Now how about an example of using a two-
dimensional array. Let’s take an even smaller
class, say, three students. Now let’s use a two-
dimensional array to keep track of all of each
student’s test scores for the class. Table 1
shows what we find in the teacher’s
gradebook.

STUDENT ID TEST 1 TEST 2 TEST 3
Smith, Bill 1 85 72 92
Stowe, Jane 2 74 78 82
White, Alex 3 91 85 82

Table 1
This program is a computerized version of
the gradebook:

18 DIM GRADES(3, 3]

268 GRADES(1, 1)=85:GRADES(2, 1)
=72:GRADES (3, 1)=92

38 GRADES(1,2)=74:GRADES(2, 2}
=78:GRADES(3, 2)=82

48 GRADES(1, 3)=91:GRADES(2Z, 3}
=85:GRADES (3, 3)=82

28 PRINT "ENTER STUDENT ID"
68 INPUT STUDENT

78 PRINT "ENTER TEST an"“

868 INPUT TEST

98 PRINT “THE SCORE IS ':GRAD
ESCTEST, STUDENT)

Line 10 dimensions the two-dimensional
array GRADES(). Lines 20 through 40 in-
itialize the array with the students’ test scores.
Line 50 prompts the user for the student ID,
and Line 60 retrieves that number from the
keyboard. Lines 70 and 80 get the test num-
ber in the same way. Finally, Line 90 uses
the values retrieved for TEST and STUDENT
as indexes for accessing the appropriate
score.

A typical run of the above program might
look like this:

E;TER STUDENT ID
ENTER TEST #

23

THE SCORE IS 82

Some final words

In closing, I should mention that some
BASICs allow arrays larger than two dimen-
sions. A three-dimensional array—one that
might be dimensioned as ARRAY (5,5,5), for
example—can be visualized as a cube, where-
in values are located by the column, row and
depth at which they reside. Four- and five-
dimensional arrays are also possible in some
BASICs and other languages, but they are
creatures that can reside only in the abstract
environment of a computer’s memory. There
is no real-life table we can create to represent
them.

Next time, we’ll look at looping techniques. &

a3

n this month’s Boot Camp, we're going
to finish our discussion of X and Y reg-
ister indexing and become proficient in
multi-byte addition.

Regular Boot Camp readers will be
happy to know that the introductory materi-
al will be completely covered in the next few
isues. After that, we can start applying all the
6502 instructions to useful subroutines and
full-scale programs!

Solution #2

I hope everyone at least tried to solve the
indexing problem presented last issue. This
problem asked readers to write the code
necessary to copy the contents of the six-byte
TABLEI to TABLE2 in reverse order. This
little brain-teaser is an excellent opportunity
to gain more experience with the 6502 index
registers.

Below is the code necessary to copy
TABLEI to TABLE2 in normal order. This
code was shown last month.

16 *= $6680

20 LDX #S

306 COPY LDA TABLEL,X

40 5TA TABLEZ, X

50 DEX

668 BPL COPY

70 BRK

86 TABLEL .BYTE 16,206,30,40,50,60
98 TABLEZ %*=¥+6

61608 . END

44

by Tom Hudson

In order for
BASIC to
reconstruct the
number, it must
multiply each byte
by the value of its
lowest-order bit.

I told you that only three changes to this
code would allow it to copy the table in re-
verse order. The changed code is shown
below.

i8 *= 5600

20 LDX #5

30 LDY #6

406 COPY LDA TABLEL,X
56 5TA TABLEZ,Y
68 INY

78 DEX

88 BPL COPY

90 BRK

8186 TABLEL .BYTE 10,20,30,46,506,60
0116 TABLEZ *=¥+6
6120 +END

How does it work? Let’s step through the
code and see.

Line 20 sets the X register to 5. This reg-
ister will be used to point to different parts
of TABLEL. With the index starting at 5, the
register will point to the last byte of TABLEIL.

Line 30 sets the Y register to 0. This reg-
ister will be used to point to varying places
in TABLE2. Unlike the X register, the Y reg-
ister will start pointing at the first byte of
TABLE2.

Lines 40-80 perform the table-data move
function.

Line 40 loads the accumulator with a byte
from TABLEI, indicated by the X register.

Line 50 stores the byte just loaded into a
byte of TABLE2, indicated by the Y register.

Lines 60 and 70 are the heart of this rou-
tine. Note that the Y register is incremented
each time the loop is executed, while the X
register is decremented. Here are the X and
Y register contents for each iteration of the
loop.

TABLEL TABLEZ
(X) Y
5 L]
4 d;
3 2
2 3
x 4
8 S

SEPTEMBER A.NLA.L.O.G. Computing

By looking at the above, you can see that
the sixth byte (5+1) of TABLEI will be
moved to the first byte (0+1) of TABLE2, the
fifth byte of TABLEI to the second byte of
TABLE2, and so on.

Line 80 loops back to the COPY label if
the X register is positive (0-127). Once the
X register is decremented past zero, it “wraps
around” to binary 11111111, 0r —1 decimal,
and the program stops at the BRK instruc-
tion in Line 90.

Line 100 sets up the initial values contained
in TABLEL.

Line 110 tells the assembler to reserve six
bytes for TABLE2. Remember, the ““#="*+"
directive allows you to set aside any number
of bytes for tables, working areas, etc.

As a further example of the “reverse table”
problem, below is the BASIC equivalent of

the assembly code.

10 DIM TABLE1(S),TABLEZ2(5)

15 TABLE1(8)=16:TABLEL1(1)=26:TABLE1(2)
=30:TABLEL (33 =46: TABLEL(4)=58: TABLEL (5
)=60

28 H=5

36 Y=0

40 A=TABLEL1(X)

58 TABLEZ(Y)=A

60 Y=Y+1

78 X=K-1

80 IF X>=80 THEN 40

98 END

Note that in BASIC it is necessary to ini-
tialize the TABLEI array (Line 15). This does
the same thing as the .BYTE directive in Line
100 of the assembly code.

This should give you a good idea of how
indexing works. If you still have trouble,
reread last month’s discussion of indexing and
try developing your own simple problems.

Math Revisited

As promised last month, we’re going to
start looking at multi-byte math operations,
both in binary and binary-coded decimal
(BCD).

SEPTEMBER A.N.A.L.O.8. Computing

Why do we want to bother with multi-byte
math? If you're only working with numbers
from zero to 255, then single-byte math is
fine. But what happens when you’re writing
the ultimate game program and need to show
scores into the hundreds of thousands of
points? Multi-byte math is the answer.

The simplest form of multi-byte math is
probably the two-byte address storage. The
6502 can address 65536 (or 2'6) bytes of
memory. Observant readers will note that this
number will easily fit into two eight-bit bytes.

You’ve probably encountered two-byte ad-
dresses in BASIC. For example, if you need
to know where your computer’s display list
is located, you can use the BASIC command:

DLIST=PEEK(S568) +PEEK(561) %256

How does this work? Normally, we think
of a byte as having bit values from one to 128
(left to right). In order to represent larger
numbers, we add a second high-order byte
to the first low-order byte. The high-order
byte contains bit values from 28 (256) to 21>
(32768). This relationship is shown below.

the high-order byte is multiplied by 256.
When the resulting numbers are added to-
gether, you have the value of the two-byte
number.

Here are some decimal numbers, along
with their two-byte binary equivalents.

DECIMAL HIGH BYTE LOW BYTE
128 006600600 16000000
255 600000006 11111111
256 66000601 606060600
257 6000060061 6000006061
511 60000601 11111111
512 600000106 60000000

65534 11111111 111111186
e 800000060 00000000

You don’t have to stop with two bytes, ei-
ther. For example, by using three bytes you
can store numbers up to 224 or 16,277,216.
Four bytes will give up to 232 or over four
billion, and so on.

Carrying On
How is multi-byte math handled in 6502
assembly language? It’s the same as single-
byte, but with one difference. In multi-byte
addition, the Carry flag is used to handle car-
ries and borrows.

31

AR e e
22 1l BB
f 8098 82wl 3
g4 25608 426

(=2 N o o
Oy

31
2abdidi 2.4

In order for BASIC to reconstruct the num-
ber, it must multiply each byte by the value
of its lowest-order bit. In the two-byte case,
the low-order byte is multiplied by one, and

You’ve used carries and borrows all your
life, but you probably don’t think about them.
Consider the addition of 13+9. When you add
349, you get 12. Since 12 is greater than the

a5

maximum digit value of 9, you place the units
portion (2) in the units portion of the result
and carry the 10 to the next digit. This adds
to the tens digit of 13, giving 20. When this
is added to the units portion calculated earli-
er, we get a result of 22.

In subtraction, if you’re subtracting 7 from
20, 7 is larger than 0, so a borrow from the
next digit is necessary. The 2 in the tens po-
sition becomes a 1, and the 7 is subtracted
from the borrowed 10, giving a result of 3 in
the units position. The final result is 13.

These same principles apply in multi-byte
math operations. The only difference is the
base we are operating in. As you recall from
a previous Boot Camp, the Carry flag is set
to 1 if the result of an addition operation is
greater than 255. In single-byte addition, we
always clear the Carry flag before the ADC
operation. In multi-byte adds, the Carry is
only cleared before the first addition opera-
tion. This prevents any unwanted carries from
giving incorrect results.

HIGH LOW
060000000 11111111 (255)
+ 66600000 feeevseeL 1)
600060001 06660008 (256)

The above shows how carries work in bi-
nary. When 1 is added to 255, the resulting
value of 256 is too large to fit in one byte.
The low-order byte wraps around to 0 and
the Carry flag is set. The high-order bytes
are then added, along with the Carry flag (1).
This gives the high-order result a value of 1.
Remember that the high-order byte of a two-
byte value is always multiplied by 256. This
gives us a final value of (1xX256)+0=256.

Below is the code necessary for this addi-
tion operation in 6502 assembly code.

61 *= $600

16 CLD ;BINARY MODE

20 LDA #255 JGET 255

k{:) CLC JFIRST ADD!

40 ADC Hi ;ADD 1 TO 255

56 5TA RESLO ;STORE LOMW RESULT

68 LDA #H6
786 ADC #6

JGET OP1 HIGH
;ADD OP2 HIGH

88 5TA RESHI ;SAVE HIGH RESULT
926 BRK ;ALL DONE!
46

0100 RESLO %=¥+1 ;LOW RESULT BYTE
6116 RESHI ¥=¥+1 ;HIGH RESULT BYTE
0126

.END JEND OF ASSEMBLY
Line 10 clears the decimal mode to make
sure we're working with binary numbers.
Line 20 loads 255, the low byte of the first
operand, into the accumulator.
Line 30 clears the Carry flag for the first
add operation. Always remember to clear the
Carry flag for the first add of a multi-byte

add operation.

Multi-byte
subtraction works
the same way as

the single-byte
version, except
that the first
subtract operation
is preceded by a
SEC (Set Carry)
instruction.

fore this operation, since we want the Carry
status to be taken into account for all adds
after the first one. In this case, with the Car-
ry set, our result is 0+0+1, or 1.

Line 80 stores the result of the high-byte
addition in the location labeled RESHI.

Line 90 stops the execution of the program
with the BRK instruction.

Lines 100 and 110 set up the RESLO and
RESHI storage areas. Note that these areas
are set up with the low byte first, followed
by the high byte. This is the standard 6502
storage format for two-byte values, and it’s
a good idea to get accustomed to it.

Multi-byte subtraction works the same way
as the single-byte version, except that the first
subtract operation is preceded by a SEC (Set
Carry) instruction. Below is an example of
the three-byte subtract operation
$4203F5—$2E45FF. When finished, the re-
sult will be placed in RESL (low order),
RESM (middle) and RESH (high order). Try
executing this code and observe that the
resulting number is $13BDF6.

81 *¥= 5600

16 CLD ;BINARY MODE

29 LDA HSFS JGET OP1 LOMW

30 SEC JFIRST SUBTRACT
40 SBC HSFF ;5UB OPZ LOMW

50 5TaA RESL ;SAVE LOW RESULT
60 LDa 1563 JGET OPL MIDDLE
70 SBC #545 ;5UB OP2 MIDDLE
80 5TA RESM ;SAVE MID RESULT
96 LDA #542 JGET OP1 HIGH
61686 SBC HS$2E ;SUB OP2 HIGH
01106 5TA RESH ;SAVE HIGH RESLLT
6126 BRK ;ALL DONE!

81308 RESL ¥*=¥+1
0140 RESM ¥=¥+1
8150 RESH ¥=¥+1

JLOW RESULT BYTE
JMID RESULT BYTE
JHIGH RESULT BYTE

Line 40 adds 1, the low byte of the second
operand, to the low byte of the first operand.
This operation will leave a zero in the ac-
cumulator, and the Carry flag will be set (1).

Line 50 stores the result of the low-byte add
in the location labeled RESLO.

Line 60 loads 0, the high byte of the first
operand, into the accumulator.

Line 70 adds 0, the high byte of the first
operand, to the high byte of the second oper-
and. Note that we did not clear the Carry be-

0166 .END JEND OF ASSEMBLY

What About the Decimal Mode?

Remember how the 6502 uses two differ-
ent methods of storing numbers? We have
been looking at multi-byte operations in the
binary mode. Multi-byte decimal-mode math
works exactly like binary, but the data is
stored in binary-coded decimal. All you have
to do to select BCD math is use the SED (Set
Decimal Mode) instruction at the start of your
program. You can return to binary math at
any time by using the CLD (Clear Decimal

SEPTEMBER A.NL.A.L.O.G. Computing

Mode) instruction.

Now that we’ve looked at the basics of
multi-byte math, let’s make a few generali-
zations about the process.

ie LDA BYTE1iA ;BYTE 1
i5 cLC ;ON FIRST ONLY!
28 ADC BYTELB

25 5TA RESULTL

Ry:] LDA BYTE2A ;BYTE 2
35 ADC BYTEZ2B

40 5TA RESULTZ

45 .

50 . JETC.
55 .

60 LbA BYTEnA ;BYTE n
65 ADC BYTEnNB

70 5TA RESULTn

The above shows the procedure for a multi-
byte add, where 7 is the number of bytes in
the value. Note that the CLC instruction is
used only for the first add of the group.

ie LDA BYTEiA ;BYTE1
15 SEC ;ON FIRST ONLY!
20 SBC BYTELB

25 5TA RESULT1

38 LDA BYTEZA ;BYTE 2
35 SBC BYTEZB

40 5TA RESULTZ

45 .

58 . JETC.
55 .

60 LDa BYTEnA ;BYTE n
65 SBC BYTENB

78 5TA RESULTn

The above shows the procedure for a multi-
byte subtract, where 7 is the number of bytes
in the value. The subtract procedure is simi-
lar to the add in that the SEC instruction is
only used for the first subtract.

What happens when you want to add or
subtract two values of different length, such
as adding a one-byte value to a three-byte val-
ue? The program below shows how this is
done.

16 *= 5680

15 CLD ;BINARY MODE

20 LDA SCORE JGET SCORE LOW
25 CcLC ;CLEAR 15T TIME
36 ADC POINTS ;ADD POINTS

35 5TA SCORE ;SAVE SCORE LOW
46 LDA SCORE+1 ;GET SCORE MID
45 ADC Ho ;ADD DUMMY ZERO
56 5TA SCORE+1 ;SAVE SCORE MID
55 LDA SCORE+2 ;GET S5CORE HIGH
60 ADC HO ;ADD DUMMY ZERO
65 5TA SCORE+2 ;SAVE SCORE HIGH

78 BRK
75 POINTS *=¥+i
868 SCORE ¥=¥+3
85 END

;ALL DONE!

jONE BYTE

JTHREE BYTES
JEND OF ASSEMBLY

SEPTEMBER A.NL.A.L.O.G. Computing

This program adds the one-byte value
POINTS to the three-byte value SCORE. In
this example, the three bytes of SCORE are
not individually labeled, but are referenced
as SCORE (low order), SCORE+1 (middle)
and SCORE+-2 (high order). The +1 and +2
added to the label SCORE simply indicate
that the assembler is to add | and 2 to the
address of SCORE for these operations. For
example, if SCORE is located at $4000,
SCORE+! is address $4001, and SCORE+2

The subtract
procedure is
similar to the add
in that the SEC
instruction is only
used for the
first subtract.

is $4002. If we had indicated SCORE—1, the
address used would be $3FFF.

By looking at this code, you will see that
the first ADC operation adds the low byte of
SCORE to POINTS, placing the result in
SCORE. This is a typical first add, with a
CLC operation before the addition.

The second and third adds are special in
this case. Since POINTS is a one-byte field
and SCORE is a three-byte field, we must
complete the last two additions as if POINTS

were three bytes long. As you can see from
the example, the second and third adds sim-
ply add zeros to the second and third bytes
of SCORE. This ensures that any carries out
of the low bytes of SCORE will be properly
taken care of. By adding zeros, the only fac-
tor affecting the result is the Carry flag.

The Challenge

No tutorial would be complete without a
challenge to the readers. For next month, try
to solve the following problems.

Problem 1: Subtract the two-byte field
WITHD (withdrawals) from the three-byte
field OLDBAL (old balance), placing the re-
sult in the three-byte field NEWBAL (new
balance). All fields should be stored in BCD
with standard data-storage formats. Start with
OLDBAL = 108673 and WITHD = 4285.
After the subtraction is complete, check
NEWBAL to be sure it contains 104388

Problem 2:Start with three ten-byte tables.
Label these tables TABLEl, TABLE2 and
TABLES3. Initialize TABLEI and TABLE2 as
follows:

TABLE1 .BYTE $106,518,540,586,594

.BYTE $48,5$BC,5C0,5F0,5F8
.BYTE $00,508,514,52F,59a
.BYTE $90,56B,%22,565,578

TABLEZ

Write the code necessary to subtract each
byte of TABLE2 from the corresponding byte
of TABLEI, placing the result in TABLE3.
That is, subtract the first byte of TABLE2
from the first byte of TABLEI and place it
in the first byte of TABLE3. Repeat this pro-
cess for each of the ten bytes in the tables.
When complete, TABLE3 should contain the
values:

$18,510,%2¢C,557,%00,5108,5B1,59E, 588,580

These problems should get you thinking
about multi-byte operations more deeply.
Whatever you do, don’t give up! Stick with
it and you’ll soon get the hang of it.

Next month we’ll start looking at the many
ways to manipulate our friend, the eight-bit
byte. &

a7

SNNNNNNNN

AN

Al NN AN NN NN R RN RRNANRRRRRRRRRRNRRY

N\

AMMlNNNRNNKRRNRRRRRTRRRRRRRRRRARY

® 64K COMPUTER

©1025 DOT MATRIX PRINTER (80 COL.)

e XG-1LIGHT GUN e BUG HUNT
e CX40 JOYSTICK e FLIGHT SIMULATOR
© 1020 COLOR PRINTER PLOTTER e MISSILE COMMAND

ALL ITEMS ARE NEW EXCEPT 1025 PRINTER

» 1200XL «» 1025 «» 1020 «
©1025 DOT MATRIX PRINTER (80 COL.)

e PAC-MAN CARTRIDGE
e BASIC WITH TUTOR SET

ALL ITEMS ARE RECONDITIONED EXCEPT 1020 PRINTER

e 64K COMPUTER
© 1020 PRINTER PLOTTER

» 1200XL «» 1020 «

e BASIC CARTRIDGE
e PAC-MAN CARTRIDGE

e 64K COMPUTER
© 1020 PRINTER PLOTTER

ALL ITEMS ARE NEW EXCEPT 1200XL COMPUTER

- SWL.

810 OF $30

* SPECIAL PRICE AVAILABLE
ONLY WHEN PURCHASED WITH
ABOVE SYSTEMS. ONE PER
SYSTEM ONLY!

e 810 DISK DRIVE (RECON)
® DOS 2.5 WMANUAL
e POWER SUPPLY AND CABLES

SOFTWARE
PAK#1

$29, 95

e SLIME

e CHICKEN

® BASIC

® GORF

® JOURNEY
TO THE
PLANETS

e TURMOIL

e PAC-MAN

° lNV. TO
PROGRAMING

e DONKEY
KONG

® BANDITS

e CLAIM
JUMPER

° DELUXE
INVADERS

SL SOFTWARE

AVAILABLE
CALL FOR LATEST

PRICES AND TITLES

ASTRA 20 01

DOUBLE DENSITY
DUAL DISK DRIVE
(2 DRIVES IN ONE CASE)

SCKEEN

$69.95

RECONDITIONED

XE GS COMPUTER SYSTEM S99

¢ 64K COMPUTER * 1020 COLOR PRINTER PLOTTER _W/PLOTTER
e XG-1 LIGHT GUN e FLIGHT SIMULATOR CARTRIDGE FACTORY NEW
° DETATCHABLE KEYBOARD ¢ BUGHUNT, MISSILE COMMAND

COLOR PRINTER
1020 o
Complete with:
¢ 2 Pen Sets
¢ 1 Roll Paper 4 98

e Power Supply & Cable Brand New

EXTRA PEN SETS "5 .89 (Black)

$3.98 (Color)
ATTN. DEALERS

e 569,

800 48K COMPUTER | 1025 PRINTER

* 80 Column

w/PAC-MAN $§9&95d ?.im:n;/’%‘a $79 98

Reconditioned

1200XL 64K COMPUTER ||8Bit 1/0 Cable . $4.98
$49] 850 Interface $79.98

Serial, parallel "/ =8~ =
Reconditioned

810 DRIVES $n129

v $69.98

5.25" DISKS
QTY. PRICE

DISKBRIVES [amopen
1050 S169. w=r "oy

DOS 2.5 w/manual .. $4.98

1010 Tape drive
Books

Inside Atari basic $2.95)
101 Tips and Tricks. $2.95)

Brand Ncw

800 BOARDS
e Mother e CPU YOUR CHOICE
« Power + ROM $8.98

CARTRIDGES FOR 800, XL, XE

BASIC CARTRIDGE $4.95 MATH ENCOUNTER $7.98 DEFENDER $14.95 BALLBLAZER
BASIC TUTOR (2 BOf $4.95 DANCE FANTASY $8.98 ROBOTRON $19.98 BLUE MAX
TURMOILcoms0000000 $4.95 LOGIC LEVELS $8.98 TENNIS $19.98 STAR RAIDER!
PAC-MAN (no box)$4.95 MEMORY MANOR .. . $8.98 FINAL LEGACY$19.98 DAVID'S MIDNIGHT
DONKEY KONG (no box) ..$4.95 LINKING LOGIC .. . $8.98 MARIO BROS.$19.98 ARCHON
GORF (400,800)$4.95 CHICKEN $8.98 DONKEY KONG JR. ...$19.98 KARATEKA

DEMON ATTACK (400,800)......$4.95 CLAIM JUMPER .. . $8.98 JUNGLE HUNT$19.98 CHOPLIFTER .
DELUXE INVADERS $4.95 DELTA DRAWING ... MOON PATROL .. 7. $819,98' HGATO .., vv55056
JOURNEY TO THE PLANETS...$4.95 HEY DIDDLE DIDDLE BATTLEZONE$19.98 ACE OF ACES ...

STAR RAIDERScccceeeunne. $4.95 SLIME (400/800)
MISSLE COMMAND ..$4.95 ALPHABET ZOO ..
ASTEROIDS
GALAXIAN ...
DEFENDER .
E.T.

FI\CEMAKLR

FOOD FIGHT .. 319,98 LODE RUNNER....cc..co0civeasieenssinsess
..... X BARNYARD BLASTER (gun req)

DARK CHAMBERS

ONE ON ONE BASKETBALL ;98 AIRBALL \.......0ui

DESERT FALCON

.$14.95 NECROMANCER

.$14.95 RESCUE ON FRACTALI

CROSSBOW (gun req.)
..$19.98 CRIME BUSTERS (gun req.) .

DAVID'S MIDNIGHT MAGIC

COMMBAT 5.5 oo $4:98' TASER HAWK:. 3l i ohesinsd $4.98 STRANGE ODYSSEYcooooinnnnnes $4.98

; PREPPIE I ROCKET REPAIRMAN.. .g4.98 VISICALC $24.98
BANDITS (48K 400,800) $4. PREPPIE i ADVENTURELAND -g4.08 POOKKEEPER W/ num. keypad... $29.98
2 ONB00) sesti 20 L IPREBPIE ATz (s b .
CLAIM JUMPER 4 i p S i PIRATE ADVENTURE . i OTHER TITLES
SYNTREND $4.98 SECRET MISSION AVAILABILE
CROSSCHECK . . $4.08 DISK 50 (50 GAMES) - VOODOO CASTLE$4.98 PLEASE CALL
MISSION ASTEROID. ... $4.98 FREAKY FACTORY.............. : TECHNICOLOR DREAM $4.98 FOR DETAILS

Light Gun

For use with pistol
games on 8-Bit systems

$34.98

Light Gun Package

e Light Gun $
e Crime Busters
e Crossbow

e Barnyard Blaster

Special buys on 8-BIT Hardware!
SAN JOSE COMPUTER

s HsHE Aralr AU TR W SR TR0 RE

Sunrise Plaza 640 Blossom Hill Rd. SanJose, CA 95123
(408) 224-8575 BBS (408) 224-9052

IN THE UNLIKELY
EVENT THAT THE
ITEM(S) YOU
RECEIVE ARE
DEFECTIVE,
PLEASE CONTACT
US FOR AN RA#.

SHIPPING: ADD $5.00 TO ALL ORDERS. AIR AND INTERNATIONAL SHIPPING EXTRA. THATS IT.
WARRANTY: 90 DAY WARRANTY ON ALL ITEMS. TAX: CALIFORNIA RESIDENTS ADD 7% SALES TAX.
PREPAYMENT: USE VISA, MASTERCARD, MONEY ORDER, CASHIER'S CHECK OR PERSONAL CHECK.

PERSONAL CHECK MUST CLEAR PRIOR TO SHIPMENT. C.0.D.: CASH, CASHIER'S CHECK OR M.O. ONLY.
Prices subject to change without notice. Brand and/or product names are trademarks or registered trademarks of their respective holders.
Ad produced on an ATARI ST using Publishing Partner and printed on an ATARI SLM804 PostScript compatible laser printer.

CIRCLE #102 ON READER SERVICE CARD.

3257 KIFER ROAD STORE HOURS
B &C iR SANTA CLARA, CA 95051 TUE - FRI 10am - 6pm
- SAT - 10am - 5
ComputerVisions W b e

(408) 749-9389 FAX CLOSED SUN - MON

SO0/ X 1L/ XF SOFrT WARIZ SO0/ X I./ X¥FEF SOFT WARI
ALL TITLES ON DISK ALL TITLES ON CARTRIDGE
ENTERTAINMENT PROGRAMMING EDUCATION ENTERTAINMENT SLIME (400/800). .. 9.95
12 ADAMS ADVENTURES .. 14.95 ACTIONI S 71.95 ATARI LIGHT MODULE 3D TIC-TAC-TOE i+ gieio 9.95 SPRINGER 7.95
ALTANTS & . o SRR o 26.95 ACTION! 26.95 (REQ. STARTER SET) . 9.95 AIRBALL (XL/XE) 24.95 SPACE INVADERS 14.95
ALT. REALITY CITY 26.95 BASIC XL 53,95 BUZZWORDocooes 095 ALIEN AMBUSH "........ 9.95 STAR RAIDERS 5.00
ALT:REAL DUNGEON 26.95 BASIC XL TOOLKIT 26.95 GRANDMA'S HOUSE (-10) 9.95 ACE OF ACES (XL/)\h) . 24.95 STAR RAIDERS II 19.95
ASSULT FORCE 19.95 BASIC XE 71.95 HEY DIDDLE (AGE 3-10). 9.95 BRCHON: R e iiten o Vae ot 19.95 SUBMARINEE COMMANDER — 14.95
AUTO| DUEBL 05 55 obs sioteteri's 35.95 DIAMOND (GEM O/S) 69.95 LINKWORD: SPANISH 22.50 ASTEROIDS 15.95 SUMMER GAMES (XL/XE). 24.95
BEYOND CASTLE WOLF.... 14.95 DOS 2.5 7.95 LINKWORD: GERMAN 2.50 ASTRO CHASE 14.95 SUPER PREAKOUT 9.95
BISMARK, &c .t o oo 26:95 DOS XE..... 8% H 10.00 LINKWORD: FRENCH B .50 ATART TENNIS o 9.95 SUPER COBRA 14.95
ROP & WRESTLE 26.95 DISK I/0 26.95 LINKWORD: ITALIAN 22.50 ATLANTIST 840 Hoaul. 5hos 14.95 THUNDERFOX 19.95
BORDINO:1812 22.50 KYAN PASCAL i 3e 162:95 SMASTER EYPEN 1 nnh: 50 14.95 BALL BLAZER 19.95 TURMOIL .. 9.95
BOULDERDASH CONSTR SET 17.95 LIGHTSPEED C 35.95 STATES AND CAPITALS 9.95 BARNYARD BLASTER 24.95* WIZARD OF ‘OR 5.00
BRUCE LEE .5 & ioats's saress 17.95 LOGO 29.95 TOUCH TYPING 9.95 BATTLEZONE: . o ¥loiets o s 19.95
CASTLE WOLFENSTEIN.... 14.95 MAC/65 71.95 QUIZ MASTER CONSTR.... 8.95 B.C. QUEST FOR TIRES 19.95 PRODUCTIVITY
CHAMP. LODE RUNNER ... 26.95 MAC/65 TOOLKIT 26.95 QUIZ MSTR. USA CONSTR. 8.95 BLUEIMAXT Sl s ook o 19.95 ATARIWRITER 29.95
CONFLICT IN VIET NAM . 17.95 PILOT 19.95 AMERICAN EDUCATION: BOULDERS & BOMBS 14.95 FUN WITH ART 14.95
COSMIC TUNNELS 9.95 SPARTA DOS X 71.95 A+ BIOLOGY Gl0+ 17.95 CAVERNS OF MARS 14,95, MIGROEILER! f.isis ¢ o'oiueiors 22.50
D-BUG ... : o 7.95 A+ GERMAN +5:17.95 CENTIPEDE 14.95
DALLAS ousu.'r Eoe 7.95 A+ GRAMMER G4+ 17.95 CHICKEN far : 9.95
DELUXE INVADERS 7.95 A+ LERN TO READ Cl-4 35.95 CHOPLIFTER & s o eiefuisios 14.95
F-15 STRIKE EAGLE 31.50 A+ READING COMP G1-8 35.95 CLAIM JUMPER (400/800) 9.95
FIGHT NIGHT 17.95 A+ SCIENCE G3-4 17.95 CLOUDBURST 9.95
GAUNTLET (64K) A% 31.50 A+ SCIENCE G5-6 17.95 COBRA 14.95
DEFPER DUNGEONS. 22.50 A+ SCIENCE G7-8 17.95 CRIME BUSTER 24.95%
GREAT AMER.ROAD RACE . 22.50 A+ SPANISH 17.95 CROSSPOW : 24.95%
GUNSLINGER ...vvceennn A+ SPELLING G2-8 ... 35.95 CROSSFIRE 9.95
HARD HAT MAC A+ U.S. GEOG. GB+ .. 17.95 CRYSTAL LAb'[‘LEH(XL/Xb) 19.95
JAWBREAKER PRODUCTIVITY At U.S. GOV. G10+ .. 17.95 DARK CHIAMBERS (XL/XE). 24.95 EDUCATION
KARATEKA ANIMATION STATION 89.95 A+ U.S. HIST. G5+ .. 17.95 DAVIDS MIDNIGHT MAGIC 19.95
KENNEDY APPROACH ATARIWRITER 29.95 A+ VOCABULARY G4+... 17.95 DEFENDER 1. ey vistaseieio’s 14.95 MATH ENCOUNTERS 9.95
KNICKERBOCKERS ATARIWRITER (CART ONL\)l‘).‘)b A+ WORLD GEOG. G8+ . 17.95 DELUXE INVADERS 7.95
KORONIS RIFT ... E ATARIWRITER+. 4.95 A+ WORLD HIST. G8+ . 17.95 DESERT FALCON ... 19.95 FISHER PRICE (PRE SCHOOL):
TSI RV B e Ty ens.sie w8 Tehose X ATARI BOOKKEEPER 24.95 (G = GRADE LEVEL) DIGEDUG {4 Sie s e enonojsbiis 19.95 DANCE FANTASY 8.95
L.A. SWAT/PANTHER 8.95 ATARI MUSIC IT 14.95 CBS (AGE 3-6): DONKEY KONG 5.00 LINKING LOGIC 8.95
LEADERBOARD . 13.50 AWARDWARE (1050) S 1831250 ASTROGROVER 8.95 DONKEY KONG JR. 19.95 LoGIC LEVELS 8.95
LODE RUNNER 13.50 BANK STREET WRITER.... 14.95 BIG BIRD SPEC DELIVE 8.95 EASTERN FRONT (1941). 19.95 MEMORY MANOR 8.95
MICROLEAGUE BASEBALL.. 35.95 BLAZING PADDLES 31.50 ERNIE’S MAGIC SHAPE. 8.95 E.T. PHONE HOME 9.95
NAPOLEON AT WATERLOO . 22.50 COMPUTE YOUR ROOTS ... 35.95 DAVIDSON: FIGHT NIGHT 19.95 SPINNAKER (AGE 3-10):
MONTEZUMA’S REVENGE... 14.95 DATAMANAGER 8.95 MATII BLASTERS C1-6 . 44.95 FINAL LEGACY 19.95 ALF IN COLOR CAVES . 9.95
MOUSEQUEST0vvv.n 17.95 ELECTRONIC CHECKBOOK . 8.95 SPELL IT! AGE 10+ .. 44.95 FOOD FIGHT (XL/XE)... 19.95 ALPHABET 200 9.95
MOON SHUTTLE 7.95 FAMILY FINANCE 5.95 DESIGHWARE: FOOTBALL 14.95 DELTA DRAWING 9.95
NATO COMMANDER . .. 17.95 GUITAR WIZARD -95 MATHMAZE (6-11) 26.95 FROGGER 14.95 FACEMAKER 9.95
NIBBLERZ. 5. bl s 12.95 HOME ACCOUNTANT 19.95 MISSION ALGEBRA (13+)13.50 GALAXIAN .. 9.95 KIDS ON KEYS 9.95
NINTA s soims o sebe i 8.95 HOME BASE 12.95 SPELLICOPTER (6-11). 26.95 GRTO L 7ucinis ssisis ot 24.95 KINDERCOMP 9.95
OGRE 26.95 HOME FILING MANAGER. . 6.95 TINK TONK (AGE 4-6): GORF (400/800) 3 5.00 STORY MACHINE (XL/XE) 9.95
OIL’S WELL . 9.95 HOMEPAK S 28,95 ABCLSH TR IR A L At 8.95 GYRUSSES e wceiiion i 14.95 (AGE 7 - ADULT):
O'RTLEY’'S MINE 9.95 INVENTORY MASTER 80.95 COUNT AND ADD 8.95 HARDBATLE % fsata v 19.95 ADV.CREATOR (400/800).9.95
PTRATES OF BARB. COAST 22.50 LETTER WIZARD vow 29495 SMART THINKER ... 8.95 INTO EAGLES NEqT(XL/XE)w.% FRACTION FEVER 9.95
PITFALL/DEMON ATTACK . 13.50 MONEY MANAGER 8.95 SPELLING 4 8.95 JOURNEY TO PLANETS .. 9.95 (* = REQ. LIGNT GUN)
PREPPIE I & II 9.95 MUSIC CONSTRUCTION SET 13.50 SUBTRACTION 1 8L95 JOUST v i R 19.95
RESCUE ON FRACTALAS... 13.50 NEWSROOM (1050 - G4K). 44.95 THINKING SKILLS 8.95 JUNGLE HUNT 19.95
ROME & THE BARBARIANS 17.95 NEWS STATION 26.95 ALL 6 TINK TONKS.. 39.95 | KABOOMI 405! Ak
SILENT SERVICE 31.50 NEWS STA. COMPANION. . 26.95 UNICORH: KARATEKA . .. 3 .. 19.95 3 >
SOLO FLIGHT .. 17.95 PAGE DESIGNER 6.95 10 LITTLE ROBOTS KRAZY ANTICS 714,95 SPECIAL VALUE

SPEEDKING “ 4895 PAINT o) e fvenline o5 12495 (PRE-SCHOOL) 26.95 LODE RUNNER 24.95 PAC-MAN AND QIX
SPITFIRE 40 .. 31.50 PRINT POWER (1050).... 13.50 FUN BUNCH (6-ADULT) 26.95 MARIO BROS . Ll 19,095 ;
STARFLEET I 44.95 PRINTKIT (1050) 13.50 RACECAR RITHMETIC MEGAMANTA 9.95 CARTRID,GES :
STAR RATDERS TT 2. 17.95 PRINTSHOP 34.95 (RGENGEY sl o 26.95 | MILLIPEDE S-S 95 IN SPECIAL STORAGE
SPY VS. SPY III .. 17.95 P.S. COMPANION (G4K) . 24.95 WEEKLY READER (PRE-SCHOOL): MISSTLE COMMAND 5.00 CASL
STOCKMARKET .. 22.50 P.S.GRAPHICS LIBRARY 1 17.95 STICKY BEAR SHAPES . 26.95 MOON PATROIL, 19.95
STRIP POKER .. 26.95 P.S.GRAPHICS LIBRARY 2 17.95 STICKY BEAR NUMBERS. 26.95 MR. COOL 9.95 ALL FOR ONLY
SUMMER GAMES 17.95 P.S.GRAPHICS LIBRARY 3 17.95 STICKY BEAR ABC'S .. 26.96 | MS. PAC MAN 19.95 $9 95
TAX DODGE .. 9.95 PROOF READER 17.95 STICKY BEAR OPPOSITE 26.95 | NECROMANCER .. 19.95 .
TEMPLE OF APSHAIL .. 9.95 PUBLISHING PRO 35.95 SB BASKET BOUNCE ... 26.95 | ONE ON ONE (XL/XE)... 19.95 e e ke o o o o o e ok ke e
THE HULK 5.35 RUBBER STAMP 26.95 STICKY BEAR BOP 26.95 | PAC MAN 5.00
TOMAHAWK (64K) 26.95 SYNTREND St 41505 : = At 19.95 ~ g
TRAILBLAZER 26.95 SUPER MAILER 35.95 g?g EEII{L:)IIER """ jé’g;’ PLATTERMANIA 9.95 SPECI:A‘L PRICE
ULTIMA II 35.95 THE LOTTO PROGRAM 17.95 0 0 ioie’s o o g g | POLE POSTTION . 19.95 ATARI
ULTTMA TTT 35.95 TIMEWISEcvovonn.. 6.95 BOBEYE :%ivrcs s v'soan + 510 14.95 XE GAME MACIING
ULTIMA IV e 0 53.95 TURBOWORD/B80 COLUMN WE CARRY A FULL| QBERT ..oovivvennnn. 14.95 = 4
UNLVERSE J . 44.95 REQUIRES XEP8O..... 44.95 “ (00, s Lo 14.95 NOW ONLY
WINTER CIALLENGE 13.50 vipeo TrrLesiop (6ak). 26.95 LINE OF SOFTWARE] rescoe on rractatas . 19.95
ZAXXON (400/800) 13.50 © GRAPHICS COMPANION. 17.95 [FOR THLE 520/1040 AND | RETURN OF THE JEDT .. 14.95 $99.95

SEN st VIRTUOSO as's stiasia s aists 29.95 2 e e ROBOTRON : 2084 . 19.95 LIMITED TIME ONLY

Z=5 VISTCRLC! s B i s 24,95 MEGA ST COMPUTERS. | s¢y wrroer 14.95

RECONDITIONED ATARI MERCITANDISIE 30 DAY WARRANTY

800 (48K) SPACE AGE 1030 MODEM 1020 COLOR ATARI DISKETTES
COMPUTER JOYSTICK WITH EXPRESS! PRINTER/PLOTTER BOOKKEEPER AS LOW As $zo ((?)L
$79.95 5.00. $24.95 $14.95 - NO BOX 10 FOR $4.0
..................................... $ o $19'9bs 100 FOR $29.95
400 (16K) ATARI 1010 PROGRAM AneyEin oK) ATARI 1000 FOR $200
COMPUTER TRACKBALL RECORDER 40;COLUMNS WIDE NUMERIC MOST ARFE UNNOTCHED
$29.95 $9.95 $29.95 INC. PENS, PAPER, ETC. KEYPAD $7.95 WITH OLD SOFTWARE

SHIPPING INFORMATION - Prices do not include shipping and handling. Add $5.00 for small items ($8.00 Min, for Canada). Add $8.00 for disk drive. Add $2.75 for C.0.D.
Calif. res. include 7% sales tax. Mastercard and Visa accepted if your telephone is listed in your local phone directory. Orders may be pre-paid with money order. cashier
check. or personal check. Personal checks are held for three weeks before order is processed. C.0.D orders are shipped via UPS and must be paid with cash, cashier check or
money order. International and APO orders must be pre-paid with cashier check or money order. $20.00 minimum on all orders. All sales are final - no refunds - prices are
subject to chﬂllgc

l?hone orders accepted TUESDAY THROUGH FRIDAY from 10:00 am to 6:00 pm PST.
We carry a full line of ATARI products - large public domain library - write or call for free catalogue

PRICES SUBJECT TO CHANGE WITHOUT NOTICE - ALL SALES ARE FINAL
CIRCLE #103 ON READER SERVICE CARD.

Reviewed by Matthew J.W. Ratcliff

Crossbow is a swashbuckling graphics ad-
venture that is played with the Atari light gun.
Like Robin Hood, you lead a band of merry
friends on a quest to recover treasures stolen
by the Evil Master. As you and your friends
trek across eight detailed scenes, the Evil
Master sends hoards of creatures to dispatch
you. With the aid of your trusty crossbow
(light gun) you can vanquish the foes, pick
up new friends (extra lives) and discover the
path to the final battle within the castle hall.

The original Crossbow is a coin-op video
game from Exidy, copyrighted 1983. The
Atari version was completed and copyright-
ed in 1988 by Atari Corp., developed by
Sculptured Software Inc. Since I have never
played the coin-op original, I cannot give you
a direct comparison.

The graphics are quite good, although I
have seen better. The screens remind me of
Koala pictures, with little or no special ef-
fects for added shading, details or depth. The
screens seem ‘‘flat,” but they are plenty
detailed and the animation of the characters
is smooth and predictable. I like the sound
effects of Crossbow, especially the digitized
one of the scream when one of your friends
is decimated by the enemy.

The game begins with a parchment map
display. The eight areas to be traveled are dis-
played as graphic images. Your adventurer is
displayed to the left center of the screen, and
at the bottom are red and green (and some-
times blue) flashing boxes. You must shoot
one to select your path. The color chosen de-
termines the path you’ll take to the next ad-
venture scene. You may waste some time
traveling back and forth between the same
areas before you learn the proper color se-
quence to travel through all seven treasure and
adventure screens and on to the eighth and
final battle screen in the castle hall. When
the path is chosen, a dashed line is traced out
from your current location to your next fight.
SERPTEMBER A.NL.A.L.O.G. Computing

You may end up at the cactus for a chal-
lenge in the desert. The display is open
desert, with cacti scattered all about and
mountains in the distance. Your three friends
will begin walking across the screen, left to
right, spaced about %- to 3%-screen apart. As
they walk, they are beset upon by vultures,
ants and scorpions. You must shoot them with
the trusty crossbow before a friend gets
killed. If all your friends die, the game ends.
Rabbits, snakes and the Master’s evil eye may
be shot for extra points. The first traveler to
make it across the display usually picks up
a treasure for more points. Help all your
friends across the desert in order to advance
to the next stage of the adventure. The first
time each screen is completed (except for Vil-
lage and Castle scenes) an extra friend joins
you, providing another “life” to help you
through the game.

A trek through the caverns requires that
you shoot hanging stalactites to plug holes in
your friends’ path. Bats, a ghost and falling
stalactites must also be eliminated. This is
one of the most challenging sites to complete.

In the Volcano phase, lava rocks must be
burst above your friends’ heads. A large
standing stone must be shot to make a bridge
across a lava river. With only one basic ob-
stacle (the lava rocks) to worry about, this is
an easy level to complete with a steady hand
and concentration.

The Jungle is nasty. There are two small
pits your friends can safely walk across, so
long as you don’t allow the man-eating plants
to grow up from them. You cannot concen-
trate too much on those nasty flowers though,
because there are banana-tossing monkeys
and ornery toucans flying from the trees
above. With practice—and a careful eye on
the plants—this screen can be mastered.

The Village, haunted by many evils, is a
witches’ haven. Ghosts fly out to bash your
friends. Warlocks appear on the rooftops and
rain fireballs on you. Lightening bolts are a

Atari Corp.

1196 Borregas Avenue
Sunnyvale, CA 94086
(408) 745-2000

XL/XE cartridge: $34.95

constant threat. Gangsters shoot from the
windows of the houses, evil faces pop up
everywhere. You need to shoot out the street
lights so darkness will provide some cover
for your friends. You’ll be lucky to get all
your friends through this phase.

Down at the River, you simply have to es-
cort your friends across a bridge while avoid-
ing the pterodactyls and bouncing boulders.
The myriad other creatures on this screen,
such as trolls and alligators, can be blasted
for bonus points. This phase is not as easy
as it might seem.

At the Drawbridge, the entrance to the cas-
tle, you must first shoot the ropes holding the
door up. It will lower across the moat, allow-
ing you to enter. Watch for deadly archers
along the ramparts of the castle.

Once you have conquered all seven prelimi-
nary screens, you have to choose the correct
path to finally enter the Castle Hall and shoot
the Evil Master while his eyes are glowing
red. If you complete the game, it starts over
again for a repeat of the challenge.

Gun accuracy is imperfect but livable. If
the light gun is held near the display, you find
that it shoots slightly to the left, just as in
Atari’s Bug Hunt. It isn’t a particular prob-
lem with Crossbow, however, since you have
unlimited shots with no penalty. That, cou-
pled with the fact your crossbow is a rapid-
fire unit (hold down the trigger for continu-
ous firing), makes the game playable despite
the minor inaccuracy.

Crossbow is a good light-gun game. The
graphics are a bit blocky, but well done over:
all. Playability is good and the sound effects
are entertaining. This game will definitely
make a nice addition to anyone’s light-gun
game collection.

Matthew Ratcliff, a frequent contributor
to ANALOG Computing, lives in St.
Louis, Missouri, with his wife and two

children. &

51

DPask

mooomomMmmo
N=CDXOX VY
ROMN"TOT X
A TMDD I T -

o 5 v

ODYEXOLDOO
°E

Spisons

Di

I remember the first time I saw a GEM-

type operating system on the Apple Macin-
tosh,with its menu, icons, and point-and-click
replacement for typed commands. I was sure
at that time I was seeing the future, sure that
this was what was going to bring computing
to the masses. I was also convinced that this
meant the end of the 8-bit computer line.
Then in May 1986 I saw a magazine display-
ing the GEOS system from Berkeley Soft-
works. At last this GEM-type desktop
operating system was available on a 6502
8-bit machine, even though it was on the
Commodore 64. I knew it was only a matter
of time before it would be available on the
Atari 8-bits. Little did I know that it would
be two and a half years.

There are, as I write this, two new GEM-
type operating systems available for the 8-bit
Atari line of computers: Diamond OS from
Reeve Software, distributed by USA Media,
which we’ll be examining here, and GOE
from Total Control Systems.

An introduction

First, in case you are new to computing or
you’ve been living in a cave for the last few
years, the GEM-type operating system con-
sists of an easy-to-use and-learn operating
environment with icons, windows, drop-
down menus, dialog boxes and a pointer
(mouse). As I stated, these have been avail-
able for some time on other, more expensive
52

systems like the Atari ST, Apple Macintosh,
Commodore Amiga, and even the IBM XT
computers.

These new graphic-oriented operating sys-
tems are, unlike many of the improvements
in the 8-bit world, not hardware enhance-
ments; in other words, you aren’t required to
open your computer and remove chips or cut
tracings on the circuit boards. They use the
bank-select cartridges made popular by ICD
(except the disk version of GOS); therefore,
they should work on all 8-bit Atari com-
puters. Before we look at the operating sys-
tem, let’s first get acquainted with a few of
the terms used.

Desktop: The screen display.

Icons: Graphic representations, images or
objects used to show a file or utility on the
screen or monitor.

Menu: As the name implies, a display list-
ing choices or functions from which the user
may select.

Pointer: Used by the operator to make
menu selections. This can be any input de-
vice, such as a mouse, joystick, trakball, light
pen, or even a keyboard used to move the cur-
sor around on the display screen.

Window: A rectangular section or area of
a display screen that is dedicated to a specif-
ic activity or application. Windows allow the
screen to display more information than one
screen allows. Think of them as a screen
within a screen.

Dialog box: An on-screen form that prompts

Reeve Software

29W 150 Old Farm Lane
Warrenville, IL 60555
(312) 393-2317

sk version: $29.95

Cartridge version: $79.95

Reviewed by James F. Patterson

the user for information and allows the input
of that information.

An overview

The Diamond Graphics Operating System
is a great implementation of the GEM-type
operating system on the Atari 8-bit com-
puters. The desktop is available in two for-
mats: The disk version, which requires 64K
of RAM, supports DOS 2.5. The piggyback
super cartridge version, which requires only
48K of RAM, also includes the Diamond
Programmer’s Kit. The cartridge, according
to the manufacturer, supports most Atari
DOS systems, including the new Atari DOS
XE and Sparta DOS X. Like the ST, GOS
performs the following functions:

1.) Time/Date DOS support.

2.) Folder support, including deleting a
folder file.

3.) Exit to Basic; just type DOS to return
to the desktop.

4.) Added icons, like a stop sign after com-
mands with “Are you sure?” in a dialog box
before manipulating files.

5.) Multiple-window handling; the title bar
of the current window is highlighted.

6.) Window sliders; these allow the user to
choose the size of the on-screen window
display.

7.) Compatibility with all DOS systems
(cartridge version only).

8.) Print or show disk files from the

SEPTEMBER A.NL.A.L.O.G. Computing

desktop.

9.) Multiple-file deleting and copying
(Tagging).

10.) Direct icon-to-icon disk copying; just
click on one icon and drag to the other.

11.) Direct window-to-window file copying
and deleting.

12.) Auto saving of window positions us-
ing one or two windows.

13.) Window-full reversing.

14.) Command line files.

15.) Memory expansion support up to 16
megabytes.

As can be seen from the above list, almost
every need has been foreseen and met by the
system developers. I, on the other hand, can-
not verify all the features mentioned, as I was
furnished with the disk version of GOS and
don’t own an extended-memory machine. I
can tell you, however, that the version I
worked with seemed to do all that the authors
promised and was quite impressive.

The Diamond GOS supports all available
cursor-movement devices, with selection
made at the graphics configuration screen.
To choose the preferred device, the user sim-
ply clicks on the device icon and the ap-
propriate driver is installed. The available
drivers include joystick, ST mouse, Touch
Tablet and trakball. This procedure is repeat-
ed for the desired memory-expansion driver
for those 8-bit users with memory expansions
of 256K or more.

Once the desktop is set up for your system
(i.e. the number of drives and the system
icons are placed as you want them on the
screen, and you’ve set your preference for
Text or Icons for file display when the win-
dows are open), you then save your desktop
to disk. Once done, the desktop comes up this
way every time you boot your system. This
feature gives you the option of different
setups for different system configurations.

The desktop

Upon booting up the system, you are greet-
ed with the GOS desktop, named for its
similarity to the office desktop. You have file
cabinets with drawers that open and close as
you open and close files (in this case, the
directory for the disks), the desktop work sur-
face area, and a trash can for garbage dis-
posal. The visual elements of the desktop are
the menu bar along the top of the screen, the

SEPTEMBER A.N.A.L.O.G. Computing

icons for the disk drives as set up (described
earlier) by the user, the trash can and the cur-
sor or mouse pointer. Moving or dragging the
mouse pointer across the menu bar shows you
the options available by highlighting each
heading (Desk, File, Disk and Option), each
with its own drop-down menu containing
more options.

Disk icons are represented by the picture
of a file cabinet, the drawer of which opens
when you choose one of the disk icons. When
you activate a disk icon, a window opens dis-
playing the directory of that disk. At this
point you move the mouse pointer to the
desired file and double-click (press the in-
put device’s trigger twice quickly). The file
is then opened.

It should be stated here that the mouse
pointer may also be moved around the desk-
top with no input device by using the four ar-
row keys and substituting the space bar for
the fire button on a joystick device or the but-
ton on the mouse.

The specifics

The mouse is used to make most of the
choices with GOS. There are two ways to
make a selection. The first is to move the
mouse pointer (cursor) to a menu on the
screen. You can then double-click to both
choose that option and open it. Second, you
can move to the menu and single-click; that
is, hit the button once then move across the
menu bar to FILE, where a drop-down menu
appears. You then single-click on the OPEN
command. The method is entirely up to you.

To copy a disk with GOS, you move the
mouse pointer across the menu bar at the top
of the desktop to the DISK option, which
causes a drop-down menu with the choices
of DUPLICATE and FORMAT to appear.
After choosing DUPLICATE, a dialog box
appears that asks you for the source and des-
tination disks, and whether or not the desti-
nation disk needs to be formatted. You then
either proceed by clicking on OK to continue
or CANCEL to go back to the desktop.

To copy a file, you double-click on the
desired source disk—or use the single-click
method as described above—to display the
files on that disk, then move the mouse point-
er to the desired file, click, and drag it over
to the destination disk icon. It should be not-
ed here that the disk drives are no longer re-

ferred to as DI: and D2:, etc. GOS uses the
method used on most major systems; that is
DI: is now A:, and D2: is B:.

The re-sizing of a window can be done in
two ways. You may fill the entire screen with
the window by clicking the mouse pointer on
the button found in the window’s upper right-
hand corner. To change the window’s size to
something other than full screen, you can use
the mouse pointer to drag on the button found
in the window’s lower right-hand corner. You
can drag the window’s corner in any direc-
tion, making the window wider, narrower,
taller or shorter. When re-sizing a window,
you will see a flashing outline of the window
as you drag it. This outline shows the size
that the window will be when you release the
mouse button. Sizing of windows is impor-
tant when you want to copy a file from one
drive to another.

The grid at the top of the window is where
you click and drag to reposition the entire
window in the desktop. The button in the up-
per right-hand corner of the window is the
same as the CLOSE option under the FILE
selection of the desktop menu bar. This closes
the window and puts you back in the desktop.

The trash can icon is used to delete files
when they are no longer needed. To do this,
you simply click on a file and drag it to the
trash icon. If, at this point, you have the
CONFIRM option active under the OP-
TIONS menu (which, in my opinion, should
always be active), a DIALOG box appears
and asks “ARE YOU SURE?” You then
choose either OK to delete the file, or CAN-
CEL to return to the desktop. If, on the oth-
er hand, you make an accidental choice, you
simply move out of the window or away from
the icon and single-click. The choice is can-
celled.

Conclusion

I consider Diamond GOS a significant de-
velopment for the 8-bit line of Atari com-
puters. No 8-bit Atari user should be without
it.

Jim Patterson is a former product support
representative for Texas Instruments. He
holds a degree in electromechanical en-
gineering and is currently working toward a
degree in computer science. He has been an
avid Atari user since 1981. a

53

he new XF551 drive is probably the

best thing that’s happened to Atari’s

8-bit computer line since the birth of

the 130XE. But it also follows what

seems to be normal Atari policy in
that it comes with an ancient DOS and no
documentation of the new features (true dou-
ble density, double-sided, high-speed) what-
soever. Which in effect means that if you
don’t want (or can’t get) the new DOS XE,
you’re stuck with what amounts to a slightly
faster 1050 in a new housing.

So when I got my new XF551 drive, the
first thing I did was take a deep dive into the
file-management system to see if I couldn’t
somehow use, in my own programs, some of
the new features. The following is the result
of my explorations.

I must warn you, though, that this is fairly
complicated stuff and best suited for the hard-
core Atari addict. If you want to know more
about using the SIO commands, I can’t do any
better than to direct you to previous
ANALOGs and the Master Memory Map.

Conventions

Since all the XF551 commands and off-
sets mentioned below are new, there are no
fixed names for them yet. I was therefore
forced to make up my own. When I use a

54

by Jerry van Dijk

new name, I will explain its meaning and
put “NEW” after its value or offset. In
naming them, I tried to stay as close to the
standard Atari naming conventions as
possible.

The SIO interface

The SIO (Serial Input Output) system is
the last link between the operating system
and the XF551. Communicating with the

write a sector, etc. More information about
SIO and the DCB can be found in the Mas-
ter Memory Map.

The new features

To control the new features, the XF551
adds two new commands to the list of SIO
commands. The new commands are
GETREC (GET drive set-up RECord,
$4E, NEW) and PUTREC (PUT drive set-

Since all the XF551 commands and offsets
mentioned are new, there are no fixed
names for them yet.

drive will therefore, in practice, mean set-
ting up a Device Control Block (DCB) with
the proper information and calling the SIO
system through its vector (SIOV, $E459).
This way, you can format a disk, read or

up RECord, $4F, NEW). These commands
will read or write a DRVREC (DRiVe
RECord, NEW). The 12 bytes that make
up a DRVREC are the real secret behind
the new features of the XF551.

SEPTEMBER A.NL.A.L.O.G. Computing

The DRVREC format is (all names:
NEW): See Figure 1

NOTE: DRVREC uses a high-byte first
format

Explanations

DRVTRC: This byte specifies the number
of tracks. Normal value is $28, which means
the disk contains 40 tracks.

DRVSTP: Defines that the step rate is the
time the drive needs to access a new sector.
In other words, how long it takes to execute
a command. Normal value is $0000. I've put
in the question marks to indicate that I have
no information on other possible values.

DRVSEC: The number of sectors on a
track. Values here are $12 for an 18-sector
single-density disk or $1A for a 26-sector
dual-density disk.

DRVSID: The number of sides used. The

of tracks
step rate
sectors/track

DRVTRC
DRVSTP
DRVSEC

of sides

DRVSID

DRVDEN density

DRVBYT

bytes/sector

drive select
serial rate
misc

DRVSEL
DRVSER
DRVMSC

$00 stands for single-sided operation, $01 for
double-sided. To format a disk on both sides,
simply set the DRVSID to 1 and issue an SIO
format command. You can access the extra
sectors on the second side through SIO. The
drive numbers these sectors consecutively. So
if you formatted the disk double-sided,
single-density, the last sector on side one is
number 720, and the first on the second side
is 721.

DRVDEN: The density used. Possible
values are $00 for single-density (DOS 2.0)
and $04 for double-density (DOS 2.5).

DRVBYT: The number of bytes in a sec-
tor. Normally, this is $0080 for 128 bytes/sec-
tor. In double density, you set the value to
$0100 for true 256-byte sectors. In the latter
case, you have under any 2.X compatible
DOS 253 data bytes a sector. As with nor-
mal 128-byte sectors, the last three bytes are
used by DOS for its own bookkeeping.

DRVSEL: Set the drive-select number. If

40 track)

(

(

(18 sectors)
(26 sectors)
(single-sided)
(double-sided)
(single-density)
(double density)
(128-byte sector)
(256-byte sector)
(Drive 1 select)
(
(

FIGURE 1

SEPTEMBER A.N.A.L.O.BG. Computing

you booted from the XF551, this will normal-
ly be 1. This byte gives you the possibility
of overriding the drive-select switch.

DRVSER: Controls the baud rate used in
communication between SIO and the XF551.
Its default value is $41 (on a PAL system).
In theory you can speed up disk access by
increasing the drive’s baud rate. But to syn-
chronize with SIO you would have to modi-
fy its timing values also. There is, however,
no information yet about the values possible.

DRVMSC: These two bytes ($0000) seem
to serve no useful purpose yet. They’re prob-
ably here for compatibility reasons or future
extensions.

Using the new commands

Use of the DRVREC is fairly straightfor-
ward. With the new DCB GETREC com-
mand, you read the drive record in a buffer
somewhere, modify the bytes for the new
setup and finally write the record back to the
drive with the PUTREC command. That’s all
there is to it.

It would be wise, in a practical program,
to issue a disk status call (DSKINV, $E453)
after changing the DRVREC. If all went well,
the DCB status byte (STATUS, $30) will con-
tain the value of 1.

Conclusion

There is, of course, nothing final about the
data given above. The final word can only
come from Atari, if and when they’ll decide
to publish the XF551 full-interface specifi-
cations. In the meantime, however, you have
at least a starting point for using the full pow-
er of the XF551—and for exploring new, as
yet unseen horizons on your Atari.

Jerry van Dijk uses his Atari both as a
study tool and for recreation. His main in-
terests are system-level programming and the
use of computers in the practice of law. &

55

hy Frank Cohen

tari is aggressively building a U.S.
dealer base. Since Michael Dendo
joined Atari as the company's vice
president of sales, Dendo has been
working to change the apathy many
industry insiders have toward Atari.

Dendo joined Atari Corp. in August '88
and has survived his position longer than any
of his predecessors. Dendo was previously
the western regional and national military
sales manager for Star Micronics, a manufac-
turer of printers. At Star, Dendo managed dis-
tribution to key accounts and volume
merchants. Prior to Star, Dendo was the vice
president of dealer sales for National Busi-
ness Systems, a manufacturer of point-of-sale
terminals and high-speed embossing equip-
ment. National also produced ion deposition
printers, which use ion beams instead of
lasers to produce computer-generated
printouts.

Dendo lists Atari Corp.’s limited chain of
retail outlets as the number one reason the
ST has failed to make significant inroads into
the U.S. personal computer market. He cites
the limited supply of machines and poor deal-
er relations as the major culprits behind
Atari’s current retail woes.

Supplies of ST computers became limited
in 1988 due to an industrywide shortage of
memory chips. Like most personal com-
puters, the ST uses a special high-capacity
memory chip called a DRAM (Dynamic
Random Access Memory). American protec-
tionist legislation and supply restrictions by
the Japanese electronics cartel, MITI, caused
a worldwide shortage of DRAM chips in
1988. Recently, Atari’s supply crisis seemed
to be reduced.

“The DRAM crisis is over,” said Sam
Tramiel, president of Atari Corp., at a trade
show late last year. Tramiel noted three con-
tracts with major DRAM chip manufacturers
to ensure an adequate supply of memory
chips during 1989. Tramiel quoted current
production quantities of ST computers to be
between 50,000 and 70,000 machines per
month. “Ninety percent of our production
went to Europe last year,” said Tramiel, ac-
knowledging the starved supply conditions of
the U.S. market. With increased production
of ST computers, the U.S. market will again
56

be readdressed with advertising and promo-
tional plans absent since 1986.

Languages

The most popular development language
for the ST is C. The language began as a so-
lution to the problem of high-level program-
ming languages becoming too isolated from
a host computer’s operating system and hard-
ware—as is the case with Pascal. Program-
ming in C is very much a hybrid between
assembly and high-level language program-
ming. This can be a mixed blessing when a
programmer looks at the pitfalls built into the
C language. To help combat the pitfalls, most
C manufacturers have begun including a new
type of debugging software with their C
packages.

Source-level debuggers evaluate C source
code for errors before the source code is com-
piled. The traditional method of finding bugs
in programs is to compile the source code,
run the program and evaluate its performance.
With a source-level debugger, a programmer
is alerted to syntax errors, variable manipu-
lation problems and program tracing.

Mark Williams’ C ($179.95 List) has a new
source-level debugger, CSD ($69.95 List)
available for its ST development language.
Mark Williams’ CSD operates like a C in-
terpreter. Programs may be interrupted and
variables or memory may be checked. In
separate GEM windows, the source code,
program evaluation and runtime history are
displayed. Using CSD is advertised to cut C
programming time in half.

Deutschland BASIC

There is a new standard BASIC language
for the ST in Europe. Atari Germany began
shipping Omikron BASIC as the standard
Atari ST BASIC language late last year. Since
then, 11 other European countries have fol-
lowed the Omikron standard.

Omikron BASIC is close to MBASIC and
GW BASIC for MS-DOS machines. Omi-
kron’s development package comes with an
interpreter, compiler, and a large library of
precompiled programs for use in specialized
applications. The Omikron library has rou-
tines for GEM, MIDI, numerics, statistics,

complex numbers and financial mathematics.
The libraries make it easier for beginners to
understand how to develop complex appli-
cations. :

Omikron is a powerful BASIC. The pro-
gram allows screen editing using the GEM
system with menus and windows, and the lan-
guage is rich with mathematical operators:
19-digit precision, matrix operations, factori-
al and hyperbolic functions. Built-in com-
mands also support QuickSorting of arrays,
and Indexed Sequential Access Method
(ISAM) file indexing methods for business
database applications.

Omikron recently attended COMDEX, in
part to find an American distributor to handle
US. and Canadian marketing of their
products. If the U.S. version of Omikron
BASIC is well packaged and supported, it
could give GFA BASIC a run for its money.

Mainframe communications

Tozd Kooperacija—with a name like that,
it must be a Yugoslavian company—showed
an interface box recently developed to per-
mit a Mega ST computer to emulate an IBM
3270 terminal. Sounds like fun, doesn’t it?
When you consider the $30,000 IBM charges
its customers for a 3270 terminal, the $6,500
price of a Mega ST and the Tozd interface
box becomes appealing.

The Tozd 3270 emulator box allows up to
eight computers to emulate IBM terminals.
Engineering shops looking for a low-cost al-
ternative to the Digital Equipment or IBM so-
lution are finding the Mega ST to be a power-
ful workstation.

Eating frenzy

Computer trade shows in general are a
gigantic curio emporium. Almost every booth
has something to take home. At a recent trade
show we found WordPerfect giving away hats,
while Intersect pushed out its business card-
holders. Lots and lots of brochures were
given out, which created a high demand for
plastic bags. The inevitable outcome is a bag
frenzy. The little Microsoft bag holds about
ten brochures and fits snugly into the larger
Packard Bell bag. The Xerox bag swallows
up the Packard Bell bag with ease. But the
MacWorld bag, which boasts dimensions that
exceed two yards of plastic, gobbled up all
the competition.

Frank Cohen has been developing Atari
programs since his first commercial product,
Clowns & Balloons. You may contact him
directly on CompuServe (76004,1573) and
GEnie (FRANK.COHEN), or by writing to
PO. 14628, Long Beach, CA 90803-1208. &

SERPTEMBER A.NL.A.L.O.G. Computing

Reviewed by Matthew J.W. Ratcliff

Crime Buster is a hot new light-gun game
from James Zalewski, the author of the popu-
lar Barnyard Blaster. In this game, the mob-
sters are trying to take over the city, and it
is up to you, the hottest cop in town, to clean
it up.

This one- or two-player game sports first-
rate graphics, excellent sound effects, and
light-gun accuracy that is top-notch (notice-
ably better than Bug Hunt and Crossbow, the
same as Barnyard Blaster).

After blasting the one- or two-player sign
and shooting to select one of 12 precincts on
the city map, you hit the road in your police
car, lights flashing. Your patrol car drives
along the road, right to left, viewed from
overhead. Some cars pass you, or you drive
past them. Cars with stripes on them have
crooks inside, and they are out to get you.
The most logical thing to do is point your gun
at the offending mobster’s car and blast away,
but nothing happens. There is a series of five
arrows at the bottom right of the display,
pointing from west to east at various angles.
Shoot at one of these arrows to determine the
direction of the bullets from your car at the
criminals’ car.

This is a frustrating screen to navigate.
While you try to shoot the right arrows or hit
the slider arrows to their left to adjust your
car’s position on the screen, the bad guys are
blasting away with their tommy guns. It is dif-
ficult to get past this screen without simply
holding your gun directly in front of the ar-
rows and rapid-firing. Author James Zalewski
admits he is disappointed with this one game
screen, but it was Atari’s specifications he had
to meet.

At the end of a short and harrowing drive,
you are at your first destination. After clean-
ing up the first precinct, you will no longer
have to drive again, so long as you continue
to select adjacent areas from the city map that

are within walking distance.
SEPTEMBER A.NLA.L.O.G. Computing

.‘ﬂ
p_—"
&
e
»
wn
I
-
-

You must clean up four types of hideouts.
At the warehouse you will find gangsters pop-
ping up from behind crates and boxes, ap-
pearing in windows above and entering a door
below. You might think it’s time to shoot first
and ask questions later. It isn’t quite so sim-
ple, however, since there are innocent
bystanders mixed up in this gun battle. Any
time a pretty lady or a buxom blonde pops up,
hold your fire. Ladies should never be shot
at. Sometimes a kid will pop up, wearing a
beanie and firing away like a big-time hood.
Shoot him before you get plugged. Always
make certain he has a gun in his hand and
not a lollypop. Little kids with candy should
not be shot at. Sometimes a fella will walk
through a doorway, and then move on. Don’t
shoot him unless he pulls a gun and begins
firing at you.

Any time the wrong person is shot, it costs
you five bullets from your limited supply,
which can result in an early demise for you.
Blast all the bad guys with bullets to spare
and move on to the next precinct. In the ware-
house, in the alleys or in the downtown
scenes, you will find street lights. The
documentation doesn’t mention it, but if you
shoot these lights out, the gangsters’ shoot-
ing accuracy will drop by 50% so that you
die less often.

Down at the pier you may have the most
fun, blasting the bad guys who pop up in the
windows on the Sea Witch. Sometimes scu-
ba diving hoods will surface in the water off
to the right of the pier. Occasionally a young
beauty floating in an inner tube will come
along to distract you as well. On this screen
there are fewer places for the hoods to pop
up, so it seems easier to clean up. Zalewski
has paid great attention to detail: The hats fly
off the heads of blasted gangsters, they show
painful expressions when you plug them, and
even the scuba mask cracks when one of the
divers is shot.

Over in the alley there are many windows
and an open doorway to keep a sharp eye on.

REVIEW

CRIME BUSTER

Atari Corp.

1196 Borregas Avenue
Sunnyvale, CA 94086
(408) 745-2000

XL/XE cartridge: $34.95

The gangsters are heavily armed and will stop
at nothing to prevent you from busting up
their ring. Lots of innocent bystanders make
the alley tough to clean up.

When you get downtown, the battle rages
to a peak. There is an Army Surplus store
and Z’s Bar and Grill brimming with bad
guys. They appear in the windows, doorways,
and even from under a manhole cover in the
street. This screen seems to be the toughest
to complete.

Each time you are killed, an impressive
skull-and-crossbones is displayed. You are a
cat of three lives, but that can be extended.
After about the sixth area has been cleaned
up, some special characters will begin to pop
up occasionally. Blasting them may result in
a bonus life or extra bullets. Some can cost
you dearly as well, according to the author.
These are not mentioned in the documenta-
tion and are left for the player to discover.
There is one character you will recognize,
however, if you have ever played Barnyard
Blaster. These tidbits from James Zalewski
enticed me to keep playing the game long and
hard until I could complete all 12 precincts
and finish the game, receiving a Crime Buster
rating.

The game is played until either the hood-
lums get the best of you, or you have cleaned
up the city. A final rating, from Mobster
through Detective, Unpluggable, and ulti-
mately Crime Buster is presented. This is a
thoroughly enjoyable game,even after com-
pleting it once. It is a lot of fun to set up a
friendly competition with friends in the two-
player mode as well.

Crime Buster is an impressive light-gun
game. I am looking forward to more excel-
lent works from James Zalewski and Atari
Corp., which has been turning out some fine
titles since the beginning of 1989.

Matthew Ratcliff, a frequent contributor
to ANALOG Computing, lives in St. Louis,

Missouri, with his wife and two children. &1
57

#

L
macro is a sequence of keys that can
be called up by pressing a single key.
For instance, I could define a macro
to-type out LOAD “D:", and from
that point on I would need only to

type one keystroke to type that string, If

you're a slow typist, macros can improve your
efficiency when it comes to programming.

Using the Macro Editor
Macro Editor is designed to be as easy to

use as possible. All you need to do s type
in Llstmg 1, check your workythh BASIC

MACRO EDITOR

Wy

out Macro Editor; both are stand-alone
programs. You can also run Macro Editor
repeatedly; for instance, ifI booted with cer-
tain macros activated (with an AUTO-
RUN.SYS on my disk), or had already run
Macro Editor once, I could run it again and

change the macros. But remember, you must

answer “Y” to the prompt if you wish to
make the change to an AUTORUN.SYS.
- Obviously there are many uses for the

| XL user, you could define a m

you. If you are a hard-drwe user, a mac‘

languages, however.

Macro Editor is Resetproof. In addition,
if you don’t intend to use all ten macros, you
can define only the ones you want and then
hit Break to save time.

' Macro Editor resides on page six—almost

all of page six—so keep this in mind before

; attemptmg to use other machine-language
utxlltws, which dle.o use page SiX.

macros other than entering BASIC com-

Is. For instance, if you are a Sparta-DOS
or DO,
to type out DIRECTORY < Return

Fr 1k Selpel is an 18—year1-old resident of
lumbus, Ohio. He has been interested in
computers for six yeazs

1 REH

Z REM *® MACRO EDITOR *
3 REHM * by Frank Seipel *
4 REM * ¥*
9 REH * COPYRIGHT 19893 *
6 REM ¥ BY ANALOG COMPUTIHNG *
7 REM EROua bbb bbb e b3
8 REH

18 GRAPHICS 17:POKE 716,14:POSITION 8,

6:7 HE;" AT TR : ACTIVE=PEE

Kf15363=169

19 2 H6:? HE;}" BY FRANK SEIPEL':? HG
1? #H6:7 H6:7 HE6;M please wait"

28 FOR I=1i536 TO 167Z:REaAD D:POKE I,D:

NEKT I

25 GRAPHICS B:IF HNOT ACTIVE THEN TRAP
Z8:0LD=PEEK(1535) : POKE 153%5,1684:K=U5SR
(1535) :PDKE 1535,0LD

28 ? :7 “Enter macros. Hit {5tart} af
ter":? “entering each mwmacro. Any"

29 7 “ECTEAMW#] keypresses will be part
of":? "the macro.":?

I8 7 " macro is a string of text --":
2 “fpr instance, you could define"

1 2 “"Shift+Control+d as LIST {Return?
n:? vyjith this program —— and then typ
ell

32 ? “"Shift+Control+8 instead of LIST.
n:7 17 UThig program can be used to"
33 2?2 “"redefine the WMAacros in MeWory, o
r'':? "yrite out an AUTORUN.S5YS file to
n

34 ? "your disk, which will automatica
11y*”:? "install your macros every time
you'":? "“"bpoot-up.':?

35 OPEN H1,4,8,"K:":0FFSET=6:0FFTABLE=
1672 :DTABLE=1686

I6 ? :7? YHit {Return? for next page'":G
ET H#1,X:? CHR$(125):7 :7 “Sum length o
f all macros may'

37 7 "not exXceed 12Z8. after using a'":
? “"macro, you may not use it again unt
i lll

38 7 "you have typed some other key, o
r'':? "used another macro key.":? "“(If
this is a problem, just hit"

39 7 “"IC(TEIME Y] before executing the ma
crol':?

48 FOR I=8 TO 9

42 POKE OFFTABLE+I,OFFSET

58 7 :7? “Enter macro for

B ;CHRS(I+48+128):7 "“—-=)";

68 IF PEEK(53279)=6 THEN GOTO 146:REM

HSAVEX

78 IF PEEK(764)=255 THEN GOTO &8

860 POKE DTABLE+OFFSET,PEEK(764) :GET H1
;K:? CHRS(H);

136 OFFSET=0FFSET+1:GOTO &6@&

146 POKE DTABLE+OFFSET,255:0FFSET=0FF5S
ET+1:FOR D=1 TO S80:NEXT D:NEXT I

288 ? :? :7 "“"Mould you like to make th
ese:? “your default macros [i.e., wou
1d you"

21 7 "like to write an AUTORUN.SYS'":7
"consisting of these macros and the':
? Ymacro program to D1: 27 {Y/N> —-->";
220 GET H1,H:IF H=ASCI'"y') OR X=AS5C("'Y
"y THEN ? "“"Yes5'":? :? "Working...":GOTO
IBoooa

238 ? "“HOo":END

29818 DATA 1692,0,141,149,6,165,12,141,

46,6,165,13,141,47,6,16%,23,13%,12,16%
,6,133,13,1608,48

296828 DaATA 162,6,169,6,32,92,228,173,1

49,6,2081,1,2409,6,169,1,141,1492,6,96,76

o s e e e o o0 O T N o s . S Ivll\(:'z‘a' IE[’rr(Jma e e S R SN o e/ . |

LISTING 1: BASIC

y224,7,72,138,72,173,147,6

290830 DATA 208,44,173,9,216,197,08,248,
17,133,06,162,06,189,127,6,2085,9,210,246
,11,232,224,10,2088,243

290608 DATA 104,170,1084,76,95,228,169,1
,141,147,6,189,137,6,141,148,6,76,806,6
,174,148,6,189,150,6,201,255,248,9
292088 DATA 141,252,2,238,148,6,76,80,6
,169,8,144,147,6,76,80,6,242,223,222,2
18,216,221 ,219,243,245, 2486

6888 CLOSE H#1:0PEN #1,8,8,"D:AUTORLN.
D Y5

8818 START=300:HEND=318:G05UB 3106068
38628 START=1536:KEND=1721:G0O5UB 3Ii666
38638 PUT H1,226:PUT Hi,2

Ig040 PUT H1,227:PUT #1,2

86856 PUT Hi,8:PUT #1,6

30868 CLOSE H1:END

316868 PUT 8B1,255:PUT #1, 255

Iiid CELL=S5TART:GOSUB 31288

Xi8z8 PUT #H1,LO0W:PUT H1,HI

316836 CELL=HEND:GOSUB 31268

Iig4d4a PUT H1,LOW:PUT H1,HI

31658 FOR I=START TO HEND

1866 PUT H1,PEEK(I) :NEXKT I

31288 HIZINT(CELL/256) :LOW-CELL-HI¥256
tRETURN

S 0100
i 0110 ;% *
0120 * Macro keys: *
-] 8130 ;% *
0140 ;% Written by: Frank Seipel %
= 0150 ;% *
0160 ;% December 30, 1988 *
B 0170 ;% *
) 0180
0190 ;
m 0200 SYSUBU = SE4SF
0210 SETUBV = $E45C
< 0220 CH = $02FC
0230 KBCODE = $D209
" 0240 LASTKEY = $00
N 0250 *= 50600
0260 LDA 10
0270 5TA FIRSTRUN
(L] 0280 LDA 12
0290 STA DOSJUMP+L
— 0300 Lpa 13
pe— 0310 5TA DOSJUMP+2
0320 LDA HINIT&2S5S
0330 sTA 12
0340 LDA HINIT/256
— 0350 sTA 13
I 0360 INIT LDY #START&255
0370 LDX HSTART/256
0380 LDA 16
0390 JSR SETUBY
0400 LDA FIRSTRUN
0410 CHP 111
0420 BEQ DOSJUMP
0430 LDA 1
0440 STA FIRSTRUN
0450 RT
0460 DOSJUMP JMP SFFFF
0470 ;
0480 ; Actual code starts here
0490 ;
0500 START PHA ; Save a
0510 TRA
0520 PHA ; Save X
0530 LDA INPROGRESS ;Already going
0540 BNE TYPEITOUT ; do next key
0550 LDA KBCODE ; compare key
0560 CHMP LASTKEY ; to last-
0570 BEQ EXIT 5 quit if same
0580 STA LASTKEY ; store last
0590 LDX 10 ; zero index
0600 LOOP LDA KEYCODES,X ; check if
0610 CMP KBCODE ; key is a
0620 BEQ MACROPRESSED ; macro key
0630 INX ; inc X
0640 CPX 110 i done?
0650 BNE LOOP ; no; do nxt
0660 EXIT
0670 ; Code to exit interrupt
0680 PLA
0690 Tax ; Restore X
0700 PLA ; Restore A
0710 JMP SYSUBU
0720 MACROPRESSED
0736 ; Initiate macro typing code
0740 LDA 1 ; Tell interrupt
0750 - STA INPROGRESS ; to get going
07660 LDA OFFSETS,X ; get offset
0770 STA CUROFFSET ; store offset
0780 JHP EXIT ; quit
0790 TYPEITOUT
0800 ; code to key macro
0810 LDX CUROFFSET ; get offset
0820 LDA DATA,X ; get data
0830 CHP 1255 ; end of macro?
0840 BEQ DONE ; yes; quit
0850 STA CH ; no; type
0860 INC CUROFFSET ; inc offset
0870 JMP EXIT ; quit
0860 DONE
0890 ; End macro code
0900 LpA 10 ; Tell interrupt
0910 STA INPROGRESS ; quit typing

0920 JMP EXIT ; and quit

0930 KEYCODES .BYTE 242,223,222,218,21
6,221,219,243,245,240 ; Codes for macr
o0 keys tinternal)

0940 OFFSETS .BYTE 1,2,3,4,5,6,7,8,9,1
0 ; Reserve RAM for offsets

0950 INPROGRESS .BYTE $00

8960 CUROFFSET .BYTE $00

0970 FIRSTRUN .BYTE $00

0980 DATA g
8990 ; Macro key data table

SEPTEMBER A.N.A.L.0O.3. Computing

WARNING: BEFORE YOU RUN A PROGRAM, READ THE
APPROPRIATE ARTICLE IN THE MAGAZINE.
FAILURE TO DO S0 MAY YIELD CONFUSING

FOR OUR DISK
SUBSCRIBERS o g U o

THE MENU, OTHER PROGRAMS SHOULD BE
Thefouovw"Ql"OQramS from ﬂ"s - LOADED AS INSTRUCTED IN THE LOADING
issue are on disk: ; NOTES AMD MAY RERUIRE ADDITIONAL

SOFTHMARE AS LISTED BELOM. HOMEUER,

vOU SHOULD NOT ASSUME THAT EUVERY FILE

WITH THE PROPER FILE EXTENSION WILL RUN

FROM THE MENU. Y0U MAY HAUE TO MOVE

THE ANALOG #76 DISKETTE CONTAINS 14 CERTAIN PROGRAMS TO A DIFFERENT DISK
MAGAZINE FILES. THEY ARE LISTED BELOM: TO OBTAIN CORRECT RESULTS.
SIDE 1: ‘ ‘

EXT DESCRIPTION
FILEHAME.EXT LAKHG, LOAD ARTICLE NAME m—m e

.H65 REQUIRES THE MAC/BS ASSEMBLER

MACROEDT.BAS BASIC LOAD HMACRO EDITOR «AMA REGUIRES THE ATARI MACRO ASSEMBLER
HACROEDT.MBS MAC/6S LOAD HACRO EDITOR SOURCE .ASH REBUIRES THE ATARI ASSEMBLER/EDITOR
SHOOTER .DBJ HL (#3) SHARP SHOOTER .ACT REQUIRES THE ACTION! CARTRIDGE

GUN ACT ACTION! (#1) SHARP SHODTER SOURCE LGOD REQUIRES THE ATARI LOGO CARTRIDGE

GUNREAD .ACT ACTION! (n#1) SHARP SHODTER SOURCE .5YN RERUIRES THE SYMNAPSE SYN ASSEMBLER
HANDI .BAS BASIC LoaD RECURSION
HEAPSORT .BAS BASIC LOAD RECURSIDN

QUIKSORT.BAS BASIC Loalk RECURSION LOADING NOTES

RAMDISK .0BJ ML (#4) RAMDISK BABXL = = e . .

RAMDISK .SYN ASSEM. LOAD RAMDISK 888XL SOURCE . . .

SKEET <DEL HE (#13) SKEET SHDOT LOAD BASIC PROGRAM: LOAD "D:FILENAME.EXT"

SKEET .H65 HAC/65 LOAD SKEET SHOOT SOURCE ENTER BASIC PROGRAM: ENTER “D:FILENAME.EXT"

MLEDITOR.BAS BASIC LoAD M/L EDITOR LOAD MAC/65 PROGRAM: LOAD #D:FILENAME.EXT

EDITORII.LST BASIC ENTER BASIC EDITOR II ENTER ASH/ED PROGRAM: ENTER #D:FILENAME.EXT
LOAD LOGO PROGRAM: LOAD "D:FILENAME.EXT"

LOAD SYN/AS PROGRAM: LoaD "D: FILEHﬂME EXT"
TO LOAD YOUR ANALDG DISK

———————————————————————— - | #it SEE ACTION! MANUAL.
. #2: SEE ATARI MACRO ASSEMBLER MANUAL.

1) INSERT BASIC CARTRIDGE C(NOT REQUIRED FOR XE #3: MAY ALS0 BE LOADED FROM DOS USING THE L'
OR XL COMPUTERS) OPTION OF THE DOS MENU.
2) TURN ON DISK DRIVE AND MONITOR. #t4: THIS FILE SHOULD BE TRANSFERRED TO ANOTHER
3) INSERT DISK IN DRIVE. DISK AND RENAMED "RAMDISK.CDM'.
4] TURN ON COMPUTER. (XL AND XE OMWNERS: DO NOT #5: READ THE APPROPRIATE ARTICLE FOR INSTRUCTIONS

HOLD DOWN OPTION KEY!) - N USING THIS FILE.‘

continued from page 15

RECURSION

RSELEVEL/2+64) ; :REM Display level

59 REM If there are entries to the lef
t of PIVOT, change FIRST and LAST to t connnuedj%mnpage38
he new limits and immediately sort

68 IF FIRSTS{PIVOT-1 THEN LAST=PIVOT-1:

GOTOD 28

62 REM Restore the positions of unsort ham hon'er
ed arrays (to the right) and sort

78 IF LEVEL THEN FIRST=ASCI(FIRSTSILEVE
L-13)%256+tASCLFIRSTS (LEVEL)) ’
7?5 IF LEVEL THEN LAST=ASCILASTS (LEVEL- .
1))*256+ﬂ50(Lﬁ5T$(LEUEL1):LEUEL:LEUEL- ' IF GunY ¥ 95 THEN
2:7 “{'"::G0T0 ZB:REM ESC/BACK SPACE={ GunY = 95

79 REM ARRAYS is already sorted, 5o a FI

simple print is sufficient
88 FOR A=1 TO COUNMT:? ARRAYS((A-1)%*5IZ Shift = yshifti{index)
E+1,A¥SIZE) :NEXT A

T;" records left"

98 7 “"Entry: ""INPUT n$ IF A%="" THEN
FIRST=1:LAST=COUNT:LEVEL=8:G0OTO Z8:RE
M Call recursive sorting algorithm

94 REM Simple routine to tack entry to
the end of ARRAYS

95 A=SIZEXCOUNT:FOR B=1 TO SIZE:ARRAYS
tA+BY=" ":NEXT B!ARRAYS (AL, A+LENCAS))
A5 :COUNT=COLUNT+1:GOTO 98 ‘q

85 7 1?7 COLNT;" records used", RAM-COLUN ' IF shift = 128 THEN

GuUnY = GunY¥ LSH 1
ELSE ~
GunY¥ = Gun¥ RS5H shift
FI

XX A= Gun¥
yy A= Guny

RETLRN (=]

SEPTEMBER A.N.A.L.O.Q. Computing

ttending the lat-

est COMDEX

show is one of
the many jobs of this
Atari reporter. I'm not
complaining, but over
the last seven years I
have attended approx-
imately 16 COMDEX
and Consumer Elec-
tronics Shows. I say
approximately because
in retrospect they all
tend to blur together.
Over the years, Atari,
the computer industry
and the technology
have changed, but
there is always some-
thing new to see and
report on.

The 1989 Spring
COMDEX (COM-
puter Dealers EXposition) was held in Chica-
go rather than Atlanta, the customary
location. As a result, show attendance was
down because of the cool weather. However,
Atari made headlines with two new-product
announcements and their renewed vigor for
recapturing the U.S. ST market.

COMDEX is held twice each year, and at
the last show in Las Vegas, Atari was talking
but not showing. There wasn’t much for Atari
to show then. But that was due in part to their
new policy of not discussing new products
unless they will be shipping in 60 days. Al-
though we have heard these claims before,
Atari was saying (at the time) that 1989 would
be the year they would return in force to the
U.S. market.

It is well known that for the last several
years Atari has been concentrating on the Eu-
ropean market. With their limited human
62

xR RS

hy Arthur Leyenherger
resources (Atari is a small company) and the
recent DRAM (Dynamic Random Access
Memory)-chip shortage, Atari was unable
(and unwilling) to support ST sales in the
United States. No advertising, fewer and few-
er dealers and increasingly fewer new ST
products from third-party vendors has left the
domestic ST market to virtually wither away.
And then there is the 8-bit market, which has
seen little support from Atari for quite some
time.

Well, all of this is old news. Atari has been
claiming they will “shine in ’89,” so to speak,
and from what I saw at COMDEX they
might do just that. National media attention
was given to Atari’s ST laptop computer and
the new “pocket” MS-DOS computer called
Portfolio. More important is Atari’s new at-
titude toward product availability.

Atari returns
with new
products and

renewed purpose

I've briefly dis-
cussed Atari’s renewed
purpose above. Ac-
cording to Sam
Tramiel, president of
Atari Corp., the
DRAM shortage is
over (at least for
Atari), so more STs
can be manufactured
and therefore be avail-
able for the U.S. Fur-
ther, with product
availability comes a
reason for advertising.
Although we may not
see much in the way of
television and radio advertising, Atari says
they are committed to advertise nationally in
the print media.

Atari readily concedes that they sacrificed
the U.S. market in 1988 in order to maintain
their position of leadership overseas. This
means that they will need to work doubly
hard in the areas of distribution and market-
ing to increase sales, attract new dealers and
court developers. One area of continued suc-
cess in the U.S. is the MIDI (Musical Instru-
ment Digital Interface) market. Atari claims
to have 35 percent of this market. Interest-
ingly, the majority of new ST and Mega deal-
ers are music stores rather than computer
stores.

Atari was showing what will no doubt be
a major success with musicians—the ST
laptop. Originally named Stacy, and now re-
named the Transportable, it was first dis-

SEPTEMBER A.NL.A.L.O.G. Computing

cussed last November at the Fall COMDEX
in Las Vegas. However, it was not shown offi-

cially and consisted of a working prototype

with exposed circuit cards and cables. Even
the LCD screen was separate from the unit.
A foam mockup of the final design was also
seen last year, which, as it turns out, was
similar to the final design.

The Transportable being shown was a
working pre-production unit housed in a
locked Plexiglas display case. A series of con-
tinuously running demos could be seen on
the LCD screen. I had heard that the Trans-
portable would be at COMDEX, but I feared
the worst: that it would be too big, too heavy
and unattractive. I'm happy to say I was
wrong. The Transportable is attractive and
about the size of other MS-DOS laptop com-
puters.

The Transportable weighs in at 15.2
pounds, which is at the upper end of the
weight range of comparable PC laptop com-
puters. Using a 640- by 400-pixel supertwist
LCD screen, the laptop offers the same reso-
lution as the monochrome ST monitor. In ad-
dition, one megabyte of memory and a single
3%-inch (double-sided) floppy-disk drive are
provided. According to Atari, an optional
second floppy drive or hard disk can be ad-
ded to the unit.

The Transportable has all of the ports and
interfaces of a regular ST or Mega ST, in-
cluding monitor, serial and parallel floppy
and hard disk, MIDI, mouse and joystick. It
can run on AC power or use its non-
replaceable internal battery pack. I have no
idea how long the laptop will operate once
the battery is fully charged, but I suspect it
will be approximately 2-3 hours.

One of the unique features of the Atari
Transportable is a built-in trakball on the low-
er right side of the keyboard. It is slightly
larger than a ping-pong ball and used in place
of a mouse to control the screen pointer. Two
keys that function identically to mouse but-
SEPTEMBER A.NL.A.L.O.G. Computing

tons are placed immediately above it. The
trakball is a thoughtful addition, since using
a separate mouse on a laptop is somewhat
cumbersome.

I was able to spend a couple of minutes us-
ing the Transportable and came away im-
pressed. The keyboard was surprisingly
good—similar to that on a Mega ST. Al-
though the built-in trakball seemed strange
at first, I'm sure I could get used to it. A
mouse port is provided in case you want to
use a normal ST mouse.

With a list price of $1,500, the Atari Trans-
portable should be a success, especially with
musicians. When you consider that you can
add a Spectre 128 cartridge to this laptop to
run Mac software, it looks like Atari may beat

Apple in the race to get a MacLaptop to mar-
ket. And don’t forget PC Ditto that gives MS-
DOS compatibility. Having virtually three
computers in one makes the Atari laptop
unique and should increase its appeal.

The Atari Portfolio was the other new Atari
product at COMDEX. Billed as a hand-held
MS-DOS computer, it contains DOS 2.11 in
ROM, 128K of RAM (expandable to 640K),
an 8-line by 40-character LCD display and
a 63-key QWERTY keyboard. The Portfolio
uses an 80C88 processor like the original
IBM PC and sells for $400. The unit is about
the size of a videotape and weighs under a
pound. Two standard “AA” batteries power
the Portfolio for up to 48 hours of continu-
ous use.

Built-in software includes a word proces-
sor, a spreadsheet that creates Lotus
I-2-3-compatible files, an address/phone list
program and an appointment calendar. An in-
terface jack is provided for exchanging data
directly with a PC via a “‘smart cable.” The
Portfolio can also accept either ROM cards
for software or RAM cards for data storage.
Even standard PC peripherals, such as mod-
ems and printers, are said to be usable with
the Portfolio by means of “card-cables” that
insert into the RAM/ROM wafer slot.

The Atari Portfolio is an attractive prod-
uct that appears to be functional too. I was
permitted to “use” the Portfolio for a couple
of minutes and was impressed. The unit felt
solid, the overall design was clean and the
keys had a good response. I doubt if I could
type an entire article using the teeny-weeny
keyboard, but I could certainly enter short
notes with practice.

According to Atari, both the Transporta-
ble and the Portfolio should be available by
the time you read this. Products like these
demonstrate that Atari is trying to move for-
ward with innovative products. Both the
laptop and the Portfolio are niche products
that should appeal to more than just the tradi-

63

with more Atari end users, Atari will be a

stronger company. We'll all benefit from that.

Atari was showing another new product of
interest to ST users. The Megafile 44 is a hard-
disk unit that uses a removable 44-megabyte
cartridge. The cartridge sells for $150 and has
a relatively fast access time of 25 milliseconds.

The unit itself sells for $1,200 and will be avail-

able by the time you read this.

Other things

Technology is still the watchword at COM-
DEX. Intel introduced their new 80486
microprocessor, which contains a math co-
processor on the chip itself. It is primarily

meant for the workstation and minicomputer

markets. IBM had a prototype machine us-
ing the new chip at the show.

Several manufacturers of laptop computers—
Mitsubishi, Toshiba, Sharp—were showing
laptops with color LCD screens. Seeing color
on a laptop screen is amazing, although the
technology is still about a year from produc-
tion. All of the models that were displayed
were “under glass,” and the companies re-
fused to discuss any technical details.

Hewlett-Packard was showing a new ver-
sion of the excellent Deskjet Printer at COM-
DEX called the Deskjet Plus. The Plus offers
all of the features of the original model that
has been available for about a year, plus much
more. Using inkjet technology that Hewlett-
Packard pioneered a few years ago with their
ThinkJet printer, the new model yields laser-
printer-quality output at the price of a high-
end dot-matrix printer.

The Deskjet Plus can print text and graph-
ics output at up to 300 dpi (dots per inch)
resolution, just like a laser printer. Output is
essentially indistinguishable from laser-
printed output. However, the speed of print-
ing is slower because the printer prints as it
receives output from the a computer. The
printer can print in draft mode at a speed of
240 characters per second (cps). The speed
of the letter-quality mode is 120 cps. Graph-
64

ics output is slower.

The most significant difference between the
HP Deskjet and the new Deskjet Plus is
throughput speed. Although draft- and letter-
quality printing speed is still rated the same,
throughput is said to be two to five times
faster due to a faster microprocessor, paper
pick-up mechanism and motor, which moves
the paper through the printer in half the time
of the original.

The Deskjet Plus contains more built-in
fonts: six portrait and four landscape. Fur-
ther, landscape printing is now possible without
the need for an optional font cartridge. In ad-
dition, larger fonts are also included (up to
30 points) and the Plus can print on legal-
size paper. The Deskjet Plus sells for $995
and the original Deskjet has been reduced to

$795.

Atari shuffles the deck, and
other exciting tidbits

Sig Hartmann, longtime sidekick of Jack
Tramiel and veteran of Atari Corp., has re-
cently assumed the role of executive vice
president of Atari Corp. and president of
O.E.M. Sales. This post also encompasses

government and institutional sales, but it is
no secret that Atari has had difficulty break-
ing into the mainstream business market,
which makes Sig’s new job even more
challenging. Sig has held just about every
post at Atari Corp. and has the energy to get
things done. We wish him the best of luck

! in his new position.

Other new faces at Atari include Joe Men-
dolia, new V.P. of marketing, and Tony Saler-
no, V.P. of U.S. Software. Joe came from
Imagen and is now responsible for user-group
support as well as Atari marketing. He will
be primarily responsible for the strategy and
not-so-trivial implementation of Atari’s return
to the U. S. market. I have him to thank for
allowing me to get my paws on both the ST
laptop and the Portfolio, even if it was only
for a few fleeting minutes. Thanks, Joe.

Tony Salerno comes from Borland Inter-
national, a company specializing in utility
and language software for the PC and Macin-
tosh. Tony will be responsible for technical
support, equipment sales and developer sup-
port. Let’s hope he is successful in these
areas, especially with developer support. It
would be great if Atari could support de-
velopers the way other major companies do.
A world-class effort would surely keep the
existing developers in the Atari fold as well
as attract new ones—something we clearly
need.

It’s official. Shiraz Shivji has left Atari.
Who is Shiraz, you might ask? Oh, just the
so-called father of the Atari ST computer.
Shiraz’s engineering brilliance allowed Jack
Tramiel to introduce the original ST four
years ago. He has also been actively involved
in the Mega series and other peripheral
products. We wish Shiraz success in his new
endeavors and hope Atari can find an equal-
ly talented engineer to replace him.

Arthur Leyenberger is a freelance writer
who lives in beautiful New Jersey. He can be
reached on CompuServe at 7126646 or on
DELPHI as ARTL. (3]

SEPTEMBER A.NL.A.L.0O.8G. Computing

Reviewed by Matthew J.W. Ratcliff

The Chessmaster 2000 is the most sophisti-
cated chess program since Sargon III. This
finely crafted program and its complete
documentation will help you learn to play,
from the basics through tournament-level ex-
pertise, with some 100 classic sample games
on the data disk. The sample games begin
with Greco in 1620 and go through the Kar-
pov versus Kasparov world championship in
1985, ending with two examples of Chess-
master vanquishing Sargon III in 1986.

Chessmaster comes with a book that in-
troduces chess basics, with all the moves and
terminology explained. A basic point system
for each captured piece is presented to help
you keep track of their value during game
play. Information on joining the U.S. Chess
Federation is also provided, if you want to
get really serious about the game.

The reference continues with a history of
chess as it developed into its modern form.
Another brief history of the game is presented
in terms of the world champions and their
playing styles. Next, a section on chess and
machines leads us from the earliest mechan-
ical players through the latest computer-based
game-playing algorithms. Finally, the refer-
ence guide presents the 100 classic sample
games, which are on the enclosed data disk,
followed by sample Chessmaster problems,
solutions and a bibliography. I found this en-
tire book fascinating reading.

A handy reference guide provides informa-
tion on booting the program and executing
game controls. The escape key toggles be-
tween the main menu screen and the finely
detailed graphic display of the chess board
and pieces. Game control may be carried out
SEPTEMBER A.N.A.L.O.3. Computing

with the joystick or via keyboard input. An
alphanumeric grid is displayed around the
board, which is used for positional references
of the pieces.

Chessmaster accommodates newcomers by
allowing them to turn on the easy mode and
select a play level of zero. Castling, en pas-
sant (a move that allows the capture of an op-
ponent’s pawn ‘“‘in passing”) and pawn
promotion are fully supported. At any time,
you may simply press Return to change sides
and take on the opponent’s pieces as your
own. A classic game may be loaded and
played for your learning enjoyment. You may
also save a game to disk to finish at a later
time if so desired. Complete disk-
management functions are provided for
cataloging games, deleting, loading, solving
mates and printing a game history.

Chessmaster will play in a “coffeechouse”
mode, if you choose, playing a more relaxed
style suitable for casual players, rather than
adhering to a strict tournament format.

As you become more adept at the game,
you may program Chessmaster to play from
level O through 19. The higher the level of
play, the tougher Chessmaster is to beat and
the longer it will take to make each move.
You may toggle the easy mode at any time
as well, thus disabling Chessmaster’s think-
ahead capability while waiting on your move.

Play modes may be selected for human
against Chessmaster, human against human
or Chessmaster against itself. If you want to
see how this program considers each move,
you may ‘‘show thinking.” When this is ena-
bled, each possible move Chessmaster con-
siders will be displayed. As you learn the
game, you may request a hint, and the best

THE
GHESSMASTER
2000

The Software Toolworks
One Toolworks Plaza
13557 Ventura Boulevard
Sherman Oaks, CA 91423
(818) 885-9000

XL/XE cartridge: $39.95

possible move for you to make will be
revealed. :

The teach mode is excellent for novices or
rusty players like myself. Whenever you se-
lect a piece, all possible moves are highlight-
ed on the board. Teaching may be toggled on
or off at any time, as can sound effects, which
are simple audio cues for each move.

Chessmaster provides complete control
over screen and chessboard colors, and you
may rotate the board for a different perspec-
tive. According to the documentation, either
a two- or three-dimensional graphic display
may be selected, but it seems the Atari 8-bit
version works only in the 2-D mode.

To play out hypothetical situations, you
may set up the board. An additional menu
and set of controls make customizing a board
layout simple. This can be used to set up a
handicap against a better player or to help you
plan out strategies alone.

The Chessmaster 2000 is a superb game
for two players who don’t want to mess with
the clutter of a real chessboard and pieces,
and who want the convenience of a quick and
safe way to store an incomplete game. With
a printout of the game play, you can go back
and study where you went wrong or simply
play it back on the screen. Chessmaster will
also serve as a first-rate chess tutor and help
boost your status in the chess club. It is a fine-
ly crafted product, with complete documen-
tation and near-perfect game play to hone
your skills and make you a first-rate chess
player.

Matthew Ratcliff, a frequent contributor
to ANALOG Computing, lives in St
Louis, Missouri, with his wife and two
children.

65

You Own an Atat

YOUR ATARI RESOURCE CENTER

ANALOG Computing continues to offer exciting products for you and your Atari
Computer. And we're the only magazine for the Atari 8-bit computer line that hasn’t
allowed its content to be virtually taken over by coverage of the Atari ST. We in-

clude only a minimal amount of ST material so that you can stay informed of what'’s

happening with the 8-bit computer’s brother.

Whether you own a reliable ol’ 400 or 800, a shiny XL, new XE or
even an XE Game Machine. . .we offer usable utilities, entertaining
educational software, dynamite disk programs and great graphics
and games. In fact, our readers still use ANALOG programs that were

published over five years ago!

So when software companies turn their

heads to other computers, you can turn
yours to the one that supports your 8-bit Atari. And

that’s ANALOG Computing.

ANALOG’s Best! Over 88 of ANALOG Computing’s best and

most requested programs are now available on this series

of ten diskettes. The programs are all ready to run and come with complete

documentation on the flip side of each floppy diskette. Select from Graphics,
Educational, Utilities 1, Utilities 2, Disk Utilities and Games Disks 1, 2, 3, 4
and 5. Only $9.95 each (plus $1.50 shipping per order). Specify disk title

when ordering.

Unlock the secrets of your Atari Computer! This handy 16-page pocket reference
card covers information you need when programming your 8-bit. Error codes, internal
codes, PEEK & POKE locations, machine-language aids, graphic mode specs and BASIC commands
with abbreviations are only some of the helpful items at your fingertips.

The ANALOG Computing Pocket Reference Card, only $7.95 each!
(Plus $1.50 shipping and handling.)

16502 Comguter.

Devotes 50" of Its Pages to the Atari ST?

An Atari 8-bit Extra. While other “Atari”” 8-bit magazines just make claims on how they

cover your machine, we come through! Over 130 pages of new, never before published
material. Programs like Easy Type, Dragon Chase, Pastels, Display List Mod, Tactics, Trivia
and Create-a-base are all documented and ready to type in and run. . .all for just $8.95!

(Add $1.50 for shipping.)

Get the Extra on disk! This special offer for Extra owners gets you all of the programs
inan Atari 8-bit Extra on disk. Avoid typing errors, hours of tedious typing and frustration.
Just plug in the disk and you are ready to rolll Two, ready-to-run double-sided floppies, $24.95.

(Disks only. Atari 8-bit Extra sold separately. Please add $1.50 for shipping.) From the

F!NGLDE

magazine that always gives you something Extra.

Why let your fingers do the walking when your

Atari can do the running? Get this issue on

disk! Every month we offer all of the pro-

c OMPUT

ANALOG COMPUTING OFFICIAL ORDER FORM

grams in ANALOG Computing on disk . . .

ready to run. Even if you don’t know

anything about machine language or Use this coupon to order the most complete up-to-date products
,) . specifically designed for your ATARI PC!
don’t own the Action! cartridge, we ANALOG'S BEST—Graphics Disk...................... $995 S
. ANALOG’S BEST—Educational Disk.................... $995 §
offer programs in converted formats ANALOG'S BEST—Utllities #1................cc.on... $9.95 §
ANALOG'S BEST—Utilities #2.................c00u0n. $995 S
SO [hey’l] run on your Atari com- ANALOG’S BEST—Disk Utilities....................... $9.95 S
: ANALOG’S BEST—Games #1.. $
$: : ANALOG’S BEST—Games #2.. S
puter. Get this issue for just ANALGCE Bier s :
, ANALOG’S BEST—Games #4 $
$12.95 (plus $1.50 ANALOG’S BEST—Games #5 $
X . ANALOG COMPUTING—POCKET REFERENCE CARD..$ 7.95 §
shipping). ANALOG COMPUTING—8-bit EXTRA................. $ 895
ANALOG COMPUTING—8-bit EXTRA (on disk)......... $24.95 §
ANALOG MAGAZINE ON DISK (please specify issue)....$12.95 §
SHIPPING AND HANDLING—add $1.50 for each product ordered $
TOTAL ORDER gies
[J Payment Enclosed Charge My [VISA J Master Card
Card # Exp.
Signature
Name
Address
City State Zip
Make checks payable to: LFP, Inc. P.O. Box 67068, Los Angeles, CA 90067.
Your order will arrive in 4 to 6 weeks — WATCH FOR IT! ZIHYY

California residents add 6.5% sales tax on all orders except back issues.

BOOT CAMP

END USER
DATABASE DELPHI

	A1.pdf
	A2

